query_id
stringlengths
1
4
query
stringlengths
26
249
positive_passages
list
negative_passages
list
346
Differentiation of progenitor cells to myeloid cells is skewed upon activation of insulin signaling.
[ { "docid": "11902109", "text": "The Drosophila lymph gland is a haematopoietic organ in which progenitor cells, which are most akin to the common myeloid progenitor in mammals, proliferate and differentiate into three types of mature cell--plasmatocytes, crystal cells and lamellocytes--the functions of which are reminiscent of mammalian myeloid cells. During the first and early second instars of larval development, the lymph gland contains only progenitors, whereas in the third instar, a medial region of the primary lobe of the lymph gland called the medullary zone contains these progenitors, and maturing blood cells are found juxtaposed in a peripheral region designated the cortical zone. A third group of cells referred to as the posterior signalling centre functions as a haematopoietic niche. Similarly to mammalian myeloid cells, Drosophila blood cells respond to multiple stresses including hypoxia, infection and oxidative stress. However, how systemic signals are sensed by myeloid progenitors to regulate cell-fate determination has not been well described. Here, we show that the haematopoietic progenitors of Drosophila are direct targets of systemic (insulin) and nutritional (essential amino acid) signals, and that these systemic signals maintain the progenitors by promoting Wingless (WNT in mammals) signalling. We expect that this study will promote investigation of such possible direct signal sensing mechanisms by mammalian myeloid progenitors.", "title": "Direct sensing of systemic and nutritional signals by hematopoietic progenitors in Drosophila" } ]
[ { "docid": "17933691", "text": "A population of fibro/adipogenic but non-myogenic progenitors located between skeletal muscle fibers was recently discovered. The aim of this study was to determine the extent to which these progenitors differentiate into fully functional adipocytes. The characterization of muscle progenitor-derived adipocytes is a central issue in understanding muscle homeostasis. They are considered as being the cellular origin of intermuscular adipose tissue that develops in several pathophysiological situations. Here fibro/adipogenic progenitors were isolated from a panel of 15 human muscle biopsies on the basis of the specific cell-surface immunophenotype CD15+/PDGFRα+CD56-. This allowed investigations of their differentiation into adipocytes and the cellular functions of terminally differentiated adipocytes. Adipogenic differentiation was found to be regulated by the same effectors as those regulating differentiation of progenitors derived from white subcutaneous adipose tissue. Similarly, basic adipocyte functions, such as triglyceride synthesis and lipolysis occurred at levels similar to those observed with subcutaneous adipose tissue progenitor-derived adipocytes. However, muscle progenitor-derived adipocytes were found to be insensitive to insulin-induced glucose uptake, in association with the impairment of phosphorylation of key insulin-signaling effectors. Our findings indicate that muscle adipogenic progenitors give rise to bona fide white adipocytes that have the unexpected feature of being insulin-resistant.", "title": "Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle" }, { "docid": "37699461", "text": "Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.", "title": "Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells." }, { "docid": "30714190", "text": "The mechanisms regulating lineage potential during early hematopoiesis were investigated. First, a cascade of lineage-affiliated gene expression signatures, primed in hematopoietic stem cells (HSCs) and differentially propagated in lineage-restricted progenitors, was identified. Lymphoid transcripts were primed as early as the HSC, together with myeloid and erythroid transcripts. Although this multilineage priming was resolved upon subsequent lineage restrictions, an unexpected cosegregation of lymphoid and myeloid gene expression and potential past a nominal myeloid restriction point was identified. Finally, we demonstrated that whereas the zinc finger DNA-binding factor Ikaros was required for induction of lymphoid lineage priming in the HSC, it was also necessary for repression of genetic programs compatible with self-renewal and multipotency downstream of the HSC. Taken together, our studies provide new insight into the priming and restriction of lineage potentials during early hematopoiesis and identify Ikaros as a key bivalent regulator of this process.", "title": "Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells." }, { "docid": "27588420", "text": "Human induced pluripotent stem cells (HiPSCs) appear to be highly similar to human embryonic stem cells (HESCs). Using two genetic lineage-tracing systems, we demonstrate the generation of iPSC lines from human pancreatic islet beta cells. These reprogrammed cells acquired markers of pluripotent cells and differentiated into the three embryonic germ layers. However, the beta cell-derived iPSCs (BiPSCs) maintained open chromatin structure at key beta-cell genes, together with a unique DNA methylation signature that distinguishes them from other PSCs. BiPSCs also demonstrated an increased ability to differentiate into insulin-producing cells both in vitro and in vivo, compared with ESCs and isogenic non-beta iPSCs. Our results suggest that the epigenetic memory may predispose BiPSCs to differentiate more readily into insulin producing cells. These findings demonstrate that HiPSC phenotype may be influenced by their cells of origin, and suggest that their skewed differentiation potential may be advantageous for cell replacement therapy.", "title": "Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells." }, { "docid": "26873988", "text": "The human cytomegalovirus UL111A gene is expressed during latent and productive infections, and it codes for homologs of interleukin-10 (IL-10). We examined whether viral IL-10 expressed during latency altered differentiation of latently infected myeloid progenitors. In comparison to infection with parental virus or mock infection, latent infection with a virus in which the gene encoding viral IL-10 has been deleted upregulated cytokines associated with dendritic cell (DC) formation and increased the proportion of myeloid DCs. These data demonstrate that viral IL-10 restricts the ability of latently infected myeloid progenitors to differentiate into DCs and identifies an immunomodulatory role for viral IL-10 which may limit the host's ability to clear latent virus.", "title": "Viral interleukin-10 expressed by human cytomegalovirus during the latent phase of infection modulates latently infected myeloid cell differentiation." }, { "docid": "6673421", "text": "Angiogenesis, the development of new blood vessel from pre-existing vessels, is a key process in the formation of the granulation tissue during wound healing. The appropriate development of new blood vessels, along with their subsequent maturation and differentiation, establishes the foundation for functional wound neovasculature. We performed studies in vivo and used a variety of cellular and molecular approaches in vitro to show that insulin stimulates angiogenesis and to elucidate the signalling mechanisms by which this protein stimulates microvessel development. Mice skin injected with insulin shows longer vessels with more branches, along with increased numbers of associated alpha-smooth muscle actin-expressing cells, suggesting the appropriate differentiation and maturation of the new vessels. We also found that insulin stimulates human microvascular endothelial cell migration and tube formation, and that these effects occur independently of VEGF/VEGFR signalling, but are dependent upon the insulin receptor itself. Downstream signalling pathways involve PI3K, Akt, sterol regulatory element-binding protein 1 (SREBP-1) and Rac1; inhibition of these pathways results in elimination of endothelial cell migration and tube formation and significantly decreases the development of microvessels. Our findings strongly suggest that insulin is a good candidate for the treatment of ischaemic wounds and other conditions in which blood vessel development is impaired.", "title": "Cell and molecular mechanisms of insulin-induced angiogenesis" }, { "docid": "54561384", "text": "Hematopoietic stem cells (HSCs) sustain blood formation throughout life and are the functional units of bone marrow transplantation. We show that transient expression of six transcription factors Run1t1, Hlf, Lmo2, Prdm5, Pbx1, and Zfp37 imparts multilineage transplantation potential onto otherwise committed lymphoid and myeloid progenitors and myeloid effector cells. Inclusion of Mycn and Meis1 and use of polycistronic viruses increase reprogramming efficacy. The reprogrammed cells, designated induced-HSCs (iHSCs), possess clonal multilineage differentiation potential, reconstitute stem/progenitor compartments, and are serially transplantable. Single-cell analysis revealed that iHSCs derived under optimal conditions exhibit a gene expression profile that is highly similar to endogenous HSCs. These findings demonstrate that expression of a set of defined factors is sufficient to activate the gene networks governing HSC functional identity in committed blood cells. Our results raise the prospect that blood cell reprogramming may be a strategy for derivation of transplantable stem cells for clinical application.", "title": "Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors." }, { "docid": "4464565", "text": "We performed a functional genomic analysis to study the effect of epicatechin and polyphenolic cocoa extract in the human colon adenocarcinoma cell line Caco-2. The specific Human Hematology/Immunology cDNA arrays by Clontech, containing 406 genes in duplicate, were used. The differentially expressed genes were classified according to their level of expression, calculated as the ratio of the value obtained after each treatment relative to control cells, with a statistical significance of P < 0.05 (upregulated: ratio > 1.5; downregulated: ratio < 0.6). Treatment with epicatechin decreased the expression of 21 genes and upregulated 24 genes. Upon incubation with the cocoa polyphenolic extract, 24 genes were underexpressed and 28 were overexpressed. The changes in expression for ferritin heavy polypeptide 1 (FTH1), mitogen-activated protein kinase kinase 1 (MAPKK1), signal transducer and activator of transcription 1 (STAT1), and topoisomerase 1 upon incubation with epicatechin, and for myeloid leukemia factor 2 (MLF2), CCAAT/enhancer binding protein gamma (C/EBPG), MAPKK1, ATP-binding cassette, subfamily c member 1 (MRP1), STAT1, topoisomerase 1, and x-ray repair complementing defective repair 1 (XRCC1) upon incubation with the cocoa polyphenolic extract were validated by RT-PCR. Changes in the messenger RNA levels for MAPKK1, STAT1, MRP1, and topoisomerase 1 upon incubation with either epicatechin or cocoa extract were further confirmed at the protein level by Western blotting. The changes in the expression of STAT1, MAPKK1, MRP1, and FTH1 genes, which are involved in the cellular response to oxidative stress, are in agreement with the antioxidant properties of cocoa flavonoids. In addition, the changes in the expression of C/EBPG, topoisomerase 1, MLF2, and XRCC1 suggest novel mechanisms of action of flavonoids at the molecular level.", "title": "Epicatechin and a cocoa polyphenolic extract modulate gene expression in human Caco-2 cells." }, { "docid": "16284655", "text": "Human astrocytes are larger and more complex than those of infraprimate mammals, suggesting that their role in neural processing has expanded with evolution. To assess the cell-autonomous and species-selective properties of human glia, we engrafted human glial progenitor cells (GPCs) into neonatal immunodeficient mice. Upon maturation, the recipient brains exhibited large numbers and high proportions of both human glial progenitors and astrocytes. The engrafted human glia were gap-junction-coupled to host astroglia, yet retained the size and pleomorphism of hominid astroglia, and propagated Ca2+ signals 3-fold faster than their hosts. Long-term potentiation (LTP) was sharply enhanced in the human glial chimeric mice, as was their learning, as assessed by Barnes maze navigation, object-location memory, and both contextual and tone fear conditioning. Mice allografted with murine GPCs showed no enhancement of either LTP or learning. These findings indicate that human glia differentially enhance both activity-dependent plasticity and learning in mice.", "title": "Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice." }, { "docid": "25148216", "text": "Several members of the Kruppel-like factor (KLF) family of transcription factors play important roles in differentiation, survival, and trafficking of blood and immune cell types. We demonstrate in this study that hematopoietic cells from KLF4(-/-) fetal livers (FL) contained normal numbers of functional hematopoietic progenitor cells, were radioprotective, and performed as well as KLF4(+/+) cells in competitive repopulation assays. However, hematopoietic \"KLF4(-/-) chimeras\" generated by transplantation of KLF4(-/-) fetal livers cells into lethally irradiated wild-type mice completely lacked circulating inflammatory (CD115(+)Gr1(+)) monocytes, and had reduced numbers of resident (CD115(+)Gr1(-)) monocytes. Although the numbers and function of peritoneal macrophages were normal in KLF4(-/-) chimeras, bone marrow monocytic cells from KLF4(-/-) chimeras expressed lower levels of key trafficking molecules and were more apoptotic. Thus, our in vivo loss-of-function studies demonstrate that KLF4, previously shown to mediate proinflammatory signaling in human macrophages in vitro, is essential for differentiation of mouse inflammatory monocytes, and is involved in the differentiation of resident monocytes. In addition, inducible expression of KLF4 in the HL60 human acute myeloid leukemia cell line stimulated monocytic differentiation and enhanced 12-O-tetradecanoylphorbol 13-acetate induced macrophage differentiation, but blocked all-trans-retinoic acid induced granulocytic differentiation of HL60 cells. The inflammation-selective effects of loss-of-KLF4 and the gain-of-KLF4-induced monocytic differentiation in HL60 cells identify KLF4 as a key regulator of monocytic differentiation and a potential target for translational immune modulation.", "title": "Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo." }, { "docid": "8610932", "text": "Regulatory gene circuits with positive-feedback loops control stem cell differentiation, but several mechanisms can contribute to positive feedback. Here, we dissect feedback mechanisms through which the transcription factor PU.1 controls lymphoid and myeloid differentiation. Quantitative live-cell imaging revealed that developing B cells decrease PU.1 levels by reducing PU.1 transcription, whereas developing macrophages increase PU.1 levels by lengthening their cell cycles, which causes stable PU.1 accumulation. Exogenous PU.1 expression in progenitors increases endogenous PU.1 levels by inducing cell cycle lengthening, implying positive feedback between a regulatory factor and the cell cycle. Mathematical modeling showed that this cell cycle-coupled feedback architecture effectively stabilizes a slow-dividing differentiated state. These results show that cell cycle duration functions as an integral part of a positive autoregulatory circuit to control cell fate.", "title": "Positive feedback between PU.1 and the cell cycle controls myeloid differentiation." }, { "docid": "5836", "text": "Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33’s immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells. S100A9 transgenic mice displayed bone marrow accumulation of MDSC accompanied by development of progressive multilineage cytopenias and cytological dysplasia. Importantly, early forced maturation of MDSC by either all-trans-retinoic acid treatment or active immunoreceptor tyrosine-based activation motif–bearing (ITAM-bearing) adapter protein (DAP12) interruption of CD33 signaling rescued the hematologic phenotype. These findings indicate that primary bone marrow expansion of MDSC driven by the S100A9/CD33 pathway perturbs hematopoiesis and contributes to the development of MDS.", "title": "Induction of myelodysplasia by myeloid-derived suppressor cells." }, { "docid": "6767271", "text": "Although adjuvants are critical vaccine components, their modes of action are poorly understood. In this study, we investigated the mechanisms by which the heat-killed mycobacteria in CFA promote Th17 CD4(+) T cell responses. We found that IL-17 secretion by CD4(+) T cells following CFA immunization requires MyD88 and IL-1β/IL-1R signaling. Through measurement of Ag-specific responses after adoptive transfer of OTII cells, we confirmed that MyD88-dependent signaling controls Th17 differentiation rather than simply production of IL-17. Additional experiments showed that CFA-induced Th17 differentiation involves IL-1β processing by the inflammasome, as mice lacking caspase-1, ASC, or NLRP3 exhibit partially defective responses after immunization. Biochemical fractionation studies further revealed that peptidoglycan is the major component of heat-killed mycobacteria responsible for inflammasome activation. By assaying Il1b transcripts in the injection site skin of CFA-immunized mice, we found that signaling through the adaptor molecule caspase activation and recruitment domain 9 (CARD9) plays a major role in triggering pro-IL-1β expression. Moreover, we demonstrated that recognition of the mycobacterial glycolipid trehalose dimycolate (cord factor) by the C-type lectin receptor mincle partially explains this CARD9 requirement. Importantly, purified peptidoglycan and cord factor administered in mineral oil synergized to recapitulate the Th17-promoting activity of CFA, and, as expected, this response was diminished in caspase-1- and CARD9-deficient mice. Taken together, these findings suggest a general strategy for the rational design of Th17-skewing adjuvants by combining agonists of the CARD9 pathway with inflammasome activators.", "title": "Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome." }, { "docid": "11289247", "text": "The regulation and coordination of mitochondrial metabolism with hematopoietic stem cell (HSC) self-renewal and differentiation is not fully understood. Here we report that depletion of PTPMT1, a PTEN-like mitochondrial phosphatase, in inducible or hematopoietic-cell-specific knockout mice resulted in hematopoietic failure due to changes in the cell cycle and a block in the differentiation of HSCs. Surprisingly, the HSC pool was increased by ∼40-fold in PTPMT1 knockout mice. Reintroduction of wild-type PTPMT1, but not catalytically deficient PTPMT1 or truncated PTPMT1 lacking mitochondrial localization, restored differentiation capabilities of PTPMT1 knockout HSCs. Further analyses demonstrated that PTPMT1 deficiency altered mitochondrial metabolism and that phosphatidylinositol phosphate substrates of PTPMT1 directly enhanced fatty-acid-induced activation of mitochondrial uncoupling protein 2. Intriguingly, depletion of PTPMT1 from myeloid, T lymphoid, or B lymphoid progenitors did not cause any defects in lineage-specific knockout mice. This study establishes a crucial role of PTPMT1 in the metabolic regulation of HSC function.", "title": "Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation." }, { "docid": "6270720", "text": "RATIONALE The myeloid differentiation factor (MyD)88/interleukin (IL)-1 axis activates self-antigen-presenting cells and promotes autoreactive CD4(+) T-cell expansion in experimental autoimmune myocarditis, a mouse model of inflammatory heart disease. \n OBJECTIVE The aim of this study was to determine the role of MyD88 and IL-1 in the progression of acute myocarditis to an end-stage heart failure. \n METHODS AND RESULTS Using alpha-myosin heavy chain peptide (MyHC-alpha)-loaded, activated dendritic cells, we induced myocarditis in wild-type and MyD88(-/-) mice with similar distributions of heart-infiltrating cell subsets and comparable CD4(+) T-cell responses. Injection of complete Freund's adjuvant (CFA) or MyHC-alpha/CFA into diseased mice promoted cardiac fibrosis, induced ventricular dilation, and impaired heart function in wild-type but not in MyD88(-/-) mice. Experiments with chimeric mice confirmed the bone marrow origin of the fibroblasts replacing inflammatory infiltrates and showed that MyD88 and IL-1 receptor type I signaling on bone marrow-derived cells was critical for development of cardiac fibrosis during progression to heart failure. \n CONCLUSIONS Our findings indicate a critical role of MyD88/IL-1 signaling in the bone marrow compartment in postinflammatory cardiac fibrosis and heart failure and point to novel therapeutic strategies against inflammatory cardiomyopathy.", "title": "Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy." }, { "docid": "18450716", "text": "Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion.", "title": "Noncanonical Wnt Signaling Promotes Obesity-Induced Adipose Tissue Inflammation and Metabolic Dysfunction Independent of Adipose Tissue Expansion" }, { "docid": "17055665", "text": "FoxO transcription factors, inhibited by insulin/insulin-like growth factor signalling (IIS), are crucial players in numerous organismal processes including lifespan. Using genomic tools, we uncover over 700 direct dFOXO targets in adult female Drosophila. dFOXO is directly required for transcription of several IIS components and interacting pathways, such as TOR, in the wild-type fly. The genomic locations occupied by dFOXO in adults are different from those observed in larvae or cultured cells. These locations remain unchanged upon activation by stresses or reduced IIS, but the binding is increased and additional targets activated upon genetic reduction in IIS. We identify the part of the IIS transcriptional response directly controlled by dFOXO and the indirect effects and show that parts of the transcriptional response to IIS reduction do not require dfoxo. Promoter analyses revealed GATA and other forkhead factors as candidate mediators of the indirect and dfoxo-independent effects. We demonstrate genome-wide evolutionary conservation of dFOXO targets between the fly and the worm Caenorhabditis elegans, enriched for a second tier of regulators including the dHR96/daf-12 nuclear hormone receptor.", "title": "Genome-wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling" }, { "docid": "13777138", "text": "TET family enzymes convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. Here, we show that Tet1 and Tet2 are Oct4-regulated enzymes that together sustain 5hmC in mouse embryonic stem cells (ESCs) and are induced concomitantly with 5hmC during reprogramming of fibroblasts to induced pluripotent stem cells. ESCs depleted of Tet1 by RNAi show diminished expression of the Nodal antagonist Lefty1 and display hyperactive Nodal signaling and skewed differentiation into the endoderm-mesoderm lineage in embryoid bodies in vitro. In Fgf4- and heparin-supplemented culture conditions, Tet1-depleted ESCs activate the trophoblast stem cell lineage determinant Elf5 and can colonize the placenta in midgestation embryo chimeras. Consistent with these findings, Tet1-depleted ESCs form aggressive hemorrhagic teratomas with increased endoderm, reduced neuroectoderm, and ectopic appearance of trophoblastic giant cells. Thus, 5hmC is an epigenetic modification associated with the pluripotent state, and Tet1 functions to regulate the lineage differentiation potential of ESCs.", "title": "Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells." }, { "docid": "164985", "text": "The tumor microenvironment (TME) plays a prominent role in the growth of tumor cells. As the major inflammatory component of the TME, M2d macrophages are educated by the TME such that they adopt an immunosuppressive role that promotes tumor metastasis and progression. Fra-1 forms activator protein-1 heterodimers with Jun partners and drives gene transcription. Fra-1 is thought to drastically induce tumorigenesis and progression. However, the functional role of Fra-1 in the generation of M2d macrophages is poorly understood to date. Here, we demonstrate that 4T1 mammary carcinoma cells, when co-cultured with RAW264.7 macrophage cells, skew the RAW264.7 macrophage cell differentiation into M2d macrophages. The 4T1 cells stimulate de novo overexpression of Fra-1 in RAW264.7 cells, and then Fra-1 binds to the interleukin 6 (IL-6) promoter to increase the production of the cytokine IL-6 in RAW264.7 cells. IL-6 acts in an autocrine fashion to skew RAW264.7 macrophage cell differentiation into M2d macrophages. These findings open new insights into how to reverse M2d macrophage-induced immune tolerance to improve the efficacy of immunotherapeutic approaches.", "title": "Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages" } ]
347
Differentiation of progenitor cells to myeloid cells is skewed when insulin signaling is suppressed.
[ { "docid": "11902109", "text": "The Drosophila lymph gland is a haematopoietic organ in which progenitor cells, which are most akin to the common myeloid progenitor in mammals, proliferate and differentiate into three types of mature cell--plasmatocytes, crystal cells and lamellocytes--the functions of which are reminiscent of mammalian myeloid cells. During the first and early second instars of larval development, the lymph gland contains only progenitors, whereas in the third instar, a medial region of the primary lobe of the lymph gland called the medullary zone contains these progenitors, and maturing blood cells are found juxtaposed in a peripheral region designated the cortical zone. A third group of cells referred to as the posterior signalling centre functions as a haematopoietic niche. Similarly to mammalian myeloid cells, Drosophila blood cells respond to multiple stresses including hypoxia, infection and oxidative stress. However, how systemic signals are sensed by myeloid progenitors to regulate cell-fate determination has not been well described. Here, we show that the haematopoietic progenitors of Drosophila are direct targets of systemic (insulin) and nutritional (essential amino acid) signals, and that these systemic signals maintain the progenitors by promoting Wingless (WNT in mammals) signalling. We expect that this study will promote investigation of such possible direct signal sensing mechanisms by mammalian myeloid progenitors.", "title": "Direct sensing of systemic and nutritional signals by hematopoietic progenitors in Drosophila" } ]
[ { "docid": "37699461", "text": "Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.", "title": "Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells." }, { "docid": "17933691", "text": "A population of fibro/adipogenic but non-myogenic progenitors located between skeletal muscle fibers was recently discovered. The aim of this study was to determine the extent to which these progenitors differentiate into fully functional adipocytes. The characterization of muscle progenitor-derived adipocytes is a central issue in understanding muscle homeostasis. They are considered as being the cellular origin of intermuscular adipose tissue that develops in several pathophysiological situations. Here fibro/adipogenic progenitors were isolated from a panel of 15 human muscle biopsies on the basis of the specific cell-surface immunophenotype CD15+/PDGFRα+CD56-. This allowed investigations of their differentiation into adipocytes and the cellular functions of terminally differentiated adipocytes. Adipogenic differentiation was found to be regulated by the same effectors as those regulating differentiation of progenitors derived from white subcutaneous adipose tissue. Similarly, basic adipocyte functions, such as triglyceride synthesis and lipolysis occurred at levels similar to those observed with subcutaneous adipose tissue progenitor-derived adipocytes. However, muscle progenitor-derived adipocytes were found to be insensitive to insulin-induced glucose uptake, in association with the impairment of phosphorylation of key insulin-signaling effectors. Our findings indicate that muscle adipogenic progenitors give rise to bona fide white adipocytes that have the unexpected feature of being insulin-resistant.", "title": "Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle" }, { "docid": "5836", "text": "Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33’s immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells. S100A9 transgenic mice displayed bone marrow accumulation of MDSC accompanied by development of progressive multilineage cytopenias and cytological dysplasia. Importantly, early forced maturation of MDSC by either all-trans-retinoic acid treatment or active immunoreceptor tyrosine-based activation motif–bearing (ITAM-bearing) adapter protein (DAP12) interruption of CD33 signaling rescued the hematologic phenotype. These findings indicate that primary bone marrow expansion of MDSC driven by the S100A9/CD33 pathway perturbs hematopoiesis and contributes to the development of MDS.", "title": "Induction of myelodysplasia by myeloid-derived suppressor cells." }, { "docid": "27588420", "text": "Human induced pluripotent stem cells (HiPSCs) appear to be highly similar to human embryonic stem cells (HESCs). Using two genetic lineage-tracing systems, we demonstrate the generation of iPSC lines from human pancreatic islet beta cells. These reprogrammed cells acquired markers of pluripotent cells and differentiated into the three embryonic germ layers. However, the beta cell-derived iPSCs (BiPSCs) maintained open chromatin structure at key beta-cell genes, together with a unique DNA methylation signature that distinguishes them from other PSCs. BiPSCs also demonstrated an increased ability to differentiate into insulin-producing cells both in vitro and in vivo, compared with ESCs and isogenic non-beta iPSCs. Our results suggest that the epigenetic memory may predispose BiPSCs to differentiate more readily into insulin producing cells. These findings demonstrate that HiPSC phenotype may be influenced by their cells of origin, and suggest that their skewed differentiation potential may be advantageous for cell replacement therapy.", "title": "Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells." }, { "docid": "26873988", "text": "The human cytomegalovirus UL111A gene is expressed during latent and productive infections, and it codes for homologs of interleukin-10 (IL-10). We examined whether viral IL-10 expressed during latency altered differentiation of latently infected myeloid progenitors. In comparison to infection with parental virus or mock infection, latent infection with a virus in which the gene encoding viral IL-10 has been deleted upregulated cytokines associated with dendritic cell (DC) formation and increased the proportion of myeloid DCs. These data demonstrate that viral IL-10 restricts the ability of latently infected myeloid progenitors to differentiate into DCs and identifies an immunomodulatory role for viral IL-10 which may limit the host's ability to clear latent virus.", "title": "Viral interleukin-10 expressed by human cytomegalovirus during the latent phase of infection modulates latently infected myeloid cell differentiation." }, { "docid": "17708753", "text": "Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.", "title": "Myeloid Cells Expressing VEGF and Arginase-1 Following Uptake of Damaged Retinal Pigment Epithelium Suggests Potential Mechanism That Drives the Onset of Choroidal Angiogenesis in Mice" }, { "docid": "25148216", "text": "Several members of the Kruppel-like factor (KLF) family of transcription factors play important roles in differentiation, survival, and trafficking of blood and immune cell types. We demonstrate in this study that hematopoietic cells from KLF4(-/-) fetal livers (FL) contained normal numbers of functional hematopoietic progenitor cells, were radioprotective, and performed as well as KLF4(+/+) cells in competitive repopulation assays. However, hematopoietic \"KLF4(-/-) chimeras\" generated by transplantation of KLF4(-/-) fetal livers cells into lethally irradiated wild-type mice completely lacked circulating inflammatory (CD115(+)Gr1(+)) monocytes, and had reduced numbers of resident (CD115(+)Gr1(-)) monocytes. Although the numbers and function of peritoneal macrophages were normal in KLF4(-/-) chimeras, bone marrow monocytic cells from KLF4(-/-) chimeras expressed lower levels of key trafficking molecules and were more apoptotic. Thus, our in vivo loss-of-function studies demonstrate that KLF4, previously shown to mediate proinflammatory signaling in human macrophages in vitro, is essential for differentiation of mouse inflammatory monocytes, and is involved in the differentiation of resident monocytes. In addition, inducible expression of KLF4 in the HL60 human acute myeloid leukemia cell line stimulated monocytic differentiation and enhanced 12-O-tetradecanoylphorbol 13-acetate induced macrophage differentiation, but blocked all-trans-retinoic acid induced granulocytic differentiation of HL60 cells. The inflammation-selective effects of loss-of-KLF4 and the gain-of-KLF4-induced monocytic differentiation in HL60 cells identify KLF4 as a key regulator of monocytic differentiation and a potential target for translational immune modulation.", "title": "Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo." }, { "docid": "164985", "text": "The tumor microenvironment (TME) plays a prominent role in the growth of tumor cells. As the major inflammatory component of the TME, M2d macrophages are educated by the TME such that they adopt an immunosuppressive role that promotes tumor metastasis and progression. Fra-1 forms activator protein-1 heterodimers with Jun partners and drives gene transcription. Fra-1 is thought to drastically induce tumorigenesis and progression. However, the functional role of Fra-1 in the generation of M2d macrophages is poorly understood to date. Here, we demonstrate that 4T1 mammary carcinoma cells, when co-cultured with RAW264.7 macrophage cells, skew the RAW264.7 macrophage cell differentiation into M2d macrophages. The 4T1 cells stimulate de novo overexpression of Fra-1 in RAW264.7 cells, and then Fra-1 binds to the interleukin 6 (IL-6) promoter to increase the production of the cytokine IL-6 in RAW264.7 cells. IL-6 acts in an autocrine fashion to skew RAW264.7 macrophage cell differentiation into M2d macrophages. These findings open new insights into how to reverse M2d macrophage-induced immune tolerance to improve the efficacy of immunotherapeutic approaches.", "title": "Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages" }, { "docid": "10450300", "text": "Human cytomegalovirus (HCMV) is a widely prevalent human herpesvirus, which, after primary infection, persists in the host for life. In healthy individuals, the virus is well controlled by the HCMV-specific T cell response. A key feature of this persistence, in the face of a normally robust host immune response, is the establishment of viral latency. In contrast to lytic infection, which is characterised by extensive viral gene expression and virus production, long-term latency in cells of the myeloid lineage is characterised by highly restricted expression of viral genes, including UL138 and LUNA. Here we report that both UL138 and LUNA-specific T cells were detectable directly ex vivo in healthy HCMV seropositive subjects and that this response is principally CD4⁺ T cell mediated. These UL138-specific CD4⁺ T cells are able to mediate MHC class II restricted cytotoxicity and, importantly, show IFNγ effector function in the context of both lytic and latent infection. Furthermore, in contrast to CDCD4⁺ T cells specific to antigens expressed solely during lytic infection, both the UL138 and LUNA-specific CD4⁺ T cell responses included CD4⁺ T cells that secreted the immunosuppressive cytokine cIL-10. We also show that cIL-10 expressing CD4⁺ T-cells are directed against latently expressed US28 and UL111A. Taken together, our data show that latency-associated gene products of HCMV generate CD4⁺ T cell responses in vivo, which are able to elicit effector function in response to both lytic and latently infected cells. Importantly and in contrast to CD4⁺ T cell populations, which recognise antigens solely expressed during lytic infection, include a subset of cells that secrete the immunosuppressive cytokine cIL-10. This suggests that HCMV skews the T cell responses to latency-associated antigens to one that is overall suppressive in order to sustain latent carriage in vivo.", "title": "Human Cytomegalovirus Latency-Associated Proteins Elicit Immune-Suppressive IL-10 Producing CD4+ T Cells" }, { "docid": "8610932", "text": "Regulatory gene circuits with positive-feedback loops control stem cell differentiation, but several mechanisms can contribute to positive feedback. Here, we dissect feedback mechanisms through which the transcription factor PU.1 controls lymphoid and myeloid differentiation. Quantitative live-cell imaging revealed that developing B cells decrease PU.1 levels by reducing PU.1 transcription, whereas developing macrophages increase PU.1 levels by lengthening their cell cycles, which causes stable PU.1 accumulation. Exogenous PU.1 expression in progenitors increases endogenous PU.1 levels by inducing cell cycle lengthening, implying positive feedback between a regulatory factor and the cell cycle. Mathematical modeling showed that this cell cycle-coupled feedback architecture effectively stabilizes a slow-dividing differentiated state. These results show that cell cycle duration functions as an integral part of a positive autoregulatory circuit to control cell fate.", "title": "Positive feedback between PU.1 and the cell cycle controls myeloid differentiation." }, { "docid": "54561384", "text": "Hematopoietic stem cells (HSCs) sustain blood formation throughout life and are the functional units of bone marrow transplantation. We show that transient expression of six transcription factors Run1t1, Hlf, Lmo2, Prdm5, Pbx1, and Zfp37 imparts multilineage transplantation potential onto otherwise committed lymphoid and myeloid progenitors and myeloid effector cells. Inclusion of Mycn and Meis1 and use of polycistronic viruses increase reprogramming efficacy. The reprogrammed cells, designated induced-HSCs (iHSCs), possess clonal multilineage differentiation potential, reconstitute stem/progenitor compartments, and are serially transplantable. Single-cell analysis revealed that iHSCs derived under optimal conditions exhibit a gene expression profile that is highly similar to endogenous HSCs. These findings demonstrate that expression of a set of defined factors is sufficient to activate the gene networks governing HSC functional identity in committed blood cells. Our results raise the prospect that blood cell reprogramming may be a strategy for derivation of transplantable stem cells for clinical application.", "title": "Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors." }, { "docid": "18450716", "text": "Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion.", "title": "Noncanonical Wnt Signaling Promotes Obesity-Induced Adipose Tissue Inflammation and Metabolic Dysfunction Independent of Adipose Tissue Expansion" }, { "docid": "30714190", "text": "The mechanisms regulating lineage potential during early hematopoiesis were investigated. First, a cascade of lineage-affiliated gene expression signatures, primed in hematopoietic stem cells (HSCs) and differentially propagated in lineage-restricted progenitors, was identified. Lymphoid transcripts were primed as early as the HSC, together with myeloid and erythroid transcripts. Although this multilineage priming was resolved upon subsequent lineage restrictions, an unexpected cosegregation of lymphoid and myeloid gene expression and potential past a nominal myeloid restriction point was identified. Finally, we demonstrated that whereas the zinc finger DNA-binding factor Ikaros was required for induction of lymphoid lineage priming in the HSC, it was also necessary for repression of genetic programs compatible with self-renewal and multipotency downstream of the HSC. Taken together, our studies provide new insight into the priming and restriction of lineage potentials during early hematopoiesis and identify Ikaros as a key bivalent regulator of this process.", "title": "Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells." }, { "docid": "23727313", "text": "MicroRNAs (miRNAs) are a recently identified class of epigenetic elements consisting of small noncoding RNAs that bind to the 3' untranslated region of mRNAs and down-regulate their translation to protein. miRNAs play critical roles in many different cellular processes including metabolism, apoptosis, differentiation, and development. We found 33 miRNAs expressed in CD34+ hematopoietic stem-progenitor cells (HSPCs) from normal human bone marrow and mobilized human peripheral blood stem cell harvests. We then combined these data with human HSPC mRNA expression data and with miRNA-mRNA target predictions, into a previously undescribed miRNA:mRNA interaction database called the Transcriptome Interaction Database. The in silico predictions from the Transcriptome Interaction Database pointed to miRNA control of hematopoietic differentiation through translational control of mRNAs critical to hematopoiesis. From these predictions, we formulated a model for miRNA control of stages of hematopoiesis in which many of the genes specifying hematopoietic differentiation are expressed by HSPCs, but are held in check by miRNAs until differentiation occurs. We validated miRNA control of several of these target mRNAs by demonstrating that their translation in fact is decreased by miRNAs. Finally, we chose miRNA-155 for functional characterization in hematopoiesis, because we predicted that it would control both myelopoiesis and erythropoiesis. As predicted, miRNA-155 transduction greatly reduced both myeloid and erythroid colony formation of normal human HSPCs.", "title": "CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control." }, { "docid": "85326624", "text": "Summary Signals transduced by Notch receptors are indispensable for T cell specification and differentiation of αβ T lineage cells. However, the role of Notch signals during αβ versus γδ T lineage decision remains controversial. Here, we addressed this question by employing a clonal analysis of CD4 − CD8 − (DN) progenitor potential to position the divergence of αβ and γδ T cell lineages to the late DN2 to DN3 developmental stages. Accordingly, αβ and γδ precursor frequencies within these T cell progenitor subsets were determined, both in the presence and absence of Notch signaling through Delta-like 1. Notch signals were found to be critical for the DN to CD4 + CD8 + (DP) transition, irrespective of the identity (pTαβ or γδ) of the inducing T cell receptor complex, whereas γδ T cells developed from γδTCR-expressing T cell progenitors in the absence of further Notch ligand interaction. Collectively, our findings demonstrate a differential, stage-specific requirement for Notch receptor-ligand interactions in the differentiation of αβ and γδ T cells from T cell progenitors.", "title": "Stage-Specific and Differential Notch Dependency at the αβ and γδ T Lineage Bifurcation" }, { "docid": "9122283", "text": "RATIONALE Multiple biological mechanisms contribute to the efficacy of cardiac cell therapy. Most prominent among these are direct heart muscle and blood vessel regeneration from transplanted cells, as opposed to paracrine enhancement of tissue preservation and/or recruitment of endogenous repair. \n OBJECTIVE Human cardiac progenitor cells, cultured as cardiospheres (CSps) or as CSp-derived cells (CDCs), have been shown to be capable of direct cardiac regeneration in vivo. Here we characterized paracrine effects in CDC transplantation and investigated their relative importance versus direct differentiation of surviving transplanted cells. \n METHODS AND RESULTS In vitro, many growth factors were found in media conditioned by human adult CSps and CDCs; CDC-conditioned media exerted antiapoptotic effects on neonatal rat ventricular myocytes, and proangiogenic effects on human umbilical vein endothelial cells. In vivo, human CDCs secreted vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor 1 when transplanted into the same SCID mouse model of acute myocardial infarction where they were previously shown to improve function and to produce tissue regeneration. Injection of CDCs in the peri-infarct zone increased the expression of Akt, decreased apoptotic rate and caspase 3 level, and increased capillary density, indicating overall higher tissue resilience. Based on the number of human-specific cells relative to overall increases in capillary density and myocardial viability, direct differentiation quantitatively accounted for 20% to 50% of the observed effects. \n CONCLUSIONS Together with their spontaneous commitment to cardiac and angiogenic differentiation, transplanted CDCs serve as \"role models,\" recruiting endogenous regeneration and improving tissue resistance to ischemic stress. The contribution of the role model effect rivals or exceeds that of direct regeneration.", "title": "Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice." }, { "docid": "4653837", "text": "The mechanisms underlying the development of aging-induced muscle atrophy are unclear. By microRNA array and individual qPCR analyses, we found significant up-regulation of miR-29 in muscles of aged rodents vs. results in young. With aging, p85α, IGF-1 and B-myb muscle levels were lower while the expression of certain cell arrest proteins (p53, p16 and pRB) increased. When miR-29 was expressed in muscle progenitor cells (MPC), their proliferation was impaired while SA-βgal expression increased signifying the development of senescence. Impaired MPC proliferation resulted from interactions between miR-29 and the 3'-UTR of p85a, IGF-1 and B-myb, suppressing the translation of these mediators of myoblast proliferation. In vivo, electroporation of miR-29 into muscles of young mice suppressed the proliferation and increased levels of cellular arrest proteins, recapitulating aging-induced responses in muscle. A potential stimulus of miR-29 expression is Wnt-3a since we found that exogenous Wnt-3a stimulated miR-29 expression 2.7-fold in primary cultures of MPCs. Thus, aging-induced muscle senescence results from activation of miR-29 by Wnt-3a leading to suppressed expression of several signaling proteins (p85α, IGF-1 and B-myb) that act coordinately to impair the proliferation of MPCs contributing to muscle atrophy. The increase in miR-29 provides a potential mechanism for aging-induced sarcopenia.", "title": "MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways" }, { "docid": "11289247", "text": "The regulation and coordination of mitochondrial metabolism with hematopoietic stem cell (HSC) self-renewal and differentiation is not fully understood. Here we report that depletion of PTPMT1, a PTEN-like mitochondrial phosphatase, in inducible or hematopoietic-cell-specific knockout mice resulted in hematopoietic failure due to changes in the cell cycle and a block in the differentiation of HSCs. Surprisingly, the HSC pool was increased by ∼40-fold in PTPMT1 knockout mice. Reintroduction of wild-type PTPMT1, but not catalytically deficient PTPMT1 or truncated PTPMT1 lacking mitochondrial localization, restored differentiation capabilities of PTPMT1 knockout HSCs. Further analyses demonstrated that PTPMT1 deficiency altered mitochondrial metabolism and that phosphatidylinositol phosphate substrates of PTPMT1 directly enhanced fatty-acid-induced activation of mitochondrial uncoupling protein 2. Intriguingly, depletion of PTPMT1 from myeloid, T lymphoid, or B lymphoid progenitors did not cause any defects in lineage-specific knockout mice. This study establishes a crucial role of PTPMT1 in the metabolic regulation of HSC function.", "title": "Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation." }, { "docid": "16826810", "text": "Vascular calcification is an advanced feature of atherosclerosis for which no effective therapy is available. To investigate the modulation or reversal of calcification, we identified calcifying progenitor cells and investigated their calcifying/decalcifying potentials. Cells from the aortas of mice were sorted into four groups using Sca-1 and PDGFRα markers. Sca-1(+) (Sca-1(+)/PDGFRα(+) and Sca-1(+)/PDGFRα(-)) progenitor cells exhibited greater osteoblastic differentiation potentials than Sca-1(-) (Sca-1(-)/PDGFRα(+) and Sca-1(-)/PDGFRα(-)) progenitor cells. Among Sca-1(+) progenitor populations, Sca-1(+)/PDGFRα(-) cells possessed bidirectional differentiation potentials towards both osteoblastic and osteoclastic lineages, whereas Sca-1(+)/PDGFRα(+) cells differentiated into an osteoblastic lineage unidirectionally. When treated with a peroxisome proliferator activated receptor γ (PPARγ) agonist, Sca-1(+)/PDGFRα(-) cells preferentially differentiated into osteoclast-like cells. Sca-1(+) progenitor cells in the artery originated from the bone marrow (BM) and could be clonally expanded. Vessel-resident BM-derived Sca-1(+) calcifying progenitor cells displayed nonhematopoietic, mesenchymal characteristics. To evaluate the modulation of in vivo calcification, we established models of ectopic and atherosclerotic calcification. Computed tomography indicated that Sca-1(+) progenitor cells increased the volume and calcium scores of ectopic calcification. However, Sca-1(+)/PDGFRα(-) cells treated with a PPARγ agonist decreased bone formation 2-fold compared with untreated cells. Systemic infusion of Sca-1(+)/PDGFRα(-) cells into Apoe(-/-) mice increased the severity of calcified atherosclerotic plaques. However, Sca-1(+)/PDGFRα(-) cells in which PPARγ was activated displayed markedly decreased plaque severity. Immunofluorescent staining indicated that Sca-1(+)/PDGFRα(-) cells mainly expressed osteocalcin; however, activation of PPARγ triggered receptor activator for nuclear factor-κB (RANK) expression, indicating their bidirectional fate in vivo. These findings suggest that a subtype of BM-derived and vessel-resident progenitor cells offer a therapeutic target for the prevention of vascular calcification and that PPARγ activation may be an option to reverse calcification.", "title": "Vascular Calcifying Progenitor Cells Possess Bidirectional Differentiation Potentials" } ]
349
Diminished ovarian reserve is a reliable indicator of infertility in a non-infertile population.
[ { "docid": "13497630", "text": "Importance Despite lack of evidence of their utility, biomarkers of ovarian reserve are being promoted as potential markers of reproductive potential. Objective To determine the associations between biomarkers of ovarian reserve and reproductive potential among women of late reproductive age. Design, Setting, and Participants Prospective time-to-pregnancy cohort study (2008 to date of last follow-up in March 2016) of women (N = 981) aged 30 to 44 years without a history of infertility who had been trying to conceive for 3 months or less, recruited from the community in the Raleigh-Durham, North Carolina, area. Exposures Early-follicular-phase serum level of antimüllerian hormone (AMH), follicle-stimulating hormone (FSH), and inhibin B and urinary level of FSH. Main Outcomes and Measures The primary outcomes were the cumulative probability of conception by 6 and 12 cycles of attempt and relative fecundability (probability of conception in a given menstrual cycle). Conception was defined as a positive pregnancy test result. Results A total of 750 women (mean age, 33.3 [SD, 3.2] years; 77% white; 36% overweight or obese) provided a blood and urine sample and were included in the analysis. After adjusting for age, body mass index, race, current smoking status, and recent hormonal contraceptive use, women with low AMH values (<0.7 ng/mL [n = 84]) did not have a significantly different predicted probability of conceiving by 6 cycles of attempt (65%; 95% CI, 50%-75%) compared with women (n = 579) with normal values (62%; 95% CI, 57%-66%) or by 12 cycles of attempt (84% [95% CI, 70%-91%] vs 75% [95% CI, 70%-79%], respectively). Women with high serum FSH values (>10 mIU/mL [n = 83]) did not have a significantly different predicted probability of conceiving after 6 cycles of attempt (63%; 95% CI, 50%-73%) compared with women (n = 654) with normal values (62%; 95% CI, 57%-66%) or after 12 cycles of attempt (82% [95% CI, 70%-89%] vs 75% [95% CI, 70%-78%], respectively). Women with high urinary FSH values (>11.5 mIU/mg creatinine [n = 69]) did not have a significantly different predicted probability of conceiving after 6 cycles of attempt (61%; 95% CI, 46%-74%) compared with women (n = 660) with normal values (62%; 95% CI, 58%-66%) or after 12 cycles of attempt (70% [95% CI, 54%-80%] vs 76% [95% CI, 72%-80%], respectively). Inhibin B levels (n = 737) were not associated with the probability of conceiving in a given cycle (hazard ratio per 1-pg/mL increase, 0.999; 95% CI, 0.997-1.001). Conclusions and Relevance Among women aged 30 to 44 years without a history of infertility who had been trying to conceive for 3 months or less, biomarkers indicating diminished ovarian reserve compared with normal ovarian reserve were not associated with reduced fertility. These findings do not support the use of urinary or blood follicle-stimulating hormone tests or antimüllerian hormone levels to assess natural fertility for women with these characteristics.", "title": "Association Between Biomarkers of Ovarian Reserve and Infertility Among Older Women of Reproductive Age" } ]
[ { "docid": "11109043", "text": "BACKGROUND To compare the clinical results and the cost-effectiveness of using the aromatase inhibitor, letrozole, in conjunction with FSH and FSH alone for controlled ovarian stimulation (COS) in patients undergoing intrauterine insemination (IUI) for a variety of indications. \n METHODS Four hundred and thirty-two consecutive patients who underwent 872 IUI cycles were included. The study population was composed of two groups. Group I included 308 patients who underwent 589 IUI cycles with letrozole and FSH for the following indications: anovulation (143 cycles), male factor infertility (147 cycles), unexplained infertility (250 cycles), endometriosis (18 cycles) and combined indications (31 cycles). Group II included 124 patients who underwent 283 IUI cycles who received FSH only for the following indications: ovarian factor infertility (82 cycles), male factor infertility (66 cycles), unexplained infertility (114 cycles), endometriosis (13 cycles) and other indications (8 cycles). Main outcome measures included number of mature follicles >16 mm in diameter, dose of FSH used per cycle, clinical pregnancy rate and cost-effectiveness ratio per pregnancy. \n RESULTS FSH dose required for ovarian stimulation was significantly lower when letrozole was used (P < 0.0001). Although a significantly higher number of follicles >16 mm and endometrial thickness at the day of hCG administration (P < 0.0001) were observed in Group II, pregnancy rate per started (14.4 versus 15.9%) and per completed cycles (15.77 versus 18.07%) was the same in Group I and Group II, respectively. IUI cancellation rate was significantly lower with letrozole treatment (P = 0.05%). The cost per cycle was significantly lower in Group I versus Group II (468.93 Can dollars +/- 418.18 versus 1067.28 +/- 921.43; P < 0.0001). The cost-effectiveness ratio was 3249.42 dollars in the letrozole group and 6712.00 dollars in the FSH-only group. \n CONCLUSION A letrozole-FSH combination could be an effective ovarian stimulation protocol in IUI cycles. Such a protocol may be more cost-effective than FSH alone because of the difference of FSH dose and cost. A randomized controlled trial is needed to further substantiate this finding.", "title": "Cost-effectiveness of aromatase inhibitor co-treatment for controlled ovarian stimulation." }, { "docid": "34198460", "text": "BACKGROUND Given the high value placed on children in sub-Saharan Africa, previous research suggests that infertility increases the risk of psychological distress and marital conflict, encourages risky sexual behavior and deprives infertile individuals and couples of an important source of economic and social capital. This paper explores the implications of infertility for women in Ghana, West Africa. \n METHODS Semi-structured interview data collected from 107 women (aged 21-48 years, mean 33 years) seeking treatment in gynecological and obstetric clinics in Accra, Ghana, are analyzed. Based on iterative open coding of the interviews, the focus of the analysis is on mental health, marital instability, social interaction and gendered experiences. \n RESULTS Infertile women report facing severe social stigma, marital strain and a range of mental health difficulties. Many women feel that they shoulder a disproportionate share of the blame for infertility and, by extension, face greater social consequences than male partners for difficulties conceiving. Women who do not self-identify as infertile corroborate these findings, asserting that the social consequences of infertility are severe, particularly for women. \n CONCLUSIONS Infertility in Ghana has important consequences for social interactions, marital stability and mental health. These consequences are not perceived to be shared equally by Ghanaian men.", "title": "'Zero is not good for me': implications of infertility in Ghana." }, { "docid": "9997636", "text": "The aim of this study was to confirm the presence of stem cells in the ovarian surface epithelium of patients with premature ovarian failure and no mature follicles and oocytes. In these patients, small round cells of unknown origin expressing SOX-2 marker of pluripotency were observed among the epithelial cells just after the ovarian surface epithelium scraping. These cells were an integral part of the ovarian surface epithelium. When the scraped cells were cultured in a medium with added follicular fluid to provide some ovarian niche, primitive oocyte-like cells and typical round-shaped cell clusters positively stained on alkaline phosphatase, and markers of pluripotency, such as SOX-2 and SSEA-4, were developed. These markers were expressed early and also later in the culture. Single oocyte-like cells expressed genes OCT4A, SOX-2, NANOG, NANOS, STELLA, CD9, LIN28, KLF4, GDF3, and MYC, characteristic for pluripotent stem cells. The results of this study confirmed the presence of putative stem cells in the ovarian surface epithelium of these patients and provided some basis to create a stem cell line in the future.", "title": "Ovarian Surface Epithelium in Patients with Severe Ovarian Infertility: A Potential Source of Cells Expressing Markers of Pluripotent/Multipotent Stem Cells" }, { "docid": "4423220", "text": "Male infertility is a long-standing enigma of significant medical concern. The integrity of sperm chromatin is a clinical indicator of male fertility and in vitro fertilization potential: chromosome aneuploidy and DNA decondensation or damage are correlated with reproductive failure. Identifying conserved proteins important for sperm chromatin structure and packaging can reveal universal causes of infertility. Here we combine proteomics, cytology and functional analysis in Caenorhabditis elegans to identify spermatogenic chromatin-associated proteins that are important for fertility. Our strategy employed multiple steps: purification of chromatin from comparable meiotic cell types, namely those undergoing spermatogenesis or oogenesis; proteomic analysis by multidimensional protein identification technology (MudPIT) of factors that co-purify with chromatin; prioritization of sperm proteins based on abundance; and subtraction of common proteins to eliminate general chromatin and meiotic factors. Our approach reduced 1,099 proteins co-purified with spermatogenic chromatin, currently the most extensive catalogue, to 132 proteins for functional analysis. Reduction of gene function through RNA interference coupled with protein localization studies revealed conserved spermatogenesis-specific proteins vital for DNA compaction, chromosome segregation, and fertility. Unexpected roles in spermatogenesis were also detected for factors involved in other processes. Our strategy to find fertility factors conserved from C. elegans to mammals achieved its goal: of mouse gene knockouts corresponding to nematode proteins, 37% (7/19) cause male sterility. Our list therefore provides significant opportunity to identify causes of male infertility and targets for male contraceptives.", "title": "Sperm chromatin proteomics identifies evolutionarily conserved fertility factors" }, { "docid": "29504413", "text": "Gonadal steroid hormones regulate sexually dimorphic development of brain functions and behaviors. Their nuclear receptors offer the opportunity to relate molecular events in neurons to simple instinctive mammalian behaviors. We have determined the role of estrogen receptor (ER) activation by endogenous estrogen in the development of male-typical behaviors by the use of transgenic estrogen-receptor-deficient (ERKO) mice. Surprisingly, in spite of the fact that they are infertile, ERKO mice showed normal motivation to mount females but they achieved less intromissions and virtually no ejaculations. Aggressive behaviors were dramatically reduced and male-typical offensive attacks were rarely displayed by ERKO males. Moreover, ER gene disruption demasculinized open-field behaviors. In the brain, despite the evident loss of functional ER protein, the androgen-dependent system appears to be normally present in ERKO mice. Together, these findings indicate that ER gene expression during development plays a major role in the organization of male-typical aggressive and emotional behaviors in addition to simple sexual behaviors.", "title": "Behavioral effects of estrogen receptor gene disruption in male mice." }, { "docid": "87337034", "text": "SummaryA plant expression vector pBIA9-AMF containing an antisense fragment of the CYP86MF gene and the tapetum-specific A9 promoter was constructed. Plasmid vectors were introduced by floral-dipping and pollen-tube transformation methods to Chinese cabbage pak-choi (Brassica campestris ssp. chinensis (L.) Makino var. communis Tsen et Lee, syn. B. rapa ssp. chinensis (L.) Makino var. communis Tsen et Lee) and flowering Chinese cabbage (B. campestris ssp. chinensis (L.) Makino var. parachinensis (Bailey) Tsen et Lee). Results showed that KanR seedlings could be obtained by the pollen-tube method through germination tests of T1 progeny seeds, but not by the floral-dipping method. One of the two KanR seedlings proved that the antisense fragment of the CYP86MF gene was integrated into the Chinese cabbage genome by PCR amplification and Southern blotting. Northern hybridization indicated that the CYP86MF gene, under the A9 promoter, was inhibited in the transformant, and self-infertility was found in the trans...", "title": "Construction of an antisense CYP86MF gene plasmid vector and production of a male-sterile Chinese cabbage transformant by the pollen-tube method" }, { "docid": "25993718", "text": "Traditionally, the diagnosis of male infertility has depended upon a descriptive evaluation of human semen with emphasis on the number of spermatozoa that are present in the ejaculate, their motility and their morphology. The fundamental tenet underlying this approach is that male fertility can be defined by reference to a threshold concentration of motile, morphologically normal spermatozoa that must be exceeded in order to achieve conception. Many independent studies have demonstrated that this fundamental concept is flawed and, in reality, it is not so much the absolute number of spermatozoa that determines fertility, but their functional competence. In the light of this conclusion, a range of in vitro tests have been developed to monitor various aspects of sperm function including their potential for movement, cervical mucus penetration, capacitation, zona recognition, the acrosome reaction and sperm-oocyte fusion. Such functional assays have been found to predict the fertilizing capacity of human spermatozoa in vitro and in vivo with some accuracy. Recent developments in this field include the introduction of tests to assess the degree to which human spermatozoa have suffered oxidative stress as well as the integrity of their nuclear and mitochondrial DNA. Such assessments not only yield information on the fertilizing capacity of human spermatozoa but also their ability to support normal embryonic development.", "title": "Sperm function tests and fertility." }, { "docid": "14682243", "text": "BACKGROUND Results of the few cohort studies from countries with low incomes or middle incomes suggest a lower incidence of dementia than in high-income countries. We assessed incidence of dementia according to criteria from the 10/66 Dementia Research Group and Diagnostic and Statistical Manual of Mental Disorders (DSM) IV, the effect of dementia at baseline on mortality, and the independent effects of age, sex, socioeconomic position, and indicators of cognitive reserve. \n METHODS We did a population-based cohort study of all people aged 65 years and older living in urban sites in Cuba, the Dominican Republic, and Venezuela, and rural and urban sites in Peru, Mexico, and China, with ascertainment of incident 10/66 and DSM-IV dementia 3-5 years after cohort inception. We used questionnaires to obtain information about age in years, sex, educational level, literacy, occupational attainment, and number of household assets. We obtained information about mortality from all sites. For participants who had died, we interviewed a friend or relative to ascertain the likelihood that they had dementia before death. \n FINDINGS 12,887 participants were interviewed at baseline. 11,718 were free of dementia, of whom 8137 (69%) were reinterviewed, contributing 34,718 person-years of follow-up. Incidence for 10/66 dementia varied between 18·2 and 30·4 per 1000 person-years, and were 1·4-2·7 times higher than were those for DSM-IV dementia (9·9-15·7 per 1000 person-years). Mortality hazards were 1·56-5·69 times higher in individuals with dementia at baseline than in those who were dementia-free. Informant reports suggested a high incidence of dementia before death; overall incidence might be 4-19% higher if these data were included. 10/66 dementia incidence was independently associated with increased age (HR 1·67; 95% CI 1·56-1·79), female sex (0·72; 0·61-0·84), and low education (0·89; 0·81-0·97), but not with occupational attainment (1·04; 0·95-1·13). \n INTERPRETATION Our results provide supportive evidence for the cognitive reserve hypothesis, showing that in middle-income countries as in high-income countries, education, literacy, verbal fluency, and motor sequencing confer substantial protection against the onset of dementia. \n FUNDING Wellcome Trust Health Consequences of Population Change Programme, WHO, US Alzheimer's Association, FONACIT/ CDCH/ UCV.", "title": "Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve: a 10/66 Dementia Research Group population-based cohort study" }, { "docid": "42150015", "text": "CONTEXT Anti-müllerian hormone (AMH) is an ovarian reserve marker that is increasingly applied in clinical practice as a prognostic and diagnostic tool. Despite increased use of AMH in clinical practice, large-scale studies addressing the influence of possible determinants on AMH levels are scarce. \n OBJECTIVE We aimed to address the role of reproductive and lifestyle determinants of AMH in a large population-based cohort of women. \n DESIGN In this cross-sectional study, age-specific AMH percentiles were calculated using general linear modeling with CG-LMS (Cole and Green, Lambda, Mu, and Sigma model, an established method to calculate growth curves for children). \n SETTING Women from the general community participating in the Doetinchem Cohort study were assessed. \n PARTICIPANTS Two thousand three hundred twenty premenopausal women were included. \n MAIN OUTCOME MEASURE The effect of female reproductive and lifestyle factors on shifts in age-specific AMH percentiles was studied. \n RESULTS In comparison to women with a regular menstrual cycle, current oral contraceptive (OC) users, women with menstrual cycle irregularity, and pregnant women had significantly lower age-specific AMH percentiles (for OC use, 11 percentiles lower; for cycle irregularity, 11 percentiles lower; and for pregnancy, 17 percentiles lower [P value for all <.0001]). Age at menarche and age at first childbirth were not associated with the age-specific AMH percentile. Higher parity was associated with 2 percentiles higher age-specific AMH (P = .02). Of the lifestyle factors investigated, current smoking was associated with 4 percentiles lower age-specific AMH percentiles (P = .02), irrespective of the smoking dose. Body mass index, waist circumference, alcohol consumption, physical exercise, and socioeconomic status were not significantly associated with age-specific AMH percentiles. \n CONCLUSIONS This study demonstrates that several reproductive and lifestyle factors are associated with age-specific AMH levels. The lower AMH levels associated with OC use and smoking seem reversible, as effects were confined to current use of OC or cigarettes. It is important to give careful consideration to the effect of such determinants when interpreting AMH in a clinical setting and basing patient management on AMH.", "title": "Reproductive and lifestyle determinants of anti-Müllerian hormone in a large population-based study." }, { "docid": "24323369", "text": "OBJECTIVE To determine which first-line medication is more effective in polycystic ovary syndrome (PCOS) patients for ovulation induction and pregnancy achievement and to verify whether any patient characteristic is associated with a better response to therapy. \n DESIGN Observational comparative study. \n SETTING Fertility clinic. \n PATIENT(S) One hundred fifty-four infertile women with oligomenorrhea and hyperandrogenism. \n INTERVENTION(S) Group 1 (56 patients) received clomiphene citrate (CC) 50 mg from days 5-9 of the cycle. Group 2 (57 patients) received 500 mg of metformin 3 times a day. Group 3 (41 patients) received both medications. \n MAIN OUTCOME MEASURE(S) Ovulation and pregnancy. \n RESULT(S) Patients receiving metformin alone had an increased ovulation rate compared with those receiving CC alone (75.4% vs. 50%). Patients on metformin had similar ovulation rates compared with those in the combination group (75.4% vs. 63.4%). Pregnancy rates were equivalent in the 3 groups. Response to metformin was independent of body weight and dose. Finally, nonsmoking predicted better ovulatory response overall as well as lower fasting glucose for CC and lower androgens for metformin. \n CONCLUSION(S) Metformin is better for ovulation induction than CC alone and equivalent for pregnancy achievement. We suggest that metformin can be used first for ovulation induction in patients with PCOS regardless of their weight and insulin levels because of its efficacy and known safety profile.", "title": "Comparison of clomiphene citrate, metformin, or the combination of both for first-line ovulation induction and achievement of pregnancy in 154 women with polycystic ovary syndrome." }, { "docid": "17088791", "text": "Most multiple case families of young onset breast cancer and ovarian cancer are thought to be due to highly penetrant mutations in the predisposing genes BRCA1 and BRCA2. However, these mutations are uncommon in the population and they probably account for only a few percent of all breast cancer incidence. A much larger fraction of breast cancer might, in principle, be due to common variants which confer more modest individual risks. There are several common polymorphisms in the BRCA1 gene which generate amino acid substitutions. We have examined the frequency of four of these polymorphisms: Gln356Arg, Pro871Leu, Glu1038Gly and Ser1613Gly in large series of breast and ovarian cancer cases and matched controls. Due to strong linkage disequilibrium, these four sites generate only three haplotypes with a frequency > 1.3%. The most common haplotypes, defined by the alleles Gln356Pro871Glu1038Ser1613 and Gln356Leu871Gly1038Gly1613, have frequencies of 0.57 and 0.32 respectively, and these frequencies do not differ significantly between patient and control groups. Thus the most common polymorphisms of the BRCA1 gene do not make a significant contribution to breast or ovarian cancer risk. However, our data suggest that the Arg356 allele may have a different genotype distribution in breast cancer patients from that in controls (Arg356 homozygotes are more frequent in the control groups, P = 0.01), indicating that it may be protective against breast cancer. If this finding can be confirmed, it may provide an insight into the structural features of the BRCA1 protein that are important for its function.", "title": "Common BRCA1 variants and susceptibility to breast and ovarian cancer in the general population." }, { "docid": "841371", "text": "OBJECTIVE To assess the robustness of patient responses to a new national survey of patient experience as a basis for providing financial incentives to doctors. \n DESIGN Analysis of the representativeness of the respondents to the GP Patient Survey compared with those who were sampled (5.5 million patients registered with 8273 general practices in England in January 2009) and with the general population. Analysis of non-response bias looked at the relation between practice response rates and scores on the survey. Analysis of the reliability of the survey estimated the proportion of the variance of practice scores attributable to true differences between practices. \n RESULTS The overall response rate was 38.2% (2.2 million responses), which is comparable to that in surveys using similar methodology in the UK. Men, young adults, and people living in deprived areas were under-represented among respondents. However, for questions related to pay for performance, there was no systematic association between response rates and questionnaire scores. Two questions which triggered payments to general practitioners were reliable measures of practice performance, with average practice-level reliability coefficients of 93.2% and 95.0%. Less than 3% and 0.5% of practices had fewer than the number of responses required to achieve conventional reliability levels of 90% and 70%. A change to the payment formula in 2009 resulted in an increase in the average impact of random variation in patient scores on payments to general practitioners compared with payments made in 2007 and 2008. \n CONCLUSIONS There is little evidence to support the concern of some general practitioners that low response rates and selective non-response bias have led to systematic unfairness in payments attached to questionnaire scores. The study raises issues relating to the validity and reliability of payments based on patient surveys and provides lessons for the UK and for other countries considering the use of patient experience as part of pay for performance schemes.", "title": "Reliability of patient responses in pay for performance schemes: analysis of national General Practitioner Patient Survey data in England" }, { "docid": "14827874", "text": "CONTEXT For the last 40 yr, the first line of treatment for anovulation in infertile women has been clomiphene citrate (CC). CC is a safe, effective oral agent but is known to have relatively common antiestrogenic endometrial and cervical mucous side effects that could prevent pregnancy in the face of successful ovulation. In addition, there is a significant risk of multiple pregnancy with CC, compared with natural cycles. Because of these problems, we proposed the concept of aromatase inhibition as a new method of ovulation induction that could avoid many of the adverse effects of CC. The objective of this review was to describe the different physiological mechanisms of action for CC and aromatase inhibitors (AIs) and compare studies of efficacy for both agents for ovulation induction. EVIDENCE ACQUISITION We conducted a systematic review of all the published studies, both controlled and noncontrolled, comparing CC and AI treatment, either alone or in combination with gonadotropins, for ovulation induction or augmentation, identified through the Entrez-PubMed search engine. EVIDENCE SYNTHESIS Because of the recent acceptance of the concept of using AIs for ovulation induction, few controlled studies were identified, and the rest of the studies were pilot or preliminary comparisons. Based on these studies, it appears that AIs are as effective as CC in inducing ovulation, are devoid of any antiestrogenic side effects, result in lower serum estrogen concentrations, and are associated with good pregnancy rates with a lower incidence of multiple pregnancy than CC. When combined with gonadotropins for assisted reproductive technologies, AIs reduce the dose of FSH required for optimal follicle recruitment and improve the response to FSH in poor responders. \n CONCLUSIONS Preliminary evidence suggests that AIs may replace CC in the future because of similar efficacy with a reduced side effect profile. Although worldwide experience with AIs for ovulation induction is increasing, at present, definitive studies in the form of randomized controlled trials comparing CC with AIs are lacking.", "title": "0021-972X/06/$15.00/0 The Journal of Clinical Endocrinology & Metabolism 91(3):760–771 Printed in U.S.A. Copyright © 2006 by The Endocrine Society doi: 10.1210/jc.2005-1923 REVIEW: Aromatase Inhibitors for Ovulation Induction" }, { "docid": "27391365", "text": "The validity of the six-question World Health Organization Adult ADHD Self-Report Scale (ASRS) Screener was assessed in a sample of subscribers to a large health plan in the US. A convenience subsample of 668 subscribers was administered the ASRS Screener twice to assess test-retest reliability and then a third time in conjunction with a clinical interviewer for DSM-IV adult ADHD. The data were weighted to adjust for discrepancies between the sample and the population on socio-demographics and past medical claims. Internal consistency reliability of the continuous ASRS Screener was in the range 0.63-0.72 and test-retest reliability (Pearson correlations) in the range 0.58-0.77. A four-category version The ASRS Screener had strong concordance with clinician diagnoses, with an area under the receiver operating characteristic curve (AUC) of 0.90. The brevity and ability to discriminate DSM-IV cases from non-cases make the six-question ASRS Screener attractive for use both in community epidemiological surveys and in clinical outreach and case-finding initiatives.", "title": "Validity of the World Health Organization Adult ADHD Self-Report Scale (ASRS) Screener in a representative sample of health plan members." }, { "docid": "1412089", "text": "BACKGROUND Traditional T2 weighted MR imaging results are non-specific for the extent of underlying white matter structural abnormalities present in late life depression (LLD). Diffusion tensor imaging provides a unique opportunity to investigate the extent and nature of structural injury, but has been limited by examining only a subset of regions of interest (ROI) and by confounds common to the study of an elderly population, including comorbid vascular pathology. Furthermore, comprehensive correlation of diffusion tensor imaging (DTI) measurements, including axial and radial diffusivity measurements, has not been demonstrated in the late life depression population. \n METHODS 51 depressed and 16 non-depressed, age- and cerebrovascular risk factor-matched elderly subjects underwent traditional anatomic T1 and T2 weight imaging, as well as DTI. The DTI data were skeletonized using tract based spatial statistics (TBSS), and both regional and global analyses were performed. \n RESULTS Widespread structural abnormalities within white matter were detected in the LLD group, accounting for age, gender and education and matched for cerebrovascular risk factors and global T2 white matter hyperintensities (T2WMH). Regional differences were most prominent in uncinate and cingulate white matter and were generally characterized by an increase in radial diffusivity. Age-related changes particularly in the cingulate bundle were more advanced in individuals with LLD relative to controls. Regression analysis demonstrated significant correlations of regional fractional anisotropy and radial diffusivity with five different neuropsychological factor scores. TBSS analysis demonstrated a greater extent of white matter abnormalities in LLD not responsive to treatment, as compared to controls. \n CONCLUSIONS White matter integrity is compromised in late life depression, largely manifested by increased radial diffusivity in specific regions, suggesting underlying myelin injury. A possible mechanism for underlying myelin injury is chronic white matter ischemia related to intrinsic cerebrovascular disease. In some regions such as the cingulate bundle, the white matter injury related to late life depression appears to be independent of and compounded by age-related changes. The correlations with neuropsychological testing indicate the essential effects of white matter injury on functional status. Lastly, response to treatment may depend on the extent of white matter injury, suggesting a need for intact functional networks.", "title": "Diminished performance on neuropsychological testing in late life depression is correlated with microstructural white matter abnormalities." }, { "docid": "22281684", "text": "Wnt signaling has diverse actions in cardiovascular development and disease processes. Secreted frizzled-related protein 5 (Sfrp5) has been shown to function as an extracellular inhibitor of non-canonical Wnt signaling that is expressed at relatively high levels in white adipose tissue. The aim of this study was to investigate the role of Sfrp5 in the heart under ischemic stress. Sfrp5 KO and WT mice were subjected to ischemia/reperfusion (I/R). Although Sfrp5-KO mice exhibited no detectable phenotype when compared with WT control at baseline, they displayed larger infarct sizes, enhanced cardiac myocyte apoptosis, and diminished cardiac function following I/R. The ischemic lesions of Sfrp5-KO mice had greater infiltration of Wnt5a-positive macrophages and greater inflammatory cytokine and chemokine gene expression when compared with WT mice. In bone marrow-derived macrophages, Wnt5a promoted JNK activation and increased inflammatory gene expression, whereas treatment with Sfrp5 blocked these effects. These results indicate that Sfrp5 functions to antagonize inflammatory responses after I/R in the heart, possibly through a mechanism involving non-canonical Wnt5a/JNK signaling.", "title": "Secreted Frizzled-related Protein 5 Diminishes Cardiac Inflammation and Protects the Heart from Ischemia/Reperfusion Injury." }, { "docid": "21053753", "text": "The Constant-Murley shoulder assessment score has proven to be a valuable diagnostic instrument. Thus, in the literature it has been mentioned that the clinical accuracy of this score varies especially when comparing patients in larger, inhomogeneous patient groups. The \"relative Constant score\" (CS(rel)) tries to minimize these problems by using reference parameters out of healthy age and gender related control groups. The authors of this study tried to show that it is even more accurate to use the functional performance of the uninjured collateral shoulder of the same individual as reference, introducing the \"individual relative Constant score\" (CS(indiv)). The CS(indiv) and the CS(rel) were compared for 125 consecutive patients with shoulder disorders, and a group of 125 healthy volunteers as a control group. In a non-parametric comparison of the reciever operating characteristics the CS(indiv) shows the higher ability to discriminate between patients and healthy volunteers (p=0.004). This indicates that the individual relative Constant score gives a more accurate view about the functional result for shoulder disorders. It is expected to be more reliable for larger and incoherent patient populations, because specific interindividual differences, regarding the patient's age, gender and constitution are eliminated as well as other individual physiological parameters.", "title": "Modification of the Constant-Murley shoulder score-introduction of the individual relative Constant score Individual shoulder assessment." }, { "docid": "28017005", "text": "Assessment for selection in medicine and the health professions should follow the same quality assurance processes as in-course assessment. The literature on selection is limited and is not strongly theoretical or conceptual. For written testing, there is evidence of the predictive validity of Medical College Admission Test (MCAT) for medical school and licensing examination performance. There is also evidence for the predictive validity of grade point average, particularly in combination with MCAT for graduate entry but little evidence about the predictive validity of school leaver scores. Interviews have not been shown to be robust selection measures. Studies of multiple mini-interviews have indicated good predictive validity and reliability. Of other measures used in selection, only the growing interest in personality testing appears to warrant future work. Widening access to medical and health professional programmes is an increasing priority and relates to the social accountability mandate of medical and health professional schools. While traditional selection measures do discriminate against various population groups, there is little evidence on the effect of non-traditional measures in widening access. Preparation and outreach programmes show most promise. In summary, the areas of consensus for assessment for selection are small in number. Recommendations for future action focus on the adoption of principles of good assessment and curriculum alignment, use of multi-method programmatic approaches, development of interdisciplinary frameworks and utilisation of sophisticated measurement models. The social accountability mandate of medical and health professional schools demands that social inclusion, workforce issues and widening of access are embedded in the principles of good assessment for selection.", "title": "Assessment for selection for the health care professions and specialty training: consensus statement and recommendations from the Ottawa 2010 Conference." }, { "docid": "8642784", "text": "OBJECTIVE To assess the efficacy of various controlled ovarian hyperstimulation (COH) regimens in the prior poor-responder patient preparing for assisted reproductive techniques. \n DESIGN English-language literature review. \n PATIENT(S) Candidates for assisted reproductive techniques who had been defined as having a prior suboptimal response to standard COH regimens. \n INTERVENTION(S) A variety of regimes are reviewed, including increased gonadotropin doses, change of gonadotropins, adjunctive growth hormone (GH), luteal phase (long) GnRH agonist (GnRH-a) initiation, early follicular phase (flare) GnRH-a initiation, low-dose luteal phase (ultrashort) GnRH-a initiation, progestin pretreatment, and microdose flare GnRH-a initiation. \n MAIN OUTCOME MEASURE(S) Maximal serum E(2) levels, follicular development, dose, and duration of gonadotropin therapy, cycle cancellation rates, oocytes retrieved, embryos transferred, and clinical and ongoing pregnancy rates. \n RESULT(S) A lack of uniformity in definition of the poor responder and of prospective randomized trials make data interpretation somewhat difficult. Of the varied strategies proposed, those that seem to be more uniformly beneficial are microdose GnRH-a flare and late luteal phase initiation of a short course of low-dose GnRH-a discontinued before COH. \n CONCLUSION(S) No single regimen will benefit all poor responders. General acceptance of uniform definitions and performance of large-scale prospective randomized trials are critical. Development of a reliable precycle screen will allow effective differentiation among normal responders, poor responders, and those who will not conceive with their own oocytes.", "title": "Evaluating strategies for improving ovarian response of the poor responder undergoing assisted reproductive techniques." } ]
351
Distant CREs are important for transcriptional regulation.
[ { "docid": "14658685", "text": "The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution.", "title": "Enhancer Evolution across 20 Mammalian Species" } ]
[ { "docid": "21622715", "text": "Transcriptional factors binding to cAMP-responsive elements (CREs) in the promoters of various genes belong to the basic domain-leucine zipper superfamily and are composed of three genes in mammals, CREB, CREM, and ATF-1. A large number of CREB, CREM, and ATF-1 proteins are generated by posttranscriptional events, mostly alternative splicing, and regulate gene expression by acting as activators or repressors. Activation is classically brought about by signaling-dependent phosphorylation of a key acceptor site (Ser133 in CREB) by a number of possible kinases, including PKA, CamKIV, and Rsk-2. Phosphorylation is the prerequisite for the interaction of CBP (CREB-binding protein), a co-activator that has also histone acetyltransferase activity. Repression may involve dynamic dephosphorylation of the activators and thus decreased association with CBP. Another pathway of transcriptional repression on CRE sites implicates the inducible repressor ICER (inducible cAMP early repressor), a product of the CREM gene. Being an inducible repressor, ICER is involved in autoregulatory feedback loops of transcription that govern the down-regulation of early response genes, such as the proto-oncogene c-fos. The liver represents a remarkable physiological setting where cAMP-responsive signaling plays a major role. Indeed, a finely tuned program of gene expression is triggered by partial hepatectomy, so that through specific checkpoints a coordinated regeneration of the tissue is obtained. Temporal kinetics of transcriptional activation after hepatectomy reveals a pattern of early induction for several genes, some of them controlled by the CREB/CREM transcription factors. An important role of CREM in liver physiology was suggested by the robust induction of ICER after partial hepatectomy. The delay in tissue regeneration in CREM-deficient mice confirmed the important function of this factor in regulating hepatocyte proliferation. As gene induction is accompanied by critical changes in chromatin organization, the deciphering of the specific modification codes that histones display during liver regeneration and physiology will provide exciting new insights into the dynamics of chromatin architecture.", "title": "Coupling cAMP signaling to transcription in the liver: pivotal role of CREB and CREM." }, { "docid": "5979056", "text": "Dendritic cells (DCs) have been implicated as important regulators of innate and adaptive inflammation in many diseases, including atherosclerosis. However, the molecular mechanisms by which DCs mitigate or promote inflammatory pathogenesis are only partially understood. Previous studies have shown an important anti-inflammatory role for the transcription factor Krüppel-like factor 2 (KLF2) in regulating activation of various cell types that participate in atherosclerotic lesion development, including endothelial cells, macrophages, and T cells. We used a pan-DC, CD11c-specific cre-lox gene knockout mouse model to assess the role of KLF2 in DC activation, function, and control of inflammation in the context of hypercholesterolemia and atherosclerosis. We found that KLF2 deficiency enhanced surface expression of costimulatory molecules CD40 and CD86 in DCs and promoted increased T cell proliferation and apoptosis. Transplant of bone marrow from mice with KLF2-deficient DCs into Ldlr-/- mice aggravated atherosclerosis compared with control mice, most likely due to heightened vascular inflammation evidenced by increased DC presence within lesions, enhanced T cell activation and cytokine production, and increased cell death in atherosclerotic lesions. Taken together, these data indicate that KLF2 governs the degree of DC activation and hence the intensity of proatherogenic T cell responses.", "title": "Dendritic Cell KLF2 Expression Regulates T Cell Activation and Proatherogenic Immune Responses." }, { "docid": "1791714", "text": "Epithelial-mesenchymal transition (EMT) is implicated in converting stationary epithelial tumor cells into motile mesenchymal cells during metastasis. However, the involvement of EMT in metastasis is still controversial, due to the lack of a mesenchymal phenotype in human carcinoma metastases. Using a spontaneous squamous cell carcinoma mouse model, we show that activation of the EMT-inducing transcription factor Twist1 is sufficient to promote carcinoma cells to undergo EMT and disseminate into blood circulation. Importantly, in distant sites, turning off Twist1 to allow reversion of EMT is essential for disseminated tumor cells to proliferate and form metastases. Our study demonstrates in vivo the requirement of \"reversible EMT\" in tumor metastasis and may resolve the controversy on the importance of EMT in carcinoma metastasis.", "title": "Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis." }, { "docid": "39048693", "text": "The cre/LoxP system can produce conditional loss of gene function in specific cell types such as neurons. A transgenic mouse line, utilized by multiple studies, used the Synapsin I promoter to drive expression of cre (SynCre) to achieve neuronal-specific cre expression. Herein we describe that cre expression can also be observed in SynCre mice within the testes after being bred into a floxed transgenic mouse line. Cre transcript was expressed in testes resulting in recombination of the floxed substrate in testes. In the majority of cases, progeny of male SynCre mice inherited a germline recombined floxed allele, while this was never observed in progeny from female mice carrying the SynCre allele. This observation should alert investigators to a potential confound using these mice and enables male germ cell \"deletor\" strategies.", "title": "Synapsin I Cre transgene expression in male mice produces germline recombination in progeny." }, { "docid": "2452989", "text": "KLF1 regulates a diverse suite of genes to direct erythroid cell differentiation from bipotent progenitors. To determine the local cis-regulatory contexts and transcription factor networks in which KLF1 operates, we performed KLF1 ChIP-seq in the mouse. We found at least 945 sites in the genome of E14.5 fetal liver erythroid cells which are occupied by endogenous KLF1. Many of these recovered sites reside in erythroid gene promoters such as Hbb-b1, but the majority are distant to any known gene. Our data suggests KLF1 directly regulates most aspects of terminal erythroid differentiation including production of alpha- and beta-globin protein chains, heme biosynthesis, coordination of proliferation and anti-apoptotic pathways, and construction of the red cell membrane and cytoskeleton by functioning primarily as a transcriptional activator. Additionally, we suggest new mechanisms for KLF1 cooperation with other transcription factors, in particular the erythroid transcription factor GATA1, to maintain homeostasis in the erythroid compartment.", "title": "A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells." }, { "docid": "43602749", "text": "Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in trans in the presence of distant chromosome breaks.", "title": "The NBS1–Treacle complex controls ribosomal RNA transcription in response to DNA damage" }, { "docid": "5409325", "text": "Pituitary gonadotropins follicle-stimulating hormone and luteinizing hormone are heterodimeric glycoproteins expressed in gonadotropes. They act on gonads and promote their development and functions including steroidogenesis and gametogenesis. Although transcriptional regulation of gonadotropin subunits has been well studied, the post-transcriptional regulation of gonadotropin subunits is not well understood. To test if microRNAs regulate the hormone-specific gonadotropin β subunits in vivo, we deleted Dicer in gonadotropes by a Cre-lox genetic approach. We found that many of the DICER-dependent microRNAs, predicted in silico to bind gonadotropin β subunit mRNAs, were suppressed in purified gonadotropes of mutant mice. Loss of DICER-dependent microRNAs in gonadotropes resulted in profound suppression of gonadotropin-β subunit proteins and, consequently, the heterodimeric hormone secretion. In addition to suppression of basal levels, interestingly, the post-gonadectomy-induced rise in pituitary gonadotropin synthesis and secretion were both abolished in mutants, indicating a defective gonadal negative feedback control. Furthermore, mutants lacking Dicer in gonadotropes displayed severely reduced fertility and were rescued with exogenous hormones confirming that the fertility defects were secondary to suppressed gonadotropins. Our studies reveal that DICER-dependent microRNAs are essential for gonadotropin homeostasis and fertility in mice. Our studies also implicate microRNAs in gonadal feedback control of gonadotropin synthesis and secretion. Thus, DICER-dependent microRNAs confer a new layer of transcriptional and post-transcriptional regulation in gonadotropes to orchestrate the hypothalamus-pituitary-gonadal axis physiology.", "title": "Gonadotrope-specific deletion of Dicer results in severely suppressed gonadotropins and fertility defects." }, { "docid": "25263810", "text": "The switch from the latent to the lytic form of Epstein-Barr virus (EBV) infection is mediated by expression of the viral immediate-early (IE) proteins, BZLF1 (Z) and BRLF1 (R). An EBV early protein, BRRF1 (Na), is encoded by the opposite strand of the BRLF1 intron, but the function of this nuclear protein in the viral life cycle is unknown. Here we demonstrate that Na enhances the R-mediated induction of lytic EBV infection in 293 cells latently infected with a recombinant EBV (R-KO) defective for the expression of both R and Na. Na also enhances R-induced lytic infections in a gastric carcinoma line (AGS) carrying the R-KO virus, although it has no effect in a Burkitt lymphoma line (BL-30) stably infected with the same mutant virus. We show that Na is a transcription factor that increases the ability of R to activate Z expression from the R-KO viral genome in 293 cells and that Na by itself activates the Z promoter (Zp) in EBV-negative cells. Na activation of Zp requires a CRE motif (ZII), and a consensus CRE motif is sufficient to transfer Na responsiveness to the heterologous E1b promoter. Furthermore, we show that Na enhances the transactivator function of a Gal4-c-Jun fusion protein but does not increase the transactivator function of other transcription factors (including ATF-1, ATF-2, and CREB) known to bind CRE motifs. Na expression in cells results in increased levels of a hyperphosphorylated form of c-Jun, suggesting a mechanism by which Na activates c-Jun. Our results indicate that Na is a transcription factor that activates the EBV Zp IE promoter through its effects on c-Jun and suggest that Na cooperates with BRLF1 to induce the lytic form of EBV infection in certain cell types.", "title": "The BRRF1 early gene of Epstein-Barr virus encodes a transcription factor that enhances induction of lytic infection by BRLF1." }, { "docid": "33507866", "text": "A critical regulator of autophagy is the Class III PI3K Vps34 (also called PIK3C3). Although Vps34 is known to play an essential role in autophagy in yeast, its role in mammals remains elusive. To elucidate the physiological function of Vps34 and to determine its precise role in autophagy, we have generated Vps34(f/f) mice, in which expression of Cre recombinase results in a deletion of exon 4 of Vps34 and a frame shift causing a deletion of 755 of the 887 amino acids of Vps34. Acute ablation of Vps34 in MEFs upon adenoviral Cre infection results in a diminishment of localized generation of phosphatidylinositol 3-phosphate and blockade of both endocytic and autophagic degradation. Starvation-induced autophagosome formation is blocked in both Vps34-null MEFs and liver. Liver-specific Albumin-Cre;Vps34(f/f) mice developed hepatomegaly and hepatic steatosis, and impaired protein turnover. Ablation of Vps34 in the heart of muscle creatine kinase-Cre;Vps34(f/f) mice led to cardiomegaly and decreased contractility. In addition, while amino acid-stimulated mTOR activation was suppressed in the absence of Vps34, the steady-state level of mTOR signaling was not affected in Vps34-null MEFs, liver, or cardiomyocytes. Taken together, our results indicate that Vps34 plays an essential role in regulating functional autophagy and is indispensable for normal liver and heart function.", "title": "Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function." }, { "docid": "8494570", "text": "BACKGROUND Recent studies suggested that human/mammalian genomes are divided into large, discrete domains that are units of chromosome organization. CTCF, a CCCTC binding factor, has a diverse role in genome regulation including transcriptional regulation, chromosome-boundary insulation, DNA replication, and chromatin packaging. It remains unclear whether a subset of CTCF binding sites plays a functional role in establishing/maintaining chromatin topological domains. \n RESULTS We systematically analysed the genomic, transcriptomic and epigenetic profiles of the CTCF binding sites in 56 human cell lines from ENCODE. We identified ~24,000 CTCF sites (referred to as constitutive sites) that were bound in more than 90% of the cell lines. Our analysis revealed: 1) constitutive CTCF loci were located in constitutive open chromatin and often co-localized with constitutive cohesin loci; 2) most constitutive CTCF loci were distant from transcription start sites and lacked CpG islands but were enriched with the full-spectrum CTCF motifs: a recently reported 33/34-mer and two other potentially novel (22/26-mer); 3) more importantly, most constitutive CTCF loci were present in CTCF-mediated chromatin interactions detected by ChIA-PET and these pair-wise interactions occurred predominantly within, but not between, topological domains identified by Hi-C. CONCLUSIONS Our results suggest that the constitutive CTCF sites may play a role in organizing/maintaining the recently identified topological domains that are common across most human cells.", "title": "Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes" }, { "docid": "9732010", "text": "Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE)-like sequence, M26, and a heterodimeric ATF/CREB transcription factor, Atf1.Pcr1. Chromatin remodeling occurs meiotically around M26. We examined the roles of HATs and ADCRs in chromatin remodeling around M26. Histones H3 and H4 around M26 were hyperacetylated in an M26- and Atf1-dependent manner early in meiosis. SpGcn5, the S. pombe homolog of Gcn5p, was required for the majority of histone H3 acetylation around M26 in vivo. Deletion of gcn5+ caused a significant delay in chromatin remodeling but only partial reduction of M26 meiotic recombination frequency. The snf22+ (a Swi2/Snf2-ADCR homologue) deletion and snf22+ gcn5+ double deletion abolished chromatin remodeling and significant reduction of meiotic recombination around M26. These results suggest that HATs and ADCRs cooperatively alter local chromatin structure, as in selective transcription activation, to activate meiotic recombination at M26 in a site-specific manner.", "title": "Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot." }, { "docid": "4979184", "text": "Glioblastoma (GBM) is the most malignant brain tumor and is highly resistant to intensive combination therapies and anti-VEGF therapies. To assess the resistance mechanism to anti-VEGF therapy, we examined the vessels of GBMs in tumors that were induced by the transduction of p53(+/-) heterozygous mice with lentiviral vectors containing oncogenes and the marker GFP in the hippocampus of GFAP-Cre recombinase (Cre) mice. We were surprised to observe GFP(+) vascular endothelial cells (ECs). Transplantation of mouse GBM cells revealed that the tumor-derived endothelial cells (TDECs) originated from tumor-initiating cells and did not result from cell fusion of ECs and tumor cells. An in vitro differentiation assay suggested that hypoxia is an important factor in the differentiation of tumor cells to ECs and is independent of VEGF. TDEC formation was not only resistant to an anti-VEGF receptor inhibitor in mouse GBMs but it led to an increase in their frequency. A xenograft model of human GBM spheres from clinical specimens and direct clinical samples from patients with GBM also showed the presence of TDECs. We suggest that the TDEC is an important player in the resistance to anti-VEGF therapy, and hence a potential target for GBM therapy.", "title": "Transdifferentiation of glioblastoma cells into vascular endothelial cells." }, { "docid": "24974080", "text": "New blood vessel formation (angiogenesis) is a fundamental event in the process of tumor growth and metastatic dissemination. Hence, the molecular basis of tumor angiogenesis has been of keen interest in the field of cancer research. The vascular endothelial growth factor (VEGF) pathway is well established as one of the key regulators of this process. The VEGF/VEGF-receptor axis is composed of multiple ligands and receptors with overlapping and distinct ligand-receptor binding specificities, cell-type expression, and function. Activation of the VEGF-receptor pathway triggers a network of signaling processes that promote endothelial cell growth, migration, and survival from pre-existing vasculature. In addition, VEGF mediates vessel permeability, and has been associated with malignant effusions. More recently, an important role for VEGF has emerged in mobilization of endothelial progenitor cells from the bone marrow to distant sites of neovascularization. The well-established role of VEGF in promoting tumor angiogenesis and the pathogenesis of human cancers has led to the rational design and development of agents that selectively target this pathway. Studies with various anti-VEGF/VEGF-receptor therapies have shown that these agents can potently inhibit angiogenesis and tumor growth in preclinical models. Recently, an anti-VEGF antibody (bevacizumab), when used in combination with chemotherapy, was shown to significantly improve survival and response rates in patients with metastatic colorectal cancer and thus, validate VEGF pathway inhibitors as an important new treatment modality in cancer therapy.", "title": "Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis." }, { "docid": "18064113", "text": "Mature adipocytes are generated through the proliferation and differentiation of precursor cells. Our previous studies identified adipocyte progenitors in white adipose tissue (WAT) as Lin(-):CD29(+):CD34(+):Sca-1(+):CD24(+) (CD24(+)) cells that are capable of generating functional WAT (ref. ). Here, we employ several Cre recombinase mouse models to identify the adipocyte cellular lineage in vivo. Although it has been proposed that white adipocytes are derived from endothelial and haematopoietic lineages, we find that neither of these lineages label white adipocytes. However, platelet-derived growth factor receptor α (PdgfRα)-Cre trace labels all white adipocytes. Analysis of WAT from PdgfRα-Cre reporter mice identifies CD24(+) and Lin(-):CD29(+):CD34(+):Sca-1(+): CD24(-) (CD24(-)) cells as adipocyte precursors. We show that CD24(+) cells generate the CD24(-) population in vivo and the CD24(-) cells express late markers of adipogenesis. From these data we propose a model where the CD24(+) adipocyte progenitors become further committed to the adipocyte lineage as CD24 expression is lost, generating CD24(-) preadipocytes. This characterization of the adipocyte cellular lineage will facilitate the study of the mechanisms that regulate WAT formation in vivo and WAT mass expansion in obesity.", "title": "Characterization of the adipocyte cellular lineage in vivo" }, { "docid": "14407673", "text": "RATIONALE Hemizygous deficiency of the transcription factor Krüppel-like factor 2 (KLF2) has been shown previously to augment atherosclerosis in hypercholesterolemic mice. However, the cell type responsible for the increased atherosclerosis due to KLF2 deficiency has not been identified. This study examined the consequence of myeloid cell-specific KLF2 inactivation in atherosclerosis. \n METHODS AND RESULTS Cell-specific knockout mice were generated by Cre/loxP recombination. Macrophages isolated from myeloid-specific Klf2 knockout (myeKlf2(-/-)) mice were similar to myeKlf2(+/+) macrophages in response to activation, polarization, and lipid accumulation. However, in comparison to myeKlf2(+/+) macrophages, myeKlf2(-/-) macrophages adhered more robustly to endothelial cells. Neutrophils from myeKlf2(-/-) mice also adhered more robustly to endothelial cells, and fewer myeKlf2(-/-) neutrophils survived in culture over a 24-hour period in comparison with myeKlf2(+/+) neutrophils. When myeKlf2(-/-) mice were mated to Ldlr(-/-) mice and then fed a high fat and high cholesterol diet, significant increase in atherosclerosis was observed in the myeKlf2(-/-)Ldlr(-/-) mice compared with myeKlf2(+/+)Ldlr(-/-) littermates. The increased atherosclerosis in myeKlf2(-/-)Ldlr(-/-) mice was associated with elevated presence of neutrophils and macrophages, with corresponding increase of myeloperoxidase as well as chlorinated and nitrosylated tyrosine epitopes in their lesion areas compared with myeKlf2(+/+)Ldlr(-/-) mice. \n CONCLUSIONS This study documents a role for myeloid KLF2 expression in modulating atherosclerosis. The increased neutrophil accumulation and atherosclerosis progression with myeloid-specific KLF2 deficiency also underscores the importance of neutrophils in promoting vascular oxidative stress and atherosclerosis. Collectively, these results suggest that elevating KLF2 expression may be a novel strategy for prevention and treatment of atherosclerosis.", "title": "Myeloid-specific Krüppel-like factor 2 inactivation increases macrophage and neutrophil adhesion and promotes atherosclerosis." }, { "docid": "11428884", "text": "Adipose tissue is an important metabolic organ, the dysfunction of which is associated with the development of obesity, diabetes mellitus, and cardiovascular disease. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is considered the master regulator of adipocyte differentiation and function. Although its cell-autonomous role in adipogenesis has been clearly demonstrated in cell culture, previous fat-specific knockouts of the murine PPARγ gene did not demonstrate a dramatic phenotype in vivo. Here, using Adipoq-Cre mice to drive adipose-specific recombination, we report a unique fat-specific PPARγ knockout (PPARγ FKO) mouse model with almost no visible brown and white adipose tissue at age 3 mo. As a consequence, PPARγ FKO mice had hugely enlarged pancreatic islets, massive fatty livers, and dramatically elevated levels of blood glucose and serum insulin accompanied by extreme insulin resistance. PPARγ FKO mice also exhibited delayed hair coat formation associated with absence of dermal fat, disrupted mammary gland development with loss of mammary fat pads, and high bone mass with loss of bone marrow fat, indicating the critical roles of adipose PPARγ in these tissues. Together, our data reveal the necessity of fat PPARγ in adipose formation, whole-body metabolic homeostasis, and normal development of fat-containing tissues.", "title": "Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ." }, { "docid": "15981174", "text": "To generate transgenic mice that express Cre-recombinase exclusively in the megakaryocytic lineage, we modified a mouse bacterial artificial chromosome (BAC) clone by homologous recombination and replaced the first exon of the platelet factor 4 (Pf4), also called CXCL4, with a codon-improved Cre cDNA. Several strains expressing the transgene were obtained and one strain, Q3, was studied in detail. Crossing Q3 mice with the ROSA26-lacZ reporter strain showed that Cre-recombinase activity was confined to megakaryocytes. These results were further verified by crossing the Q3 mice with a strain containing loxP-flanked integrin beta1. Excision of this conditional allele in megakaryocytes was complete at the DNA level, and platelets were virtually devoid of the integrin beta1 protein. The Pf4-Cre transgenic strain will be a valuable tool to study megakaryopoiesis, platelet formation, and platelet function.", "title": "Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo." }, { "docid": "3052213", "text": "The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and binding sites of several important transcription factors have been profiled in the mouse 3T3-L1 cell line, such data are lacking in human adipocytes. In this study, we identified H3K56 acetylation sites in human adipocytes derived from mesenchymal stem cells. H3K56 is acetylated by CBP and p300, and deacetylated by SIRT1, all are proteins with important roles in diabetes and insulin signaling. We found that while almost half of the genome shows signs of H3K56 acetylation, the highest level of H3K56 acetylation is associated with transcription factors and proteins in the adipokine signaling and Type II Diabetes pathways. In order to discover the transcription factors that recruit acetyltransferases and deacetylases to sites of H3K56 acetylation, we analyzed DNA sequences near H3K56 acetylated regions and found that the E2F recognition sequence was enriched. Using chromatin immunoprecipitation followed by high-throughput sequencing, we confirmed that genes bound by E2F4, as well as those by HSF-1 and C/EBPα, have higher than expected levels of H3K56 acetylation, and that the transcription factor binding sites and acetylation sites are often adjacent but rarely overlap. We also discovered a significant difference between bound targets of C/EBPα in 3T3-L1 and human adipocytes, highlighting the need to construct species-specific epigenetic and transcription factor binding site maps. This is the first genome-wide profile of H3K56 acetylation, E2F4, C/EBPα and HSF-1 binding in human adipocytes, and will serve as an important resource for better understanding adipocyte transcriptional regulation.", "title": "Genome-Wide Profiling of H3K56 Acetylation and Transcription Factor Binding Sites in Human Adipocytes" }, { "docid": "16389141", "text": "Dysfunction of the pancreatic beta cell is an important defect in the pathogenesis of type 2 diabetes, although its exact relationship to the insulin resistance is unclear. To determine whether insulin signaling has a functional role in the beta cell we have used the Cre-loxP system to specifically inactivate the insulin receptor gene in the beta cells. The resultant mice exhibit a selective loss of insulin secretion in response to glucose and a progressive impairment of glucose tolerance. These data indicate an important functional role for the insulin receptor in glucose sensing by the pancreatic beta cell and suggest that defects in insulin signaling at the level of the beta cell may contribute to the observed alterations in insulin secretion in type 2 diabetes.", "title": "Tissue-Specific Knockout of the Insulin Receptor in Pancreatic β Cells Creates an Insulin Secretory Defect Similar to that in Type 2 Diabetes" }, { "docid": "825728", "text": "The epithelial-mesenchymal transition (EMT) is required in the embryo for the formation of tissues for which cells originate far from their final destination. Carcinoma cells hijack this program for tumor dissemination. The relevance of the EMT in cancer is still debated because it is unclear how these migratory cells colonize distant tissues to form macrometastases. We show that the homeobox factor Prrx1 is an EMT inducer conferring migratory and invasive properties. The loss of Prrx1 is required for cancer cells to metastasize in vivo, which revert to the epithelial phenotype concomitant with the acquisition of stem cell properties. Thus, unlike the classical EMT transcription factors, Prrx1 uncouples EMT and stemness, and is a biomarker associated with patient survival and lack of metastasis.", "title": "Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1." } ]
352
Distant CREs are less conserved among species.
[ { "docid": "14658685", "text": "The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution.", "title": "Enhancer Evolution across 20 Mammalian Species" } ]
[ { "docid": "18855191", "text": "Social organisms that cooperate with some members of their own species, such as close relatives, may fail to cooperate with other genotypes of the same species. Such noncooperation may take the form of outright antagonism or social exploitation. Myxococcus xanthus is a highly social prokaryote that cooperatively develops into spore-bearing, multicellular fruiting bodies in response to starvation. Here we have characterized the nature of social interactions among nine developmentally proficient strains of M. xanthus isolated from spatially distant locations. Strains were competed against one another in all possible pairwise combinations during starvation-induced development. In most pairings, at least one competitor exhibited strong antagonism toward its partner and a majority of mixes showed bidirectional antagonism that decreased total spore production, even to the point of driving whole populations to extinction. Differential response to mixing was the primary determinant of competitive superiority rather than the sporulation efficiencies of unmixed populations. In some competitive pairings, the dominant partner sporulated more efficiently in mixed populations than in clonal isolation. This finding represents a novel form of exploitation in bacteria carried out by socially competent genotypes and is the first documentation of social exploitation among natural bacterial isolates. Patterns of antagonistic superiority among these strains form a highly linear dominance hierarchy. At least some competition pairs construct chimeric, rather than segregated, fruiting bodies. The cooperative prokaryote M. xanthus has diverged into a large number of distinct social types that cooperate with clone-mates but exhibit intense antagonism toward distinct social types of the same species. Most lengthy migration events in nature may thus result in strong antagonism between migratory and resident populations, and this antagonism may have large effects on local population sizes and dynamics. Intense mutual antagonism appears to be more prevalent in this prokaryotic social species than has been observed in the eukaryotic social slime mold Dictyostelium discoideum, which also exhibits multicellular development. The finding of several cases of facultative social exploitation among these natural isolates suggests that such exploitation may occur frequently in nature in many prokaryotes with cooperative traits.", "title": "Exploitative and Hierarchical Antagonism in a Cooperative Bacterium" }, { "docid": "16167746", "text": "mRNA polyadenylation is an essential step for the maturation of almost all eukaryotic mRNAs, and is tightly coupled with termination of transcription in defining the 3'-end of genes. Large numbers of human and mouse genes harbor alternative polyadenylation sites [poly(A) sites] that lead to mRNA variants containing different 3'-untranslated regions (UTRs) and/or encoding distinct protein sequences. Here, we examined the conservation and divergence of different types of alternative poly(A) sites across human, mouse, rat and chicken. We found that the 3'-most poly(A) sites tend to be more conserved than upstream ones, whereas poly(A) sites located upstream of the 3'-most exon, also termed intronic poly(A) sites, tend to be much less conserved. Genes with longer evolutionary history are more likely to have alternative polyadenylation, suggesting gain of poly(A) sites through evolution. We also found that nonconserved poly(A) sites are associated with transposable elements (TEs) to a much greater extent than conserved ones, albeit less frequently utilized. Different classes of TEs have different characteristics in their association with poly(A) sites via exaptation of TE sequences into polyadenylation elements. Our results establish a conservation pattern for alternative poly(A) sites in several vertebrate species, and indicate that the 3'-end of genes can be dynamically modified by TEs through evolution.", "title": "Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3′-end of genes" }, { "docid": "22561064", "text": "The twin-arginine translocation (Tat) system transports folded proteins across bacterial plasma membranes and the chloroplast thylakoid membrane. Here, we investigate the composition and structural organization of three different purified Tat complexes from Escherichia coli, Salmonella typhimurium and Agrobacterium tumefaciens. First, we demonstrate the functional activity of these Tat systems in vivo, since expression of the tatABC operons from S.typhimurium or A.tumefaciens in an E.coli tat null mutant strain resulted in efficient Tat-dependent export of an E.coli cofactor-containing substrate, TMAO reductase. The three isolated, affinity-tagged Tat complexes comprised TatA, TatB and TatC in each case, demonstrating a strong interaction between these three subunits. Single-particle electron microscopy studies of all three complexes revealed approximately oval-shaped, asymmetric particles with maximal dimensions up to 13 nm. A common feature is a number of stain-excluding densities surrounding more or less central pools of stain, suggesting protein-lined pores or cavities. The characteristics of size variation among the particles suggest a modular form of assembly and/or the recruitment of varying numbers of TatBC/TatA units. Despite low levels of sequence homology, the combined data indicate structural and functional conservation in the Tat systems of these three bacterial species.", "title": "Consensus structural features of purified bacterial TatABC complexes." }, { "docid": "13277118", "text": "BACKGROUND Polar bears (Ursus maritimus) are among those species most susceptible to the rapidly changing arctic climate, and their survival is of global concern. Despite this, little is known about polar bear species history. Future conservation strategies would significantly benefit from an understanding of basic evolutionary information, such as the timing and conditions of their initial divergence from brown bears (U. arctos) or their response to previous environmental change. \n RESULTS We used a spatially explicit phylogeographic model to estimate the dynamics of 242 brown bear and polar bear matrilines sampled throughout the last 120,000 years and across their present and past geographic ranges. Our results show that the present distribution of these matrilines was shaped by a combination of regional stability and rapid, long-distance dispersal from ice-age refugia. In addition, hybridization between polar bears and brown bears may have occurred multiple times throughout the Late Pleistocene. \n CONCLUSIONS The reconstructed matrilineal history of brown and polar bears has two striking features. First, it is punctuated by dramatic and discrete climate-driven dispersal events. Second, opportunistic mating between these two species as their ranges overlapped has left a strong genetic imprint. In particular, a likely genetic exchange with extinct Irish brown bears forms the origin of the modern polar bear matriline. This suggests that interspecific hybridization not only may be more common than previously considered but may be a mechanism by which species deal with marginal habitats during periods of environmental deterioration.", "title": "Ancient Hybridization and an Irish Origin for the Modern Polar Bear Matriline" }, { "docid": "4313478", "text": "Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.", "title": "Translational control of intron splicing in eukaryotes" }, { "docid": "3823862", "text": "BackgroundBy comparing the quail genome with that of chicken, chromosome rearrangements that have occurred in these two galliform species over 35 million years of evolution can be detected. From a more practical point of view, the definition of conserved syntenies helps to predict the position of genes in quail, based on information taken from the chicken sequence, thus enhancing the utility of this species in biological studies through a better knowledge of its genome structure. A microsatellite and an Amplified Fragment Length Polymorphism (AFLP) genetic map were previously published for quail, as well as comparative cytogenetic data with chicken for macrochromosomes. Quail genomics will benefit from the extension and the integration of these maps. ResultsThe integrated linkage map presented here is based on segregation analysis of both anonymous markers and functional gene loci in 1,050 quail from three independent F2 populations. Ninety-two loci are resolved into 14 autosomal linkage groups and a Z chromosome-specific linkage group, aligned with the quail AFLP map. The size of linkage groups ranges from 7.8 cM to 274.8 cM. The total map distance covers 904.3 cM with an average spacing of 9.7 cM between loci. The coverage is not complete, as macrochromosome CJA08, the gonosome CJAW and 23 microchromosomes have no marker assigned yet. Significant sequence identities of quail markers with chicken enabled the alignment of the quail linkage groups on the chicken genome sequence assembly. This, together with interspecific Fluorescence In Situ Hybridization (FISH), revealed very high similarities in marker order between the two species for the eight macrochromosomes and the 14 microchromosomes studied. ConclusionIntegrating the two microsatellite and the AFLP quail genetic maps greatly enhances the quality of the resulting information and will thus facilitate the identification of Quantitative Trait Loci (QTL). The alignment with the chicken chromosomes confirms the high conservation of gene order that was expected between the two species for macrochromosomes. By extending the comparative study to the microchromosomes, we suggest that a wealth of information can be mined in chicken, to be used for genome analyses in quail.", "title": "Integrated maps in quail (Coturnix japonica) confirm the high degree of synteny conservation with chicken (Gallus gallus) despite 35 million years of divergence" }, { "docid": "6128334", "text": "Pairwise sequence comparison methods have been assessed using proteins whose relationships are known reliably from their structures and functions, as described in the SCOP database [Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia C. (1995) J. Mol. Biol. 247, 536-540]. The evaluation tested the programs BLAST [Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). J. Mol. Biol. 215, 403-410], WU-BLAST2 [Altschul, S. F. & Gish, W. (1996) Methods Enzymol. 266, 460-480], FASTA [Pearson, W. R. & Lipman, D. J. (1988) Proc. Natl. Acad. Sci. USA 85, 2444-2448], and SSEARCH [Smith, T. F. & Waterman, M. S. (1981) J. Mol. Biol. 147, 195-197] and their scoring schemes. The error rate of all algorithms is greatly reduced by using statistical scores to evaluate matches rather than percentage identity or raw scores. The E-value statistical scores of SSEARCH and FASTA are reliable: the number of false positives found in our tests agrees well with the scores reported. However, the P-values reported by BLAST and WU-BLAST2 exaggerate significance by orders of magnitude. SSEARCH, FASTA ktup = 1, and WU-BLAST2 perform best, and they are capable of detecting almost all relationships between proteins whose sequence identities are >30%. For more distantly related proteins, they do much less well; only one-half of the relationships between proteins with 20-30% identity are found. Because many homologs have low sequence similarity, most distant relationships cannot be detected by any pairwise comparison method; however, those which are identified may be used with confidence.", "title": "Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships." }, { "docid": "5641851", "text": "OBJECTIVE Cancer outcomes vary between and within countries with patients from deprived backgrounds known to have inferior survival. The authors set out to explore the effect of deprivation in relation to the accessibility of hospitals offering diagnostic and therapeutic services on stage at presentation and receipt of treatment. \n DESIGN Analysis of a Cancer Registry Database. Data included stage and treatment details from the first 6 months. The socioeconomic status of the immediate area of residence and the travel time from home to hospital was derived from the postcode. \n SETTING Population-based study of patients resident in a large area in the north of England. \n PARTICIPANTS 39 619 patients with colorectal cancer diagnosed between 1994 and 2002. \n OUTCOMES MEASURED Stage of diagnosis and receipt of treatment in relation to deprivation and distance from hospital. \n RESULTS Patients in the most deprived quartile were significantly more likely to be diagnosed at stage 4 for rectal cancer (OR 1.516, p<0.05) but less so for colonic cancer. There was a trend for both sites for patients in the most deprived quartile to be less likely to receive chemotherapy for stage 4 disease. Patients with colonic cancer were very significantly less likely to receive any treatment if they came from any but the most affluent area (ORs 0.639, 0.603 and 0.544 in increasingly deprived quartiles), this may have been exacerbated if the hospital was distant from their residence (OR for forth quartile for both travel and deprivation 0.731, not significant). The effect was less for rectal cancer and no effect of distance was seen. \n CONCLUSIONS Residing in a deprived area is associated with tendencies to higher stage at diagnosis and especially in the case of colonic cancer to reduced receipt of treatment. These observations are consistent with other findings and indicate that access to diagnosis requires further investigation.", "title": "Social and geographical factors affecting access to treatment of colorectal cancer: a cancer registry study" }, { "docid": "24864273", "text": "We have cloned cDNAs for Caenorhabditis elegans cyclins A1, B and B3. While cyclins A1 and B are most closely related to either A- or B-type cyclins of other species, cyclin B3 is less related to these cyclins. However, this cyclin is most similar to the recently identified chicken cyclin B3. Our identification of a Caenorhabditis homolog demonstrates that cyclin B3 has been conserved in evolution. Cyclin A1 is a member of an A-type multigene family; however the cyclin A1 cDNA only recognizes a single band on northern blots. A single-sized RNA is also observed for the cyclin B3 cDNA. In contrast, three different transcripts are observed for the cyclin B cDNA. Based on our analyses using RNAs from germline-defective mutants and from populations enriched for males, one cyclin B transcript is specific to the paternal germline. The two other cyclin B transcripts, as well as the cyclin A1 and cyclin B3 transcripts, are most abundant in the maternal germline and are only present at low levels in other tissues. Moreover, the 3' untranslated regions of each Caenorhabditis cyclin cDNA possess several copies of potential translational control elements shown in Xenopus and Drosophila maternal cyclin mRNAs to function during oogenesis and early embryogenesis.", "title": "Caenorhabditis elegans cyclin A- and B-type genes: a cyclin A multigene family, an ancestral cyclin B3 and differential germline expression." }, { "docid": "19572798", "text": "Polycomb group (PcG) proteins are required for the epigenetic maintenance of developmental genes in a silent state. Proteins in the Polycomb-repressive complex 1 (PRC1) class of the PcG are conserved from flies to humans and inhibit transcription. One hypothesis for PRC1 mechanism is that it compacts chromatin, based in part on electron microscopy experiments demonstrating that Drosophila PRC1 compacts nucleosomal arrays. We show that this function is conserved between Drosophila and mouse PRC1 complexes and requires a region with an overrepresentation of basic amino acids. While the active region is found in the Posterior Sex Combs (PSC) subunit in Drosophila, it is unexpectedly found in a different PRC1 subunit, a Polycomb homolog called M33, in mice. We provide experimental support for the general importance of a charged region by predicting the compacting capability of PcG proteins from species other than Drosophila and mice and by testing several of these proteins using solution assays and microscopy. We infer that the ability of PcG proteins to compact chromatin in vitro can be predicted by the presence of domains of high positive charge and that PRC1 components from a variety of species conserve this highly charged region. This supports the hypothesis that compaction is a key aspect of PcG function.", "title": "Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge." }, { "docid": "20132778", "text": "Gene-encoded antimicrobial peptides that protect the skin of hylid and ranin frogs against noxious microorganisms are processed from a unique family of precursor polypeptides with a unique pattern of conserved and variable regions opposite to that of conventional secreted peptides. Precursors belonging to this family, designated the preprodermaseptin, have a common N-terminal preproregion that is remarkably well conserved both within and between species, but a hypervariable C-terminal domain corresponding to antimicrobial peptides with very different lengths, sequences, charges and antimicrobial spectra. Each frog species has its own distinct panoply of 10-20 antimicrobial peptides so that the 5000 species of ranids and hylids may produce approximately 100,000 different peptide antibiotics. The strategy that these frogs have evolved to generate this enormous array of peptides includes repeated duplications of a 150 million years old ancestral gene, focal hypermutation of the antimicrobial peptide domain maybe involving a mutagenic DNA polymerase similar to Escherichia coli Pol V, and subsequent actions of positive (diversifying) selection. The hyperdivergence of skin antimicrobial peptides can be viewed as the successful evolution of a multi-drug defense system that provides frogs with maximum protection against rapidly changing microbial biota and minimizes the chance of microorganisms developing resistance to individual peptides. The impressive variations in the expression of frog skin antimicrobial peptides may be exploited for discovering new molecules and structural motifs targeting specific microorganisms for which the therapeutic armamentarium is scarce.", "title": "Molecular strategies in biological evolution of antimicrobial peptides." }, { "docid": "39048693", "text": "The cre/LoxP system can produce conditional loss of gene function in specific cell types such as neurons. A transgenic mouse line, utilized by multiple studies, used the Synapsin I promoter to drive expression of cre (SynCre) to achieve neuronal-specific cre expression. Herein we describe that cre expression can also be observed in SynCre mice within the testes after being bred into a floxed transgenic mouse line. Cre transcript was expressed in testes resulting in recombination of the floxed substrate in testes. In the majority of cases, progeny of male SynCre mice inherited a germline recombined floxed allele, while this was never observed in progeny from female mice carrying the SynCre allele. This observation should alert investigators to a potential confound using these mice and enables male germ cell \"deletor\" strategies.", "title": "Synapsin I Cre transgene expression in male mice produces germline recombination in progeny." }, { "docid": "24351680", "text": "Early studies of telomerase suggested that telomeres are maintained by an elegant but relatively simple and highly conserved mechanism of telomerase-mediated replication. As we learn more, it has become clear that the mechanism is elegant but not as simple as first thought. It is also evident that, although many species use similar, sometimes identical, DNA sequences for telomeres, these species express their own individuality in the way they regulate these sequences and, perhaps, in the additional tasks that they have imposed on their telomeric DNA. The striking similarities between telomeres in different species have revealed much about chromosome ends; the differences are proving to be equally informative. In addition to the differences between species that use telomerase, there are also a few exceptional organisms with atypical telomeres for which no telomerase activity has been detected. This review addresses recent studies, the insights they offer, and, perhaps more importantly, the questions they raise.", "title": "Telomeres and telomerase: more than the end of the line" }, { "docid": "16839245", "text": "The basic biology of the cell division cycle and its control by protein kinases was originally studied through genetic and biochemical studies in yeast and other model organisms. The major regulatory mechanisms identified in this pioneer work are conserved in mammals. However, recent studies in different cell types or genetic models are now providing a new perspective on the function of these major cell cycle regulators in different tissues. Here, we review the physiological relevance of mammalian cell cycle kinases such as cyclin-dependent kinases (Cdks), Aurora and Polo-like kinases, and mitotic checkpoint regulators (Bub1, BubR1, and Mps1) as well as other less-studied enzymes such as Cdc7, Nek proteins, or Mastl and their implications in development, tissue homeostasis, and human disease. Among these functions, the control of self-renewal or asymmetric cell division in stem/progenitor cells and the ability to regenerate injured tissues is a central issue in current research. In addition, many of these proteins play previously unexpected roles in metabolism, cardiovascular function, or neuron biology. The modulation of their enzymatic activity may therefore have multiple therapeutic benefits in human disease.", "title": "Physiological relevance of cell cycle kinases." }, { "docid": "19238", "text": "Two human Golli (for gene expressed in the oligodendrocyte lineage)-MBP (for myelin basic protein) cDNAs have been isolated from a human oligodendroglioma cell line. Analysis of these cDNAs has enabled us to determine the entire structure of the human Golli-MBP gene. The Golli-MBP gene, which encompasses the MBP transcription unit, is approximately 179 kb in length and consists of 10 exons, seven of which constitute the MBP gene. The human Golli-MBP gene contains two transcription start sites, each of which gives rise to a family of alternatively spliced transcripts. At least two Golli-MBP transcripts, containing the first three exons of the gene and one or more MBP exons, are produced from the first transcription start site. The second family of transcripts contains only MBP exons and produces the well-known MBPs. In humans, RNA blot analysis revealed that Golli-MBP transcripts were expressed in fetal thymus, spleen, and human B-cell and macrophage cell lines, as well as in fetal spinal cord. These findings clearly link the expression of exons encoding the autoimmunogen/encephalitogen MBP in the central nervous system to cells and tissues of the immune system through normal expression of the Golli-MBP gene. They also establish that this genetic locus, which includes the MBP gene, is conserved among species, providing further evidence that the MBP transcription unit is an integral part of the Golli transcription unit and suggest that this structural arrangement is important for the genetic function and/or regulation of these genes.", "title": "The human myelin basic protein gene is included within a 179-kilobase transcription unit: expression in the immune and central nervous systems." }, { "docid": "6202834", "text": "The understanding that gene trees are often in discord with each other and with the species trees that contain them has led researchers to methods that incorporate the inherent stochasticity of genetic processes in the phylogenetic estimation procedure. Recently developed methods for species-tree estimation that not only consider the retention and sorting of ancestral polymorphism but also quantify the actual probabilities of incomplete lineage sorting are expected to provide an improvement over earlier summary-statistic based approaches that discard much of the information content of gene trees. However, these new methods have yet to be tested on truly challenging evolutionary histories such as those marked by recent rapid speciation where high levels of incomplete lineage sorting and discord among gene trees predominate. Here, we test a new maximum-likelihood method that incorporates stochastic models of both nucleotide substitution and lineage sorting for species-tree estimation. Using a simulation approach, we consider a broad range of species-tree topologies under 2 scenarios representing moderate and severe incomplete lineage sorting. We show that the maximum-likelihood method results in more accurate species trees than a summary-statistic based approach, demonstrating that information contained in discordant gene trees can be effectively extracted using a full probabilistic model. Moreover, we demonstrate that the shape of the original species tree (i.e., the relative lengths of internal branches) has a significant impact on whether the species tree is estimated accurately. In the speciation histories explored here, it is not just the recent origin of species that affects the accuracy of the estimates but the variance in relative species divergence times as well. Additionally, we show that sampling effort (number of individuals and/or loci) and sampling design (ratio of individuals to loci) are both important factors affecting the accuracy of species-tree estimates, which is again affected by the relative timing of divergence among species. The inherent difficulties of estimating relationships when species have undergone a recent radiation are discussed, and in particular, the limitations with maximum-likelihood estimates of species trees that do not consider uncertainty in the estimated gene trees of individual loci. Thus, despite substantial improvements over current summary-statistic based approaches, and the increased sophistication of procedures that incorporate the process of gene lineage coalescence, recent radiations still appear to pose daunting challenges for phylogenetics.", "title": "Maximum likelihood estimates of species trees: how accuracy of phylogenetic inference depends upon the divergence history and sampling design." }, { "docid": "15981174", "text": "To generate transgenic mice that express Cre-recombinase exclusively in the megakaryocytic lineage, we modified a mouse bacterial artificial chromosome (BAC) clone by homologous recombination and replaced the first exon of the platelet factor 4 (Pf4), also called CXCL4, with a codon-improved Cre cDNA. Several strains expressing the transgene were obtained and one strain, Q3, was studied in detail. Crossing Q3 mice with the ROSA26-lacZ reporter strain showed that Cre-recombinase activity was confined to megakaryocytes. These results were further verified by crossing the Q3 mice with a strain containing loxP-flanked integrin beta1. Excision of this conditional allele in megakaryocytes was complete at the DNA level, and platelets were virtually devoid of the integrin beta1 protein. The Pf4-Cre transgenic strain will be a valuable tool to study megakaryopoiesis, platelet formation, and platelet function.", "title": "Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo." }, { "docid": "24521894", "text": "Wolcott-Rallison syndrome (WRS) is a rare, autosomal recessive disorder characterized by permanent neonatal or early infancy insulin-dependent diabetes. Epiphyseal dysplasia, osteoporosis and growth retardation occur at a later age. Other frequent multisystemic manifestations include hepatic and renal dysfunction, mental retardation and cardiovascular abnormalities. On the basis of two consanguineous families, we mapped WRS to a region of less than 3 cM on chromosome 2p12, with maximal evidence of linkage and homozygosity at 4 microsatellite markers within an interval of approximately 1 cM. The gene encoding the eukaryotic translation initiation factor 2-α kinase 3 (EIF2AK3) resides in this interval; thus we explored it as a candidate. We identified distinct mutations of EIF2AK3 that segregated with the disorder in each of the families. The first mutation produces a truncated protein in which the entire catalytic domain is missing. The other changes an amino acid, located in the catalytic domain of the protein, that is highly conserved among kinases from the same subfamily. Our results provide evidence for the role of EIF2AK3 in WRS. The identification of this gene may provide insight into the understanding of the more common forms of diabetes and other pathologic manifestations of WRS.", "title": "EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome" }, { "docid": "9142761", "text": "Plasmodium falciparum surface protein 25 (Pfs25) is a candidate for transmission-blocking vaccines (TBVs). Anti-Pfs25 antibodies block the development of oocysts in membrane-feeding assays and we have shown the activity correlates with antibody titer. In this study, we purified Pfs25-specific IgGs to convert antibody titer to microg/mL and determined the amount of antibody required to inhibit 50% of oocyst development (IC(50)). The IC(50) were, 15.9, 4.2, 41.2, and 85.6microg/mL for mouse, rabbit, monkey and human, respectively, and the differences among species were significant. Anti-Pfs25 sera from rabbit, monkey and human showed different patterns of competition against 6 mouse monoclonal antibodies, and the avidity of antibodies among four species were also different. These data suggests that information obtained from animal studies which assess efficacy of TBV candidates may be difficult to translate to human immunization.", "title": "The IC(50) of anti-Pfs25 antibody in membrane-feeding assay varies among species." } ]
355
Drosophila supracellular actomyosin structures are found at boundaries in wing imaginal discs.
[ { "docid": "12800122", "text": "Subdividing proliferating tissues into compartments is an evolutionarily conserved strategy of animal development [1-6]. Signals across boundaries between compartments can result in local expression of secreted proteins organizing growth and patterning of tissues [1-6]. Sharp and straight interfaces between compartments are crucial for stabilizing the position of such organizers and therefore for precise implementation of body plans. Maintaining boundaries in proliferating tissues requires mechanisms to counteract cell rearrangements caused by cell division; however, the nature of such mechanisms remains unclear. Here we quantitatively analyzed cell morphology and the response to the laser ablation of cell bonds in the vicinity of the anteroposterior compartment boundary in developing Drosophila wings. We found that mechanical tension is approximately 2.5-fold increased on cell bonds along this compartment boundary as compared to the remaining tissue. Cell bond tension is decreased in the presence of Y-27632 [7], an inhibitor of Rho-kinase whose main effector is Myosin II [8]. Simulations using a vertex model [9] demonstrate that a 2.5-fold increase in local cell bond tension suffices to guide the rearrangement of cells after cell division to maintain compartment boundaries. Our results provide a physical mechanism in which the local increase in Myosin II-dependent cell bond tension directs cell sorting at compartment boundaries.", "title": "Increased Cell Bond Tension Governs Cell Sorting at the Drosophila Anteroposterior Compartment Boundary" }, { "docid": "38380061", "text": "As organisms develop, their tissues can become separated into distinct cell populations through the establishment of compartment boundaries. Compartment boundaries have been discovered in a wide variety of tissues, but in many cases the molecular mechanisms that separate cells remain poorly understood. In the Drosophila wing, a stripe of Notch activation maintains the dorsal-ventral compartment boundary, through a process that depends on the actin cytoskeleton. Here, we show that the dorsal-ventral boundary exhibits a distinct accumulation of Myosin II, and that this accumulation is regulated downstream of Notch signaling. Conversely, the dorsal-ventral boundary is depleted for the Par-3 homologue Bazooka. We further show that mutations in the Myosin heavy chain subunit encoded by zipper can impair dorsal-ventral compartmentalization without affecting anterior-posterior compartmentalization. These observations identify a distinct accumulation and requirement for Myosin activity in dorsal-ventral compartmentalization, and suggest a novel mechanism in which contractile tension along an F-actin cable at the compartment boundary contributes to compartmentalization.", "title": "Localization and requirement for Myosin II at the dorsal-ventral compartment boundary of the Drosophila wing." } ]
[ { "docid": "9646449", "text": "The Drosophila gene eyeless (ey) encodes a transcription factor with both a paired domain and a homeodomain. It is homologous to the mouse Small eye (Pax-6) gene and to the Aniridia gene in humans. These genes share extensive sequence identity, the position of three intron splice sites is conserved, and these genes are expressed similarly in the developing nervous system and in the eye during morphogenesis. Loss-of-function mutations in both the insect and in the mammalian genes have been shown to lead to a reduction or absence of eye structures, which suggests that ey functions in eye morphogenesis. By targeted expression of the ey complementary DNA in various imaginal disc primordia of Drosophila, ectopic eye structures were induced on the wings, the legs, and on the antennae. The ectopic eyes appeared morphologically normal and consisted of groups of fully differentiated ommatidia with a complete set of photoreceptor cells. These results support the proposition that ey is the master control gene for eye morphogenesis. Because homologous genes are present in vertebrates, ascidians, insects, cephalopods, and nemerteans, ey may function as a master control gene throughout the metazoa.", "title": "Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila." }, { "docid": "15816729", "text": "Although cellular tumor-suppression mechanisms are widely studied, little is known about mechanisms that act at the level of tissues to suppress the occurrence of aberrant cells in epithelia. We find that ectopic expression of transcription factors that specify cell fates causes abnormal epithelial cysts in Drosophila imaginal discs. Cysts do not form cell autonomously but result from the juxtaposition of two cell populations with divergent fates. Juxtaposition of wild-type and aberrantly specified cells induces enrichment of actomyosin at their entire shared interface, both at adherens junctions as well as along basolateral interfaces. Experimental validation of 3D vertex model simulations demonstrates that enhanced interface contractility is sufficient to explain many morphogenetic behaviors, which depend on cell cluster size. These range from cyst formation by intermediate-sized clusters to segregation of large cell populations by formation of smooth boundaries or apical constriction in small groups of cells. In addition, we find that single cells experiencing lateral interface contractility are eliminated from tissues by apoptosis. Cysts, which disrupt epithelial continuity, form when elimination of single, aberrantly specified cells fails and cells proliferate to intermediate cell cluster sizes. Thus, increased interface contractility functions as error correction mechanism eliminating single aberrant cells from tissues, but failure leads to the formation of large, potentially disease-promoting cysts. Our results provide a novel perspective on morphogenetic mechanisms, which arise from cell-fate heterogeneities within tissues and maintain or disrupt epithelial homeostasis.", "title": "Interface Contractility between Differently Fated Cells Drives Cell Elimination and Cyst Formation" }, { "docid": "13936152", "text": "Partitioning tissues into compartments that do not intermix is essential for the correct morphogenesis of animal embryos and organs. Several hypotheses have been proposed to explain compartmental cell sorting, mainly differential adhesion, but also regulation of the cytoskeleton or of cell proliferation. Nevertheless, the molecular and cellular mechanisms that keep cells apart at boundaries remain unclear. Here we demonstrate, in early Drosophila melanogaster embryos, that actomyosin-based barriers stop cells from invading neighbouring compartments. Our analysis shows that cells can transiently invade neighbouring compartments, especially when they divide, but are then pushed back into their compartment of origin. Actomyosin cytoskeletal components are enriched at compartmental boundaries, forming cable-like structures when the epidermis is mitotically active. When MyoII (non-muscle myosin II) function is inhibited, including locally at the cable by chromophore-assisted laser inactivation (CALI), in live embryos, dividing cells are no longer pushed back, leading to compartmental cell mixing. We propose that local regulation of actomyosin contractibility, rather than differential adhesion, is the primary mechanism sorting cells at compartmental boundaries.", "title": "An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos" }, { "docid": "28086354", "text": "Morphogenesis of the adult structures of holometabolous insects is regulated by ecdysteroids and juvenile hormones and involves cell-cell interactions mediated in part by the cell surface integrin receptors and their extracellular matrix (ECM) ligands. These adhesion molecules and their regulation by hormones are not well characterized. We describe the gene structure of a newly described ECM molecule, tenectin, and demonstrate that it is a hormonally regulated ECM protein required for proper morphogenesis of the adult wing and male genitalia. Tenectin's function as a new ligand of the PS2 integrins is demonstrated by both genetic interactions in the fly and by cell spreading and cell adhesion assays in cultured cells. Its interaction with the PS2 integrins is dependent on RGD and RGD-like motifs. Tenectin's function in looping morphogenesis in the development of the male genitalia led to experiments that demonstrate a role for PS integrins in the execution of left-right asymmetry.", "title": "Tenectin is a novel alphaPS2betaPS integrin ligand required for wing morphogenesis and male genital looping in Drosophila." }, { "docid": "8331432", "text": "The transcription factor HNF3 and linker histones H1 and H5 possess winged-helix DNA-binding domains, yet HNF3 and other fork head-related proteins activate genes during development whereas linker histones compact DNA in chromatin and repress gene expression. We compared how the two classes of factors interact with chromatin templates and found that HNF3 binds DNA at the side of nucleosome cores, similarly to what has been reported for linker histone. A nucleosome structural binding site for HNF3 is occupied at the albumin transcriptional enhancer in active and potentially active chromatin, but not in inactive chromatin in vivo. While wild-type HNF3 protein does not compact DNA extending from the nucleosome, as does linker histone, site-directed mutants of HNF3 can compact nucleosomal DNA if they contain basic amino acids at positions previously shown to be essential for nucleosomal DNA compaction by linker histones. The results illustrate how transcription factors can possess special nucleosome-binding activities that are not predicted from studies of factor interactions with free DNA.", "title": "Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome." }, { "docid": "16057926", "text": "Mechanical forces play important roles during tissue organization in developing animals. Many tissues are organized into adjacent, nonmixing groups of cells termed compartments. Boundaries between compartments display a straight morphology and are associated with signaling centers that are important for tissue growth and patterning. Local increases in mechanical tension at cell junctions along compartment boundaries have recently been shown to prevent cell mixing and to maintain straight boundaries. The cellular mechanisms by which local increases in mechanical tension prevent cell mixing at compartment boundaries, however, remain poorly understood. Here, we have used live imaging and quantitative image analysis to determine cellular dynamics at and near the anteroposterior compartment boundaries of the Drosophila pupal abdominal epidermis. We show that cell mixing within compartments involves multiple cell intercalations. Frequency and orientation of cell intercalations are unchanged along the compartment boundaries; rather, an asymmetry in the shrinkage of junctions during intercalation is biased, resulting in cell rearrangements that suppress cell mixing. Simulations of tissue growth show that local increases in mechanical tension can account for this bias in junctional shrinkage. We conclude that local increases in mechanical tension maintain cell populations separate by influencing junctional rearrangements during cell intercalation.", "title": "Local Increases in Mechanical Tension Shape Compartment Boundaries by Biasing Cell Intercalations" }, { "docid": "23141360", "text": "The morphogenesis of developing embryos and organs relies on the ability of cells to remodel their contacts with neighbouring cells. Using quantitative modelling and laser nano-dissection, we probed the mechanics of a morphogenetic process, the elongation of Drosophila melanogaster embryos, which results from polarized cell neighbour exchanges. We show that anisotropy of cortical tension at apical cell junctions is sufficient to drive tissue elongation. We estimated its value through comparisons between in silico and in vivo data using various tissue descriptors. Nano-dissection of the actomyosin network indicates that tension is anisotropically distributed and depends on myosin II accumulation. Junction relaxation after nano-dissection also suggests that cortical elastic forces are dominant in this process. Interestingly, fluctuations in vertex position (points where three or more cells meet) facilitate neighbour exchanges. We delineate the contribution of subcellular tensile activity polarizing junction remodelling, and the permissive role of vertex fluctuations during tissue elongation.", "title": "Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis" }, { "docid": "32194449", "text": "Cytokinesis entails cell invagination by a contractile actomyosin ring. In epithelia, E-cadherin-mediated adhesion connects the cortices of contacting cells; thus, it is unclear how invagination occurs, how the new junction forms, and how tissue integrity is preserved. Investigations in Drosophila embryos first show that apicobasal cleavage is polarized: invagination is faster from the basal than from the apical side. Ring contraction but not its polarized constriction is controlled by septin filaments and Anillin. Polarized cleavage is due instead to mechanical anchorage of the ring to E-cadherin complexes. Formation of the new junction requires local adhesion disengagement in the cleavage furrow, followed by new E-cadherin complex formation at the new interface. E-cadherin disengagement depends on the tension exerted by the cytokinetic ring and by neighboring cells. We uncover intrinsic and extrinsic forces necessary for cytokinesis and present a framework for understanding how tissue cohesion is preserved during epithelial division.", "title": "Adhesion disengagement uncouples intrinsic and extrinsic forces to drive cytokinesis in epithelial tissues." }, { "docid": "1771079", "text": "In the mammalian brain, astrocytes modulate neuronal function, in part, by synchronizing neuronal firing and coordinating synaptic networks. Little, however, is known about how this is accomplished from a structural standpoint. To investigate the structural basis of astrocyte-mediated neuronal synchrony and synaptic coordination, the three-dimensional relationships between cortical astrocytes and neurons was investigated. Using a transgenic and viral approach to label astrocytes with enhanced green fluorescent protein, we performed a three-dimensional reconstruction of astrocytes from tissue sections or live animals in vivo. We found that cortical astrocytes occupy nonoverlapping territories similar to those described in the hippocampus. Using immunofluorescence labeling of neuronal somata, a single astrocyte enwraps on average four neuronal somata with an upper limit of eight. Single-neuron dye-fills allowed us to estimate that one astrocyte contacts 300-600 neuronal dendrites. Together with the recent findings showing that glial Ca2+ signaling is restricted to individual astrocytes in vivo, and that Ca2+ signaling leads to gliotransmission, we propose the concept of functional islands of synapses in which groups of synapses confined within the boundaries of an individual astrocyte are modulated by the gliotransmitter environment controlled by that astrocyte. Our description offers a new structurally based conceptual framework to evaluate functional data involving interactions between neurons and astrocytes in the mammalian brain.", "title": "Synaptic islands defined by the territory of a single astrocyte." }, { "docid": "4462139", "text": "Eukaryotic genomes are folded into three-dimensional structures, such as self-associating topological domains, the borders of which are enriched in cohesin and CCCTC-binding factor (CTCF) required for long-range interactions. How local chromatin interactions govern higher-order folding of chromatin fibres and the function of cohesin in this process remain poorly understood. Here we perform genome-wide chromatin conformation capture (Hi-C) analysis to explore the high-resolution organization of the Schizosaccharomyces pombe genome, which despite its small size exhibits fundamental features found in other eukaryotes. Our analyses of wild-type and mutant strains reveal key elements of chromosome architecture and genome organization. On chromosome arms, small regions of chromatin locally interact to form 'globules'. This feature requires a function of cohesin distinct from its role in sister chromatid cohesion. Cohesin is enriched at globule boundaries and its loss causes disruption of local globule structures and global chromosome territories. By contrast, heterochromatin, which loads cohesin at specific sites including pericentromeric and subtelomeric domains, is dispensable for globule formation but nevertheless affects genome organization. We show that heterochromatin mediates chromatin fibre compaction at centromeres and promotes prominent inter-arm interactions within centromere-proximal regions, providing structural constraints crucial for proper genome organization. Loss of heterochromatin relaxes constraints on chromosomes, causing an increase in intra- and inter-chromosomal interactions. Together, our analyses uncover fundamental genome folding principles that drive higher-order chromosome organization crucial for coordinating nuclear functions.", "title": "Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe" }, { "docid": "4465762", "text": "Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE ‘extended winged helix’ domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE ‘E-ribbon’ domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein–protein and protein–DNA contacts.", "title": "Transcription initiation complex structures elucidate DNA opening" }, { "docid": "36749390", "text": "Purpose To propose a semiquantitative dual fluorescein angiography (FA) and indocyanine green angiography (ICGA) scoring system for uveitis that would assist in the follow-up of disease progression and monitoring response to treatment. Methods The scoring system was based on the FA scoring systems, the standardized ICGA protocol, and schematic interpretation of ICGA findings in posterior uveitis that have been previously published. We assigned scores to the fluorescein and ICG angiographic signs that represent ongoing inflammatory process in the posterior segment. We rated each angiographic sign according to the impact it has on our appreciation of active intraocular inflammation. In order to permit direct comparison between FA and ICGA, we multiplied the total ICGA score by a coefficient of 2 to adjust to the total score of FA. Results A total maximum score of 40 was assigned to the FA signs, including optic disc hyperfluorescence, macular edema, retinal vascular staining and/or leakage, capillary leakage, retinal capillary nonperfusion, neovascularization of the optic disc, neovascularization elsewhere, pinpoint leaks, and retinal staining and/or subretinal pooling. A total maximum score of 20 was assigned to the ICGA signs, including early stromal vessel hyperfluorescence, choroidal vasculitis, dark dots or areas (excluding atrophy), and optic disc hyperfluorescence. Conclusion The combined fluorescein and ICG angiographic scoring system proposed herein may help estimate the magnitude of retinal versus choroidal inflammation, monitor disease progression and response to treatment, and provide comparable data for clinical studies. The applicability of the proposed system needs to be tested in clinical settings, and intra- and interobserver variations need to be determined.", "title": "Scoring of dual fluorescein and ICG inflammatory angiographic signs for the grading of posterior segment inflammation (dual fluorescein and ICG angiographic scoring system for uveitis)" }, { "docid": "16562534", "text": "The overall size and structure of a synaptic terminal is an important determinant of its function. In a large-scale mutagenesis screen, designed to identify Drosophila mutants with abnormally structured neuromuscular junctions (NMJs), we discovered mutations in Drosophila mical, a conserved gene encoding a multi-domain protein with a N-terminal monooxygenase domain. In mical mutants, synaptic boutons do not sprout normally over the muscle surface and tend to form clusters along synaptic branches and at nerve entry sites. Consistent with high expression of MICAL in somatic muscles, immunohistochemical stainings reveal that the subcellular localization and architecture of contractile muscle filaments are dramatically disturbed in mical mutants. Instead of being integrated into a regular sarcomeric pattern, actin and myosin filaments are disorganized and accumulate beneath the plasmamembrane. Whereas contractile elements are strongly deranged, the proposed organizer of sarcomeric structure, D-Titin, is much less affected. Transgenic expression of interfering RNA molecules demonstrates that MICAL is required in muscles for the higher order arrangement of myofilaments. Ultrastructural analysis confirms that myosin-rich thick filaments enter submembranous regions and interfere with synaptic development, indicating that the disorganized myofilaments may cause the synaptic growth phenotype. As a model, we suggest that the filamentous network around synaptic boutons restrains the spreading of synaptic branches.", "title": "Drosophila MICAL regulates myofilament organization and synaptic structure" }, { "docid": "6767133", "text": "STUDY DESIGN Prospective observational cohort. \n OBJECTIVE To describe the baseline characteristics of patients with a diagnosis of intervertebral disc herniation who had different treatment preferences and the relationship of specific expectations with those preferences. SUMMARY OF BACKGROUND DATA Data were gathered from the observational cohort of the Spine Patient Outcomes Research Trial (SPORT). Patients in the observational cohort met eligibility requirements identical to those of the randomized cohort, but declined randomization, receiving instead the treatment of their choice. \n METHODS Baseline preference and expectation data were acquired at the time of enrollment of the patient, before exposure to the informed consent process. Univariate analyses were performed using a t test for continuous variables and chi for categorical variables. Multivariate analyses were also performed with ANCOVA for continuous variables and logistic regression for categorical variables. Multiple logistic regression models were developed in a forward stepwise fashion using blocks of variables. \n RESULTS More patients preferred operative care: 67% preferred surgery, 28% preferred nonoperative treatment, and 6% were unsure; 53% of those preferring surgery stated a definite preference, whereas only 18% of those preferring nonoperative care had a definite preference. Patients preferring surgery were younger, had lower levels of education, and higher levels of unemployment/disability. This group also reported higher pain, worse physical and mental functioning, more back pain related disability, a longer duration of symptoms, and more opiate use. Gender, race, comorbidities, and use of other therapies did not differ significantly across preference groups. Patients' expectations regarding improvement with nonoperative care was the strongest predictor of preference. \n CONCLUSION Patient expectations, particularly regarding the benefit of nonoperative treatment, are the primary determinant of surgery preference among patients with lumbar intervertebral disc herniation. Demographic, functional status, and prior treatment experience had significant associations with patients' expectations and preferences.", "title": "Patient preferences and expectations for care: determinants in patients with lumbar intervertebral disc herniation." }, { "docid": "34537906", "text": "After anaphase onset, animal cells build an actomyosin contractile ring that constricts the plasma membrane to generate two daughter cells connected by a cytoplasmic bridge. The bridge is ultimately severed to complete cytokinesis. Myriad techniques have been used to identify proteins that participate in cytokinesis in vertebrates, insects, and nematodes. A conserved core of about 20 proteins are individually involved with cytokinesis in most animal cells. These components are found in the contractile ring, on the central spindle, within the RhoA pathway, and on vesicles that expand the membrane and sever the bridge. Cytokinesis involves additional proteins, but they, or their requirement in cytokinesis, are not conserved among animal cells.", "title": "The molecular requirements for cytokinesis." }, { "docid": "116075383", "text": "Exogenous double-stranded RNA (dsRNA) has been shown to exert homology-dependent effects at the level of both target mRNA stability and chromatin structure. Using C. elegans undergoing RNAi as an animal model, we have investigated the generality, scope and longevity of dsRNA-targeted chromatin effects and their dependence on components of the RNAi machinery. Using high-resolution genome-wide chromatin profiling, we found that a diverse set of genes can be induced to acquire locus-specific enrichment of histone H3 lysine 9 trimethylation (H3K9me3), with modification footprints extending several kilobases from the site of dsRNA homology and with locus specificity sufficient to distinguish the targeted locus from the other 20,000 genes in the C. elegans genome. Genetic analysis of the response indicated that factors responsible for secondary siRNA production during RNAi were required for effective targeting of chromatin. Temporal analysis revealed that H3K9me3, once triggered by dsRNA, can be maintained in the absence of dsRNA for at least two generations before being lost. These results implicate dsRNA-triggered chromatin modification in C. elegans as a programmable and locus-specific response defining a metastable state that can persist through generational boundaries.", "title": "Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint" }, { "docid": "19572798", "text": "Polycomb group (PcG) proteins are required for the epigenetic maintenance of developmental genes in a silent state. Proteins in the Polycomb-repressive complex 1 (PRC1) class of the PcG are conserved from flies to humans and inhibit transcription. One hypothesis for PRC1 mechanism is that it compacts chromatin, based in part on electron microscopy experiments demonstrating that Drosophila PRC1 compacts nucleosomal arrays. We show that this function is conserved between Drosophila and mouse PRC1 complexes and requires a region with an overrepresentation of basic amino acids. While the active region is found in the Posterior Sex Combs (PSC) subunit in Drosophila, it is unexpectedly found in a different PRC1 subunit, a Polycomb homolog called M33, in mice. We provide experimental support for the general importance of a charged region by predicting the compacting capability of PcG proteins from species other than Drosophila and mice and by testing several of these proteins using solution assays and microscopy. We infer that the ability of PcG proteins to compact chromatin in vitro can be predicted by the presence of domains of high positive charge and that PRC1 components from a variety of species conserve this highly charged region. This supports the hypothesis that compaction is a key aspect of PcG function.", "title": "Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge." }, { "docid": "23913146", "text": "In Drosophila, three types of endogenous small RNAs-microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and endogenous small-interfering RNAs (endo-siRNAs or esiRNAs)-function as triggers in RNA silencing. Although piRNAs are produced independently of Dicer, miRNA and esiRNA biogenesis pathways require Dicer1 and Dicer2, respectively. Recent studies have shown that among the four isoforms of Loquacious (Loqs), Loqs-PB and Loqs-PD are involved in miRNA and esiRNA processing pathways, respectively. However, how these Loqs isoforms function in their respective small RNA biogenesis pathways remains elusive. Here, we show that Loqs-PD associates specifically with Dicer2 through its C-terminal domain. The Dicer2-Loqs-PD complex contains R2D2, another known Dicer2 partner, and excises both exogenous siRNAs and esiRNAs from their corresponding precursors in vitro. However, Loqs-PD, but not R2D2, enhanced Dicer2 activity. The Dicer2-Loqs-PD complex processes esiRNA precursor hairpins with long stems, which results in the production of AGO2-associated small RNAs. Interestingly, however, small RNAs derived from terminal hairpins of esiRNA precursors are loaded onto AGO1; thus, they are classified as a new subset of miRNAs. These results suggest that the precursor RNA structure determines the biogenesis mechanism of esiRNAs and miRNAs, thereby implicating hairpin structures with long stems as intermediates in the evolution of Drosophila miRNA.", "title": "Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila." } ]
356
Dscam1 acts as a hypervariable pattern-recognition receptor for the immune system.
[ { "docid": "6144337", "text": "Activation of the insect innate immune system is dependent on a limited number of pattern recognition receptors (PRRs) capable of interacting with pathogen-associated molecular pattern. Here we report a novel role of an alternatively spliced hypervariable immunoglobulin domain-encoding gene, Dscam, in generating a broad range of PRRs implicated in immune defense in the malaria vector Anopheles gambiae. The mosquito Down syndrome cell adhesion molecule gene, AgDscam, has a complex genome organization with 101 exons that can produce over 31,000 potential alternative splice forms with different combinations of adhesive domains and interaction specificities. AgDscam responds to infection by producing pathogen challenge-specific splice form repertoires. Transient silencing of AgDscam compromises the mosquito's resistance to infections with bacteria and the malaria parasite Plasmodium. AgDscam is mediating phagocytosis of bacteria with which it can associate and defend against in a splice form–specific manner. AgDscam is a hypervariable PRR of the A. gambiae innate immune system.", "title": "AgDscam, a Hypervariable Immunoglobulin Domain-Containing Receptor of the Anopheles gambiae Innate Immune System " } ]
[ { "docid": "2506153", "text": "Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.", "title": "Invariant natural killer T cells: bridging innate and adaptive immunity" }, { "docid": "17023584", "text": "The incidence of sepsis is increasing over time, along with an increased risk of dying from the condition. Sepsis care costs billions annually in the United States. Death from sepsis is understood to be a complex process, driven by a lack of normal immune homeostatic functions and excessive production of proinflammatory cytokines, which leads to multi-organ failure. The Toll-like receptor (TLR) family, one of whose members was initially discovered in Drosophila, performs an important role in the recognition of microbial pathogens. These pattern recognition receptors (PRRs), upon sensing invading microorganisms, activate intracellular signal transduction pathways. NOD signaling is also involved in the recognition of bacteria and acts synergistically with the TLR family in initiating an efficient immune response for the eradication of invading microbial pathogens. TLRs and NOD1/NOD2 respond to different pathogen-associated molecular patterns (PAMPs). Modulation of both TLR and NOD signaling is an area of research that has prompted much excitement and debate as a therapeutic strategy in the management of sepsis. Molecules targeting TLR and NOD signaling pathways exist but regrettably thus far none have proven efficacy from clinical trials.", "title": "Current knowledge and future directions of TLR and NOD signaling in sepsis" }, { "docid": "21439293", "text": "Pattern recognition by the innate immune system enables the detection of microorganisms, but how the level of microbial threat is evaluated — a process that is crucial for eliciting measured antimicrobial responses with minimal inflammatory tissue damage — is less well understood. New evidence has shown that features of microbial viability can be detected by the immune system and thereby induce robust responses that are not warranted for dead microorganisms. Here, we propose five immune checkpoints that, as defined here, collectively determine the gravity of microbial encounters.", "title": "Beyond pattern recognition: five immune checkpoints for scaling the microbial threat" }, { "docid": "4418269", "text": "Spinal reflexes are mediated by synaptic connections between sensory afferents and motor neurons. The organization of these circuits shows several levels of specificity. Only certain classes of proprioceptive sensory neurons make direct, monosynaptic connections with motor neurons. Those that do are bound by rules of motor pool specificity: they form strong connections with motor neurons supplying the same muscle, but avoid motor pools supplying antagonistic muscles. This pattern of connectivity is initially accurate and is maintained in the absence of activity, implying that wiring specificity relies on the matching of recognition molecules on the surface of sensory and motor neurons. However, determinants of fine synaptic specificity here, as in most regions of the central nervous system, have yet to be defined. To address the origins of synaptic specificity in these reflex circuits we have used molecular genetic methods to manipulate recognition proteins expressed by subsets of sensory and motor neurons. We show here that a recognition system involving expression of the class 3 semaphorin Sema3e by selected motor neuron pools, and its high-affinity receptor plexin D1 (Plxnd1) by proprioceptive sensory neurons, is a critical determinant of synaptic specificity in sensory–motor circuits in mice. Changing the profile of Sema3e–Plxnd1 signalling in sensory or motor neurons results in functional and anatomical rewiring of monosynaptic connections, but does not alter motor pool specificity. Our findings indicate that patterns of monosynaptic connectivity in this prototypic central nervous system circuit are constructed through a recognition program based on repellent signalling.", "title": "Specificity of sensory–motor connections encoded by Sema3e–Plxnd1 recognition" }, { "docid": "19099739", "text": "The pathogenicity of many bacteria depends on the injection of effector proteins via type III secretion into eukaryotic cells in order to manipulate cellular processes. TAL (transcription activator-like) effectors from plant pathogenic Xanthomonas are important virulence factors that act as transcriptional activators in the plant cell nucleus, where they directly bind to DNA via a central domain of tandem repeats. Here, we show how target DNA specificity of TAL effectors is encoded. Two hypervariable amino acid residues in each repeat recognize one base pair in the target DNA. Recognition sequences of TAL effectors were predicted and experimentally confirmed. The modular protein architecture enabled the construction of artificial effectors with new specificities. Our study describes the functionality of a distinct type of DNA binding domain and allows the design of DNA binding domains for biotechnology.", "title": "Breaking the code of DNA binding specificity of TAL-type III effectors." }, { "docid": "40323148", "text": "While inflammatory phagocytosis of microbial pathogens and non-inflammatory phagocytosis of apoptotic cells have each been studied extensively, the consequences of innate immune recognition of host cells undergoing apoptosis as a direct result of infection are unclear. In this situation, the innate immune system is confronted with mixed signals, those from apoptotic cells and those from the infecting pathogen. Nuclear receptor activation has been implicated downstream of apoptotic cell recognition while Toll-like receptors are the prototypical inflammatory receptors engaged during infection. When the two signals combine, a new set of events takes place beginning with transrepression of a subset of inflammatory-response genes and ending with the induction of a T helper-17 adaptive immune response. This response is best suited for clearing the infecting pathogen and repairing the damage that occurred to the host tissue during infection.", "title": "Infection and apoptosis as a combined inflammatory trigger." }, { "docid": "19005293", "text": "Inflammation induced by recognition of pathogen-associated molecular patterns markedly affects subsequent adaptive responses. We asked whether the adaptive immune system can also affect the character and magnitude of innate inflammatory responses. We found that the response of memory, but not naive, CD4+ T cells enhances production of multiple innate inflammatory cytokines and chemokines (IICs) in the lung and that, during influenza infection, this leads to early control of virus. Memory CD4+ T cell–induced IICs and viral control require cognate antigen recognition and are optimal when memory cells are either T helper type 1 (TH1) or TH17 polarized but are independent of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production and do not require activation of conserved pathogen recognition pathways. This represents a previously undescribed mechanism by which memory CD4+ T cells induce an early innate response that enhances immune protection against pathogens.", "title": "Memory CD4+ T cells induce innate responses independently of pathogen" }, { "docid": "5500086", "text": "Some of the anti-neoplastic effects of anthracyclines in mice originate from the induction of innate and T cell–mediated anticancer immune responses. Here we demonstrate that anthracyclines stimulate the rapid production of type I interferons (IFNs) by malignant cells after activation of the endosomal pattern recognition receptor Toll-like receptor 3 (TLR3). By binding to IFN-α and IFN-β receptors (IFNARs) on neoplastic cells, type I IFNs trigger autocrine and paracrine circuitries that result in the release of chemokine (C-X-C motif) ligand 10 (CXCL10). Tumors lacking Tlr3 or Ifnar failed to respond to chemotherapy unless type I IFN or Cxcl10, respectively, was artificially supplied. Moreover, a type I IFN–related signature predicted clinical responses to anthracycline-based chemotherapy in several independent cohorts of patients with breast carcinoma characterized by poor prognosis. Our data suggest that anthracycline-mediated immune responses mimic those induced by viral pathogens. We surmise that such 'viral mimicry' constitutes a hallmark of successful chemotherapy.", "title": "Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy" }, { "docid": "52095986", "text": "Although the etiology of multiple sclerosis (MS) remains enigmatic, the role of T cells is unquestionably central in this pathology. Immune cells respond to pathogens and danger signals via pattern-recognition receptors (PRR). Several reports implicate Nlrp12, an intracellular PRR, in the development of a mouse MS-like disease, called Experimental Autoimmune Encephalomyelitis (EAE). In this study, we used induced and spontaneous models of EAE, as well as in vitro T cell assays, to test the hypothesis that Nlrp12 inhibits Th1 response and prevents T-cell mediated autoimmunity. We found that Nlrp12 plays a protective role in induced EAE by reducing IFNγ/IL-4 ratio in lymph nodes, whereas it potentiates the development of spontaneous EAE (spEAE) in 2D2 T cell receptor (TCR) transgenic mice. Looking into the mechanism of Nlrp12 activity in T cell response, we found that it inhibits T cell proliferation and suppresses Th1 response by reducing IFNγ and IL-2 production. Following TCR activation, Nlrp12 inhibits Akt and NF-κB phosphorylation, while it has no effect on S6 phosphorylation in the mTOR pathway. In conclusion, we propose a model that can explain the dual immunoregulatory function of Nlrp12 in EAE. We also propose a model explaining the molecular mechanism of Nlrp12-dependent regulation of T cell response.", "title": "The Dual Immunoregulatory function of Nlrp12 in T Cell-Mediated Immune Response: Lessons from Experimental Autoimmune Encephalomyelitis" }, { "docid": "26117607", "text": "Down syndrome cell adhesion molecule (Dscam) seems likely to play a key role in the \"alternative adaptive immunity\" that has been reported in invertebrates. Dscam consists of a cytoplasmic tail that is involved in signal transduction and a hypervariable extracellular region that might use a pathogen recognition mechanism similar to that used by the vertebrate antibodies. In our previous paper, we isolated a unique tail-less form of Dscam from Litopenaeus vannamei. In this study, we report the first membrane-bound form of shrimp Dscam: PmDscam was isolated from Penaeus monodon, and it occurred in both membrane-bound and tail-less forms. Phylogenetic analysis showed that while the crustacean Dscams from shrimp and water flea did not share a single subclade, they were distinct from the invertebrate Dscam-like molecules and from the insecta Dscams. In the extracellular region, the variable regions of PmDscam were located in N-terminal Ig2, N-terminal Ig3 and the entire Ig7 domain. The PmDscam extracellular variants and transmembrane domain variants were produced by mutually exclusive alternative splicing events. The cytoplasmic tail variants were produced by exon inclusion/exclusion. Based on the genomic organization of Daphnia Dscam's cytoplasmic tail, we propose a model of how the shrimp Dscam genomic locus might use Type III polyadenylation to generate both the tail-less and membrane-bound forms.", "title": "Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported." }, { "docid": "4402497", "text": "Innate immune defences are essential for the control of virus infection and are triggered through host recognition of viral macromolecular motifs known as pathogen-associated molecular patterns (PAMPs). Hepatitis C virus (HCV) is an RNA virus that replicates in the liver, and infects 200 million people worldwide. Infection is regulated by hepatic immune defences triggered by the cellular RIG-I helicase. RIG-I binds PAMP RNA and signals interferon regulatory factor 3 activation to induce the expression of interferon-α/β and antiviral/interferon-stimulated genes (ISGs) that limit infection. Here we identify the polyuridine motif of the HCV genome 3′ non-translated region and its replication intermediate as the PAMP substrate of RIG-I, and show that this and similar homopolyuridine or homopolyriboadenine motifs present in the genomes of RNA viruses are the chief feature of RIG-I recognition and immune triggering in human and murine cells. 5′ terminal triphosphate on the PAMP RNA was necessary but not sufficient for RIG-I binding, which was primarily dependent on homopolymeric ribonucleotide composition, linear structure and length. The HCV PAMP RNA stimulated RIG-I-dependent signalling to induce a hepatic innate immune response in vivo, and triggered interferon and ISG expression to suppress HCV infection in vitro. These results provide a conceptual advance by defining specific homopolymeric RNA motifs within the genome of HCV and other RNA viruses as the PAMP substrate of RIG-I, and demonstrate immunogenic features of the PAMP–RIG-I interaction that could be used as an immune adjuvant for vaccine and immunotherapy approaches.", "title": "Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA" }, { "docid": "3981729", "text": "TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.", "title": "Structural basis for sequence-specific recognition of DNA by TAL effectors." }, { "docid": "26751583", "text": "Certain pathogens, such as Mycobacterium tuberculosis, survive within the hostile intracellular environment of a macrophage. To identify host factors required for mycobacterial entry and survival within macrophages, we performed a genomewide RNA interference screen in Drosophila macrophage-like cells, using Mycobacterium fortuitum. We identified factors required for general phagocytosis, as well as those needed specifically for mycobacterial infection. One specific factor, Peste (Pes), is a CD36 family member required for uptake of mycobacteria, but not Escherichia coli or Staphylococcus aureus. Moreover, mammalian class B scavenger receptors (SRs) conferred uptake of bacteria into nonphagocytic cells, with SR-BI and SR-BII uniquely mediating uptake of M. fortuitum, which suggests a conserved role for class B SRs in pattern recognition and innate immunity.", "title": "Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection." }, { "docid": "6144969", "text": "Virally induced inflammatory responses, beta cell destruction and release of beta cell autoantigens may lead to autoimmune reactions culminating in type 1 diabetes. Therefore, viral capability to induce beta cell death and the nature of virus-induced immune responses are among key determinants of diabetogenic viruses. We hypothesised that enterovirus infection induces a specific gene expression pattern that results in islet destruction and that such a host response pattern is not shared among all enterovirus infections but varies between virus strains. The changes in global gene expression and secreted cytokine profiles induced by lytic or benign enterovirus infections were studied in primary human pancreatic islet using DNA microarrays and viral strains either isolated at the clinical onset of type 1 diabetes or capable of causing a diabetes-like condition in mice. The expression of pro-inflammatory cytokine genes (IL-1-α, IL-1-β and TNF-α) that also mediate cytokine-induced beta cell dysfunction correlated with the lytic potential of a virus. Temporally increasing gene expression levels of double-stranded RNA recognition receptors, antiviral molecules, cytokines and chemokines were detected for all studied virus strains. Lytic coxsackievirus B5 (CBV-5)-DS infection also downregulated genes involved in glycolysis and insulin secretion. The results suggest a distinct, virus-strain-specific, gene expression pattern leading to pancreatic islet destruction and pro-inflammatory effects after enterovirus infection. However, neither viral replication nor cytotoxic cytokine production alone are sufficient to induce necrotic cell death. More likely the combined effect of these and possibly cellular energy depletion lie behind the enterovirus-induced necrosis of islets.", "title": "Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction" }, { "docid": "15983148", "text": "Nervous system function requires proper development of two functional and morphological domains of neurons, axons and dendrites. Although both these domains are equally important for signal transmission, our understanding of dendrite development remains relatively poor. Here, we show that in C. elegans the Wnt ligand, LIN-44, and its Frizzled receptor, LIN-17, regulate dendrite development of the PQR oxygen sensory neuron. In lin-44 and lin-17 mutants, PQR dendrites fail to form, display stunted growth, or are misrouted. Manipulation of temporal and spatial expression of LIN-44, combined with cell-ablation experiments, indicates that this molecule is patterned during embryogenesis and acts as an attractive cue to define the site from which the dendrite emerges. Genetic interaction between lin-44 and lin-17 suggests that the LIN-44 signal is transmitted through the LIN-17 receptor, which acts cell autonomously in PQR. Furthermore, we provide evidence that LIN-17 interacts with another Wnt molecule, EGL-20, and functions in parallel to MIG-1/Frizzled in this process. Taken together, our results reveal a crucial role for Wnt and Frizzled molecules in regulating dendrite development in vivo.", "title": "LIN-44/Wnt Directs Dendrite Outgrowth through LIN-17/Frizzled in C. elegans Neurons" }, { "docid": "9420732", "text": "Cadherins and the immunoglobulin (Ig) proteins give rise to a multitude of surface receptors, which function as diverse cell adhesion molecules (CAMs) or signal-transducing receptors. These functions are often interdependent, and rely on a high degree of specificity in homophilic binding as well as heterophilic interactions. The Drosophila receptor Dscam is an exceptional example of homophilic binding specificity involved in a number of important biological processes, such as neural wiring and innate immunity. Combinatorial use of alternatively spliced Ig-domains enables the generation of an estimated 18,000 isoform-specific homophilic receptor pairs. Although isoform diversity of Dscam is unique to arthropods, recent genetic analysis of vertebrate DSCAM (Down Syndrome Cell Adhesion Molecule) genes has revealed an intriguing conservation of molecular functions underlying neural wiring. This review covers the multiple functions of Dscam across different species highlighting its remarkable versatility as well as its conserved basic functions in neural development. We discuss how an unprecedented expansion of complex alternative splicing has been uniquely employed by arthropods to generate diverse surface receptors, important for cell-cell communication, molecular self-recognition in neurons, and innate immune defenses. We end with a speculative hypothesis reconciling the striking differences in Dscam and DSCAM gene structures with their conserved functions in molecular recognition underlying neural circuit formation.", "title": "Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes." }, { "docid": "37256966", "text": "Melatonin modulates a wide array of physiological events with pleiotropic effects on the immune system. While the relevance of specific melatonin membrane receptors has been well established for several biological functions, retinoic acid-related orphan receptor alpha (RORα) has been suggested as a mediator of nuclear melatonin signalling by results obtained from pharmacological approaches. However, a melatonin-mediated downstream effect cannot be ruled out, and further evidence is needed to support a direct interaction between melatonin and RORα. Here, we show that RORα is mainly located in human Jurkat T-cell nucleus, and it is co-immunoprecipitated with melatonin. Moreover, immunocytochemistry studies confirmed the co-localization of melatonin and RORα. Melatonin promoted a time-dependent decrease in nuclear RORα levels, suggesting a role in the RORα transcriptional activity. Interestingly, RORα acts as a molecular switch implicated in the mutually exclusive generation of Th17 and Treg cells, both involved in the harm/protection balance of immune conditions such as autoimmunity or acute transplant rejection. Therefore, the identification of melatonin as a natural modulator of RORα gives it a tremendous therapeutic potential for a variety of clinical disorders.", "title": "Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor." }, { "docid": "6123521", "text": "The brain interprets experiences and translates them into behavioral and physiological responses. Stressful events are those which are threatening or, at the very least, unexpected and surprising, and the physiological and behavioral responses are intended to promote adaptation via a process called \"allostasis. \" Chemical mediators of allostasis include cortisol and adrenalin from the adrenal glands, other hormones, and neurotransmitters, the parasympathetic and sympathetic nervous systems, and cytokines and chemokines from the immune system. Two brain structures, the amygdala and hippocampus, play key roles in interpreting what is stressful and determining appropriate responses. The hippocampus, a key structure for memories of events and contexts, expresses receptors that enable it to respond to glucocorticoid hormones in the blood, it undergoes atrophy in a number of psychiatric disorders; it also responds to stressors with changes in excitability, decreased dendritic branching, and reduction in number of neurons in the dentate gyrus. The amygdala, which is important for \"emotional memories, \" becomes hyperactive in posttraumatic stress disorder and depressive illness, in animal models of stress, there is evidence for growth and hypertrophy of nerve cells in the amygdala. Changes in the brain after acute and chronic stressors mirror the pattern seen in the metabolic, cardiovascular, and immune systems, that is, short-term adaptation (allostasis) followed by long-term damage (allostatic load), eg, atherosclerosis, fat deposition obesity, bone demineralization, and impaired immune function. Allostatic load of this kind is seen in major depressive illness and may also be expressed in other chronic anxiety and mood disorders.", "title": "Structural plasticity of the adult brain: how animal models help us understand brain changes in depression and systemic disorders related to depression" }, { "docid": "28015516", "text": "Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a breakdown of tolerance to nuclear antigens and the development of immune complexes. Genomic approaches have shown that human SLE leukocytes homogeneously express type I interferon (IFN)-induced and neutrophil-related transcripts. Increased production and/or bioavailability of IFN-α and associated alterations in dendritic cell (DC) homeostasis have been linked to lupus pathogenesis. Although neutrophils have long been shown to be associated with lupus, their potential role in disease pathogenesis remains elusive. Here, we show that mature SLE neutrophils are primed in vivo by type I IFN and die upon exposure to SLE-derived anti-ribonucleoprotein antibodies, releasing neutrophil extracellular traps (NETs). SLE NETs contain DNA as well as large amounts of LL37 and HMGB1, neutrophil proteins that facilitate the uptake and recognition of mammalian DNA by plasmacytoid DCs (pDCs). Indeed, SLE NETs activate pDCs to produce high levels of IFN-α in a DNA- and TLR9 (Toll-like receptor 9)-dependent manner. Our results reveal an unsuspected role for neutrophils in SLE pathogenesis and identify a novel link between nucleic acid-recognizing antibodies and type I IFN production in this disease.", "title": "Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus." } ]
357
During non-homologous end joining, the ligation step is not as tolerant of disrepairs and other distortions when joining 3' of strand breaks as compared to 5' strand breaks.
[ { "docid": "18111172", "text": "Nonhomologous end joining (NHEJ) can effectively resolve chromosome breaks despite diverse end structures; however, it is unclear how the steps employed for resolution are determined. We sought to address this question by analysing cellular NHEJ of ends with systematically mispaired and damaged termini. We show NHEJ is uniquely proficient at bypassing subtle terminal mispairs and radiomimetic damage by direct ligation. Nevertheless, bypass ability varies widely, with increases in mispair severity gradually reducing bypass products from 85 to 6%. End-processing by nucleases and polymerases is increased to compensate, although paths with the fewest number of steps to generate a substrate suitable for ligation are favoured. Thus, both the frequency and nature of end processing are tailored to meet the needs of the ligation step. We propose a model where the ligase organizes all steps during NHEJ within the stable paired-end complex to limit end processing and associated errors.", "title": "The fidelity of the ligation step determines how ends are resolved during Nonhomologous end joining" } ]
[ { "docid": "20821402", "text": "Nonhomologous end joining (NHEJ) is essential for efficient repair of chromosome breaks. However, the NHEJ ligation step is often obstructed by break-associated nucleotide damage, including base loss (abasic site or 5'-dRP/AP sites). Ku, a 5'-dRP/AP lyase, can excise such damage at ends in preparation for the ligation step. We show here that this activity is greatest if the abasic site is within a short 5' overhang, when this activity is necessary and sufficient to prepare such termini for ligation. In contrast, Ku is less active near 3' strand termini, where excision would leave a ligation-blocking α,β-unsaturated aldehyde. The Ku AP lyase activity is also strongly suppressed by as little as two paired bases 5' of the abasic site. Importantly, in vitro end joining experiments show that abasic sites significantly embedded in double-stranded DNA do not block the NHEJ ligation step. Suppression of the excision activity of Ku in this context therefore is not essential for ligation and further helps NHEJ retain terminal sequence in junctions. We show that the DNA between the 5' terminus and the abasic site can also be retained in junctions formed by cellular NHEJ, indicating that these sites are at least partly resistant to other abasic site-cleaving activities as well. High levels of the 5'-dRP/AP lyase activity of Ku are thus restricted to substrates where excision of an abasic site is required for ligation, a degree of specificity that promotes more accurate joining.", "title": "Specificity of the dRP/AP lyase of Ku promotes nonhomologous end joining (NHEJ) fidelity at damaged ends." }, { "docid": "12207340", "text": "The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5'-terminated strands in a process termed end resection. End resection generates 3'-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5'-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3'-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome.", "title": "Mechanism and regulation of DNA end resection in eukaryotes." }, { "docid": "12552297", "text": "DNA polymerase lambda (polλ) is a recently identified DNA polymerase whose cellular function remains elusive. Here we show, that polλ participates at the molecular level in a chromosomal context, in the repair of DNA double strand breaks (DSB) via non-homologous end joining (NHEJ) in mammalian cells. The expression of a catalytically inactive form of polλ (polλDN) decreases the frequency of NHEJ events in response to I-Sce-I-induced DSB whereas inactivated forms of its homologues polβ and polμ do not. Only events requiring DNA end processing before ligation are affected; this defect is associated with large deletions arising in the vicinity of the induced DSB. Furthermore, polλDN-expressing cells exhibit increased sensitization and genomic instability in response to ionizing radiation similar to that of NHEJ-defective cells. Our data support a requirement for polλ in repairing a subset of DSB in genomic DNA, thereby contributing to the maintenance of genetic stability mediated by the NHEJ pathway.", "title": "The DNA polymerase λ is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells" }, { "docid": "41403996", "text": "DNA double strand breaks (DSBs) can be rejoined directly by the nonhomologous end-joining (NHEJ) pathway of repair. Nucleases and polymerases are required to promote accurate NHEJ when the terminal bases of the DSB are damaged. The same enzymes also participate in imprecise rejoining and joining of incompatible ends, important mutagenic events. Previous work has shown that the Pol X family polymerase Pol4 is required for some but not all NHEJ events that require gap filling in Saccharomyces cerevisiae. Here, we systematically analyzed DSB end configurations and found that gaps on both strands and overhang polarity are the principal factors that determine whether a joint requires Pol4. DSBs with 3'-overhangs and a gap on each strand strongly depended on Pol4 for repair, DSBs with 5'-overhangs of the same sequence did not. Pol4 was not required when 3'-overhangs contained a gap on only one strand, however. Pol4 was equally required at 3'-overhangs of all lengths within the NHEJ-dependent range but was dispensable outside of this range, indicating that Pol4 is specific to NHEJ. Loss of Pol4 did not affect the rejoining of DSBs that utilized a recessed microhomology or DSBs bearing 5'-hydroxyls but no gap. Finally, mammalian Pol X polymerases were able to differentially complement a pol4 mutation depending on the joint structure, demonstrating that these polymerases can participate in yeast NHEJ but with distinct properties.", "title": "DNA joint dependence of pol X family polymerase action in nonhomologous end joining." }, { "docid": "13791206", "text": "Defective DNA repair by homologous recombination (HR) is thought to be a major contributor to tumorigenesis in individuals carrying Brca1 mutations. Here, we show that DNA breaks in Brca1-deficient cells are aberrantly joined into complex chromosome rearrangements by a process dependent on the nonhomologous end-joining (NHEJ) factors 53BP1 and DNA ligase 4. Loss of 53BP1 alleviates hypersensitivity of Brca1 mutant cells to PARP inhibition and restores error-free repair by HR. Mechanistically, 53BP1 deletion promotes ATM-dependent processing of broken DNA ends to produce recombinogenic single-stranded DNA competent for HR. In contrast, Lig4 deficiency does not rescue the HR defect in Brca1 mutant cells but prevents the joining of chromatid breaks into chromosome rearrangements. Our results illustrate that HR and NHEJ compete to process DNA breaks that arise during DNA replication and that shifting the balance between these pathways can be exploited to selectively protect or kill cells harboring Brca1 mutations.", "title": "53BP1 Inhibits Homologous Recombination in Brca1-Deficient Cells by Blocking Resection of DNA Breaks" }, { "docid": "27635177", "text": "Mammalian DNA polymerase mu (pol mu) is related to terminal deoxynucleotidyl transferase, but its biological role is not yet clear. We show here that after exposure of cells to ionizing radiation (IR), levels of pol mu protein increase. pol mu also forms discrete nuclear foci after IR, and these foci are largely coincident with IR-induced foci of gammaH2AX, a previously characterized marker of sites of DNA double-strand breaks. pol mu is thus part of the cellular response to DNA double-strand breaks. pol mu also associates in cell extracts with the nonhomologous end-joining repair factor Ku and requires both Ku and another end-joining factor, XRCC4-ligase IV, to form a stable complex on DNA in vitro. pol mu in turn facilitates both stable recruitment of XRCC4-ligase IV to Ku-bound DNA and ligase IV-dependent end joining. In contrast, the related mammalian DNA polymerase beta does not form a complex with Ku and XRCC4-ligase IV and is less effective than pol mu in facilitating joining mediated by these factors. Our data thus support an important role for pol mu in the end-joining pathway for repair of double-strand breaks.", "title": "Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair." }, { "docid": "21793890", "text": "The oncogenic BCR/ABL tyrosine kinase facilitates the repair of DNA double-strand breaks (DSBs). We find that after gamma-irradiation BCR/ABL-positive leukemia cells accumulate more DSBs in comparison to normal cells. These lesions are efficiently repaired in a time-dependent fashion by BCR/ABL-stimulated non-homologous end-joining (NHEJ) followed by homologous recombination repair (HRR) mechanisms. However, mutations and large deletions were detected in HRR and NHEJ products, respectively, in BCR/ABL-positive leukemia cells. We propose that unfaithful repair of DSBs may contribute to genomic instability in the Philadelphia chromosome-positive leukemias.", "title": "BCR/ABL modifies the kinetics and fidelity of DNA double-strand breaks repair in hematopoietic cells." }, { "docid": "25838286", "text": "Werner syndrome (WS) predisposes patients to cancer and premature aging, owing to mutations in WRN. The WRN protein is a RECQ-like helicase and is thought to participate in DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) or homologous recombination (HR). It has been previously shown that non-homologous DNA ends develop extensive deletions during repair in WS cells, and that this WS phenotype was complemented by wild-type (wt) WRN. WRN possesses both 3' --> 5' exonuclease and 3' --> 5' helicase activities. To determine the relative contributions of each of these distinct enzymatic activities to DSB repair, we examined NHEJ and HR in WS cells (WRN-/-) complemented with either wtWRN, exonuclease-defective WRN (E-), helicase-defective WRN (H-) or exonuclease/helicase-defective WRN (E-H-). The single E-and H- mutants each partially complemented the NHEJ abnormality of WRN-/- cells. Strikingly, the E-H- double mutant complemented the WS deficiency nearly as efficiently as did wtWRN. Similarly, the double mutant complemented the moderate HR deficiency of WS cells nearly as well as did wtWRN, whereas the E- and H- single mutants increased HR to levels higher than those restored by either E-H- or wtWRN. These results suggest that balanced exonuclease and helicase activities of WRN are required for optimal HR. Moreover, WRN appears to play a structural role, independent of its enzymatic activities, in optimizing HR and efficient NHEJ repair. Another human RECQ helicase, BLM, suppressed HR but had little or no effect on NHEJ, suggesting that mammalian RECQ helicases have distinct functions that can finely regulate recombination events.", "title": "WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair." }, { "docid": "21561474", "text": "Methods to introduce targeted double-strand breaks (DSBs) into DNA enable precise genome editing by increasing the rate at which externally supplied DNA fragments are incorporated into the genome through homologous recombination. The efficiency of these methods is limited by nonhomologous end joining (NHEJ), an alternative DNA repair pathway that competes with homology-directed repair (HDR). To promote HDR at the expense of NHEJ, we targeted DNA ligase IV, a key enzyme in the NHEJ pathway, using the inhibitor Scr7. Scr7 treatment increased the efficiency of HDR-mediated genome editing, using Cas9 in mammalian cell lines and in mice for all four genes examined, up to 19-fold. This approach should be applicable to other customizable endonucleases, such as zinc finger nucleases and transcription activator–like effector nucleases, and to nonmammalian cells with sufficiently conserved mechanisms of NHEJ and HDR.", "title": "Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining" }, { "docid": "21221346", "text": "In eukaryotic cells, nonhomologous DNA end joining (NHEJ) is a major pathway for repair of double-strand DNA breaks (DSBs). Artemis and the 469kDa DNA-dependent protein kinase (DNA-PKcs) together form a key nuclease for NHEJ in vertebrate organisms. The structure-specific endonucleolytic activity of Artemis is activated by binding to and phosphorylation by DNA-PKcs. We tested various DNA structures in order to understand the range of structural features that are recognized by the Artemis:DNA-PKcs complex. We find that all tested substrates that contain single-to-double-strand transitions can be cleaved by the Artemis:DNA-PKcs complex near the transition region. The cleaved substrates include heterologous loops, stem-loops, flaps, and gapped substrates. Such versatile activity on single-/double-strand transition regions is important in understanding how reconstituted NHEJ systems that lack DNA polymerases can join incompatible DNA ends and yet preserve 3' overhangs. Additionally, the flexibility of the Artemis:DNA-PKcs nuclease may be important in removing secondary structures that hinder processing of DNA ends during NHEJ.", "title": "The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps." }, { "docid": "15472716", "text": "DNA-PKcs and Ku are essential components of the complex that catalyzes non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Ku, a heterodimeric protein, binds to DNA ends and facilitates recruitment of the catalytic subunit, DNA-PKcs. We have investigated the effect of DNA strand orientation and sequence bias on the activation of DNA-PK. In addition, we assessed the effect of the position and strand orientation of cisplatin adducts on kinase activation. A series of duplex DNA substrates with site-specific cisplatin–DNA adducts placed in three different orientations on the duplex DNA were prepared. Terminal biotin modification and streptavidin (SA) blocking was employed to direct DNA-PK binding to the unblocked termini with a specific DNA strand orientation and cisplatin–DNA adduct position. DNA-PK kinase activity was measured and the results reveal that DNA strand orientation and sequence bias dramatically influence kinase activation, only a portion of which could be attributed to Ku-DNA binding activity. In addition, cisplatin–DNA adduct position resulted in differing degrees of inhibition depending on distance from the terminus as well as strand orientation. These results highlight the importance of how local variations in DNA structure, chemistry and sequence influence DNA-PK activation and potentially NHEJ.", "title": "Differential activation of DNA-PK based on DNA strand orientation and sequence bias" }, { "docid": "23698769", "text": "DNA polymerase μ (Pol μ) is the only template-dependent human DNA polymerase capable of repairing double-strand DNA breaks (DSBs) with unpaired 3′ ends in nonhomologous end joining (NHEJ). To probe this function, we structurally characterized Pol μ's catalytic cycle for single-nucleotide incorporation. These structures indicate that, unlike other template-dependent DNA polymerases, Pol μ shows no large-scale conformational changes in protein subdomains, amino acid side chains or DNA upon dNTP binding or catalysis. Instead, the only major conformational change is seen earlier in the catalytic cycle, when the flexible loop 1 region repositions upon DNA binding. Pol μ variants with changes in loop 1 have altered catalytic properties and are partially defective in NHEJ. The results indicate that specific loop 1 residues contribute to Pol μ's unique ability to catalyze template-dependent NHEJ of DSBs with unpaired 3′ ends.", "title": "Sustained active site rigidity during synthesis by human DNA polymerase μ" }, { "docid": "13023410", "text": "The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair.", "title": "BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks." }, { "docid": "20420780", "text": "DNA double-strand breaks (DSBs) are repaired via nonhomologous end-joining (NHEJ) or homologous recombination (HR), but cellular repair processes remain elusive. We show here that the ATP-dependent chromatin-remodeling factors, ACF1 and SNF2H, accumulate rapidly at DSBs and are required for DSB repair in human cells. If the expression of ACF1 or SNF2H is suppressed, cells become extremely sensitive to X-rays and chemical treatments producing DSBs, and DSBs remain unrepaired. ACF1 interacts directly with KU70 and is required for the accumulation of KU proteins at DSBs. The KU70/80 complex becomes physically more associated with the chromatin-remodeling factors of the CHRAC complex, which includes ACF1, SNF2H, CHRAC15, and CHRAC17, after treatments producing DSBs. Furthermore, the frequency of NHEJ as well as HR induced by DSBs in chromosomal DNA is significantly decreased in cells depleted of either of these factors. Thus, ACF1 and its complexes play important roles in DSBs repair.", "title": "The ACF1 complex is required for DNA double-strand break repair in human cells." }, { "docid": "1941721", "text": "Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86(-/-) SOD1 transgenic embryos over that seen in Ku86(-/-) embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.", "title": "Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants" }, { "docid": "15478227", "text": "The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza.", "title": "Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution" }, { "docid": "44172171", "text": "The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.", "title": "Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks" }, { "docid": "5765455", "text": "Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop acute myelogenous leukemia (AML). The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is loss of chromosomal material (genomic instability). Using our two-step mouse model for myeloid leukemic disease progression involving overexpression of human mutant NRAS and BCL2 genes, we show that there is a stepwise increase in the frequency of DNA damage leading to an increased frequency of error-prone repair of double-strand breaks (DSB) by nonhomologous end-joining. There is a concomitant increase in reactive oxygen species (ROS) in these transgenic mice with disease progression. Importantly, RAC1, an essential component of the ROS-producing NADPH oxidase, is downstream of RAS, and we show that ROS production in NRAS/BCL2 mice is in part dependent on RAC1 activity. DNA damage and error-prone repair can be decreased or reversed in vivo by N-acetyl cysteine antioxidant treatment. Our data link gene abnormalities to constitutive DNA damage and increased DSB repair errors in vivo and provide a mechanism for an increase in the error rate of DNA repair with MDS disease progression. These data suggest treatment strategies that target RAS/RAC pathways and ROS production in human MDS/AML.", "title": "Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia?" }, { "docid": "34559336", "text": "Three Pol X family members have been linked to nonhomologous end joining (NHEJ) in mammals. Template-independent TdT promotes diversity during NHEJ-dependent repair of V(D)J recombination intermediates, but the roles of the template-dependent polymerases mu and lambda in NHEJ remain unclear. We show here that pol mu and pol lambda are similarly recruited by NHEJ factors to fill gaps when ends have partially complementary overhangs, suggesting equivalent roles promoting accuracy in NHEJ. However, only pol mu promotes accuracy during immunoglobulin kappa recombination. This distinctive in vivo role correlates with the TdT-like ability of pol mu, but not pol lambda, to act when primer termini lack complementary bases in the template strand. However, unlike TdT, synthesis by pol mu in this context is primarily instructed by a template from another DNA molecule. This apparent gradient of template dependence is largely attributable to a small structural element that is present but different in all three polymerases.", "title": "A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining." } ]
358
During non-homologous end joining, the ligation step is not as tolerant of disrepairs and other distortions when joining 5' of strand breaks as compared to 3' strand breaks.
[ { "docid": "18111172", "text": "Nonhomologous end joining (NHEJ) can effectively resolve chromosome breaks despite diverse end structures; however, it is unclear how the steps employed for resolution are determined. We sought to address this question by analysing cellular NHEJ of ends with systematically mispaired and damaged termini. We show NHEJ is uniquely proficient at bypassing subtle terminal mispairs and radiomimetic damage by direct ligation. Nevertheless, bypass ability varies widely, with increases in mispair severity gradually reducing bypass products from 85 to 6%. End-processing by nucleases and polymerases is increased to compensate, although paths with the fewest number of steps to generate a substrate suitable for ligation are favoured. Thus, both the frequency and nature of end processing are tailored to meet the needs of the ligation step. We propose a model where the ligase organizes all steps during NHEJ within the stable paired-end complex to limit end processing and associated errors.", "title": "The fidelity of the ligation step determines how ends are resolved during Nonhomologous end joining" } ]
[ { "docid": "20821402", "text": "Nonhomologous end joining (NHEJ) is essential for efficient repair of chromosome breaks. However, the NHEJ ligation step is often obstructed by break-associated nucleotide damage, including base loss (abasic site or 5'-dRP/AP sites). Ku, a 5'-dRP/AP lyase, can excise such damage at ends in preparation for the ligation step. We show here that this activity is greatest if the abasic site is within a short 5' overhang, when this activity is necessary and sufficient to prepare such termini for ligation. In contrast, Ku is less active near 3' strand termini, where excision would leave a ligation-blocking α,β-unsaturated aldehyde. The Ku AP lyase activity is also strongly suppressed by as little as two paired bases 5' of the abasic site. Importantly, in vitro end joining experiments show that abasic sites significantly embedded in double-stranded DNA do not block the NHEJ ligation step. Suppression of the excision activity of Ku in this context therefore is not essential for ligation and further helps NHEJ retain terminal sequence in junctions. We show that the DNA between the 5' terminus and the abasic site can also be retained in junctions formed by cellular NHEJ, indicating that these sites are at least partly resistant to other abasic site-cleaving activities as well. High levels of the 5'-dRP/AP lyase activity of Ku are thus restricted to substrates where excision of an abasic site is required for ligation, a degree of specificity that promotes more accurate joining.", "title": "Specificity of the dRP/AP lyase of Ku promotes nonhomologous end joining (NHEJ) fidelity at damaged ends." }, { "docid": "12207340", "text": "The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5'-terminated strands in a process termed end resection. End resection generates 3'-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5'-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3'-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome.", "title": "Mechanism and regulation of DNA end resection in eukaryotes." }, { "docid": "12552297", "text": "DNA polymerase lambda (polλ) is a recently identified DNA polymerase whose cellular function remains elusive. Here we show, that polλ participates at the molecular level in a chromosomal context, in the repair of DNA double strand breaks (DSB) via non-homologous end joining (NHEJ) in mammalian cells. The expression of a catalytically inactive form of polλ (polλDN) decreases the frequency of NHEJ events in response to I-Sce-I-induced DSB whereas inactivated forms of its homologues polβ and polμ do not. Only events requiring DNA end processing before ligation are affected; this defect is associated with large deletions arising in the vicinity of the induced DSB. Furthermore, polλDN-expressing cells exhibit increased sensitization and genomic instability in response to ionizing radiation similar to that of NHEJ-defective cells. Our data support a requirement for polλ in repairing a subset of DSB in genomic DNA, thereby contributing to the maintenance of genetic stability mediated by the NHEJ pathway.", "title": "The DNA polymerase λ is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells" }, { "docid": "41403996", "text": "DNA double strand breaks (DSBs) can be rejoined directly by the nonhomologous end-joining (NHEJ) pathway of repair. Nucleases and polymerases are required to promote accurate NHEJ when the terminal bases of the DSB are damaged. The same enzymes also participate in imprecise rejoining and joining of incompatible ends, important mutagenic events. Previous work has shown that the Pol X family polymerase Pol4 is required for some but not all NHEJ events that require gap filling in Saccharomyces cerevisiae. Here, we systematically analyzed DSB end configurations and found that gaps on both strands and overhang polarity are the principal factors that determine whether a joint requires Pol4. DSBs with 3'-overhangs and a gap on each strand strongly depended on Pol4 for repair, DSBs with 5'-overhangs of the same sequence did not. Pol4 was not required when 3'-overhangs contained a gap on only one strand, however. Pol4 was equally required at 3'-overhangs of all lengths within the NHEJ-dependent range but was dispensable outside of this range, indicating that Pol4 is specific to NHEJ. Loss of Pol4 did not affect the rejoining of DSBs that utilized a recessed microhomology or DSBs bearing 5'-hydroxyls but no gap. Finally, mammalian Pol X polymerases were able to differentially complement a pol4 mutation depending on the joint structure, demonstrating that these polymerases can participate in yeast NHEJ but with distinct properties.", "title": "DNA joint dependence of pol X family polymerase action in nonhomologous end joining." }, { "docid": "13791206", "text": "Defective DNA repair by homologous recombination (HR) is thought to be a major contributor to tumorigenesis in individuals carrying Brca1 mutations. Here, we show that DNA breaks in Brca1-deficient cells are aberrantly joined into complex chromosome rearrangements by a process dependent on the nonhomologous end-joining (NHEJ) factors 53BP1 and DNA ligase 4. Loss of 53BP1 alleviates hypersensitivity of Brca1 mutant cells to PARP inhibition and restores error-free repair by HR. Mechanistically, 53BP1 deletion promotes ATM-dependent processing of broken DNA ends to produce recombinogenic single-stranded DNA competent for HR. In contrast, Lig4 deficiency does not rescue the HR defect in Brca1 mutant cells but prevents the joining of chromatid breaks into chromosome rearrangements. Our results illustrate that HR and NHEJ compete to process DNA breaks that arise during DNA replication and that shifting the balance between these pathways can be exploited to selectively protect or kill cells harboring Brca1 mutations.", "title": "53BP1 Inhibits Homologous Recombination in Brca1-Deficient Cells by Blocking Resection of DNA Breaks" }, { "docid": "27635177", "text": "Mammalian DNA polymerase mu (pol mu) is related to terminal deoxynucleotidyl transferase, but its biological role is not yet clear. We show here that after exposure of cells to ionizing radiation (IR), levels of pol mu protein increase. pol mu also forms discrete nuclear foci after IR, and these foci are largely coincident with IR-induced foci of gammaH2AX, a previously characterized marker of sites of DNA double-strand breaks. pol mu is thus part of the cellular response to DNA double-strand breaks. pol mu also associates in cell extracts with the nonhomologous end-joining repair factor Ku and requires both Ku and another end-joining factor, XRCC4-ligase IV, to form a stable complex on DNA in vitro. pol mu in turn facilitates both stable recruitment of XRCC4-ligase IV to Ku-bound DNA and ligase IV-dependent end joining. In contrast, the related mammalian DNA polymerase beta does not form a complex with Ku and XRCC4-ligase IV and is less effective than pol mu in facilitating joining mediated by these factors. Our data thus support an important role for pol mu in the end-joining pathway for repair of double-strand breaks.", "title": "Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair." }, { "docid": "21793890", "text": "The oncogenic BCR/ABL tyrosine kinase facilitates the repair of DNA double-strand breaks (DSBs). We find that after gamma-irradiation BCR/ABL-positive leukemia cells accumulate more DSBs in comparison to normal cells. These lesions are efficiently repaired in a time-dependent fashion by BCR/ABL-stimulated non-homologous end-joining (NHEJ) followed by homologous recombination repair (HRR) mechanisms. However, mutations and large deletions were detected in HRR and NHEJ products, respectively, in BCR/ABL-positive leukemia cells. We propose that unfaithful repair of DSBs may contribute to genomic instability in the Philadelphia chromosome-positive leukemias.", "title": "BCR/ABL modifies the kinetics and fidelity of DNA double-strand breaks repair in hematopoietic cells." }, { "docid": "25838286", "text": "Werner syndrome (WS) predisposes patients to cancer and premature aging, owing to mutations in WRN. The WRN protein is a RECQ-like helicase and is thought to participate in DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) or homologous recombination (HR). It has been previously shown that non-homologous DNA ends develop extensive deletions during repair in WS cells, and that this WS phenotype was complemented by wild-type (wt) WRN. WRN possesses both 3' --> 5' exonuclease and 3' --> 5' helicase activities. To determine the relative contributions of each of these distinct enzymatic activities to DSB repair, we examined NHEJ and HR in WS cells (WRN-/-) complemented with either wtWRN, exonuclease-defective WRN (E-), helicase-defective WRN (H-) or exonuclease/helicase-defective WRN (E-H-). The single E-and H- mutants each partially complemented the NHEJ abnormality of WRN-/- cells. Strikingly, the E-H- double mutant complemented the WS deficiency nearly as efficiently as did wtWRN. Similarly, the double mutant complemented the moderate HR deficiency of WS cells nearly as well as did wtWRN, whereas the E- and H- single mutants increased HR to levels higher than those restored by either E-H- or wtWRN. These results suggest that balanced exonuclease and helicase activities of WRN are required for optimal HR. Moreover, WRN appears to play a structural role, independent of its enzymatic activities, in optimizing HR and efficient NHEJ repair. Another human RECQ helicase, BLM, suppressed HR but had little or no effect on NHEJ, suggesting that mammalian RECQ helicases have distinct functions that can finely regulate recombination events.", "title": "WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair." }, { "docid": "21561474", "text": "Methods to introduce targeted double-strand breaks (DSBs) into DNA enable precise genome editing by increasing the rate at which externally supplied DNA fragments are incorporated into the genome through homologous recombination. The efficiency of these methods is limited by nonhomologous end joining (NHEJ), an alternative DNA repair pathway that competes with homology-directed repair (HDR). To promote HDR at the expense of NHEJ, we targeted DNA ligase IV, a key enzyme in the NHEJ pathway, using the inhibitor Scr7. Scr7 treatment increased the efficiency of HDR-mediated genome editing, using Cas9 in mammalian cell lines and in mice for all four genes examined, up to 19-fold. This approach should be applicable to other customizable endonucleases, such as zinc finger nucleases and transcription activator–like effector nucleases, and to nonmammalian cells with sufficiently conserved mechanisms of NHEJ and HDR.", "title": "Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining" }, { "docid": "21221346", "text": "In eukaryotic cells, nonhomologous DNA end joining (NHEJ) is a major pathway for repair of double-strand DNA breaks (DSBs). Artemis and the 469kDa DNA-dependent protein kinase (DNA-PKcs) together form a key nuclease for NHEJ in vertebrate organisms. The structure-specific endonucleolytic activity of Artemis is activated by binding to and phosphorylation by DNA-PKcs. We tested various DNA structures in order to understand the range of structural features that are recognized by the Artemis:DNA-PKcs complex. We find that all tested substrates that contain single-to-double-strand transitions can be cleaved by the Artemis:DNA-PKcs complex near the transition region. The cleaved substrates include heterologous loops, stem-loops, flaps, and gapped substrates. Such versatile activity on single-/double-strand transition regions is important in understanding how reconstituted NHEJ systems that lack DNA polymerases can join incompatible DNA ends and yet preserve 3' overhangs. Additionally, the flexibility of the Artemis:DNA-PKcs nuclease may be important in removing secondary structures that hinder processing of DNA ends during NHEJ.", "title": "The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps." }, { "docid": "15472716", "text": "DNA-PKcs and Ku are essential components of the complex that catalyzes non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Ku, a heterodimeric protein, binds to DNA ends and facilitates recruitment of the catalytic subunit, DNA-PKcs. We have investigated the effect of DNA strand orientation and sequence bias on the activation of DNA-PK. In addition, we assessed the effect of the position and strand orientation of cisplatin adducts on kinase activation. A series of duplex DNA substrates with site-specific cisplatin–DNA adducts placed in three different orientations on the duplex DNA were prepared. Terminal biotin modification and streptavidin (SA) blocking was employed to direct DNA-PK binding to the unblocked termini with a specific DNA strand orientation and cisplatin–DNA adduct position. DNA-PK kinase activity was measured and the results reveal that DNA strand orientation and sequence bias dramatically influence kinase activation, only a portion of which could be attributed to Ku-DNA binding activity. In addition, cisplatin–DNA adduct position resulted in differing degrees of inhibition depending on distance from the terminus as well as strand orientation. These results highlight the importance of how local variations in DNA structure, chemistry and sequence influence DNA-PK activation and potentially NHEJ.", "title": "Differential activation of DNA-PK based on DNA strand orientation and sequence bias" }, { "docid": "23698769", "text": "DNA polymerase μ (Pol μ) is the only template-dependent human DNA polymerase capable of repairing double-strand DNA breaks (DSBs) with unpaired 3′ ends in nonhomologous end joining (NHEJ). To probe this function, we structurally characterized Pol μ's catalytic cycle for single-nucleotide incorporation. These structures indicate that, unlike other template-dependent DNA polymerases, Pol μ shows no large-scale conformational changes in protein subdomains, amino acid side chains or DNA upon dNTP binding or catalysis. Instead, the only major conformational change is seen earlier in the catalytic cycle, when the flexible loop 1 region repositions upon DNA binding. Pol μ variants with changes in loop 1 have altered catalytic properties and are partially defective in NHEJ. The results indicate that specific loop 1 residues contribute to Pol μ's unique ability to catalyze template-dependent NHEJ of DSBs with unpaired 3′ ends.", "title": "Sustained active site rigidity during synthesis by human DNA polymerase μ" }, { "docid": "13023410", "text": "The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair.", "title": "BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks." }, { "docid": "20420780", "text": "DNA double-strand breaks (DSBs) are repaired via nonhomologous end-joining (NHEJ) or homologous recombination (HR), but cellular repair processes remain elusive. We show here that the ATP-dependent chromatin-remodeling factors, ACF1 and SNF2H, accumulate rapidly at DSBs and are required for DSB repair in human cells. If the expression of ACF1 or SNF2H is suppressed, cells become extremely sensitive to X-rays and chemical treatments producing DSBs, and DSBs remain unrepaired. ACF1 interacts directly with KU70 and is required for the accumulation of KU proteins at DSBs. The KU70/80 complex becomes physically more associated with the chromatin-remodeling factors of the CHRAC complex, which includes ACF1, SNF2H, CHRAC15, and CHRAC17, after treatments producing DSBs. Furthermore, the frequency of NHEJ as well as HR induced by DSBs in chromosomal DNA is significantly decreased in cells depleted of either of these factors. Thus, ACF1 and its complexes play important roles in DSBs repair.", "title": "The ACF1 complex is required for DNA double-strand break repair in human cells." }, { "docid": "1941721", "text": "Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86(-/-) SOD1 transgenic embryos over that seen in Ku86(-/-) embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.", "title": "Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants" }, { "docid": "15478227", "text": "The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza.", "title": "Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution" }, { "docid": "44172171", "text": "The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.", "title": "Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks" }, { "docid": "5765455", "text": "Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop acute myelogenous leukemia (AML). The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is loss of chromosomal material (genomic instability). Using our two-step mouse model for myeloid leukemic disease progression involving overexpression of human mutant NRAS and BCL2 genes, we show that there is a stepwise increase in the frequency of DNA damage leading to an increased frequency of error-prone repair of double-strand breaks (DSB) by nonhomologous end-joining. There is a concomitant increase in reactive oxygen species (ROS) in these transgenic mice with disease progression. Importantly, RAC1, an essential component of the ROS-producing NADPH oxidase, is downstream of RAS, and we show that ROS production in NRAS/BCL2 mice is in part dependent on RAC1 activity. DNA damage and error-prone repair can be decreased or reversed in vivo by N-acetyl cysteine antioxidant treatment. Our data link gene abnormalities to constitutive DNA damage and increased DSB repair errors in vivo and provide a mechanism for an increase in the error rate of DNA repair with MDS disease progression. These data suggest treatment strategies that target RAS/RAC pathways and ROS production in human MDS/AML.", "title": "Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia?" }, { "docid": "34559336", "text": "Three Pol X family members have been linked to nonhomologous end joining (NHEJ) in mammals. Template-independent TdT promotes diversity during NHEJ-dependent repair of V(D)J recombination intermediates, but the roles of the template-dependent polymerases mu and lambda in NHEJ remain unclear. We show here that pol mu and pol lambda are similarly recruited by NHEJ factors to fill gaps when ends have partially complementary overhangs, suggesting equivalent roles promoting accuracy in NHEJ. However, only pol mu promotes accuracy during immunoglobulin kappa recombination. This distinctive in vivo role correlates with the TdT-like ability of pol mu, but not pol lambda, to act when primer termini lack complementary bases in the template strand. However, unlike TdT, synthesis by pol mu in this context is primarily instructed by a template from another DNA molecule. This apparent gradient of template dependence is largely attributable to a small structural element that is present but different in all three polymerases.", "title": "A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining." } ]
361
During the primary early antibody response activated B cells migrate toward the inner-and outer follicular areas where oxysterol accumulation is generated by stromal cells.
[ { "docid": "38587347", "text": "Humoral immune responses depend on B cells encountering antigen, interacting with helper T cells, proliferating and differentiating into low-affinity plasma cells or, after organizing into a germinal center (GC), high-affinity plasma cells and memory B cells. Remarkably, each of these events occurs in association with distinct stromal cells in separate subcompartments of the lymphoid tissue. B cells must migrate from niche to niche in a rapid and highly regulated manner to successfully mount a response. The chemokine, CXCL13, plays a central role in guiding B cells to follicles whereas T-zone chemokines guide activated B cells to the T zone. Sphingosine-1-phosphate (S1P) promotes cell egress from the tissue, as well as marginal-zone B-cell positioning in the spleen. Recent studies have identified a role for the orphan receptor, EBV-induced molecule 2 (EBI2; GPR183), in guiding activated B cells to inter and outer follicular niche(s) and down-regulation of this receptor is essential for organizing cells into GCs. In this review, we discuss current understanding of the roles played by chemokines, S1P and EBI2 in the migration events that underlie humoral immune responses.", "title": "Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses." } ]
[ { "docid": "34615397", "text": "The human tuberculous granuloma provides the morphological basis for local immune processes central to the outcome of tuberculosis. Because of the scarcity of information in human patients, the aim of the present study was to gain insights into the functional and structural properties of infiltrated tissue. To this end, the mycobacterial load in lesions and dissemination to different tissue locations were investigated, as well as distribution, biological functions, and interactions of host immune cells. Analysis of early granuloma formation in formerly healthy lung tissue revealed a spatio-temporal sequence of cellular infiltration to sites of mycobacterial infection. A general structure of the developing granuloma was identified, comprising an inner cell layer with few CD8(+) cells surrounding the necrotic centre and an outer area of lymphocyte infiltration harbouring mycobacteria-containing antigen-presenting cells as well as CD4(+), CD8(+), and B cells in active follicle-like centres resembling secondary lymphoid organs. It is concluded that the follicular structures in the peripheral rim of granulomas serve as a morphological substrate for the orchestration of the enduring host response in pulmonary tuberculosis.", "title": "Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung." }, { "docid": "15488881", "text": "Humoral immunity depends on both rapid and long-term antibody production against invading pathogens. This is achieved by the generation of spatially distinct extrafollicular plasmablast and follicular germinal center (GC) B cell populations, but the signals that guide responding B cells to these alternative compartments have not been fully elucidated. Here, we show that expression of the orphan G protein-coupled receptor Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) by activated B cells was essential for their movement to extrafollicular sites and induction of early plasmablast responses. Conversely, downregulation of EBI2 enabled B cells to access the center of follicles and promoted efficient GC formation. EBI2 therefore provides a previously uncharacterized dimension to B cell migration that is crucial for coordinating rapid versus long-term antibody responses.", "title": "Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses." }, { "docid": "15058155", "text": "EBI2, aka GPR183, is a G-couple receptor originally identified in 1993 as one of main genes induced in Burkitt's lymphoma cell line BL41 by Epstein-Barr virus (EBV) infection. After it was reported in 2009 that the receptor played a key role in regulating B cell migration and responses, we initiated an effort in looking for its endogenous ligand. In 2011 we and another group reported the identification of 7α, 25-dihydroxyxcholesterol (7α, 25-OHC), an oxysterol, as the likely physiological ligand of EBI2. A few subsequently published studies further elucidated how 7α, 25-OHC bound to EBI2, and how a gradient of 7α, 25-OHC could be generated in vivo and regulated migration, activation, and functions of B cells, T cells, dendritic cells (DCs), monocytes/macrophages, and astrocytes. The identification of 7α, 25-OHC as a G protein-coupled receptor ligand revealed a previously unknown signaling system of oxysterols, a class of molecules which exert profound biological functions. Dysregulation of the synthesis or functions of these molecules is believed to contribute to inflammation and autoimmune diseases, cardiovascular diseases, neurodegenerative diseases, cancer as well as metabolic diseases such as diabetes, obesity, and dyslipidemia. Therefore EBI2 may represent a promising target for therapeutic interventions for human diseases.", "title": "7α, 25-dihydroxycholesterol-mediated activation of EBI2 in immune regulation and diseases" }, { "docid": "9831859", "text": "Pancreatic stellate cells (PSC) produce the stromal reaction in pancreatic cancer, but their role in cancer progression is not fully elucidated. We examined the influence of PSCs on pancreatic cancer growth using (a) an orthotopic model of pancreatic cancer and (b) cultured human PSCs (hPSC) and human pancreatic cancer cell lines MiaPaCa-2 and Panc-1. Athymic mice received an intrapancreatic injection of saline, hPSCs, MiaPaCa-2 cells, or hPSCs + MiaPaCa-2. After 7 weeks, tumor size, metastases, and tumor histology were assessed. In vitro studies assessed the effect of cancer cell secretions on PSC migration and the effect of hPSC secretions on cancer cell proliferation, apoptosis, and migration. Possible mediators of the effects of hPSC secretions on cancer cell proliferation were examined using neutralizing antibodies. Compared with mice receiving MiaPaCa-2 cells alone, mice injected with hPSCs + MiaPaCa-2 exhibited (a) increased tumor size and regional and distant metastasis, (b) fibrotic bands (desmoplasia) containing activated PSCs within tumors, and (c) increased tumor cell numbers. In vitro studies showed that, in the presence of pancreatic cancer cells, PSC migration was significantly increased. Furthermore, hPSC secretions induced the proliferation and migration, but inhibited the apoptosis, of MiaPaCa-2 and Panc-1 cells. The proliferative effect of hPSC secretions on pancreatic cancer cells was inhibited in the presence of neutralizing antibody to platelet-derived growth factor. Our studies indicate a significant interaction between pancreatic cancer cells and stromal cells (PSCs) and imply that pancreatic cancer cells recruit stromal cells to establish an environment that promotes cancer progression.", "title": "Pancreatic stellate cells: partners in crime with pancreatic cancer cells." }, { "docid": "8883846", "text": "The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses.", "title": "Antibody-Based HIV-1 Vaccines: Recent Developments and Future Directions" }, { "docid": "24879055", "text": "CD4(+) T follicular helper (Tfh) cells provide the required signals to B cells for germinal center reactions that are necessary for long-lived antibody responses. However, it remains unclear whether there are CD4(+) memory T cells committed to the Tfh cell lineage after antigen clearance. By using adoptive transfer of antigen-specific memory CD4(+) T cell subpopulations in the lymphocytic choriomeningitis virus infection model, we found that there are distinct memory CD4(+) T cell populations with commitment to either Tfh- or Th1-cell lineages. Our conclusions are based on gene expression profiles, epigenetic studies, and phenotypic and functional analyses. Our findings indicate that CD4(+) memory T cells \"remember\" their previous effector lineage after antigen clearance, being poised to reacquire their lineage-specific effector functions upon antigen reencounter. These findings have important implications for rational vaccine design, where improving the generation and engagement of memory Tfh cells could be used to enhance vaccine-induced protective immunity.", "title": "Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection." }, { "docid": "5003144", "text": "Maintenance of immunological self-tolerance requires lymphocytes carrying self-reactive antigen receptors to be selectively prevented from mounting destructive or inflammatory effector responses. Classically, self-tolerance is viewed in terms of the removal, editing, or silencing of B and T cells that have formed self-reactive antigen receptors during their early development. However, B cells activated by foreign antigen can enter germinal centers (GCs), where they further modify their antigen receptor by somatic hypermutation (SHM) of their immunoglobulin genes. The inevitable emergence of activated, self-reactive GC B cells presents a unique challenge to the maintenance of self-tolerance that must be rapidly countered to avoid autoantibody production. Here we discuss current knowledge of the mechanisms that enforce B cell self-tolerance, with particular focus on the control of self-reactive GC B cells. We also consider how self-reactive GC B cells can escape self-tolerance to initiate autoantibody production or instead be redeemed via SHM and used in productive antibody responses.", "title": "Self-Reactive B Cells in the Germinal Center Reaction." }, { "docid": "10354110", "text": "Follicular (FO) and marginal zone (MZ) B cells are maintained in distinct locations within the spleen, but the genetic basis for this separation is still enigmatic. We now report that B cell sequestration requires lineage-specific regulation of migratory receptors by the transcription factor Klf2. Moreover, using gene-targeted mice we show that altered splenic B cell migration confers a significant in vivo gain-of-function phenotype to FO B cells, including the ability to quickly respond to MZ-associated antigens and pathogens in a T cell-dependent manner. This work demonstrates that in wild-type animals, naive FO B cells are actively removed from the MZ, thus restricting their capacity to respond to blood-borne pathogens.", "title": "Follicular B cell trafficking within the spleen actively restricts humoral immune responses." }, { "docid": "23305884", "text": "Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that dramatically reorganizes host gene expression to immortalize primary B cells. In this study, we analyzed EBV-regulated host gene expression changes following primary B-cell infection, both during initial proliferation and through transformation into lymphoblastoid cell lines (LCLs). While most EBV-regulated mRNAs were changed during the transition from resting, uninfected B cells through initial B-cell proliferation, a substantial number of mRNAs changed uniquely from early proliferation through LCL outgrowth. We identified constitutively and dynamically EBV-regulated biological processes, protein classes, and targets of specific transcription factors. Early after infection, genes associated with proliferation, stress responses, and the p53 pathway were highly enriched. However, the transition from early to long-term outgrowth was characterized by genes involved in the inhibition of apoptosis, the actin cytoskeleton, and NF-κB activity. It was previously thought that the major viral protein responsible for NF-κB activation, latent membrane protein 1 (LMP1), is expressed within 2 days after infection. Our data indicate that while this is true, LCL-level LMP1 expression and NF-κB activity are not evident until 3 weeks after primary B-cell infection. Furthermore, heterologous NF-κB activation during the first week after infection increased the transformation efficiency, while early NF-κB inhibition had no effect on transformation. Rather, inhibition of NF-κB was not toxic to EBV-infected cells until LMP1 levels and NF-κB activity were high. These data collectively highlight the dynamic nature of EBV-regulated host gene expression and support the notion that early EBV-infected proliferating B cells have a fundamentally distinct growth and survival phenotype from that of LCLs.", "title": "Analysis of Epstein-Barr virus-regulated host gene expression changes through primary B-cell outgrowth reveals delayed kinetics of latent membrane protein 1-mediated NF-κB activation." }, { "docid": "7736860", "text": "Store-operated Ca(2+) entry (SOCE) is the principal Ca(2+) entry mechanism in nonexcitable cells. Stromal-interaction molecule 1 (STIM1) is an endoplasmic reticulum Ca(2+) sensor that triggers SOCE activation. However, the role of STIM1 in regulating cancer progression remains controversial and its clinical relevance is unclear. Here we show that STIM1-dependent signaling is important for cervical cancer cell proliferation, migration, and angiogenesis. STIM1 overexpression in tumor tissue is noted in 71% cases of early-stage cervical cancer. In tumor tissues, the level of STIM1 expression is significantly associated with the risk of metastasis and survival. EGF-stimulated cancer cell migration requires STIM1 expression and EGF increases the interaction between STIM1 and Orai1 in juxta-membrane areas, and thus induces Ca(2+) influx. STIM1 involves the activation of Ca(2+)-regulated protease calpain, as well as Ca(2+)-regulated cytoplasmic kinase Pyk2, which regulate the focal-adhesion dynamics of migratory cervical cancer cells. Because of an increase of p21 protein levels and a decrease of Cdc25C protein levels, STIM1-silencing in cervical cancer cells significantly inhibits cell proliferation by arresting the cell cycle at the S and G2/M phases. STIM1 also regulates the production of VEGF in cervical cancer cells. Interference with STIM1 expression or blockade of SOCE activity inhibits tumor angiogenesis and growth in animal models, confirming the crucial role of STIM1-mediated Ca(2+) influx in aggravating tumor development in vivo. These results make STIM1-dependent signaling an attractive target for therapeutic intervention.", "title": "Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis." }, { "docid": "3566945", "text": "Broadly neutralizing antibodies (bnAbs) to HIV-1 can evolve after years of an iterative process of virus escape and antibody adaptation that HIV-1 vaccine design seeks to mimic. To enable this, properties that render HIV-1 envelopes (Env) capable of eliciting bnAb responses need to be defined. Here, we followed the evolution of the V2 apex directed bnAb lineage VRC26 in the HIV-1 subtype C superinfected donor CAP256 to investigate the phenotypic changes of the virus populations circulating before and during the early phases of bnAb induction. Longitudinal viruses that evolved from the VRC26-resistant primary infecting (PI) virus, the VRC26-sensitive superinfecting (SU) virus and ensuing PI-SU recombinants revealed substantial phenotypic changes in Env, with a switch in Env properties coinciding with early resistance to VRC26. Decreased sensitivity of SU-like viruses to VRC26 was linked with reduced infectivity, altered entry kinetics and lower sensitivity to neutralization after CD4 attachment. VRC26 maintained neutralization activity against cell-associated CAP256 virus, indicating that escape through the cell-cell transmission route is not a dominant escape pathway. Reduced fitness of the early escape variants and sustained sensitivity in cell-cell transmission are both features that limit virus replication, thereby impeding rapid escape. This supports a scenario where VRC26 allowed only partial viral escape for a prolonged period, possibly increasing the time window for bnAb maturation. Collectively, our data highlight the phenotypic plasticity of the HIV-1 Env in evading bnAb pressure and the need to consider phenotypic traits when selecting and designing Env immunogens. Combinations of Env variants with differential phenotypic patterns and bnAb sensitivity, as we describe here for CAP256, may maximize the potential for inducing bnAb responses by vaccination.", "title": "Phenotypic deficits in the HIV-1 envelope are associated with the maturation of a V2-directed broadly neutralizing antibody lineage" }, { "docid": "1471041", "text": "Celiac disease is an immune-mediated disorder in which mucosal autoantibodies to the enzyme transglutaminase 2 (TG2) are generated in response to the exogenous antigen gluten in individuals who express human leukocyte antigen HLA-DQ2 or HLA-DQ8 (ref. 3). We assessed in a comprehensive and nonbiased manner the IgA anti-TG2 response by expression cloning of the antibody repertoire of ex vivo–isolated intestinal antibody-secreting cells (ASCs). We found that TG2-specific plasma cells are markedly expanded within the duodenal mucosa in individuals with active celiac disease. TG2-specific antibodies were of high affinity yet showed little adaptation by somatic mutations. Unlike infection-induced peripheral blood plasmablasts, the TG2-specific ASCs had not recently proliferated and were not short-lived ex vivo. Altogether, these observations demonstrate that there is a germline repertoire with high affinity for TG2 that may favor massive generation of autoreactive B cells. TG2-specific antibodies did not block enzymatic activity and served as substrates for TG2-mediated crosslinking when expressed as IgD or IgM but not as IgA1 or IgG1. This could result in preferential recruitment of plasma cells from naive IgD- and IgM-expressing B cells, thus possibly explaining why the antibody response to TG2 bears signs of a primary immune response despite the disease chronicity.", "title": "High abundance of plasma cells secreting transglutaminase 2–specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions" }, { "docid": "35256900", "text": "The mechanism of B cell–antigen encounter in lymphoid tissues is incompletely understood. It is also unclear how immune complexes are transported to follicular dendritic cells. Here, using real-time two-photon microscopy we noted rapid delivery of immune complexes through the lymph to macrophages in the lymph node subcapsular sinus. B cells captured immune complexes by a complement receptor–dependent mechanism from macrophage processes that penetrated the follicle and transported the complexes to follicular dendritic cells. Furthermore, cognate B cells captured antigen-containing immune complexes from macrophage processes and migrated to the T zone. Our findings identify macrophages lining the subcapsular sinus as an important site of B cell encounter with immune complexes and show that intrafollicular B cell migration facilitates the transport of immune complexes as well as encounters with cognate antigen.", "title": "Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells" }, { "docid": "38528892", "text": "The kinetochore is the macromolecular protein complex that mediates chromosome segregation. The Dsn1 component is crucial for kinetochore assembly and is phosphorylated by the Aurora B kinase. We found that Aurora B phosphorylation of Dsn1 promotes the interaction between outer and inner kinetochore proteins in budding yeast.", "title": "The aurora B kinase promotes inner and outer kinetochore interactions in budding yeast." }, { "docid": "3935126", "text": "Background In a phase 1 trial, axicabtagene ciloleucel (axi‐cel), an autologous anti‐CD19 chimeric antigen receptor (CAR) T‐cell therapy, showed efficacy in patients with refractory large B‐cell lymphoma after the failure of conventional therapy. Methods In this multicenter, phase 2 trial, we enrolled 111 patients with diffuse large B‐cell lymphoma, primary mediastinal B‐cell lymphoma, or transformed follicular lymphoma who had refractory disease despite undergoing recommended prior therapy. Patients received a target dose of 2×106 anti‐CD19 CAR T cells per kilogram of body weight after receiving a conditioning regimen of low‐dose cyclophosphamide and fludarabine. The primary end point was the rate of objective response (calculated as the combined rates of complete response and partial response). Secondary end points included overall survival, safety, and biomarker assessments. Results Among the 111 patients who were enrolled, axi‐cel was successfully manufactured for 110 (99%) and administered to 101 (91%). The objective response rate was 82%, and the complete response rate was 54%.With a median follow‐up of 15.4 months, 42% of the patients continued to have a response, with 40% continuing to have a complete response. The overall rate of survival at 18 months was 52%. The most common adverse events of grade 3 or higher during treatment were neutropenia (in 78% of the patients), anemia (in 43%), and thrombocytopenia (in 38%). Grade 3 or higher cytokine release syndrome and neurologic events occurred in 13% and 28% of the patients, respectively. Three of the patients died during treatment. Higher CAR T‐cell levels in blood were associated with response. Conclusions In this multicenter study, patients with refractory large B‐cell lymphoma who received CAR T‐cell therapy with axi‐cel had high levels of durable response, with a safety profile that included myelosuppression, the cytokine release syndrome, and neurologic events. (Funded by Kite Pharma and the Leukemia and Lymphoma Society Therapy Acceleration Program; ZUMA‐1 ClinicalTrials.gov number, NCT02348216.)", "title": "Axicabtagene Ciloleucel CAR T‐Cell Therapy in Refractory Large B‐Cell Lymphoma" }, { "docid": "5085118", "text": "OBJECTIVE We recently demonstrated that primitive neural crest-derived (NC) cells migrate from the cardiac neural crest during embryonic development and remain in the heart as dormant stem cells, with the capacity to differentiate into various cell types, including cardiomyocytes. Here, we examined the migration and differentiation potential of these cells on myocardial infarction (MI). \n METHODS AND RESULTS We obtained double-transgenic mice by crossing protein-0 promoter-Cre mice with Floxed-enhanced green fluorescent protein mice, in which the NC cells express enhanced green fluorescent protein. In the neonatal heart, NC stem cells (NCSCs) were localized predominantly in the outflow tract, but they were also distributed in a gradient from base to apex throughout the ventricular myocardium. Time-lapse video analysis revealed that the NCSCs were migratory. Some NCSCs persisted in the adult heart. On MI, NCSCs accumulated at the ischemic border zone area (BZA), which expresses monocyte chemoattractant protein-1 (MCP-1). Ex vivo cell migration assays demonstrated that MCP-1 induced NCSC migration and that this chemotactic effect was significantly depressed by an anti-MCP-1 antibody. Small NC cardiomyocytes first appeared in the BZA 2 weeks post-MI and gradually increased in number thereafter. \n CONCLUSIONS These results suggested that NCSCs migrate into the BZA via MCP-1/CCR2 signaling and contribute to the provision of cardiomyocytes for cardiac regeneration after MI.", "title": "Neural crest-derived stem cells migrate and differentiate into cardiomyocytes after myocardial infarction." }, { "docid": "37182501", "text": "Two mechanisms account for generation of the human antibody repertoire; V(D)J recombination during the early stages of B-cell development in the bone marrow and somatic mutation of immunoglobulin genes in mature B cells responding to antigen in the periphery. V(D)J recombination produces diversity by random joining of gene segments and somatic mutation by introducing random point mutations. Both are required to attain the degree of antigen receptor diversification that is necessary for immune protection: defects in either mechanism are associated with increased susceptibility to infection. However, the downside of producing enormous random diversity in the antibody repertoire is the generation of autoantibodies. To prevent autoimmunity B cells expressing autoantibodies are regulated by strict mechanisms that either modify the specificity of autoantibodies or the fate of cells expressing such antibodies. Abnormalities in B-cell self-tolerance are associated with a large number of autoimmune diseases, but the precise nature of the defects is less well defined. Here we summarize recent data on the self-reactive B-cell repertoire in healthy humans and in patients with autoimmunity.", "title": "B-cell self-tolerance in humans." }, { "docid": "12324049", "text": "We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.", "title": "Whole-genome fingerprint of the DNA methylome during human B cell differentiation" }, { "docid": "7666498", "text": "Mitosis is controlled by multiple kinases that drive cell cycle progression and prevent chromosome mis-segregation. Aurora kinase B interacts with survivin, borealin and incenp to form the chromosomal passenger complex (CPC), which is involved in the regulation of microtubule-kinetochore attachments and cytokinesis. Whereas genetic ablation of survivin, borealin or incenp results in early lethality at the morula stage, we show here that aurora B is dispensable for CPC function during early cell divisions and aurora B-null embryos are normally implanted. This is due to a crucial function of aurora C during these early embryonic cycles. Expression of aurora C decreases during late blastocyst stages resulting in post-implantation defects in aurora B-null embryos. These defects correlate with abundant prometaphase figures and apoptotic cell death of the aurora B-deficient inner cell mass. Conditional deletion of aurora B in somatic cells that do not express aurora C results in chromosomal misalignment and lack of chromosome segregation. Re-expression of wild-type, but not kinase-dead, aurora C rescues this defect, suggesting functional overlap between these two kinases. Finally, aurora B-null cells partially arrest in the presence of nocodazole, suggesting that this kinase is not essential for the spindle assembly checkpoint.", "title": "Genetic disruption of aurora B uncovers an essential role for aurora C during early mammalian development." } ]
363
EG7 tumors can be killed by systemic oxaliplatin primed CD8+ T cells from the tumor-draining lymph node cells.
[ { "docid": "5386514", "text": "The therapeutic efficacy of anticancer chemotherapies may depend on dendritic cells (DCs), which present antigens from dying cancer cells to prime tumor-specific interferon-γ (IFN-γ)–producing T lymphocytes. Here we show that dying tumor cells release ATP, which then acts on P2X7 purinergic receptors from DCs and triggers the NOD-like receptor family, pyrin domain containing-3 protein (NLRP3)-dependent caspase-1 activation complex ('inflammasome'), allowing for the secretion of interleukin-1β (IL-1β). The priming of IFN-γ–producing CD8+ T cells by dying tumor cells fails in the absence of a functional IL-1 receptor 1 and in Nlpr3-deficient (Nlrp3−/−) or caspase-1–deficient (Casp-1−/−) mice unless exogenous IL-1β is provided. Accordingly, anticancer chemotherapy turned out to be inefficient against tumors established in purinergic receptor P2rx7−/− or Nlrp3−/− or Casp1−/− hosts. Anthracycline-treated individuals with breast cancer carrying a loss-of-function allele of P2RX7 developed metastatic disease more rapidly than individuals bearing the normal allele. These results indicate that the NLRP3 inflammasome links the innate and adaptive immune responses against dying tumor cells.", "title": "Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors" } ]
[ { "docid": "27567994", "text": "The generation of tumor-directed cytotoxic T lymphocytes is considered crucial for the induction of antitumor immunity. To activate these CD8(+) T cells, antigen-presenting cells (APCs) must initially acquire tumor cell-associated antigens. The major source of tumor antigens is dead tumor cells, but little is known about how APCs in draining lymph nodes acquire and crosspresent these antigens. Here we show that CD169(+) macrophages phagocytose dead tumor cells transported via lymphatic flow and subsequently crosspresent tumor antigens to CD8(+) T cells. Subcutaneous immunization with irradiated tumor cells protects mice from syngenic tumor. However, tumor antigen-specific CD8(+) T cell activation and subsequent antitumor immunity are severely impaired in mice depleted with CD169(+) macrophages. Neither migratory dendritic cells (DCs) nor lymph node-resident conventional DCs are essential for the crosspresentation of tumor antigens. Thus, we have identified CD169(+) macrophages as lymph node-resident APCs dominating early activation of tumor antigen-specific CD8(+) T cells.", "title": "CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens." }, { "docid": "8182950", "text": "In subunit vaccines, strong CD8(+) T-cell responses are desired, yet they are elusive at reasonable adjuvant doses. We show that targeting adjuvant to the lymph node (LN) via ultrasmall polymeric nanoparticles (NPs), which rapidly drain to the LN after intradermal injection, greatly enhances adjuvant efficacy at low doses. Coupling CpG-B or CpG-C oligonucleotides to NPs led to better dual-targeting of adjuvant and antigen (codelivered on separate NPs) in cross-presenting dendritic cells compared with free adjuvant. This led to enhanced dendritic cell maturation and T helper 1 (Th1)-cytokine secretion, in turn driving stronger effector CD8(+) T-cell activation with enhanced cytolytic profiles and, importantly, more powerful memory recall. With only 4 μg CpG, NP-CpG-B could substantially protect mice from syngeneic tumor challenge, even after 4 mo of vaccination, compared with free CpG-B. Together, these results show that nanocarriers can enhance vaccine efficacy at a low adjuvant dose for inducing potent and long-lived cellular immunity.", "title": "Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose." }, { "docid": "20610557", "text": "In recent years, the immune-potentiating effects of some widely used chemotherapeutic agents have been increasingly appreciated. This provides a rationale for combining conventional chemotherapy with immunotherapy strategies to achieve durable therapeutic benefits. Previous studies have implicated the immunomodulatory effects of melphalan, an alkylating agent commonly used to treat multiple myeloma, but the underlying mechanisms remain obscure. In the present study, we investigated the impact of melphalan on endogenous immune cells as well as adoptively transferred tumor-specific CD4(+) T cells in tumor-bearing mice. We showed that melphalan treatment resulted in a rapid burst of inflammatory cytokines and chemokines during the cellular recovery phase after melphalan-induced myelodepletion and leukodepletion. After melphalan treatment, tumor cells exhibited characteristics of immunogenic cell death, including membrane translocation of the endoplasmic reticulum-resident calreticulin and extracellular release of high-mobility group box 1. Additionally, there was enhanced tumor Ag uptake by dendritic cells in the tumor-draining lymph node. Consistent with these immunomodulatory effects, melphalan treatment of tumor-bearing mice led to the activation of the endogenous CD8(+) T cells and, more importantly, effectively drove the clonal expansion and effector differentiation of adoptively transferred tumor-specific CD4(+) T cells. Notably, the combination of melphalan and CD4(+) T cell adoptive cell therapy was more efficacious than either treatment alone in prolonging the survival of mice with advanced B cell lymphomas or colorectal tumors. These findings provide mechanistic insights into melphalan's immunostimulatory effects and demonstrate the therapeutic potential of combining melphalan with adoptive cell therapy utilizing antitumor CD4(+) T cells.", "title": "Alkylating agent melphalan augments the efficacy of adoptive immunotherapy using tumor-specific CD4+ T cells." }, { "docid": "20646904", "text": "Targeting of proteins to APCs is an attractive strategy for eliciting adaptive immune responses. However, the relationship between the choice of the targeted receptor and the quality and quantity of responses remains poorly understood. We describe a strategy for expression of Ags including hydrophobic proteins as soluble fusion proteins that are optimized for proteasome-dependent MHC class I-restricted cross-presentation and form stable complexes with a wide variety of targeting Abs. Upon s.c. immunization, these complexes were initially taken up by CD169+ lymph node subcapsular sinus macrophages. In the OVA model system, receptor-targeted antigenic complexes primed specific T and B cell responses in vitro and in vivo at least 100-fold more efficiently than Ag alone. Comparison of 10 targeting receptors allowed us to establish a ranking with respect to priming of CD8+ T cell responses and demonstrated striking differences with respect to the relative efficacy of CD8+ and CD4+ T cell subset and B cell priming. The described fusion proteins should help in developing optimized strategies for targeted delivery of protein Ags in the context of tolerization or vaccination.", "title": "Fusion proteins for versatile antigen targeting to cell surface receptors reveal differential capacity to prime immune responses." }, { "docid": "37444589", "text": "Although 13 years have passed since identification of human immunodeficiency virus-1 (HIV-1) as the cause of AIDS, we do not yet know how HIV kills its primary target, the T cell that carries the CD4 antigen. We and others have shown an increase in the percentage of apoptotic cells among circulating CD4+ (and CD8+) T cells of HIV-seropositive individuals and an increase in frequency of apoptosis with disease progression. However, it is not known if this apoptosis occurs in infected or uninfected T cells. We show here, using in situ labelling of lymph nodes from HIV-infected children and SIV-infected macaques, that apoptosis occurs predominantly in bystander cells and not in the productively infected cells themselves. These data have implications for pathogenesis and therapy, namely, arguing that rational drug therapy may involve combination agents targeting viral replication in infected cells and apoptosis of uninfected cells.", "title": "Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes" }, { "docid": "11020556", "text": "Skin dendritic cells (DCs) are thought to act as key initiators of local T cell immunity. Here we show that after skin infection with herpes simplex virus (HSV), cytotoxic T lymphocyte (CTL) activation required MHC class I-restricted presentation by nonmigratory CD8(+) DCs rather than skin-derived DCs. Despite a lack of direct presentation by migratory DCs, blocking their egress from infected skin substantially inhibited class I-restricted presentation and HSV-specific CTL responses. These results support the argument for initial transport of antigen by migrating DCs, followed by its transfer to the lymphoid-resident DCs for presentation and CTL priming. Given that relatively robust CTL responses were seen with small numbers of skin-emigrant DCs, we propose that this inter-DC antigen transfer functions to amplify presentation across a larger network of lymphoid-resident DCs for efficient T cell activation.", "title": "Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming." }, { "docid": "13231899", "text": "Vaccines are largely ineffective for patients with established cancer, as advanced disease requires potent and sustained activation of CD8(+) cytotoxic T lymphocytes (CTLs) to kill tumor cells and clear the disease. Recent studies have found that subsets of dendritic cells (DCs) specialize in antigen cross-presentation and in the production of cytokines, which regulate both CTLs and T regulatory (Treg) cells that shut down effector T cell responses. Here, we addressed the hypothesis that coordinated regulation of a DC network, and plasmacytoid DCs (pDCs) and CD8(+) DCs in particular, could enhance host immunity in mice. We used functionalized biomaterials incorporating various combinations of an inflammatory cytokine, immune danger signal, and tumor lysates to control the activation and localization of host DC populations in situ. The numbers of pDCs and CD8(+) DCs, and the endogenous production of interleukin-12, all correlated strongly with the magnitude of protective antitumor immunity and the generation of potent CD8(+) CTLs. Vaccination by this method maintained local and systemic CTL responses for extended periods while inhibiting FoxP3 Treg activity during antigen clearance, resulting in complete regression of distant and established melanoma tumors. The efficacy of this vaccine as a monotherapy against large invasive tumors may be a result of the local activity of pDCs and CD8(+) DCs induced by persistent danger and antigen signaling at the vaccine site. These results indicate that a critical pattern of DC subsets correlates with the evolution of therapeutic antitumor responses and provide a template for future vaccine design.", "title": "In situ regulation of DC subsets and T cells mediates tumor regression in mice." }, { "docid": "8144920", "text": "BACKGROUND Dendritic cells (DC) are the professional antigen-presenting cells of the immune system, fully equipped to prime naive T cells and thus essential components for cancer immunotherapy. \n METHODS We tested the influence of several elements (cPPT, trip, WPRE, SIN) on the transduction efficiency of human DC. Human and murine DC were transduced with tNGFR-encoding lentiviruses to assess the effect of transduction on phenotype and function. Human DC were transduced with lentiviruses encoding huIi80MAGE-A3 and murine DC with huIi80tOVA to test antigen presentation. \n RESULTS A self-inactivating (SIN) lentiviral vector containing the trip element was most efficient in transducing human DC. The transduction of DC with trip/SIN tNGFR encoding lentiviral vectors at MOI 15 resulted in stable gene expression in up to 94.6% (murine) and 88.2% (human) of the mature DC, without perturbing viability, phenotype and function. Human huIi80MAGE-A3-transduced DC were able to stimulate MAGE-A3-specific CD4(+) and CD8(+) T cell clones and could prime both MAGE-A3-specific CD4(+) and CD8(+) T cells in vitro. Murine huIi80tOVA-transduced DC were able to present OVA peptides in the context of MHC class I and class II in vitro and induced a strong OVA-specific cytotoxic T lymphocyte response in vivo, that was protective against subsequent challenge with OVA-expressing tumor cells. \n CONCLUSIONS We show that, using lentiviral vectors, efficient gene transfer in human and murine DC can be obtained and that these DC can elicit antigen-specific immune responses in vitro and in vivo. The composition of the transfer vector has a major impact on the transduction efficiency.", "title": "Lentivirally transduced dendritic cells as a tool for cancer immunotherapy." }, { "docid": "42065070", "text": "Early events during human immunodeficiency virus infections are considered to reflect the capacity of the host to control infection. We have studied early virus and host parameters during the early phase of simian immunodeficiency virus SIVmnd-1 nonpathogenic infection in its natural host, Mandrillus sphinx. Four mandrills were experimentally infected with a primary SIVmnd-1 strain derived from a naturally infected mandrill. Two noninfected control animals were monitored in parallel. Blood and lymph nodes were collected at three time points before infection, twice a week during the first month, and at days 60, 180, and 360 postinfection (p.i.). Anti-SIVmnd-1 antibodies were detected starting from days 28 to 32 p.i. Neither elevated temperature nor increased lymph node size were observed. The viral load in plasma peaked between days 7 to 10 p.i. (2 x 10(6) to 2 x 10(8) RNA equivalents/ml). Viremia then decreased 10- to 1,000-fold, reaching the viral set point between days 30 to 60 p.i. The levels during the chronic phase of infection were similar to that in the naturally infected donor mandrill (2 x 10(5) RNA equivalents/ml). The CD4(+) cell numbers and percentages in blood and lymph nodes decreased slightly (<10%) during primary infection, and CD8(+) cell numbers increased transiently. All values returned to preinfection infection levels by day 30 p.i. CD8(+) cell numbers or percentages, in peripheral blood and lymph nodes, did not increase during the 1 year of follow-up. In conclusion, SIVmnd-1 has the capacity for rapid and extensive replication in mandrills. Despite high levels of viremia, CD4(+) and CD8(+) cell numbers remained stable in the post-acute phase of infection, raising questions regarding the susceptibility of mandrill T cells to activation and/or cell death in response to SIVmnd-1 infection in vivo.", "title": "High levels of viral replication contrast with only transient changes in CD4(+) and CD8(+) cell numbers during the early phase of experimental infection with simian immunodeficiency virus SIVmnd-1 in Mandrillus sphinx." }, { "docid": "3930020", "text": "Epidermal Langerhans cells (LCs) play a key role in immune defense mechanisms and in numerous immunological disorders. In this report, we show that percutaneous infection of C57BL/6 mice with the helminth parasite Schistosoma mansoni leads to the activation of LCs but, surprisingly, to their retention in the epidermis. Moreover, using an experimental model of LC migration induced by tumor necrosis factor (TNF)-α, we show that parasites transiently impair the departure of LCs from the epidermis and their subsequent accumulation as dendritic cells in the draining lymph nodes. The inhibitory effect is mediated by soluble lipophilic factors released by the parasites and not by host-derived antiinflammatory cytokines, such as interleukin-10. We find that prostaglandin (PG)D2, but not the other major eicosanoids produced by the parasites, specifically impedes the TNF-α–triggered migration of LCs through the adenylate cyclase–coupled PGD2 receptor (DP receptor). Moreover, the potent DP receptor antagonist BW A868C restores LC migration in infected mice. Finally, in a model of contact allergen-induced LC migration, we show that activation of the DP receptor not only inhibits LC emigration but also dramatically reduces the contact hypersensitivity responses after challenge. Taken together, we propose that the inhibition of LC migration could represent an additional stratagem for the schistosomes to escape the host immune system and that PGD2 may play a key role in the control of cutaneous immune responses.", "title": "Role of the Parasite-Derived Prostaglandin D2 in the Inhibition of Epidermal Langerhans Cell Migration during Schistosomiasis Infection" }, { "docid": "21719289", "text": "Although most vaccines are administered i.m., little is known about the dendritic cells (DCs) that are present within skeletal muscles. In this article, we show that expression of CD64, the high-affinity IgG receptor FcγRI, distinguishes conventional DCs from monocyte-derived DCs (Mo-DCs). By using such a discriminatory marker, we defined the distinct DC subsets that reside in skeletal muscles and identified their migratory counterparts in draining lymph nodes (LNs). We further used this capability to analyze the functional specialization that exists among muscle DCs. After i.m. administration of Ag adsorbed to alum, we showed that alum-injected muscles contained large numbers of conventional DCs that belong to the CD8α(+)- and CD11b(+)-type DCs. Both conventional DC types were capable of capturing Ag and of migrating to draining LNs, where they efficiently activated naive T cells. In alum-injected muscles, Mo-DCs were as numerous as conventional DCs, but only a small fraction migrated to draining LNs. Therefore, alum by itself poorly induces Mo-DCs to migrate to draining LNs. We showed that addition of small amounts of LPS to alum enhanced Mo-DC migration. Considering that migratory Mo-DCs had, on a per cell basis, a higher capacity to induce IFN-γ-producing T cells than conventional DCs, the addition of LPS to alum enhanced the overall immunogenicity of Ags presented by muscle-derived DCs. Therefore, a full understanding of the role of adjuvants during i.m. vaccination needs to take into account the heterogeneous migratory and functional behavior of muscle DCs and Mo-DCs revealed in this study.", "title": "CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization." }, { "docid": "15128866", "text": "Metastatic melanoma is a rapidly progressing disease with high mortality rate and limited treatment options. Immunotherapy based on tumor-targeting cytotoxic T cell responses represents a promising strategy. To assist in its development, we examined the possibility and efficacy of using CD4+ cytotoxic T cells. The regulatory mechanisms controlling CD4+ T cell-mediated cytotoxicity were also investigated. We found that naturally occurring granzyme B and perforin-expressing CD4+ cytotoxic T cells can be recovered from metastatic melanoma patients at significantly elevated frequencies compared to those from healthy controls. These CD4+ cytotoxic T cells were also capable of killing autologous tumor cells harvested from metastatic melanoma, independent of CD8+ T cells or any other cell types. However, several restricting factors were observed. First, the cytolytic activity by CD4+ T cells required high MHC class II expression on melanoma cells, which was not satisfied in a subset of melanomas. Second, the granzyme B and perforin release by activated CD4+ cytotoxic T cells was reduced after coculturing with autologous melanoma cells, characterized by low LAMP-1 expression and low granzyme B and perforin secretion in the supernatant. This suggested that inhibitory mechanisms were present to suppress CD4+ cytotoxic T cells. Indeed, blockade of PD-1 and CTLA-4 had increased the cytolytic activity of CD4+ T cells but was only effective in MHC class II high but not MHC class II low melanomas. Together, our study showed that CD4+ T cell-mediated cytotoxicity could eliminate primary melanoma cells but the efficacy depended on MHC class II expression.", "title": "CD4+ T cell-mediated cytotoxicity eliminates primary tumor cells in metastatic melanoma through high MHC class II expression and can be enhanced by inhibitory receptor blockade" }, { "docid": "17327939", "text": "Antigen targeting and adjuvancy schemes that respectively facilitate delivery of antigen to dendritic cells and elicit their activation have been explored in vaccine development. Here we investigate whether nanoparticles can be used as a vaccine platform by targeting lymph node–residing dendritic cells via interstitial flow and activating these cells by in situ complement activation. After intradermal injection, interstitial flow transported ultra-small nanoparticles (25 nm) highly efficiently into lymphatic capillaries and their draining lymph nodes, targeting half of the lymph node–residing dendritic cells, whereas 100-nm nanoparticles were only 10% as efficient. The surface chemistry of these nanoparticles activated the complement cascade, generating a danger signal in situ and potently activating dendritic cells. Using nanoparticles conjugated to the model antigen ovalbumin, we demonstrate generation of humoral and cellular immunity in mice in a size- and complement-dependent manner.", "title": "Exploiting lymphatic transport and complement activation in nanoparticle vaccines" }, { "docid": "1336292", "text": "One major role of the thymus is to provide the peripheral immune system with mature T cells, but the mechanisms involving the cellular export are not fully understood. In this study, we examined the ability of a novel immunosuppressive reagent, FTY720, to inhibit T cell export from the thymus. Daily administration of FTY720 at a dose of 1 mg / kg resulted in a marked decrease in the number of peripheral blood T lymphocytes. In the thymus, long-term daily administration of FTY720 caused a three- to fourfold increase in the proportion of mature medullary thymocytes (CD4(+)CD8(-) and CD4(-)CD8(+)) as well as a slight decrease in the double-positive cell (CD4(+)CD8(+)) ratio. Phenotypic analysis (TCRalpha beta, H-2K(d), CD44, CD69 and CD24) revealed that these increased subsets represent possible peripheral recent thymic emigrants. High level expression of L-selectin by these subsets further suggests that they were prevented from leaving the thymus. By intrathymic labeling with fluorescein isothiocyanate, only one fourth of labeled cells could be detected in the lymph nodes and in the spleen of FTY720-treated mice compared to saline-treated control mice. Taken together, these results suggest that the immunosuppressive action of FTY720, at least in part, could be due to its inhibitory effect on T cell emigration from the thymus to the periphery.", "title": "Immunosuppressant FTY720 inhibits thymocyte emigration." }, { "docid": "4394525", "text": "Nociceptor sensory neurons are specialized to detect potentially damaging stimuli, protecting the organism by initiating the sensation of pain and eliciting defensive behaviours. Bacterial infections produce pain by unknown molecular mechanisms, although they are presumed to be secondary to immune activation. Here we demonstrate that bacteria directly activate nociceptors, and that the immune response mediated through TLR2, MyD88, T cells, B cells, and neutrophils and monocytes is not necessary for Staphylococcus aureus-induced pain in mice. Mechanical and thermal hyperalgesia in mice is correlated with live bacterial load rather than tissue swelling or immune activation. Bacteria induce calcium flux and action potentials in nociceptor neurons, in part via bacterial N-formylated peptides and the pore-forming toxin α-haemolysin, through distinct mechanisms. Specific ablation of Nav1.8-lineage neurons, which include nociceptors, abrogated pain during bacterial infection, but concurrently increased local immune infiltration and lymphadenopathy of the draining lymph node. Thus, bacterial pathogens produce pain by directly activating sensory neurons that modulate inflammation, an unsuspected role for the nervous system in host-pathogen interactions.", "title": "Bacteria activate sensory neurons that modulate pain and inflammation" }, { "docid": "1071991", "text": "Live attenuated simian immunodeficiency virus (SIV) vaccines (LAVs) remain the most efficacious of all vaccines in nonhuman primate models of HIV and AIDS, yet the basis of their robust protection remains poorly understood. Here we show that the degree of LAV-mediated protection against intravenous wild-type SIVmac239 challenge strongly correlates with the magnitude and function of SIV-specific, effector-differentiated T cells in the lymph node but not with the responses of such T cells in the blood or with other cellular, humoral and innate immune parameters. We found that maintenance of protective T cell responses is associated with persistent LAV replication in the lymph node, which occurs almost exclusively in follicular helper T cells. Thus, effective LAVs maintain lymphoid tissue-based, effector-differentiated, SIV-specific T cells that intercept and suppress early wild-type SIV amplification and, if present in sufficient frequencies, can completely control and perhaps clear infection, an observation that provides a rationale for the development of safe, persistent vectors that can elicit and maintain such responses.", "title": "Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines" }, { "docid": "28247027", "text": "T cells are activated by antigen (Ag)-bearing dendritic cells (DCs) in lymph nodes in three phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8⁺ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, whereas higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation but yielded different transcriptome signatures at 12 hr and 24 hr. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure, resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics.", "title": "Antigen availability determines CD8⁺ T cell-dendritic cell interaction kinetics and memory fate decisions." }, { "docid": "24349992", "text": "Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a \"lethal tumor micro-environment. \" Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a \"metabolic\" and \"mutagenic\" motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the \"Reverse Warburg Effect\"). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use \"oxidative stress\" in adjacent fibroblasts (i) as an \"engine\" to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the \"field effect\" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively \"contagious\"--spread from cell-to-cell like a virus--creating an \"oncogenic/mutagenic\" field promoting widespread DNA damage.", "title": "Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells." }, { "docid": "12670680", "text": "In systemic lupus erythematosus (SLE), self-reactive antibodies can target the kidney (lupus nephritis), leading to functional failure and possible mortality. We report that activation of basophils by autoreactive IgE causes their homing to lymph nodes, promoting T helper type 2 (T(H)2) cell differentiation and enhancing the production of self-reactive antibodies that cause lupus-like nephritis in mice lacking the Src family protein tyrosine kinase Lyn (Lyn(-/-) mice). Individuals with SLE also have elevated serum IgE, self-reactive IgEs and activated basophils that express CD62 ligand (CD62L) and the major histocompatibility complex (MHC) class II molecule human leukocyte antigen-DR (HLA-DR), parameters that are associated with increased disease activity and active lupus nephritis. Basophils were also present in the lymph nodes and spleen of subjects with SLE. Thus, in Lyn(-/-) mice, basophils and IgE autoantibodies amplify autoantibody production that leads to lupus nephritis, and in individuals with SLE IgE autoantibodies and activated basophils are factors associated with disease activity and nephritis.", "title": "BASOPHILS AND THE T HELPER 2 ENVIRONMENT CAN PROMOTE THE DEVELOPMENT OF LUPUS NEPHRITIS" } ]
364
EGR2 is important to myelination of the peripheral nervous system.
[ { "docid": "1550937", "text": "Lymphocytes provide optimal responses against pathogens with minimal inflammatory pathology. However, the intrinsic mechanisms regulating these responses are unknown. Here, we report that deletion of both transcription factors Egr2 and Egr3 in lymphocytes resulted in a lethal autoimmune syndrome with excessive serum proinflammatory cytokines but also impaired antigen receptor-induced proliferation of B and T cells. Egr2- and Egr3-defective B and T cells had hyperactive signal transducer and activator of transcription-1 (STAT1) and STAT3 while antigen receptor-induced activation of transcription factor AP-1 was severely impaired. We discovered that Egr2 and/or Egr3 directly induced expression of suppressor of cytokine signaling-1 (SOCS1) and SOCS3, inhibitors of STAT1 and STAT3, and also blocked the function of Batf, an AP-1 inhibitor, in B and T cells. Thus, Egr2 and Egr3 regulate B and T cell function in adaptive immune responses and homeostasis by promoting antigen receptor signaling and controlling inflammation.", "title": "The Transcription Factors Egr2 and Egr3 Are Essential for the Control of Inflammation and Antigen-Induced Proliferation of B and T Cells" } ]
[ { "docid": "2601324", "text": "Oligodendrocytes, the myelin-forming glial cells of the central nervous system, maintain long-term axonal integrity. However, the underlying support mechanisms are not understood. Here we identify a metabolic component of axon–glia interactions by generating conditional Cox10 (protoheme IX farnesyltransferase) mutant mice, in which oligodendrocytes and Schwann cells fail to assemble stable mitochondrial cytochrome c oxidase (COX, also known as mitochondrial complex IV). In the peripheral nervous system, Cox10 conditional mutants exhibit severe neuropathy with dysmyelination, abnormal Remak bundles, muscle atrophy and paralysis. Notably, perturbing mitochondrial respiration did not cause glial cell death. In the adult central nervous system, we found no signs of demyelination, axonal degeneration or secondary inflammation. Unlike cultured oligodendrocytes, which are sensitive to COX inhibitors, post-myelination oligodendrocytes survive well in the absence of COX activity. More importantly, by in vivo magnetic resonance spectroscopy, brain lactate concentrations in mutants were increased compared with controls, but were detectable only in mice exposed to volatile anaesthetics. This indicates that aerobic glycolysis products derived from oligodendrocytes are rapidly metabolized within white matter tracts. Because myelinated axons can use lactate when energy-deprived, our findings suggest a model in which axon–glia metabolic coupling serves a physiological function.", "title": "Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity" }, { "docid": "19238", "text": "Two human Golli (for gene expressed in the oligodendrocyte lineage)-MBP (for myelin basic protein) cDNAs have been isolated from a human oligodendroglioma cell line. Analysis of these cDNAs has enabled us to determine the entire structure of the human Golli-MBP gene. The Golli-MBP gene, which encompasses the MBP transcription unit, is approximately 179 kb in length and consists of 10 exons, seven of which constitute the MBP gene. The human Golli-MBP gene contains two transcription start sites, each of which gives rise to a family of alternatively spliced transcripts. At least two Golli-MBP transcripts, containing the first three exons of the gene and one or more MBP exons, are produced from the first transcription start site. The second family of transcripts contains only MBP exons and produces the well-known MBPs. In humans, RNA blot analysis revealed that Golli-MBP transcripts were expressed in fetal thymus, spleen, and human B-cell and macrophage cell lines, as well as in fetal spinal cord. These findings clearly link the expression of exons encoding the autoimmunogen/encephalitogen MBP in the central nervous system to cells and tissues of the immune system through normal expression of the Golli-MBP gene. They also establish that this genetic locus, which includes the MBP gene, is conserved among species, providing further evidence that the MBP transcription unit is an integral part of the Golli transcription unit and suggest that this structural arrangement is important for the genetic function and/or regulation of these genes.", "title": "The human myelin basic protein gene is included within a 179-kilobase transcription unit: expression in the immune and central nervous systems." }, { "docid": "17814815", "text": "We report a newly developed technique for high-resolution in vivo imaging of myelinated axons in the brain, spinal cord and peripheral nerve that requires no fluorescent labeling. This method, based on spectral confocal reflectance microscopy (SCoRe), uses a conventional laser-scanning confocal system to generate images by merging the simultaneously reflected signals from multiple lasers of different wavelengths. Striking color patterns unique to individual myelinated fibers are generated that facilitate their tracing in dense axonal areas. These patterns highlight nodes of Ranvier and Schmidt-Lanterman incisures and can be used to detect various myelin pathologies. Using SCoRe we carried out chronic brain imaging up to 400 μm deep, capturing de novo myelination of mouse cortical axons in vivo. We also established the feasibility of imaging myelinated axons in the human cerebral cortex. SCoRe adds a powerful component to the evolving toolbox for imaging myelination in living animals and potentially in humans.", "title": "Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy" }, { "docid": "22647695", "text": "Autoreactive T cell responses have a crucial role in central nervous system (CNS) diseases such as multiple sclerosis. Recent data indicate that CNS autoimmunity can be mediated by two distinct lineages of CD4+ T cells that are defined by the production of either interferon-γ or interleukin-17. The activity of these CD4+ T cell subsets within the CNS influences the pathology and clinical course of disease. New animal models show that myelin-specific CD8+ T cells can also mediate CNS autoimmunity. This Review focuses on recent progress in delineating the pathogenic mechanisms, regulation and interplay between these different T cell subsets in CNS autoimmunity.", "title": "Autoimmune T cell responses in the central nervous system" }, { "docid": "10831818", "text": "OBJECTIVE Multiple sclerosis (MS) is a disease of the central nervous system with marked heterogeneity in several aspects including pathological processes. Based on infiltrating immune cells, deposition of humoral factors and loss of oligodendrocytes and/or myelin proteins, four lesion patterns have been described. Pattern II is characterized by antibody and complement deposition in addition to T-cell infiltration. MS is considered a T-cell-mediated disease, but until now the study of pathogenic T cells has encountered major challenges, most importantly the limited access of brain-infiltrating T cells. Our objective was to identify, isolate, and characterize brain-infiltrating clonally expanded T cells in pattern II MS lesions. \n METHODS We used next-generation sequencing to identify clonally expanded T cells in demyelinating pattern II brain autopsy lesions, subsequently isolated these as T-cell clones from autologous cerebrospinal fluid and functionally characterized them. \n RESULTS We identified clonally expanded CD8(+) but also CD4(+) T cells in demyelinating pattern II lesions and for the first time were able to isolate these as live T-cell clones. The functional characterization shows that T cells releasing Th2 cytokines and able to provide B cell help dominate the T-cell infiltrate in pattern II brain lesions. \n INTERPRETATION Our data provide the first functional evidence for a putative role of Th2/Tc2 cells in pattern II MS supporting the existence of this pathogenic phenotype and questioning the protective role that is generally ascribed to Th2 cells. Our observations are important to consider for future treatments of pattern II MS patients.", "title": "Central role of Th2/Tc2 lymphocytes in pattern II multiple sclerosis lesions" }, { "docid": "34854444", "text": "The gene-of-the-oligodendrocyte lineage (Golli)-MBP transcription unit contains three Golli-specific exons together with eight exons of the \"classical\" myelin basic protein (MBP) gene, yielding alternatively spliced proteins which share amino acid sequence with MBP. Unlike MBP, a late antigen expressed only in the nervous system, Golli gene products are expressed pre- and post-natally at many sites. In this study, we determined the sequence of Golli in rat by RT-PCR and 5' RACE and showed that Golli sequences are expressed in primary lymphoid organs as early as e16.5, which could explain the anergic rat T cell response we previously observed in Golli-induced meningitis.", "title": "Expression of Golli mRNA during development in primary immune lymphoid organs of the rat" }, { "docid": "854417", "text": "The effectiveness of interleukin 10 (IL-10) in the treatment of autoimmune-mediated central nervous system inflammation is controversial. Studies of the model system, experimental autoimmune encephalomyelitis (EAE), using various routes, regimens, and delivery methods of IL-10 suggest that these variables may affect its immunoregulatory function. To study the influence of these factors on IL-10 regulation of EAE pathogenesis, we have analyzed transgenic mice expressing human IL-10 (hIL-10) transgene under the control of a class II major histocompatibility complex (MHC) promoter. The hIL-10 transgenic mice are highly resistant to EAE induced by active immunization, and this resistance appears to be mediated by suppression of autoreactive T cell function. Myelin-reactive T helper 1 cells are induced but nonpathogenic in the IL-10 transgenic mice. Antibody depletion confirmed that EAE resistance is dependent on the presence of the transgenic IL-10. Mice expressing the hIL-10 transgene but not the endogenous murine IL-10 gene demonstrated that transgenic IL-10 from MHC class II–expressing cells is sufficient to block induction of EAE. This study demonstrates that IL-10 can prevent EAE completely if present at appropriate levels and times during disease induction.", "title": "Transgenic Interleukin 10 Prevents Induction of Experimental Autoimmune Encephalomyelitis " }, { "docid": "25687558", "text": "The genetically obese (ob/ob) mouse exhibits defective thermoregulatory responses to cold exposure. Pathophysiological explanations for this phenomenon have focused on abnormalities in intracellular metabolism or insensitivity of peripheral tissues to the thermogenic effects of catecholamines. Because the sympathetic nervous system (SNS) is subject to feedback regulation, a peripheral impairment in thermogenesis should be associated with a compensatory increase in SNS activity. To examine SNS activity in the ob/ob mouse, norepinephrine (NE) turnover was measured in heart and interscapular brown adipose tissue (IBAT) of ob/ob and lean mice. The results from studies utilizing radiolabeled NE or inhibition of NE biosynthesis with alpha-methyl-p-tyrosine to measure NE turnover demonstrated reductions in SNS activity of 33-56% in heart and of 45-73% in IBAT in ob/ob mice at ambient temperature (22 degrees C) compared with measurements in lean controls. During cold exposure (4 degrees C) NE turnover increased in heart and IBAT to a similar extent in both ob/ob and lean mice, but NE turnover rates in heart, and probably in IBAT as well, remained lower in the obese mice than in the lean despite the gradual development of hypothermia in the ob/ob mice during this period. Administration of naltrexone, a long-acting opiate antagonist, failed to reverse the suppression of SNS activity observed in the ob/ob mice. These data indicate that diminished SNS activity in ob/ob mice may be an additional factor contributing to the defective thermogenesis characteristic of these animals.", "title": "Diminished sympathetic nervous system activity in genetically obese (ob/ob) mouse." }, { "docid": "3870062", "text": "Chondroitin sulphate proteoglycans (CSPGs) upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs). Chondroitin 6-sulphotransferase-1 (C6ST-1) is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs). Using C6ST-1 knockout mice (KO), we studied post-injury changes in chondroitin sulphotransferase (CSST) expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT) showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury.", "title": "6-Sulphated Chondroitins Have a Positive Influence on Axonal Regeneration" }, { "docid": "4340358", "text": "The cellular and molecular mechanisms that enable us to sense cold are not well understood. Insights into this process have come from the use of pharmacological agents, such as menthol, that elicit a cooling sensation. Here we have characterized and cloned a menthol receptor from trigeminal sensory neurons that is also activated by thermal stimuli in the cool to cold range. This cold- and menthol-sensitive receptor, CMR1, is a member of the TRP family of excitatory ion channels, and we propose that it functions as a transducer of cold stimuli in the somatosensory system. These findings, together with our previous identification of the heat-sensitive channels VR1 and VRL-1, demonstrate that TRP channels detect temperatures over a wide range and are the principal sensors of thermal stimuli in the mammalian peripheral nervous system.", "title": "Identification of a cold receptor reveals a general role for TRP channels in thermosensation" }, { "docid": "36618603", "text": "The differentiation in vitro of murine embryonic stem cells to embryoid bodies mimics events that occur in vivo shortly before and after embryonic implantation. We have used this system, together with differential cDNA cloning, to identify genes the expression of which is regulated during early embryogenesis. Here we describe the isolation of several such cDNA clones, one of which corresponds to the gene H19. This gene is activated in extraembryonic cell types at the time of implantation, suggesting that it may play a role at this stage of development, and is subsequently expressed in all of the cells of the mid-gestation embryo with the striking exception of most of those of the developing central and peripheral nervous systems. After birth, expression of this gene ceases or is dramatically reduced in all tissues.", "title": "The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo." }, { "docid": "9197786", "text": "Nerve growth factor (NGF) is a potent survival and axon growth factor for neuronal populations in the peripheral nervous system. Although the mechanisms by which target-derived NGF influences survival of innervating neurons have been extensively investigated, its regulation of axonal growth and target innervation are just being elucidated. Here, we identify Wnt5a, a member of the Wnt family of secreted growth factors, as a key downstream effector of NGF in mediating axonal branching and growth in developing sympathetic neurons. Wnt5a is robustly expressed in sympathetic neurons when their axons are innervating NGF-expressing targets. NGF:TrkA signaling enhances neuronal expression of Wnt5a. Wnt5a rapidly induces axon branching while it has a long-term effect on promoting axon extension. Loss of Wnt5a function revealed that it is necessary for NGF-dependent axonal branching and growth, but not survival, in vitro. Furthermore, Wnt5a(-/-) mice display reduced innervation of NGF-expressing target tissues, and a subsequent increase in neuronal apoptosis, in vivo. Wnt5a functions in developing sympathetic neurons by locally activating protein kinase C in axons. Together, our findings define a novel regulatory pathway in which Wnt5a, expressed in sympathetic neurons in response to target-derived NGF, regulates innervation of peripheral targets.", "title": "Wnt5a mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons." }, { "docid": "17631671", "text": "Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.", "title": "Cadherins in brain morphogenesis and wiring." }, { "docid": "20544428", "text": "Recent studies have highlighted the involvement of the peripheral immune system in delayed cellular degeneration after stroke. In the permanent middle cerebral artery occlusion (MCAO) model of stroke, the spleen decreases in size. This reduction occurs through the release of splenic immune cells. Systemic treatment with human umbilical cord blood cells (HUCBC) 24 h post-stroke blocks the reduction in spleen size while significantly reducing infarct volume. Splenectomy 2 weeks prior to MCAO also reduces infarct volume, further demonstrating the detrimental role of this organ in stroke-induced neurodegeneration. Activation of the sympathetic nervous system after MCAO results in elevated catecholamine levels both at the level of the spleen, through direct splenic innervation, and throughout the systemic circulation upon release from the adrenal medulla. These catecholamines bind to splenic alpha and beta adrenoreceptors. This study examines whether catecholamines regulate the splenic response to stroke. Male Sprague-Dawley rats either underwent splenic denervation 2 weeks prior to MCAO or received injections of carvedilol, a pan adrenergic receptor blocker, prazosin, an alpha1 receptor blocker, or propranolol, a beta receptor blocker. Denervation was confirmed by reduced splenic expression of tyrosine hydroxylase. Denervation prior to MCAO did not alter infarct volume or spleen size. Propranolol treatment also had no effects on these outcomes. Treatment with either prazosin or carvedilol prevented the reduction in spleen size, yet only carvedilol significantly reduced infarct volume (p < 0.05). These results demonstrate that circulating blood borne catecholamines regulate the splenic response to stroke through the activation of both alpha and beta adrenergic receptors.", "title": "Blockade of adrenoreceptors inhibits the splenic response to stroke." }, { "docid": "519974", "text": "Mammals detect temperature with specialized neurons in the peripheral nervous system. Four TRPV-class channels have been implicated in sensing heat, and one TRPM-class channel in sensing cold. The combined range of temperatures that activate these channels covers a majority of the relevant physiological spectrum sensed by most mammals, with a significant gap in the noxious cold range. Here, we describe the characterization of ANKTM1, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8. ANKTM1 is a distant family member of TRP channels with very little amino acid similarity to TRPM8. It is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM8. Consistent with the expression of ANKTM1, we identify noxious cold-sensitive sensory neurons that also respond to capsaicin but not to menthol.", "title": "ANKTM1, a TRP-like Channel Expressed in Nociceptive Neurons, Is Activated by Cold Temperatures" }, { "docid": "43990286", "text": "Tissue engineering frequently involves cells and scaffolds to replace damaged or diseased tissue. It originated, in part, as a means of effecting the delivery of biomolecules such as insulin or neurotrophic factors, given that cells are constitutive producers of such therapeutic agents. Thus cell delivery is intrinsic to tissue engineering. Controlled release of biomolecules is also an important tool for enabling cell delivery since the biomolecules can enable cell engraftment, modulate inflammatory response or otherwise benefit the behavior of the delivered cells. We describe advances in cell and biomolecule delivery for tissue regeneration, with emphasis on the central nervous system (CNS). In the first section, the focus is on encapsulated cell therapy. In the second section, the focus is on biomolecule delivery in polymeric nano/microspheres and hydrogels for the nerve regeneration and endogenous cell stimulation. In the third section, the focus is on combination strategies of neural stem/progenitor cell or mesenchymal stem cell and biomolecule delivery for tissue regeneration and repair. In each section, the challenges and potential solutions associated with delivery to the CNS are highlighted.", "title": "Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system." }, { "docid": "7729656", "text": "Ionotropic glutamate receptors (iGluRs) constitute a family of ligand-gated ion channels that are essential for mediating fast synaptic transmission in the central nervous system. These receptors play an important role for the development and function of the nervous system, and are essential in learning and memory. However, iGluRs are also implicated in or have causal roles for several brain disorders, e.g. epilepsy, Alzheimer's disease, Parkinson's disease and schizophrenia. Their involvement in neurological diseases has stimulated widespread interest in their structure and function. Since the first publication in 1998 of the structure of a recombinant soluble protein comprising the ligand-binding domain of GluA2 extensive studies have afforded numerous crystal structures of wildtype and mutant proteins including different ligands. The structural information obtained combined with functional data have led to models for receptor activation and desensitization by agonists, inhibition by antagonists and block of desensitization by positive allosteric modulators. Furthermore, the structural and functional studies have formed a powerful platform for the design of new selective compounds.", "title": "Lessons from more than 80 structures of the GluA2 ligand-binding domain in complex with agonists, antagonists and allosteric modulators." }, { "docid": "3788528", "text": "The T cell antigen-specific repertoire is thought to be shaped by thymic expression of self molecules. Since a myelin basic protein (MBP)-like gene (golli-MBP) has been reported to be expressed by cells of the immune system, the present study was undertaken to determine whether the golli-MBP gene was expressed in the mouse thymus and, if so, to characterize transcripts of this gene in this organ. Using exon-specific primers for MBP and golli-MBP, cDNA from thymus and other tissues was amplified, and the amplified products analyzed by Southern blotting with exon-specific oligonucleotide probes. The amplified products were subcloned, and the inserts characterized by DNA sequencing. The thymic transcripts were found to contain golli-MBP exons 1, 2, 3, 5A, 5B, 5C, 6, 7, 8, and 11.", "title": "Thymic expression of the golli-myelin basic protein gene in the SJL/J mouse" }, { "docid": "23535770", "text": "Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.", "title": "Potential role of NF-kappaB in adult neural stem cells: the underrated steersman?" } ]
365
ER-localized phosphatase Sac1 processes PI4P through coordination with OSBP and the endosome-localized protein sorting nexin 2.
[ { "docid": "600437", "text": "VAP (VAPA and VAPB) is an evolutionarily conserved endoplasmic reticulum (ER)-anchored protein that helps generate tethers between the ER and other membranes through which lipids are exchanged across adjacent bilayers. Here, we report that by regulating PI4P levels on endosomes, VAP affects WASH-dependent actin nucleation on these organelles and the function of the retromer, a protein coat responsible for endosome-to-Golgi traffic. VAP is recruited to retromer budding sites on endosomes via an interaction with the retromer SNX2 subunit. Cells lacking VAP accumulate high levels of PI4P, actin comets, and trans-Golgi proteins on endosomes. Such defects are mimicked by downregulation of OSBP, a VAP interactor and PI4P transporter that participates in VAP-dependent ER-endosomes tethers. These results reveal a role of PI4P in retromer-/WASH-dependent budding from endosomes. Collectively, our data show how the ER can control budding dynamics and association with the cytoskeleton of another membrane by direct contacts leading to bilayer lipid modifications.", "title": "Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P" } ]
[ { "docid": "11250124", "text": "Synaptic vesicle recycling involves AP-2/clathrin-mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue-specific AP-1-sigma1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP-1-sigma1A complex mediates protein sorting between the trans-Golgi network and early endosomes. Vertebrates express three sigma1 subunit isoforms: A, B and C. The expressions of sigma1A and sigma1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from sigma1B-deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The sigma1B-deficient mice have reduced motor coordination and severely impaired long-term spatial memory. These data reveal a molecular mechanism for a severe human X-chromosome-linked mental retardation.", "title": "AP-1/sigma1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory." }, { "docid": "9680193", "text": "The ubiquitin-binding protein Hrs and endosomal sorting complex required for transport (ESCRT)-I and ESCRT-III are involved in sorting endocytosed and ubiquitinated receptors to lysosomes for degradation and efficient termination of signaling. In this study, we have investigated the role of the ESCRT-II subunit Vps22/EAP30 in degradative protein sorting of ubiquitinated receptors. Vps22 transiently expressed in HeLa cells was detected in endosomes containing endocytosed epidermal growth factor receptors (EGFRs) as well as Hrs and ESCRT-I and ESCRT-III. Depletion of Vps22 by small interfering RNA, which was accompanied by decreased levels of other ESCRT-II subunits, greatly reduced degradation of EGFR and its ligand EGF as well as the chemokine receptor CXCR4. EGFR accumulated on the limiting membranes of early endosomes and aberrantly small multivesicular bodies in Vps22-depleted cells. Phosphorylation and nuclear translocation of extracellular-signal-regulated kinase1/2 downstream of the EGF-activated receptor were sustained by depletion of Hrs or the ESCRT-I subunit Tsg101. In contrast, this was not the case when Vps22 was depleted. These results indicate an important role for Vps22 in ligand-induced EGFR and CXCR4 turnover and suggest that termination of EGF signaling occurs prior to ESCRT-II engagement.", "title": "Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation." }, { "docid": "4429388", "text": "The ESCRT (endosomal sorting complex required for transport) pathway is required for terminal membrane fission events in several important biological processes, including endosomal intraluminal vesicle formation, HIV budding and cytokinesis. VPS4 ATPases perform a key function in this pathway by recognizing membrane-associated ESCRT-III assemblies and catalysing their disassembly, possibly in conjunction with membrane fission. Here we show that the microtubule interacting and transport (MIT) domains of human VPS4A and VPS4B bind conserved sequence motifs located at the carboxy termini of the CHMP1–3 class of ESCRT-III proteins. Structures of VPS4A MIT–CHMP1A and VPS4B MIT–CHMP2B complexes reveal that the C-terminal CHMP motif forms an amphipathic helix that binds in a groove between the last two helices of the tetratricopeptide-like repeat (TPR) of the VPS4 MIT domain, but in the opposite orientation to that of a canonical TPR interaction. Distinct pockets in the MIT domain bind three conserved leucine residues of the CHMP motif, and mutations that inhibit these interactions block VPS4 recruitment, impair endosomal protein sorting and relieve dominant-negative VPS4 inhibition of HIV budding. Thus, our studies reveal how the VPS4 ATPases recognize their CHMP substrates to facilitate the membrane fission events required for the release of viruses, endosomal vesicles and daughter cells.", "title": "ESCRT-III recognition by VPS4 ATPases" }, { "docid": "11289247", "text": "The regulation and coordination of mitochondrial metabolism with hematopoietic stem cell (HSC) self-renewal and differentiation is not fully understood. Here we report that depletion of PTPMT1, a PTEN-like mitochondrial phosphatase, in inducible or hematopoietic-cell-specific knockout mice resulted in hematopoietic failure due to changes in the cell cycle and a block in the differentiation of HSCs. Surprisingly, the HSC pool was increased by ∼40-fold in PTPMT1 knockout mice. Reintroduction of wild-type PTPMT1, but not catalytically deficient PTPMT1 or truncated PTPMT1 lacking mitochondrial localization, restored differentiation capabilities of PTPMT1 knockout HSCs. Further analyses demonstrated that PTPMT1 deficiency altered mitochondrial metabolism and that phosphatidylinositol phosphate substrates of PTPMT1 directly enhanced fatty-acid-induced activation of mitochondrial uncoupling protein 2. Intriguingly, depletion of PTPMT1 from myeloid, T lymphoid, or B lymphoid progenitors did not cause any defects in lineage-specific knockout mice. This study establishes a crucial role of PTPMT1 in the metabolic regulation of HSC function.", "title": "Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation." }, { "docid": "17017465", "text": "The small GTPases, Rab5 and Rac, are essential for endocytosis and actin remodeling, respectively. Coordination of these processes is critical to achieve spatial restriction of intracellular signaling, which is essential for a variety of polarized functions. Here, we show that clathrin- and Rab5-mediated endocytosis are required for the activation of Rac induced by motogenic stimuli. Rac activation occurs on early endosomes, where the RacGEF Tiam1 is also recruited. Subsequent recycling of Rac to the plasma membrane ensures localized signaling, leading to the formation of actin-based migratory protrusions. Thus, membrane trafficking of Rac is required for the spatial resolution of Rac-dependent motogenic signals. We further demonstrate that a Rab5-to-Rac circuitry controls the morphology of motile mammalian tumor cells and primordial germinal cells during zebrafish development, suggesting that this circuitry is relevant for the regulation of migratory programs in various cells, in both in vitro settings and whole organisms.", "title": "Endocytic Trafficking of Rac Is Required for the Spatial Restriction of Signaling in Cell Migration" }, { "docid": "19561411", "text": "Orai1 and stromal interaction molecule 1 (STIM1) mediate store-operated Ca(2+) entry (SOCE) in immune cells. STIM1, an endoplasmic reticulum (ER) Ca(2+) sensor, detects store depletion and interacts with plasma membrane (PM)-resident Orai1 channels at the ER-PM junctions. However, the molecular composition of these junctions in T cells remains poorly understood. Here, we show that junctophilin-4 (JP4), a member of junctional proteins in excitable cells, is expressed in T cells and localized at the ER-PM junctions to regulate Ca(2+) signaling. Silencing or genetic manipulation of JP4 decreased ER Ca(2+) content and SOCE in T cells, impaired activation of the nuclear factor of activated T cells (NFAT) and extracellular signaling-related kinase (ERK) signaling pathways, and diminished expression of activation markers and cytokines. Mechanistically, JP4 directly interacted with STIM1 via its cytoplasmic domain and facilitated its recruitment into the junctions. Accordingly, expression of this cytoplasmic fragment of JP4 inhibited SOCE. Furthermore, JP4 also formed a complex with junctate, a Ca(2+)-sensing ER-resident protein, previously shown to mediate STIM1 recruitment into the junctions. We propose that the junctate-JP4 complex located at the junctions cooperatively interacts with STIM1 to maintain ER Ca(2+) homeostasis and mediate SOCE in T cells.", "title": "Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells." }, { "docid": "18264714", "text": "All cells perceive and respond to environmental stresses through elaborate stress-sensing networks. Yeast cells sense stress through diverse signaling pathways that converge on the transcription factors Msn2 and Msn4, which respond by initiating rapid, idiosyncratic cycles into and out of the nucleus. To understand the role of Msn2/4 nuclear localization dynamics, we combined time-lapse studies of Msn2-GFP localization in living cells with computational modeling of stress-sensing signaling networks. We find that several signaling pathways, including Ras/protein kinase A, AMP-activated kinase, the high-osmolarity response mitogen-activated protein kinase pathway, and protein phosphatase 1, regulate activation of Msn2 in distinct ways in response to different stresses. Moreover, we find that bursts of nuclear localization elicit a more robust transcriptional response than does sustained nuclear localization. Using stochastic modeling, we reproduce in silico the responses of Msn2 to different stresses, and demonstrate that bursts of localization arise from noise in the signaling pathways amplified by the small number of Msn2 molecules in the cell. This noise imparts diverse behaviors to genetically identical cells, allowing cell populations to \"hedge their bets\" in responding to an uncertain future, and to balance growth and survival in an unpredictable environment.", "title": "Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses" }, { "docid": "4388082", "text": "In a Drosophila follicle the oocyte always occupies a posterior position among a group of sixteen germline cells. Although the importance of this cell arrangement for the subsequent formation of the anterior-posterior axis of the embryo is well documented, the molecular mechanism responsible for the posterior localization of the oocyte was unknown. Here we show that the homophilic adhesion molecule DE-cadherin mediates oocyte positioning. During follicle biogenesis, DE-cadherin is expressed in germline (including oocyte) and surrounding follicle cells, with the highest concentration of DE-cadherin being found at the interface between oocyte and posterior follicle cells. Mosaic analysis shows that DE-cadherin is required in both germline and follicle cells for correct oocyte localization, indicating that germline-soma interactions may be involved in this process. By analysing the behaviour of the oocyte in follicles with a chimaeric follicular epithelium, we find that the position of the oocyte is determined by the position of DE-cadherin-expressing follicle cells, to which the oocyte attaches itself selectively. Among the DE-cadherin positive follicle cells, the oocyte preferentially contacts those cells that express higher levels of DE-cadherin. On the basis of these data, we propose that in wild-type follicles the oocyte competes successfully with its sister germline cells for contact to the posterior follicle cells, a sorting process driven by different concentrations of DE-cadherin. This is, to our knowledge, the first in vivo example of a cell-sorting process that depends on differential adhesion mediated by a cadherin.", "title": "Drosophila oocyte localization is mediated by differential cadherin-based adhesion." }, { "docid": "2593298", "text": "Receptor endocytosis is a fundamental step in controlling the magnitude, duration, and nature of cell signaling events. Confluent endothelial cells are contact inhibited in their growth and respond poorly to the proliferative signals of vascular endothelial growth factor (VEGF). In a previous study, we found that the association of vascular endothelial cadherin (VEC) with VEGF receptor (VEGFR) type 2 contributes to density-dependent growth inhibition (Lampugnani, G.M., A. Zanetti, M. Corada, T. Takahashi, G. Balconi, F. Breviario, F. Orsenigo, A. Cattelino, R. Kemler, T.O. Daniel, and E. Dejana. 2003. J. Cell Biol. 161:793–804). In the present study, we describe the mechanism through which VEC reduces VEGFR-2 signaling. We found that VEGF induces the clathrin-dependent internalization of VEGFR-2. When VEC is absent or not engaged at junctions, VEGFR-2 is internalized more rapidly and remains in endosomal compartments for a longer time. Internalization does not terminate its signaling; instead, the internalized receptor is phosphorylated, codistributes with active phospholipase C–γ, and activates p44/42 mitogen-activated protein kinase phosphorylation and cell proliferation. Inhibition of VEGFR-2 internalization reestablishes the contact inhibition of cell growth, whereas silencing the junction-associated density-enhanced phosphatase-1/CD148 phosphatase restores VEGFR-2 internalization and signaling. Thus, VEC limits cell proliferation by retaining VEGFR-2 at the membrane and preventing its internalization into signaling compartments.", "title": "Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments" }, { "docid": "12871002", "text": "We have studied the function of a conserved germline-specific nucleotidyltransferase protein, CDE-1, in RNAi and chromosome segregation in C. elegans. CDE-1 localizes specifically to mitotic chromosomes in embryos. This localization requires the RdRP EGO-1, which physically interacts with CDE-1, and the Argonaute protein CSR-1. We found that CDE-1 is required for the uridylation of CSR-1 bound siRNAs, and that in the absence of CDE-1 these siRNAs accumulate to inappropriate levels, accompanied by defects in both meiotic and mitotic chromosome segregation. Elevated siRNA levels are associated with erroneous gene silencing, most likely through the inappropriate loading of CSR-1 siRNAs into other Argonaute proteins. We propose a model in which CDE-1 restricts specific EGO-1-generated siRNAs to the CSR-1 mediated, chromosome associated RNAi pathway, thus separating it from other endogenous RNAi pathways. The conserved nature of CDE-1 suggests that similar sorting mechanisms may operate in other animals, including mammals.", "title": "CDE-1 Affects Chromosome Segregation through Uridylation of CSR-1-Bound siRNAs" }, { "docid": "15600979", "text": "EMSY links the BRCA2 pathway to sporadic breast/ovarian cancer. It encodes a nuclear protein that binds to the BRCA2 N-terminal domain implicated in chromatin/transcription regulation, but when sporadically amplified/overexpressed, increased EMSY level represses BRCA2 transactivation potential and induces chromosomal instability, mimicking the activity of BRCA2 mutations in the development of hereditary breast/ovarian cancer. In addition to chromatin/transcription regulation, EMSY may also play a role in the DNA-damage response, suggested by its ability to localize at chromatin sites of DNA damage/repair. This implies that EMSY overexpression may also repress BRCA2 in DNA-damage replication/checkpoint and recombination/repair, coordinated processes that also require its interacting proteins: PALB2, the partner and localizer of BRCA2; RPA, replication/checkpoint protein A; and RAD51, the inseparable recombination/repair enzyme. Here, using a well-characterized recombination/repair assay system, we demonstrate that a slight increase in EMSY level can indeed repress these two processes independently of transcriptional interference/repression. Since EMSY, RPA and PALB2 all bind to the same BRCA2 region, these findings further support a scenario wherein: (a) EMSY amplification may mimic BRCA2 deficiency, at least by overriding RPA and PALB2, crippling the BRCA2/RAD51 complex at DNA-damage and replication/transcription sites; and (b) BRCA2/RAD51 may coordinate these processes by employing at least EMSY, PALB2 and RPA. We extensively discuss the molecular details of how this can happen to ascertain its implications for a novel recombination mechanism apparently conceived as checkpoint rather than a DNA repair system for cell division, survival, death, and human diseases, including the tissue specificity of cancer predisposition, which may renew our thinking about targeted therapy and prevention.", "title": "EMSY overexpression disrupts the BRCA2/RAD51 pathway in the DNA-damage response: implications for chromosomal instability/recombination syndromes as checkpoint diseases" }, { "docid": "31851367", "text": "Estrogens are key regulators of growth, differentiation, and the physiological functions of a wide range of target tissues, including the male and female reproductive tracts, breast, and skeletal, nervous, cardiovascular, digestive and immune systems. The majority of these biological activities of estrogens are mediated through two genetically distinct receptors, ERalpha and ERbeta, which function as hormone-inducible transcription factors. Over the past decade, it has become increasingly clear that the recruitment of coregulatory proteins to ERs is required for ER-mediated transcriptional and biological activities. These \"coactivator\" complexes enable the ERs to respond appropriately: 1) to hormones or pharmacological ligands, 2) interpret extra- and intra-cellular signals, 3) catalyze the process of chromatin condensation and 4) to communicate with the general transcription apparatus at target gene promoters. In addition to activating proteins, the existence of corepressors, proteins that function as negative regulators of ER activity in either physiological or pharmacological contexts, provides an additional level of complexity in ER action. This review also describes current efforts aimed at developing pharmaceutical agents that target ER-cofactor interactions as therapeutics for estrogen-associated pathologies.", "title": "Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting." }, { "docid": "12800122", "text": "Subdividing proliferating tissues into compartments is an evolutionarily conserved strategy of animal development [1-6]. Signals across boundaries between compartments can result in local expression of secreted proteins organizing growth and patterning of tissues [1-6]. Sharp and straight interfaces between compartments are crucial for stabilizing the position of such organizers and therefore for precise implementation of body plans. Maintaining boundaries in proliferating tissues requires mechanisms to counteract cell rearrangements caused by cell division; however, the nature of such mechanisms remains unclear. Here we quantitatively analyzed cell morphology and the response to the laser ablation of cell bonds in the vicinity of the anteroposterior compartment boundary in developing Drosophila wings. We found that mechanical tension is approximately 2.5-fold increased on cell bonds along this compartment boundary as compared to the remaining tissue. Cell bond tension is decreased in the presence of Y-27632 [7], an inhibitor of Rho-kinase whose main effector is Myosin II [8]. Simulations using a vertex model [9] demonstrate that a 2.5-fold increase in local cell bond tension suffices to guide the rearrangement of cells after cell division to maintain compartment boundaries. Our results provide a physical mechanism in which the local increase in Myosin II-dependent cell bond tension directs cell sorting at compartment boundaries.", "title": "Increased Cell Bond Tension Governs Cell Sorting at the Drosophila Anteroposterior Compartment Boundary" }, { "docid": "6492658", "text": "Weeble mutant mice have severe locomotor instability and significant neuronal loss in the cerebellum and in the hippocampal CA1 field. Genetic mapping was used to localize the mutation to the gene encoding inositol polyphosphate 4-phosphatase type I (Inpp4a), where a single nucleotide deletion results in a likely null allele. The substrates of INPP4A are intermediates in a pathway affecting intracellular Ca(2+) release but are also involved in cell cycle regulation through binding the Akt protooncogene; dysfunction in either may account for the neuronal loss of weeble mice. Although other mutations in phosphoinositide enzymes are associated with synaptic defects without neuronal loss, weeble shows that Inpp4a is critical for the survival of a subset of neurons during postnatal development in mice.", "title": "A Null Mutation in Inositol Polyphosphate 4-Phosphatase Type I Causes Selective Neuronal Loss in Weeble Mutant Mice" }, { "docid": "6333347", "text": "An emerging family of kinases related to the Drosophila Aurora and budding yeast Ipl1 proteins has been implicated in chromosome segregation and mitotic spindle formation in a number of organisms. Unlike other Aurora/Ipl1-related kinases, the Caenorhabditis elegans orthologue, AIR-2, is associated with meiotic and mitotic chromosomes. AIR-2 is initially localized to the chromosomes of the most mature prophase I–arrested oocyte residing next to the spermatheca. This localization is dependent on the presence of sperm in the spermatheca. After fertilization, AIR-2 remains associated with chromosomes during each meiotic division. However, during both meiotic anaphases, AIR-2 is present between the separating chromosomes. AIR-2 also remains associated with both extruded polar bodies. In the embryo, AIR-2 is found on metaphase chromosomes, moves to midbody microtubules at anaphase, and then persists at the cytokinesis remnant. Disruption of AIR-2 expression by RNA- mediated interference produces entire broods of one-cell embryos that have executed multiple cell cycles in the complete absence of cytokinesis. The embryos accumulate large amounts of DNA and microtubule asters. Polar bodies are not extruded, but remain in the embryo where they continue to replicate. The cytokinesis defect appears to be late in the cell cycle because transient cleavage furrows initiate at the proper location, but regress before the division is complete. Additionally, staining with a marker of midbody microtubules revealed that at least some of the components of the midbody are not well localized in the absence of AIR-2 activity. Our results suggest that during each meiotic and mitotic division, AIR-2 may coordinate the congression of metaphase chromosomes with the subsequent events of polar body extrusion and cytokinesis.", "title": "AIR-2: An Aurora/Ipl1-related Protein Kinase Associated with Chromosomes and Midbody Microtubules Is Required for Polar Body Extrusion and Cytokinesis in Caenorhabditis elegans Embryos " }, { "docid": "4324278", "text": "The rapamycin-sensitive TOR signalling pathway in Saccharomyces cerevisiae activates a cell-growth program in response to nutrients such as nitrogen and carbon. The TOR1 and TOR2 kinases (TOR) control cytoplasmic protein synthesis and degradation through the conserved TAP42 protein. Upon phosphorylation by TOR, TAP42 binds and possibly inhibits type 2A and type-2A-related phosphatases; however, the mechanism by which TOR controls nuclear events such as global repression of starvation-specific transcription is unknown. Here we show that TOR prevents transcription of genes expressed upon nitrogen limitation by promoting the association of the GATA transcription factor GLN3 with the cytoplasmic protein URE2. The binding of GLN3 to URE2 requires TOR-dependent phosphorylation of GLN3. Phosphorylation and cytoplasmic retention of GLN3 are also dependent on the TOR effector TAP42, and are antagonized by the type-2A-related phosphatase SIT4. TOR inhibits expression of carbon-source-regulated genes by stimulating the binding of the transcriptional activators MSN2 and MSN4 to the cytoplasmic 14-3-3 protein BMH2. Thus, the TOR signalling pathway broadly controls nutrient metabolism by sequestering several transcription factors in the cytoplasm.", "title": "The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors." }, { "docid": "24555417", "text": "In many species, oocyte meiosis is carried out in the absence of centrioles. As a result, microtubule organization, spindle assembly, and chromosome segregation proceed by unique mechanisms. Here, we report insights into the principles underlying this specialized form of cell division, through studies of C. elegans KLP-15 and KLP-16, two highly homologous members of the kinesin-14 family of minus-end-directed kinesins. These proteins localize to the acentriolar oocyte spindle and promote microtubule bundling during spindle assembly; following KLP-15/16 depletion, microtubule bundles form but then collapse into a disorganized array. Surprisingly, despite this defect we found that during anaphase, microtubules are able to reorganize into a bundled array that facilitates chromosome segregation. This phenotype therefore enabled us to identify factors promoting microtubule organization during anaphase, whose contributions are normally undetectable in wild-type worms; we found that SPD-1 (PRC1) bundles microtubules and KLP-18 (kinesin-12) likely sorts those bundles into a functional orientation capable of mediating chromosome segregation. Therefore, our studies have revealed an interplay between distinct mechanisms that together promote spindle formation and chromosome segregation in the absence of structural cues such as centrioles.", "title": "Interplay between microtubule bundling and sorting factors ensures acentriolar spindle stability during C. elegans oocyte meiosis" }, { "docid": "24558930", "text": "Although assembly of acentrosomal meiotic spindles has been extensively studied, little is known about the segregation of chromosomes on these spindles. Here, we show in Caenorhabditis elegans oocytes that the kinetochore protein, KNL-1, directs assembly of meiotic kinetochores that orient chromosomes. However, in contrast to mitosis, chromosome separation during meiotic anaphase is kinetochore-independent. Before anaphase, meiotic kinetochores and spindle poles disassemble along with the microtubules on the poleward side of chromosomes. During anaphase, microtubules then form between the separating chromosomes. Functional analysis implicated a set of proteins that localize to a ring-shaped domain between kinetochores during pre-anaphase spindle assembly and anaphase separation. These proteins are localized by the chromosomal passenger complex, which regulates the loss of meiotic chromosome cohesion. Thus, meiotic segregation in C. elegans is a two-stage process, where kinetochores orient chromosomes, but are then dispensable for their separation. We suggest that separation is controlled by a meiosis-specific chromosomal domain to coordinate cohesin removal and chromosome segregation.", "title": "A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis" }, { "docid": "25510546", "text": "Increased lipid supply causes beta cell death, which may contribute to reduced beta cell mass in type 2 diabetes. We investigated whether endoplasmic reticulum (ER) stress is necessary for lipid-induced apoptosis in beta cells and also whether ER stress is present in islets of an animal model of diabetes and of humans with type 2 diabetes. Expression of genes involved in ER stress was evaluated in insulin-secreting MIN6 cells exposed to elevated lipids, in islets isolated from db/db mice and in pancreas sections of humans with type 2 diabetes. Overproduction of the ER chaperone heat shock 70 kDa protein 5 (HSPA5, previously known as immunoglobulin heavy chain binding protein [BIP]) was performed to assess whether attenuation of ER stress affected lipid-induced apoptosis. We demonstrated that the pro-apoptotic fatty acid palmitate triggers a comprehensive ER stress response in MIN6 cells, which was virtually absent using non-apoptotic fatty acid oleate. Time-dependent increases in mRNA levels for activating transcription factor 4 (Atf4), DNA-damage inducible transcript 3 (Ddit3, previously known as C/EBP homologous protein [Chop]) and DnaJ homologue (HSP40) C3 (Dnajc3, previously known as p58) correlated with increased apoptosis in palmitate- but not in oleate-treated MIN6 cells. Attenuation of ER stress by overproduction of HSPA5 in MIN6 cells significantly protected against lipid-induced apoptosis. In islets of db/db mice, a variety of marker genes of ER stress were also upregulated. Increased processing (activation) of X-box binding protein 1 (Xbp1) mRNA was also observed, confirming the existence of ER stress. Finally, we observed increased islet protein production of HSPA5, DDIT3, DNAJC3 and BCL2-associated X protein in human pancreas sections of type 2 diabetes subjects. Our results provide evidence that ER stress occurs in type 2 diabetes and is required for aspects of the underlying beta cell failure.", "title": "Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes" } ]
366
ERAP1 SNPs are epistatic to HLA alleles for ankylosing spondylitis.
[ { "docid": "13956305", "text": "Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthritis for which HLA-B*27 is the major genetic risk factor, although its role in the aetiology of AS remains elusive. To better understand the genetic basis of the MHC susceptibility loci, we genotyped 7,264 MHC SNPs in 22,647 AS cases and controls of European descent. We impute SNPs, classical HLA alleles and amino-acid residues within HLA proteins, and tested these for association to AS status. Here we show that in addition to effects due to HLA-B*27 alleles, several other HLA-B alleles also affect susceptibility. After controlling for the associated haplotypes in HLA-B, we observe independent associations with variants in the HLA-A, HLA-DPB1 and HLA-DRB1 loci. We also demonstrate that the ERAP1 SNP rs30187 association is not restricted only to carriers of HLA-B*27 but also found in HLA-B*40:01 carriers independently of HLA-B*27 genotype.", "title": "Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1" } ]
[ { "docid": "97884", "text": "The term spondyloarthropathy (SpA) describes and defines a group of related inflammatory joint disease that share characteristic clinical features and a unique association with the major histocompatibility complex class I molecule HLA-B27. Five subgroups can be differentiated: ankylosing spondylitis, reactive arthritis, psoriatic arthritis, arthritis associated with inflammatory bowel disease, and undifferentiated SpA. The sacroiliac joints are centrally involved in the SpA, most clearly and pathognomonic in ankylosing spondylitis, in which most patients are affected early in the disease. Overcoming some of the diagnostic difficulties of early sacroiliitis, dynamic magnetic resonance imaging was shown to visualize both acute and chronic changes in the sacroiliac joints. The inflammation in the sacroiliac joints in patients with SpA was recently examined in more detail; using immunohistology and in situ hybridrization, T cells, macrophages, and various cytokines were found in infiltrates. Biopsy specimens were obtained under guided computed tomography, and in the same study, intra-articular corticosteroid treatment was successfully undertaken. Further investigation of such biopsy specimens showed the absence of DNA of reactive arthritis-associated bacteria. The pathogenesis of the SpA and the reason for the tropism for the sacroiliac joints is still obscure. The nature of the relation of the genetic background of SpA to initially triggering bacterial infections remains to be established. In chronic disease, autoimmune mechanisms might be more important.", "title": "The sacroiliac joint in the spondyloarthropathies." }, { "docid": "1265945", "text": "Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.", "title": "High density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis" }, { "docid": "34481589", "text": "Biological agents are widely used in rheumatology, dermatology and inflammatory bowel disease. Evidence about their efficacy and safety has been strengthened for all those therapeutic indications over the last decade. Biosimilar agents are monoclonal antibodies similar to previously approved biologics. In the European Union, they have been approved for all the indications in the management of immune-mediated inflammatory diseases (IMIDs), although data only in rheumatoid arthritis and ankylosing spondylitis are currently available. Direct evidence on efficacy, safety, and immunogenicity of biosimilars is mandatory in psoriasis, psoriatic arthritis, and inflammatory bowel disease, as well as in children. Based on the current evidence in the literature, we present the joint official position of the Italian Societies of Rheumatology, Dermatology and Inflammatory Bowel Disease on the use of biosimilars in IMIDs.", "title": "The use of biosimilars in immune-mediated disease: A joint Italian Society of Rheumatology (SIR), Italian Society of Dermatology (SIDeMaST), and Italian Group of Inflammatory Bowel Disease (IG-IBD) position paper." }, { "docid": "8428837", "text": "OBJECTIVE Ankylosing spondylitis (AS) and spondyloarthropathy (SpA) are inflammatory diseases of unknown etiology. Various exogenous and endogenous (inherited) factors play a role in their development. Sulfasalazine (SSZ) is generally accepted as a disease modifying drug in the treatment of AS and SpA. Which part of SSZ, 5-acetylsalicylic acid (5-ASA, mesalazine) or sulfapyridine (SP), is the effective moiety is unknown. As the bowel, colon, and the ileum play an important role in the development of AS and SpA, it may be possible that 5-ASA is the effective moiety, with a similar mode of action as in the treatment of inflammatory bowel disease. To determine the efficacy of 5-ASA an open pilot study was done in 2 groups of patients with SpA. METHODS Twenty patients with SpA, who were taking SSZ, were switched to 5-ASA (Pentasa), and 19 patients with active SpA were treated with 5-ASA without previous administration of SSZ. \n RESULTS In the first group, 17 (85%) patients responded with respect to the physician global clinical assessment compared to the previous SSZ treatment period; whereas in the second patient group a statistically significant improvement was obtained in erythrocyte sedimentation rate. \n CONCLUSION The results support our hypothesis that 5-ASA might be the active moiety of SSZ in the treatment of SpA.", "title": "Treatment of spondyloarthropathy with 5-aminosalicylic acid (mesalazine): an open trial." }, { "docid": "2095573", "text": "BACKGROUND LDL cholesterol has a causal role in the development of cardiovascular disease. Improved understanding of the biological mechanisms that underlie the metabolism and regulation of LDL cholesterol might help to identify novel therapeutic targets. We therefore did a genome-wide association study of LDL-cholesterol concentrations. \n METHODS We used genome-wide association data from up to 11,685 participants with measures of circulating LDL-cholesterol concentrations across five studies, including data for 293 461 autosomal single nucleotide polymorphisms (SNPs) with a minor allele frequency of 5% or more that passed our quality control criteria. We also used data from a second genome-wide array in up to 4337 participants from three of these five studies, with data for 290,140 SNPs. We did replication studies in two independent populations consisting of up to 4979 participants. Statistical approaches, including meta-analysis and linkage disequilibrium plots, were used to refine association signals; we analysed pooled data from all seven populations to determine the effect of each SNP on variations in circulating LDL-cholesterol concentrations. \n FINDINGS In our initial scan, we found two SNPs (rs599839 [p=1.7x10(-15)] and rs4970834 [p=3.0x10(-11)]) that showed genome-wide statistical association with LDL cholesterol at chromosomal locus 1p13.3. The second genome screen found a third statistically associated SNP at the same locus (rs646776 [p=4.3x10(-9)]). Meta-analysis of data from all studies showed an association of SNPs rs599839 (combined p=1.2x10(-33)) and rs646776 (p=4.8x10(-20)) with LDL-cholesterol concentrations. SNPs rs599839 and rs646776 both explained around 1% of the variation in circulating LDL-cholesterol concentrations and were associated with about 15% of an SD change in LDL cholesterol per allele, assuming an SD of 1 mmol/L. INTERPRETATION We found evidence for a novel locus for LDL cholesterol on chromosome 1p13.3. These results potentially provide insight into the biological mechanisms that underlie the regulation of LDL cholesterol and might help in the discovery of novel therapeutic targets for cardiovascular disease.", "title": "LDL-cholesterol concentrations: a genome-wide association study" }, { "docid": "2647374", "text": "INTRODUCTION Deregulated or excessive host immune responses contribute to the pathogenesis of sepsis. Toll-like receptor (TLR) signaling pathways and their negative regulators play a pivotal role in the modulation of host immune responses and the development of sepsis. The objective of this study was to investigate the association of variants in the TLR signaling pathway genes and their negative regulator genes with susceptibility to sepsis in the Chinese Han population. \n METHODS Patients with severe sepsis (n = 378) and healthy control subjects (n = 390) were enrolled. Five genes, namely TLR2, TLR4, TLR9, MyD88 and TOLLIP, were investigated for their association with sepsis susceptibility by a tag single nucleotide polymorphism (SNP) strategy. Twelve tag SNPs were selected based on the data of Chinese Han in Beijing from the HapMap project and genotyped by direct sequencing. The mRNA expression levels of TOLLIP were determined using real-time quantitative Polymerase Chain Reaction (PCR) assays, and concentrations of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). \n RESULTS Our results showed that the minor C-allele of rs5743867 in TOLLIP was significantly associated with the decreased risk of sepsis (Padj = 0.00062, odds ratio (OR)adj = 0.71, 95% confidence interval (CI) 0.59 to 0.86) after adjustment for covariates in multiple logistic regression analysis. A 3-SNP haplotype block harboring the associated SNP rs5743867 also displayed strong association with omnibus test P value of 0.00049. Haplotype GTC showed a protective role against sepsis (Padj = 0.0012), while haplotype GCT showed an increased risk for sepsis (Padj = 0.00092). After exposure to lipopolysaccharide (LPS), TOLLIP mRNA expression levels in peripheral blood mononuclear cells (PBMCs) from homozygotes for the rs5743867C allele were significantly higher than in heterozygotes and homozygotes for the rs5743867T allele (P = 0.013 and P = 0.01, respectively). Moreover, the concentrations of TNF-α and IL-6 in culture supernatants were significantly lower in the subjects of rs5743867CC genotype than in CT and TT genotype subjects (P = 0.016 and P = 0.003 for TNF-α; P = 0.01 and P = 0.002 for IL-6, respectively). \n CONCLUSIONS Our findings indicated that the variants in TOLLIP were significantly associated with sepsis susceptibility in the Chinese Han population.", "title": "Variants in the Toll-interacting protein gene are associated with susceptibility to sepsis in the Chinese Han population" }, { "docid": "1388704", "text": "Single nucleotide polymorphisms (SNPs) are an abundant form of genome variation, distinguished from rare variations by a requirement for the least abundant allele to have a frequency of 1% or more. A wide range of genetics disciplines stand to benefit greatly from the study and use of SNPs. The recent surge of interest in SNPs stems from, and continues to depend upon, the merging and coincident maturation of several research areas, i.e. (i) large-scale genome analysis and related technologies, (ii) bio-informatics and computing, (iii) genetic analysis of simple and complex disease states, and (iv) global human population genetics. These fields will now be propelled forward, often into uncharted territories, by ongoing discovery efforts that promise to yield hundreds of thousands of human SNPs in the next few years. Major questions are now being asked, experimentally, theoretically and ethically, about the most effective ways to unlock the full potential of the upcoming SNP revolution.", "title": "The essence of SNPs." }, { "docid": "16734530", "text": "BACKGROUND Breast cancer is the most common malignancy in women. There is increasing evidence suggesting that ORAI1, components of store-operated calcium channel, play a pivotal role in breast cancer progression and metastasis. \n METHODS A total of 384 female patients with breast cancer were included in this study. We selected five representative tagging ORAI1 SNPs from HapMap database with minimum allele frequency (MAF) >10%. Genotyping was performed using TaqMan allelic discrimination assay. Chi-square (χ²) test was used to analyze statistical differences among control and patient groups in genotype and allelic frequencies. \n RESULTS Two of the ORAI1 SNPs (rs12320939 and rs12313273) were associated with estrogen receptors positive in breast cancer patients under the recessive model. When the Bonferroni correction was performed, the significance still existed. In addition, rs12320939 also associated with the lymph nodal involvement. \n CONCLUSION We showed that genetic polymorphisms of ORAI1 associated strongly with lymph nodal involvement and estrogen receptors (ERs) positive breast cancer patients in a Taiwanese population.", "title": "The Association between Single-Nucleotide Polymorphisms of ORAI1 Gene and Breast Cancer in a Taiwanese Population" }, { "docid": "1576955", "text": "Mutations in daf-2 and age-1 cause a dramatic increase in longevity as well as developmental arrest at the dauer diapause stage in Caenorhabditis elegans. daf-2 and age-1 encode components of an insulin-like signaling pathway. Both daf-2 and age-1 act at a similar point in the genetic epistasis pathway for dauer arrest and longevity and regulate the activity of the daf-16 gene. Mutations in daf-16 cause a dauer-defective phenotype and are epistatic to the diapause arrest and life span extension phenotypes of daf-2 and age-1 mutants. Here we show that mutations in this pathway also affect fertility and embryonic development. Weak daf-2 alleles, and maternally rescued age-1 alleles that cause life span extension but do not arrest at the dauer stage, also reduce fertility and viability. We find that age-1(hx546) has reduced both maternal and zygotic age-1 activity. daf-16 mutations suppress all of the daf-2 and age-1 phenotypes, including dauer arrest, life span extension, reduced fertility, and viability defects. These data show that insulin signaling, mediated by DAF-2 through the AGE-1 phosphatidylinositol-3-OH kinase, regulates reproduction and embryonic development, as well as dauer diapause and life span, and that DAF-16 transduces these signals. The regulation of fertility, life span, and metabolism by an insulin-like signaling pathway is similar to the endocrine regulation of metabolism and fertility by mammalian insulin signaling.", "title": "An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans." }, { "docid": "11884292", "text": "BACKGROUND AND AIMS We adopted the twin method to disentangle the genetic and environmental components of susceptibility to coeliac disease (CD). We estimated disease concordance rate by zygosity and HLA genotypes, discordance times, progression rates to disease, and heritability. \n METHODS We crosslinked the Italian Twin Registry with the membership lists of the Italian Coeliac Disease Association and recruited 23 monozygotic (MZ) and 50 dizygotic (DZ) twin pairs with at least one affected member. Zygosity was assigned by DNA fingerprinting, and HLA-DQ and DR alleles were genotyped. Disease status was ascertained by antiendomysial, anti-human tissue transglutaminase antibodies, and bowel biopsy. \n RESULTS Concordance was significantly higher in MZ (83.3% probandwise, 71.4% pairwise) than in DZ (16.7% probandwise, 9.1% pairwise) pairs. Concordance was not affected by sex or HLA genotype of the co-twin and being MZ was significantly associated with the occurrence of CD (Cox adjusted hazard ratio 14.3 (95% confidence interval 4.0-50.3)). In 90% of concordant pairs the discordance time was <or=2 years. MZ and DZ co-twins had 70% and 9% cumulative probability of having symptomatic or silent forms of CD, respectively, within five years. Under ACE (additive genetic, common, and unshared environmental factors) models, with CD population prevalences of 1/91 and 1/1000, heritability estimates were 87% and 57%, respectively. \n CONCLUSION MZ pairs have a high probability of being concordant, regardless of sex or HLA genotype. Most of the affected co-twins receive a diagnosis within two years. A remarkable proportion of phenotypic variance is due to genetic factors.", "title": "Concordance, disease progression, and heritability of coeliac disease in Italian twins." }, { "docid": "11527199", "text": "Background Current criteria for the selection of unrelated donors for hematopoietic cell transplantation (HCT) include matching for the alleles of each human leukocyte antigen (HLA) locus within the major histocompatibility complex (MHC). Graft-versus-host disease (GVHD), however, remains a significant and potentially life-threatening complication even after HLA-identical unrelated HCT. The MHC harbors more than 400 genes, but the total number of transplantation antigens is unknown. Genes that influence transplantation outcome could be identified by using linkage disequilibrium (LD)-mapping approaches, if the extended MHC haplotypes of the unrelated donor and recipient could be defined.", "title": "MHC Haplotype Matching for Unrelated Hematopoietic Cell Transplantation" }, { "docid": "380526", "text": "Hypospadias is a common congenital malformation of the male external genitalia. We performed a genome-wide association study using pooled DNA from 436 individuals with hypospadias (cases) and 494 controls of European descent and selected the highest ranked SNPs for individual genotyping in the discovery sample, an additional Dutch sample of 133 cases and their parents, and a Swedish series of 266 cases and 402 controls. Individual genotyping of two SNPs (rs1934179 and rs7063116) in DGKK, encoding diacylglycerol kinase κ, produced compelling evidence for association with hypospadias in the discovery sample (allele-specific odds ratio (OR) = 2.5, P = 2.5 × 10−11 and OR = 2.3, P = 2.9 × 10−9, respectively) and in the Dutch (OR = 3.9, P = 2.4 × 10−5 and OR = 3.8, P = 3.4 × 10−5) and Swedish (OR = 2.5, P = 2.6 × 10−8 and OR = 2.2, P = 2.7 × 10−6) replication samples. Expression studies showed expression of DGKK in preputial tissue of cases and controls, which was lower in carriers of the risk allele of rs1934179 (P = 0.047). We propose DGKK as a major risk gene for hypospadias.", "title": "Common variants in DGKK are strongly associated with risk of hypospadias" }, { "docid": "25571386", "text": "BACKGROUND Two inflammatory disorders, type 1 diabetes and celiac disease, cosegregate in populations, suggesting a common genetic origin. Since both diseases are associated with the HLA class II genes on chromosome 6p21, we tested whether non-HLA loci are shared. \n METHODS We evaluated the association between type 1 diabetes and eight loci related to the risk of celiac disease by genotyping and statistical analyses of DNA samples from 8064 patients with type 1 diabetes, 9339 control subjects, and 2828 families providing 3064 parent-child trios (consisting of an affected child and both biologic parents). We also investigated 18 loci associated with type 1 diabetes in 2560 patients with celiac disease and 9339 control subjects. \n RESULTS Three celiac disease loci--RGS1 on chromosome 1q31, IL18RAP on chromosome 2q12, and TAGAP on chromosome 6q25--were associated with type 1 diabetes (P<1.00x10(-4)). The 32-bp insertion-deletion variant on chromosome 3p21 was newly identified as a type 1 diabetes locus (P=1.81x10(-8)) and was also associated with celiac disease, along with PTPN2 on chromosome 18p11 and CTLA4 on chromosome 2q33, bringing the total number of loci with evidence of a shared association to seven, including SH2B3 on chromosome 12q24. The effects of the IL18RAP and TAGAP alleles confer protection in type 1 diabetes and susceptibility in celiac disease. Loci with distinct effects in the two diseases included INS on chromosome 11p15, IL2RA on chromosome 10p15, and PTPN22 on chromosome 1p13 in type 1 diabetes and IL12A on 3q25 and LPP on 3q28 in celiac disease. \n CONCLUSIONS A genetic susceptibility to both type 1 diabetes and celiac disease shares common alleles. These data suggest that common biologic mechanisms, such as autoimmunity-related tissue damage and intolerance to dietary antigens, may be etiologic features of both diseases.", "title": "Shared and distinct genetic variants in type 1 diabetes and celiac disease." }, { "docid": "991139", "text": "The CC genotype of the interleukin (IL)-28B.rs12979860 gene has been associated with spontaneous hepatitis C virus (HCV) clearance and treatment response. The distribution and correlation of an IL28B.rs12979860 single-nucleotide polymorphism (SNP) with HCV-specific cell-mediated immune (CMI) responses among Egyptian healthcare workers (HCWs) is not known. We determined this relationship in 402 HCWs who serve a patient cohort with ~85 % HCV prevalence. We enrolled 402 HCWs in four groups: group 1 (n = 258), seronegative aviremic subjects; group 2 (n = 25), seronegative viremic subjects; group 3 (n = 41), subjects with spontaneously resolved HCV infection; and group 4 (n = 78), chronic HCV patients. All subjects were tested for an HCV-specific CMI response using an ex-vivo interferon-gamma (IFNγ) ELISpot assay with nine HCV genotype-4a overlapping 15-mer peptide pools corresponding to all of the HCV proteins. All subjects were tested for IL28B.rs12979860 SNP by real-time PCR. An HCV-specific CMI was demonstrated in ~27 % of the seronegative aviremic HCWs (group 1), suggesting clearance of infection after low-level exposure to HCV. The frequency of IL28B.rs12979860 C allele homozygosity in the four groups was 49 %, 48 %, 49 %, and 23 %, while that of the T allele was 14 %, 16 %, 12 and 19 %, respectively, suggesting differential distributions among subjects with different HCV status. As reported, IL28B.rs12979860 predicted the outcome of HCV infection (p < 0.05), but we did not find any relationship between the IL28B genotypes and the outcome of HCV-specific CMI responses in the four groups (p > 0.05). The data show differential IL28B.rs12979860 genotype distribution among Egyptian HCWs with different HCV status and could not predict the outcome of HCV-specific CMI responses.", "title": "Differential distribution of IL28B.rs12979860 single-nucleotide polymorphism among Egyptian healthcare workers with and without a hepatitis C virus-specific cellular immune response" }, { "docid": "20399078", "text": "The recommended treatment for patients with chronic hepatitis C, pegylated interferon-α (PEG-IFN-α) plus ribavirin (RBV), does not provide sustained virologic response (SVR) in all patients. We report a genome-wide association study (GWAS) to null virological response (NVR) in the treatment of patients with hepatitis C virus (HCV) genotype 1 within a Japanese population. We found two SNPs near the gene IL28B on chromosome 19 to be strongly associated with NVR (rs12980275, P = 1.93 × 10−13, and rs8099917, 3.11 × 10−15). We replicated these associations in an independent cohort (combined P values, 2.84 × 10−27 (OR = 17.7; 95% CI = 10.0–31.3) and 2.68 × 10−32 (OR = 27.1; 95% CI = 14.6–50.3), respectively). Compared to NVR, these SNPs were also associated with SVR (rs12980275, P = 3.99 × 10−24, and rs8099917, P = 1.11 × 10−27). In further fine mapping of the region, seven SNPs (rs8105790, rs11881222, rs8103142, rs28416813, rs4803219, rs8099917 and rs7248668) located in the IL28B region showed the most significant associations (P = 5.52 × 10−28–2.68 × 10−32; OR = 22.3–27.1). Real-time quantitative PCR assays in peripheral blood mononuclear cells showed lower IL28B expression levels in individuals carrying the minor alleles (P = 0.015).", "title": "Genome-wide association of IL28B with response to pegylated interferon-α and ribavirin therapy for chronic hepatitis C" }, { "docid": "15716328", "text": "Endoplasmic reticulum (ER)-associated aminopeptidase (ERAP)1 has been implicated in the final proteolytic processing of peptides presented by major histocompatibility complex (MHC) class I molecules. To evaluate the in vivo role of ERAP1, we have generated ERAP1-deficient mice. Cell surface expression of the class Ia molecules H-2Kb and H-2Db and of the class Ib molecule Qa-2 was significantly reduced in these animals. Although cells from mutant animals exhibited reduced capacity to present several self- and foreign antigens to Kb-, Db-, or Qa-1b–restricted CD8+ cytotoxic T cells, presentation of some antigens was unaffected or significantly enhanced. Consistent with these findings, mice generated defective CD8+ T cell responses against class I–presented antigens. These findings reveal an important in vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules.", "title": "In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules" }, { "docid": "11090688", "text": "The weight lowering potential of glucagon-like peptide 1 (GLP-1) receptor agonists (RAs) is inter-individually different and clinically unpredictable. The potential role of genetic variability of GLP-1R on body weight response to GLP-1 RAs in obese women with polycystic ovary syndrome (PCOS) has not yet been evaluated. Fifty-seven obese women with PCOS (aged 30.7 ± 7.0, BMI 38.6 ± 5.3 kg/m2) were assigned to liraglutide 1.2 mg QD s.c. for 12 weeks and classified as strong responders regarding weight loss if they lost 5 % or more of their initial body weight. They were genotyped for common GLP-1R single nucleotide polymorphisms (SNPs) rs6923761 and rs10305420. Changes of measures of obesity were measured before and at the end of the treatment. Twenty out of 57 subjects were strong responders and lost 7.38 ± 1.74 compared to 2.11 ± 2.17 kg lost in poor responders. Carriers of at least one polymorphic rs10305420 allele had poor treatment response compared to carriers of two wild type alleles (OR = 0.27, 95 % CI = 0.09–0.85, P = 0.025). Carriers of at least one polymorphic rs6923761 allele tended to have stronger treatment response compared to carriers of two wild type alleles (OR = 3.06, 95 % CI = 0.96–9.74, P = 0.058). Fasting glucose and glucose after oral glucose tolerance test (OGTT) comparably decreased in both groups when compared to baseline, whereas no within treatment differences were found in androgen profile. Gastrointestinal adverse events were transit and balanced between strong and poor responders. GLP-1R rs10305420 polymorphism explained some of the inter-individual differences in response to liraglutide regarding weight loss in obese PCOS women.", "title": "Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: a pilot study" }, { "docid": "13905670", "text": "The clinical course and eventual outcome, or prognosis, of complex diseases varies enormously between affected individuals. This variability critically determines the impact a disease has on a patient's life but is very poorly understood. Here, we exploit existing genome-wide association study data to gain insight into the role of genetics in prognosis. We identify a noncoding polymorphism in FOXO3A (rs12212067: T > G) at which the minor (G) allele, despite not being associated with disease susceptibility, is associated with a milder course of Crohn's disease and rheumatoid arthritis and with increased risk of severe malaria. Minor allele carriage is shown to limit inflammatory responses in monocytes via a FOXO3-driven pathway, which through TGFβ1 reduces production of proinflammatory cytokines, including TNFα, and increases production of anti-inflammatory cytokines, including IL-10. Thus, we uncover a shared genetic contribution to prognosis in distinct diseases that operates via a FOXO3-driven pathway modulating inflammatory responses.", "title": "Human SNP Links Differential Outcomes in Inflammatory and Infectious Disease to a FOXO3-Regulated Pathway" }, { "docid": "14938990", "text": "Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with complicated genetic inheritance. Programmed death 1 (PD-1), a negative T cell regulator to maintain peripheral tolerance, induces negative signals to T cells during interaction with its ligands and is therefore a candidate gene in the development of SLE. In order to examine whether expression levels of PD-1 contribute to the pathogenesis of SLE, 30 patients with SLE and 30 controls were recruited and their PD-1 expression levels in peripheral blood mononuclear cells (PBMCs) were measured via flow cytometry and quantitative real-time-reverse transcription polymerase chain reaction (RT-PCR). Also, whether PD-1 expression levels are associated with the variant of the SNP rs36084323 and the SLE Disease Activity Index (SLEDAI) was studied in this work. The PD-1 expression levels of SLE patients were significantly increased compared with those of the healthy controls. The upregulated PD-1 expression levels in SLE patients were greatly associated with SLEDAI scores. No significant difference was found between PD-1 expression levels and SNP rs36084323. The results suggest that increased expression of PD-1 may correlate with the pathogenesis of SLE, upregulated PD-1 expression may be a biomarker for SLE diagnosis, and PD-1 inhibitor may be useful to SLE treatment.", "title": "Upregulated PD-1 Expression Is Associated with the Development of Systemic Lupus Erythematosus, but Not the PD-1.1 Allele of the PDCD1 Gene" } ]
367
Early patent ductus ateriosus (PDA) screening decreases in-hospital mortality.
[ { "docid": "27099731", "text": "IMPORTANCE There is currently no consensus for the screening and treatment of patent ductus arteriosus (PDA) in extremely preterm infants. Less pharmacological closure and more supportive management have been observed without evidence to support these changes. \n OBJECTIVE To evaluate the association between early screening echocardiography for PDA and in-hospital mortality. \n DESIGN, SETTING, AND PARTICIPANTS Comparison of screened and not screened preterm infants enrolled in the EPIPAGE 2 national prospective population-based cohort study that included all preterm infants born at less than 29 weeks of gestation and hospitalized in 68 neonatal intensive care units in France from April through December 2011. Two main analyses were performed to adjust for potential selection bias, one using propensity score matching and one using neonatal unit preference for early screening echocardiography as an instrumental variable. EXPOSURES Early screening echocardiography before day 3 of life. \n MAIN OUTCOMES AND MEASURES The primary outcome was death between day 3 and discharge. The secondary outcomes were major neonatal morbidities (pulmonary hemorrhage, severe bronchopulmonary dysplasia, severe cerebral lesions, and necrotizing enterocolitis). \n RESULTS Among the 1513 preterm infants with data available to determine exposure, 847 were screened for PDA and 666 were not; 605 infants from each group could be paired. Exposed infants were treated for PDA more frequently during their hospitalization than nonexposed infants (55.1% vs 43.1%; odds ratio [OR], 1.62 [95% CI, 1.31 to 2.00]; absolute risk reduction [ARR] in events per 100 infants, -12.0 [95% CI, -17.3 to -6.7). Exposed infants had a lower hospital death rate (14.2% vs 18.5% ; OR, 0.73 [95% CI, 0.54 to 0.98]; ARR, 4.3 [95% CI, 0.3 to 8.3]) and a lower rate of pulmonary hemorrhage (5.6% vs 8.9%; OR, 0.60 [95% CI, 0.38 to 0.95]; ARR, 3.3 [95% CI, 0.4 to 6.3]). No differences in rates of necrotizing enterocolitis, severe bronchopulmonary dysplasia, or severe cerebral lesions were observed. In the overall cohort, instrumental variable analysis yielded an adjusted OR for in-hospital mortality of 0.62 [95% CI, 0.37 to 1.04]. \n CONCLUSIONS AND RELEVANCE In this national population-based cohort of extremely preterm infants, screening echocardiography before day 3 of life was associated with lower in-hospital mortality and likelihood of pulmonary hemorrhage but not with differences in necrotizing enterocolitis, severe bronchopulmonary dysplasia, or severe cerebral lesions. However, results of the instrumental variable analysis leave some ambiguity in the interpretation, and longer-term evaluation is needed to provide clarity.", "title": "Association Between Early Screening for Patent Ductus Arteriosus and In-Hospital Mortality Among Extremely Preterm Infants." } ]
[ { "docid": "9967265", "text": "BACKGROUND Patent ductus arteriosus (PDA) with significant left to right shunt in preterm infants increases morbidity and mortality. Early closure of the ductus arteriosus may be achieved pharmacologically using cyclooxygenase inhibitors or by surgery. The efficacy of both treatment modalities is well established. However, the preferred initial treatment of a symptomatic PDA in a preterm infant, surgical ligation or treatment with indomethacin, has not been well established. \n OBJECTIVES To compare the effect of surgical ligation of PDA vs. medical treatment with cyclooxygenase inhibitors (using indomethacin, ibuprofen, or mefenamic acid), each used as the initial treatment, on neonatal mortality in preterm infants with a symptomatic PDA. SEARCH STRATEGY The standard search strategy of the Cochrane Neonatal Review Group was used. This included search of electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 2, 2007), MEDLINE (1966 - July 2007), CINAHL (1982 - July 2007), EMBASE (1980 - July 2007); and hand search of abstracts of Pediatric Academic Societies annual meetings published in Pediatric Research (1990 - April 2002) or on line from May 2002 -July 2007. No language restrictions were applied. SELECTION CRITERIA All trials 1) using randomized or quasi-randomized patient allocation, 2) in preterm infants < 37 weeks gestational age or low-birth-weight infants (< 2500 grams) with symptomatic PDA in the neonatal period (< 28 days) and 3) comparing surgical ligation with medical treatment with cyclooxygenase inhibitors, each used as the initial treatment for closure of PDA. \n DATA COLLECTION AND ANALYSIS Assessment of methodological quality and extraction of data for included trials was undertaken independently by the authors. RevMan 4.1 was used for analysis of the data. \n MAIN RESULTS Only one study, trial B in the report of Gersony 1983, was found eligible. No additional studies were identified in the literature searches performed in July 2007. The trial compared the effect of surgical ligation of PDA vs. medical treatment with indomethacin, each used as the primary treatment. No trials comparing surgery to other cyclooxygenase inhibitors (ibuprofen, mefenamic acid) were found. Trial B of Gersony 1983 enrolled 154 infants. The study found no statistically significant difference between surgical closure and indomethacin treatment in mortality during hospital stay, chronic lung disease, other bleeding, necrotizing enterocolitis, sepsis, creatinine level, or intraventricular hemorrhage. There was a statistically significant increase in the surgical group in incidence of pneumothorax [RR 2.68 (95% CI 1.45, 4.93); RD 0.25 (95% CI 0.11, 0.38); NNH 4 (95% CI 3, 9)] and retinopathy of prematurity stage III and IV [RR 3.80 (95% CI 1.12, 12.93); RD 0.11 (95% CI 0.02, 0.20), NNH 9 (95% CI 5, 50] compared to the indomethacin group. There was as expected a statistically significant decrease in failure of ductal closure rate in the surgical group as compared to the indomethacin group: [RR 0.04 (95% CI 0.01, 0.27); RD -0.32 (95% CI -0.43, -0.21), NNT 3 (95% CI 2, 4)]. AUTHORS' CONCLUSIONS The data regarding net benefit/harm are insufficient to make a conclusion as to whether surgical ligation or medical treatment with indomethacin is preferred as initial treatment for symptomatic PDA in preterm infants. It should be noted that three recent observational studies indicated an increased risk for one or more of the following outcomes associated with PDA ligation; chronic lung disease, retinopathy of prematurity and neurosensory impairment . It is possible that the duration of the \"waiting-time\" and transport to another facility with surgical capacity to have the PDA ligated could adversely affect outcomes, as could the perioperative care.", "title": "Surgical versus medical treatment with cyclooxygenase inhibitors for symptomatic patent ductus arteriosus in preterm infants." }, { "docid": "25612629", "text": "Although a moderate-sized patent ductus arteriosus (PDA) needs to be closed by the time a child is 1-2 years old, there is great uncertainty about whether it needs to be closed during the neonatal period. Although 95% of neonatologists believe that a moderate-sized PDA should be closed if it persists in infants (born before 28 weeks) who still require mechanical ventilation, the number of neonatologists who treat a PDA when it occurs in infants who do not require mechanical ventilation varies widely. Both the high likelihood of spontaneous ductus closure and the absence of randomized controlled trials, specifically addressing the risks and benefits of neonatal ductus closure, add to the current uncertainty. New information suggests that early pharmacologic treatment has several important short-term benefits for the preterm newborn. By contrast, ductus ligation, while eliminating the detrimental effects of a PDA on lung development, may create its own set of morbidities that counteract many of the benefits derived from ductus closure.", "title": "Patent ductus arteriosus: are current neonatal treatment options better or worse than no treatment at all?" }, { "docid": "34544514", "text": "BACKGROUND Indomethacin is used as standard therapy to close a patent ductus arteriosus (PDA) but is associated with reduced blood flow to several organs. Ibuprofen, another cyclo-oxygenase inhibitor, may be as effective as indomethacin with fewer adverse effects. \n OBJECTIVES To determine the effectiveness and safety of ibuprofen compared with indomethacin, other cyclo-oxygenase inhibitor, placebo or no intervention for closing a patent ductus arteriosus in preterm, low birth weight, or preterm and low birth weight infants. SEARCH METHODS We searched The Cochrane Library, MEDLINE, EMBASE, Clincialtrials.gov, Controlled-trials.com, and www.abstracts2view.com/pas in May 2014. SELECTION CRITERIA Randomised or quasi-randomised controlled trials of ibuprofen for the treatment of a PDA in newborn infants. \n DATA COLLECTION AND ANALYSIS Data collection and analysis conformed to the methods of the Cochrane Neonatal Review Group. \n MAIN RESULTS We included 33 studies enrolling 2190 infants. Two studies compared intravenous (iv) ibuprofen versus placebo (270 infants). In one study (134 infants) ibuprofen reduced the incidence of failure to close a PDA (risk ratio (RR) 0.71, 95% confidence interval (CI) 0.51 to 0.99; risk difference (RD) -0.18, 95% CI -0.35 to -0.01; number needed to treat for an additional beneficial outcome (NNTB) 6, 95% CI 3 to 100). In one study (136 infants), ibuprofen reduced the composite outcome of infant mortality, infants who dropped out, or infants who required rescue treatment (RR 0.58, 95% CI 0.38 to 0.89; RD -0.22, 95% CI -0.38 to -0.06; NNTB 5, 95% CI 3 to 17). One study (64 infants) compared oral ibuprofen with placebo and noted a significant reduction in failure to close a PDA (RR 0.26, 95% CI 0.11 to 0.62; RD -0.44, 95% CI -0.65 to -0.23; NNTB 2, 95% CI 2 to 4).Twenty-one studies (1102 infants) reported failure rates for PDA closure with ibuprofen (oral or iv) compared with indomethacin (oral or iv). There was no significant difference between the groups (typical RR 1.00, 95% CI 0.84 to 1.20; I(2) = 0%; typical RD 0.00, 95% CI -0.05 to 0.05; I(2) = 0%). The risk of developing necrotising enterocolitis (NEC) was reduced for ibuprofen (16 studies, 948 infants; typical RR 0.64, 95% CI 0.45 to 0.93; typical RD -0.05, 95% CI -0.08 to -0.01; NNTB 20, 95% CI 13 to 100; I(2) = 0% for both RR and RD). The duration of ventilatory support was reduced with ibuprofen (oral or iv) compared with iv or oral indomethacin (six studies, 471 infants; mean difference (MD) -2.4 days, 95% CI -3.7 to -1.0; I(2) = 19%).Eight studies (272 infants) reported on failure rates for PDA closure in a subgroup of the above studies comparing oral ibuprofen with indomethacin (oral or iv). There was no significant difference between the groups (typical RR 0.96, 95% CI 0.73 to 1.27; typical RD -0.01, 95% CI -0.12 to 0.09). The risk of NEC was reduced with oral ibuprofen compared with indomethacin (oral or iv) (seven studies, 249 infants; typical RR 0.41, 95% CI 0.23 to 0.73; typical RD -0.13, 95% CI -0.22 to -0.05; NNTB 8, 95% CI 5 to 20; I(2) = 0% for both RR and RD). There was a decreased risk of failure to close a PDA with oral ibuprofen compared with iv ibuprofen (four studies, 304 infants; typical RR 0.41, 95% CI 0.27 to 0.64; typical RD -0.21, 95% CI -0.31 to -0.12; NNTB 5, 95% CI 3 to 8). Transient renal insufficiency was less common in infants who received ibuprofen compared with indomethacin. High dose versus standard dose of iv ibuprofen, early versus expectant administration of iv ibuprofen, echocardiographically guided iv ibuprofen treatment vs. standard iv ibuprofen treatment and continuous infusion of ibuprofen vs. intermittent boluses of ibuprofen and long-term follow-up were studied in too few trials to draw any conclusions. AUTHORS' CONCLUSIONS Ibuprofen is as effective as indomethacin in closing a PDA and currently appears to be the drug of choice. Ibuprofen reduces the risk of NEC and transient renal insufficiency. Oro-gastric administration of ibuprofen appears as effective as iv administration. To make further recommendations, studies are needed to assess the effectiveness of high-dose versus standard-dose ibuprofen, early versus expectant administration of ibuprofen, echocardiographically guided versus standard iv ibuprofen, and continuous infusion versus intermittent boluses of ibuprofen. Studies are lacking evaluating the effect of ibuprofen on longer-term outcomes in infants with PDA.", "title": "Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants." }, { "docid": "25691541", "text": "How to manage the preterm patent ductus arteriosus (PDA) remains a conundrum. On the one hand, physiology and statistical association with adverse outcomes suggest that it is pathological. On the other hand, clinical trials of treatment strategies have failed to show any long-term benefit. Ultrasound studies of PDA have suggested that the haemodynamic impact may be much earlier after birth than previously thought (in the first hours); however, we still do not know when to treat PDA. Studies that have tested symptomatic or pre-symptomatic treatment are mainly historical and have not tested the effect of no treatment. Prophylactic treatment is the best-studied regimen but improvements in some short-term outcomes do not translate to any difference in longer-term outcomes. Neonatologists have been reluctant to engage in trials that test treatment against almost never treating. Observations of very early postnatal haemodynamic significance suggest that targeting treatment on the basis of the early postnatal constrictive response of the duct may optimize benefits. A pilot trial of this strategy showed reduction in the incidence of pulmonary haemorrhage but more trials of this strategy are needed.", "title": "Preterm patent ductus arteriosus: A continuing conundrum for the neonatologist?" }, { "docid": "14831629", "text": "Patent ductus arteriosus (PDA) is a common diagnosis among extremely premature infants, especially in those with lung disease. Treatments are often used to close the PDA. Despite nearly three decades of research, the question of whether the benefits of treatments to prevent ductal patency or promote closure outweigh the risks of these treatments remains unanswered. The authors rarely use treatments designed to close the PDA. This article reviews three considerations in support of this restrained approach: rates of spontaneous closure of the ductus arteriosus; adverse effect of persistent ductal patency; and benefits and risks of treatments for closure.", "title": "Patent ductus arteriosus: lack of evidence for common treatments." }, { "docid": "36355784", "text": "OBJECTIVE To describe the efficacy of the Finnish mass screening program for cervical squamous carcinoma and adenocarcinoma, as reflected by changes of incidence and mortality rate. \n METHODS Cervical cancer incidence and mortality data were obtained from the Finnish Cancer Registry. Data were available from the year 1953, when the registry was established. The nationwide mass screening program in Finland was started in the mid-1960s. A centralized organization administers this program. Women age 30-60 years are notified for screening every 5 years. \n RESULTS The mean incidence of cervical carcinoma in the early 1960s was 15.4 per 10(5) woman-years. In 1991, it was only 2.7 per 10(5) woman-years. The mortality rate has decreased in the same proportion since the mass screening program. In the early 1960s, the mortality was 6.6 and in 1991 1.4 per 10(5) woman-years. However, the decrease of the incidence is seen almost exclusively in squamous cell carcinomas. The mortality caused by adenocarcinoma has decreased in screened birth cohorts, but the incidence rate has remained the same. \n CONCLUSIONS The Finnish mass screening program has been effective and its continuation is of utmost importance. In the future more attention should be given to glandular cell atypias in cervical smears. Thus, it might be possible to decrease the incidence of cervical adenocarcinoma.", "title": "The effect of mass screening on incidence and mortality of squamous and adenocarcinoma of cervix uteri." }, { "docid": "32084655", "text": "Mass-screening for lung cancer is rather a unique system in Japan. This study illustrates time from finding abnormality on mass-screening to final diagnosis of lung cancer. Among the 517 patients with lung cancer who were admitted to our hospital over a 10-year period up to December 2001, 83 (16.1%) were detected by mass-screening. We reviewed medical records of the 83 patients and determined the intervals from the mass-screening to the pathological diagnosis with clinical staging. Time from the mass-screening to the date of hospital visit was <2 months in 62 (74.7%) cases. Five (6.0%) patients visited hospital more than 6 months after the mass-screening. With respect to the interval, there was no statistical difference in gender (p=0.0680) and age (p=0.1532). Among 60 patients who were referred from outside, on average, patients visited our hospital 0.5 month after they first sought medical attention at nearby clinic, and at our hospital 0.5 month was required to make a pathological diagnosis of lung cancer with TNM staging. There was a statistical difference in survival between the patients who were diagnosed <4 months and the patients who were diagnosed >4 months from the screening (p=0.0487). The interval in most cases was acceptable. However, further improvements are still needed to minimize the delay and to maximize the benefits of early cancer detection.", "title": "Time from finding abnormality on mass-screening to final diagnosis of lung cancer." }, { "docid": "38243984", "text": "PURPOSE The goal of this study was to evaluate prospectively the engraftment rate, factors influencing engraftment, and predictability of clinical outcome of low-passage xenografts from patients with resectable pancreatic ductal adenocarcinoma (PDA) and to establish a bank of PDA xenografts. EXPERIMENTAL DESIGN Patients with resectable PDA scheduled for resection at the Johns Hopkins Hospital were eligible. Representative pieces of tumor were implanted in nude mice. The status of the SMAD4 gene and content of tumor-generating cells were determined by immunohistochemistry. Gene expression was carried out by using a U133 Plus 2.0 array. Patients were followed for progression and survival. \n RESULTS A total of 94 patients with PDA were resected, 69 tumors implanted in nude mice, and 42 (61%) engrafted. Engrafted carcinomas were more often SMAD4 mutant, and had a metastatic gene expression signature and worse prognosis. Tumors from patients resistant to gemcitabine were enriched in stroma-related gene pathways. Tumors sensitive to gemcitabine were enriched in cell cycle and pyrimidine gene pathways. The time to progression for patients who received treatment with gemcitabine for metastatic disease (n = 7) was double in patients with xenografts sensitive to gemcitabine. \n CONCLUSION A successful xenograft was generated in 61% of patients attempted, generating a pool of 42 PDA xenografts with significant biological information and annotated clinical data. Patients with PDA and SMAD4 inactivation have a better engraftment rate. Engraftment is a poor prognosis factor, and engrafted tumors have a metastatic gene expression signature. Tumors from gemcitabine-resistant patients were enriched in stromal pathways.", "title": "Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer." }, { "docid": "24088502", "text": "CONTEXT A number of countries have implemented a policy of universal leukoreduction of their blood supply, but the potential role of leukoreduction in decreasing postoperative mortality and infection is unclear. \n OBJECTIVE To evaluate clinical outcomes following adoption of a national universal prestorage leukoreduction program for blood transfusions. \n DESIGN, SETTING, AND POPULATION Retrospective before-and-after cohort study conducted from August 1998 to August 2000 in 23 academic and community hospitals throughout Canada, enrolling 14 786 patients who received red blood cell transfusions following cardiac surgery or repair of hip fracture, or who required intensive care following a surgical intervention or multiple trauma. \n INTERVENTION Universal prestorage leukoreduction program introduced by 2 Canadian blood agencies. A total of 6982 patients were enrolled during the control period and 7804 patients were enrolled following prestorage leukoreduction. \n MAIN OUTCOME MEASURES All-cause in-hospital mortality and serious nosocomial infections (pneumonia, bacteremia, septic shock, all surgical site infections) occurring after first transfusion and at least 2 days after index procedure or intensive care unit admission. Secondary outcomes included rates of posttransfusion fever and antibiotic use. \n RESULTS Unadjusted in-hospital mortality rates were significantly lower following the introduction of leukoreduction compared with the control period (6.19% vs 7.03%, respectively; P =.04). Compared with the control period, the adjusted odds of death following leukoreduction were reduced (odds ratio [OR], 0.87; 95% confidence interval [CI], 0.75-0.99), but serious nosocomial infections did not decrease (adjusted OR, 0.97; 95% CI, 0.87-1.09). The frequency of posttransfusion fevers decreased significantly following leukoreduction (adjusted OR, 0.86; 95% CI, 0.79-0.94), as did antibiotic use (adjusted OR, 0.90; 95% CI, 0.82-0.99). \n CONCLUSION A national universal leukoreduction program is potentially associated with decreased mortality as well as decreased fever episodes and antibiotic use after red blood cell transfusion in high-risk patients.", "title": "Clinical outcomes following institution of the Canadian universal leukoreduction program for red blood cell transfusions." }, { "docid": "7595742", "text": "Frailty has long been considered synonymous with disability and comorbidity, to be highly prevalent in old age and to confer a high risk for falls, hospitalization and mortality. However, it is becoming recognized that frailty may be a distinct clinical syndrome with a biological basis. The frailty process appears to be a transitional state in the dynamic progression from robustness to functional decline. During this process, total physiological reserves decrease and become less likely to be sufficient for the maintenance and repair of the ageing body. Central to the clinical concept of frailty is that no single altered system alone defines it, but that multiple systems are involved. Clinical consensus regarding the phenotype which constitutes frailty, drawing upon the opinions of numerous authors, shows the characteristics to include wasting (loss of both muscle mass and strength and weight loss), loss of endurance, decreased balance and mobility, slowed performance, relative inactivity and, potentially, decreased cognitive function. Frailty is a distinct entity easily recognized by clinicians, with multiple manifestations and with no single symptom being sufficient or essential in its presentation. Manifestations include appearance (consistent or not with age), nutritional status (thin, weight loss), subjective health rating (health perception), performance (cognition, fatigue), sensory/physical impairments (vision, hearing, strength) and current care (medication, hospital). Although the early stages of the frailty process may be clinically silent, when depleted reserves reach an aggregate threshold leading to serious vulnerability, the syndrome may become detectable by looking at clinical, functional, behavioral and biological markers. Thus, a better understanding of these clinical changes and their underlying mechanisms, beginning in the pre-frail state, may confirm the impression held by many geriatricians that increasing frailty is distinguishable from ageing and in consequence is potentially reversible. We therefore provide an update of the physiopathology and clinical and biological characteristics of the frailty process and speculate on possible preventative approaches.", "title": "Frailty Syndrome: A Transitional State in a Dynamic Process" }, { "docid": "26067999", "text": "The U.S. Preventive Services Task Force (USPSTF) makes recommendations about the effectiveness of specific preventive care services for patients without related signs or symptoms. It bases its recommendations on the evidence of both the benefits and harms of the service and an assessment of the balance. The USPSTF does not consider the costs of providing a service in this assessment. The USPSTF recognizes that clinical decisions involve more considerations than evidence alone. Clinicians should understand the evidence but individualize decision making to the specific patient or situation. Similarly, the USPSTF notes that policy and coverage decisions involve considerations in addition to the evidence of clinical benefits and harms. Summary of Recommendation and Evidence The USPSTF recommends annual screening for lung cancer with low-dose computed tomography (LDCT) in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery. (B recommendation) See the Clinical Considerations section for suggestions for implementation in practice. See the Figure for a summary of the recommendation and suggestions for clinical practice. Figure. Screening for lung cancer: clinical summary of U.S. Preventive Services Task Force recommendation. Appendix Table 1 describes the USPSTF grades, and Appendix Table 2 describes the USPSTF classification of levels of certainty about net benefit. Appendix Table 1. What the USPSTF Grades Mean and Suggestions for Practice Appendix Table 2. USPSTF Levels of Certainty Regarding Net Benefit Supplement. Consumer Fact Sheet. Rationale Importance Lung cancer is the third most common cancer and the leading cause of cancer-related death in the United States (1). The most important risk factor for lung cancer is smoking, which results in approximately 85% of all U.S. lung cancer cases (2). Although the prevalence of smoking has decreased, approximately 37% of U.S. adults are current or former smokers (2). The incidence of lung cancer increases with age and occurs most commonly in persons aged 55 years or older. Increasing age and cumulative exposure to tobacco smoke are the 2 most common risk factors for lung cancer. Lung cancer has a poor prognosis, and nearly 90% of persons with lung cancer die of the disease. However, early-stage nonsmall cell lung cancer (NSCLC) has a better prognosis and can be treated with surgical resection. Detection Most lung cancer cases are NSCLC, and most screening programs focus on the detection and treatment of early-stage NSCLC. Although chest radiography and sputum cytologic evaluation have been used to screen for lung cancer, LDCT has greater sensitivity for detecting early-stage cancer (3). Benefits of Detection and Early Treatment Although lung cancer screening is not an alternative to smoking cessation, the USPSTF found adequate evidence that annual screening for lung cancer with LDCT in a defined population of high-risk persons can prevent a substantial number of lung cancerrelated deaths. Direct evidence from a large, well-conducted, randomized, controlled trial (RCT) provides moderate certainty of the benefit of lung cancer screening with LDCT in this population (4). The magnitude of benefit to the person depends on that person's risk for lung cancer because those who are at highest risk are most likely to benefit. Screening cannot prevent most lung cancerrelated deaths, and smoking cessation remains essential. Harms of Detection and Early Intervention and Treatment The harms associated with LDCT screening include false-negative and false-positive results, incidental findings, overdiagnosis, and radiation exposure. False-positive LDCT results occur in a substantial proportion of screened persons; 95% of all positive results do not lead to a diagnosis of cancer. In a high-quality screening program, further imaging can resolve most false-positive results; however, some patients may require invasive procedures. The USPSTF found insufficient evidence on the harms associated with incidental findings. Overdiagnosis of lung cancer occurs, but its precise magnitude is uncertain. A modeling study performed for the USPSTF estimated that 10% to 12% of screen-detected cancer cases are overdiagnosedthat is, they would not have been detected in the patient's lifetime without screening. Radiation harms, including cancer resulting from cumulative exposure to radiation, vary depending on the age at the start of screening; the number of scans received; and the person's exposure to other sources of radiation, particularly other medical imaging. USPSTF Assessment The USPSTF concludes with moderate certainty that annual screening for lung cancer with LDCT is of moderate net benefit in asymptomatic persons who are at high risk for lung cancer based on age, total cumulative exposure to tobacco smoke, and years since quitting smoking. The moderate net benefit of screening depends on limiting screening to persons who are at high risk, the accuracy of image interpretation being similar to that found in the NLST (National Lung Screening Trial), and the resolution of most false-positive results without invasive procedures (4). Clinical Considerations Patient Population Under Consideration The risk for lung cancer increases with age and cumulative exposure to tobacco smoke and decreases with time since quitting smoking. The best evidence for the benefit of screening comes from the NLST, which enrolled adults aged 55 to 74 years who had at least a 30 pack-year smoking history and were current smokers or had quit within the past 15 years. As with all screening trials, the NLST tested a specific intervention over a finite period. Because initial eligibility extended through age 74 years and participants received 3 annual screening computed tomographic scans, the oldest participants in the trial were aged 77 years. The USPSTF used modeling studies to predict the benefits and harms of screening programs that use different screening intervals, age ranges, smoking histories, and times since quitting. A program that annually screens adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years is projected to have a reasonable balance of benefits and harms. The model assumes that persons who achieve 15 years of smoking cessation during the screening program discontinue screening. This model predicts the outcomes of continuing the screening program used in the NLST through age 80 years. Screening may not be appropriate for patients with substantial comorbid conditions, particularly those at the upper end of the screening age range. The NLST excluded persons who were unlikely to complete curative lung cancer surgery and those with medical conditions that posed a substantial risk for death during the 8-year trial. The baseline characteristics of the NLST showed a relatively healthy sample, and fewer than 10% of enrolled participants were older than 70 years (5). Persons with serious comorbid conditions may experience net harm, no net benefit, or at least substantially less net benefit. Similarly, persons who are unwilling to have curative lung surgery are unlikely to benefit from a screening program. Assessment of Risk Age, total exposure to tobacco smoke, and years since quitting smoking are important risk factors for lung cancer and were used to determine eligibility in the NLST. Other risk factors include specific occupational exposures, radon exposure, family history, and history of pulmonary fibrosis or chronic obstructive lung disease. The incidence of lung cancer is relatively low in persons younger than 50 years but increases with age, especially after age 60 years. In current and former smokers, age-specific incidence rates increase with age and cumulative exposure to tobacco smoke. Smoking cessation substantially reduces a person's risk for developing and dying of lung cancer. Among persons enrolled in the NLST, those who were at highest risk because of additional risk factors or a greater cumulative exposure to tobacco smoke experienced most of the benefit (6). A validated multivariate model showed that persons in the highest 60% of risk accounted for 88% of all deaths preventable by screening. Screening Tests Low-dose computed tomography has shown high sensitivity and acceptable specificity for the detection of lung cancer in high-risk persons. Chest radiography and sputum cytologic evaluation have not shown adequate sensitivity or specificity as screening tests. Therefore, LDCT is currently the only recommended screening test for lung cancer. Treatment Surgical resection is the current standard of care for localized NSCLC. This type of cancer is treated with surgical resection when possible and also with radiation and chemotherapy. Annual LDCT screening may not be useful for patients with life-limiting comorbid conditions or poor functional status who may not be candidates for surgery. Other Approaches to Prevention Smoking cessation is the most important intervention to prevent NSCLC. Advising smokers to stop smoking and preventing nonsmokers from being exposed to tobacco smoke are the most effective ways to decrease the morbidity and mortality associated with lung cancer. Current smokers should be informed of their continuing risk for lung cancer and offered cessation treatments. Screening with LDCT should be viewed as an adjunct to tobacco cessation interventions. Useful Resources Clinicians have many resources to help patients stop smoking. The Centers for Disease Control and Prevention has developed a Web site with many such resources, including information on tobacco quit lines, available in several languages (www.cdc.gov/tobacco/campaign/tips). Quit l", "title": "Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation Statement" }, { "docid": "9167230", "text": "BACKGROUND The annual number of hospital admissions and in-hospital deaths due to severe acute lower respiratory infections (ALRI) in young children worldwide is unknown. We aimed to estimate the incidence of admissions and deaths for such infections in children younger than 5 years in 2010. \n METHODS We estimated the incidence of admissions for severe and very severe ALRI in children younger than 5 years, stratified by age and region, with data from a systematic review of studies published between Jan 1, 1990, and March 31, 2012, and from 28 unpublished population-based studies. We applied these incidence estimates to population estimates for 2010, to calculate the global and regional burden in children admitted with severe ALRI in that year. We estimated in-hospital mortality due to severe and very severe ALRI by combining incidence estimates with case fatality ratios from hospital-based studies. \n FINDINGS We identified 89 eligible studies and estimated that in 2010, 11·9 million (95% CI 10·3-13·9 million) episodes of severe and 3·0 million (2·1-4·2 million) episodes of very severe ALRI resulted in hospital admissions in young children worldwide. Incidence was higher in boys than in girls, the sex disparity being greatest in South Asian studies. On the basis of data from 37 hospital studies reporting case fatality ratios for severe ALRI, we estimated that roughly 265,000 (95% CI 160,000-450,000) in-hospital deaths took place in young children, with 99% of these deaths in developing countries. Therefore, the data suggest that although 62% of children with severe ALRI are treated in hospitals, 81% of deaths happen outside hospitals. \n INTERPRETATION Severe ALRI is a substantial burden on health services worldwide and a major cause of hospital referral and admission in young children. Improved hospital access and reduced inequities, such as those related to sex and rural status, could substantially decrease mortality related to such infection. Community-based management of severe disease could be an important complementary strategy to reduce pneumonia mortality and health inequities. \n FUNDING WHO.", "title": "Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: a systematic analysis" }, { "docid": "11880289", "text": "BACKGROUND Age-specific effects of mammographic screening, and the timing of such effects, are a matter of debate. The results of the UK Age trial, which compared the effect of invitation to annual mammographic screening from age 40 years with commencement of screening at age 50 years on breast cancer mortality, have been reported at 10 years of follow-up and showed no significant difference in mortality between the trial groups. Here, we report the results of the UK Age trial after 17 years of follow-up. \n METHODS Women aged 39-41 from 23 UK NHS Breast Screening Programme units years were randomly assigned by individual randomisation (1:2) to either an intervention group offered annual screening by mammography up to and including the calendar year of their 48th birthday or to a control group receiving usual medical care (invited for screening at age 50 years and every 3 years thereafter). Both groups were stratified by general practice. We compared breast cancer incidence and mortality by time since randomisation. Analyses included all women randomly assigned who could be traced with the National Health Service Central Register and who had not died or emigrated before entry. The primary outcome measures were mortality from breast cancer (defined as deaths with breast cancer coded as the underlying cause of death) and breast cancer incidence, including in-situ, invasive, and total incidence. Because there is an interest in the timing of the mortality effect, we analysed the results in different follow-up periods. This trial is registered, number ISRCTN24647151. \n FINDINGS Between Oct 14, 1990, and Sept 25, 1997, 160 921 participants were randomly assigned; 53 883 women in the intervention group and 106 953 assigned to usual medical care were included in this analysis. After a median follow-up of 17 years (IQR 16·8-18·8), the rate ratio (RR) for breast cancer mortality was 0·88 (95% CI 0·74-1·04) from tumours diagnosed during the intervention phase. A significant reduction in breast cancer mortality was noted in the intervention group compared with the control group in the first 10 years after diagnosis (RR 0·75, 0·58-0·97) but not thereafter (RR 1·02, 0·80-1·30) from tumours diagnosed during the intervention phase. The overall breast cancer incidence during 17 year follow-up was similar between the intervention group and the control group (RR 0·98, 0·93-1·04). \n INTERPRETATION Our results support an early reduction in mortality from breast cancer with annual mammography screening in women aged 40-49 years. Further data are needed to fully understand long-term effects. Cumulative incidence figures suggest at worst a small amount of overdiagnosis. \n FUNDING National Institute for Health Research Health Technology Assessment programme and the American Cancer Society. Past funding was received from the Medical Research Council, Cancer Research UK, the UK Department of Health, and the US National Cancer Institute.", "title": "Effect of mammographic screening from age 40 years on breast cancer mortality in the UK Age trial at 17 years' follow-up: a randomised controlled trial." }, { "docid": "32423829", "text": "Cervix and Breast cancers are the most common cancers among women worldwide and extract a large toll in developing countries. In May 1998, supported by a grant from the NCI (US), the Tata Memorial Hospital, Mumbai, India, started a cluster-randomized, controlled, screening-trial for cervix and breast cancer using trained primary health workers to provide health-education, visual-inspection of cervix (with 4% acetic acid-VIA) and clinical breast examination (CBE) in the screening arm, and only health education in the control arm. Four rounds of screening at 2-year intervals will be followed by 8 years of monitoring for incidence and mortality from cervix and breast cancers. The methodology and interim results after three rounds of screening are presented here. Good randomization was achieved between the screening (n = 75360) and control arms (n = 76178). In the screening arm we see: High screening participation rates; Low attrition; Good compliance to diagnostic confirmation; Significant downstaging; Excellent treatment completion rate; Improving case fatality ratios. The ever-screened and never-screened participants in the screening arm show significant differences with reference to the variables religion, language, age, education, occupation, income and health-seeking behavior for gynecological and breast-related complaints. During the same period, in the control arm we see excellent participation rate for health education; Low attrition and a good number of symptomatic referrals for both cervix and breast.", "title": "A cluster randomized, controlled trial of breast and cervix cancer screening in Mumbai, India: methodology and interim results after three rounds of screening." }, { "docid": "20606520", "text": "OBJECTIVES To assess mortality, quality of life (QOL), and quality-adjusted life-years (QALYs) for critically ill elderly patients. \n DESIGN Cross-sectional survey. \n SETTING A ten-bed medical-surgical intensive care unit (ICU) in a tertiary care university hospital. \n PATIENTS The study group included 882 elderly patients (> or =65 yrs of age) and 1,827 controls (<65 yrs of age) treated during the period of 1995 to 2000. \n INTERVENTION None. \n MEASUREMENTS AND MAIN RESULTS Mortality was assessed during the ICU and hospital stays, and 12, 24, and 36 months after ICU discharge. The cumulative 3-yr mortality rate among the elderly (57%) was higher (p < .05) than that among the controls (40%). The majority (66%) of the elderly nonsurvivors died within 1 month after intensive care discharge. All elderly patients with day-1 Sequential Organ Failure (SOFA) scores >15 died during the ICU stay. QOL was assessed with EQ-5D and RAND-36 measures from 10 months to 7 yrs after discharge. The majority (88%) of the elderly survivors assessed their present health state as good or satisfactory; 66% found it to be similar or better than 12 months earlier, and 48% similar or better than their preadmission state. QOL measures by RAND-36 revealed that aging decreased their competencies most in physical functioning, physical role limitations, and vitality, but the elderly had better values in mental health than the controls. However, QALYs of the elderly respondents were 21% to 35% lower than the mean QALY minus 2 sd units of the age- and gender-adjusted general population. \n CONCLUSIONS High age alone is not a valid reason to refuse intensive care, but the benefits perceived by intensive care seem to decrease with aging, if reflected as QALYs. However, 97% of the elderly survivors lived at home and 88% of them considered their QOL satisfactory or good after hospital discharge. Therefore, more reliable information on the outcome for the elderly is clearly needed.", "title": "Long-term survival, quality of life, and quality-adjusted life-years among critically ill elderly patients." }, { "docid": "4824840", "text": "Importance Estimates from claims-based analyses suggest that the incidence of sepsis is increasing and mortality rates from sepsis are decreasing. However, estimates from claims data may lack clinical fidelity and can be affected by changing diagnosis and coding practices over time. Objective To estimate the US national incidence of sepsis and trends using detailed clinical data from the electronic health record (EHR) systems of diverse hospitals. Design, Setting, and Population Retrospective cohort study of adult patients admitted to 409 academic, community, and federal hospitals from 2009-2014. Exposures Sepsis was identified using clinical indicators of presumed infection and concurrent acute organ dysfunction, adapting Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) criteria for objective and consistent EHR-based surveillance. Main Outcomes and Measures Sepsis incidence, outcomes, and trends from 2009-2014 were calculated using regression models and compared with claims-based estimates using International Classification of Diseases, Ninth Revision, Clinical Modification codes for severe sepsis or septic shock. Case-finding criteria were validated against Sepsis-3 criteria using medical record reviews. Results A total of 173 690 sepsis cases (mean age, 66.5 [SD, 15.5] y; 77 660 [42.4%] women) were identified using clinical criteria among 2 901 019 adults admitted to study hospitals in 2014 (6.0% incidence). Of these, 26 061 (15.0%) died in the hospital and 10 731 (6.2%) were discharged to hospice. From 2009-2014, sepsis incidence using clinical criteria was stable (+0.6% relative change/y [95% CI, −2.3% to 3.5%], P = .67) whereas incidence per claims increased (+10.3%/y [95% CI, 7.2% to 13.3%], P < .001). In-hospital mortality using clinical criteria declined (−3.3%/y [95% CI, −5.6% to −1.0%], P = .004), but there was no significant change in the combined outcome of death or discharge to hospice (−1.3%/y [95% CI, −3.2% to 0.6%], P = .19). In contrast, mortality using claims declined significantly (−7.0%/y [95% CI, −8.8% to −5.2%], P < .001), as did death or discharge to hospice (−4.5%/y [95% CI, −6.1% to −2.8%], P < .001). Clinical criteria were more sensitive in identifying sepsis than claims (69.7% [95% CI, 52.9% to 92.0%] vs 32.3% [95% CI, 24.4% to 43.0%], P < .001), with comparable positive predictive value (70.4% [95% CI, 64.0% to 76.8%] vs 75.2% [95% CI, 69.8% to 80.6%], P = .23). Conclusions and Relevance In clinical data from 409 hospitals, sepsis was present in 6% of adult hospitalizations, and in contrast to claims-based analyses, neither the incidence of sepsis nor the combined outcome of death or discharge to hospice changed significantly between 2009-2014. The findings also suggest that EHR-based clinical data provide more objective estimates than claims-based data for sepsis surveillance.", "title": "Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009-2014" }, { "docid": "35495268", "text": "BACKGROUND Weight loss is recommended for overweight or obese patients with type 2 diabetes on the basis of short-term studies, but long-term effects on cardiovascular disease remain unknown. We examined whether an intensive lifestyle intervention for weight loss would decrease cardiovascular morbidity and mortality among such patients. \n METHODS In 16 study centers in the United States, we randomly assigned 5145 overweight or obese patients with type 2 diabetes to participate in an intensive lifestyle intervention that promoted weight loss through decreased caloric intake and increased physical activity (intervention group) or to receive diabetes support and education (control group). The primary outcome was a composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for angina during a maximum follow-up of 13.5 years. \n RESULTS The trial was stopped early on the basis of a futility analysis when the median follow-up was 9.6 years. Weight loss was greater in the intervention group than in the control group throughout the study (8.6% vs. 0.7% at 1 year; 6.0% vs. 3.5% at study end). The intensive lifestyle intervention also produced greater reductions in glycated hemoglobin and greater initial improvements in fitness and all cardiovascular risk factors, except for low-density-lipoprotein cholesterol levels. The primary outcome occurred in 403 patients in the intervention group and in 418 in the control group (1.83 and 1.92 events per 100 person-years, respectively; hazard ratio in the intervention group, 0.95; 95% confidence interval, 0.83 to 1.09; P=0.51). \n CONCLUSIONS An intensive lifestyle intervention focusing on weight loss did not reduce the rate of cardiovascular events in overweight or obese adults with type 2 diabetes. (Funded by the National Institutes of Health and others; Look AHEAD ClinicalTrials.gov number, NCT00017953.).", "title": "Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes." }, { "docid": "19464037", "text": "OBJECTIVE To describe outcomes and identify variables associated with hospital and 1-year survival for patients admitted to an intensive care unit (ICU) with an acute exacerbation of chronic obstructive pulmonary disease (COPD). \n DESIGN Prospective, multicenter, inception cohort study. \n SETTING Forty-two ICUs at 40 US hospitals. \n PATIENTS A total of 362 admissions for COPD exacerbation selected from the Acute Physiology and Chronic Health Evaluation (APACHE) III database of 17,440 ICU admissions. \n MEASUREMENTS AND RESULTS Hospital mortality for the 362 admissions was 24%. For the 167 patients aged 65 years or older, mortality was 30% at hospital discharge, 41% at 90 days, 47% at 180 days, and 59% at 1 year. Median survival for all patients was 224 days, and median survival for the patients who died within 1 year was 30.5 days. On multiple regression analysis, variables associated with hospital mortality included age, severity of respiratory and nonrespiratory organ system dysfunction, and hospital length of stay before ICU admission. Development of nonrespiratory organ system dysfunction was the major predictor of hospital mortality (60% of total explanatory power) and 180-day outcomes (54% of explanatory power). Respiratory physiological variables (respiratory rate, serum pH, PaCO2, PaO2, and alveolar-arterial difference in partial pressure of oxygen [PAO2-PaO2]) indicative of advanced dysfunction were more strongly associated with 180-day mortality rates (22% of explanatory power) than hospital death rates (4% of explanatory power). After controlling for severity of illness, mechanical ventilation at ICU admission was not associated with either hospital mortality or subsequent survival. \n CONCLUSIONS Patients with COPD admitted to an ICU for an acute exacerbation have a substantial hospital mortality (24%). For patients aged 65 years or older, mortality doubles in 1 year from 30% to 59%. Hospital and longer-term mortality is closely associated with development of nonrespiratory organ system dysfunction; severity of the underlying respiratory function substantially influences mortality following hospital discharge. The need for mechanical ventilation at ICU admission did not influence either short- or long-term outcomes. Physicians should be aware of these relationships when making treatment decisions or evaluating new therapies.", "title": "Hospital and 1-year survival of patients admitted to intensive care units with acute exacerbation of chronic obstructive pulmonary disease." }, { "docid": "7317051", "text": "Pancreatic ductal adenocarcinoma (PDA) represents an unmet therapeutic challenge. PDA is addicted to the activity of the mutated KRAS oncogene which is considered so far an undruggable therapeutic target. We propose an approach to target KRAS effectively in patients using RNA interference. To meet this challenge, we have developed a local prolonged siRNA delivery system (Local Drug EluteR, LODER) shedding siRNA against the mutated KRAS (siG12D LODER). The siG12D LODER was assessed for its structural, release, and delivery properties in vitro and in vivo. The effect of the siG12D LODER on tumor growth was assessed in s.c. and orthotopic mouse models. KRAS silencing effect was further assessed on the KRAS downstream signaling pathway. The LODER-encapsulated siRNA was stable and active in vivo for 155 d. Treatment of PDA cells with siG12D LODER resulted in a significant decrease in KRAS levels, leading to inhibition of proliferation and epithelial-mesenchymal transition. In vivo, siG12D LODER impeded the growth of human pancreatic tumor cells and prolonged mouse survival. We report a reproducible and safe delivery platform based on a miniature biodegradable polymeric matrix, for the controlled and prolonged delivery of siRNA. This technology provides the following advantages: (i) siRNA is protected from degradation; (ii) the siRNA is slowly released locally within the tumor for prolonged periods; and (iii) the siG12D LODER elicits a therapeutic effect, thereby demonstrating that mutated KRAS is indeed a druggable target.", "title": "Mutant KRAS is a druggable target for pancreatic cancer." } ]
368
Early patent ductus ateriosus (PDA) screening increases in-hospital mortality.
[ { "docid": "27099731", "text": "IMPORTANCE There is currently no consensus for the screening and treatment of patent ductus arteriosus (PDA) in extremely preterm infants. Less pharmacological closure and more supportive management have been observed without evidence to support these changes. \n OBJECTIVE To evaluate the association between early screening echocardiography for PDA and in-hospital mortality. \n DESIGN, SETTING, AND PARTICIPANTS Comparison of screened and not screened preterm infants enrolled in the EPIPAGE 2 national prospective population-based cohort study that included all preterm infants born at less than 29 weeks of gestation and hospitalized in 68 neonatal intensive care units in France from April through December 2011. Two main analyses were performed to adjust for potential selection bias, one using propensity score matching and one using neonatal unit preference for early screening echocardiography as an instrumental variable. EXPOSURES Early screening echocardiography before day 3 of life. \n MAIN OUTCOMES AND MEASURES The primary outcome was death between day 3 and discharge. The secondary outcomes were major neonatal morbidities (pulmonary hemorrhage, severe bronchopulmonary dysplasia, severe cerebral lesions, and necrotizing enterocolitis). \n RESULTS Among the 1513 preterm infants with data available to determine exposure, 847 were screened for PDA and 666 were not; 605 infants from each group could be paired. Exposed infants were treated for PDA more frequently during their hospitalization than nonexposed infants (55.1% vs 43.1%; odds ratio [OR], 1.62 [95% CI, 1.31 to 2.00]; absolute risk reduction [ARR] in events per 100 infants, -12.0 [95% CI, -17.3 to -6.7). Exposed infants had a lower hospital death rate (14.2% vs 18.5% ; OR, 0.73 [95% CI, 0.54 to 0.98]; ARR, 4.3 [95% CI, 0.3 to 8.3]) and a lower rate of pulmonary hemorrhage (5.6% vs 8.9%; OR, 0.60 [95% CI, 0.38 to 0.95]; ARR, 3.3 [95% CI, 0.4 to 6.3]). No differences in rates of necrotizing enterocolitis, severe bronchopulmonary dysplasia, or severe cerebral lesions were observed. In the overall cohort, instrumental variable analysis yielded an adjusted OR for in-hospital mortality of 0.62 [95% CI, 0.37 to 1.04]. \n CONCLUSIONS AND RELEVANCE In this national population-based cohort of extremely preterm infants, screening echocardiography before day 3 of life was associated with lower in-hospital mortality and likelihood of pulmonary hemorrhage but not with differences in necrotizing enterocolitis, severe bronchopulmonary dysplasia, or severe cerebral lesions. However, results of the instrumental variable analysis leave some ambiguity in the interpretation, and longer-term evaluation is needed to provide clarity.", "title": "Association Between Early Screening for Patent Ductus Arteriosus and In-Hospital Mortality Among Extremely Preterm Infants." } ]
[ { "docid": "9967265", "text": "BACKGROUND Patent ductus arteriosus (PDA) with significant left to right shunt in preterm infants increases morbidity and mortality. Early closure of the ductus arteriosus may be achieved pharmacologically using cyclooxygenase inhibitors or by surgery. The efficacy of both treatment modalities is well established. However, the preferred initial treatment of a symptomatic PDA in a preterm infant, surgical ligation or treatment with indomethacin, has not been well established. \n OBJECTIVES To compare the effect of surgical ligation of PDA vs. medical treatment with cyclooxygenase inhibitors (using indomethacin, ibuprofen, or mefenamic acid), each used as the initial treatment, on neonatal mortality in preterm infants with a symptomatic PDA. SEARCH STRATEGY The standard search strategy of the Cochrane Neonatal Review Group was used. This included search of electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 2, 2007), MEDLINE (1966 - July 2007), CINAHL (1982 - July 2007), EMBASE (1980 - July 2007); and hand search of abstracts of Pediatric Academic Societies annual meetings published in Pediatric Research (1990 - April 2002) or on line from May 2002 -July 2007. No language restrictions were applied. SELECTION CRITERIA All trials 1) using randomized or quasi-randomized patient allocation, 2) in preterm infants < 37 weeks gestational age or low-birth-weight infants (< 2500 grams) with symptomatic PDA in the neonatal period (< 28 days) and 3) comparing surgical ligation with medical treatment with cyclooxygenase inhibitors, each used as the initial treatment for closure of PDA. \n DATA COLLECTION AND ANALYSIS Assessment of methodological quality and extraction of data for included trials was undertaken independently by the authors. RevMan 4.1 was used for analysis of the data. \n MAIN RESULTS Only one study, trial B in the report of Gersony 1983, was found eligible. No additional studies were identified in the literature searches performed in July 2007. The trial compared the effect of surgical ligation of PDA vs. medical treatment with indomethacin, each used as the primary treatment. No trials comparing surgery to other cyclooxygenase inhibitors (ibuprofen, mefenamic acid) were found. Trial B of Gersony 1983 enrolled 154 infants. The study found no statistically significant difference between surgical closure and indomethacin treatment in mortality during hospital stay, chronic lung disease, other bleeding, necrotizing enterocolitis, sepsis, creatinine level, or intraventricular hemorrhage. There was a statistically significant increase in the surgical group in incidence of pneumothorax [RR 2.68 (95% CI 1.45, 4.93); RD 0.25 (95% CI 0.11, 0.38); NNH 4 (95% CI 3, 9)] and retinopathy of prematurity stage III and IV [RR 3.80 (95% CI 1.12, 12.93); RD 0.11 (95% CI 0.02, 0.20), NNH 9 (95% CI 5, 50] compared to the indomethacin group. There was as expected a statistically significant decrease in failure of ductal closure rate in the surgical group as compared to the indomethacin group: [RR 0.04 (95% CI 0.01, 0.27); RD -0.32 (95% CI -0.43, -0.21), NNT 3 (95% CI 2, 4)]. AUTHORS' CONCLUSIONS The data regarding net benefit/harm are insufficient to make a conclusion as to whether surgical ligation or medical treatment with indomethacin is preferred as initial treatment for symptomatic PDA in preterm infants. It should be noted that three recent observational studies indicated an increased risk for one or more of the following outcomes associated with PDA ligation; chronic lung disease, retinopathy of prematurity and neurosensory impairment . It is possible that the duration of the \"waiting-time\" and transport to another facility with surgical capacity to have the PDA ligated could adversely affect outcomes, as could the perioperative care.", "title": "Surgical versus medical treatment with cyclooxygenase inhibitors for symptomatic patent ductus arteriosus in preterm infants." }, { "docid": "25612629", "text": "Although a moderate-sized patent ductus arteriosus (PDA) needs to be closed by the time a child is 1-2 years old, there is great uncertainty about whether it needs to be closed during the neonatal period. Although 95% of neonatologists believe that a moderate-sized PDA should be closed if it persists in infants (born before 28 weeks) who still require mechanical ventilation, the number of neonatologists who treat a PDA when it occurs in infants who do not require mechanical ventilation varies widely. Both the high likelihood of spontaneous ductus closure and the absence of randomized controlled trials, specifically addressing the risks and benefits of neonatal ductus closure, add to the current uncertainty. New information suggests that early pharmacologic treatment has several important short-term benefits for the preterm newborn. By contrast, ductus ligation, while eliminating the detrimental effects of a PDA on lung development, may create its own set of morbidities that counteract many of the benefits derived from ductus closure.", "title": "Patent ductus arteriosus: are current neonatal treatment options better or worse than no treatment at all?" }, { "docid": "34544514", "text": "BACKGROUND Indomethacin is used as standard therapy to close a patent ductus arteriosus (PDA) but is associated with reduced blood flow to several organs. Ibuprofen, another cyclo-oxygenase inhibitor, may be as effective as indomethacin with fewer adverse effects. \n OBJECTIVES To determine the effectiveness and safety of ibuprofen compared with indomethacin, other cyclo-oxygenase inhibitor, placebo or no intervention for closing a patent ductus arteriosus in preterm, low birth weight, or preterm and low birth weight infants. SEARCH METHODS We searched The Cochrane Library, MEDLINE, EMBASE, Clincialtrials.gov, Controlled-trials.com, and www.abstracts2view.com/pas in May 2014. SELECTION CRITERIA Randomised or quasi-randomised controlled trials of ibuprofen for the treatment of a PDA in newborn infants. \n DATA COLLECTION AND ANALYSIS Data collection and analysis conformed to the methods of the Cochrane Neonatal Review Group. \n MAIN RESULTS We included 33 studies enrolling 2190 infants. Two studies compared intravenous (iv) ibuprofen versus placebo (270 infants). In one study (134 infants) ibuprofen reduced the incidence of failure to close a PDA (risk ratio (RR) 0.71, 95% confidence interval (CI) 0.51 to 0.99; risk difference (RD) -0.18, 95% CI -0.35 to -0.01; number needed to treat for an additional beneficial outcome (NNTB) 6, 95% CI 3 to 100). In one study (136 infants), ibuprofen reduced the composite outcome of infant mortality, infants who dropped out, or infants who required rescue treatment (RR 0.58, 95% CI 0.38 to 0.89; RD -0.22, 95% CI -0.38 to -0.06; NNTB 5, 95% CI 3 to 17). One study (64 infants) compared oral ibuprofen with placebo and noted a significant reduction in failure to close a PDA (RR 0.26, 95% CI 0.11 to 0.62; RD -0.44, 95% CI -0.65 to -0.23; NNTB 2, 95% CI 2 to 4).Twenty-one studies (1102 infants) reported failure rates for PDA closure with ibuprofen (oral or iv) compared with indomethacin (oral or iv). There was no significant difference between the groups (typical RR 1.00, 95% CI 0.84 to 1.20; I(2) = 0%; typical RD 0.00, 95% CI -0.05 to 0.05; I(2) = 0%). The risk of developing necrotising enterocolitis (NEC) was reduced for ibuprofen (16 studies, 948 infants; typical RR 0.64, 95% CI 0.45 to 0.93; typical RD -0.05, 95% CI -0.08 to -0.01; NNTB 20, 95% CI 13 to 100; I(2) = 0% for both RR and RD). The duration of ventilatory support was reduced with ibuprofen (oral or iv) compared with iv or oral indomethacin (six studies, 471 infants; mean difference (MD) -2.4 days, 95% CI -3.7 to -1.0; I(2) = 19%).Eight studies (272 infants) reported on failure rates for PDA closure in a subgroup of the above studies comparing oral ibuprofen with indomethacin (oral or iv). There was no significant difference between the groups (typical RR 0.96, 95% CI 0.73 to 1.27; typical RD -0.01, 95% CI -0.12 to 0.09). The risk of NEC was reduced with oral ibuprofen compared with indomethacin (oral or iv) (seven studies, 249 infants; typical RR 0.41, 95% CI 0.23 to 0.73; typical RD -0.13, 95% CI -0.22 to -0.05; NNTB 8, 95% CI 5 to 20; I(2) = 0% for both RR and RD). There was a decreased risk of failure to close a PDA with oral ibuprofen compared with iv ibuprofen (four studies, 304 infants; typical RR 0.41, 95% CI 0.27 to 0.64; typical RD -0.21, 95% CI -0.31 to -0.12; NNTB 5, 95% CI 3 to 8). Transient renal insufficiency was less common in infants who received ibuprofen compared with indomethacin. High dose versus standard dose of iv ibuprofen, early versus expectant administration of iv ibuprofen, echocardiographically guided iv ibuprofen treatment vs. standard iv ibuprofen treatment and continuous infusion of ibuprofen vs. intermittent boluses of ibuprofen and long-term follow-up were studied in too few trials to draw any conclusions. AUTHORS' CONCLUSIONS Ibuprofen is as effective as indomethacin in closing a PDA and currently appears to be the drug of choice. Ibuprofen reduces the risk of NEC and transient renal insufficiency. Oro-gastric administration of ibuprofen appears as effective as iv administration. To make further recommendations, studies are needed to assess the effectiveness of high-dose versus standard-dose ibuprofen, early versus expectant administration of ibuprofen, echocardiographically guided versus standard iv ibuprofen, and continuous infusion versus intermittent boluses of ibuprofen. Studies are lacking evaluating the effect of ibuprofen on longer-term outcomes in infants with PDA.", "title": "Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants." }, { "docid": "25691541", "text": "How to manage the preterm patent ductus arteriosus (PDA) remains a conundrum. On the one hand, physiology and statistical association with adverse outcomes suggest that it is pathological. On the other hand, clinical trials of treatment strategies have failed to show any long-term benefit. Ultrasound studies of PDA have suggested that the haemodynamic impact may be much earlier after birth than previously thought (in the first hours); however, we still do not know when to treat PDA. Studies that have tested symptomatic or pre-symptomatic treatment are mainly historical and have not tested the effect of no treatment. Prophylactic treatment is the best-studied regimen but improvements in some short-term outcomes do not translate to any difference in longer-term outcomes. Neonatologists have been reluctant to engage in trials that test treatment against almost never treating. Observations of very early postnatal haemodynamic significance suggest that targeting treatment on the basis of the early postnatal constrictive response of the duct may optimize benefits. A pilot trial of this strategy showed reduction in the incidence of pulmonary haemorrhage but more trials of this strategy are needed.", "title": "Preterm patent ductus arteriosus: A continuing conundrum for the neonatologist?" }, { "docid": "14831629", "text": "Patent ductus arteriosus (PDA) is a common diagnosis among extremely premature infants, especially in those with lung disease. Treatments are often used to close the PDA. Despite nearly three decades of research, the question of whether the benefits of treatments to prevent ductal patency or promote closure outweigh the risks of these treatments remains unanswered. The authors rarely use treatments designed to close the PDA. This article reviews three considerations in support of this restrained approach: rates of spontaneous closure of the ductus arteriosus; adverse effect of persistent ductal patency; and benefits and risks of treatments for closure.", "title": "Patent ductus arteriosus: lack of evidence for common treatments." }, { "docid": "36355784", "text": "OBJECTIVE To describe the efficacy of the Finnish mass screening program for cervical squamous carcinoma and adenocarcinoma, as reflected by changes of incidence and mortality rate. \n METHODS Cervical cancer incidence and mortality data were obtained from the Finnish Cancer Registry. Data were available from the year 1953, when the registry was established. The nationwide mass screening program in Finland was started in the mid-1960s. A centralized organization administers this program. Women age 30-60 years are notified for screening every 5 years. \n RESULTS The mean incidence of cervical carcinoma in the early 1960s was 15.4 per 10(5) woman-years. In 1991, it was only 2.7 per 10(5) woman-years. The mortality rate has decreased in the same proportion since the mass screening program. In the early 1960s, the mortality was 6.6 and in 1991 1.4 per 10(5) woman-years. However, the decrease of the incidence is seen almost exclusively in squamous cell carcinomas. The mortality caused by adenocarcinoma has decreased in screened birth cohorts, but the incidence rate has remained the same. \n CONCLUSIONS The Finnish mass screening program has been effective and its continuation is of utmost importance. In the future more attention should be given to glandular cell atypias in cervical smears. Thus, it might be possible to decrease the incidence of cervical adenocarcinoma.", "title": "The effect of mass screening on incidence and mortality of squamous and adenocarcinoma of cervix uteri." }, { "docid": "32084655", "text": "Mass-screening for lung cancer is rather a unique system in Japan. This study illustrates time from finding abnormality on mass-screening to final diagnosis of lung cancer. Among the 517 patients with lung cancer who were admitted to our hospital over a 10-year period up to December 2001, 83 (16.1%) were detected by mass-screening. We reviewed medical records of the 83 patients and determined the intervals from the mass-screening to the pathological diagnosis with clinical staging. Time from the mass-screening to the date of hospital visit was <2 months in 62 (74.7%) cases. Five (6.0%) patients visited hospital more than 6 months after the mass-screening. With respect to the interval, there was no statistical difference in gender (p=0.0680) and age (p=0.1532). Among 60 patients who were referred from outside, on average, patients visited our hospital 0.5 month after they first sought medical attention at nearby clinic, and at our hospital 0.5 month was required to make a pathological diagnosis of lung cancer with TNM staging. There was a statistical difference in survival between the patients who were diagnosed <4 months and the patients who were diagnosed >4 months from the screening (p=0.0487). The interval in most cases was acceptable. However, further improvements are still needed to minimize the delay and to maximize the benefits of early cancer detection.", "title": "Time from finding abnormality on mass-screening to final diagnosis of lung cancer." }, { "docid": "38243984", "text": "PURPOSE The goal of this study was to evaluate prospectively the engraftment rate, factors influencing engraftment, and predictability of clinical outcome of low-passage xenografts from patients with resectable pancreatic ductal adenocarcinoma (PDA) and to establish a bank of PDA xenografts. EXPERIMENTAL DESIGN Patients with resectable PDA scheduled for resection at the Johns Hopkins Hospital were eligible. Representative pieces of tumor were implanted in nude mice. The status of the SMAD4 gene and content of tumor-generating cells were determined by immunohistochemistry. Gene expression was carried out by using a U133 Plus 2.0 array. Patients were followed for progression and survival. \n RESULTS A total of 94 patients with PDA were resected, 69 tumors implanted in nude mice, and 42 (61%) engrafted. Engrafted carcinomas were more often SMAD4 mutant, and had a metastatic gene expression signature and worse prognosis. Tumors from patients resistant to gemcitabine were enriched in stroma-related gene pathways. Tumors sensitive to gemcitabine were enriched in cell cycle and pyrimidine gene pathways. The time to progression for patients who received treatment with gemcitabine for metastatic disease (n = 7) was double in patients with xenografts sensitive to gemcitabine. \n CONCLUSION A successful xenograft was generated in 61% of patients attempted, generating a pool of 42 PDA xenografts with significant biological information and annotated clinical data. Patients with PDA and SMAD4 inactivation have a better engraftment rate. Engraftment is a poor prognosis factor, and engrafted tumors have a metastatic gene expression signature. Tumors from gemcitabine-resistant patients were enriched in stromal pathways.", "title": "Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer." }, { "docid": "14021596", "text": "BACKGROUND The objective of the study was to test the hypothesis that elevated red cell distribution width (RDW) at admission increases the risk of mortality in older patients admitted to the emergency department (ED). \n METHODS We performed a retrospective analysis of patients admitted to the ED between May 2013 and October 2013. We included patients who were older than 65 years who visited the ED with any medical problems. Baseline RDW values were measured at the time of admission to the ED. The primary outcome was all-cause in-hospital mortality. Multivariate logistic analysis was performed. \n RESULTS A total of 1,990 patients were finally included in this study. The mean age was 75 years (SD 7), and 936 (47 %) subjects were male. The in-hospital mortality rate was 3.76 % (74 patients). RDW values higher in non-survivors than in survivors (15.9 ± 2.5 vs. 13.8 ± 1.7, p < 0.001). Multivariate logistic analysis showed that RDW was associated with all-cause in-hospital mortality after adjusting for other confounding factors. DISCUSSION RDW value at admission is an independent predictor of all-cause in-hospital mortality among patients older than 65 years. After adjustment for multiple confounders, the all-cause in-hospital mortality rate increased by 21.8% for each 1% increase in RDW. \n CONCLUSION These results show that RDW at admission is associated with in-hospital mortality among patients older than 65. Thus, RDW at admission may represent a surrogate marker of disease severity. We caution against using these findings to aid clinical decision-making process until they are externally validated.", "title": "The association of Red cell distribution width and in-hospital mortality in older adults admitted to the emergency department" }, { "docid": "11880289", "text": "BACKGROUND Age-specific effects of mammographic screening, and the timing of such effects, are a matter of debate. The results of the UK Age trial, which compared the effect of invitation to annual mammographic screening from age 40 years with commencement of screening at age 50 years on breast cancer mortality, have been reported at 10 years of follow-up and showed no significant difference in mortality between the trial groups. Here, we report the results of the UK Age trial after 17 years of follow-up. \n METHODS Women aged 39-41 from 23 UK NHS Breast Screening Programme units years were randomly assigned by individual randomisation (1:2) to either an intervention group offered annual screening by mammography up to and including the calendar year of their 48th birthday or to a control group receiving usual medical care (invited for screening at age 50 years and every 3 years thereafter). Both groups were stratified by general practice. We compared breast cancer incidence and mortality by time since randomisation. Analyses included all women randomly assigned who could be traced with the National Health Service Central Register and who had not died or emigrated before entry. The primary outcome measures were mortality from breast cancer (defined as deaths with breast cancer coded as the underlying cause of death) and breast cancer incidence, including in-situ, invasive, and total incidence. Because there is an interest in the timing of the mortality effect, we analysed the results in different follow-up periods. This trial is registered, number ISRCTN24647151. \n FINDINGS Between Oct 14, 1990, and Sept 25, 1997, 160 921 participants were randomly assigned; 53 883 women in the intervention group and 106 953 assigned to usual medical care were included in this analysis. After a median follow-up of 17 years (IQR 16·8-18·8), the rate ratio (RR) for breast cancer mortality was 0·88 (95% CI 0·74-1·04) from tumours diagnosed during the intervention phase. A significant reduction in breast cancer mortality was noted in the intervention group compared with the control group in the first 10 years after diagnosis (RR 0·75, 0·58-0·97) but not thereafter (RR 1·02, 0·80-1·30) from tumours diagnosed during the intervention phase. The overall breast cancer incidence during 17 year follow-up was similar between the intervention group and the control group (RR 0·98, 0·93-1·04). \n INTERPRETATION Our results support an early reduction in mortality from breast cancer with annual mammography screening in women aged 40-49 years. Further data are needed to fully understand long-term effects. Cumulative incidence figures suggest at worst a small amount of overdiagnosis. \n FUNDING National Institute for Health Research Health Technology Assessment programme and the American Cancer Society. Past funding was received from the Medical Research Council, Cancer Research UK, the UK Department of Health, and the US National Cancer Institute.", "title": "Effect of mammographic screening from age 40 years on breast cancer mortality in the UK Age trial at 17 years' follow-up: a randomised controlled trial." }, { "docid": "26611094", "text": "BACKGROUND An increased volume of patients is associated with improved survival in numerous high-risk medical and surgical conditions. The relationship between the number of patients admitted (hospital volume) and outcome among patients with critical illnesses is unknown. \n METHODS We analyzed data from 20,241 nonsurgical patients receiving mechanical ventilation at 37 acute care hospitals in the Acute Physiology and Chronic Health Evaluation clinical information system from 2002 through 2003. Multivariate analyses were performed to adjust for the severity of illness and other differences in the case mix. \n RESULTS An increase in hospital volume was associated with improved survival among patients receiving mechanical ventilation in the intensive care unit (ICU) and in the hospital. Admission to a hospital in the highest quartile according to volume (i.e., >400 patients receiving mechanical ventilation per year) was associated with a 37 percent reduction in the adjusted odds of death in the ICU as compared with admission to hospitals in the lowest quartile (< or =150 patients receiving mechanical ventilation per year, P<0.001). In-hospital mortality was similarly reduced (adjusted odds ratio, 0.66; 95 percent confidence interval, 0.52 to 0.83; P<0.001). A typical patient in a hospital in a low-volume quartile would have an adjusted in-hospital mortality of 34.2 percent as compared with 25.5 percent in a hospital in a high-volume quartile. Among survivors, there were no significant trends in the length of stay in the ICU or the hospital. \n CONCLUSIONS Mechanical ventilation of patients in a hospital with a high case volume is associated with reduced mortality. Further research is needed to determine the mechanism of the relationship between volume and outcome among patients with a critical illness.", "title": "Hospital volume and the outcomes of mechanical ventilation." }, { "docid": "2565138", "text": "OBJECTIVE Pancreatic ductal adenocarcinoma (PDA) is characterised by stromal desmoplasia and vascular dysfunction, which critically impair drug delivery. This study examines the role of an abundant extracellular matrix component, the megadalton glycosaminoglycan hyaluronan (HA), as a novel therapeutic target in PDA. \n METHODS Using a genetically engineered mouse model of PDA, the authors enzymatically depleted HA by a clinically formulated PEGylated human recombinant PH20 hyaluronidase (PEGPH20) and examined tumour perfusion, vascular permeability and drug delivery. The preclinical utility of PEGPH20 in combination with gemcitabine was assessed by short-term and survival studies. \n RESULTS PEGPH20 rapidly and sustainably depleted HA, inducing the re-expansion of PDA blood vessels and increasing the intratumoral delivery of two chemotherapeutic agents, doxorubicin and gemcitabine. Moreover, PEGPH20 triggered fenestrations and interendothelial junctional gaps in PDA tumour endothelia and promoted a tumour-specific increase in macromolecular permeability. Finally, combination therapy with PEGPH20 and gemcitabine led to inhibition of PDA tumour growth and prolonged survival over gemcitabine monotherapy, suggesting immediate clinical utility. \n CONCLUSIONS The authors demonstrate that HA impedes the intratumoral vasculature in PDA and propose that its enzymatic depletion be explored as a means to improve drug delivery and response in patients with pancreatic cancer.", "title": "Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer" }, { "docid": "27054878", "text": "BACKGROUND Preoperative C-reactive protein (CRP) levels more than 10 mg/l have been shown to be associated with increased morbidity and mortality after cardiac surgery. We examine the value of preoperative CRP levels less than 10 mg/l for predicting long-term, all-cause mortality and hospital length of stay in surgical patients undergoing primary, nonemergent coronary artery bypass graft-only surgery. \n METHODS We examined the association between preoperative CRP levels stratified into four categories (< 1, 1-3, 3-10, and > 10 mg/l), and 7-yr all-cause mortality and hospital length of stay in 914 prospectively enrolled primary, nonemergent coronary artery bypass graft-only surgical patients using a proportional hazards regression model. \n RESULTS Eighty-seven patients (9.5%) died during a mean follow-up period of 4.8 +/- 1.5 yr. After proportional hazards adjustment, the 3-10 and > 10 mg/l preoperative CRP groups were associated with long-term, all-cause mortality (hazards ratios [95% CI]: 2.50 [1.22-5.16], P = 0.01 and 2.66 [1.21-5.80], P = 0.02, respectively) and extended hospital length of stay (1.32 [1.07-1.63], P < 0.001 and 1.27 [1.02-1.62], P = 0.001, respectively). \n CONCLUSION We demonstrate that preoperative CRP levels as low as 3 mg/l are associated with increased long-term mortality and extended hospital length of stay in relatively lower-acuity patients undergoing primary, nonemergent coronary artery bypass graft-only surgery. These important findings may allow for more objective risk stratification of patients who present for uncomplicated surgical coronary revascularization.", "title": "Preoperative C-reactive protein predicts long-term mortality and hospital length of stay after primary, nonemergent coronary artery bypass grafting." }, { "docid": "32423829", "text": "Cervix and Breast cancers are the most common cancers among women worldwide and extract a large toll in developing countries. In May 1998, supported by a grant from the NCI (US), the Tata Memorial Hospital, Mumbai, India, started a cluster-randomized, controlled, screening-trial for cervix and breast cancer using trained primary health workers to provide health-education, visual-inspection of cervix (with 4% acetic acid-VIA) and clinical breast examination (CBE) in the screening arm, and only health education in the control arm. Four rounds of screening at 2-year intervals will be followed by 8 years of monitoring for incidence and mortality from cervix and breast cancers. The methodology and interim results after three rounds of screening are presented here. Good randomization was achieved between the screening (n = 75360) and control arms (n = 76178). In the screening arm we see: High screening participation rates; Low attrition; Good compliance to diagnostic confirmation; Significant downstaging; Excellent treatment completion rate; Improving case fatality ratios. The ever-screened and never-screened participants in the screening arm show significant differences with reference to the variables religion, language, age, education, occupation, income and health-seeking behavior for gynecological and breast-related complaints. During the same period, in the control arm we see excellent participation rate for health education; Low attrition and a good number of symptomatic referrals for both cervix and breast.", "title": "A cluster randomized, controlled trial of breast and cervix cancer screening in Mumbai, India: methodology and interim results after three rounds of screening." }, { "docid": "5185871", "text": "Importance The Sepsis-3 Criteria emphasized the value of a change of 2 or more points in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score, introduced quick SOFA (qSOFA), and removed the systemic inflammatory response syndrome (SIRS) criteria from the sepsis definition. Objective Externally validate and assess the discriminatory capacities of an increase in SOFA score by 2 or more points, 2 or more SIRS criteria, or a qSOFA score of 2 or more points for outcomes among patients who are critically ill with suspected infection. Design, Setting, and Participants Retrospective cohort analysis of 184 875 patients with an infection-related primary admission diagnosis in 182 Australian and New Zealand intensive care units (ICUs) from 2000 through 2015. Exposures SOFA, qSOFA, and SIRS criteria applied to data collected within 24 hours of ICU admission. Main Outcomes and Measures The primary outcome was in-hospital mortality. In-hospital mortality or ICU length of stay (LOS) of 3 days or more was a composite secondary outcome. Discrimination was assessed using the area under the receiver operating characteristic curve (AUROC). Adjusted analyses were performed using a model of baseline risk determined using variables independent of the scoring systems. Results Among 184 875 patients (mean age, 62.9 years [SD, 17.4]; women, 82 540 [44.6%]; most common diagnosis bacterial pneumonia, 32 634 [17.7%]), a total of 34 578 patients (18.7%) died in the hospital, and 102 976 patients (55.7%) died or experienced an ICU LOS of 3 days or more. SOFA score increased by 2 or more points in 90.1%; 86.7% manifested 2 or more SIRS criteria, and 54.4% had a qSOFA score of 2 or more points. SOFA demonstrated significantly greater discrimination for in-hospital mortality (crude AUROC, 0.753 [99% CI, 0.750-0.757]) than SIRS criteria (crude AUROC, 0.589 [99% CI, 0.585-0.593]) or qSOFA (crude AUROC, 0.607 [99% CI, 0.603-0.611]). Incremental improvements were 0.164 (99% CI, 0.159-0.169) for SOFA vs SIRS criteria and 0.146 (99% CI, 0.142-0.151) for SOFA vs qSOFA (P <.001). SOFA (AUROC, 0.736 [99% CI, 0.733-0.739]) outperformed the other scores for the secondary end point (SIRS criteria: AUROC, 0.609 [99% CI, 0.606-0.612]; qSOFA: AUROC, 0.606 [99% CI, 0.602-0.609]). Incremental improvements were 0.127 (99% CI, 0.123-0.131) for SOFA vs SIRS criteria and 0.131 (99% CI, 0.127-0.134) for SOFA vs qSOFA (P <.001). Findings were consistent for both outcomes in multiple sensitivity analyses. Conclusions and Relevance Among adults with suspected infection admitted to an ICU, an increase in SOFA score of 2 or more had greater prognostic accuracy for in-hospital mortality than SIRS criteria or the qSOFA score. These findings suggest that SIRS criteria and qSOFA may have limited utility for predicting mortality in an ICU setting.", "title": "Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for In-Hospital Mortality Among Adults With Suspected Infection Admitted to the Intensive Care Unit" }, { "docid": "2488880", "text": "CONTEXT While it is established that management strategies and outcomes differ by gender for many diseases, its effect on infection has not been adequately studied. \n OBJECTIVE To investigate the role of gender among hospitalized patients treated for infection. \n DESIGN Observational cohort study conducted during a 26-month period from December 1996 through January 1999. \n SETTING University-affiliated hospital. \n PARTICIPANTS A total of 892 patients in the surgical units of the hospital with 1470 consecutive infectious episodes (782 in men and 688 in women). \n MAIN OUTCOME MEASURES Mortality during hospitalization by gender for infection episodes overall and for specific infectious sites, including lung, peritoneum, bloodstream, catheter, urine, surgical site, and skin/soft tissue. \n RESULTS Among all infections, there was no significant difference in mortality based on gender (men, 11.1% vs women, 14.2%; P = .07). After logistic regression analysis, factors independently associated with mortality included higher APACHE (Acute Physiology and Chronic Health Evaluation) II score, older age, malignancy, blood transfusion, and diagnosis of infection more than 7 days after admission, but not gender (female odds ratio [OR] for death, 1.32; 95% confidence interval [CI], 0.90-1.94; P = .16). Mortality was higher in women for lung (men, 18% vs women, 34%; P = .002) and soft tissue (men, 2% vs women, 10%; P < or = .05) infection; for other infectious sites, mortality did not differ by gender. Factors associated with mortality due to pneumonia by logistic regression included higher APACHE II score, malignancy, diabetes mellitus, diagnosis of infection more than 7 days after admission, older age, transplantation, and female gender (OR for death, 2.25; 95% CI, 1.17-4.32; P = .02). \n CONCLUSIONS Although gender may not be predictive of mortality among all infections, women appear to be at increased risk for death from hospital-acquired pneumonia, even after controlling for other comorbidities.", "title": "Gender-dependent differences in outcome after the treatment of infection in hospitalized patients." }, { "docid": "26067999", "text": "The U.S. Preventive Services Task Force (USPSTF) makes recommendations about the effectiveness of specific preventive care services for patients without related signs or symptoms. It bases its recommendations on the evidence of both the benefits and harms of the service and an assessment of the balance. The USPSTF does not consider the costs of providing a service in this assessment. The USPSTF recognizes that clinical decisions involve more considerations than evidence alone. Clinicians should understand the evidence but individualize decision making to the specific patient or situation. Similarly, the USPSTF notes that policy and coverage decisions involve considerations in addition to the evidence of clinical benefits and harms. Summary of Recommendation and Evidence The USPSTF recommends annual screening for lung cancer with low-dose computed tomography (LDCT) in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery. (B recommendation) See the Clinical Considerations section for suggestions for implementation in practice. See the Figure for a summary of the recommendation and suggestions for clinical practice. Figure. Screening for lung cancer: clinical summary of U.S. Preventive Services Task Force recommendation. Appendix Table 1 describes the USPSTF grades, and Appendix Table 2 describes the USPSTF classification of levels of certainty about net benefit. Appendix Table 1. What the USPSTF Grades Mean and Suggestions for Practice Appendix Table 2. USPSTF Levels of Certainty Regarding Net Benefit Supplement. Consumer Fact Sheet. Rationale Importance Lung cancer is the third most common cancer and the leading cause of cancer-related death in the United States (1). The most important risk factor for lung cancer is smoking, which results in approximately 85% of all U.S. lung cancer cases (2). Although the prevalence of smoking has decreased, approximately 37% of U.S. adults are current or former smokers (2). The incidence of lung cancer increases with age and occurs most commonly in persons aged 55 years or older. Increasing age and cumulative exposure to tobacco smoke are the 2 most common risk factors for lung cancer. Lung cancer has a poor prognosis, and nearly 90% of persons with lung cancer die of the disease. However, early-stage nonsmall cell lung cancer (NSCLC) has a better prognosis and can be treated with surgical resection. Detection Most lung cancer cases are NSCLC, and most screening programs focus on the detection and treatment of early-stage NSCLC. Although chest radiography and sputum cytologic evaluation have been used to screen for lung cancer, LDCT has greater sensitivity for detecting early-stage cancer (3). Benefits of Detection and Early Treatment Although lung cancer screening is not an alternative to smoking cessation, the USPSTF found adequate evidence that annual screening for lung cancer with LDCT in a defined population of high-risk persons can prevent a substantial number of lung cancerrelated deaths. Direct evidence from a large, well-conducted, randomized, controlled trial (RCT) provides moderate certainty of the benefit of lung cancer screening with LDCT in this population (4). The magnitude of benefit to the person depends on that person's risk for lung cancer because those who are at highest risk are most likely to benefit. Screening cannot prevent most lung cancerrelated deaths, and smoking cessation remains essential. Harms of Detection and Early Intervention and Treatment The harms associated with LDCT screening include false-negative and false-positive results, incidental findings, overdiagnosis, and radiation exposure. False-positive LDCT results occur in a substantial proportion of screened persons; 95% of all positive results do not lead to a diagnosis of cancer. In a high-quality screening program, further imaging can resolve most false-positive results; however, some patients may require invasive procedures. The USPSTF found insufficient evidence on the harms associated with incidental findings. Overdiagnosis of lung cancer occurs, but its precise magnitude is uncertain. A modeling study performed for the USPSTF estimated that 10% to 12% of screen-detected cancer cases are overdiagnosedthat is, they would not have been detected in the patient's lifetime without screening. Radiation harms, including cancer resulting from cumulative exposure to radiation, vary depending on the age at the start of screening; the number of scans received; and the person's exposure to other sources of radiation, particularly other medical imaging. USPSTF Assessment The USPSTF concludes with moderate certainty that annual screening for lung cancer with LDCT is of moderate net benefit in asymptomatic persons who are at high risk for lung cancer based on age, total cumulative exposure to tobacco smoke, and years since quitting smoking. The moderate net benefit of screening depends on limiting screening to persons who are at high risk, the accuracy of image interpretation being similar to that found in the NLST (National Lung Screening Trial), and the resolution of most false-positive results without invasive procedures (4). Clinical Considerations Patient Population Under Consideration The risk for lung cancer increases with age and cumulative exposure to tobacco smoke and decreases with time since quitting smoking. The best evidence for the benefit of screening comes from the NLST, which enrolled adults aged 55 to 74 years who had at least a 30 pack-year smoking history and were current smokers or had quit within the past 15 years. As with all screening trials, the NLST tested a specific intervention over a finite period. Because initial eligibility extended through age 74 years and participants received 3 annual screening computed tomographic scans, the oldest participants in the trial were aged 77 years. The USPSTF used modeling studies to predict the benefits and harms of screening programs that use different screening intervals, age ranges, smoking histories, and times since quitting. A program that annually screens adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years is projected to have a reasonable balance of benefits and harms. The model assumes that persons who achieve 15 years of smoking cessation during the screening program discontinue screening. This model predicts the outcomes of continuing the screening program used in the NLST through age 80 years. Screening may not be appropriate for patients with substantial comorbid conditions, particularly those at the upper end of the screening age range. The NLST excluded persons who were unlikely to complete curative lung cancer surgery and those with medical conditions that posed a substantial risk for death during the 8-year trial. The baseline characteristics of the NLST showed a relatively healthy sample, and fewer than 10% of enrolled participants were older than 70 years (5). Persons with serious comorbid conditions may experience net harm, no net benefit, or at least substantially less net benefit. Similarly, persons who are unwilling to have curative lung surgery are unlikely to benefit from a screening program. Assessment of Risk Age, total exposure to tobacco smoke, and years since quitting smoking are important risk factors for lung cancer and were used to determine eligibility in the NLST. Other risk factors include specific occupational exposures, radon exposure, family history, and history of pulmonary fibrosis or chronic obstructive lung disease. The incidence of lung cancer is relatively low in persons younger than 50 years but increases with age, especially after age 60 years. In current and former smokers, age-specific incidence rates increase with age and cumulative exposure to tobacco smoke. Smoking cessation substantially reduces a person's risk for developing and dying of lung cancer. Among persons enrolled in the NLST, those who were at highest risk because of additional risk factors or a greater cumulative exposure to tobacco smoke experienced most of the benefit (6). A validated multivariate model showed that persons in the highest 60% of risk accounted for 88% of all deaths preventable by screening. Screening Tests Low-dose computed tomography has shown high sensitivity and acceptable specificity for the detection of lung cancer in high-risk persons. Chest radiography and sputum cytologic evaluation have not shown adequate sensitivity or specificity as screening tests. Therefore, LDCT is currently the only recommended screening test for lung cancer. Treatment Surgical resection is the current standard of care for localized NSCLC. This type of cancer is treated with surgical resection when possible and also with radiation and chemotherapy. Annual LDCT screening may not be useful for patients with life-limiting comorbid conditions or poor functional status who may not be candidates for surgery. Other Approaches to Prevention Smoking cessation is the most important intervention to prevent NSCLC. Advising smokers to stop smoking and preventing nonsmokers from being exposed to tobacco smoke are the most effective ways to decrease the morbidity and mortality associated with lung cancer. Current smokers should be informed of their continuing risk for lung cancer and offered cessation treatments. Screening with LDCT should be viewed as an adjunct to tobacco cessation interventions. Useful Resources Clinicians have many resources to help patients stop smoking. The Centers for Disease Control and Prevention has developed a Web site with many such resources, including information on tobacco quit lines, available in several languages (www.cdc.gov/tobacco/campaign/tips). Quit l", "title": "Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation Statement" }, { "docid": "51972698", "text": "Problem Samoa has been struggling to address the burden of noncommunicable diseases at the health system, community and individual levels. Approach The World Health Organization (WHO) package of essential noncommunicable disease interventions for primary health care in low-resource settings was adopted in seven villages throughout Samoa in 2015. The National Steering Committee Members designed and implemented a screening process, and local facilitators and health-care workers collected health and lifestyle data. The WHO/International Society of Hypertension risk assessment was used on villagers older than 40 years to identify people at high risk of noncommunicable disease. Local setting Samoa is a small island developing state with increasing morbidity and mortality due to noncommunicable diseases. A national representative survey indicated that 50.1% (595/1188) of the Samoan adult population is at high risk of such diseases. High numbers of noncommunicable diseases are undiagnosed or untreated, because of shortage of health-care staff and lack of awareness of risk factors. Relevant changes The teams collected data from 2234 adults. For people older than 40 years, 6.7% (54/804) were identified as being at high-risk and were encouraged to seek treatment or manage risk factors. Community members developed an awareness programme to improve understanding of lifestyle risk factors. Lessons learnt Engaging community members was crucial in conducting a successful screening campaign. By identifying those villagers at high risk of developing noncommunicable diseases, early intervention was possible. Education improved awareness of the symptom-free nature of early-stage noncommunicable diseases.", "title": "Adapting the WHO package of essential noncommunicable disease interventions, Samoa" }, { "docid": "38369817", "text": "BACKGROUND Transcranial contrast Doppler studies have shown an increased prevalence of right-to-left shunts in patients with migraine with aura compared with controls. The anatomy and size of these right-to-left shunts have never been directly assessed. \n METHODS In a cross-sectional case-control study, the authors performed transesophageal contrast echocardiography in 93 consecutive patients with migraine with aura and 93 healthy controls. \n RESULTS A patent foramen ovale was present in 44 (47% [95% CI 37 to 58%]) patients with migraine with aura and 16 (17% [95% CI 10 to 26%]) control subjects (OR 4.56 [95% CI 1.97 to 10.57]; p < 0.001). A small shunt was equally prevalent in migraineurs (10% [95% CI 5 to 18%]) and controls (10% [95% CI 5 to 18%]), but a moderate-sized or large shunt was found more often in the migraine group (38% [95% CI 28 to 48%] vs 8% [95% CI 2 to 13%] in controls; p < 0.001). The presence of more than a small shunt increased the odds of having migraine with aura 7.78-fold (95% CI 2.53 to 29.30; p < 0.001). Besides patent foramen ovale prevalence and shunt size, no other echocardiographic differences were found between the study groups. Headache and baseline characteristics did not differ in migraine patients with and without shunt. \n CONCLUSIONS Nearly half of all patients with migraine with aura have a right-to-left shunt due to a patent foramen ovale. Shunt size is larger in migraineurs than controls. The clinical presentation of migraine is identical in patients with and without a patent foramen ovale.", "title": "Prevalence and size of directly detected patent foramen ovale in migraine with aura." } ]
369
Ectopic expression of Sall4, Nanog, Esrrb, and Lin28 generates induced pluripotent stem cells from mouse embryonic fibroblasts more efficiently than other factor combinations.
[ { "docid": "6826100", "text": "Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4, and Myc (OSKM) into cells. Although iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation. Reliably high-quality iPSCs will be needed for future therapeutic applications. Here, we show that one major determinant of iPSC quality is the combination of reprogramming factors used. Based on tetraploid complementation, we found that ectopic expression of Sall4, Nanog, Esrrb, and Lin28 (SNEL) in mouse embryonic fibroblasts (MEFs) generated high-quality iPSCs more efficiently than other combinations of factors including OSKM. Although differentially methylated regions, transcript number of master regulators, establishment of specific superenhancers, and global aneuploidy were comparable between high- and low-quality lines, aberrant gene expression, trisomy of chromosome 8, and abnormal H2A.X deposition were distinguishing features that could potentially also be applicable to human.", "title": "The developmental potential of iPSCs is greatly influenced by reprogramming factor selection." } ]
[ { "docid": "9675944", "text": "Somatic cells can be induced into pluripotent stem cells (iPSCs) with a combination of four transcription factors, Oct4/Sox2/Klf4/c-Myc or Oct4/Sox2/Nanog/LIN28. This provides an enabling platform to obtain patient-specific cells for various therapeutic and research applications. However, several problems remain for this approach to be therapeutically relevant due to drawbacks associated with efficiency and viral genome integration. Recently, it was shown that neural progenitor cells (NPCs) transduced with Oct4/Klf4 can be reprogrammed into iPSCs. However, NPCs express Sox2 endogenously, possibly facilitating reprogramming in the absence of exogenous Sox2. In this study, we identified a small-molecule combination, BIX-01294 and BayK8644, that enables reprogramming of Oct4/Klf4-transduced mouse embryonic fibroblasts, which do not endogenously express the factors essential for reprogramming. This study demonstrates that small molecules identified through a phenotypic screen can compensate for viral transduction of critical factors, such as Sox2, and improve reprogramming efficiency.", "title": "Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds." }, { "docid": "3882374", "text": "The RNA-binding proteins LIN28A and LIN28B play critical roles in embryonic development, tumorigenesis, and pluripotency, but their exact functions are poorly understood. Here, we show that, like LIN28A, LIN28B can function effectively with NANOG, OCT4, and SOX2 in reprogramming to pluripotency and that reactivation of both endogenous LIN28A and LIN28B loci are required for maximal reprogramming efficiency. In human fibroblasts, LIN28B is activated early during reprogramming, while LIN28A is activated later during the transition to bona fide induced pluripotent stem cells (iPSCs). In murine cells, LIN28A and LIN28B facilitate conversion from naive to primed pluripotency. Proteomic and metabolomic analysis highlighted roles for LIN28 in maintaining the low mitochondrial function associated with primed pluripotency and in regulating one-carbon metabolism, nucleotide metabolism, and histone methylation. LIN28 binds to mRNAs of proteins important for oxidative phosphorylation and modulates protein abundance. Thus, LIN28A and LIN28B play cooperative roles in regulating reprogramming, naive/primed pluripotency, and stem cell metabolism.", "title": "LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency." }, { "docid": "30507607", "text": "Transcription factors, such as Oct4, are critical for establishing and maintaining pluripotent cell identity. Whereas the genomic locations of several pluripotency transcription factors have been reported, the spectrum of their interaction partners is underexplored. Here, we use an improved affinity protocol to purify Oct4-interacting proteins from mouse embryonic stem cells (ESCs). Subsequent purification of Oct4 partners Sall4, Tcfcp2l1, Dax1, and Esrrb resulted in an Oct4 interactome of 166 proteins, including transcription factors and chromatin-modifying complexes with documented roles in self-renewal, but also many factors not previously associated with the ESC network. We find that Esrrb associated with the basal transcription machinery and also detect interactions between transcription factors and components of the TGF-beta, Notch, and Wnt signaling pathways. Acute depletion of Oct4 reduced binding of Tcfcp2l1, Dax1, and Esrrb to several target genes. In conclusion, our purification protocol allowed us to bring greater definition to the circuitry controlling pluripotent cell identity.", "title": "An Oct4-Centered Protein Interaction Network in Embryonic Stem Cells" }, { "docid": "7581911", "text": "Human and mouse embryonic stem cells (ESCs) are derived from blastocyst-stage embryos but have very different biological properties, and molecular analyses suggest that the pluripotent state of human ESCs isolated so far corresponds to that of mouse-derived epiblast stem cells (EpiSCs). Here we rewire the identity of conventional human ESCs into a more immature state that extensively shares defining features with pluripotent mouse ESCs. This was achieved by ectopic induction of Oct4, Klf4, and Klf2 factors combined with LIF and inhibitors of glycogen synthase kinase 3beta (GSK3beta) and mitogen-activated protein kinase (ERK1/2) pathway. Forskolin, a protein kinase A pathway agonist which can induce Klf4 and Klf2 expression, transiently substitutes for the requirement for ectopic transgene expression. In contrast to conventional human ESCs, these epigenetically converted cells have growth properties, an X-chromosome activation state (XaXa), a gene expression profile, and a signaling pathway dependence that are highly similar to those of mouse ESCs. Finally, the same growth conditions allow the derivation of human induced pluripotent stem (iPS) cells with similar properties as mouse iPS cells. The generation of validated \"naïve\" human ESCs will allow the molecular dissection of a previously undefined pluripotent state in humans and may open up new opportunities for patient-specific, disease-relevant research.", "title": "Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs." }, { "docid": "8290760", "text": "During cellular reprogramming, only a small fraction of cells become induced pluripotent stem cells (iPSCs). Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. We utilized two gene expression technologies to profile 48 genes in single cells at various stages during the reprogramming process. Analysis of early stages revealed considerable variation in gene expression between cells in contrast to late stages. Expression of Esrrb, Utf1, Lin28, and Dppa2 is a better predictor for cells to progress into iPSCs than expression of the previously suggested reprogramming markers Fbxo15, Fgf4, and Oct4. Stochastic gene expression early in reprogramming is followed by a late hierarchical phase with Sox2 being the upstream factor in a gene expression hierarchy. Finally, downstream factors derived from the late phase, which do not include Oct4, Sox2, Klf4, c-Myc, and Nanog, can activate the pluripotency circuitry.", "title": "Single-Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase" }, { "docid": "4452318", "text": "Pluripotency is defined by the ability of a cell to differentiate to the derivatives of all the three embryonic germ layers: ectoderm, mesoderm and endoderm. Pluripotent cells can be captured via the archetypal derivation of embryonic stem cells or via somatic cell reprogramming. Somatic cells are induced to acquire a pluripotent stem cell (iPSC) state through the forced expression of key transcription factors, and in the mouse these cells can fulfil the strictest of all developmental assays for pluripotent cells by generating completely iPSC-derived embryos and mice. However, it is not known whether there are additional classes of pluripotent cells, or what the spectrum of reprogrammed phenotypes encompasses. Here we explore alternative outcomes of somatic reprogramming by fully characterizing reprogrammed cells independent of preconceived definitions of iPSC states. We demonstrate that by maintaining elevated reprogramming factor expression levels, mouse embryonic fibroblasts go through unique epigenetic modifications to arrive at a stable, Nanog-positive, alternative pluripotent state. In doing so, we prove that the pluripotent spectrum can encompass multiple, unique cell states.", "title": "Divergent reprogramming routes lead to alternative stem-cell states" }, { "docid": "3669694", "text": "Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified positive and negative modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors.", "title": "Chromatin modifying enzymes as modulators of reprogramming" }, { "docid": "4303075", "text": "Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. This raised the question of whether transcription factors could directly induce other defined somatic cell fates, and not only an undifferentiated state. We hypothesized that combinatorial expression of neural-lineage-specific transcription factors could directly convert fibroblasts into neurons. Starting from a pool of nineteen candidate genes, we identified a combination of only three factors, Ascl1, Brn2 (also called Pou3f2) and Myt1l, that suffice to rapidly and efficiently convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro. These induced neuronal (iN) cells express multiple neuron-specific proteins, generate action potentials and form functional synapses. Generation of iN cells from non-neural lineages could have important implications for studies of neural development, neurological disease modelling and regenerative medicine.", "title": "Direct conversion of fibroblasts to functional neurons by defined factors" }, { "docid": "15945975", "text": "Genetic reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells or iPSCs) by over-expression of specific genes has been accomplished using mouse and human cells. However, it is still unclear how similar human iPSCs are to human Embryonic Stem Cells (hESCs). Here, we describe the transcriptional profile of human iPSCs generated without viral vectors or genomic insertions, revealing that these cells are in general similar to hESCs but with significant differences. For the generation of human iPSCs without viral vectors or genomic insertions, pluripotent factors Oct4 and Nanog were cloned in episomal vectors and transfected into human fetal neural progenitor cells. The transient expression of these two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described here revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference. Moreover, the episomal reprogramming strategy represents a safe way to generate human iPSCs for clinical purposes and basic research.", "title": "Transcriptional Signature and Memory Retention of Human-Induced Pluripotent Stem Cells" }, { "docid": "12152977", "text": "The SWI/SNF-Brg1 chromatin remodeling protein plays critical roles in cell-cycle control and differentiation through regulation of gene expression. Loss of Brg1 in mice results in early embryonic lethality, and recent studies have implicated a role for Brg1 in somatic stem cell self-renewal and differentiation. However, little is known about Brg1 function in preimplantation embryos and embryonic stem (ES) cells. Here we report that Brg1 is required for ES cell self-renewal and pluripotency. RNA interference-mediated knockdown of Brg1 in blastocysts caused aberrant expression of Oct4 and Nanog. In ES cells, knockdown of Brg1 resulted in phenotypic changes indicative of differentiation, downregulation of self-renewal and pluripotency genes (e.g., Oct4, Sox2, Sall4, Rest), and upregulation of differentiation genes. Using genome-wide promoter analysis (chromatin immunoprecipitation) we found that Brg1 occupied the promoters of key pluripotency-related genes, including Oct4, Sox2, Nanog, Sall4, Rest, and Polycomb group (PcG) proteins. Moreover, Brg1 co-occupied a subset of Oct4, Sox2, Nanog, and PcG protein target genes. These results demonstrate an important role for Brg1 in regulating self-renewal and pluripotency in ES cells.", "title": "SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells." }, { "docid": "1630949", "text": "The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-specific transcription factor Oct4 is sufficient to generate pluripotent stem cells from adult mouse NSCs. These one-factor induced pluripotent stem cells (1F iPS) are similar to embryonic stem cells in vitro and in vivo. Not only can these cells can be efficiently differentiated into NSCs, cardiomyocytes, and germ cells in vitro, but they are also capable of teratoma formation and germline transmission in vivo. Our results demonstrate that Oct4 is required and sufficient to directly reprogram NSCs to pluripotency.", "title": "Oct4-Induced Pluripotency in Adult Neural Stem Cells" }, { "docid": "10786948", "text": "The generation of induced pluripotent stem cells (iPSCs) provides the opportunity to use patient-specific somatic cells, which are a valuable source for disease modeling and drug discovery. To promote research involving these cells, it is important to make iPSCs from easily accessible and less invasive tissues, like blood. We have recently reported the efficient generation of human iPSCs from adult fibroblasts using a combination of plasmids encoding OCT3/4, SOX2, KLF4, L-MYC, LIN28, and shRNA for TP53. We herein report a modified protocol enabling efficient iPSC induction from CD34+ cord blood cells and from peripheral blood isolated from healthy donors using these plasmid vectors. The original plasmid mixture could induce iPSCs; however, the efficiency was low. The addition of EBNA1, an essential factor for episomal amplification of the vectors, by an extra plasmid greatly increased the efficiency of iPSC induction, especially when the induction was performed from αβT cells. This improvement enabled the establishment of blood-derived iPSCs from seven healthy donors ranging in age from their 20s to their 60s. This induction method will be useful for the derivation of patient-specific integration-free iPSCs and would also be applicable to the generation of clinical-grade iPSCs in the future.", "title": "An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells." }, { "docid": "86129154", "text": "Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.", "title": "Induced pluripotent stem cell lines derived from human somatic cells." }, { "docid": "4380451", "text": "Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.", "title": "Reprogramming of human somatic cells to pluripotency with defined factors" }, { "docid": "4417177", "text": "As is the case for embryo-derived stem cells, application of reprogrammed human induced pluripotent stem cells is limited by our understanding of lineage specification. Here we demonstrate the ability to generate progenitors and mature cells of the haematopoietic fate directly from human dermal fibroblasts without establishing pluripotency. Ectopic expression of OCT4 (also called POU5F1)-activated haematopoietic transcription factors, together with specific cytokine treatment, allowed generation of cells expressing the pan-leukocyte marker CD45. These unique fibroblast-derived cells gave rise to granulocytic, monocytic, megakaryocytic and erythroid lineages, and demonstrated in vivo engraftment capacity. We note that adult haematopoietic programs are activated, consistent with bypassing the pluripotent state to generate blood fate: this is distinct from haematopoiesis involving pluripotent stem cells, where embryonic programs are activated. These findings demonstrate restoration of multipotency from human fibroblasts, and suggest an alternative approach to cellular reprogramming for autologous cell-replacement therapies that avoids complications associated with the use of human pluripotent stem cells.", "title": "Direct conversion of human fibroblasts to multilineage blood progenitors" }, { "docid": "4405194", "text": "Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix-loop-helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.", "title": "Induction of human neuronal cells by defined transcription factors" }, { "docid": "9988425", "text": "Pluripotent mouse embryonic stem (ES) cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF) is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS) cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying differentiation. These homogenous cultures will enable delineation of molecular mechanisms that define a tissue-specific stem cell and allow direct comparison with pluripotent ES cells.", "title": "Niche-Independent Symmetrical Self-Renewal of a Mammalian Tissue Stem Cell" }, { "docid": "4423327", "text": "Nanog is a divergent homeodomain protein found in mammalian pluripotent cells and developing germ cells. Deletion of Nanog causes early embryonic lethality, whereas constitutive expression enables autonomous self-renewal of embryonic stem cells. Nanog is accordingly considered a core element of the pluripotent transcriptional network. However, here we report that Nanog fluctuates in mouse embryonic stem cells. Transient downregulation of Nanog appears to predispose cells towards differentiation but does not mark commitment. By genetic deletion we show that, although they are prone to differentiate, embryonic stem cells can self-renew indefinitely in the permanent absence of Nanog. Expanded Nanog null cells colonize embryonic germ layers and exhibit multilineage differentiation both in fetal and adult chimaeras. Although they are also recruited to the germ line, primordial germ cells lacking Nanog fail to mature on reaching the genital ridge. This defect is rescued by repair of the mutant allele. Thus Nanog is dispensible for expression of somatic pluripotency but is specifically required for formation of germ cells. Nanog therefore acts primarily in construction of inner cell mass and germ cell states rather than in the housekeeping machinery of pluripotency. We surmise that Nanog stabilizes embryonic stem cells in culture by resisting or reversing alternative gene expression states.", "title": "Nanog safeguards pluripotency and mediates germline development" }, { "docid": "30884033", "text": "Deciphering the molecular basis of stem cell pluripotency is fundamental to the understanding of stem cell biology, early embryonic development, and to the clinical application of regenerative medicine. We report here that the molecular chaperone heat shock protein 90 (Hsp90) is essential for mouse embryonic stem cell (ESC) pluripotency through regulating multiple pluripotency factors, including Oct4, Nanog, and signal transducer and activator of transcription 3. Inhibition of Hsp90 by either 17-N-Allylamino-17-demethoxygeldanamycin or miRNA led to ESC differentiation. Overexpression of Hsp90β partially rescued the phenotype; in particular, the levels of Oct4 and Nanog were restored. Notably, Hsp90 associated with Oct4 and Nanog in the same cellular complex and protected them from degradation by the ubiquitin proteasome pathway, suggesting that Oct4 and Nanog are potential novel Hsp90 client proteins. In addition, Hsp90 inhibition reduced the mRNA level of Oct4, but not that of Nanog, indicating that Hsp90 participates in Oct4 mRNA processing or maturation. Hsp90 inhibition also increased expression of some protein markers for mesodermal lineages, implying that Hsp90 suppresses mesodermal differentiation from ESCs. These findings support a new role for Hsp90 in maintaining ESC pluripotency by sustaining the level of multiple pluripotency factors, particularly Oct4 and Nanog.", "title": "Regulation of embryonic stem cell pluripotency by heat shock protein 90." } ]
370
Egr2 regulates the homeostasis of B and T cells.
[ { "docid": "1550937", "text": "Lymphocytes provide optimal responses against pathogens with minimal inflammatory pathology. However, the intrinsic mechanisms regulating these responses are unknown. Here, we report that deletion of both transcription factors Egr2 and Egr3 in lymphocytes resulted in a lethal autoimmune syndrome with excessive serum proinflammatory cytokines but also impaired antigen receptor-induced proliferation of B and T cells. Egr2- and Egr3-defective B and T cells had hyperactive signal transducer and activator of transcription-1 (STAT1) and STAT3 while antigen receptor-induced activation of transcription factor AP-1 was severely impaired. We discovered that Egr2 and/or Egr3 directly induced expression of suppressor of cytokine signaling-1 (SOCS1) and SOCS3, inhibitors of STAT1 and STAT3, and also blocked the function of Batf, an AP-1 inhibitor, in B and T cells. Thus, Egr2 and Egr3 regulate B and T cell function in adaptive immune responses and homeostasis by promoting antigen receptor signaling and controlling inflammation.", "title": "The Transcription Factors Egr2 and Egr3 Are Essential for the Control of Inflammation and Antigen-Induced Proliferation of B and T Cells" } ]
[ { "docid": "7399084", "text": "T cell homeostasis is crucial for a functional immune system, as the accumulation of T cells resulting from lack of regulatory T cells or an inability to shut down immune responses can lead to inflammation and autoimmune pathology. Here we show that Blimp-1, a transcriptional repressor that is a 'master regulator' of terminal B cell differentiation, was expressed in a subset of antigen-experienced CD4+ and CD8+ T cells. Mice reconstituted with fetal liver stem cells expressing a mutant Blimp-1 lacking the DNA-binding domain developed a lethal multiorgan inflammatory disease caused by an accumulation of effector and memory T cells. These data identify Blimp-1 as an essential regulator of T cell homeostasis and suggest that Blimp-1 regulates both B cell and T cell differentiation.", "title": "Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance" }, { "docid": "857189", "text": "The protein cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of immune responses, and its loss causes fatal autoimmunity in mice. We studied a large family in which five individuals presented with a complex, autosomal dominant immune dysregulation syndrome characterized by hypogammaglobulinemia, recurrent infections and multiple autoimmune clinical features. We identified a heterozygous nonsense mutation in exon 1 of CTLA4. Screening of 71 unrelated patients with comparable clinical phenotypes identified five additional families (nine individuals) with previously undescribed splice site and missense mutations in CTLA4. Clinical penetrance was incomplete (eight adults of a total of 19 genetically proven CTLA4 mutation carriers were considered unaffected). However, CTLA-4 protein expression was decreased in regulatory T cells (Treg cells) in both patients and carriers with CTLA4 mutations. Whereas Treg cells were generally present at elevated numbers in these individuals, their suppressive function, CTLA-4 ligand binding and transendocytosis of CD80 were impaired. Mutations in CTLA4 were also associated with decreased circulating B cell numbers. Taken together, mutations in CTLA4 resulting in CTLA-4 haploinsufficiency or impaired ligand binding result in disrupted T and B cell homeostasis and a complex immune dysregulation syndrome.", "title": "Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations" }, { "docid": "11666252", "text": "The persistence of naive and memory T cells has long been of interest to immunologists, but the factors that influence the survival and homeostasis of these subsets have remained obscure. In recent years, it has become evident that the homeostasis of both naive and memory T-cell pools is highly dynamic and tightly regulated by internal stimuli, including cytokines and self-peptide–MHC ligands for the T-cell receptor. These homeostatic mechanisms might have a vital influence on the capacity of the T-cell pool to respond to both foreign and self-antigens.", "title": "Maintaining the norm: T-cell homeostasis" }, { "docid": "38587347", "text": "Humoral immune responses depend on B cells encountering antigen, interacting with helper T cells, proliferating and differentiating into low-affinity plasma cells or, after organizing into a germinal center (GC), high-affinity plasma cells and memory B cells. Remarkably, each of these events occurs in association with distinct stromal cells in separate subcompartments of the lymphoid tissue. B cells must migrate from niche to niche in a rapid and highly regulated manner to successfully mount a response. The chemokine, CXCL13, plays a central role in guiding B cells to follicles whereas T-zone chemokines guide activated B cells to the T zone. Sphingosine-1-phosphate (S1P) promotes cell egress from the tissue, as well as marginal-zone B-cell positioning in the spleen. Recent studies have identified a role for the orphan receptor, EBV-induced molecule 2 (EBI2; GPR183), in guiding activated B cells to inter and outer follicular niche(s) and down-regulation of this receptor is essential for organizing cells into GCs. In this review, we discuss current understanding of the roles played by chemokines, S1P and EBI2 in the migration events that underlie humoral immune responses.", "title": "Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses." }, { "docid": "42693833", "text": "Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively. Diversified and selected IgAs contributed to maintenance of diversified and balanced microbiota, which in turn facilitated the expansion of Foxp3(+) T cells, induction of GCs, and IgA responses in the gut through a symbiotic regulatory loop. Thus, the adaptive immune system, through cellular and molecular components that are required for immune tolerance and through the diversification as well as selection of antibody repertoire, mediates host-microbial symbiosis by controlling the richness and balance of bacterial communities required for homeostasis.", "title": "Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis." }, { "docid": "4418070", "text": "Regulatory T (Treg) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting differentiation factor controlling Treg cell homeostasis and function, whereas the early Treg-cell-lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors. However, whether Foxo proteins act beyond the Treg-cell-commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1 and display reduced T-cell-receptor-induced Akt activation, Foxo1 phosphorylation and Foxo1 nuclear exclusion. Mice with Treg-cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to that seen in Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ∼300 Foxo1-bound target genes, including the pro-inflammatory cytokine Ifng, that do not seem to be directly regulated by Foxp3. These findings show that the evolutionarily ancient Akt–Foxo1 signalling module controls a novel genetic program indispensable for Treg cell function.", "title": "Novel Foxo1-dependent transcriptional programs control Treg cell function" }, { "docid": "14767844", "text": "Calcium influx is crucial for T cell activation and differentiation. The detailed regulation of this process remains unclear. We report here that golli protein, an alternatively spliced product of the myelin basic protein gene, plays a critical role in regulating calcium influx in T cells. Golli-deficient T cells were hyperproliferative and showed enhanced calcium entry upon T cell receptor stimulation. We further found that golli regulates calcium influx in T cells through the inhibition of the store depletion-induced calcium influx. Mutation of the myristoylation site on golli disrupted its association with the plasma membrane and reversed its inhibitory action on Ca2+ influx, indicating that membrane association of golli was essential for its inhibitory action. These results indicate that golli functions in a unique way to regulate T cell activation through a mechanism involving the modulation of the calcium homeostasis.", "title": "Golli protein negatively regulates store depletion-induced calcium influx in T cells." }, { "docid": "3531388", "text": "Bone homeostasis is maintained by the balance between bone-forming osteoblasts and bone-degrading osteoclasts. Osteoblasts have a mesenchymal origin whereas osteoclasts belong to the myeloid lineage. Osteoclast and osteoblast communication occurs through soluble factors secretion, cell-bone interaction and cell-cell contact, which modulate their activities. CD200 is an immunoglobulin superfamilly member expressed on various types of cells including mesenchymal stem cells (MSCs). CD200 receptor (CD200R) is expressed on myeloid cells such as monocytes/macrophages. We assume that CD200 could be a new molecule involved in the control of osteoclastogenesis and could play a role in MSC-osteoclast communication in humans. In this study, we demonstrated that soluble CD200 inhibited the differentiation of osteoclast precursors as well as their maturation in bone-resorbing cells in vitro. Soluble CD200 did not modify the monocyte phenotype but inhibited the receptor activator of nuclear factor kappa-B ligand (RANKL) signaling pathway as well as the gene expression of osteoclast markers such as osteoclast-associated receptor (OSCAR) and nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Moreover, MSCs inhibited osteoclast formation, which depended on cell-cell contact and was associated with CD200 expression on the MSC surface. Our results clearly demonstrate that MSCs, through the expression of CD200, play a major role in the regulation of bone resorption and bone physiology and that the CD200-CD200R couple could be a new target to control bone diseases.", "title": "CD200R/CD200 Inhibits Osteoclastogenesis: New Mechanism of Osteoclast Control by Mesenchymal Stem Cells in Human" }, { "docid": "40473317", "text": "In this report, we demonstrate that CD28(-/-) mice are severely impaired in the initial expansion of D(b)/NP366-374-specific CD8 T cells in response to influenza virus infection, whereas 4-1BB ligand (4-1BBL)(-/-) mice show no defect in primary T cell expansion to influenza virus. In contrast, 4-1BBL(-/-) mice show a decrease in D(b)/NP366-374-specific T cells late in the primary response. Upon secondary challenge with influenza virus, 4-1BBL(-/-) mice show a decrease in the number of D(b)/NP366-374-specific T cells compared to wild-type mice such that the level of the CD8 T cell expansion during the in vivo secondary response is reduced to the level of a primary response, with concomitant reduction of CTL effector function. In contrast, Ab responses, as well as secondary CD4 T cell responses, to influenza are unaffected by 4-1BBL deficiency. Thus, CD28 is critical for initial T cell expansion, whereas 4-1BB/4-1BBL signaling affects T cell numbers much later in the response and is essential for the survival and/or responsiveness of the memory CD8 T cell pool.", "title": "Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection." }, { "docid": "13923140", "text": "Autoimmune diseases are thought to result from imbalances in normal immune physiology and regulation. Here, we show that autoimmune disease susceptibility and resistance alleles on mouse chromosome 3 (Idd3) correlate with differential expression of the key immunoregulatory cytokine interleukin-2 (IL-2). In order to test directly that an approximately twofold reduction in IL-2 underpins the Idd3-linked destabilization of immune homeostasis, we show that engineered haplodeficiency of Il2 gene expression not only reduces T cell IL-2 production by twofold but also mimics the autoimmune dysregulatory effects of the naturally occurring susceptibility alleles of Il2. Reduced IL-2 production achieved by either genetic mechanism correlates with reduced function of CD4+ CD25+ regulatory T cells, which are critical for maintaining immune homeostasis.", "title": "Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity" }, { "docid": "32101982", "text": "The transcription factor Krüppel-like factor 2 (KLF2) is critical for normal trafficking of T lymphocytes, but its role in B cells is unclear. We report that B cell-specific KLF2 deficiency leads to decreased expression of the trafficking molecules CD62L and β7-integrin, yet expression of sphingosine-1 phosphate receptor 1 (which is a critical target of KLF2 in T cells) was, unexpectedly, minimally altered. Unexpectedly, Klf2 deletion led to a drastic reduction in the B1 B-cell pool and a substantial increase in transitional and marginal zone B-cell numbers. In addition, we observed that KLF2-deficient B cells showed increased apoptosis and impaired proliferation after B-cell receptor cross-linking. Gene expression analysis indicated that KLF2-deficient follicular B cells display numerous characteristics shared by normal marginal zone B cells, including reduced expression of several signaling molecules that may contribute to defective activation of these cells. Hence, our data indicate that KLF2 plays a critical role in dictating normal subset differentiation and functional reactivity of mature B cells.", "title": "Krüppel-like factor 2 (KLF2) regulates B-cell reactivity, subset differentiation, and trafficking molecule expression." }, { "docid": "21392223", "text": "Expression of the receptor-type tyrosine phosphatase LAR was studied in cells of the murine hemopoietic system. The gene is expressed in all cells of the T cell lineage but not in cells of any other hemopoietic lineage and the level of expression in T cells is developmentally regulated. The CD4(-)8(-)44(+) early thymic immigrants and mature (CD4(+)8(-)/CD4(-)8(+)) thymocytes and T cells express low levels, whereas immature (CD4(-)8(-)44(-) and CD4(+)8(+)) thymocytes express high levels of LAR. Among bone marrow cells only uncommitted c-kit(+)B220(+)CD19(-) precursors, but not B cell lineage committed c-kit(+)B220(+)CD19(+) precursors, express low levels of LAR. In contrast to the c-kit(+)B220(+)CD19(+) pre-BI cells from normal mice, counterparts of pre-BI cells from PAX-5-deficient mice express LAR, indicating that PAX-5-mediated commitment to the B cell lineage results in suppression of LAR. During differentiation of PAX-5-deficient pre-BI cell line into non-T cell lineages, expression of LAR is switched off, but it is up-regulated during differentiation into thymocytes. Thus, within the hemopoietic system, LAR appears to be a T cell lineage-specific receptor-type phosphatase. However, surprisingly, truncation of its phosphatase domains has no obvious effect on T cell development, repertoire selection or function.", "title": "Within the hemopoietic system, LAR phosphatase is a T cell lineage-specific adhesion receptor-like protein whose phosphatase activity appears dispensable for T cell development, repertoire selection and function." }, { "docid": "9787715", "text": "BACKGROUND The effects of Plasmodium falciparum on B-cell homeostasis have not been well characterized. This study investigated whether an episode of acute malaria in young children results in changes in the peripheral B cell phenotype. \n METHODS Using flow-cytofluorimetric analysis, the B cell phenotypes found in the peripheral blood of children aged 2-5 years were characterized during an episode of acute uncomplicated clinical malaria and four weeks post-recovery and in healthy age-matched controls. \n RESULTS There was a significant decrease in CD19+ B lymphocytes during acute malaria. Characterization of the CD19+ B cell subsets in the peripheral blood based on expression of IgD and CD38 revealed a significant decrease in the numbers of naive 1 CD38-IgD+ B cells while there was an increase in CD38+IgD- memory 3 B cells during acute malaria. Further analysis of the peripheral B cell phenotype also identified an expansion of transitional CD10+CD19+ B cells in children following an episode of acute malaria with up to 25% of total CD19+ B cell pool residing in this subset. \n CONCLUSION Children experiencing an episode of acute uncomplicated clinical malaria experienced profound disturbances in B cell homeostasis.", "title": "Alterations on peripheral B cell subsets following an acute uncomplicated clinical malaria infection in children" }, { "docid": "23848916", "text": "This study found that oridonin, a natural diterpenoid purified from Rabdosia rubescens, inhibited growth of multiple myeloma (MM; U266, RPMI8226), acute lymphoblastic T-cell leukemia (Jurkat), and adult T-cell leukemia (MT-1) cells with an effective dose that inhibited 50% of target cells (ED50) ranging from 0.75 to 2.7 microg/mL. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining showed that oridonin caused apoptosis of MT-1 cells in a time-dependent manner. We explored effects of oridonin on antiapoptotic Bcl-2 family members and found that it down-regulated levels of Mcl-1 and BCL-x(L), but not Bcl-2 protein, in both MT-1 and RPMI8226 cells. Further studies found that oridonin inhibited nuclear factor-kappa B (NF-kappa B) DNA-binding activity in these cells as measured by luciferase reporter gene, ELISA-based, and electrophoretic mobility shift assays. Oridonin also blocked tumor necrosis factor-alpha- and lipopolysaccharide-stimulated NF-kappa B activity in Jurkat cells as well as RAW264.7 murine macrophages. Of note, oridonin decreased survival of freshly isolated adult T-cell leukemia (three samples), acute lymphoblastic leukemia (one sample), chronic lymphocytic leukemia (one sample), non-Hodgkin's lymphoma (three samples), and MM (four samples) cells from patients in association with inhibition of NF-kappa B DNA-binding activity. On the other hand, oridonin did not affect survival of normal lymphoid cells from healthy volunteers. Taken together, oridonin might be useful as adjunctive therapy for individuals with lymphoid malignancies, including the lethal disease adult T-cell leukemia.", "title": "Oridonin, a diterpenoid purified from Rabdosia rubescens, inhibits the proliferation of cells from lymphoid malignancies in association with blockade of the NF-kappa B signal pathways." }, { "docid": "21320417", "text": "T cell memory induced by prior infection or vaccination provides enhanced protection against subsequent microbial infections. The processes involved in generating and maintaining T cell memory are becoming better understood due to recent technological advances in identifying memory T cells and monitoring their behavior and function in vivo. Memory T cells develop in response to a progressive set of cues-starting with signals from antigen-loaded, activated antigen-presenting cells (APCs) and inflammatory mediators induced by the innate immune response, to the poorly defined subsequent signals triggered as the immune response wanes toward homeostasis. The persistence of the resting memory T cells that eventually develop is regulated by cytokines. This chapter discusses recent findings on how memory T cells develop to confer long-term protective immunity.", "title": "T cell memory." }, { "docid": "19561411", "text": "Orai1 and stromal interaction molecule 1 (STIM1) mediate store-operated Ca(2+) entry (SOCE) in immune cells. STIM1, an endoplasmic reticulum (ER) Ca(2+) sensor, detects store depletion and interacts with plasma membrane (PM)-resident Orai1 channels at the ER-PM junctions. However, the molecular composition of these junctions in T cells remains poorly understood. Here, we show that junctophilin-4 (JP4), a member of junctional proteins in excitable cells, is expressed in T cells and localized at the ER-PM junctions to regulate Ca(2+) signaling. Silencing or genetic manipulation of JP4 decreased ER Ca(2+) content and SOCE in T cells, impaired activation of the nuclear factor of activated T cells (NFAT) and extracellular signaling-related kinase (ERK) signaling pathways, and diminished expression of activation markers and cytokines. Mechanistically, JP4 directly interacted with STIM1 via its cytoplasmic domain and facilitated its recruitment into the junctions. Accordingly, expression of this cytoplasmic fragment of JP4 inhibited SOCE. Furthermore, JP4 also formed a complex with junctate, a Ca(2+)-sensing ER-resident protein, previously shown to mediate STIM1 recruitment into the junctions. We propose that the junctate-JP4 complex located at the junctions cooperatively interacts with STIM1 to maintain ER Ca(2+) homeostasis and mediate SOCE in T cells.", "title": "Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells." }, { "docid": "22874817", "text": "How follicular helper T cells (TFH cells) differentiate to regulate B cell immunity is critical for effective protein vaccination. Here we define three transcription factor T-bet–expressing antigen-specific effector helper T cell subsets with distinguishable function, migratory properties and developmental programming in vivo. Expression of the transcriptional repressor Blimp-1 distinguished T zone 'lymphoid' effector helper T cells (CD62LhiCCR7hi) from CXCR5lo 'emigrant' effector helper T cells and CXCR5hi 'resident' TFH cells expressing the transcriptional repressor Bcl-6 (CD62LloCCR7lo). We then show by adoptive transfer and intact polyclonal responses that helper T cells with the highest specific binding of peptide–major histocompatibility complex class II and the most restricted T cell antigen receptor junctional diversity 'preferentially' developed into the antigen-specific effector TFH compartment. Our studies demonstrate a central function for differences in the binding strength of the T cell antigen receptor in the antigen-specific mechanisms that 'program' specialized effector TFH function in vivo.", "title": "The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding" }, { "docid": "20310709", "text": "Mice lacking the transcription factor T-bet in the innate immune system develop microbiota-dependent colitis. Here, we show that interleukin-17A (IL-17A)-producing IL-7Rα(+) innate lymphoid cells (ILCs) were potent promoters of disease in Tbx21(-/-)Rag2(-/-) ulcerative colitis (TRUC) mice. TNF-α produced by CD103(-)CD11b(+) dendritic cells synergized with IL-23 to drive IL-17A production by ILCs, demonstrating a previously unrecognized layer of cellular crosstalk between dendritic cells and ILCs. We have identified Helicobacter typhlonius as a key disease trigger driving excess TNF-α production and promoting colitis in TRUC mice. Crucially, T-bet also suppressed the expression of IL-7R, a key molecule involved in controlling intestinal ILC homeostasis. The importance of IL-7R signaling in TRUC disease was highlighted by the dramatic reduction in intestinal ILCs and attenuated colitis following IL-7R blockade. Taken together, these data demonstrate the mechanism by which T-bet regulates the complex interplay between mucosal dendritic cells, ILCs, and the intestinal microbiota.", "title": "The Transcription Factor T-bet Regulates Intestinal Inflammation Mediated by Interleukin-7 Receptor+ Innate Lymphoid Cells" }, { "docid": "21012916", "text": "Follicular T helper (TFH) cells orchestrate the germinal center (GC) reaction locally. Local mechanisms regulating their dynamics and helper functions are not well defined. Here we found that GC-expressed ephrin B1 (EFNB1) repulsively inhibited T cell to B cell adhesion and GC TFH retention by signaling through TFH-expressed EPHB6 receptor. At the same time, EFNB1 promoted interleukin-21 production from GC TFH cells by signaling predominantly through EPHB4. Consequently, EFNB1-null GCs were associated with defective production of plasma cells despite harboring excessive TFH cells. In a competitive GC reaction, EFNB1-deficient B cells more efficiently interacted with TFH cells and produced more bone-marrow plasma cells, likely as a result of gaining more contact-dependent help. Our results reveal a contact-dependent repulsive guidance system that controls GC TFH dynamics and effector functions locally.", "title": "Ephrin B1–mediated repulsion and signaling control germinal center T cell territoriality and function" } ]
371
Egr3 regulates the homeostasis of B and T cells.
[ { "docid": "1550937", "text": "Lymphocytes provide optimal responses against pathogens with minimal inflammatory pathology. However, the intrinsic mechanisms regulating these responses are unknown. Here, we report that deletion of both transcription factors Egr2 and Egr3 in lymphocytes resulted in a lethal autoimmune syndrome with excessive serum proinflammatory cytokines but also impaired antigen receptor-induced proliferation of B and T cells. Egr2- and Egr3-defective B and T cells had hyperactive signal transducer and activator of transcription-1 (STAT1) and STAT3 while antigen receptor-induced activation of transcription factor AP-1 was severely impaired. We discovered that Egr2 and/or Egr3 directly induced expression of suppressor of cytokine signaling-1 (SOCS1) and SOCS3, inhibitors of STAT1 and STAT3, and also blocked the function of Batf, an AP-1 inhibitor, in B and T cells. Thus, Egr2 and Egr3 regulate B and T cell function in adaptive immune responses and homeostasis by promoting antigen receptor signaling and controlling inflammation.", "title": "The Transcription Factors Egr2 and Egr3 Are Essential for the Control of Inflammation and Antigen-Induced Proliferation of B and T Cells" } ]
[ { "docid": "7399084", "text": "T cell homeostasis is crucial for a functional immune system, as the accumulation of T cells resulting from lack of regulatory T cells or an inability to shut down immune responses can lead to inflammation and autoimmune pathology. Here we show that Blimp-1, a transcriptional repressor that is a 'master regulator' of terminal B cell differentiation, was expressed in a subset of antigen-experienced CD4+ and CD8+ T cells. Mice reconstituted with fetal liver stem cells expressing a mutant Blimp-1 lacking the DNA-binding domain developed a lethal multiorgan inflammatory disease caused by an accumulation of effector and memory T cells. These data identify Blimp-1 as an essential regulator of T cell homeostasis and suggest that Blimp-1 regulates both B cell and T cell differentiation.", "title": "Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance" }, { "docid": "857189", "text": "The protein cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of immune responses, and its loss causes fatal autoimmunity in mice. We studied a large family in which five individuals presented with a complex, autosomal dominant immune dysregulation syndrome characterized by hypogammaglobulinemia, recurrent infections and multiple autoimmune clinical features. We identified a heterozygous nonsense mutation in exon 1 of CTLA4. Screening of 71 unrelated patients with comparable clinical phenotypes identified five additional families (nine individuals) with previously undescribed splice site and missense mutations in CTLA4. Clinical penetrance was incomplete (eight adults of a total of 19 genetically proven CTLA4 mutation carriers were considered unaffected). However, CTLA-4 protein expression was decreased in regulatory T cells (Treg cells) in both patients and carriers with CTLA4 mutations. Whereas Treg cells were generally present at elevated numbers in these individuals, their suppressive function, CTLA-4 ligand binding and transendocytosis of CD80 were impaired. Mutations in CTLA4 were also associated with decreased circulating B cell numbers. Taken together, mutations in CTLA4 resulting in CTLA-4 haploinsufficiency or impaired ligand binding result in disrupted T and B cell homeostasis and a complex immune dysregulation syndrome.", "title": "Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations" }, { "docid": "11666252", "text": "The persistence of naive and memory T cells has long been of interest to immunologists, but the factors that influence the survival and homeostasis of these subsets have remained obscure. In recent years, it has become evident that the homeostasis of both naive and memory T-cell pools is highly dynamic and tightly regulated by internal stimuli, including cytokines and self-peptide–MHC ligands for the T-cell receptor. These homeostatic mechanisms might have a vital influence on the capacity of the T-cell pool to respond to both foreign and self-antigens.", "title": "Maintaining the norm: T-cell homeostasis" }, { "docid": "38587347", "text": "Humoral immune responses depend on B cells encountering antigen, interacting with helper T cells, proliferating and differentiating into low-affinity plasma cells or, after organizing into a germinal center (GC), high-affinity plasma cells and memory B cells. Remarkably, each of these events occurs in association with distinct stromal cells in separate subcompartments of the lymphoid tissue. B cells must migrate from niche to niche in a rapid and highly regulated manner to successfully mount a response. The chemokine, CXCL13, plays a central role in guiding B cells to follicles whereas T-zone chemokines guide activated B cells to the T zone. Sphingosine-1-phosphate (S1P) promotes cell egress from the tissue, as well as marginal-zone B-cell positioning in the spleen. Recent studies have identified a role for the orphan receptor, EBV-induced molecule 2 (EBI2; GPR183), in guiding activated B cells to inter and outer follicular niche(s) and down-regulation of this receptor is essential for organizing cells into GCs. In this review, we discuss current understanding of the roles played by chemokines, S1P and EBI2 in the migration events that underlie humoral immune responses.", "title": "Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses." }, { "docid": "42693833", "text": "Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively. Diversified and selected IgAs contributed to maintenance of diversified and balanced microbiota, which in turn facilitated the expansion of Foxp3(+) T cells, induction of GCs, and IgA responses in the gut through a symbiotic regulatory loop. Thus, the adaptive immune system, through cellular and molecular components that are required for immune tolerance and through the diversification as well as selection of antibody repertoire, mediates host-microbial symbiosis by controlling the richness and balance of bacterial communities required for homeostasis.", "title": "Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis." }, { "docid": "4418070", "text": "Regulatory T (Treg) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting differentiation factor controlling Treg cell homeostasis and function, whereas the early Treg-cell-lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors. However, whether Foxo proteins act beyond the Treg-cell-commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1 and display reduced T-cell-receptor-induced Akt activation, Foxo1 phosphorylation and Foxo1 nuclear exclusion. Mice with Treg-cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to that seen in Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ∼300 Foxo1-bound target genes, including the pro-inflammatory cytokine Ifng, that do not seem to be directly regulated by Foxp3. These findings show that the evolutionarily ancient Akt–Foxo1 signalling module controls a novel genetic program indispensable for Treg cell function.", "title": "Novel Foxo1-dependent transcriptional programs control Treg cell function" }, { "docid": "14767844", "text": "Calcium influx is crucial for T cell activation and differentiation. The detailed regulation of this process remains unclear. We report here that golli protein, an alternatively spliced product of the myelin basic protein gene, plays a critical role in regulating calcium influx in T cells. Golli-deficient T cells were hyperproliferative and showed enhanced calcium entry upon T cell receptor stimulation. We further found that golli regulates calcium influx in T cells through the inhibition of the store depletion-induced calcium influx. Mutation of the myristoylation site on golli disrupted its association with the plasma membrane and reversed its inhibitory action on Ca2+ influx, indicating that membrane association of golli was essential for its inhibitory action. These results indicate that golli functions in a unique way to regulate T cell activation through a mechanism involving the modulation of the calcium homeostasis.", "title": "Golli protein negatively regulates store depletion-induced calcium influx in T cells." }, { "docid": "3531388", "text": "Bone homeostasis is maintained by the balance between bone-forming osteoblasts and bone-degrading osteoclasts. Osteoblasts have a mesenchymal origin whereas osteoclasts belong to the myeloid lineage. Osteoclast and osteoblast communication occurs through soluble factors secretion, cell-bone interaction and cell-cell contact, which modulate their activities. CD200 is an immunoglobulin superfamilly member expressed on various types of cells including mesenchymal stem cells (MSCs). CD200 receptor (CD200R) is expressed on myeloid cells such as monocytes/macrophages. We assume that CD200 could be a new molecule involved in the control of osteoclastogenesis and could play a role in MSC-osteoclast communication in humans. In this study, we demonstrated that soluble CD200 inhibited the differentiation of osteoclast precursors as well as their maturation in bone-resorbing cells in vitro. Soluble CD200 did not modify the monocyte phenotype but inhibited the receptor activator of nuclear factor kappa-B ligand (RANKL) signaling pathway as well as the gene expression of osteoclast markers such as osteoclast-associated receptor (OSCAR) and nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Moreover, MSCs inhibited osteoclast formation, which depended on cell-cell contact and was associated with CD200 expression on the MSC surface. Our results clearly demonstrate that MSCs, through the expression of CD200, play a major role in the regulation of bone resorption and bone physiology and that the CD200-CD200R couple could be a new target to control bone diseases.", "title": "CD200R/CD200 Inhibits Osteoclastogenesis: New Mechanism of Osteoclast Control by Mesenchymal Stem Cells in Human" }, { "docid": "40473317", "text": "In this report, we demonstrate that CD28(-/-) mice are severely impaired in the initial expansion of D(b)/NP366-374-specific CD8 T cells in response to influenza virus infection, whereas 4-1BB ligand (4-1BBL)(-/-) mice show no defect in primary T cell expansion to influenza virus. In contrast, 4-1BBL(-/-) mice show a decrease in D(b)/NP366-374-specific T cells late in the primary response. Upon secondary challenge with influenza virus, 4-1BBL(-/-) mice show a decrease in the number of D(b)/NP366-374-specific T cells compared to wild-type mice such that the level of the CD8 T cell expansion during the in vivo secondary response is reduced to the level of a primary response, with concomitant reduction of CTL effector function. In contrast, Ab responses, as well as secondary CD4 T cell responses, to influenza are unaffected by 4-1BBL deficiency. Thus, CD28 is critical for initial T cell expansion, whereas 4-1BB/4-1BBL signaling affects T cell numbers much later in the response and is essential for the survival and/or responsiveness of the memory CD8 T cell pool.", "title": "Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection." }, { "docid": "13923140", "text": "Autoimmune diseases are thought to result from imbalances in normal immune physiology and regulation. Here, we show that autoimmune disease susceptibility and resistance alleles on mouse chromosome 3 (Idd3) correlate with differential expression of the key immunoregulatory cytokine interleukin-2 (IL-2). In order to test directly that an approximately twofold reduction in IL-2 underpins the Idd3-linked destabilization of immune homeostasis, we show that engineered haplodeficiency of Il2 gene expression not only reduces T cell IL-2 production by twofold but also mimics the autoimmune dysregulatory effects of the naturally occurring susceptibility alleles of Il2. Reduced IL-2 production achieved by either genetic mechanism correlates with reduced function of CD4+ CD25+ regulatory T cells, which are critical for maintaining immune homeostasis.", "title": "Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity" }, { "docid": "32101982", "text": "The transcription factor Krüppel-like factor 2 (KLF2) is critical for normal trafficking of T lymphocytes, but its role in B cells is unclear. We report that B cell-specific KLF2 deficiency leads to decreased expression of the trafficking molecules CD62L and β7-integrin, yet expression of sphingosine-1 phosphate receptor 1 (which is a critical target of KLF2 in T cells) was, unexpectedly, minimally altered. Unexpectedly, Klf2 deletion led to a drastic reduction in the B1 B-cell pool and a substantial increase in transitional and marginal zone B-cell numbers. In addition, we observed that KLF2-deficient B cells showed increased apoptosis and impaired proliferation after B-cell receptor cross-linking. Gene expression analysis indicated that KLF2-deficient follicular B cells display numerous characteristics shared by normal marginal zone B cells, including reduced expression of several signaling molecules that may contribute to defective activation of these cells. Hence, our data indicate that KLF2 plays a critical role in dictating normal subset differentiation and functional reactivity of mature B cells.", "title": "Krüppel-like factor 2 (KLF2) regulates B-cell reactivity, subset differentiation, and trafficking molecule expression." }, { "docid": "21392223", "text": "Expression of the receptor-type tyrosine phosphatase LAR was studied in cells of the murine hemopoietic system. The gene is expressed in all cells of the T cell lineage but not in cells of any other hemopoietic lineage and the level of expression in T cells is developmentally regulated. The CD4(-)8(-)44(+) early thymic immigrants and mature (CD4(+)8(-)/CD4(-)8(+)) thymocytes and T cells express low levels, whereas immature (CD4(-)8(-)44(-) and CD4(+)8(+)) thymocytes express high levels of LAR. Among bone marrow cells only uncommitted c-kit(+)B220(+)CD19(-) precursors, but not B cell lineage committed c-kit(+)B220(+)CD19(+) precursors, express low levels of LAR. In contrast to the c-kit(+)B220(+)CD19(+) pre-BI cells from normal mice, counterparts of pre-BI cells from PAX-5-deficient mice express LAR, indicating that PAX-5-mediated commitment to the B cell lineage results in suppression of LAR. During differentiation of PAX-5-deficient pre-BI cell line into non-T cell lineages, expression of LAR is switched off, but it is up-regulated during differentiation into thymocytes. Thus, within the hemopoietic system, LAR appears to be a T cell lineage-specific receptor-type phosphatase. However, surprisingly, truncation of its phosphatase domains has no obvious effect on T cell development, repertoire selection or function.", "title": "Within the hemopoietic system, LAR phosphatase is a T cell lineage-specific adhesion receptor-like protein whose phosphatase activity appears dispensable for T cell development, repertoire selection and function." }, { "docid": "9787715", "text": "BACKGROUND The effects of Plasmodium falciparum on B-cell homeostasis have not been well characterized. This study investigated whether an episode of acute malaria in young children results in changes in the peripheral B cell phenotype. \n METHODS Using flow-cytofluorimetric analysis, the B cell phenotypes found in the peripheral blood of children aged 2-5 years were characterized during an episode of acute uncomplicated clinical malaria and four weeks post-recovery and in healthy age-matched controls. \n RESULTS There was a significant decrease in CD19+ B lymphocytes during acute malaria. Characterization of the CD19+ B cell subsets in the peripheral blood based on expression of IgD and CD38 revealed a significant decrease in the numbers of naive 1 CD38-IgD+ B cells while there was an increase in CD38+IgD- memory 3 B cells during acute malaria. Further analysis of the peripheral B cell phenotype also identified an expansion of transitional CD10+CD19+ B cells in children following an episode of acute malaria with up to 25% of total CD19+ B cell pool residing in this subset. \n CONCLUSION Children experiencing an episode of acute uncomplicated clinical malaria experienced profound disturbances in B cell homeostasis.", "title": "Alterations on peripheral B cell subsets following an acute uncomplicated clinical malaria infection in children" }, { "docid": "23848916", "text": "This study found that oridonin, a natural diterpenoid purified from Rabdosia rubescens, inhibited growth of multiple myeloma (MM; U266, RPMI8226), acute lymphoblastic T-cell leukemia (Jurkat), and adult T-cell leukemia (MT-1) cells with an effective dose that inhibited 50% of target cells (ED50) ranging from 0.75 to 2.7 microg/mL. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining showed that oridonin caused apoptosis of MT-1 cells in a time-dependent manner. We explored effects of oridonin on antiapoptotic Bcl-2 family members and found that it down-regulated levels of Mcl-1 and BCL-x(L), but not Bcl-2 protein, in both MT-1 and RPMI8226 cells. Further studies found that oridonin inhibited nuclear factor-kappa B (NF-kappa B) DNA-binding activity in these cells as measured by luciferase reporter gene, ELISA-based, and electrophoretic mobility shift assays. Oridonin also blocked tumor necrosis factor-alpha- and lipopolysaccharide-stimulated NF-kappa B activity in Jurkat cells as well as RAW264.7 murine macrophages. Of note, oridonin decreased survival of freshly isolated adult T-cell leukemia (three samples), acute lymphoblastic leukemia (one sample), chronic lymphocytic leukemia (one sample), non-Hodgkin's lymphoma (three samples), and MM (four samples) cells from patients in association with inhibition of NF-kappa B DNA-binding activity. On the other hand, oridonin did not affect survival of normal lymphoid cells from healthy volunteers. Taken together, oridonin might be useful as adjunctive therapy for individuals with lymphoid malignancies, including the lethal disease adult T-cell leukemia.", "title": "Oridonin, a diterpenoid purified from Rabdosia rubescens, inhibits the proliferation of cells from lymphoid malignancies in association with blockade of the NF-kappa B signal pathways." }, { "docid": "21320417", "text": "T cell memory induced by prior infection or vaccination provides enhanced protection against subsequent microbial infections. The processes involved in generating and maintaining T cell memory are becoming better understood due to recent technological advances in identifying memory T cells and monitoring their behavior and function in vivo. Memory T cells develop in response to a progressive set of cues-starting with signals from antigen-loaded, activated antigen-presenting cells (APCs) and inflammatory mediators induced by the innate immune response, to the poorly defined subsequent signals triggered as the immune response wanes toward homeostasis. The persistence of the resting memory T cells that eventually develop is regulated by cytokines. This chapter discusses recent findings on how memory T cells develop to confer long-term protective immunity.", "title": "T cell memory." }, { "docid": "19561411", "text": "Orai1 and stromal interaction molecule 1 (STIM1) mediate store-operated Ca(2+) entry (SOCE) in immune cells. STIM1, an endoplasmic reticulum (ER) Ca(2+) sensor, detects store depletion and interacts with plasma membrane (PM)-resident Orai1 channels at the ER-PM junctions. However, the molecular composition of these junctions in T cells remains poorly understood. Here, we show that junctophilin-4 (JP4), a member of junctional proteins in excitable cells, is expressed in T cells and localized at the ER-PM junctions to regulate Ca(2+) signaling. Silencing or genetic manipulation of JP4 decreased ER Ca(2+) content and SOCE in T cells, impaired activation of the nuclear factor of activated T cells (NFAT) and extracellular signaling-related kinase (ERK) signaling pathways, and diminished expression of activation markers and cytokines. Mechanistically, JP4 directly interacted with STIM1 via its cytoplasmic domain and facilitated its recruitment into the junctions. Accordingly, expression of this cytoplasmic fragment of JP4 inhibited SOCE. Furthermore, JP4 also formed a complex with junctate, a Ca(2+)-sensing ER-resident protein, previously shown to mediate STIM1 recruitment into the junctions. We propose that the junctate-JP4 complex located at the junctions cooperatively interacts with STIM1 to maintain ER Ca(2+) homeostasis and mediate SOCE in T cells.", "title": "Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells." }, { "docid": "22874817", "text": "How follicular helper T cells (TFH cells) differentiate to regulate B cell immunity is critical for effective protein vaccination. Here we define three transcription factor T-bet–expressing antigen-specific effector helper T cell subsets with distinguishable function, migratory properties and developmental programming in vivo. Expression of the transcriptional repressor Blimp-1 distinguished T zone 'lymphoid' effector helper T cells (CD62LhiCCR7hi) from CXCR5lo 'emigrant' effector helper T cells and CXCR5hi 'resident' TFH cells expressing the transcriptional repressor Bcl-6 (CD62LloCCR7lo). We then show by adoptive transfer and intact polyclonal responses that helper T cells with the highest specific binding of peptide–major histocompatibility complex class II and the most restricted T cell antigen receptor junctional diversity 'preferentially' developed into the antigen-specific effector TFH compartment. Our studies demonstrate a central function for differences in the binding strength of the T cell antigen receptor in the antigen-specific mechanisms that 'program' specialized effector TFH function in vivo.", "title": "The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding" }, { "docid": "20310709", "text": "Mice lacking the transcription factor T-bet in the innate immune system develop microbiota-dependent colitis. Here, we show that interleukin-17A (IL-17A)-producing IL-7Rα(+) innate lymphoid cells (ILCs) were potent promoters of disease in Tbx21(-/-)Rag2(-/-) ulcerative colitis (TRUC) mice. TNF-α produced by CD103(-)CD11b(+) dendritic cells synergized with IL-23 to drive IL-17A production by ILCs, demonstrating a previously unrecognized layer of cellular crosstalk between dendritic cells and ILCs. We have identified Helicobacter typhlonius as a key disease trigger driving excess TNF-α production and promoting colitis in TRUC mice. Crucially, T-bet also suppressed the expression of IL-7R, a key molecule involved in controlling intestinal ILC homeostasis. The importance of IL-7R signaling in TRUC disease was highlighted by the dramatic reduction in intestinal ILCs and attenuated colitis following IL-7R blockade. Taken together, these data demonstrate the mechanism by which T-bet regulates the complex interplay between mucosal dendritic cells, ILCs, and the intestinal microbiota.", "title": "The Transcription Factor T-bet Regulates Intestinal Inflammation Mediated by Interleukin-7 Receptor+ Innate Lymphoid Cells" }, { "docid": "21012916", "text": "Follicular T helper (TFH) cells orchestrate the germinal center (GC) reaction locally. Local mechanisms regulating their dynamics and helper functions are not well defined. Here we found that GC-expressed ephrin B1 (EFNB1) repulsively inhibited T cell to B cell adhesion and GC TFH retention by signaling through TFH-expressed EPHB6 receptor. At the same time, EFNB1 promoted interleukin-21 production from GC TFH cells by signaling predominantly through EPHB4. Consequently, EFNB1-null GCs were associated with defective production of plasma cells despite harboring excessive TFH cells. In a competitive GC reaction, EFNB1-deficient B cells more efficiently interacted with TFH cells and produced more bone-marrow plasma cells, likely as a result of gaining more contact-dependent help. Our results reveal a contact-dependent repulsive guidance system that controls GC TFH dynamics and effector functions locally.", "title": "Ephrin B1–mediated repulsion and signaling control germinal center T cell territoriality and function" } ]
372
Eilat virus (EILV) produced in mosquitos elicits rapid and long-lasting neutralizing antibodies in nonhuman primates.
[ { "docid": "24922825", "text": "Traditionally, vaccine development involves tradeoffs between immunogenicity and safety. Live-attenuated vaccines typically offer rapid and durable immunity but have reduced safety when compared to inactivated vaccines. In contrast, the inability of inactivated vaccines to replicate enhances safety at the expense of immunogenicity, often necessitating multiple doses and boosters. To overcome these tradeoffs, we developed the insect-specific alphavirus, Eilat virus (EILV), as a vaccine platform. To address the chikungunya fever (CHIKF) pandemic, we used an EILV cDNA clone to design a chimeric virus containing the chikungunya virus (CHIKV) structural proteins. The recombinant EILV/CHIKV was structurally identical at 10 Å to wild-type CHIKV, as determined by single-particle cryo-electron microscopy, and it mimicked the early stages of CHIKV replication in vertebrate cells from attachment and entry to viral RNA delivery. Yet the recombinant virus remained completely defective for productive replication, providing a high degree of safety. A single dose of EILV/CHIKV produced in mosquito cells elicited rapid (within 4 d) and long-lasting (>290 d) neutralizing antibodies that provided complete protection in two different mouse models. In nonhuman primates, EILV/CHIKV elicited rapid and robust immunity that protected against viremia and telemetrically monitored fever. Our EILV platform represents the first structurally native application of an insect-specific virus in preclinical vaccine development and highlights the potential application of such viruses in vaccinology.", "title": "A chikungunya fever vaccine utilizing an insect-specific virus platform" } ]
[ { "docid": "8883846", "text": "The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses.", "title": "Antibody-Based HIV-1 Vaccines: Recent Developments and Future Directions" }, { "docid": "3566945", "text": "Broadly neutralizing antibodies (bnAbs) to HIV-1 can evolve after years of an iterative process of virus escape and antibody adaptation that HIV-1 vaccine design seeks to mimic. To enable this, properties that render HIV-1 envelopes (Env) capable of eliciting bnAb responses need to be defined. Here, we followed the evolution of the V2 apex directed bnAb lineage VRC26 in the HIV-1 subtype C superinfected donor CAP256 to investigate the phenotypic changes of the virus populations circulating before and during the early phases of bnAb induction. Longitudinal viruses that evolved from the VRC26-resistant primary infecting (PI) virus, the VRC26-sensitive superinfecting (SU) virus and ensuing PI-SU recombinants revealed substantial phenotypic changes in Env, with a switch in Env properties coinciding with early resistance to VRC26. Decreased sensitivity of SU-like viruses to VRC26 was linked with reduced infectivity, altered entry kinetics and lower sensitivity to neutralization after CD4 attachment. VRC26 maintained neutralization activity against cell-associated CAP256 virus, indicating that escape through the cell-cell transmission route is not a dominant escape pathway. Reduced fitness of the early escape variants and sustained sensitivity in cell-cell transmission are both features that limit virus replication, thereby impeding rapid escape. This supports a scenario where VRC26 allowed only partial viral escape for a prolonged period, possibly increasing the time window for bnAb maturation. Collectively, our data highlight the phenotypic plasticity of the HIV-1 Env in evading bnAb pressure and the need to consider phenotypic traits when selecting and designing Env immunogens. Combinations of Env variants with differential phenotypic patterns and bnAb sensitivity, as we describe here for CAP256, may maximize the potential for inducing bnAb responses by vaccination.", "title": "Phenotypic deficits in the HIV-1 envelope are associated with the maturation of a V2-directed broadly neutralizing antibody lineage" }, { "docid": "7177329", "text": "Neutralizing antibodies are likely to play a crucial part in a preventative HIV-1 vaccine. Although efforts to elicit broadly cross-neutralizing (BCN) antibodies by vaccination have been unsuccessful, a minority of individuals naturally develop these antibodies after many years of infection. How such antibodies arise, and the role of viral evolution in shaping these responses, is unknown. Here we show, in two HIV-1–infected individuals who developed BCN antibodies targeting the glycan at Asn332 on the gp120 envelope, that this glycan was absent on the initial infecting virus. However, this BCN epitope evolved within 6 months, through immune escape from earlier strain-specific antibodies that resulted in a shift of a glycan to position 332. Both viruses that lacked the glycan at amino acid 332 were resistant to the Asn332-dependent BCN monoclonal antibody PGT128 (ref. 8), whereas escaped variants that acquired this glycan were sensitive. Analysis of large sequence and neutralization data sets showed the 332 glycan to be significantly under-represented in transmitted subtype C viruses compared to chronic viruses, with the absence of this glycan corresponding with resistance to PGT128. These findings highlight the dynamic interplay between early antibodies and viral escape in driving the evolution of conserved BCN antibody epitopes.", "title": "Evolution of an HIV glycan–dependent broadly neutralizing antibody epitope through immune escape" }, { "docid": "1071991", "text": "Live attenuated simian immunodeficiency virus (SIV) vaccines (LAVs) remain the most efficacious of all vaccines in nonhuman primate models of HIV and AIDS, yet the basis of their robust protection remains poorly understood. Here we show that the degree of LAV-mediated protection against intravenous wild-type SIVmac239 challenge strongly correlates with the magnitude and function of SIV-specific, effector-differentiated T cells in the lymph node but not with the responses of such T cells in the blood or with other cellular, humoral and innate immune parameters. We found that maintenance of protective T cell responses is associated with persistent LAV replication in the lymph node, which occurs almost exclusively in follicular helper T cells. Thus, effective LAVs maintain lymphoid tissue-based, effector-differentiated, SIV-specific T cells that intercept and suppress early wild-type SIV amplification and, if present in sufficient frequencies, can completely control and perhaps clear infection, an observation that provides a rationale for the development of safe, persistent vectors that can elicit and maintain such responses.", "title": "Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines" }, { "docid": "14195528", "text": "The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors.", "title": "Responses of primate frontal cortex neurons during natural vocal communication." }, { "docid": "2601135", "text": "A recent study of plasma neutralization breadth in HIV-1 infected individuals at nine International AIDS Vaccine Initiative (IAVI) sites reported that viral load, HLA-A*03 genotype, and subtype C infection were strongly associated with the development of neutralization breadth. Here, we refine the findings of that study by analyzing the impact of the transmitted/founder (T/F) envelope (Env), early Env diversification, and autologous neutralization on the development of plasma neutralization breadth in 21 participants identified during recent infection at two of those sites: Kigali, Rwanda (n = 9) and Lusaka, Zambia (n = 12). Single-genome analysis of full-length T/F Env sequences revealed that all 21 individuals were infected with a highly homogeneous population of viral variants, which were categorized as subtype C (n = 12), A1 (n = 7), or recombinant AC (n = 2). An extensive amino acid sequence-based analysis of variable loop lengths and glycosylation patterns in the T/F Envs revealed that a lower ratio of NXS to NXT-encoded glycan motifs correlated with neutralization breadth. Further analysis comparing amino acid sequence changes, insertions/deletions, and glycan motif alterations between the T/F Env and autologous early Env variants revealed that extensive diversification focused in the V2, V4, and V5 regions of gp120, accompanied by contemporaneous viral escape, significantly favored the development of breadth. These results suggest that more efficient glycosylation of subtype A and C T/F Envs through fewer NXS-encoded glycan sites is more likely to elicit antibodies that can transition from autologous to heterologous neutralizing activity following exposure to gp120 diversification. This initiates an Env-antibody co-evolution cycle that increases neutralization breadth, and is further augmented over time by additional viral and host factors. These findings suggest that understanding how variation in the efficiency of site-specific glycosylation influences neutralizing antibody elicitation and targeting could advance the design of immunogens aimed at inducing antibodies that can transition from autologous to heterologous neutralizing activity.", "title": "Diversification in the HIV-1 Envelope Hyper-variable Domains V2, V4, and V5 and Higher Probability of Transmitted/Founder Envelope Glycosylation Favor the Development of Heterologous Neutralization Breadth" }, { "docid": "8063697", "text": "Pertussis is a highly contagious respiratory illness caused by the bacterial pathogen Bordetella pertussis. Pertussis rates in the United States have been rising and reached a 50-y high of 42,000 cases in 2012. Although pertussis resurgence is not completely understood, we hypothesize that current acellular pertussis (aP) vaccines fail to prevent colonization and transmission. To test our hypothesis, infant baboons were vaccinated at 2, 4, and 6 mo of age with aP or whole-cell pertussis (wP) vaccines and challenged with B. pertussis at 7 mo. Infection was followed by quantifying colonization in nasopharyngeal washes and monitoring leukocytosis and symptoms. Baboons vaccinated with aP were protected from severe pertussis-associated symptoms but not from colonization, did not clear the infection faster than naïve animals, and readily transmitted B. pertussis to unvaccinated contacts. Vaccination with wP induced a more rapid clearance compared with naïve and aP-vaccinated animals. By comparison, previously infected animals were not colonized upon secondary infection. Although all vaccinated and previously infected animals had robust serum antibody responses, we found key differences in T-cell immunity. Previously infected animals and wP-vaccinated animals possess strong B. pertussis-specific T helper 17 (Th17) memory and Th1 memory, whereas aP vaccination induced a Th1/Th2 response instead. The observation that aP, which induces an immune response mismatched to that induced by natural infection, fails to prevent colonization or transmission provides a plausible explanation for the resurgence of pertussis and suggests that optimal control of pertussis will require the development of improved vaccines.", "title": "Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model." }, { "docid": "23915841", "text": "The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.", "title": "Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection." }, { "docid": "38376189", "text": "West Nile virus (WNV) is a major cause of mosquito-borne illness in the United States. Human disease ranges from mild febrile illness to severe fatal neurologic infection. Adults aged >60 years are more susceptible to neuroinvasive disease accompanied by a high mortality rate or long-lasting neurologic sequelae. A chimeric live attenuated West Nile virus vaccine, rWN/DEN4&Dgr;30, was shown to be safe and immunogenic in healthy adults aged 18–50 years. This study evaluated rWN/DEN4&Dgr;30 in flavivirus-naive adults aged 50–65 years and found it to be safe and immunogenic. Outbreaks of WNV infection tend to be unpredictable, and a safe and effective vaccine will be an important public health tool.", "title": "A Live Attenuated Chimeric West Nile Virus Vaccine, rWN/DEN4&Dgr;30, Is Well Tolerated and Immunogenic in Flavivirus-Naive Older Adult Volunteers" }, { "docid": "13469921", "text": "Recent cross-sectional analyses of HIV-1+ plasmas have indicated that broadly cross-reactive neutralizing antibody responses are developed by 10%-30% of HIV-1+ subjects. The timing of the initial development of such anti-viral responses is unknown. It is also unknown whether the emergence of these responses coincides with the appearance of antibody specificities to a single or multiple regions of the viral envelope glycoprotein (Env). Here we analyzed the cross-neutralizing antibody responses in longitudinal plasmas collected soon after and up to seven years after HIV-1 infection. We find that anti-HIV-1 cross-neutralizing antibody responses first become evident on average at 2.5 years and, in rare cases, as early as 1 year following infection. If cross-neutralizing antibody responses do not develop during the first 2-3 years of infection, they most likely will not do so subsequently. Our results indicate a potential link between the development of cross-neutralizing antibody responses and specific activation markers on T cells, and with plasma viremia levels. The earliest cross-neutralizing antibody response targets a limited number of Env regions, primarily the CD4-binding site and epitopes that are not present on monomeric Env, but on the virion-associated trimeric Env form. In contrast, the neutralizing activities of plasmas from subjects that did not develop cross-neutralizing antibody responses target epitopes on monomeric gp120 other than the CD4-BS. Our study provides information that is not only relevant to better understanding the interaction of the human immune system with HIV but may guide the development of effective immunization protocols. Since antibodies to complex epitopes that are present on the virion-associated envelope spike appear to be key components of earliest cross-neutralizing activities of HIV-1+ plasmas, then emphasis should be made to elicit similar antibodies by vaccination.", "title": "Characteristics of the Earliest Cross-Neutralizing Antibody Response to HIV-1" }, { "docid": "152245", "text": "The genomic RNA of an alphavirus encodes four different nonstructural proteins, nsP1, nsP2, nsP3, and nsP4. The polyprotein P123 is produced when translation terminates at an opal termination codon between nsP3 and nsP4. The polyprotein P1234 is produced when translational readthrough occurs or when the opal termination codon has been replaced by a sense codon in the alphavirus genome. Evolutionary pressures appear to have maintained genomic sequences encoding both a stop codon (opal) and an open reading frame (arginine) as a general feature of the O'nyong-nyong virus (ONNV) genome, indicating that both are required at some point. Alternate replication of ONNVs in both vertebrate and invertebrate hosts may determine predominance of a particular codon at this locus in the viral quasispecies. However, no systematic study has previously tested this hypothesis in whole animals. We report here the results of the first study to investigate in a natural mosquito host the functional significance of the opal stop codon in an alphavirus genome. We used a full-length cDNA clone of ONNV to construct a series of mutants in which the arginine between nsP3 and nsP4 was replaced with an opal, ochre, or amber stop codon. The presence of an opal stop codon upstream of nsP4 nearly doubled (75.5%) the infectivity of ONNV over that of virus possessing a codon for the amino acid arginine at the corresponding position (39.8%). Although the frequency with which the opal virus disseminated from the mosquito midgut did not differ significantly from that of the arginine virus on days 8 and 10, dissemination did began earlier in mosquitoes infected with the opal virus. Although a clear fitness advantage is provided to ONNV by the presence of an opal codon between nsP3 and nsP4 in Anopheles gambiae, sequence analysis of ONNV RNA extracted from mosquito bodies and heads indicated codon usage at this position corresponded with that of the virus administered in the blood meal. These results suggest that while selection of ONNV variants is occurring, de novo mutation at the position between nsP3 and nsP4 does not readily occur in the mosquito. Taken together, these results suggest that the primary fitness advantage provided to ONNV by the presence of an opal codon between nsP3 and nsP4 is related to mosquito infectivity.", "title": "Effects of an opal termination codon preceding the nsP4 gene sequence in the O'Nyong-Nyong virus genome on Anopheles gambiae infectivity." }, { "docid": "4373433", "text": "Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.", "title": "Broad neutralization coverage of HIV by multiple highly potent antibodies" }, { "docid": "21150010", "text": "Metastatic ovarian cancer is the leading cause of death among women with gynecologic malignancies in the United States. The lack of effective treatment for patients with advanced ovarian cancer warrants development of innovative therapies. Cancer therapy using oncolytic viruses represents a promising new approach for controlling tumors. Vaccinia virus has been shown to preferentially infect tumor cells but not normal tissue. However, oncolytic therapy using recombinant viruses faces the limitation of viral clearance due to generation of neutralizing antibodies. In the current study, we found that cyclooxygenase-2 (Cox-2) inhibitors circumvented this limitation, enabling repeated administration of vaccinia virus without losing infectivity. We quantified the antivaccinia antibody response using enzyme-linked immunosorbent assay (ELISA) and neutralization assays to show that treatment of Cox-2 inhibitors inhibited the generation of neutralizing antibodies. Furthermore, we showed that combination treatment of Cox-2 inhibitors with vaccinia virus was more effective that either treatment alone in treating MOSEC/luc tumor-bearing mice. Thus, the combination of Cox-2 inhibitors and vaccinia virus represents a potential innovative approach to controlling ovarian tumors.", "title": "Treatment with cyclooxygenase-2 inhibitors enables repeated administration of vaccinia virus for control of ovarian cancer." }, { "docid": "26038789", "text": "3BNC117 is a broad and potent neutralizing antibody to HIV-1 that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1–infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 affects host antibody responses in viremic individuals. In comparison to untreated controls that showed little change in their neutralizing activity over a 6-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1.", "title": "HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1" }, { "docid": "12885341", "text": "West Nile virus (WNV) is the most common arthropod-borne flavivirus in the United States; however, the vector ligand(s) that participate in infection are not known. We now show that an Aedes aegypti C-type lectin, mosGCTL-1, is induced by WNV, interacts with WNV in a calcium-dependent manner, and facilitates infection in vivo and in vitro. A mosquito homolog of human CD45 in A. aegypti, designated mosPTP-1, recruits mosGCTL-1 to enable viral attachment to cells and to enhance viral entry. In vivo experiments show that mosGCTL-1 and mosPTP-1 function as part of the same pathway and are critical for WNV infection of mosquitoes. A similar phenomenon was also observed in Culex quinquefasciatus, a natural vector of WNV, further demonstrating that these genes participate in WNV infection. During the mosquito blood-feeding process, WNV infection was blocked in vivo with mosGCTL-1 antibodies. A molecular understanding of flaviviral-arthropod interactions may lead to strategies to control viral dissemination in nature.", "title": "A C-Type Lectin Collaborates with a CD45 Phosphatase Homolog to Facilitate West Nile Virus Infection of Mosquitoes" }, { "docid": "15237660", "text": "BACKGROUND Long-lasting insecticide treated nets (LLINs) and indoor residual house spraying (IRS) are the main interventions for the control of malaria vectors in Zanzibar. The aim of the present study was to assess the susceptibility status of malaria vectors against the insecticides used for LLINs and IRS and to determine the durability and efficacy of LLINs on the island. \n METHODS Mosquitoes were sampled from Pemba and Unguja islands in 2010-2011 for use in WHO susceptibility tests. One hundred and fifty LLINs were collected from households on Unguja, their physical state was recorded and then tested for efficacy as well as total insecticide content. \n RESULTS Species identification revealed that over 90% of the Anopheles gambiae complex was An. arabiensis with a small number of An. gambiae s.s. and An. merus being present. Susceptibility tests showed that An. arabiensis on Pemba was resistant to the pyrethroids used for LLINs and IRS. Mosquitoes from Unguja Island, however, were fully susceptible to all pyrethroids tested. A physical examination of 150 LLINs showed that two thirds were damaged after only three years in use. All used nets had a significantly lower (p < 0.001) mean permethrin concentration of 791.6 mg/m2 compared with 944.2 mg/m2 for new ones. Their efficacy decreased significantly against both susceptible An. gambiae s.s. colony mosquitoes and wild-type mosquitoes from Pemba after just six washes (p < 0.001). \n CONCLUSION The sustainability of the gains achieved in malaria control in Zanzibar is seriously threatened by the resistance of malaria vectors to pyrethroids and the short-lived efficacy of LLINs. This study has revealed that even in relatively well-resourced and logistically manageable places like Zanzibar, malaria elimination is going to be difficult to achieve with the current control measures.", "title": "Challenges for malaria elimination in Zanzibar: pyrethroid resistance in malaria vectors and poor performance of long-lasting insecticide nets" }, { "docid": "15488881", "text": "Humoral immunity depends on both rapid and long-term antibody production against invading pathogens. This is achieved by the generation of spatially distinct extrafollicular plasmablast and follicular germinal center (GC) B cell populations, but the signals that guide responding B cells to these alternative compartments have not been fully elucidated. Here, we show that expression of the orphan G protein-coupled receptor Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) by activated B cells was essential for their movement to extrafollicular sites and induction of early plasmablast responses. Conversely, downregulation of EBI2 enabled B cells to access the center of follicles and promoted efficient GC formation. EBI2 therefore provides a previously uncharacterized dimension to B cell migration that is crucial for coordinating rapid versus long-term antibody responses.", "title": "Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses." }, { "docid": "10494012", "text": "Amodel that explains both the origin and sporadic nature of cancer argues that cancer cells are a chance result of events that cause genomic and epigenetic variability. The prevailing view is that these events are mutations that affect chromosome segregation or stability. However, genomic and epigenetic variability is also triggered by cell fusion, which is often caused by viruses. Yet, cells fused by viruses are considered harmless because they die. We provide evidence that a primate virus uses both viral and exosomal proteins involved in cell fusion to produce transformed proliferating human cells. Although normal cells indeed fail to proliferate after fusion, expression of an oncogene or a mutated tumor suppressor p53 in just one of the fusion partners is sufficient to produce heterogeneous progeny. We also show that this virus can produce viable oncogenically transformed cells by fusing cells that are otherwise destined to die. Therefore, we argue that viruses can contribute to carcinogenesis by fusing cells.", "title": "A primate virus generates transformed human cells by fusion" }, { "docid": "16939583", "text": "Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output.", "title": "2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size." } ]
375
Elevated cell-free mitochondrial DNA levels are associated with mortality.
[ { "docid": "1522647", "text": "BACKGROUND Mitochondrial DNA (mtDNA) is a critical activator of inflammation and the innate immune system. However, mtDNA level has not been tested for its role as a biomarker in the intensive care unit (ICU). We hypothesized that circulating cell-free mtDNA levels would be associated with mortality and improve risk prediction in ICU patients. \n METHODS AND FINDINGS Analyses of mtDNA levels were performed on blood samples obtained from two prospective observational cohort studies of ICU patients (the Brigham and Women's Hospital Registry of Critical Illness [BWH RoCI, n = 200] and Molecular Epidemiology of Acute Respiratory Distress Syndrome [ME ARDS, n = 243]). mtDNA levels in plasma were assessed by measuring the copy number of the NADH dehydrogenase 1 gene using quantitative real-time PCR. Medical ICU patients with an elevated mtDNA level (≥3,200 copies/µl plasma) had increased odds of dying within 28 d of ICU admission in both the BWH RoCI (odds ratio [OR] 7.5, 95% CI 3.6-15.8, p = 1×10(-7)) and ME ARDS (OR 8.4, 95% CI 2.9-24.2, p = 9×10(-5)) cohorts, while no evidence for association was noted in non-medical ICU patients. The addition of an elevated mtDNA level improved the net reclassification index (NRI) of 28-d mortality among medical ICU patients when added to clinical models in both the BWH RoCI (NRI 79%, standard error 14%, p<1×10(-4)) and ME ARDS (NRI 55%, standard error 20%, p = 0.007) cohorts. In the BWH RoCI cohort, those with an elevated mtDNA level had an increased risk of death, even in analyses limited to patients with sepsis or acute respiratory distress syndrome. Study limitations include the lack of data elucidating the concise pathological roles of mtDNA in the patients, and the limited numbers of measurements for some of biomarkers. \n CONCLUSIONS Increased mtDNA levels are associated with ICU mortality, and inclusion of mtDNA level improves risk prediction in medical ICU patients. Our data suggest that mtDNA could serve as a viable plasma biomarker in medical ICU patients.", "title": "Circulating Mitochondrial DNA in Patients in the ICU as a Marker of Mortality: Derivation and Validation" } ]
[ { "docid": "20459964", "text": "Neutrophil is a key cell in pathophysiology of granulomatosis with polyangiitis. Recently, neutrophil extracellular traps were described in this disease. Mitochondrial DNA is also released during traps formation. We measured circulating cell-free mitochondrial and genomic DNA in serum of patients with granulomatosis with polyangiitis. Subjects with the disease (14 active and 11 in remission stage) and 10 healthy controls were enrolled. Quantitative real-time polymerase chain reaction (PCR) was used to measure 79 base pairs (bp) and 230 bp mtDNA fragments. Alu repeats were quantified to evaluate abundance of nuclear DNA in serum at the presence of plasmid control. Both fragments of mtDNA (79 bp and 230 bp) and genomic DNA were elevated significantly in granulomatosis with polyangiitis compared to controls. Only the shorter 79 bp mtDNA correlated with active stage of granulomatosis with polyangiitis and clinical symptoms. A mechanism of extracellular release of mitochondrial DNA accompanies the active stage of the disease. Circulating mtDNA is extremely high in untreated patients. This suggests that biomarker properties of mtDNA are useful for monitoring of treatment.", "title": "Circulating mitochondrial DNA in serum of patients with granulomatosis with polyangiitis." }, { "docid": "44693226", "text": "Many studies have shown that caloric restriction (40%) decreases mitochondrial reactive oxygen species (ROS) generation in rodents. Moreover, we have recently found that 7 weeks of 40% protein restriction without strong caloric restriction also decreases ROS production in rat liver. This is interesting since it has been reported that protein restriction can also extend longevity in rodents. In the present study we have investigated the possible role of dietary lipids in the effects of caloric restriction on mitochondrial oxidative stress. Using semipurified diets, the ingestion of lipids in male Wistar rats was decreased by 40% below controls, while the other dietary components were ingested at exactly the same level as in animals fed ad libitum. After 7 weeks of treatment the liver mitochondria of lipid-restricted animals showed significant increases in oxygen consumption with complex I-linked substrates (pyruvate/malate and glutamate/malate). Neither mitochondrial H(2)O(2) production nor oxidative damage to mitochondrial or nuclear DNA was modified in lipid-restricted animals. Oxidative damage to mitochondrial DNA was one order of magnitude higher than that of nuclear DNA in both dietary groups. These results deny a role for lipids and reinforce the possible role of dietary proteins as being responsible for the decrease in mitochondrial ROS production and DNA damage in caloric restriction.", "title": "Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage." }, { "docid": "28249680", "text": "Proteasome inhibitors induce rapid death of cancer cells. We show that in epithelial cancer cells, such death is associated with dramatic and simultaneous up-regulation of several BH3-only proteins, including BIK, BIM, MCL-1S, NOXA, and PUMA, as well as p53. Elevated levels of these proteins seem to be the result of direct inhibition of their proteasomal degradation, induction of transcription, and active translation. Subsequent cell death is independent of BAX, and probably BAK, and proceeds through the intrinsic mitochondrial apoptosis pathway. We identify the cascade of molecular events responsible for cell death induced by a prototypical proteasome inhibitor, MG132, starting with rapid accumulation of BH3-only proteins in the mitochondria, proceeding through mitochondrial membrane permeabilization and subsequent loss of DeltaPsi(m), and leading to irreversible changes of mitochondrial ultrastructure, degradation of mitochondrial network, and detrimental impairment of crucial mitochondrial functions. Our results also establish a rationale for the broader use of proteasome inhibitors to kill apoptosis-resistant tumor cells that lack functional BAX/BAK proteins.", "title": "BAX/BAK-independent mitoptosis during cell death induced by proteasome inhibition?" }, { "docid": "21048969", "text": "OBJECTIVE To evaluate the association between vascular inflammation as measured by subacute C-reactive protein (CRP; 1-10 mg/l) and all-cause mortality and the association between change in CRP status (normal <or=3 mg/l and elevated >3 mg/l) and all-cause mortality. \n METHODS Probabilistic record linkage was used to match hospital episode data, laboratory reports and mortality statistics in a large urban population. Survival was evaluated using Cox proportional hazards regression models. \n RESULTS 22 962 patients had their first CRP measurement in the subacute range (1-10 mg/l). Analysis grouped by each additional unit increase in CRP across the subacute range was associated with a 7.3% (95% CI 5.4% to 9.2%) increase in the hazard ratio (HR) of death over 4 years, after controlling for confounding factors (p<0.001). Repeated CRP observations around 1 year apart were recorded in 5811 subjects. After controlling for confounding factors, in patients whose CRP changed from normal (<or=3 mg/l) to elevated (>3 mg/l), the HR increased 6.7-fold (p<0.001) relative to cases whose CRP remained normal. By comparison, among those subjects whose CRP was reduced from elevated to normal, the hazard ratio halved to 3.5 (p = 0.018). In an underpowered analysis of time to cardiovascular events, an identical pattern of risk emerged. \n CONCLUSIONS CRP level predicted all-cause mortality, and additional inclusion of prior change in CRP level and current CRP level more so. Increasing vascular inflammation, as measured by CRP, increases the likelihood of death.", "title": "Evaluation of the association between the first observation and the longitudinal change in C-reactive protein, and all-cause mortality." }, { "docid": "9285396", "text": "BACKGROUND Although the red cell distribution width (RDW) has been reported as a reliable predictor of prognosis in several types of cancer, to our knowledge the prognostic value of RDW in gastric carcinoma has not been studied, so far. \n OBJECTIVE We aimed to investigate the role of red cell distribution width (RDW) in predicting prognosis in gastric cancer patients. \n METHODS All gastric cancer patients who underwent curative surgery (n= 172, 110M/62F) over a five-year study period were evaluated. Data on demographics, preoperative RDW levels, tumor characteristics (early stage: I and II, advanced stage: IIIA-B-C), disease-free (DFS) and overall survival (OS) were retrospectively reviewed. Patients were classified as high RDW group (RDW ≥ 16, n= 62) or low RDW group (RDW < 16, n= 110). \n RESULTS Overall mortality and postoperative 60-day mortality in both groups were 55% and 14%, respectively. A borderline significant association between RDW (0.063) and mortality was noted. Preoperative RDW levels were significantly higher in patients with short-term mortality (17.9 ± 4.3 vs. 16 ± 3.2, p= 0.015). In high RDW group, the incidence of advanced gastric cancer was significantly higher (75 vs. 51%, p= 0.002), whereas DFS (0.035) and OS (p= 0.04) were lower. \n CONCLUSION The frequency of advanced cancer was high in patients with high RDWvalues. High RDW values were strongly associated with short-term mortality although only a borderline relationship with overall survival was observed.", "title": "The role of red cell distribution width in the prognosis of patients with gastric cancer." }, { "docid": "14319754", "text": "BACKGROUND Highly active antiretroviral therapy (HAART) is being scaled up in developing countries. We compared baseline characteristics and outcomes during the first year of HAART between HIV-1-infected patients in low-income and high-income settings. \n METHODS 18 HAART programmes in Africa, Asia, and South America (low-income settings) and 12 HIV cohort studies from Europe and North America (high-income settings) provided data for 4810 and 22,217, respectively, treatment-naïve adult patients starting HAART. All patients from high-income settings and 2725 (57%) patients from low-income settings were actively followed-up and included in survival analyses. \n FINDINGS Compared with high-income countries, patients starting HAART in low-income settings had lower CD4 cell counts (median 108 cells per muL vs 234 cells per muL), were more likely to be female (51%vs 25%), and more likely to start treatment with a non-nucleoside reverse transcriptase inhibitor (NNRTI) (70%vs 23%). At 6 months, the median number of CD4 cells gained (106 cells per muL vs 103 cells per muL) and the percentage of patients reaching HIV-1 RNA levels lower than 500 copies/mL (76%vs 77%) were similar. Mortality was higher in low-income settings (124 deaths during 2236 person-years of follow-up) than in high-income settings (414 deaths during 20,532 person-years). The adjusted hazard ratio (HR) of mortality comparing low-income with high-income settings fell from 4.3 (95% CI 1.6-11.8) during the first month to 1.5 (0.7-3.0) during months 7-12. The provision of treatment free of charge in low-income settings was associated with lower mortality (adjusted HR 0.23; 95% CI 0.08-0.61). \n INTERPRETATION Patients starting HAART in resource-poor settings have increased mortality rates in the first months on therapy, compared with those in developed countries. Timely diagnosis and assessment of treatment eligibility, coupled with free provision of HAART, might reduce this excess mortality.", "title": "The Antiretroviral Therapy in Lower Income Countries (ART-LINC) Collaboration and ART Cohort Collaboration (ART-CC) groups Summary" }, { "docid": "5572127", "text": "The role of ataxia telangiectasia mutated (ATM), a DNA double-strand break recognition and response protein, in inflammation and inflammatory diseases is unclear. We have previously shown that high levels of systemic DNA damage are induced by intestinal inflammation in wild-type mice. To determine the effect of Atm deficiency in inflammation, we induced experimental colitis in Atm(-/-), Atm(+/-), and wild-type mice via dextran sulfate sodium (DSS) administration. Atm(-/-) mice had higher disease activity indices and rates of mortality compared with heterozygous and wild-type mice. Systemic DNA damage and immune response were characterized in peripheral blood throughout and after three cycles of treatment. Atm(-/-) mice showed increased sensitivity to levels of DNA strand breaks in peripheral leukocytes, as well as micronucleus formation in erythroblasts, compared with heterozygous and wild-type mice, especially during remission periods and after the end of treatment. Markers of reactive oxygen and nitrogen species-mediated damage, including 8-oxoguanine and nitrotyrosine, were present both in the distal colon and in peripheral leukocytes, with Atm(-/-) mice manifesting more 8-oxoguanine formation than wild-type mice. Atm(-/-) mice showed greater upregulation of inflammatory cytokines and significantly higher percentages of activated CD69+ and CD44+ T cells in the peripheral blood throughout treatment. ATM, therefore, may be a critical immunoregulatory factor dampening the deleterious effects of chronic DSS-induced inflammation, necessary for systemic genomic stability and homeostasis of the gut epithelial barrier.", "title": "Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation." }, { "docid": "3899896", "text": "Several studies have reported that elevated red blood cell distribution width (RDW) was associated with the poor prognosis of different kinds of cancers. The aim of this study was to investigate the prognostic role of RDW in patients undergoing resection for nonmetastatic rectal cancer. We retrospectively reviewed a database of 625 consecutive patients who underwent curative resection for nonmetastatic rectal cancer at our institution from January 2009 to December 2014. The cutoff value of RDW was calculated by receiver-operating characteristic curve. The results demonstrated that patients in high RDW-cv group had a lower overall survival (OS) (P = .018) and disease-free survival (P = .004). We also observed that patients in high RDW-sd group were associated with significantly lower OS (P = .033), whereas the disease-free survival (DFS) was not significantly different (P = .179).In multivariate analysis, we found elevated RDW-cv was associated poor DFS (hazard ratio [HR] = 1.56, P = .010) and RDW-sd can predict a worse OS (HR = 1.70, P = .009).We confirmed that elevated RDW can be an independently prognostic factor in patients undergoing resection for nonmetastatic rectal cancer. So more intervention or surveillance might be paid to the patients with nonmetastatic rectal cancer and elevated RDW values in the future.", "title": "Elevated red blood cell distribution width contributes to poor prognosis in patients undergoing resection for nonmetastatic rectal cancer" }, { "docid": "3883485", "text": "Replacement of mitochondria through nuclear transfer between oocytes of two different women has emerged recently as a strategy for preventing inheritance of mtDNA diseases. Although experiments in human oocytes have shown effective replacement, the consequences of small amounts of mtDNA carryover have not been studied sufficiently. Using human mitochondrial replacement stem cell lines, we show that, even though the low levels of heteroplasmy introduced into human oocytes by mitochondrial carryover during nuclear transfer often vanish, they can sometimes instead result in mtDNA genotypic drift and reversion to the original genotype. Comparison of cells with identical oocyte-derived nuclear DNA but different mtDNA shows that either mtDNA genotype is compatible with the nucleus and that drift is independent of mitochondrial function. Thus, although functional replacement of the mitochondrial genome is possible, even low levels of heteroplasmy can affect the stability of the mtDNA genotype and compromise the efficacy of mitochondrial replacement.", "title": "Genetic Drift Can Compromise Mitochondrial Replacement by Nuclear Transfer in Human Oocytes." }, { "docid": "42873134", "text": "Type 1 and type 2 diabetes are characterized by progressive beta-cell failure. Apoptosis is probably the main form of beta-cell death in both forms of the disease. It has been suggested that the mechanisms leading to nutrient- and cytokine-induced beta-cell death in type 2 and type 1 diabetes, respectively, share the activation of a final common pathway involving interleukin (IL)-1beta, nuclear factor (NF)-kappaB, and Fas. We review herein the similarities and differences between the mechanisms of beta-cell death in type 1 and type 2 diabetes. In the insulitis lesion in type 1 diabetes, invading immune cells produce cytokines, such as IL-1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma. IL-1beta and/or TNF-alpha plus IFN-gamma induce beta-cell apoptosis via the activation of beta-cell gene networks under the control of the transcription factors NF-kappaB and STAT-1. NF-kappaB activation leads to production of nitric oxide (NO) and chemokines and depletion of endoplasmic reticulum (ER) calcium. The execution of beta-cell death occurs through activation of mitogen-activated protein kinases, via triggering of ER stress and by the release of mitochondrial death signals. Chronic exposure to elevated levels of glucose and free fatty acids (FFAs) causes beta-cell dysfunction and may induce beta-cell apoptosis in type 2 diabetes. Exposure to high glucose has dual effects, triggering initially \"glucose hypersensitization\" and later apoptosis, via different mechanisms. High glucose, however, does not induce or activate IL-1beta, NF-kappaB, or inducible nitric oxide synthase in rat or human beta-cells in vitro or in vivo in Psammomys obesus. FFAs may cause beta-cell apoptosis via ER stress, which is NF-kappaB and NO independent. Thus, cytokines and nutrients trigger beta-cell death by fundamentally different mechanisms, namely an NF-kappaB-dependent mechanism that culminates in caspase-3 activation for cytokines and an NF-kappaB-independent mechanism for nutrients. This argues against a unifying hypothesis for the mechanisms of beta-cell death in type 1 and type 2 diabetes and suggests that different approaches will be required to prevent beta-cell death in type 1 and type 2 diabetes.", "title": "Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities." }, { "docid": "1991105", "text": "Mitochondrial division is important for mitochondrial distribution and function. Recent data have demonstrated that ER-mitochondria contacts mark mitochondrial division sites, but the molecular basis and functions of these contacts are not understood. Here we show that in yeast, the ER-mitochondria tethering complex, ERMES, and the highly conserved Miro GTPase, Gem1, are spatially and functionally linked to ER-associated mitochondrial division. Gem1 acts as a negative regulator of ER-mitochondria contacts, an activity required for the spatial resolution and distribution of newly generated mitochondrial tips following division. Previous data have demonstrated that ERMES localizes with a subset of actively replicating mitochondrial nucleoids. We show that mitochondrial division is spatially linked to nucleoids and that a majority of these nucleoids segregate prior to division, resulting in their distribution into newly generated tips in the mitochondrial network. Thus, we postulate that ER-associated division serves to link the distribution of mitochondria and mitochondrial nucleoids in cells. DOI:http://dx.doi.org/10.7554/eLife.00422.001.", "title": "ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast" }, { "docid": "23918031", "text": "The platelet precursor, the megakaryocyte, matures to a polyploid cell as a result of DNA replication in the absence of mitosis (endomitosis). The factors controlling endomitosis are accessible to analysis in our megakaryocytic cell line, MegT, generated by targeted expression of temperature-sensitive simian virus 40 large T antigen to megakaryocytes of transgenic mice. We aimed to define whether endomitosis consists of a continuous phase of DNA synthesis (S) or of S phases interrupted by gaps. Analysis of the cell cycle in MegT cells revealed that, upon inactivation of large T antigen, the cells shifted from a mitotic cell cycle to an endomitotic cell cycle consisting of S/Gap phases. The level of the G1/S cyclin, cyclin A, as well as of the G1 phase cyclin, cyclin D3, were elevated at the onset of DNA synthesis, either in MegT cells undergoing a mitotic cell cycle or during endomitosis. In contrast, the level of the mitotic cyclin, cyclin B1, cycled in cells displaying a mitotic cell cycle while not detectable during endomitosis. Comparable levels of the mitotic kinase protein, Cdc2, were detected during the mitotic cell cycle or during endomitosis; however, cyclin B1-dependent Cdc2 kinase activity was largely abolished in the polyploid cells. Fibroblasts immortalized with the same heat-labile oncogene do not display reduced levels of cyclin B1 upon shifting to high temperature nor do they become polyploid, indicating that reduced levels of cyclin B1 is a property of megakaryocytes and not of the T-antigen mutant. We conclude that cellular programming during endoreduplication in megakaryocytes is associated with reduced levels of cyclin B1.", "title": "The cell cycle in polyploid megakaryocytes is associated with reduced activity of cyclin B1-dependent cdc2 kinase." }, { "docid": "1941721", "text": "Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86(-/-) SOD1 transgenic embryos over that seen in Ku86(-/-) embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.", "title": "Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants" }, { "docid": "24349992", "text": "Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a \"lethal tumor micro-environment. \" Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a \"metabolic\" and \"mutagenic\" motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the \"Reverse Warburg Effect\"). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use \"oxidative stress\" in adjacent fibroblasts (i) as an \"engine\" to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the \"field effect\" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively \"contagious\"--spread from cell-to-cell like a virus--creating an \"oncogenic/mutagenic\" field promoting widespread DNA damage.", "title": "Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells." }, { "docid": "11481946", "text": "Epidemiological studies suggest a positive association between obesity and type 2 diabetes mellitus (T2D) with the risk of cancer and cancer-related mortality. Insulin resistance, hyperinsulinemia, increased levels of IGF, elevated levels of steroid and peptide hormones, and inflammatory markers appear to play a role in the connection between these different diseases. Medications, such as metformin and exogenous insulin, used to treat T2D may affect the risk of cancer and cancer-related mortality. Newer therapies targeting the insulin and IGF1 systems are being developed for use in cancer therapy.", "title": "Obesity, type 2 diabetes, and cancer: the insulin and IGF connection." }, { "docid": "13823200", "text": "Nitrite (NO(2)(-)), previously viewed as a physiologically inert metabolite and biomarker of the endogenous vasodilator NO, was recently identified as an important biological NO reservoir in vasculature and tissues, where it contributes to hypoxic signaling, vasodilation, and cytoprotection after ischemia-reperfusion injury. Reduction of nitrite to NO may occur enzymatically at low pH and oxygen tension by deoxyhemoglobin, deoxymyoglobin, xanthine oxidase, mitochondrial complexes, or NO synthase (NOS). We show that nitrite treatment, in sharp contrast with the worsening effect of NOS inhibition, significantly attenuates hypothermia, mitochondrial damage, oxidative stress and dysfunction, tissue infarction, and mortality in a mouse shock model induced by a lethal tumor necrosis factor challenge. Mechanistically, nitrite-dependent protection was not associated with inhibition of mitochondrial complex I activity, as previously demonstrated for ischemia-reperfusion, but was largely abolished in mice deficient for the soluble guanylate cyclase (sGC) alpha1 subunit, one of the principal intracellular NO receptors and signal transducers in the cardiovasculature. Nitrite could also provide protection against toxicity induced by Gram-negative lipopolysaccharide, although higher doses were required. In conclusion, we show that nitrite can protect against toxicity in shock via sGC-dependent signaling, which may include hypoxic vasodilation necessary to maintain microcirculation and organ function, and cardioprotection.", "title": "Nitrite protects against morbidity and mortality associated with TNF- or LPS-induced shock in a soluble guanylate cyclase–dependent manner" }, { "docid": "14682243", "text": "BACKGROUND Results of the few cohort studies from countries with low incomes or middle incomes suggest a lower incidence of dementia than in high-income countries. We assessed incidence of dementia according to criteria from the 10/66 Dementia Research Group and Diagnostic and Statistical Manual of Mental Disorders (DSM) IV, the effect of dementia at baseline on mortality, and the independent effects of age, sex, socioeconomic position, and indicators of cognitive reserve. \n METHODS We did a population-based cohort study of all people aged 65 years and older living in urban sites in Cuba, the Dominican Republic, and Venezuela, and rural and urban sites in Peru, Mexico, and China, with ascertainment of incident 10/66 and DSM-IV dementia 3-5 years after cohort inception. We used questionnaires to obtain information about age in years, sex, educational level, literacy, occupational attainment, and number of household assets. We obtained information about mortality from all sites. For participants who had died, we interviewed a friend or relative to ascertain the likelihood that they had dementia before death. \n FINDINGS 12,887 participants were interviewed at baseline. 11,718 were free of dementia, of whom 8137 (69%) were reinterviewed, contributing 34,718 person-years of follow-up. Incidence for 10/66 dementia varied between 18·2 and 30·4 per 1000 person-years, and were 1·4-2·7 times higher than were those for DSM-IV dementia (9·9-15·7 per 1000 person-years). Mortality hazards were 1·56-5·69 times higher in individuals with dementia at baseline than in those who were dementia-free. Informant reports suggested a high incidence of dementia before death; overall incidence might be 4-19% higher if these data were included. 10/66 dementia incidence was independently associated with increased age (HR 1·67; 95% CI 1·56-1·79), female sex (0·72; 0·61-0·84), and low education (0·89; 0·81-0·97), but not with occupational attainment (1·04; 0·95-1·13). \n INTERPRETATION Our results provide supportive evidence for the cognitive reserve hypothesis, showing that in middle-income countries as in high-income countries, education, literacy, verbal fluency, and motor sequencing confer substantial protection against the onset of dementia. \n FUNDING Wellcome Trust Health Consequences of Population Change Programme, WHO, US Alzheimer's Association, FONACIT/ CDCH/ UCV.", "title": "Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve: a 10/66 Dementia Research Group population-based cohort study" }, { "docid": "24341590", "text": "CONTEXT The growth inhibitory effect of tamoxifen, which is used for the treatment of hormone receptor-positive breast cancer, is mediated by its metabolites, 4-hydroxytamoxifen and endoxifen. The formation of active metabolites is catalyzed by the polymorphic cytochrome P450 2D6 (CYP2D6) enzyme. \n OBJECTIVE To determine whether CYP2D6 variation is associated with clinical outcomes in women receiving adjuvant tamoxifen. \n DESIGN, SETTING, AND PATIENTS Retrospective analysis of German and US cohorts of patients treated with adjuvant tamoxifen for early stage breast cancer. The 1325 patients had diagnoses between 1986 and 2005 of stage I through III breast cancer and were mainly postmenopausal (95.4%). Last follow-up was in December 2008; inclusion criteria were hormone receptor positivity, no metastatic disease at diagnosis, adjuvant tamoxifen therapy, and no chemotherapy. DNA from tumor tissue or blood was genotyped for CYP2D6 variants associated with reduced (*10, *41) or absent (*3, *4, *5) enzyme activity. Women were classified as having an extensive (n=609), heterozygous extensive/intermediate (n=637), or poor (n=79) CYP2D6 metabolism. \n MAIN OUTCOME MEASURES Time to recurrence, event-free survival, disease-free survival, and overall survival. \n RESULTS Median follow-up was 6.3 years. At 9 years of follow-up, the recurrence rates were 14.9% for extensive metabolizers, 20.9% for heterozygous extensive/intermediate metabolizers, and 29.0% for poor metabolizers, and all-cause mortality rates were 16.7%, 18.0%, and 22.8%, respectively. Compared with extensive metabolizers, there was a significantly increased risk of recurrence for heterozygous extensive/intermediate metabolizers (time to recurrence adjusted hazard ratio [HR], 1.40; 95% confidence interval [CI], 1.04-1.90) and for poor metabolizers (time to recurrence HR, 1.90; 95% CI, 1.10-3.28). Compared with extensive metabolizers, those with decreased CYP2D6 activity (heterozygous extensive/intermediate and poor metabolism) had worse event-free survival (HR, 1.33; 95% CI, 1.06-1.68) and disease-free survival (HR, 1.29; 95% CI, 1.03-1.61), but there was no significant difference in overall survival (HR, 1.15; 95% CI, 0.88-1.51). \n CONCLUSION Among women with breast cancer treated with tamoxifen, there was an association between CYP2D6 variation and clinical outcomes, such that the presence of 2 functional CYP2D6 alleles was associated with better clinical outcomes and the presence of nonfunctional or reduced-function alleles with worse outcomes.", "title": "Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen." }, { "docid": "10993232", "text": "Recent observations have suggested that classic antibiotics kill bacteria by stimulating the formation of reactive oxygen species (ROS). If true, this notion might guide new strategies to improve antibiotic efficacy. In this study, the model was directly tested. Contrary to the hypothesis, antibiotic treatment did not accelerate the formation of hydrogen peroxide in Escherichia coli and did not elevate intracellular free iron, an essential reactant for the production of lethal damage. Lethality persisted in the absence of oxygen, and DNA repair mutants were not hypersensitive, undermining the idea that toxicity arose from oxidative DNA lesions. We conclude that these antibiotic exposures did not produce ROS and that lethality more likely resulted from the direct inhibition of cell-wall assembly, protein synthesis, and DNA replication.", "title": "Cell death from antibiotics without the involvement of reactive oxygen species." } ]
376
Eliminating the last sporadic cases of malaria requires considerable funding.
[ { "docid": "22401061", "text": "The marginal costs and benefits of converting malaria programmes from a control to an elimination goal are central to strategic decisions, but empirical evidence is scarce. We present a conceptual framework to assess the economics of elimination and analyse a central component of that framework-potential short-term to medium-term financial savings. After a review that showed a dearth of existing evidence, the net present value of elimination in five sites was calculated and compared with effective control. The probability that elimination would be cost-saving over 50 years ranged from 0% to 42%, with only one site achieving cost-savings in the base case. These findings show that financial savings should not be a primary rationale for elimination, but that elimination might still be a worthy investment if total benefits are sufficient to outweigh marginal costs. Robust research into these elimination benefits is urgently needed.", "title": "Costs and financial feasibility of malaria elimination" } ]
[ { "docid": "5710820", "text": "BACKGROUND Following the last major malaria epidemic in 2000, malaria incidence in South Africa has declined markedly. The decrease has been so emphatic that South Africa now meets the World Health Organization (WHO) threshold for malaria elimination. Given the Millennium Development Goal of reversing the spread of malaria by 2015, South Africa is being urged to adopt an elimination agenda. This study aimed to determine the appropriateness of implementing a malaria elimination programme in present day South Africa. \n METHODS An assessment of the progress made by South Africa in terms of implementing an integrated malaria control programme across the three malaria-endemic provinces was undertaken. Vector control and case management data were analysed from the period of 2000 until 2011. \n RESULTS Both malaria-related morbidity and mortality have decreased significantly across all three malaria-endemic provinces since 2000. The greatest decline was seen in KwaZulu-Natal where cases decreased from 42,276 in 2000 to 380 in 2010 and deaths dropped from 122 in 2000 to six in 2010. Although there has been a 49.2 % (8,553 vs 4,214) decrease in the malaria cases reported in Limpopo Province, currently it is the largest contributor to the malaria incidence in South Africa. Despite all three provinces reporting average insecticide spray coverage of over 80%, malaria incidence in both Mpumalanga and Limpopo remains above the elimination threshold. Locally transmitted case numbers have declined in all three malaria provinces but imported case numbers have been increasing. Knowledge gaps in vector distribution, insecticide resistance status and drug usage were also identified. \n CONCLUSIONS Malaria elimination in South Africa is a realistic possibility if certain criteria are met. Firstly, there must be continued support for the existing malaria control programmes to ensure the gains made are sustained. Secondly, cross border malaria control initiatives with neighbouring countries must be strongly encouraged and supported to reduce malaria in the region and the importation of malaria into South Africa. Thirdly, operational research, particularly on vector distribution and insecticide resistance status must be conducted as a matter of urgency, and finally, the surveillance systems must be refined to ensure the information required to inform an elimination agenda are routinely collected.", "title": "The feasibility of malaria elimination in South Africa" }, { "docid": "27580223", "text": "The Islamic Republic of Iran is in the pre-elimination phase of malaria control, but malaria epidemics are still a concern in the south of the country. This retrospective study presents the epidemiological characteristics and predisposing factors of 60 of the malaria epidemics reported in Sistan va Baluchestan province during 2005-09. A zero-truncated negative binomial model was used to investigate the relation between predictor variables and the total number of malaria cases. Malaria epidemics occurred mainly in the southern part of the province, mostly between July and October, peaking in August. Most malaria epidemics were small-scale (68.3% were < 100 cases) and short (51.7% lasted < 1 month). Plasmodium falciparum was present in 46.7% of the epidemics. An increase in the rainfall rate as well as population movements were the most significant predisposing factors. The results may help inform an epidemic investigation and reporting system as the country approaches the malaria elimination phase.", "title": "Lessons learnt from malaria epidemics in the Islamic Republic of Iran." }, { "docid": "17433284", "text": "BACKGROUND According to willingness of the Ministry of Health, Iran and presence of appropriate conditions for disease elimination, national malaria control program decided to conduct a research to clarify malaria status in 2007 and to provide required information to perform the elimination program. This review is comprised of the basis of national malaria elimination program in vision of 2025, which was started in 2010. \n METHODS In this descriptive study, data were analyzed by applications of different variables at district level. All districts in the three south eastern provinces, in which malaria has local transmission, were considered. Malaria cases has been determined and studied based on the national malaria surveillance system. \n RESULTS Since vivax malaria is predominant in Sistan & Baluchestan Province, number of vivax cases is equal to malaria positive cases approximately. The important point is that Nikshahr contains the maximum number of local vivax cases in this province and the maximum number of falciparum cases is reported from Sarbaz district. Among all districts of Hormozgan Province, no case of autochthonous falciparum was detected except in Bandar Jask and one case in Minab. There was no case of autochthonous falciparum in Kerman Province, except in Kahnoj and Ghale Ganj that each of them had one case in 2007. \n CONCLUSION It appears that the report of locally transmitted cases in Iran is increasing over the past few years, before starting malaria elimination plan. Since the Afghan refugees started to return to their own country so the main source of reporting of imported malaria cases reduced and local cases would be demonstrated more clearly.", "title": "Determination of Malaria Epidemiological Status in Iran’s Malarious Areas as Baseline Information for Implementation of Malaria Elimination Program in Iran" }, { "docid": "27841037", "text": "The documented history of malaria in parts of Asia goes back more than 2,000 years, during which the disease has been a major player on the socioeconomic stage in many nation states as they waxed and waned in power and prosperity. On a much shorter time scale, the last half century has seen in microcosm a history of large fluctuations in endemicity and impact of malaria across the spectrum of rice fields and rain forests, mountains and plains that reflect the vast ecological diversity inhabited by this majority aggregation of mankind. That period has seen some of the most dramatic changes in social and economic structure, in population size, density and mobility, and in political structure in history: all have played a part in the changing face of malaria in this extensive region of the world. While the majority of global malaria cases currently reside in Africa, greater numbers inhabited Asia earlier this century before malaria programs savored significant success, and now Asia harbors a global threat in the form of the epicenter of multidrug resistant Plasmodium falciparum which is gradually encompassing the tropical world. The latter reflects directly the vicissitudes of economic change over recent decades, particularly the mobility of populations in search of commerce, trade and personal fortunes, or caught in the misfortunes of physical conflicts. The period from the 1950s to the 1990s has witnessed near \"eradication\" followed by resurgence of malaria in Sri Lanka, control and resurgence in India, the influence of war and postwar instability on drug resistance in Cambodia, increase in severe and cerebral malaria in Myanmar during prolonged political turmoil, the essential disappearance of the disease from all but forested border areas of Thailand where it remains for the moment intractable, the basic elimination of vivax malaria from many provinces of central China. Both positive and negative experiences have lessons to teach in the debate between eradication and control as alternative strategies. China has for years held high the goal of \"basic elimination\", eradication by another name, in sensible semi-defiance of WHO dictates. The Chinese experience makes it clear that, given community organization, exhaustive attention to case detection, management and focus elimination, plus the political will at all levels of society, it is possible both to eliminate malaria from large areas of an expansive nation and to implement surveillance necessary to maintain something approaching eradication status in those areas. But China has not succeeded in the international border regions of the tropical south where unfettered population movement confounds the program. Thailand, Malaysia and to an extent Vietnam have also reached essential elimination in their rice field plains by vigorous vertical programs but fall short at their forested borders. Economics is central to the history of the rise and fall of nations, and to the history of disease in the people who constitute nations. The current love affair with free market economics as the main driving force for advance of national wealth puts severe limitations on the essential involvement of communities in malaria management. The task of malaria control or elimination needs to be clearly related to the basic macroeconomic process that preoccupies governments, not cloistered away in the health sector Historically malaria has had a severe, measurable, negative impact on the productivity of nations. Economic models need rehoning with political aplomb and integrating with technical and demographic strategies. Recent decades in Chinese malaria history carry some lessons that may be relevant in this context.", "title": "Ecology, economics and political will: the vicissitudes of malaria strategies in Asia." }, { "docid": "14337960", "text": "Decisions to eliminate malaria from all or part of a country involve a complex set of factors, and this complexity is compounded by ambiguity surrounding some of the key terminology, most notably \"control\" and \"elimination. \" It is impossible to forecast resource and operational requirements accurately if endpoints have not been defined clearly, yet even during the Global Malaria Eradication Program, debate raged over the precise definition of \"eradication. \" Analogous deliberations regarding the meaning of \"elimination\" and \"control\" are basically nonexistent today despite these terms' core importance to programme planning. To advance the contemporary debate about these issues, this paper presents a historical review of commonly used terms, including control, elimination, and eradication, to help contextualize current understanding of these concepts. The review has been supported by analysis of the underlying mathematical concepts on which these definitions are based through simple branching process models that describe the proliferation of malaria cases following importation. Through this analysis, the importance of pragmatic definitions that are useful for providing malaria control and elimination programmes with a practical set of strategic milestones is emphasized, and it is argued that current conceptions of elimination in particular fail to achieve these requirements. To provide all countries with precise targets, new conceptual definitions are suggested to more precisely describe the old goals of \"control\" - here more exactly named \"controlled low-endemic malaria\" - and \"elimination. \" Additionally, it is argued that a third state, called \"controlled non-endemic malaria,\" is required to describe the epidemiological condition in which endemic transmission has been interrupted, but malaria resulting from onwards transmission from imported infections continues to occur at a sufficiently high level that elimination has not been achieved. Finally, guidelines are discussed for deriving the separate operational definitions and metrics that will be required to make these concepts relevant, measurable, and achievable for a particular environment.", "title": "How absolute is zero? An evaluation of historical and current definitions of malaria elimination" }, { "docid": "37248570", "text": "After a lapse of almost 40 years, malaria eradication is back on the global health agenda. Inspired by the Gates Malaria Forum in October 2007,1,2 key organizations are starting to debate the pros and cons of redefining eradication as an explicit goal of malaria control efforts. Attempts to eliminate malaria in southern Africa3 and Pacific Island states,4 and WHO’s Global Malaria Programme agenda and field manual for malaria elimination,5,6 foreshadow this movement towards another global attempt at eradication. When marking 60 years of WHO’s commitment to fighting malaria, we must ask what has been achieved, but also what can we learn from the past. We now know so much more about the biology of parasite-host responses, the determinants of endemicity and transmission dynamics, the social, economic and cultural implications of malaria at household, community and national levels, and the demands made upon health systems in endemic countries. We do not yet know how to synthesize and integrate this knowledge to achieve elimination in different settings. Regional malaria elimination campaigns were first conducted in the late 1940s, preparing the ground for the Global Malaria Eradication Program in 1955. This campaign succeeded in eliminating malaria from Europe, North America, the Caribbean and parts of Asia and South-Central America.7 But no major success occurred in sub-Saharan Africa, which accounts for 80% of today’s burden of malaria.8 When the aspiration of global eradication was abandoned in 1969, the main reasons for failure were technical challenges of executing the strategy especially in Africa. The post-eradication era from 1969 to 1991 focused on technical issues, and research and development for new tools, leading to advances in drug and vaccine development, vector control and insecticide-treated nets. These decades also brought a better understanding of the social, economic and cultural dimensions of malaria. There was little global support provided specifically for malaria control in the newly independent states of Africa that were struggling to establish broad-based health systems and primary health care. By 1992, the combination of a worsening malaria situation and promising technical developments led to renewed global focus on malaria control. The Roll Back Malaria initiative, launched by WHO in 1998, led to the Abuja Declaration in 2000, which defined progressive intervention coverage targets for control designed to eliminate malaria as a public health problem, while emphasizing that this could only be achieved through vastly strengthened local health systems.9 Increased resources through the Global Fund to Fight AIDS, Tuberculosis and Malaria, the World Bank’s Booster Program, the US President’s Malaria Initiative and many others has meant that this page is finally beginning to turn as intervention coverage is rising.10 It is against this background that we hear this call for elimination/eradication. The challenges remain formidable. We all know that elimination in Africa is not possible with current tools. But efforts must focus beyond simply developing better tools, to include how existing and future tools can be strategically combined for maximum synergistic effectiveness when integrated into different health and social systems prevailing in endemic areas. Aiming at elimination and eradication further implies the need for effective surveillance strategies to monitor progress (again a challenge for health systems). This in turn requires a better understanding of malaria transmission heterogeneity in a globalized world with rapidly changing dynamics in environment, climate, migration and transnational cooperation. Maintaining long-term momentum in the face of success in regional elimination while waiting to achieve final eradication will be a major challenge. Shrinking the map by starting on the malaria margins with the “easy-to-eliminate” settings will boost morale initially but may bring marginal benefits to such areas at the expense of those where the burden of malaria is highest. Any strategic plan – and here we learn again from the past – needs to be a synchronous global effort, locally adapted in all endemic areas. Although we lack sufficient knowledge, systems and tools to eradicate malaria today, we do have a window of political will and financial resources to refocus on the goal of effective control through universal coverage of appropriate interventions. The prerequisites for a successful start are: (i) a process of inclusive discourse to agree on global vision, goals and strategy; and (ii) a global plan for all endemic areas describing how, where and when we move from control towards elimination. What must distinguish the new era, especially in Africa, is a real rather than rhetorical emphasis on health systems. ■", "title": "Malaria eradication back on the table." }, { "docid": "3929361", "text": "BACKGROUND Malaria elimination requires a variety of approaches individually optimized for different transmission settings. A recent field study in an area of low seasonal transmission in South West Cambodia demonstrated dramatic reductions in malaria parasite prevalence following both mass drug administration (MDA) and high treatment coverage of symptomatic patients with artemisinin-piperaquine plus primaquine. This study employed multiple combined strategies and it was unclear what contribution each made to the reductions in malaria. \n METHOD AND FINDINGS A mathematical model fitted to the trial results was used to assess the effects of the various components of these interventions, design optimal elimination strategies, and explore their interactions with artemisinin resistance, which has recently been discovered in Western Cambodia. The modelling indicated that most of the initial reduction of P. falciparum malaria resulted from MDA with artemisinin-piperaquine. The subsequent continued decline and near elimination resulted mainly from high coverage with artemisinin-piperaquine treatment. Both these strategies were more effective with the addition of primaquine. MDA with artemisinin combination therapy (ACT) increased the proportion of artemisinin resistant infections, although much less than treatment of symptomatic cases with ACT, and this increase was slowed by adding primaquine. Artemisinin resistance reduced the effectiveness of interventions using ACT when the prevalence of resistance was very high. The main results were robust to assumptions about primaquine action, and immunity. \n CONCLUSIONS The key messages of these modelling results for policy makers were: high coverage with ACT treatment can produce a long-term reduction in malaria whereas the impact of MDA is generally only short-term; primaquine enhances the effect of ACT in eliminating malaria and reduces the increase in proportion of artemisinin resistant infections; parasite prevalence is a better surveillance measure for elimination programmes than numbers of symptomatic cases; combinations of interventions are most effective and sustained efforts are crucial for successful elimination.", "title": "Optimising Strategies for Plasmodium falciparum Malaria Elimination in Cambodia: Primaquine, Mass Drug Administration and Artemisinin Resistance" }, { "docid": "15237660", "text": "BACKGROUND Long-lasting insecticide treated nets (LLINs) and indoor residual house spraying (IRS) are the main interventions for the control of malaria vectors in Zanzibar. The aim of the present study was to assess the susceptibility status of malaria vectors against the insecticides used for LLINs and IRS and to determine the durability and efficacy of LLINs on the island. \n METHODS Mosquitoes were sampled from Pemba and Unguja islands in 2010-2011 for use in WHO susceptibility tests. One hundred and fifty LLINs were collected from households on Unguja, their physical state was recorded and then tested for efficacy as well as total insecticide content. \n RESULTS Species identification revealed that over 90% of the Anopheles gambiae complex was An. arabiensis with a small number of An. gambiae s.s. and An. merus being present. Susceptibility tests showed that An. arabiensis on Pemba was resistant to the pyrethroids used for LLINs and IRS. Mosquitoes from Unguja Island, however, were fully susceptible to all pyrethroids tested. A physical examination of 150 LLINs showed that two thirds were damaged after only three years in use. All used nets had a significantly lower (p < 0.001) mean permethrin concentration of 791.6 mg/m2 compared with 944.2 mg/m2 for new ones. Their efficacy decreased significantly against both susceptible An. gambiae s.s. colony mosquitoes and wild-type mosquitoes from Pemba after just six washes (p < 0.001). \n CONCLUSION The sustainability of the gains achieved in malaria control in Zanzibar is seriously threatened by the resistance of malaria vectors to pyrethroids and the short-lived efficacy of LLINs. This study has revealed that even in relatively well-resourced and logistically manageable places like Zanzibar, malaria elimination is going to be difficult to achieve with the current control measures.", "title": "Challenges for malaria elimination in Zanzibar: pyrethroid resistance in malaria vectors and poor performance of long-lasting insecticide nets" }, { "docid": "24721347", "text": "The founding fathers of malariology combined scientific originality, perseverance in research, strong characters, breadth of interest and social concern. A hundred years later research and understanding has made immense progress but the world still bears a huge burden of malaria. For the next century research requires both more specialism and a holistic range if it is to be used in control, requiring multidisciplinary team work. Environmental changes and interventions produce a dynamic and changing pattern of malaria, not the static one of the past. From the original parasite life cycle, research has analysed a series of other cycles at electron microscope, biochemical and genome levels on decreasing size scales and quantitative epidemiological cycles for control. Recent additions to these concepts have been stage-specific antigens, cycles of disease rather than parasites alone, considering populations of parasites rather than just cases, and also genetic variation in each component of the parasite-human host-vector triad. In this volume there emerges for the first time a coherent overall picture of the biomedical aspects of basic malariology as the interacting population genetics of malaria parasites, anophelines and people. This provides a coherent model for the new century dealing with the great biological malaria problems of drug resistance, vaccine development, insecticidal and net control and can feed, with socio-economic work, into the gathering renewal of control efforts. New work on large-scale changes of malaria in space and time enables us to be precise about effects of local and global environmental changes to predict epidemics. Future research will be as much about linking these different scales of understanding as control will be about linking different levels of the health system. The grim situation in poor holoendemic countries also requires practical support of the type that the founders of malariology were involved in. A coherent understanding needs to feed into the new control efforts, from Roll Back Malaria onwards, for the next century.", "title": "The last and the next hundred years of malariology." }, { "docid": "18074797", "text": "BACKGROUND Over the past decade malaria intervention coverage has been scaled up across Africa. However, it remains unclear what overall reduction in transmission is achievable using currently available tools. \n METHODS AND FINDINGS We developed an individual-based simulation model for Plasmodium falciparum transmission in an African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus) with parameters obtained by fitting to parasite prevalence data from 34 transmission settings across Africa. We incorporated the effect of the switch to artemisinin-combination therapy (ACT) and increasing coverage of long-lasting insecticide treated nets (LLINs) from the year 2000 onwards. We then explored the impact on transmission of continued roll-out of LLINs, additional rounds of indoor residual spraying (IRS), mass screening and treatment (MSAT), and a future RTS,S/AS01 vaccine in six representative settings with varying transmission intensity (as summarized by the annual entomological inoculation rate, EIR: 1 setting with low, 3 with moderate, and 2 with high EIRs), vector-species combinations, and patterns of seasonality. In all settings we considered a realistic target of 80% coverage of interventions. In the low-transmission setting (EIR approximately 3 ibppy [infectious bites per person per year]), LLINs have the potential to reduce malaria transmission to low levels (<1% parasite prevalence in all age-groups) provided usage levels are high and sustained. In two of the moderate-transmission settings (EIR approximately 43 and 81 ibppy), additional rounds of IRS with DDT coupled with MSAT could drive parasite prevalence below a 1% threshold. However, in the third (EIR = 46) with An. arabiensis prevailing, these interventions are insufficient to reach this threshold. In both high-transmission settings (EIR approximately 586 and 675 ibppy), either unrealistically high coverage levels (>90%) or novel tools and/or substantial social improvements will be required, although considerable reductions in prevalence can be achieved with existing tools and realistic coverage levels. \n CONCLUSIONS Interventions using current tools can result in major reductions in P. falciparum malaria transmission and the associated disease burden in Africa. Reduction to the 1% parasite prevalence threshold is possible in low- to moderate-transmission settings when vectors are primarily endophilic (indoor-resting), provided a comprehensive and sustained intervention program is achieved through roll-out of interventions. In high-transmission settings and those in which vectors are mainly exophilic (outdoor-resting), additional new tools that target exophagic (outdoor-biting), exophilic, and partly zoophagic mosquitoes will be required.", "title": "Reducing Plasmodium falciparum Malaria Transmission in Africa: A Model-Based Evaluation of Intervention Strategies" }, { "docid": "24916604", "text": "BACKGROUND The use of bisphosphonates for the prevention of skeletal related events in women with bone metastases from breast cancer is well established. We undertook an evaluation of bisphosphonate use in clinical practice in three Canadian cancer centres. In addition we assessed whether or not physicians at these centres are following their local treatment guidelines and funding policies. \n METHODS Charts and electronic files of patients who had received either clodronate or pamidronate at any time between January 2000 and December 2001 at three Canadian cancer centres were retrospectively reviewed. \n RESULTS There has been a marked improvement in the time between the diagnosis of bone metastases and the commencement of bisphosphonates from a median of 155 days in 1998 to 24 days in 2001. However, despite a local funding policy requiring that oral clodronate be the first bisphosphonate used, this was the case in only 67% of patients. In addition, despite one centre's guidelines recommending that bisphosphonates be stopped once the patient was progressing, 90% of their patients remained on bisphosphonates until they died. \n CONCLUSIONS A considerable amount of effort is spent on the creation of \"evidence based\" treatment guidelines. Funding agencies develop policies based on these treatment guidelines, but often funding is more restrictive than the treatment guideline would suggest. It is clear from this review that physicians still appear to manage a substantial proportion of patients outside of funding policies, but within evidence based recommendations. Therefore, a need exists for either the creation of guidelines and policies that physicians will follow or the implementation of methods to ensure that restrictive policies are actually followed.", "title": "Do physicians follow systemic treatment and funding policy guidelines?" }, { "docid": "3001685", "text": "Building a mathematical model of population dynamics of pathogens within their host involves considerations of factors similar to those in ecology, as pathogens can prey on cells in the host. But within the multicellular host, attacked cell types are integrated with other cellular systems, which in turn intervene in the infection. For example, immune responses attempt to sense and then eliminate or contain pathogens, and homeostatic mechanisms try to compensate for cell loss. This review focuses on modeling applied to malarias, diseases caused by single-cell eukaryote parasites that infect red blood cells, with special concern given to vivax malaria, a disease often thought to be benign (if sometimes incapacitating) because the parasite only attacks a small proportion of red blood cells, the very youngest ones. However, I will use mathematical modeling to argue that depletion of this pool of red blood cells can be disastrous to the host if growth of the parasite is not vigorously check by host immune responses. Also, modeling can elucidate aspects of new field observations that indicate that vivax malaria is more dangerous than previously thought. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12551-010-0034-3) contains supplementary material, which is available to authorized users.", "title": "Population dynamics of a pathogen: the conundrum of vivax malaria" }, { "docid": "18174210", "text": "BACKGROUND The heritable haemoglobinopathy alpha(+)-thalassaemia is caused by the reduced synthesis of alpha-globin chains that form part of normal adult haemoglobin (Hb). Individuals homozygous for alpha(+)-thalassaemia have microcytosis and an increased erythrocyte count. Alpha(+)-thalassaemia homozygosity confers considerable protection against severe malaria, including severe malarial anaemia (SMA) (Hb concentration < 50 g/l), but does not influence parasite count. We tested the hypothesis that the erythrocyte indices associated with alpha(+)-thalassaemia homozygosity provide a haematological benefit during acute malaria. \n METHODS AND FINDINGS Data from children living on the north coast of Papua New Guinea who had participated in a case-control study of the protection afforded by alpha(+)-thalassaemia against severe malaria were reanalysed to assess the genotype-specific reduction in erythrocyte count and Hb levels associated with acute malarial disease. We observed a reduction in median erythrocyte count of approximately 1.5 x 10(12)/l in all children with acute falciparum malaria relative to values in community children (p < 0.001). We developed a simple mathematical model of the linear relationship between Hb concentration and erythrocyte count. This model predicted that children homozygous for alpha(+)-thalassaemia lose less Hb than children of normal genotype for a reduction in erythrocyte count of >1.1 x 10(12)/l as a result of the reduced mean cell Hb in homozygous alpha(+)-thalassaemia. In addition, children homozygous for alpha(+)-thalassaemia require a 10% greater reduction in erythrocyte count than children of normal genotype (p = 0.02) for Hb concentration to fall to 50 g/l, the cutoff for SMA. We estimated that the haematological profile in children homozygous for alpha(+)-thalassaemia reduces the risk of SMA during acute malaria compared to children of normal genotype (relative risk 0.52; 95% confidence interval [CI] 0.24-1.12, p = 0.09). \n CONCLUSIONS The increased erythrocyte count and microcytosis in children homozygous for alpha(+)-thalassaemia may contribute substantially to their protection against SMA. A lower concentration of Hb per erythrocyte and a larger population of erythrocytes may be a biologically advantageous strategy against the significant reduction in erythrocyte count that occurs during acute infection with the malaria parasite Plasmodium falciparum. This haematological profile may reduce the risk of anaemia by other Plasmodium species, as well as other causes of anaemia. Other host polymorphisms that induce an increased erythrocyte count and microcytosis may confer a similar advantage.", "title": "Increased Microerythrocyte Count in Homozygous α+-Thalassaemia Contributes to Protection against Severe Malarial Anaemia" }, { "docid": "1173667", "text": "Experience gained from the Global Malaria Eradication Program (1955-72) identified a set of shared technical and operational factors that enabled some countries to successfully eliminate malaria. Spatial data for these factors were assembled for all malaria-endemic countries and combined to provide an objective, relative ranking of countries by technical, operational, and combined elimination feasibility. The analysis was done separately for Plasmodium falciparum and Plasmodium vivax, and the limitations of the approach were discussed. The relative rankings suggested that malaria elimination would be most feasible in countries in the Americas and Asia, and least feasible in countries in central and west Africa. The results differed when feasibility was measured by technical or operational factors, highlighting the different types of challenge faced by each country. The results are not intended to be prescriptive, predictive, or to provide absolute assessments of feasibility, but they do show that spatial information is available to facilitate evidence-based assessments of the relative feasibility of malaria elimination by country that can be rapidly updated.", "title": "Ranking of elimination feasibility between malaria-endemic countries" }, { "docid": "27063470", "text": "OBJECTIVE To identify changes in the occurrence of Creutzfeldt-Jakob disease that might be related to the epidemic of bovine spongiform encephalopathy. \n DESIGN Epidemiological surveillance of the United Kingdom population for Creutzfeldt-Jakob disease based on (a) referral of suspected cases by neurologists, neuropathologists, and neurophysiologists and (b) death certificates. \n SETTING England and Wales during 1970-84, and whole of the United Kingdom during 1985-96. SUBJECTS All 662 patients identified as sporadic cases of Creutzfeldt-Jakob disease. \n MAIN OUTCOME MEASURES Age distribution of patients, age specific time trends of disease, occupational exposure to cattle, potential exposure to causative agent of bovine spongiform encephalopathy. \n RESULTS During 1970-96 there was an increase in the number of sporadic cases of Creutzfeldt-Jakob disease recorded yearly in England and Wales. The greatest increase was among people aged over 70. There was a statistically significant excess of cases among dairy farm workers and their spouses and among people at increased risk of contact with live cattle infected with bovine spongiform encephalopathy. During 1994-6 there were six deaths from sporadic Creutzfeldt-Jakob disease in the United Kingdom in patients aged under 30. \n CONCLUSIONS The increase in the incidence of sporadic Creutzfeldt-Jakob disease and the high incidence in dairy farmers in the United Kingdom may be unrelated to bovine spongiform encephalopathy. The most striking change in the pattern of Creutzfeldt-Jakob disease in the United Kingdom after the epidemic of bovine spongiform encephalopathy is provided by the incidence in a group of exceptionally young patients with a consistent and unusual neuropathological profile. The outcome of mouse transmission studies and the future incidence of the disease in the United Kingdom and elsewhere, will be important in judging whether the agent causing bovine spongiform encephalopathy has infected humans.", "title": "Sporadic Creutzfeldt-Jakob disease in the United Kingdom: analysis of epidemiological surveillance data for 1970-96." }, { "docid": "23203102", "text": "BACKGROUND The occurrence of transfusion transmissions of variant Creutzfeldt-Jakob disease (CJD) cases has reawakened attention to the possible similar risk posed by other forms of CJD. STUDY DESIGN AND METHODS CJD with a definite or probable diagnosis (sporadic CJD, n = 741; genetic CJD, n = 175) and no-CJD patients with definite alternative diagnosis (n = 482) with available blood transfusion history were included in the study. The risk of exposure to blood transfusion occurring more than 10 years before disease onset and for some possible confounding factors was evaluated by calculating crude odds ratios (ORs). Variables with significant ORs in univariate analyses were included in multivariate logistic regression analyses. \n RESULTS In the univariate model, blood transfusion occurring more than 10 years before clinical onset is 4.1-fold more frequent in sporadic CJD than in other neurologic disorders. This significance is lost when the 10-year lag time was not considered. Multivariate analyses show that the risk of developing sporadic CJD after transfusion increases (OR, 5.05) after adjusting for possible confounding factors. Analysis conducted on patients with genetic CJD did not reveal any significant risk factor associated with transfusion. \n CONCLUSION This is the first case-control study showing a significant risk of transfusion occurring more than 10 years before clinical onset in sporadic CJD patients. It remains questionable whether the significance of these data is biologically plausible or the consequence of biases in the design of the study, but they counterbalance previous epidemiologic negative reports that might have overestimated the assessment of blood safety in sporadic CJD.", "title": "Transmission of sporadic Creutzfeldt-Jakob disease by blood transfusion: risk factor or possible biases." }, { "docid": "20999249", "text": "BACKGROUND Falciparum malaria or malaria tropica is one of the leading causes of childhood mortality worldwide. Malaria-related deaths occur mainly in sub-Saharan Africa, where an estimated 365 million clinical cases of Plasmodium falciparum malaria occur each year. In Europe, imported malaria cases occur due to returning travellers or immigration mostly from African countries. Children are more at risk than adults. The objective of this study was to identify high risk groups for imported childhood malaria in Europe in order to guide development of strategies for prevention, early recognition and management. \n METHODS In the period May 2003-January 2005 we reviewed all cases of paediatric malaria in the Netherlands notified by the Dutch Paediatric Surveillance System (Nederland Signalerings Centrum Kindergeneeskunde, NSCK) and the literature on imported malaria in children in Europe published between 1996 and 2006. \n RESULTS Malaria occurred mainly in children of long-term (n = 15, 47%) and new (n = 8, 25%) immigrants and was mostly acquired in sub-Saharan Africa. The dominant species was P. falciparum. Only one quarter of children had used adequate malaria chemoprophylaxis. Complicated disease occurred in 10 (31%) of cases. We also reviewed the literature and found 6082 reported cases of imported malaria among children in Europe; among these, four died and only one was reported to develop neurological sequelae. \n CONCLUSION Imported malaria in children remains an important problem and is unlikely to decrease unless the reasons for inadequate prophylaxis are addressed.", "title": "Imported malaria in children: a national surveillance in the Netherlands and a review of European studies." }, { "docid": "13948920", "text": "Artemisinin-based combination therapies are the frontline treatment of Plasmodium falciparum malaria. The circulation of falsified and substandard artemisinin-based antimalarials in Southeast Asia has been a major predicament for the malaria elimination campaign. To provide an update of this situation, we purchased 153 artemisinin-containing antimalarials, as convenience samples, in private drug stores from different regions of Myanmar. The quality of these drugs in terms of their artemisinin derivative content was tested using specific dipsticks for these artemisinin derivatives, as point-of-care devices. A subset of these samples was further tested by high-performance liquid chromatography (HPLC). This survey identified that > 35% of the collected drugs were oral artesunate and artemether monotherapies. When tested with the dipsticks, all but one sample passed the assays, indicating that the detected artemisinin derivative content corresponded approximately to the labeled contents. However, one artesunate injection sample was found to contain no active ingredient at all by the dipstick assay and subsequent HPLC analysis. The continued circulation of oral monotherapies and the description, for the first time, of falsified parenteral artesunate provides a worrisome picture of the antimalarial drug quality in Myanmar during the malaria elimination phase, a situation that deserves more oversight from regulatory authorities.", "title": "Quality Testing of Artemisinin-Based Antimalarial Drugs in Myanmar." }, { "docid": "1805641", "text": "BACKGROUND Artemisinin derivatives used in recently introduced combination therapies (ACTs) for Plasmodium falciparum malaria significantly lower patient infectiousness and have the potential to reduce population-level transmission of the parasite. With the increased interest in malaria elimination, understanding the impact on transmission of ACT and other antimalarial drugs with different pharmacodynamics becomes a key issue. This study estimates the reduction in transmission that may be achieved by introducing different types of treatment for symptomatic P. falciparum malaria in endemic areas. \n METHODS AND FINDINGS We developed a mathematical model to predict the potential impact on transmission outcomes of introducing ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania. We also estimated the impact that could be achieved by antimalarials with different efficacy, prophylactic time, and gametocytocidal effects. Rates of treatment, asymptomatic infection, and symptomatic infection in the six study areas were estimated using the model together with data from a cross-sectional survey of 5,667 individuals conducted prior to policy change from sulfadoxine-pyrimethamine to ACT. The effects of ACT and other drug types on gametocytaemia and infectiousness to mosquitoes were independently estimated from clinical trial data. Predicted percentage reductions in prevalence of infection and incidence of clinical episodes achieved by ACT were highest in the areas with low initial transmission. A 53% reduction in prevalence of infection was seen if 100% of current treatment was switched to ACT in the area where baseline slide-prevalence of parasitaemia was lowest (3.7%), compared to an 11% reduction in the highest-transmission setting (baseline slide prevalence = 57.1%). Estimated percentage reductions in incidence of clinical episodes were similar. The absolute size of the public health impact, however, was greater in the highest-transmission area, with 54 clinical episodes per 100 persons per year averted compared to five per 100 persons per year in the lowest-transmission area. High coverage was important. Reducing presumptive treatment through improved diagnosis substantially reduced the number of treatment courses required per clinical episode averted in the lower-transmission settings although there was some loss of overall impact on transmission. An efficacious antimalarial regimen with no specific gametocytocidal properties but a long prophylactic time was estimated to be more effective at reducing transmission than a short-acting ACT in the highest-transmission setting. \n CONCLUSIONS Our results suggest that ACTs have the potential for transmission reductions approaching those achieved by insecticide-treated nets in lower-transmission settings. ACT partner drugs and nonartemisinin regimens with longer prophylactic times could result in a larger impact in higher-transmission settings, although their long term benefit must be evaluated in relation to the risk of development of parasite resistance.", "title": "Modelling the Impact of Artemisinin Combination Therapy and Long-Acting Treatments on Malaria Transmission Intensity" } ]
377
Emodin forms hydrogen bonds with residues involved in PGAM1 substrate binding.
[ { "docid": "18810195", "text": "How oncogenic signalling coordinates glycolysis and anabolic biosynthesis in cancer cells remains unclear. We recently reported that the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) regulates anabolic biosynthesis by controlling intracellular levels of its substrate 3-phosphoglycerate and product 2-phosphoglycerate. Here we report a novel mechanism in which Y26 phosphorylation enhances PGAM1 activation through release of inhibitory E19 that blocks the active site, stabilising cofactor 2,3-bisphosphoglycerate binding and H11 phosphorylation. We also report the crystal structure of H11-phosphorylated PGAM1 and find that phospho-H11 activates PGAM1 at least in part by promoting substrate 3-phosphoglycerate binding. Moreover, Y26 phosphorylation of PGAM1 is common in human cancer cells and contributes to regulation of 3-phosphoglycerate and 2-phosphoglycerate levels, promoting cancer cell proliferation and tumour growth. As PGAM1 is a negative transcriptional target of TP53, and is therefore commonly upregulated in human cancers, these findings suggest that Y26 phosphorylation represents an additional acute mechanism underlying phosphoglycerate mutase 1 upregulation.", "title": "Tyr26 phosphorylation of PGAM1 provides a metabolic advantage to tumours by stabilizing the active conformation" } ]
[ { "docid": "12225214", "text": "Ubiquitination controls a broad range of cellular functions. The last step of the ubiquitination pathway is regulated by enzyme type 3 (E3) ubiquitin ligases. E3 enzymes are responsible for substrate specificity and catalyze the formation of an isopeptide bond between a lysine residue of the substrate (or the N terminus of the substrate) and ubiquitin. MIR1 and MIR2 are two E3 ubiquitin ligases encoded by Kaposi's sarcoma-associated herpesvirus that mediate the ubiquitination of major histocompatibility complex class I (MHC I) molecules and subsequent internalization. Here, we found that MIR1, but not MIR2, promoted down-regulation of MHC I molecules lacking lysine residues in their intracytoplasmic domain. In the presence of MIR1, these MHC I molecules were ubiquitinated, and their association with ubiquitin was sensitive to beta2-mercaptoethanol, unlike lysine-ubiquitin bonds. This form of ubiquitination required a cysteine residue in the intracytoplasmic tail of MHC I molecules. An MHC I molecule containing a single cysteine residue in an artificial glycine and alanine intracytoplasmic domain was endocytosed and degraded in the presence of MIR1. Thus, ubiquitination can occur on proteins lacking accessible lysines or an accessible N terminus.", "title": "Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase." }, { "docid": "9875570", "text": "DNA replication fidelity is a key determinant of genome stability and is central to the evolution of species and to the origins of human diseases. Here we review our current understanding of replication fidelity, with emphasis on structural and biochemical studies of DNA polymerases that provide new insights into the importance of hydrogen bonding, base pair geometry, and substrate-induced conformational changes to fidelity. These studies also reveal polymerase interactions with the DNA minor groove at and upstream of the active site that influence nucleotide selectivity, the efficiency of exonucleolytic proofreading, and the rate of forming errors via strand misalignments. We highlight common features that are relevant to the fidelity of any DNA synthesis reaction, and consider why fidelity varies depending on the enzymes, the error, and the local sequence environment.", "title": "DNA replication fidelity" }, { "docid": "36855703", "text": "XPG is a member of the FEN-1 structure-specific endonuclease family. It has 3'-junction cutting activity on bubble substrates and makes the 3'-incision in the human dual incision (excision nuclease) repair system. To investigate the precise role of XPG in nucleotide excision repair, we mutagenized two amino acid residues thought to be involved in DNA binding and catalysis, overproduced the mutant proteins using a baculovirus/insect cell system, and purified and characterized the mutant proteins. The mutation D77A had a modest effect on junction cutting and excision activity and gave rise to uncoupled 5'-incision by mammalian cell-free extracts. The D812A mutation completely abolished the junction cutting and 3'-incision activities of XPG, but the excision nuclease reconstituted with XPG (D812A) carried out normal 5'-incision at the 23rd-24th phosphodiester bonds 5' to a (6-4) photoproduct without producing any 3'-incision. It is concluded that Asp-812 is an active site residue of XPG and that in addition to making the 3'-incision, the physical presence of XPG in the protein-DNA complex is required non-catalytically for subsequent 5'-incision by XPF-ERCC1.", "title": "The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair." }, { "docid": "21754541", "text": "Class B GPCRs can activate multiple signalling effectors with the potential to exhibit biased agonism in response to ligand stimulation. Previously, we highlighted key TM domain polar amino acids that were crucial for the function of the GLP-1 receptor, a key therapeutic target for diabetes and obesity. Using a combination of mutagenesis, pharmacological characterisation, mathematical and computational molecular modelling, this study identifies additional highly conserved polar residues located towards the TM helical boundaries of Class B GPCRs that are important for GLP-1 receptor stability and/or controlling signalling specificity and biased agonism. This includes (i) three positively charged residues (R3.30227, K4.64288, R5.40310) located at the extracellular boundaries of TMs 3, 4 and 5 that are predicted in molecular models to stabilise extracellular loop 2, a crucial domain for ligand affinity and receptor activation; (ii) a predicted hydrogen bond network between residues located in TMs 2 (R2.46176), 6 (R6.37348) and 7 (N7.61406 and E7.63408) at the cytoplasmic face of the receptor that is important for stabilising the inactive receptor and directing signalling specificity, (iii) residues at the bottom of TM 5 (R5.56326) and TM6 (K6.35346 and K6.40351) that are crucial for receptor activation and downstream signalling; (iv) residues predicted to be involved in stabilisation of TM4 (N2.52182 and Y3.52250) that also influence cell signalling. Collectively, this work expands our understanding of peptide-mediated signalling by the GLP-1 receptor.", "title": "Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor." }, { "docid": "6788835", "text": "The human cytomegalovirus gene product US11 causes rapid degradation of class I major histocompatibility complex (MHCI) heavy chains by inducing their dislocation from the endoplasmic reticulum (ER) and subsequent degradation by the proteasome. This set of reactions resembles the endogenous cellular quality control pathway that removes misfolded or unassembled proteins from the ER. We show that the transmembrane domain (TMD) of US11 is essential for MHCI heavy chain dislocation, but dispensable for MHCI binding. A Gln residue at position 192 in the US11 TMD is crucial for the ubiquitination and degradation of MHCI heavy chains. Cells that express US11 TMD mutants allow formation of MHCI-beta2m complexes, but their rate of egress from the ER is significantly impaired. Further mutagenesis data are consistent with the presence of an alpha-helical structure in the US11 TMD essential for MHCI heavy chain dislocation. The failure of US11 TMD mutants to catalyze dislocation is a unique instance in which a polar residue in the TMD of a type I membrane protein is required for that protein's function. Targeting of MHCI heavy chains for dislocation by US11 thus requires the formation of interhelical hydrogen bonds within the ER membrane.", "title": "Dislocation of a type I membrane protein requires interactions between membrane-spanning segments within the lipid bilayer." }, { "docid": "14180565", "text": "Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence, approaches have been intensively investigated to targeti specific molecular pathways involved in glioblastoma development and progression. Aloe emodin is believed to modulate the expression of several genes in cancer cells. We aimed to understand the molecular mechanisms underlying the therapeutic effect of Aloe emodin on gene expression profiles in the human U87 glioblastoma cell line utilizing microarray technology. The gene expression analysis revealed that a total of 8,226 gene alterations out of 28,869 genes were detected after treatment with 58.6 μg/ml for 24 hours. Out of this total, 34 genes demonstrated statistically significant change (p<0.05) ranging from 1.07 to 1.87 fold. The results revealed that 22 genes were up-regulated and 12 genes were down-regulated in response to Aloe emodin treatment. These genes were then grouped into several clusters based on their biological functions, revealing induction of expression of genes involved in apoptosis (programmed cell death) and tissue remodelling in U87 cells (p<0.01). Several genes with significant changes of the expression level e.g. SHARPIN, BCAP31, FIS1, RAC1 and TGM2 from the apoptotic cluster were confirmed by quantitative real-time PCR (qRT-PCR). These results could serve as guidance for further studies in order to discover molecular targets for the cancer therapy based on Aloe emodin treatment.", "title": "Expression profile of genes modulated by Aloe emodin in human U87 glioblastoma cells." }, { "docid": "2617858", "text": "Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function.", "title": "Conformational Changes during Pore Formation by the Perforin-Related Protein Pleurotolysin" }, { "docid": "29098525", "text": "PriB is a primosomal protein required for re-initiation of replication in bacteria. We characterized and compared the DNA-binding properties of PriB from Salmonella enterica serovar Typhimurium LT2 (StPriB) and Escherichia coli (EcPriB). Only one residue of EcPriB, V6, was different in StPriB (replaced by A6). Previous structural information revealed that this residue is located on the putative dimer-dimer interface of PriB and is not involved in single-stranded DNA (ssDNA) binding. The cooperative binding mechanism of StPriB to DNA is, however, very different from that of EcPriB. Unlike EcPriB, which forms a single complex with ssDNAs of various lengths, StPriB forms two or more distinct complexes. Based on these results, as well as information on structure, binding modes for forming a stable complex of PriB with ssDNA of 25 nucleotides (nt), (EcPriB)25, and (StPriB)25 are proposed.", "title": "A single residue determines the cooperative binding property of a primosomal DNA replication protein, PriB, to single-stranded DNA." }, { "docid": "25942757", "text": "The substantial importance of P-selectin glycoprotein ligand 1 (PSGL-1) in leukocyte trafficking has continued to emerge beyond its initial identification as a selectin ligand. PSGL-1 seemed to be a relatively simple molecule with an extracellular mucin domain extended as a flexible rod, teleologically consistent with its primary role in tethering leukocytes to endothelial selectins. The rolling interaction between leukocyte and endothelium mediated by this selectin-PSGL-1 interaction requires branched O-glycan extensions on specific PSGL-1 amino acid residues. In some cells, such as neutrophils, the glycosyltransferases involved in formation of the O-glycans are constitutively expressed, while in other cells, such as T cells, they are expressed only after appropriate activation. Thus, PSGL-1 supports leukocyte recruitment in both innate and adaptive arms of the immune response. A complex array of amino acids within the selectins engage multiple sugar residues of the branched O-glycans on PSGL-1 and provide the molecular interactions responsible for the velcro-like catch bonds that support leukocyte rolling. Such binding of PSGL-1 can also induce signaling events that influence cell phenotype and function. Scrutiny of PSGL-1 has revealed a better understanding of how it performs as a selectin ligand and yielded unexpected insights that extend its scope from supporting leukocyte rolling in inflammatory settings to homeostasis including stem cell homing to the thymus and mature T-cell homing to secondary lymphoid organs. PSGL-1 has been found to bind homeostatic chemokines CCL19 and CCL21 and to support the chemotactic response to these chemokines. Surprisingly, the O-glycan modifications of PSGL-1 that support rolling mediated by selectins in inflammatory conditions interfere with PSGL-1 binding to homeostatic chemokines and thereby limit responsiveness to the chemotactic cues used in steady state T-cell traffic. The multi-level influence of PSGL-1 on cell traffic in both inflammatory and steady state settings is therefore substantially determined by the orchestrated addition of O-glycans. However, central as specific O-glycosylation is to PSGL-1 function, in vivo regulation of PSGL-1 glycosylation in T cells remains poorly understood. It is our purpose herein to review what is known, and not known, of PSGL-1 glycosylation and to update understanding of PSGL-1 functional scope.", "title": "PSGL-1 function in immunity and steady state homeostasis." }, { "docid": "1383826", "text": "RNA molecules fulfill a diverse set of biological functions within cells, from the transfer of genetic information from DNA to protein, to enzymatic catalysis. Reflecting this range of roles, simple linear strings of RNA—made up of uracil, guanine, cytosine, and adenine—form a variety of complex three-dimensional structures. Just as proteins form distinct structural motifs such as zinc fingers and beta barrels, certain structures are also commonly adopted by RNA molecules. Among the most prevalent RNA structures is a motif known as the pseudoknot. First recognized in the turnip yellow mosaic virus [1], a pseudoknot is an RNA structure that is minimally composed of two helical segments connected by single-stranded regions or loops (Figure 1). Although several distinct folding topologies of pseudoknots exist, the best characterized is the H type. In the H-type fold, the bases in the loop of a hairpin form intramolecular pairs with bases outside of the stem (Figure 1A and ​and1B).1B). This causes the formation of a second stem and loop, resulting in a pseudoknot with two stems and two loops (Figure 1C). The two stems are able to stack on top of each other to form a quasi-continuous helix with one continuous and one discontinuous strand. The single-stranded loop regions often interact with the adjacent stems (loop 1–stem 2 or loop 2–stem 1) to form hydrogen bonds and to participate in the overall structure of the molecule. Hence, this relatively simple fold can yield very complex and stable RNA structures. Due to variation of the lengths of the loops and stems, as well as the types of interactions between them, pseudoknots represent a structurally diverse group. It is fitting that they play a variety of diverse roles in biology. These roles include forming the catalytic core of various ribozymes [2,3], self-splicing introns [4], and telomerase [5]. Additionally, pseudoknots play critical roles in altering gene expression by inducing ribosomal frameshifting in many viruses [6–9].", "title": "Pseudoknots: RNA Structures with Diverse Functions" }, { "docid": "27373088", "text": "ErmC' is a methyltransferase that confers resistance to the macrolide-lincosamide-streptogramin B group of antibiotics by catalyzing the methylation of 23S rRNA at a specific adenine residue (A-2085 in Bacillus subtilis; A-2058 in Escherichia coli). The gene for ErmC' was cloned and expressed to a high level in E. coli, and the protein was purified to virtual homogeneity. Studies of substrate requirements of ErmC' have shown that a 262-nucleotide RNA fragment within domain V of B. subtilis 23S rRNA can be utilized efficiently as a substrate for methylation at A-2085. Kinetic studies of the monomethylation reaction showed that the apparent Km of this 262-nucleotide RNA oligonucleotide was 26-fold greater than the value determined for full-size and domain V 23S rRNA. In addition, the Vmax for this fragment also rose sevenfold. A model of RNA-ErmC' interaction involving multiple binding sites is proposed from the kinetic data presented.", "title": "Substrate requirements for ErmC' methyltransferase activity." }, { "docid": "36464673", "text": "We show that, in vitro, Ca2+-dependent protein kinase C (PKC) phosphorylates recombinant murine p53 protein on several residues contained within a conserved basic region of 25 amino acids, located in the C-terminal part of the protein. Accordingly, synthetic p53-(357-381)-peptide is phosphorylated by PKC at multiple Ser and Thr residues, including Ser360, Thr365, Ser370 and Thr377. We also establish that p53-(357-381)-peptide at micromolar concentrations has the ability to stimulate sequence-specific DNA binding by p53. That stimulation is lost upon phosphorylation by PKC. To further characterise the mechanisms that regulate PKC-dependent phosphorylation of p53-(357-381)-peptide, the phosphorylation of recombinant p53 and p53-(357-381)-peptide by PKC were compared. The results suggest that phosphorylation of full-length p53 on the C-terminal PKC sites is highly dependent on the accessibility of the phosphorylation sites and that a domain on p53 distinct from p53-(357-381)-peptide is involved in binding PKC. Accordingly, we have identified a conserved 27-amino-acid peptide, p53-(320-346)-peptide, within the C-terminal region of p53 and adjacent to residues 357-381 that interacts with PKC in vitro. The interaction between p53-(320-346)-peptide and PKC inhibits PKC autophosphorylation and the phosphorylation of substrates, including p53-(357-381)-peptide, neurogranin and histone H1. Conventional Ca2+-dependent PKC alpha, beta and gamma and the catalytic fragment of PKC (PKM) were nearly equally susceptible to inhibition by p53-(320-346)-peptide. The Ca2+-independent PKC delta was much less sensitive to inhibition. The significance of these findings for understanding the in vivo phosphorylation of p53 by PKC are discussed.", "title": "The in vitro phosphorylation of p53 by calcium-dependent protein kinase C--characterization of a protein-kinase-C-binding site on p53." }, { "docid": "6974477", "text": "In the context of the renewed interest of peptides as therapeutics, it is important to have an on-line resource for 3D structure prediction of peptides with well-defined structures in aqueous solution. We present an updated version of PEP-FOLD allowing the treatment of both linear and disulphide bonded cyclic peptides with 9-36 amino acids. The server makes possible to define disulphide bonds and any residue-residue proximity under the guidance of the biologists. Using a benchmark of 34 cyclic peptides with one, two and three disulphide bonds, the best PEP-FOLD models deviate by an average RMS of 2.75 Å from the full NMR structures. Using a benchmark of 37 linear peptides, PEP-FOLD locates lowest-energy conformations deviating by 3 Å RMS from the NMR rigid cores. The evolution of PEP-FOLD comes as a new on-line service to supersede the previous server. The server is available at: http://bioserv.rpbs.univ-paris-diderot.fr/PEP-FOLD.", "title": "PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides" }, { "docid": "12489688", "text": "Neutrophilic polymorphonuclear leukocytes (neutrophils) are highly specialized for their primary function, the phagocytosis and destruction of microorganisms. When coated with opsonins (generally complement and/or antibody), microorganisms bind to specific receptors on the surface of the phagocyte and invagination of the cell membrane occurs with the incorporation of the microorganism into an intracellular phagosome. There follows a burst of oxygen consumption, and much, if not all, of the extra oxygen consumed is converted to highly reactive oxygen species. In addition, the cytoplasmic granules discharge their contents into the phagosome, and death of the ingested microorganism soon follows. Among the antimicrobial systems formed in the phagosome is one consisting of myeloperoxidase (MPO), released into the phagosome during the degranulation process, hydrogen peroxide (H2O2), formed by the respiratory burst and a halide, particularly chloride. The initial product of the MPO-H2O2-chloride system is hypochlorous acid, and subsequent formation of chlorine, chloramines, hydroxyl radicals, singlet oxygen, and ozone has been proposed. These same toxic agents can be released to the outside of the cell, where they may attack normal tissue and thus contribute to the pathogenesis of disease. This review will consider the potential sources of H2O2 for the MPO-H2O2-halide system; the toxic products of the MPO system; the evidence for MPO involvement in the microbicidal activity of neutrophils; the involvement of MPO-independent antimicrobial systems; and the role of the MPO system in tissue injury. It is concluded that the MPO system plays an important role in the microbicidal activity of phagocytes.", "title": "Myeloperoxidase: friend and foe." }, { "docid": "43224840", "text": "P-selectin glycoprotein ligand-1 (PSGL-1) binding to P-selectin mediates leukocyte rolling under conditions of flow. In human neutrophils, a type of leukocyte belonging to the innate immune system, PSGL-1 molecules are located on the neutrophil's surface ruffles, called microvilli. Each newly formed P-selectin-PSGL-1 bond can become load bearing, imposing on its microvillus a pulling force that deforms the microvillus. Depending on the magnitude of the bond force, a microvillus can be extended, or a thin membrane cylinder (a tether) can be formed at the tip of the microvillus. Here we propose a Kelvin-Voigt viscoelastic material as an improved model for microvillus extension. Using a modified version of our Event-Tracking Model of Adhesion (ETMA), we demonstrate how P-selectin-PSGL-1 load-bearing bonds shape microvillus deformation during neutrophil rolling at low shear (wall shear rate of 50 s(-1), P-selectin site density of 150 molecules μm(-2)). We also discuss the impact of microvillus deformability on neutrophil rolling. We find that the average microvillus extension constitutes 65% of the total microvillus-tether complex extension, and that the rolling neutrophil may never fully rest. A quantitative comparison with the corresponding non-deformable microvilli case supports a concept that the ability of the microvillus to deform stabilizes cell rolling.", "title": "Dynamics of Microvillus Extension and Tether Formation in Rolling Leukocytes." }, { "docid": "22191759", "text": "Cathelicidins are a novel family of antimicrobial peptide precursors from mammalian myeloid cells. They are characterized by a conserved N-terminal region while the C-terminal antimicrobial domain can vary considerably in both primary sequence and length. Four cathelicidins, proBac5, proBac7, prododecapeptide and proBMAP-28, have been concurrently purified from bovine neutrophils, using simple and rapid methodologies. The correlation of ES-MS data from the purified proteins with their cDNA-deduced sequences has revealed several common features of their primary sequence, such as the presence of N-terminal 5-oxoproline (pyroglutamate) residues and two disulfide bridges in a 1-2, 3-4 arrangement. The N-terminal domains of the cathelicidins present one or two Asp-Pro bonds, which are particularly acid-labile in proBac5 and proBac7, but stable in prododecapeptide. This suggests that the spatial organization around these bonds may vary in different cathelicidins, and favour hydrolysis in some cases. An unexpected feature of the prododecapeptide is that it exists as dimers formed by three possible combinations of its two isoforms. The isolation of a truncated, monomeric form of this protein, lacking the cysteine-containing antimicrobial dodecapeptide, indicates that dimerization occurs via disulfide bridge formation at the level of the C-terminal domain and that the dodecapeptide is likely released as a dimer from its precursor. Sequence-based secondary structure predictions and CD results indicate for cathelicidins a 30-50% content of extended conformation and <20% content of alpha-helical conformation, with the alpha-helical segment placed near the N-terminus. Finally, similarity searching and topology-based structure prediction underline a significant sequential and structural similarity between the conserved N-terminal domain of cathelicidins and cystatin-like domains, placing this family within the cystatin superfamily. When assayed against cathepsin L, unlike the potent cystatin inhibitors, three of the four cathelicidins show only a poor inhibitory activity (Ki = 0.6-3 microM).", "title": "Purification and structural characterization of bovine cathelicidins, precursors of antimicrobial peptides." }, { "docid": "12922760", "text": "BACKGROUND G-quadruplexes (G4s) are stable non-canonical DNA secondary structures consisting of stacked arrays of four guanines, each held together by Hoogsteen hydrogen bonds. Sequences with the ability to form these structures in vitro, G4 motifs, are found throughout bacterial and eukaryotic genomes. The budding yeast Pif1 DNA helicase, as well as several bacterial Pif1 family helicases, unwind G4 structures robustly in vitro and suppress G4-induced DNA damage in S. cerevisiae in vivo. \n RESULTS We determined the genomic distribution and evolutionary conservation of G4 motifs in four fission yeast species and investigated the relationship between G4 motifs and Pfh1, the sole S. pombe Pif1 family helicase. Using chromatin immunoprecipitation combined with deep sequencing, we found that many G4 motifs in the S. pombe genome were associated with Pfh1. Cells depleted of Pfh1 had increased fork pausing and DNA damage near G4 motifs, as indicated by high DNA polymerase occupancy and phosphorylated histone H2A, respectively. In general, G4 motifs were underrepresented in genes. However, Pfh1-associated G4 motifs were located on the transcribed strand of highly transcribed genes significantly more often than expected, suggesting that Pfh1 has a function in replication or transcription at these sites. \n CONCLUSIONS In the absence of functional Pfh1, unresolved G4 structures cause fork pausing and DNA damage of the sort associated with human tumors.", "title": "The essential Schizosaccharomyces pombe Pfh1 DNA helicase promotes fork movement past G-quadruplex motifs to prevent DNA damage" }, { "docid": "4429388", "text": "The ESCRT (endosomal sorting complex required for transport) pathway is required for terminal membrane fission events in several important biological processes, including endosomal intraluminal vesicle formation, HIV budding and cytokinesis. VPS4 ATPases perform a key function in this pathway by recognizing membrane-associated ESCRT-III assemblies and catalysing their disassembly, possibly in conjunction with membrane fission. Here we show that the microtubule interacting and transport (MIT) domains of human VPS4A and VPS4B bind conserved sequence motifs located at the carboxy termini of the CHMP1–3 class of ESCRT-III proteins. Structures of VPS4A MIT–CHMP1A and VPS4B MIT–CHMP2B complexes reveal that the C-terminal CHMP motif forms an amphipathic helix that binds in a groove between the last two helices of the tetratricopeptide-like repeat (TPR) of the VPS4 MIT domain, but in the opposite orientation to that of a canonical TPR interaction. Distinct pockets in the MIT domain bind three conserved leucine residues of the CHMP motif, and mutations that inhibit these interactions block VPS4 recruitment, impair endosomal protein sorting and relieve dominant-negative VPS4 inhibition of HIV budding. Thus, our studies reveal how the VPS4 ATPases recognize their CHMP substrates to facilitate the membrane fission events required for the release of viruses, endosomal vesicles and daughter cells.", "title": "ESCRT-III recognition by VPS4 ATPases" }, { "docid": "3829232", "text": "BACKGROUND The Polycomb group (PcG) of proteins is a family of important developmental regulators. The respective members function as large protein complexes involved in establishment and maintenance of transcriptional repression of developmental control genes. MBTD1, Malignant Brain Tumor domain-containing protein 1, is one such PcG protein. MBTD1 contains four MBT repeats. \n METHODOLOGY/PRINCIPAL FINDINGS We have determined the crystal structure of MBTD1 (residues 130-566aa covering the 4 MBT repeats) at 2.5 A resolution by X-ray crystallography. The crystal structure of MBTD1 reveals its similarity to another four-MBT-repeat protein L3MBTL2, which binds lower methylated lysine histones. Fluorescence polarization experiments confirmed that MBTD1 preferentially binds mono- and di-methyllysine histone peptides, like L3MBTL1 and L3MBTL2. All known MBT-peptide complex structures characterized to date do not exhibit strong histone peptide sequence selectivity, and use a \"cavity insertion recognition mode\" to recognize the methylated lysine with the deeply buried methyl-lysine forming extensive interactions with the protein while the peptide residues flanking methyl-lysine forming very few contacts [1]. Nevertheless, our mutagenesis data based on L3MBTL1 suggested that the histone peptides could not bind to MBT repeats in any orientation. \n CONCLUSIONS The four MBT repeats in MBTD1 exhibits an asymmetric rhomboid architecture. Like other MBT repeat proteins characterized so far, MBTD1 binds mono- or dimethylated lysine histones through one of its four MBT repeats utilizing a semi-aromatic cage. ENHANCED VERSION This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.", "title": "Structural Studies of a Four-MBT Repeat Protein MBTD1" } ]
378
Energy balance requires hypothalamic glutamate neurotransmission.
[ { "docid": "45154987", "text": "The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing brain regions, which include the paraventricular nucleus of hypothalamus (PVH), represent key brain sites that mediate melanocortin action. We conditionally restored MC4R expression in Sim1 neurons in the background of Mc4r-null mice. The restoration dramatically reduced obesity in Mc4r-null mice. The anti-obesity effect was completely reversed by selective disruption of glutamate release from those same Sim1 neurons. The reversal was caused by lower energy expenditure and hyperphagia. Corroboratively, selective disruption of glutamate release from adult PVH neurons led to rapid obesity development via reduced energy expenditure and hyperphagia. Thus, this study establishes glutamate as the primary neurotransmitter that mediates MC4Rs on Sim1 neurons in body weight regulation.", "title": "Glutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation." }, { "docid": "10534299", "text": "AgRP neuron activity drives feeding and weight gain whereas that of nearby POMC neurons does the opposite. However, the role of excitatory glutamatergic input in controlling these neurons is unknown. To address this question, we generated mice lacking NMDA receptors (NMDARs) on either AgRP or POMC neurons. Deletion of NMDARs from AgRP neurons markedly reduced weight, body fat and food intake whereas deletion from POMC neurons had no effect. Activation of AgRP neurons by fasting, as assessed by c-Fos, Agrp and Npy mRNA expression, AMPA receptor-mediated EPSCs, depolarization and firing rates, required NMDARs. Furthermore, AgRP but not POMC neurons have dendritic spines and increased glutamatergic input onto AgRP neurons caused by fasting was paralleled by an increase in spines, suggesting fasting induced synaptogenesis and spinogenesis. Thus glutamatergic synaptic transmission and its modulation by NMDARs play key roles in controlling AgRP neurons and determining the cellular and behavioral response to fasting.", "title": "Fasting Activation of AgRP Neurons Requires NMDA Receptors and Involves Spinogenesis and Increased Excitatory Tone" }, { "docid": "11886686", "text": "The importance of neuropeptides in the hypothalamus has been experimentally established. Due to difficulties in assessing function in vivo, the roles of the fast-acting neurotransmitters glutamate and GABA are largely unknown. Synaptic vesicular transporters (VGLUTs for glutamate and VGAT for GABA) are required for vesicular uptake and, consequently, synaptic release of neurotransmitters. Ventromedial hypothalamic (VMH) neurons are predominantly glutamatergic and express VGLUT2. To evaluate the role of glutamate release from VMH neurons, we generated mice lacking VGLUT2 selectively in SF1 neurons (a major subset of VMH neurons). These mice have hypoglycemia during fasting secondary to impaired fasting-induced increases in the glucose-raising pancreatic hormone glucagon and impaired induction in liver of mRNAs encoding PGC-1alpha and the gluconeogenic enzymes PEPCK and G6Pase. Similarly, these mice have defective counterregulatory responses to insulin-induced hypoglycemia and 2-deoxyglucose (an antimetabolite). Thus, glutamate release from VMH neurons is an important component of the neurocircuitry that functions to prevent hypoglycemia.", "title": "Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia." }, { "docid": "25007443", "text": "In the hypothalamic arcuate nucleus (ARC), pro-opiomelanocortin (POMC) neurons inhibit feeding and neuropeptide-Y (NPY) neurons stimulate feeding. We tested whether neurons in the ventromedial hypothalamic nucleus (VMH), a known satiety center, activate anorexigenic neuronal pathways in the ARC by projecting either excitatory synaptic inputs to POMC neurons and/or inhibitory inputs to NPY neurons. Using laser scanning photostimulation in brain slices from transgenic mice, we found that POMC and NPY neurons, which are interspersed in the ARC, are nevertheless regulated by anatomically distinct synaptic inputs. POMC neurons received strong excitatory input from the medial VMH (mVMH), whereas NPY neurons did not and, instead, received weak inhibitory input only from within the ARC. The strength of the excitatory input from the mVMH to POMC neurons was diminished by fasting. These data identify a new molecularly defined circuit that is dynamically regulated by nutritional state in a manner consistent with the known role of the VMH as a satiety center.", "title": "Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting" }, { "docid": "17150648", "text": "Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity.", "title": "Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes." } ]
[ { "docid": "14782049", "text": "The cognitive deficits observed in children with cyanotic congenital heart disease suggest involvement of the developing hippocampus. Chronic postnatal hypoxia present during infancy in these children may play a role in these impairments. To understand the biochemical mechanisms of hippocampal injury in chronic hypoxia, a neurochemical profile consisting of 15 metabolite concentrations and 2 metabolite ratios in the hippocampus was evaluated in a rat model of chronic postnatal hypoxia using in vivo 1H NMR spectroscopy at 9.4 T. Chronic hypoxia was induced by continuously exposing rats (n = 23) to 10% O2 from postnatal day (P) 3 to P28. Fifteen metabolites were quantified from a volume of 9-11 microl centered on the left hippocampus on P14, P21, and P28 and were compared with normoxic controls (n = 14). The developmental trajectory of neurochemicals in chronic hypoxia was similar to that seen in normoxia. However, chronic hypoxia had an effect on the concentrations of the following neurochemicals: aspartate, creatine, phosphocreatine, GABA, glutamate, glutamine, glutathione, myoinositol, N-acetylaspartate (NAA), phosphorylethanolamine, and phosphocreatine/creatine (PCr/Cr) and glutamate/glutamine (Glu/Gln) ratios (P < 0.001 each, except glutamate, P = 0.04). The increased PCr/Cr ratio is consistent with decreased brain energy consumption. Given the well-established link between excitatory neurotransmission and brain energy metabolism, we postulate that elevated glutamate, Glu/Gln ratio, and GABA indicate suppressed excitatory neurotransmission in an energy-limited environment. Decreased NAA and phosphorylethanolamine suggest reduced neuronal integrity and phospholipid metabolism. The altered hippocampal neurochemistry during its development may underlie some of the cognitive deficits present in human infants at risk of chronic hypoxia.", "title": "In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus." }, { "docid": "4700428", "text": "BACKGROUND Relapse to cocaine seeking has been linked with low glutamate in the nucleus accumbens core (NAcore) causing potentiation of synaptic glutamate transmission from prefrontal cortex (PFC) afferents. Systemic N-acetylcysteine (NAC) has been shown to restore glutamate homeostasis, reduce relapse to cocaine seeking, and depotentiate PFC-NAcore synapses. Here, we examine the effects of NAC applied directly to the NAcore on relapse and neurotransmission in PFC-NAcore synapses, as well as the involvement of the metabotropic glutamate receptors 2/3 (mGluR2/3) and 5 (mGluR5). \n METHODS Rats were trained to self-administer cocaine for 2 weeks and following extinction received either intra-accumbens NAC or systemic NAC 30 or 120 minutes, respectively, before inducing reinstatement with a conditioned cue or a combined cue and cocaine injection. We also recorded postsynaptic currents using in vitro whole cell recordings in acute slices and measured cystine and glutamate uptake in primary glial cultures. \n RESULTS NAC microinjection into the NAcore inhibited the reinstatement of cocaine seeking. In slices, a low concentration of NAC reduced the amplitude of evoked glutamatergic synaptic currents in the NAcore in an mGluR2/3-dependent manner, while high doses of NAC increased amplitude in an mGluR5-dependent manner. Both effects depended on NAC uptake through cysteine transporters and activity of the cysteine/glutamate exchanger. Finally, we showed that by blocking mGluR5 the inhibition of cocaine seeking by NAC was potentiated. \n CONCLUSIONS The effect of NAC on relapse to cocaine seeking depends on the balance between stimulating mGluR2/3 and mGluR5 in the NAcore, and the efficacy of NAC can be improved by simultaneously inhibiting mGluR5.", "title": "The effect of N-acetylcysteine in the nucleus accumbens on neurotransmission and relapse to cocaine." }, { "docid": "2481032", "text": "Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.", "title": "Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues." }, { "docid": "11742219", "text": "Galanin (GAL) is known to stimulate feeding behavior. This peptide has different properties and functions from other feeding stimulants, e.g., neuropeptide Y and agouti-related protein. Hypothalamic GAL is relatively unresponsive to food deprivation and to changes in corticosterone, glucose utilization, dietary carbohydrate and leptin. This indicates that this peptide is not essential under conditions when food is scarce or low-energy, high-carbohydrate diets are being consumed. In contrast, recent evidence suggests that GAL in the paraventricular nucleus (PVN) functions in close relation to dietary fat and alcohol. In particular, it mediates functions that allow animals to adapt to conditions of positive energy balance involving excess consumption of these nutrients. This peptide in the PVN is stimulated by a high-fat diet and also by alcohol. It is stimulated by an increase in circulating lipids caused by a fat-rich meal or alcohol consumption, and it rises during the middle of the active feeding cycle, when fat consumption and triglycerides naturally rise. When centrally injected, GAL in the PVN increases the consumption of food and alcohol. Moreover, it produces a significantly stronger feeding response in rats maintained on a fat-rich diet, which also promotes alcohol intake. This evidence supports the existence of non-homeostatic, positive feedback circuits between GAL and both dietary fat and alcohol. These circuits are believed to contribute to the large meal size, over-consumption of alcohol, and obesity which are generally associated with fat-rich foods.", "title": "Regulation and effects of hypothalamic galanin: relation to dietary fat, alcohol ingestion, circulating lipids and energy homeostasis." }, { "docid": "2225918", "text": "Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.", "title": "Identification of a Brainstem Circuit Controlling Feeding" }, { "docid": "16398827", "text": "Afferent activity can induce fast, feed-forward changes in synaptic efficacy that are synapse specific. Using combined electrophysiology, caged molecule photolysis, and Ca(2+) imaging, we describe a plasticity in which the recruitment of astrocytes in response to afferent activity causes a fast and feed-forward, yet distributed increase in the amplitude of quantal synaptic currents at multiple glutamate synapses on magnocellular neurosecretory cells in the hypothalamic paraventricular nucleus. The plasticity is largely multiplicative, consistent with a proportional increase or \"scaling\" in the strength of all synapses on the neuron. This effect requires a metabotropic glutamate receptor-mediated rise in Ca(2+) in the astrocyte processes surrounding the neuron and the release of the gliotransmitter ATP, which acts on postsynaptic purinergic receptors. These data provide evidence for a form of distributed synaptic plasticity that is feed-forward, expressed quickly, and mediated by the synaptic activation of neighboring astrocytes.", "title": "Astrocyte-Mediated Distributed Plasticity at Hypothalamic Glutamate Synapses" }, { "docid": "3085264", "text": "In the brain, glutamatergic neurotransmission is terminated predominantly by the rapid uptake of synaptically released glutamate into astrocytes through the Na(+)-dependent glutamate transporters GLT-1 and GLAST and its subsequent conversion into glutamine by the enzyme glutamine synthetase (GS). To date, several factors have been identified that rapidly alter glial glutamate uptake by post-translational modification of glutamate transporters. The only condition known to affect the expression of glial glutamate transporters and GS is the coculturing of glia with neurons. We now demonstrate that neurons regulate glial glutamate turnover via pituitary adenylate cyclase-activating polypeptide (PACAP). In the cerebral cortex PACAP is synthesized by neurons and acts on the subpopulation of astroglia involved in glutamate turnover. Exposure of astroglia to PACAP increased the maximal velocity of [(3)H]glutamate uptake by promoting the expression of GLT-1, GLAST, and GS. Moreover, the stimulatory effects of neuron-conditioned medium on glial glutamate transporter expression were attenuated in the presence of PACAP-inactivating antibodies or the PACAP receptor antagonist PACAP 6-38. In contrast to PACAP, vasoactive intestinal peptide promoted glutamate transporter expression only at distinctly higher concentrations, suggesting that PACAP exerts its effects on glial glutamate turnover via PAC1 receptors. Although PAC1 receptor-dependent activation of protein kinase A (PKA) was sufficient to promote the expression of GLAST, the activation of both PKA and protein kinase C (PKC) was required to promote GLT-1 expression optimally. Given the existence of various PAC1 receptor isoforms that activate PKA and PKC to different levels, these findings point to a complex mechanism by which PACAP regulates glial glutamate transport and metabolism. Disturbances of these regulatory mechanisms could represent a major cause for glutamate-associated neurological and psychiatric disorders.", "title": "Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a Neuron-Derived Peptide Regulating Glial Glutamate Transport and Metabolism" }, { "docid": "26907074", "text": "Lithium has been used for over half a century for the treatment of bipolar disorder as the archetypal mood stabilizer, and has a wealth of empirical evidence supporting its efficacy in this role. Despite this, the specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Given the inherently complex nature of the pathophysiology of bipolar disorder, this paper aims to capture what is known about the actions of lithium ranging from macroscopic changes in mood, cognition and brain structure, to its effects at the microscopic level on neurotransmission and intracellular and molecular pathways. A comprehensive literature search of databases including MEDLINE, EMBASE and PsycINFO was conducted using relevant keywords and the findings from the literature were then reviewed and synthesized. Numerous studies report that lithium is effective in the treatment of acute mania and for the long-term maintenance of mood and prophylaxis; in comparison, evidence for its efficacy in depression is modest. However, lithium possesses unique anti-suicidal properties that set it apart from other agents. With respect to cognition, studies suggest that lithium may reduce cognitive decline in patients; however, these findings require further investigation using both neuropsychological and functional neuroimaging probes. Interestingly, lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy. Overall, it is clear that the processes which underpin the therapeutic actions of lithium are sophisticated and most likely inter-related.", "title": "Potential Mechanisms of Action of Lithium in Bipolar Disorder" }, { "docid": "306311", "text": "Analysis of excitatory synaptic transmission in the rat hypothalamic supraoptic nucleus revealed that glutamate clearance and, as a consequence, glutamate concentration and diffusion in the extracellular space, is associated with the degree of astrocytic coverage of its neurons. Reduction in glutamate clearance, whether induced pharmacologically or associated with a relative decrease of glial coverage in the vicinity of synapses, affected transmitter release through modulation of presynaptic metabotropic glutamate receptors. Astrocytic wrapping of neurons, therefore, contributes to the regulation of synaptic efficacy in the central nervous system.", "title": "Control of glutamate clearance and synaptic efficacy by glial coverage of neurons." }, { "docid": "22029384", "text": "L-glutamate, the principal excitatory transmitter in the brain, gates ion channels mediating fast neurotransmission. Subunit components of two related classes of glutamate receptor channels have been characterized by cDNA cloning and shown to carry either an arginine or a glutamine residue in a defined position of their putative channel-forming segment. The arginine residue in this segment profoundly alters, and dominates, the properties of ion flow, as demonstrated for one channel class. We now show that the genomic DNA sequences encoding the particular channel segment of all subunits harbor a glutamine codon (CAG), even though an arginine codon (CGG) is found in mRNAs of three subunits. Multiple genes and alternative exons were excluded as sources for the arginine codon; hence, we propose that transcripts for three subunits are altered by RNA editing. This process apparently edits subunit transcripts of the two glutamate receptor classes with different efficiency and selectivity.", "title": "RNA editing in brain controls a determinant of ion flow in glutamate-gated channels." }, { "docid": "26011884", "text": "Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory synaptic neurotransmission in the central nervous system. The selective assembly of iGluRs into AMPA, kainate, and N-methyl-d-aspartic acid (NMDA) receptor subtypes is regulated by their extracellular amino-terminal domains (ATDs). Kainate receptors are further classified into low-affinity receptor families (GluK1-GluK3) and high-affinity receptor families (GluK4-GluK5) based on their affinity for the neurotoxin kainic acid. These two families share a 42% sequence identity for the intact receptor but only a 27% sequence identity at the level of ATD. We have determined for the first time the high-resolution crystal structures of GluK3 and GluK5 ATDs, both of which crystallize as dimers but with a strikingly different dimer assembly at the R1 interface. By contrast, for both GluK3 and GluK5, the R2 domain dimer assembly is similar to those reported previously for other non-NMDA iGluRs. This observation is consistent with the reports that GluK4-GluK5 cannot form functional homomeric ion channels and require obligate coassembly with GluK1-GluK3. Our analysis also reveals that the relative orientation of domains R1 and R2 in individual non-NMDA receptor ATDs varies by up to 10°, in contrast to the 50° difference reported for the NMDA receptor GluN2B subunit. This restricted domain movement in non-NMDA receptor ATDs seems to result both from extensive intramolecular contacts between domain R1 and domain R2 and from their assembly as dimers, which interact at both R1 and R2 domains. Our results provide the first insights into the structure and function of GluK4-GluK5, the least understood family of iGluRs.", "title": "Crystal structures of the glutamate receptor ion channel GluK3 and GluK5 amino-terminal domains." }, { "docid": "4469125", "text": "The regulated release of anorexigenic α-melanocyte stimulating hormone (α-MSH) and orexigenic Agouti-related protein (AgRP) from discrete hypothalamic arcuate neurons onto common target sites in the central nervous system has a fundamental role in the regulation of energy homeostasis. Both peptides bind with high affinity to the melanocortin-4 receptor (MC4R); existing data show that α-MSH is an agonist that couples the receptor to the Gαs signalling pathway, while AgRP binds competitively to block α-MSH binding and blocks the constitutive activity mediated by the ligand-mimetic amino-terminal domain of the receptor. Here we show that, in mice, regulation of firing activity of neurons from the paraventricular nucleus of the hypothalamus (PVN) by α-MSH and AgRP can be mediated independently of Gαs signalling by ligand-induced coupling of MC4R to closure of inwardly rectifying potassium channel, Kir7.1. Furthermore, AgRP is a biased agonist that hyperpolarizes neurons by binding to MC4R and opening Kir7.1, independently of its inhibition of α-MSH binding. Consequently, Kir7.1 signalling appears to be central to melanocortin-mediated regulation of energy homeostasis within the PVN. Coupling of MC4R to Kir7.1 may explain unusual aspects of the control of energy homeostasis by melanocortin signalling, including the gene dosage effect of MC4R and the sustained effects of AgRP on food intake.", "title": "G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons" }, { "docid": "46451940", "text": "Lateral hypothalamic (LH) injections of the excitatory neurotransmitter glutamate, or its excitatory amino acid (EAA) agonists, kainic acid (KA), D,L-alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid (AMPA), or N-methyl-D-aspartic acid (NMDA), can rapidly elicit an intense feeding response in satiated rats. To determine whether the LH is the actual locus of this effect, we compared these compounds' ability to stimulate feeding when injected into the LH, versus when injected into sites bracketing this region. Food intake in groups of adult male rats was measured 1 h after injection of glutamate (30-900 nmol), KA (0.1-1.0 nmol), AMPA (0.33-3.3 nmol), NMDA (0.33-33.3 nmol) or vehicle, through chronically implanted guide cannulas, into one of seven brain sites. These sites were: the LH, the anterior and posterior tips of the LH, the thalamus immediately dorsal to the LH, the amygdala just lateral to the LH, or the paraventricular and perifornical areas medial to the LH. The results show that across doses and agonists the eating-stimulatory effects were largest with injections into the LH. In the LH, glutamate between 300 and 900 nmol elicited a dose-dependent eating response of up to 5 g within 1 h (P < 0.01). Each of the other agonists at doses of 3.3 nmol or less elicited eating responses of at least 10 g with injections into this site. Injections into the other brain sites produced either no eating, or occasionally smaller and less consistent eating responses.(ABSTRACT TRUNCATED AT 250 WORDS)", "title": "The lateral hypothalamus: a primary site mediating excitatory amino acid-elicited eating." }, { "docid": "31387717", "text": "Fast excitatory neurotransmission is mediated largely by ionotropic glutamate receptors (iGluRs), tetrameric, ligand-gated ion channel proteins comprised of three subfamilies, AMPA, kainate and NMDA receptors, with each subfamily sharing a common, modular-domain architecture. For all receptor subfamilies, active channels are exclusively formed by assemblages of subunits within the same subfamily, a molecular process principally encoded by the amino-terminal domain (ATD). However, the molecular basis by which the ATD guides subfamily-specific receptor assembly is not known. Here we show that AMPA receptor GluR1- and GluR2-ATDs form tightly associated dimers and, by the analysis of crystal structures of the GluR2-ATD, propose mechanisms by which the ATD guides subfamily-specific receptor assembly.", "title": "Crystal structure and association behaviour of the GluR2 amino-terminal domain." }, { "docid": "2028532", "text": "The aims of this randomised controlled trial were to determine if a high-intensity functional exercise program improves balance, gait ability, and lower-limb strength in older persons dependent in activities of daily living and if an intake of protein-enriched energy supplement immediately after the exercises increases the effects of the training. One hundred and ninety-one older persons dependent in activities of daily living, living in residential care facilities, and with a Mini-Mental State Examination (MMSE) score of ? 10 participated. They were randomised to a high-intensity functional exercise program or a control activity, which included 29 sessions over 3 months, as well as to protein-enriched energy supplement or placebo. Berg Balance Scale, self-paced and maximum gait speed, and one-repetition maximum in lower-limb strength were followed-up at three and six months and analysed by 2 x 2 factorial ANCOVA, using the intention-to-treat principle. At three months, the exercise group had improved significantly in self-paced gait speed compared with the control group (mean difference 0.04 m/s, p = 0.02). At six months, there were significant improvements favouring the exercise group for Berg Balance Scale (1.9 points, p = 0.05), self-paced gait speed (0.05 m/s, p = 0.009), and lower-limb strength (10.8 kg, p = 0.03). No interaction effects were seen between the exercise and nutrition interventions. In conclusion, a high-intensity functional exercise program has positive long-term effects in balance, gait ability, and lower-limb strength for older persons dependent in activities of daily living. An intake of protein-enriched energy supplement immediately after the exercises does not appear to increase the effects of the training.", "title": "High-intensity functional exercise program and protein-enriched energy supplement for older persons dependent in activities of daily living: a randomised controlled trial." }, { "docid": "4611267", "text": "In rats, feeding can be triggered experimentally using many approaches. Included among these are (1) food deprivation and (2) acute microinjection of the neurotransmitter l-glutamate (Glu) or its receptor agonist NMDA into the lateral hypothalamic area (LHA). Under both paradigms, the NMDA receptor (NMDA-R) within the LHA appears critically involved in transferring signals encoded by Glu to stimulate feeding. However, the intracellular mechanisms underlying this signal transfer are unknown. Because protein-tyrosine kinases (PTKs) participate in NMDA-R signaling mechanisms, we determined PTK involvement in LHA mechanisms underlying both types of feeding stimulation through food intake and biochemical measurements. LHA injections of PTK inhibitors significantly suppressed feeding elicited by LHA NMDA injection (up to 69%) but only mildly suppressed deprivation feeding (24%), suggesting that PTKs may be less critical for signals underlying this feeding behavior. Conversely, food deprivation but not NMDA injection produced marked increases in apparent activity for Src PTKs and in the expression of Pyk2, an Src-activating PTK. When considered together, the behavioral and biochemical results demonstrate that, although it is easier to suppress NMDA-elicited feeding by PTK inhibitors, food deprivation readily drives PTK activity in vivo. The latter result may reflect greater PTK recruitment by neurotransmitter receptors, distinct from the NMDA-R, that are activated during deprivation-elicited but not NMDA-elicited feeding. These results also demonstrate how the use of only one feeding stimulation paradigm may fail to reveal the true contributions of signaling molecules to pathways underlying feeding behavior in vivo.", "title": "Lateral Hypothalamic Signaling Mechanisms Underlying Feeding Stimulation: Differential Contributions of Src Family Tyrosine Kinases to Feeding Triggered Either by NMDA Injection or by Food Deprivation" }, { "docid": "23869951", "text": "UNLABELLED The overconsumption of calorically dense, highly palatable foods is thought to be a major contributor to the worldwide obesity epidemic; however, the precise neural circuits that directly regulate hedonic feeding remain elusive. Here, we show that lateral hypothalamic area (LHA) glutamatergic neurons, and their projections to the lateral habenula (LHb), negatively regulate the consumption of palatable food. Genetic ablation of LHA glutamatergic neurons increased daily caloric intake and produced weight gain in mice that had access to a high-fat diet, while not altering general locomotor activity. Anterior LHA glutamatergic neurons send a functional glutamatergic projection to the LHb, a brain region involved in processing aversive stimuli and negative reward prediction outcomes. Pathway-specific, optogenetic stimulation of glutamatergic LHA-LHb circuit resulted in detectable glutamate-mediated EPSCs as well as GABA-mediated IPSCs, although the net effect of neurotransmitter release was to increase the firing of most LHb neurons. In vivo optogenetic inhibition of LHA-LHb glutamatergic fibers produced a real-time place preference, whereas optogenetic stimulation of LHA-LHb glutamatergic fibers had the opposite effect. Furthermore, optogenetic inhibition of LHA-LHb glutamatergic fibers acutely increased the consumption of a palatable liquid caloric reward. Collectively, these results demonstrate that LHA glutamatergic neurons are well situated to bidirectionally regulate feeding and potentially other behavioral states via their functional circuit connectivity with the LHb and potentially other brain regions. SIGNIFICANCE STATEMENT In this study, we show that the genetic ablation of LHA glutamatergic neurons enhances caloric intake. Some of these LHA glutamatergic neurons project to the lateral habenula, a brain area important for generating behavioral avoidance. Optogenetic stimulation of this circuit has net excitatory effects on postsynaptic LHb neurons. This is the first study to characterize the functional connectivity and behavioral relevance of this circuit within the context of feeding and reward-related behavior.", "title": "Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Regulate Feeding and Reward." } ]
379
Enhanced early production of inflammatory chemokines damages viral control in the lung.
[ { "docid": "19005293", "text": "Inflammation induced by recognition of pathogen-associated molecular patterns markedly affects subsequent adaptive responses. We asked whether the adaptive immune system can also affect the character and magnitude of innate inflammatory responses. We found that the response of memory, but not naive, CD4+ T cells enhances production of multiple innate inflammatory cytokines and chemokines (IICs) in the lung and that, during influenza infection, this leads to early control of virus. Memory CD4+ T cell–induced IICs and viral control require cognate antigen recognition and are optimal when memory cells are either T helper type 1 (TH1) or TH17 polarized but are independent of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production and do not require activation of conserved pathogen recognition pathways. This represents a previously undescribed mechanism by which memory CD4+ T cells induce an early innate response that enhances immune protection against pathogens.", "title": "Memory CD4+ T cells induce innate responses independently of pathogen" } ]
[ { "docid": "26068103", "text": "RSV lower respiratory tract infections (LRTI) are among the most common diseases necessitating hospital admission in children. In addition to causing acute respiratory failure, RSV infections are associated with sequelae such as secondary bacterial infections and reactive airway disease. One characteristic host response observed in severe RSV-induced LRTI and/or subsequent development of asthma is increased expression of interleukin (IL)-10. However, contradictory results have been reported regarding whether IL-10 inhibits asthmatic responses or intensifies the disease. We aimed to reconcile these discordant observations by elucidating the role of IL-10 in regulating the host response to RSV LRTI. In this study, we used a lung-specific, inducible IL-10 over-expression (OE) transgenic mouse model to address this question. Our results showed that the presence of IL-10 at the time of RSV infection not only attenuated acute inflammatory process (i.e. 24 h post-infection), but also late inflammatory changes [characterized by T helper type 2 (Th2) cytokine and chemokine expression]. While this result appears contradictory to some clinical observations where elevated IL-10 levels are observed in asthmatic patients, we also found that delaying IL-10 OE until the late immune response to RSV infection, additive effects rather than inhibitory effects were observed. Importantly, in non-infected, IL-10 OE mice, IL-10 OE alone induced up-regulation of Th2 cytokine (IL-13 and IL-5) and Th2-related chemokine [monocyte chemoattractant protein 1 (MCP-1), chemokine (C-C motif) ligand 3 (CCL3) and regulated upon activation normal T cell expressed and secreted (RANTES)] expression. We identified a subset of CD11b(+)CD11c(+)CD49b(+)F4/80(-)Gr-1(-) myeloid cells as a prinicipal source of IL-10-induced IL-13 production. Therefore, the augmented pathological responses observed in our 'delayed' IL-10 over-expression model could be attributed to IL-10 OE alone. Taken together, our study indicated dual roles of IL-10 on RSV-induced lung inflammation which appear to depend upon the timing of when elevated IL-10 is expressed in the lung.", "title": "Dual role of interleukin-10 in the regulation of respiratory syncitial virus (RSV)-induced lung inflammation." }, { "docid": "15425958", "text": "Interleukin-10 (IL-10) suppresses the maturation and cytokine production of dendritic cells (DCs), key regulators of adaptive immunity, and prevents the activation and polarization of naïve T cells towards protective gamma interferon-producing effectors. We hypothesized that human cytomegalovirus (HCMV) utilizes its viral IL-10 homolog (cmvIL-10) to attenuate DC functionality, thereby subverting the efficient induction of antiviral immune responses. RNA and protein analyses demonstrated that the cmvIL-10 gene was expressed with late gene kinetics. Treatment of immature DCs (iDCs) with supernatant from HCMV-infected cultures inhibited both the lipopolysaccharide-induced DC maturation and proinflammatory cytokine production. These inhibitory effects were specifically mediated through the IL-10 receptor and were not observed when DCs were treated with supernatant of cells infected with a cmvIL-10-knockout mutant. Incubation of iDCs with recombinant cmvIL-10 recapitulated the inhibition of maturation. Furthermore, cmvIL-10 had pronounced long-term effects on those DCs that could overcome this inhibition of maturation. It enhanced the migration of mature DCs (mDCs) towards the lymph node homing chemokine but greatly reduced their cytokine production. The inability of mDCs to secrete IL-12 was maintained, even when they were restimulated by the activated T-cell signal CD40 ligand in the absence of cmvIL-10. Importantly, cmvIL-10 potentiates these anti-inflammatory effects, at least partially, by inducing endogenous cellular IL-10 expression in DCs. Collectively, we show that cmvIL-10 causes long-term functional alterations at all stages of DC activation.", "title": "Human Cytomegalovirus-Encoded Interleukin-10 Homolog Inhibits Maturation of Dendritic Cells and Alters Their Functionality" }, { "docid": "11328820", "text": "The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and RA synovial fluid neutrophils compared to neutrophils from healthy controls and from patients with osteoarthritis (OA). Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules, and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin antibodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A (IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease.", "title": "NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis." }, { "docid": "16058322", "text": "beta-Cell destruction in type 1 diabetes (T1D) is at least in part consequence of a 'dialog' between beta-cells and immune system. This dialog may be affected by the individual's genetic background. We presently evaluated whether modulation of MDA5 and PTPN2, two candidate genes for T1D, affects beta-cell responses to double-stranded RNA (dsRNA), a by-product of viral replication. These genes were selected following comparison between known candidate genes for T1D and genes expressed in pancreatic beta-cells, as identified in previous array analysis. INS-1E cells and primary fluorescence-activated cell sorting-purified rat beta-cells were transfected with small interference RNAs (siRNAs) targeting MDA5 or PTPN2 and subsequently exposed to intracellular synthetic dsRNA (polyinosinic-polycitidilic acid-PIC). Real-time RT-PCR, western blot and viability assays were performed to characterize gene/protein expression and viability. PIC increased MDA5 and PTPN2 mRNA expression, which was inhibited by the specific siRNAs. PIC triggered apoptosis in INS-1E and primary beta-cells and this was augmented by PTPN2 knockdown (KD), although inhibition of MDA5 did not modify PIC-induced apoptosis. In contrast, MDA5 silencing decreased PIC-induced cytokine and chemokine expression, although inhibition of PTPN2 induced minor or no changes in these inflammatory mediators. These findings indicate that changes in MDA5 and PTPN2 expression modify beta-cell responses to dsRNA. MDA5 regulates inflammatory signals, whereas PTPN2 may function as a defence mechanism against pro-apoptotic signals generated by dsRNA. These two candidate genes for T1D may thus modulate beta-cell apoptosis and/or local release of inflammatory mediators in the course of a viral infection by acting, at least in part, at the pancreatic beta-cell level.", "title": "MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic β-cell responses to the viral by-product double-stranded RNA" }, { "docid": "6144969", "text": "Virally induced inflammatory responses, beta cell destruction and release of beta cell autoantigens may lead to autoimmune reactions culminating in type 1 diabetes. Therefore, viral capability to induce beta cell death and the nature of virus-induced immune responses are among key determinants of diabetogenic viruses. We hypothesised that enterovirus infection induces a specific gene expression pattern that results in islet destruction and that such a host response pattern is not shared among all enterovirus infections but varies between virus strains. The changes in global gene expression and secreted cytokine profiles induced by lytic or benign enterovirus infections were studied in primary human pancreatic islet using DNA microarrays and viral strains either isolated at the clinical onset of type 1 diabetes or capable of causing a diabetes-like condition in mice. The expression of pro-inflammatory cytokine genes (IL-1-α, IL-1-β and TNF-α) that also mediate cytokine-induced beta cell dysfunction correlated with the lytic potential of a virus. Temporally increasing gene expression levels of double-stranded RNA recognition receptors, antiviral molecules, cytokines and chemokines were detected for all studied virus strains. Lytic coxsackievirus B5 (CBV-5)-DS infection also downregulated genes involved in glycolysis and insulin secretion. The results suggest a distinct, virus-strain-specific, gene expression pattern leading to pancreatic islet destruction and pro-inflammatory effects after enterovirus infection. However, neither viral replication nor cytotoxic cytokine production alone are sufficient to induce necrotic cell death. More likely the combined effect of these and possibly cellular energy depletion lie behind the enterovirus-induced necrosis of islets.", "title": "Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction" }, { "docid": "21651116", "text": "Herpesviruses encode membrane-associated G protein-coupled receptors (GPCRs) in their viral genomes that are structurally similar to chemokine receptors. These GPCRs hijack GPCR-mediated cellular signalling networks of the host for survival, replication and pathogenesis. In particular the herpesvirus-encoded chemokine receptors ORF74, BILF1 and US28, which are present at inflammatory sites and tumour cells, provide important virus-specific targets for directed therapies. Given the high druggability of GPCRs in general, these viral GPCRs can be considered promising antiviral drug targets.", "title": "Herpesvirus-encoded GPCRs: neglected players in inflammatory and proliferative diseases?" }, { "docid": "17223891", "text": "NLRP12 is a member of the intracellular Nod-like receptor (NLR) family that has been suggested to downregulate the production of inflammatory cytokines, but its physiological role in regulating inflammation has not been characterized. We analyzed mice deficient in Nlrp12 to study its role in inflammatory diseases such as colitis and colorectal tumorigenesis. We show that Nlrp12-deficient mice are highly susceptible to colon inflammation and tumorigenesis, which is associated with increased production of inflammatory cytokines, chemokines, and tumorigenic factors. Enhanced colon inflammation and colorectal tumor development in Nlrp12-deficient mice are due to a failure to dampen NF-κB and ERK activation in macrophages. These results reveal a critical role for NLRP12 in maintaining intestinal homeostasis and providing protection against colorectal tumorigenesis.", "title": "The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis." }, { "docid": "17708753", "text": "Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.", "title": "Myeloid Cells Expressing VEGF and Arginase-1 Following Uptake of Damaged Retinal Pigment Epithelium Suggests Potential Mechanism That Drives the Onset of Choroidal Angiogenesis in Mice" }, { "docid": "27602752", "text": "Encephalitis and dementia associated with acquired immunodeficiency syndrome (AIDS) are characterized by leukocyte infiltration into the CNS, microglia activation, aberrant chemokine expression, blood-brain barrier (BBB) disruption, and eventual loss of neurons. Little is known about whether human immunodeficiency virus 1 (HIV-1) infection of leukocytes affects their ability to transmigrate in response to chemokines and to alter BBB integrity. We now demonstrate that HIV infection of human leukocytes results in their increased transmigration across our tissue culture model of the human BBB in response to the chemokine CCL2, as well as in disruption of the BBB, as evidenced by enhanced permeability, reduction of tight junction proteins, and expression of matrix metalloproteinases (MMP)-2 and MMP-9. HIV-infected cells added to our model did not transmigrate in the absence of CCL2, nor did this condition alter BBB integrity. The chemokines CXCL10/interferon-gamma-inducible protein of 10 kDa, CCL3/macrophage inflammatory protein-1alpha, or CCL5/RANTES (regulated on activation normal T-cell expressed and secreted) did not enhance HIV-infected leukocyte transmigration or BBB permeability. The increased capacity of HIV-infected leukocytes to transmigrate in response to CCL2 correlated with their increased expression of CCR2, the chemokine receptor for CCL2. These data suggest that CCL2, but not other chemokines, plays a key role in infiltration of HIV-infected leukocytes into the CNS and the subsequent pathology characteristic of NeuroAIDS.", "title": "CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS." }, { "docid": "23912923", "text": "V domain-containing Ig suppressor of T-cell activation (VISTA) is a negative checkpoint regulator that suppresses T cell-mediated immune responses. Previous studies using a VISTA-neutralizing monoclonal antibody show that VISTA blockade enhances T-cell activation. The current study describes a comprehensive characterization of mice in which the gene for VISTA has been deleted. Despite the apparent normal hematopoietic development in young mice, VISTA genetic deficiency leads to a gradual accumulation of spontaneously activated T cells, accompanied by the production of a spectrum of inflammatory cytokines and chemokines. Enhanced T-cell responsiveness was also observed upon immunization with neoantigen. Despite the presence of multiorgan chronic inflammation, aged VISTA-deficient mice did not develop systemic or organ-specific autoimmune disease. Interbreeding of the VISTA-deficient mice with 2D2 T-cell receptor transgenic mice, which are predisposed to the development of experimental autoimmune encephalomyelitis, drastically enhanced disease incidence and intensity. Disease development is correlated with the increase in the activation of encephalitogenic T cells in the periphery and enhanced infiltration into the CNS. Taken together, our data suggest that VISTA is a negative checkpoint regulator whose loss of function lowers the threshold for T-cell activation, allowing for an enhanced proinflammatory phenotype and an increase in the frequency and intensity of autoimmunity under susceptible conditions.", "title": "Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity." }, { "docid": "30398773", "text": "Alloimmune lung syndromes (allo-LS), including idiopathic pneumonia syndrome, bronchiolitis obliterans syndrome, and bronchiolitis obliterans organizing pneumonia, are severe complications after hematopoietic stem cell transplantation (HSCT). In our cohort of 110 pediatric patients, 30 had allo-LS (27.3%), 18 with idiopathic pneumonia syndrome and 12 with bronchiolitis obliterans syndrome. Multivariate analysis showed that respiratory viral infection early after HSCT is an important predictor for the development of allo-LS (P <.0001). This was true for all viruses tested. In multivariate analysis, allo-LS was the only predictor for higher mortality (P = .04). Paradoxically, prolonged administration of immunosuppressive agents because of acute graft-versus-host disease had a protective effect on the development of allo-LS (P = .004). We hypothesize that early infection of the respiratory tract with a common cold virus makes the lungs a target for alloimmunity.", "title": "Strong association between respiratory viral infection early after hematopoietic stem cell transplantation and the development of life-threatening acute and chronic alloimmune lung syndromes." }, { "docid": "3083927", "text": "We propose a model wherein chronic stress results in glucocorticoid receptor resistance (GCR) that, in turn, results in failure to down-regulate inflammatory response. Here we test the model in two viral-challenge studies. In study 1, we assessed stressful life events, GCR, and control variables including baseline antibody to the challenge virus, age, body mass index (BMI), season, race, sex, education, and virus type in 276 healthy adult volunteers. The volunteers were subsequently quarantined, exposed to one of two rhinoviruses, and followed for 5 d with nasal washes for viral isolation and assessment of signs/symptoms of a common cold. In study 2, we assessed the same control variables and GCR in 79 subjects who were subsequently exposed to a rhinovirus and monitored at baseline and for 5 d after viral challenge for the production of local (in nasal secretions) proinflammatory cytokines (IL-1β, TNF-α, and IL-6). Study 1: After covarying the control variables, those with recent exposure to a long-term threatening stressful experience demonstrated GCR; and those with GCR were at higher risk of subsequently developing a cold. Study 2: With the same controls used in study 1, greater GCR predicted the production of more local proinflammatory cytokines among infected subjects. These data provide support for a model suggesting that prolonged stressors result in GCR, which, in turn, interferes with appropriate regulation of inflammation. Because inflammation plays an important role in the onset and progression of a wide range of diseases, this model may have broad implications for understanding the role of stress in health.", "title": "Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk." }, { "docid": "12058271", "text": "The bone marrow is the primary site for neutrophil production and release into the circulation. Because the CXC chemokine receptor-4/stromal derived factor-1 (CXCR4/SDF-1) axis plays a central role in the interactions of hematopoietic stem cells, lymphocytes, and developing neutrophils in the marrow, we investigated whether reciprocal CXCR4-dependent mechanisms might be involved in neutrophil release and subsequent return to the marrow following circulation. Neutralizing antibody to CXCR4 reduced marrow retention of infused neutrophils (45.7% +/- 0.5% to 6.9% +/- 0.5%) and was found to mobilize neutrophils from marrow (34.4% +/- 4.4%). Neutrophil CXCR4 expression and SDF-1-induced calcium flux decreased with maturation and activation of the cells, corresponding to the decreased marrow homing associated with these characteristics in vivo. Infusion of the inflammatory mediator and CXCR2 ligand KC led to mobilization of neutrophils from marrow by itself and was augmented 3-fold by low doses of CXCR4-blocking antibody that otherwise had no mobilizing effect. Examination of KC and SDF-1 calcium signaling demonstrated that the effect of KC may, in part, be due to heterologous desensitization to SDF-1. These results suggest that the CXCR4/SDF-1 axis is critical in circulating neutrophil homeostasis and that it may participate in the rapid release of neutrophils from the marrow during inflammation through a novel interaction with inflammatory CXC chemokines.", "title": "Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis." }, { "docid": "22281684", "text": "Wnt signaling has diverse actions in cardiovascular development and disease processes. Secreted frizzled-related protein 5 (Sfrp5) has been shown to function as an extracellular inhibitor of non-canonical Wnt signaling that is expressed at relatively high levels in white adipose tissue. The aim of this study was to investigate the role of Sfrp5 in the heart under ischemic stress. Sfrp5 KO and WT mice were subjected to ischemia/reperfusion (I/R). Although Sfrp5-KO mice exhibited no detectable phenotype when compared with WT control at baseline, they displayed larger infarct sizes, enhanced cardiac myocyte apoptosis, and diminished cardiac function following I/R. The ischemic lesions of Sfrp5-KO mice had greater infiltration of Wnt5a-positive macrophages and greater inflammatory cytokine and chemokine gene expression when compared with WT mice. In bone marrow-derived macrophages, Wnt5a promoted JNK activation and increased inflammatory gene expression, whereas treatment with Sfrp5 blocked these effects. These results indicate that Sfrp5 functions to antagonize inflammatory responses after I/R in the heart, possibly through a mechanism involving non-canonical Wnt5a/JNK signaling.", "title": "Secreted Frizzled-related Protein 5 Diminishes Cardiac Inflammation and Protects the Heart from Ischemia/Reperfusion Injury." }, { "docid": "35993767", "text": "Fibroblasts are rich in the surrounding microenvironment of hepatocellular carcinoma (HCC) because most HCCs occur in fibrotic or cirrhotic livers. However, the role of cancer-associated fibroblasts (CAFs) in HCC metastasis remains obscure. Here, we reported that CAFs promote the migration and invasion of HCC cells in vitro and facilitate the HCC metastasis to the bone, brain and lung in NOD/SCID mice. The RayBio human chemokine antibody array revealed that CAFs secret higher levels of CCL2, CCL5, CCL7 and CXCL16 than peri-tumor fibroblasts. CCL2 and CCL5 increase the migration but not the invasion of HCC cells, while CCL7 and CXCL16 promote both migration and invasion of HCC cells. Moreover, CCL2 and CCL5 stimulate the activation of the hedgehog (Hh) pathway, while CCL7 and CXCL16 enhance the activity of the transforming growth factor-β (TGF-β) pathway in HCC cells. The neutralizing antibodies of chemokines notably attenuate the effect of CAFs on HCC metastasis and compromised the activation of Hh and TGF-β pathways in HCC cells. In summary, CAF-secreted CCL2, CCL5, CCL7 and CXCL16 promote HCC metastasis through the coordinate activation of Hh and TGF-β pathways in HCC cells.", "title": "Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways." }, { "docid": "17438862", "text": "Postmortem immunohistochemical studies have revealed a state of chronic inflammation limited to lesioned areas of brain in Alzheimer’s disease. Some key actors in this inflammation are activated microglia (brain macrophages), proteins of the classical complement cascade, the pentraxins, cytokines, and chemokines. The inflammation does not involve the adaptive immune system or peripheral organs, but is rather due to the phylogenetically much older innate immune system, which appears to operate in most tissues of the body. Chronic inflammation can damage host tissue and the brain may be particularly vulnerable because of the postmitotic nature of neurons. Many of the inflammatory mediators have been shown to be locally produced and selectively elevated in affected regions of Alzheimer’s brain. Moreover, studies of tissue in such degenerative processes as atherosclerosis and infarcted heart suggest a similar local innate immune reaction may be important in such conditions. Much epidemiological and limited clinical evidence suggests that nonsteroidal anti-inflammatory drugs may impede the onset and slow the progression of Alzheimer’s disease. But these drugs strike at the periphery of the inflammatory reaction. Much better results might be obtained if drugs were found that could inhibit the activation of microglia or the complement system in brain, and combinations of drugs aimed at different inflammatory targets might be much more effective than single agents.", "title": "Local neuroinflammation and the progression of Alzheimer’s disease" }, { "docid": "1574014", "text": "Open reading frame 74 (ORF74) encoded by human herpesvirus 8 is a highly constitutively active seven transmembrane (7TM) receptor stimulated by angiogenic chemokines, e.g. growth-related oncogene-alpha, and inhibited by angiostatic chemokines e.g. interferon-gamma-inducible protein. Transgenic mice expressing ORF74 under control of the CD2 promoter develop highly vascularized Kaposi's sarcoma-like tumors. Through targeted mutagenesis we here create three distinct phenotypes of ORF74: a receptor with normal, high constitutive signaling through the phospholipase C pathway but deprived of binding and action of chemokines obtained through deletion of 22 amino acids from the N-terminal extension; an ORF74 with high constitutive activity but with selective elimination of stimulatory regulation by angiogenic chemokines obtained through substitution of basic residues at the extracellular ends of TM-V or TM-VI; and an ORF74 lacking constitutive activity but with preserved ability to be stimulated by agonist chemokines obtained through introduction of an Asp residue on the hydrophobic, presumed membrane-exposed face of TM-II. It is concluded that careful molecular dissection can selectively eliminate either agonist or inverse agonist modulation as well as high constitutive activity of the virally encoded oncogene ORF74 and that these mutant forms presumably can be used in transgenic animals to identify the molecular mechanism of its transforming activity.", "title": "Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74." }, { "docid": "16550075", "text": "BCL-6, a transcriptional repressor frequently translocated in lymphomas, regulates germinal center B cell differentiation and inflammation. DNA microarray screening identified genes repressed by BCL-6, including many lymphocyte activation genes, suggesting that BCL-6 modulates B cell receptor signals. BCL-6 repression of two chemokine genes, MIP-1alpha and IP-10, may also attenuate inflammatory responses. Blimp-1, another BCL-6 target, is important for plasmacytic differentiation. Since BCL-6 expression is silenced in plasma cells, repression of blimp-1 by BCL-6 may control plasmacytic differentiation. Indeed, inhibition of BCL-6 function initiated changes indicative of plasmacytic differentiation, including decreased expression of c-Myc and increased expression of the cell cycle inhibitor p27kip1. These data suggest that malignant transformation by BCL-6 involves inhibition of differentiation and enhanced proliferation.", "title": "BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control." }, { "docid": "35395662", "text": "The virally encoded chemokine receptors US28 from human cytomegalovirus and ORF74 from human herpesvirus 8 are both constitutively active. We show that both receptors constitutively activate the transcription factors nuclear factor of activated T cells (NFAT) and cAMP response element binding protein (CREB) and that both pathways are modulated by their respective endogenous receptor ligands. By addition of specific pathway modulators against the G protein subunit Galphai, phospholipase C, protein kinase C, calcineurin, p38 MAP kinase, and MEK1, we find that the constitutive and ligand-dependent inductions are mediated by multiple yet similar pathways in both receptors. The NFAT and CREB transcription factors and their upstream activators are known inducers of host and virally encoded genes. We propose that the activity of these virally encoded chemokine receptors coordinates host and potentially viral gene expression similarly. As ORF74 is a known inducer of neoplasia, these findings may have important implications for cytomegalovirus-associated pathogenicity.", "title": "Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74." } ]
381
Environmental factors can influence the development of breast cancer.
[ { "docid": "18340282", "text": "BACKGROUND Information is scarce about the combined effects on breast cancer incidence of low-penetrance genetic susceptibility polymorphisms and environmental factors (reproductive, behavioural, and anthropometric risk factors for breast cancer). To test for evidence of gene-environment interactions, we compared genotypic relative risks for breast cancer across the other risk factors in a large UK prospective study. \n METHODS We tested gene-environment interactions in 7610 women who developed breast cancer and 10 196 controls without the disease, studying the effects of 12 polymorphisms (FGFR2-rs2981582, TNRC9-rs3803662, 2q35-rs13387042, MAP3K1-rs889312, 8q24-rs13281615, 2p-rs4666451, 5p12-rs981782, CASP8-rs1045485, LSP1-rs3817198, 5q-rs30099, TGFB1-rs1982073, and ATM-rs1800054) in relation to prospectively collected information about ten established environmental risk factors (age at menarche, parity, age at first birth, breastfeeding, menopausal status, age at menopause, use of hormone replacement therapy, body-mass index, height, and alcohol consumption). \n FINDINGS After allowance for multiple testing none of the 120 comparisons yielded significant evidence of a gene-environment interaction. By contrast with previous suggestions, there was little evidence that the genotypic relative risks were affected by use of hormone replacement therapy, either overall or for oestrogen-receptor-positive disease. Only one of the 12 polymorphisms was correlated with any of the ten other risk factors: carriers of the high-risk C allele of MAP3K1-rs889312 were significantly shorter than non-carriers (mean height 162.4 cm [95% CI 162.1-162.7] vs 163.1 cm [162.9-163.2]; p=0.01 after allowance for multiple testing). \n INTERPRETATION Risks of breast cancer associated with low-penetrance susceptibility polymorphisms do not vary significantly with these ten established environmental risk factors. \n FUNDING Cancer Research UK and the UK Medical Research Council.", "title": "Gene–environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study" } ]
[ { "docid": "5222182", "text": "Understanding which factors influence mammographically dense and nondense areas is important because percent mammographic density adjusted for age is a strong, continuously distributed risk factor for breast cancer, especially when adjusted for weight or body mass index. Using computer-assisted methods, we measured mammographically dense areas for 571 monozygotic and 380 dizygotic Australian and North American twin pairs ages 40 to 70 years. We used a novel regression modeling approach in which each twin's measure of dense and nondense area was regressed against one or both of the twin's and co-twin's covariates. The nature of changes to regression estimates with the inclusion of the twin and/or co-twin's covariates can be evaluated for consistency with causal and/or other models. By causal, we mean that if it were possible to vary a covariate experimentally then the expected value of the outcome measure would change. After adjusting for the individual's weight, the co-twin associations with weight were attenuated, consistent with a causal effect of weight on mammographic measures, which in absolute log cm(2)/kg was thrice stronger for nondense than dense area. After adjusting for weight, later age at menarche, and greater height were associated with greater dense and lesser nondense areas in a manner inconsistent with causality. The associations of dense and nondense areas with parity are consistent with a causal effect and/or within-person confounding. The associations between mammographic density measures and height are consistent with shared early life environmental factors that predispose to both height and percent mammographic density and possibly breast cancer risk.", "title": "Predictors of mammographic density: insights gained from a novel regression analysis of a twin study." }, { "docid": "3524352", "text": "High breast cancer mortality rates have been reported in the northeastern part of the United States, with recent attention focused on Long Island, New York. In this study, the authors investigate whether the high breast cancer mortality is evenly spread over the Northeast, in the sense that any observed clusters of deaths can be explained by chance alone, or whether there are clusters of statistical significance. Demographic data and age-specific breast cancer mortality rates for women were obtained for all 244 counties in 11 northeastern states and for the District of Columbia for 1988-1992. A recently developed spatial scan statistic is used, which searches for clusters of cases without specifying their size or location ahead of time, and which tests for their statistical significance while adjusting for the multiple testing inherent in such a procedure. The basic analysis is adjusted for age, with further analyses examining how the results are affected by incorporating race, urbanicity, and parity as confounding variables. There is a statistically significant and geographically broad cluster of breast cancer deaths in the New York City-Philadelphia, Pennsylvania, metropolitan area (p = 0.0001), which has a 7.4% higher mortality rate than the rest of the Northeast. The cluster remains significant when race, urbanicity, and/or parity are included as confounding variables. Four smaller subclusters within this area are also significant on their own strength: Philadelphia with suburbs (p = 0.0001), Long Island (p = 0.0001), central New Jersey (p = 0.0001), and northeastern New Jersey (p = 0.0001). The elevated breast cancer mortality on Long Island might be viewed less as a unique local phenomenon and more as part of a more general situation involving large parts of the New York City-Philadelphia metropolitan area. The several known and hypothesized risk factors for which we could not adjust and that may explain the detected cluster are most notably age at first birth, age at menarche, age at menopause, breastfeeding, genetic mutations, and environmental factors.", "title": "Breast cancer clusters in the northeast United States: a geographic analysis." }, { "docid": "15512462", "text": "OBJECTIVE To compare the incidence of cancer among women with and without a history of pre-eclampsia. \n DESIGN Cohort study. \n SETTING Jerusalem perinatal study of women who delivered in three large hospitals in West Jerusalem during 1964-76. \n PARTICIPANTS 37 033 women. \n MAIN OUTCOME MEASURES Age adjusted and multivariable adjusted hazard ratios for cancer incidence for the entire cohort and for women who were primiparous at study entry. \n RESULTS Cancer developed in 91 women who had pre-eclampsia and 2204 who did not (hazard ratio 1.27, 95% confidence interval 1.03 to 1.57). The risk of site specific cancers was increased, particularly of the stomach, ovary epithelium, breast, and lung or larynx. The incidence of cancer of the stomach, breast, ovary, kidney, and lung or larynx was increased in primiparous women at study entry who had a history pre-eclampsia. \n CONCLUSIONS A history of pre-eclampsia is associated with increases in overall risk of cancer and incidence at several sites. This may be explained by environmental and genetic factors common to the development of pre-eclampsia and cancer in this population.", "title": "Cancer after pre-eclampsia: follow up of the Jerusalem perinatal study cohort." }, { "docid": "16098747", "text": "Evaluate known breast cancer risk factors in relation to breast density. We examined factors in relation to breast density in 144,018 New Hampshire (NH) women with at least one mammogram recorded in a statewide mammography registry. Mammographic breast density was measured by radiologists using the BI-RADS classification; risk factors of interest were obtained from patient intake forms and questionnaires. Initial analyses showed a strong inverse influence of age and body mass index (BMI) on breast density. In addition, women with late age at menarche, late age at first birth, premenopausal women, and those currently using hormone therapy (HT) tended to have higher breast density, while those with greater parity tended to have less dense breasts. Analyses stratified on age and BMI suggested interactions, which were formally assessed in a multivariable model. The impact of current HT use, relative to nonuse, differed across age groups, with an inverse association in younger women, and a positive association in older women (p < 0.0001 for the interaction). The positive effects of age at menarche and age at first birth, and the inverse influence of parity were less apparent in women with low BMI than in those with high BMI (p = 0.04, p < 0.0001 and p = 0.01, respectively, for the interactions). We also noted stronger positive effects for age at first birth in postmenopausal women (p = 0.004 for the interaction). The multivariable model indicated a slight positive influence of family history of breast cancer. The influence of age at menarche and reproductive factors on breast density is less evident in women with high BMI. Density is reduced in young women using HT, but increased in HT users of age 50 or more.", "title": "Breast cancer risk factors in relation to breast density (United States)" }, { "docid": "23284774", "text": "AIM To identify the psychosocial needs of breast-cancer patients and their relatives along with factors affecting these needs and to develop a tentative model to guide further research and need assessments in clinical practice. \n BACKGROUND Women experiencing breast cancer must deal with the diagnosis of a life-threatening illness. Treatment and the recovery process can be demanding for patients and their relatives. Need assessment may help clinicians focus on providing appropriate help. \n DESIGN Literature review. \n METHOD Undertaken using electronic databases and specific research terms; 20 articles were identified and analysed. \n RESULTS The needs identified by patients involve (1) treatment-related physical and social impairment like fatigue, menopausal symptoms and a changed body image and (2) emotional distress like fear of recurrence, anxiety and depression. Partners need help to protect themselves and the patient from different threats. Women need information to maintain control and manage their illness. Partners want information concerning the patient's condition and both of them about the prognosis and perspectives. There is a lack of knowledge of relatives' needs. Mutual familial support, women's and partners' health and emotional distress may affect the interaction between the patients and their partners. \n CONCLUSIONS A tentative family-based model to guide further research and clinical support is proposed. Further research is needed to determine precisely which psychosocial factors may influence fulfilment of the patients' and relatives' needs. RELEVANCE TO CLINICAL PRACTICE The proposed model may provide a framework for healthcare professionals to evaluate the patients' and relatives' met and unmet needs and the real demand for help, to guide care planning, counselling and education.", "title": "A review of psychosocial needs of breast-cancer patients and their relatives." }, { "docid": "27123743", "text": "Breast cancer may originate in utero. We reviewed the available evidence on the association between birthweight and the risk of breast cancer. To date, 26 research papers addressing this issue have been published. The majority of studies identified a positive link between birthweight and premenopausal, but not postmenopausal, breast cancer. The relative risk estimate for breast cancer comparing women with high birthweight to women with low birthweight combining all studies including both pre- and postmenopausal breast cancer was 1.23 (95% confidence interval 1.13-1.34). The mechanisms underlying this association likely include elevated levels of growth factors that may increase the number of susceptible stem cells in the mammary gland or initiate tumors through DNA mutations. Loss of imprinting (LOI) of growth hormone genes relevant for intrauterine growth, such as insulin-like growth factor 2 (IGF2), leads to abnormally high levels of these hormones evidenced by high birthweight. LOI of IGF2 has also been found in mammary tumor tissue. The role of environmental factors that stimulate such epigenetic regulation of gene expression remains to be elucidated.", "title": "Role of birthweight in the etiology of breast cancer." }, { "docid": "13831558", "text": "BACKGROUND Extensive mammographic density is associated with an increased risk of breast cancer and makes the detection of cancer by mammography difficult, but the influence of density on risk according to method of cancer detection is unknown. \n METHODS We carried out three nested case-control studies in screened populations with 1112 matched case-control pairs. We examined the association of the measured percentage of density in the baseline mammogram with risk of breast cancer, according to method of cancer detection, time since the initiation of screening, and age. \n RESULTS As compared with women with density in less than 10% of the mammogram, women with density in 75% or more had an increased risk of breast cancer (odds ratio, 4.7; 95% confidence interval [CI], 3.0 to 7.4), whether detected by screening (odds ratio, 3.5; 95% CI, 2.0 to 6.2) or less than 12 months after a negative screening examination (odds ratio, 17.8; 95% CI, 4.8 to 65.9). Increased risk of breast cancer, whether detected by screening or other means, persisted for at least 8 years after study entry and was greater in younger than in older women. For women younger than the median age of 56 years, 26% of all breast cancers and 50% of cancers detected less than 12 months after a negative screening test were attributable to density in 50% or more of the mammogram. \n CONCLUSIONS Extensive mammographic density is strongly associated with the risk of breast cancer detected by screening or between screening tests. A substantial fraction of breast cancers can be attributed to this risk factor.", "title": "Mammographic density and the risk and detection of breast cancer." }, { "docid": "5864770", "text": "Epidemiologic studies suggest that ovarian hormones contribute to the development of breast cancer at all stages. Early menopause and premenopausal obesity reduces the risk while postmenopausal obesity and menopausal estrogen replacement therapy increases the risk. Combined oral contraceptives and Depo-Provera do not reduce the risk. It appears that estrogens and progestogens act through and with proto-oncogenes and growth factors to affect breast cell proliferation and breast cancer etiology. Animal studies suggest that estrogen causes interlobular ductal cell division and progesterone causes increased terminal duct lobular unit cell division in the luteal phase. Most breast carcinomas originate from terminal duct lobular unit cells. During pregnancy, these cells fully multiply. Their reproduction is also increased during the luteal phase. Yet, there is considerable interpersonal variation. No studies examining breast cell division have compared cell division rates with serum hormone concentrations, however. The peak of mitosis occurs about 3 days before breast cell death in the late luteal and very early follicular phases. Other research suggests that breast stem cell proliferation is linked to breast cancer development. Endocrine therapy reduces mitotic activity, indicating the estrogen and progesterone receptor content of breast cancers. Hormone-dependent breast cancer cell lines are all estrogen-dependent. Progesterone can block the estrogen-dependent cell lines which act like endometrial cells. The results of the various breast cell proliferation studies in relation to breast cancer are unclear and research identifying a molecular explanation would help in understanding the different findings.", "title": "Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk." }, { "docid": "24873253", "text": "Patients with metastatic bone disease are at risk for developing skeletal-related events that can negatively influence quality of life, contributing to loss of autonomy and functional capabilities. Bisphosphonates have become an important component in the treatment of patients with bone metastases as they delay the onset and reduce the risk of skeletal-related events and also palliate or control bone pain in multiple cancer types, thus preserving quality of life. Zoledronic acid has proven efficacy and safety in patients with bone lesions from breast cancer, prostate cancer, lung cancer, and other solid tumors, as well as in patients with multiple myeloma. Current data suggest that early treatment with zoledronic acid (before the onset of bone pain) may provide additional clinical benefits and also positive effects on survival in subsets of patients who have elevated levels of N-telopeptide of type I collagen (NTX), a biochemical marker of bone resorption. Studies have shown that in patients with breast cancer, prostate cancer, lung cancer, or other solid tumors, normalization of elevated levels of NTX was observed in the majority of patients who received zoledronic acid. Furthermore, normalization of NTX values correlated with extended survival.", "title": "Clinical benefits and considerations of bisphosphonate treatment in metastatic bone disease." }, { "docid": "4886637", "text": "Incidences of breast cancer, type 2 diabetes, and metabolic syndrome have increased over the past decades with the obesity epidemic, especially in industrialized countries. Insulin resistance, hyperinsulinemia, and changes in the signaling of growth hormones and steroid hormones associated with diabetes may affect the risk of breast cancer. We reviewed epidemiologic studies of the association between type 2 diabetes and risk of breast cancer and the available evidence on the role of hormonal mediators of an association between diabetes and breast cancer. The combined evidence supports a modest association between type 2 diabetes and the risk of breast cancer, which appears to be more consistent among postmenopausal than among premenopausal women. Despite many proposed potential pathways, the mechanisms underlying an association between diabetes and breast cancer risk remain unclear, particularly because the 2 diseases share several risk factors, including obesity, a sedentary lifestyle, and possibly intake of saturated fat and refined carbohydrates, that may confound this association. Although the metabolic syndrome is closely related to diabetes and embraces additional components that might influence breast cancer risk, the role of the metabolic syndrome in breast carcinogenesis has not been studied and thus remains unknown.", "title": "Diabetes, metabolic syndrome, and breast cancer: a review of the current evidence." }, { "docid": "4429932", "text": "Metastasis is a multistep process responsible for most cancer deaths, and it can be influenced by both the immediate microenvironment (cell–cell or cell–matrix interactions) and the extended tumour microenvironment (for example vascularization). Hypoxia (low oxygen) is clinically associated with metastasis and poor patient outcome, although the underlying processes remain unclear. Microarray studies have shown the expression of lysyl oxidase (LOX) to be elevated in hypoxic human tumour cells. Paradoxically, LOX expression is associated with both tumour suppression and tumour progression, and its role in tumorigenesis seems dependent on cellular location, cell type and transformation status. Here we show that LOX expression is regulated by hypoxia-inducible factor (HIF) and is associated with hypoxia in human breast and head and neck tumours. Patients with high LOX-expressing tumours have poor distant metastasis-free and overall survivals. Inhibition of LOX eliminates metastasis in mice with orthotopically grown breast cancer tumours. Mechanistically, secreted LOX is responsible for the invasive properties of hypoxic human cancer cells through focal adhesion kinase activity and cell to matrix adhesion. Furthermore, LOX may be required to create a niche permissive for metastatic growth. Our findings indicate that LOX is essential for hypoxia-induced metastasis and is a good therapeutic target for preventing and treating metastases.", "title": "Lysyl oxidase is essential for hypoxia-induced metastasis" }, { "docid": "13519661", "text": "Background Checkpoint kinase 2 (CHEK2) averts cancer development by promoting cell cycle arrest and activating DNA repair in genetically damaged cells. Previous investigation has established a role for the CHEK2 gene in breast cancer aetiology, but studies have largely been limited to the rare 1100delC mutation. Whether common polymorphisms in this gene influence breast cancer risk remains unknown. In this study, we aimed to assess the importance of common CHEK2 variants on population risk for breast cancer by capturing the majority of diversity in the gene using haplotype tagging single nucleotide polymorphisms (tagSNPs). Methods and Findings We analyzed 14 common SNPs spanning 52 kilobases (kb) of the CHEK2 gene in 92 Swedish women. Coverage evaluation indicated that these typed SNPs would efficiently convey association signal also from untyped SNPs in the same region. Six of the 14 SNPs predicted well both the haplotypic and single SNP variations within CHEK2. We genotyped these six tagSNPs in 1,577 postmenopausal breast cancer cases and 1,513 population controls, but found no convincing association between any common CHEK2 haplotype and breast cancer risk. The 1100delC mutation was rare in our Swedish population—0.7% in cases and 0.4% in controls— with a corresponding odds ratio for carriers versus noncarriers of 2.26 (95% confidence interval, 0.99–5.15). Estimates of the population frequency and the odds ratio of 1100delC indicate that our sample is representative of a Northern European population.", "title": "Linkage Disequilibrium Mapping of CHEK2: Common Variation and Breast Cancer Risk " }, { "docid": "25315295", "text": "Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, such as brain-derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression's development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed.", "title": "Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications." }, { "docid": "13069283", "text": "BACKGROUND Estrogen receptor-positive breast cancer tumors depend on estrogen signaling for their growth and replication and can be treated by anti-estrogen therapy with tamoxifen. Polymorphisms of the CYP2D6 and CYP2C19 genes are associated with an impaired response to tamoxifen. The study objective was to investigate the impact of genetic polymorphisms in CYP2D6 and CYP2C19 on the pharmacokinetics of tamoxifen and its metabolites in Spanish women with estrogen receptor-positive breast cancer who were candidates for tamoxifen therapy. \n METHODS We studied 90 women with estrogen receptor-positive breast cancer, using the AmpliChip CYP450 test to determine CYP2D6 and CYP2C19 gene variants. Plasma levels of tamoxifen and its metabolites were quantified by high-performance liquid chromatography. \n RESULTS The CYP2D6 phenotype was extensive metabolizer in 80%, intermediate metabolizer in 12.2%, ultra-rapid metabolizer in 2.2%, and poor metabolizer in 5.6% of patients, and the allele frequency was 35.0% for allele (*)1, 21.0% for *2, and 18.9% for *4. All poor metabolizers in this series were *4/*4, and their endoxifen and 4-hydroxy tamoxifen levels were 25% lower than those of extensive metabolizers. CYP2C19*2 allele, which has been related to breast cancer outcomes, was detected in 15.6% of the studied alleles. \n CONCLUSION CYP2D6*4/*4 genotype was inversely associated with 4-hydroxy tamoxifen and endoxifen levels. According to these results, CYP2D6 and CYP2C19 genotyping appears advisable before the prescription of tamoxifen therapy.", "title": "Influence of CYP2D6 Polymorphisms on Serum Levels of Tamoxifen Metabolites in Spanish Women with Breast Cancer" }, { "docid": "16390264", "text": "OBJECTIVES To determine the extent to which type of hospital admission (emergency compared with elective) and surgical procedure varied by socioeconomic circumstances, age, sex, and year of admission for colorectal, breast, and lung cancer. \n DESIGN Repeated cross sectional study with data from individual patients, 1 April 1999 to 31 March 2006. \n SETTING Hospital episode statistics (HES) dataset. \n PARTICIPANTS 564 821 patients aged 50 and over admitted with a diagnosis of colorectal, breast, or lung cancer. \n MAIN OUTCOME MEASURES Proportion of patients admitted as emergencies, and the proportion receiving the recommended surgical treatment. \n RESULTS Patients from deprived areas, older people, and women were more likely to be admitted as emergencies. For example, the adjusted odds ratio for patients with breast cancer in the least compared with most deprived fifth of deprivation was 0.63 (95% confidence interval 0.60 to 0.66) and the adjusted odds ratio for patients with lung cancer aged 80-89 compared with those aged 50-59 was 3.13 (2.93 to 3.34). There were some improvements in disparities between age groups but not for patients living in deprived areas over time. Patients from deprived areas were less likely to receive preferred procedures for rectal, breast, and lung cancer. These findings did not improve with time. For example, 67.4% (3529/5237) of patients in the most deprived fifth of deprivation had anterior resection for rectal cancer compared with 75.5% (4497/5959) of patients in the least deprived fifth (1.34, 1.22 to 1.47). Over half (54.0%, 11 256/20 849) of patients in the most deprived fifth of deprivation had breast conserving surgery compared with 63.7% (18 445/28 960) of patients in the least deprived fifth (1.21, 1.16 to 1.26). Men were less likely than women to undergo anterior resection and lung cancer resection and older people were less likely to receive breast conserving surgery and lung cancer resection. For example, the adjusted odds ratio for lung cancer patients aged 80-89 compared with those aged 50-59 was 0.52 (0.46 to 0.59). Conclusions Despite the implementation of the NHS Cancer Plan, social factors still strongly influence access to and the provision of care.", "title": "Social variations in access to hospital care for patients with colorectal, breast, and lung cancer between 1999 and 2006: retrospective analysis of hospital episode statistics" }, { "docid": "23557241", "text": "BACKGROUND Emerging evidence suggests an association between female prenatal experience and her subsequent risk of developing breast cancer. Potential underlying mechanisms include variation in amounts of maternal endogenous sex hormones and growth hormones, germ-cell mutations, formation of cancer stem-cells, and other genetic or epigenetic events. We reviewed and summarised quantitatively the available data on intrauterine exposures and risk of breast cancer. \n METHODS We systematically searched for studies that assessed association between perinatal factors and risk of breast cancer. We reviewed separately each of the perinatal factors, including birthweight, birth length, parental age at delivery, gestational age, intrauterine exposure to diethylstilbestrol, twin membership, maternal pre-eclampsia or eclampsia, and other factors. \n FINDINGS We identified 57 studies published between Oct 1, 1980, and June 21, 2007. Increased risk of breast cancer was noted with increased birthweight (relative risk [RR] 1.15 [95% CI 1.09-1.21]), birth length (1.28 [1.11-1.48]), higher maternal age (1.13 [1.02-1.25]), and paternal age (1.12 [1.05-1.19]). Decreased risk of breast cancer was noted for maternal pre-eclampsia and eclampsia (0.48 [0.30-0.78]) and twin membership (0.93 [0.87-1.00]). No association was noted between risk of breast cancer and gestational age at birth (0.95 [0.71-1.26]) or maternal diethylstilbestrol treatment (1.40 [0.86-2.28]). \n INTERPRETATION The intrauterine environment contributes to the predisposition of women to breast cancer in adulthood. The in-utero mechanisms responsible for such predisposition need to be elucidated.", "title": "Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence." }, { "docid": "13083189", "text": "OBJECTIVES Despite recognition of the important influence of environmental determinants on physical activity patterns, minimal empirical research has been done to assess the impact of environmental/contextual determinants of physical activity. This article aims to investigate environmental and sociodemographic determinants of physical activity and inactivity patterns among subpopulations of US adolescents. We define environmental determinants as modifiable factors in the physical environment that impose a direct influence on the opportunity to engage in physical activity. The present research examines environmental and sociodemographic determinants of physical activity and inactivity with the implication that these findings can point toward societal-level intervention strategies for increasing physical activity and decreasing inactivity among adolescents. STUDY DESIGN AND METHODOLOGY The study population consists of nationally representative data from the 1996 National Longitudinal Study of Adolescent Health on 17 766 US adolescents enrolled in US middle and high schools (including 3933 non-Hispanic blacks, 3148 Hispanics, and 1337 Asians). Hours/week of inactivity (TV/video viewing and video/computer games) and times/week of moderate to vigorous physical activity were collected by questionnaire. Outcome variables were moderate to vigorous physical activity and inactivity, which were broken into categories (physical activity: 0-2 times/week, 3-4 times/week, and >/=5 times/week; inactivity: 0-10 hours/week, 11-24 hours/week, and >/=25 hours/week). Sociodemographic and environmental correlates of physical activity and inactivity were used as exposure and control variables and included sex, age, urban residence, participation in school physical education program, use of community recreation center, total reported incidents of serious crime in neighborhood, socioeconomic status, ethnicity, generation of residence in the United States, presence of mother/father in household, pregnancy status, work status, in-school status, region, and month of interview. Logistic regression models of high versus low and medium physical activity and inactivity were used to investigate sex and ethnic interactions in relation to environmental and sociodemographic factors to examine evidence for the potential impact of physical education and recreation programs and sociodemographic factors on physical activity and inactivity patterns. \n RESULTS Moderate to vigorous physical activity was lower and inactivity higher for non-Hispanic black and Hispanic adolescents. Participation in school physical education programs was considerably low for these adolescents and decreased with age. Participation in daily school physical education (PE) program classes (adjusted odds ratio [AOR]: 2.21; confidence interval [CI]: 1.82-2.68) and use of a community recreation center (AOR: 1.75; CI: 1.56-1.96) were associated with an increased likelihood of engaging in high level moderate to vigorous physical activity. Maternal education was inversely associated with high inactivity patterns; for example, having a mother with a graduate or professional degree was associated with an AOR of.61 (CI:.48-.76) for high inactivity. High family income was associated with increased moderate to vigorous physical activity (AOR: 1.43; CI: 1.22-1.67) and decreased inactivity (AOR:.70; CI:.59-.82). High neighborhood serious crime level was associated with a decreased likelihood of falling in the highest category of moderate to vigorous physical activity (AOR:.77; CI:.66-.91). \n CONCLUSIONS These results show important associations between modifiable environmental factors, such as participation in school PE and community recreation programs, with activity patterns of adolescents. Despite the marked and significant impact of participation in school PE programs on physical activity patterns of US adolescents, few adolescents participated in such school PE programs; only 21.3% of all adolescents", "title": "Determinants of adolescent physical activity and inactivity patterns." }, { "docid": "17450673", "text": "INTRODUCTION Various perinatal factors, including birth weight, birth order, maternal age, gestational age, twin status, and parental smoking, have been postulated to affect breast cancer risk in daughters by altering the hormonal environment of the developing fetal mammary glands. Despite ample biologic plausibility, epidemiologic studies to date have yielded conflicting results. We investigated the associations between perinatal factors and subsequent breast cancer risk through meta-analyses. \n METHODS We reviewed breast cancer studies published from January 1966 to February 2007 that included data on birth weight, birth order, maternal age, gestational age, twin status, and maternal or paternal smoking. Meta-analyses using random effect models were employed to summarize the results. \n RESULTS We found that heavier birth weights were associated with increased breast cancer risk, with studies involving five categories of birth weight identifying odds ratios (ORs) of 1.24 (95% confidence interval [CI] 1.04 to 1.48) for 4,000 g or more and 1.15 (95% CI 1.04 to 1.26) for 3,500 g to 3,999 g, relative to a birth weight of 2,500 to 2,599 g. These studies provided no support for a J-shaped relationship of birthweight to risk. Support for an association with birthweight was also derived from studies based on three birth weight categories (OR 1.15 [95% CI 1.01 to 1.31] for > or =4,000 g relative to <3,000 g) and two birth weight categories (OR 1.09 [95% CI 1.02 to 1.18] for > or =3,000 g relative to <3,000 g). Women born to older mothers and twins were also at some increased risk, but the results were heterogeneous across studies and publication years. Birth order, prematurity, and maternal smoking were unrelated to breast cancer risk. \n CONCLUSION Our findings provide some support for the hypothesis that in utero exposures reflective of higher endogenous hormone levels could affect risk for development of breast cancer in adulthood.", "title": "Intrauterine environments and breast cancer risk: meta-analysis and systematic review" }, { "docid": "13007205", "text": "Stromal fibroblasts can contribute to tumor invasion through the release of matrix metalloproteinases (MMPs). Population studies have suggested that single nucleotide polymorphisms (SNPs) in MMP genes influence levels of expression and may be associated with breast cancer risk and with disease progression. This study directly examined the impact of MMP SNP genotype on the ability of host fibroblasts to promote tumor cell invasion. Primary breast fibroblasts were isolated from patients with (n = 13) or without (n = 19) breast cancer, and their ability to promote breast cancer cell invasion was measured in in vitro invasion assays. Fibroblast invasion-promoting capacity (IPC) was analyzed in relation to donor type (tumor or non-tumor patient), MMP-1, MMP-3, and MMP-9 SNP genotype and MMP activity using independent samples t test and analysis of variance. All statistical tests were two-sided. Tumor-derived fibroblasts promoted higher levels of invasion than normal fibroblasts (p = 0.041). When IPC was related to genotype, higher levels of IPC were generated by tumor fibroblasts with the high-expressing MMP-3 5A/5A genotype compared with the 5A/6A and 6A/6A genotypes (p = 0.05 and 0.07, respectively), and this was associated with enhanced MMP-3 release. The functional importance of MMP-3 was demonstrated by enhanced invasion in the presence of recombinant MMP-3, whereas reduction occurred in the presence of a specific MMP-3 inhibitor. An inverse relationship was demonstrated between fibroblast IPC and the high-expressing MMP-1 genotype (p = 0.031), but no relationship was seen with MMP-9 SNP status. In contrast, normal fibroblasts showed no variation in IPC in relation to MMP genotype, with MMP-3 5A/5A fibroblasts exhibiting significantly lower levels of IPC than their tumor-derived counterparts (p = 0.04). This study has shown that tumor-derived fibroblasts exhibit higher levels of IPC than normal fibroblasts and that the MMP-3 5A/5A genotype contributes to this through enhanced MMP-3 release. Despite a high-expressing genotype, normal fibroblasts do not exhibit higher IPC or enhanced MMP release. This suggests that more complex changes occur in tumor-derived fibroblasts, enabling full expression of the MMP SNP genotype and these possibly are epigenetic in nature. The results do suggest that, in women with breast cancer, a high-expressing MMP-3 genotype may promote tumor progression more effectively.", "title": "Intrinsic genetic characteristics determine tumor-modifying capacity of fibroblasts: matrix metalloproteinase-3 5A/5A genotype enhances breast cancer cell invasion" } ]
382
Environmentally-induced senescence is mimicked in disease modeling by adding specific molecules to the culture system.
[ { "docid": "11659421", "text": "Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) resets their identity back to an embryonic age and, thus, presents a significant hurdle for modeling late-onset disorders. In this study, we describe a strategy for inducing aging-related features in human iPSC-derived lineages and apply it to the modeling of Parkinson's disease (PD). Our approach involves expression of progerin, a truncated form of lamin A associated with premature aging. We found that expression of progerin in iPSC-derived fibroblasts and neurons induces multiple aging-related markers and characteristics, including dopamine-specific phenotypes such as neuromelanin accumulation. Induced aging in PD iPSC-derived dopamine neurons revealed disease phenotypes that require both aging and genetic susceptibility, such as pronounced dendrite degeneration, progressive loss of tyrosine hydroxylase (TH) expression, and enlarged mitochondria or Lewy-body-precursor inclusions. Thus, our study suggests that progerin-induced aging can be used to reveal late-onset age-related disease features in hiPSC-based disease models.", "title": "Human iPSC-based modeling of late-onset disease via progerin-induced aging." } ]
[ { "docid": "4709641", "text": "Efforts to develop drugs for Alzheimer's disease (AD) have shown promise in animal studies, only to fail in human trials, suggesting a pressing need to study AD in human model systems. Using human neurons derived from induced pluripotent stem cells that expressed apolipoprotein E4 (ApoE4), a variant of the APOE gene product and the major genetic risk factor for AD, we demonstrated that ApoE4-expressing neurons had higher levels of tau phosphorylation, unrelated to their increased production of amyloid-β (Aβ) peptides, and that they displayed GABAergic neuron degeneration. ApoE4 increased Aβ production in human, but not in mouse, neurons. Converting ApoE4 to ApoE3 by gene editing rescued these phenotypes, indicating the specific effects of ApoE4. Neurons that lacked APOE behaved similarly to those expressing ApoE3, and the introduction of ApoE4 expression recapitulated the pathological phenotypes, suggesting a gain of toxic effects from ApoE4. Treatment of ApoE4-expressing neurons with a small-molecule structure corrector ameliorated the detrimental effects, thus showing that correcting the pathogenic conformation of ApoE4 is a viable therapeutic approach for ApoE4-related AD.", "title": "Gain of toxic Apolipoprotein E4 effects in Human iPSC-Derived Neurons Is Ameliorated by a Small-Molecule Structure Corrector" }, { "docid": "17412260", "text": "Oncogene-induced senescence (OIS) is crucial for tumour suppression. Senescent cells implement a complex pro-inflammatory response termed the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence, activates immune surveillance and paradoxically also has pro-tumorigenic properties. Here, we present evidence that the SASP can also induce paracrine senescence in normal cells both in culture and in human and mouse models of OIS in vivo. Coupling quantitative proteomics with small-molecule screens, we identified multiple SASP components mediating paracrine senescence, including TGF-β family ligands, VEGF, CCL2 and CCL20. Amongst them, TGF-β ligands play a major role by regulating p15(INK4b) and p21(CIP1). Expression of the SASP is controlled by inflammasome-mediated IL-1 signalling. The inflammasome and IL-1 signalling are activated in senescent cells and IL-1α expression can reproduce SASP activation, resulting in senescence. Our results demonstrate that the SASP can cause paracrine senescence and impact on tumour suppression and senescence in vivo.", "title": "A complex secretory program orchestrated by the inflammasome controls paracrine senescence" }, { "docid": "13814480", "text": "Alzheimer's disease (AD) is the most common cause of dementia in those over the age of 65. While a numerous of disease-causing genes and risk factors have been identified, the exact etiological mechanisms of AD are not yet completely understood, due to the inability to test theoretical hypotheses on non-postmortem and patient-specific research systems. The use of recently developed and optimized induced pluripotent stem cells (iPSCs) technology may provide a promising platform to create reliable models, not only for better understanding the etiopathological process of AD, but also for efficient anti-AD drugs screening. More importantly, human-sourced iPSCs may also provide a beneficial tool for cell-replacement therapy against AD. Although considerable progress has been achieved, a number of key challenges still require to be addressed in iPSCs research, including the identification of robust disease phenotypes in AD modeling and the clinical availabilities of iPSCs-based cell-replacement therapy in human. In this review, we highlight recent progresses of iPSCs research and discuss the translational challenges of AD patients-derived iPSCs in disease modeling and cell-replacement therapy.", "title": "Induced pluripotent stem cells in Alzheimer’s disease: applications for disease modeling and cell-replacement therapy" }, { "docid": "15521377", "text": "Cellular senescence is a stable form of cell-cycle arrest which is thought to limit the proliferative potential of premalignant cells [1]. The senescence phenotype was initially described by Hayflick and Moorhead in 1961 on human fibroblasts undergoing replicative exhaustion in culture [2]. It has been shown that senescence can be triggered in different cell types in response to diverse forms of cellular damage or stress (for review see [1]). Importantly, while senescence was denounced as a tissue culture phenomenon for many years, recent in vivo studies demonstrated that cellular senescence represents a potent failsafe mechanism against tumorigenesis and contributes to the cytotoxicity of certain anticancer agents (see for example [3-7]). Interestingly, senescent cells have also been observed in certain aged or damaged tissues and there is growing evidence that senescence checkpoints can affect the regenerative reserve of tissues and organismal aging [8-11]. However, senescence may also have positive effects on organ maintenance by limiting pathological responses to acute forms of injury such as fibrotic scarring in response to chemical induced liver injury [12]. Over the past years it was also shown that senescent cells can communicate with their environment by secreting a myriad of cytokines and growth factors. Interestingly, this \"senescence associated secretory phenotype (SASP)\" seems to be a double edged sword regarding tumor initiation and maintenance: i) On the one hand, it has been shown that the SASP can have pro-tumorigenic effects. In an experimental system it was shown that senescent mesenchymal cells can enhance the tumorigenicity of surrounding breast cancer cells [13]. ii) Similarly, it is possible that the SASP enhances selection of transformed cell clones in aged organ systems. It has been shown that loss of proliferative competition of non-transformed cells can accelerate leukemogenesis [14]. It remains to be seen whether aberrant secretion of cytokines and growth factors by the SASP can accelerated this process in aged and chronically damage organ systems. iii) In contrast to its pro-tumorigenic aspect, the SASP could also have anti-tumor effects. A recent study showed that in a mosaic liver cancer mouse model the activation of p53 induced senescence, an upregulation of inflammatory cytokines, and activation of innate immune responses leading to tumour cell clearance [15]. iv) In further support that the SASP could have anti-tumor activities, a series of recent papers showed that components of the SASP can stabilize the senescence cell cycle arrest via an autoregulatory feedback loop [16,17] or induces apoptosis of tumor cells [18]. In addition to its effects on tumorigenesis, the SASP could also influence tissue aging. Studies on aging telomere dysfunctional mice have provided direct experimental evidence for an in vivo activation of the SASP in response to telomere dysfunction [19]. Interestingly, this in vivo SASP provoked alterations in stem cell differentiation (skewing of hematopoiesis towards reduction in lymphopoiesis and enhancement of myelopoiesis) that are also characteristic signs of human aging. Figure 1. Different cellular stresses can induce senescence including telomere shortening, DNA damage, and oncogene activation. Senescence of tumor cells ... In light of the many possible roles o the SASP in aging and carcinogenesis, it appears to be of utmost importance to decipher regulatory pathways controlling the SASP. In a current publication, Bhaumik et al. have identified 2 microRNAs (miR-146a/b) that negatively regulate the secretion of IL-6 and IL-8 - two of the SASP [20]. The authors show that these microRNAs are up-regulated at late stages of senescence, many days after a permanent cell cycle arrest has been established. Interestingly, the inhibitory miRs are most strongly up-regulated in senescence of cell lines that show a strong SASP but not in cell lines characterized by a weak SASP. The authors propose a new concept indicating that miRs 146a and b function in a negative feedback loop preventing an over-activation of the SASP in senescent cells. The authors present some initial data suggesting that activation of this negative feedback loop involves IL-1 receptor, IRAK-1, and NFκB signalling leading to an up-regulation of miRs-146a and b. A direct proof that this proposed feedback loop suppresses over-activation of the SASP remains to be demonstrated in future studies. The authors show that blockage of IL-1-receptor signalling prevents both the up-regulation of miRs-146a and b as well as Il-6 secretion. To confirm their new concept, it would be important to show that a selective blockage of miRs-146a and b results in over-activation of the SASP. The work by Bhaumik et al. places mir-146a/b as central players to control IL-6 and IL-8 expression within the SASP. MicroRNAs are emerging therapeutic targets because their expression levels can be effectively modulated via the use of antagomirs (see for example [21]). Also, for increasing microRNA expression, microRNAs can be delivered into cellsin vivo (see for example [22]). Therefore, it will be interesting to functionally test the impact of mir-146 inhibition on tumorigenesis and aging in relevant mouse models. Such studies will be of particular interest, as recent work showed that IL-6 secretion by senescent cells is relevant for initiating and maintaining the senescene response via an autocrine loop [17]. A reduction of miR-146 could increase IL-6 levels in senescent cells, which should stabilize the senescence program and reduce the risk of malignant transformation. Furthermore, it can be speculated that reduction of mir-146 a/b will increase NfκB activation via IRAK1. As NfκB is modulating the expression of various inflammation associated genes, this may also lead to increased clearance of senescent tumor cells by the innate immune system. However, it should be mentioned that Il-6 secreted by senescent cells can also act as a mitogen for surrounding cells, thus potentially increasing the risk of malignant transformation [13,17]. Besides its function in SASP modulation, miR-146 was also reported to target the mRNAs of the BRCA1 and BRCA2 tumor suppressors. In a recent study a G to C polymorphism in miR-146, which leads to an increased processing and release of the mature microRNA, can predict an early onset of breast cancer [23]. Taken together, the study of Bhaumik et al. opens an interesting new research area dealing with the gene regulatory mechanisms that control activation of the SASP. Given the diverse roles of the SASP in modulating tumor progression, immune surveillance of damaged cells, and the stabilization of the senescence arrest itself, it will be of great interest to analyse the influence of SASP regulatory pathways during aging and cancer.", "title": "Keeping your senescent cells under control" }, { "docid": "41710132", "text": "The tumor suppressor PML (promyelocytic leukemia protein) regulates cellular senescence and terminal differentiation, two processes that implicate a permanent exit from the cell cycle. Here, we show that the mechanism by which PML induces a permanent cell cycle exit and activates p53 and senescence involves a recruitment of E2F transcription factors bound to their promoters and the retinoblastoma (Rb) proteins to PML nuclear bodies enriched in heterochromatin proteins and protein phosphatase 1α. Blocking the functions of the Rb protein family or adding back E2Fs to PML-expressing cells can rescue their defects in E2F-dependent gene expression and cell proliferation, inhibiting the senescent phenotype. In benign prostatic hyperplasia, a neoplastic disease that displays features of senescence, PML was found to be up-regulated and forming nuclear bodies. In contrast, PML bodies were rarely visualized in prostate cancers. The newly defined PML/Rb/E2F pathway may help to distinguish benign tumors from cancers, and suggest E2F target genes as potential targets to induce senescence in human tumors.", "title": "Regulation of E2Fs and senescence by PML nuclear bodies." }, { "docid": "15347087", "text": "The amyloid cascade hypothesis posits that deposition of the amyloid β (Aβ) peptide in the brain is a key event in the initiation of Alzheimer's disease (AD). Nonetheless, it now seems increasingly unlikely that amyloid toxicity is the cause of sporadic AD, which leads to cognitive decline. Here, using accelerated-senescence nontransgenic OXYS rats, we confirmed that aggregation of Aβ is a later event in AD-like pathology. We showed that an age-dependent increase in the levels of Aβ₁₋₄₂ and extracellular Aβ deposits in the brain of OXYS rats occur later than do synaptic losses, neuronal cell death, mitochondrial structural abnormalities, and hyperphosphorylation of the tau protein. We identified the variants of the genes that are strongly associated with the risk of either late-onset or early-onset AD, including App, Apoe4, Bace1, Psen1, Psen2, and Picalm. We found that in OXYS rats nonsynonymous SNPs were located only in the genes Casp3 and Sorl1. Thus, we present proof that OXYS rats may be a model of sporadic AD. It is possible that multiple age-associated pathological processes may precede the toxic amyloid accumulation, which in turn triggers the final stage of the sporadic form of AD and becomes a hallmark event of the disease.", "title": "Amyloid accumulation is a late event in sporadic Alzheimer's disease-like pathology in nontransgenic rats" }, { "docid": "24652030", "text": "Age-related degeneration of basal forebrain cholinergic neurons (BFCNs) occurs early and contributes significantly to cognitive decline in Alzheimer’s disease (AD). Proper function and morphology of BFCNs depends on the supply of nerve growth factor (NGF) from the cortex and the hippocampus. A large number of experiments have shown that decreased supply of NGF at the level of BFCN cell bodies leads to loss of neuronal markers and shrinkage, mimicking what is observed in AD. The delivery of sufficient amounts of NGF signal to BFCN cell bodies depends on the effective participation of several factors including sufficient synthesis and release of NGF, adequate synthesis and expression of NGF receptors by BFCNs, normal signaling and retrograde transport of NGF-receptor complex, and finally effective induction of gene expression by NGF. In the past few years it has become clear that decreased amounts of NGF at the level of BFCN cell bodies is largely due to failed retrograde transport rather than decreased synthesis, binding or expression of NGF receptors in the BFCN terminals. We will discuss in vivo evidence supporting decreased retrograde transport of NGF in a mouse model with BFCN degeneration, and will attempt to match these findings with our studies in postmortem human AD brain. We will speculate about the possible mechanisms of failed NGF retrograde transport and its relationship to AD pathology.", "title": "Alzheimer’s disease and NGF signaling" }, { "docid": "44408494", "text": "Multiple lines of evidence, from molecular and cellular to epidemiological, have implicated nicotinic transmission in the pathology of Alzheimer's disease (AD) and Parkinson's disease (PD). This review article presents evidence for nicotinic acetylcholine receptor (nAChR)-mediated protection and the signal transduction involved in this mechanism. The data is based mainly on our studies using rat-cultured primary neurons. Nicotine-induced protection was blocked by an alpha7 nAChR antagonist, a phosphatidylinositol 3-kinase (PI3K) inhibitor, and an Src inhibitor. Levels of phosphorylated Akt, an effector of PI3K, Bcl-2 and Bcl-x were increased by nicotine administration. From these experimental data, our hypothesis for the mechanism of nAChR-mediated survival signal transduction is that the alpha7 nAChR stimulates the Src family, which activates PI3K to phosphorylate Akt, which subsequently transmits the signal to up-regulate Bcl-2 and Bcl-x. Up-regulation of Bcl-2 and Bcl-x could prevent cells from neuronal death induced by beta-amyloid (Abeta), glutamate and rotenone. These findings suggest that protective therapy with nAChR stimulation could delay the progress of neurodegenerative diseases such as AD and PD.", "title": "Nicotinic receptor-mediated neuroprotection in neurodegenerative disease models." }, { "docid": "13903052", "text": "The Caliciviridae family comprises positive-sense RNA viruses of medical and veterinary significance. In humans, caliciviruses are a major cause of acute gastroenteritis, while in animals respiratory illness, conjunctivitis, stomatitis, and hemorrhagic disease are documented. Investigation of virus-host interactions is limited by a lack of culture systems for many viruses in this family. Feline calicivirus (FCV), a member of the Vesivirus genus, provides a tractable model, since it may be propagated in cell culture. Feline junctional adhesion molecule 1 (fJAM-1) was recently identified as a functional receptor for FCV. We have analyzed the structure of this virus-receptor complex by cryo-electron microscopy and three-dimensional image reconstruction, combined with fitting of homology modeled high-resolution coordinates. We show that domain 1 of fJAM-1 binds to the outer face of the P2 domain of the FCV capsid protein VP1, inducing conformational changes in the viral capsid. This study provides the first structural view of a native calicivirus-protein receptor complex and insights into the mechanisms of virus attachment and uncoating.", "title": "Structural insights into calicivirus attachment and uncoating." }, { "docid": "27772649", "text": "BACKGROUND & AIMS Celiac disease is characterized by disturbed jejunal crypt-villus axis biology with immunoglobulin (Ig) A deposits underlining the epithelium. The aim of this study was to test whether celiac disease serum IgA (reticulin/endomysial autoantibodies) interferes with the mesenchymal-epithelial cell cross-talk. \n METHODS Differentiation of T84 epithelial cells was induced with IMR-90 fibroblasts or transforming growth factor beta in three-dimensional collagen gel cultures. The effects of purified celiac IgA and monoclonal tissue transglutaminase antibodies (CUB7402) were studied by adding the antibodies to the cocultures. \n RESULTS Active celiac disease IgA, reactive for tissue transglutaminase, significantly inhibited T84 epithelial cell differentiation (P < 0.001) and increased epithelial cell proliferation (P = 0.024). Similar effects were obtained with antibodies against tissue transglutaminase. \n CONCLUSIONS Celiac disease-associated IgA class antibodies disturb transforming growth factor beta-mediated fibroblast-epithelial cell cross-talk in this in vitro crypt-villus axis model. This primary finding indicates that celiac disease-specific autoantibodies may also contribute to the formation of the gluten-triggered jejunal mucosal lesion in celiac disease.", "title": "Serum immunoglobulin A from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation." }, { "docid": "7506409", "text": "Human mesenchymal stem cells (hMSCs) have been widely studied as a source of primary adult stem cells for cell therapy because of their multidifferentiation potential; however, the growth arrest (also known as \"premature senescence\") often found in hMSCs cultured in vitro has been a major obstacle to the in-depth characterization of these cells. In addition, the inability to maintain constant cell growth hampers the development of additional genetic modifications aimed at achieving desired levels of differentiation to specific tissues; however, the molecular mechanisms that govern this phenomenon remain unclear, with the exception of a few studies demonstrating that induction of p16INK4a is responsible for this senescence-like event. Here, we observed that the premature growth arrest in hMSCs occurs in parallel with the induction of p16INK4a, following abrogation of inhibitory phosphorylation of retinoblastoma protein. These stress responses were concurrent with increased formation of reactive oxygen species (ROSs) from mitochondria and increased p38 mitogen-activated protein kinase (MAPK) activity. The introduction of Wip1 (wild-type p53 inducible phosphatase-1), a well-studied stress modulator, significantly lowered p16INK4a expression and led to p38 MAPK inactivation, although it failed to affect the levels of ROSs. Moreover, the suppression of stress responses by Wip1 apparently extended the life span of hMSCs, compared with control conditions, while maintaining their multilineage differentiation potential. Based on these results, we suggest that senescent growth arrest in hMSCs may result from activation of stress signaling pathways and consequent onset of stress responses, due in part to ROS production during prolonged in vitro culture.", "title": "Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways." }, { "docid": "6550579", "text": "Epidermal growth factor receptor (EGFR) and HER3 each form heterodimers with HER2 and have independently been implicated as key coreceptors that drive HER2-amplified breast cancer. Some studies suggest a dominant role for EGFR, a notion of renewed interest given the development of dual HER2/EGFR small-molecule inhibitors. Other studies point to HER3 as the primary coreceptor. To clarify the relative contributions of EGFR and HER3 to HER2 signaling, we studied receptor knockdown via small interfering RNA technology across a panel of six HER2-overexpressing cell lines. Interestingly, HER3 was as critical as HER2 for maintaining cell proliferation in most cell lines, whereas EGFR was dispensable. Induction of HER3 knockdown in the HER2-overexpressing BT474M1 cell line was found to inhibit growth in three-dimensional culture and induce rapid tumor regression of in vivo xenografts. Furthermore, preferential phosphorylation of HER3, but not EGFR, was observed in HER2-amplified breast cancer tissues. Given these data suggesting HER3 as an important therapeutic target, we examined the activity of pertuzumab, a HER2 antibody that inhibits HER3 signaling by blocking ligand-induced HER2/HER3 heterodimerization. Pertuzumab inhibited ligand-dependent morphogenesis in three-dimensional culture and induced tumor regression in the heregulin-dependent MDA-MB-175 xenograft model. Importantly, these activities of pertuzumab were distinct from those of trastuzumab, a monoclonal antibody currently used for treatment of HER2-amplified breast cancer patients. Our data suggest that inhibition of HER3 may be more clinically relevant than inhibition of EGFR in HER2-amplified breast cancer and also suggest that adding pertuzumab to trastuzumab may augment therapeutic benefit by blocking HER2/HER3 signaling.", "title": "A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy." }, { "docid": "4459491", "text": "Alzheimer’s disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-β plaques and neurofibrillary tangles. The amyloid hypothesis of Alzheimer’s disease posits that the excessive accumulation of amyloid-β peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer’s disease (FAD) mutations exhibit amyloid-β-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer’s disease, including distinct neurofibrillary tangle pathology. Human neurons derived from Alzheimer’s disease patients have shown elevated levels of toxic amyloid-β species and phosphorylated tau but did not demonstrate amyloid-β plaques or neurofibrillary tangles. Here we report that FAD mutations in β-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-β, including amyloid-β plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-β generation with β- or γ-secretase inhibitors not only decreased amyloid-β pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-β-mediated tau phosphorylation. We have successfully recapitulated amyloid-β and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer’s disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.", "title": "A three-dimensional human neural cell culture model of Alzheimer’s disease" }, { "docid": "3545805", "text": "CD4+ T cells can differentiate into multiple effector subsets, but the potential roles of these subsets in anti-tumor immunity have not been fully explored. Seeking to study the impact of CD4+ T cell polarization on tumor rejection in a model mimicking human disease, we generated a new MHC class II-restricted, T-cell receptor (TCR) transgenic mouse model in which CD4+ T cells recognize a novel epitope in tyrosinase-related protein 1 (TRP-1), an antigen expressed by normal melanocytes and B16 murine melanoma. Cells could be robustly polarized into Th0, Th1, and Th17 subtypes in vitro, as evidenced by cytokine, chemokine, and adhesion molecule profiles and by surface markers, suggesting the potential for differential effector function in vivo. Contrary to the current view that Th1 cells are most important in tumor rejection, we found that Th17-polarized cells better mediated destruction of advanced B16 melanoma. Their therapeutic effect was critically dependent on interferon-gamma (IFN-gamma) production, whereas depletion of interleukin (IL)-17A and IL-23 had little impact. Taken together, these data indicate that the appropriate in vitro polarization of effector CD4+ T cells is decisive for successful tumor eradication. This principle should be considered in designing clinical trials involving adoptive transfer-based immunotherapy of human malignancies.", "title": "Tumor-specific Th17-polarized cells eradicate large established melanoma." }, { "docid": "16605494", "text": "BACKGROUND Whereas many causes and mechanisms of neurodegenerative diseases have been identified, very few therapeutic strategies have emerged in parallel. One possible explanation is that successful treatment strategy may require simultaneous targeting of more than one molecule of pathway. A new therapeutic approach to have emerged recently is the engagement of microRNAs (miRNAs), which affords the opportunity to target multiple cellular pathways simultaneously using a single sequence. \n METHODOLOGY/PRINCIPAL FINDINGS We identified miR-22 as a potentially neuroprotective miRNA based on its predicted regulation of several targets implicated in Huntington's disease (histone deacetylase 4 (HDAC4), REST corepresor 1 (Rcor1) and regulator of G-protein signaling 2 (Rgs2)) and its diminished expression in Huntington's and Alzheimer's disease brains. We then tested the hypothesis that increasing cellular levels of miRNA-22 would achieve neuroprotection in in vitro models of neurodegeneration. As predicted, overexpression of miR-22 inhibited neurodegeneration in primary striatal and cortical cultures exposed to a mutated human huntingtin fragment (Htt171-82Q). Overexpression of miR-22 also decreased neurodegeneration in primary neuronal cultures exposed to 3-nitropropionic acid (3-NP), a mitochondrial complex II/III inhibitor. In addition, miR-22 improved neuronal viability in an in vitro model of brain aging. The mechanisms underlying the effects of miR-22 included a reduction in caspase activation, consistent with miR-22's targeting the pro-apoptotic activities of mitogen-activated protein kinase 14/p38 (MAPK14/p38) and tumor protein p53-inducible nuclear protein 1 (Tp53inp1). Moreover, HD-specific effects comprised not only targeting HDAC4, Rcor1 and Rgs2 mRNAs, but also decreasing focal accumulation of mutant Htt-positive foci, which occurred via an unknown mechanism. \n CONCLUSIONS These data show that miR-22 has multipartite anti-neurodegenerative activities including the inhibition of apoptosis and the targeting of mRNAs implicated in the etiology of HD. These results motivate additional studies to evaluate the feasibility and therapeutic efficacy of manipulating miR-22 in vivo.", "title": "MicroRNA-22 (miR-22) Overexpression Is Neuroprotective via General Anti-Apoptotic Effects and May also Target Specific Huntington’s Disease-Related Mechanisms" }, { "docid": "25419778", "text": "Cellular senescence is a fundamental mechanism by which cells remain metabolically active yet cease dividing and undergo distinct phenotypic alterations, including upregulation of p16Ink4a , profound secretome changes, telomere shortening, and decondensation of pericentromeric satellite DNA. Because senescent cells accumulate in multiple tissues with aging, these cells and the dysfunctional factors they secrete, termed the senescence-associated secretory phenotype (SASP), are increasingly recognized as promising therapeutic targets to prevent age-related degenerative pathologies, including osteoporosis. However, the cell type(s) within the bone microenvironment that undergoes senescence with aging in vivo has remained poorly understood, largely because previous studies have focused on senescence in cultured cells. Thus in young (age 6 months) and old (age 24 months) mice, we measured senescence and SASP markers in vivo in highly enriched cell populations, all rapidly isolated from bone/marrow without in vitro culture. In both females and males, p16Ink4a expression by real-time quantitative polymerase chain reaction (rt-qPCR) was significantly higher with aging in B cells, T cells, myeloid cells, osteoblast progenitors, osteoblasts, and osteocytes. Further, in vivo quantification of senescence-associated distension of satellites (SADS), ie, large-scale unraveling of pericentromeric satellite DNA, revealed significantly more senescent osteocytes in old compared with young bone cortices (11% versus 2%, p < 0.001). In addition, primary osteocytes from old mice had sixfold more (p < 0.001) telomere dysfunction-induced foci (TIFs) than osteocytes from young mice. Corresponding with the age-associated accumulation of senescent osteocytes was significantly higher expression of multiple SASP markers in osteocytes from old versus young mice, several of which also showed dramatic age-associated upregulation in myeloid cells. These data show that with aging, a subset of cells of various lineages within the bone microenvironment become senescent, although senescent myeloid cells and senescent osteocytes predominantly develop the SASP. Given the critical roles of osteocytes in orchestrating bone remodeling, our findings suggest that senescent osteocytes and their SASP may contribute to age-related bone loss. © 2016 American Society for Bone and Mineral Research.", "title": "Identification of Senescent Cells in the Bone Microenvironment." }, { "docid": "207972", "text": "Early region 3 (E3) of group C human adenoviruses (Ad) encodes several inhibitors of tumor necrosis factor alpha (TNF-alpha) cytolysis, including an E3 14.7-kDa protein (E3-14.7K) and a heterodimer containing two polypeptides of 10.4 and 14.5 kDa. To understand the mechanism by which the viral proteins inhibit TNF-alpha functions, the E3-14.7K protein was used to screen a HeLa cell cDNA library to search for interacting proteins in the yeast two-hybrid system. A novel protein containing multiple leucine zipper domains without any significant homology with any known protein was identified and has been named FIP-2 (for 14.7K-interacting protein). FIP-2 interacted with E3-14.7K both in vitro and in vivo. It colocalized with Ad E3-14.7K in the cytoplasm, especially near the nuclear membrane, and caused redistribution of the viral protein. FIP-2 by itself does not cause cell death; however, it can reverse the protective effect of E3-14.7K on cell killing induced by overexpression of the intracellular domain of the 55-kDa TNF receptor or by RIP, a death protein involved in the TNF-alpha and Fas apoptosis pathways. Deletion analysis indicates that the reversal effect of FIP-2 depends on its interaction with E3-14.7K. Three major mRNA forms of FIP-2 have been detected in multiple human tissues, and expression of the transcripts was induced by TNF-alpha treatment in a time-dependent manner in two different cell lines. FIP-2 has consensus sequences for several potential posttranslational modifications. These data suggest that FIP-2 is one of the cellular targets for Ad E3-14.7K and that its mechanism of affecting cell death involves the TNF receptor, RIP, or a downstream molecule affected by either of these two molecules.", "title": "Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains." }, { "docid": "30492966", "text": "Amyotrophic Lateral Sclerosis (ALS) is a progressive degenerative disease of the motor neurons and the cause is unknown. Diverse factors such as genetic defects, nutritional deficiencies, head trauma, environmental toxin, autoimmune responses and viral and bacterial infections are involved. Mycoplasmas have been implicated as causal agents of different illnesses in human. The purpose of this study was to investigate the presence of mycoplasmas in the bloodstream of patients with ALS. Patients with ALS and healthy individuals were included in the study. A blood sample was taken in tubes with or without anticoagulant. Mycoplasmas were detected by culture or direct PCR, and the presence of antibodies IgM and IgG against LAMPs of these microorganisms by Western blot. Cultures for aerobic facultative bacteria were also done. Blood samples from 13 patients and 44 healthy individuals were screened. All blood cultures for non-fermentative mycoplasmas and aerobic facultative bacteria were negative. Cultures for fermentative mycoplasmas were considered positive after identification of mycoplasmal DNA by PCR. Mycoplasma sp. was detected by culture or direct PCR in 6/13 (46%) patients and in 4/44 (9%) of healthy individuals. M. fermentans was detected by PCR using specific primers in six patients and in two healthy individuals. IgM against LAMPs of M. fermentans were detected in 6/13 (46%) blood samples from patients and in 13/44 (30%) from healthy individuals, while. IgG was detected in 4/13 (31%) patients and in 3/44 (7%) healthy individuals. The results of this study show that mycoplasmas cause a systemic infection and could play a role in the origin or progression of the ALS.", "title": "Detection of Mycoplasmas in Patients with Amyotrophic Lateral Sclerosis" }, { "docid": "25328476", "text": "PURPOSE Peroxisome proliferator-activated receptors (PPAR) regulate lipid and glucose metabolism but their anticancer properties have been recently studied as well. We previously reported the antimetastatic activity of the PPARalpha ligand, fenofibrate, against melanoma tumors in vivo. Here we investigated possible molecular mechanisms of fenofibrate anti metastatic action. EXPERIMENTAL DESIGN Monolayer cultures of mouse (B16F10) and human (SkMell88) melanoma cell lines, soft agar assay, and cell migration assay were used in this study. In addition, we analyzed PPARalpha expression and its transcriptional activity in response to fenotibrate by using Western blots and liciferase-based reporter system. \n RESULTS Fenofibrate inhibited migration of B16F10 and SkMel188 cells in Transwell chambers and colony formation in soft agar. These effects were reversed by PPAR inhibitor, GW9662. Western blot analysis revealed time-dependent down-regulation of Akt and extracellular signal-regulated kinase l/2 phosphorylation in fenofibrate-treated cells. A B16F10 cell line stably expressing constitutively active Akt mutant was resistant to fenofibrate. In contrast, Akt gene silencing with siRNA mimicked the fenofibrate action and reduced the migratory ability of B16F1O cells. In addition, fenofibrate strongly sensitized BI6FIO cells to the proapoptotic drug staurosporine, further supporting the possibility that fenofibrate-induced down-regulation of Akt function contributes to fenofibrate-mediated inhibition of metastatic potential in this experimental model. \n CONCLUSIONS Our results show that the PPAR-dependent antimetastatic activity of fenofibrate involves down-regulation of Akt phosphorylation and suggest that supplementation with this drug may improve the effectiveness of melanoma chemotherapy.", "title": "Peroxisome proliferator-activated receptor alpha activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt." }, { "docid": "43048059", "text": "AIMS The present study aims to investigate the interaction between nitric oxide (NO) and hydrogen sulfide (H(2)S), the two important gaseous mediators in rat hearts. \n METHODS AND RESULTS Intracellular calcium in isolated cardiomyocytes was measured with a spectrofluorometric method using Fura-2. Myocyte contractility was measured with a video edge system. NaHS (50 µM, an H(2)S donor) had no significant effect on the resting calcium level, electrically induced (EI) calcium transients, and cell contractility in ventricular myocytes. Stimulating endogenous NO production with l-arginine or exogenous application of NO donors [sodium nitroprusside (SNP) and 2-(N,N-diethylamino)-diazenolate-2-oxide] decreased myocyte twitch amplitudes accompanied by slower velocities of both cell contraction and relaxation. Surprisingly, NaHS reversed the negative inotropic and lusitropic effects of the above three NO-increasing agents. In addition, the mixture of SNP + NaHS increased, whereas SNP alone decreased, the resting calcium level and the amplitudes of EI calcium transients. Angeli's salt, a nitroxyl anion (HNO) donor, mimicked the effect of SNP + NaHS on calcium handling and myocyte contractility. Three thiols, N-acetyl-cysteine, l-cysteine, and glutathione, abolished the effects of HNO and SNP + NaHS on myocyte contraction. Neither Rp-cAMP [a protein kinase A (PKA) inhibitor] nor Rp-cGMP [a protein kinase G (PKG) inhibitor] affected the effects of SNP + NaHS, suggesting a cAMP/PKA- or cGMP/PKG-independent mechanism. \n CONCLUSION H(2)S may interact with NO to form a thiol sensitive molecule (probably HNO) which produces positive inotropic and lusitropic effects. Our findings may shed light on the interaction of NO and H(2)S and provide new clues to treat cardiovascular diseases.", "title": "Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl." } ]
383
Epidemiological disease burden from noncommunicable diseases is more prevalent in high economic settings.
[ { "docid": "13770184", "text": "BACKGROUND The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. \n METHODS We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). \n FINDINGS Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6-58·8) of global deaths and 41·2% (39·8-42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. \n INTERPRETATION Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. \n FUNDING Bill & Melinda Gates Foundation.", "title": "Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015" } ]
[ { "docid": "51972698", "text": "Problem Samoa has been struggling to address the burden of noncommunicable diseases at the health system, community and individual levels. Approach The World Health Organization (WHO) package of essential noncommunicable disease interventions for primary health care in low-resource settings was adopted in seven villages throughout Samoa in 2015. The National Steering Committee Members designed and implemented a screening process, and local facilitators and health-care workers collected health and lifestyle data. The WHO/International Society of Hypertension risk assessment was used on villagers older than 40 years to identify people at high risk of noncommunicable disease. Local setting Samoa is a small island developing state with increasing morbidity and mortality due to noncommunicable diseases. A national representative survey indicated that 50.1% (595/1188) of the Samoan adult population is at high risk of such diseases. High numbers of noncommunicable diseases are undiagnosed or untreated, because of shortage of health-care staff and lack of awareness of risk factors. Relevant changes The teams collected data from 2234 adults. For people older than 40 years, 6.7% (54/804) were identified as being at high-risk and were encouraged to seek treatment or manage risk factors. Community members developed an awareness programme to improve understanding of lifestyle risk factors. Lessons learnt Engaging community members was crucial in conducting a successful screening campaign. By identifying those villagers at high risk of developing noncommunicable diseases, early intervention was possible. Education improved awareness of the symptom-free nature of early-stage noncommunicable diseases.", "title": "Adapting the WHO package of essential noncommunicable disease interventions, Samoa" }, { "docid": "8582337", "text": "IMPORTANCE Understanding the major health problems in the United States and how they are changing over time is critical for informing national health policy. \n OBJECTIVES To measure the burden of diseases, injuries, and leading risk factors in the United States from 1990 to 2010 and to compare these measurements with those of the 34 countries in the Organisation for Economic Co-operation and Development (OECD) countries. \n DESIGN We used the systematic analysis of descriptive epidemiology of 291 diseases and injuries, 1160 sequelae of these diseases and injuries, and 67 risk factors or clusters of risk factors from 1990 to 2010 for 187 countries developed for the Global Burden of Disease 2010 Study to describe the health status of the United States and to compare US health outcomes with those of 34 OECD countries. Years of life lost due to premature mortality (YLLs) were computed by multiplying the number of deaths at each age by a reference life expectancy at that age. Years lived with disability (YLDs) were calculated by multiplying prevalence (based on systematic reviews) by the disability weight (based on population-based surveys) for each sequela; disability in this study refers to any short- or long-term loss of health. Disability-adjusted life-years (DALYs) were estimated as the sum of YLDs and YLLs. Deaths and DALYs related to risk factors were based on systematic reviews and meta-analyses of exposure data and relative risks for risk-outcome pairs. Healthy life expectancy (HALE) was used to summarize overall population health, accounting for both length of life and levels of ill health experienced at different ages. \n RESULTS US life expectancy for both sexes combined increased from 75.2 years in 1990 to 78.2 years in 2010; during the same period, HALE increased from 65.8 years to 68.1 years. The diseases and injuries with the largest number of YLLs in 2010 were ischemic heart disease, lung cancer, stroke, chronic obstructive pulmonary disease, and road injury. Age-standardized YLL rates increased for Alzheimer disease, drug use disorders, chronic kidney disease, kidney cancer, and falls. The diseases with the largest number of YLDs in 2010 were low back pain, major depressive disorder, other musculoskeletal disorders, neck pain, and anxiety disorders. As the US population has aged, YLDs have comprised a larger share of DALYs than have YLLs. The leading risk factors related to DALYs were dietary risks, tobacco smoking, high body mass index, high blood pressure, high fasting plasma glucose, physical inactivity, and alcohol use. Among 34 OECD countries between 1990 and 2010, the US rank for the age-standardized death rate changed from 18th to 27th, for the age-standardized YLL rate from 23rd to 28th, for the age-standardized YLD rate from 5th to 6th, for life expectancy at birth from 20th to 27th, and for HALE from 14th to 26th. \n CONCLUSIONS AND RELEVANCE From 1990 to 2010, the United States made substantial progress in improving health. Life expectancy at birth and HALE increased, all-cause death rates at all ages decreased, and age-specific rates of years lived with disability remained stable. However, morbidity and chronic disability now account for nearly half of the US health burden, and improvements in population health in the United States have not kept pace with advances in population health in other wealthy nations.", "title": "The state of US health, 1990-2010: burden of diseases, injuries, and risk factors." }, { "docid": "40666943", "text": "PURPOSE To perform a systematic review on the epidemiology, the health-related quality of life (HRQoL) and economic burden of binge eating disorder (BED). \n METHODS A systematic literature search of English-language articles was conducted using Medline, Embase, PsycINFO, PsycARTICLES, Academic Search Complete, CINAHL Plus, Business Source Premier and Cochrane Library. Literature search on epidemiology was limited to studies published between 2009 and 2013. Cost data were inflated and converted to 2012 US$ purchasing power parities. All of the included studies were assessed for quality. \n RESULTS Forty-nine articles were included. Data on epidemiology were reported in 31, HRQoL burden in 16, and economic burden in 7 studies. Diagnosis of BED was made using 4th Edition of The Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria in 46 studies. Lifetime prevalence of BED was 1.1-1.9% in the general population (DSM-IV). BED was associated with significant impairment in aspects of HRQoL relating to both physical and mental health; the Short Form 36 Physical and Mental Component Summary mean scores varied between 31.1 to 47.3 and 32.0 to 49.8, respectively. Compared to individuals without eating disorder, BED was related to increased healthcare utilization and costs. Annual direct healthcare costs per BED patient ranged between $2,372 and $3,731. \n CONCLUSIONS BED is a serious eating disorder that impairs HRQoL and is related to increased healthcare utilization and healthcare costs. The limited literature warrants further research, especially to better understand the long-term HRQoL and economic burden of BED.", "title": "Epidemiology, health-related quality of life and economic burden of binge eating disorder: a systematic literature review" }, { "docid": "7285256", "text": "COPD continues to cause a heavy health and economic burden both in the United States and around the world. Some of the risk factors for COPD are well-known and include smoking, occupational exposures, air pollution, airway hyperresponsiveness, asthma, and certain genetic variations, although many questions, such as why < 20% of smokers develop significant airway obstruction, remain. Precise definitions of COPD vary and are frequently dependent on an accurate diagnosis of the problem by a physician. These differences in the definition of COPD can have large effects on the estimates of COPD in the population. Furthermore, evidence that COPD represents several different disease processes with potentially different interventions continues to emerge. In most of the world, COPD prevalence and mortality are still increasing and likely will continue to rise in response to increases in smoking, particularly by women and adolescents. Resources aimed at smoking cessation and prevention, COPD education and early detection, and better treatment will be of the most benefit in our continuing efforts against this important cause of morbidity and mortality.", "title": "COPD: epidemiology, prevalence, morbidity and mortality, and disease heterogeneity." }, { "docid": "32328114", "text": "Stroke ranks as the third leading cause of death in the United States. It is now estimated that there are more than 700 000 incident strokes annually and 4.4 million stroke survivors.1 2 The economic burden of stroke was estimated by the American Heart Association to be $51 billion (direct and indirect costs) in 1999.3 Despite the advent of treatment of selected patients with acute ischemic stroke with tissue plasminogen activator and the promise of other experimental therapies, the best approach to reducing the burden of stroke remains prevention.4 5 High-risk or stroke-prone individuals can be identified and targeted for specific interventions.6 This is important because epidemiological data suggest a substantial leveling off of prior declines in stroke-related mortality and a possible increase in stroke incidence.7 8 The Stroke Council of the American Heart Association formed an ad hoc writing group to provide a clear and concise overview of the evidence regarding various established and potential stroke risk factors. The writing group was chosen based on expertise in specific subject areas, and it used literature review, reference to previously published guidelines, and expert opinion to summarize existing evidence and formulate recommendations (Table 1⇓). View this table: Table 1. Levels of Evidence and Grading of Recommendations As given in Tables 2 through 4⇓⇓⇓, risk factors or risk markers for a first stroke were classified according to potential for modification (nonmodifiable, modifiable, or potentially modifiable) and strength of evidence (well documented, less well documented).5 The tables give the estimated prevalence, population attributable risk, relative risk, and risk reduction with treatment for each factor when known. Population attributable risk reflects the proportion of ischemic strokes in the population that can be attributed to a particular risk factor and is given by the formula 100×[prevalence(relative risk−1)/prevalence(relative risk−1)+1]). …", "title": "Primary prevention of ischemic stroke: A statement for healthcare professionals from the Stroke Council of the American Heart Association." }, { "docid": "581832", "text": "BACKGROUND Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. \n METHODS We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. \n FINDINGS Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2·9 years (95% uncertainty interval 2·9-3·0) for men and 3·5 years (3·4-3·7) for women, while HALE at age 65 years improved by 0·85 years (0·78-0·92) and 1·2 years (1·1-1·3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. \n INTERPRETATION Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum. \n FUNDING Bill & Melinda Gates Foundation.", "title": "Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015" }, { "docid": "12428497", "text": "BACKGROUND Adoption of new and underutilized vaccines by national immunization programs is an essential step towards reducing child mortality. Policy decisions to adopt new vaccines in high mortality countries often lag behind decisions in high-income countries. Using the case of Haemophilus influenzae type b (Hib) vaccine, this paper endeavors to explain these delays through the analysis of country-level economic, epidemiological, programmatic and policy-related factors, as well as the role of the Global Alliance for Vaccines and Immunisation (GAVI Alliance). \n METHODS AND FINDINGS Data for 147 countries from 1990 to 2007 were analyzed in accelerated failure time models to identify factors that are associated with the time to decision to adopt Hib vaccine. In multivariable models that control for Gross National Income, region, and burden of Hib disease, the receipt of GAVI support speeded the time to decision by a factor of 0.37 (95% CI 0.18-0.76), or 63%. The presence of two or more neighboring country adopters accelerated decisions to adopt by a factor of 0.50 (95% CI 0.33-0.75). For each 1% increase in vaccine price, decisions to adopt are delayed by a factor of 1.02 (95% CI 1.00-1.04). Global recommendations and local studies were not associated with time to decision. \n CONCLUSIONS This study substantiates previous findings related to vaccine price and presents new evidence to suggest that GAVI eligibility is associated with accelerated decisions to adopt Hib vaccine. The influence of neighboring country decisions was also highly significant, suggesting that approaches to support the adoption of new vaccines should consider supply- and demand-side factors.", "title": "Accelerating Policy Decisions to Adopt Haemophilus influenzae Type b Vaccine: A Global, Multivariable Analysis" }, { "docid": "18074797", "text": "BACKGROUND Over the past decade malaria intervention coverage has been scaled up across Africa. However, it remains unclear what overall reduction in transmission is achievable using currently available tools. \n METHODS AND FINDINGS We developed an individual-based simulation model for Plasmodium falciparum transmission in an African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus) with parameters obtained by fitting to parasite prevalence data from 34 transmission settings across Africa. We incorporated the effect of the switch to artemisinin-combination therapy (ACT) and increasing coverage of long-lasting insecticide treated nets (LLINs) from the year 2000 onwards. We then explored the impact on transmission of continued roll-out of LLINs, additional rounds of indoor residual spraying (IRS), mass screening and treatment (MSAT), and a future RTS,S/AS01 vaccine in six representative settings with varying transmission intensity (as summarized by the annual entomological inoculation rate, EIR: 1 setting with low, 3 with moderate, and 2 with high EIRs), vector-species combinations, and patterns of seasonality. In all settings we considered a realistic target of 80% coverage of interventions. In the low-transmission setting (EIR approximately 3 ibppy [infectious bites per person per year]), LLINs have the potential to reduce malaria transmission to low levels (<1% parasite prevalence in all age-groups) provided usage levels are high and sustained. In two of the moderate-transmission settings (EIR approximately 43 and 81 ibppy), additional rounds of IRS with DDT coupled with MSAT could drive parasite prevalence below a 1% threshold. However, in the third (EIR = 46) with An. arabiensis prevailing, these interventions are insufficient to reach this threshold. In both high-transmission settings (EIR approximately 586 and 675 ibppy), either unrealistically high coverage levels (>90%) or novel tools and/or substantial social improvements will be required, although considerable reductions in prevalence can be achieved with existing tools and realistic coverage levels. \n CONCLUSIONS Interventions using current tools can result in major reductions in P. falciparum malaria transmission and the associated disease burden in Africa. Reduction to the 1% parasite prevalence threshold is possible in low- to moderate-transmission settings when vectors are primarily endophilic (indoor-resting), provided a comprehensive and sustained intervention program is achieved through roll-out of interventions. In high-transmission settings and those in which vectors are mainly exophilic (outdoor-resting), additional new tools that target exophagic (outdoor-biting), exophilic, and partly zoophagic mosquitoes will be required.", "title": "Reducing Plasmodium falciparum Malaria Transmission in Africa: A Model-Based Evaluation of Intervention Strategies" }, { "docid": "22420524", "text": "CONTEXT Gallstone disease is a leading cause of morbidity in western countries and carries a high economic burden. Statins decrease hepatic cholesterol biosynthesis and may therefore lower the risk of cholesterol gallstones by reducing the cholesterol concentration in the bile. Data on this association in humans are scarce. \n OBJECTIVE To study the association between the use of statins, fibrates, or other lipid-lowering agents and the risk of incident gallstone disease followed by cholecystectomy. \n DESIGN, SETTING, AND PARTICIPANTS Case-control analysis using the UK-based General Practice Research Database. Incident patients between 1994 and 2008 and 4 controls per each patient were identified and matched on age, sex, general practice, calendar time, and years of history in the database. The study population was 76% women and the mean (SD) age was 53.4 (15.0) years at the index date. Conditional logistic regression was used to estimate the odds ratio (OR) of developing gallstones followed by cholecystectomy in relation to exposure to lipid-lowering agents, stratified by exposure timing and duration. The ORs and 95% confidence intervals (CIs) were adjusted for smoking, body mass index, ischemic heart disease, stroke, and estrogen use. \n MAIN OUTCOME MEASURE The adjusted OR (AOR) for developing gallstone disease followed by cholecystectomy in relation to exposure to lipid-lowering agents. \n RESULTS A total of 27,035 patients with cholecystectomy and 106,531 matched controls were identified, including 2396 patients and 8868 controls who had statin use. Compared with nonuse, current statin use (last prescription recorded within 90 days before the first-time diagnosis of the disease) was 1.0% for patients and 0.8% for controls (AOR, 1.10; 95% CI, 0.95-1.27) for 1 to 4 prescriptions; 2.6% vs 2.4% (AOR, 0.85; 95% CI, 0.77-0.93) for 5 to 19 prescriptions, and 3.2% vs 3.7% (AOR, 0.64; 95% CI, 0.59-0.70) for 20 or more prescriptions. The AORs for current use of statins defined as 20 or more prescriptions were similar (around 0.6) across age, sex, and body mass index categories, and across the statin class. \n CONCLUSION Long-term use of statins was associated with a decreased risk of gallstones followed by cholecystectomy.", "title": "Statin use and risk of gallstone disease followed by cholecystectomy." }, { "docid": "32357890", "text": "BACKGROUND The literature describing the global prevalence of anxiety disorders is highly variable. A systematic review and meta-regression were undertaken to estimate the prevalence of anxiety disorders and to identify factors that may influence these estimates. The findings will inform the new Global Burden of Disease study. Method A systematic review identified prevalence studies of anxiety disorders published between 1980 and 2009. Electronic databases, reference lists, review articles and monographs were searched and experts then contacted to identify missing studies. Substantive and methodological factors associated with inter-study variability were identified through meta-regression analyses and the global prevalence of anxiety disorders was calculated adjusting for study methodology. \n RESULTS The prevalence of anxiety disorders was obtained from 87 studies across 44 countries. Estimates of current prevalence ranged between 0.9% and 28.3% and past-year prevalence between 2.4% and 29.8%. Substantive factors including gender, age, culture, conflict and economic status, and urbanicity accounted for the greatest proportion of variability. Methodological factors in the final multivariate model (prevalence period, number of disorders and diagnostic instrument) explained an additional 13% of variance between studies. The global current prevalence of anxiety disorders adjusted for methodological differences was 7.3% (4.8-10.9%) and ranged from 5.3% (3.5-8.1%) in African cultures to 10.4% (7.0-15.5%) in Euro/Anglo cultures. \n CONCLUSIONS Anxiety disorders are common and the substantive and methodological factors identified here explain much of the variability in prevalence estimates. Specific attention should be paid to cultural differences in responses to survey instruments for anxiety disorders.", "title": "Global prevalence of anxiety disorders: a systematic review and meta-regression." }, { "docid": "10071552", "text": "BACKGROUND Taxing sugar-sweetened beverages (SSBs) has been proposed in high-income countries to reduce obesity and type 2 diabetes. We sought to estimate the potential health effects of such a fiscal strategy in the middle-income country of India, where there is heterogeneity in SSB consumption, patterns of substitution between SSBs and other beverages after tax increases, and vast differences in chronic disease risk within the population. \n METHODS AND FINDINGS Using consumption and price variations data from a nationally representative survey of 100,855 Indian households, we first calculated how changes in SSB price alter per capita consumption of SSBs and substitution with other beverages. We then incorporated SSB sales trends, body mass index (BMI), and diabetes incidence data stratified by age, sex, income, and urban/rural residence into a validated microsimulation of caloric consumption, glycemic load, overweight/obesity prevalence, and type 2 diabetes incidence among Indian subpopulations facing a 20% SSB excise tax. The 20% SSB tax was anticipated to reduce overweight and obesity prevalence by 3.0% (95% CI 1.6%-5.9%) and type 2 diabetes incidence by 1.6% (95% CI 1.2%-1.9%) among various Indian subpopulations over the period 2014-2023, if SSB consumption continued to increase linearly in accordance with secular trends. However, acceleration in SSB consumption trends consistent with industry marketing models would be expected to increase the impact efficacy of taxation, averting 4.2% of prevalent overweight/obesity (95% CI 2.5-10.0%) and 2.5% (95% CI 1.0-2.8%) of incident type 2 diabetes from 2014-2023. Given current consumption and BMI distributions, our results suggest the largest relative effect would be expected among young rural men, refuting our a priori hypothesis that urban populations would be isolated beneficiaries of SSB taxation. Key limitations of this estimation approach include the assumption that consumer expenditure behavior from prior years, captured in price elasticities, will reflect future behavior among consumers, and potential underreporting of consumption in dietary recall data used to inform our calculations. \n CONCLUSION Sustained SSB taxation at a high tax rate could mitigate rising obesity and type 2 diabetes in India among both urban and rural subpopulations.", "title": "Averting Obesity and Type 2 Diabetes in India through Sugar-Sweetened Beverage Taxation: An Economic-Epidemiologic Modeling Study" }, { "docid": "21495419", "text": "Information on the prevalence of COPD was obtained from vital statistics, health interview surveys, hospital charge records, national publications, and the World Health Organization (WHO). These data indicate that COPD is a common disease with implications for global health. In the United States, morbidity caused by COPD is 4%, making COPD the fourth leading cause of death, exceeded only by heart attacks, cancer, and stroke. Internationally, there is substantial variation in death rates possibly reflecting smoking behavior, type and processing of tobacco, pollution, climate, respiratory management, and genetic factors. The Global Obstructive Lung Disease Initiative, initiated by the National Heart, Lung, and Blood Institute and the WHO, aims to raise awareness of the increasing burden of COPD, decrease morbidity and mortality, promote further study of the condition, and implement programs to prevent COPD.", "title": "The impact of COPD on lung health worldwide: epidemiology and incidence." }, { "docid": "24721347", "text": "The founding fathers of malariology combined scientific originality, perseverance in research, strong characters, breadth of interest and social concern. A hundred years later research and understanding has made immense progress but the world still bears a huge burden of malaria. For the next century research requires both more specialism and a holistic range if it is to be used in control, requiring multidisciplinary team work. Environmental changes and interventions produce a dynamic and changing pattern of malaria, not the static one of the past. From the original parasite life cycle, research has analysed a series of other cycles at electron microscope, biochemical and genome levels on decreasing size scales and quantitative epidemiological cycles for control. Recent additions to these concepts have been stage-specific antigens, cycles of disease rather than parasites alone, considering populations of parasites rather than just cases, and also genetic variation in each component of the parasite-human host-vector triad. In this volume there emerges for the first time a coherent overall picture of the biomedical aspects of basic malariology as the interacting population genetics of malaria parasites, anophelines and people. This provides a coherent model for the new century dealing with the great biological malaria problems of drug resistance, vaccine development, insecticidal and net control and can feed, with socio-economic work, into the gathering renewal of control efforts. New work on large-scale changes of malaria in space and time enables us to be precise about effects of local and global environmental changes to predict epidemics. Future research will be as much about linking these different scales of understanding as control will be about linking different levels of the health system. The grim situation in poor holoendemic countries also requires practical support of the type that the founders of malariology were involved in. A coherent understanding needs to feed into the new control efforts, from Roll Back Malaria onwards, for the next century.", "title": "The last and the next hundred years of malariology." }, { "docid": "25451374", "text": "BACKGROUND More than 80% of deaths from cardiovascular disease are estimated to occur in low-income and middle-income countries, but the reasons are unknown. \n METHODS We enrolled 156,424 persons from 628 urban and rural communities in 17 countries (3 high-income, 10 middle-income, and 4 low-income countries) and assessed their cardiovascular risk using the INTERHEART Risk Score, a validated score for quantifying risk-factor burden without the use of laboratory testing (with higher scores indicating greater risk-factor burden). Participants were followed for incident cardiovascular disease and death for a mean of 4.1 years. \n RESULTS The mean INTERHEART Risk Score was highest in high-income countries, intermediate in middle-income countries, and lowest in low-income countries (P<0.001). However, the rates of major cardiovascular events (death from cardiovascular causes, myocardial infarction, stroke, or heart failure) were lower in high-income countries than in middle- and low-income countries (3.99 events per 1000 person-years vs. 5.38 and 6.43 events per 1000 person-years, respectively; P<0.001). Case fatality rates were also lowest in high-income countries (6.5%, 15.9%, and 17.3% in high-, middle-, and low-income countries, respectively; P=0.01). Urban communities had a higher risk-factor burden than rural communities but lower rates of cardiovascular events (4.83 vs. 6.25 events per 1000 person-years, P<0.001) and case fatality rates (13.52% vs. 17.25%, P<0.001). The use of preventive medications and revascularization procedures was significantly more common in high-income countries than in middle- or low-income countries (P<0.001). \n CONCLUSIONS Although the risk-factor burden was lowest in low-income countries, the rates of major cardiovascular disease and death were substantially higher in low-income countries than in high-income countries. The high burden of risk factors in high-income countries may have been mitigated by better control of risk factors and more frequent use of proven pharmacologic therapies and revascularization. (Funded by the Population Health Research Institute and others.).", "title": "Cardiovascular risk and events in 17 low-, middle-, and high-income countries." }, { "docid": "19824183", "text": "Between 1995 and 2000 there were marked changes in the epidemiology of malaria in Ifakara, southern Tanzania. We documented these changes using parasitological and clinical data from a series of community- and hospital-based studies involving children up to the age of 5 years. There was a right shift and lowering in the age-specific parasite prevalence in the community-based cohort studies. The incidence of clinical malaria in placebo-receiving infants in additional study cohorts dropped from 0.8 in 1995 to 0.43 episodes per infant per year in 2000, an incidence rate ratio of 0.53 (95% confidence interval: 0.404, 0.70, P<0.0001). At the same time, there was an increase in the total number of malaria admissions and a marked right shift in the age pattern of these admissions (median age in 1995 1.55 years vs. 2.33 in 2000, P<0.0001). However, the burden of malaria deaths remained in infants. We discuss how these dramatic changes in the epidemiology of malaria may have arisen from the use of currently available malaria control tools. Caution is required in the interpretation of hospital-based data as it is likely to underestimate the impact of anaemia on mortality in the community, where most paediatric deaths occur. Even in low/moderate malaria transmission settings, where older children suffer most malaria episodes, targeting effective malaria control at infants may produce important reductions in infant mortality caused by malaria.", "title": "The changing epidemiology of malaria in Ifakara Town, southern Tanzania." }, { "docid": "13900610", "text": "BACKGROUND Self-harm and suicide are common in prisoners, yet robust information on the full extent and characteristics of people at risk of self-harm is scant. Furthermore, understanding how frequently self-harm is followed by suicide, and in which prisoners this progression is most likely to happen, is important. We did a case-control study of all prisoners in England and Wales to ascertain the prevalence of self-harm in this population, associated risk factors, clustering effects, and risk of subsequent suicide after self-harm. \n METHODS Records of self-harm incidents in all prisons in England and Wales were gathered routinely between January, 2004, and December, 2009. We did a case-control comparison of prisoners who self-harmed and those who did not between January, 2006, and December, 2009. We also used a Bayesian approach to look at clustering of people who self-harmed. Prisoners who self-harmed and subsequently died by suicide in prison were compared with other inmates who self-harmed. \n FINDINGS 139,195 self-harm incidents were recorded in 26,510 individual prisoners between 2004 and 2009; 5-6% of male prisoners and 20-24% of female inmates self-harmed every year. Self-harm rates were more than ten times higher in female prisoners than in male inmates. Repetition of self-harm was common, particularly in women and teenage girls, in whom a subgroup of 102 prisoners accounted for 17,307 episodes. In both sexes, self-harm was associated with younger age, white ethnic origin, prison type, and a life sentence or being unsentenced; in female inmates, committing a violent offence against an individual was also a factor. Substantial evidence was noted of clustering in time and location of prisoners who self-harmed (adjusted intra-class correlation 0·15, 95% CI 0·11-0·18). 109 subsequent suicides in prison were reported in individuals who self-harmed; the risk was higher in those who self-harmed than in the general prison population, and more than half the deaths occurred within a month of self-harm. Risk factors for suicide after self-harm in male prisoners were older age and a previous self-harm incident of high or moderate lethality; in female inmates, a history of more than five self-harm incidents within a year was associated with subsequent suicide. \n INTERPRETATION The burden of self-harm in prisoners is substantial, particularly in women. Self-harm in prison is associated with subsequent suicide in this setting. Prevention and treatment of self-harm in prisoners is an essential component of suicide prevention in prisons. \n FUNDING Wellcome Trust, National Institute for Health Research, National Offender Management Service, and Department of Health.", "title": "Self-harm in prisons in England and Wales: an epidemiological study of prevalence, risk factors, clustering, and subsequent suicide" }, { "docid": "21914176", "text": "BACKGROUND Glaucoma is the World's leading cause of irreversible blindness, and poses serious public health and economic concerns. \n DESIGN Review. SAMPLES Published randomized trials and population-based studies since 1985. \n METHODS We report the economic impact of primary open-angle glaucoma and model the effect of changes in detection rates and management strategies. \n MAIN OUTCOME MEASURES The cost-effectiveness of different interventions to prevent vision loss from primary open-angle glaucoma was measured in terms of financial cost (Australian dollars) and disability-adjusted life years. \n RESULTS The prevalence of glaucoma in Australia is expected to increase from 208 000 in 2005 to 379 000 in 2025 because of the aging population. Health system costs over the same time period are estimated to increase from $AU355 million to $AU784 million. Total costs (health system costs, indirect costs and costs of loss of well-being) will increase from $AU1.9 billion to $AU4.3 billion in Australia. \n CONCLUSION Primary open-angle glaucoma poses a significant economic burden, which will increase substantially by 2025. This dynamic model provides a valuable tool for ongoing policy formulation and determining the economic impact of interventions to better prevent visual impairment and blindness from glaucoma.", "title": "Economic impact of primary open-angle glaucoma in Australia." }, { "docid": "5850219", "text": "BACKGROUND Population-based estimates of prevalence, risk distribution, and intervention uptake inform delivery of control programmes for sexually transmitted infections (STIs). We undertook the third National Survey of Sexual Attitudes and Lifestyles (Natsal-3) after implementation of national sexual health strategies, and describe the epidemiology of four STIs in Britain (England, Scotland, and Wales) and the uptake of interventions. \n METHODS Between Sept 6, 2010 and Aug 31, 2012 , we did a probability sample survey of 15,162 women and men aged 16-74 years in Britain. Participants were interviewed with computer-assisted face-to-face and self-completion questionnaires. Urine from a sample of participants aged 16-44 years who reported at least one sexual partner over the lifetime was tested for the presence of Chlamydia trachomatis, type-specific human papillomavirus (HPV), Neisseria gonorrhoeae, and HIV antibody. We describe age-specific and sex-specific prevalences of infection and intervention uptake, in relation to demographic and behavioural factors, and explore changes since Natsal-1 (1990-91) and Natsal-2 (1999-2001). \n FINDINGS Of 8047 eligible participants invited to provide a urine sample, 4828 (60%) agreed. We excluded 278 samples, leaving 4550 (94%) participants with STI test results. Chlamydia prevalence was 1·5% (95% CI 1·1-2·0) in women and 1·1% (0·7-1·6) in men. Prevalences in individuals aged 16-24 years were 3·1% (2·2-4·3) in women and 2·3% (1·5-3·4) in men. Area-level deprivation and higher numbers of partners, especially without use of condoms, were risk factors. However, 60·4% (45·5-73·7) of chlamydia in women and 43·3% (25·9-62·5) in men was in individuals who had had one partner in the past year. Among sexually active 16-24-year-olds, 54·2% (51·4-56·9) of women and 34·6% (31·8-37·4) of men reported testing for chlamydia in the past year, with testing higher in those with more partners. High-risk HPV was detected in 15·9% (14·4-17·5) of women, similar to in Natsal-2. Coverage of HPV catch-up vaccination was 61·5% (58·2-64·7). Prevalence of HPV types 16 and 18 in women aged 18-20 years was lower in Natsal-3 than Natsal-2 (5·8% [3·9-8·6] vs 11·3% [6·8-18·2]; age-adjusted odds ratio 0·44 [0·21-0·94]). Gonorrhoea (<0·1% prevalence in women and men) and HIV (0·1% prevalence in women and 0·2% in men) were uncommon and restricted to participants with recognised high-risk factors. Since Natsal-2, substantial increases were noted in attendance at sexual health clinics (from 6·7% to 21·4% in women and from 7·7% to 19·6% in men) and HIV testing (from 8·7% to 27·6% in women and from 9·2% to 16·9% in men) in the past 5 years. \n INTERPRETATION STIs were distributed heterogeneously, requiring general and infection-specific interventions. Increases in testing and attendance at sexual health clinics, especially in people at highest risk, are encouraging. However, STIs persist both in individuals accessing and those not accessing services. Our findings provide empirical evidence to inform future sexual health interventions and services. \n FUNDING Grants from the UK Medical Research Council and the Wellcome Trust, with support from the Economic and Social Research Council and the Department of Health.", "title": "Prevalence, risk factors, and uptake of interventions for sexually transmitted infections in Britain: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal)" }, { "docid": "3580005", "text": "BACKGROUND Chronic obstructive pulmonary disease (COPD) has a high prevalence rate in Germany and a further increase is expected within the next years. Although risk factors on an individual level are widely understood, only little is known about the spatial heterogeneity and population-based risk factors of COPD. Background knowledge about broader, population-based processes could help to plan the future provision of healthcare and prevention strategies more aligned to the expected demand. The aim of this study is to analyze how the prevalence of COPD varies across northeastern Germany on the smallest spatial-scale possible and to identify the location-specific population-based risk factors using health insurance claims of the AOK Nordost. \n METHODS To visualize the spatial distribution of COPD prevalence at the level of municipalities and urban districts, we used the conditional autoregressive Besag-York-Mollié (BYM) model. Geographically weighted regression modelling (GWR) was applied to analyze the location-specific ecological risk factors for COPD. \n RESULTS The sex- and age-adjusted prevalence of COPD was 6.5% in 2012 and varied widely across northeastern Germany. Population-based risk factors consist of the proportions of insurants aged 65 and older, insurants with migration background, household size and area deprivation. The results of the GWR model revealed that the population at risk for COPD varies considerably across northeastern Germany. \n CONCLUSION Area deprivation has a direct and an indirect influence on the prevalence of COPD. Persons ageing in socially disadvantaged areas have a higher chance of developing COPD, even when they are not necessarily directly affected by deprivation on an individual level. This underlines the importance of considering the impact of area deprivation on health for planning of healthcare. Additionally, our results reveal that in some parts of the study area, insurants with migration background and persons living in multi-persons households are at elevated risk of COPD.", "title": "Who is where at risk for Chronic Obstructive Pulmonary Disease? A spatial epidemiological analysis of health insurance claims for COPD in Northeastern Germany" } ]
389
Ethanol stress increases the expression of IBP in bacteria.
[ { "docid": "1148122", "text": "Understanding the genetic basis of adaptation is a central problem in biology. However, revealing the underlying molecular mechanisms has been challenging as changes in fitness may result from perturbations to many pathways, any of which may contribute relatively little. We have developed a combined experimental/computational framework to address this problem and used it to understand the genetic basis of ethanol tolerance in Escherichia coli. We used fitness profiling to measure the consequences of single-locus perturbations in the context of ethanol exposure. A module-level computational analysis was then used to reveal the organization of the contributing loci into cellular processes and regulatory pathways (e.g. osmoregulation and cell-wall biogenesis) whose modifications significantly affect ethanol tolerance. Strikingly, we discovered that a dominant component of adaptation involves metabolic rewiring that boosts intracellular ethanol degradation and assimilation. Through phenotypic and metabolomic analysis of laboratory-evolved ethanol-tolerant strains, we investigated naturally accessible pathways of ethanol tolerance. Remarkably, these laboratory-evolved strains, by and large, follow the same adaptive paths as inferred from our coarse-grained search of the fitness landscape.", "title": "Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli" } ]
[ { "docid": "21602220", "text": "The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates.", "title": "Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen." }, { "docid": "24019260", "text": "Alcohol dependence is a disease that impacts millions of individuals worldwide. There has been some progress with pharmacotherapy for alcohol-dependent individuals; however, there remains a critical need for the development of novel and additional therapeutic approaches. Alcohol and nicotine are commonly abused together, and there is evidence that neuronal nicotinic acetylcholine receptors (nAChRs) play a role in both alcohol and nicotine dependence. Varenicline, a partial agonist at the alpha4beta2 nAChRs, reduces nicotine intake and was recently approved as a smoking cessation aid. We have investigated the role of varenicline in the modulation of ethanol consumption and seeking using three different animal models of drinking. We show that acute administration of varenicline, in doses reported to reduce nicotine reward, selectively reduced ethanol but not sucrose seeking using an operant self-administration drinking paradigm and also decreased voluntary ethanol but not water consumption in animals chronically exposed to ethanol for 2 months before varenicline treatment. Furthermore, chronic varenicline administration decreased ethanol consumption, which did not result in a rebound increase in ethanol intake when the varenicline was no longer administered. The data suggest that the alpha4beta2 nAChRs may play a role in ethanol-seeking behaviors in animals chronically exposed to ethanol. The selectivity of varenicline in decreasing ethanol consumption combined with its reported safety profile and mild side effects in humans suggest that varenicline may prove to be a treatment for alcohol dependence.", "title": "Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, selectively decreases ethanol consumption and seeking." }, { "docid": "471735", "text": "Escherichia coli responds to the redox stress imposed by superoxide-generating agents such as paraquat by activating the synthesis of as many as 80 polypeptides. Expression of a key group of these inducible proteins is controlled at the transcriptional level by the soxRS locus (the soxRS regulon). A two-stage control system was hypothesized for soxRS, in which an intracellular redox signal would trigger the SoxR protein as a transcriptional activator of the soxS gene and the resulting increased levels of SoxS protein would activate transcription of the various soxRS regulon genes (B. Demple and C.F. Amábile Cuevas, Cell 67:837-839, 1990). We have constructed operon fusions of the E. coli lac genes to the soxS promoter to monitor soxS transcription. Expression from the soxS promoter is strongly inducible by paraquat in a manner strictly dependent on a functional soxR gene. Several other superoxide-generating agents also trigger soxR(+)-dependent soxS expression, and the inductions by paraquat and phenazine methosulfate were dependent on the presence of oxygen. Numerous other oxidative stress agents (H2O2, gamma rays, heat shock, etc.) failed to induce soxS, while aerobic growth of superoxide dismutase-deficient bacteria triggered soxR-dependent soxS expression. These results indicate a specific redox signal for soxS induction. A direct role for SoxR protein in the activation of the soxS gene is indicated by band-shift and DNase I footprinting experiments that demonstrate specific binding of the SoxR protein in cell extracts to the soxS promoter. The mode of SoxR binding to DNA appears to be similar to that of its homolog MerR in that the SoxR footprint spans the -10 to -35 region of the soxS promoter.", "title": "Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene." }, { "docid": "28025754", "text": "TO enable staining of insoluble calcium salts with glyoxal bis(2-hydroxyanil) (GBHA), the original solution containing 2 ml of 0.4% GBHA in absolute ethanol, and 0.3 ml of aqueous 5% NaOH, and limited to staining only soluble calcium salts, was modified as follows: 1, 2 ml of 0.4% GBHA in absolute ethanol in 0.6 ml of 10% aqueous NaOH; 11, 0.1 gm GBHA in 2 ml of 3.4% NaOH in 75% ethanol. To prevent diffusion and loss of calcium, the tissues were processed by the freeze-substitution or freeze-dry method and sections stained without removing the paraffin. Modification I is effective only when 1 or 2 drops placed on the section are evaporated gradually to dryness, concentrating the GBHA and NaOH on the insoluble calcium salts. Modification II is effective when dried or poured on the the section and allowed to stain for 5 min. The stained slides are immersed for 15 min in 90% ethanol saturated with KCN and Na2CO3 for specificity to calcium; rinsed and counterstained in 95% ethanol containing 0.1% each of fast...", "title": "THE GLYOXAL BIS(2-HYDROXYANIL) METHOD MODIFIED FOR LOCALIZING INSOLUBLE CALCIUM SALTS." }, { "docid": "22908536", "text": "Nonreplicating and metabolically quiescent bacteria are implicated in latent tuberculosis infections and relapses following \"sterilizing\" chemotherapy. However, evidence linking bacterial dormancy and persistence in vivo is largely inconclusive. Here we measure the single-cell dynamics of Mycobacterium tuberculosis replication and ribosomal activity using quantitative time-lapse microscopy and a reporter of ribosomal RNA gene expression. Single-cell dynamics exhibit heterogeneity under standard growth conditions, which is amplified by stressful conditions such as nutrient limitation, stationary phase, intracellular replication, and growth in mouse lungs. Additionally, the lungs of chronically infected mice harbor a subpopulation of nongrowing but metabolically active bacteria, which are absent in mice lacking interferon-γ, a cytokine essential for antituberculosis immunity. These cryptic bacterial forms are prominent in mice treated with the antituberculosis drug isoniazid, suggesting a role in postchemotherapeutic relapses. Thus, amplification of bacterial phenotypic heterogeneity in response to host immunity and drug pressure may contribute to tuberculosis persistence.", "title": "Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms." }, { "docid": "6251620", "text": "Antineutrophil cytoplasmic antibodies (ANCA) are a sensitive and specific marker for ANCA-associated systemic vasculitis. Using indirect immunofluorescence on ethanol-fixed neutrophils, two major fluoroscopic patterns can be recognised: a diffuse cytoplasmic staining (C-ANCA), and a perinuclear/nuclear staining (P-ANCA). In patients with vasculitis, more of 90% of C-ANCA are directed against proteinase 3 (PR3-ANCA) whereas approximately 80-90% of P-ANCA recognise myelperoxidase (MPO-ANCA). Although C-ANCA (PR3-ANCA) is preferentially associated with Wegener's granulomatosis (WG), and P-ANCA (MPO-ANCA) with microscopic polyangiitis (MPA), idiopathic necrotising crescentic glomerulonephritis (iNCGN) and Churg-Strauss syndrome (CSS), there is not absolute specificity. Between 10-20% of patients with classical WG show P-ANCA (MPO-ANCA), and even a larger percentage of patients with MPA or CSS have C-ANCA (PR3-ANCA). Furthermore, it should be stressed that approximately 10-20% of patients with WG or MPA (and 40-50% of cases of CSS) have negative assay for ANCA. The best diagnostic performance is obtained when indirect immunofluorescence is combined with PR3 and MPO-specific ELISAs. ANCA with different and unknown antigen specificity are found in a variety of conditions other than AASV, including inflammatory bowel diseases, other autoimmune diseases, and infections where their clinical significance is unclear. ANCA levels are useful to monitor disease activity but should not be used by themselves to guide treatment. A significant increase in ANCA titres, or the reappearance of ANCA, should alert the clinicians and lead to a stricter patient control.", "title": "Antineutrophil cytoplasmic antibodies (ANCA)." }, { "docid": "4641348", "text": "BACKGROUND/OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. \n MATERIALS/METHODS The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. \n RESULTS EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. \n CONCLUSIONS Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.", "title": "Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease" }, { "docid": "21373821", "text": "A series of 33 patients with combined (injurious) sleepwalking, sleep terrors, and rapid eye movement (REM) sleep behavior disorder (viz. \"parasomnia overlap disorder\") was gathered over an 8-year period. Patients underwent clinical and polysomnographic evaluations. Mean age was 34 +/- 14 (SD) years; mean age of parasomnia onset was 15 +/- 16 years (range 1-66); 70% (n = 23) were males. An idiopathic subgroup (n = 22) had a significantly earlier mean age of parasomnia onset (9 +/- 7 years) than a symptomatic subgroup (n = 11) (27 +/- 23 years, p = 0.002), whose parasomnia began with either of the following: neurologic disorders, n = 6 [congenital Mobius syndrome, narcolepsy, multiple sclerosis, brain tumor (and treatment), brain trauma, indeterminate disorder (exaggerated startle response/atypical cataplexy)]; nocturnal paroxysmal atrial fibrillation, n = 1; posttraumatic stress disorder/major depression, n = 1; chronic ethanol/amphetamine abuse and withdrawal, n = 1; or mixed disorders (schizophrenia, brain trauma, substance abuse), n = 2. The rate of DSM-III-R (Diagnostic and Statistical Manual, 3rd edition, revised) Axis 1 psychiatric disorders was not elevated; group scores on various psychometric tests were not elevated. Forty-five percent (n = 15) had previously received psychologic or psychiatric therapy for their parasomnia, without benefit. Treatment outcome was available for n = 20 patients; 90% (n = 18) had substantial parasomnia control with bedtime clonazepam (n = 13), alprazolam and/or carbamazepine (n = 4), or self-hypnosis (n = 1). Thus, \"parasomnia overlap disorder\" is a treatable condition that emerges in various clinical settings and can be understood within the context of current knowledge on parasomnias and motor control/dyscontrol during sleep.", "title": "A parasomnia overlap disorder involving sleepwalking, sleep terrors, and REM sleep behavior disorder in 33 polysomnographically confirmed cases." }, { "docid": "27396415", "text": "OBJECTIVE To establish high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria BIB. \n METHODS Based on the results of shake flask fermentation, the process was magnified into volume of a 50 L fermenter to optimize and verify the factors affecting the yield of the target protein, such as the fermentation medium, working seed inoculation amount, inducer concentration, induction starting time, induction duration, inducer adding mode and feeding strategy. \n RESULTS After activated in modified TB medium at 37°C for 8 h, the BIB working seed was inoculated at 5% (v/v) and was induced for expression for another 11 h by the final concentration of 5 mmol/L lactose. In growth phase, glucose at rate of 80 ml/h was used as carbon source, and in induction phase, glycerol at rate of 40 ml/h was used as carbon source; ammonia water was added dropwise to control pH at about 7.0, and revolution speed is adjusted to control the dissolved oxygen at above 30%; ultimately the output of bacterial body was 70 g/L and protein expression amount was about 32%. \n CONCLUSION After high cell density cultivation of the recombinant engineering bacteria, expression and yield of the target protein rBIB significantly increased.", "title": "A study of high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria." }, { "docid": "25293721", "text": "Placental oxidative stress plays a key role in the pathophysiology of placenta-related disorders, most notably preeclampsia (PE) and intrauterine growth restriction (IUGR). Oxidative stress occurs when accumulation of reactive oxygen species (ROS) damages DNA, proteins and lipids, an outcome that is limited by antioxidant enzymes; mitochondrial uncoupling protein 2 (UCP2) may also limit oxidative stress by reducing ROS production. Here we characterized placental antioxidant defenses during normal gestation and following glucocorticoid-induced IUGR. Placentas were collected on Days 16 and 22 of normal rat pregnancy (term = Day 23) and at Day 22 after dexamethasone treatment from Day 13. Expression of several genes encoding antioxidant enzymes (Sod1, Sod2, Sod3, Cat, Gpx3, Txn1, Txnrd1, Txnrd2, and Txnrd3) and Ucp2 was measured by quantitative RT-PCR in the labyrinth (LZ) and junctional zones (JZ) of the placenta. Expression of Sod1 and Ucp2 mRNAs and the activity of xanthine oxidase, a source of ROS, all increased from Days 16 to 22 in both placental zones, whereas Sod2 and Gpx3 increased only in the rapidly growing LZ. In contrast, Sod3 and Txnrd1 expression fell in the LZ over this period, whereas total superoxide dismutase activity remained stable. Dexamethasone treatment reduced fetal-placental growth and LZ expression of Ucp2 but increased JZ expression of Txn1. Indices of placental oxidative damage (TBARS, F2-isoprostanes, and 8-OHdG) did not change with gestational age or dexamethasone, indicative of adequate antioxidant protection. Overall, our data suggest that the rat placenta is protected from oxidative stress by the dynamic zone- and stage-dependent expression of antioxidant defense genes.", "title": "Antioxidant Defenses in the Rat Placenta in Late Gestation: Increased Labyrinthine Expression of Superoxide Dismutases, Glutathione Peroxidase 3, and Uncoupling Protein 21" }, { "docid": "25510546", "text": "Increased lipid supply causes beta cell death, which may contribute to reduced beta cell mass in type 2 diabetes. We investigated whether endoplasmic reticulum (ER) stress is necessary for lipid-induced apoptosis in beta cells and also whether ER stress is present in islets of an animal model of diabetes and of humans with type 2 diabetes. Expression of genes involved in ER stress was evaluated in insulin-secreting MIN6 cells exposed to elevated lipids, in islets isolated from db/db mice and in pancreas sections of humans with type 2 diabetes. Overproduction of the ER chaperone heat shock 70 kDa protein 5 (HSPA5, previously known as immunoglobulin heavy chain binding protein [BIP]) was performed to assess whether attenuation of ER stress affected lipid-induced apoptosis. We demonstrated that the pro-apoptotic fatty acid palmitate triggers a comprehensive ER stress response in MIN6 cells, which was virtually absent using non-apoptotic fatty acid oleate. Time-dependent increases in mRNA levels for activating transcription factor 4 (Atf4), DNA-damage inducible transcript 3 (Ddit3, previously known as C/EBP homologous protein [Chop]) and DnaJ homologue (HSP40) C3 (Dnajc3, previously known as p58) correlated with increased apoptosis in palmitate- but not in oleate-treated MIN6 cells. Attenuation of ER stress by overproduction of HSPA5 in MIN6 cells significantly protected against lipid-induced apoptosis. In islets of db/db mice, a variety of marker genes of ER stress were also upregulated. Increased processing (activation) of X-box binding protein 1 (Xbp1) mRNA was also observed, confirming the existence of ER stress. Finally, we observed increased islet protein production of HSPA5, DDIT3, DNAJC3 and BCL2-associated X protein in human pancreas sections of type 2 diabetes subjects. Our results provide evidence that ER stress occurs in type 2 diabetes and is required for aspects of the underlying beta cell failure.", "title": "Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes" }, { "docid": "44562221", "text": "Endogenous glucocorticoids (GC) play an important role in the termination of the inflammatory response following infection and tissue injury. However, recent findings indicate that stress can impair the anti-inflammatory capacities of these hormones. Lipopolysaccharide (LPS)-stimulated splenocytes of mice that were repeatedly subjected to social disruption (SDR) stress were less sensitive to the immunosuppressive effects of corticosterone (CORT) as demonstrated by an increased production of pro-inflammatory cytokines and enhanced cell survival. Myeloid cells expressing the marker CD11b were shown to play a key role in this process. Here we investigated the role of the bone marrow as a potential source of the GC-insensitive cells. The study revealed that LPS-stimulated bone marrow cells, in the absence of experimental stress, were virtually GC-resistant and retained high levels of cell viability after treatment with CORT. Recurrent exposure to the acute stressor over a period of 2, 4 or 6 days led to an increase in the GC sensitivity of the bone marrow cells. This increase in GC sensitivity was associated with enhanced mRNA expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), an increase in the number of myeloid progenitors, and a decrease in the proportion of mature CD11b+ cells. The changes in the cellular composition of the bone marrow were accompanied by an increase in splenic CD11b+ cell numbers. Simultaneous assessment of the GC sensitivity in bone marrow and spleen revealed a significant negative correlation between both tissues suggesting that social stress causes the redistribution of GC-insensitive myeloid cells from the bone marrow to the spleen.", "title": "Tissue-specific alterations in the glucocorticoid sensitivity of immune cells following repeated social defeat in mice" }, { "docid": "9588931", "text": "Vascular calcification is a strong independent predictor of increased cardiovascular morbidity and mortality and has a high prevalence among patients with chronic kidney disease. The present study investigated the effects of quercetin on vascular calcification caused by oxidative stress and abnormal mitochondrial dynamics both in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial potential and ATP production. Disruption of mitochondrial structural integrity was also observed in a rat model of adenine-induced aortic calcification. Increased production of reactive oxygen species, enhanced expression and phosphorylation of Drp1, and excessive mitochondrial fragmentation were also observed in Pi-treated VSMCs. These effects were accompanied by mitochondria-dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol and subsequent activation of caspase-3. Quercetin was shown to block Pi-induced apoptosis and calcification of VSMCs by inhibiting oxidative stress and decreasing mitochondrial fission by inhibiting the expression and phosphorylation of Drp1. Quercetin also significantly ameliorated adenine-induced aortic calcification in rats. In summary, our findings suggest that quercetin attenuates calcification by reducing apoptosis of VSMCs by blocking oxidative stress and inhibiting mitochondrial fission.", "title": "Quercetin attenuates vascular calcification by inhibiting oxidative stress and mitochondrial fission." }, { "docid": "12658073", "text": "The gut microbiota has been proposed as an environmental factor that affects the development of metabolic and inflammatory diseases in mammals. Recent reports indicate that gut bacteria-derived lipopolysaccharide (LPS) can initiate obesity and insulin resistance in mice; however, the molecular interactions responsible for microbial regulation of host metabolism and mediators of inflammation have not been studied in detail. Hepatic serum amyloid A (SAA) proteins are markers and proposed mediators of inflammation that exhibit increased levels in serum of insulin-resistant mice. Adipose tissue-derived SAA3 displays monocyte chemotactic activity and may play a role in metabolic inflammation associated with obesity and insulin resistance. To investigate a potential mechanistic link between the intestinal microbiota and induction of proinflammatory host factors, we performed molecular analyses of germ-free, conventionally raised and genetically modified Myd88-/- mouse models. SAA3 expression was determined to be significantly augmented in adipose (9.9+/-1.9-fold; P<0.001) and colonic tissue (7.0+/-2.3-fold; P<0.05) by the presence of intestinal microbes. In the colon, we provided evidence that SAA3 is partially regulated through the Toll-like receptor (TLR)/MyD88/NF-kappaB signaling axis. We identified epithelial cells and macrophages as cellular sources of SAA3 in the colon and found that colonic epithelial expression of SAA3 may be part of an NF-kappaB-dependent response to LPS from gut bacteria. In vitro experiments showed that LPS treatments of both epithelial cells and macrophages induced SAA3 expression (27.1+/-2.5-fold vs. 1.6+/-0.1-fold, respectively). Our data suggest that LPS, and potentially other products of the indigenous gut microbiota, might elevate cytokine expression in tissues and thus exacerbate chronic low-grade inflammation observed in obesity.", "title": "Regulation of Serum Amyloid A3 (SAA3) in Mouse Colonic Epithelium and Adipose Tissue by the Intestinal Microbiota" }, { "docid": "12903921", "text": "It has been proved that oxidative stress increases when leukemia is accompanied by depression. This fact may indicate the role of oxidative stress in the development of depression in cancer patients. The aim of this study was to determine whether the acute myeloid leukemia of Brown Norway rats, which is accompanied by oxidative stress, evoked behavioral and receptor changes resembling alterations characteristic of rat models of depression. The rats were divided into two groups: leukemic rats and healthy control. Leukemia was induced through intraperitoneal injection of 10(7) promyelocytic leukemia cells to the Brown Norway rats. Depression-like behavior was evaluated in the forced swim test at 30 or 34 days after leukemic cells injection. The rats were killed after the evaluation and the spleen, brain cortex and hippocampus were excised. The red-ox state was assessed in homogenates of tissues by measuring total glutathione (GSH) content, the ferric ion reducing ability of plasma (FRAP) level, expression of heme oxygenase-1 (HO-1), biliverdin reductase (BvR) and ferritin mRNA, superoxide dismutase (SOD) activity, as well as malondialdehyde (MDA) concentration. Radioligand binding assay was used to assess of the effect of leukemia on cortical receptors. Leukemic cells were identified using RM-124 antibody by FACS Calibur flow cytometry. Leukemia influenced locomotory activity as well as forced swim test behavior in a 34-day series of experiments. Signs of oxidative stress in leukemic rats were observed in each examined stage of leukemia development. The FRAP values and glutathione contents, were significantly lowered whereas HO-1 mRNA expression, and malonodialdehyde concentrations were significantly increased in the spleen and brain structures of leukemic rats in comparison with the healthy controls. A significant increase in the potency of glycine to displace [(3)H]L-689,560 from the strychnine-insensitive glycine site of the N-methyl-D-aspartic (NMDA) receptors receptor complex in cortical homogenates of the leukemic rats in 30- and 34-day experimental series was observed in comparison with the control. Upregulation of 5-HT(2A) receptors was observed in rat cortex after 30 days of leukemia development but not in 34-days series compared with the control. It is concluded that disturbances in antioxidant system in brain cortex were accompanied by an activation of glycine sites of the NMDA receptor complex, regardless of stage of leukemia development, which are characteristic of model of depression. Findings of our study demonstrate the link between glutamatergic activity, oxidative stress and leukemia.", "title": "Evaluation of oxidative status and depression-like responses in Brown Norway rats with acute myeloid leukemia" }, { "docid": "28517384", "text": "Myeloid differentiation factor-2 (MD-2) is a lipopolysaccharide (LPS)-binding protein usually coexpressed with and binding to Toll-like receptor 4 (TLR4), conferring LPS responsiveness of immune cells. MD-2 is also found as a soluble protein. Soluble MD-2 (sMD-2) levels are markedly elevated in plasma from patients with severe infections, and in other fluids from inflamed tissues. We show that sMD-2 is a type II acute-phase protein. Soluble MD-2 mRNA and protein levels are up-regulated in mouse liver after the induction of an acute-phase response. It is secreted by human hepatocytic cells and up-regulated by interleukin-6. Soluble MD-2 binds to Gram-negative but not Gram-positive bacteria, and sMD-2 secreted by hepatocytic cells is an essential cofactor for the activation of TLR4-expressing cells by Gram-negative bacteria. Soluble MD-2 opsonization of Gram-negative bacteria accelerates and enhances phagocytosis, principally by polymorphonuclear neutrophils. In summary, our results demonstrate that sMD-2 is a newly recognized type II acute-phase reactant, an opsonin for Gram-negative bacteria, and a cofactor essential for the activation of TLR4-expressing cells. This suggests that sMD-2 plays a key role in the host innate immune response to Gram-negative infections.", "title": "Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria." }, { "docid": "7506409", "text": "Human mesenchymal stem cells (hMSCs) have been widely studied as a source of primary adult stem cells for cell therapy because of their multidifferentiation potential; however, the growth arrest (also known as \"premature senescence\") often found in hMSCs cultured in vitro has been a major obstacle to the in-depth characterization of these cells. In addition, the inability to maintain constant cell growth hampers the development of additional genetic modifications aimed at achieving desired levels of differentiation to specific tissues; however, the molecular mechanisms that govern this phenomenon remain unclear, with the exception of a few studies demonstrating that induction of p16INK4a is responsible for this senescence-like event. Here, we observed that the premature growth arrest in hMSCs occurs in parallel with the induction of p16INK4a, following abrogation of inhibitory phosphorylation of retinoblastoma protein. These stress responses were concurrent with increased formation of reactive oxygen species (ROSs) from mitochondria and increased p38 mitogen-activated protein kinase (MAPK) activity. The introduction of Wip1 (wild-type p53 inducible phosphatase-1), a well-studied stress modulator, significantly lowered p16INK4a expression and led to p38 MAPK inactivation, although it failed to affect the levels of ROSs. Moreover, the suppression of stress responses by Wip1 apparently extended the life span of hMSCs, compared with control conditions, while maintaining their multilineage differentiation potential. Based on these results, we suggest that senescent growth arrest in hMSCs may result from activation of stress signaling pathways and consequent onset of stress responses, due in part to ROS production during prolonged in vitro culture.", "title": "Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways." }, { "docid": "24349992", "text": "Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a \"lethal tumor micro-environment. \" Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a \"metabolic\" and \"mutagenic\" motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the \"Reverse Warburg Effect\"). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use \"oxidative stress\" in adjacent fibroblasts (i) as an \"engine\" to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the \"field effect\" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively \"contagious\"--spread from cell-to-cell like a virus--creating an \"oncogenic/mutagenic\" field promoting widespread DNA damage.", "title": "Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells." }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" } ]
390
Ethanol stress increases the expression of PSP in bacteria.
[ { "docid": "1148122", "text": "Understanding the genetic basis of adaptation is a central problem in biology. However, revealing the underlying molecular mechanisms has been challenging as changes in fitness may result from perturbations to many pathways, any of which may contribute relatively little. We have developed a combined experimental/computational framework to address this problem and used it to understand the genetic basis of ethanol tolerance in Escherichia coli. We used fitness profiling to measure the consequences of single-locus perturbations in the context of ethanol exposure. A module-level computational analysis was then used to reveal the organization of the contributing loci into cellular processes and regulatory pathways (e.g. osmoregulation and cell-wall biogenesis) whose modifications significantly affect ethanol tolerance. Strikingly, we discovered that a dominant component of adaptation involves metabolic rewiring that boosts intracellular ethanol degradation and assimilation. Through phenotypic and metabolomic analysis of laboratory-evolved ethanol-tolerant strains, we investigated naturally accessible pathways of ethanol tolerance. Remarkably, these laboratory-evolved strains, by and large, follow the same adaptive paths as inferred from our coarse-grained search of the fitness landscape.", "title": "Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli" } ]
[ { "docid": "21602220", "text": "The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates.", "title": "Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen." }, { "docid": "24019260", "text": "Alcohol dependence is a disease that impacts millions of individuals worldwide. There has been some progress with pharmacotherapy for alcohol-dependent individuals; however, there remains a critical need for the development of novel and additional therapeutic approaches. Alcohol and nicotine are commonly abused together, and there is evidence that neuronal nicotinic acetylcholine receptors (nAChRs) play a role in both alcohol and nicotine dependence. Varenicline, a partial agonist at the alpha4beta2 nAChRs, reduces nicotine intake and was recently approved as a smoking cessation aid. We have investigated the role of varenicline in the modulation of ethanol consumption and seeking using three different animal models of drinking. We show that acute administration of varenicline, in doses reported to reduce nicotine reward, selectively reduced ethanol but not sucrose seeking using an operant self-administration drinking paradigm and also decreased voluntary ethanol but not water consumption in animals chronically exposed to ethanol for 2 months before varenicline treatment. Furthermore, chronic varenicline administration decreased ethanol consumption, which did not result in a rebound increase in ethanol intake when the varenicline was no longer administered. The data suggest that the alpha4beta2 nAChRs may play a role in ethanol-seeking behaviors in animals chronically exposed to ethanol. The selectivity of varenicline in decreasing ethanol consumption combined with its reported safety profile and mild side effects in humans suggest that varenicline may prove to be a treatment for alcohol dependence.", "title": "Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, selectively decreases ethanol consumption and seeking." }, { "docid": "471735", "text": "Escherichia coli responds to the redox stress imposed by superoxide-generating agents such as paraquat by activating the synthesis of as many as 80 polypeptides. Expression of a key group of these inducible proteins is controlled at the transcriptional level by the soxRS locus (the soxRS regulon). A two-stage control system was hypothesized for soxRS, in which an intracellular redox signal would trigger the SoxR protein as a transcriptional activator of the soxS gene and the resulting increased levels of SoxS protein would activate transcription of the various soxRS regulon genes (B. Demple and C.F. Amábile Cuevas, Cell 67:837-839, 1990). We have constructed operon fusions of the E. coli lac genes to the soxS promoter to monitor soxS transcription. Expression from the soxS promoter is strongly inducible by paraquat in a manner strictly dependent on a functional soxR gene. Several other superoxide-generating agents also trigger soxR(+)-dependent soxS expression, and the inductions by paraquat and phenazine methosulfate were dependent on the presence of oxygen. Numerous other oxidative stress agents (H2O2, gamma rays, heat shock, etc.) failed to induce soxS, while aerobic growth of superoxide dismutase-deficient bacteria triggered soxR-dependent soxS expression. These results indicate a specific redox signal for soxS induction. A direct role for SoxR protein in the activation of the soxS gene is indicated by band-shift and DNase I footprinting experiments that demonstrate specific binding of the SoxR protein in cell extracts to the soxS promoter. The mode of SoxR binding to DNA appears to be similar to that of its homolog MerR in that the SoxR footprint spans the -10 to -35 region of the soxS promoter.", "title": "Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene." }, { "docid": "28025754", "text": "TO enable staining of insoluble calcium salts with glyoxal bis(2-hydroxyanil) (GBHA), the original solution containing 2 ml of 0.4% GBHA in absolute ethanol, and 0.3 ml of aqueous 5% NaOH, and limited to staining only soluble calcium salts, was modified as follows: 1, 2 ml of 0.4% GBHA in absolute ethanol in 0.6 ml of 10% aqueous NaOH; 11, 0.1 gm GBHA in 2 ml of 3.4% NaOH in 75% ethanol. To prevent diffusion and loss of calcium, the tissues were processed by the freeze-substitution or freeze-dry method and sections stained without removing the paraffin. Modification I is effective only when 1 or 2 drops placed on the section are evaporated gradually to dryness, concentrating the GBHA and NaOH on the insoluble calcium salts. Modification II is effective when dried or poured on the the section and allowed to stain for 5 min. The stained slides are immersed for 15 min in 90% ethanol saturated with KCN and Na2CO3 for specificity to calcium; rinsed and counterstained in 95% ethanol containing 0.1% each of fast...", "title": "THE GLYOXAL BIS(2-HYDROXYANIL) METHOD MODIFIED FOR LOCALIZING INSOLUBLE CALCIUM SALTS." }, { "docid": "22908536", "text": "Nonreplicating and metabolically quiescent bacteria are implicated in latent tuberculosis infections and relapses following \"sterilizing\" chemotherapy. However, evidence linking bacterial dormancy and persistence in vivo is largely inconclusive. Here we measure the single-cell dynamics of Mycobacterium tuberculosis replication and ribosomal activity using quantitative time-lapse microscopy and a reporter of ribosomal RNA gene expression. Single-cell dynamics exhibit heterogeneity under standard growth conditions, which is amplified by stressful conditions such as nutrient limitation, stationary phase, intracellular replication, and growth in mouse lungs. Additionally, the lungs of chronically infected mice harbor a subpopulation of nongrowing but metabolically active bacteria, which are absent in mice lacking interferon-γ, a cytokine essential for antituberculosis immunity. These cryptic bacterial forms are prominent in mice treated with the antituberculosis drug isoniazid, suggesting a role in postchemotherapeutic relapses. Thus, amplification of bacterial phenotypic heterogeneity in response to host immunity and drug pressure may contribute to tuberculosis persistence.", "title": "Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms." }, { "docid": "6251620", "text": "Antineutrophil cytoplasmic antibodies (ANCA) are a sensitive and specific marker for ANCA-associated systemic vasculitis. Using indirect immunofluorescence on ethanol-fixed neutrophils, two major fluoroscopic patterns can be recognised: a diffuse cytoplasmic staining (C-ANCA), and a perinuclear/nuclear staining (P-ANCA). In patients with vasculitis, more of 90% of C-ANCA are directed against proteinase 3 (PR3-ANCA) whereas approximately 80-90% of P-ANCA recognise myelperoxidase (MPO-ANCA). Although C-ANCA (PR3-ANCA) is preferentially associated with Wegener's granulomatosis (WG), and P-ANCA (MPO-ANCA) with microscopic polyangiitis (MPA), idiopathic necrotising crescentic glomerulonephritis (iNCGN) and Churg-Strauss syndrome (CSS), there is not absolute specificity. Between 10-20% of patients with classical WG show P-ANCA (MPO-ANCA), and even a larger percentage of patients with MPA or CSS have C-ANCA (PR3-ANCA). Furthermore, it should be stressed that approximately 10-20% of patients with WG or MPA (and 40-50% of cases of CSS) have negative assay for ANCA. The best diagnostic performance is obtained when indirect immunofluorescence is combined with PR3 and MPO-specific ELISAs. ANCA with different and unknown antigen specificity are found in a variety of conditions other than AASV, including inflammatory bowel diseases, other autoimmune diseases, and infections where their clinical significance is unclear. ANCA levels are useful to monitor disease activity but should not be used by themselves to guide treatment. A significant increase in ANCA titres, or the reappearance of ANCA, should alert the clinicians and lead to a stricter patient control.", "title": "Antineutrophil cytoplasmic antibodies (ANCA)." }, { "docid": "4641348", "text": "BACKGROUND/OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. \n MATERIALS/METHODS The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. \n RESULTS EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. \n CONCLUSIONS Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.", "title": "Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease" }, { "docid": "21373821", "text": "A series of 33 patients with combined (injurious) sleepwalking, sleep terrors, and rapid eye movement (REM) sleep behavior disorder (viz. \"parasomnia overlap disorder\") was gathered over an 8-year period. Patients underwent clinical and polysomnographic evaluations. Mean age was 34 +/- 14 (SD) years; mean age of parasomnia onset was 15 +/- 16 years (range 1-66); 70% (n = 23) were males. An idiopathic subgroup (n = 22) had a significantly earlier mean age of parasomnia onset (9 +/- 7 years) than a symptomatic subgroup (n = 11) (27 +/- 23 years, p = 0.002), whose parasomnia began with either of the following: neurologic disorders, n = 6 [congenital Mobius syndrome, narcolepsy, multiple sclerosis, brain tumor (and treatment), brain trauma, indeterminate disorder (exaggerated startle response/atypical cataplexy)]; nocturnal paroxysmal atrial fibrillation, n = 1; posttraumatic stress disorder/major depression, n = 1; chronic ethanol/amphetamine abuse and withdrawal, n = 1; or mixed disorders (schizophrenia, brain trauma, substance abuse), n = 2. The rate of DSM-III-R (Diagnostic and Statistical Manual, 3rd edition, revised) Axis 1 psychiatric disorders was not elevated; group scores on various psychometric tests were not elevated. Forty-five percent (n = 15) had previously received psychologic or psychiatric therapy for their parasomnia, without benefit. Treatment outcome was available for n = 20 patients; 90% (n = 18) had substantial parasomnia control with bedtime clonazepam (n = 13), alprazolam and/or carbamazepine (n = 4), or self-hypnosis (n = 1). Thus, \"parasomnia overlap disorder\" is a treatable condition that emerges in various clinical settings and can be understood within the context of current knowledge on parasomnias and motor control/dyscontrol during sleep.", "title": "A parasomnia overlap disorder involving sleepwalking, sleep terrors, and REM sleep behavior disorder in 33 polysomnographically confirmed cases." }, { "docid": "27396415", "text": "OBJECTIVE To establish high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria BIB. \n METHODS Based on the results of shake flask fermentation, the process was magnified into volume of a 50 L fermenter to optimize and verify the factors affecting the yield of the target protein, such as the fermentation medium, working seed inoculation amount, inducer concentration, induction starting time, induction duration, inducer adding mode and feeding strategy. \n RESULTS After activated in modified TB medium at 37°C for 8 h, the BIB working seed was inoculated at 5% (v/v) and was induced for expression for another 11 h by the final concentration of 5 mmol/L lactose. In growth phase, glucose at rate of 80 ml/h was used as carbon source, and in induction phase, glycerol at rate of 40 ml/h was used as carbon source; ammonia water was added dropwise to control pH at about 7.0, and revolution speed is adjusted to control the dissolved oxygen at above 30%; ultimately the output of bacterial body was 70 g/L and protein expression amount was about 32%. \n CONCLUSION After high cell density cultivation of the recombinant engineering bacteria, expression and yield of the target protein rBIB significantly increased.", "title": "A study of high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria." }, { "docid": "25293721", "text": "Placental oxidative stress plays a key role in the pathophysiology of placenta-related disorders, most notably preeclampsia (PE) and intrauterine growth restriction (IUGR). Oxidative stress occurs when accumulation of reactive oxygen species (ROS) damages DNA, proteins and lipids, an outcome that is limited by antioxidant enzymes; mitochondrial uncoupling protein 2 (UCP2) may also limit oxidative stress by reducing ROS production. Here we characterized placental antioxidant defenses during normal gestation and following glucocorticoid-induced IUGR. Placentas were collected on Days 16 and 22 of normal rat pregnancy (term = Day 23) and at Day 22 after dexamethasone treatment from Day 13. Expression of several genes encoding antioxidant enzymes (Sod1, Sod2, Sod3, Cat, Gpx3, Txn1, Txnrd1, Txnrd2, and Txnrd3) and Ucp2 was measured by quantitative RT-PCR in the labyrinth (LZ) and junctional zones (JZ) of the placenta. Expression of Sod1 and Ucp2 mRNAs and the activity of xanthine oxidase, a source of ROS, all increased from Days 16 to 22 in both placental zones, whereas Sod2 and Gpx3 increased only in the rapidly growing LZ. In contrast, Sod3 and Txnrd1 expression fell in the LZ over this period, whereas total superoxide dismutase activity remained stable. Dexamethasone treatment reduced fetal-placental growth and LZ expression of Ucp2 but increased JZ expression of Txn1. Indices of placental oxidative damage (TBARS, F2-isoprostanes, and 8-OHdG) did not change with gestational age or dexamethasone, indicative of adequate antioxidant protection. Overall, our data suggest that the rat placenta is protected from oxidative stress by the dynamic zone- and stage-dependent expression of antioxidant defense genes.", "title": "Antioxidant Defenses in the Rat Placenta in Late Gestation: Increased Labyrinthine Expression of Superoxide Dismutases, Glutathione Peroxidase 3, and Uncoupling Protein 21" }, { "docid": "25510546", "text": "Increased lipid supply causes beta cell death, which may contribute to reduced beta cell mass in type 2 diabetes. We investigated whether endoplasmic reticulum (ER) stress is necessary for lipid-induced apoptosis in beta cells and also whether ER stress is present in islets of an animal model of diabetes and of humans with type 2 diabetes. Expression of genes involved in ER stress was evaluated in insulin-secreting MIN6 cells exposed to elevated lipids, in islets isolated from db/db mice and in pancreas sections of humans with type 2 diabetes. Overproduction of the ER chaperone heat shock 70 kDa protein 5 (HSPA5, previously known as immunoglobulin heavy chain binding protein [BIP]) was performed to assess whether attenuation of ER stress affected lipid-induced apoptosis. We demonstrated that the pro-apoptotic fatty acid palmitate triggers a comprehensive ER stress response in MIN6 cells, which was virtually absent using non-apoptotic fatty acid oleate. Time-dependent increases in mRNA levels for activating transcription factor 4 (Atf4), DNA-damage inducible transcript 3 (Ddit3, previously known as C/EBP homologous protein [Chop]) and DnaJ homologue (HSP40) C3 (Dnajc3, previously known as p58) correlated with increased apoptosis in palmitate- but not in oleate-treated MIN6 cells. Attenuation of ER stress by overproduction of HSPA5 in MIN6 cells significantly protected against lipid-induced apoptosis. In islets of db/db mice, a variety of marker genes of ER stress were also upregulated. Increased processing (activation) of X-box binding protein 1 (Xbp1) mRNA was also observed, confirming the existence of ER stress. Finally, we observed increased islet protein production of HSPA5, DDIT3, DNAJC3 and BCL2-associated X protein in human pancreas sections of type 2 diabetes subjects. Our results provide evidence that ER stress occurs in type 2 diabetes and is required for aspects of the underlying beta cell failure.", "title": "Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes" }, { "docid": "44562221", "text": "Endogenous glucocorticoids (GC) play an important role in the termination of the inflammatory response following infection and tissue injury. However, recent findings indicate that stress can impair the anti-inflammatory capacities of these hormones. Lipopolysaccharide (LPS)-stimulated splenocytes of mice that were repeatedly subjected to social disruption (SDR) stress were less sensitive to the immunosuppressive effects of corticosterone (CORT) as demonstrated by an increased production of pro-inflammatory cytokines and enhanced cell survival. Myeloid cells expressing the marker CD11b were shown to play a key role in this process. Here we investigated the role of the bone marrow as a potential source of the GC-insensitive cells. The study revealed that LPS-stimulated bone marrow cells, in the absence of experimental stress, were virtually GC-resistant and retained high levels of cell viability after treatment with CORT. Recurrent exposure to the acute stressor over a period of 2, 4 or 6 days led to an increase in the GC sensitivity of the bone marrow cells. This increase in GC sensitivity was associated with enhanced mRNA expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), an increase in the number of myeloid progenitors, and a decrease in the proportion of mature CD11b+ cells. The changes in the cellular composition of the bone marrow were accompanied by an increase in splenic CD11b+ cell numbers. Simultaneous assessment of the GC sensitivity in bone marrow and spleen revealed a significant negative correlation between both tissues suggesting that social stress causes the redistribution of GC-insensitive myeloid cells from the bone marrow to the spleen.", "title": "Tissue-specific alterations in the glucocorticoid sensitivity of immune cells following repeated social defeat in mice" }, { "docid": "9588931", "text": "Vascular calcification is a strong independent predictor of increased cardiovascular morbidity and mortality and has a high prevalence among patients with chronic kidney disease. The present study investigated the effects of quercetin on vascular calcification caused by oxidative stress and abnormal mitochondrial dynamics both in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial potential and ATP production. Disruption of mitochondrial structural integrity was also observed in a rat model of adenine-induced aortic calcification. Increased production of reactive oxygen species, enhanced expression and phosphorylation of Drp1, and excessive mitochondrial fragmentation were also observed in Pi-treated VSMCs. These effects were accompanied by mitochondria-dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol and subsequent activation of caspase-3. Quercetin was shown to block Pi-induced apoptosis and calcification of VSMCs by inhibiting oxidative stress and decreasing mitochondrial fission by inhibiting the expression and phosphorylation of Drp1. Quercetin also significantly ameliorated adenine-induced aortic calcification in rats. In summary, our findings suggest that quercetin attenuates calcification by reducing apoptosis of VSMCs by blocking oxidative stress and inhibiting mitochondrial fission.", "title": "Quercetin attenuates vascular calcification by inhibiting oxidative stress and mitochondrial fission." }, { "docid": "12658073", "text": "The gut microbiota has been proposed as an environmental factor that affects the development of metabolic and inflammatory diseases in mammals. Recent reports indicate that gut bacteria-derived lipopolysaccharide (LPS) can initiate obesity and insulin resistance in mice; however, the molecular interactions responsible for microbial regulation of host metabolism and mediators of inflammation have not been studied in detail. Hepatic serum amyloid A (SAA) proteins are markers and proposed mediators of inflammation that exhibit increased levels in serum of insulin-resistant mice. Adipose tissue-derived SAA3 displays monocyte chemotactic activity and may play a role in metabolic inflammation associated with obesity and insulin resistance. To investigate a potential mechanistic link between the intestinal microbiota and induction of proinflammatory host factors, we performed molecular analyses of germ-free, conventionally raised and genetically modified Myd88-/- mouse models. SAA3 expression was determined to be significantly augmented in adipose (9.9+/-1.9-fold; P<0.001) and colonic tissue (7.0+/-2.3-fold; P<0.05) by the presence of intestinal microbes. In the colon, we provided evidence that SAA3 is partially regulated through the Toll-like receptor (TLR)/MyD88/NF-kappaB signaling axis. We identified epithelial cells and macrophages as cellular sources of SAA3 in the colon and found that colonic epithelial expression of SAA3 may be part of an NF-kappaB-dependent response to LPS from gut bacteria. In vitro experiments showed that LPS treatments of both epithelial cells and macrophages induced SAA3 expression (27.1+/-2.5-fold vs. 1.6+/-0.1-fold, respectively). Our data suggest that LPS, and potentially other products of the indigenous gut microbiota, might elevate cytokine expression in tissues and thus exacerbate chronic low-grade inflammation observed in obesity.", "title": "Regulation of Serum Amyloid A3 (SAA3) in Mouse Colonic Epithelium and Adipose Tissue by the Intestinal Microbiota" }, { "docid": "12903921", "text": "It has been proved that oxidative stress increases when leukemia is accompanied by depression. This fact may indicate the role of oxidative stress in the development of depression in cancer patients. The aim of this study was to determine whether the acute myeloid leukemia of Brown Norway rats, which is accompanied by oxidative stress, evoked behavioral and receptor changes resembling alterations characteristic of rat models of depression. The rats were divided into two groups: leukemic rats and healthy control. Leukemia was induced through intraperitoneal injection of 10(7) promyelocytic leukemia cells to the Brown Norway rats. Depression-like behavior was evaluated in the forced swim test at 30 or 34 days after leukemic cells injection. The rats were killed after the evaluation and the spleen, brain cortex and hippocampus were excised. The red-ox state was assessed in homogenates of tissues by measuring total glutathione (GSH) content, the ferric ion reducing ability of plasma (FRAP) level, expression of heme oxygenase-1 (HO-1), biliverdin reductase (BvR) and ferritin mRNA, superoxide dismutase (SOD) activity, as well as malondialdehyde (MDA) concentration. Radioligand binding assay was used to assess of the effect of leukemia on cortical receptors. Leukemic cells were identified using RM-124 antibody by FACS Calibur flow cytometry. Leukemia influenced locomotory activity as well as forced swim test behavior in a 34-day series of experiments. Signs of oxidative stress in leukemic rats were observed in each examined stage of leukemia development. The FRAP values and glutathione contents, were significantly lowered whereas HO-1 mRNA expression, and malonodialdehyde concentrations were significantly increased in the spleen and brain structures of leukemic rats in comparison with the healthy controls. A significant increase in the potency of glycine to displace [(3)H]L-689,560 from the strychnine-insensitive glycine site of the N-methyl-D-aspartic (NMDA) receptors receptor complex in cortical homogenates of the leukemic rats in 30- and 34-day experimental series was observed in comparison with the control. Upregulation of 5-HT(2A) receptors was observed in rat cortex after 30 days of leukemia development but not in 34-days series compared with the control. It is concluded that disturbances in antioxidant system in brain cortex were accompanied by an activation of glycine sites of the NMDA receptor complex, regardless of stage of leukemia development, which are characteristic of model of depression. Findings of our study demonstrate the link between glutamatergic activity, oxidative stress and leukemia.", "title": "Evaluation of oxidative status and depression-like responses in Brown Norway rats with acute myeloid leukemia" }, { "docid": "28517384", "text": "Myeloid differentiation factor-2 (MD-2) is a lipopolysaccharide (LPS)-binding protein usually coexpressed with and binding to Toll-like receptor 4 (TLR4), conferring LPS responsiveness of immune cells. MD-2 is also found as a soluble protein. Soluble MD-2 (sMD-2) levels are markedly elevated in plasma from patients with severe infections, and in other fluids from inflamed tissues. We show that sMD-2 is a type II acute-phase protein. Soluble MD-2 mRNA and protein levels are up-regulated in mouse liver after the induction of an acute-phase response. It is secreted by human hepatocytic cells and up-regulated by interleukin-6. Soluble MD-2 binds to Gram-negative but not Gram-positive bacteria, and sMD-2 secreted by hepatocytic cells is an essential cofactor for the activation of TLR4-expressing cells by Gram-negative bacteria. Soluble MD-2 opsonization of Gram-negative bacteria accelerates and enhances phagocytosis, principally by polymorphonuclear neutrophils. In summary, our results demonstrate that sMD-2 is a newly recognized type II acute-phase reactant, an opsonin for Gram-negative bacteria, and a cofactor essential for the activation of TLR4-expressing cells. This suggests that sMD-2 plays a key role in the host innate immune response to Gram-negative infections.", "title": "Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria." }, { "docid": "7506409", "text": "Human mesenchymal stem cells (hMSCs) have been widely studied as a source of primary adult stem cells for cell therapy because of their multidifferentiation potential; however, the growth arrest (also known as \"premature senescence\") often found in hMSCs cultured in vitro has been a major obstacle to the in-depth characterization of these cells. In addition, the inability to maintain constant cell growth hampers the development of additional genetic modifications aimed at achieving desired levels of differentiation to specific tissues; however, the molecular mechanisms that govern this phenomenon remain unclear, with the exception of a few studies demonstrating that induction of p16INK4a is responsible for this senescence-like event. Here, we observed that the premature growth arrest in hMSCs occurs in parallel with the induction of p16INK4a, following abrogation of inhibitory phosphorylation of retinoblastoma protein. These stress responses were concurrent with increased formation of reactive oxygen species (ROSs) from mitochondria and increased p38 mitogen-activated protein kinase (MAPK) activity. The introduction of Wip1 (wild-type p53 inducible phosphatase-1), a well-studied stress modulator, significantly lowered p16INK4a expression and led to p38 MAPK inactivation, although it failed to affect the levels of ROSs. Moreover, the suppression of stress responses by Wip1 apparently extended the life span of hMSCs, compared with control conditions, while maintaining their multilineage differentiation potential. Based on these results, we suggest that senescent growth arrest in hMSCs may result from activation of stress signaling pathways and consequent onset of stress responses, due in part to ROS production during prolonged in vitro culture.", "title": "Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways." }, { "docid": "24349992", "text": "Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a \"lethal tumor micro-environment. \" Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a \"metabolic\" and \"mutagenic\" motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the \"Reverse Warburg Effect\"). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use \"oxidative stress\" in adjacent fibroblasts (i) as an \"engine\" to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the \"field effect\" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively \"contagious\"--spread from cell-to-cell like a virus--creating an \"oncogenic/mutagenic\" field promoting widespread DNA damage.", "title": "Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells." }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" } ]
391
Ethanol stress increases the expression of SRL in bacteria.
[ { "docid": "1148122", "text": "Understanding the genetic basis of adaptation is a central problem in biology. However, revealing the underlying molecular mechanisms has been challenging as changes in fitness may result from perturbations to many pathways, any of which may contribute relatively little. We have developed a combined experimental/computational framework to address this problem and used it to understand the genetic basis of ethanol tolerance in Escherichia coli. We used fitness profiling to measure the consequences of single-locus perturbations in the context of ethanol exposure. A module-level computational analysis was then used to reveal the organization of the contributing loci into cellular processes and regulatory pathways (e.g. osmoregulation and cell-wall biogenesis) whose modifications significantly affect ethanol tolerance. Strikingly, we discovered that a dominant component of adaptation involves metabolic rewiring that boosts intracellular ethanol degradation and assimilation. Through phenotypic and metabolomic analysis of laboratory-evolved ethanol-tolerant strains, we investigated naturally accessible pathways of ethanol tolerance. Remarkably, these laboratory-evolved strains, by and large, follow the same adaptive paths as inferred from our coarse-grained search of the fitness landscape.", "title": "Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli" } ]
[ { "docid": "21602220", "text": "The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates.", "title": "Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen." }, { "docid": "24019260", "text": "Alcohol dependence is a disease that impacts millions of individuals worldwide. There has been some progress with pharmacotherapy for alcohol-dependent individuals; however, there remains a critical need for the development of novel and additional therapeutic approaches. Alcohol and nicotine are commonly abused together, and there is evidence that neuronal nicotinic acetylcholine receptors (nAChRs) play a role in both alcohol and nicotine dependence. Varenicline, a partial agonist at the alpha4beta2 nAChRs, reduces nicotine intake and was recently approved as a smoking cessation aid. We have investigated the role of varenicline in the modulation of ethanol consumption and seeking using three different animal models of drinking. We show that acute administration of varenicline, in doses reported to reduce nicotine reward, selectively reduced ethanol but not sucrose seeking using an operant self-administration drinking paradigm and also decreased voluntary ethanol but not water consumption in animals chronically exposed to ethanol for 2 months before varenicline treatment. Furthermore, chronic varenicline administration decreased ethanol consumption, which did not result in a rebound increase in ethanol intake when the varenicline was no longer administered. The data suggest that the alpha4beta2 nAChRs may play a role in ethanol-seeking behaviors in animals chronically exposed to ethanol. The selectivity of varenicline in decreasing ethanol consumption combined with its reported safety profile and mild side effects in humans suggest that varenicline may prove to be a treatment for alcohol dependence.", "title": "Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, selectively decreases ethanol consumption and seeking." }, { "docid": "471735", "text": "Escherichia coli responds to the redox stress imposed by superoxide-generating agents such as paraquat by activating the synthesis of as many as 80 polypeptides. Expression of a key group of these inducible proteins is controlled at the transcriptional level by the soxRS locus (the soxRS regulon). A two-stage control system was hypothesized for soxRS, in which an intracellular redox signal would trigger the SoxR protein as a transcriptional activator of the soxS gene and the resulting increased levels of SoxS protein would activate transcription of the various soxRS regulon genes (B. Demple and C.F. Amábile Cuevas, Cell 67:837-839, 1990). We have constructed operon fusions of the E. coli lac genes to the soxS promoter to monitor soxS transcription. Expression from the soxS promoter is strongly inducible by paraquat in a manner strictly dependent on a functional soxR gene. Several other superoxide-generating agents also trigger soxR(+)-dependent soxS expression, and the inductions by paraquat and phenazine methosulfate were dependent on the presence of oxygen. Numerous other oxidative stress agents (H2O2, gamma rays, heat shock, etc.) failed to induce soxS, while aerobic growth of superoxide dismutase-deficient bacteria triggered soxR-dependent soxS expression. These results indicate a specific redox signal for soxS induction. A direct role for SoxR protein in the activation of the soxS gene is indicated by band-shift and DNase I footprinting experiments that demonstrate specific binding of the SoxR protein in cell extracts to the soxS promoter. The mode of SoxR binding to DNA appears to be similar to that of its homolog MerR in that the SoxR footprint spans the -10 to -35 region of the soxS promoter.", "title": "Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene." }, { "docid": "28025754", "text": "TO enable staining of insoluble calcium salts with glyoxal bis(2-hydroxyanil) (GBHA), the original solution containing 2 ml of 0.4% GBHA in absolute ethanol, and 0.3 ml of aqueous 5% NaOH, and limited to staining only soluble calcium salts, was modified as follows: 1, 2 ml of 0.4% GBHA in absolute ethanol in 0.6 ml of 10% aqueous NaOH; 11, 0.1 gm GBHA in 2 ml of 3.4% NaOH in 75% ethanol. To prevent diffusion and loss of calcium, the tissues were processed by the freeze-substitution or freeze-dry method and sections stained without removing the paraffin. Modification I is effective only when 1 or 2 drops placed on the section are evaporated gradually to dryness, concentrating the GBHA and NaOH on the insoluble calcium salts. Modification II is effective when dried or poured on the the section and allowed to stain for 5 min. The stained slides are immersed for 15 min in 90% ethanol saturated with KCN and Na2CO3 for specificity to calcium; rinsed and counterstained in 95% ethanol containing 0.1% each of fast...", "title": "THE GLYOXAL BIS(2-HYDROXYANIL) METHOD MODIFIED FOR LOCALIZING INSOLUBLE CALCIUM SALTS." }, { "docid": "22908536", "text": "Nonreplicating and metabolically quiescent bacteria are implicated in latent tuberculosis infections and relapses following \"sterilizing\" chemotherapy. However, evidence linking bacterial dormancy and persistence in vivo is largely inconclusive. Here we measure the single-cell dynamics of Mycobacterium tuberculosis replication and ribosomal activity using quantitative time-lapse microscopy and a reporter of ribosomal RNA gene expression. Single-cell dynamics exhibit heterogeneity under standard growth conditions, which is amplified by stressful conditions such as nutrient limitation, stationary phase, intracellular replication, and growth in mouse lungs. Additionally, the lungs of chronically infected mice harbor a subpopulation of nongrowing but metabolically active bacteria, which are absent in mice lacking interferon-γ, a cytokine essential for antituberculosis immunity. These cryptic bacterial forms are prominent in mice treated with the antituberculosis drug isoniazid, suggesting a role in postchemotherapeutic relapses. Thus, amplification of bacterial phenotypic heterogeneity in response to host immunity and drug pressure may contribute to tuberculosis persistence.", "title": "Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms." }, { "docid": "6251620", "text": "Antineutrophil cytoplasmic antibodies (ANCA) are a sensitive and specific marker for ANCA-associated systemic vasculitis. Using indirect immunofluorescence on ethanol-fixed neutrophils, two major fluoroscopic patterns can be recognised: a diffuse cytoplasmic staining (C-ANCA), and a perinuclear/nuclear staining (P-ANCA). In patients with vasculitis, more of 90% of C-ANCA are directed against proteinase 3 (PR3-ANCA) whereas approximately 80-90% of P-ANCA recognise myelperoxidase (MPO-ANCA). Although C-ANCA (PR3-ANCA) is preferentially associated with Wegener's granulomatosis (WG), and P-ANCA (MPO-ANCA) with microscopic polyangiitis (MPA), idiopathic necrotising crescentic glomerulonephritis (iNCGN) and Churg-Strauss syndrome (CSS), there is not absolute specificity. Between 10-20% of patients with classical WG show P-ANCA (MPO-ANCA), and even a larger percentage of patients with MPA or CSS have C-ANCA (PR3-ANCA). Furthermore, it should be stressed that approximately 10-20% of patients with WG or MPA (and 40-50% of cases of CSS) have negative assay for ANCA. The best diagnostic performance is obtained when indirect immunofluorescence is combined with PR3 and MPO-specific ELISAs. ANCA with different and unknown antigen specificity are found in a variety of conditions other than AASV, including inflammatory bowel diseases, other autoimmune diseases, and infections where their clinical significance is unclear. ANCA levels are useful to monitor disease activity but should not be used by themselves to guide treatment. A significant increase in ANCA titres, or the reappearance of ANCA, should alert the clinicians and lead to a stricter patient control.", "title": "Antineutrophil cytoplasmic antibodies (ANCA)." }, { "docid": "4641348", "text": "BACKGROUND/OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. \n MATERIALS/METHODS The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. \n RESULTS EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. \n CONCLUSIONS Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.", "title": "Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease" }, { "docid": "21373821", "text": "A series of 33 patients with combined (injurious) sleepwalking, sleep terrors, and rapid eye movement (REM) sleep behavior disorder (viz. \"parasomnia overlap disorder\") was gathered over an 8-year period. Patients underwent clinical and polysomnographic evaluations. Mean age was 34 +/- 14 (SD) years; mean age of parasomnia onset was 15 +/- 16 years (range 1-66); 70% (n = 23) were males. An idiopathic subgroup (n = 22) had a significantly earlier mean age of parasomnia onset (9 +/- 7 years) than a symptomatic subgroup (n = 11) (27 +/- 23 years, p = 0.002), whose parasomnia began with either of the following: neurologic disorders, n = 6 [congenital Mobius syndrome, narcolepsy, multiple sclerosis, brain tumor (and treatment), brain trauma, indeterminate disorder (exaggerated startle response/atypical cataplexy)]; nocturnal paroxysmal atrial fibrillation, n = 1; posttraumatic stress disorder/major depression, n = 1; chronic ethanol/amphetamine abuse and withdrawal, n = 1; or mixed disorders (schizophrenia, brain trauma, substance abuse), n = 2. The rate of DSM-III-R (Diagnostic and Statistical Manual, 3rd edition, revised) Axis 1 psychiatric disorders was not elevated; group scores on various psychometric tests were not elevated. Forty-five percent (n = 15) had previously received psychologic or psychiatric therapy for their parasomnia, without benefit. Treatment outcome was available for n = 20 patients; 90% (n = 18) had substantial parasomnia control with bedtime clonazepam (n = 13), alprazolam and/or carbamazepine (n = 4), or self-hypnosis (n = 1). Thus, \"parasomnia overlap disorder\" is a treatable condition that emerges in various clinical settings and can be understood within the context of current knowledge on parasomnias and motor control/dyscontrol during sleep.", "title": "A parasomnia overlap disorder involving sleepwalking, sleep terrors, and REM sleep behavior disorder in 33 polysomnographically confirmed cases." }, { "docid": "27396415", "text": "OBJECTIVE To establish high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria BIB. \n METHODS Based on the results of shake flask fermentation, the process was magnified into volume of a 50 L fermenter to optimize and verify the factors affecting the yield of the target protein, such as the fermentation medium, working seed inoculation amount, inducer concentration, induction starting time, induction duration, inducer adding mode and feeding strategy. \n RESULTS After activated in modified TB medium at 37°C for 8 h, the BIB working seed was inoculated at 5% (v/v) and was induced for expression for another 11 h by the final concentration of 5 mmol/L lactose. In growth phase, glucose at rate of 80 ml/h was used as carbon source, and in induction phase, glycerol at rate of 40 ml/h was used as carbon source; ammonia water was added dropwise to control pH at about 7.0, and revolution speed is adjusted to control the dissolved oxygen at above 30%; ultimately the output of bacterial body was 70 g/L and protein expression amount was about 32%. \n CONCLUSION After high cell density cultivation of the recombinant engineering bacteria, expression and yield of the target protein rBIB significantly increased.", "title": "A study of high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria." }, { "docid": "25293721", "text": "Placental oxidative stress plays a key role in the pathophysiology of placenta-related disorders, most notably preeclampsia (PE) and intrauterine growth restriction (IUGR). Oxidative stress occurs when accumulation of reactive oxygen species (ROS) damages DNA, proteins and lipids, an outcome that is limited by antioxidant enzymes; mitochondrial uncoupling protein 2 (UCP2) may also limit oxidative stress by reducing ROS production. Here we characterized placental antioxidant defenses during normal gestation and following glucocorticoid-induced IUGR. Placentas were collected on Days 16 and 22 of normal rat pregnancy (term = Day 23) and at Day 22 after dexamethasone treatment from Day 13. Expression of several genes encoding antioxidant enzymes (Sod1, Sod2, Sod3, Cat, Gpx3, Txn1, Txnrd1, Txnrd2, and Txnrd3) and Ucp2 was measured by quantitative RT-PCR in the labyrinth (LZ) and junctional zones (JZ) of the placenta. Expression of Sod1 and Ucp2 mRNAs and the activity of xanthine oxidase, a source of ROS, all increased from Days 16 to 22 in both placental zones, whereas Sod2 and Gpx3 increased only in the rapidly growing LZ. In contrast, Sod3 and Txnrd1 expression fell in the LZ over this period, whereas total superoxide dismutase activity remained stable. Dexamethasone treatment reduced fetal-placental growth and LZ expression of Ucp2 but increased JZ expression of Txn1. Indices of placental oxidative damage (TBARS, F2-isoprostanes, and 8-OHdG) did not change with gestational age or dexamethasone, indicative of adequate antioxidant protection. Overall, our data suggest that the rat placenta is protected from oxidative stress by the dynamic zone- and stage-dependent expression of antioxidant defense genes.", "title": "Antioxidant Defenses in the Rat Placenta in Late Gestation: Increased Labyrinthine Expression of Superoxide Dismutases, Glutathione Peroxidase 3, and Uncoupling Protein 21" }, { "docid": "25510546", "text": "Increased lipid supply causes beta cell death, which may contribute to reduced beta cell mass in type 2 diabetes. We investigated whether endoplasmic reticulum (ER) stress is necessary for lipid-induced apoptosis in beta cells and also whether ER stress is present in islets of an animal model of diabetes and of humans with type 2 diabetes. Expression of genes involved in ER stress was evaluated in insulin-secreting MIN6 cells exposed to elevated lipids, in islets isolated from db/db mice and in pancreas sections of humans with type 2 diabetes. Overproduction of the ER chaperone heat shock 70 kDa protein 5 (HSPA5, previously known as immunoglobulin heavy chain binding protein [BIP]) was performed to assess whether attenuation of ER stress affected lipid-induced apoptosis. We demonstrated that the pro-apoptotic fatty acid palmitate triggers a comprehensive ER stress response in MIN6 cells, which was virtually absent using non-apoptotic fatty acid oleate. Time-dependent increases in mRNA levels for activating transcription factor 4 (Atf4), DNA-damage inducible transcript 3 (Ddit3, previously known as C/EBP homologous protein [Chop]) and DnaJ homologue (HSP40) C3 (Dnajc3, previously known as p58) correlated with increased apoptosis in palmitate- but not in oleate-treated MIN6 cells. Attenuation of ER stress by overproduction of HSPA5 in MIN6 cells significantly protected against lipid-induced apoptosis. In islets of db/db mice, a variety of marker genes of ER stress were also upregulated. Increased processing (activation) of X-box binding protein 1 (Xbp1) mRNA was also observed, confirming the existence of ER stress. Finally, we observed increased islet protein production of HSPA5, DDIT3, DNAJC3 and BCL2-associated X protein in human pancreas sections of type 2 diabetes subjects. Our results provide evidence that ER stress occurs in type 2 diabetes and is required for aspects of the underlying beta cell failure.", "title": "Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes" }, { "docid": "44562221", "text": "Endogenous glucocorticoids (GC) play an important role in the termination of the inflammatory response following infection and tissue injury. However, recent findings indicate that stress can impair the anti-inflammatory capacities of these hormones. Lipopolysaccharide (LPS)-stimulated splenocytes of mice that were repeatedly subjected to social disruption (SDR) stress were less sensitive to the immunosuppressive effects of corticosterone (CORT) as demonstrated by an increased production of pro-inflammatory cytokines and enhanced cell survival. Myeloid cells expressing the marker CD11b were shown to play a key role in this process. Here we investigated the role of the bone marrow as a potential source of the GC-insensitive cells. The study revealed that LPS-stimulated bone marrow cells, in the absence of experimental stress, were virtually GC-resistant and retained high levels of cell viability after treatment with CORT. Recurrent exposure to the acute stressor over a period of 2, 4 or 6 days led to an increase in the GC sensitivity of the bone marrow cells. This increase in GC sensitivity was associated with enhanced mRNA expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), an increase in the number of myeloid progenitors, and a decrease in the proportion of mature CD11b+ cells. The changes in the cellular composition of the bone marrow were accompanied by an increase in splenic CD11b+ cell numbers. Simultaneous assessment of the GC sensitivity in bone marrow and spleen revealed a significant negative correlation between both tissues suggesting that social stress causes the redistribution of GC-insensitive myeloid cells from the bone marrow to the spleen.", "title": "Tissue-specific alterations in the glucocorticoid sensitivity of immune cells following repeated social defeat in mice" }, { "docid": "9588931", "text": "Vascular calcification is a strong independent predictor of increased cardiovascular morbidity and mortality and has a high prevalence among patients with chronic kidney disease. The present study investigated the effects of quercetin on vascular calcification caused by oxidative stress and abnormal mitochondrial dynamics both in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial potential and ATP production. Disruption of mitochondrial structural integrity was also observed in a rat model of adenine-induced aortic calcification. Increased production of reactive oxygen species, enhanced expression and phosphorylation of Drp1, and excessive mitochondrial fragmentation were also observed in Pi-treated VSMCs. These effects were accompanied by mitochondria-dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol and subsequent activation of caspase-3. Quercetin was shown to block Pi-induced apoptosis and calcification of VSMCs by inhibiting oxidative stress and decreasing mitochondrial fission by inhibiting the expression and phosphorylation of Drp1. Quercetin also significantly ameliorated adenine-induced aortic calcification in rats. In summary, our findings suggest that quercetin attenuates calcification by reducing apoptosis of VSMCs by blocking oxidative stress and inhibiting mitochondrial fission.", "title": "Quercetin attenuates vascular calcification by inhibiting oxidative stress and mitochondrial fission." }, { "docid": "12658073", "text": "The gut microbiota has been proposed as an environmental factor that affects the development of metabolic and inflammatory diseases in mammals. Recent reports indicate that gut bacteria-derived lipopolysaccharide (LPS) can initiate obesity and insulin resistance in mice; however, the molecular interactions responsible for microbial regulation of host metabolism and mediators of inflammation have not been studied in detail. Hepatic serum amyloid A (SAA) proteins are markers and proposed mediators of inflammation that exhibit increased levels in serum of insulin-resistant mice. Adipose tissue-derived SAA3 displays monocyte chemotactic activity and may play a role in metabolic inflammation associated with obesity and insulin resistance. To investigate a potential mechanistic link between the intestinal microbiota and induction of proinflammatory host factors, we performed molecular analyses of germ-free, conventionally raised and genetically modified Myd88-/- mouse models. SAA3 expression was determined to be significantly augmented in adipose (9.9+/-1.9-fold; P<0.001) and colonic tissue (7.0+/-2.3-fold; P<0.05) by the presence of intestinal microbes. In the colon, we provided evidence that SAA3 is partially regulated through the Toll-like receptor (TLR)/MyD88/NF-kappaB signaling axis. We identified epithelial cells and macrophages as cellular sources of SAA3 in the colon and found that colonic epithelial expression of SAA3 may be part of an NF-kappaB-dependent response to LPS from gut bacteria. In vitro experiments showed that LPS treatments of both epithelial cells and macrophages induced SAA3 expression (27.1+/-2.5-fold vs. 1.6+/-0.1-fold, respectively). Our data suggest that LPS, and potentially other products of the indigenous gut microbiota, might elevate cytokine expression in tissues and thus exacerbate chronic low-grade inflammation observed in obesity.", "title": "Regulation of Serum Amyloid A3 (SAA3) in Mouse Colonic Epithelium and Adipose Tissue by the Intestinal Microbiota" }, { "docid": "12903921", "text": "It has been proved that oxidative stress increases when leukemia is accompanied by depression. This fact may indicate the role of oxidative stress in the development of depression in cancer patients. The aim of this study was to determine whether the acute myeloid leukemia of Brown Norway rats, which is accompanied by oxidative stress, evoked behavioral and receptor changes resembling alterations characteristic of rat models of depression. The rats were divided into two groups: leukemic rats and healthy control. Leukemia was induced through intraperitoneal injection of 10(7) promyelocytic leukemia cells to the Brown Norway rats. Depression-like behavior was evaluated in the forced swim test at 30 or 34 days after leukemic cells injection. The rats were killed after the evaluation and the spleen, brain cortex and hippocampus were excised. The red-ox state was assessed in homogenates of tissues by measuring total glutathione (GSH) content, the ferric ion reducing ability of plasma (FRAP) level, expression of heme oxygenase-1 (HO-1), biliverdin reductase (BvR) and ferritin mRNA, superoxide dismutase (SOD) activity, as well as malondialdehyde (MDA) concentration. Radioligand binding assay was used to assess of the effect of leukemia on cortical receptors. Leukemic cells were identified using RM-124 antibody by FACS Calibur flow cytometry. Leukemia influenced locomotory activity as well as forced swim test behavior in a 34-day series of experiments. Signs of oxidative stress in leukemic rats were observed in each examined stage of leukemia development. The FRAP values and glutathione contents, were significantly lowered whereas HO-1 mRNA expression, and malonodialdehyde concentrations were significantly increased in the spleen and brain structures of leukemic rats in comparison with the healthy controls. A significant increase in the potency of glycine to displace [(3)H]L-689,560 from the strychnine-insensitive glycine site of the N-methyl-D-aspartic (NMDA) receptors receptor complex in cortical homogenates of the leukemic rats in 30- and 34-day experimental series was observed in comparison with the control. Upregulation of 5-HT(2A) receptors was observed in rat cortex after 30 days of leukemia development but not in 34-days series compared with the control. It is concluded that disturbances in antioxidant system in brain cortex were accompanied by an activation of glycine sites of the NMDA receptor complex, regardless of stage of leukemia development, which are characteristic of model of depression. Findings of our study demonstrate the link between glutamatergic activity, oxidative stress and leukemia.", "title": "Evaluation of oxidative status and depression-like responses in Brown Norway rats with acute myeloid leukemia" }, { "docid": "28517384", "text": "Myeloid differentiation factor-2 (MD-2) is a lipopolysaccharide (LPS)-binding protein usually coexpressed with and binding to Toll-like receptor 4 (TLR4), conferring LPS responsiveness of immune cells. MD-2 is also found as a soluble protein. Soluble MD-2 (sMD-2) levels are markedly elevated in plasma from patients with severe infections, and in other fluids from inflamed tissues. We show that sMD-2 is a type II acute-phase protein. Soluble MD-2 mRNA and protein levels are up-regulated in mouse liver after the induction of an acute-phase response. It is secreted by human hepatocytic cells and up-regulated by interleukin-6. Soluble MD-2 binds to Gram-negative but not Gram-positive bacteria, and sMD-2 secreted by hepatocytic cells is an essential cofactor for the activation of TLR4-expressing cells by Gram-negative bacteria. Soluble MD-2 opsonization of Gram-negative bacteria accelerates and enhances phagocytosis, principally by polymorphonuclear neutrophils. In summary, our results demonstrate that sMD-2 is a newly recognized type II acute-phase reactant, an opsonin for Gram-negative bacteria, and a cofactor essential for the activation of TLR4-expressing cells. This suggests that sMD-2 plays a key role in the host innate immune response to Gram-negative infections.", "title": "Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria." }, { "docid": "7506409", "text": "Human mesenchymal stem cells (hMSCs) have been widely studied as a source of primary adult stem cells for cell therapy because of their multidifferentiation potential; however, the growth arrest (also known as \"premature senescence\") often found in hMSCs cultured in vitro has been a major obstacle to the in-depth characterization of these cells. In addition, the inability to maintain constant cell growth hampers the development of additional genetic modifications aimed at achieving desired levels of differentiation to specific tissues; however, the molecular mechanisms that govern this phenomenon remain unclear, with the exception of a few studies demonstrating that induction of p16INK4a is responsible for this senescence-like event. Here, we observed that the premature growth arrest in hMSCs occurs in parallel with the induction of p16INK4a, following abrogation of inhibitory phosphorylation of retinoblastoma protein. These stress responses were concurrent with increased formation of reactive oxygen species (ROSs) from mitochondria and increased p38 mitogen-activated protein kinase (MAPK) activity. The introduction of Wip1 (wild-type p53 inducible phosphatase-1), a well-studied stress modulator, significantly lowered p16INK4a expression and led to p38 MAPK inactivation, although it failed to affect the levels of ROSs. Moreover, the suppression of stress responses by Wip1 apparently extended the life span of hMSCs, compared with control conditions, while maintaining their multilineage differentiation potential. Based on these results, we suggest that senescent growth arrest in hMSCs may result from activation of stress signaling pathways and consequent onset of stress responses, due in part to ROS production during prolonged in vitro culture.", "title": "Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways." }, { "docid": "24349992", "text": "Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a \"lethal tumor micro-environment. \" Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a \"metabolic\" and \"mutagenic\" motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the \"Reverse Warburg Effect\"). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use \"oxidative stress\" in adjacent fibroblasts (i) as an \"engine\" to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the \"field effect\" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively \"contagious\"--spread from cell-to-cell like a virus--creating an \"oncogenic/mutagenic\" field promoting widespread DNA damage.", "title": "Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells." }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" } ]
392
Ethanol stress lowers the expression of PSP in bacteria.
[ { "docid": "1148122", "text": "Understanding the genetic basis of adaptation is a central problem in biology. However, revealing the underlying molecular mechanisms has been challenging as changes in fitness may result from perturbations to many pathways, any of which may contribute relatively little. We have developed a combined experimental/computational framework to address this problem and used it to understand the genetic basis of ethanol tolerance in Escherichia coli. We used fitness profiling to measure the consequences of single-locus perturbations in the context of ethanol exposure. A module-level computational analysis was then used to reveal the organization of the contributing loci into cellular processes and regulatory pathways (e.g. osmoregulation and cell-wall biogenesis) whose modifications significantly affect ethanol tolerance. Strikingly, we discovered that a dominant component of adaptation involves metabolic rewiring that boosts intracellular ethanol degradation and assimilation. Through phenotypic and metabolomic analysis of laboratory-evolved ethanol-tolerant strains, we investigated naturally accessible pathways of ethanol tolerance. Remarkably, these laboratory-evolved strains, by and large, follow the same adaptive paths as inferred from our coarse-grained search of the fitness landscape.", "title": "Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli" } ]
[ { "docid": "21602220", "text": "The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates.", "title": "Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen." }, { "docid": "24019260", "text": "Alcohol dependence is a disease that impacts millions of individuals worldwide. There has been some progress with pharmacotherapy for alcohol-dependent individuals; however, there remains a critical need for the development of novel and additional therapeutic approaches. Alcohol and nicotine are commonly abused together, and there is evidence that neuronal nicotinic acetylcholine receptors (nAChRs) play a role in both alcohol and nicotine dependence. Varenicline, a partial agonist at the alpha4beta2 nAChRs, reduces nicotine intake and was recently approved as a smoking cessation aid. We have investigated the role of varenicline in the modulation of ethanol consumption and seeking using three different animal models of drinking. We show that acute administration of varenicline, in doses reported to reduce nicotine reward, selectively reduced ethanol but not sucrose seeking using an operant self-administration drinking paradigm and also decreased voluntary ethanol but not water consumption in animals chronically exposed to ethanol for 2 months before varenicline treatment. Furthermore, chronic varenicline administration decreased ethanol consumption, which did not result in a rebound increase in ethanol intake when the varenicline was no longer administered. The data suggest that the alpha4beta2 nAChRs may play a role in ethanol-seeking behaviors in animals chronically exposed to ethanol. The selectivity of varenicline in decreasing ethanol consumption combined with its reported safety profile and mild side effects in humans suggest that varenicline may prove to be a treatment for alcohol dependence.", "title": "Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, selectively decreases ethanol consumption and seeking." }, { "docid": "28025754", "text": "TO enable staining of insoluble calcium salts with glyoxal bis(2-hydroxyanil) (GBHA), the original solution containing 2 ml of 0.4% GBHA in absolute ethanol, and 0.3 ml of aqueous 5% NaOH, and limited to staining only soluble calcium salts, was modified as follows: 1, 2 ml of 0.4% GBHA in absolute ethanol in 0.6 ml of 10% aqueous NaOH; 11, 0.1 gm GBHA in 2 ml of 3.4% NaOH in 75% ethanol. To prevent diffusion and loss of calcium, the tissues were processed by the freeze-substitution or freeze-dry method and sections stained without removing the paraffin. Modification I is effective only when 1 or 2 drops placed on the section are evaporated gradually to dryness, concentrating the GBHA and NaOH on the insoluble calcium salts. Modification II is effective when dried or poured on the the section and allowed to stain for 5 min. The stained slides are immersed for 15 min in 90% ethanol saturated with KCN and Na2CO3 for specificity to calcium; rinsed and counterstained in 95% ethanol containing 0.1% each of fast...", "title": "THE GLYOXAL BIS(2-HYDROXYANIL) METHOD MODIFIED FOR LOCALIZING INSOLUBLE CALCIUM SALTS." }, { "docid": "22908536", "text": "Nonreplicating and metabolically quiescent bacteria are implicated in latent tuberculosis infections and relapses following \"sterilizing\" chemotherapy. However, evidence linking bacterial dormancy and persistence in vivo is largely inconclusive. Here we measure the single-cell dynamics of Mycobacterium tuberculosis replication and ribosomal activity using quantitative time-lapse microscopy and a reporter of ribosomal RNA gene expression. Single-cell dynamics exhibit heterogeneity under standard growth conditions, which is amplified by stressful conditions such as nutrient limitation, stationary phase, intracellular replication, and growth in mouse lungs. Additionally, the lungs of chronically infected mice harbor a subpopulation of nongrowing but metabolically active bacteria, which are absent in mice lacking interferon-γ, a cytokine essential for antituberculosis immunity. These cryptic bacterial forms are prominent in mice treated with the antituberculosis drug isoniazid, suggesting a role in postchemotherapeutic relapses. Thus, amplification of bacterial phenotypic heterogeneity in response to host immunity and drug pressure may contribute to tuberculosis persistence.", "title": "Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms." }, { "docid": "471735", "text": "Escherichia coli responds to the redox stress imposed by superoxide-generating agents such as paraquat by activating the synthesis of as many as 80 polypeptides. Expression of a key group of these inducible proteins is controlled at the transcriptional level by the soxRS locus (the soxRS regulon). A two-stage control system was hypothesized for soxRS, in which an intracellular redox signal would trigger the SoxR protein as a transcriptional activator of the soxS gene and the resulting increased levels of SoxS protein would activate transcription of the various soxRS regulon genes (B. Demple and C.F. Amábile Cuevas, Cell 67:837-839, 1990). We have constructed operon fusions of the E. coli lac genes to the soxS promoter to monitor soxS transcription. Expression from the soxS promoter is strongly inducible by paraquat in a manner strictly dependent on a functional soxR gene. Several other superoxide-generating agents also trigger soxR(+)-dependent soxS expression, and the inductions by paraquat and phenazine methosulfate were dependent on the presence of oxygen. Numerous other oxidative stress agents (H2O2, gamma rays, heat shock, etc.) failed to induce soxS, while aerobic growth of superoxide dismutase-deficient bacteria triggered soxR-dependent soxS expression. These results indicate a specific redox signal for soxS induction. A direct role for SoxR protein in the activation of the soxS gene is indicated by band-shift and DNase I footprinting experiments that demonstrate specific binding of the SoxR protein in cell extracts to the soxS promoter. The mode of SoxR binding to DNA appears to be similar to that of its homolog MerR in that the SoxR footprint spans the -10 to -35 region of the soxS promoter.", "title": "Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene." }, { "docid": "35085326", "text": "A previously unknown protein, designated SvpA (surface virulence-associated protein) and implicated in the virulence of the intracellular pathogen Listeria monocytogenes, was identified. This 64 kDa protein, encoded by svpA, is both secreted in culture supernatants and surface-exposed, as shown by immunogold labelling of whole bacteria with an anti-SvpA antibody. Analysis of the peptide sequence revealed that SvpA contains a leader peptide, a predicted C-terminal transmembrane region and a positively charged tail resembling that of the surface protein ActA, suggesting that SvpA might partially reassociate with the bacterial surface by its C-terminal membrane anchor. An allelic mutant was constructed by disrupting svpA in the wild-type strain LO28. The virulence of this mutant was strongly attenuated in the mouse, with a 2 log decrease in the LD50 and restricted bacterial growth in organs as compared to the wild-type strain. This reduced virulence was not related either to a loss of adherence or to a lower expression of known virulence factors, which remained unaffected in the svpA mutant. It was caused by a restriction of intracellular growth of mutant bacteria. By following the intracellular behaviour of bacteria within bone-marrow-derived macrophages by confocal and electron microscopy studies, it was found that most svpA mutant bacteria remained confined within phagosomes, in contrast to wild-type bacteria which rapidly escaped to the cytoplasm. The regulation of svpA was independent of PrfA, the transcriptional activator of virulence genes in L. monocytogenes. In fact, SvpA was down-regulated by MecA, ClpC and ClpP, which are highly homologous to proteins of Bacillus subtilis forming a regulatory complex controlling the competence state of this saprophyte. The results indicate that: (i) SvpA is a novel factor involved in the virulence of L. monocytogenes, promoting bacterial escape from phagosomes of macrophages; (ii) SvpA is, at least partially, associated with the surface of bacteria; and (iii) SvpA is PrfA-independent and controlled by a MecA-dependent regulatory network.", "title": "SvpA, a novel surface virulence-associated protein required for intracellular survival of Listeria monocytogenes." }, { "docid": "6251620", "text": "Antineutrophil cytoplasmic antibodies (ANCA) are a sensitive and specific marker for ANCA-associated systemic vasculitis. Using indirect immunofluorescence on ethanol-fixed neutrophils, two major fluoroscopic patterns can be recognised: a diffuse cytoplasmic staining (C-ANCA), and a perinuclear/nuclear staining (P-ANCA). In patients with vasculitis, more of 90% of C-ANCA are directed against proteinase 3 (PR3-ANCA) whereas approximately 80-90% of P-ANCA recognise myelperoxidase (MPO-ANCA). Although C-ANCA (PR3-ANCA) is preferentially associated with Wegener's granulomatosis (WG), and P-ANCA (MPO-ANCA) with microscopic polyangiitis (MPA), idiopathic necrotising crescentic glomerulonephritis (iNCGN) and Churg-Strauss syndrome (CSS), there is not absolute specificity. Between 10-20% of patients with classical WG show P-ANCA (MPO-ANCA), and even a larger percentage of patients with MPA or CSS have C-ANCA (PR3-ANCA). Furthermore, it should be stressed that approximately 10-20% of patients with WG or MPA (and 40-50% of cases of CSS) have negative assay for ANCA. The best diagnostic performance is obtained when indirect immunofluorescence is combined with PR3 and MPO-specific ELISAs. ANCA with different and unknown antigen specificity are found in a variety of conditions other than AASV, including inflammatory bowel diseases, other autoimmune diseases, and infections where their clinical significance is unclear. ANCA levels are useful to monitor disease activity but should not be used by themselves to guide treatment. A significant increase in ANCA titres, or the reappearance of ANCA, should alert the clinicians and lead to a stricter patient control.", "title": "Antineutrophil cytoplasmic antibodies (ANCA)." }, { "docid": "21373821", "text": "A series of 33 patients with combined (injurious) sleepwalking, sleep terrors, and rapid eye movement (REM) sleep behavior disorder (viz. \"parasomnia overlap disorder\") was gathered over an 8-year period. Patients underwent clinical and polysomnographic evaluations. Mean age was 34 +/- 14 (SD) years; mean age of parasomnia onset was 15 +/- 16 years (range 1-66); 70% (n = 23) were males. An idiopathic subgroup (n = 22) had a significantly earlier mean age of parasomnia onset (9 +/- 7 years) than a symptomatic subgroup (n = 11) (27 +/- 23 years, p = 0.002), whose parasomnia began with either of the following: neurologic disorders, n = 6 [congenital Mobius syndrome, narcolepsy, multiple sclerosis, brain tumor (and treatment), brain trauma, indeterminate disorder (exaggerated startle response/atypical cataplexy)]; nocturnal paroxysmal atrial fibrillation, n = 1; posttraumatic stress disorder/major depression, n = 1; chronic ethanol/amphetamine abuse and withdrawal, n = 1; or mixed disorders (schizophrenia, brain trauma, substance abuse), n = 2. The rate of DSM-III-R (Diagnostic and Statistical Manual, 3rd edition, revised) Axis 1 psychiatric disorders was not elevated; group scores on various psychometric tests were not elevated. Forty-five percent (n = 15) had previously received psychologic or psychiatric therapy for their parasomnia, without benefit. Treatment outcome was available for n = 20 patients; 90% (n = 18) had substantial parasomnia control with bedtime clonazepam (n = 13), alprazolam and/or carbamazepine (n = 4), or self-hypnosis (n = 1). Thus, \"parasomnia overlap disorder\" is a treatable condition that emerges in various clinical settings and can be understood within the context of current knowledge on parasomnias and motor control/dyscontrol during sleep.", "title": "A parasomnia overlap disorder involving sleepwalking, sleep terrors, and REM sleep behavior disorder in 33 polysomnographically confirmed cases." }, { "docid": "7506409", "text": "Human mesenchymal stem cells (hMSCs) have been widely studied as a source of primary adult stem cells for cell therapy because of their multidifferentiation potential; however, the growth arrest (also known as \"premature senescence\") often found in hMSCs cultured in vitro has been a major obstacle to the in-depth characterization of these cells. In addition, the inability to maintain constant cell growth hampers the development of additional genetic modifications aimed at achieving desired levels of differentiation to specific tissues; however, the molecular mechanisms that govern this phenomenon remain unclear, with the exception of a few studies demonstrating that induction of p16INK4a is responsible for this senescence-like event. Here, we observed that the premature growth arrest in hMSCs occurs in parallel with the induction of p16INK4a, following abrogation of inhibitory phosphorylation of retinoblastoma protein. These stress responses were concurrent with increased formation of reactive oxygen species (ROSs) from mitochondria and increased p38 mitogen-activated protein kinase (MAPK) activity. The introduction of Wip1 (wild-type p53 inducible phosphatase-1), a well-studied stress modulator, significantly lowered p16INK4a expression and led to p38 MAPK inactivation, although it failed to affect the levels of ROSs. Moreover, the suppression of stress responses by Wip1 apparently extended the life span of hMSCs, compared with control conditions, while maintaining their multilineage differentiation potential. Based on these results, we suggest that senescent growth arrest in hMSCs may result from activation of stress signaling pathways and consequent onset of stress responses, due in part to ROS production during prolonged in vitro culture.", "title": "Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways." }, { "docid": "4641348", "text": "BACKGROUND/OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. \n MATERIALS/METHODS The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. \n RESULTS EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. \n CONCLUSIONS Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.", "title": "Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease" }, { "docid": "12903921", "text": "It has been proved that oxidative stress increases when leukemia is accompanied by depression. This fact may indicate the role of oxidative stress in the development of depression in cancer patients. The aim of this study was to determine whether the acute myeloid leukemia of Brown Norway rats, which is accompanied by oxidative stress, evoked behavioral and receptor changes resembling alterations characteristic of rat models of depression. The rats were divided into two groups: leukemic rats and healthy control. Leukemia was induced through intraperitoneal injection of 10(7) promyelocytic leukemia cells to the Brown Norway rats. Depression-like behavior was evaluated in the forced swim test at 30 or 34 days after leukemic cells injection. The rats were killed after the evaluation and the spleen, brain cortex and hippocampus were excised. The red-ox state was assessed in homogenates of tissues by measuring total glutathione (GSH) content, the ferric ion reducing ability of plasma (FRAP) level, expression of heme oxygenase-1 (HO-1), biliverdin reductase (BvR) and ferritin mRNA, superoxide dismutase (SOD) activity, as well as malondialdehyde (MDA) concentration. Radioligand binding assay was used to assess of the effect of leukemia on cortical receptors. Leukemic cells were identified using RM-124 antibody by FACS Calibur flow cytometry. Leukemia influenced locomotory activity as well as forced swim test behavior in a 34-day series of experiments. Signs of oxidative stress in leukemic rats were observed in each examined stage of leukemia development. The FRAP values and glutathione contents, were significantly lowered whereas HO-1 mRNA expression, and malonodialdehyde concentrations were significantly increased in the spleen and brain structures of leukemic rats in comparison with the healthy controls. A significant increase in the potency of glycine to displace [(3)H]L-689,560 from the strychnine-insensitive glycine site of the N-methyl-D-aspartic (NMDA) receptors receptor complex in cortical homogenates of the leukemic rats in 30- and 34-day experimental series was observed in comparison with the control. Upregulation of 5-HT(2A) receptors was observed in rat cortex after 30 days of leukemia development but not in 34-days series compared with the control. It is concluded that disturbances in antioxidant system in brain cortex were accompanied by an activation of glycine sites of the NMDA receptor complex, regardless of stage of leukemia development, which are characteristic of model of depression. Findings of our study demonstrate the link between glutamatergic activity, oxidative stress and leukemia.", "title": "Evaluation of oxidative status and depression-like responses in Brown Norway rats with acute myeloid leukemia" }, { "docid": "16527698", "text": "To shed further light on the primary alterations of insulin secretion in type 2 diabetes and the possible mechanisms involved, we studied several functional and molecular properties of islets isolated from the pancreata of 13 type 2 diabetic and 13 matched nondiabetic cadaveric organ donors. Glucose-stimulated insulin secretion from type 2 diabetic islets was significantly lower than from control islets, whereas arginine- and glibenclamide-stimulated insulin release was less markedly affected. The defects were accompanied by reduced mRNA expression of GLUT1 and -2 and glucokinase and by diminished glucose oxidation. In addition, AMP-activated protein kinase activation was reduced. Furthermore, the expression of insulin was decreased, and that of pancreatic duodenal homeobox-1 (PDX-1) and forkhead box O1 (Foxo-1) was increased. Nitrotyrosine and 8-hydroxy-2'-deoxyguanosine concentrations, markers of oxidative stress, were significantly higher in type 2 diabetic than control islets, and they were correlated with the degree of glucose-stimulated insulin release impairment. Accordingly, 24-h exposure to glutathione significantly improved glucose-stimulated insulin release and decreased nitrotyrosine concentration, with partial recovery of insulin mRNA expression. These results provide direct evidence that the defects of insulin secretion in type 2 diabetic islets are associated with multiple islet cell alterations. Most importantly, the current study shows that the functional impairment of type 2 diabetic islets can be, at least in part, reversible. In this regard, it is suggested that reducing islet cell oxidative stress is a potential target of human type 2 diabetes therapy.", "title": "Functional and molecular defects of pancreatic islets in human type 2 diabetes." }, { "docid": "22517564", "text": "Retinoids (e.g., vitamin A and its derivatives) can regulate immune responses. The aim of this study was to determine whether all-trans retinaldehyde (retinal), a vitamin A derivative, can inhibit inflammatory responses and joint destruction in DBA/1J mice with collagen-induced arthritis (CIA). The arthritis score and incidence of arthritis were lower in mice treated with retinal compared to those treated with cottonseed oil. Histopathologic evidence of joint damage was lower in mice treated with retinal, corresponding with a reduction in the infiltration of immune cells in mice treated with retinal type II collagen (CII)-stimulated spleen cells. In addition, the expression of proinflammatory cytokines, oxidative stress proteins, and osteoclast markers were significantly reduced in mice treated with retinal. In vitro, retinal induced increased Foxp3 expression and inhibited Th17 development. The proportion of Foxp3(+) Treg cells was increased in the spleens of mice treated with retinal, whereas the proportion of Th17 cells was reduced. In both mice and a human culture system, tartrate-resistant acid phosphatase (TRAP) positive mononuclear cells and multinucleated cells were significantly reduced after treatment with retinal. The expression of osteoclast differentiation markers was dramatically decreased upon addition of retinal. This is the first study to demonstrate the therapeutic effect of retinal on an autoimmune arthritis model in mice through reciprocal regulation of Th17 and regulatory T cells and protection of differentiation and activation of osteoclasts. Taken together, our findings indicate that retinal has profound immunoregulatory functions and potential value for the treatment of autoimmune inflammatory disorders.", "title": "Retinal attenuates inflammatory arthritis by reciprocal regulation of IL-17-producing T cells and Foxp3(+) regulatory T cells and the inhibition of osteoclastogenesis." }, { "docid": "28517384", "text": "Myeloid differentiation factor-2 (MD-2) is a lipopolysaccharide (LPS)-binding protein usually coexpressed with and binding to Toll-like receptor 4 (TLR4), conferring LPS responsiveness of immune cells. MD-2 is also found as a soluble protein. Soluble MD-2 (sMD-2) levels are markedly elevated in plasma from patients with severe infections, and in other fluids from inflamed tissues. We show that sMD-2 is a type II acute-phase protein. Soluble MD-2 mRNA and protein levels are up-regulated in mouse liver after the induction of an acute-phase response. It is secreted by human hepatocytic cells and up-regulated by interleukin-6. Soluble MD-2 binds to Gram-negative but not Gram-positive bacteria, and sMD-2 secreted by hepatocytic cells is an essential cofactor for the activation of TLR4-expressing cells by Gram-negative bacteria. Soluble MD-2 opsonization of Gram-negative bacteria accelerates and enhances phagocytosis, principally by polymorphonuclear neutrophils. In summary, our results demonstrate that sMD-2 is a newly recognized type II acute-phase reactant, an opsonin for Gram-negative bacteria, and a cofactor essential for the activation of TLR4-expressing cells. This suggests that sMD-2 plays a key role in the host innate immune response to Gram-negative infections.", "title": "Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria." }, { "docid": "24645237", "text": "The coloured ciliate Blepharisma japonicum changes swimming velocity (positive photokinesis) and elongates its body in response to a prolonged illumination. We have recently proposed that alterations in the phosphorylation level of the ciliate phosducin (Pdc) may be involved in light-induced cell elongation, which in turn affects the interaction of βγ-dimer of G-proteins (Gβγ) with β-tubulin and subsequent cytoskeletal remodelling. The cellular mechanism that governs the photokinetic effect in this ciliate has not been elucidated. In the present study, we utilise real-time PCR to demonstrate that the levels of ciliate Pdc mRNA are significantly reduced in Pdc-RNAi-treated cells compared to cells fed with bacteria carrying the empty vector (control cells). Using western immunoblotting, we confirmed that these cells treated with Pdc-RNAi expressed a substantially lower level of the Pdc protein. The assay also revealed that in ciliates treated with Pdc-RNAi and exposed to light, the cytosolic level of Gβ (~36 kDa) was reduced, whereas the level of Gβ localized to the membrane (~32 kDa) was increased compared to control cells. In addition, behavioural analysis of the cells indicated a substantial reduction of photokinesis. The findings in this study provide additional characterization of the functional properties of the ciliate Pdc protein and we discuss a likely role for this phosphoprotein in the photokinetic phenomenon of the ciliate protist Blepharisma.", "title": "Effect of phosducin silencing on the photokinetic motile response of Blepharisma japonicum." }, { "docid": "22153455", "text": "Although gram-positive infections account for the majority of cases of sepsis, the molecular mechanisms underlying their effects remains poorly understood. We investigated how cell wall components of gram-positive bacteria contribute to the development of sepsis. Experimental observations derived from cultured primary macrophages and the cell line indicate that gram-positive bacterial endotoxins induce hypoxia-inducible factor 1α (HIF-1α) mRNA and protein expression. Inoculation of live or heat-inactivated gram-positive bacteria with macrophages induced HIF-1 transcriptional activity in macrophages. Concordant with these results, myeloid deficiency of HIF-1α attenuated gram-positive bacterial endotoxin-induced cellular motility and proinflammatory gene expression in macrophages. Conversely, gram-positive bacteria and their endotoxins reduced expression of the myeloid anti-inflammatory transcription factor Krüppel-like transcription factor 2 (KLF2). Sustained expression of KLF2 reduced and deficiency of KLF2 enhanced gram-positive endotoxins induced HIF-1α mRNA and protein expression in macrophages. More importantly, KLF2 attenuated gram-positive endotoxins induced cellular motility and proinflammatory gene expression in myeloid cells. Consistent with these results, mice deficient in myeloid HIF-1α were protected from gram-positive endotoxin-induced sepsis mortality and clinical symptomatology. By contrast, myeloid KLF2-deficient mice were susceptible to gram-positive sepsis induced mortality and clinical symptoms. Collectively, these observations identify HIF-1α and KLF2 as critical regulators of gram-positive endotoxin-mediated sepsis.", "title": "A myeloid hypoxia-inducible factor 1α-Krüppel-like factor 2 pathway regulates gram-positive endotoxin-mediated sepsis." }, { "docid": "27396415", "text": "OBJECTIVE To establish high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria BIB. \n METHODS Based on the results of shake flask fermentation, the process was magnified into volume of a 50 L fermenter to optimize and verify the factors affecting the yield of the target protein, such as the fermentation medium, working seed inoculation amount, inducer concentration, induction starting time, induction duration, inducer adding mode and feeding strategy. \n RESULTS After activated in modified TB medium at 37°C for 8 h, the BIB working seed was inoculated at 5% (v/v) and was induced for expression for another 11 h by the final concentration of 5 mmol/L lactose. In growth phase, glucose at rate of 80 ml/h was used as carbon source, and in induction phase, glycerol at rate of 40 ml/h was used as carbon source; ammonia water was added dropwise to control pH at about 7.0, and revolution speed is adjusted to control the dissolved oxygen at above 30%; ultimately the output of bacterial body was 70 g/L and protein expression amount was about 32%. \n CONCLUSION After high cell density cultivation of the recombinant engineering bacteria, expression and yield of the target protein rBIB significantly increased.", "title": "A study of high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria." }, { "docid": "16728949", "text": "The forkhead O (FoxO) family of transcription factors participates in diverse physiologic processes, including induction of cell-cycle arrest, stress resistance, differentiation, apoptosis, and metabolism. Several recent studies indicate that FoxO-dependent signaling is required for long-term regenerative potential of the hematopoietic stem cell (HSC) compartment through regulation of HSC response to physiologic oxidative stress, quiescence, and survival. These observations link FoxO function in mammalian systems with the evolutionarily conserved role of FoxO in promotion of stress resistance and longevity in lower phylogenetic systems. Furthermore, these findings have implications for aging in higher organisms and in malignant stem cell biology, and suggest that FoxOs may play an important role in the maintenance and integrity of stem cell compartments in a broad spectrum of tissues.", "title": "Cell Stem Cell Review FoxO Transcription Factors and Stem Cell Homeostasis: Insights from the Hematopoietic System" }, { "docid": "7198295", "text": "The aim of the study was to determine the effect of single whole-body cryotherapy (WBC) session applied prior to submaximal exercise on the activity of antioxidant enzymes, the concentration of lipid peroxidation products, total oxidative status, and the level of cytokines in blood of volleyball players. The study group consisted of 18 male professional volleyball players, who were subjected to extremely cold air (-130°C) prior to exercise performed on cycloergometer. Blood samples were taken five times: before WBC, after WBC procedure, after exercise preceded by cryotherapy (WBC exercise), and before and after exercise without WBC (control exercise). The activity of catalase statistically significantly increased after control exercise. Moreover, the activity of catalase and superoxide dismutase was lower after WBC exercise than after control exercise (P < 0.001). After WBC exercise, the level of IL-6 and IL-1β was also lower (P < 0.001) than after control exercise. The obtained results may suggest that cryotherapy prior to exercise may have some antioxidant and anti-inflammatory properties. The relations between the level of studied oxidative stress and inflammatory markers may testify to the contribution of reactive oxygen species in cytokines release into the blood system in response to exercise and WBC.", "title": "The Effect of Submaximal Exercise Preceded by Single Whole-Body Cryotherapy on the Markers of Oxidative Stress and Inflammation in Blood of Volleyball Players" } ]
393
Ethanol stress reduces the expression of SRL in bacteria.
[ { "docid": "1148122", "text": "Understanding the genetic basis of adaptation is a central problem in biology. However, revealing the underlying molecular mechanisms has been challenging as changes in fitness may result from perturbations to many pathways, any of which may contribute relatively little. We have developed a combined experimental/computational framework to address this problem and used it to understand the genetic basis of ethanol tolerance in Escherichia coli. We used fitness profiling to measure the consequences of single-locus perturbations in the context of ethanol exposure. A module-level computational analysis was then used to reveal the organization of the contributing loci into cellular processes and regulatory pathways (e.g. osmoregulation and cell-wall biogenesis) whose modifications significantly affect ethanol tolerance. Strikingly, we discovered that a dominant component of adaptation involves metabolic rewiring that boosts intracellular ethanol degradation and assimilation. Through phenotypic and metabolomic analysis of laboratory-evolved ethanol-tolerant strains, we investigated naturally accessible pathways of ethanol tolerance. Remarkably, these laboratory-evolved strains, by and large, follow the same adaptive paths as inferred from our coarse-grained search of the fitness landscape.", "title": "Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli" } ]
[ { "docid": "21602220", "text": "The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates.", "title": "Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen." }, { "docid": "24019260", "text": "Alcohol dependence is a disease that impacts millions of individuals worldwide. There has been some progress with pharmacotherapy for alcohol-dependent individuals; however, there remains a critical need for the development of novel and additional therapeutic approaches. Alcohol and nicotine are commonly abused together, and there is evidence that neuronal nicotinic acetylcholine receptors (nAChRs) play a role in both alcohol and nicotine dependence. Varenicline, a partial agonist at the alpha4beta2 nAChRs, reduces nicotine intake and was recently approved as a smoking cessation aid. We have investigated the role of varenicline in the modulation of ethanol consumption and seeking using three different animal models of drinking. We show that acute administration of varenicline, in doses reported to reduce nicotine reward, selectively reduced ethanol but not sucrose seeking using an operant self-administration drinking paradigm and also decreased voluntary ethanol but not water consumption in animals chronically exposed to ethanol for 2 months before varenicline treatment. Furthermore, chronic varenicline administration decreased ethanol consumption, which did not result in a rebound increase in ethanol intake when the varenicline was no longer administered. The data suggest that the alpha4beta2 nAChRs may play a role in ethanol-seeking behaviors in animals chronically exposed to ethanol. The selectivity of varenicline in decreasing ethanol consumption combined with its reported safety profile and mild side effects in humans suggest that varenicline may prove to be a treatment for alcohol dependence.", "title": "Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, selectively decreases ethanol consumption and seeking." }, { "docid": "28025754", "text": "TO enable staining of insoluble calcium salts with glyoxal bis(2-hydroxyanil) (GBHA), the original solution containing 2 ml of 0.4% GBHA in absolute ethanol, and 0.3 ml of aqueous 5% NaOH, and limited to staining only soluble calcium salts, was modified as follows: 1, 2 ml of 0.4% GBHA in absolute ethanol in 0.6 ml of 10% aqueous NaOH; 11, 0.1 gm GBHA in 2 ml of 3.4% NaOH in 75% ethanol. To prevent diffusion and loss of calcium, the tissues were processed by the freeze-substitution or freeze-dry method and sections stained without removing the paraffin. Modification I is effective only when 1 or 2 drops placed on the section are evaporated gradually to dryness, concentrating the GBHA and NaOH on the insoluble calcium salts. Modification II is effective when dried or poured on the the section and allowed to stain for 5 min. The stained slides are immersed for 15 min in 90% ethanol saturated with KCN and Na2CO3 for specificity to calcium; rinsed and counterstained in 95% ethanol containing 0.1% each of fast...", "title": "THE GLYOXAL BIS(2-HYDROXYANIL) METHOD MODIFIED FOR LOCALIZING INSOLUBLE CALCIUM SALTS." }, { "docid": "22908536", "text": "Nonreplicating and metabolically quiescent bacteria are implicated in latent tuberculosis infections and relapses following \"sterilizing\" chemotherapy. However, evidence linking bacterial dormancy and persistence in vivo is largely inconclusive. Here we measure the single-cell dynamics of Mycobacterium tuberculosis replication and ribosomal activity using quantitative time-lapse microscopy and a reporter of ribosomal RNA gene expression. Single-cell dynamics exhibit heterogeneity under standard growth conditions, which is amplified by stressful conditions such as nutrient limitation, stationary phase, intracellular replication, and growth in mouse lungs. Additionally, the lungs of chronically infected mice harbor a subpopulation of nongrowing but metabolically active bacteria, which are absent in mice lacking interferon-γ, a cytokine essential for antituberculosis immunity. These cryptic bacterial forms are prominent in mice treated with the antituberculosis drug isoniazid, suggesting a role in postchemotherapeutic relapses. Thus, amplification of bacterial phenotypic heterogeneity in response to host immunity and drug pressure may contribute to tuberculosis persistence.", "title": "Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms." }, { "docid": "4641348", "text": "BACKGROUND/OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. \n MATERIALS/METHODS The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. \n RESULTS EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. \n CONCLUSIONS Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.", "title": "Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease" }, { "docid": "471735", "text": "Escherichia coli responds to the redox stress imposed by superoxide-generating agents such as paraquat by activating the synthesis of as many as 80 polypeptides. Expression of a key group of these inducible proteins is controlled at the transcriptional level by the soxRS locus (the soxRS regulon). A two-stage control system was hypothesized for soxRS, in which an intracellular redox signal would trigger the SoxR protein as a transcriptional activator of the soxS gene and the resulting increased levels of SoxS protein would activate transcription of the various soxRS regulon genes (B. Demple and C.F. Amábile Cuevas, Cell 67:837-839, 1990). We have constructed operon fusions of the E. coli lac genes to the soxS promoter to monitor soxS transcription. Expression from the soxS promoter is strongly inducible by paraquat in a manner strictly dependent on a functional soxR gene. Several other superoxide-generating agents also trigger soxR(+)-dependent soxS expression, and the inductions by paraquat and phenazine methosulfate were dependent on the presence of oxygen. Numerous other oxidative stress agents (H2O2, gamma rays, heat shock, etc.) failed to induce soxS, while aerobic growth of superoxide dismutase-deficient bacteria triggered soxR-dependent soxS expression. These results indicate a specific redox signal for soxS induction. A direct role for SoxR protein in the activation of the soxS gene is indicated by band-shift and DNase I footprinting experiments that demonstrate specific binding of the SoxR protein in cell extracts to the soxS promoter. The mode of SoxR binding to DNA appears to be similar to that of its homolog MerR in that the SoxR footprint spans the -10 to -35 region of the soxS promoter.", "title": "Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene." }, { "docid": "22153455", "text": "Although gram-positive infections account for the majority of cases of sepsis, the molecular mechanisms underlying their effects remains poorly understood. We investigated how cell wall components of gram-positive bacteria contribute to the development of sepsis. Experimental observations derived from cultured primary macrophages and the cell line indicate that gram-positive bacterial endotoxins induce hypoxia-inducible factor 1α (HIF-1α) mRNA and protein expression. Inoculation of live or heat-inactivated gram-positive bacteria with macrophages induced HIF-1 transcriptional activity in macrophages. Concordant with these results, myeloid deficiency of HIF-1α attenuated gram-positive bacterial endotoxin-induced cellular motility and proinflammatory gene expression in macrophages. Conversely, gram-positive bacteria and their endotoxins reduced expression of the myeloid anti-inflammatory transcription factor Krüppel-like transcription factor 2 (KLF2). Sustained expression of KLF2 reduced and deficiency of KLF2 enhanced gram-positive endotoxins induced HIF-1α mRNA and protein expression in macrophages. More importantly, KLF2 attenuated gram-positive endotoxins induced cellular motility and proinflammatory gene expression in myeloid cells. Consistent with these results, mice deficient in myeloid HIF-1α were protected from gram-positive endotoxin-induced sepsis mortality and clinical symptomatology. By contrast, myeloid KLF2-deficient mice were susceptible to gram-positive sepsis induced mortality and clinical symptoms. Collectively, these observations identify HIF-1α and KLF2 as critical regulators of gram-positive endotoxin-mediated sepsis.", "title": "A myeloid hypoxia-inducible factor 1α-Krüppel-like factor 2 pathway regulates gram-positive endotoxin-mediated sepsis." }, { "docid": "6251620", "text": "Antineutrophil cytoplasmic antibodies (ANCA) are a sensitive and specific marker for ANCA-associated systemic vasculitis. Using indirect immunofluorescence on ethanol-fixed neutrophils, two major fluoroscopic patterns can be recognised: a diffuse cytoplasmic staining (C-ANCA), and a perinuclear/nuclear staining (P-ANCA). In patients with vasculitis, more of 90% of C-ANCA are directed against proteinase 3 (PR3-ANCA) whereas approximately 80-90% of P-ANCA recognise myelperoxidase (MPO-ANCA). Although C-ANCA (PR3-ANCA) is preferentially associated with Wegener's granulomatosis (WG), and P-ANCA (MPO-ANCA) with microscopic polyangiitis (MPA), idiopathic necrotising crescentic glomerulonephritis (iNCGN) and Churg-Strauss syndrome (CSS), there is not absolute specificity. Between 10-20% of patients with classical WG show P-ANCA (MPO-ANCA), and even a larger percentage of patients with MPA or CSS have C-ANCA (PR3-ANCA). Furthermore, it should be stressed that approximately 10-20% of patients with WG or MPA (and 40-50% of cases of CSS) have negative assay for ANCA. The best diagnostic performance is obtained when indirect immunofluorescence is combined with PR3 and MPO-specific ELISAs. ANCA with different and unknown antigen specificity are found in a variety of conditions other than AASV, including inflammatory bowel diseases, other autoimmune diseases, and infections where their clinical significance is unclear. ANCA levels are useful to monitor disease activity but should not be used by themselves to guide treatment. A significant increase in ANCA titres, or the reappearance of ANCA, should alert the clinicians and lead to a stricter patient control.", "title": "Antineutrophil cytoplasmic antibodies (ANCA)." }, { "docid": "35085326", "text": "A previously unknown protein, designated SvpA (surface virulence-associated protein) and implicated in the virulence of the intracellular pathogen Listeria monocytogenes, was identified. This 64 kDa protein, encoded by svpA, is both secreted in culture supernatants and surface-exposed, as shown by immunogold labelling of whole bacteria with an anti-SvpA antibody. Analysis of the peptide sequence revealed that SvpA contains a leader peptide, a predicted C-terminal transmembrane region and a positively charged tail resembling that of the surface protein ActA, suggesting that SvpA might partially reassociate with the bacterial surface by its C-terminal membrane anchor. An allelic mutant was constructed by disrupting svpA in the wild-type strain LO28. The virulence of this mutant was strongly attenuated in the mouse, with a 2 log decrease in the LD50 and restricted bacterial growth in organs as compared to the wild-type strain. This reduced virulence was not related either to a loss of adherence or to a lower expression of known virulence factors, which remained unaffected in the svpA mutant. It was caused by a restriction of intracellular growth of mutant bacteria. By following the intracellular behaviour of bacteria within bone-marrow-derived macrophages by confocal and electron microscopy studies, it was found that most svpA mutant bacteria remained confined within phagosomes, in contrast to wild-type bacteria which rapidly escaped to the cytoplasm. The regulation of svpA was independent of PrfA, the transcriptional activator of virulence genes in L. monocytogenes. In fact, SvpA was down-regulated by MecA, ClpC and ClpP, which are highly homologous to proteins of Bacillus subtilis forming a regulatory complex controlling the competence state of this saprophyte. The results indicate that: (i) SvpA is a novel factor involved in the virulence of L. monocytogenes, promoting bacterial escape from phagosomes of macrophages; (ii) SvpA is, at least partially, associated with the surface of bacteria; and (iii) SvpA is PrfA-independent and controlled by a MecA-dependent regulatory network.", "title": "SvpA, a novel surface virulence-associated protein required for intracellular survival of Listeria monocytogenes." }, { "docid": "4343811", "text": "A genetic interference phenomenon in the nematode Caenorhabditis elegans has been described in which expression of an individual gene can be specifically reduced by microinjecting a corresponding fragment of double-stranded (ds) RNA. One striking feature of this process is a spreading effect: interference in a broad region of the animal is observed following the injection of dsRNA into the extracellular body cavity. Here we show that C. elegans can respond in a gene-specific manner to dsRNA encountered in the environment. C. elegans normally feed on bacteria, ingesting and grinding them in the pharynx and subsequently absorbing bacterial contents in the gut. We find that Escherichia coli bacteria expressing dsRNAs can confer specific interference effects on the nematode larvae that feed on them.", "title": "Specific interference by ingested dsRNA." }, { "docid": "25293721", "text": "Placental oxidative stress plays a key role in the pathophysiology of placenta-related disorders, most notably preeclampsia (PE) and intrauterine growth restriction (IUGR). Oxidative stress occurs when accumulation of reactive oxygen species (ROS) damages DNA, proteins and lipids, an outcome that is limited by antioxidant enzymes; mitochondrial uncoupling protein 2 (UCP2) may also limit oxidative stress by reducing ROS production. Here we characterized placental antioxidant defenses during normal gestation and following glucocorticoid-induced IUGR. Placentas were collected on Days 16 and 22 of normal rat pregnancy (term = Day 23) and at Day 22 after dexamethasone treatment from Day 13. Expression of several genes encoding antioxidant enzymes (Sod1, Sod2, Sod3, Cat, Gpx3, Txn1, Txnrd1, Txnrd2, and Txnrd3) and Ucp2 was measured by quantitative RT-PCR in the labyrinth (LZ) and junctional zones (JZ) of the placenta. Expression of Sod1 and Ucp2 mRNAs and the activity of xanthine oxidase, a source of ROS, all increased from Days 16 to 22 in both placental zones, whereas Sod2 and Gpx3 increased only in the rapidly growing LZ. In contrast, Sod3 and Txnrd1 expression fell in the LZ over this period, whereas total superoxide dismutase activity remained stable. Dexamethasone treatment reduced fetal-placental growth and LZ expression of Ucp2 but increased JZ expression of Txn1. Indices of placental oxidative damage (TBARS, F2-isoprostanes, and 8-OHdG) did not change with gestational age or dexamethasone, indicative of adequate antioxidant protection. Overall, our data suggest that the rat placenta is protected from oxidative stress by the dynamic zone- and stage-dependent expression of antioxidant defense genes.", "title": "Antioxidant Defenses in the Rat Placenta in Late Gestation: Increased Labyrinthine Expression of Superoxide Dismutases, Glutathione Peroxidase 3, and Uncoupling Protein 21" }, { "docid": "21373821", "text": "A series of 33 patients with combined (injurious) sleepwalking, sleep terrors, and rapid eye movement (REM) sleep behavior disorder (viz. \"parasomnia overlap disorder\") was gathered over an 8-year period. Patients underwent clinical and polysomnographic evaluations. Mean age was 34 +/- 14 (SD) years; mean age of parasomnia onset was 15 +/- 16 years (range 1-66); 70% (n = 23) were males. An idiopathic subgroup (n = 22) had a significantly earlier mean age of parasomnia onset (9 +/- 7 years) than a symptomatic subgroup (n = 11) (27 +/- 23 years, p = 0.002), whose parasomnia began with either of the following: neurologic disorders, n = 6 [congenital Mobius syndrome, narcolepsy, multiple sclerosis, brain tumor (and treatment), brain trauma, indeterminate disorder (exaggerated startle response/atypical cataplexy)]; nocturnal paroxysmal atrial fibrillation, n = 1; posttraumatic stress disorder/major depression, n = 1; chronic ethanol/amphetamine abuse and withdrawal, n = 1; or mixed disorders (schizophrenia, brain trauma, substance abuse), n = 2. The rate of DSM-III-R (Diagnostic and Statistical Manual, 3rd edition, revised) Axis 1 psychiatric disorders was not elevated; group scores on various psychometric tests were not elevated. Forty-five percent (n = 15) had previously received psychologic or psychiatric therapy for their parasomnia, without benefit. Treatment outcome was available for n = 20 patients; 90% (n = 18) had substantial parasomnia control with bedtime clonazepam (n = 13), alprazolam and/or carbamazepine (n = 4), or self-hypnosis (n = 1). Thus, \"parasomnia overlap disorder\" is a treatable condition that emerges in various clinical settings and can be understood within the context of current knowledge on parasomnias and motor control/dyscontrol during sleep.", "title": "A parasomnia overlap disorder involving sleepwalking, sleep terrors, and REM sleep behavior disorder in 33 polysomnographically confirmed cases." }, { "docid": "32454714", "text": "Mucosal tolerance has been considered a potentially important pathway for the treatment of autoimmune disease, including human multiple sclerosis and experimental conditions such as experimental autoimmune encephalomyelitis (EAE). There is limited information on the capacity of commensal gut bacteria to induce and maintain peripheral immune tolerance. Inbred SJL and C57BL/6 mice were treated orally with a broad spectrum of antibiotics to reduce gut microflora. Reduction of gut commensal bacteria impaired the development of EAE. Intraperitoneal antibiotic-treated mice showed no significant decline in the gut microflora and developed EAE similar to untreated mice, suggesting that reduction in disease activity was related to alterations in the gut bacterial population. Protection was associated with a reduction of proinflammatory cytokines and increases in IL-10 and IL-13. Adoptive transfer of low numbers of IL-10-producing CD25(+)CD4(+) T cells (>75% FoxP3(+)) purified from cervical lymph nodes of commensal bacteria reduced mice and in vivo neutralization of CD25(+) cells suggested the role of regulatory T cells maintaining peripheral immune homeostasis. Our data demonstrate that antibiotic modification of gut commensal bacteria can modulate peripheral immune tolerance that can protect against EAE. This approach may offer a new therapeutic paradigm in the treatment of multiple sclerosis and perhaps other autoimmune conditions.", "title": "Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis." }, { "docid": "16527698", "text": "To shed further light on the primary alterations of insulin secretion in type 2 diabetes and the possible mechanisms involved, we studied several functional and molecular properties of islets isolated from the pancreata of 13 type 2 diabetic and 13 matched nondiabetic cadaveric organ donors. Glucose-stimulated insulin secretion from type 2 diabetic islets was significantly lower than from control islets, whereas arginine- and glibenclamide-stimulated insulin release was less markedly affected. The defects were accompanied by reduced mRNA expression of GLUT1 and -2 and glucokinase and by diminished glucose oxidation. In addition, AMP-activated protein kinase activation was reduced. Furthermore, the expression of insulin was decreased, and that of pancreatic duodenal homeobox-1 (PDX-1) and forkhead box O1 (Foxo-1) was increased. Nitrotyrosine and 8-hydroxy-2'-deoxyguanosine concentrations, markers of oxidative stress, were significantly higher in type 2 diabetic than control islets, and they were correlated with the degree of glucose-stimulated insulin release impairment. Accordingly, 24-h exposure to glutathione significantly improved glucose-stimulated insulin release and decreased nitrotyrosine concentration, with partial recovery of insulin mRNA expression. These results provide direct evidence that the defects of insulin secretion in type 2 diabetic islets are associated with multiple islet cell alterations. Most importantly, the current study shows that the functional impairment of type 2 diabetic islets can be, at least in part, reversible. In this regard, it is suggested that reducing islet cell oxidative stress is a potential target of human type 2 diabetes therapy.", "title": "Functional and molecular defects of pancreatic islets in human type 2 diabetes." }, { "docid": "9588931", "text": "Vascular calcification is a strong independent predictor of increased cardiovascular morbidity and mortality and has a high prevalence among patients with chronic kidney disease. The present study investigated the effects of quercetin on vascular calcification caused by oxidative stress and abnormal mitochondrial dynamics both in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial potential and ATP production. Disruption of mitochondrial structural integrity was also observed in a rat model of adenine-induced aortic calcification. Increased production of reactive oxygen species, enhanced expression and phosphorylation of Drp1, and excessive mitochondrial fragmentation were also observed in Pi-treated VSMCs. These effects were accompanied by mitochondria-dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol and subsequent activation of caspase-3. Quercetin was shown to block Pi-induced apoptosis and calcification of VSMCs by inhibiting oxidative stress and decreasing mitochondrial fission by inhibiting the expression and phosphorylation of Drp1. Quercetin also significantly ameliorated adenine-induced aortic calcification in rats. In summary, our findings suggest that quercetin attenuates calcification by reducing apoptosis of VSMCs by blocking oxidative stress and inhibiting mitochondrial fission.", "title": "Quercetin attenuates vascular calcification by inhibiting oxidative stress and mitochondrial fission." }, { "docid": "16546131", "text": "Hydroxyurea is a potent teratogen; free radical scavengers or antioxidants reduce its teratogenicity. Activator Protein-1 (AP-1) and NF-kappaB are redox-sensitive transcription factors with important roles in normal development and the stress response. This study was designed to determine if exposure to teratogenic doses of hydroxyurea induces oxidative stress and alters gene expression by activating these transcription factors. Pregnant mice were treated with saline or hydroxyurea (400, 500, or 600 mg/kg) on gestation day 9 (GD 9) and killed either on GD 9, 0.5, 3, or 6 h after treatment, to assess oxidative stress and transcription factor activities, or on GD 18, to assess fetal development. Exposure to 400 mg/kg hydroxyurea did not affect the progeny, whereas exposure to 500 or 600 mg/kg resulted in dose-dependent increases in fetal resorptions and malformations, including curly tails, abnormal limbs (oligodactyly, hemimelia, and amelia), and short ribs. Hydroxyurea did not induce oxidative stress, as assessed by the ratio of oxidized to reduced glutathione, nor did it alter NF-kappaB DNA binding activity in the GD 9 conceptus. In contrast, exposure to hydroxyurea at any dose increased AP-1 DNA binding activity in embryos and yolk sacs 0.5 or 3 h after treatment. Hydroxyurea-induced c-Fos heterodimer activity in the embryo peaked 3-4-fold above control at 3 h and remained elevated by 6 h; in contrast, the activity of c-Jun dimers was not altered by drug exposure. A dramatic and region-specific increase in c-Fos immunoreactivity was found in hydroxyurea-treated embryos. The induction of AP-1 DNA binding activity by hydroxyurea represents an early, sensitive marker of the embryonic response to insult.", "title": "Activator protein-1 (AP-1) DNA binding activity is induced by hydroxyurea in organogenesis stage mouse embryos" }, { "docid": "25510546", "text": "Increased lipid supply causes beta cell death, which may contribute to reduced beta cell mass in type 2 diabetes. We investigated whether endoplasmic reticulum (ER) stress is necessary for lipid-induced apoptosis in beta cells and also whether ER stress is present in islets of an animal model of diabetes and of humans with type 2 diabetes. Expression of genes involved in ER stress was evaluated in insulin-secreting MIN6 cells exposed to elevated lipids, in islets isolated from db/db mice and in pancreas sections of humans with type 2 diabetes. Overproduction of the ER chaperone heat shock 70 kDa protein 5 (HSPA5, previously known as immunoglobulin heavy chain binding protein [BIP]) was performed to assess whether attenuation of ER stress affected lipid-induced apoptosis. We demonstrated that the pro-apoptotic fatty acid palmitate triggers a comprehensive ER stress response in MIN6 cells, which was virtually absent using non-apoptotic fatty acid oleate. Time-dependent increases in mRNA levels for activating transcription factor 4 (Atf4), DNA-damage inducible transcript 3 (Ddit3, previously known as C/EBP homologous protein [Chop]) and DnaJ homologue (HSP40) C3 (Dnajc3, previously known as p58) correlated with increased apoptosis in palmitate- but not in oleate-treated MIN6 cells. Attenuation of ER stress by overproduction of HSPA5 in MIN6 cells significantly protected against lipid-induced apoptosis. In islets of db/db mice, a variety of marker genes of ER stress were also upregulated. Increased processing (activation) of X-box binding protein 1 (Xbp1) mRNA was also observed, confirming the existence of ER stress. Finally, we observed increased islet protein production of HSPA5, DDIT3, DNAJC3 and BCL2-associated X protein in human pancreas sections of type 2 diabetes subjects. Our results provide evidence that ER stress occurs in type 2 diabetes and is required for aspects of the underlying beta cell failure.", "title": "Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes" }, { "docid": "25725663", "text": "Cigarette smoke is the leading cause of the development of various lung diseases including lung cancer through triggering oxidant stress and inflammatory responses which contributed to the lesions of normal human bronchial epithelial (NHBE) cell. Wedelolactone (WEL), a natural compound from Eclipta prostrata L., has been found to possess the inhibitive effects on the proliferation and growth of cancers. In the present study, we investigated the effects of WEL on NHBE cell injury induced by cigarette smoke extract (CSE) in vitro. It showed that the pretreatment WEL (2.5-20μM) resulted in a significant protective effect on 10% CSE-induced cell death in NHBE cells. The pretreatment with WEL dose-dependently and significantly reversed the activities of SOD, CAT, GSH and the level of MDA to normal level. We also found that the protein expression levels of COX-2 and ICAM-1 which are related to inflammatory response were remarkably reduced by WEL compared with 10% CSE treatment. Additionally, WEL also reduced the expressions of antioxidases including NAD(P)H dehydrogenase:Quinone 1 (NQO1) and heme oxygenase-1 (HO-1). Moreover, Nrf2 inhibitor all-trans-retinoic acid (ATRA) decreased remarkably their expressions. These results suggest that WEL protects NHBE cell against CSE-induced injury through modulating Nrf2 pathway. Our study indicates that WEL may be a new potential protective agent against CSE-induced lung injury.", "title": "Wedelolactone protects human bronchial epithelial cell injury against cigarette smoke extract-induced oxidant stress and inflammation responses through Nrf2 pathway." }, { "docid": "9194077", "text": "Pathogenesis of Alzheimer’s disease (AD), which is characterised by accumulation of extracellular deposits of β-amyloid peptide (Aβ) in the brain, has recently been linked to vascular disorders such as ischemia and stroke. Aβ is constantly produced in the brain from amyloid precursor protein (APP) through its cleavage by β- and γ-secretases and certain Aβ species are toxic for neurones. The brain has an endogenous mechanism of Aβ removal via proteolytic degradation and the zinc metalloproteinase neprilysin (NEP) is a critical regulator of Aβ concentration. Down-regulation of NEP could predispose to AD. By comparing the effects of hypoxia and oxidative stress on expression and activity of the Aβ-degrading enzyme NEP in human neuroblastoma NB7 cells and rat primary cortical neurones we have demonstrated that hypoxia reduced NEP expression at the protein and mRNA levels as well as its activity. On contrary in astrocytes hypoxia increased NEP mRNA expression.", "title": "Effects of Hypoxia and Oxidative Stress on Expression of Neprilysin in Human Neuroblastoma Cells and Rat Cortical Neurones and Astrocytes" } ]
394
Excess gestational weight gain is associated with obesity-related pregnancy outcomes.
[ { "docid": "11360768", "text": "OBJECTIVE To evaluate the effects of dietary and lifestyle interventions in pregnancy on maternal and fetal weight and to quantify the effects of these interventions on obstetric outcomes. \n DESIGN Systematic review and meta-analysis. \n DATA SOURCES Major databases from inception to January 2012 without language restrictions. STUDY SELECTION Randomised controlled trials that evaluated any dietary or lifestyle interventions with potential to influence maternal weight during pregnancy and outcomes of pregnancy. \n DATA SYNTHESIS Results summarised as relative risks for dichotomous data and mean differences for continuous data. \n RESULTS We identified 44 relevant randomised controlled trials (7278 women) evaluating three categories of interventions: diet, physical activity, and a mixed approach. Overall, there was 1.42 kg reduction (95% confidence interval 0.95 to 1.89 kg) in gestational weight gain with any intervention compared with control. With all interventions combined, there were no significant differences in birth weight (mean difference -50 g, -100 to 0 g) and the incidence of large for gestational age (relative risk 0.85, 0.66 to 1.09) or small for gestational age (1.00, 0.78 to 1.28) babies between the groups, though by itself physical activity was associated with reduced birth weight (mean difference -60 g, -120 to -10 g). Interventions were associated with a reduced the risk of pre-eclampsia (0.74, 0.60 to 0.92) and shoulder dystocia (0.39, 0.22 to 0.70), with no significant effect on other critically important outcomes. Dietary intervention resulted in the largest reduction in maternal gestational weight gain (3.84 kg, 2.45 to 5.22 kg), with improved pregnancy outcomes compared with other interventions. The overall evidence rating was low to very low for important outcomes such as pre-eclampsia, gestational diabetes, gestational hypertension, and preterm delivery. \n CONCLUSIONS Dietary and lifestyle interventions in pregnancy can reduce maternal gestational weight gain and improve outcomes for both mother and baby. Among the interventions, those based on diet are the most effective and are associated with reductions in maternal gestational weight gain and improved obstetric outcomes.", "title": "Effects of interventions in pregnancy on maternal weight and obstetric outcomes: meta-analysis of randomised evidence" } ]
[ { "docid": "70455704", "text": "As women of childbearing age have become heavier, the trade-off between maternal and child health created by variation in gestational weight gain has become more difficult to reconcile. Weight Gain During Pregnancy responds to the need for a reexamination of the 1990 Institute of Medicine guidelines for weight gain during pregnancy. It builds on the conceptual framework that underscored the 1990 weight gain guidelines and addresses the need to update them through a comprehensive review of the literature and independent analyses of existing databases. The book explores relationships between weight gain during pregnancy and a variety of factors (e.g., the mother's weight and height before pregnancy) and places this in the context of the health of the infant and the mother, presenting specific, updated target ranges for weight gain during pregnancy and guidelines for proper measurement. New features of this book include a specific range of recommended gain for obese women. Weight Gain During Pregnancy is intended to assist practitioners who care for women of childbearing age, policy makers, educators, researchers, and the pregnant women themselves to understand the role of gestational weight gain and to provide them with the tools needed to promote optimal pregnancy outcomes.", "title": "Weight gain during pregnancy: reexamining the guidelines." }, { "docid": "8842332", "text": "OBJECTIVE To compare contemporary pregnancy outcomes in women with and without type 1 diabetes, and to examine the effects of obesity and glycaemic control on these outcomes. \n DESIGN AND SETTING Historical cohort study in a specialist diabetes and maternity network in Victoria. \n PARTICIPANTS All singleton births (at least 20 weeks' gestation), 2010-2013, were analysed: 107 pregnancies to women with type 1 diabetes and 27 075 pregnancies to women without diabetes. Women with type 2 diabetes or gestational diabetes were excluded. \n METHODS Data were extracted from the Birthing Outcomes System database; associations between type 1 diabetes and pregnancy outcomes were analysed by multivariable regression. \n MAIN OUTCOME MEASURES Mode of birth; maternal and neonatal outcomes. \n RESULTS The mean body mass index was higher for women with type 1 diabetes than for women without diabetes (mean, 27.3 kg/m(2) [SD, 5.0] v 25.7 kg/m(2) [SD, 5.9]; P = 0.01); the median gestation period for their babies was shorter (median, 37.3 weeks [IQR, 34.6-38.1] v 39.4 weeks [IQR, 38.4-40.4]; P < 0.001) and they were more likely to be large for gestational age (LGA) (adjusted odds ratio [aOR], 7.9; 95% CI, 5.3-11.8). Women with type 1 diabetes were more likely to have had labour induced (aOR, 3.0; 95% CI, 2.0-4.5), a caesarean delivery (aOR, 4.6; 95% CI, 3.1-7.0), or a pre-term birth (aOR, 6.7; 95% CI, 4.5-10.0); their babies were more likely to have shoulder dystocia (aOR, 8.2; 95% CI, 3.6-18.7), hypoglycaemia (aOR, 10.3; 95% CI, 6.8-15.6), jaundice (aOR, 5.1; 95% CI, 3.3-7.7), respiratory distress (aOR, 2.5; 95% CI, 1.4-4.4) or to suffer perinatal death (aOR, 4.3; 95% CI, 1.9-9.9). In women with type 1 diabetes, greater obesity was associated with increased odds for an LGA baby or congenital malformation, and increased HbA1c levels were associated with pre-term birth and perinatal death. \n CONCLUSION Women with type 1 diabetes, even when managed in a specialist setting, still experience adverse obstetric and neonatal outcomes. Poor glycaemic control is not wholly responsible for adverse outcomes, reinforcing the importance of other risk factors, such as obesity and weight gain.", "title": "Contemporary type 1 diabetes pregnancy outcomes: impact of obesity and glycaemic control." }, { "docid": "2425364", "text": "OBJECTIVE To assess the effect of 25-hydroxyvitamin D (25-OHD) levels on pregnancy outcomes and birth variables. \n DESIGN Systematic review and meta-analysis. \n DATA SOURCES Medline (1966 to August 2012), PubMed (2008 to August 2012), Embase (1980 to August 2012), CINAHL (1981 to August 2012), the Cochrane database of systematic reviews, and the Cochrane database of registered clinical trials. STUDY SELECTION Studies reporting on the association between serum 25-OHD levels during pregnancy and the outcomes of interest (pre-eclampsia, gestational diabetes, bacterial vaginosis, caesarean section, small for gestational age infants, birth weight, birth length, and head circumference). \n DATA EXTRACTION Two authors independently extracted data from original research articles, including key indicators of study quality. We pooled the most adjusted odds ratios and weighted mean differences. Associations were tested in subgroups representing different patient characteristics and study quality. \n RESULTS 3357 studies were identified and reviewed for eligibility. 31 eligible studies were included in the final analysis. Insufficient serum levels of 25-OHD were associated with gestational diabetes (pooled odds ratio 1.49, 95% confidence interval 1.18 to 1.89), pre-eclampsia (1.79, 1.25 to 2.58), and small for gestational age infants (1.85, 1.52 to 2.26). Pregnant women with low serum 25-OHD levels had an increased risk of bacterial vaginosis and low birthweight infants but not delivery by caesarean section. \n CONCLUSION Vitamin D insufficiency is associated with an increased risk of gestational diabetes, pre-eclampsia, and small for gestational age infants. Pregnant women with low 25-OHD levels had an increased risk of bacterial vaginosis and lower birth weight infants, but not delivery by caesarean section.", "title": "Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: systematic review and meta-analysis of observational studies." }, { "docid": "4550036", "text": "The authors investigated the association between folic acid supplementation and gestational hypertension. The study population included women with nonmalformed infants in the United States and Canada who were participating in the Slone Epidemiology Center Birth Defects Study between 1993 and 2000. Women were interviewed within 6 months after delivery about sociodemographic and medical factors, the occurrence of hypertension with or without preeclampsia, and multivitamin use in pregnancy. Relative risks, adjusted for weight, parity, twin pregnancy, diabetes, smoking, education, and family income, were estimated using Cox regression models. Of 2,100 women, 204 (9.7%) reported gestational hypertension (onset after the 20th week of gestation). The multivariate-adjusted relative risk of developing gestational hypertension during the month after folic acid supplementation, compared with not using folic acid during that same month, was 0.55 (95% confidence interval: 0.39, 0.79). This finding suggests that folic acid-containing multivitamins may reduce the risk of gestational hypertension.", "title": "Risk of gestational hypertension in relation to folic acid supplementation during pregnancy." }, { "docid": "37480103", "text": "CONTEXT During pregnancy, serum levels of estrogen, progesterone, and other hormones are markedly higher than during other periods of life. Pregnancy hormones primarily are produced in the placenta, and signs of placental impairment may serve as indirect markers of hormone exposures during pregnancy. During pregnancy, these markers have been inconsistently associated with subsequent risk of breast cancer in the mother. \n OBJECTIVE To examine associations between indirect markers of hormonal exposures, such as placental weight and other pregnancy characteristics, and maternal risk of developing breast cancer. \n DESIGN AND SETTING Population-based cohort study using data from the Swedish Birth Register, the Swedish Cancer Register, the Swedish Cause of Death Register, and the Swedish Register of Population and Population Changes. \n PARTICIPANTS Women included in the Sweden Birth Register who delivered singletons between 1982 and 1989, with complete information on date of birth and gestational age. Women were followed up until the occurrence of breast cancer, death, or end of follow-up (December 31, 2001). Cox proportional hazards models were used to estimate associations between hormone exposures and risks of breast cancer. \n MAIN OUTCOME MEASURE Incidence of invasive breast cancer. \n RESULTS Of 314,019 women in the cohort, 2216 (0.7%) developed breast cancer during the follow-up through 2001, of whom 2100 (95%) were diagnosed before age 50 years. Compared with women who had placentas weighing less than 500 g in 2 consecutive pregnancies, the risk of breast cancer was increased among women whose placentas weighed between 500 and 699 g in their first pregnancy and at least 700 g in their second pregnancy (or vice versa) (adjusted hazard ratio, 1.82; 95% confidence interval [CI], 1.07-3.08), and the corresponding risk was doubled among women whose placentas weighed at least 700 g in both pregnancies (adjusted hazard ratio, 2.05; 95% CI, 1.15-3.64). A high birth weight (> or =4000 g) in 2 successive births was associated with an increased risk of breast cancer before but not after adjusting for placental weight and other covariates (adjusted hazard ratio, 1.10; 95% CI, 0.76-1.59). \n CONCLUSIONS Placental weight is positively associated with maternal risk of breast cancer. These results further support the hypothesis that pregnancy hormones are important modifiers of subsequent maternal breast cancer risk.", "title": "Pregnancy characteristics and maternal risk of breast cancer." }, { "docid": "26611834", "text": "CONTEXT Maternal depressive symptoms during pregnancy have been reported in some, but not all, studies to be associated with an increased risk of preterm birth (PTB), low birth weight (LBW), and intrauterine growth restriction (IUGR). \n OBJECTIVE To estimate the risk of PTB, LBW, and IUGR associated with antenatal depression. \n DATA SOURCES AND STUDY SELECTION We searched for English-language and non-English-language articles via the MEDLINE, PsycINFO, CINAHL, Social Work Abstracts, Social Services Abstracts, and Dissertation Abstracts International databases (January 1980 through December 2009). We aimed to include prospective studies reporting data on antenatal depression and at least 1 adverse birth outcome: PTB (<37 weeks' gestation), LBW (<2500 g), or IUGR (<10th percentile for gestational age). Of 862 reviewed studies, 29 US-published and non-US-published studies met the selection criteria. \n DATA EXTRACTION Information was extracted on study characteristics, antenatal depression measurement, and other biopsychosocial risk factors and was reviewed twice to minimize error. \n DATA SYNTHESIS Pooled relative risks (RRs) for the effect of antenatal depression on each birth outcome were calculated using random-effects methods. In studies of PTB, LBW, and IUGR that used a categorical depression measure, pooled effect sizes were significantly larger (pooled RR [95% confidence interval] = 1.39 [1.19-1.61], 1.49 [1.25-1.77], and 1.45 [1.05-2.02], respectively) compared with studies that used a continuous depression measure (1.03 [1.00-1.06], 1.04 [0.99-1.09], and 1.02 [1.00-1.04], respectively). The estimates of risk for categorically defined antenatal depression and PTB and LBW remained significant when the trim-and-fill procedure was used to correct for publication bias. The risk of LBW associated with antenatal depression was significantly larger in developing countries (RR = 2.05; 95% confidence interval, 1.43-2.93) compared with the United States (RR = 1.10; 95% confidence interval, 1.01-1.21) or European social democracies (RR = 1.16; 95% confidence interval, 0.92-1.47). Categorically defined antenatal depression tended to be associated with an increased risk of PTB among women of lower socioeconomic status in the United States. \n CONCLUSIONS Women with depression during pregnancy are at increased risk for PTB and LBW, although the magnitude of the effect varies as a function of depression measurement, country location, and US socioeconomic status. An important implication of these findings is that antenatal depression should be identified through universal screening and treated.", "title": "A meta-analysis of depression during pregnancy and the risk of preterm birth, low birth weight, and intrauterine growth restriction." }, { "docid": "35714909", "text": "OBJECTIVE In 1989 the St. Vincent declaration set a five-year target for approximating outcomes of pregnancies in women with diabetes to those of the background population. We investigated and quantified the risk of adverse pregnancy outcomes in pregnant women with type 1 diabetes (T1DM) to evaluate if the goals of the 1989 St. Vincent Declaration have been obtained concerning foetal and neonatal complications. \n METHODS Twelve population-based studies published within the last 10 years with in total 14,099 women with T1DM and 4,035,373 women from the background population were identified. The prevalence of four foetal and neonatal complications was compared. \n RESULTS In women with T1DM versus the background population, congenital malformations occurred in 5.0% (2.2-9.0) (weighted mean and range) versus 2.1% (1.5-2.9), relative risk (RR) = 2.4, perinatal mortality in 2.7% (2.0-6.6) versus 0.72% (0.48-0.9), RR = 3.7, preterm delivery in 25.2% (13.0-41.7) versus 6.0% (4.7-7.1), RR = 4.2 and delivery of large for gestational infants in 54.2% (45.1-62.5) versus 10.0%, RR = 4.5. Early pregnancy HbA1c was positively associated with adverse pregnancy outcomes. \n CONCLUSION The risk of adverse pregnancy outcomes was two to five times increased in women with T1DM compared with the general population. The goals of the St. Vincent declaration have not been achieved.", "title": "Pregnancy in women with type 1 diabetes: have the goals of St. Vincent declaration been met concerning foetal and neonatal complications?" }, { "docid": "41310252", "text": "The epidemiological evidence that a high-fat diet promotes the development of obesity is considered suggestive but not definitive. The purpose of this paper is to provide a review of various epidemiological methods that have been used to address this issue as well as an updated summary of the existing evidence. Ecological studies describing dietary fat intake and obesity at the population level provide mixed results and are likely to be biased by both confounding and unknown data quality factors that differ systematically across the populations studied. Cross-sectional studies are generally in agreement that the concentration of fat in the diet is positively associated with relative weight. Prospective studies of diet in relation to subsequent weight change give inconsistent results. This may be due to behavioural factors such as dieting in response to weight gain; in addition, this type of study rarely takes into account the possible interaction between genetic predisposition and dietary fat in promoting weight gain. Finally, intervention studies in free-living subjects are considered, providing evidence of a consistent but short-lived period of active weight loss on low-fat diets. The experimental evidence on this relationship is more conclusive than the epidemiological evidence, although biological mechanisms remain controversial. Some areas for future epidemiological research involve: longitudinal studies of dietary fat intake as a predictor of growth in children; observational studies relating total dietary fat and specific types of fat to overall as well as regional adiposity; and randomized intervention studies of the effect of low-fat diets with particular emphasis on and familial predisposition to obesity and other possible modifying factors.", "title": "Dietary fat and obesity: evidence from epidemiology." }, { "docid": "1428830", "text": "Atypical antipsychotics such as olanzapine often induce excessive weight gain and type 2 diabetes. However, the mechanisms underlying these drug-induced metabolic perturbations remain poorly understood. Here, we used an experimental model that reproduces olanzapine-induced hyperphagia and obesity in female C57BL/6 mice. We found that olanzapine treatment acutely increased food intake, impaired glucose tolerance, and altered physical activity and energy expenditure in mice. Furthermore, olanzapine-induced hyperphagia and weight gain were blunted in mice lacking the serotonin 2C receptor (HTR2C). Finally, we showed that treatment with the HTR2C-specific agonist lorcaserin suppressed olanzapine-induced hyperphagia and weight gain. Lorcaserin treatment also improved glucose tolerance in olanzapine-fed mice. Collectively, our studies suggest that olanzapine exerts some of its untoward metabolic effects via antagonism of HTR2C.", "title": "The atypical antipsychotic olanzapine causes weight gain by targeting serotonin receptor 2C." }, { "docid": "9822397", "text": "CONTEXT Sugar-sweetened beverages like soft drinks and fruit punches contain large amounts of readily absorbable sugars and may contribute to weight gain and an increased risk of type 2 diabetes, but these relationships have been minimally addressed in adults. \n OBJECTIVE To examine the association between consumption of sugar-sweetened beverages and weight change and risk of type 2 diabetes in women. \n DESIGN, SETTING, AND PARTICIPANTS Prospective cohort analyses conducted from 1991 to 1999 among women in the Nurses' Health Study II. The diabetes analysis included 91,249 women free of diabetes and other major chronic diseases at baseline in 1991. The weight change analysis included 51,603 women for whom complete dietary information and body weight were ascertained in 1991, 1995, and 1999. We identified 741 incident cases of confirmed type 2 diabetes during 716,300 person-years of follow-up. \n MAIN OUTCOME MEASURES Weight gain and incidence of type 2 diabetes. \n RESULTS Those with stable consumption patterns had no difference in weight gain, but weight gain over a 4-year period was highest among women who increased their sugar-sweetened soft drink consumption from 1 or fewer drinks per week to 1 or more drinks per day (multivariate-adjusted means, 4.69 kg for 1991 to 1995 and 4.20 kg for 1995 to 1999) and was smallest among women who decreased their intake (1.34 and 0.15 kg for the 2 periods, respectively) after adjusting for lifestyle and dietary confounders. Increased consumption of fruit punch was also associated with greater weight gain compared with decreased consumption. After adjustment for potential confounders, women consuming 1 or more sugar-sweetened soft drinks per day had a relative risk [RR] of type 2 diabetes of 1.83 (95% confidence interval [CI], 1.42-2.36; P<.001 for trend) compared with those who consumed less than 1 of these beverages per month. Similarly, consumption of fruit punch was associated with increased diabetes risk (RR for > or =1 drink per day compared with <1 drink per month, 2.00; 95% CI, 1.33-3.03; P =.001). \n CONCLUSION Higher consumption of sugar-sweetened beverages is associated with a greater magnitude of weight gain and an increased risk for development of type 2 diabetes in women, possibly by providing excessive calories and large amounts of rapidly absorbable sugars.", "title": "Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women." }, { "docid": "33740844", "text": "Current understanding of biologic processes indicates that women's nutritional status before and during early pregnancy may play an important role in determining early developmental processes and ensuring successful pregnancy outcomes. We conducted a systematic review of the evidence for the impact of maternal nutrition before and during early pregnancy (<12 weeks gestation) on maternal, neonatal and child health outcomes and included 45 articles (nine intervention trials and 32 observational studies) that were identified through PubMed and EMBASE database searches and examining review articles. Intervention trials and observational studies show that periconceptional (<12 weeks gestation) folic acid supplementation significantly reduced the risk of neural tube defects. Observational studies suggest that preconceptional and periconceptional intake of vitamin and mineral supplements is associated with a reduced risk of delivering offspring who are low birthweight and/or small-for-gestational age (SGA) and preterm deliveries (PTD). Some studies report that indicators of maternal prepregnancy size, low stature, underweight and overweight are associated with increased risks of PTD and SGA. The available data indicate the importance of women's nutrition prior to and during the first trimester of pregnancy, but there is a need for well-designed prospective studies and controlled trials in developing country settings that examine relationships with low birthweight, SGA, PTD, stillbirth and maternal and neonatal mortality. The knowledge gaps that need to be addressed include the evaluation of periconceptional interventions such as food supplements, multivitamin-mineral supplements and/or specific micronutrients (iron, zinc, iodine, vitamin B-6 and B-12) as well as the relationship between measures of prepregnancy body size and composition and maternal, neonatal and child health outcomes.", "title": "Effect of women's nutrition before and during early pregnancy on maternal and infant outcomes: a systematic review." }, { "docid": "1456068", "text": "BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. \n METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. \n CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary.", "title": "Combined Impact of Lifestyle-Related Factors on Total and Cause-Specific Mortality among Chinese Women: Prospective Cohort Study" }, { "docid": "25182647", "text": "Acute fatty liver of pregnancy (AFLP) and the syndrome of hemolysis, elevated liver enzyme levels, and low platelet count (HELLP) are rare but major disorders of the third trimester of pregnancy. Over a 10-year period, 46 women (median age, 30 years; range, 17-41 years) developed hepatic dysfunction severe enough to require transfer to our Liver Failure Unit. Three quarters of the women were nulliparous, and 5 had twin pregnancies; the median gestational age was 35 weeks (range, 24-40 weeks). At admission, 32 patients (70%) were preeclamptic and 21 (46%) were encephalopathic and/or ventilated. Thirty-two patients (70%) had clinical features and laboratory values consistent with AFLP, and 7 (15%) had HELLP syndrome. One patient had preeclamptic liver rupture requiring liver transplantation. In 6 other patients, causes of severe liver dysfunction unrelated to pregnancy were found. Infectious complications occurred in 17 of the patients with AFLP (53%) and in 2 of those with HELLP syndrome (29%). Major intra-abdominal bleeding occurred in 12 women (10 with AFLP), 9 of whom required laparotomies for clot evacuation. Four patients with AFLP (12.5%) had a fatal outcome, with a corresponding perinatal mortality rate of 9%. There were no maternal or perinatal deaths associated with HELLP syndrome. In contrast to results of many previous studies, the results of this large series suggest a relatively favorable maternal and perinatal outcome in severe AFLP and HELLP syndrome. Further improvements in outcome are likely to be achieved through the prevention of the bleeding and infectious complications associated with these disorders.", "title": "Maternal and perinatal outcome in severe pregnancy-related liver disease." }, { "docid": "1831916", "text": "OBJECTIVE Impulsivity and inattention related to attention deficit hyperactivity disorder (ADHD) may increase food intake and, consequently, weight gain. However, findings on the association between obesity/overweight and ADHD are mixed. The authors conducted a meta-analysis to estimate this association. \n METHOD A broad range of databases was searched through Aug. 31, 2014. Unpublished studies were also obtained. Study quality was rated with the Newcastle-Ottawa Scale. Random-effects models were used. \n RESULTS Forty-two studies that included a total of 728,136 individuals (48,161 ADHD subjects; 679,975 comparison subjects) were retained. A significant association between obesity and ADHD was found for both children (odds ratio=1.20, 95% CI=1.05-1.37) and adults (odds ratio=1.55, 95% CI=1.32-1.81). The pooled prevalence of obesity was increased by about 70% in adults with ADHD (28.2%, 95% CI=22.8-34.4) compared with those without ADHD (16.4%, 95% CI=13.4-19.9), and by about 40% in children with ADHD (10.3%, 95% CI=7.9-13.3) compared with those without ADHD (7.4%, 95% CI=5.4-10.1). The significant association between ADHD and obesity remained when limited to studies 1) reporting odds ratios adjusted for possible confounding factors; 2) diagnosing ADHD by direct interview; and 3) using directly measured height and weight. Gender, study setting, study country, and study quality did not moderate the association between obesity and ADHD. ADHD was also significantly associated with overweight. Individuals medicated for ADHD were not at higher risk of obesity. \n CONCLUSIONS This study provides meta-analytic evidence for a significant association between ADHD and obesity/overweight. Further research should address possible underlying mechanisms and the long-term effects of ADHD treatments on weight in individuals with both ADHD and obesity.", "title": "Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis." }, { "docid": "356218", "text": "BACKGROUND Pregnant women with mild preexisting renal disease have relatively few complications of pregnancy, but the risks of maternal and obstetrical complications in women with moderate or severe renal insufficiency remain uncertain. \n METHODS We determined the frequency and types of maternal and obstetrical complications and the outcomes of pregnancy in 67 women with primary renal disease (82 pregnancies). All the women had initial serum creatinine concentrations of at least 1.4 mg per deciliter (124 mumol per liter) and gestations that continued beyond the first trimester. \n RESULTS The mean (+/- SD) serum creatinine concentration increased from 1.9 +/- 0.8 mg per deciliter (168 +/- 71 mumol per liter) in early pregnancy to 2.5 +/- 1.3 mg per deciliter (221 +/- 115 mumol per liter) in the third trimester. The frequency of hypertension rose from 28 percent at base line to 48 percent in the third trimester, and that of high-grade proteinuria (urinary protein excretion, > 3000 mg per liter) from 23 percent to 41 percent. For the 70 pregnancies (57 women) for which data were available during pregnancy and immediately post partum, pregnancy-related loss of maternal renal function occurred in 43 percent. Eight of these pregnancies (10 percent of the total) were associated with rapid acceleration of maternal renal insufficiency. Obstetrical complications included a high rate of preterm delivery (59 percent) and growth retardation (37 percent). The infant survival rate was 93 percent. \n CONCLUSIONS Among pregnant women with moderate or severe renal insufficiency, the rates of complications due to worsening renal function, hypertension, and obstetrical complications are increased, but fetal survival is high.", "title": "Outcome of pregnancy in women with moderate or severe renal insufficiency." }, { "docid": "1365188", "text": "Several data suggest that fermentable dietary fiber could play a role in the control of obesity and associated metabolic disorders. The aim of this study was to investigate the putative role of short chain fructo-oligosaccharide (OFS) - a non-digestible oligosaccharide - in mice fed a standard diet and in mice fed two distinct high fat diets inducing metabolic disorders associated to obesity. We confirmed, in mice, several effects previously shown in rats fed a standard diet enriched with OFS, namely an increase in total and empty caecum weight, a significant decrease in epididymal fat mass, and an increase in colonic and portal plasma glucagon-like peptide-1 (GLP-1), a phenomenon positively correlated with a higher colonic proglucagon mRNA level. Curiously, 4-week treatment with OFS added at the same dose induced different effects when added in the two different high fat diets. OFS decreased energy intake, body weight gain, glycemia, and epididymal fat mass only when added together with the high fat-carbohydrate free diet, in which OFS promoted colonic proglucagon expression and insulin secretion. Our results support an association between the increase in proglucagon expression in the proximal colon and OFS effects on glycemia, fat mass development, and/or body weight gain. In conclusion, dietary oligosaccharides would constitute an interesting class of dietary fibers promoting, in certain conditions, endogenous GLP-1 production, with beneficial physiological consequences. This remains to be proven in human studies.", "title": "Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice." }, { "docid": "29387024", "text": "BACKGROUND Pregnant women with type 1 diabetes are a high-risk population who are recommended to strive for optimal glucose control, but neonatal outcomes attributed to maternal hyperglycaemia remain suboptimal. Our aim was to examine the effectiveness of continuous glucose monitoring (CGM) on maternal glucose control and obstetric and neonatal health outcomes. \n METHODS In this multicentre, open-label, randomised controlled trial, we recruited women aged 18-40 years with type 1 diabetes for a minimum of 12 months who were receiving intensive insulin therapy. Participants were pregnant (≤13 weeks and 6 days' gestation) or planning pregnancy from 31 hospitals in Canada, England, Scotland, Spain, Italy, Ireland, and the USA. We ran two trials in parallel for pregnant participants and for participants planning pregnancy. In both trials, participants were randomly assigned to either CGM in addition to capillary glucose monitoring or capillary glucose monitoring alone. Randomisation was stratified by insulin delivery (pump or injections) and baseline glycated haemoglobin (HbA1c). The primary outcome was change in HbA1c from randomisation to 34 weeks' gestation in pregnant women and to 24 weeks or conception in women planning pregnancy, and was assessed in all randomised participants with baseline assessments. Secondary outcomes included obstetric and neonatal health outcomes, assessed with all available data without imputation. This trial is registered with ClinicalTrials.gov, number NCT01788527. \n FINDINGS Between March 25, 2013, and March 22, 2016, we randomly assigned 325 women (215 pregnant, 110 planning pregnancy) to capillary glucose monitoring with CGM (108 pregnant and 53 planning pregnancy) or without (107 pregnant and 57 planning pregnancy). We found a small difference in HbA1c in pregnant women using CGM (mean difference -0·19%; 95% CI -0·34 to -0·03; p=0·0207). Pregnant CGM users spent more time in target (68% vs 61%; p=0·0034) and less time hyperglycaemic (27% vs 32%; p=0·0279) than did pregnant control participants, with comparable severe hypoglycaemia episodes (18 CGM and 21 control) and time spent hypoglycaemic (3% vs 4%; p=0·10). Neonatal health outcomes were significantly improved, with lower incidence of large for gestational age (odds ratio 0·51, 95% CI 0·28 to 0·90; p=0·0210), fewer neonatal intensive care admissions lasting more than 24 h (0·48; 0·26 to 0·86; p=0·0157), fewer incidences of neonatal hypoglycaemia (0·45; 0·22 to 0·89; p=0·0250), and 1-day shorter length of hospital stay (p=0·0091). We found no apparent benefit of CGM in women planning pregnancy. Adverse events occurred in 51 (48%) of CGM participants and 43 (40%) of control participants in the pregnancy trial, and in 12 (27%) of CGM participants and 21 (37%) of control participants in the planning pregnancy trial. Serious adverse events occurred in 13 (6%) participants in the pregnancy trial (eight [7%] CGM, five [5%] control) and in three (3%) participants in the planning pregnancy trial (two [4%] CGM and one [2%] control). The most common adverse events were skin reactions occurring in 49 (48%) of 103 CGM participants and eight (8%) of 104 control participants during pregnancy and in 23 (44%) of 52 CGM participants and five (9%) of 57 control participants in the planning pregnancy trial. The most common serious adverse events were gastrointestinal (nausea and vomiting in four participants during pregnancy and three participants planning pregnancy). \n INTERPRETATION Use of CGM during pregnancy in patients with type 1 diabetes is associated with improved neonatal outcomes, which are likely to be attributed to reduced exposure to maternal hyperglycaemia. CGM should be offered to all pregnant women with type 1 diabetes using intensive insulin therapy. This study is the first to indicate potential for improvements in non-glycaemic health outcomes from CGM use. \n FUNDING Juvenile Diabetes Research Foundation, Canadian Clinical Trials Network, and National Institute for Health Research.", "title": "Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial" }, { "docid": "43220289", "text": "Extreme obesity is associated with severe psychiatric and somatic comorbidity and impairment of psychosocial functioning. Bariatric surgery is the most effective treatment not only with regard to weight loss but also with obesity-associated illnesses. Health-related psychological and psychosocial variables have been increasingly considered as important outcome variables of bariatric surgery. However, the long-term impact of bariatric surgery on psychological and psychosocial functioning is largely unclear. The aim of this study was to evaluate the relationship between the course of weight and psychological variables including depression, anxiety, health-related quality of life (HRQOL), and self-esteem up to 4 years after obesity surgery. By standardized questionnaires prior to (T1) and 1 year (T2), 2 years (T3), and 4 years (T4) after surgery, 148 patients (47 males (31.8 %), 101 females (68.2 %), mean age 38.8 ± 10.2 years) were assessed. On average, participants lost 24.6 % of their initial weight 1 year after surgery, 25.1 % after 2 years, and 22.3 % after 4 years. Statistical analysis revealed significant improvements in depressive symptoms, physical dimension of quality of life, and self-esteem with peak improvements 1 year after surgery. These improvements were largely maintained. Significant correlations between weight loss and improvements in depression, physical aspects of HRQOL (T2, T3, and T4), and self-esteem (T3) were observed. Corresponding to the considerable weight loss after bariatric surgery, important aspects of mental health improved significantly during the 4-year follow-up period. However, parallel to weight regain, psychological improvements showed a slow but not significant decline over time.", "title": "Psychological Outcome 4 Years after Restrictive Bariatric Surgery" }, { "docid": "21547032", "text": "Objective:In mice and in humans, treatment with the second-generation antipsychotic drug olanzapine (OLZ) produces excessive weight gain, adiposity and secondary metabolic complications, including loss of glucose and insulin homeostasis. In mice consuming a high-fat (HF) diet, a similar phenotype develops, which is inhibited by the analgesic acetaminophen (APAP) and by the antioxidant tetrahydroindenoindole (THII). Therefore, we examined the ability of APAP and THII to prevent metabolic changes in mice receiving OLZ.Design and Measurement:C57BL/6J mice received either a normal diet or a HF diet, and were administered daily dosages of OLZ (3 mg kg−1 body weight), alone or with APAP (30 mg kg−1 body weight) or THII (4.5 mg kg−1 body weight), for 10 weeks. Parameters of body composition and metabolism, including glucose and insulin homeostasis and oxidative stress, were examined. Results:OLZ treatment doubled the HF diet-induced increases in body weight and percent body fat. These increases were partially prevented by both APAP and THII, although food consumption was constant in all groups. The THII protection was associated with an increase in whole body and mitochondrial respiration. OLZ also exacerbated, and both APAP and THII prevented, HF diet-induced loss of glucose tolerance and insulin resistance. As increased body fat promotes insulin resistance by a pathway involving oxidative stress, we evaluated production of reactive oxygen and lipid peroxidation in white adipose tissue (WAT). HF diet caused an increase in lipid peroxidation, NADPH-dependent O2 uptake and H2O2 production, which were further exacerbated by OLZ. APAP, THII and the NADPH oxidase inhibitor, diphenyleneiodonium chloride, each abolished oxidative stress in WAT.Conclusions:We conclude that both APAP and THII intervene in the development of obesity and metabolic complications associated with OLZ treatment.", "title": "Protection from olanzapine-induced metabolic toxicity in mice by acetaminophen and tetrahydroindenoindole" } ]
396
Exercise increases cancer mortality rates among Chinese citizens.
[ { "docid": "1456068", "text": "BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. \n METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. \n CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary.", "title": "Combined Impact of Lifestyle-Related Factors on Total and Cause-Specific Mortality among Chinese Women: Prospective Cohort Study" } ]
[ { "docid": "24918110", "text": "OBJECTIVE To demonstrate the relation of exercise capacity and BMI to mortality in a population of male veterans with type 2 diabetes. RESEARCH DESIGN AND METHODS After excluding two underweight patients (BMI <18.5 kg/m2), the study population comprised 831 consecutive patients with type 2 diabetes (mean age 61 +/- 9 years) referred for exercise testing for clinical reasons between 1995 and 2006. Exercise capacity was determined from a maximal exercise test and measured in metabolic equivalents (METs). Patients were classified both according to BMI category (18.5-24.9, 25.0-29.9, and > or =30 kg/m2) and by exercise capacity (<5.0 or > or =5.0 maximal METs). The association among exercise capacity, BMI, other clinical variables, and all-cause mortality was assessed by Cox proportional hazards. Study participants were followed for mortality up to 30 June 2006. \n RESULTS During a mean follow-up of 4.8 +/- 3.0 years, 112 patients died, for an average annual mortality rate of 2.2%. Each 1-MET increase in exercise capacity conferred a 10% survival benefit (hazard ratio 0.90 [95% CI 0.82-0.98]; P = 0.01), but BMI was not significantly associated with mortality. After adjustment for age, ethnicity, examination year, BMI, presence of cardiovascular disease (CVD), and CVD risk factors, diabetic patients achieving <5 maximal METs were 70% more likely to die (1.70 [1.13-2.54]) than those achieving > or =5 maximal METs. \n CONCLUSIONS There was a strong inverse association between exercise capacity and mortality in this cohort of men with documented diabetes, and this relationship was independent of BMI.", "title": "Exercise capacity and body mass as predictors of mortality among male veterans with type 2 diabetes." }, { "docid": "10209731", "text": "STUDY OBJECTIVE The aim of the study was to analyse differences in mortality from the main cardiovascular diseases (ischaemic heart disease, hypertensive disease, and cerebrovascular disease) among Chinese, Malays, and Indians in Singapore. \n DESIGN The study was a survey using national death registration data in Singapore for the five years 1980 to 1984. The underlying cause of death, coded according to the ninth revision of the International Classification of Diseases, was taken for the analyses. \n SETTING The study was confined to the independent island state of Singapore, population 2.53 million (Chinese 76.5%, Malays 14.8%, Indians 6.4%, Others 2.3%). Death registration is thought to be complete. SUBJECTS All registered deaths in the age range 30-69 years during the study period were analysed by ethnic group. \n MEASUREMENT AND MAIN RESULTS Indians had higher mortality from ischaemic heart disease than the other ethnic groups in both sexes, with age-standardised relative risks of Indian v Chinese (males 3.8, females 3.4), Indian v Malay (males 1.9, females 1.6), and Malay v Chinese (males 2.0, females 2.2). The excess mortality in Indians declined with age. For hypertensive disease Malays had the highest mortality, with age-standardised relative risks of Malay v Chinese (males 3.4, females 4.4), Malay v Indian (males 2.0, females 2.5), and Indian v Chinese (males 1.6, females 1.6). For cerebrovascular disease there was little ethnic difference except for lower rates in Chinese females, with age-standardised relative risks of Malay v Chinese (males 1.1, females 1.9), Malay v Indian (males 1.0, females 1.1), and Indian v Chinese (males 1.1, females 1.7). \n CONCLUSIONS There are significant differences in mortality from the three main cardiovascular diseases in the different ethnic groups in Singapore.", "title": "Cardiovascular diseases in Chinese, Malays, and Indians in Singapore. I. Differences in mortality." }, { "docid": "27240667", "text": "PURPOSE Since 1990, overall breast cancer mortality rates in the United States decreased 24%. This decline has been attributed to mammography screening and adjuvant systemic therapy. However, the efficacy of these modalities may depend on estrogen receptor (ER) expression and age. We therefore examined breast cancer mortality trends in the United States according to ER status and age. \n METHODS Using the Surveillance, Epidemiology, and End Results (SEER) program (1990-2003), we calculated trends in incidence-based mortality (IBM), annual hazard rates for breast cancer deaths after diagnosis, and relative hazard rates for women with ER-positive and ER-negative tumors. Relative hazard rates were assessed with Cox proportional hazards models, adjusted for stage and grade, and stratified by age at diagnosis. \n RESULTS During the study period, IBM and annual hazard rates for breast cancer deaths decreased among women with ER-positive and ER-negative tumors, although declines were greater for those with ER-positive tumors. Among women younger than 70 years, relative hazard rates declined 38% for those with ER-positive tumors versus 19% for those with ER-negative tumors. Among women 70 years or older, relative hazard rates declined 14% for those with ER-positive tumors versus no significant decline for those with ER-negative tumors. \n CONCLUSION In the United States, breast cancer mortality rates have declined among women with ER-positive and ER-negative tumors, with greater declines among younger women and those with ER-positive tumors. Although mortality in all groups remains unacceptably high, additional emphasis should be placed on improving outcomes of breast cancer patients older than 70 years and those of all ages with ER-negative tumors.", "title": "Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis." }, { "docid": "12438901", "text": "BACKGROUND For women with oestrogen receptor (ER)-positive early breast cancer, treatment with tamoxifen for 5 years substantially reduces the breast cancer mortality rate throughout the first 15 years after diagnosis. We aimed to assess the further effects of continuing tamoxifen to 10 years instead of stopping at 5 years. \n METHODS In the worldwide Adjuvant Tamoxifen: Longer Against Shorter (ATLAS) trial, 12,894 women with early breast cancer who had completed 5 years of treatment with tamoxifen were randomly allocated to continue tamoxifen to 10 years or stop at 5 years (open control). Allocation (1:1) was by central computer, using minimisation. After entry (between 1996 and 2005), yearly follow-up forms recorded any recurrence, second cancer, hospital admission, or death. We report effects on breast cancer outcomes among the 6846 women with ER-positive disease, and side-effects among all women (with positive, negative, or unknown ER status). Long-term follow-up still continues. This study is registered, number ISRCTN19652633. \n FINDINGS Among women with ER-positive disease, allocation to continue tamoxifen reduced the risk of breast cancer recurrence (617 recurrences in 3428 women allocated to continue vs 711 in 3418 controls, p=0·002), reduced breast cancer mortality (331 deaths vs 397 deaths, p=0·01), and reduced overall mortality (639 deaths vs 722 deaths, p=0·01). The reductions in adverse breast cancer outcomes appeared to be less extreme before than after year 10 (recurrence rate ratio [RR] 0·90 [95% CI 0·79–1·02] during years 5–9 and 0·75 [0·62–0·90] in later years; breast cancer mortality RR 0·97 [0·79–1·18] during years 5–9 and 0·71 [0·58–0·88] in later years). The cumulative risk of recurrence during years 5–14 was 21·4% for women allocated to continue versus 25·1% for controls; breast cancer mortality during years 5–14 was 12·2% for women allocated to continue versus 15·0% for controls (absolute mortality reduction 2·8%). Treatment allocation seemed to have no effect on breast cancer outcome among 1248 women with ER-negative disease, and an intermediate effect among 4800 women with unknown ER status. Among all 12,894 women, mortality without recurrence from causes other than breast cancer was little affected (691 deaths without recurrence in 6454 women allocated to continue versus 679 deaths in 6440 controls; RR 0·99 [0·89–1·10]; p=0·84). For the incidence (hospitalisation or death) rates of specific diseases, RRs were as follows: pulmonary embolus 1·87 (95% CI 1·13–3·07, p=0·01 [including 0·2% mortality in both treatment groups]), stroke 1·06 (0·83–1·36), ischaemic heart disease 0·76 (0·60–0·95, p=0·02), and endometrial cancer 1·74 (1·30–2·34, p=0·0002). The cumulative risk of endometrial cancer during years 5–14 was 3·1% (mortality 0·4%) for women allocated to continue versus 1·6% (mortality 0·2%) for controls (absolute mortality increase 0·2%). \n INTERPRETATION For women with ER-positive disease, continuing tamoxifen to 10 years rather than stopping at 5 years produces a further reduction in recurrence and mortality, particularly after year 10. These results, taken together with results from previous trials of 5 years of tamoxifen treatment versus none, suggest that 10 years of tamoxifen treatment can approximately halve breast cancer mortality during the second decade after diagnosis. \n FUNDING Cancer Research UK, UK Medical Research Council, AstraZeneca UK, US Army, EU-Biomed.", "title": "Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial" }, { "docid": "43566999", "text": "This study was designed to determine the influence of a long-term, moderate-intensity treadmill training program on the distribution of blood flow within and among muscles of rats during exercise. One group (T) of male Sprague-Dawley rats trained for 1 h/day for 13-17 wk at 30 m/min on a motor-driven treadmill. A second group (UT) of rats was conditioned for 10 min/day for 4 wk at the same speed. Muscle succinate dehydrogenase activities were higher in T than UT rats indicating a significant training effect. Blood flows (BFs) in 32 hindlimb muscles or muscle parts and other selected organs were measured in the two groups with radiolabeled microspheres during preexercise and while the rats ran for 30 s, 5 min, or 15 min at 30 m/min on the treadmill. The data indicate 1) there were no differences in total hindlimb muscle BF between UT and T rats at any time; however, 2) T rats had higher preexercise heart rates and higher muscle BFs in the deep red extensor muscles, suggesting a greater anticipatory response to the impending exercise; 3) T rats demonstrated more rapid elevations in BF in the red extensor muscles at the commencement of exercise; 4) T rats had higher BFs in red extensor muscles during exercise, whereas UT rats had higher BFs in white muscles; and 5) T rats maintained higher BFs in the visceral organs during exercise. These findings demonstrate that exercise training results in changes in the distribution of BF within and among muscles and among organs during exercise. Specifically, data indicate the high-oxidative motor units that are primarily recruited in the muscles during the initial stages of moderate treadmill exercise receive higher blood flows in the trained rats; this presumably contributes to increased resistance to fatigue.", "title": "Exercise blood flow patterns within and among rat muscles after training." }, { "docid": "12770738", "text": "BACKGROUND Questions remain as to whether higher levels of cardiorespiratory fitness, a measure of regular physical activity, are associated with lower risk of cardiovascular disease (CVD) mortality in overweight and obese individuals with diabetes. Our objective was to quantify the independent and joint relations of cardiorespiratory fitness (hereafter, fitness) and body mass index (BMI; calculated as weight in kilograms divided by the square of height in meters) with CVD mortality in men with diabetes. \n METHODS This study was conducted using prospective observational data from the Aerobics Center Longitudinal Study. Study participants comprised 2316 men with no history of stroke or myocardial infarction and who were diagnosed as having diabetes (mean [SD] age, 50 [10] years); had a medical examination, including a maximal exercise test during 1970 to 1997 with mortality surveillance to December 31, 1998; and had a BMI of 18.5 or greater and less than 35.0. The main outcome measure was CVD mortality across levels of fitness with stratification by BMI. \n RESULTS We identified 179 CVD deaths during a mean (SD) follow-up of 15.9 (7.9) years and 36,710 man-years of exposure. In a model containing age, examination year, fasting glucose level, systolic blood pressure, parental history of premature CVD, total cholesterol level, cigarette smoking, abnormal resting, and exercise electrocardiograms, a significantly higher adjusted risk of mortality was observed in men with a low fitness level who were normal weight (hazard ratio, 2.7 [95% confidence interval, 1.3-5.7]), overweight (hazard ratio, 2.7 [95% confidence interval, 1.4-5.1]), and class 1 obese (hazard ratio, 2.8 [95% confidence interval, 1.4-5.1]) compared with normal weight men with a high fitness level. \n CONCLUSION In this cohort of men with diabetes, low fitness level was associated with increased risk of CVD mortality within normal weight, overweight, and class 1 obese weight categories.", "title": "Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes." }, { "docid": "20610390", "text": "OBJECTIVES To investigate incidence, mortality and case survival trends for cancer of unknown primary site (CUP) and consider clinical implications. \n METHOD South Australian Cancer Registry data were used to calculate age-standardised incidence and mortality rates from 1977 to 2004. Disease-specific survivals, socio-demographic, histological and secular predictors of CUP, compared with cancers of known primary site, and of CUP histological types, using multivariable logistic regression were investigated. \n RESULTS Incidence and mortality rates increased approximately 60% between 1977--80 and 1981--84. Rates peaked in 1993--96. Male to female incidence and mortality rate ratios approximated 1.3:1. Incidence and mortality rates increased with age. The odds of unspecified histological type, compared with the more common adenocarcinomas, were higher for males than females, non-metropolitan residents, low socio-economic areas, and for 1977--88 than subsequent diagnostic periods. CUP represented a higher proportion of cancers in Indigenous patients. Case survival was 7% at 10 years from diagnosis. Factors predictive of lower case survival included older age, male sex, Indigenous status, lower socio-economic status, and unspecified histology type. \n CONCLUSION Results point to poor CUP outcomes, but with a modest improvement in survival. The study identifies socio-demographic groups at elevated risk of CUP and of worse treatment outcomes where increased research and clinical attention are required.", "title": "Exploring the epidemiological characteristics of cancers of unknown primary site in an Australian population: implications for research and clinical care." }, { "docid": "21009874", "text": "CONTEXT Whether immunosuppressive treatment adversely affects survival is unclear. \n OBJECTIVE To assess whether immunosuppressive drugs increase mortality. \n DESIGN Retrospective cohort study evaluating overall and cancer mortality in relation to immunosuppressive drug exposure among patients with ocular inflammatory diseases. Demographic, clinical, and treatment data derived from medical records, and mortality results from United States National Death Index linkage. The cohort's mortality risk was compared with US vital statistics using standardised mortality ratios. Overall and cancer mortality in relation to use or non-use of immunosuppressive drugs within the cohort was studied with survival analysis. \n SETTING Five tertiary ocular inflammation clinics. Patients 7957 US residents with non-infectious ocular inflammation, 2340 of whom received immunosuppressive drugs during follow up. Exposures Use of antimetabolites, T cell inhibitors, alkylating agents, and tumour necrosis factor inhibitors. \n MAIN OUTCOME MEASURES Overall mortality, cancer mortality. \n RESULTS Over 66 802 person years (17 316 after exposure to immunosuppressive drugs), 936 patients died (1.4/100 person years), 230 (24.6%) from cancer. For patients unexposed to immunosuppressive treatment, risks of death overall (standardised mortality ratio 1.02, 95% confidence interval [CI] 0.94 to 1.11) and from cancer (1.10, 0.93 to 1.29) were similar to those of the US population. Patients who used azathioprine, methotrexate, mycophenolate mofetil, ciclosporin, systemic corticosteroids, or dapsone had overall and cancer mortality similar to that of patients who never took immunosuppressive drugs. In patients who used cyclophosphamide, overall mortality was not increased and cancer mortality was non-significantly increased. Tumour necrosis factor inhibitors were associated with increased overall (adjusted hazard ratio [HR] 1.99, 95% CI 1.00 to 3.98) and cancer mortality (adjusted HR 3.83, 1.13 to 13.01). \n CONCLUSIONS Most commonly used immunosuppressive drugs do not seem to increase overall or cancer mortality. Our results suggesting that tumour necrosis factor inhibitors might increase mortality are less robust than the other findings; additional evidence is needed.", "title": "Overall and cancer related mortality among patients with ocular inflammation treated with immunosuppressive drugs: retrospective cohort study." }, { "docid": "24323695", "text": "RATIONALE Up to 80% of patients with lung cancer have comorbid chronic obstructive pulmonary disease (COPD). Many of them are poor candidates for stage-specific lung cancer treatment due to diminished lung function and poor functional status, and many forego treatment. The negative effect of COPD may be moderated by pulmonologist-guided management. \n OBJECTIVES This study examined the association between pulmonologist management and the probability of receiving the recommended stage-specific treatment modality and overall survival among patients with non-small cell lung cancer (NSCLC) with preexisting COPD. \n METHODS Early- and advanced-stage NSCLC cases diagnosed between 2002 and 2005 with a prior COPD diagnosis (3-24 months before NSCLC diagnosis) were identified in Surveillance, Epidemiology, and End Results tumor registry data linked to Medicare claims. Study outcomes included receipt of recommended stage-specific treatment (surgical resection for early-stage NSCLC and chemotherapy for advanced-stage NSCLC [advNSCLC]) and overall survival. Pulmonologist management was considered present if one or more Evaluation and Management visit claims with pulmonologist specialty were observed within 6 months after NSCLC diagnosis. Stage-specific multivariate logistic regression tested association between pulmonologist management and treatment received. Cox proportional hazard models examined the independent association between pulmonologist care and mortality. Two-stage residual inclusion instrumental variable (2SRI-IV) analyses tested and adjusted for potential confounding based on unobserved factors or measurement error. \n MEASUREMENTS AND MAIN RESULTS The cohorts included 5,488 patients with early-stage NSCLC and 6,426 patients with advNSCLC disease with preexisting COPD. Pulmonologist management was recorded for 54.9% of patients with early stage NSCLC and 35.7% of patients with advNSCLC. Of those patients with pulmonologist involvement, 58.5% of patients with early NSCLC received surgical resection, and 43.6% of patients with advNSCLC received chemotherapy. Pulmonologist management post NSCLC diagnosis was associated with increased surgical resection rates (odds ratio, 1.26; 95% confidence interval, 1.11-1.45) for early NSCLC and increased chemotherapy rates (odds ratio, 1.88; 95% confidence interval, 1.67-2.10) for advNSCLC. Pulmonologist management was also associated with reduced mortality risk for patients with early-stage NSCLC but not AdvNSCLC. \n CONCLUSIONS Pulmonologist management had a positive association with rates of stage-specific treatment in both groups and overall survival in early-stage NSCLC. These results provide preliminary support for the recently published guidelines emphasizing the role of pulmonologists in lung cancer management.", "title": "Pulmonologist involvement, stage-specific treatment, and survival in adults with non-small cell lung cancer and chronic obstructive pulmonary disease." }, { "docid": "14823313", "text": "OBJECTIVES To examine trends in life expectancy at birth and age and cause specific patterns of mortality in the former German Democratic Republic (GDR) and Poland during political transition and throughout the 1990s in both parts of Germany and in Poland. \n METHODS Decomposition of life expectancy by age and cause of death. Changes in life expectancy during transition by cause of death were examined using data for 1988/89 and 1990/91 for the former GDR and Poland; examination of life expectancy changes after transition were based on 1992-97 data for Germany and 1991-96 data for Poland. \n RESULTS In both the former GDR and Poland male life expectancy at birth declined by almost one year during transition, mainly attributable to rising death rates from external causes and circulatory diseases. Female life expectancy in Poland deteriorated by 0.3 years, largely attributable to increasing circulatory mortality among the old, while in East German female rising death rates in children and young adults were nearly outbalanced by declining circulatory mortality among those over 70. Between 1991/92 and 1996/97, male life expectancy at birth increased by 2.4 years in the former GDR, 1.2 years in old Federal Republic, and 2.0 years in Poland (women: 2.3, 0.9, and 1.2 years). In East Germany and Poland, the overall improvement was largely attributable to falling mortality among men aged 40-64, while those over 65 contributed the largest proportion to life expectancy gains in women. The change in deaths among men aged 15-39 accounted for 0.4 of a year to life expectancy at birth in East Germany and Poland, attributable largely to greater decreases from external causes. Among those over 40, absolute contributions to changing life expectancy were greater in the former GDR than in the other two entities in both sexes, largely attributable to circulatory diseases. A persisting East-west life expectancy gap in Germany of 2.1 years in men in 1997 was largely attributable to external causes, diseases of the digestive system and circulatory diseases. Higher death rates from circulatory diseases among the elderly largely explain the female life expectancy gap of approximately one year. \n CONCLUSIONS This study provides further insights into the health effects of political transition. Post-transition improvements in life expectancy and mortality have been much steeper in East Germany compared with Poland. Changes in dietary pattern and, in Germany, medical care may have been important factors in shaping post-transition mortality trends.", "title": "Changing mortality patterns in East and West Germany and Poland. II: short-term trends during transition and in the 1990s." }, { "docid": "11630388", "text": "BACKGROUND Obesity is associated with diverse health risks, but the role of body weight as a risk factor for death remains controversial. \n METHODS We examined the association between body weight and the risk of death in a 12-year prospective cohort study of 1,213,829 Koreans between the ages of 30 and 95 years. We examined 82,372 deaths from any cause and 48,731 deaths from specific diseases (including 29,123 from cancer, 16,426 from atherosclerotic cardiovascular disease, and 3362 from respiratory disease) in relation to the body-mass index (BMI) (the weight in kilograms divided by the square of the height in meters). \n RESULTS In both sexes, the average baseline BMI was 23.2, and the rate of death from any cause had a J-shaped association with the BMI, regardless of cigarette-smoking history. The risk of death from any cause was lowest among patients with a BMI of 23.0 to 24.9. In all groups, the risk of death from respiratory causes was higher among subjects with a lower BMI, and the risk of death from atherosclerotic cardiovascular disease or cancer was higher among subjects with a higher BMI. The relative risk of death associated with BMI declined with increasing age. \n CONCLUSIONS Underweight, overweight, and obese men and women had higher rates of death than men and women of normal weight. The association of BMI with death varied according to the cause of death and was modified by age, sex, and smoking history.", "title": "Body-mass index and mortality in Korean men and women." }, { "docid": "9617381", "text": "OBJECTIVE To evaluate long-term prognostic effect of serum noncholesterol sterols, including plant sterols, in middle-aged men with high cardiovascular disease (CVD) risk, without statins at baseline. \n METHODS This was a prospective study of 232 men (mean age 60 years) at high risk of CVD in 1985-1986. Most were hypercholesterolemic, 29 (12%) had a history of CVD or cancer, 6 (3%) had diabetes, and 46 (20%) had metabolic syndrome (MS). Measured noncholesterol sterols (expressed as absolute concentrations or ratios to serum cholesterol to standardize for cholesterol concentrations) included lathosterol and desmosterol (reflect cholesterol synthesis), and plant sterols (campesterol and sitosterol) and cholestanol (reflect cholesterol absorption). Main outcome measure was total mortality. \n RESULTS At baseline, markers of cholesterol synthesis and absorption showed expected inverse associations. During the 22-year follow-up 101 men (43%) died. At baseline, nonsurvivors smoked more, exercised less and had more components of MS (although not filling strict criteria), whereas traditional risk factors of CVD were not significantly different. Of the noncholesterol sterols (either absolute or ratio), only sitosterol was significantly higher in survivors than in nonsurvivors (P=0.02). In multivariable analyses, highest sitosterol-to-cholesterol tertile was associated with significantly lower mortality risk (HR 0.51, 95% CI 0.30-0.87) as compared to lowest tertile. Other associations were nonsignificant, although a \"global\" index of cholesterol metabolism (desmosterol-to-sitosterol ratio) suggested higher cholesterol synthesis and lower absorption to be associated with higher total and CVD mortality. \n CONCLUSION Higher serum plant sterol levels in middle-aged men predicted lower long-term mortality risk, possibly reflecting an association between higher synthesis/lower absorption of cholesterol and mortality.", "title": "Serum plant and other noncholesterol sterols, cholesterol metabolism and 22-year mortality among middle-aged men." }, { "docid": "14021596", "text": "BACKGROUND The objective of the study was to test the hypothesis that elevated red cell distribution width (RDW) at admission increases the risk of mortality in older patients admitted to the emergency department (ED). \n METHODS We performed a retrospective analysis of patients admitted to the ED between May 2013 and October 2013. We included patients who were older than 65 years who visited the ED with any medical problems. Baseline RDW values were measured at the time of admission to the ED. The primary outcome was all-cause in-hospital mortality. Multivariate logistic analysis was performed. \n RESULTS A total of 1,990 patients were finally included in this study. The mean age was 75 years (SD 7), and 936 (47 %) subjects were male. The in-hospital mortality rate was 3.76 % (74 patients). RDW values higher in non-survivors than in survivors (15.9 ± 2.5 vs. 13.8 ± 1.7, p < 0.001). Multivariate logistic analysis showed that RDW was associated with all-cause in-hospital mortality after adjusting for other confounding factors. DISCUSSION RDW value at admission is an independent predictor of all-cause in-hospital mortality among patients older than 65 years. After adjustment for multiple confounders, the all-cause in-hospital mortality rate increased by 21.8% for each 1% increase in RDW. \n CONCLUSION These results show that RDW at admission is associated with in-hospital mortality among patients older than 65. Thus, RDW at admission may represent a surrogate marker of disease severity. We caution against using these findings to aid clinical decision-making process until they are externally validated.", "title": "The association of Red cell distribution width and in-hospital mortality in older adults admitted to the emergency department" }, { "docid": "14700857", "text": "OBJECTIVES To provide direct estimates of risk of cancer after protracted low doses of ionising radiation and to strengthen the scientific basis of radiation protection standards for environmental, occupational, and medical diagnostic exposures. \n DESIGN Multinational retrospective cohort study of cancer mortality. \n SETTING Cohorts of workers in the nuclear industry in 15 countries. \n PARTICIPANTS 407 391 workers individually monitored for external radiation with a total follow-up of 5.2 million person years. \n MAIN OUTCOME MEASUREMENTS Estimates of excess relative risks per sievert (Sv) of radiation dose for mortality from cancers other than leukaemia and from leukaemia excluding chronic lymphocytic leukaemia, the main causes of death considered by radiation protection authorities. \n RESULTS The excess relative risk for cancers other than leukaemia was 0.97 per Sv, 95% confidence interval 0.14 to 1.97. Analyses of causes of death related or unrelated to smoking indicate that, although confounding by smoking may be present, it is unlikely to explain all of this increased risk. The excess relative risk for leukaemia excluding chronic lymphocytic leukaemia was 1.93 per Sv (< 0 to 8.47). On the basis of these estimates, 1-2% of deaths from cancer among workers in this cohort may be attributable to radiation. \n CONCLUSIONS These estimates, from the largest study of nuclear workers ever conducted, are higher than, but statistically compatible with, the risk estimates used for current radiation protection standards. The results suggest that there is a small excess risk of cancer, even at the low doses and dose rates typically received by nuclear workers in this study.", "title": "Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries." }, { "docid": "24581365", "text": "CONTEXT The appropriate therapy for men with clinically localized prostate cancer is uncertain. A recent study suggested an increasing prostate cancer mortality rate for men who are alive more than 15 years following diagnosis. \n OBJECTIVE To estimate 20-year survival based on a competing risk analysis of men who were diagnosed with clinically localized prostate cancer and treated with observation or androgen withdrawal therapy alone, stratified by age at diagnosis and histological findings. \n DESIGN, SETTING, AND PATIENTS A retrospective population-based cohort study using Connecticut Tumor Registry data supplemented by hospital record and histology review of 767 men aged 55 to 74 years with clinically localized prostate cancer diagnosed between January 1, 1971, and December 31, 1984. Patients were treated with either observation or immediate or delayed androgen withdrawal therapy, with a median observation of 24 years. \n MAIN OUTCOME MEASURES Probability of mortality from prostate cancer or other competing medical conditions, given a patient's age at diagnosis and tumor grade. \n RESULTS The prostate cancer mortality rate was 33 per 1000 person-years during the first 15 years of follow-up (95% confidence interval [CI], 28-38) and 18 per 1000 person-years after 15 years of follow-up (95% CI, 10-29). The mortality rates for these 2 follow-up periods were not statistically different, after adjusting for differences in tumor histology (rate ratio, 1.1; 95% CI, 0.6-1.9). Men with low-grade prostate cancers have a minimal risk of dying from prostate cancer during 20 years of follow-up (Gleason score of 2-4, 6 deaths per 1000 person-years; 95% CI, 2-11). Men with high-grade prostate cancers have a high probability of dying from prostate cancer within 10 years of diagnosis (Gleason score of 8-10, 121 deaths per 1000 person-years; 95% CI, 90-156). Men with Gleason score of 5 or 6 tumors have an intermediate risk of prostate cancer death. \n CONCLUSION The annual mortality rate from prostate cancer appears to remain stable after 15 years from diagnosis, which does not support aggressive treatment for localized low-grade prostate cancer.", "title": "20-year outcomes following conservative management of clinically localized prostate cancer." }, { "docid": "154796494", "text": "In April 1997, Grand Forks, North Dakota, and East Grand Forks, Minnesota, experienced a disastrous flood. Both cities have been textbook examples of success according to the Federal Emergency Management Agency. They have an updated infrastructure, paid for largely by the federal government. Their downtowns are on the road to recovery with new construction and businesses. The paths of the two cities have diverged in the social and political aftermath of the flood. East Grand Forks, following consultant suggestions, instituted extensive citizen participation initiatives. East Grand Forks has experienced political stability and citizen satisfaction. Grand Forks relied primarily on bureaucratic guidance to react to the disaster. Grand Forks has experienced changes in government structure, turnover of elected and appointed officials, and much less positive citizen evaluation. This study examines the effect of perceptions of citizen participation on the citizens’ evaluation of the success of the recovery.", "title": "Citizen Participation and Citizen Evaluation in Disaster Recovery" }, { "docid": "13230773", "text": "CONTEXT Population surveys indicate that physical activity levels are low in the United States. One consequence of inactivity, low cardiorespiratory fitness, is an established risk factor for cardiovascular disease (CVD) morbidity and mortality, but the prevalence of cardiorespiratory fitness has not been quantified in representative US population samples. \n OBJECTIVES To describe the prevalence of low fitness in the US population aged 12 through 49 years and to relate low fitness to CVD risk factors in this population. \n DESIGN, SETTING, AND PARTICIPANTS Inception cohort study using data from the cross-sectional nationally representative National Health and Nutrition Examination Survey 1999-2002. Participants were adolescents (aged 12-19 years; n = 3110) and adults (aged 20-49 years; n = 2205) free from previously diagnosed CVD who underwent submaximal graded exercise treadmill testing to achieve at least 75% to 90% of their age-predicted maximum heart rate. Maximal oxygen consumption (VO2max) was estimated by measuring the heart rate response to reference levels of submaximal work. \n MAIN OUTCOME MEASURES Low fitness defined using percentile cut points of estimated VO2max from existing external referent populations; anthropometric and other CVD risk factors measured according to standard methods. \n RESULTS Low fitness was identified in 33.6% of adolescents (approximately 7.5 million US adolescents) and 13.9% of adults (approximately 8.5 million US adults); the prevalence was similar in adolescent females (34.4%) and males (32.9%) (P = .40) but was higher in adult females (16.2%) than in males (11.8%) (P = .03). Non-Hispanic blacks and Mexican Americans were less fit than non-Hispanic whites. In all age-sex groups, body mass index and waist circumference were inversely associated with fitness; age- and race-adjusted odds ratios of overweight or obesity (body mass index > or =25) ranged from 2.1 to 3.7 (P<.01 for all), comparing persons with low fitness with those with moderate or high fitness. Total cholesterol levels and systolic blood pressure were higher and levels of high-density lipoprotein cholesterol were lower among participants with low vs high fitness. \n CONCLUSION Low fitness in adolescents and adults is common in the US population and is associated with an increased prevalence of CVD risk factors.", "title": "Prevalence and cardiovascular disease correlates of low cardiorespiratory fitness in adolescents and adults." }, { "docid": "13373629", "text": "BACKGROUND Recent genome-wide association studies (GWAS) have mapped several novel loci influencing blood lipid levels in Caucasians. We sought to explore whether the genetic variants at newly identified lipid-associated loci were associated with CHD susceptibility in a Chinese Han population. \n METHODOLOGY/PRINCIPAL FINDINGS We conducted a two-stage case-control study in a Chinese Han population. The first-stage, consisting of 1,376 CHD cases and 1,376 sex and age- frequency matched controls, examined 5 novel lipid-associated single-nucleotide polymorphisms (SNPs) identified from GWAS among Caucasians in relation to CHD risk in Chinese. We then validated significant SNPs in the second-stage, consisting of 1,269 cases and 2,745 controls. We also tested associations between SNPs within the five novel loci and blood lipid levels in 4,121 controls. We identified two novel SNPs (rs599839 in CELSR2-PSRC1-SORT1 and rs16996148 in NCAN-CILP2) that were significantly associated with reduced CHD risk in Chinese (odds ratios (95% confidence intervals) in the dominant model 0.76 (0.61-0.90; P = 0.001), 0.67 (0.57-0.77; P = 3.4×10(-8)), respectively). Multiple linear regression analyses using dominant model showed that rs599839 was significantly associated with decreased LDL levels (P = 0.022) and rs16996148 was significantly associated with increased LDL and HDL levels (P = 2.9×10(-4) and 0.001, respectively). \n CONCLUSIONS/SIGNIFICANCE We identified two novel SNPs (rs599839 and rs16996148) at newly identified lipid-associated loci that were significantly associated with CHD susceptibility in a Chinese Han population.", "title": "Genetic Variants at Newly Identified Lipid Loci Are Associated with Coronary Heart Disease in a Chinese Han Population" }, { "docid": "24341590", "text": "CONTEXT The growth inhibitory effect of tamoxifen, which is used for the treatment of hormone receptor-positive breast cancer, is mediated by its metabolites, 4-hydroxytamoxifen and endoxifen. The formation of active metabolites is catalyzed by the polymorphic cytochrome P450 2D6 (CYP2D6) enzyme. \n OBJECTIVE To determine whether CYP2D6 variation is associated with clinical outcomes in women receiving adjuvant tamoxifen. \n DESIGN, SETTING, AND PATIENTS Retrospective analysis of German and US cohorts of patients treated with adjuvant tamoxifen for early stage breast cancer. The 1325 patients had diagnoses between 1986 and 2005 of stage I through III breast cancer and were mainly postmenopausal (95.4%). Last follow-up was in December 2008; inclusion criteria were hormone receptor positivity, no metastatic disease at diagnosis, adjuvant tamoxifen therapy, and no chemotherapy. DNA from tumor tissue or blood was genotyped for CYP2D6 variants associated with reduced (*10, *41) or absent (*3, *4, *5) enzyme activity. Women were classified as having an extensive (n=609), heterozygous extensive/intermediate (n=637), or poor (n=79) CYP2D6 metabolism. \n MAIN OUTCOME MEASURES Time to recurrence, event-free survival, disease-free survival, and overall survival. \n RESULTS Median follow-up was 6.3 years. At 9 years of follow-up, the recurrence rates were 14.9% for extensive metabolizers, 20.9% for heterozygous extensive/intermediate metabolizers, and 29.0% for poor metabolizers, and all-cause mortality rates were 16.7%, 18.0%, and 22.8%, respectively. Compared with extensive metabolizers, there was a significantly increased risk of recurrence for heterozygous extensive/intermediate metabolizers (time to recurrence adjusted hazard ratio [HR], 1.40; 95% confidence interval [CI], 1.04-1.90) and for poor metabolizers (time to recurrence HR, 1.90; 95% CI, 1.10-3.28). Compared with extensive metabolizers, those with decreased CYP2D6 activity (heterozygous extensive/intermediate and poor metabolism) had worse event-free survival (HR, 1.33; 95% CI, 1.06-1.68) and disease-free survival (HR, 1.29; 95% CI, 1.03-1.61), but there was no significant difference in overall survival (HR, 1.15; 95% CI, 0.88-1.51). \n CONCLUSION Among women with breast cancer treated with tamoxifen, there was an association between CYP2D6 variation and clinical outcomes, such that the presence of 2 functional CYP2D6 alleles was associated with better clinical outcomes and the presence of nonfunctional or reduced-function alleles with worse outcomes.", "title": "Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen." } ]
397
Exercise reduces cancer mortality rates among Chinese citizens.
[ { "docid": "1456068", "text": "BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. \n METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. \n CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary.", "title": "Combined Impact of Lifestyle-Related Factors on Total and Cause-Specific Mortality among Chinese Women: Prospective Cohort Study" } ]
[ { "docid": "10209731", "text": "STUDY OBJECTIVE The aim of the study was to analyse differences in mortality from the main cardiovascular diseases (ischaemic heart disease, hypertensive disease, and cerebrovascular disease) among Chinese, Malays, and Indians in Singapore. \n DESIGN The study was a survey using national death registration data in Singapore for the five years 1980 to 1984. The underlying cause of death, coded according to the ninth revision of the International Classification of Diseases, was taken for the analyses. \n SETTING The study was confined to the independent island state of Singapore, population 2.53 million (Chinese 76.5%, Malays 14.8%, Indians 6.4%, Others 2.3%). Death registration is thought to be complete. SUBJECTS All registered deaths in the age range 30-69 years during the study period were analysed by ethnic group. \n MEASUREMENT AND MAIN RESULTS Indians had higher mortality from ischaemic heart disease than the other ethnic groups in both sexes, with age-standardised relative risks of Indian v Chinese (males 3.8, females 3.4), Indian v Malay (males 1.9, females 1.6), and Malay v Chinese (males 2.0, females 2.2). The excess mortality in Indians declined with age. For hypertensive disease Malays had the highest mortality, with age-standardised relative risks of Malay v Chinese (males 3.4, females 4.4), Malay v Indian (males 2.0, females 2.5), and Indian v Chinese (males 1.6, females 1.6). For cerebrovascular disease there was little ethnic difference except for lower rates in Chinese females, with age-standardised relative risks of Malay v Chinese (males 1.1, females 1.9), Malay v Indian (males 1.0, females 1.1), and Indian v Chinese (males 1.1, females 1.7). \n CONCLUSIONS There are significant differences in mortality from the three main cardiovascular diseases in the different ethnic groups in Singapore.", "title": "Cardiovascular diseases in Chinese, Malays, and Indians in Singapore. I. Differences in mortality." }, { "docid": "24918110", "text": "OBJECTIVE To demonstrate the relation of exercise capacity and BMI to mortality in a population of male veterans with type 2 diabetes. RESEARCH DESIGN AND METHODS After excluding two underweight patients (BMI <18.5 kg/m2), the study population comprised 831 consecutive patients with type 2 diabetes (mean age 61 +/- 9 years) referred for exercise testing for clinical reasons between 1995 and 2006. Exercise capacity was determined from a maximal exercise test and measured in metabolic equivalents (METs). Patients were classified both according to BMI category (18.5-24.9, 25.0-29.9, and > or =30 kg/m2) and by exercise capacity (<5.0 or > or =5.0 maximal METs). The association among exercise capacity, BMI, other clinical variables, and all-cause mortality was assessed by Cox proportional hazards. Study participants were followed for mortality up to 30 June 2006. \n RESULTS During a mean follow-up of 4.8 +/- 3.0 years, 112 patients died, for an average annual mortality rate of 2.2%. Each 1-MET increase in exercise capacity conferred a 10% survival benefit (hazard ratio 0.90 [95% CI 0.82-0.98]; P = 0.01), but BMI was not significantly associated with mortality. After adjustment for age, ethnicity, examination year, BMI, presence of cardiovascular disease (CVD), and CVD risk factors, diabetic patients achieving <5 maximal METs were 70% more likely to die (1.70 [1.13-2.54]) than those achieving > or =5 maximal METs. \n CONCLUSIONS There was a strong inverse association between exercise capacity and mortality in this cohort of men with documented diabetes, and this relationship was independent of BMI.", "title": "Exercise capacity and body mass as predictors of mortality among male veterans with type 2 diabetes." }, { "docid": "12438901", "text": "BACKGROUND For women with oestrogen receptor (ER)-positive early breast cancer, treatment with tamoxifen for 5 years substantially reduces the breast cancer mortality rate throughout the first 15 years after diagnosis. We aimed to assess the further effects of continuing tamoxifen to 10 years instead of stopping at 5 years. \n METHODS In the worldwide Adjuvant Tamoxifen: Longer Against Shorter (ATLAS) trial, 12,894 women with early breast cancer who had completed 5 years of treatment with tamoxifen were randomly allocated to continue tamoxifen to 10 years or stop at 5 years (open control). Allocation (1:1) was by central computer, using minimisation. After entry (between 1996 and 2005), yearly follow-up forms recorded any recurrence, second cancer, hospital admission, or death. We report effects on breast cancer outcomes among the 6846 women with ER-positive disease, and side-effects among all women (with positive, negative, or unknown ER status). Long-term follow-up still continues. This study is registered, number ISRCTN19652633. \n FINDINGS Among women with ER-positive disease, allocation to continue tamoxifen reduced the risk of breast cancer recurrence (617 recurrences in 3428 women allocated to continue vs 711 in 3418 controls, p=0·002), reduced breast cancer mortality (331 deaths vs 397 deaths, p=0·01), and reduced overall mortality (639 deaths vs 722 deaths, p=0·01). The reductions in adverse breast cancer outcomes appeared to be less extreme before than after year 10 (recurrence rate ratio [RR] 0·90 [95% CI 0·79–1·02] during years 5–9 and 0·75 [0·62–0·90] in later years; breast cancer mortality RR 0·97 [0·79–1·18] during years 5–9 and 0·71 [0·58–0·88] in later years). The cumulative risk of recurrence during years 5–14 was 21·4% for women allocated to continue versus 25·1% for controls; breast cancer mortality during years 5–14 was 12·2% for women allocated to continue versus 15·0% for controls (absolute mortality reduction 2·8%). Treatment allocation seemed to have no effect on breast cancer outcome among 1248 women with ER-negative disease, and an intermediate effect among 4800 women with unknown ER status. Among all 12,894 women, mortality without recurrence from causes other than breast cancer was little affected (691 deaths without recurrence in 6454 women allocated to continue versus 679 deaths in 6440 controls; RR 0·99 [0·89–1·10]; p=0·84). For the incidence (hospitalisation or death) rates of specific diseases, RRs were as follows: pulmonary embolus 1·87 (95% CI 1·13–3·07, p=0·01 [including 0·2% mortality in both treatment groups]), stroke 1·06 (0·83–1·36), ischaemic heart disease 0·76 (0·60–0·95, p=0·02), and endometrial cancer 1·74 (1·30–2·34, p=0·0002). The cumulative risk of endometrial cancer during years 5–14 was 3·1% (mortality 0·4%) for women allocated to continue versus 1·6% (mortality 0·2%) for controls (absolute mortality increase 0·2%). \n INTERPRETATION For women with ER-positive disease, continuing tamoxifen to 10 years rather than stopping at 5 years produces a further reduction in recurrence and mortality, particularly after year 10. These results, taken together with results from previous trials of 5 years of tamoxifen treatment versus none, suggest that 10 years of tamoxifen treatment can approximately halve breast cancer mortality during the second decade after diagnosis. \n FUNDING Cancer Research UK, UK Medical Research Council, AstraZeneca UK, US Army, EU-Biomed.", "title": "Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial" }, { "docid": "27240667", "text": "PURPOSE Since 1990, overall breast cancer mortality rates in the United States decreased 24%. This decline has been attributed to mammography screening and adjuvant systemic therapy. However, the efficacy of these modalities may depend on estrogen receptor (ER) expression and age. We therefore examined breast cancer mortality trends in the United States according to ER status and age. \n METHODS Using the Surveillance, Epidemiology, and End Results (SEER) program (1990-2003), we calculated trends in incidence-based mortality (IBM), annual hazard rates for breast cancer deaths after diagnosis, and relative hazard rates for women with ER-positive and ER-negative tumors. Relative hazard rates were assessed with Cox proportional hazards models, adjusted for stage and grade, and stratified by age at diagnosis. \n RESULTS During the study period, IBM and annual hazard rates for breast cancer deaths decreased among women with ER-positive and ER-negative tumors, although declines were greater for those with ER-positive tumors. Among women younger than 70 years, relative hazard rates declined 38% for those with ER-positive tumors versus 19% for those with ER-negative tumors. Among women 70 years or older, relative hazard rates declined 14% for those with ER-positive tumors versus no significant decline for those with ER-negative tumors. \n CONCLUSION In the United States, breast cancer mortality rates have declined among women with ER-positive and ER-negative tumors, with greater declines among younger women and those with ER-positive tumors. Although mortality in all groups remains unacceptably high, additional emphasis should be placed on improving outcomes of breast cancer patients older than 70 years and those of all ages with ER-negative tumors.", "title": "Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis." }, { "docid": "195680777", "text": "BACKGROUND Moderate differences in efficacy between adjuvant chemotherapy regimens for breast cancer are plausible, and could affect treatment choices. We sought any such differences. \n METHODS We undertook individual-patient-data meta-analyses of the randomised trials comparing: any taxane-plus-anthracycline-based regimen versus the same, or more, non-taxane chemotherapy (n=44,000); one anthracycline-based regimen versus another (n=7000) or versus cyclophosphamide, methotrexate, and fluorouracil (CMF; n=18,000); and polychemotherapy versus no chemotherapy (n=32,000). The scheduled dosages of these three drugs and of the anthracyclines doxorubicin (A) and epirubicin (E) were used to define standard CMF, standard 4AC, and CAF and CEF. Log-rank breast cancer mortality rate ratios (RRs) are reported. \n FINDINGS In trials adding four separate cycles of a taxane to a fixed anthracycline-based control regimen, extending treatment duration, breast cancer mortality was reduced (RR 0·86, SE 0·04, two-sided significance [2p]=0·0005). In trials with four such extra cycles of a taxane counterbalanced in controls by extra cycles of other cytotoxic drugs, roughly doubling non-taxane dosage, there was no significant difference (RR 0·94, SE 0·06, 2p=0·33). Trials with CMF-treated controls showed that standard 4AC and standard CMF were equivalent (RR 0·98, SE 0·05, 2p=0·67), but that anthracycline-based regimens with substantially higher cumulative dosage than standard 4AC (eg, CAF or CEF) were superior to standard CMF (RR 0·78, SE 0·06, 2p=0·0004). Trials versus no chemotherapy also suggested greater mortality reductions with CAF (RR 0·64, SE 0·09, 2p<0·0001) than with standard 4AC (RR 0·78, SE 0·09, 2p=0·01) or standard CMF (RR 0·76, SE 0·05, 2p<0·0001). In all meta-analyses involving taxane-based or anthracycline-based regimens, proportional risk reductions were little affected by age, nodal status, tumour diameter or differentiation (moderate or poor; few were well differentiated), oestrogen receptor status, or tamoxifen use. Hence, largely independently of age (up to at least 70 years) or the tumour characteristics currently available to us for the patients selected to be in these trials, some taxane-plus-anthracycline-based or higher-cumulative-dosage anthracycline-based regimens (not requiring stem cells) reduced breast cancer mortality by, on average, about one-third. 10-year overall mortality differences paralleled breast cancer mortality differences, despite taxane, anthracycline, and other toxicities. \n INTERPRETATION 10-year gains from a one-third breast cancer mortality reduction depend on absolute risks without chemotherapy (which, for oestrogen-receptor-positive disease, are the risks remaining with appropriate endocrine therapy). Low absolute risk implies low absolute benefit, but information was lacking about tumour gene expression markers or quantitative immunohistochemistry that might help to predict risk, chemosensitivity, or both. \n FUNDING Cancer Research UK; British Heart Foundation; UK Medical Research Council.", "title": "Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials." }, { "docid": "41294031", "text": "BACKGROUND Paraquat is an effective and widely used herbicide but is also a lethal poison. In many developing countries paraquat is widely available and inexpensive, making poisoning prevention difficult. However most of the people who become poisoned from paraquat have taken it as a means of suicide. Standard treatment for paraquat poisoning both prevents further absorption and reduces the load of paraquat in the blood through haemoperfusion or haemodialysis. The effectiveness of standard treatments is extremely limited. The immune system plays an important role in exacerbating paraquat-induced lung fibrosis. Immunosuppressive treatment using glucocorticoid and cyclophosphamide in combination is being developed and studied. \n OBJECTIVES To assess the effects of glucocorticoid with cyclophosphamide on mortality in patients with paraquat-induced lung fibrosis. SEARCH METHODS To identify randomised controlled trials (RCTs) on this topic, we searched the Cochrane Injuries Group's Specialised Register (searched 1 February 2012), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 1), MEDLINE (Ovid SP) (1946 January Week 3 2012), EMBASE (Ovid SP) (1947 to Week 4 2012), ISI Web of Science: Science Citation Index Expanded (SCI-EXPANDED) (1970 to January 2012), ISI Web of Science: Conference Proceedings Citation Index - Science (CPCI-S) (1990 to January 2012), Chinese Biomedical Literature and Retrieval System (CBM) (1978 to April 2012), Chinese Medical Current Contents (CMCC) (1995 to April 2012), and Chinese Medical Academic Conference (CMAC) (1994 to April 2012). Searches were completed on English language databases on 1 February 2012 and on Chinese language databases on 12 April 2012. SELECTION CRITERIA RCTs were included in this review. All patients were to receive standard care, plus the intervention or control. The intervention was glucocorticoid with cyclophosphamide in combination versus a control of a placebo, standard care alone or any other therapy in addition to standard care. \n DATA COLLECTION AND ANALYSIS The mortality risk ratio (RR) and 95% confidence interval (CI) was calculated for each study on an intention-to-treat basis. Data for all-cause mortality at final follow-up were summarised in a meta-analysis using a fixed-effect model. \n MAIN RESULTS This systematic review includes three trials with a combined total of 164 participants who had moderate to severe paraquat poisoning. Patients who received glucocorticoid with cyclophosphamide in addition to standard care had a lower risk of death at final follow-up than those receiving standard care only (RR 0.72; 95% CI 0.59 to 0.89). AUTHORS' CONCLUSIONS Based on the findings of three small RCTs of moderate to severely poisoned patients, glucocorticoid with cyclophosphamide in addition to standard care may be a beneficial treatment for patients with paraquat-induced lung fibrosis. To enable further study of the effects of glucocorticoid with cyclophosphamide for patients with moderate to severe paraquat poisoning, hospitals may provide this treatment as part of an RCT with allocation concealment.", "title": "Glucocorticoid with cyclophosphamide for paraquat-induced lung fibrosis." }, { "docid": "24323695", "text": "RATIONALE Up to 80% of patients with lung cancer have comorbid chronic obstructive pulmonary disease (COPD). Many of them are poor candidates for stage-specific lung cancer treatment due to diminished lung function and poor functional status, and many forego treatment. The negative effect of COPD may be moderated by pulmonologist-guided management. \n OBJECTIVES This study examined the association between pulmonologist management and the probability of receiving the recommended stage-specific treatment modality and overall survival among patients with non-small cell lung cancer (NSCLC) with preexisting COPD. \n METHODS Early- and advanced-stage NSCLC cases diagnosed between 2002 and 2005 with a prior COPD diagnosis (3-24 months before NSCLC diagnosis) were identified in Surveillance, Epidemiology, and End Results tumor registry data linked to Medicare claims. Study outcomes included receipt of recommended stage-specific treatment (surgical resection for early-stage NSCLC and chemotherapy for advanced-stage NSCLC [advNSCLC]) and overall survival. Pulmonologist management was considered present if one or more Evaluation and Management visit claims with pulmonologist specialty were observed within 6 months after NSCLC diagnosis. Stage-specific multivariate logistic regression tested association between pulmonologist management and treatment received. Cox proportional hazard models examined the independent association between pulmonologist care and mortality. Two-stage residual inclusion instrumental variable (2SRI-IV) analyses tested and adjusted for potential confounding based on unobserved factors or measurement error. \n MEASUREMENTS AND MAIN RESULTS The cohorts included 5,488 patients with early-stage NSCLC and 6,426 patients with advNSCLC disease with preexisting COPD. Pulmonologist management was recorded for 54.9% of patients with early stage NSCLC and 35.7% of patients with advNSCLC. Of those patients with pulmonologist involvement, 58.5% of patients with early NSCLC received surgical resection, and 43.6% of patients with advNSCLC received chemotherapy. Pulmonologist management post NSCLC diagnosis was associated with increased surgical resection rates (odds ratio, 1.26; 95% confidence interval, 1.11-1.45) for early NSCLC and increased chemotherapy rates (odds ratio, 1.88; 95% confidence interval, 1.67-2.10) for advNSCLC. Pulmonologist management was also associated with reduced mortality risk for patients with early-stage NSCLC but not AdvNSCLC. \n CONCLUSIONS Pulmonologist management had a positive association with rates of stage-specific treatment in both groups and overall survival in early-stage NSCLC. These results provide preliminary support for the recently published guidelines emphasizing the role of pulmonologists in lung cancer management.", "title": "Pulmonologist involvement, stage-specific treatment, and survival in adults with non-small cell lung cancer and chronic obstructive pulmonary disease." }, { "docid": "24341590", "text": "CONTEXT The growth inhibitory effect of tamoxifen, which is used for the treatment of hormone receptor-positive breast cancer, is mediated by its metabolites, 4-hydroxytamoxifen and endoxifen. The formation of active metabolites is catalyzed by the polymorphic cytochrome P450 2D6 (CYP2D6) enzyme. \n OBJECTIVE To determine whether CYP2D6 variation is associated with clinical outcomes in women receiving adjuvant tamoxifen. \n DESIGN, SETTING, AND PATIENTS Retrospective analysis of German and US cohorts of patients treated with adjuvant tamoxifen for early stage breast cancer. The 1325 patients had diagnoses between 1986 and 2005 of stage I through III breast cancer and were mainly postmenopausal (95.4%). Last follow-up was in December 2008; inclusion criteria were hormone receptor positivity, no metastatic disease at diagnosis, adjuvant tamoxifen therapy, and no chemotherapy. DNA from tumor tissue or blood was genotyped for CYP2D6 variants associated with reduced (*10, *41) or absent (*3, *4, *5) enzyme activity. Women were classified as having an extensive (n=609), heterozygous extensive/intermediate (n=637), or poor (n=79) CYP2D6 metabolism. \n MAIN OUTCOME MEASURES Time to recurrence, event-free survival, disease-free survival, and overall survival. \n RESULTS Median follow-up was 6.3 years. At 9 years of follow-up, the recurrence rates were 14.9% for extensive metabolizers, 20.9% for heterozygous extensive/intermediate metabolizers, and 29.0% for poor metabolizers, and all-cause mortality rates were 16.7%, 18.0%, and 22.8%, respectively. Compared with extensive metabolizers, there was a significantly increased risk of recurrence for heterozygous extensive/intermediate metabolizers (time to recurrence adjusted hazard ratio [HR], 1.40; 95% confidence interval [CI], 1.04-1.90) and for poor metabolizers (time to recurrence HR, 1.90; 95% CI, 1.10-3.28). Compared with extensive metabolizers, those with decreased CYP2D6 activity (heterozygous extensive/intermediate and poor metabolism) had worse event-free survival (HR, 1.33; 95% CI, 1.06-1.68) and disease-free survival (HR, 1.29; 95% CI, 1.03-1.61), but there was no significant difference in overall survival (HR, 1.15; 95% CI, 0.88-1.51). \n CONCLUSION Among women with breast cancer treated with tamoxifen, there was an association between CYP2D6 variation and clinical outcomes, such that the presence of 2 functional CYP2D6 alleles was associated with better clinical outcomes and the presence of nonfunctional or reduced-function alleles with worse outcomes.", "title": "Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen." }, { "docid": "9617381", "text": "OBJECTIVE To evaluate long-term prognostic effect of serum noncholesterol sterols, including plant sterols, in middle-aged men with high cardiovascular disease (CVD) risk, without statins at baseline. \n METHODS This was a prospective study of 232 men (mean age 60 years) at high risk of CVD in 1985-1986. Most were hypercholesterolemic, 29 (12%) had a history of CVD or cancer, 6 (3%) had diabetes, and 46 (20%) had metabolic syndrome (MS). Measured noncholesterol sterols (expressed as absolute concentrations or ratios to serum cholesterol to standardize for cholesterol concentrations) included lathosterol and desmosterol (reflect cholesterol synthesis), and plant sterols (campesterol and sitosterol) and cholestanol (reflect cholesterol absorption). Main outcome measure was total mortality. \n RESULTS At baseline, markers of cholesterol synthesis and absorption showed expected inverse associations. During the 22-year follow-up 101 men (43%) died. At baseline, nonsurvivors smoked more, exercised less and had more components of MS (although not filling strict criteria), whereas traditional risk factors of CVD were not significantly different. Of the noncholesterol sterols (either absolute or ratio), only sitosterol was significantly higher in survivors than in nonsurvivors (P=0.02). In multivariable analyses, highest sitosterol-to-cholesterol tertile was associated with significantly lower mortality risk (HR 0.51, 95% CI 0.30-0.87) as compared to lowest tertile. Other associations were nonsignificant, although a \"global\" index of cholesterol metabolism (desmosterol-to-sitosterol ratio) suggested higher cholesterol synthesis and lower absorption to be associated with higher total and CVD mortality. \n CONCLUSION Higher serum plant sterol levels in middle-aged men predicted lower long-term mortality risk, possibly reflecting an association between higher synthesis/lower absorption of cholesterol and mortality.", "title": "Serum plant and other noncholesterol sterols, cholesterol metabolism and 22-year mortality among middle-aged men." }, { "docid": "13373629", "text": "BACKGROUND Recent genome-wide association studies (GWAS) have mapped several novel loci influencing blood lipid levels in Caucasians. We sought to explore whether the genetic variants at newly identified lipid-associated loci were associated with CHD susceptibility in a Chinese Han population. \n METHODOLOGY/PRINCIPAL FINDINGS We conducted a two-stage case-control study in a Chinese Han population. The first-stage, consisting of 1,376 CHD cases and 1,376 sex and age- frequency matched controls, examined 5 novel lipid-associated single-nucleotide polymorphisms (SNPs) identified from GWAS among Caucasians in relation to CHD risk in Chinese. We then validated significant SNPs in the second-stage, consisting of 1,269 cases and 2,745 controls. We also tested associations between SNPs within the five novel loci and blood lipid levels in 4,121 controls. We identified two novel SNPs (rs599839 in CELSR2-PSRC1-SORT1 and rs16996148 in NCAN-CILP2) that were significantly associated with reduced CHD risk in Chinese (odds ratios (95% confidence intervals) in the dominant model 0.76 (0.61-0.90; P = 0.001), 0.67 (0.57-0.77; P = 3.4×10(-8)), respectively). Multiple linear regression analyses using dominant model showed that rs599839 was significantly associated with decreased LDL levels (P = 0.022) and rs16996148 was significantly associated with increased LDL and HDL levels (P = 2.9×10(-4) and 0.001, respectively). \n CONCLUSIONS/SIGNIFICANCE We identified two novel SNPs (rs599839 and rs16996148) at newly identified lipid-associated loci that were significantly associated with CHD susceptibility in a Chinese Han population.", "title": "Genetic Variants at Newly Identified Lipid Loci Are Associated with Coronary Heart Disease in a Chinese Han Population" }, { "docid": "43566999", "text": "This study was designed to determine the influence of a long-term, moderate-intensity treadmill training program on the distribution of blood flow within and among muscles of rats during exercise. One group (T) of male Sprague-Dawley rats trained for 1 h/day for 13-17 wk at 30 m/min on a motor-driven treadmill. A second group (UT) of rats was conditioned for 10 min/day for 4 wk at the same speed. Muscle succinate dehydrogenase activities were higher in T than UT rats indicating a significant training effect. Blood flows (BFs) in 32 hindlimb muscles or muscle parts and other selected organs were measured in the two groups with radiolabeled microspheres during preexercise and while the rats ran for 30 s, 5 min, or 15 min at 30 m/min on the treadmill. The data indicate 1) there were no differences in total hindlimb muscle BF between UT and T rats at any time; however, 2) T rats had higher preexercise heart rates and higher muscle BFs in the deep red extensor muscles, suggesting a greater anticipatory response to the impending exercise; 3) T rats demonstrated more rapid elevations in BF in the red extensor muscles at the commencement of exercise; 4) T rats had higher BFs in red extensor muscles during exercise, whereas UT rats had higher BFs in white muscles; and 5) T rats maintained higher BFs in the visceral organs during exercise. These findings demonstrate that exercise training results in changes in the distribution of BF within and among muscles and among organs during exercise. Specifically, data indicate the high-oxidative motor units that are primarily recruited in the muscles during the initial stages of moderate treadmill exercise receive higher blood flows in the trained rats; this presumably contributes to increased resistance to fatigue.", "title": "Exercise blood flow patterns within and among rat muscles after training." }, { "docid": "53779698", "text": "INTRODUCTION Patients with symptomatic peripheral artery disease (PAD) exhibit reduced functional capacity and increased mortality due to cardiovascular disease. Although exercise has been a cornerstone for clinical treatment to improve walking capacity in patients with symptomatic PAD, its effects on cardiovascular parameters have been poorly explored. Areas covered: This review examines the role of exercise in improving blood pressure in patients with symptomatic PAD and summarizes the current evidence on the acute (single bout of exercise) and chronic effects of walking and resistance exercise on blood pressure and its determinants. Expert commentary: In patients with symptomatic PAD, exercise promotes acute and chronic reductions in blood pressure. These effects were observed particularly after walking and resistance exercise. Future studies are necessary to investigate the effects of other exercise modalities, especially non-painful exercises, on cardiovascular function in patients with symptomatic PAD.", "title": "Exercise as a therapeutic approach to improve blood pressure in patients with peripheral arterial disease: current literature and future directions." }, { "docid": "39059143", "text": "CONTEXT The association of an adult tele-intensive care unit (ICU) intervention with hospital mortality, length of stay, best practice adherence, and preventable complications for an academic medical center has not been reported. \n OBJECTIVE To quantify the association of a tele-ICU intervention with hospital mortality, length of stay, and complications that are preventable by adherence to best practices. \n DESIGN, SETTING, AND PATIENTS Prospective stepped-wedge clinical practice study of 6290 adults admitted to any of 7 ICUs (3 medical, 3 surgical, and 1 mixed cardiovascular) on 2 campuses of an 834-bed academic medical center that was performed from April 26, 2005, through September 30, 2007. Electronically supported and monitored processes for best practice adherence, care plan creation, and clinician response times to alarms were evaluated. \n MAIN OUTCOME MEASURES Case-mix and severity-adjusted hospital mortality. Other outcomes included hospital and ICU length of stay, best practice adherence, and complication rates. \n RESULTS The hospital mortality rate was 13.6% (95% confidence interval [CI], 11.9%-15.4%) during the preintervention period compared with 11.8% (95% CI, 10.9%-12.8%) during the tele-ICU intervention period (adjusted odds ratio [OR], 0.40 [95% CI, 0.31-0.52]). The tele-ICU intervention period compared with the preintervention period was associated with higher rates of best clinical practice adherence for the prevention of deep vein thrombosis (99% vs 85%, respectively; OR, 15.4 [95% CI, 11.3-21.1]) and prevention of stress ulcers (96% vs 83%, respectively; OR, 4.57 [95% CI, 3.91-5.77], best practice adherence for cardiovascular protection (99% vs 80%, respectively; OR, 30.7 [95% CI, 19.3-49.2]), prevention of ventilator-associated pneumonia (52% vs 33%, respectively; OR, 2.20 [95% CI, 1.79-2.70]), lower rates of preventable complications (1.6% vs 13%, respectively, for ventilator-associated pneumonia [OR, 0.15; 95% CI, 0.09-0.23] and 0.6% vs 1.0%, respectively, for catheter-related bloodstream infection [OR, 0.50; 95% CI, 0.27-0.93]), and shorter hospital length of stay (9.8 vs 13.3 days, respectively; hazard ratio for discharge, 1.44 [95% CI, 1.33-1.56]). The results for medical, surgical, and cardiovascular ICUs were similar. \n CONCLUSION In a single academic medical center study, implementation of a tele-ICU intervention was associated with reduced adjusted odds of mortality and reduced hospital length of stay, as well as with changes in best practice adherence and lower rates of preventable complications.", "title": "Hospital mortality, length of stay, and preventable complications among critically ill patients before and after tele-ICU reengineering of critical care processes." }, { "docid": "12770738", "text": "BACKGROUND Questions remain as to whether higher levels of cardiorespiratory fitness, a measure of regular physical activity, are associated with lower risk of cardiovascular disease (CVD) mortality in overweight and obese individuals with diabetes. Our objective was to quantify the independent and joint relations of cardiorespiratory fitness (hereafter, fitness) and body mass index (BMI; calculated as weight in kilograms divided by the square of height in meters) with CVD mortality in men with diabetes. \n METHODS This study was conducted using prospective observational data from the Aerobics Center Longitudinal Study. Study participants comprised 2316 men with no history of stroke or myocardial infarction and who were diagnosed as having diabetes (mean [SD] age, 50 [10] years); had a medical examination, including a maximal exercise test during 1970 to 1997 with mortality surveillance to December 31, 1998; and had a BMI of 18.5 or greater and less than 35.0. The main outcome measure was CVD mortality across levels of fitness with stratification by BMI. \n RESULTS We identified 179 CVD deaths during a mean (SD) follow-up of 15.9 (7.9) years and 36,710 man-years of exposure. In a model containing age, examination year, fasting glucose level, systolic blood pressure, parental history of premature CVD, total cholesterol level, cigarette smoking, abnormal resting, and exercise electrocardiograms, a significantly higher adjusted risk of mortality was observed in men with a low fitness level who were normal weight (hazard ratio, 2.7 [95% confidence interval, 1.3-5.7]), overweight (hazard ratio, 2.7 [95% confidence interval, 1.4-5.1]), and class 1 obese (hazard ratio, 2.8 [95% confidence interval, 1.4-5.1]) compared with normal weight men with a high fitness level. \n CONCLUSION In this cohort of men with diabetes, low fitness level was associated with increased risk of CVD mortality within normal weight, overweight, and class 1 obese weight categories.", "title": "Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes." }, { "docid": "52175065", "text": "KEY POINTS The vascular endothelial growth factor (VEGF) responses to acute submaximal exercise and training effects in patients with heart failure with reduced ejection fraction (HFrEF) were investigated. Six patients and six healthy matched controls performed knee-extensor exercise (KE) at 50% of maximum work rate before and after (only patients) KE training. Muscle biopsies were taken to assess skeletal muscle structure and the angiogenic response. Before training, during this submaximal KE exercise, patients with HFrEF exhibited higher leg vascular resistance and greater noradrenaline spillover. Skeletal muscle structure and VEGF response were generally not different between groups. Following training, resistance was no longer elevated and noradrenaline spillover was curtailed in the patients. Although, in the trained state, VEGF did not respond to acute exercise, capillarity was augmented. Muscle fibre cross-sectional area and percentage area of type I fibres increased and mitochondrial volume density exceeded that of controls. Structural/functional plasticity and appropriate angiogenic signalling were observed in skeletal muscle of patients with HFrEF. ABSTRACT This study examined the response to acute submaximal exercise and the effect of training in patients with heart failure with reduced ejection fraction (HFrEF). The acute angiogenic response to submaximal exercise in HFrEF after small muscle mass training is debated. The direct Fick method, with vascular pressures, was performed across the leg during knee-extensor exercise (KE) at 50% of maximum work rate (WRmax ) in patients (n = 6) and controls (n = 6) and then after KE training in patients. Muscle biopsies facilitated the assessment of skeletal muscle structure and vascular endothelial growth factor (VEGF) mRNA levels. Prior to training, HFrEF exhibited significantly higher leg vascular resistance (LVR) (≈15%) and significantly greater noradrenaline spillover (≈385%). Apart from mitochondrial volume density, which was significantly lower (≈22%) in HFrEF, initial skeletal muscle structure, including capillarity, was not different between groups. Resting VEGF mRNA levels, and the increase with exercise, was not different between patients and controls. Following training, LVR was no longer elevated and noradrenaline spillover was curtailed. Skeletal muscle capillarity increased with training, as assessed by capillary-to-fibre ratio (≈13%) and number of capillaries around a fibre (NCAF ) (≈19%). VEGF mRNA was now not significantly increased by acute exercise. Muscle fibre cross-sectional area and percentage area of type I fibres both increased significantly with training (≈18% and ≈21%, respectively), while the percentage area of type II fibres fell significantly (≈11%), and mitochondrial volume density now exceeded that of controls. These data reveal structural and functional plasticity and appropriate angiogenic signalling in skeletal muscle of HFrEF patients.", "title": "Acute and chronic exercise in patients with heart failure with reduced ejection fraction: evidence of structural and functional plasticity and intact angiogenic signalling in skeletal muscle" }, { "docid": "154796494", "text": "In April 1997, Grand Forks, North Dakota, and East Grand Forks, Minnesota, experienced a disastrous flood. Both cities have been textbook examples of success according to the Federal Emergency Management Agency. They have an updated infrastructure, paid for largely by the federal government. Their downtowns are on the road to recovery with new construction and businesses. The paths of the two cities have diverged in the social and political aftermath of the flood. East Grand Forks, following consultant suggestions, instituted extensive citizen participation initiatives. East Grand Forks has experienced political stability and citizen satisfaction. Grand Forks relied primarily on bureaucratic guidance to react to the disaster. Grand Forks has experienced changes in government structure, turnover of elected and appointed officials, and much less positive citizen evaluation. This study examines the effect of perceptions of citizen participation on the citizens’ evaluation of the success of the recovery.", "title": "Citizen Participation and Citizen Evaluation in Disaster Recovery" }, { "docid": "40164383", "text": "CONTEXT Mesenchymal stem cells (MSCs) are under evaluation as a therapy for ischemic cardiomyopathy (ICM). Both autologous and allogeneic MSC therapies are possible; however, their safety and efficacy have not been compared. \n OBJECTIVE To test whether allogeneic MSCs are as safe and effective as autologous MSCs in patients with left ventricular (LV) dysfunction due to ICM. \n DESIGN, SETTING, AND PATIENTS A phase 1/2 randomized comparison (POSEIDON study) in a US tertiary-care referral hospital of allogeneic and autologous MSCs in 30 patients with LV dysfunction due to ICM between April 2, 2010, and September 14, 2011, with 13-month follow-up. \n INTERVENTION Twenty million, 100 million, or 200 million cells (5 patients in each cell type per dose level) were delivered by transendocardial stem cell injection into 10 LV sites. \n MAIN OUTCOME MEASURES Thirty-day postcatheterization incidence of predefined treatment-emergent serious adverse events (SAEs). Efficacy assessments included 6-minute walk test, exercise peak VO2, Minnesota Living with Heart Failure Questionnaire (MLHFQ), New York Heart Association class, LV volumes, ejection fraction (EF), early enhancement defect (EED; infarct size), and sphericity index. \n RESULTS Within 30 days, 1 patient in each group (treatment-emergent SAE rate, 6.7%) was hospitalized for heart failure, less than the prespecified stopping event rate of 25%. The 1-year incidence of SAEs was 33.3% (n = 5) in the allogeneic group and 53.3% (n = 8) in the autologous group (P = .46). At 1 year, there were no ventricular arrhythmia SAEs observed among allogeneic recipients compared with 4 patients (26.7%) in the autologous group (P = .10). Relative to baseline, autologous but not allogeneic MSC therapy was associated with an improvement in the 6-minute walk test and the MLHFQ score, but neither improved exercise VO2 max. Allogeneic and autologous MSCs reduced mean EED by −33.21% (95% CI, −43.61% to −22.81%; P < .001) and sphericity index but did not increase EF. Allogeneic MSCs reduced LV end-diastolic volumes. Low-dose concentration MSCs (20 million cells) produced greatest reductions in LV volumes and increased EF. Allogeneic MSCs did not stimulate significant donor-specific alloimmune reactions. \n CONCLUSIONS In this early-stage study of patients with ICM, transendocardial injection of allogeneic and autologous MSCs without a placebo control were both associated with low rates of treatment-emergent SAEs, including immunologic reactions. In aggregate, MSC injection favorably affected patient functional capacity, quality of life, and ventricular remodeling. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01087996.", "title": "Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial." }, { "docid": "11630388", "text": "BACKGROUND Obesity is associated with diverse health risks, but the role of body weight as a risk factor for death remains controversial. \n METHODS We examined the association between body weight and the risk of death in a 12-year prospective cohort study of 1,213,829 Koreans between the ages of 30 and 95 years. We examined 82,372 deaths from any cause and 48,731 deaths from specific diseases (including 29,123 from cancer, 16,426 from atherosclerotic cardiovascular disease, and 3362 from respiratory disease) in relation to the body-mass index (BMI) (the weight in kilograms divided by the square of the height in meters). \n RESULTS In both sexes, the average baseline BMI was 23.2, and the rate of death from any cause had a J-shaped association with the BMI, regardless of cigarette-smoking history. The risk of death from any cause was lowest among patients with a BMI of 23.0 to 24.9. In all groups, the risk of death from respiratory causes was higher among subjects with a lower BMI, and the risk of death from atherosclerotic cardiovascular disease or cancer was higher among subjects with a higher BMI. The relative risk of death associated with BMI declined with increasing age. \n CONCLUSIONS Underweight, overweight, and obese men and women had higher rates of death than men and women of normal weight. The association of BMI with death varied according to the cause of death and was modified by age, sex, and smoking history.", "title": "Body-mass index and mortality in Korean men and women." }, { "docid": "20610390", "text": "OBJECTIVES To investigate incidence, mortality and case survival trends for cancer of unknown primary site (CUP) and consider clinical implications. \n METHOD South Australian Cancer Registry data were used to calculate age-standardised incidence and mortality rates from 1977 to 2004. Disease-specific survivals, socio-demographic, histological and secular predictors of CUP, compared with cancers of known primary site, and of CUP histological types, using multivariable logistic regression were investigated. \n RESULTS Incidence and mortality rates increased approximately 60% between 1977--80 and 1981--84. Rates peaked in 1993--96. Male to female incidence and mortality rate ratios approximated 1.3:1. Incidence and mortality rates increased with age. The odds of unspecified histological type, compared with the more common adenocarcinomas, were higher for males than females, non-metropolitan residents, low socio-economic areas, and for 1977--88 than subsequent diagnostic periods. CUP represented a higher proportion of cancers in Indigenous patients. Case survival was 7% at 10 years from diagnosis. Factors predictive of lower case survival included older age, male sex, Indigenous status, lower socio-economic status, and unspecified histology type. \n CONCLUSION Results point to poor CUP outcomes, but with a modest improvement in survival. The study identifies socio-demographic groups at elevated risk of CUP and of worse treatment outcomes where increased research and clinical attention are required.", "title": "Exploring the epidemiological characteristics of cancers of unknown primary site in an Australian population: implications for research and clinical care." } ]
398
Exhaustion of B cells contributes to poor Ab response in HIV-infected individuals.
[ { "docid": "8883846", "text": "The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses.", "title": "Antibody-Based HIV-1 Vaccines: Recent Developments and Future Directions" } ]
[ { "docid": "20261352", "text": "OBJECTIVE To define the impact of chronic viremia and associated immune activation on B-cell exhaustion in HIV infection. \n DESIGN Progressive HIV infection is marked by B-cell anergy and exhaustion coupled with dramatic hypergammaglobulinemia. Although both upregulation of CD95 and loss of CD21 have been used as markers of infection-associated B-cell dysfunction, little is known regarding the specific profiles of dysfunctional B cells and whether persistent viral replication and its associated immune activation play a central role in driving B-cell dysfunction. \n METHODS Multiparameter flow cytometry was used to define the profile of dysfunctional B cells. The changes in the expression of CD21 and CD95 were tracked on B-cell subpopulations in patients with differential control of viral replication. \n RESULTS : Although the emergence of exhausted, CD21 tissue-like memory B cells followed similar patterns in both progressors and controllers, the frequency of CD21 activated memory B cells was lower in spontaneous controllers. \n CONCLUSION Our results suggest that the loss of CD21 and the upregulation of CD95 occur as separate events during the development of B-cell dysfunction. The loss of CD21 is a marker of B-cell exhaustion induced in the absence of appreciable viral replication, whereas the upregulation of CD95 is tightly linked to persistent viral replication and its associated immune activation. Thus, these dysfunctional profiles potentially represent two functionally distinct states within the B-cell compartment.", "title": "Decoupling activation and exhaustion of B cells in spontaneous controllers of HIV infection." }, { "docid": "14657344", "text": "Leishmania mexicana (Lm) causes localized (LCL) and diffuse (DCL) cutaneous leishmaniasis. DCL patients have a poor cellular immune response leading to chronicity. It has been proposed that CD8 T lymphocytes (CD8) play a crucial role in infection clearance, although the role of CD8 cytotoxicity in disease control has not been elucidated. Lesions of DCL patients have been shown to harbor low numbers of CD8, as compared to patients with LCL, and leishmanicidal treatment restores CD8 numbers. The marked response of CD8 towards Leishmania parasites led us to analyze possible functional differences between CD8 from patients with LCL and DCL. We compared IFNγ production, antigen-specific proliferation, and cytotoxicity of CD8 purified from PBMC against autologous macrophages (MO) infected with Leishmania mexicana (MOi). Additionally, we analyzed tissue biopsies from both groups of patients for evidence of cytotoxicity associated with apoptotic cells in the lesions. We found that CD8 cell of DCL patients exhibited low cytotoxicity, low antigen-specific proliferation and low IFNγ production when stimulated with MOi, as compared to LCL patients. Additionally, DCL patients had significantly less TUNEL+ cells in their lesions. These characteristics are similar to cellular \"exhaustion\" described in chronic infections. We intended to restore the functional capacity of CD8 cells of DCL patients by preincubating them with TLR2 agonists: Lm lipophosphoglycan (LPG) or Pam3Cys. Cytotoxicity against MOi, antigen-specific proliferation and IFNγ production were restored with both stimuli, whereas PD-1 (a molecule associated with cellular exhaustion) expression, was reduced. Our work suggests that CD8 response is associated with control of Lm infection in LCL patients and that chronic infection in DCL patients leads to a state of CD8 functional exhaustion, which could facilitate disease spread. This is the first report that shows the presence of functionally exhausted CD8 T lymphocytes in DCL patients and, additionally, that pre-stimulation with TLR2 ligands can restore the effector mechanisms of CD8 T lymphocytes from DCL patients against Leishmania mexicana-infected macrophages.", "title": "CD8 Cells of Patients with Diffuse Cutaneous Leishmaniasis Display Functional Exhaustion: The Latter Is Reversed, In Vitro, by TLR2 Agonists" }, { "docid": "25045244", "text": "Our previous studies in volunteers immunized with Salmonella enterica serovar Typhi (S. Typhi) have suggested an important role for CD8+ T cells in host defense. In this study we describe a novel subset of nonclassical human HLA-E-restricted S. Typhi-specific CD8+ T cells derived from PBMC of Ty21a typhoid vaccinees. CD3+CD8+CD4-CD56- T cells effectively killed S. Typhi-infected targets regardless of whether they share classical HLA class I molecules with them, by a FAS-independent, granule-dependent mechanism, as evidenced by induction of granzyme B release and the blocking effects of concanamycin and strontium ions. The expression of HLA-E Ags, but not CD1-a, -b, or -c, on the membrane of S. Typhi-infected targets rendered them susceptible to lysis. Moreover, anti-HLA-E Abs partially blocked these responses. We also demonstrated that presentation of S. Typhi Ags via HLA-E could stimulate IFN-gamma production. Increases in the net frequency of IFN-gamma spot-forming cells were observed in the presence of targets coated with peptides that contain S. Typhi GroEL HLA-E binding motifs. These results demonstrate that HLA-E binds nonamer peptides derived from bacterial proteins and trigger CD8+-mediated lysis and IFN-gamma production when exposed to infected targets, raising the possibility that this novel effector mechanism might contribute to host defense against intracellular bacterial infections.", "title": "Identification of a human HLA-E-restricted CD8+ T cell subset in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine." }, { "docid": "5398179", "text": "HIV-1 replication is concentrated within CD4(+) T cells in B cell follicles of secondary lymphoid tissues during asymptomatic disease. Limited data suggest that a subset of T follicular helper cells (TFH) within germinal centers (GC) is highly permissive to HIV-1. Whether GC TFH are the major HIV-1 virus-producing cells in vivo has not been established. In this study, we investigated TFH permissivity to HIV-1 ex vivo by spinoculating and culturing tonsil cells with HIV-1 GFP reporter viruses. Using flow cytometry, higher percentages of GC TFH (CXCR5(high)PD-1(high)) and CXCR5(+)programmed cell death-1 (PD-1)(low) cells were GFP(+) than non-GC TFH (CXCR5(+)PD-1(intermediate)) or extrafollicular (EF) (CXCR5(-)) cells. When sorted prior to spinoculation, however, GC TFH were substantially more permissive than CXCR5(+)PD-1(low) or EF cells, suggesting that many GC TFH transition to a CXCR5(+)PD-1(low) phenotype during productive infection. In situ hybridization on inguinal lymph node sections from untreated HIV-1-infected individuals without AIDS revealed higher frequencies of HIV-1 RNA(+) cells in GC than non-GC regions of follicle or EF regions. Superinfection of HIV-1-infected individuals' lymph node cells with GFP reporter virus confirmed the permissivity of follicular cells ex vivo. Lymph node immunostaining revealed 96% of CXCR5(+)CD4(+) cells were located in follicles. Within sorted lymph node cells from four HIV-infected individuals, CXCR5(+) subsets harbored 11-66-fold more HIV-1 RNA than CXCR5(-) subsets, as determined by RT PCR. Thus, GC TFH are highly permissive to HIV-1, but downregulate PD-1 and, to a lesser extent, CXCR5 during HIV-1 replication. These data further implicate GC TFH as the major HIV-1-producing cells in chronic asymptomatic HIV-1 infection.", "title": "Germinal Center T Follicular Helper Cells Are Highly Permissive to HIV-1 and Alter Their Phenotype during Virus Replication." }, { "docid": "40473317", "text": "In this report, we demonstrate that CD28(-/-) mice are severely impaired in the initial expansion of D(b)/NP366-374-specific CD8 T cells in response to influenza virus infection, whereas 4-1BB ligand (4-1BBL)(-/-) mice show no defect in primary T cell expansion to influenza virus. In contrast, 4-1BBL(-/-) mice show a decrease in D(b)/NP366-374-specific T cells late in the primary response. Upon secondary challenge with influenza virus, 4-1BBL(-/-) mice show a decrease in the number of D(b)/NP366-374-specific T cells compared to wild-type mice such that the level of the CD8 T cell expansion during the in vivo secondary response is reduced to the level of a primary response, with concomitant reduction of CTL effector function. In contrast, Ab responses, as well as secondary CD4 T cell responses, to influenza are unaffected by 4-1BBL deficiency. Thus, CD28 is critical for initial T cell expansion, whereas 4-1BB/4-1BBL signaling affects T cell numbers much later in the response and is essential for the survival and/or responsiveness of the memory CD8 T cell pool.", "title": "Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection." }, { "docid": "11784947", "text": "Short interfering RNAs (siRNAs) have been used to inhibit HIV-1 replication. The durable inhibition of HIV-1 replication by RNA interference has been impeded, however, by a high mutation rate when viral sequences are targeted and by cytotoxicity when cellular genes are knocked down. To identify cellular proteins that contribute to HIV-1 replication that can be chronically silenced without significant cytotoxicity, we employed a shRNA library that targets 54,509 human transcripts. We used this library to select a comprehensive population of Jurkat T-cell clones, each expressing a single discrete shRNA. The Jurkat clones were then infected with HIV-1. Clones that survived viral infection represent moieties silenced for a human mRNA needed for virus replication, but whose chronic knockdown did not cause cytotoxicity. Overall, 252 individual Jurkat mRNAs were identified. Twenty-two of these mRNAs were secondarily verified for their contributions to HIV-1 replication. Five mRNAs, NRF1, STXBP2, NCOA3, PRDM2, and EXOSC5, were studied for their effect on steps of the HIV-1 life cycle. We discuss the similarities and differences between our shRNA findings for HIV-1 using a spreading infection assay in human Jurkat T-cells and results from other investigators who used siRNA-based screenings in HeLa or 293T cells.", "title": "A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication." }, { "docid": "5752492", "text": "Chronic immune activation that persists despite anti-retroviral therapy (ART) is the strongest predictor of disease progression in HIV infection. Monocyte/macrophages in HIV-infected individuals are known to spontaneously secrete cytokines, although neither the mechanism nor the molecules involved are known. Here we show that overexpression of the newly described co-stimulatory molecule, PD1 homologue (PD-1H) in human monocyte/macrophages is sufficient to induce spontaneous secretion of multiple cytokines. The process requires signaling via PD-1H as cytokine secretion could be abrogated by deletion of the cytoplasmic domain. Such overexpression of PD-1H, associated with spontaneous cytokine expression is seen in monocytes from chronically HIV-infected individuals and this correlates with immune activation and CD4 depletion, but not viral load. Moreover, antigen presentation by PD-1H-overexpressing monocytes results in enhanced cytokine secretion by HIV-specific T cells. These results suggest that PD-1H might play a crucial role in modulating immune activation and immune response in HIV infection.", "title": "Characterization of Programmed Death-1 Homologue-1 (PD-1H) Expression and Function in Normal and HIV Infected Individuals" }, { "docid": "23915841", "text": "The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.", "title": "Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection." }, { "docid": "26038789", "text": "3BNC117 is a broad and potent neutralizing antibody to HIV-1 that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1–infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 affects host antibody responses in viremic individuals. In comparison to untreated controls that showed little change in their neutralizing activity over a 6-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1.", "title": "HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1" }, { "docid": "23304931", "text": "PURPOSE Diffuse large B-cell lymphoma (DLBCL) represents a clinically heterogeneous disease. Models based on immunohistochemistry predict clinical outcome. These include subdivision into germinal center (GC) versus non-GC subtypes; proliferation index (measured by expression of Ki-67), and expression of BCL-2, FOXP1, or B-lymphocyte-induced maturation protein (Blimp-1)/PRDM1. We sought to determine whether immunohistochemical analyses of biopsies from patients with DLBCL having HIV infection are similarly relevant for prognosis. \n PATIENTS AND METHODS We examined 81 DLBCLs from patients with AIDS in AMC010 (cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP] v CHOP-rituximab) and AMC034 (etoposide, doxorubicin, vincristine, prednisone, and dose-adjusted cyclophosphamide plus rituximab concurrent v sequential) clinical trials and compared the immunophenotype with survival data, Epstein-Barr virus (EBV) positivity, and CD4 counts. \n RESULTS The GC and non-GC subtypes of DLBCL did not differ significantly with respect to overall survival or CD4 count at cancer presentation. EBV could be found in both subtypes of DLBCL, although less frequently in the GC subtype, and did not affect survival. Expression of FOXP1, Blimp-1/PRDM1, or BCL-2 was not correlated with the outcome in patients with AIDS-related DLBCL. \n CONCLUSION These data indicate that with current treatment strategies for lymphoma and control of HIV infection, commonly used immunohistochemical markers may not be clinically relevant in HIV-infected patients with DLBCL. The only predictive immunohistochemical marker was found to be Ki-67, where a higher proliferation index was associated with better survival, suggesting a better response to therapy in patients whose tumors had higher proliferation rates.", "title": "Immunophenotypic analysis of AIDS-related diffuse large B-cell lymphoma and clinical implications in patients from AIDS malignancies consortium clinical trials 010 and 034" }, { "docid": "26124606", "text": "Liver disease secondary to hepatitis C virus (HCV) infection is a rising cause of morbidity and mortality among individuals who have been infected parenterally with human immunodeficiency virus (HIV) such as injection drug users, hemophiliacs, and transfused patients. We analyzed both the efficacy of interferon (IFN) alpha therapy in these patients and the predictors of response to this agent. A total of 119 patients with chronic hepatitis C (90 of whom were infected with HIV and 29 of whom were not) were included in a multicenter, prospective, open, nonrandomized observational study. IFN-alpha was given subcutaneously in a dosage of 5 million units three times a week during a 3-month period; those patients who responded received a dose of 3 million units given subcutaneously three times a week for an additional 9 months. One hundred seven patients completed the study; the level of aminotransferases returned to normal and sera became negative (complete response) for HCV RNA in 26 (32.5%) of 80 HIV-infected patients and 10 (37.0%) of 27 non-HIV-infected patients (P = .666) after completion of the treatment. Two variables were independently associated with a response in HIV-infected patients: a CD4+ T lymphocyte count of > 500 x 10(6)/L and a baseline HCV viremia level of < 10(7) copies/mL. In the 12 months following treatment, relapses occurred in 30.8% of the HIV-infected patients and 12.5% of non-HIV-infected patients (P = .403).", "title": "Interferon alpha for the treatment of chronic hepatitis C in patients infected with human immunodeficiency virus. Hepatitis-HIV Spanish Study Group." }, { "docid": "5560962", "text": "Broadly neutralizing antibodies (bNAbs) to HIV-1 can prevent infection and are therefore of great importance for HIV-1 vaccine design. Notably, bNAbs are highly somatically mutated and generated by a fraction of HIV-1-infected individuals several years after infection. Antibodies typically accumulate mutations in the complementarity determining region (CDR) loops, which usually contact the antigen. The CDR loops are scaffolded by canonical framework regions (FWRs) that are both resistant to and less tolerant of mutations. Here, we report that in contrast to most antibodies, including those with limited HIV-1 neutralizing activity, most bNAbs require somatic mutations in their FWRs. Structural and functional analyses reveal that somatic mutations in FWR residues enhance breadth and potency by providing increased flexibility and/or direct antigen contact. Thus, in bNAbs, FWRs play an essential role beyond scaffolding the CDR loops and their unusual contribution to potency and breadth should be considered in HIV-1 vaccine design.", "title": "Somatic Mutations of the Immunoglobulin Framework Are Generally Required for Broad and Potent HIV-1 Neutralization" }, { "docid": "28806780", "text": "Despite combination antiretroviral therapy (ART), HIV infected people have higher mortality than non-infected. Lower socioeconomic status (SES) predicts higher mortality in many chronic illnesses but data in people with HIV is limited. We evaluated 878 HIV infected individuals followed from 1995 to 2005. Cox proportional hazards for all-cause mortality were estimated for SES measures and other factors. Mixed effects analyses examined how SES impacts factors predicting death. The 200 who died were older, had lower CD4 counts, and higher viral loads (VL). Age, transmission category, education, albumin, CD4 counts, VL, hunger, and poverty predicted death in univariate analyses; age, CD4 counts, albumin, VL, and poverty in the multivariable model. Mixed models showed associations between (1) CD4 counts with education and hunger; (2) albumin with education, homelessness, and poverty; and (3) VL with education and hunger. SES contributes to mortality in HIV infected persons directly and indirectly, and should be a target of health policy in this population.", "title": "Poverty, Hunger, Education, and Residential Status Impact Survival in HIV" }, { "docid": "44562058", "text": "Despite complete or near-complete suppression of human immunodeficiency virus (HIV) replication with combination antiretroviral therapy, both HIV and chronic inflammation/immune dysfunction persist indefinitely. Untangling the association between the virus and the host immune environment during therapy might lead to novel interventions aimed at either curing the infection or preventing the development of inflammation-associated end-organ disease. Chronic inflammation and immune dysfunction might lead to HIV persistence by causing virus production, generating new target cells, enabling infecting of activated and resting target cells, altering the migration patterns of susceptible target cells, increasing the proliferation of infected cells, and preventing normal HIV-specific clearance mechanisms from function. Chronic HIV production or replication might contribute to persistent inflammation and immune dysfunction. The rapidly evolving data on these issues strongly suggest that a vicious cycle might exist in which HIV persistence causes inflammation that in turn contributes to HIV persistence.", "title": "Immune activation and HIV persistence: implications for curative approaches to HIV infection." }, { "docid": "21700295", "text": "Importance More than 240 million individuals worldwide are infected with chronic hepatitis B virus (HBV). Among individuals with chronic HBV infection who are untreated, 15% to 40% progress to cirrhosis, which may lead to liver failure and liver cancer. Observations Pegylated interferon and nucleos(t)ide analogues (lamivudine, adefovir, entecavir, tenofovir disoproxil, and tenofovir alafenamide) suppress HBV DNA replication and improve liver inflammation and fibrosis. Long-term viral suppression is associated with regression of liver fibrosis and reduced risk of hepatocellular carcinoma in cohort studies. The cure (defined as hepatitis B surface antigen loss with undetectable HBV DNA) rates after treatment remain low (3%-7% with pegylated interferon and 1%-12% with nucleos[t]ide analogue therapy). Pegylated interferon therapy can be completed in 48 weeks and is not associated with the development of resistance; however, its use is limited by poor tolerability and adverse effects such as bone marrow suppression and exacerbation of existing neuropsychiatric symptoms such as depression. Newer agents (entecavir, tenofovir disoproxil, and tenofovir alafenamide) may be associated with a significantly reduced risk of drug resistance compared with older agents (lamivudine and adefovir) and should be considered as the first-line treatment. Conclusions and Relevance Antiviral treatment with either pegylated interferon or a nucleos(t)ide analogue (lamivudine, adefovir, entecavir, tenofovir disoproxil, or tenofovir alafenamide) should be offered to patients with chronic HBV infection and liver inflammation in an effort to reduce progression of liver disease. Nucleos(t)ide analogues should be considered as first-line therapy. Because cure rates are low, most patients will require therapy indefinitely.", "title": "Chronic Hepatitis B Infection: A Review" }, { "docid": "29023309", "text": "Salmonella typhimurium causes a localized enteric infection in immunocompetent individuals, whereas HIV-infected individuals develop a life-threatening bacteremia. Here we show that simian immunodeficiency virus (SIV) infection results in depletion of T helper type 17 (TH17) cells in the ileal mucosa of rhesus macaques, thereby impairing mucosal barrier functions to S. typhimurium dissemination. In SIV-negative macaques, the gene expression profile induced by S. typhimurium in ligated ileal loops was dominated by TH17 responses, including the expression of interleukin-17 (IL-17) and IL-22. TH17 cells were markedly depleted in SIV-infected rhesus macaques, resulting in blunted TH17 responses to S. typhimurium infection and increased bacterial dissemination. IL-17 receptor–deficient mice showed increased systemic dissemination of S. typhimurium from the gut, suggesting that IL-17 deficiency causes defects in mucosal barrier function. We conclude that SIV infection impairs the IL-17 axis, an arm of the mucosal immune response preventing systemic microbial dissemination from the gastrointestinal tract.", "title": "Simian immunodeficiency virus–induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut" }, { "docid": "46353045", "text": "Late presentation remains a major concern despite the dramatically improved prognosis realized by ART. We define a first presentation for HIV care during the course of HIV infection as 'late' if an AIDS-defining opportunistic disease is apparent, or if CD4+ T-cells are <200/microl. In the Western world, approximately 10 and 30% of HIV-infected individuals still present with CD4+ T-cells <50 and <200/microl, respectively; estimates are substantially higher for developing countries. Diagnosis and treatment of opportunistic diseases and intense supportive in-hospital care take precedence over ART. Benefits of starting ART without delay, that is, when opportunistic diseases are still active, include faster resolution of opportunistic diseases and a decreased risk of recurrence. The downside of starting ART without delay could include toxicity, drug interactions and immune reconstitution inflammatory syndrome (IRIS). Among asymptomatic or oligosymptomatic individuals presenting late, where ART and primary prophylaxis are initiated, approximately 10-20% will become symptomatic from drug toxicity or undiagnosed opportunistic complications, including IRIS, which require appropriate therapies. In this review we describe late presentation to HIV care, the scale of the problem, the evaluation of a late-presenting patient and challenges associated with initiation of potent antiretroviral therapy (ART) in the setting of acute opportunistic infections and other comorbidities.", "title": "Late presentation of HIV-infected individuals." }, { "docid": "5735492", "text": "BACKGROUND HIV disproportionately affects African-Caribbean women in Canada but the frequency and distribution of sexually transmitted infections in this community have not been previously studied. \n METHODS We recruited women based on HIV status through a Toronto community health centre. Participants completed a socio-behavioural questionnaire using Audio Computer Assisted Self-Interview (ACASI) and provided blood for syphilis, HIV, hepatitis B and C, herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), and human cytomegalovirus (CMV) serology, urine for chlamydia and gonorrhea molecular testing and vaginal secretions for bacterial vaginosis (BV) and human papillomavirus (HPV). Differences in prevalence were assessed for statistical significance using chi-square. \n RESULTS We recruited 126 HIV-positive and 291 HIV-negative women, with a median age of 40 and 31 years, respectively (p < 0.001). Active HBV infection and lifetime exposure to HBV infection were more common in HIV-positive women (4.8% vs. 0.34%, p = 0.004; and 47.6% vs. 21.2%, p < 0.0001), as was a self-reported history of HBV vaccination (66.1% vs. 44.0%, p = 0.0001). Classical STIs were rare in both groups; BV prevalence was low and did not vary by HIV status. HSV-2 infection was markedly more frequent in HIV-positive (86.3%) than HIV-negative (46.6%) women (p < 0.0001). Vaginal HPV infection was also more common in HIV-positive than in HIV-negative women (50.8% vs. 22.6%, p < 0.0001) as was infection with high-risk oncogenic HPV types (48.4% vs. 17.3%, p < 0.0001). \n CONCLUSIONS Classical STIs were infrequent in this clinic-based population of African-Caribbean women in Toronto. However, HSV-2 prevalence was higher than that reported in previous studies in the general Canadian population and was strongly associated with HIV infection, as was infection with hepatitis B and HPV.", "title": "The epidemiology of sexually transmitted co-infections in HIV-positive and HIV-negative African-Caribbean women in Toronto" }, { "docid": "2638387", "text": "High mutation frequency during reverse transcription has a principal role in the genetic variation of primate lentiviral populations. It is the main driving force for the generation of drug resistance and the escape from immune surveillance. G to A hypermutation is one of the characteristics of primate lentiviruses, as well as other retroviruses, during replication in vivo and in cell culture. The molecular mechanisms of this process, however, remain to be clarified. Here, we demonstrate that CEM15 (also known as apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G; APOBEC3G), an endogenous inhibitor of human immunodeficiency virus type 1 (HIV-1) replication, is a cytidine deaminase and is able to induce G to A hypermutation in newly synthesized viral DNA. This effect can be counteracted by the HIV-1 virion infectivity factor (Vif). It seems that this viral DNA mutator is a viral defence mechanism in host cells that may induce either lethal hypermutation or instability of the incoming nascent viral reverse transcripts, which could account for the Vif-defective phenotype. Importantly, the accumulation of CEM15-mediated non-lethal hypermutation in the replicating viral genome could potently contribute to the genetic variation of primate lentiviral populations.", "title": "The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA" }, { "docid": "35987381", "text": "Hyperactivation of T cells, particularly of CD8(+) T cells, is a hallmark of chronic HIV 1 (HIV-1) infection. Little is known about the antigenic specificities and the mechanisms by which HIV-1 causes activation of CD8(+) T cells during chronic infection. We report that CD8(+) T cells were activated during in vivo HIV-1 replication irrespective of their Ag specificity. Cytokines present during untreated HIV-1 infection, most prominently IL-15, triggered proliferation and expression of activation markers in CD8(+) T cells, but not CD4(+) T cells, in the absence of TCR stimulation. Moreover, LPS or HIV-1-activated dendritic cells (DCs) stimulated CD8(+) T cells in an IL-15-dependent but Ag-independent manner, and IL-15 expression was highly increased in DCs isolated from viremic HIV-1 patients, suggesting that CD8(+) T cells are activated by inflammatory cytokines in untreated HIV-1 patients independent of Ag specificity. This finding contrasts with CD4(+) T cells whose in vivo activation seems biased toward specificities for persistent Ags. These observations explain the higher abundance of activated CD8(+) T cells compared with CD4(+) T cells in untreated HIV-1 infection.", "title": "CD8+ T cells are activated in an antigen-independent manner in HIV-infected individuals." } ]
400
Exposure to fine particulate air pollution is unrelated to anxiety prevalence.
[ { "docid": "791050", "text": "OBJECTIVE To determine whether higher past exposure to particulate air pollution is associated with prevalent high symptoms of anxiety. \n DESIGN Observational cohort study. \n SETTING Nurses' Health Study. \n PARTICIPANTS 71,271 women enrolled in the Nurses' Health Study residing throughout the contiguous United States who had valid estimates on exposure to particulate matter for at least one exposure period of interest and data on anxiety symptoms. \n MAIN OUTCOME MEASURES Meaningfully high symptoms of anxiety, defined as a score of 6 points or greater on the phobic anxiety subscale of the Crown-Crisp index, administered in 2004. \n RESULTS The 71,271 eligible women were aged between 57 and 85 years (mean 70 years) at the time of assessment of anxiety symptoms, with a prevalence of high anxiety symptoms of 15%. Exposure to particulate matter was characterized using estimated average exposure to particulate matter <2.5 μm in diameter (PM2.5) and 2.5 to 10 μm in diameter (PM2.5-10) in the one month, three months, six months, one year, and 15 years prior to assessment of anxiety symptoms, and residential distance to the nearest major road two years prior to assessment. Significantly increased odds of high anxiety symptoms were observed with higher exposure to PM2.5 for multiple averaging periods (for example, odds ratio per 10 µg/m(3) increase in prior one month average PM2.5: 1.12, 95% confidence interval 1.06 to 1.19; in prior 12 month average PM2.5: 1.15, 1.06 to 1.26). Models including multiple exposure windows suggested short term averaging periods were more relevant than long term averaging periods. There was no association between anxiety and exposure to PM2.5-10. Residential proximity to major roads was not related to anxiety symptoms in a dose dependent manner. \n CONCLUSIONS Exposure to fine particulate matter (PM2.5) was associated with high symptoms of anxiety, with more recent exposures potentially more relevant than more distant exposures. Research evaluating whether reductions in exposure to ambient PM2.5 would reduce the population level burden of clinically relevant symptoms of anxiety is warranted.", "title": "The relation between past exposure to fine particulate air pollution and prevalent anxiety: observational cohort study" } ]
[ { "docid": "471921", "text": "Air pollution is a heterogeneous, complex mixture of gases, liquids, and particulate matter. Epidemiological studies have demonstrated a consistent increased risk for cardiovascular events in relation to both short- and long-term exposure to present-day concentrations of ambient particulate matter. Several plausible mechanistic pathways have been described, including enhanced coagulation/thrombosis, a propensity for arrhythmias, acute arterial vasoconstriction, systemic inflammatory responses, and the chronic promotion of atherosclerosis. The purpose of this statement is to provide healthcare professionals and regulatory agencies with a comprehensive review of the literature on air pollution and cardiovascular disease. In addition, the implications of these findings in relation to public health and regulatory policies are addressed. Practical recommendations for healthcare providers and their patients are outlined. In the final section, suggestions for future research are made to address a number of remaining scientific questions.", "title": "Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association." }, { "docid": "42387637", "text": "RATIONALE Exposure to particulate air pollution has been related to increased hospitalization and death, particularly from cardiovascular disease. Lower blood DNA methylation content is found in processes related to cardiovascular outcomes, such as oxidative stress, aging, and atherosclerosis. \n OBJECTIVES We evaluated whether particulate pollution modifies DNA methylation in heavily methylated sequences with high representation throughout the human genome. \n METHODS We measured DNA methylation of long interspersed nucleotide element (LINE)-1 and Alu repetitive elements by quantitative polymerase chain reaction-pyrosequencing of 1,097 blood samples from 718 elderly participants in the Boston area Normative Aging Study. We used covariate-adjusted mixed models to account for within-subject correlation in repeated measures. We estimated the effects on DNA methylation of ambient particulate pollutants (black carbon, particulate matter with aerodynamic diameter < or = 2.5 microm [PM2.5], or sulfate) in multiple time windows (4 h to 7 d) before the examination. We estimated standardized regression coefficients (beta) expressing the fraction of a standard deviation change in DNA methylation associated with a standard deviation increase in exposure. \n MEASUREMENTS AND MAIN RESULTS Repetitive element DNA methylation varied in association with time-related variables, such as day of the week and season. LINE-1 methylation decreased after recent exposure to higher black carbon (beta = -0.11; 95% confidence interval [CI], -0.18 to -0.04; P = 0.002) and PM2.5 (beta = -0.13; 95% CI, -0.19 to -0.06; P < 0.001 for the 7-d moving average). In two-pollutant models, only black carbon, a tracer of traffic particles, was significantly associated with LINE-1 methylation (beta = -0.09; 95% CI, -0.17 to -0.01; P = 0.03). No association was found with Alu methylation (P > 0.12). \n CONCLUSIONS We found decreased repeated-element methylation after exposure to traffic particles. Whether decreased methylation mediates exposure-related health effects remains to be determined.", "title": "Rapid DNA methylation changes after exposure to traffic particles." }, { "docid": "21003930", "text": "BACKGROUND Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults. \n METHODS In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO2) concentrations were measured. \n FINDINGS Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO2, PM10, PM2.5, and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96-3·95; p<0·1), sputum (3·15, 1·39-7·13; p<0·05), shortness of breath (1·86, 0·97-3·57; p<0·1), and wheeze (4·00, 1·52-10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV1] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV1 and FVC, and an increase in R5-20 were associated with an increase in during-walk exposure to NO2, ultrafine particles and PM2.5, and an increase in PWV and augmentation index with NO2 and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles. \n INTERPRETATION Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects. \n FUNDING British Heart Foundation.", "title": "Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study" }, { "docid": "13770184", "text": "BACKGROUND The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. \n METHODS We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). \n FINDINGS Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6-58·8) of global deaths and 41·2% (39·8-42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. \n INTERPRETATION Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. \n FUNDING Bill & Melinda Gates Foundation.", "title": "Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015" }, { "docid": "7285256", "text": "COPD continues to cause a heavy health and economic burden both in the United States and around the world. Some of the risk factors for COPD are well-known and include smoking, occupational exposures, air pollution, airway hyperresponsiveness, asthma, and certain genetic variations, although many questions, such as why < 20% of smokers develop significant airway obstruction, remain. Precise definitions of COPD vary and are frequently dependent on an accurate diagnosis of the problem by a physician. These differences in the definition of COPD can have large effects on the estimates of COPD in the population. Furthermore, evidence that COPD represents several different disease processes with potentially different interventions continues to emerge. In most of the world, COPD prevalence and mortality are still increasing and likely will continue to rise in response to increases in smoking, particularly by women and adolescents. Resources aimed at smoking cessation and prevention, COPD education and early detection, and better treatment will be of the most benefit in our continuing efforts against this important cause of morbidity and mortality.", "title": "COPD: epidemiology, prevalence, morbidity and mortality, and disease heterogeneity." }, { "docid": "23267371", "text": "Vitamin D insufficiency affects almost 50% of the population worldwide. An estimated 1 billion people worldwide, across all ethnicities and age groups, have a vitamin D deficiency (VDD). This pandemic of hypovitaminosis D can mainly be attributed to lifestyle (for example, reduced outdoor activities) and environmental (for example, air pollution) factors that reduce exposure to sunlight, which is required for ultraviolet-B (UVB)-induced vitamin D production in the skin. High prevalence of vitamin D insufficiency is a particularly important public health issue because hypovitaminosis D is an independent risk factor for total mortality in the general population. Current studies suggest that we may need more vitamin D than presently recommended to prevent chronic disease. As the number of people with VDD continues to increase, the importance of this hormone in overall health and the prevention of chronic diseases are at the forefront of research. VDD is very common in all age groups. As few foods contain vitamin D, guidelines recommended supplementation at suggested daily intake and tolerable upper limit levels. It is also suggested to measure the serum 25-hydroxyvitamin D level as the initial diagnostic test in patients at risk for deficiency. Treatment with either vitamin D2 or vitamin D3 is recommended for deficient patients. A meta-analysis published in 2007 showed that vitamin D supplementation was associated with significantly reduced mortality. In this review, we will summarize the mechanisms that are presumed to underlie the relationship between vitamin D and understand its biology and clinical implications.", "title": "Vitamin D: The \"sunshine\" vitamin." }, { "docid": "32357890", "text": "BACKGROUND The literature describing the global prevalence of anxiety disorders is highly variable. A systematic review and meta-regression were undertaken to estimate the prevalence of anxiety disorders and to identify factors that may influence these estimates. The findings will inform the new Global Burden of Disease study. Method A systematic review identified prevalence studies of anxiety disorders published between 1980 and 2009. Electronic databases, reference lists, review articles and monographs were searched and experts then contacted to identify missing studies. Substantive and methodological factors associated with inter-study variability were identified through meta-regression analyses and the global prevalence of anxiety disorders was calculated adjusting for study methodology. \n RESULTS The prevalence of anxiety disorders was obtained from 87 studies across 44 countries. Estimates of current prevalence ranged between 0.9% and 28.3% and past-year prevalence between 2.4% and 29.8%. Substantive factors including gender, age, culture, conflict and economic status, and urbanicity accounted for the greatest proportion of variability. Methodological factors in the final multivariate model (prevalence period, number of disorders and diagnostic instrument) explained an additional 13% of variance between studies. The global current prevalence of anxiety disorders adjusted for methodological differences was 7.3% (4.8-10.9%) and ranged from 5.3% (3.5-8.1%) in African cultures to 10.4% (7.0-15.5%) in Euro/Anglo cultures. \n CONCLUSIONS Anxiety disorders are common and the substantive and methodological factors identified here explain much of the variability in prevalence estimates. Specific attention should be paid to cultural differences in responses to survey instruments for anxiety disorders.", "title": "Global prevalence of anxiety disorders: a systematic review and meta-regression." }, { "docid": "275294", "text": "All vertebrates, including humans, obtain most of their daily vitamin D requirement from casual exposure to sunlight. During exposure to sunlight, the solar ultraviolet B photons (290-315 nm) penetrate into the skin where they cause the photolysis of 7-dehydrocholesterol to precholecalciferol. Once formed, precholecalciferol undergoes a thermally induced rearrangement of its double bonds to form cholecalciferol. An increase in skin pigmentation, aging, and the topical application of a sunscreen diminishes the cutaneous production of cholecalciferol. Latitude, season, and time of day as well as ozone pollution in the atmosphere influence the number of solar ultraviolet B photons that reach the earth's surface, and thereby, alter the cutaneous production of cholecalciferol. In Boston, exposure to sunlight during the months of November through February will not produce any significant amounts of cholecalciferol in the skin. Because windowpane glass absorbs ultraviolet B radiation, exposure of sunlight through glass windows will not result in any production of cholecalciferol. It is now recognized that vitamin D insufficiency and vitamin D deficiency are common in elderly people, especially in those who are infirm and not exposed to sunlight or who live at latitudes that do not provide them with sunlight-mediated cholecalciferol during the winter months. Vitamin D insufficiency and deficiency exacerbate osteoporosis, cause osteomalacia, and increase the risk of skeletal fractures. Vitamin D insufficiency and deficiency can be prevented by encouraging responsible exposure to sunlight and/or consumption of a multivitamin tablet that contains 10 micrograms (400 IU) vitamin D.", "title": "Environmental factors that influence the cutaneous production of vitamin D" }, { "docid": "44830890", "text": "OBJECTIVE To investigate the frequency of depressive and anxiety disorders in patients with chronic daily headache. \n BACKGROUND There is a lack of data in the literature on the extent of psychiatric comorbidity in patients with different subtypes of chronic daily headache. \n METHODS We recruited consecutive patients with chronic daily headache seen in a headache clinic from November 1998 to December 1999. The subtypes of chronic daily headache were classified according to the criteria proposed by Silberstein et al. A psychiatrist evaluated the patients according to the structured Mini-International Neuropsychiatric Interview to assess the comorbidity of depressive and anxiety disorders. \n RESULTS Two hundred sixty-one patients with chronic daily headache were recruited. The mean age was 46 years, and 80% were women. Transformed migraine was diagnosed in 152 patients (58%) and chronic tension-type headache in 92 patients (35%). Seventy-eight percent of patients with transformed migraine had psychiatric comorbidity, including major depression (57%), dysthymia (11%), panic disorder (30%), and generalized anxiety disorder (8%). Sixty-four percent of patients with chronic tension-type headache had psychiatric diagnoses, including major depression (51%), dysthymia (8%), panic disorder (22%), and generalized anxiety disorder (1%). The frequency of anxiety disorders was significantly higher in patients with transformed migraine after controlling for age and sex (P =.02). Both depressive and anxiety disorders were significantly more frequent in women. \n CONCLUSION Psychiatric comorbidity, especially major depression and panic disorders, was highly prevalent in patients with chronic daily headache seen in a headache clinic. These results demonstrate that women and patients with transformed migraine are at higher risk of psychiatric comorbidity.", "title": "Comorbidity of depressive and anxiety disorders in chronic daily headache and its subtypes." }, { "docid": "22467585", "text": "Background: The loss of a child during pregnancy causes significant psychological distress for many women and their partners, and may lead to long-lasting psychiatric disorders. Internet-based interventions using exposure techniques and cognitive restructuring have proved effective for posttraumatic stress disorder (PTSD) and prolonged grief. This study compared the effects of an Internet-based intervention for parents after prenatal loss with a waiting list condition (WLC). Methods: The Impact of Event Scale - Revised assessed symptoms of PTSD; the Inventory of Complicated Grief and the Brief Symptom Inventory assessed depression, anxiety, and general mental health. The 228 participants (92% female) were randomly allocated to a treatment group (TG; n = 115) or a WLC group (n = 113). The TG received a 5-week cognitive behavioral intervention including (1) self-confrontation, (2) cognitive restructuring, and (3) social sharing. Results: The TG showed significantly reduced symptoms of posttraumatic stress, prolonged grief, depression, and anxiety relative to the WLC control group. Intention-to-treat analysis revealed treatment effects of between d = 0.84 and d = 1.02 for posttraumatic stress and prolonged grief from pre- to posttreatment time points. Further significant improvement in all symptoms of PTSD and prolonged grief was found from the posttreatment evaluation to the 12-month follow-up. The attrition rate of 14% was relatively low. Conclusions: The Internet-based intervention proved to be a feasible and cost-effective treatment, reducing symptoms of posttraumatic stress, grief, depression, anxiety, and general mental health after pregnancy loss. Low-threshold e-health interventions should be further evaluated and implemented routinely to improve psychological support after pregnancy loss.", "title": "Brief Internet-Based Intervention Reduces Posttraumatic Stress and Prolonged Grief in Parents after the Loss of a Child during Pregnancy: A Randomized Controlled Trial" }, { "docid": "21495419", "text": "Information on the prevalence of COPD was obtained from vital statistics, health interview surveys, hospital charge records, national publications, and the World Health Organization (WHO). These data indicate that COPD is a common disease with implications for global health. In the United States, morbidity caused by COPD is 4%, making COPD the fourth leading cause of death, exceeded only by heart attacks, cancer, and stroke. Internationally, there is substantial variation in death rates possibly reflecting smoking behavior, type and processing of tobacco, pollution, climate, respiratory management, and genetic factors. The Global Obstructive Lung Disease Initiative, initiated by the National Heart, Lung, and Blood Institute and the WHO, aims to raise awareness of the increasing burden of COPD, decrease morbidity and mortality, promote further study of the condition, and implement programs to prevent COPD.", "title": "The impact of COPD on lung health worldwide: epidemiology and incidence." }, { "docid": "10491220", "text": "Exposure to xenobiotics such as plant toxins, pollutants, or prescription drugs triggers a defense response, inducing genes that encode key detoxification enzymes. Although xenobiotic responses have been studied in vertebrates, little effort has been made to exploit a simple genetic system for characterizing the molecular basis of this coordinated transcriptional response. We show here that approximately 1000 transcripts are significantly affected by phenobarbital treatment in Drosophila. We also demonstrate that the Drosophila ortholog of the human SXR and CAR xenobiotic receptors, DHR96, plays a role in this response. A DHR96 null mutant displays increased sensitivity to the sedative effects of phenobarbital and the pesticide DDT as well as defects in the expression of many phenobarbital-regulated genes. Metabolic and stress-response genes are also controlled by DHR96, implicating its role in coordinating multiple response pathways. This work establishes a new model system for defining the genetic control of xenobiotic stress responses.", "title": "The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila." }, { "docid": "32827351", "text": "Aqueous solutions of lead salts (1, 2) and saturated solutions of lead hydroxide (1) have been used as stains to enhance the electron-scattering properties of components of biological materials examined in the electron microscope. Saturated solutions of lead hydroxide (1), while staining more intensely than either lead acetate or monobasic lead acetate (l , 2), form insoluble lead carbonate upon exposure to air. The avoidance of such precipitates which contaminate surfaces of sections during staining has been the stimulus for the development of elaborate procedures for exclusion of air or carbon dioxide (3, 4). Several modifications of Watson's lead hydroxide stain (1) have recently appeared (5-7). All utilize relatively high pH (approximately 12) and one contains small amounts of tartrate (6), a relatively weak complexing agent (8), in addition to lead. These modified lead stains are less liable to contaminate the surface of the section with precipitated stain products. The stain reported here differs from previous alkaline lead stains in that the chelating agent, citrate, is in sufficient excess to sequester all lead present. Lead citrate, soluble in high concentrations in basic solutions, is a chelate compound with an apparent association constant (log Ka) between ligand and lead ion of 6.5 (9). Tissue binding sites, presumably organophosphates, and other anionic species present in biological components following fixation, dehydration, and plastic embedding apparently have a greater affinity for this cation than lead citrate inasmuch as cellular and extracellular structures in the section sequester lead from the staining solution. Alkaline lead citrate solutions are less likely to contaminate sections, as no precipitates form when droplets of fresh staining solution are exposed to air for periods of up to 30 minutes. The resultant staining of the sections is of high intensity in sections of Aralditeor Epon-embedded material. Cytoplasmic membranes, ribosomes, glycogen, and nuclear material are stained (Figs. 1 to 3). STAIN SOLUTION: Lead citrate is prepared by", "title": "THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY" }, { "docid": "2891825", "text": "OBJECTIVES To study the prevalence of asthma (asthma symptoms and bronchial hyperresponsiveness) in Swedish cross country skiers compared with non-skiers and monitor changes in symptoms and bronchial hyperresponsiveness during the year. \n DESIGN Cross sectional study during the winter ski season and in the summer. \n SETTING Six ski clubs for élite skiers (total 47) in two different areas of Sweden. SUBJECTS 42 élite cross country skiers and 29 non-skiing referents. \n MAIN OUTCOME MEASURES Bronchial responsiveness, asthma symptoms, and lung function. \n RESULTS Bronchial responsiveness was significantly greater and asthma symptoms more prevalent in the skiers than in the referents. There was no difference in bronchial responsiveness within either group between winter and summer. 15 of the 42 skiers used antiasthmatic drugs regularly and 23 had a combination of asthma symptoms and hyperresponsive airways or physician diagnosed asthma, or both. Altogether 33 skiers had symptoms of asthma or bronchial hyperresponsiveness. One of the referents had symptoms of asthma and bronchial hyperresponsiveness, and none used antiasthmatic drugs regularly. \n CONCLUSIONS Asthma, asthma-like symptoms, and bronchial hyperresponsiveness are much more common in cross country skiers than in the general population and non-skiers. Strenuous exercise at low temperatures entailing breathing large volumes of cold air is the most probable explanation of persistent asthma in skiers.", "title": "High prevalence of asthma in cross country skiers." }, { "docid": "25761154", "text": "Exercise-induced asthma is defined as an intermittent narrowing of the airways, demonstrated by a decrease in some measure of flow, that the patient experiences as wheezing, chest tightness, coughing, and difficulty breathing that is triggered by exercise. Exercise will trigger asthma in most individuals who have chronic asthma, as well as in some who do not otherwise have asthma. Definitive diagnosis requires demonstration of a drop in flow rate, typically > or = 13-15% for forced expiratory volume in one second (FEV1) and > or = 15-20% for peak expiratory flow rate (PEFR), after exercise, associated with symptoms. Prevalence data indicate that this disorder is very common in those who participate in recreational sports as well as in highly competitive athletes, with at least 12-15% of unselected athletes having positive exercise challenges. Treatment of exercise induced asthma involves use of nonpharmacological measures (such as the use of the refractory period after exercise and prewarming air) as well as use of medications (beta-agonists, cromolyn, and nedocromil). With treatment, those who suffer from exercise-induced asthma may be able to participate and compete at the highest levels of performance.", "title": "Exercise-induced asthma: a practical guide to definitions, diagnosis, prevalence, and treatment." }, { "docid": "45276789", "text": "This survey of regional neonatal intensive care units determined a prevalence of 38 per 1000 neonates who sustained an extravasation injury that caused skin necrosis. Most injuries occurred in infants of 26 weeks gestation or less, with parenteral nutrition infused through intravenous cannulae. Common treatments were exposing wounds to the air, infiltration with hyaluronidase and saline, and occlusive dressings.", "title": "Extravasation injuries on regional neonatal units." }, { "docid": "11614737", "text": "IMPORTANCE Combining pharmacotherapies for tobacco-dependence treatment may increase smoking abstinence. \n OBJECTIVE To determine efficacy and safety of varenicline and bupropion sustained-release (SR; combination therapy) compared with varenicline (monotherapy) in cigarette smokers. \n DESIGN, SETTING, AND PARTICIPANTS Randomized, blinded, placebo-controlled multicenter clinical trial with a 12-week treatment period and follow-up through week 52 conducted between October 2009 and April 2013 at 3 midwestern clinical research sites. Five hundred six adult (≥18 years) cigarette smokers were randomly assigned and 315 (62%) completed the study. \n INTERVENTIONS Twelve weeks of varenicline and bupropion SR or varenicline and placebo. \n MAIN OUTCOMES AND MEASURES Primary outcome was abstinence rates at week 12, defined as prolonged (no smoking from 2 weeks after the target quit date) abstinence and 7-day point-prevalence (no smoking past 7 days) abstinence. Secondary outcomes were prolonged and point-prevalence smoking abstinence rates at weeks 26 and 52. Outcomes were biochemically confirmed. \n RESULTS At 12 weeks, 53.0% of the combination therapy group achieved prolonged smoking abstinence and 56.2% achieved 7-day point-prevalence smoking abstinence compared with 43.2% and 48.6% in varenicline monotherapy (odds ratio [OR], 1.49; 95% CI, 1.05-2.12; P = .03 and OR, 1.36; 95% CI, 0.95-1.93; P = .09, respectively). At 26 weeks, 36.6% of the combination therapy group achieved prolonged and 38.2% achieved 7-day point-prevalence smoking abstinence compared with 27.6% and 31.9% in varenicline monotherapy (OR, 1.52; 95% CI, 1.04-2.22; P = .03 and OR, 1.32; 95% CI, 0.91-1.91; P = .14, respectively). At 52 weeks, 30.9% of the combination therapy group achieved prolonged and 36.6% achieved 7-day point-prevalence smoking abstinence compared with 24.5% and 29.2% in varenicline monotherapy (OR, 1.39; 95% CI, 0.93-2.07; P = .11 and OR, 1.40; 95% CI, 0.96-2.05; P = .08, respectively). Participants receiving combination therapy reported more anxiety (7.2% vs 3.1%; P = .04) and depressive symptoms (3.6% vs 0.8%; P = .03). \n CONCLUSIONS AND RELEVANCE Among cigarette smokers, combined use of varenicline and bupropion, compared with varenicline alone, increased prolonged abstinence but not 7-day point prevalence at 12 and 26 weeks. Neither outcome was significantly different at 52 weeks. Further research is required to determine the role of combination therapy in smoking cessation. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: http://clinicaltrials.gov/show/NCT00935818.", "title": "Combination varenicline and bupropion SR for tobacco-dependence treatment in cigarette smokers: a randomized trial." }, { "docid": "6985854", "text": "Speech stimuli give rise to neural activity in the listener that can be observed as waveforms using magnetoencephalography. Although waveforms vary greatly from trial to trial due to activity unrelated to the stimulus, it has been demonstrated that spoken sentences can be discriminated based on theta-band (3-7 Hz) phase patterns in single-trial response waveforms. Furthermore, manipulations of the speech signal envelope and fine structure that reduced intelligibility were found to produce correlated reductions in discrimination performance, suggesting a relationship between theta-band phase patterns and speech comprehension. This study investigates the nature of this relationship, hypothesizing that theta-band phase patterns primarily reflect cortical processing of low-frequency (<40 Hz) modulations present in the acoustic signal and required for intelligibility, rather than processing exclusively related to comprehension (e.g., lexical, syntactic, semantic). Using stimuli that are quite similar to normal spoken sentences in terms of low-frequency modulation characteristics but are unintelligible (i.e., their time-inverted counterparts), we find that discrimination performance based on theta-band phase patterns is equal for both types of stimuli. Consistent with earlier findings, we also observe that whereas theta-band phase patterns differ across stimuli, power patterns do not. We use a simulation model of the single-trial response to spoken sentence stimuli to demonstrate that phase-locked responses to low-frequency modulations of the acoustic signal can account not only for the phase but also for the power results. The simulation offers insight into the interpretation of the empirical results with respect to phase-resetting and power-enhancement models of the evoked response.", "title": "Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension." }, { "docid": "8582337", "text": "IMPORTANCE Understanding the major health problems in the United States and how they are changing over time is critical for informing national health policy. \n OBJECTIVES To measure the burden of diseases, injuries, and leading risk factors in the United States from 1990 to 2010 and to compare these measurements with those of the 34 countries in the Organisation for Economic Co-operation and Development (OECD) countries. \n DESIGN We used the systematic analysis of descriptive epidemiology of 291 diseases and injuries, 1160 sequelae of these diseases and injuries, and 67 risk factors or clusters of risk factors from 1990 to 2010 for 187 countries developed for the Global Burden of Disease 2010 Study to describe the health status of the United States and to compare US health outcomes with those of 34 OECD countries. Years of life lost due to premature mortality (YLLs) were computed by multiplying the number of deaths at each age by a reference life expectancy at that age. Years lived with disability (YLDs) were calculated by multiplying prevalence (based on systematic reviews) by the disability weight (based on population-based surveys) for each sequela; disability in this study refers to any short- or long-term loss of health. Disability-adjusted life-years (DALYs) were estimated as the sum of YLDs and YLLs. Deaths and DALYs related to risk factors were based on systematic reviews and meta-analyses of exposure data and relative risks for risk-outcome pairs. Healthy life expectancy (HALE) was used to summarize overall population health, accounting for both length of life and levels of ill health experienced at different ages. \n RESULTS US life expectancy for both sexes combined increased from 75.2 years in 1990 to 78.2 years in 2010; during the same period, HALE increased from 65.8 years to 68.1 years. The diseases and injuries with the largest number of YLLs in 2010 were ischemic heart disease, lung cancer, stroke, chronic obstructive pulmonary disease, and road injury. Age-standardized YLL rates increased for Alzheimer disease, drug use disorders, chronic kidney disease, kidney cancer, and falls. The diseases with the largest number of YLDs in 2010 were low back pain, major depressive disorder, other musculoskeletal disorders, neck pain, and anxiety disorders. As the US population has aged, YLDs have comprised a larger share of DALYs than have YLLs. The leading risk factors related to DALYs were dietary risks, tobacco smoking, high body mass index, high blood pressure, high fasting plasma glucose, physical inactivity, and alcohol use. Among 34 OECD countries between 1990 and 2010, the US rank for the age-standardized death rate changed from 18th to 27th, for the age-standardized YLL rate from 23rd to 28th, for the age-standardized YLD rate from 5th to 6th, for life expectancy at birth from 20th to 27th, and for HALE from 14th to 26th. \n CONCLUSIONS AND RELEVANCE From 1990 to 2010, the United States made substantial progress in improving health. Life expectancy at birth and HALE increased, all-cause death rates at all ages decreased, and age-specific rates of years lived with disability remained stable. However, morbidity and chronic disability now account for nearly half of the US health burden, and improvements in population health in the United States have not kept pace with advances in population health in other wealthy nations.", "title": "The state of US health, 1990-2010: burden of diseases, injuries, and risk factors." } ]
401
Expression of MSX2 is induced 3 hours after the addition of BMP4, which is earlier than T and CDX2.
[ { "docid": "5633876", "text": "BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2.", "title": "BRACHYURY and CDX2 Mediate BMP-Induced Differentiation of Human and Mouse Pluripotent Stem Cells into Embryonic and Extraembryonic Lineages" } ]
[ { "docid": "57783564", "text": "Caudal-related homeobox transcription factor 2 (CDX2), an intestine-specific nuclear transcription factor, has been strongly implicated in the tumourigenesis of various human cancers. However, the functional role of CDX2 in the development and progression of colorectal cancer (CRC) is not well known. In this study, CDX2 knockdown in colon cancer cells promoted cell proliferation in vitro, accelerated tumor formation in vivo, and induced a cell cycle transition from G0/G1 to S phase, whereas CDX2 overexpression inhibited cell proliferation. TOP/FOP-Flash reporter assay showed that CDX2 knockdown or CDX2 overexpression significantly increased or decreased Wnt signaling activity. Western blot assay showed that downstream targets of Wnt signaling, including β-catenin, cyclin D1 and c-myc, were up-regulated or down-regulated in CDX2-knockdown or CDX2-overexpressing colon cancer cells. In addition, suppression of Wnt signaling by XAV-939 led to a marked suppression of the cell proliferation enhanced by CDX2 knockdown, whereas activation of this signaling by CHIR-99021 significantly enhanced the cell proliferation inhibited by CDX2 overexpression. Dual-luciferase reporter and quantitative chromatin immunoprecipitation (qChIP) assays further confirmed that CDX2 transcriptionally activates glycogen synthase kinase-3β (GSK-3β) and axis inhibition protein 2 (Axin2) expression by directly binding to the promoter of GSK-3β and the upstream enhancer of Axin2. In conclusion, these results indicated that CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling.", "title": "CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling via transactivation of GSK-3β and Axin2 expression" }, { "docid": "8654183", "text": "BACKGROUND AND AIMS Previous in vitro and in vivo studies have revealed an association between Helicobacter pylori infection and apoptosis in gastric epithelial cells. Although involvement of the Bcl-2 family of proteins as well as cytochrome c release has been demonstrated in H pylori induced cell death, the exact role of the mitochondria during this type of programmed cell death has not been fully elucidated. Therefore, we sought to determine whether or not Bax translocation and mitochondrial fragmentation occur on exposure of gastric epithelial cells to H pylori, resulting in cell death. \n METHODS Experiments were performed with human gastric adenocarcinoma (AGS) cells, AGS cells transfected with the HPV-E6 gene (which inactivates p53 function), AGS-neo cells (transfected with the backbone construct), mouse embryonic fibroblasts (MEFs), and p19(ARF) null (ARF(-/-)) MEFs. Cells were incubated with a cag positive H pylori strain for up to 24 hours, lysed, and cytoplasmic and mitochondrial membrane fractions were analysed by western blot for Bax translocation. \n RESULTS Bax translocation was detected in AGS, AGS-neo, and normal MEF cells after exposure to H pylori for three hours, but not in ARF(-/-) MEFs cells. Translocation of Bax after H pylori incubation was also detected in AGS-E6 cells (inactive p53 gene) but to a lesser degree than in AGS-neo cells. In parallel studies, the mitochondrial morphology of living cells infected with H pylori was assessed by confocal microscopy. Mitochondrial fragmentation was detectable after 10 hours of H pylori incubation with AGS cells and after seven hours with MEF cells. In wild-type MEFs, mitochondrial fragmentation was significantly increased in comparison with ARF null MEFs (43% v 10.4%, respectively). Furthermore, mitochondrial depolarisation and caspase-3 activity were initiated within four hours in cells incubated with H pylori, and these events were inhibited by forced expression of Bcl-2. \n CONCLUSIONS These data suggest that during H pylori induced apoptosis, Bax translocates to the mitochondria which subsequently undergo depolarisation and profound fragmentation. Functional ARF and p53 proteins may play an important role in H pylori induced mitochondrial modification.", "title": "Bax translocation and mitochondrial fragmentation induced by Helicobacter pylori." }, { "docid": "30908508", "text": "Objective: To investigate the regulation of CD4+CD25+ Regulatory T cells (Tregs) on pro-inflammatory adhesion molecules, Krüppel-Like Factor-2 (KLF-2) and its downstream transcriptional targets in human umbilical vein endothelial cells (HUVECs) impaired by ox-LDL and the mechanisms of it. Methods and results: HUVECs were cultured in the continuous presence of ox-LDL(0 mg/L,25 mg/L,50 mg/L,100 mg/L) for 4, 6, 12 and 24 hours to allow identification of early-and late-induced genes, respectively, whereas non-stimulated controls were taken at 0 hours. The expression of pro-inflammatory adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), E-selectin, KLF-2 and its target genes eNOS, PAI-1 were determined by real time RT-PCR and/or western-blot analysis. Expression of pro-inflammatory adhesion molecules, KLF-2, eNOS and PAI-1 in HUVEC cultured alone or with anti-CD3 mAbs activated Tregs, followed by addition of ox-LDL (50 mg/L) for 6 hours, are compared to expression levels in control cultures. Ox-LDL treated HUVECs increased pro-inflammatory adhesion molecules expression, as well as increased PAI-1 but decreased eNOS expression accompanied with significant downregulating of KLF-2 at a dose and time dependent manner. Furthermore, ox-LDL increased pro-inflammatory adhesion molecules but inhibited KLF2 expression was reversed by addition of Tregs. Small interfering RNA reduced endogenous KLF-2 expression and partly reversed the suppressive effect of Tregs on HUVECs activation, which strongly implicate KLF-2 as a transcriptional regulator of the Tregs-mediated effects in endothelial cells. Mechanism studies reveal that Treg-mediated KLF2 expression in HUVECs impaired by ox-LDL requires cell contact as well as soluble factors. Conclusions: Tregs could protect endothelial function that is largely dependent on KLF2 and its downstream transcriptional targets regulation involving cell-to-cell contact and soluble factors.", "title": "CD4+CD25+Foxp3+Regulatory T Cells Protect Endothelial Function Impaired by Oxidized Low Density Lipoprotein via the KLF-2 Transcription Factor" }, { "docid": "17682477", "text": "To test the feasibility of a single T-cell manipulation to eliminate alloreactivity while sparing antiviral and antitumor T cells, we infused 12 haploidentical hematopoietic stem cell transplant patients with increasing numbers of alloreplete haploidentical T cells expressing the inducible caspase 9 suicide gene (iC9-T cells). We determined whether the iC9-T cells produced immune reconstitution and if any resultant graft-versus-host disease (GVHD) could be controlled by administration of a chemical inducer of dimerization (CID; AP1903/Rimiducid). All patients receiving >10(4) alloreplete iC9-T lymphocytes per kilogram achieved rapid reconstitution of immune responses toward 5 major pathogenic viruses and concomitant control of active infections. Four patients received a single AP1903 dose. CID infusion eliminated 85% to 95% of circulating CD3(+)CD19(+) T cells within 30 minutes, with no recurrence of GVHD within 90 days. In one patient, symptoms and signs of GVHD-associated cytokine release syndrome (CRS-hyperpyrexia, high levels of proinflammatory cytokines, and rash) resolved within 2 hours of AP1903 infusion. One patient with varicella zoster virus meningitis and acute GVHD had iC9-T cells present in the cerebrospinal fluid, which were reduced by >90% after CID. Notably, virus-specific T cells recovered even after AP1903 administration and continued to protect against infection. Hence, alloreplete iC9-T cells can reconstitute immunity posttransplant and administration of CID can eliminate them from both peripheral blood and the central nervous system (CNS), leading to rapid resolution of GVHD and CRS. The approach may therefore be useful for the rapid and effective treatment of toxicities associated with infusion of engineered T lymphocytes. This trial was registered at www.clinicaltrials.gov as #NCT01494103.", "title": "Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation." }, { "docid": "13242763", "text": "Trophectoderm (TE), the first differentiated cell lineage of mammalian embryogenesis, forms the placenta, a structure unique to mammalian development. The differentiation of TE is a hallmark event in early mammalian development, but molecular mechanisms underlying this first differentiation event remain obscure. Embryonic stem (ES) cells can be induced to differentiate into the TE lineage by forced repression of the POU-family transcription factor, Oct3/4. We show here that this event can be mimicked by overexpression of Caudal-related homeobox 2 (Cdx2), which is sufficient to generate proper trophoblast stem (TS) cells. Cdx2 is dispensable for trophectoderm differentiation induced by Oct3/4 repression but essential for TS cell self-renewal. In preimplantation embryos, Cdx2 is initially coexpressed with Oct3/4 and they form a complex for the reciprocal repression of their target genes in ES cells. This suggests that reciprocal inhibition between lineage-specific transcription factors might be involved in the first differentiation event of mammalian development.", "title": "Interaction between Oct3/4 and Cdx2 Determines Trophectoderm Differentiation" }, { "docid": "8446259", "text": "Background: Vascular calcification (VC), in which vascular smooth muscle cells (VSMCs) undergo a phenotypic transformation into osteoblast-like cells, is one of the emergent risk factors for the accelerated atherosclerosis process characteristic of chronic kidney disease (CKD). Phosphate is an important regulator of VC. Methods: The expression of different smooth muscle cell or osteogenesis markers in response to high concentrations of phosphate or exogenous bone morphogenetic protein 2 (BMP-2) was examined by qRT-PCR and western blotting in rat VSMCs. Osteocalcin secretion was measured by radioimmunoassay. Differentiation and calcification of VSMCs were examined by alkaline phosphatase (ALP) activity assay and Alizarin staining. Short hairpin RNA-mediated silencing of β-catenin was performed to examine the involvement of Wnt/β-catenin signaling in VSMC calcification and osteoblastic differentiation induced by high phosphate or BMP-2. Apoptosis was determined by TUNEL assay and immunofluorescence imaging. Results: BMP-2 serum levels were significantly higher in CKD patients than in controls. High phosphate concentrations and BMP-2 induced VSMC apoptosis and upregulated the expression of β-catenin, Msx2, Runx2 and the phosphate cotransporter Pit1, whereas a BMP-2 neutralization antibody reversed these effects. Knockdown of β-catenin abolished the effect of high phosphate and BMP-2 on VSMC apoptosis and calcification. Conclusions: BMP-2 plays a crucial role in calcium deposition in VSMCs and VC in CKD patients via a mechanism involving the Wnt/β-catenin pathway.", "title": "Vascular Calcification in Chronic Kidney Disease is Induced by Bone Morphogenetic Protein-2 via a Mechanism Involving the Wnt/β-Catenin Pathway" }, { "docid": "25629722", "text": "The histone H3 Lys 9 (H3K9) methyltransferase Eset is an epigenetic regulator critical for the development of the inner cell mass (ICM). Although ICM-derived embryonic stem (ES) cells are normally unable to contribute to the trophectoderm (TE) in blastocysts, we find that depletion of Eset by shRNAs leads to differentiation with the formation of trophoblast-like cells and induction of trophoblast-associated gene expression. Using chromatin immmunoprecipitation (ChIP) and sequencing (ChIP-seq) analyses, we identified Eset target genes with Eset-dependent H3K9 trimethylation. We confirmed that genes that are preferentially expressed in the TE (Tcfap2a and Cdx2) are bound and repressed by Eset. Single-cell PCR analysis shows that the expression of Cdx2 and Tcfap2a is also induced in Eset-depleted morula cells. Importantly, Eset-depleted cells can incorporate into the TE of a blastocyst and, subsequently, placental tissues. Coimmunoprecipitation and ChIP assays further demonstrate that Eset interacts with Oct4, which in turn recruits Eset to silence these trophoblast-associated genes. Our results suggest that Eset restricts the extraembryonic trophoblast lineage potential of pluripotent cells and links an epigenetic regulator to key cell fate decision through a pluripotency factor.", "title": "Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells." }, { "docid": "33912748", "text": "OBJECTIVE To determine if n-3 polyunsaturated fatty acid (PUFA) supplementation (versus treatment with n-6 polyunsaturated or other fatty acid supplements) affects the metabolism of osteoarthritic (OA) cartilage. \n METHODS The metabolic profile of human OA cartilage was determined at the time of harvest and after 24-hour exposure to n-3 PUFAs or other classes of fatty acids, followed by explant culture for 4 days in the presence or absence of interleukin-1 (IL-1). Parameters measured were glycosaminoglycan release, aggrecanase and matrix metalloproteinase (MMP) activity, and the levels of expression of messenger RNA (mRNA) for mediators of inflammation, aggrecanases, MMPs, and their natural tissue inhibitors (tissue inhibitors of metalloproteinases [TIMPs]). \n RESULTS Supplementation with n-3 PUFA (but not other fatty acids) reduced, in a dose-dependent manner, the endogenous and IL-1-induced release of proteoglycan metabolites from articular cartilage explants and specifically abolished endogenous aggrecanase and collagenase proteolytic activity. Similarly, expression of mRNA for ADAMTS-4, MMP-13, and MMP-3 (but not TIMP-1, -2, or -3) was also specifically abolished with n-3 PUFA supplementation. In addition, n-3 PUFA supplementation abolished the expression of mRNA for mediators of inflammation (cyclooxygenase 2, 5-lipoxygenase, 5-lipoxygenase-activating protein, tumor necrosis factor alpha, IL-1alpha, and IL-1beta) without affecting the expression of message for several other proteins involved in normal tissue homeostasis. \n CONCLUSION These studies show that the pathologic indicators manifested in human OA cartilage can be significantly altered by exposure of the cartilage to n-3 PUFA, but not to other classes of fatty acids.", "title": "Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids." }, { "docid": "26068103", "text": "RSV lower respiratory tract infections (LRTI) are among the most common diseases necessitating hospital admission in children. In addition to causing acute respiratory failure, RSV infections are associated with sequelae such as secondary bacterial infections and reactive airway disease. One characteristic host response observed in severe RSV-induced LRTI and/or subsequent development of asthma is increased expression of interleukin (IL)-10. However, contradictory results have been reported regarding whether IL-10 inhibits asthmatic responses or intensifies the disease. We aimed to reconcile these discordant observations by elucidating the role of IL-10 in regulating the host response to RSV LRTI. In this study, we used a lung-specific, inducible IL-10 over-expression (OE) transgenic mouse model to address this question. Our results showed that the presence of IL-10 at the time of RSV infection not only attenuated acute inflammatory process (i.e. 24 h post-infection), but also late inflammatory changes [characterized by T helper type 2 (Th2) cytokine and chemokine expression]. While this result appears contradictory to some clinical observations where elevated IL-10 levels are observed in asthmatic patients, we also found that delaying IL-10 OE until the late immune response to RSV infection, additive effects rather than inhibitory effects were observed. Importantly, in non-infected, IL-10 OE mice, IL-10 OE alone induced up-regulation of Th2 cytokine (IL-13 and IL-5) and Th2-related chemokine [monocyte chemoattractant protein 1 (MCP-1), chemokine (C-C motif) ligand 3 (CCL3) and regulated upon activation normal T cell expressed and secreted (RANTES)] expression. We identified a subset of CD11b(+)CD11c(+)CD49b(+)F4/80(-)Gr-1(-) myeloid cells as a prinicipal source of IL-10-induced IL-13 production. Therefore, the augmented pathological responses observed in our 'delayed' IL-10 over-expression model could be attributed to IL-10 OE alone. Taken together, our study indicated dual roles of IL-10 on RSV-induced lung inflammation which appear to depend upon the timing of when elevated IL-10 is expressed in the lung.", "title": "Dual role of interleukin-10 in the regulation of respiratory syncitial virus (RSV)-induced lung inflammation." }, { "docid": "28071965", "text": "The earliest aspects of human embryogenesis remain mysterious. To model patterning events in the human embryo, we used colonies of human embryonic stem cells (hESCs) grown on micropatterned substrate and differentiated with BMP4. These gastruloids recapitulate the embryonic arrangement of the mammalian germ layers and provide an assay to assess the structural and signaling mechanisms patterning the human gastrula. Structurally, high-density hESCs localize their receptors to transforming growth factor β at their lateral side in the center of the colony while maintaining apical localization of receptors at the edge. This relocalization insulates cells at the center from apically applied ligands while maintaining response to basally presented ones. In addition, BMP4 directly induces the expression of its own inhibitor, NOGGIN, generating a reaction-diffusion mechanism that underlies patterning. We develop a quantitative model that integrates edge sensing and inhibitors to predict human fate positioning in gastruloids and, potentially, the human embryo.", "title": "A Balance between Secreted Inhibitors and Edge Sensing Controls Gastruloid Self-Organization." }, { "docid": "5132358", "text": "Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.", "title": "Chimeric antigen receptor-modified T cells for acute lymphoid leukemia." }, { "docid": "23369842", "text": "Twenty-four hour whole body indirect calorimetry has been used to study the effects of feeding, during a sedentary test day, isoenergetic diets which varied in fat (3 or 40 per cent of total energy) and carbohydrate (82 or 45 per cent) content. Three groups of women were studied: lean, obese and 'post-obese' after slimming. Energy expenditure was greater in absolute terms in the obese women. Twenty-four hour energy expenditure was lower by only 3-7 per cent when fasting compared to that when fed to achieve energy balance. There were no large differences in energy expenditure between the two diets or between the groups but the thermogenic effect of the high carbohydrate diet was significantly greater than that of the high fat diet (5.8 vs 3.5 per cent of energy expenditure: P less than 0.01). The post-obese tended to have lower energy expenditure per kg FFM than controls when fasting and when high-fat fed, but this pattern was not shown by the obese. Sleeping energy expenditure was particularly low in the post-obese group when high-fat fed. Dirunal variations in RQ appear to show more marked rise in morning RQ from the nocturnal minimum in the obese and post-obese, which might be evidence for an energy-saving mechanism through greater availability of stored dietary carbohydrate.", "title": "Metabolic effects of isoenergetic nutrient exchange over 24 hours in relation to obesity in women." }, { "docid": "14492964", "text": "Signals released by the Spemann organizer of the amphibian gastrula can directly induce neural tissue from ectoderm and can dorsalize ventral mesoderm to form muscle. The secreted polypeptide noggin mimics these activities and is expressed at the appropriate time and place to participate in the organizer signal. Neural induction and mesoderm dorsalization are antagonized by bone morphogenetic proteins (BMPs), which induce epidermis and ventral mesoderm instead. Here we report that noggin protein binds BMP4 with high affinity and can abolish BMP4 activity by blocking binding to cognate cell-surface receptors. These data suggest that noggin secreted by the organizer patterns the embryo by interrupting BMP signaling.", "title": "The Spemann Organizer Signal noggin Binds and Inactivates Bone Morphogenetic Protein 4" }, { "docid": "7111021", "text": "BACKGROUND We previously reported that integrating antiretroviral therapy (ART) with tuberculosis treatment reduces mortality. However, the timing for the initiation of ART during tuberculosis treatment remains unresolved. \n METHODS We conducted a three-group, open-label, randomized, controlled trial in South Africa involving 642 ambulatory patients, all with tuberculosis (confirmed by a positive sputum smear for acid-fast bacilli), human immunodeficiency virus infection, and a CD4+ T-cell count of less than 500 per cubic millimeter. Findings in the earlier-ART group (ART initiated within 4 weeks after the start of tuberculosis treatment, 214 patients) and later-ART group (ART initiated during the first 4 weeks of the continuation phase of tuberculosis treatment, 215 patients) are presented here. \n RESULTS At baseline, the median CD4+ T-cell count was 150 per cubic millimeter, and the median viral load was 161,000 copies per milliliter, with no significant differences between the two groups. The incidence rate of the acquired immunodeficiency syndrome (AIDS) or death was 6.9 cases per 100 person-years in the earlier-ART group (18 cases) as compared with 7.8 per 100 person-years in the later-ART group (19 cases) (incidence-rate ratio, 0.89; 95% confidence interval [CI], 0.44 to 1.79; P=0.73). However, among patients with CD4+ T-cell counts of less than 50 per cubic millimeter, the incidence rates of AIDS or death were 8.5 and 26.3 cases per 100 person-years, respectively (incidence-rate ratio, 0.32; 95% CI, 0.07 to 1.13; P=0.06). The incidence rates of the immune reconstitution inflammatory syndrome (IRIS) were 20.1 and 7.7 cases per 100 person-years, respectively (incidence-rate ratio, 2.62; 95% CI, 1.48 to 4.82; P<0.001). Adverse events requiring a switching of antiretroviral drugs occurred in 10 patients in the earlier-ART group and 1 patient in the later-ART group (P=0.006). \n CONCLUSIONS Early initiation of ART in patients with CD4+ T-cell counts of less than 50 per cubic millimeter increased AIDS-free survival. Deferral of the initiation of ART to the first 4 weeks of the continuation phase of tuberculosis therapy in those with higher CD4+ T-cell counts reduced the risks of IRIS and other adverse events related to ART without increasing the risk of AIDS or death. (Funded by the U.S. President's Emergency Plan for AIDS Relief and others; SAPIT ClinicalTrials.gov number, NCT00398996.).", "title": "Integration of antiretroviral therapy with tuberculosis treatment." }, { "docid": "25028913", "text": "BACKGROUND In patients with unstable coronary artery disease, there is a relation between the short-term risk of death and blood levels of troponin T (a marker of myocardial damage) and C-reactive protein and fibrinogen (markers of inflammation). Using information obtained during an extension of the follow-up period in the Fragmin during Instability in Coronary Artery Disease trial, we evaluated the usefulness of troponin T, C-reactive protein, and fibrinogen levels and other indicators of risk as predictors of the long-term risk of death from cardiac causes. \n METHODS Levels of C-reactive protein and fibrinogen at enrollment and the maximal level of troponin T during the first 24 hours after enrollment were analyzed in 917 patients included in a clinical trial of low-molecular-weight heparin in unstable coronary artery disease. The patients were followed for a mean of 37.0 months (range, 1.6 to 50.6). \n RESULTS During follow-up, 1.2 percent of the 173 patients with maximal blood troponin T levels of less than 0.06 microg per liter died of cardiac causes, as compared with 8.7 percent of the 367 patients with levels of 0.06 to 0.59 microg per liter and 15.4 percent of the 377 patients with levels of at least 0.60 microg per liter (P=0.007 and P=0.001, respectively). The rates of death from cardiac causes were 5.7 percent among the 314 patients with blood C-reactive protein levels of less than 2 mg per liter, 7.8 percent among the 294 with levels of 2 to 10 mg per liter, and 16.5 percent among the 309 with levels of more than 10 mg per liter (P=0.29 and P=0.001, respectively). The rates of death from cardiac causes were 5.4 percent among the 314 patients with blood fibrinogen levels of less than 3.4 g per liter, 12.0 percent among the 300 with levels of 3.4 to 3.9 g per liter, and 12.9 percent among the 303 with levels of at least 4.0 g per liter (P=0.004 and P=0.69, respectively). In a multivariate analysis, levels of troponin T and C-reactive protein were independent predictors of the risk of death from cardiac causes. \n CONCLUSIONS In unstable coronary artery disease, elevated levels of troponin T and C-reactive protein are strongly related to the long-term risk of death from cardiac causes. These markers are independent risk factors, and their effects are additive with respect to each other and other clinical indicators of risk.", "title": "Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. Fragmin during Instability in Coronary Artery Disease." }, { "docid": "38727075", "text": "The neural crest is a multipotent, migratory cell population arising from the border of the neural and surface ectoderm. In mouse, the initial migratory neural crest cells occur at the five-somite stage. Bone morphogenetic proteins (BMPs), particularly BMP2 and BMP4, have been implicated as regulators of neural crest cell induction, maintenance, migration, differentiation and survival. Mouse has three known BMP2/4 type I receptors, of which Bmpr1a is expressed in the neural tube sufficiently early to be involved in neural crest development from the outset; however, earlier roles in other domains obscure its requirement in the neural crest. We have ablated Bmpr1a specifically in the neural crest, beginning at the five-somite stage. We find that most aspects of neural crest development occur normally; suggesting that BMPRIA is unnecessary for many aspects of early neural crest biology. However, mutant embryos display a shortened cardiac outflow tract with defective septation, a process known to require neural crest cells and to be essential for perinatal viability. Surprisingly, these embryos die in mid-gestation from acute heart failure, with reduced proliferation of ventricular myocardium. The myocardial defect may involve reduced BMP signaling in a novel, minor population of neural crest derivatives in the epicardium, a known source of ventricular myocardial proliferation signals. These results demonstrate that BMP2/4 signaling in mammalian neural crest derivatives is essential for outflow tract development and may regulate a crucial proliferation signal for the ventricular myocardium.", "title": "BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium." }, { "docid": "33634749", "text": "OBJECTIVE Genes encoding the circadian transcriptional apparatus exhibit robust oscillatory expression in murine adipose tissues. This study tests the hypothesis that human subcutaneous adipose-derived stem cells (ASCs) provide an in vitro model in which to monitor the activity of the core circadian transcriptional apparatus. RESEARCH METHODS AND PROCEDURES Primary cultures of undifferentiated or adipocyte-differentiated ASCs were treated with dexamethasone, rosiglitazone, or 30% fetal bovine serum. The response of undifferentiated ASCs to dexamethasone was further evaluated in the presence of lithium chloride. Lithium inhibits glycogen synthase kinase 3, a key component of the circadian apparatus. Total RNA was harvested at 4-hour intervals over 48 hours and examined by real-time reverse transcription polymerase chain reaction (RT-PCR). \n RESULTS Adipocyte-differentiated cells responded more rapidly to treatments than their donor-matched undifferentiated controls; however, the period of the circadian gene oscillation was longer in the adipocyte-differentiated cells. Dexamethasone generated circadian gene expression patterns with mean periods of 25.4 and 26.7 hours in undifferentiated and adipocyte-differentiated ASCs, respectively. Both rosiglitazone and serum shock generated a significantly longer period in adipocyte-differentiated ASCs relative to undifferentiated ASCs. The Bmal1 profile was phase-shifted by approximately 8 to 12 hours relative to Per1, Per3, and Cry2, consistent with their expression in vivo. Lithium chloride inhibited adipogenesis and significantly lengthened the period of Per3 and Rev-erbalpha gene expression profiles by >5 hours in dexamethasone-activated undifferentiated ASCs. DISCUSSION These results support the initial hypothesis and validate ASCs as an in vitro model for the analysis of circadian biology in human adipose tissue.", "title": "Induction of circadian gene expression in human subcutaneous adipose-derived stem cells." }, { "docid": "24097933", "text": "Paraquat poisoning is characterized by multiorgan failure and pulmonary fibrosis with respiratory failure. Multiorgan failure with circulatory collapse is a major cause of early death within 3 days of paraquat ingestion. Recent studies suggested that continuous venovenous hemofiltration (CVVH) had a role in the treatment of multiorgan failure by promoting hemodynamic stability. We therefore evaluated the effect of prophylactic CVVH in 80 patients with paraquat poisoning (August 1996 to February 1999). The amount ingested was 2.1 +/- 1.0 mouthfuls (as 20% concentrate). All patients were treated with hemoperfusion (HP; duration, 6.4 +/- 3.0 hours) within 24 hours of ingestion and then randomly assigned to the HP-alone or HP-CVVH group. Forty-four patients underwent HP only, and 36 patients underwent CVVH (duration, 57.4 +/- 31.3 hours; ultrafiltration volume, 40.2 +/- 4.8 L/d) after HP. Although time to death after ingestion was significantly longer in the HP-CVVH than HP group (5.0 +/- 5.0 versus 2.5 +/- 2.1 days; P < 0.05), there was no difference in mortality rates between the two groups (66.7% versus 63.6%; P = 0.82). In the HP group, early circulatory collapse was a major cause of death compared with the HP-CVVH group, in which late respiratory failure was a major cause of death. In conclusion, prophylactic CVVH after HP prevented early death caused by circulatory collapse and prolonged survival time. However, it could not prevent late death caused by respiratory failure and did not provide a survival benefit in acute paraquat poisoning.", "title": "Failure of continuous venovenous hemofiltration to prevent death in paraquat poisoning." }, { "docid": "11335860", "text": "Pluripotent human embryonic stem (hES) cells can differentiate into various cell types derived from the three embryonic germ layers and extraembryonic tissues such as trophoblasts. The mechanisms governing lineage choices of hES cells are largely unknown. Here, we report that we established two independent hES cell clones lacking a group of cell surface molecules, glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs). The GPI-AP deficiency in these two hES clones is due to the deficiency in the gene expression of PIG-A (phosphatidyl-inositol-glycan class A), which is required for the first step of GPI synthesis. GPI-AP-deficient hES cells were capable of forming embryoid bodies and initiating cell differentiation into the three embryonic germ layers. However, GPI-AP-deficient hES cells failed to form trophoblasts after differentiation induction by embryoid body formation or by adding exogenous BMP4. The defect in trophoblast formation was due to the lack of GPI-anchored BMP coreceptors, resulting in the impairment of full BMP4 signaling activation in the GPI-AP-deficient hES cells. These data reveal that GPI-AP-enhanced full activation of BMP signaling is required for human trophoblast formation.", "title": "Trophoblast differentiation defect in human embryonic stem cells lacking PIG-A and GPI-anchored cell-surface proteins." } ]
403
Expression of oncolytic virus antigens as peptides makes relapse more likely.
[ { "docid": "1921218", "text": "Tumor recurrence represents a major clinical challenge. Our data show that emergent recurrent tumors acquire a phenotype radically different from that of their originating primary tumors. This phenotype allows them to evade a host-derived innate immune response elicited by the progression from minimal residual disease (MRD) to actively growing recurrence. Screening for this innate response predicted accurately in which mice recurrence would occur. Premature induction of recurrence resensitized MRD to the primary therapy, suggesting a possible paradigm shift for clinical treatment of dormant disease in which the current expectant approach is replaced with active attempts to uncover MRD before evolution of the escape phenotype is complete. By combining screening with second-line treatments targeting innate insensitivity, up to 100% of mice that would have otherwise relapsed were cured. These data may open new avenues for early detection and appropriately timed, highly targeted treatment of tumor recurrence irrespective of tumor type or frontline treatment.", "title": "Detecting and targeting tumor relapse by its resistance to innate effectors at early recurrence" } ]
[ { "docid": "21150010", "text": "Metastatic ovarian cancer is the leading cause of death among women with gynecologic malignancies in the United States. The lack of effective treatment for patients with advanced ovarian cancer warrants development of innovative therapies. Cancer therapy using oncolytic viruses represents a promising new approach for controlling tumors. Vaccinia virus has been shown to preferentially infect tumor cells but not normal tissue. However, oncolytic therapy using recombinant viruses faces the limitation of viral clearance due to generation of neutralizing antibodies. In the current study, we found that cyclooxygenase-2 (Cox-2) inhibitors circumvented this limitation, enabling repeated administration of vaccinia virus without losing infectivity. We quantified the antivaccinia antibody response using enzyme-linked immunosorbent assay (ELISA) and neutralization assays to show that treatment of Cox-2 inhibitors inhibited the generation of neutralizing antibodies. Furthermore, we showed that combination treatment of Cox-2 inhibitors with vaccinia virus was more effective that either treatment alone in treating MOSEC/luc tumor-bearing mice. Thus, the combination of Cox-2 inhibitors and vaccinia virus represents a potential innovative approach to controlling ovarian tumors.", "title": "Treatment with cyclooxygenase-2 inhibitors enables repeated administration of vaccinia virus for control of ovarian cancer." }, { "docid": "18938992", "text": "Virally infected cells degrade intracellular viral proteins proteolytically and present the resulting peptides in association with major histocompatibility complex (MHC) class I molecules to CD8+ cytotoxic T lymphocytes (CTLs). These cells are normally prone to CTL-mediated elimination. However, several viruses have evolved strategies to avoid detection by the immune system that interfere with the pathway of antigen presentation. Epstein-Barr virus (EBV) expresses a predominantly late protein, the BCRF1 gene product vIL-10, that is similar in sequence to the human interleukin-10 (hIL-10). We show here that vIL-10 affects the expression of one of the two transporter proteins (TAPs) associated with antigen presentation. Similarly, hIL-10 showed the same activity. Expression of the LMP2 and TAP1 genes but not expression of TAP2 or LMP7 is efficiently downregulated, indicating a specific IL-10 effect on the two divergently transcribed TAP1 and LMP2 genes. Downregulation of TAP1 by IL-10 hampers the transport of peptide antigens into the endoplasmatic reticulum, as shown in the TAP-specific peptide transporter assay, their loading onto empty MHC I molecules, and the subsequent translocation to the cell surface. As a consequence, IL-10 causes a general reduction of surface MHC I molecules on B lymphocytes that might also affect the recognition of EBV-infected cells by cytotoxic T cells.", "title": "Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10." }, { "docid": "27437459", "text": "Oncolytic viruses and active immunotherapeutics have complementary mechanisms of action (MOA) that are both self amplifying in tumors, yet the impact of dose on subject outcome is unclear. JX-594 (Pexa-Vec) is an oncolytic and immunotherapeutic vaccinia virus. To determine the optimal JX-594 dose in subjects with advanced hepatocellular carcinoma (HCC), we conducted a randomized phase 2 dose-finding trial (n = 30). Radiologists infused low- or high-dose JX-594 into liver tumors (days 1, 15 and 29); infusions resulted in acute detectable intravascular JX-594 genomes. Objective intrahepatic Modified Response Evaluation Criteria in Solid Tumors (mRECIST) (15%) and Choi (62%) response rates and intrahepatic disease control (50%) were equivalent in injected and distant noninjected tumors at both doses. JX-594 replication and granulocyte-macrophage colony-stimulating factor (GM-CSF) expression preceded the induction of anticancer immunity. In contrast to tumor response rate and immune endpoints, subject survival duration was significantly related to dose (median survival of 14.1 months compared to 6.7 months on the high and low dose, respectively; hazard ratio 0.39; P = 0.020). JX-594 demonstrated oncolytic and immunotherapy MOA, tumor responses and dose-related survival in individuals with HCC.", "title": "Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer" }, { "docid": "20960682", "text": "BACKGROUND & AIMS GS-9620, an oral agonist of toll-like receptor 7 (TLR7), is in clinical development for the treatment of chronic hepatitis B (CHB). GS-9620 was previously shown to induce prolonged suppression of serum viral DNA and antigens in the woodchuck and chimpanzee models of CHB. Herein, we investigated the molecular mechanisms that contribute to the antiviral response to GS-9620 using in vitro models of hepatitis B virus (HBV) infection. \n METHODS Cryopreserved primary human hepatocytes (PHH) and differentiated HepaRG (dHepaRG) cells were infected with HBV and treated with GS-9620, conditioned media from human peripheral blood mononuclear cells treated with GS-9620 (GS-9620 conditioned media [GS-9620-CM]), or other innate immune stimuli. The antiviral and transcriptional response to these agents was determined. \n RESULTS GS-9620 had no antiviral activity in HBV-infected PHH, consistent with low level TLR7 mRNA expression in human hepatocytes. In contrast, GS-9620-CM induced prolonged reduction of HBV DNA, RNA, and antigen levels in PHH and dHepaRG cells via a type I interferon (IFN)-dependent mechanism. GS-9620-CM did not reduce covalently closed circular DNA (cccDNA) levels in either cell type. Transcriptional profiling demonstrated that GS-9620-CM strongly induced various HBV restriction factors - although not APOBEC3A or the Smc5/6 complex - and indicated that established HBV infection does not modulate innate immune sensing or signaling in cryopreserved PHH. GS-9620-CM also induced expression of immunoproteasome subunits and enhanced presentation of an immunodominant viral peptide in HBV-infected PHH. \n CONCLUSIONS Type I IFN induced by GS-9620 durably suppressed HBV in human hepatocytes without reducing cccDNA levels. Moreover, HBV antigen presentation was enhanced, suggesting additional components of the TLR7-induced immune response played a role in the antiviral response to GS-9620 in animal models of CHB. LAY SUMMARY GS-9620 is a drug currently being tested in clinical trials for the treatment of chronic hepatitis B virus (HBV) infection. GS-9620 has previously been shown to suppress HBV in various animal models, but the underlying antiviral mechanisms were not completely understood. In this study, we determined that GS-9620 does not directly activate antiviral pathways in human liver cells, but can induce prolonged suppression of HBV via induction of an antiviral cytokine called interferon. However, interferon did not destroy the HBV genome, suggesting that other parts of the immune response (e.g. activation of immune cells that kill infected cells) also play an important role in the antiviral response to GS-9620.", "title": "Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition of HBV via a type I interferon-dependent mechanism." }, { "docid": "5132358", "text": "Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.", "title": "Chimeric antigen receptor-modified T cells for acute lymphoid leukemia." }, { "docid": "26108767", "text": "Linking the heavy chain (HC) and light chain (LC) genes required for monoclonal antibodies (mAb) production on a single cassette using 2A peptides allows control of LC and HC ratio and reduces non-expressing cells. Four 2A peptides derived from the foot-and-mouth disease virus (F2A), equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), respectively, were compared for expression of 3 biosimilar IgG1 mAbs in Chinese hamster ovary (CHO) cell lines. HC and LC were linked by different 2A peptides both in the absence and presence of GSG linkers. Insertion of a furin recognition site upstream of 2A allowed removal of 2A residues that would otherwise be attached to the HC. Different 2A peptides exhibited different cleavage efficiencies that correlated to the mAb expression level. The relative cleavage efficiency of each 2A peptide remains similar for expression of different IgG1 mAbs in different CHO cells. While complete cleavage was not observed for any of the 2A peptides, GSG linkers did enhance the cleavage efficiency and thus the mAb expression level. T2A with the GSG linker (GT2A) exhibited the highest cleavage efficiency and mAb expression level. Stably amplified CHO DG44 pools generated using GT2A had titers 357, 416 and 600 mg/L for the 3 mAbs in shake flask batch cultures. Incomplete cleavage likely resulted in incorrectly processed mAb species and aggregates, which were removed with a chromatin-directed clarification method and protein A purification. The vector and methods presented provide an easy process beneficial for both mAb development and manufacturing.", "title": "Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells." }, { "docid": "5483793", "text": "Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide–major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor (TCR)-CD8 complex. This process makes CD8-expressing T cells unable to bind pMHC and to respond to the specific peptide, although they retain their ability to respond to nonspecific stimulation. Nitration of TCR-CD8 is induced by MDSCs through hyperproduction of reactive oxygen species and peroxynitrite during direct cell-cell contact. Molecular modeling suggests specific sites of nitration that might affect the conformational flexibility of TCR-CD8 and its interaction with pMHC. These data identify a previously unknown mechanism of T-cell tolerance in cancer that is also pertinent to many pathological conditions associated with accumulation of MDSCs.", "title": "Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer" }, { "docid": "29459383", "text": "The major histocompatibility complex class I molecules display peptides (pMHC I) on the cell surface for immune surveillance by CD8(+) T cells. These peptides are generated by proteolysis of intracellular polypeptides by the proteasome in the cytoplasm and then in the endoplasmic reticulum (ER) by the ER aminopeptidase associated with antigen processing (ERAAP). To define the unknown mechanism of ERAAP function in vivo, we analyzed naturally processed peptides in cells with or without appropriate MHC I and ERAAP. In the absence of MHC I, ERAAP degraded the antigenic precursors in the ER. However, MHC I molecules could bind proteolytic intermediates and were essential for generation of the final peptide by ERAAP. Thus, ERAAP synergizes with MHC I to generate the final pMHC I repertoire.", "title": "ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum." }, { "docid": "8671456", "text": "BACKGROUND Interleukin-24 (IL-24) is a cytokine that belongs to the IL-10 family. It can selectively induce cancer cell apoptosis which has been utilized as a cancer gene therapy strategy. \n METHODS A recombinant type five adenovirus containing IL-24 gene (designated CNHK600-IL24) was constructed, whose replication is activated only in tumor cells. The replication of CNHK600-IL24 in breast tumor cells and fibroblasts were assessed by TCID50 and MTT assay; the secretion of IL-24 was measured by ELISA and western blotting. The in vivo anti-tumor effect of CNHK600-IL24 was investigated in nude mice carrying orthotopic or metastatic breast tumor. \n RESULTS We observed that CNHK600-IL24 could replicate efficiently and resulted in high level IL-24 expression and massive cell death in human breast cancer cell MDA-MB-231 but not in normal fibroblast cell MRC-5. In addition, orthotopic breast tumor growth in the nude mice model was significantly suppressed when CNHK600-IL24 was administered. In the metastatic model generated by tail vein injection, CNHK600-IL24 virotherapy significantly improved survival compared with the same virus expressing EGFP (median survival CNHK600-IL24, 55 days vs. CNHK600-EGFP, 41 day, p < 0.05 Mantal-Cox test). A similar phenomenon was observed in the metastatic model achieved by left ventricular injection as suggested by in vivo luminescence imaging of tumor growth. \n CONCLUSION The oncolytic adenovirus armed with IL-24, which exhibited enhanced anti-tumor activity and improved survival, is a promising candidate for virotherapy of breast cancer.", "title": "Oncolytic adenovirus armed with IL-24 Inhibits the growth of breast cancer in vitro and in vivo" }, { "docid": "6421792", "text": "Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.", "title": "Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL" }, { "docid": "9278263", "text": "The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus–host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.", "title": "MHC class I antigen presentation: learning from viral evasion strategies" }, { "docid": "31363207", "text": "BACKGROUND Patients with human immunodeficiency virus (HIV) infection and tuberculosis have an increased risk of death, treatment failure, and relapse. \n METHODS A systematic review and meta-analysis of randomized, controlled trials and cohort studies was conducted to evaluate the impact of duration and dosing schedule of rifamycin and use of antiretroviral therapy in the treatment of active tuberculosis in HIV-positive patients. In included studies, the initial tuberculosis diagnosis, failure, and/or relapse were microbiologically confirmed, and patients received standardized rifampin- or rifabutin-containing regimens. Pooled cumulative incidence of treatment failure, death during treatment, and relapse were calculated using random-effects models. Multivariable meta-regression was performed using negative binomial regression. \n RESULTS After screening 5158 citations, 6 randomized trials and 21 cohort studies were included. Relapse was more common with regimens using 2 months rifamycin (adjusted risk ratio, 3.6; 95% confidence interval, 1.1-11.7) than with regimens using rifamycin for at least 8 months. Compared with daily therapy in the initial phase (n=3352 patients from 35 study arms), thrice-weekly therapy (n=211 patients from 5 study arms) was associated with higher rates of failure (adjusted risk ratio, 4.0; 95% confidence interval, 1.5-10.4) and relapse [adjusted risk ratio, 4.8; 95% confidence interval, 1.8-12.8). There were trends toward higher relapse rates if rifamycins were used for only 6 months, compared with > or =8 months, or if antiretroviral therapy was not used. \n CONCLUSIONS This review raises serious concerns regarding current recommendations for treatment of HIV-tuberculosis coinfection. The data suggest that at least 8 months duration of rifamycin therapy, initial daily dosing, and concurrent antiretroviral therapy might be associated with better outcomes, but adequately powered randomized trials are urgently needed to confirm this.", "title": "Treatment of active tuberculosis in HIV-coinfected patients: a systematic review and meta-analysis." }, { "docid": "15593561", "text": "Epstein-Barr virus (EBV), an oncogenic human herpesvirus, induces cell proliferation after infection of resting B lymphocytes, its reservoir in vivo. The viral latent proteins are necessary for permanent B cell growth, but it is unknown whether they are sufficient. EBV was recently found to encode microRNAs (miRNAs) that are expressed in infected B cells and in some EBV-associated lymphomas. EBV miRNAs are grouped into two clusters located either adjacent to the BHRF1 gene or in introns contained within the viral BART transcripts. To understand the role of the BHRF1 miRNA cluster, we have constructed a virus mutant that lacks all its three members (Δ123) and a revertant virus. Here we show that the B cell transforming capacity of the Δ123 EBV mutant is reduced by more than 20-fold, relative to wild type or revertant viruses. B cells exposed to the knock-out virus displayed slower growth, and exhibited a two-fold reduction in the percentage of cells entering the cell cycle S phase. Furthermore, they displayed higher latent gene expression levels and latent protein production than their wild type counterparts. Therefore, the BHRF1 miRNAs accelerate B cell expansion at lower latent gene expression levels. Thus, this miRNA cluster simultaneously enhances expansion of the virus reservoir and reduces the viral antigenic load, two features that have the potential to facilitate persistence of the virus in the infected host. Thus, the EBV BHRF1 miRNAs may represent new therapeutic targets for the treatment of some EBV-associated lymphomas.", "title": "A Viral microRNA Cluster Strongly Potentiates the Transforming Properties of a Human Herpesvirus" }, { "docid": "6144969", "text": "Virally induced inflammatory responses, beta cell destruction and release of beta cell autoantigens may lead to autoimmune reactions culminating in type 1 diabetes. Therefore, viral capability to induce beta cell death and the nature of virus-induced immune responses are among key determinants of diabetogenic viruses. We hypothesised that enterovirus infection induces a specific gene expression pattern that results in islet destruction and that such a host response pattern is not shared among all enterovirus infections but varies between virus strains. The changes in global gene expression and secreted cytokine profiles induced by lytic or benign enterovirus infections were studied in primary human pancreatic islet using DNA microarrays and viral strains either isolated at the clinical onset of type 1 diabetes or capable of causing a diabetes-like condition in mice. The expression of pro-inflammatory cytokine genes (IL-1-α, IL-1-β and TNF-α) that also mediate cytokine-induced beta cell dysfunction correlated with the lytic potential of a virus. Temporally increasing gene expression levels of double-stranded RNA recognition receptors, antiviral molecules, cytokines and chemokines were detected for all studied virus strains. Lytic coxsackievirus B5 (CBV-5)-DS infection also downregulated genes involved in glycolysis and insulin secretion. The results suggest a distinct, virus-strain-specific, gene expression pattern leading to pancreatic islet destruction and pro-inflammatory effects after enterovirus infection. However, neither viral replication nor cytotoxic cytokine production alone are sufficient to induce necrotic cell death. More likely the combined effect of these and possibly cellular energy depletion lie behind the enterovirus-induced necrosis of islets.", "title": "Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction" }, { "docid": "306006", "text": "T cell activation is predicated on the interaction between the T cell receptor and peptide-major histocompatibility (pMHC) ligands. The factors that determine the stimulatory potency of a pMHC molecule remain unclear. We describe results showing that a peptide exhibiting many hallmarks of a weak agonist stimulates T cells to proliferate more than the wild-type agonist ligand. An in silico approach suggested that the inability to form the central supramolecular activation cluster (cSMAC) could underlie the increased proliferation. This conclusion was supported by experiments that showed that enhancing cSMAC formation reduced stimulatory capacity of the weak peptide. Our studies highlight the fact that a complex interplay of factors determines the quality of a T cell antigen.", "title": "The stimulatory potency of T cell antigens is influenced by the formation of the immunological synapse." }, { "docid": "4422734", "text": "The activation of T cells through interaction of their T-cell receptors with antigenic peptide bound to major histocompatibility complex (MHC) on the surface of antigen presenting cells (APCs) is a crucial step in adaptive immunity. Here we use three-dimensional fluorescence microscopy to visualize individual peptide–I-Ek class II MHC complexes labelled with the phycobiliprotein phycoerythrin in an effort to characterize T-cell sensitivity and the requirements for forming an immunological synapse in single cells. We show that T cells expressing the CD4 antigen respond with transient calcium signalling to even a single agonist peptide–MHC ligand, and that the organization of molecules in the contact zone of the T cell and APC takes on the characteristics of an immunological synapse when only about ten agonists are present. This sensitivity is highly dependant on CD4, because blocking this molecule with antibodies renders T cells unable to detect less than about 30 ligands.", "title": "Direct observation of ligand recognition by T cells" }, { "docid": "38886345", "text": "BACKGROUND JX-594 is a targeted oncolytic poxvirus designed to selectively replicate in and destroy cancer cells with cell-cycle abnormalities and epidermal growth factor receptor (EGFR)-ras pathway activation. Direct oncolysis plus granulocyte-macrophage colony-stimulating factor (GM-CSF) expression also stimulates shutdown of tumour vasculature and antitumoral immunity. We aimed to assess intratumoral injection of JX-594 in patients with refractory primary or metastatic liver cancer. \n METHODS Between Jan 4, 2006, and July 4, 2007, 14 patients with histologically confirmed refractory primary or metastatic liver tumours (up to 10.9 cm total diameter) that were amenable to image-guided intratumoral injections were enrolled into this non-comparative, open-label, phase I dose-escalation trial (standard 3x3 design; two to six patients for each dose with 12-18 estimated total patients). Patients received one of four doses of intratumoral JX-594 (10(8) plaque-forming units [pfu], 3x10(8) pfu, 10(9) pfu, or 3x10(9) pfu) every 3 weeks at Dong-A University Hospital (Busan, South Korea). Patients were monitored after treatment for at least 48 h in hospital and for at least 4 weeks as out-patients. Adverse event-monitoring according to the National Cancer Institute Common Toxicity Criteria (version 3) and standard laboratory toxicity grading for haematology, liver and renal function, coagulation studies, serum chemistry, and urinalysis were done. The primary aims were to ascertain the maximum-tolerated dose (MTD) and safety of JX-594 treatment. Data were also collected on pharmacokinetics, pharmacodynamics, and efficacy. Analysis was per protocol. This study is registered with ClinicalTrials.gov, number NCT00629759. \n FINDINGS Of 22 patients with liver tumours who were assessed for eligibility, eight patients did not meet inclusion criteria. Therefore, 14 patients, including those with hepatocellular, colorectal, melanoma, and lung cancer, were enrolled. Patients were heavily pretreated (5.6 previous treatments, SD 2.8, range 2.0-12.0) and had large tumours (7.0 cm diameter, SD 2.7, range 1.8-10.9). Patients received a mean of 3.4 (SD 2.2, range 1.0-8.0) cycles of JX-594. All patients were evaluable for toxicity. All patients experienced grade I-III flu-like symptoms, and four had transient grade I-III dose-related thrombocytopenia. Grade III hyperbilirubinaemia was dose-limiting in both patients at the highest dose; the MTD was therefore 1x10(9) pfu. JX-594 replication-dependent dissemination in blood was shown, with resultant infection of non-injected tumour sites. GM-CSF expression resulted in grade I-III increases in neutrophil counts in four of six patients at the MTD. Tumour responses were shown in injected and non-injected tumours. Ten patients were radiographically evaluable for objective responses; non-evaluable patients had contraindications to contrast medium (n=2) or no post-treatment scans (n=2). According to Response Evaluation Criteria in Solid Tumors (RECIST), three patients had partial response, six had stable disease, and one had progressive disease. \n INTERPRETATION Intratumoral injection of JX-594 into primary or metastatic liver tumours was generally well-tolerated. Direct hyperbilirubinaemia was the dose-limiting toxicity. Safety was acceptable in the context of JX-594 replication, GM-CSF expression, systemic dissemination, and JX-594 had anti-tumoral effects against several refractory carcinomas. Phase II trials are now underway.", "title": "Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial." }, { "docid": "15716328", "text": "Endoplasmic reticulum (ER)-associated aminopeptidase (ERAP)1 has been implicated in the final proteolytic processing of peptides presented by major histocompatibility complex (MHC) class I molecules. To evaluate the in vivo role of ERAP1, we have generated ERAP1-deficient mice. Cell surface expression of the class Ia molecules H-2Kb and H-2Db and of the class Ib molecule Qa-2 was significantly reduced in these animals. Although cells from mutant animals exhibited reduced capacity to present several self- and foreign antigens to Kb-, Db-, or Qa-1b–restricted CD8+ cytotoxic T cells, presentation of some antigens was unaffected or significantly enhanced. Consistent with these findings, mice generated defective CD8+ T cell responses against class I–presented antigens. These findings reveal an important in vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules.", "title": "In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules" }, { "docid": "32927475", "text": "Class I-b genes constitute the majority of MHC class I loci. These monomorphic or oligomorphic molecules have been described in many organisms; they are best characterized in the mouse, which contains a substantial number of potentially intact genes. Two main characteristics differentiate class I-b from class I-a molecules: limited polymorphism and lower cell surface expression. These distinguishing features suggest possible generalizations regarding the evolution and function of this class. Additionally, class I-b proteins tend to have shorter cytoplasmic domains or in some cases may be secreted or may substitute a lipid anchor for the transmembrane domain. Some are also expressed in a limited distribution of cells or tissues. At least six mouse MHC class I-b molecules have been shown to present antigens to alpha beta or gamma delta T cells. Recent advances have provided insight into the physiological function of H-2M3a and have defined the natural peptide-binding motif of Qa-2. In addition, significant progress has been made toward better understanding of other class I-b molecules, including Qa-1, TL, HLA-E, HLA-G, and the MHC-unlinked class I molecule CD1. We begin this review, however, by arguing that the dichotomous categorization of MHC genes as class I-a and I-b is conceptually misleading, despite its historical basis and practical usefulness. With these reservations in mind, we then discuss antigen presentation by MHC class I-b molecules with particular attention to their structure, polymorphism, requirements for peptide antigen binding and tissue expression.", "title": "Antigen presentation by major histocompatibility complex class I-B molecules." }, { "docid": "6669242", "text": "Although protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation.", "title": "Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli" } ]
404
Expression of oncolytic virus antigens as peptides permits additional protection against relapse.
[ { "docid": "1921218", "text": "Tumor recurrence represents a major clinical challenge. Our data show that emergent recurrent tumors acquire a phenotype radically different from that of their originating primary tumors. This phenotype allows them to evade a host-derived innate immune response elicited by the progression from minimal residual disease (MRD) to actively growing recurrence. Screening for this innate response predicted accurately in which mice recurrence would occur. Premature induction of recurrence resensitized MRD to the primary therapy, suggesting a possible paradigm shift for clinical treatment of dormant disease in which the current expectant approach is replaced with active attempts to uncover MRD before evolution of the escape phenotype is complete. By combining screening with second-line treatments targeting innate insensitivity, up to 100% of mice that would have otherwise relapsed were cured. These data may open new avenues for early detection and appropriately timed, highly targeted treatment of tumor recurrence irrespective of tumor type or frontline treatment.", "title": "Detecting and targeting tumor relapse by its resistance to innate effectors at early recurrence" } ]
[ { "docid": "9278263", "text": "The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus–host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.", "title": "MHC class I antigen presentation: learning from viral evasion strategies" }, { "docid": "8671456", "text": "BACKGROUND Interleukin-24 (IL-24) is a cytokine that belongs to the IL-10 family. It can selectively induce cancer cell apoptosis which has been utilized as a cancer gene therapy strategy. \n METHODS A recombinant type five adenovirus containing IL-24 gene (designated CNHK600-IL24) was constructed, whose replication is activated only in tumor cells. The replication of CNHK600-IL24 in breast tumor cells and fibroblasts were assessed by TCID50 and MTT assay; the secretion of IL-24 was measured by ELISA and western blotting. The in vivo anti-tumor effect of CNHK600-IL24 was investigated in nude mice carrying orthotopic or metastatic breast tumor. \n RESULTS We observed that CNHK600-IL24 could replicate efficiently and resulted in high level IL-24 expression and massive cell death in human breast cancer cell MDA-MB-231 but not in normal fibroblast cell MRC-5. In addition, orthotopic breast tumor growth in the nude mice model was significantly suppressed when CNHK600-IL24 was administered. In the metastatic model generated by tail vein injection, CNHK600-IL24 virotherapy significantly improved survival compared with the same virus expressing EGFP (median survival CNHK600-IL24, 55 days vs. CNHK600-EGFP, 41 day, p < 0.05 Mantal-Cox test). A similar phenomenon was observed in the metastatic model achieved by left ventricular injection as suggested by in vivo luminescence imaging of tumor growth. \n CONCLUSION The oncolytic adenovirus armed with IL-24, which exhibited enhanced anti-tumor activity and improved survival, is a promising candidate for virotherapy of breast cancer.", "title": "Oncolytic adenovirus armed with IL-24 Inhibits the growth of breast cancer in vitro and in vivo" }, { "docid": "18938992", "text": "Virally infected cells degrade intracellular viral proteins proteolytically and present the resulting peptides in association with major histocompatibility complex (MHC) class I molecules to CD8+ cytotoxic T lymphocytes (CTLs). These cells are normally prone to CTL-mediated elimination. However, several viruses have evolved strategies to avoid detection by the immune system that interfere with the pathway of antigen presentation. Epstein-Barr virus (EBV) expresses a predominantly late protein, the BCRF1 gene product vIL-10, that is similar in sequence to the human interleukin-10 (hIL-10). We show here that vIL-10 affects the expression of one of the two transporter proteins (TAPs) associated with antigen presentation. Similarly, hIL-10 showed the same activity. Expression of the LMP2 and TAP1 genes but not expression of TAP2 or LMP7 is efficiently downregulated, indicating a specific IL-10 effect on the two divergently transcribed TAP1 and LMP2 genes. Downregulation of TAP1 by IL-10 hampers the transport of peptide antigens into the endoplasmatic reticulum, as shown in the TAP-specific peptide transporter assay, their loading onto empty MHC I molecules, and the subsequent translocation to the cell surface. As a consequence, IL-10 causes a general reduction of surface MHC I molecules on B lymphocytes that might also affect the recognition of EBV-infected cells by cytotoxic T cells.", "title": "Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10." }, { "docid": "27437459", "text": "Oncolytic viruses and active immunotherapeutics have complementary mechanisms of action (MOA) that are both self amplifying in tumors, yet the impact of dose on subject outcome is unclear. JX-594 (Pexa-Vec) is an oncolytic and immunotherapeutic vaccinia virus. To determine the optimal JX-594 dose in subjects with advanced hepatocellular carcinoma (HCC), we conducted a randomized phase 2 dose-finding trial (n = 30). Radiologists infused low- or high-dose JX-594 into liver tumors (days 1, 15 and 29); infusions resulted in acute detectable intravascular JX-594 genomes. Objective intrahepatic Modified Response Evaluation Criteria in Solid Tumors (mRECIST) (15%) and Choi (62%) response rates and intrahepatic disease control (50%) were equivalent in injected and distant noninjected tumors at both doses. JX-594 replication and granulocyte-macrophage colony-stimulating factor (GM-CSF) expression preceded the induction of anticancer immunity. In contrast to tumor response rate and immune endpoints, subject survival duration was significantly related to dose (median survival of 14.1 months compared to 6.7 months on the high and low dose, respectively; hazard ratio 0.39; P = 0.020). JX-594 demonstrated oncolytic and immunotherapy MOA, tumor responses and dose-related survival in individuals with HCC.", "title": "Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer" }, { "docid": "5132358", "text": "Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.", "title": "Chimeric antigen receptor-modified T cells for acute lymphoid leukemia." }, { "docid": "6182947", "text": "BACKGROUND Influenza A virus (IAV) infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2) activates the majority of antioxidant genes. \n METHODS Alveolar type II (ATII) cells and alveolar macrophages (AM) were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like) cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8) virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2) or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively. \n RESULTS We found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis) but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and oxidative stress. However, AdNrf2 did not increase IFN-λ1 (IL-29) levels. \n CONCLUSIONS Our results indicate that IAV induces alveolar epithelial injury and that Nrf2 protects these cells from the cytopathic effects of IAV likely by increasing the expression of antioxidant genes. Identifying the pathways involved in protecting cells from injury during influenza infection may be particularly important for developing new therapeutic strategies.", "title": "Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus" }, { "docid": "8144920", "text": "BACKGROUND Dendritic cells (DC) are the professional antigen-presenting cells of the immune system, fully equipped to prime naive T cells and thus essential components for cancer immunotherapy. \n METHODS We tested the influence of several elements (cPPT, trip, WPRE, SIN) on the transduction efficiency of human DC. Human and murine DC were transduced with tNGFR-encoding lentiviruses to assess the effect of transduction on phenotype and function. Human DC were transduced with lentiviruses encoding huIi80MAGE-A3 and murine DC with huIi80tOVA to test antigen presentation. \n RESULTS A self-inactivating (SIN) lentiviral vector containing the trip element was most efficient in transducing human DC. The transduction of DC with trip/SIN tNGFR encoding lentiviral vectors at MOI 15 resulted in stable gene expression in up to 94.6% (murine) and 88.2% (human) of the mature DC, without perturbing viability, phenotype and function. Human huIi80MAGE-A3-transduced DC were able to stimulate MAGE-A3-specific CD4(+) and CD8(+) T cell clones and could prime both MAGE-A3-specific CD4(+) and CD8(+) T cells in vitro. Murine huIi80tOVA-transduced DC were able to present OVA peptides in the context of MHC class I and class II in vitro and induced a strong OVA-specific cytotoxic T lymphocyte response in vivo, that was protective against subsequent challenge with OVA-expressing tumor cells. \n CONCLUSIONS We show that, using lentiviral vectors, efficient gene transfer in human and murine DC can be obtained and that these DC can elicit antigen-specific immune responses in vitro and in vivo. The composition of the transfer vector has a major impact on the transduction efficiency.", "title": "Lentivirally transduced dendritic cells as a tool for cancer immunotherapy." }, { "docid": "20132778", "text": "Gene-encoded antimicrobial peptides that protect the skin of hylid and ranin frogs against noxious microorganisms are processed from a unique family of precursor polypeptides with a unique pattern of conserved and variable regions opposite to that of conventional secreted peptides. Precursors belonging to this family, designated the preprodermaseptin, have a common N-terminal preproregion that is remarkably well conserved both within and between species, but a hypervariable C-terminal domain corresponding to antimicrobial peptides with very different lengths, sequences, charges and antimicrobial spectra. Each frog species has its own distinct panoply of 10-20 antimicrobial peptides so that the 5000 species of ranids and hylids may produce approximately 100,000 different peptide antibiotics. The strategy that these frogs have evolved to generate this enormous array of peptides includes repeated duplications of a 150 million years old ancestral gene, focal hypermutation of the antimicrobial peptide domain maybe involving a mutagenic DNA polymerase similar to Escherichia coli Pol V, and subsequent actions of positive (diversifying) selection. The hyperdivergence of skin antimicrobial peptides can be viewed as the successful evolution of a multi-drug defense system that provides frogs with maximum protection against rapidly changing microbial biota and minimizes the chance of microorganisms developing resistance to individual peptides. The impressive variations in the expression of frog skin antimicrobial peptides may be exploited for discovering new molecules and structural motifs targeting specific microorganisms for which the therapeutic armamentarium is scarce.", "title": "Molecular strategies in biological evolution of antimicrobial peptides." }, { "docid": "21150010", "text": "Metastatic ovarian cancer is the leading cause of death among women with gynecologic malignancies in the United States. The lack of effective treatment for patients with advanced ovarian cancer warrants development of innovative therapies. Cancer therapy using oncolytic viruses represents a promising new approach for controlling tumors. Vaccinia virus has been shown to preferentially infect tumor cells but not normal tissue. However, oncolytic therapy using recombinant viruses faces the limitation of viral clearance due to generation of neutralizing antibodies. In the current study, we found that cyclooxygenase-2 (Cox-2) inhibitors circumvented this limitation, enabling repeated administration of vaccinia virus without losing infectivity. We quantified the antivaccinia antibody response using enzyme-linked immunosorbent assay (ELISA) and neutralization assays to show that treatment of Cox-2 inhibitors inhibited the generation of neutralizing antibodies. Furthermore, we showed that combination treatment of Cox-2 inhibitors with vaccinia virus was more effective that either treatment alone in treating MOSEC/luc tumor-bearing mice. Thus, the combination of Cox-2 inhibitors and vaccinia virus represents a potential innovative approach to controlling ovarian tumors.", "title": "Treatment with cyclooxygenase-2 inhibitors enables repeated administration of vaccinia virus for control of ovarian cancer." }, { "docid": "8570478", "text": "beta-Tubulin is encoded in the genomes of higher animals by a small multigene family comprising approximately seven functional genes. These genes produce a family of closely related, but distinct polypeptide isotypes that are distinguished principally by sequences within the approximately 15 carboxy-terminal amino acid residues. By immunizing rabbits with chemically synthesized peptides corresponding to these variable domain sequences, we have now prepared polyclonal antibodies specific for each of six distinct isotypes. Specificity of each antiserum has been demonstrated unambiguously by antibody binding to bacterially produced, cloned proteins representing each isotype and by the inhibition of such binding by preincubation of each antiserum only with the immunizing peptide and not with heterologous peptides. Protein blotting of known amounts of cloned, isotypically pure polypeptides has permitted accurate quantitative measurement of the amount of each beta-tubulin isotype present in the soluble and polymer forms in various cells, but has not revealed a bias for preferential assembly of any isotype. Localization of each isotype in three different cell types using indirect immunofluorescence has demonstrated that in vivo each class of microtubules distinguishable by light microscopy is assembled as copolymers of all isotypes expressed in a single cell.", "title": "In vivo microtubules are copolymers of available beta-tubulin isotypes: localization of each of six vertebrate beta-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens" }, { "docid": "43226130", "text": "Multiple sclerosis (MS), a chronic inflammatory demyelina-ting and degenerative disease of the central nervous system, is a frequent cause of neurological disability in young adults. Female predominance has increased over the last decades. Although female gender carries a higher risk of developing relapsing remitting MS, being female and at child-bearing age also appears to provide some protection against cognitive decline and against progressive onset MS, an adverse predictive factor when considering long-term disability in MS. The risk of MS in women has been associated with an earlier age at menarche. In most studies, parity did not impact MS risk. However, the recently published association of higher parity and offspring number with a reduced risk of a first demyelinating event suggests a potential suppressive effect. Pregnancy in MS patients has been associated with a reduced relapse rate and a reduction of neurological symptoms, especially in the third trimester. Despite the increased relapse risk in the postpartum period, there is no indication of an adverse effect of childbirth on the long-term course of MS. Fertility treatment in MS has been associated with an increased relapse risk in the following 3-month period, especially when the procedure did not result in pregnancy and gonadotrophin-releasing hormone agonists were used. Altogether, there is substantial evidence to support a regulatory role of sex steroid hormones in MS. In the absence of correlations with single hormone blood levels, we can only speculate about the underlying mechanisms. In conclusion, the increased MS risk in women and the changes in relapse and progression risk in association with reproductive events suggest significant and complex interactions between immune, neuroendocrine and reproductive systems in MS.", "title": "Female Gender and Reproductive Factors Affecting Risk, Relapses and Progression in Multiple Sclerosis" }, { "docid": "15716328", "text": "Endoplasmic reticulum (ER)-associated aminopeptidase (ERAP)1 has been implicated in the final proteolytic processing of peptides presented by major histocompatibility complex (MHC) class I molecules. To evaluate the in vivo role of ERAP1, we have generated ERAP1-deficient mice. Cell surface expression of the class Ia molecules H-2Kb and H-2Db and of the class Ib molecule Qa-2 was significantly reduced in these animals. Although cells from mutant animals exhibited reduced capacity to present several self- and foreign antigens to Kb-, Db-, or Qa-1b–restricted CD8+ cytotoxic T cells, presentation of some antigens was unaffected or significantly enhanced. Consistent with these findings, mice generated defective CD8+ T cell responses against class I–presented antigens. These findings reveal an important in vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules.", "title": "In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules" }, { "docid": "20960682", "text": "BACKGROUND & AIMS GS-9620, an oral agonist of toll-like receptor 7 (TLR7), is in clinical development for the treatment of chronic hepatitis B (CHB). GS-9620 was previously shown to induce prolonged suppression of serum viral DNA and antigens in the woodchuck and chimpanzee models of CHB. Herein, we investigated the molecular mechanisms that contribute to the antiviral response to GS-9620 using in vitro models of hepatitis B virus (HBV) infection. \n METHODS Cryopreserved primary human hepatocytes (PHH) and differentiated HepaRG (dHepaRG) cells were infected with HBV and treated with GS-9620, conditioned media from human peripheral blood mononuclear cells treated with GS-9620 (GS-9620 conditioned media [GS-9620-CM]), or other innate immune stimuli. The antiviral and transcriptional response to these agents was determined. \n RESULTS GS-9620 had no antiviral activity in HBV-infected PHH, consistent with low level TLR7 mRNA expression in human hepatocytes. In contrast, GS-9620-CM induced prolonged reduction of HBV DNA, RNA, and antigen levels in PHH and dHepaRG cells via a type I interferon (IFN)-dependent mechanism. GS-9620-CM did not reduce covalently closed circular DNA (cccDNA) levels in either cell type. Transcriptional profiling demonstrated that GS-9620-CM strongly induced various HBV restriction factors - although not APOBEC3A or the Smc5/6 complex - and indicated that established HBV infection does not modulate innate immune sensing or signaling in cryopreserved PHH. GS-9620-CM also induced expression of immunoproteasome subunits and enhanced presentation of an immunodominant viral peptide in HBV-infected PHH. \n CONCLUSIONS Type I IFN induced by GS-9620 durably suppressed HBV in human hepatocytes without reducing cccDNA levels. Moreover, HBV antigen presentation was enhanced, suggesting additional components of the TLR7-induced immune response played a role in the antiviral response to GS-9620 in animal models of CHB. LAY SUMMARY GS-9620 is a drug currently being tested in clinical trials for the treatment of chronic hepatitis B virus (HBV) infection. GS-9620 has previously been shown to suppress HBV in various animal models, but the underlying antiviral mechanisms were not completely understood. In this study, we determined that GS-9620 does not directly activate antiviral pathways in human liver cells, but can induce prolonged suppression of HBV via induction of an antiviral cytokine called interferon. However, interferon did not destroy the HBV genome, suggesting that other parts of the immune response (e.g. activation of immune cells that kill infected cells) also play an important role in the antiviral response to GS-9620.", "title": "Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition of HBV via a type I interferon-dependent mechanism." }, { "docid": "33397197", "text": "Modest clinical outcomes of dendritic-cell (DC) vaccine trials call for the refinement of DC vaccine design. Although many potential antigens have been identified, development of methods to enhance antigen presentation by DCs has lagged. We have engineered a potent, drug-inducible CD40 (iCD40) receptor that permits temporally controlled, lymphoid-localized, DC-specific activation. iCD40 is comprised of a membrane-localized cytoplasmic domain of CD40 fused to drug-binding domains. This allows it to respond to a lipid-permeable, high-affinity dimerizer drug while circumventing ectodomain-dependent negative-feedback mechanisms. These modifications permit prolonged activation of iCD40-expressing DCs in vivo, resulting in more potent CD8+ T-cell effector responses, including the eradication of previously established solid tumors, relative to activation of DCs ex vivo (P < 0.01), typical of most clinical DC protocols. In addition, iCD40-mediated DC activation exceeded that achieved by stimulating the full-length, endogenous CD40 receptor both in vitro and in vivo. Because iCD40 is insulated from the extracellular environment and can be activated within the context of an immunological synapse, iCD40-expressing DCs have a prolonged lifespan and should lead to more potent vaccines, perhaps even in immune-compromised patients.", "title": "Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo" }, { "docid": "7357135", "text": "Drug seeking is maintained by encounters with drug-associated cues, and disrupting retrieval of these drug-cue associations would reduce the risk of relapse. Retrieval of cocaine-associated memories is dependent on β-adrenergic receptor (β-AR) activation, and blockade of these receptors induces a persistent retrieval deficit. Whether retrieval of cocaine-associated memory is mediated by a specific β-AR subtype, however, remains unclear. Using a cocaine conditioned place preference (CPP) procedure, we examined whether retrieval of a cocaine CPP memory is mediated collectively by β1- and β2-ARs, or by one of these β-AR subtypes alone. We show that co-blockade of β1- and β2-ARs abolished CPP expression on that and subsequent drug-free CPP tests, resulting in a long-lasting retrieval deficit that prevented subsequent cocaine-induced reinstatement. To dissociate the necessity of either β1- or β2-ARs alone, we administered subtype-specific antagonists prior to retrieval. Administration of a β1-AR antagonist before the initial CPP trial dose-dependently reduced expression of a CPP on that and subsequent drug-free trials as compared to vehicle administration. In contrast, administration of a β2-AR antagonist had no effect on initial CPP expression, although the highest dose reduced subsequent CPP expression. Importantly, either β1- or β2-AR blockade prior to an initial retrieval trial prevented subsequent cocaine-induced reinstatement. Our findings indicate that the β1-AR subtype mediates retrieval of a cocaine CPP, and that acutely blocking either β1- or β2-ARs can prevent subsequent cocaine-induced reinstatement. Thus, β-AR antagonists, particularly β1-ARs antagonists, could serve as adjuncts for addiction therapies to prevent retrieval of drug-associated memories and provide protection against relapse.", "title": "Dissociation of β1- and β2-adrenergic receptor subtypes in the retrieval of cocaine-associated memory." }, { "docid": "6820680", "text": "MicroRNAs (miRNAs) are short noncoding RNAs that exert posttranscriptional gene silencing and regulate gene expression. In addition to the hundreds of conserved cellular miRNAs that have been identified, miRNAs of viral origin have been isolated and found to modulate both the viral life cycle and the cellular transcriptome. Thus far, detection of virus-derived miRNAs has been largely limited to DNA viruses, suggesting that RNA viruses may be unable to exploit this aspect of transcriptional regulation. Lack of RNA virus-produced miRNAs has been attributed to the replicative constraints that would incur following RNase III processing of a genomic hairpin. To ascertain whether the generation of viral miRNAs is limited to DNA viruses, we investigated whether influenza virus could be designed to deliver functional miRNAs without affecting replication. Here, we describe a modified influenza A virus that expresses cellular microRNA-124 (miR-124). Insertion of the miR-124 hairpin into an intron of the nuclear export protein transcript resulted in endogenous processing and functional miR-124. We demonstrate that a viral RNA genome incorporating a hairpin does not result in segment instability or miRNA-mediated genomic targeting, thereby permitting the virus to produce a miRNA without having a negative impact on viral replication. This work demonstrates that RNA viruses can produce functional miRNAs and suggests that this level of transcriptional regulation may extend beyond DNA viruses.", "title": "Engineered RNA viral synthesis of microRNAs." }, { "docid": "1196631", "text": "Antigen cross-presentation by dendritic cells (DCs) is thought to play a critical role in driving a polyclonal and durable T cell response against cancer. It follows, therefore, that the capacity of emerging immunotherapeutic agents to orchestrate tumour eradication may depend on their ability to induce antigen cross-presentation. ImmTACs [immune-mobilising monoclonal TCRs (T cell receptors) against cancer] are a new class of soluble bi-specific anti-cancer agents that combine pico-molar affinity TCR-based antigen recognition with T cell activation via a CD3-specific antibody fragment. ImmTACs specifically recognise human leucocyte antigen (HLA)-restricted tumour-associated antigens, presented by cancer cells, leading to T cell redirection and a potent anti-tumour response. Using an ImmTAC specific for a HLA-A*02-restricted peptide derived from the melanoma antigen gp100 (termed IMCgp100), we here observe that ImmTAC-driven melanoma-cell death leads to cross-presentation of melanoma antigens by DCs. These, in turn, can activate both melanoma-specific T cells and polyclonal T cells redirected by IMCgp100. Moreover, activation of melanoma-specific T cells by cross-presenting DCs is enhanced in the presence of IMCgp100; a feature that serves to increase the prospect of breaking tolerance in the tumour microenvironment. The mechanism of DC cross-presentation occurs via ‘cross-dressing’ which involves the rapid and direct capture by DCs of membrane fragments from dying tumour cells. DC cross-presentation of gp100-peptide-HLA complexes was visualised and quantified using a fluorescently labelled soluble TCR. These data demonstrate how ImmTACs engage with the innate and adaptive components of the immune system enhancing the prospect of mediating an effective and durable anti-tumour response in patients.", "title": "ImmTAC-redirected tumour cell killing induces and potentiates antigen cross-presentation by dendritic cells" }, { "docid": "10450300", "text": "Human cytomegalovirus (HCMV) is a widely prevalent human herpesvirus, which, after primary infection, persists in the host for life. In healthy individuals, the virus is well controlled by the HCMV-specific T cell response. A key feature of this persistence, in the face of a normally robust host immune response, is the establishment of viral latency. In contrast to lytic infection, which is characterised by extensive viral gene expression and virus production, long-term latency in cells of the myeloid lineage is characterised by highly restricted expression of viral genes, including UL138 and LUNA. Here we report that both UL138 and LUNA-specific T cells were detectable directly ex vivo in healthy HCMV seropositive subjects and that this response is principally CD4⁺ T cell mediated. These UL138-specific CD4⁺ T cells are able to mediate MHC class II restricted cytotoxicity and, importantly, show IFNγ effector function in the context of both lytic and latent infection. Furthermore, in contrast to CDCD4⁺ T cells specific to antigens expressed solely during lytic infection, both the UL138 and LUNA-specific CD4⁺ T cell responses included CD4⁺ T cells that secreted the immunosuppressive cytokine cIL-10. We also show that cIL-10 expressing CD4⁺ T-cells are directed against latently expressed US28 and UL111A. Taken together, our data show that latency-associated gene products of HCMV generate CD4⁺ T cell responses in vivo, which are able to elicit effector function in response to both lytic and latently infected cells. Importantly and in contrast to CD4⁺ T cell populations, which recognise antigens solely expressed during lytic infection, include a subset of cells that secrete the immunosuppressive cytokine cIL-10. This suggests that HCMV skews the T cell responses to latency-associated antigens to one that is overall suppressive in order to sustain latent carriage in vivo.", "title": "Human Cytomegalovirus Latency-Associated Proteins Elicit Immune-Suppressive IL-10 Producing CD4+ T Cells" }, { "docid": "32927475", "text": "Class I-b genes constitute the majority of MHC class I loci. These monomorphic or oligomorphic molecules have been described in many organisms; they are best characterized in the mouse, which contains a substantial number of potentially intact genes. Two main characteristics differentiate class I-b from class I-a molecules: limited polymorphism and lower cell surface expression. These distinguishing features suggest possible generalizations regarding the evolution and function of this class. Additionally, class I-b proteins tend to have shorter cytoplasmic domains or in some cases may be secreted or may substitute a lipid anchor for the transmembrane domain. Some are also expressed in a limited distribution of cells or tissues. At least six mouse MHC class I-b molecules have been shown to present antigens to alpha beta or gamma delta T cells. Recent advances have provided insight into the physiological function of H-2M3a and have defined the natural peptide-binding motif of Qa-2. In addition, significant progress has been made toward better understanding of other class I-b molecules, including Qa-1, TL, HLA-E, HLA-G, and the MHC-unlinked class I molecule CD1. We begin this review, however, by arguing that the dichotomous categorization of MHC genes as class I-a and I-b is conceptually misleading, despite its historical basis and practical usefulness. With these reservations in mind, we then discuss antigen presentation by MHC class I-b molecules with particular attention to their structure, polymorphism, requirements for peptide antigen binding and tissue expression.", "title": "Antigen presentation by major histocompatibility complex class I-B molecules." }, { "docid": "19005293", "text": "Inflammation induced by recognition of pathogen-associated molecular patterns markedly affects subsequent adaptive responses. We asked whether the adaptive immune system can also affect the character and magnitude of innate inflammatory responses. We found that the response of memory, but not naive, CD4+ T cells enhances production of multiple innate inflammatory cytokines and chemokines (IICs) in the lung and that, during influenza infection, this leads to early control of virus. Memory CD4+ T cell–induced IICs and viral control require cognate antigen recognition and are optimal when memory cells are either T helper type 1 (TH1) or TH17 polarized but are independent of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production and do not require activation of conserved pathogen recognition pathways. This represents a previously undescribed mechanism by which memory CD4+ T cells induce an early innate response that enhances immune protection against pathogens.", "title": "Memory CD4+ T cells induce innate responses independently of pathogen" } ]
406
F4/80+ macrophages regulate mature osteoblast maintenance.
[ { "docid": "6796297", "text": "Osteogenesis during bone modeling and remodeling is coupled with angiogenesis. A recent study showed that a specific vessel subtype, strongly positive for CD31 and endomucin (CD31hiEmcnhi), couples angiogenesis and osteogenesis. Here, we found that platelet-derived growth factor-BB (PDGF-BB) secreted by preosteoclasts induces CD31hiEmcnhi vessel formation during bone modeling and remodeling. Mice with depletion of PDGF-BB in the tartrate-resistant acid phosphatase–positive cell lineage show significantly lower trabecular and cortical bone mass, serum and bone marrow PDGF-BB concentrations, and fewer CD31hiEmcnhi vessels compared to wild-type mice. In the ovariectomy (OVX)-induced osteoporotic mouse model, serum and bone marrow levels of PDGF-BB and numbers of CD31hiEmcnhi vessels are significantly lower compared to sham-operated controls. Treatment with exogenous PDGF-BB or inhibition of cathepsin K to increase the number of preosteoclasts, and thus the endogenous levels of PDGF-BB, increases CD31hiEmcnhi vessel number and stimulates bone formation in OVX mice. Thus, pharmacotherapies that increase PDGF-BB secretion from preosteoclasts offer a new therapeutic target for treating osteoporosis by promoting angiogenesis and thus bone formation.", "title": "PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis" } ]
[ { "docid": "7386360", "text": "Infectious pathogens can selectively stimulate activation or suppression of T cells to facilitate their survival within humans. In this study we demonstrate that the trematode parasite Schistosoma mansoni has evolved with two distinct mechanisms to suppress T cell activation. During the initial 4- to 12-wk acute stages of a worm infection both CD4(+) and CD8(+) T cells are anergized. In contrast, infection with male and female worms induced T cell anergy at 4 wk, which was replaced after egg laying by T cell suppression via a known NO-dependent mechanism, that was detected for up to 40 wk after infection. Worm-induced anergy was mediated by splenic F4/80(+) macrophages (Mphi) via an IL-4-, IL-13-, IL-10-, TGF-beta-, and NO-independent, but cell contact-dependent, mechanism. F4/80(+) Mphi isolated from worm-infected mice were shown to induce anergy of naive T cells in vitro. Furthermore, naive Mphi exposed to live worms in vitro also induced anergy in naive T cells. Flow cytometry on in vivo and in vitro worm-modulated Mphi revealed that of the family of B7 costimulatory molecules, only programmed death ligand 1 (PD-L1) was selectively up-regulated. The addition of inhibitory mAb against PD-L1, but not PD-L2, to worm-modulated Mphi completely blocked the ability of these cells to anergize T cells. These data highlight a novel mechanism through which S. mansoni worms have usurped the natural function of PD-L1 to reduce T cell activation during early acute stages of infection before the subsequent emergence of egg-induced T cell suppression in the chronic stages of infection.", "title": "Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages." }, { "docid": "22973574", "text": "Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11b(high) monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80(bright) macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia--cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.", "title": "A lineage of myeloid cells independent of Myb and hematopoietic stem cells." }, { "docid": "43192375", "text": "Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or \"alternatively activated\" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or \"classically activated\" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.", "title": "Obesity induces a phenotypic switch in adipose tissue macrophage polarization." }, { "docid": "7948486", "text": "Kruppel-like factor 2 (KLF2) plays an important role in the regulation of a variety of immune cells, including monocytes. We have previously shown that KLF2 inhibits proinflammatory activation of monocytes. However, the role of KLF2 in arthritis is yet to be investigated. In the current study, we show that recruitment of significantly greater numbers of inflammatory subset of CD11b(+)F4/80(+)Ly6C+ monocytes to the inflammatory sites in KLF2 hemizygous mice compared to the wild type littermate controls. In parallel, inflammatory mediators, MCP-1, Cox-2 and PAI-1 were significantly up-regulated in bone marrow-derived monocytes isolated from KLF2 hemizygous mice, in comparison to wild-type controls. Methylated-BSA and IL-1β-induced arthritis was more severe in KLF2 hemizygous mice as compared to the littermate wild type controls. Consistent with this observation, monocytes isolated from KLF2 hemizygous mice showed an increased number of cells matured and differentiated towards osteoclastic lineage, potentially contributing to the severity of cartilage and bone damage in induced arthritic mice. The severity of arthritis was associated with the higher expression of proteins such as HSP60, HSP90 and MMP13 and attenuated levels of pPTEN, p21, p38 and HSP25/27 molecules in bone marrow cells of arthritic KLF2 hemizygous mice compared to littermate wild type controls. The data provide new insights and evidences of KLF2-mediated transcriptional regulation of arthritis via modulation of monocyte differentiation and function.", "title": "Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1β-induced arthritis." }, { "docid": "3531388", "text": "Bone homeostasis is maintained by the balance between bone-forming osteoblasts and bone-degrading osteoclasts. Osteoblasts have a mesenchymal origin whereas osteoclasts belong to the myeloid lineage. Osteoclast and osteoblast communication occurs through soluble factors secretion, cell-bone interaction and cell-cell contact, which modulate their activities. CD200 is an immunoglobulin superfamilly member expressed on various types of cells including mesenchymal stem cells (MSCs). CD200 receptor (CD200R) is expressed on myeloid cells such as monocytes/macrophages. We assume that CD200 could be a new molecule involved in the control of osteoclastogenesis and could play a role in MSC-osteoclast communication in humans. In this study, we demonstrated that soluble CD200 inhibited the differentiation of osteoclast precursors as well as their maturation in bone-resorbing cells in vitro. Soluble CD200 did not modify the monocyte phenotype but inhibited the receptor activator of nuclear factor kappa-B ligand (RANKL) signaling pathway as well as the gene expression of osteoclast markers such as osteoclast-associated receptor (OSCAR) and nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Moreover, MSCs inhibited osteoclast formation, which depended on cell-cell contact and was associated with CD200 expression on the MSC surface. Our results clearly demonstrate that MSCs, through the expression of CD200, play a major role in the regulation of bone resorption and bone physiology and that the CD200-CD200R couple could be a new target to control bone diseases.", "title": "CD200R/CD200 Inhibits Osteoclastogenesis: New Mechanism of Osteoclast Control by Mesenchymal Stem Cells in Human" }, { "docid": "38899659", "text": "Cells of the osteoblast lineage provide critical support for B lymphopoiesis in the bone marrow (BM). Parathyroid hormone (PTH) signaling in osteoblastic cells through its receptor (PPR) is an important regulator of hematopoietic stem cells; however, its role in regulation of B lymphopoiesis is not clear. Here we demonstrate that deletion of PPR in osteoprogenitors results in a significant loss of trabecular and cortical bone. PPR signaling in osteoprogenitors, but not in mature osteoblasts or osteocytes, is critical for B-cell precursor differentiation via IL-7 production. Interestingly, despite a severe reduction in B-cell progenitors in BM, mature B-lymphocytes were increased 3.5-fold in the BM of mice lacking PPR in osteoprogenitors. This retention of mature IgD(+) B cells in the BM was associated with increased expression of vascular cell adhesion molecule 1 (VCAM1) by PPR-deficient osteoprogenitors, and treatment with VCAM1 neutralizing antibody increased mobilization of B lymphocytes from mutant BM. Our results demonstrate that PPR signaling in early osteoblasts is necessary for B-cell differentiation via IL-7 secretion and for B-lymphocyte mobilization via VCAM1.", "title": "PTH Signaling in Osteoprogenitors Is Essential for B-Lymphocyte Differentiation and Mobilization." }, { "docid": "3118719", "text": "E-cadherin is best characterized as adherens junction protein, which through homotypic interactions contributes to the maintenance of the epithelial barrier function. In epithelial cells, the cytoplasmic tail of E-cadherin forms a dynamic complex with catenins and regulates several intracellular signal transduction pathways, including Wnt/β-catenin, PI3K/Akt, Rho GTPase, and NF-κB signaling. Recent progress uncovered a novel and critical role for this adhesion molecule in mononuclear phagocyte functions. E-cadherin regulates the maturation and migration of Langerhans cells, and its ligation prevents the induction of a tolerogenic state in bone marrow-derived dendritic cells (DCs). In this respect, the functionality of β-catenin could be instrumental in determining the balance between immunogenicity and tolerogenicity of DCs in vitro and in vivo. Fusion of alternatively activated macrophages and osteoclasts is also E-cadherin-dependent. In addition, the E-cadherin ligands CD103 and KLRG1 are expressed on DC-, T-, and NK-cell subsets and contribute to their interaction with E-cadherin-expressing DCs and macrophages. Here we discuss the regulation, function, and implications of E-cadherin expression in these central orchestrators of the immune system.", "title": "Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs." }, { "docid": "21199527", "text": "PTH binding to its receptor activates protein kinase A (PKA), protein kinase C (PKC), and calcium signaling to induce transcription of primary response genes in osteoblasts. Adenovirus E4 promoter-binding protein/nuclear factor regulated by IL-3 (E4BP4/NFIL3), a transcriptional repressor, is a PTH-induced primary response gene in primary mouse osteoblasts (MOBs). Here we investigate the signaling pathway(s) that lead to PTH induction of E4bp4 mRNA expression. Ten and 100 nm PTH induced maximum E4bp4 expression in MOBs. Forskolin (FSK), an adenylate cyclase inducer, 8-bromo-cAMP, a cAMP analog, and phorbol myristate acetate, a PKC activator, increased E4bp4 mRNA levels, whereas ionomycin, a calcium ionophore, had no effect. Pretreatment of cells with 30 microm H89, a PKA inhibitor, strongly inhibited PTH- and FSK-induced E4bp4 expression. In contrast, overnight pretreatment with 1 microm phorbol myristate acetate to down-regulate PKC signaling did not alter PTH and FSK effects. Moreover, PTH (3-34) that does not activate cAMP signaling did not increase E4bp4 expression. Prostaglandin E(2), which signals through cAMP, increased E4bp4 mRNA at all doses, whereas prostaglandin F(2alpha) that primarily activates PKC and calcium signaling, induced E4bp4 only at high doses and fluprostenol that only activates PKC and calcium signaling, had no effect. Finally, 80 microg/kg PTH (1-34) ip injection induced E4bp4 mRNA expression at 1 h in mice. In contrast, 80 microg/kg PTH (3-34) had no effect. Our data suggest that PTH-induced E4bp4 mRNA expression is mediated primarily through cAMP-PKA signaling in vitro and in vivo. In conjunction with our previous report, we hypothesize that E4bp4 attenuates transcription of osteoblastic genes possessing E4bp4 promoter binding sites.", "title": "Parathyroid hormone induces E4bp4 messenger ribonucleic acid expression primarily through cyclic adenosine 3',5'-monophosphate signaling in osteoblasts." }, { "docid": "43619625", "text": "Activated T cells secrete multiple osteoclastogenic cytokines which play a major role in the bone destruction associated with rheumatoid arthritis. While the role of T cells in osteoclastogenesis has received much attention recently, the effect of T cells on osteoblast formation and activity is poorly defined. In this study, we investigated the hypothesis that in chronic inflammation activated T cells contribute to enhanced bone turnover by promoting osteoblastic differentiation. We show that T cells produce soluble factors that induce alkaline phosphatase activity in bone marrow stromal cells and elevated expression of mRNA for Runx2 and osteocalcin. This data indicate that T cell derived factors have the capacity to stimulate the differentiation of bone marrow stromal cells into the osteoblast phenotype. RANKL mRNA was undetectable under any conditions in highly purified bone marrow stromal cells. In contrast, RANKL was constitutively expressed in primary osteoblasts and only moderately up-regulated by activated T cell conditioned medium. Interestingly, both bone marrow stromal cells and osteoblasts expressed mRNA for RANK, which was strongly up-regulated in both cell types by activated T cell conditioned medium. Although, mRNA for the RANKL decoy receptor, osteoprotegerin, was also up-regulated by activated T cell conditioned medium, it's inhibitory effects may be mitigated by a simultaneous rise in the osteoprotegerin competitor TNF-related apoptosis-inducing ligand. Based on our data we propose that during chronic inflammation, T cells regulate bone loss by a dual mechanism involving both direct stimulation of osteoclastogenesis, by production of osteoclastogenic cytokines, and indirectly by induction of osteoblast differentiation and up-regulation of bone turnover via coupling.", "title": "Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts." }, { "docid": "32170702", "text": "Maintenance of hematopoietic stem cells (HSCs) depends on interaction with their niche. Here we show that the long-term (LT)-HSCs expressing the thrombopoietin (THPO) receptor, MPL, are a quiescent population in adult bone marrow (BM) and are closely associated with THPO-producing osteoblastic cells. THPO/MPL signaling upregulated beta1-integrin and cyclin-dependent kinase inhibitors in HSCs. Furthermore, inhibition and stimulation of THPO/MPL pathway by treatments with anti-MPL neutralizing antibody, AMM2, and with THPO showed reciprocal regulation of quiescence of LT-HSC. AMM2 treatment reduced the number of quiescent LT-HSCs and allowed exogenous HSC engraftment without irradiation. By contrast, exogenous THPO transiently increased quiescent HSC population and subsequently induced HSC proliferation in vivo. Altogether, these observations suggest that THPO/MPL signaling plays a critical role of LT-HSC regulation in the osteoblastic niche.", "title": "Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche." }, { "docid": "23804187", "text": "Zebrafish regenerate their fins via the formation of a population of progenitor cells, the blastema. Wnt/β-catenin signaling is essential for blastemal cell proliferation and patterning of the overlying epidermis. Yet, we find that β-catenin signaling is neither active in the epidermis nor the majority of the proliferative blastemal cells. Rather, tissue-specific pathway interference indicates that Wnt signaling in the nonproliferative distal blastema is required for cell proliferation in the proximal blastema, and signaling in cells lining the osteoblasts directs osteoblast differentiation. Thus, Wnt signaling regulates epidermal patterning, blastemal cell proliferation, and osteoblast maturation indirectly via secondary signals. Gene expression profiling, chromatin immunoprecipitation, and functional rescue experiments suggest that Wnt/β-catenin signaling acts through Fgf and Bmp signaling to control epidermal patterning, whereas retinoic acid and Hedgehog signals mediate its effects on blastemal cell proliferation. We propose that Wnt signaling orchestrates fin regeneration by defining organizing centers that instruct cellular behaviors of adjacent tissues.", "title": "Wnt/β-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin." }, { "docid": "24356383", "text": "Osteopetrotic (op/op) mice fail to exhibit bone remodeling because of a defective osteoclast formation due to a lack of macrophage colony-stimulating factor. In this study, we investigated the femora of op/op mice to clarify whether the osteoblastic population and bone mineralization are involved in osteoclasts or their bone resorption. The op/op mice extended the meshwork of trabecular bones from the chondro-osseous junction to the diaphyseal region. In the femoral metaphyses of op/op mice, intense alkaline phosphatase (ALPase)-positive osteoblasts were observed on the metaphyseal bone in close proximity to the erosion zone of the growth plates. Von Kossa's staining revealed scattered mineralized nodules and a fine meshwork of mineralized bone matrices while the wild-type littermates developed well-mineralized trabeculae parallel to the longitudinal axis. In contrast to the metaphysis, some op/op diaphyses showed flattened osteoblasts with weak ALPase-positivity, and the other diaphyses displayed bone surfaces without a covering by osteoblasts. It is likely, therefore, that the osteoblastic population and activity were lessened in the op/op diaphyses. Despite the osteopetrotic model, von Kossa's staining demonstrated patchy unmineralized areas in the op/op diaphyses, indicating that a lower population and/or the activity of osteoblasts resulted in defective mineralization in the bone. Transmission electron microscopy disclosed few osteoblasts on the diaphyseal bones, and instead, bone marrow cells and vascular endothelial cells were often attached to the unmineralized bone. Osteocytes were embedded in the unmineralized bone matrix. Thus, osteoclasts appear to be involved in the osteoblastic population and activity as well as subsequent bone mineralization.", "title": "Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice." }, { "docid": "26068103", "text": "RSV lower respiratory tract infections (LRTI) are among the most common diseases necessitating hospital admission in children. In addition to causing acute respiratory failure, RSV infections are associated with sequelae such as secondary bacterial infections and reactive airway disease. One characteristic host response observed in severe RSV-induced LRTI and/or subsequent development of asthma is increased expression of interleukin (IL)-10. However, contradictory results have been reported regarding whether IL-10 inhibits asthmatic responses or intensifies the disease. We aimed to reconcile these discordant observations by elucidating the role of IL-10 in regulating the host response to RSV LRTI. In this study, we used a lung-specific, inducible IL-10 over-expression (OE) transgenic mouse model to address this question. Our results showed that the presence of IL-10 at the time of RSV infection not only attenuated acute inflammatory process (i.e. 24 h post-infection), but also late inflammatory changes [characterized by T helper type 2 (Th2) cytokine and chemokine expression]. While this result appears contradictory to some clinical observations where elevated IL-10 levels are observed in asthmatic patients, we also found that delaying IL-10 OE until the late immune response to RSV infection, additive effects rather than inhibitory effects were observed. Importantly, in non-infected, IL-10 OE mice, IL-10 OE alone induced up-regulation of Th2 cytokine (IL-13 and IL-5) and Th2-related chemokine [monocyte chemoattractant protein 1 (MCP-1), chemokine (C-C motif) ligand 3 (CCL3) and regulated upon activation normal T cell expressed and secreted (RANTES)] expression. We identified a subset of CD11b(+)CD11c(+)CD49b(+)F4/80(-)Gr-1(-) myeloid cells as a prinicipal source of IL-10-induced IL-13 production. Therefore, the augmented pathological responses observed in our 'delayed' IL-10 over-expression model could be attributed to IL-10 OE alone. Taken together, our study indicated dual roles of IL-10 on RSV-induced lung inflammation which appear to depend upon the timing of when elevated IL-10 is expressed in the lung.", "title": "Dual role of interleukin-10 in the regulation of respiratory syncitial virus (RSV)-induced lung inflammation." }, { "docid": "17271462", "text": "The quiescent state is thought to be an indispensable property for the maintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with their particular microenvironments, known as the stem cell niches, is critical for adult hematopoiesis in the bone marrow (BM). Here, we demonstrate that HSCs expressing the receptor tyrosine kinase Tie2 are quiescent and antiapoptotic, and comprise a side-population (SP) of HSCs, which adhere to osteoblasts (OBs) in the BM niche. The interaction of Tie2 with its ligand Angiopoietin-1 (Ang-1) induced cobblestone formation of HSCs in vitro and maintained in vivo long-term repopulating activity of HSCs. Furthermore, Ang-1 enhanced the ability of HSCs to become quiescent and induced adhesion to bone, resulting in protection of the HSC compartment from myelosuppressive stress. These data suggest that the Tie2/Ang-1 signaling pathway plays a critical role in the maintenance of HSCs in a quiescent state in the BM niche.", "title": "Tie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche" }, { "docid": "13509809", "text": "The bone marrow (BM) niche comprises multiple cell types that regulate hematopoietic stem/progenitor cell (HSPC) migration out of the niche and into the circulation. Here, we demonstrate that osteocytes, the major cellular component of mature bone, are regulators of HSPC egress. Granulocyte colony-stimulating factor (G-CSF), used clinically to mobilize HSPCs, induces changes in the morphology and gene expression of the osteocytic network that precedes changes in osteoblasts. This rapid response is likely under control of the sympathetic nervous system, since osteocytes express the β2-adrenergic receptor and surgical sympathectomy prevents it. Mice with targeted ablation of osteocytes or a disrupted osteocyte network have comparable numbers of HSPCs in the BM but fail to mobilize HSPCs in response to G-CSF. Taken together, these results indicate that the BM/bone niche interface is critically controlled from inside of the bone matrix and establish an important physiological role for skeletal tissues in hematopoietic function.", "title": "Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells." }, { "docid": "2824347", "text": "The introduction in 1996 of the HAART raised hopes for the eradication of HIV-1. Unfortunately, the discovery of latent HIV-1 reservoirs in CD4+ T cells and in the monocyte-macrophage lineage proved the optimism to be premature. The long-lived HIV-1 reservoirs constitute a major obstacle to the eradication of HIV-1. In this review, we focus on the establishment and maintenance of HIV-1 latency in the two major targets for HIV-1: the CD4+ T cells and the monocyte-macrophage lineage. Understanding the cell-type molecular mechanisms of establishment, maintenance, and reactivation of HIV-1 latency in these reservoirs is crucial for efficient therapeutic intervention. A complete viral eradication, the holy graal for clinicians, might be achieved by strategic interventions targeting latently and productively infected cells. We suggest that new approaches, such as the combination of different kinds of proviral activators, may help to reduce dramatically the size of latent HIV-1 reservoirs in patients on HAART.", "title": "HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes." }, { "docid": "9412420", "text": "Mesenchymal stem cells (MSCs) commonly defined by in vitro functions have entered clinical application despite little definition of their function in residence. Here, we report genetic pulse-chase experiments that define osteoblastic cells as short-lived and nonreplicative, requiring replenishment from bone-marrow-derived, Mx1(+) stromal cells with \"MSC\" features. These cells respond to tissue stress and migrate to sites of injury, supplying new osteoblasts during fracture healing. Single cell transplantation yielded progeny that both preserve progenitor function and differentiate into osteoblasts, producing new bone. They are capable of local and systemic translocation and serial transplantation. While these cells meet current definitions of MSCs in vitro, they are osteolineage restricted in vivo in growing and adult animals. Therefore, bone-marrow-derived MSCs may be a heterogeneous population with the Mx1(+) population, representing a highly dynamic and stress responsive stem/progenitor cell population of fate-restricted potential that feeds the high cell replacement demands of the adult skeleton.", "title": "Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration." }, { "docid": "38043606", "text": "Once across the barrier of the epithelium, macrophages constitute the primary defense against microbial invasion. For most microbes, the acidic, hydrolytically competent environment of the phagolysosome is sufficient to kill them. Despite our understanding of the trafficking events that regulate phagosome maturation, our appreciation of the lumenal environment within the phagosome is only now becoming elucidated through real-time functional assays. The assays quantify pH change, phagosome/lysosome fusion, proteolysis, lipolysis, and beta-galactosidase activity. This information is particularly important for understanding pathogens that successfully parasitize the endosomal/lysosomal continuum. Mycobacterium tuberculosis infects macrophages through arresting the normal maturation process of the phagosome, retaining its vacuole at pH 6.4 with many of the characteristics of an early endosome. Current studies are focusing on the transcriptional response of the bacterium to the changing environment in the macrophage phagosome. Manipulation of these environmental cues, such as preventing the pH drop to pH 6.4 with concanamycin A, abrogates the majority of the transcriptional response in the bacterium, showing that pH is the dominant signal that the bacterium senses and responds to. These approaches represent our ongoing attempts to unravel the discourse that takes place between the pathogen and its host cell.", "title": "Mycobacterium tuberculosis and the environment within the phagosome." }, { "docid": "9301606", "text": "Parathyroid hormone (PTH), a major regulator of bone metabolism, activates the PTHR1 receptor on the osteoblast plasma membrane to initiate signaling and induce transcription of primary response genes. Subsequently, primary genes with transcriptional activity regulate expression of downstream PTH targets. We have identified the adenovirus E4 promoter-binding protein/nuclear factor regulated by IL-3 (E4bp4) as a PTH-induced primary gene in osteoblasts. E4BP4 is a basic leucine zipper (bZIP) transcription factor that represses or activates transcription in non-osteoblastic cells. We report here that PTH rapidly and transiently induced E4bp4 mRNA in osteoblastic cells and that this induction did not require protein synthesis. PTH also induced E4BP4 protein synthesis and E4BP4 binding to a consensus but not to a mutant E4BP4 response element (EBPRE). E4BP4 overexpression inhibited an EBPRE-containing promoter-reporter construct, whereas PTH treatment attenuated activity of the same construct in primary mouse osteoblasts. Finally, E4BP4 overexpression inhibited PTH-induced activity of a cyclooxygenase-2 promoter-reporter construct. Our data suggest a role for E4BP4 in attenuation of PTH target gene transcription in osteoblasts.", "title": "Parathyroid hormone-induced E4BP4/NFIL3 down-regulates transcription in osteoblasts." }, { "docid": "4380004", "text": "The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin+ MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent ‘mesenspheres’ that can self-renew and expand in serial transplantations. Nestin+ MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or β3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin+ cells and favours their osteoblastic differentiation, in vivo nestin+ cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin+ MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin+ cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.", "title": "Mesenchymal and haematopoietic stem cells form a unique bone marrow niche" } ]
407
FACT and other histone chaperone(s) compensate for Histone 2A (H2A)-histone 2B (H2B) dimer eviction during the histone exchange process.
[ { "docid": "9889151", "text": "FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.", "title": "FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs." } ]
[ { "docid": "9451052", "text": "Histone variant H2A.Z-containing nucleosomes are incorporated at most eukaryotic promoters. This incorporation is mediated by the conserved SWR1 complex, which replaces histone H2A in canonical nucleosomes with H2A.Z in an ATP-dependent manner. Here, we show that promoter-proximal nucleosomes are highly heterogeneous for H2A.Z in Saccharomyces cerevisiae, with substantial representation of nucleosomes containing one, two, or zero H2A.Z molecules. SWR1-catalyzed H2A.Z replacement in vitro occurs in a stepwise and unidirectional fashion, one H2A.Z-H2B dimer at a time, producing heterotypic nucleosomes as intermediates and homotypic H2A.Z nucleosomes as end products. The ATPase activity of SWR1 is specifically stimulated by H2A-containing nucleosomes without ensuing histone H2A eviction. Remarkably, further addition of free H2A.Z-H2B dimer leads to hyperstimulation of ATPase activity, eviction of nucleosomal H2A-H2B, and deposition of H2A.Z-H2B. These results suggest that the combination of H2A-containing nucleosome and free H2A.Z-H2B dimer acting as both effector and substrate for SWR1 governs the specificity and outcome of the replacement reaction.", "title": "Stepwise Histone Replacement by SWR1 Requires Dual Activation with Histone H2A.Z and Canonical Nucleosome" }, { "docid": "18038955", "text": "INO80 is an evolutionarily conserved, ATP-dependent chromatin-remodeling enzyme that plays roles in transcription, DNA repair, and replication. Here, we show that yeast INO80 facilitates these diverse processes at least in part by controlling genome-wide distribution of the histone variant H2A.Z. In the absence of INO80, H2A.Z nucleosomes are mislocalized, and H2A.Z levels at promoters show reduced responsiveness to transcriptional changes, suggesting that INO80 controls H2A.Z dynamics. Additionally, we demonstrate that INO80 has a histone-exchange activity in which the enzyme can replace nucleosomal H2A.Z/H2B with free H2A/H2B dimers. Genetic interactions between ino80 and htz1 support a model in which INO80 catalyzes the removal of unacetylated H2A.Z from chromatin as a mechanism to promote genome stability.", "title": "Global Regulation of H2A.Z Localization by the INO80 Chromatin-Remodeling Enzyme Is Essential for Genome Integrity" }, { "docid": "24311787", "text": "Variant histone H2AZ-containing nucleosomes are involved in the regulation of gene expression. In Saccharomyces cerevisiae, chromatin deposition of histone H2AZ is mediated by the fourteen-subunit SWR1 complex, which catalyzes ATP-dependent exchange of nucleosomal histone H2A for H2AZ. Previous work defined the role of seven SWR1 subunits (Swr1 ATPase, Swc2, Swc3, Arp6, Swc5, Yaf9, and Swc6) in maintaining complex integrity and H2AZ histone replacement activity. Here we examined the function of three additional SWR1 subunits, bromodomain containing Bdf1, actin-related protein Arp4 and Swc7, by analyzing affinity-purified mutant SWR1 complexes. We observed that depletion of Arp4 (arp4-td) substantially impaired the association of Bdf1, Yaf9, and Swc4. In contrast, loss of either Bdf1 or Swc7 had minimal effects on overall complex integrity. Furthermore, the basic H2AZ histone replacement activity of SWR1 in vitro required Arp4, but not Bdf1 or Swc7. Thus, three out of fourteen SWR1 subunits, Bdf1, Swc7, and previously noted Swc3, appear to have roles auxiliary to the basic histone replacement activity. The N-terminal region of the Swr1 ATPase subunit is necessary and sufficient to direct association of Bdf1 and Swc7, as well as Arp4, Act1, Yaf9 and Swc4. This same region contains an additional H2AZ-H2B specific binding site, distinct from the previously identified Swc2 subunit. These findings suggest that one SWR1 enzyme might be capable of binding two H2AZ-H2B dimers, and provide further insight on the hierarchy and interdependency of molecular interactions within the SWR1 complex.", "title": "N terminus of Swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complex." }, { "docid": "5966635", "text": "Activation of transcription within chromatin has been correlated with the incorporation of the essential histone variant H2A.Z into nucleosomes. H2A.Z and other histone variants may establish structurally distinct chromosomal domains; however, the molecular mechanism by which they function is largely unknown. Here we report the 2.6 Å crystal structure of a nucleosome core particle containing the histone variant H2A.Z. The overall structure is similar to that of the previously reported 2.8 Å nucleosome structure containing major histone proteins. However, distinct localized changes result in the subtle destabilization of the interaction between the (H2A.Z–H2B) dimer and the (H3–H4)2 tetramer. Moreover, H2A.Z nucleosomes have an altered surface that includes a metal ion. This altered surface may lead to changes in higher order structure, and/or could result in the association of specific nuclear proteins with H2A.Z. Finally, incorporation of H2A.Z and H2A within the same nucleosome is unlikely, due to significant changes in the interface between the two H2A.Z–H2B dimers.", "title": "Crystal structure of a nucleosome core particle containing the variant histone H2A.Z" }, { "docid": "8411251", "text": "Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics.", "title": "The right place at the right time: chaperoning core histone variants." }, { "docid": "29877890", "text": "Recent structures of the nucleosome core particle reveal details of histone-histone and histone-DNA interactions. These structures have now set the stage for understanding chromatin assembly and dynamics during replication and transcription. Histone chaperones and chromatin remodeling complexes are important in both of these processes. The nucleosome and its protein core, the histone octamer, have twofold symmetry, which histone chaperones may use to bind core histones. Recent studies suggest that the nucleoplasmin pentamer may mediate histone storage, sperm chromatin decondensation and nucleosome assembly, by dimerizing to form a decamer. In this model, histone binding on the lateral surface of the chaperone involves stereospecific interactions and a shared twofold axis.", "title": "Histone chaperones and nucleosome assembly." }, { "docid": "20781656", "text": "Some three decades have passed since the discovery of nucleosomes in 1974 and the first isolation of a histone chaperone in 1978. While various types of histone chaperones have been isolated and functionally analyzed, the elementary processes of nucleosome assembly and disassembly have been less well characterized. Recently, the tertiary structure of a hetero-trimeric complex composed of the histone chaperone CIA/ASF1 and the histone H3-H4 dimer was determined, and this complex was proposed to be an intermediate in nucleosome assembly and disassembly reactions. In addition, CIA alone was biochemically shown to dissociate the histone (H3-H4)2 tetramer into two histone H3-H4 dimers. This activity suggested that CIA regulates the semi-conservative replication of nucleosomes. Here, we provide an overview of prominent histone chaperones with the goal of elucidating the mechanisms that preserve and modify epigenetic information. We also discuss the reactions involved in nucleosome assembly and disassembly.", "title": "Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly" }, { "docid": "25254425", "text": "Nucleosomes containing the histone variant H3.3 tend to be clustered in vivo in the neighborhood of transcriptionally active genes and over regulatory elements. It has not been clear, however, whether H3.3-containing nucleosomes possess unique properties that would affect transcription. We report here that H3.3 nucleosomes isolated from vertebrates, regardless of whether they are partnered with H2A or H2A.Z, are unusually sensitive to salt-dependent disruption, losing H2A/H2B or H2A.Z/H2B dimers. Immunoprecipitation studies of nucleosome core particles (NCPs) show that NCPs that contain both H3.3 and H2A.Z are even less stable than NCPs containing H3.3 and H2A. Intriguingly, NCPs containing H3 and H2A.Z are at least as stable as H3/H2A NCPs. These results establish an hierarchy of stabilities for native nucleosomes carrying different complements of variants, and suggest how H2A.Z could play different roles depending on its partners within the NCP. They also are consistent with the idea that H3.3 plays an active role in maintaining accessible chromatin structures in enhancer regions and transcribed regions. Consistent with this idea, promoters and enhancers at transcriptionally active genes and coding regions at highly expressed genes have nucleosomes that simultaneously carry both H3.3 and H2A.Z, and should therefore be extremely sensitive to disruption.", "title": "Nucleosome stability mediated by histone variants H3.3 and H2A.Z." }, { "docid": "406733", "text": "In yeast, remodeling of PHO5 promoter chromatin upon activation is accompanied by transient hyperacetylation and subsequent eviction of histones from the promoter in trans. In the course of rerepression, nucleosomes have to be reassembled on the promoter. We have analyzed where the histones for reassembly of the inactive promoter chromatin come from. The use of a strain with two differently tagged and differently regulated versions of histone H3 allowed us to discriminate between histones originating from the chromatin fraction and histones arising from the soluble histone pool. In this way, we show that the incorporated histones originate from a source in trans. Promoter closure occurs very rapidly, and the histone chaperones Asf1 and Hir1 as well as the SWI/SNF nucleosome remodeling complex appear to be important for rapid reassembly of nucleosomes at the PHO5 promoter.", "title": "Histones are incorporated in trans during reassembly of the yeast PHO5 promoter." }, { "docid": "175735", "text": "MOTIVATION The nucleosome is the basic repeating unit of chromatin. It contains two copies each of the four core histones H2A, H2B, H3 and H4 and about 147 bp of DNA. The residues of the histone proteins are subject to numerous post-translational modifications, such as methylation or acetylation. Chromatin immunoprecipitiation followed by sequencing (ChIP-seq) is a technique that provides genome-wide occupancy data of these modified histone proteins, and it requires appropriate computational methods. \n RESULTS We present NucHunter, an algorithm that uses the data from ChIP-seq experiments directed against many histone modifications to infer positioned nucleosomes. NucHunter annotates each of these nucleosomes with the intensities of the histone modifications. We demonstrate that these annotations can be used to infer nucleosomal states with distinct correlations to underlying genomic features and chromatin-related processes, such as transcriptional start sites, enhancers, elongation by RNA polymerase II and chromatin-mediated repression. Thus, NucHunter is a versatile tool that can be used to predict positioned nucleosomes from a panel of histone modification ChIP-seq experiments and infer distinct histone modification patterns associated to different chromatin states. AVAILABILITY The software is available at http://epigen.molgen.mpg.de/nuchunter/.", "title": "Inferring nucleosome positions with their histone mark annotation from ChIP data" }, { "docid": "27274441", "text": "The histone variant H2AZ is incorporated preferentially at specific locations in chromatin to modulate chromosome functions. In Saccharomyces cerevisiae, deposition of histone H2AZ is mediated by the multiprotein SWR1 complex, which catalyzes ATP-dependent exchange of nucleosomal histone H2A for H2AZ. Here, we define interactions between SWR1 components and H2AZ, revealing a link between the ATPase domain of Swr1 and three subunits required for the binding of H2AZ. We discovered that Swc2 binds directly to and is essential for transfer of H2AZ. Swc6 and Arp6 are necessary for the association of Swc2 and for nucleosome binding, whereas other subunits, Swc5 and Yaf9, are required for H2AZ transfer but neither H2AZ nor nucleosome binding. Finally, the C-terminal α-helix of H2AZ is crucial for its recognition by SWR1. These findings provide insight on the initial events of histone exchange.", "title": "Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange" }, { "docid": "20630805", "text": "Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes.", "title": "Histone phosphorylation: a chromatin modification involved in diverse nuclear events." }, { "docid": "5760247", "text": "Chromosome segregation during mitosis requires assembly of the kinetochore complex at the centromere. Kinetochore assembly depends on specific recognition of the histone variant CENP-A in the centromeric nucleosome by centromere protein C (CENP-C). We have defined the determinants of this recognition mechanism and discovered that CENP-C binds a hydrophobic region in the CENP-A tail and docks onto the acidic patch of histone H2A and H2B. We further found that the more broadly conserved CENP-C motif uses the same mechanism for CENP-A nucleosome recognition. Our findings reveal a conserved mechanism for protein recruitment to centromeres and a histone recognition mode whereby a disordered peptide binds the histone tail through hydrophobic interactions facilitated by nucleosome docking.", "title": "A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C." }, { "docid": "29788648", "text": "NuA4, the major H4 lysine acetyltransferase (KAT) complex in Saccharomyces cerevisiae, is recruited to promoters and stimulates transcription initiation. NuA4 subunits contain domains that bind methylated histones, suggesting that histone methylation should target NuA4 to coding sequences during transcription elongation. We show that NuA4 is cotranscriptionally recruited, dependent on its physical association with elongating polymerase II (Pol II) phosphorylated on the C-terminal domain by cyclin-dependent kinase 7/Kin28, but independently of subunits (Eaf1 and Tra1) required for NuA4 recruitment to promoters. Whereas histone methylation by Set1 and Set2 is dispensable for NuA4's interaction with Pol II and targeting to some coding regions, it stimulates NuA4-histone interaction and H4 acetylation in vivo. The NuA4 KAT, Esa1, mediates increased H4 acetylation and enhanced RSC occupancy and histone eviction in coding sequences and stimulates the rate of transcription elongation. Esa1 cooperates with the H3 KAT in SAGA, Gcn5, to enhance these functions. Our findings delineate a pathway for acetylation-mediated nucleosome remodeling and eviction in coding sequences that stimulates transcription elongation by Pol II in vivo.", "title": "NuA4 lysine acetyltransferase Esa1 is targeted to coding regions and stimulates transcription elongation with Gcn5." }, { "docid": "9881829", "text": "The conserved histone variant H2AZ has an important role in the regulation of gene expression and the establishment of a buffer to the spread of silent heterochromatin. How histone variants such as H2AZ are incorporated into nucleosomes has been obscure. We have found that Swr1, a Swi2/Snf2-related adenosine triphosphatase, is the catalytic core of a multisubunit, histone-variant exchanger that efficiently replaces conventional histone H2A with histone H2AZ in nucleosome arrays. Swr1 is required for the deposition of histone H2AZ at specific chromosome locations in vivo, and Swr1 and H2AZ commonly regulate a subset of yeast genes. These findings define a previously unknown role for the adenosine triphosphate-dependent chromatin remodeling machinery.", "title": "ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex." }, { "docid": "12156187", "text": "The mechanism of activation of the alternative lengthening of telomeres (ALT) pathway of mammalian chromosome-end maintenance has been unclear. We have now discovered that co-depletion of the histone chaperones ASF1a and ASF1b in human cells induced all hallmarks of ALT in both primary and cancer cells. These included the formation of ALT-associated PML (promyelocytic leukemia) bodies (APBs), the presence of extrachromosomal telomeric DNA species, an elevated frequency of telomeric sister chromatid exchanges (t-SCE) events and intertelomeric exchange of an integrated tag. The induction of ALT characteristics in this setting led to the simultaneous suppression of telomerase. We determined that ALT induction is positively regulated by the proteins RAD17 and BLM and negatively regulated by EXO1 and DNA2. The induction of ALT phenotypes as a consequence of ASF1 depletion strongly supports the hypothesis that ALT is a consequence of histone management dysfunction.", "title": "Rapid induction of Alternative Lengthening of Telomeres by depletion of the histone chaperone ASF1" }, { "docid": "13907427", "text": "Poly(ADP-ribosyl)ation plays a major role in DNA repair, where it regulates chromatin relaxation as one of the critical events in the repair process. However, the molecular mechanism by which poly(ADP-ribose) modulates chromatin remains poorly understood. Here we identify the poly(ADP-ribose)-regulated protein APLF as a DNA-damage-specific histone chaperone. APLF preferentially binds to the histone H3/H4 tetramer via its C-terminal acidic motif, which is homologous to the motif conserved in the histone chaperones of the NAP1L family (NAP1L motif). We further demonstrate that APLF exhibits histone chaperone activities in a manner that is dependent on its acidic domain and that the NAP1L motif is critical for the repair capacity of APLF in vivo. Finally, we identify structural analogs of APLF in lower eukaryotes with the ability to bind histones and localize to the sites of DNA-damage-induced poly(ADP-ribosyl)ation. Collectively, these findings define the involvement of histone chaperones in poly(ADP-ribose)-regulated DNA repair reactions.", "title": "DNA repair factor APLF is a histone chaperone." }, { "docid": "14155726", "text": "Nuclear actin-related proteins (Arps) are subunits of several chromatin remodelers, but their molecular functions within these complexes are unclear. We report the crystal structure of the INO80 complex subunit Arp8 in its ATP-bound form. Human Arp8 has several insertions in the conserved actin fold that explain its inability to polymerize. Most remarkably, one insertion wraps over the active site cleft and appears to rigidify the domain architecture, while active site features shared with actin suggest an allosterically controlled ATPase activity. Quantitative binding studies with nucleosomes and histone complexes reveal that Arp8 and the Arp8-Arp4-actin-HSA sub-complex of INO80 strongly prefer nucleosomes and H3-H4 tetramers over H2A-H2B dimers, suggesting that Arp8 functions as a nucleosome recognition module. In contrast, Arp4 prefers free (H3-H4)(2) over nucleosomes and may serve remodelers through binding to (dis)assembly intermediates in the remodeling reaction.", "title": "Structure of Actin-related protein 8 and its contribution to nucleosome binding" }, { "docid": "16626264", "text": "Histone variants help specialize chromatin regions; however, their impact on transcriptional regulation is largely unknown. Here, we determined the genome-wide localization and dynamics of Htz1, the yeast histone H2A variant. Htz1 localizes to hundreds of repressed/basal Pol II promoters and prefers TATA-less promoters. Specific Htz1 deposition requires the SWR1 complex, which largely colocalizes with Htz1. Htz1 occupancy correlates with particular histone modifications, and Htz1 deposition is partially reliant on Gcn5 (a histone acetyltransferase) and Bdf1, an SWR1 complex member that binds acetylated histones. Changes in growth conditions cause a striking redistribution of Htz1 from activated to repressed/basal promoters. Furthermore, Htz1 promotes full gene activation but does not generally impact repression. Importantly, Htz1 releases from purified chromatin in vitro under conditions where H2A and H3 remain associated. We suggest that Htz1-bearing nucleosomes are deposited at repressed/basal promoters but facilitate activation through their susceptibility to loss, thereby helping to expose promoter DNA.", "title": "Genome-Wide Dynamics of Htz1, a Histone H2A Variant that Poises Repressed/Basal Promoters for Activation through Histone Loss" } ]
413
Female carriers of the Apolipoprotein E4 (APOE4) allele have decreased risk for dementia.
[ { "docid": "6309659", "text": "CONTEXT Exogenous estrogen use may lower risk of dementia in postmenopausal women. A relationship between long-term exposure to endogenous estrogens and incident dementia has been hypothesized but not studied. \n OBJECTIVE To determine whether a longer reproductive period, as an indicator of longer exposure to endogenous estrogens, is associated with lower risk of dementia and Alzheimer disease (AD) in women who have natural menopause. \n DESIGN AND SETTING The Rotterdam Study, a population-based prospective cohort study conducted in the Netherlands. \n PARTICIPANTS A total of 3601 women aged 55 years or older who did not have dementia at baseline (1990-1993) and had information on age at menarche, age at menopause, and type of menopause. Participants were reexamined in 1993-1994 and 1997-1999 and were continuously monitored for development of dementia. \n MAIN OUTCOME MEASURES Incidence of dementia, based on Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition criteria, and AD, based on National Institute of Neurological Disorders and Stroke/Alzheimer's Disease and Related Disorders Association criteria, compared by quartiles of reproductive period among women with natural menopause. \n RESULTS During 21 046 person-years of follow-up (median follow-up, 6.3 years), 199 women developed dementia, including 159 who developed AD. After adjusting for age, dementia was not clearly associated with length of reproductive period. However, after adjusting for multiple covariates, women with natural menopause and more reproductive years had an increased risk of dementia (adjusted rate ratio [RR] for women with >39 reproductive years [highest quartile] compared with <34 reproductive years [lowest quartile], 1.78; 95% confidence interval [CI], 1.12-2.84). The adjusted RR per year of increase was 1.04 (95% CI, 1.01-1.08). For risk of AD, the adjusted RRs were 1.51 (95% CI, 0.91-2.50) and 1.03 (95% CI, 1.00-1.07), respectively. Risk of dementia associated with a longer reproductive period was most pronounced in APOE epsilon4 carriers (adjusted RR for >39 reproductive years compared with <34 reproductive years, 4.20 [95% CI, 1.97-8.92] for dementia and 3.42 [95% CI, 1.51-7.75] for AD), whereas in noncarriers, no clear association with dementia or AD was observed. \n CONCLUSION Our findings do not support the hypothesis that a longer reproductive period reduces risk of dementia in women who have natural menopause.", "title": "Reproductive period and risk of dementia in postmenopausal women." } ]
[ { "docid": "12443371", "text": "OBJECTIVE To evaluate the association between apolipoprotein E (APOE) polymorphisms (E2, C/T Arg158Cys; E4, T/C Cys112Arg; and promoter, g-219t) and the history of concussion in college athletes. We hypothesized that carrying 1 or more APOE rare (or minor) allele assessed in this study would be associated with having a history of 1 or more concussions. \n DESIGN Multicenter cross-sectional study. \n SETTING University athletic facilities. \n PARTICIPANTS One hundred ninety-six male football (n = 163) and female soccer (n = 33) college athletes volunteered. \n INTERVENTIONS Written concussion history questionnaire and saliva samples for genotyping. \n MAIN OUTCOME MEASURES Self-reported history of a documented concussion and rare APOE genotype (E2, E4, promoter). \n RESULTS There was a significant association (Wald χ² = 3.82; P = 0.05; odds ratio = 9.8) between carrying all APOE rare alleles and the history of a previous concussion. There was also a significant association (Wald χ² = 3.96, P = 0.04, odds ratio = 8.4) between carrying the APOE promoter minor allele and experiencing 2 or more concussions. \n CONCLUSIONS Carriers of all 3 APOE rare (or minor) alleles assessed in this study were nearly 10 times more likely to report a previous concussion and may be at a greater risk of concussion versus noncarriers. Promoter minor allele carriers were 8.4 times more likely to report multiple concussions and may be at a greater risk of multiple concussions versus noncarriers. Research involving larger samples of individuals with multiple concussions and carriers of multiple APOE rare alleles is warranted.", "title": "Apolipoprotein E genotype and concussion in college athletes." }, { "docid": "4709641", "text": "Efforts to develop drugs for Alzheimer's disease (AD) have shown promise in animal studies, only to fail in human trials, suggesting a pressing need to study AD in human model systems. Using human neurons derived from induced pluripotent stem cells that expressed apolipoprotein E4 (ApoE4), a variant of the APOE gene product and the major genetic risk factor for AD, we demonstrated that ApoE4-expressing neurons had higher levels of tau phosphorylation, unrelated to their increased production of amyloid-β (Aβ) peptides, and that they displayed GABAergic neuron degeneration. ApoE4 increased Aβ production in human, but not in mouse, neurons. Converting ApoE4 to ApoE3 by gene editing rescued these phenotypes, indicating the specific effects of ApoE4. Neurons that lacked APOE behaved similarly to those expressing ApoE3, and the introduction of ApoE4 expression recapitulated the pathological phenotypes, suggesting a gain of toxic effects from ApoE4. Treatment of ApoE4-expressing neurons with a small-molecule structure corrector ameliorated the detrimental effects, thus showing that correcting the pathogenic conformation of ApoE4 is a viable therapeutic approach for ApoE4-related AD.", "title": "Gain of toxic Apolipoprotein E4 effects in Human iPSC-Derived Neurons Is Ameliorated by a Small-Molecule Structure Corrector" }, { "docid": "18852643", "text": "In humans, apolipoprotein E (apoE) is a polymorphic multifunctional protein.1 It is coded by three alleles (e2, e3, e4) of a modulator gene (level, variability, and susceptibility gene) at the apoE locus on chromosome 19, determining six apoE genotypes and plasma phenotypes. Its pleiotropic effects are exerted on plasma lipoprotein metabolism, coagulation, oxidative processes, macrophage, glial cell and neuronal cell homeostasis, adrenal function, central nervous system physiology, inflammation, and cell proliferation.2,3 ApoE polymorphism modulates susceptibility to many diseases. It is, however, particularly notorious for its role in neurodegenerative disorders4 and atherosclerotic arterial disease.5,6 The e4 allele (phenotypes E4/4 and E4/3) that is associated with higher low density lipoprotein cholesterol (LDL-C) is considered proatherogenic, whereas the presence of the e2 allele (E3/2, E2/2), being associated with lower LDL-C levels, is deemed to have the opposite effect (although it may be associated with increased plasma triglycerides and lipoprotein remnants). This simple equation, however, is an oversimplification because these properties are subject to many environmental and genetic influences. ApoE has allele- and gender-dependent effects on reverse cholesterol transport, platelet aggregation, and oxidative processes that are likely to affect the overall atherogenic potential ascribed to modulation of lipoprotein metabolism.2,3,6 Notwithstanding the context dependency, a recent meta-analysis fully supports the presence of the e4 allele as a significant risk factor for coronary artery disease.7 Several mechanisms have been evoked to link apoE with atherosclerosis, but the relationship is not fully unraveled in humans. Nevertheless, some apoE mimetic peptides that promote LDL clearance are currently tested in animals for potential clinical applications.8,9 See page 436 The situation is relatively simpler in animals. The mouse model has been prominently useful to test mechanisms …", "title": "Apolipoprotein E and atherosclerosis: beyond lipid effect." }, { "docid": "20937018", "text": "Apolipoprotein E is immunochemically localized to the senile plaques, vascular amyloid, and neurofibrillary tangles of Alzheimer disease. In vitro, apolipoprotein E in cerebrospinal fluid binds to synthetic beta A4 peptide (the primary constituent of the senile plaque) with high avidity. Amino acids 12-28 of the beta A4 peptide are required. The gene for apolipoprotein E is located on chromosome 19q13.2, within the region previously associated with linkage of late-onset familial Alzheimer disease. Analysis of apolipoprotein E alleles in Alzheimer disease and controls demonstrated that there was a highly significant association of apolipoprotein E type 4 allele (APOE-epsilon 4) and late-onset familial Alzheimer disease. The allele frequency of the APOE-epsilon 4 in 30 random affected patients, each from a different Alzheimer disease family, was 0.50 +/- 0.06; the allele frequency of APOE-epsilon 4 in 91 age-matched unrelated controls was 0.16 +/- 0.03 (Z = 2.44, P = 0.014). A functional role of the apolipoprotein E-E4 isoform in the pathogenesis of late-onset familial Alzheimer disease is suggested.", "title": "Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease." }, { "docid": "24906548", "text": "The epsilon4 allele of the apolipoprotein E (APOE) gene has been linked to negative outcomes among adults with traumatic brain injury (TBI) across the spectrum of severity, with preliminary evidence suggesting a similar pattern among children. This study investigated the relationship of the APOE epsilon4 allele to outcomes in children with mild TBI. Participants in this prospective, longitudinal study included 99 children with mild TBI between the ages of 8 and 15 recruited from consecutive admissions to Emergency Departments at two large children's hospitals. Outcomes were assessed acutely in the Emergency Department and at follow-ups at 2 weeks, 3 months, and 12 months post-injury. Among the 99 participants, 28 had at least one epsilon4 allele. Children with and without an epsilon4 allele did not differ demographically. Children with an epsilon4 allele were significantly more likely than those without an epsilon4 allele to have a Glasgow Coma Scale score of less than 15, but the groups did not differ on any other measures of injury severity. Those with an epsilon4 allele exhibited better performance than children without an epsilon4 allele on a test of constructional skill, but the groups did not differ on any other neuropsychological tests. Children with and without an epsilon4 allele also did not differ on measures of post-concussive symptoms. Overall, the findings suggest that the APOE epsilon4 allele is not consistently related to the outcomes of mild TBI in children.", "title": "Apolipoprotein E4 as a predictor of outcomes in pediatric mild traumatic brain injury." }, { "docid": "51386222", "text": "Objective. —To examine more closely the association between apolipoprotein E (APOE) genotype and Alzheimer disease (AD) by age and sex in populations of various ethnic and racial denominations. Data Sources. —Forty research teams contributed data onAPOEgenotype, sex, age at disease onset, and ethnic background for 5930 patients who met criteria for probable or definite AD and 8607 controls without dementia who were recruited from clinical, community, and brain bank sources. Main Outcome Measures. —Odds ratios (ORs) and 95% confidence intervals (Cls) for AD, adjusted for age and study and stratified by major ethnic group (Caucasian, African American, Hispanic, and Japanese) and source, were computed forAPOEgenotypes ∈2/∈2,∈2/∈3,∈2/∈4,∈3/∈4 and ∈4/∈4 relative to the ∈3/∈3 group. The influence of age and sex on the OR for each genotype was assessed using logistic regression procedures. Results. —Among Caucasian subjects from clinic- or autopsy-based studies, the risk of AD was significantly increased for people with genotypes ∈2/∈4 (OR=2.6, 95% Cl=1.6-4.0), ∈3/∈4 (OR=3.2, 95% Cl=2.8-3.8), and ∈4/∈4 (OR=14.9, 95% CI=10.8-20.6); whereas, the ORs were decreased for people with genotypes ∈2/∈2 (OR=0.6, 95% Cl=0.2-2.0) and ∈2/∈3 (OR=0.6, 95% Cl=0.5-0.8). TheAPOE∈4-AD association was weaker among African Americans and Hispanics, but there was significant heterogeneity in ORs among studies of African Americans (P Conclusions. —TheAPOE∈4 allele represents a major risk factor for AD in all ethnic groups studied, across all ages between 40 and 90 years, and in both men and women. The association betweenAPOE∈4 and AD in African Americans requires clarification, and the attenuated effect ofAPOE∈4 in Hispanics should be investigated further.", "title": "Effects of Age, Sex, and Ethnicity on the Association Between Apolipoprotein E Genotype and Alzheimer Disease: A Meta-analysis" }, { "docid": "20280410", "text": "Inherited mutations in the gene BRCA2 predispose carriers to early onset breast cancer, but such mutations account for fewer than 2% of all cases in East Anglia. It is likely that low penetrance alleles explain the greater part of inherited susceptibility to breast cancer; polymorphic variants in strongly predisposing genes, such as BRCA2, are candidates for this role. BRCA2 is thought to be involved in DNA double strand break-repair. Few mice in which Brca2 is truncated survive to birth; of those that do, most are male, smaller than their normal littermates and have high cancer incidence. Here we show that a common human polymorphism (N372H) in exon 10 of BRCA2 confers an increased risk of breast cancer: the HH homozygotes have a 1.31-fold (95% CI, 1.07–1.61) greater risk than the NN group. Moreover, in normal female controls of all ages there is a significant deficiency of homozygotes compared with that expected from Hardy-Weinberg equilibrium, whereas in males there is an excess of homozygotes: the HH group has an estimated fitness of 0.82 in females and 1.38 in males. Therefore, this variant of BRCA2 appears also to affect fetal survival in a sex-dependent manner.", "title": "A common variant in BRCA2 is associated with both breast cancer risk and prenatal viability" }, { "docid": "6947286", "text": "Recent biological studies indicate the importance of anterior-pharynx defective-1 (APH-1) proteins in Alzheimer's disease (AD) pathogenesis. We scanned APH-1 genes for the presence of sequence variations by denaturing high performance liquid chromatography and analyzed their distribution in an Italian sample of 113 AD patients and 132 controls. We found six different polymorphisms: three of them, all in APH-1b, predict an aminoacid substitution (T27I, V199L and F217L); the others are either silent or in non-coding regions. None of them is significantly associated with the disease; data stratification by the apolipoprotein E epsilon4 carrier status show a trend for coexistence of the transversion c+651T>G (F217L) with the epsilon4 allele. Our data suggest that polymorphisms in APH-1a/b coding regions are not linked with higher risk for sporadic AD in our Italian population sample.", "title": "Association analysis between anterior-pharynx defective-1 genes polymorphisms and Alzheimer's disease." }, { "docid": "27076725", "text": "BACKGROUND The association between antecedent head injury and AD is inconsistent. \n OBJECTIVE To examine the association between early adult head injury, as documented by military hospital records, and dementia in late life; and to evaluate the interaction between head injury and APOE epsilon4 as risk factors for dementia. \n METHODS The study had a population-based prospective historical cohort design. It included men who were World War II Navy and Marine veterans, and were hospitalized during their military service with a diagnosis of either a nonpenetrating head injury or another unrelated condition. In 1996 to 1997, military medical records were abstracted to document the occurrence and details of closed head injury. The entire sample was then evaluated for dementia and AD using a multistage procedure. There were 548 veterans with head injury and 1228 without head injury who completed all assigned stages of the study. The authors estimated risk of dementia, specifically AD, using proportional hazards models. \n RESULTS Both moderate head injury (hazard ratio [HR] = 2.32; CI = 1.04 to 5.17) and severe head injury (HR = 4.51; CI = 1.77 to 11.47) were associated with increased risk of AD. Results were similar for dementia in general. The results for mild head injury were inconclusive. When the authors stratified by the number of APOE epsilon4 alleles, they observed a nonsignificant trend toward a stronger association between AD and head injury in men with more epsilon4 alleles. \n CONCLUSIONS Moderate and severe head injuries in young men may be associated with increased risk of AD and other dementias in late life. However, the authors cannot exclude the possibility that other unmeasured factors may be influencing this association.", "title": "Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias." }, { "docid": "11090688", "text": "The weight lowering potential of glucagon-like peptide 1 (GLP-1) receptor agonists (RAs) is inter-individually different and clinically unpredictable. The potential role of genetic variability of GLP-1R on body weight response to GLP-1 RAs in obese women with polycystic ovary syndrome (PCOS) has not yet been evaluated. Fifty-seven obese women with PCOS (aged 30.7 ± 7.0, BMI 38.6 ± 5.3 kg/m2) were assigned to liraglutide 1.2 mg QD s.c. for 12 weeks and classified as strong responders regarding weight loss if they lost 5 % or more of their initial body weight. They were genotyped for common GLP-1R single nucleotide polymorphisms (SNPs) rs6923761 and rs10305420. Changes of measures of obesity were measured before and at the end of the treatment. Twenty out of 57 subjects were strong responders and lost 7.38 ± 1.74 compared to 2.11 ± 2.17 kg lost in poor responders. Carriers of at least one polymorphic rs10305420 allele had poor treatment response compared to carriers of two wild type alleles (OR = 0.27, 95 % CI = 0.09–0.85, P = 0.025). Carriers of at least one polymorphic rs6923761 allele tended to have stronger treatment response compared to carriers of two wild type alleles (OR = 3.06, 95 % CI = 0.96–9.74, P = 0.058). Fasting glucose and glucose after oral glucose tolerance test (OGTT) comparably decreased in both groups when compared to baseline, whereas no within treatment differences were found in androgen profile. Gastrointestinal adverse events were transit and balanced between strong and poor responders. GLP-1R rs10305420 polymorphism explained some of the inter-individual differences in response to liraglutide regarding weight loss in obese PCOS women.", "title": "Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: a pilot study" }, { "docid": "13956305", "text": "Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthritis for which HLA-B*27 is the major genetic risk factor, although its role in the aetiology of AS remains elusive. To better understand the genetic basis of the MHC susceptibility loci, we genotyped 7,264 MHC SNPs in 22,647 AS cases and controls of European descent. We impute SNPs, classical HLA alleles and amino-acid residues within HLA proteins, and tested these for association to AS status. Here we show that in addition to effects due to HLA-B*27 alleles, several other HLA-B alleles also affect susceptibility. After controlling for the associated haplotypes in HLA-B, we observe independent associations with variants in the HLA-A, HLA-DPB1 and HLA-DRB1 loci. We also demonstrate that the ERAP1 SNP rs30187 association is not restricted only to carriers of HLA-B*27 but also found in HLA-B*40:01 carriers independently of HLA-B*27 genotype.", "title": "Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1" }, { "docid": "37205759", "text": "The Apolipoprotein (Apo) family is implicated in lipid metabolism. There are five types of Apo: Apoa, Apob, Apoc, Apod, and Apoe. Apoe has been demonstrated to play a central role in lipoprotein metabolism and to be essential for efficient receptor-mediated plasma clearance of chylomicron remnants and VLDL remnant particles by the liver. Apoe-deficient (Apoe(-/-)) mice develop atherosclerotic plaques spontaneously, followed by obesity. In this study, we investigated whether lipid deposition caused by Apoe knockout affects reproduction in female mice. The results demonstrated that Apoe(-/-) mice were severely hypercholesterolemic, with their cholesterol metabolism disordered, and lipid accumulating in the ovaries causing the ovaries to be heavier compared with the WT counterparts. In addition, estrogen and progesterone decreased significantly at D 100. Quantitative PCR analysis demonstrated that at D 100 the expression of cytochromeP450 aromatase (Cyp19a1), 3β-hydroxysteroid dehydrogenase (Hsd3b), mechanistic target of rapamycin (Mtor), and nuclear factor-κB (Nfkb) decreased significantly, while that of BCL2-associated agonist of cell death (Bad) and tuberous sclerosis complex 2 (Tsc2) increased significantly in the Apoe(-/-) mice. However, there was no difference in the fertility rates of the Apoe(-/-) and WT mice; that is, obesity induced by Apoe knockout has no significant effect on reproduction. However, the deletion of Apoe increased the number of ovarian follicles and the ratio of ovarian follicle atresia and apoptosis. We believe that this work will augment our understanding of the role of Apoe in reproduction.", "title": "Obesity occurring in apolipoprotein E-knockout mice has mild effects on fertility." }, { "docid": "13282296", "text": "CONTEXT Although acute hypoglycemia may be associated with cognitive impairment in children with type 1 diabetes, no studies to date have evaluated whether hypoglycemia is a risk factor for dementia in older patients with type 2 diabetes. \n OBJECTIVE To determine if hypoglycemic episodes severe enough to require hospitalization are associated with an increased risk of dementia in a population of older patients with type 2 diabetes followed up for 27 years. \n DESIGN, SETTING, AND PATIENTS A longitudinal cohort study from 1980-2007 of 16,667 patients with a mean age of 65 years and type 2 diabetes who are members of an integrated health care delivery system in northern California. \n MAIN OUTCOME MEASURE Hypoglycemic events from 1980-2002 were collected and reviewed using hospital discharge and emergency department diagnoses. Cohort members with no prior diagnoses of dementia, mild cognitive impairment, or general memory complaints as of January 1, 2003, were followed up for a dementia diagnosis through January 15, 2007. Dementia risk was examined using Cox proportional hazard regression models, adjusted for age, sex, race/ethnicity, education, body mass index, duration of diabetes, 7-year mean glycated hemoglobin, diabetes treatment, duration of insulin use, hyperlipidemia, hypertension, cardiovascular disease, stroke, transient cerebral ischemia, and end-stage renal disease. \n RESULTS At least 1 episode of hypoglycemia was diagnosed in 1465 patients (8.8%) and dementia was diagnosed in 1822 patients (11%) during follow-up; 250 patients had both dementia and at least 1 episode of hypoglycemia (16.95%). Compared with patients with no hypoglycemia, patients with single or multiple episodes had a graded increase in risk with fully adjusted hazard ratios (HRs): for 1 episode (HR, 1.26; 95% confidence interval [CI], 1.10-1.49); 2 episodes (HR, 1.80; 95% CI, 1.37-2.36); and 3 or more episodes (HR, 1.94; 95% CI, 1.42-2.64). The attributable risk of dementia between individuals with and without a history of hypoglycemia was 2.39% per year (95% CI, 1.72%-3.01%). Results were not attenuated when medical utilization rates, length of health plan membership, or time since initial diabetes diagnosis were added to the model. When examining emergency department admissions for hypoglycemia for association with risk of dementia (535 episodes), results were similar (compared with patients with 0 episodes) with fully adjusted HRs: for 1 episode (HR, 1.42; 95% CI, 1.12-1.78) and for 2 or more episodes (HR, 2.36; 95% CI, 1.57-3.55). \n CONCLUSIONS Among older patients with type 2 diabetes, a history of severe hypoglycemic episodes was associated with a greater risk of dementia. Whether minor hypoglycemic episodes increase risk of dementia is unknown.", "title": "Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus." }, { "docid": "27408104", "text": "Diet-related adaptive gene (DRAG) polymorphisms identified in specific populations are associated with chronic disorders in carriers of the adaptive alleles due to changes in dietary and lifestyle patterns in recent times. Mexico's population is comprised of Amerindians (AM) and Mestizos who have variable AM, European (EUR) and African genetic ancestry and an increased risk of nutrition-related chronic diseases. Nutritional advice based on the Mexican genome and the traditional food culture is needed to develop preventive and therapeutic strategies. Therefore, we aimed to provide a prevalence profile of several DRAG polymorphisms in the Mexican population, including Central West (CW) Mexico subpopulations. Geographic heat maps were built using ArcGIS10 (Esri, Redlands, CA, USA) software, based on the published data of the MTHFR C677T (rs1801133), ABCA1 Arg230Cys (rs9282541), APOE T388C (rs429358)/C526T (rs7412), LCT C-13910T (rs4988235) polymorphisms and AMY1 copy number variation (CNV). Also, new data obtained by allelic discrimination-real-time polymerase chain reaction (RT-PCR) assays for the MTHFR, ABCA1, and APOE polymorphisms as well as the AMY1 CNV in the CW Mexico subpopulations with different proportions of AM and EUR ancestry were included. In the CW region, the highest frequency of the MTHFR 677T, ABCA1 230C and APOE ε4 adaptive alleles was observed in the AM groups, followed by Mestizos with intermediate AM ancestry. The LCT-13910T allele frequency was highest in Mestizos-EUR but extremely low in AM, while the AMY1 diploid copy number was 6.82 ± 3.3 copies. Overall, the heat maps showed a heterogeneous distribution of the DRAG polymorphisms, in which the AM groups revealed the highest frequencies of the adaptive alleles followed by Mestizos. Given these genetic differences, genome-based nutritional advice should be tailored in a regionalized and individualized manner according to the available foods and Mexican traditional food culture that may lead to a healthier dietary pattern.", "title": "Tailoring Nutritional Advice for Mexicans Based on Prevalence Profiles of Diet-Related Adaptive Gene Polymorphisms" }, { "docid": "380526", "text": "Hypospadias is a common congenital malformation of the male external genitalia. We performed a genome-wide association study using pooled DNA from 436 individuals with hypospadias (cases) and 494 controls of European descent and selected the highest ranked SNPs for individual genotyping in the discovery sample, an additional Dutch sample of 133 cases and their parents, and a Swedish series of 266 cases and 402 controls. Individual genotyping of two SNPs (rs1934179 and rs7063116) in DGKK, encoding diacylglycerol kinase κ, produced compelling evidence for association with hypospadias in the discovery sample (allele-specific odds ratio (OR) = 2.5, P = 2.5 × 10−11 and OR = 2.3, P = 2.9 × 10−9, respectively) and in the Dutch (OR = 3.9, P = 2.4 × 10−5 and OR = 3.8, P = 3.4 × 10−5) and Swedish (OR = 2.5, P = 2.6 × 10−8 and OR = 2.2, P = 2.7 × 10−6) replication samples. Expression studies showed expression of DGKK in preputial tissue of cases and controls, which was lower in carriers of the risk allele of rs1934179 (P = 0.047). We propose DGKK as a major risk gene for hypospadias.", "title": "Common variants in DGKK are strongly associated with risk of hypospadias" }, { "docid": "18340282", "text": "BACKGROUND Information is scarce about the combined effects on breast cancer incidence of low-penetrance genetic susceptibility polymorphisms and environmental factors (reproductive, behavioural, and anthropometric risk factors for breast cancer). To test for evidence of gene-environment interactions, we compared genotypic relative risks for breast cancer across the other risk factors in a large UK prospective study. \n METHODS We tested gene-environment interactions in 7610 women who developed breast cancer and 10 196 controls without the disease, studying the effects of 12 polymorphisms (FGFR2-rs2981582, TNRC9-rs3803662, 2q35-rs13387042, MAP3K1-rs889312, 8q24-rs13281615, 2p-rs4666451, 5p12-rs981782, CASP8-rs1045485, LSP1-rs3817198, 5q-rs30099, TGFB1-rs1982073, and ATM-rs1800054) in relation to prospectively collected information about ten established environmental risk factors (age at menarche, parity, age at first birth, breastfeeding, menopausal status, age at menopause, use of hormone replacement therapy, body-mass index, height, and alcohol consumption). \n FINDINGS After allowance for multiple testing none of the 120 comparisons yielded significant evidence of a gene-environment interaction. By contrast with previous suggestions, there was little evidence that the genotypic relative risks were affected by use of hormone replacement therapy, either overall or for oestrogen-receptor-positive disease. Only one of the 12 polymorphisms was correlated with any of the ten other risk factors: carriers of the high-risk C allele of MAP3K1-rs889312 were significantly shorter than non-carriers (mean height 162.4 cm [95% CI 162.1-162.7] vs 163.1 cm [162.9-163.2]; p=0.01 after allowance for multiple testing). \n INTERPRETATION Risks of breast cancer associated with low-penetrance susceptibility polymorphisms do not vary significantly with these ten established environmental risk factors. \n FUNDING Cancer Research UK and the UK Medical Research Council.", "title": "Gene–environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study" }, { "docid": "3868322", "text": "Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP) gene have been associated with HDL levels, risk for coronary artery disease (CAD), and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5-7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4 × 10(-5), allele frequency 33%). In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9), has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8 × 10(-10)) and intron 8 polymorphism rs9930761-T>C (5.6 × 10(-8)) (in high linkage disequilibrium with allele frequencies 6-7%). rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9.The effect of these polymorphisms was evaluated in two clinical studies. In the Whitehall II study of 4745 subjects, both rs247616 and rs5883T/rs9930761C were independently associated with increased HDL-C levels in males with similar effect size (rs247616 p = 9.6 × 10(-28) and rs5883 p = 8.6 × 10(-10), adjusted for rs247616). In an independent multiethnic US cohort of hypertensive subjects with CAD (INVEST-GENE), rs5883T/rs9930761C alone were significantly associated with increased incidence of MI, stroke, and all-cause mortality in males (rs5883: OR 2.36 (CI 1.29-4.30), p = 0.005, n = 866). These variants did not reach significance in females in either study. Similar to earlier results linking low CETP activity with poor outcomes in males, our results suggest genetic, sex-dependent CETP splicing effects on cardiovascular risk by a mechanism independent of circulating HDL-C levels.", "title": "Cholesteryl Ester Transfer Protein (CETP) Polymorphisms Affect mRNA Splicing, HDL Levels, and Sex-Dependent Cardiovascular Risk" }, { "docid": "4505748", "text": "BACKGROUND The apolipoprotein E (APOE) genotype provides information on the risk of Alzheimer's disease, but the genotyping of patients and their family members has been discouraged. We examined the effect of genotype disclosure in a prospective, randomized, controlled trial. \n METHODS We randomly assigned 162 asymptomatic adults who had a parent with Alzheimer's disease to receive the results of their own APOE genotyping (disclosure group) or not to receive such results (nondisclosure group). We measured symptoms of anxiety, depression, and test-related distress 6 weeks, 6 months, and 1 year after disclosure or nondisclosure. \n RESULTS There were no significant differences between the two groups in changes in time-averaged measures of anxiety (4.5 in the disclosure group and 4.4 in the nondisclosure group, P=0.84), depression (8.8 and 8.7, respectively; P=0.98), or test-related distress (6.9 and 7.5, respectively; P=0.61). Secondary comparisons between the nondisclosure group and a disclosure subgroup of subjects carrying the APOE epsilon4 allele (which is associated with increased risk) also revealed no significant differences. However, the epsilon4-negative subgroup had a significantly lower level of test-related distress than did the epsilon4-positive subgroup (P=0.01). Subjects with clinically meaningful changes in psychological outcomes were distributed evenly among the nondisclosure group and the epsilon4-positive and epsilon4-negative subgroups. Baseline scores for anxiety and depression were strongly associated with post-disclosure scores of these measures (P<0.001 for both comparisons). \n CONCLUSIONS The disclosure of APOE genotyping results to adult children of patients with Alzheimer's disease did not result in significant short-term psychological risks. Test-related distress was reduced among those who learned that they were APOE epsilon4-negative. Persons with high levels of emotional distress before undergoing genetic testing were more likely to have emotional difficulties after disclosure. (ClinicalTrials.gov number, NCT00571025.)", "title": "Disclosure of APOE genotype for risk of Alzheimer's disease." }, { "docid": "14682243", "text": "BACKGROUND Results of the few cohort studies from countries with low incomes or middle incomes suggest a lower incidence of dementia than in high-income countries. We assessed incidence of dementia according to criteria from the 10/66 Dementia Research Group and Diagnostic and Statistical Manual of Mental Disorders (DSM) IV, the effect of dementia at baseline on mortality, and the independent effects of age, sex, socioeconomic position, and indicators of cognitive reserve. \n METHODS We did a population-based cohort study of all people aged 65 years and older living in urban sites in Cuba, the Dominican Republic, and Venezuela, and rural and urban sites in Peru, Mexico, and China, with ascertainment of incident 10/66 and DSM-IV dementia 3-5 years after cohort inception. We used questionnaires to obtain information about age in years, sex, educational level, literacy, occupational attainment, and number of household assets. We obtained information about mortality from all sites. For participants who had died, we interviewed a friend or relative to ascertain the likelihood that they had dementia before death. \n FINDINGS 12,887 participants were interviewed at baseline. 11,718 were free of dementia, of whom 8137 (69%) were reinterviewed, contributing 34,718 person-years of follow-up. Incidence for 10/66 dementia varied between 18·2 and 30·4 per 1000 person-years, and were 1·4-2·7 times higher than were those for DSM-IV dementia (9·9-15·7 per 1000 person-years). Mortality hazards were 1·56-5·69 times higher in individuals with dementia at baseline than in those who were dementia-free. Informant reports suggested a high incidence of dementia before death; overall incidence might be 4-19% higher if these data were included. 10/66 dementia incidence was independently associated with increased age (HR 1·67; 95% CI 1·56-1·79), female sex (0·72; 0·61-0·84), and low education (0·89; 0·81-0·97), but not with occupational attainment (1·04; 0·95-1·13). \n INTERPRETATION Our results provide supportive evidence for the cognitive reserve hypothesis, showing that in middle-income countries as in high-income countries, education, literacy, verbal fluency, and motor sequencing confer substantial protection against the onset of dementia. \n FUNDING Wellcome Trust Health Consequences of Population Change Programme, WHO, US Alzheimer's Association, FONACIT/ CDCH/ UCV.", "title": "Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve: a 10/66 Dementia Research Group population-based cohort study" } ]
414
Female carriers of the Apolipoprotein E4 (APOE4) allele have increased risk for Alzheimer's disease.
[ { "docid": "6309659", "text": "CONTEXT Exogenous estrogen use may lower risk of dementia in postmenopausal women. A relationship between long-term exposure to endogenous estrogens and incident dementia has been hypothesized but not studied. \n OBJECTIVE To determine whether a longer reproductive period, as an indicator of longer exposure to endogenous estrogens, is associated with lower risk of dementia and Alzheimer disease (AD) in women who have natural menopause. \n DESIGN AND SETTING The Rotterdam Study, a population-based prospective cohort study conducted in the Netherlands. \n PARTICIPANTS A total of 3601 women aged 55 years or older who did not have dementia at baseline (1990-1993) and had information on age at menarche, age at menopause, and type of menopause. Participants were reexamined in 1993-1994 and 1997-1999 and were continuously monitored for development of dementia. \n MAIN OUTCOME MEASURES Incidence of dementia, based on Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition criteria, and AD, based on National Institute of Neurological Disorders and Stroke/Alzheimer's Disease and Related Disorders Association criteria, compared by quartiles of reproductive period among women with natural menopause. \n RESULTS During 21 046 person-years of follow-up (median follow-up, 6.3 years), 199 women developed dementia, including 159 who developed AD. After adjusting for age, dementia was not clearly associated with length of reproductive period. However, after adjusting for multiple covariates, women with natural menopause and more reproductive years had an increased risk of dementia (adjusted rate ratio [RR] for women with >39 reproductive years [highest quartile] compared with <34 reproductive years [lowest quartile], 1.78; 95% confidence interval [CI], 1.12-2.84). The adjusted RR per year of increase was 1.04 (95% CI, 1.01-1.08). For risk of AD, the adjusted RRs were 1.51 (95% CI, 0.91-2.50) and 1.03 (95% CI, 1.00-1.07), respectively. Risk of dementia associated with a longer reproductive period was most pronounced in APOE epsilon4 carriers (adjusted RR for >39 reproductive years compared with <34 reproductive years, 4.20 [95% CI, 1.97-8.92] for dementia and 3.42 [95% CI, 1.51-7.75] for AD), whereas in noncarriers, no clear association with dementia or AD was observed. \n CONCLUSION Our findings do not support the hypothesis that a longer reproductive period reduces risk of dementia in women who have natural menopause.", "title": "Reproductive period and risk of dementia in postmenopausal women." } ]
[ { "docid": "4709641", "text": "Efforts to develop drugs for Alzheimer's disease (AD) have shown promise in animal studies, only to fail in human trials, suggesting a pressing need to study AD in human model systems. Using human neurons derived from induced pluripotent stem cells that expressed apolipoprotein E4 (ApoE4), a variant of the APOE gene product and the major genetic risk factor for AD, we demonstrated that ApoE4-expressing neurons had higher levels of tau phosphorylation, unrelated to their increased production of amyloid-β (Aβ) peptides, and that they displayed GABAergic neuron degeneration. ApoE4 increased Aβ production in human, but not in mouse, neurons. Converting ApoE4 to ApoE3 by gene editing rescued these phenotypes, indicating the specific effects of ApoE4. Neurons that lacked APOE behaved similarly to those expressing ApoE3, and the introduction of ApoE4 expression recapitulated the pathological phenotypes, suggesting a gain of toxic effects from ApoE4. Treatment of ApoE4-expressing neurons with a small-molecule structure corrector ameliorated the detrimental effects, thus showing that correcting the pathogenic conformation of ApoE4 is a viable therapeutic approach for ApoE4-related AD.", "title": "Gain of toxic Apolipoprotein E4 effects in Human iPSC-Derived Neurons Is Ameliorated by a Small-Molecule Structure Corrector" }, { "docid": "12443371", "text": "OBJECTIVE To evaluate the association between apolipoprotein E (APOE) polymorphisms (E2, C/T Arg158Cys; E4, T/C Cys112Arg; and promoter, g-219t) and the history of concussion in college athletes. We hypothesized that carrying 1 or more APOE rare (or minor) allele assessed in this study would be associated with having a history of 1 or more concussions. \n DESIGN Multicenter cross-sectional study. \n SETTING University athletic facilities. \n PARTICIPANTS One hundred ninety-six male football (n = 163) and female soccer (n = 33) college athletes volunteered. \n INTERVENTIONS Written concussion history questionnaire and saliva samples for genotyping. \n MAIN OUTCOME MEASURES Self-reported history of a documented concussion and rare APOE genotype (E2, E4, promoter). \n RESULTS There was a significant association (Wald χ² = 3.82; P = 0.05; odds ratio = 9.8) between carrying all APOE rare alleles and the history of a previous concussion. There was also a significant association (Wald χ² = 3.96, P = 0.04, odds ratio = 8.4) between carrying the APOE promoter minor allele and experiencing 2 or more concussions. \n CONCLUSIONS Carriers of all 3 APOE rare (or minor) alleles assessed in this study were nearly 10 times more likely to report a previous concussion and may be at a greater risk of concussion versus noncarriers. Promoter minor allele carriers were 8.4 times more likely to report multiple concussions and may be at a greater risk of multiple concussions versus noncarriers. Research involving larger samples of individuals with multiple concussions and carriers of multiple APOE rare alleles is warranted.", "title": "Apolipoprotein E genotype and concussion in college athletes." }, { "docid": "20937018", "text": "Apolipoprotein E is immunochemically localized to the senile plaques, vascular amyloid, and neurofibrillary tangles of Alzheimer disease. In vitro, apolipoprotein E in cerebrospinal fluid binds to synthetic beta A4 peptide (the primary constituent of the senile plaque) with high avidity. Amino acids 12-28 of the beta A4 peptide are required. The gene for apolipoprotein E is located on chromosome 19q13.2, within the region previously associated with linkage of late-onset familial Alzheimer disease. Analysis of apolipoprotein E alleles in Alzheimer disease and controls demonstrated that there was a highly significant association of apolipoprotein E type 4 allele (APOE-epsilon 4) and late-onset familial Alzheimer disease. The allele frequency of the APOE-epsilon 4 in 30 random affected patients, each from a different Alzheimer disease family, was 0.50 +/- 0.06; the allele frequency of APOE-epsilon 4 in 91 age-matched unrelated controls was 0.16 +/- 0.03 (Z = 2.44, P = 0.014). A functional role of the apolipoprotein E-E4 isoform in the pathogenesis of late-onset familial Alzheimer disease is suggested.", "title": "Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease." }, { "docid": "18852643", "text": "In humans, apolipoprotein E (apoE) is a polymorphic multifunctional protein.1 It is coded by three alleles (e2, e3, e4) of a modulator gene (level, variability, and susceptibility gene) at the apoE locus on chromosome 19, determining six apoE genotypes and plasma phenotypes. Its pleiotropic effects are exerted on plasma lipoprotein metabolism, coagulation, oxidative processes, macrophage, glial cell and neuronal cell homeostasis, adrenal function, central nervous system physiology, inflammation, and cell proliferation.2,3 ApoE polymorphism modulates susceptibility to many diseases. It is, however, particularly notorious for its role in neurodegenerative disorders4 and atherosclerotic arterial disease.5,6 The e4 allele (phenotypes E4/4 and E4/3) that is associated with higher low density lipoprotein cholesterol (LDL-C) is considered proatherogenic, whereas the presence of the e2 allele (E3/2, E2/2), being associated with lower LDL-C levels, is deemed to have the opposite effect (although it may be associated with increased plasma triglycerides and lipoprotein remnants). This simple equation, however, is an oversimplification because these properties are subject to many environmental and genetic influences. ApoE has allele- and gender-dependent effects on reverse cholesterol transport, platelet aggregation, and oxidative processes that are likely to affect the overall atherogenic potential ascribed to modulation of lipoprotein metabolism.2,3,6 Notwithstanding the context dependency, a recent meta-analysis fully supports the presence of the e4 allele as a significant risk factor for coronary artery disease.7 Several mechanisms have been evoked to link apoE with atherosclerosis, but the relationship is not fully unraveled in humans. Nevertheless, some apoE mimetic peptides that promote LDL clearance are currently tested in animals for potential clinical applications.8,9 See page 436 The situation is relatively simpler in animals. The mouse model has been prominently useful to test mechanisms …", "title": "Apolipoprotein E and atherosclerosis: beyond lipid effect." }, { "docid": "6947286", "text": "Recent biological studies indicate the importance of anterior-pharynx defective-1 (APH-1) proteins in Alzheimer's disease (AD) pathogenesis. We scanned APH-1 genes for the presence of sequence variations by denaturing high performance liquid chromatography and analyzed their distribution in an Italian sample of 113 AD patients and 132 controls. We found six different polymorphisms: three of them, all in APH-1b, predict an aminoacid substitution (T27I, V199L and F217L); the others are either silent or in non-coding regions. None of them is significantly associated with the disease; data stratification by the apolipoprotein E epsilon4 carrier status show a trend for coexistence of the transversion c+651T>G (F217L) with the epsilon4 allele. Our data suggest that polymorphisms in APH-1a/b coding regions are not linked with higher risk for sporadic AD in our Italian population sample.", "title": "Association analysis between anterior-pharynx defective-1 genes polymorphisms and Alzheimer's disease." }, { "docid": "4505748", "text": "BACKGROUND The apolipoprotein E (APOE) genotype provides information on the risk of Alzheimer's disease, but the genotyping of patients and their family members has been discouraged. We examined the effect of genotype disclosure in a prospective, randomized, controlled trial. \n METHODS We randomly assigned 162 asymptomatic adults who had a parent with Alzheimer's disease to receive the results of their own APOE genotyping (disclosure group) or not to receive such results (nondisclosure group). We measured symptoms of anxiety, depression, and test-related distress 6 weeks, 6 months, and 1 year after disclosure or nondisclosure. \n RESULTS There were no significant differences between the two groups in changes in time-averaged measures of anxiety (4.5 in the disclosure group and 4.4 in the nondisclosure group, P=0.84), depression (8.8 and 8.7, respectively; P=0.98), or test-related distress (6.9 and 7.5, respectively; P=0.61). Secondary comparisons between the nondisclosure group and a disclosure subgroup of subjects carrying the APOE epsilon4 allele (which is associated with increased risk) also revealed no significant differences. However, the epsilon4-negative subgroup had a significantly lower level of test-related distress than did the epsilon4-positive subgroup (P=0.01). Subjects with clinically meaningful changes in psychological outcomes were distributed evenly among the nondisclosure group and the epsilon4-positive and epsilon4-negative subgroups. Baseline scores for anxiety and depression were strongly associated with post-disclosure scores of these measures (P<0.001 for both comparisons). \n CONCLUSIONS The disclosure of APOE genotyping results to adult children of patients with Alzheimer's disease did not result in significant short-term psychological risks. Test-related distress was reduced among those who learned that they were APOE epsilon4-negative. Persons with high levels of emotional distress before undergoing genetic testing were more likely to have emotional difficulties after disclosure. (ClinicalTrials.gov number, NCT00571025.)", "title": "Disclosure of APOE genotype for risk of Alzheimer's disease." }, { "docid": "51386222", "text": "Objective. —To examine more closely the association between apolipoprotein E (APOE) genotype and Alzheimer disease (AD) by age and sex in populations of various ethnic and racial denominations. Data Sources. —Forty research teams contributed data onAPOEgenotype, sex, age at disease onset, and ethnic background for 5930 patients who met criteria for probable or definite AD and 8607 controls without dementia who were recruited from clinical, community, and brain bank sources. Main Outcome Measures. —Odds ratios (ORs) and 95% confidence intervals (Cls) for AD, adjusted for age and study and stratified by major ethnic group (Caucasian, African American, Hispanic, and Japanese) and source, were computed forAPOEgenotypes ∈2/∈2,∈2/∈3,∈2/∈4,∈3/∈4 and ∈4/∈4 relative to the ∈3/∈3 group. The influence of age and sex on the OR for each genotype was assessed using logistic regression procedures. Results. —Among Caucasian subjects from clinic- or autopsy-based studies, the risk of AD was significantly increased for people with genotypes ∈2/∈4 (OR=2.6, 95% Cl=1.6-4.0), ∈3/∈4 (OR=3.2, 95% Cl=2.8-3.8), and ∈4/∈4 (OR=14.9, 95% CI=10.8-20.6); whereas, the ORs were decreased for people with genotypes ∈2/∈2 (OR=0.6, 95% Cl=0.2-2.0) and ∈2/∈3 (OR=0.6, 95% Cl=0.5-0.8). TheAPOE∈4-AD association was weaker among African Americans and Hispanics, but there was significant heterogeneity in ORs among studies of African Americans (P Conclusions. —TheAPOE∈4 allele represents a major risk factor for AD in all ethnic groups studied, across all ages between 40 and 90 years, and in both men and women. The association betweenAPOE∈4 and AD in African Americans requires clarification, and the attenuated effect ofAPOE∈4 in Hispanics should be investigated further.", "title": "Effects of Age, Sex, and Ethnicity on the Association Between Apolipoprotein E Genotype and Alzheimer Disease: A Meta-analysis" }, { "docid": "24906548", "text": "The epsilon4 allele of the apolipoprotein E (APOE) gene has been linked to negative outcomes among adults with traumatic brain injury (TBI) across the spectrum of severity, with preliminary evidence suggesting a similar pattern among children. This study investigated the relationship of the APOE epsilon4 allele to outcomes in children with mild TBI. Participants in this prospective, longitudinal study included 99 children with mild TBI between the ages of 8 and 15 recruited from consecutive admissions to Emergency Departments at two large children's hospitals. Outcomes were assessed acutely in the Emergency Department and at follow-ups at 2 weeks, 3 months, and 12 months post-injury. Among the 99 participants, 28 had at least one epsilon4 allele. Children with and without an epsilon4 allele did not differ demographically. Children with an epsilon4 allele were significantly more likely than those without an epsilon4 allele to have a Glasgow Coma Scale score of less than 15, but the groups did not differ on any other measures of injury severity. Those with an epsilon4 allele exhibited better performance than children without an epsilon4 allele on a test of constructional skill, but the groups did not differ on any other neuropsychological tests. Children with and without an epsilon4 allele also did not differ on measures of post-concussive symptoms. Overall, the findings suggest that the APOE epsilon4 allele is not consistently related to the outcomes of mild TBI in children.", "title": "Apolipoprotein E4 as a predictor of outcomes in pediatric mild traumatic brain injury." }, { "docid": "8524891", "text": "OBJECTIVE White matter hyperintensities (WMHs) are areas of increased signal on T2-weighted magnetic resonance imaging (MRI) scans that most commonly reflect small vessel cerebrovascular disease. Increased WMH volume is associated with risk and progression of Alzheimer's disease (AD). These observations are typically interpreted as evidence that vascular abnormalities play an additive, independent role contributing to symptom presentation, but not core features of AD. We examined the severity and distribution of WMH in presymptomatic PSEN1, PSEN2, and APP mutation carriers to determine the extent to which WMH manifest in individuals genetically determined to develop AD. \n METHODS The study comprised participants (n = 299; age = 39.03 ± 10.13) from the Dominantly Inherited Alzheimer Network, including 184 (61.5%) with a mutation that results in AD and 115 (38.5%) first-degree relatives who were noncarrier controls. We calculated the estimated years from expected symptom onset (EYO) by subtracting the affected parent's symptom onset age from the participant's age. Baseline MRI data were analyzed for total and regional WMH. Mixed-effects piece-wise linear regression was used to examine WMH differences between carriers and noncarriers with respect to EYO. \n RESULTS Mutation carriers had greater total WMH volumes, which appeared to increase approximately 6 years before expected symptom onset. Effects were most prominent for the parietal and occipital lobe, which showed divergent effects as early as 22 years before estimated onset. \n INTERPRETATION Autosomal-dominant AD is associated with increased WMH well before expected symptom onset. The findings suggest the possibility that WMHs are a core feature of AD, a potential therapeutic target, and a factor that should be integrated into pathogenic models of the disease. Ann Neurol 2016;79:929-939.", "title": "White matter hyperintensities are a core feature of Alzheimer's disease: Evidence from the dominantly inherited Alzheimer network." }, { "docid": "15347087", "text": "The amyloid cascade hypothesis posits that deposition of the amyloid β (Aβ) peptide in the brain is a key event in the initiation of Alzheimer's disease (AD). Nonetheless, it now seems increasingly unlikely that amyloid toxicity is the cause of sporadic AD, which leads to cognitive decline. Here, using accelerated-senescence nontransgenic OXYS rats, we confirmed that aggregation of Aβ is a later event in AD-like pathology. We showed that an age-dependent increase in the levels of Aβ₁₋₄₂ and extracellular Aβ deposits in the brain of OXYS rats occur later than do synaptic losses, neuronal cell death, mitochondrial structural abnormalities, and hyperphosphorylation of the tau protein. We identified the variants of the genes that are strongly associated with the risk of either late-onset or early-onset AD, including App, Apoe4, Bace1, Psen1, Psen2, and Picalm. We found that in OXYS rats nonsynonymous SNPs were located only in the genes Casp3 and Sorl1. Thus, we present proof that OXYS rats may be a model of sporadic AD. It is possible that multiple age-associated pathological processes may precede the toxic amyloid accumulation, which in turn triggers the final stage of the sporadic form of AD and becomes a hallmark event of the disease.", "title": "Amyloid accumulation is a late event in sporadic Alzheimer's disease-like pathology in nontransgenic rats" }, { "docid": "20280410", "text": "Inherited mutations in the gene BRCA2 predispose carriers to early onset breast cancer, but such mutations account for fewer than 2% of all cases in East Anglia. It is likely that low penetrance alleles explain the greater part of inherited susceptibility to breast cancer; polymorphic variants in strongly predisposing genes, such as BRCA2, are candidates for this role. BRCA2 is thought to be involved in DNA double strand break-repair. Few mice in which Brca2 is truncated survive to birth; of those that do, most are male, smaller than their normal littermates and have high cancer incidence. Here we show that a common human polymorphism (N372H) in exon 10 of BRCA2 confers an increased risk of breast cancer: the HH homozygotes have a 1.31-fold (95% CI, 1.07–1.61) greater risk than the NN group. Moreover, in normal female controls of all ages there is a significant deficiency of homozygotes compared with that expected from Hardy-Weinberg equilibrium, whereas in males there is an excess of homozygotes: the HH group has an estimated fitness of 0.82 in females and 1.38 in males. Therefore, this variant of BRCA2 appears also to affect fetal survival in a sex-dependent manner.", "title": "A common variant in BRCA2 is associated with both breast cancer risk and prenatal viability" }, { "docid": "24530130", "text": "The gene encoding apolipoprotein E (APOE) on chromosome 19 is the only confirmed susceptibility locus for late-onset Alzheimer's disease. To identify other risk loci, we conducted a large genome-wide association study of 2,032 individuals from France with Alzheimer's disease (cases) and 5,328 controls. Markers outside APOE with suggestive evidence of association (P < 10−5) were examined in collections from Belgium, Finland, Italy and Spain totaling 3,978 Alzheimer's disease cases and 3,297 controls. Two loci gave replicated evidence of association: one within CLU (also called APOJ), encoding clusterin or apolipoprotein J, on chromosome 8 (rs11136000, OR = 0.86, 95% CI 0.81–0.90, P = 7.5 × 10−9 for combined data) and the other within CR1, encoding the complement component (3b/4b) receptor 1, on chromosome 1 (rs6656401, OR = 1.21, 95% CI 1.14–1.29, P = 3.7 × 10−9 for combined data). Previous biological studies support roles of CLU and CR1 in the clearance of β amyloid (Aβ) peptide, the principal constituent of amyloid plaques, which are one of the major brain lesions of individuals with Alzheimer's disease.", "title": "Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease" }, { "docid": "7221410", "text": "The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer's disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APP(Swe)/PS1(ΔE9)/CD33(-/-) mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD.", "title": "Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta" }, { "docid": "8892905", "text": "Alzheimer's disease (AD) is hypothesized to be caused by an overproduction or reduced clearance of amyloid-β (Aβ) peptide. Autosomal dominant AD (ADAD) caused by mutations in the presenilin (PSEN) gene have been postulated to result from increased production of Aβ42 compared to Aβ40 in the central nervous system (CNS). This has been demonstrated in rodent models of ADAD but not in human mutation carriers. We used compartmental modeling of stable isotope labeling kinetic (SILK) studies in human carriers of PSEN mutations and related noncarriers to evaluate the pathophysiological effects of PSEN1 and PSEN2 mutations on the production and turnover of Aβ isoforms. We compared these findings by mutation status and amount of fibrillar amyloid deposition as measured by positron emission tomography (PET) using the amyloid tracer Pittsburgh compound B (PIB). CNS Aβ42 to Aβ40 production rates were 24% higher in mutation carriers compared to noncarriers, and this was independent of fibrillar amyloid deposits quantified by PET PIB imaging. The fractional turnover rate of soluble Aβ42 relative to Aβ40 was 65% faster in mutation carriers and correlated with amyloid deposition, consistent with increased deposition of Aβ42 into plaques, leading to reduced recovery of Aβ42 in cerebrospinal fluid (CSF). Reversible exchange of Aβ42 peptides with preexisting unlabeled peptide was observed in the presence of plaques. These findings support the hypothesis that Aβ42 is overproduced in the CNS of humans with PSEN mutations that cause AD, and demonstrate that soluble Aβ42 turnover and exchange processes are altered in the presence of amyloid plaques, causing a reduction in Aβ42 concentrations in the CSF.", "title": "Increased in vivo amyloid-β42 production, exchange, and loss in presenilin mutation carriers." }, { "docid": "3868322", "text": "Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP) gene have been associated with HDL levels, risk for coronary artery disease (CAD), and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5-7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4 × 10(-5), allele frequency 33%). In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9), has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8 × 10(-10)) and intron 8 polymorphism rs9930761-T>C (5.6 × 10(-8)) (in high linkage disequilibrium with allele frequencies 6-7%). rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9.The effect of these polymorphisms was evaluated in two clinical studies. In the Whitehall II study of 4745 subjects, both rs247616 and rs5883T/rs9930761C were independently associated with increased HDL-C levels in males with similar effect size (rs247616 p = 9.6 × 10(-28) and rs5883 p = 8.6 × 10(-10), adjusted for rs247616). In an independent multiethnic US cohort of hypertensive subjects with CAD (INVEST-GENE), rs5883T/rs9930761C alone were significantly associated with increased incidence of MI, stroke, and all-cause mortality in males (rs5883: OR 2.36 (CI 1.29-4.30), p = 0.005, n = 866). These variants did not reach significance in females in either study. Similar to earlier results linking low CETP activity with poor outcomes in males, our results suggest genetic, sex-dependent CETP splicing effects on cardiovascular risk by a mechanism independent of circulating HDL-C levels.", "title": "Cholesteryl Ester Transfer Protein (CETP) Polymorphisms Affect mRNA Splicing, HDL Levels, and Sex-Dependent Cardiovascular Risk" }, { "docid": "27408104", "text": "Diet-related adaptive gene (DRAG) polymorphisms identified in specific populations are associated with chronic disorders in carriers of the adaptive alleles due to changes in dietary and lifestyle patterns in recent times. Mexico's population is comprised of Amerindians (AM) and Mestizos who have variable AM, European (EUR) and African genetic ancestry and an increased risk of nutrition-related chronic diseases. Nutritional advice based on the Mexican genome and the traditional food culture is needed to develop preventive and therapeutic strategies. Therefore, we aimed to provide a prevalence profile of several DRAG polymorphisms in the Mexican population, including Central West (CW) Mexico subpopulations. Geographic heat maps were built using ArcGIS10 (Esri, Redlands, CA, USA) software, based on the published data of the MTHFR C677T (rs1801133), ABCA1 Arg230Cys (rs9282541), APOE T388C (rs429358)/C526T (rs7412), LCT C-13910T (rs4988235) polymorphisms and AMY1 copy number variation (CNV). Also, new data obtained by allelic discrimination-real-time polymerase chain reaction (RT-PCR) assays for the MTHFR, ABCA1, and APOE polymorphisms as well as the AMY1 CNV in the CW Mexico subpopulations with different proportions of AM and EUR ancestry were included. In the CW region, the highest frequency of the MTHFR 677T, ABCA1 230C and APOE ε4 adaptive alleles was observed in the AM groups, followed by Mestizos with intermediate AM ancestry. The LCT-13910T allele frequency was highest in Mestizos-EUR but extremely low in AM, while the AMY1 diploid copy number was 6.82 ± 3.3 copies. Overall, the heat maps showed a heterogeneous distribution of the DRAG polymorphisms, in which the AM groups revealed the highest frequencies of the adaptive alleles followed by Mestizos. Given these genetic differences, genome-based nutritional advice should be tailored in a regionalized and individualized manner according to the available foods and Mexican traditional food culture that may lead to a healthier dietary pattern.", "title": "Tailoring Nutritional Advice for Mexicans Based on Prevalence Profiles of Diet-Related Adaptive Gene Polymorphisms" }, { "docid": "6917133", "text": "Purpose: The REVEAL study is a randomized, controlled study of the psychological and behavioral impact of APOE disclosure in a risk assessment protocol provided to first degree relatives of patients with Alzheimer’s disease. The protocol presents risk information as cumulative incidence curves. This article describes how these curves were estimated. Methods: Curves were calculated using Bayes’ rule to compute the posterior survival curves incorporating APOE information. Results: A combination of survival data from the MIRAGE study and gender- and age-specific APOE odds ratios were used to create risk curves for males and females within each of the 6 APOE genotypes. Conclusion: Utilizing comparative genotype relative risk information and survival data from family studies, estimates of gender-, age-, and genotype-specific risk can be generated for use in a risk assessment research study that features genotype disclosure.", "title": "Estimating risk curves for first-degree relatives of patients with Alzheimer’s disease: The REVEAL study" }, { "docid": "27076725", "text": "BACKGROUND The association between antecedent head injury and AD is inconsistent. \n OBJECTIVE To examine the association between early adult head injury, as documented by military hospital records, and dementia in late life; and to evaluate the interaction between head injury and APOE epsilon4 as risk factors for dementia. \n METHODS The study had a population-based prospective historical cohort design. It included men who were World War II Navy and Marine veterans, and were hospitalized during their military service with a diagnosis of either a nonpenetrating head injury or another unrelated condition. In 1996 to 1997, military medical records were abstracted to document the occurrence and details of closed head injury. The entire sample was then evaluated for dementia and AD using a multistage procedure. There were 548 veterans with head injury and 1228 without head injury who completed all assigned stages of the study. The authors estimated risk of dementia, specifically AD, using proportional hazards models. \n RESULTS Both moderate head injury (hazard ratio [HR] = 2.32; CI = 1.04 to 5.17) and severe head injury (HR = 4.51; CI = 1.77 to 11.47) were associated with increased risk of AD. Results were similar for dementia in general. The results for mild head injury were inconclusive. When the authors stratified by the number of APOE epsilon4 alleles, they observed a nonsignificant trend toward a stronger association between AD and head injury in men with more epsilon4 alleles. \n CONCLUSIONS Moderate and severe head injuries in young men may be associated with increased risk of AD and other dementias in late life. However, the authors cannot exclude the possibility that other unmeasured factors may be influencing this association.", "title": "Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias." }, { "docid": "18340282", "text": "BACKGROUND Information is scarce about the combined effects on breast cancer incidence of low-penetrance genetic susceptibility polymorphisms and environmental factors (reproductive, behavioural, and anthropometric risk factors for breast cancer). To test for evidence of gene-environment interactions, we compared genotypic relative risks for breast cancer across the other risk factors in a large UK prospective study. \n METHODS We tested gene-environment interactions in 7610 women who developed breast cancer and 10 196 controls without the disease, studying the effects of 12 polymorphisms (FGFR2-rs2981582, TNRC9-rs3803662, 2q35-rs13387042, MAP3K1-rs889312, 8q24-rs13281615, 2p-rs4666451, 5p12-rs981782, CASP8-rs1045485, LSP1-rs3817198, 5q-rs30099, TGFB1-rs1982073, and ATM-rs1800054) in relation to prospectively collected information about ten established environmental risk factors (age at menarche, parity, age at first birth, breastfeeding, menopausal status, age at menopause, use of hormone replacement therapy, body-mass index, height, and alcohol consumption). \n FINDINGS After allowance for multiple testing none of the 120 comparisons yielded significant evidence of a gene-environment interaction. By contrast with previous suggestions, there was little evidence that the genotypic relative risks were affected by use of hormone replacement therapy, either overall or for oestrogen-receptor-positive disease. Only one of the 12 polymorphisms was correlated with any of the ten other risk factors: carriers of the high-risk C allele of MAP3K1-rs889312 were significantly shorter than non-carriers (mean height 162.4 cm [95% CI 162.1-162.7] vs 163.1 cm [162.9-163.2]; p=0.01 after allowance for multiple testing). \n INTERPRETATION Risks of breast cancer associated with low-penetrance susceptibility polymorphisms do not vary significantly with these ten established environmental risk factors. \n FUNDING Cancer Research UK and the UK Medical Research Council.", "title": "Gene–environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study" } ]
416
Female carriers of the Apolipoprotein E4 (APOE4) allele have longer lifetime exposure to estrogen due to an increased reproductive period.
[ { "docid": "6309659", "text": "CONTEXT Exogenous estrogen use may lower risk of dementia in postmenopausal women. A relationship between long-term exposure to endogenous estrogens and incident dementia has been hypothesized but not studied. \n OBJECTIVE To determine whether a longer reproductive period, as an indicator of longer exposure to endogenous estrogens, is associated with lower risk of dementia and Alzheimer disease (AD) in women who have natural menopause. \n DESIGN AND SETTING The Rotterdam Study, a population-based prospective cohort study conducted in the Netherlands. \n PARTICIPANTS A total of 3601 women aged 55 years or older who did not have dementia at baseline (1990-1993) and had information on age at menarche, age at menopause, and type of menopause. Participants were reexamined in 1993-1994 and 1997-1999 and were continuously monitored for development of dementia. \n MAIN OUTCOME MEASURES Incidence of dementia, based on Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition criteria, and AD, based on National Institute of Neurological Disorders and Stroke/Alzheimer's Disease and Related Disorders Association criteria, compared by quartiles of reproductive period among women with natural menopause. \n RESULTS During 21 046 person-years of follow-up (median follow-up, 6.3 years), 199 women developed dementia, including 159 who developed AD. After adjusting for age, dementia was not clearly associated with length of reproductive period. However, after adjusting for multiple covariates, women with natural menopause and more reproductive years had an increased risk of dementia (adjusted rate ratio [RR] for women with >39 reproductive years [highest quartile] compared with <34 reproductive years [lowest quartile], 1.78; 95% confidence interval [CI], 1.12-2.84). The adjusted RR per year of increase was 1.04 (95% CI, 1.01-1.08). For risk of AD, the adjusted RRs were 1.51 (95% CI, 0.91-2.50) and 1.03 (95% CI, 1.00-1.07), respectively. Risk of dementia associated with a longer reproductive period was most pronounced in APOE epsilon4 carriers (adjusted RR for >39 reproductive years compared with <34 reproductive years, 4.20 [95% CI, 1.97-8.92] for dementia and 3.42 [95% CI, 1.51-7.75] for AD), whereas in noncarriers, no clear association with dementia or AD was observed. \n CONCLUSION Our findings do not support the hypothesis that a longer reproductive period reduces risk of dementia in women who have natural menopause.", "title": "Reproductive period and risk of dementia in postmenopausal women." } ]
[ { "docid": "12443371", "text": "OBJECTIVE To evaluate the association between apolipoprotein E (APOE) polymorphisms (E2, C/T Arg158Cys; E4, T/C Cys112Arg; and promoter, g-219t) and the history of concussion in college athletes. We hypothesized that carrying 1 or more APOE rare (or minor) allele assessed in this study would be associated with having a history of 1 or more concussions. \n DESIGN Multicenter cross-sectional study. \n SETTING University athletic facilities. \n PARTICIPANTS One hundred ninety-six male football (n = 163) and female soccer (n = 33) college athletes volunteered. \n INTERVENTIONS Written concussion history questionnaire and saliva samples for genotyping. \n MAIN OUTCOME MEASURES Self-reported history of a documented concussion and rare APOE genotype (E2, E4, promoter). \n RESULTS There was a significant association (Wald χ² = 3.82; P = 0.05; odds ratio = 9.8) between carrying all APOE rare alleles and the history of a previous concussion. There was also a significant association (Wald χ² = 3.96, P = 0.04, odds ratio = 8.4) between carrying the APOE promoter minor allele and experiencing 2 or more concussions. \n CONCLUSIONS Carriers of all 3 APOE rare (or minor) alleles assessed in this study were nearly 10 times more likely to report a previous concussion and may be at a greater risk of concussion versus noncarriers. Promoter minor allele carriers were 8.4 times more likely to report multiple concussions and may be at a greater risk of multiple concussions versus noncarriers. Research involving larger samples of individuals with multiple concussions and carriers of multiple APOE rare alleles is warranted.", "title": "Apolipoprotein E genotype and concussion in college athletes." }, { "docid": "4709641", "text": "Efforts to develop drugs for Alzheimer's disease (AD) have shown promise in animal studies, only to fail in human trials, suggesting a pressing need to study AD in human model systems. Using human neurons derived from induced pluripotent stem cells that expressed apolipoprotein E4 (ApoE4), a variant of the APOE gene product and the major genetic risk factor for AD, we demonstrated that ApoE4-expressing neurons had higher levels of tau phosphorylation, unrelated to their increased production of amyloid-β (Aβ) peptides, and that they displayed GABAergic neuron degeneration. ApoE4 increased Aβ production in human, but not in mouse, neurons. Converting ApoE4 to ApoE3 by gene editing rescued these phenotypes, indicating the specific effects of ApoE4. Neurons that lacked APOE behaved similarly to those expressing ApoE3, and the introduction of ApoE4 expression recapitulated the pathological phenotypes, suggesting a gain of toxic effects from ApoE4. Treatment of ApoE4-expressing neurons with a small-molecule structure corrector ameliorated the detrimental effects, thus showing that correcting the pathogenic conformation of ApoE4 is a viable therapeutic approach for ApoE4-related AD.", "title": "Gain of toxic Apolipoprotein E4 effects in Human iPSC-Derived Neurons Is Ameliorated by a Small-Molecule Structure Corrector" }, { "docid": "18852643", "text": "In humans, apolipoprotein E (apoE) is a polymorphic multifunctional protein.1 It is coded by three alleles (e2, e3, e4) of a modulator gene (level, variability, and susceptibility gene) at the apoE locus on chromosome 19, determining six apoE genotypes and plasma phenotypes. Its pleiotropic effects are exerted on plasma lipoprotein metabolism, coagulation, oxidative processes, macrophage, glial cell and neuronal cell homeostasis, adrenal function, central nervous system physiology, inflammation, and cell proliferation.2,3 ApoE polymorphism modulates susceptibility to many diseases. It is, however, particularly notorious for its role in neurodegenerative disorders4 and atherosclerotic arterial disease.5,6 The e4 allele (phenotypes E4/4 and E4/3) that is associated with higher low density lipoprotein cholesterol (LDL-C) is considered proatherogenic, whereas the presence of the e2 allele (E3/2, E2/2), being associated with lower LDL-C levels, is deemed to have the opposite effect (although it may be associated with increased plasma triglycerides and lipoprotein remnants). This simple equation, however, is an oversimplification because these properties are subject to many environmental and genetic influences. ApoE has allele- and gender-dependent effects on reverse cholesterol transport, platelet aggregation, and oxidative processes that are likely to affect the overall atherogenic potential ascribed to modulation of lipoprotein metabolism.2,3,6 Notwithstanding the context dependency, a recent meta-analysis fully supports the presence of the e4 allele as a significant risk factor for coronary artery disease.7 Several mechanisms have been evoked to link apoE with atherosclerosis, but the relationship is not fully unraveled in humans. Nevertheless, some apoE mimetic peptides that promote LDL clearance are currently tested in animals for potential clinical applications.8,9 See page 436 The situation is relatively simpler in animals. The mouse model has been prominently useful to test mechanisms …", "title": "Apolipoprotein E and atherosclerosis: beyond lipid effect." }, { "docid": "37205759", "text": "The Apolipoprotein (Apo) family is implicated in lipid metabolism. There are five types of Apo: Apoa, Apob, Apoc, Apod, and Apoe. Apoe has been demonstrated to play a central role in lipoprotein metabolism and to be essential for efficient receptor-mediated plasma clearance of chylomicron remnants and VLDL remnant particles by the liver. Apoe-deficient (Apoe(-/-)) mice develop atherosclerotic plaques spontaneously, followed by obesity. In this study, we investigated whether lipid deposition caused by Apoe knockout affects reproduction in female mice. The results demonstrated that Apoe(-/-) mice were severely hypercholesterolemic, with their cholesterol metabolism disordered, and lipid accumulating in the ovaries causing the ovaries to be heavier compared with the WT counterparts. In addition, estrogen and progesterone decreased significantly at D 100. Quantitative PCR analysis demonstrated that at D 100 the expression of cytochromeP450 aromatase (Cyp19a1), 3β-hydroxysteroid dehydrogenase (Hsd3b), mechanistic target of rapamycin (Mtor), and nuclear factor-κB (Nfkb) decreased significantly, while that of BCL2-associated agonist of cell death (Bad) and tuberous sclerosis complex 2 (Tsc2) increased significantly in the Apoe(-/-) mice. However, there was no difference in the fertility rates of the Apoe(-/-) and WT mice; that is, obesity induced by Apoe knockout has no significant effect on reproduction. However, the deletion of Apoe increased the number of ovarian follicles and the ratio of ovarian follicle atresia and apoptosis. We believe that this work will augment our understanding of the role of Apoe in reproduction.", "title": "Obesity occurring in apolipoprotein E-knockout mice has mild effects on fertility." }, { "docid": "15669393", "text": "Transient activation of estrogen receptors (ER) in the developing brain during a limited perinatal \"window of time\" is recognized as a key mechanism of defeminization of neural control of reproductive function and sexual behavior. Two major ER isoforms, alpha and beta, are present in neural circuits that govern ovarian cycle and sexual behavior. Using highly selective ER agonists, this study provides the first evidence for distinct contribution of individual ER isoforms to the process of estrogen dependent defeminization. Neonatal activation of the ERalpha in female rats resulted in abrogation of cyclic ovarian activity and female sexual behavior in adulthood. These effects are associated with male-like alterations in the morphology of the anteroventral periventricular (AVPV) and sexually dimorphic nucleus of the preoptic area (SDN-POA), as well as refractoriness to estrogen-mediated induction of sexual receptivity. Exposure to an ERbeta-selective agonist induced persistent estrus and had a strong defeminizing effect on the hypothalamic gonadotropin \"surge generator\" AVPV. However, neonatal ERbeta activation failed to alter female sexual behavior, responsiveness to estrogens and morphometric features of the behaviorally relevant SDN-POA. Thus, although co-present in several brain regions involved in the control of female reproductive function, ER isoforms convey different, and probably not synergistic, chemical signals in the course of neonatal sex-specific brain organization.", "title": "brain organization" }, { "docid": "20937018", "text": "Apolipoprotein E is immunochemically localized to the senile plaques, vascular amyloid, and neurofibrillary tangles of Alzheimer disease. In vitro, apolipoprotein E in cerebrospinal fluid binds to synthetic beta A4 peptide (the primary constituent of the senile plaque) with high avidity. Amino acids 12-28 of the beta A4 peptide are required. The gene for apolipoprotein E is located on chromosome 19q13.2, within the region previously associated with linkage of late-onset familial Alzheimer disease. Analysis of apolipoprotein E alleles in Alzheimer disease and controls demonstrated that there was a highly significant association of apolipoprotein E type 4 allele (APOE-epsilon 4) and late-onset familial Alzheimer disease. The allele frequency of the APOE-epsilon 4 in 30 random affected patients, each from a different Alzheimer disease family, was 0.50 +/- 0.06; the allele frequency of APOE-epsilon 4 in 91 age-matched unrelated controls was 0.16 +/- 0.03 (Z = 2.44, P = 0.014). A functional role of the apolipoprotein E-E4 isoform in the pathogenesis of late-onset familial Alzheimer disease is suggested.", "title": "Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease." }, { "docid": "34228604", "text": "Females live longer than males in many species, including humans. We have traced a possible explanation for this phenomenon to the beneficial action of estrogens, which bind to estrogen receptors and increase the expression of longevity-associated genes, including those encoding the antioxidant enzymes superoxide dismutase and glutathione peroxidase. As a result, mitochondria from females produce fewer reactive oxygen species than those from males. Administering estrogens has serious drawbacks, however--they are feminizing (and thus cannot be administered to males) and may increase the incidence of serious diseases such as uterine cancer in postmenopausal women. Phytoestrogens, which are present in soy or wine, may have some of the favorable effects of estrogens without their undesirable effects. Study of gender differences in longevity may help us to understand the basic processes of aging and to devise practical strategies to increase the longevity of both females and males.", "title": "Why females live longer than males: control of longevity by sex hormones." }, { "docid": "30351165", "text": "Cerebral apolipoprotein E (apoE) has been implicated in neuronal protection and repair. Due to the variable levels and types of estrogen receptors within different brain regions, the effect of estrogen on apoE and the mechanism of this effect may vary within different regions. Ovariectomized female C57BL/6 mice were treated with pharmacological levels of 17 beta-estradiol or placebo for 5 days, resulting in supraphysiological plasma levels of estradiol in the treated mice. ApoE and glial fibrillary acidic protein (GFAP) levels were measured in the cortex, hippocampus and diencephalon. 17 beta-Estradiol up-regulated apoE but not GFAP in the cortex and diencephalon, whereas in the hippocampus, GFAP and apoE were equally up-regulated. Treatment of estrogen receptor (ER) alpha knockout mice with 17 beta-estradiol or treatment of C57BL/6 mice with 17 alpha-estradiol, a poor estrogen receptor agonist, specifically induced apoE in the cortex, but not in the diencephalon. These results indicate that 17 beta-estradiol effects on apoE are either directly or indirectly mediated by ER alpha in the diencephalon, while the effects in the cortex may be mediated by a non-classical mechanism or by ER beta. Measurement of mRNA levels in estrogen versus placebo-treated wild-type mice indicated that the effect of 17 beta-estradiol on apoE was not associated with changes in apoE mRNA levels.", "title": "Brain region-specific up-regulation of mouse apolipoprotein E by pharmacological estrogen treatments." }, { "docid": "24906548", "text": "The epsilon4 allele of the apolipoprotein E (APOE) gene has been linked to negative outcomes among adults with traumatic brain injury (TBI) across the spectrum of severity, with preliminary evidence suggesting a similar pattern among children. This study investigated the relationship of the APOE epsilon4 allele to outcomes in children with mild TBI. Participants in this prospective, longitudinal study included 99 children with mild TBI between the ages of 8 and 15 recruited from consecutive admissions to Emergency Departments at two large children's hospitals. Outcomes were assessed acutely in the Emergency Department and at follow-ups at 2 weeks, 3 months, and 12 months post-injury. Among the 99 participants, 28 had at least one epsilon4 allele. Children with and without an epsilon4 allele did not differ demographically. Children with an epsilon4 allele were significantly more likely than those without an epsilon4 allele to have a Glasgow Coma Scale score of less than 15, but the groups did not differ on any other measures of injury severity. Those with an epsilon4 allele exhibited better performance than children without an epsilon4 allele on a test of constructional skill, but the groups did not differ on any other neuropsychological tests. Children with and without an epsilon4 allele also did not differ on measures of post-concussive symptoms. Overall, the findings suggest that the APOE epsilon4 allele is not consistently related to the outcomes of mild TBI in children.", "title": "Apolipoprotein E4 as a predictor of outcomes in pediatric mild traumatic brain injury." }, { "docid": "12206390", "text": "CONTEXT The long-term risk for developing hypertension is best described by the lifetime risk statistic. The lifetime risk for hypertension and trends in this risk over time are unknown. \n OBJECTIVES To estimate the residual lifetime risk for hypertension in older US adults and to evaluate temporal trends in this risk. \n DESIGN, SETTING, AND PARTICIPANTS Community-based prospective cohort study of 1298 participants from the Framingham Heart Study who were aged 55 to 65 years and free of hypertension at baseline (1976-1998). \n MAIN OUTCOME MEASURES Residual lifetime risk (lifetime cumulative incidence not adjusted for competing causes of mortality) for hypertension, defined as blood pressure of 140/90 mm Hg or greater or use of antihypertensive medications. \n RESULTS The residual lifetime risks for developing hypertension and stage 1 high blood pressure or higher (greater-than-or-equal to 140/90 mm Hg regardless of treatment) were 90% in both 55- and 65-year-old participants. The lifetime probability of receiving antihypertensive medication was 60%. The risk for hypertension remained unchanged for women, but it was approximately 60% higher for men in the contemporary 1976-1998 period compared with an earlier 1952-1975 period. In contrast, the residual lifetime risk for stage 2 high blood pressure or higher (greater-than-or-equal to 160/100 mm Hg regardless of treatment) was considerably lower in both sexes in the recent period (35%-57% in 1952-1975 vs 35%-44% in 1976-1998), likely due to a marked increase in treatment of individuals with substantially elevated blood pressure. \n CONCLUSION The residual lifetime risk for hypertension for middle-aged and elderly individuals is 90%, indicating a huge public health burden. Although the decline in lifetime risk for stage 2 high blood pressure or higher represents a major achievement, efforts should be directed at the primary prevention of hypertension.", "title": "Residual lifetime risk for developing hypertension in middle-aged women and men: The Framingham Heart Study." }, { "docid": "43226130", "text": "Multiple sclerosis (MS), a chronic inflammatory demyelina-ting and degenerative disease of the central nervous system, is a frequent cause of neurological disability in young adults. Female predominance has increased over the last decades. Although female gender carries a higher risk of developing relapsing remitting MS, being female and at child-bearing age also appears to provide some protection against cognitive decline and against progressive onset MS, an adverse predictive factor when considering long-term disability in MS. The risk of MS in women has been associated with an earlier age at menarche. In most studies, parity did not impact MS risk. However, the recently published association of higher parity and offspring number with a reduced risk of a first demyelinating event suggests a potential suppressive effect. Pregnancy in MS patients has been associated with a reduced relapse rate and a reduction of neurological symptoms, especially in the third trimester. Despite the increased relapse risk in the postpartum period, there is no indication of an adverse effect of childbirth on the long-term course of MS. Fertility treatment in MS has been associated with an increased relapse risk in the following 3-month period, especially when the procedure did not result in pregnancy and gonadotrophin-releasing hormone agonists were used. Altogether, there is substantial evidence to support a regulatory role of sex steroid hormones in MS. In the absence of correlations with single hormone blood levels, we can only speculate about the underlying mechanisms. In conclusion, the increased MS risk in women and the changes in relapse and progression risk in association with reproductive events suggest significant and complex interactions between immune, neuroendocrine and reproductive systems in MS.", "title": "Female Gender and Reproductive Factors Affecting Risk, Relapses and Progression in Multiple Sclerosis" }, { "docid": "16734530", "text": "BACKGROUND Breast cancer is the most common malignancy in women. There is increasing evidence suggesting that ORAI1, components of store-operated calcium channel, play a pivotal role in breast cancer progression and metastasis. \n METHODS A total of 384 female patients with breast cancer were included in this study. We selected five representative tagging ORAI1 SNPs from HapMap database with minimum allele frequency (MAF) >10%. Genotyping was performed using TaqMan allelic discrimination assay. Chi-square (χ²) test was used to analyze statistical differences among control and patient groups in genotype and allelic frequencies. \n RESULTS Two of the ORAI1 SNPs (rs12320939 and rs12313273) were associated with estrogen receptors positive in breast cancer patients under the recessive model. When the Bonferroni correction was performed, the significance still existed. In addition, rs12320939 also associated with the lymph nodal involvement. \n CONCLUSION We showed that genetic polymorphisms of ORAI1 associated strongly with lymph nodal involvement and estrogen receptors (ERs) positive breast cancer patients in a Taiwanese population.", "title": "The Association between Single-Nucleotide Polymorphisms of ORAI1 Gene and Breast Cancer in a Taiwanese Population" }, { "docid": "41380943", "text": "During embryonic development, gonadal steroid hormones (androgens and estrogens) are thought to organize the sexual differentiation of the brain in the heterogametic sexes of higher vertebrates (males in mammals, females in birds). Brain differentiation of the homogametic sexes is thought to proceed by default, not requiring sex hormones for sex-specific organization. In gallinaceous birds such as the Japanese quail, female brain organization is thought to develop via estrogen-dependent demasculinization of a default male brain phenotype. We performed male donor-to-female host (MF), female-to-male (FM), male-to-male (MM), and female-to-female (FF) isotopic, isochronic transplantation of the forebrain primordium in Japanese quail embryos before gonadal differentiation had occurred; brain chimeras had a forebrain (including the hypothalamus) originating exclusively from donor cells. MM, FF, and MF chimeras all showed sexual behavior governed by the genetic sex of the host. In contrast, FM chimeras (genetically female forebrain, all other tissues genetically male) showed no mounting and only rudimentary crowing behavior. Although MM, FF, MF, and FM chimeras all showed host-typical production of steroid hormones during embryonic life, only FM chimeras were hypogonadal, had atypical low levels of circulating testosterone in adulthood, and showed reduction (crowing) or absence (mounting) of reproductive behaviors. Morphological features of the medial preoptic nucleus (a sexually dimorphic brain area) also were not male-like in FM males. These data demonstrate a brain-intrinsic, genetically determined component that organizes the sex-typical production of gonadal hormones in adulthood and call for a reevaluation of the mechanisms underlying brain sexual differentiation in other higher-vertebrate species.", "title": "Male Japanese quails with female brains do not show male sexual behaviors." }, { "docid": "21232018", "text": "We investigated the capacity of young ovaries, transplanted into old ovariectomized CBA mice, to improve remaining life expectancy of the hosts. Donor females were sexually mature 2-month-olds; recipients were prepubertally ovariectomized at 3 weeks and received transplants at 5, 8 or 11 months of age. Relative to ovariectomized control females, life expectancy at 11 months was increased by 60% in 11-month recipient females and by 40% relative to intact control females. Only 20% of the 11-month transplant females died in the 300-day period following ovarian transplantation, whereas nearly 65% of the ovariectomized control females died during this same period. The 11-month-old recipient females resumed oestrus and continued to cycle up to several months beyond the age of control female reproductive senescence. Across the three recipient age groups, transplantation of young ovaries increased life expectancy in proportion to the relative youth of the ovary. Our results relate to recent findings on the gonadal input upon aging in Caenorhabditis elegans and may suggest how the mammalian gonad, including that of humans, could regulate aging and determine longevity.", "title": "Age of ovary determines remaining life expectancy in old ovariectomized mice." }, { "docid": "31851367", "text": "Estrogens are key regulators of growth, differentiation, and the physiological functions of a wide range of target tissues, including the male and female reproductive tracts, breast, and skeletal, nervous, cardiovascular, digestive and immune systems. The majority of these biological activities of estrogens are mediated through two genetically distinct receptors, ERalpha and ERbeta, which function as hormone-inducible transcription factors. Over the past decade, it has become increasingly clear that the recruitment of coregulatory proteins to ERs is required for ER-mediated transcriptional and biological activities. These \"coactivator\" complexes enable the ERs to respond appropriately: 1) to hormones or pharmacological ligands, 2) interpret extra- and intra-cellular signals, 3) catalyze the process of chromatin condensation and 4) to communicate with the general transcription apparatus at target gene promoters. In addition to activating proteins, the existence of corepressors, proteins that function as negative regulators of ER activity in either physiological or pharmacological contexts, provides an additional level of complexity in ER action. This review also describes current efforts aimed at developing pharmaceutical agents that target ER-cofactor interactions as therapeutics for estrogen-associated pathologies.", "title": "Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting." }, { "docid": "20280410", "text": "Inherited mutations in the gene BRCA2 predispose carriers to early onset breast cancer, but such mutations account for fewer than 2% of all cases in East Anglia. It is likely that low penetrance alleles explain the greater part of inherited susceptibility to breast cancer; polymorphic variants in strongly predisposing genes, such as BRCA2, are candidates for this role. BRCA2 is thought to be involved in DNA double strand break-repair. Few mice in which Brca2 is truncated survive to birth; of those that do, most are male, smaller than their normal littermates and have high cancer incidence. Here we show that a common human polymorphism (N372H) in exon 10 of BRCA2 confers an increased risk of breast cancer: the HH homozygotes have a 1.31-fold (95% CI, 1.07–1.61) greater risk than the NN group. Moreover, in normal female controls of all ages there is a significant deficiency of homozygotes compared with that expected from Hardy-Weinberg equilibrium, whereas in males there is an excess of homozygotes: the HH group has an estimated fitness of 0.82 in females and 1.38 in males. Therefore, this variant of BRCA2 appears also to affect fetal survival in a sex-dependent manner.", "title": "A common variant in BRCA2 is associated with both breast cancer risk and prenatal viability" }, { "docid": "32534305", "text": "OBJECTIVE Hyperinsulinemia may promote mammary carcinogenesis. Insulin resistance has been linked to an increased risk of breast cancer and is also characteristic of type 2 diabetes. We prospectively evaluated the association between type 2 diabetes and invasive breast cancer incidence in the Nurses' Health Study. RESEARCH DESIGN AND METHODS A total of 116,488 female nurses who were 30-55 years old and free of cancer in 1976 were followed through 1996 for the occurrence of type 2 diabetes and through 1998 for incident invasive breast cancer, verified by medical records and pathology reports. \n RESULTS During 2.3 million person-years of follow-up, we identified 6,220 women with type 2 diabetes and 5,189 incident cases of invasive breast cancer. Women with type 2 diabetes had a modestly elevated incidence of breast cancer (hazard ratio [HR] = 1.17; 95% CI 1.01-1.35) compared with women without diabetes, independent of age, obesity, family history of breast cancer, history of benign breast disease, reproductive factors, physical activity, and alcohol consumption. This association was apparent among postmenopausal women (1.16; 0.98-1.62) but not premenopausal women (0.83; 0.48-1.42). The association was predominant among women with estrogen receptor-positive breast cancer (1.22; 1.01-1.47). \n CONCLUSIONS Women with type 2 diabetes may have a slightly increased risk of breast cancer.", "title": "Type 2 diabetes and subsequent incidence of breast cancer in the Nurses' Health Study." }, { "docid": "5864770", "text": "Epidemiologic studies suggest that ovarian hormones contribute to the development of breast cancer at all stages. Early menopause and premenopausal obesity reduces the risk while postmenopausal obesity and menopausal estrogen replacement therapy increases the risk. Combined oral contraceptives and Depo-Provera do not reduce the risk. It appears that estrogens and progestogens act through and with proto-oncogenes and growth factors to affect breast cell proliferation and breast cancer etiology. Animal studies suggest that estrogen causes interlobular ductal cell division and progesterone causes increased terminal duct lobular unit cell division in the luteal phase. Most breast carcinomas originate from terminal duct lobular unit cells. During pregnancy, these cells fully multiply. Their reproduction is also increased during the luteal phase. Yet, there is considerable interpersonal variation. No studies examining breast cell division have compared cell division rates with serum hormone concentrations, however. The peak of mitosis occurs about 3 days before breast cell death in the late luteal and very early follicular phases. Other research suggests that breast stem cell proliferation is linked to breast cancer development. Endocrine therapy reduces mitotic activity, indicating the estrogen and progesterone receptor content of breast cancers. Hormone-dependent breast cancer cell lines are all estrogen-dependent. Progesterone can block the estrogen-dependent cell lines which act like endometrial cells. The results of the various breast cell proliferation studies in relation to breast cancer are unclear and research identifying a molecular explanation would help in understanding the different findings.", "title": "Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk." }, { "docid": "13956305", "text": "Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthritis for which HLA-B*27 is the major genetic risk factor, although its role in the aetiology of AS remains elusive. To better understand the genetic basis of the MHC susceptibility loci, we genotyped 7,264 MHC SNPs in 22,647 AS cases and controls of European descent. We impute SNPs, classical HLA alleles and amino-acid residues within HLA proteins, and tested these for association to AS status. Here we show that in addition to effects due to HLA-B*27 alleles, several other HLA-B alleles also affect susceptibility. After controlling for the associated haplotypes in HLA-B, we observe independent associations with variants in the HLA-A, HLA-DPB1 and HLA-DRB1 loci. We also demonstrate that the ERAP1 SNP rs30187 association is not restricted only to carriers of HLA-B*27 but also found in HLA-B*40:01 carriers independently of HLA-B*27 genotype.", "title": "Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1" } ]
417
Female carriers of the Apolipoprotein E4 (APOE4) allele have shorter lifetime exposure to estrogen due to a decreased reproductive period.
[ { "docid": "6309659", "text": "CONTEXT Exogenous estrogen use may lower risk of dementia in postmenopausal women. A relationship between long-term exposure to endogenous estrogens and incident dementia has been hypothesized but not studied. \n OBJECTIVE To determine whether a longer reproductive period, as an indicator of longer exposure to endogenous estrogens, is associated with lower risk of dementia and Alzheimer disease (AD) in women who have natural menopause. \n DESIGN AND SETTING The Rotterdam Study, a population-based prospective cohort study conducted in the Netherlands. \n PARTICIPANTS A total of 3601 women aged 55 years or older who did not have dementia at baseline (1990-1993) and had information on age at menarche, age at menopause, and type of menopause. Participants were reexamined in 1993-1994 and 1997-1999 and were continuously monitored for development of dementia. \n MAIN OUTCOME MEASURES Incidence of dementia, based on Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition criteria, and AD, based on National Institute of Neurological Disorders and Stroke/Alzheimer's Disease and Related Disorders Association criteria, compared by quartiles of reproductive period among women with natural menopause. \n RESULTS During 21 046 person-years of follow-up (median follow-up, 6.3 years), 199 women developed dementia, including 159 who developed AD. After adjusting for age, dementia was not clearly associated with length of reproductive period. However, after adjusting for multiple covariates, women with natural menopause and more reproductive years had an increased risk of dementia (adjusted rate ratio [RR] for women with >39 reproductive years [highest quartile] compared with <34 reproductive years [lowest quartile], 1.78; 95% confidence interval [CI], 1.12-2.84). The adjusted RR per year of increase was 1.04 (95% CI, 1.01-1.08). For risk of AD, the adjusted RRs were 1.51 (95% CI, 0.91-2.50) and 1.03 (95% CI, 1.00-1.07), respectively. Risk of dementia associated with a longer reproductive period was most pronounced in APOE epsilon4 carriers (adjusted RR for >39 reproductive years compared with <34 reproductive years, 4.20 [95% CI, 1.97-8.92] for dementia and 3.42 [95% CI, 1.51-7.75] for AD), whereas in noncarriers, no clear association with dementia or AD was observed. \n CONCLUSION Our findings do not support the hypothesis that a longer reproductive period reduces risk of dementia in women who have natural menopause.", "title": "Reproductive period and risk of dementia in postmenopausal women." } ]
[ { "docid": "12443371", "text": "OBJECTIVE To evaluate the association between apolipoprotein E (APOE) polymorphisms (E2, C/T Arg158Cys; E4, T/C Cys112Arg; and promoter, g-219t) and the history of concussion in college athletes. We hypothesized that carrying 1 or more APOE rare (or minor) allele assessed in this study would be associated with having a history of 1 or more concussions. \n DESIGN Multicenter cross-sectional study. \n SETTING University athletic facilities. \n PARTICIPANTS One hundred ninety-six male football (n = 163) and female soccer (n = 33) college athletes volunteered. \n INTERVENTIONS Written concussion history questionnaire and saliva samples for genotyping. \n MAIN OUTCOME MEASURES Self-reported history of a documented concussion and rare APOE genotype (E2, E4, promoter). \n RESULTS There was a significant association (Wald χ² = 3.82; P = 0.05; odds ratio = 9.8) between carrying all APOE rare alleles and the history of a previous concussion. There was also a significant association (Wald χ² = 3.96, P = 0.04, odds ratio = 8.4) between carrying the APOE promoter minor allele and experiencing 2 or more concussions. \n CONCLUSIONS Carriers of all 3 APOE rare (or minor) alleles assessed in this study were nearly 10 times more likely to report a previous concussion and may be at a greater risk of concussion versus noncarriers. Promoter minor allele carriers were 8.4 times more likely to report multiple concussions and may be at a greater risk of multiple concussions versus noncarriers. Research involving larger samples of individuals with multiple concussions and carriers of multiple APOE rare alleles is warranted.", "title": "Apolipoprotein E genotype and concussion in college athletes." }, { "docid": "4709641", "text": "Efforts to develop drugs for Alzheimer's disease (AD) have shown promise in animal studies, only to fail in human trials, suggesting a pressing need to study AD in human model systems. Using human neurons derived from induced pluripotent stem cells that expressed apolipoprotein E4 (ApoE4), a variant of the APOE gene product and the major genetic risk factor for AD, we demonstrated that ApoE4-expressing neurons had higher levels of tau phosphorylation, unrelated to their increased production of amyloid-β (Aβ) peptides, and that they displayed GABAergic neuron degeneration. ApoE4 increased Aβ production in human, but not in mouse, neurons. Converting ApoE4 to ApoE3 by gene editing rescued these phenotypes, indicating the specific effects of ApoE4. Neurons that lacked APOE behaved similarly to those expressing ApoE3, and the introduction of ApoE4 expression recapitulated the pathological phenotypes, suggesting a gain of toxic effects from ApoE4. Treatment of ApoE4-expressing neurons with a small-molecule structure corrector ameliorated the detrimental effects, thus showing that correcting the pathogenic conformation of ApoE4 is a viable therapeutic approach for ApoE4-related AD.", "title": "Gain of toxic Apolipoprotein E4 effects in Human iPSC-Derived Neurons Is Ameliorated by a Small-Molecule Structure Corrector" }, { "docid": "37205759", "text": "The Apolipoprotein (Apo) family is implicated in lipid metabolism. There are five types of Apo: Apoa, Apob, Apoc, Apod, and Apoe. Apoe has been demonstrated to play a central role in lipoprotein metabolism and to be essential for efficient receptor-mediated plasma clearance of chylomicron remnants and VLDL remnant particles by the liver. Apoe-deficient (Apoe(-/-)) mice develop atherosclerotic plaques spontaneously, followed by obesity. In this study, we investigated whether lipid deposition caused by Apoe knockout affects reproduction in female mice. The results demonstrated that Apoe(-/-) mice were severely hypercholesterolemic, with their cholesterol metabolism disordered, and lipid accumulating in the ovaries causing the ovaries to be heavier compared with the WT counterparts. In addition, estrogen and progesterone decreased significantly at D 100. Quantitative PCR analysis demonstrated that at D 100 the expression of cytochromeP450 aromatase (Cyp19a1), 3β-hydroxysteroid dehydrogenase (Hsd3b), mechanistic target of rapamycin (Mtor), and nuclear factor-κB (Nfkb) decreased significantly, while that of BCL2-associated agonist of cell death (Bad) and tuberous sclerosis complex 2 (Tsc2) increased significantly in the Apoe(-/-) mice. However, there was no difference in the fertility rates of the Apoe(-/-) and WT mice; that is, obesity induced by Apoe knockout has no significant effect on reproduction. However, the deletion of Apoe increased the number of ovarian follicles and the ratio of ovarian follicle atresia and apoptosis. We believe that this work will augment our understanding of the role of Apoe in reproduction.", "title": "Obesity occurring in apolipoprotein E-knockout mice has mild effects on fertility." }, { "docid": "18852643", "text": "In humans, apolipoprotein E (apoE) is a polymorphic multifunctional protein.1 It is coded by three alleles (e2, e3, e4) of a modulator gene (level, variability, and susceptibility gene) at the apoE locus on chromosome 19, determining six apoE genotypes and plasma phenotypes. Its pleiotropic effects are exerted on plasma lipoprotein metabolism, coagulation, oxidative processes, macrophage, glial cell and neuronal cell homeostasis, adrenal function, central nervous system physiology, inflammation, and cell proliferation.2,3 ApoE polymorphism modulates susceptibility to many diseases. It is, however, particularly notorious for its role in neurodegenerative disorders4 and atherosclerotic arterial disease.5,6 The e4 allele (phenotypes E4/4 and E4/3) that is associated with higher low density lipoprotein cholesterol (LDL-C) is considered proatherogenic, whereas the presence of the e2 allele (E3/2, E2/2), being associated with lower LDL-C levels, is deemed to have the opposite effect (although it may be associated with increased plasma triglycerides and lipoprotein remnants). This simple equation, however, is an oversimplification because these properties are subject to many environmental and genetic influences. ApoE has allele- and gender-dependent effects on reverse cholesterol transport, platelet aggregation, and oxidative processes that are likely to affect the overall atherogenic potential ascribed to modulation of lipoprotein metabolism.2,3,6 Notwithstanding the context dependency, a recent meta-analysis fully supports the presence of the e4 allele as a significant risk factor for coronary artery disease.7 Several mechanisms have been evoked to link apoE with atherosclerosis, but the relationship is not fully unraveled in humans. Nevertheless, some apoE mimetic peptides that promote LDL clearance are currently tested in animals for potential clinical applications.8,9 See page 436 The situation is relatively simpler in animals. The mouse model has been prominently useful to test mechanisms …", "title": "Apolipoprotein E and atherosclerosis: beyond lipid effect." }, { "docid": "15669393", "text": "Transient activation of estrogen receptors (ER) in the developing brain during a limited perinatal \"window of time\" is recognized as a key mechanism of defeminization of neural control of reproductive function and sexual behavior. Two major ER isoforms, alpha and beta, are present in neural circuits that govern ovarian cycle and sexual behavior. Using highly selective ER agonists, this study provides the first evidence for distinct contribution of individual ER isoforms to the process of estrogen dependent defeminization. Neonatal activation of the ERalpha in female rats resulted in abrogation of cyclic ovarian activity and female sexual behavior in adulthood. These effects are associated with male-like alterations in the morphology of the anteroventral periventricular (AVPV) and sexually dimorphic nucleus of the preoptic area (SDN-POA), as well as refractoriness to estrogen-mediated induction of sexual receptivity. Exposure to an ERbeta-selective agonist induced persistent estrus and had a strong defeminizing effect on the hypothalamic gonadotropin \"surge generator\" AVPV. However, neonatal ERbeta activation failed to alter female sexual behavior, responsiveness to estrogens and morphometric features of the behaviorally relevant SDN-POA. Thus, although co-present in several brain regions involved in the control of female reproductive function, ER isoforms convey different, and probably not synergistic, chemical signals in the course of neonatal sex-specific brain organization.", "title": "brain organization" }, { "docid": "30351165", "text": "Cerebral apolipoprotein E (apoE) has been implicated in neuronal protection and repair. Due to the variable levels and types of estrogen receptors within different brain regions, the effect of estrogen on apoE and the mechanism of this effect may vary within different regions. Ovariectomized female C57BL/6 mice were treated with pharmacological levels of 17 beta-estradiol or placebo for 5 days, resulting in supraphysiological plasma levels of estradiol in the treated mice. ApoE and glial fibrillary acidic protein (GFAP) levels were measured in the cortex, hippocampus and diencephalon. 17 beta-Estradiol up-regulated apoE but not GFAP in the cortex and diencephalon, whereas in the hippocampus, GFAP and apoE were equally up-regulated. Treatment of estrogen receptor (ER) alpha knockout mice with 17 beta-estradiol or treatment of C57BL/6 mice with 17 alpha-estradiol, a poor estrogen receptor agonist, specifically induced apoE in the cortex, but not in the diencephalon. These results indicate that 17 beta-estradiol effects on apoE are either directly or indirectly mediated by ER alpha in the diencephalon, while the effects in the cortex may be mediated by a non-classical mechanism or by ER beta. Measurement of mRNA levels in estrogen versus placebo-treated wild-type mice indicated that the effect of 17 beta-estradiol on apoE was not associated with changes in apoE mRNA levels.", "title": "Brain region-specific up-regulation of mouse apolipoprotein E by pharmacological estrogen treatments." }, { "docid": "20937018", "text": "Apolipoprotein E is immunochemically localized to the senile plaques, vascular amyloid, and neurofibrillary tangles of Alzheimer disease. In vitro, apolipoprotein E in cerebrospinal fluid binds to synthetic beta A4 peptide (the primary constituent of the senile plaque) with high avidity. Amino acids 12-28 of the beta A4 peptide are required. The gene for apolipoprotein E is located on chromosome 19q13.2, within the region previously associated with linkage of late-onset familial Alzheimer disease. Analysis of apolipoprotein E alleles in Alzheimer disease and controls demonstrated that there was a highly significant association of apolipoprotein E type 4 allele (APOE-epsilon 4) and late-onset familial Alzheimer disease. The allele frequency of the APOE-epsilon 4 in 30 random affected patients, each from a different Alzheimer disease family, was 0.50 +/- 0.06; the allele frequency of APOE-epsilon 4 in 91 age-matched unrelated controls was 0.16 +/- 0.03 (Z = 2.44, P = 0.014). A functional role of the apolipoprotein E-E4 isoform in the pathogenesis of late-onset familial Alzheimer disease is suggested.", "title": "Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease." }, { "docid": "24906548", "text": "The epsilon4 allele of the apolipoprotein E (APOE) gene has been linked to negative outcomes among adults with traumatic brain injury (TBI) across the spectrum of severity, with preliminary evidence suggesting a similar pattern among children. This study investigated the relationship of the APOE epsilon4 allele to outcomes in children with mild TBI. Participants in this prospective, longitudinal study included 99 children with mild TBI between the ages of 8 and 15 recruited from consecutive admissions to Emergency Departments at two large children's hospitals. Outcomes were assessed acutely in the Emergency Department and at follow-ups at 2 weeks, 3 months, and 12 months post-injury. Among the 99 participants, 28 had at least one epsilon4 allele. Children with and without an epsilon4 allele did not differ demographically. Children with an epsilon4 allele were significantly more likely than those without an epsilon4 allele to have a Glasgow Coma Scale score of less than 15, but the groups did not differ on any other measures of injury severity. Those with an epsilon4 allele exhibited better performance than children without an epsilon4 allele on a test of constructional skill, but the groups did not differ on any other neuropsychological tests. Children with and without an epsilon4 allele also did not differ on measures of post-concussive symptoms. Overall, the findings suggest that the APOE epsilon4 allele is not consistently related to the outcomes of mild TBI in children.", "title": "Apolipoprotein E4 as a predictor of outcomes in pediatric mild traumatic brain injury." }, { "docid": "18340282", "text": "BACKGROUND Information is scarce about the combined effects on breast cancer incidence of low-penetrance genetic susceptibility polymorphisms and environmental factors (reproductive, behavioural, and anthropometric risk factors for breast cancer). To test for evidence of gene-environment interactions, we compared genotypic relative risks for breast cancer across the other risk factors in a large UK prospective study. \n METHODS We tested gene-environment interactions in 7610 women who developed breast cancer and 10 196 controls without the disease, studying the effects of 12 polymorphisms (FGFR2-rs2981582, TNRC9-rs3803662, 2q35-rs13387042, MAP3K1-rs889312, 8q24-rs13281615, 2p-rs4666451, 5p12-rs981782, CASP8-rs1045485, LSP1-rs3817198, 5q-rs30099, TGFB1-rs1982073, and ATM-rs1800054) in relation to prospectively collected information about ten established environmental risk factors (age at menarche, parity, age at first birth, breastfeeding, menopausal status, age at menopause, use of hormone replacement therapy, body-mass index, height, and alcohol consumption). \n FINDINGS After allowance for multiple testing none of the 120 comparisons yielded significant evidence of a gene-environment interaction. By contrast with previous suggestions, there was little evidence that the genotypic relative risks were affected by use of hormone replacement therapy, either overall or for oestrogen-receptor-positive disease. Only one of the 12 polymorphisms was correlated with any of the ten other risk factors: carriers of the high-risk C allele of MAP3K1-rs889312 were significantly shorter than non-carriers (mean height 162.4 cm [95% CI 162.1-162.7] vs 163.1 cm [162.9-163.2]; p=0.01 after allowance for multiple testing). \n INTERPRETATION Risks of breast cancer associated with low-penetrance susceptibility polymorphisms do not vary significantly with these ten established environmental risk factors. \n FUNDING Cancer Research UK and the UK Medical Research Council.", "title": "Gene–environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study" }, { "docid": "41380943", "text": "During embryonic development, gonadal steroid hormones (androgens and estrogens) are thought to organize the sexual differentiation of the brain in the heterogametic sexes of higher vertebrates (males in mammals, females in birds). Brain differentiation of the homogametic sexes is thought to proceed by default, not requiring sex hormones for sex-specific organization. In gallinaceous birds such as the Japanese quail, female brain organization is thought to develop via estrogen-dependent demasculinization of a default male brain phenotype. We performed male donor-to-female host (MF), female-to-male (FM), male-to-male (MM), and female-to-female (FF) isotopic, isochronic transplantation of the forebrain primordium in Japanese quail embryos before gonadal differentiation had occurred; brain chimeras had a forebrain (including the hypothalamus) originating exclusively from donor cells. MM, FF, and MF chimeras all showed sexual behavior governed by the genetic sex of the host. In contrast, FM chimeras (genetically female forebrain, all other tissues genetically male) showed no mounting and only rudimentary crowing behavior. Although MM, FF, MF, and FM chimeras all showed host-typical production of steroid hormones during embryonic life, only FM chimeras were hypogonadal, had atypical low levels of circulating testosterone in adulthood, and showed reduction (crowing) or absence (mounting) of reproductive behaviors. Morphological features of the medial preoptic nucleus (a sexually dimorphic brain area) also were not male-like in FM males. These data demonstrate a brain-intrinsic, genetically determined component that organizes the sex-typical production of gonadal hormones in adulthood and call for a reevaluation of the mechanisms underlying brain sexual differentiation in other higher-vertebrate species.", "title": "Male Japanese quails with female brains do not show male sexual behaviors." }, { "docid": "5145974", "text": "STUDY QUESTION In women undergoing IVF, are urinary bisphenol A (BPA) concentrations associated with ovarian response and early reproductive outcomes, including oocyte maturation and fertilization, Day 3 embryo quality and blastocyst formation? SUMMARY ANSWER Higher urinary BPA concentrations were found to be associated with decreased ovarian response, number of fertilized oocytes and decreased blastocyst formation. WHAT IS KNOWN ALREADY Experimental animal and in vitro studies have reported associations between BPA exposure and adverse reproductive outcomes. We previously reported an association between urinary BPA and decreased ovarian response [peak serum estradiol (E(2)) and oocyte count at the time of retrieval] in women undergoing IVF; however, there are limited human data on reproductive health outcomes, such as fertilization and embryo development. STUDY DESIGN, SIZE AND DURATION Prospective preconception cohort study. One hundred and seventy-four women aged 18-45 years and undergoing 237 IVF cycles were recruited at the Massachusetts General Hospital Fertility Center, Boston, MA, USA, between November 2004 and August 2010. These women were followed until they either had a live birth or discontinued treatment. Cryothaw and donor egg cycles were not included in the analysis. \n PARTICIPANTS/MATERIALS, SETTING AND METHODS Urinary BPA concentrations were measured by online solid-phase extraction-high-performance liquid chromatography-isotope dilution-tandem mass spectrometry. Mixed effect models, poisson regression and multivariate logistic regression models were used wherever appropriate to evaluate the association between cycle-specific urinary BPA concentrations and measures of ovarian response, oocyte maturation (metaphase II), fertilization, embryo quality and cleavage rate. We accounted for correlation among multiple IVF cycles in the same woman using generalized estimating equations. \n MAIN RESULTS AND THE ROLE OF CHANCE The geometric mean (SD) for urinary BPA concentrations was 1.50 (2.22) µg/l. After adjustment for age and other potential confounders (Day 3 serum FSH, smoking, BMI), there was a significant linear dose-response association between increased urinary BPA concentrations and decreased number of oocytes (overall and mature), decreased number of normally fertilized oocytes and decreased E(2) levels (mean decreases of 40, 253 and 471 pg/ml for urinary BPA quartiles 2, 3 and 4, when compared with the lowest quartile, respectively; P-value for trend = 0.001). The mean number of oocytes and normally fertilized oocytes decreased by 24 and 27%, respectively, for the highest versus the lowest quartile of urinary BPA (trend test P < 0.001 and 0.002, respectively). Women with urinary BPA above the lowest quartile had decreased blastocyst formation (trend test P-value = 0.08). LIMITATIONS AND REASONS FOR CAUTION Potential limitations include exposure misclassification due to the very short half-life of BPA and its high variability over time; uncertainty about the generalizability of the results to the general population of women conceiving naturally and limited sample. WIDER IMPLICATIONS OF THE FINDINGS The results from this extended study, using IVF as a model to study early reproductive health outcomes in humans, indicate a negative dose-response association between urinary BPA concentrations and serum peak E(2) and oocyte yield, confirming our previous findings. In addition, we found significantly decreased metaphase II oocyte count and number of normally fertilizing oocytes and a suggestive association between BPA urinary concentrations and decreased blastocyst formation, thus indicating that BPA may alter reproductive function in susceptible women undergoing IVF. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants ES009718 and ES000002 from the National Institute of Environmental Health Sciences and grant OH008578 from the National Institute for Occupational Safety and Health. None of the authors has actual or potential competing financial interests. DISCLAIMER The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.", "title": "Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF." }, { "docid": "12206390", "text": "CONTEXT The long-term risk for developing hypertension is best described by the lifetime risk statistic. The lifetime risk for hypertension and trends in this risk over time are unknown. \n OBJECTIVES To estimate the residual lifetime risk for hypertension in older US adults and to evaluate temporal trends in this risk. \n DESIGN, SETTING, AND PARTICIPANTS Community-based prospective cohort study of 1298 participants from the Framingham Heart Study who were aged 55 to 65 years and free of hypertension at baseline (1976-1998). \n MAIN OUTCOME MEASURES Residual lifetime risk (lifetime cumulative incidence not adjusted for competing causes of mortality) for hypertension, defined as blood pressure of 140/90 mm Hg or greater or use of antihypertensive medications. \n RESULTS The residual lifetime risks for developing hypertension and stage 1 high blood pressure or higher (greater-than-or-equal to 140/90 mm Hg regardless of treatment) were 90% in both 55- and 65-year-old participants. The lifetime probability of receiving antihypertensive medication was 60%. The risk for hypertension remained unchanged for women, but it was approximately 60% higher for men in the contemporary 1976-1998 period compared with an earlier 1952-1975 period. In contrast, the residual lifetime risk for stage 2 high blood pressure or higher (greater-than-or-equal to 160/100 mm Hg regardless of treatment) was considerably lower in both sexes in the recent period (35%-57% in 1952-1975 vs 35%-44% in 1976-1998), likely due to a marked increase in treatment of individuals with substantially elevated blood pressure. \n CONCLUSION The residual lifetime risk for hypertension for middle-aged and elderly individuals is 90%, indicating a huge public health burden. Although the decline in lifetime risk for stage 2 high blood pressure or higher represents a major achievement, efforts should be directed at the primary prevention of hypertension.", "title": "Residual lifetime risk for developing hypertension in middle-aged women and men: The Framingham Heart Study." }, { "docid": "31851367", "text": "Estrogens are key regulators of growth, differentiation, and the physiological functions of a wide range of target tissues, including the male and female reproductive tracts, breast, and skeletal, nervous, cardiovascular, digestive and immune systems. The majority of these biological activities of estrogens are mediated through two genetically distinct receptors, ERalpha and ERbeta, which function as hormone-inducible transcription factors. Over the past decade, it has become increasingly clear that the recruitment of coregulatory proteins to ERs is required for ER-mediated transcriptional and biological activities. These \"coactivator\" complexes enable the ERs to respond appropriately: 1) to hormones or pharmacological ligands, 2) interpret extra- and intra-cellular signals, 3) catalyze the process of chromatin condensation and 4) to communicate with the general transcription apparatus at target gene promoters. In addition to activating proteins, the existence of corepressors, proteins that function as negative regulators of ER activity in either physiological or pharmacological contexts, provides an additional level of complexity in ER action. This review also describes current efforts aimed at developing pharmaceutical agents that target ER-cofactor interactions as therapeutics for estrogen-associated pathologies.", "title": "Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting." }, { "docid": "16734530", "text": "BACKGROUND Breast cancer is the most common malignancy in women. There is increasing evidence suggesting that ORAI1, components of store-operated calcium channel, play a pivotal role in breast cancer progression and metastasis. \n METHODS A total of 384 female patients with breast cancer were included in this study. We selected five representative tagging ORAI1 SNPs from HapMap database with minimum allele frequency (MAF) >10%. Genotyping was performed using TaqMan allelic discrimination assay. Chi-square (χ²) test was used to analyze statistical differences among control and patient groups in genotype and allelic frequencies. \n RESULTS Two of the ORAI1 SNPs (rs12320939 and rs12313273) were associated with estrogen receptors positive in breast cancer patients under the recessive model. When the Bonferroni correction was performed, the significance still existed. In addition, rs12320939 also associated with the lymph nodal involvement. \n CONCLUSION We showed that genetic polymorphisms of ORAI1 associated strongly with lymph nodal involvement and estrogen receptors (ERs) positive breast cancer patients in a Taiwanese population.", "title": "The Association between Single-Nucleotide Polymorphisms of ORAI1 Gene and Breast Cancer in a Taiwanese Population" }, { "docid": "11090688", "text": "The weight lowering potential of glucagon-like peptide 1 (GLP-1) receptor agonists (RAs) is inter-individually different and clinically unpredictable. The potential role of genetic variability of GLP-1R on body weight response to GLP-1 RAs in obese women with polycystic ovary syndrome (PCOS) has not yet been evaluated. Fifty-seven obese women with PCOS (aged 30.7 ± 7.0, BMI 38.6 ± 5.3 kg/m2) were assigned to liraglutide 1.2 mg QD s.c. for 12 weeks and classified as strong responders regarding weight loss if they lost 5 % or more of their initial body weight. They were genotyped for common GLP-1R single nucleotide polymorphisms (SNPs) rs6923761 and rs10305420. Changes of measures of obesity were measured before and at the end of the treatment. Twenty out of 57 subjects were strong responders and lost 7.38 ± 1.74 compared to 2.11 ± 2.17 kg lost in poor responders. Carriers of at least one polymorphic rs10305420 allele had poor treatment response compared to carriers of two wild type alleles (OR = 0.27, 95 % CI = 0.09–0.85, P = 0.025). Carriers of at least one polymorphic rs6923761 allele tended to have stronger treatment response compared to carriers of two wild type alleles (OR = 3.06, 95 % CI = 0.96–9.74, P = 0.058). Fasting glucose and glucose after oral glucose tolerance test (OGTT) comparably decreased in both groups when compared to baseline, whereas no within treatment differences were found in androgen profile. Gastrointestinal adverse events were transit and balanced between strong and poor responders. GLP-1R rs10305420 polymorphism explained some of the inter-individual differences in response to liraglutide regarding weight loss in obese PCOS women.", "title": "Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: a pilot study" }, { "docid": "43226130", "text": "Multiple sclerosis (MS), a chronic inflammatory demyelina-ting and degenerative disease of the central nervous system, is a frequent cause of neurological disability in young adults. Female predominance has increased over the last decades. Although female gender carries a higher risk of developing relapsing remitting MS, being female and at child-bearing age also appears to provide some protection against cognitive decline and against progressive onset MS, an adverse predictive factor when considering long-term disability in MS. The risk of MS in women has been associated with an earlier age at menarche. In most studies, parity did not impact MS risk. However, the recently published association of higher parity and offspring number with a reduced risk of a first demyelinating event suggests a potential suppressive effect. Pregnancy in MS patients has been associated with a reduced relapse rate and a reduction of neurological symptoms, especially in the third trimester. Despite the increased relapse risk in the postpartum period, there is no indication of an adverse effect of childbirth on the long-term course of MS. Fertility treatment in MS has been associated with an increased relapse risk in the following 3-month period, especially when the procedure did not result in pregnancy and gonadotrophin-releasing hormone agonists were used. Altogether, there is substantial evidence to support a regulatory role of sex steroid hormones in MS. In the absence of correlations with single hormone blood levels, we can only speculate about the underlying mechanisms. In conclusion, the increased MS risk in women and the changes in relapse and progression risk in association with reproductive events suggest significant and complex interactions between immune, neuroendocrine and reproductive systems in MS.", "title": "Female Gender and Reproductive Factors Affecting Risk, Relapses and Progression in Multiple Sclerosis" }, { "docid": "6540064", "text": "BACKGROUND Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date. \n METHODS Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured. \n RESULTS Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations. \n CONCLUSIONS Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a). CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971.", "title": "Effects of PCSK9 Inhibition With Alirocumab on Lipoprotein Metabolism in Healthy Humans" }, { "docid": "34228604", "text": "Females live longer than males in many species, including humans. We have traced a possible explanation for this phenomenon to the beneficial action of estrogens, which bind to estrogen receptors and increase the expression of longevity-associated genes, including those encoding the antioxidant enzymes superoxide dismutase and glutathione peroxidase. As a result, mitochondria from females produce fewer reactive oxygen species than those from males. Administering estrogens has serious drawbacks, however--they are feminizing (and thus cannot be administered to males) and may increase the incidence of serious diseases such as uterine cancer in postmenopausal women. Phytoestrogens, which are present in soy or wine, may have some of the favorable effects of estrogens without their undesirable effects. Study of gender differences in longevity may help us to understand the basic processes of aging and to devise practical strategies to increase the longevity of both females and males.", "title": "Why females live longer than males: control of longevity by sex hormones." }, { "docid": "13956305", "text": "Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthritis for which HLA-B*27 is the major genetic risk factor, although its role in the aetiology of AS remains elusive. To better understand the genetic basis of the MHC susceptibility loci, we genotyped 7,264 MHC SNPs in 22,647 AS cases and controls of European descent. We impute SNPs, classical HLA alleles and amino-acid residues within HLA proteins, and tested these for association to AS status. Here we show that in addition to effects due to HLA-B*27 alleles, several other HLA-B alleles also affect susceptibility. After controlling for the associated haplotypes in HLA-B, we observe independent associations with variants in the HLA-A, HLA-DPB1 and HLA-DRB1 loci. We also demonstrate that the ERAP1 SNP rs30187 association is not restricted only to carriers of HLA-B*27 but also found in HLA-B*40:01 carriers independently of HLA-B*27 genotype.", "title": "Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1" } ]
418
Fibroblast Growth Factor is a ligand which signals through receptor tyrosine kinases.
[ { "docid": "16660256", "text": "Satellite cells are skeletal muscle stem cells capable of self-renewal and differentiation after transplantation, but whether they contribute to endogenous muscle fiber repair has been unclear. The transcription factor Pax7 marks satellite cells and is critical for establishing the adult satellite cell pool. By using a lineage tracing approach, we show that after injury, quiescent adult Pax7(+) cells enter the cell cycle; a subpopulation returns to quiescence to replenish the satellite cell compartment, while others contribute to muscle fiber formation. We demonstrate that Sprouty1 (Spry1), a receptor tyrosine kinase signaling inhibitor, is expressed in quiescent Pax7(+) satellite cells in uninjured muscle, downregulated in proliferating myogenic cells after injury, and reinduced as Pax7(+) cells re-enter quiescence. We show that Spry1 is required for the return to quiescence and homeostasis of the satellite cell pool during repair. Our results therefore define a role for Spry1 in adult muscle stem cell biology and tissue repair.", "title": "Sprouty1 Regulates Reversible Quiescence of a Self-Renewing Adult Muscle Stem Cell Pool during Regeneration" } ]
[ { "docid": "12785130", "text": "Src family kinases (SFKs) play critical roles in the regulation of many cellular functions by growth factors, G-protein-coupled receptors and ligand-gated ion channels. Recent data have shown that SFKs serve as a convergent point of multiple signaling pathways regulating N-methyl-d-aspartate (NMDA) receptors in the central nervous system. Multiple SFK molecules, such as Src and Fyn, closely associate with their substrate, NMDA receptors, via indirect and direct binding mechanisms. The NMDA receptor is associated with an SFK signaling complex consisting of SFKs; the SFK-activating phosphatase, protein tyrosine phosphatase α; and the SFK-inactivating kinase, C-terminal Src kinase. Early studies have demonstrated that intramolecular interactions with the SH2 or SH3 domain lock SFKs in a closed conformation. Disruption of the interdomain interactions can induce the activation of SFKs with multiple signaling pathways involved in regulation of this process. The enzyme activity of SFKs appears 'graded', exhibiting different levels coinciding with activation states. It has also been proposed that the SH2 and SH3 domains may stimulate catalytic activity of protein tyrosine kinases, such as Abl. Recently, it has been found that the enzyme activity of neuronal Src protein is associated with its stability, and that the SH2 and SH3 domain interactions may act not only to constrain the activation of neuronal Src, but also to regulate the enzyme activity of active neuronal Src. Collectively, these findings demonstrate novel mechanisms underlying the regulation of SFKs.", "title": "The regulation of N-methyl-D-aspartate receptors by Src kinase." }, { "docid": "16494316", "text": "Receptor tyrosine kinases are involved in regulation of key processes in endothelial biology, including proliferation, migration, and angiogenesis. It is now generally accepted that receptor tyrosine kinase signaling occurs intracellularly and on the plasma membrane, although many important details remain to be worked out. Endocytosis and subsequent intracellular trafficking spatiotemporally regulate receptor tyrosine kinase signaling, whereas signaling endosomes provide a platform for the compartmentalization of signaling events. This review summarizes recent advances in our understanding of endothelial receptor tyrosine kinase endocytosis and signaling using vascular endothelial growth factor receptor-2 as a paradigm.", "title": "Receptor tyrosine kinases endocytosis in endothelium: biology and signaling." }, { "docid": "21931005", "text": "Permeabilized rat kidney cells rapidly released glucose 6-phosphate dehydrogenase (G6PD) following stimulation with peptide growth factors (Stanton, R.C., Seifter, J.L., Boxer, D.C., Zimmerman, E., and Cantley, L. C. (1991) J. Biol. Chem. 266, 12442-12448). To evaluate the signal transduction pathways mediating release of G6PD, two cell lines transfected with wild type or mutant platelet-derived growth factor (PDGF) receptors (PDGFR) were studied using two permeabilization protocols. G6PD release was evaluated by enzyme activity and Western blot analysis. PDGF caused a significant increase in G6PD release in 1 min in cells transfected with wild type PDGFR. PDGF did not stimulate G6PD release in cells transfected with tyrosine kinase-deficient PDGFR. PDGF did not stimulate G6PD release in cells transfected with partially autophosphorylation-deficient PDGFR in which four known signaling proteins do not associate with the PDGFR. The PDGF-stimulated release of G6PD was partially restored in PDGFR mutants in which either phosphatidylinositol-3-kinase or phospholipase C gamma 1 could associate with the PDGFR. Lastly, there was no basal or PDGF-stimulated phosphorylation of G6PD. We conclude that release of G6PD: 1) requires intrinsic PDGFR tyrosine kinase activity; 2) requires PDGFR autophosphorylation; 3) is mediated by signaling proteins that associate with the PDGFR; 4) is not mediated by direct phosphorylation of G6PD.", "title": "Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells." }, { "docid": "17188921", "text": "Cell migration is a process which is essential during embryonic development, throughout adult life and in some pathological conditions. Cadherins, and more specifically the neural cell adhesion molecule N-cadherin, play an important role in migration. In embryogenesis, N-cadherin is the key molecule during gastrulation and neural crest development. N-cadherin mediated contacts activate several pathways like Rho GTPases and function in tyrosine kinase signalling (for example via the fibroblast growth factor receptor). In cancer, cadherins control the balance between suppression and promotion of invasion. E-cadherin functions as an invasion suppressor and is downregulated in most carcinomas, while N-cadherin, as an invasion promoter, is frequently upregulated. Expression of N-cadherin in epithelial cells induces changes in morphology to a fibroblastic phenotype, rendering the cells more motile and invasive. However in some cancers, like osteosarcoma, N-cadherin may behave as a tumour suppressor. N-cadherin can have multiple functions: promoting adhesion or induction of migration dependent on the cellular context.", "title": "N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling." }, { "docid": "17648235", "text": "De-regulation of the wingless and integration site growth factor (WNT) signaling pathway via mutations in APC and Axin, proteins that target β-catenin for destruction, have been linked to various types of human cancer. These genetic alterations rarely, if ever, are observed in breast tumors. However, various lines of evidence suggest that WNT signaling may also be de-regulated in breast cancer. Most breast tumors show hypermethylation of the promoter region of secreted Frizzled-related protein 1 (sFRP1), a negative WNT pathway regulator, leading to downregulation of its expression. As a consequence, WNT signaling is enhanced and may contribute to proliferation of human breast tumor cells. We previously demonstrated that, in addition to the canonical WNT/β-catenin pathway, WNT signaling activates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in mouse mammary epithelial cells via epidermal growth factor receptor (EGFR) transactivation. Using the WNT modulator sFRP1 and short interfering RNA-mediated Dishevelled (DVL) knockdown, we interfered with autocrine WNT signaling at the ligand-receptor level. The impact on proliferation was measured by cell counting, YOPRO, and the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay; β-catenin, EGFR, ERK1/2 activation, and PARP (poly [ADP-ribose]polymerase) cleavages were assessed by Western blotting after treatment of human breast cancer cell lines with conditioned media, purified proteins, small-molecule inhibitors, or blocking antibodies. Phospho-DVL and stabilized β-catenin are present in many breast tumor cell lines, indicating autocrine WNT signaling activity. Interfering with this loop decreases active β-catenin levels, lowers ERK1/2 activity, blocks proliferation, and induces apoptosis in MDA-MB-231, BT474, SkBr3, JIMT-1, and MCF-7 cells. The effects of WNT signaling are mediated partly by EGFR transactivation in human breast cancer cells in a metalloprotease- and Src-dependent manner. Furthermore, Wnt1 rescues estrogen receptor-positive (ER+) breast cancer cells from the anti-proliferative effects of 4-hydroxytamoxifen (4-HT) and this activity can be blocked by an EGFR tyrosine kinase inhibitor. Our data show that interference with autocrine WNT signaling in human breast cancer reduces proliferation and survival of human breast cancer cells and rescues ER+ tumor cells from 4-HT by activation of the canonical WNT pathway and EGFR transactivation. These findings suggest that interference with WNT signaling at the ligand-receptor level in combination with other targeted therapies may improve the efficiency of breast cancer treatments.", "title": "Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation" }, { "docid": "39859981", "text": "Virulence in Staphylococcus aureus is largely under control of the accessory gene regulator (agr) quorum-sensing system. The AgrC receptor histidine kinase detects its autoinducing peptide (AIP) ligand and generates an intracellular signal resulting in secretion of virulence factors. Although agr is a well-studied quorum-sensing system, little is known about the mechanism of AgrC activation. By co-immunoprecipitation analysis and intermolecular complementation of receptor mutants, we showed that AgrC forms ligand-independent dimers that undergo trans-autophosphorylation upon interaction with AIP. Remarkably, addition of specific AIPs to AgrC mutant dimers with only one functional sensor domain caused symmetric activation of either kinase domain despite the sensor asymmetry. Furthermore, mutant dimers involving one constitutive protomer demonstrated ligand-independent activity, irrespective of which protomer was kinase deficient. These results demonstrate that signalling through either individual AgrC protomer causes symmetric activation of both kinase domains. We suggest that such signalling across the dimer interface may be an important mechanism for dimeric quorum-sensing receptors to rapidly elicit a response upon signal detection.", "title": "Symmetric signalling within asymmetric dimers of the Staphylococcus aureus receptor histidine kinase AgrC." }, { "docid": "6717533", "text": "Stat1 and Stat3 are latent transcriptional factors activated initially through phosphorylation on single tyrosine residues induced by cytokine and growth factor occupation of cell surface receptors. Here we show that phosphorylation on a single serine (residue 727) in each protein is also required for maximal transcriptional activity. Both cytokines and growth factors are capable of inducing the serine phosphorylation of Stat1 and Stat3. These experiments show that gene activation by Stat1 and Stat3, which obligatorily require tyrosine phosphorylation to become active, also depends for maximal activation on one or more of the many serine kinases.", "title": "Maximal activation of transcription by statl and stat3 requires both tyrosine and serine phosphorylation" }, { "docid": "19752008", "text": "Phosphatidylinositol (PtdIns) 3-kinase is an enzyme implicated in growth factor signal transduction by associating with receptor and nonreceptor tyrosine kinases, including the platelet-derived growth factor receptor. Inhibitors of PtdIns 3-kinase could potentially give a better understanding of the function and regulatory mechanisms of the enzyme. Quercetin, a naturally occurring bioflavinoid, was previously shown to inhibit PtdIns 3-kinase with an IC50 of 1.3 microgram/ml (3.8 microM); inhibition appeared to be directed at the ATP-binding site of the kinase. Analogs of quercetin were investigated as PtdIns 3-kinase inhibitors, with the most potent ones exhibiting IC50 values in the range of 1.7-8.4 micrograms/ml. In contrast, genistein, a potent tyrosine kinase inhibitor of the isoflavone class, did not inhibit PtdIns 3-kinase significantly (IC50 > 30 micrograms/ml). Since quercetin has also been shown to inhibit other PtdIns and protein kinases, other chromones were evaluated as inhibitors of PtdIns 3-kinase without affecting PtdIns 4-kinase or selected protein kinases. One such compound, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (also known as 2-(4-morpholinyl)-8-phenylchromone, LY294002), completely and specifically abolished PtdIns 3-kinase activity (IC50 = 0.43 microgram/ml; 1.40 microM) but did not inhibit PtdIns 4-kinase or tested protein and lipid kinases. Analogs of LY294002 demonstrated a very selective structure-activity relationship, with slight changes in structure causing marked decreases in inhibition. LY294002 was shown to completely abolish PtdIns 3-kinase activity in fMet-Leu-Phe-stimulated human neutrophils, as well as inhibit proliferation of smooth muscle cells in cultured rabbit aortic segments. Since PtdIns 3-kinase appears to be centrally involved with growth factor signal transduction, the development of specific inhibitors against the kinase may be beneficial in the treatment of proliferative diseases as well as in elucidating the biological role of the kinase in cellular proliferation and growth factor response.", "title": "A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002)." }, { "docid": "8903143", "text": "The T-cell receptor (TCR) consists of a TCRαβ heterodimer, a TCRζ homodimer, and CD3γε and CD3δε heterodimers. The precise mechanism of T-cell triggering following TCR ligand engagement remains elusive. Previous studies reported that the cytoplasmic tail of CD3ε binds to the plasma membrane through a basic residue-rich stretch (BRS) and proposed that dissociation from the membrane is required for phosphorylation thereof. In this report we show that BRS motifs within the cytoplasmic tail of TCRζ mediate association with the plasma membrane and that TCR engagement results in TCRζ dissociation from the membrane. This dissociation requires phosphorylation of the TCRζ immunoreceptor tyrosine-based activation motifs by lymphocyte cell-specificprotein tyrosine kinase (Lck) but not ζ-chain-associated protein kinase 70 binding. Mutations of the TCRζ BRS motifs that disrupt this membrane association attenuate proximal and distal responses induced by TCR engagement. These mutations appear to alter the localization of TCRζ with respect to Lck as well as the mobility of the TCR complex. This study reveals that tyrosine phosphorylation of the TCRζ cytoplasmic domain regulates its association with the plasma membrane and highlights the functional importance of TCRζ BRS motifs.", "title": "Basic residues in the T-cell receptor ζ cytoplasmic domain mediate membrane association and modulate signaling." }, { "docid": "23420807", "text": "Angiogenesis, the formation of new blood vessels from an existing vasculature, is requisite for tumor growth. It entails intercellular coordination of endothelial and tumor cells through angiogenic growth factor signaling. Interruption of these events has implications in the suppression of tumor growth. PD166285, a broad-spectrum receptor tyrosine kinase (RTK) inhibitor, and PD173074, a selective FGFR1TK inhibitor, were evaluated for their anti-angiogenic activity and anti-tumor efficacy in combination with photodynamic therapy (PDT). To evaluate the anti-angiogenic and anti-tumor activities of these compounds, RTK assays, in vitro tumor cell growth and microcapillary formation assays, in vivo murine angiogenesis and anti-tumor efficacy studies utilizing RTK inhibitors in combination with photodynamic therapy were performed. PD166285 inhibited PDGFR-β-, EGFR-, and FGFR1TKs and c-src TK by 50% (IC50) at concentrations between 7−85nM. PD173074 displayed selective inhibitory activity towards FGFR1TK at 26nM. PD173074 demonstrated (>100 fold) selective growth inhibitory action towards human umbilical vein endothelial cells compared with a panel of tumor cell lines. Both PD166285 and PD173074 (at 10nM) inhibited the formation of microcapillaries on Matrigel-coated plastic. In vivo anti-angiogenesis studies in mice revealed that oral administration (p.o.) of either PD166285 (1−25 mg/kg) or PD173074 (25−100 mg/kg) generated dose dependent inhibition of angiogenesis. Against a murine mammary 16c tumor, significantly prolonged tumor regressions were achieved with daily p.o. doses of PD166285 (5−10 mg/kg) or PD173074 (30−60 mg/kg) following PDT compared with PDT alone (p<0.001). Many long-term survivors were also noted in combination treatment groups. PD166285 and PD173074 displayed potent anti-angiogenic and anti-tumor activity and prolonged the duration of anti-tumor response to PDT. Interference in membrane signal transduction by inhibitors of specific RTKs (e.g. FGFR1TK) should result in new chemotherapeutic agents having the ability to limit tumor angiogenesis and regrowth following cytoreductive treatments such as PDT.", "title": "Anti-Angiogenic Activity of Selected Receptor Tyrosine Kinase Inhibitors, PD166285 and PD173074: Implications for Combination Treatment with Photodynamic Therapy" }, { "docid": "23076291", "text": "We recently identified a novel mechanism for modulation of the phosphorylation state and function of the N-methyl-d-aspartate (NMDA) receptor via the scaffolding protein RACK1. We found that RACK1 binds both the NR2B subunit of the NMDA receptor and the nonreceptor protein-tyrosine kinase, Fyn. RACK1 inhibits Fyn phosphorylation of NR2B and decreases NMDA receptor-mediated currents in CA1 hippocampal slices (Yaka, R., Thornton, C., Vagts, A. J., Phamluong, K., Bonci, A., and Ron, D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 5710-5715). Here, we identified the signaling cascade by which RACK1 is released from the NMDA receptor complex and identified the consequences of the dissociation. We found that activation of the cAMP/protein kinase A pathway in hippocampal slices induced the release of RACK1 from NR2B and Fyn. This resulted in the induction of NR2B phosphorylation and the enhancement of NMDA receptor-mediated activity via Fyn. We identified the neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP(1-38)), as a ligand that induced phosphorylation of NR2B and enhanced NMDA receptor potentials. Finally, we found that activation of the cAMP/protein kinase A pathway induced the movement of RACK1 to the nuclear compartment in dissociated hippocampal neurons. Nuclear RACK1 in turn was found to regulate the expression of brain-derived neurotrophic factor induced by PACAP(1-38). Taken together our results suggest that activation of adenylate cyclase by PACAP(1-38) results in the release of RACK1 from the NMDA receptor and Fyn. This in turn leads to NMDA receptor phosphorylation, enhanced activity mediated by Fyn, and to the induction of brain-derived neurotrophic factor expression by RACK1.", "title": "Pituitary adenylate cyclase-activating polypeptide (PACAP(1-38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1." }, { "docid": "5573975", "text": "Molecules associated with the transforming growth factor β (TGF-β) superfamily, such as bone morphogenic proteins (BMPs) and TGF-β, are key regulators of inflammation, apoptosis and cellular transitions. Here we show that the BMP receptor activin-like kinase 3 (Alk3) is elevated early in diseased kidneys after injury. We also found that its deletion in the tubular epithelium leads to enhanced TGF-β1-Smad family member 3 (Smad3) signaling, epithelial damage and fibrosis, suggesting a protective role for Alk3-mediated signaling in the kidney. A structure-function analysis of the BMP-Alk3-BMP receptor, type 2 (BMPR2) ligand-receptor complex, along with synthetic organic chemistry, led us to construct a library of small peptide agonists of BMP signaling that function through the Alk3 receptor. One such peptide agonist, THR-123, suppressed inflammation, apoptosis and the epithelial-to-mesenchymal transition program and reversed established fibrosis in five mouse models of acute and chronic renal injury. THR-123 acts specifically through Alk3 signaling, as mice with a targeted deletion for Alk3 in their tubular epithelium did not respond to therapy with THR-123. Combining THR-123 and the angiotensin-converting enzyme inhibitor captopril had an additive therapeutic benefit in controlling renal fibrosis. Our studies show that BMP signaling agonists constitute a new line of therapeutic agents with potential utility in the clinic to induce regeneration, repair and reverse established fibrosis.", "title": "Activin–like kinase–3 activity is important for kidney regeneration and reversal of fibrosis" }, { "docid": "4447785", "text": "Inflammation promotes regeneration of injured tissues through poorly understood mechanisms, some of which involve interleukin (IL)-6 family members, the expression of which is elevated in many diseases including inflammatory bowel diseases and colorectal cancer. Here we show in mice and human cells that gp130, a co-receptor for IL-6 cytokines, triggers activation of YAP and Notch, transcriptional regulators that control tissue growth and regeneration, independently of the gp130 effector STAT3. Through YAP and Notch, intestinal gp130 signalling stimulates epithelial cell proliferation, causes aberrant differentiation and confers resistance to mucosal erosion. gp130 associates with the related tyrosine kinases Src and Yes, which are activated on receptor engagement to phosphorylate YAP and induce its stabilization and nuclear translocation. This signalling module is strongly activated upon mucosal injury to promote healing and maintain barrier function.", "title": "A gp130–Src–YAP module links inflammation to epithelial regeneration" }, { "docid": "13189693", "text": "Neuregulin 1 (NRG1) is a secreted trophic factor that activates the postsynaptic erbB4 receptor tyrosine kinase. Both NRG1 and erbB4 have been repeatedly associated with schizophrenia, but their downstream targets are not well characterized. ErbB4 is highly abundant in interneurons, and NRG1-mediated erbB4 activation has been shown to modulate interneuron function, but the role for NRG1-erbB4 signaling in regulating interneuron dendritic growth is not well understood. Here we show that NRG1/erbB4 promote the growth of dendrites in mature interneurons through kalirin, a major dendritic Rac1-GEF. Recent studies have shown associations of the KALRN gene with schizophrenia. Our data point to an essential role of phosphorylation in kalirin-7's C terminus as the critical site for these effects. As reduced interneuron dendrite length occurs in schizophrenia, understanding how NRG1-erbB4 signaling modulates interneuron dendritic morphogenesis might shed light on disease-related alterations in cortical circuits.", "title": "Control of interneuron dendritic growth through NRG1/erbB4-mediated kalirin-7 disinhibition" }, { "docid": "34016944", "text": "PURPOSE Tyrosine kinase (TK) inhibitors are emerging as a promising new approach to the treatment of HER overexpressing tumors, however optimal use of these agents awaits further definition of the downstream signaling pathways that mediate their effects. We reported previously that both EGFR- and Her2-overexpressing tumors are sensitive to the new EGFR-selective TK inhibitor gefitinib (ZD1839, \"Iressa\"), and sensitivity to this agent correlated with its ability to down-regulate Akt. However, EGFR-overexpressing MDA-468 cells, which lack PTEN function, are resistant to ZD1839, and ZD1839 is unable to down-regulate Akt activity in these cells. EXPERIMENTAL DESIGN To study the role of PTEN function, we generated MDA468 cells with tet-inducible PTEN expression. \n RESULTS We show here that the resistance of MDA-468 cells to ZD1839 is attributable to EGFR-independent constitutive Akt activation caused by loss of PTEN function in these cells. Reconstitution of PTEN function through tet-inducible expression restores ZD1839 sensitivity to these cells and reestablishes EGFR-stimulated Akt signaling. Although restoration of PTEN function to tumors is difficult to implement clinically, much of the effects of PTEN loss are attributable to overactive PI3K/Akt pathway signaling, and this overactivity can be modulated by pharmacologic approaches. We show here that pharmacologic down-regulation of constitutive PI3K/Akt pathway signaling using the PI3K inhibitor LY294002 similarly restores EGFR-stimulated Akt signaling and sensitizes MDA-468 cells to ZD1839. \n CONCLUSIONS Sensitivity to ZD1839 requires intact growth factor receptor-stimulated Akt signaling activity. PTEN loss leads to uncoupling of this signaling pathway and results in ZD1839 resistance, which can be reversed with reintroduction of PTEN or pharmacologic down-regulation of constitutive PI3K/Akt pathway activity. These data have important predictive and therapeutic clinical implications.", "title": "Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3'-kinase/Akt pathway signaling." }, { "docid": "34066665", "text": "Breast cancer evolution and tumor progression are governed by the complex interactions between steroid receptor [estrogen receptor (ER) and progesterone receptor] and growth factor receptor signaling. In recent years, the field of cancer therapy has witnessed the emergence of multiple strategies targeting these specific cancer pathways and key molecules (ER and growth factor receptors) to arrest tumor growth and achieve tumor eradication; treatment success, however, has varied and both de novo (up front) and acquired resistance have proven a challenge. Recent studies of ER biology have revealed new insights into ER action in breast cancer and have highlighted the role of an intimate crosstalk between the ER and HER family signaling pathways as a fundamental contributor to the development of resistance to endocrine therapies against the ER pathway. The aim of this review article is to summarize the current knowledge on mechanisms of resistance of breast cancer cells to endocrine therapies due to the crosstalk between the ER and the HER growth factor receptor signaling pathways and to explore new available therapeutic strategies that could prolong duration of response and circumvent endocrine resistant tumor growth.", "title": "Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance." }, { "docid": "2714623", "text": "How membrane receptors initiate signal transduction upon ligand binding is a matter of intense scrutiny. The T cell receptor complex (TCR-CD3) is composed of TCR alpha/beta ligand binding subunits bound to the CD3 subunits responsible for signal transduction. Although it has long been speculated that TCR-CD3 may undergo a conformational change, confirmation is still lacking. We present strong evidence that ligand engagement of TCR-CD3 induces a conformational change that exposes a proline-rich sequence in CD3 epsilon and results in recruitment of the adaptor protein Nck. This occurs earlier than and independently of tyrosine kinase activation. Finally, by interfering with Nck-CD3 epsilon association in vivo, we demonstrate that TCR-CD3 recruitment of Nck is critical for maturation of the immune synapse and for T cell activation.", "title": "Recruitment of Nck by CD3ϵ Reveals a Ligand-Induced Conformational Change Essential for T Cell Receptor Signaling and Synapse Formation" }, { "docid": "15563864", "text": "Epigallocatechin-3-gallate (EGCG), a polyphenol extracted from green tea, is an antioxidant with chemopreventive and chemotherapeutic actions. Based on its ability to modulate growth factor-mediated cell proliferation, we evaluated its efficacy in multiple myeloma (MM). EGCG induced both dose- and time-dependent growth arrest and subsequent apoptotic cell death in MM cell lines including IL-6-dependent cells and primary patient cells, without significant effect on the growth of peripheral blood mononuclear cells (PBMCs) and normal fibroblasts. Treatment with EGCG also led to significant apoptosis in human myeloma cells grown as tumors in SCID mice. EGCG interacts with the 67-kDa laminin receptor 1 (LR1), which is significantly elevated in myeloma cell lines and patient samples relative to normal PBMCs. RNAi-mediated inhibition of LR1 resulted in abrogation of EGCG-induced apoptosis in myeloma cells, indicating that LR1 plays an important role in mediating EGCG activity in MM while sparing PBMCs. Evaluation of changes in gene expression profile indicates that EGCG treatment activates distinct pathways of growth arrest and apoptosis in MM cells by inducing the expression of death-associated protein kinase 2, the initiators and mediators of death receptor-dependent apoptosis (Fas ligand, Fas, and caspase 4), p53-like proteins (p73, p63), positive regulators of apoptosis and NF-kappaB activation (CARD10, CARD14), and cyclin-dependent kinase inhibitors (p16 and p18). Expression of related genes at the protein level were also confirmed by Western blot analysis. These data demonstrate potent and specific antimyeloma activity of EGCG and provide the rationale for its clinical evaluation.", "title": "Specific killing of multiple myeloma cells by (-)-epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications." }, { "docid": "40383969", "text": "TGF-beta ligands stimulate diverse cellular differentiation and growth responses by signaling through type I and II receptors. Ligand antagonists, such as follistatin, block signaling and are essential regulators of physiological responses. Here we report the structure of activin A, a TGF-beta ligand, bound to the high-affinity antagonist follistatin. Two follistatin molecules encircle activin, neutralizing the ligand by burying one-third of its residues and its receptor binding sites. Previous studies have suggested that type I receptor binding would not be blocked by follistatin, but the crystal structure reveals that the follistatin N-terminal domain has an unexpected fold that mimics a universal type I receptor motif and occupies this receptor binding site. The formation of follistatin:BMP:type I receptor complexes can be explained by the stoichiometric and geometric arrangement of the activin:follistatin complex. The mode of ligand binding by follistatin has important implications for its ability to neutralize homo- and heterodimeric ligands of this growth factor family.", "title": "The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding." }, { "docid": "4662264", "text": "The phosphorylation of the human estrogen receptor (ER) serine residue at position 118 is required for full activity of the ER activation function 1 (AF-1). This Ser118 is phosphorylated by mitogen-activated protein kinase (MAPK) in vitro and in cells treated with epidermal growth factor (EGF) and insulin-like growth factor (IGF) in vivo. Overexpression of MAPK kinase (MAPKK) or of the guanine nucleotide binding protein Ras, both of which activate MAPK, enhanced estrogen-induced and antiestrogen (tamoxifen)-induced transcriptional activity of wild-type ER, but not that of a mutant ER with an alanine in place of Ser118. Thus, the activity of the amino-terminal AF-1 of the ER is modulated by the phosphorylation of Ser118 through the Ras-MAPK cascade of the growth factor signaling pathways.", "title": "Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase." } ]
420
Fibroblast growth factor 21 protects against atherosclerosis by modulating adiponectin and SREBP2 levels.
[ { "docid": "9315213", "text": "BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. \n METHODS AND RESULTS The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. \n CONCLUSIONS FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels.", "title": "Fibroblast Growth Factor 21 Prevents Atherosclerosis by Suppression of Hepatic Sterol Regulatory Element-Binding Protein-2 and Induction of Adiponectin in Mice" } ]
[ { "docid": "1840993", "text": "Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator that represents a promising target for the treatment of several metabolic diseases. Administration of recombinant wild type FGF21 to diabetic animals leads to a dramatic improvement in glycaemia and ameliorates other systemic measures of metabolic health. Here we report the pharmacologic outcomes observed in non-human primates upon administration of a recently described FGF21 analogue, LY2405319 (LY). Diabetic rhesus monkeys were treated subcutaneously with LY once daily for a period of seven weeks. The doses of LY used were 3, 9 and 50 mg/kg each delivered in an escalating fashion with washout measurements taken at 2, 4, 6 and 8 weeks following the final LY dose. LY therapy led to a dramatic and rapid lowering of several important metabolic parameters including glucose, body weight, insulin, cholesterol and triglyceride levels at all doses tested. In addition, we observed favorable changes in circulating profiles of adipokines, with increased adiponectin and reduced leptin indicative of direct FGF21 action on adipose tissue. Importantly, and for the first time we show that FGF21 based therapy has metabolic efficacy in an animal with late stage diabetes. While the glycemic efficacy of LY in this animal was partially attenuated its lipid lowering effect was fully preserved suggesting that FGF21 may be a viable treatment option even in patients with advanced disease progression. These findings support continued exploration of the FGF21 pathway for the treatment of metabolic disease.", "title": "LY2405319, an Engineered FGF21 Variant, Improves the Metabolic Status of Diabetic Monkeys" }, { "docid": "7150238", "text": "Fibroblast growth factor 21 (FGF21) is a recently discovered metabolic regulator. Exogenous FGF21 produces beneficial metabolic effects in animal models; however, the translation of these observations to humans has not been tested. Here, we studied the effects of LY2405319 (LY), a variant of FGF21, in a randomized, placebo-controlled, double-blind proof-of-concept trial in patients with obesity and type 2 diabetes. Patients received placebo or 3, 10, or 20 mg of LY daily for 28 days. LY treatment produced significant improvements in dyslipidemia, including decreases in low-density lipoprotein cholesterol and triglycerides and increases in high-density lipoprotein cholesterol and a shift to a potentially less atherogenic apolipoprotein concentration profile. Favorable effects on body weight, fasting insulin, and adiponectin were also detected. However, only a trend toward glucose lowering was observed. These results indicate that FGF21 is bioactive in humans and suggest that FGF21-based therapies may be effective for the treatment of selected metabolic disorders.", "title": "The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes." }, { "docid": "970012", "text": "Molecular mechanisms underlying the cold-associated high cardiovascular risk remain unknown. Here, we show that the cold-triggered food-intake-independent lipolysis significantly increased plasma levels of small low-density lipoprotein (LDL) remnants, leading to accelerated development of atherosclerotic lesions in mice. In two genetic mouse knockout models (apolipoprotein E(-/-) [ApoE(-/-)] and LDL receptor(-/-) [Ldlr(-/-)] mice), persistent cold exposure stimulated atherosclerotic plaque growth by increasing lipid deposition. Furthermore, marked increase of inflammatory cells and plaque-associated microvessels were detected in the cold-acclimated ApoE(-/-) and Ldlr(-/-) mice, leading to plaque instability. Deletion of uncoupling protein 1 (UCP1), a key mitochondrial protein involved in thermogenesis in brown adipose tissue (BAT), in the ApoE(-/-) strain completely protected mice from the cold-induced atherosclerotic lesions. Cold acclimation markedly reduced plasma levels of adiponectin, and systemic delivery of adiponectin protected ApoE(-/-) mice from plaque development. These findings provide mechanistic insights on low-temperature-associated cardiovascular risks.", "title": "Cold Exposure Promotes Atherosclerotic Plaque Growth and Instability via UCP1-Dependent Lipolysis" }, { "docid": "10698739", "text": "Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.", "title": "Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1." }, { "docid": "25725663", "text": "Cigarette smoke is the leading cause of the development of various lung diseases including lung cancer through triggering oxidant stress and inflammatory responses which contributed to the lesions of normal human bronchial epithelial (NHBE) cell. Wedelolactone (WEL), a natural compound from Eclipta prostrata L., has been found to possess the inhibitive effects on the proliferation and growth of cancers. In the present study, we investigated the effects of WEL on NHBE cell injury induced by cigarette smoke extract (CSE) in vitro. It showed that the pretreatment WEL (2.5-20μM) resulted in a significant protective effect on 10% CSE-induced cell death in NHBE cells. The pretreatment with WEL dose-dependently and significantly reversed the activities of SOD, CAT, GSH and the level of MDA to normal level. We also found that the protein expression levels of COX-2 and ICAM-1 which are related to inflammatory response were remarkably reduced by WEL compared with 10% CSE treatment. Additionally, WEL also reduced the expressions of antioxidases including NAD(P)H dehydrogenase:Quinone 1 (NQO1) and heme oxygenase-1 (HO-1). Moreover, Nrf2 inhibitor all-trans-retinoic acid (ATRA) decreased remarkably their expressions. These results suggest that WEL protects NHBE cell against CSE-induced injury through modulating Nrf2 pathway. Our study indicates that WEL may be a new potential protective agent against CSE-induced lung injury.", "title": "Wedelolactone protects human bronchial epithelial cell injury against cigarette smoke extract-induced oxidant stress and inflammation responses through Nrf2 pathway." }, { "docid": "23397658", "text": "Fibroblast growth factor 21 (FGF21), a metabolic hormone predominantly produced by the liver, is also expressed in adipocytes and the pancreas. It regulates glucose and lipid metabolism through pleiotropic actions in these tissues and the brain. In mice, fasting leads to increased PPAR-α mediated expression of FGF21 in the liver where it stimulates gluconeogenesis, fatty acid oxidation, and ketogenesis, as an adaptive response to fasting and starvation. In the fed state, FGF21 acts as an autocrine factor in adipocytes, regulating the activity of PPAR-γ through a feed-forward loop mechanism. Administration of recombinant FGF21 has been shown to confer multiple metabolic benefits on insulin sensitivity, blood glucose, lipid profile and body weight in obese mice and diabetic monkeys, without mitogenic or other side effects. Such findings highlight the potential role of FGF21 as a therapeutic agent for obesity-related medical conditions. However, in human studies, high circulating FGF21 levels are found in obesity and its related cardiometabolic disorders including the metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease and coronary artery disease. These findings may indicate the presence of FGF21 resistance or compensatory responses to the underlying metabolic stress, and imply the need for supraphysiological doses of FGF21 to achieve therapeutic efficacy. On the other hand, serum FGF21 has been implicated as a potential biomarker for the early detection of these cardiometabolic disorders. This review summarizes recent developments in the understanding of FGF21, from physiological and clinical perspectives.", "title": "Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives." }, { "docid": "6227220", "text": "Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.", "title": "Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine" }, { "docid": "4583180", "text": "Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification.", "title": "Extracellular Acidic pH Activates the Sterol Regulatory Element-Binding Protein 2 to Promote Tumor Progression." }, { "docid": "13923069", "text": "Chronic, nonresolving inflammation is a critical factor in the clinical progression of advanced atherosclerotic lesions. In the normal inflammatory response, resolution is mediated by several agonists, among which is the glucocorticoid-regulated protein called annexin A1. The proresolving actions of annexin A1, which are mediated through its receptor N-formyl peptide receptor 2 (FPR2/ALX), can be mimicked by an amino-terminal peptide encompassing amino acids 2–26 (Ac2-26). Collagen IV (Col IV)–targeted nanoparticles (NPs) containing Ac2-26 were evaluated for their therapeutic effect on chronic, advanced atherosclerosis in fat-fed Ldlr−/− mice. When administered to mice with preexisting lesions, Col IV–Ac2-26 NPs were targeted to lesions and led to a marked improvement in key advanced plaque properties, including an increase in the protective collagen layer overlying lesions (which was associated with a decrease in lesional collagenase activity), suppression of oxidative stress, and a decrease in plaque necrosis. In mice lacking FPR2/ALX in myeloid cells, these improvements were not seen. Thus, administration of a resolution-mediating peptide in a targeted NP activates its receptor on myeloid cells to stabilize advanced atherosclerotic lesions. These findings support the concept that defective inflammation resolution plays a role in advanced atherosclerosis, and suggest a new form of therapy.", "title": "Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice" }, { "docid": "22401720", "text": "Angiogenesis is a significant prognostic factor in breast cancer, but the factors that control angiogenesis in vivo are not well defined. Multiple angiogenic polypeptides are known, and we have determined the expression of seven of these in primary human breast cancers; the relationship of expression to estrogen receptor and vascular density was also examined. Vascular endothelial growth factor (VEGF) and its four isoforms (121, 165, 189, and 206 amino acids), transforming growth factor (TGF)-beta1, pleiotrophin, acidic and basic fibroblast growth factor (FGF), placental growth factor, and thymidine phosphorylase (platelet-derived endothelial cell growth factor) were quantitated by RNase protection analysis. beta-FGF was also measured by ELISA. The estrogen receptor (ER), epidermal growth factor receptor, and vascular density were analyzed in 64 primary breast cancers. All tumors expressed at least six different vascular growth factors. VEGF was most abundant, and the transcript for the 121-amino acid form predominated. Other angiogenic factors expressed at high levels were thymidine phosphorylase and TGF-beta1. Expression of most of the angiogenic factors did not correlate with that of ER or vascular density. However, thymidine phosphorylase did, with a correlation coefficient of 0.3 (P = 0.03). There were significant associations of pleiotrophin with acidic FGF expression (P = 0.001) and TGF-beta with platelet-derived endothelial cell growth factor expression (P = 0.001). Thus, angiogenesis may involve a coordinate regulation of some vascular growth factors. High VEGF expression correlated with poor prognosis in univariate analysis (P = 0.03), as did ER and epidermal growth factor receptor expression. Basic FGF was also assessed by ELISA and was more highly expressed in tumors than normal breast tissues (median, 346 microg/ml cytosol; range, 54-1323 versus median, 149; range, 32-509; P = 0.01). Implications for therapy are that broad spectrum agents that block features common to these factors may be useful (e.g., antagonism of heparin-binding activity agents), because so many angiogenic factors are expressed. Inhibiting endothelial migration or agents directly toxic to endothelium would be of value in a combined approach to therapy.", "title": "Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenes" }, { "docid": "19332616", "text": "Coronary atherosclerosis is by far the most frequent cause of ischemic heart disease, and plaque disruption with superimposed thrombosis is the main cause of the acute coronary syndromes of unstable angina, myocardial infarction, and sudden death.1 2 3 4 5 Therefore, for event-free survival, the vital question is not why atherosclerosis develops but rather why, after years of indolent growth, it suddenly becomes complicated by life-threatening thrombosis. The composition and vulnerability of plaque rather than its volume or the consequent severity of stenosis produced have emerged as being the most important determinants for the development of the thrombus-mediated acute coronary syndromes; lipid-rich and soft plaques are more dangerous than collagen-rich and hard plaques because they are more unstable and rupture-prone and highly thrombogenic after disruption.6 This review will explore potential mechanisms responsible for the sudden conversion of a stable atherosclerotic plaque to an unstable and life-threatening atherothrombotic lesion—an event known as plaque fissuring, rupture, or disruption.7 8 Atherosclerosis is the result of a complex interaction between blood elements, disturbed flow, and vessel wall abnormality, involving several pathological processes: inflammation, with increased endothelial permeability, endothelial activation, and monocyte recruitment9 10 11 12 13 14 ; growth, with smooth muscle cell (SMC) proliferation, migration, and matrix synthesis15 16 ; degeneration, with lipid accumulation17 18 ; necrosis, possibly related to the cytotoxic effect of oxidized lipid19 ; calcification/ossification, which may represent an active rather than a dystrophic process20 21 ; and thrombosis, with platelet recruitment and fibrin formation.1 22 23 Thrombotic factors may play a role early during atherogenesis, but a flow-limiting thrombus does not develop until mature plaques are present, which is why thrombosis often is classified as a complication rather than a genuine component of atherosclerosis. ### Mature Plaques: Atherosis and Sclerosis As the name atherosclerosis implies, mature …", "title": "Coronary plaque disruption." }, { "docid": "1727493", "text": "Advanced ovarian cancer usually spreads to the visceral adipose tissue of the omentum. However, the omental stromal cell-derived molecular determinants that modulate ovarian cancer growth have not been characterized. Here, using next-generation sequencing technology, we identify significantly higher levels of microRNA-21 (miR21) isomiRNAs in exosomes and tissue lysates isolated from cancer-associated adipocytes (CAAs) and fibroblasts (CAFs) than in those from ovarian cancer cells. Functional studies reveal that miR21 is transferred from CAAs or CAFs to the cancer cells, where it suppresses ovarian cancer apoptosis and confers chemoresistance by binding to its direct novel target, APAF1. These data suggest that the malignant phenotype of metastatic ovarian cancer cells can be altered by miR21 delivered by exosomes derived from neighbouring stromal cells in the omental tumour microenvironment, and that inhibiting the transfer of stromal-derived miR21 is an alternative modality in the treatment of metastatic and recurrent ovarian cancer.", "title": "Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1" }, { "docid": "15521377", "text": "Cellular senescence is a stable form of cell-cycle arrest which is thought to limit the proliferative potential of premalignant cells [1]. The senescence phenotype was initially described by Hayflick and Moorhead in 1961 on human fibroblasts undergoing replicative exhaustion in culture [2]. It has been shown that senescence can be triggered in different cell types in response to diverse forms of cellular damage or stress (for review see [1]). Importantly, while senescence was denounced as a tissue culture phenomenon for many years, recent in vivo studies demonstrated that cellular senescence represents a potent failsafe mechanism against tumorigenesis and contributes to the cytotoxicity of certain anticancer agents (see for example [3-7]). Interestingly, senescent cells have also been observed in certain aged or damaged tissues and there is growing evidence that senescence checkpoints can affect the regenerative reserve of tissues and organismal aging [8-11]. However, senescence may also have positive effects on organ maintenance by limiting pathological responses to acute forms of injury such as fibrotic scarring in response to chemical induced liver injury [12]. Over the past years it was also shown that senescent cells can communicate with their environment by secreting a myriad of cytokines and growth factors. Interestingly, this \"senescence associated secretory phenotype (SASP)\" seems to be a double edged sword regarding tumor initiation and maintenance: i) On the one hand, it has been shown that the SASP can have pro-tumorigenic effects. In an experimental system it was shown that senescent mesenchymal cells can enhance the tumorigenicity of surrounding breast cancer cells [13]. ii) Similarly, it is possible that the SASP enhances selection of transformed cell clones in aged organ systems. It has been shown that loss of proliferative competition of non-transformed cells can accelerate leukemogenesis [14]. It remains to be seen whether aberrant secretion of cytokines and growth factors by the SASP can accelerated this process in aged and chronically damage organ systems. iii) In contrast to its pro-tumorigenic aspect, the SASP could also have anti-tumor effects. A recent study showed that in a mosaic liver cancer mouse model the activation of p53 induced senescence, an upregulation of inflammatory cytokines, and activation of innate immune responses leading to tumour cell clearance [15]. iv) In further support that the SASP could have anti-tumor activities, a series of recent papers showed that components of the SASP can stabilize the senescence cell cycle arrest via an autoregulatory feedback loop [16,17] or induces apoptosis of tumor cells [18]. In addition to its effects on tumorigenesis, the SASP could also influence tissue aging. Studies on aging telomere dysfunctional mice have provided direct experimental evidence for an in vivo activation of the SASP in response to telomere dysfunction [19]. Interestingly, this in vivo SASP provoked alterations in stem cell differentiation (skewing of hematopoiesis towards reduction in lymphopoiesis and enhancement of myelopoiesis) that are also characteristic signs of human aging. Figure 1. Different cellular stresses can induce senescence including telomere shortening, DNA damage, and oncogene activation. Senescence of tumor cells ... In light of the many possible roles o the SASP in aging and carcinogenesis, it appears to be of utmost importance to decipher regulatory pathways controlling the SASP. In a current publication, Bhaumik et al. have identified 2 microRNAs (miR-146a/b) that negatively regulate the secretion of IL-6 and IL-8 - two of the SASP [20]. The authors show that these microRNAs are up-regulated at late stages of senescence, many days after a permanent cell cycle arrest has been established. Interestingly, the inhibitory miRs are most strongly up-regulated in senescence of cell lines that show a strong SASP but not in cell lines characterized by a weak SASP. The authors propose a new concept indicating that miRs 146a and b function in a negative feedback loop preventing an over-activation of the SASP in senescent cells. The authors present some initial data suggesting that activation of this negative feedback loop involves IL-1 receptor, IRAK-1, and NFκB signalling leading to an up-regulation of miRs-146a and b. A direct proof that this proposed feedback loop suppresses over-activation of the SASP remains to be demonstrated in future studies. The authors show that blockage of IL-1-receptor signalling prevents both the up-regulation of miRs-146a and b as well as Il-6 secretion. To confirm their new concept, it would be important to show that a selective blockage of miRs-146a and b results in over-activation of the SASP. The work by Bhaumik et al. places mir-146a/b as central players to control IL-6 and IL-8 expression within the SASP. MicroRNAs are emerging therapeutic targets because their expression levels can be effectively modulated via the use of antagomirs (see for example [21]). Also, for increasing microRNA expression, microRNAs can be delivered into cellsin vivo (see for example [22]). Therefore, it will be interesting to functionally test the impact of mir-146 inhibition on tumorigenesis and aging in relevant mouse models. Such studies will be of particular interest, as recent work showed that IL-6 secretion by senescent cells is relevant for initiating and maintaining the senescene response via an autocrine loop [17]. A reduction of miR-146 could increase IL-6 levels in senescent cells, which should stabilize the senescence program and reduce the risk of malignant transformation. Furthermore, it can be speculated that reduction of mir-146 a/b will increase NfκB activation via IRAK1. As NfκB is modulating the expression of various inflammation associated genes, this may also lead to increased clearance of senescent tumor cells by the innate immune system. However, it should be mentioned that Il-6 secreted by senescent cells can also act as a mitogen for surrounding cells, thus potentially increasing the risk of malignant transformation [13,17]. Besides its function in SASP modulation, miR-146 was also reported to target the mRNAs of the BRCA1 and BRCA2 tumor suppressors. In a recent study a G to C polymorphism in miR-146, which leads to an increased processing and release of the mature microRNA, can predict an early onset of breast cancer [23]. Taken together, the study of Bhaumik et al. opens an interesting new research area dealing with the gene regulatory mechanisms that control activation of the SASP. Given the diverse roles of the SASP in modulating tumor progression, immune surveillance of damaged cells, and the stabilization of the senescence arrest itself, it will be of great interest to analyse the influence of SASP regulatory pathways during aging and cancer.", "title": "Keeping your senescent cells under control" }, { "docid": "4647303", "text": "CONTEXT Exposure to cardiovascular risk factors during childhood and adolescence may be associated with the development of atherosclerosis later in life. \n OBJECTIVE To study the relationship between cardiovascular risk factors measured in childhood and adolescence and common carotid artery intima-media thickness (IMT), a marker of preclinical atherosclerosis, measured in adulthood. \n DESIGN, SETTING, AND PARTICIPANTS Population-based, prospective cohort study conducted at 5 centers in Finland among 2229 white adults aged 24 to 39 years who were examined in childhood and adolescence at ages 3 to 18 years in 1980 and reexamined 21 years later, between September 2001 and January 2002. \n MAIN OUTCOME MEASURES Association between cardiovascular risk variables (levels of low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], and triglycerides; LDL-C/HDL-C ratio; systolic and diastolic blood pressure; body mass index; smoking) measured in childhood and adulthood and common carotid artery IMT measured in adulthood. \n RESULTS In multivariable models adjusted for age and sex, IMT in adulthood was significantly associated with childhood LDL-C levels (P =.001), systolic blood pressure (P<.001), body mass index (P =.007), and smoking (P =.02), and with adult systolic blood pressure (P<.001), body mass index (P<.001), and smoking (P =.004). The number of risk factors measured in 12- to 18-year-old adolescents, including high levels (ie, extreme age- and sex-specific 80th percentile) of LDL-C, systolic blood pressure, body mass index, and cigarette smoking, were directly related to carotid IMT measured in young adults at ages 33 through 39 years (P<.001 for both men and women), and remained significant after adjustment for contemporaneous risk variables. The number of risk factors measured at ages 3 to 9 years demonstrated a weak direct relationship with carotid IMT at ages 24 to 30 years in men (P =.02) but not in women (P =.63). \n CONCLUSIONS Risk factor profile assessed in 12- to 18-year-old adolescents predicts adult common carotid artery IMT independently of contemporaneous risk factors. These findings suggest that exposure to cardiovascular risk factors early in life may induce changes in arteries that contribute to the development of atherosclerosis.", "title": "Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study." }, { "docid": "12622860", "text": "S-trans,trans-Farnesylthiosalicylic acid (FTS) is a novel farnesylated rigid carboxylic acid derivative. In cell-free systems, it acts as a potent competitive inhibitor (Ki = 2.6 microM) of the enzyme prenylated protein methyltransferase (PPMTase), which methylates the carboxyl-terminal S-prenylcysteine in a large number of prenylated proteins including Ras. In such systems, FTS inhibits Ras methylation but not Ras farnesylation. Inhibition of the PPMTase by FTS in homogenates or membranes of a variety of tissues and cell lines is inferred from a block in the methylation of exogenously added substrates such as N-acetyl-S-trans,trans-farnesyl-L-cysteine and of endogenous substrates including small GTP-binding proteins. FTS can also inhibit methylation of these proteins in intact cells (e.g. in Rat-1 fibroblasts, Ras-transformed Rat-1, and B16 melanoma cells). Unlike in cell-free systems, however, relatively high concentrations of FTS (50-100 microM) are required for partial blocking (10-40%) of protein methylation in the intact cells. Thus, FTS is a weak inhibitor of methylation in intact cells. Because methylation is the last step in the processing of Ras and related proteins, FTS is not likely to affect steps that precede it, e.g. protein prenylation. This may explain why the growth and gross morphology of a variety of cultured cell types (including Chinese hamster ovary, NIH3T3, Rat1, B16 melanoma, and PC12) is not affected by up to 25 microM FTS and is consistent with the observed lack of FTS-induced cytotoxicity. Nevertheless, FTS reduces the levels of Ras in cell membranes and can inhibit Ras-dependent cell growth in vitro, independently of methylation. It inhibits the growth of human Ha-ras-transformed cells (EJ cells) and reverses their transformed morphology in a dose-dependent manner (0.1-10 microM). The drug does not interfere with the growth of cells transformed by v-Raf or T-antigen but inhibits the growth of ErbB2-transformed cells and blocks the mitogenic effects of epidermal and basic fibroblast growth factors, thus implying its selectivity toward Ras growth signaling, possibly via modulation of Ras-Raf communication. Taken together, the results raise the possibility that FTS may specifically interfere with the interaction of Ras with a farnesylcysteine recognition domain in the cell membrane.(ABSTRACT TRUNCATED AT 400 WORDS)", "title": "Selective inhibition of Ras-dependent cell growth by farnesylthiosalisylic acid." }, { "docid": "5821617", "text": "Atherosclerotic plaques develop in regions of the vasculature associated with chronic inflammation due to disturbed flow patterns. Endothelial phenotype modulation by flow requires the integration of numerous mechanotransduction pathways, but how this is achieved is not well understood. We show here that, in response to flow, the adaptor protein Shc is activated and associates with cell-cell and cell-matrix adhesions. Shc activation requires the tyrosine kinases vascular endothelial growth factor receptor 2 and Src. Shc activation and its vascular endothelial cadherin (VE-cadherin) association are matrix independent. In contrast, Shc binding to integrins requires VE-cadherin but occurs only on specific matrices. Silencing Shc results in reduction in both matrix-independent and matrix-dependent signals. Furthermore, Shc regulates flow-induced inflammatory signaling by activating nuclear factor kappaB-dependent signals that lead to atherogenesis. In vivo, Shc is activated in atherosclerosis-prone regions of arteries, and its activation correlates with areas of atherosclerosis. Our results support a model in which Shc orchestrates signals from cell-cell and cell-matrix adhesions to elicit flow-induced inflammatory signaling.", "title": "Shc coordinates signals from intercellular junctions and integrins to regulate flow-induced inflammation" }, { "docid": "18852643", "text": "In humans, apolipoprotein E (apoE) is a polymorphic multifunctional protein.1 It is coded by three alleles (e2, e3, e4) of a modulator gene (level, variability, and susceptibility gene) at the apoE locus on chromosome 19, determining six apoE genotypes and plasma phenotypes. Its pleiotropic effects are exerted on plasma lipoprotein metabolism, coagulation, oxidative processes, macrophage, glial cell and neuronal cell homeostasis, adrenal function, central nervous system physiology, inflammation, and cell proliferation.2,3 ApoE polymorphism modulates susceptibility to many diseases. It is, however, particularly notorious for its role in neurodegenerative disorders4 and atherosclerotic arterial disease.5,6 The e4 allele (phenotypes E4/4 and E4/3) that is associated with higher low density lipoprotein cholesterol (LDL-C) is considered proatherogenic, whereas the presence of the e2 allele (E3/2, E2/2), being associated with lower LDL-C levels, is deemed to have the opposite effect (although it may be associated with increased plasma triglycerides and lipoprotein remnants). This simple equation, however, is an oversimplification because these properties are subject to many environmental and genetic influences. ApoE has allele- and gender-dependent effects on reverse cholesterol transport, platelet aggregation, and oxidative processes that are likely to affect the overall atherogenic potential ascribed to modulation of lipoprotein metabolism.2,3,6 Notwithstanding the context dependency, a recent meta-analysis fully supports the presence of the e4 allele as a significant risk factor for coronary artery disease.7 Several mechanisms have been evoked to link apoE with atherosclerosis, but the relationship is not fully unraveled in humans. Nevertheless, some apoE mimetic peptides that promote LDL clearance are currently tested in animals for potential clinical applications.8,9 See page 436 The situation is relatively simpler in animals. The mouse model has been prominently useful to test mechanisms …", "title": "Apolipoprotein E and atherosclerosis: beyond lipid effect." }, { "docid": "32742683", "text": "Among cells present in the tumor microenvironment, activated fibroblasts termed cancer-associated fibroblasts (CAFs), play a critical role in the complex process of tumor-stroma interaction. CAFs, one of the prominent stromal cell populations in most types of human carcinomas, have been involved in tumor growth, angiogenesis, cancer stemness, extracellular matrix remodeling, tissue invasion, metastasis, and even chemoresistance. During the past decade, these activated tumor-associated fibroblasts have also been involved in the modulation of the anti-tumor immune response on various levels. In this review, we describe our current understanding of how CAFs accomplish this task as well as their potential therapeutic implications.", "title": "Alteration of the Antitumor Immune Response by Cancer-Associated Fibroblasts" }, { "docid": "22478394", "text": "INTRODUCTION Triglyceride accumulation in the liver is an early feature in the development of nonalcoholic fatty liver disease (NAFLD) associated with human obesity, which is a multifactorial syndrome and whose underlying mechanisms are beginning to be understood. \n OBJECTIVES Liver peroxisome proliferator-activated receptor-γ (PPAR-γ) mRNA expression was measured as a signaling mechanism related to steatosis in obese patients with NAFLD. \n METHODS Liver PPAR-γ and sterol receptor element-binding protein 1c (SREBP-1c) mRNA (real-time RT-PCR), serum total adiponectin (RIA), and high molecular weight (HMW)-adiponectin (ELISA) levels, and insulin resistance (IR) evolution (homeostasis model assessment-IR) were determined in 22 obese NAFLD patients (16 with steatosis and six with steatohepatitis) who underwent subtotal gastrectomy with gastrojejunal anastomosis in Roux-en-Y and 16 nonobese subjects who underwent laparoscopic cholecystectomy (controls). \n RESULTS Liver PPAR-γ mRNA levels were 112 and 188% higher (P < 0.05) than control values in obese patients with steatosis and steatohepatitis, respectively, who also exhibited 70 and 62% increases in those of SREBP-1c, concomitantly with IR and lower levels of serum total adiponectin and HMW-adiponectin (P < 0.05). Liver PPAR-γ expression showed positive associations with SREBP-1c mRNA levels (r = 0.86; P < 0.0001), serum insulin levels (r = 0.39; P < 0.01), and homeostasis model assessment-IR (r = 0.60; P < 0.0001), and negative correlations with total adiponectin (r = -0.37; P < 0.01) and HMW-adiponectin (r = -0.51; P < 0.001) levels in serum. \n CONCLUSIONS PPAR-γ is up-regulated in the liver of obese patients with NAFLD, representing an additional reinforcing lipogenic mechanism to SREBP-1c induction in the development of hepatic steatosis.", "title": "Up-regulation of PPAR-gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction." } ]
422
Flexible molecules experience less steric hindrance in the tumor microenviroment than rigid molecules.
[ { "docid": "11172205", "text": "A solid tumor is an organ composed of cancer and host cells embedded in an extracellular matrix and nourished by blood vessels. A prerequisite to understanding tumor pathophysiology is the ability to distinguish and monitor each component in dynamic studies. Standard fluorophores hamper simultaneous intravital imaging of these components. Here, we used multiphoton microscopy techniques and transgenic mice that expressed green fluorescent protein, and combined them with the use of quantum dot preparations. We show that these fluorescent semiconductor nanocrystals can be customized to concurrently image and differentiate tumor vessels from both the perivascular cells and the matrix. Moreover, we used them to measure the ability of particles of different sizes to access the tumor. Finally, we successfully monitored the recruitment of quantum dot–labeled bone marrow–derived precursor cells to the tumor vasculature. These examples show the versatility of quantum dots for studying tumor pathophysiology and creating avenues for treatment.", "title": "Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo" } ]
[ { "docid": "1065627", "text": "Stiffness is a biophysical property of the extracellular matrix that modulates cellular functions, including proliferation, invasion, and differentiation, and it also may affect therapeutic responses. Therapeutic durability in cancer treatments remains a problem for both chemotherapies and pathway-targeted drugs, but the reasons for this are not well understood. Tumor progression is accompanied by changes in the biophysical properties of the tissue, and we asked whether matrix rigidity modulated the sensitive versus resistant states in HER2-amplified breast cancer cell responses to the HER2-targeted kinase inhibitor lapatinib. The antiproliferative effect of lapatinib was inversely proportional to the elastic modulus of the adhesive substrata. Down-regulation of the mechanosensitive transcription coactivators YAP and TAZ, either by siRNA or with the small-molecule YAP/TEAD inhibitor verteporfin, eliminated modulus-dependent lapatinib resistance. Reduction of YAP in vivo in mice also slowed the growth of implanted HER2-amplified tumors, showing a trend of increasing sensitivity to lapatinib as YAP decreased. Thus we address the role of stiffness in resistance to and efficacy of a HER2 pathway-targeted therapeutic via the mechanotransduction arm of the Hippo pathway.", "title": "Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors." }, { "docid": "39728826", "text": "An essential step in macromolecular refinement is the selection of model parameters which give as good a description of the experimental data as possible while retaining a realistic data-to-parameter ratio. This is particularly true of the choice of atomic displacement parameters, where the move from individual isotropic to individual anisotropic refinement involves a sixfold increase in the number of required displacement parameters. The number of refinement parameters can be reduced by using collective variables rather than independent atomic variables and one of the simplest examples of this is the TLS parameterization for describing the translation, libration and screw-rotation displacements of a pseudo-rigid body. This article describes the implementation of the TLS parameterization in the macromolecular refinement program REFMAC. Derivatives of the residual with respect to the TLS parameters are expanded in terms of the derivatives with respect to individual anisotropic U values, which in turn are calculated using a fast Fourier transform technique. TLS refinement is therefore fast and can be used routinely. Examples of TLS refinement are given for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a transcription activator GerE, for both of which there is data to only 2.0 A, so that individual anisotropic refinement is not feasible. GAPDH has been refined with between one and four TLS groups in the asymmetric unit and GerE with six TLS groups. In both cases, inclusion of TLS parameters gives improved refinement statistics and in particular an improvement in R and free R values of several percent. Furthermore, GAPDH and GerE have two and six molecules in the asymmetric unit, respectively, and in each case the displacement parameters differ significantly between molecules. These differences are well accounted for by the TLS parameterization, leaving residual local displacements which are very similar between molecules and to which NCS restraints can be applied.", "title": "Use of TLS parameters to model anisotropic displacements in macromolecular refinement." }, { "docid": "15327601", "text": "Very often, the positions of flexible domains within macromolecules as well as within macromolecular complexes cannot be determined by standard structural biology methods. To overcome this problem, we developed a method that uses probabilistic data analysis to combine single-molecule measurements with X-ray crystallography data. The method determines not only the most likely position of a fluorescent dye molecule attached to the domain but also the complete three-dimensional probability distribution depicting the experimental uncertainty. With this approach, single-pair fluorescence resonance energy transfer measurements can now be used as a quantitative tool for investigating the position and dynamics of flexible domains within macromolecular complexes. We applied this method to find the position of the 5′ end of the nascent RNA exiting transcription elongation complexes of yeast (Saccharomyces cerevisiae) RNA polymerase II and studied the influence of transcription factor IIB on the position of the RNA.", "title": "A nano-positioning system for macromolecular structural analysis" }, { "docid": "21598000", "text": "Plus-end tracking proteins, such as EB1 and the dynein/dynactin complex, regulate microtubule dynamics. These proteins are thought to stabilize microtubules by forming a plus-end complex at microtubule growing ends with ill-defined mechanisms. Here we report the crystal structure of two plus-end complex components, the carboxy-terminal dimerization domain of EB1 and the microtubule binding (CAP-Gly) domain of the dynactin subunit p150Glued. Each molecule of the EB1 dimer contains two helices forming a conserved four-helix bundle, while also providing p150Glued binding sites in its flexible tail region. Combining crystallography, NMR, and mutational analyses, our studies reveal the critical interacting elements of both EB1 and p150Glued, whose mutation alters microtubule polymerization activity. Moreover, removal of the key flexible tail from EB1 activates microtubule assembly by EB1 alone, suggesting that the flexible tail negatively regulates EB1 activity. We, therefore, propose that EB1 possesses an auto-inhibited conformation, which is relieved by p150Glued as an allosteric activator.", "title": "Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex." }, { "docid": "2617858", "text": "Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function.", "title": "Conformational Changes during Pore Formation by the Perforin-Related Protein Pleurotolysin" }, { "docid": "22889972", "text": "Inflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha) have been implicated in atherogenesis. However, the precise role of TNF-alpha in atherogenesis is still unclear. To examine the effect of TNF-alpha on atherogenesis, we generated compound-deficient mice in apolipoprotein E (apoE) and TNF-alpha (apoE-/-/TNF-alpha-/-) and compared them with apoE-/- mice. Although serum total cholesterol levels were markedly elevated in both apoE-/-/TNF-alpha-/- and apoE-/- mice compared to wild-type mice, no differences were observed between apoE-/-/TNF-alpha-/- and apoE-/- mice. The atherosclerotic plaque area in the aortic luminal surface of apoE-/-/TNF-alpha-/- mice (n=8, 3.1+/-0.4%) was significantly smaller than that of apoE-/- mice (n=7, 4.7+/-0.4%, p<0.001) despite the lack of difference in serum cholesterol levels. The atherosclerotic lesion size in the aortic sinus of apoE-/-/TNF-alpha-/- mice (n=10, 5.1+/-0.3 x 10(5)microm(2)) was also significantly smaller than that of apoE-/- mice (n=11, 7.0+/-0.3 x 10(5)microm(2), p<0.0001). RT-PCR analysis indicated that the expression levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) were significantly higher in apoE-/- than apoE-/-/TNF-alpha-/- mice. Macrophages from apoE(-/-) mice showed higher uptake level of oxidized LDL and increased expression level of scavenger receptor class A (SRA) compared to those from apoE-/-/TNF-alpha-/- mice. These results indicate that TNF-alpha plays an atherogenic role by upregulating the expressions of ICAM-1, VCAM-1 and MCP-1 in the vascular wall, and by inducing SRA expression and oxidized LDL uptake in macrophages.", "title": "Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice." }, { "docid": "4422734", "text": "The activation of T cells through interaction of their T-cell receptors with antigenic peptide bound to major histocompatibility complex (MHC) on the surface of antigen presenting cells (APCs) is a crucial step in adaptive immunity. Here we use three-dimensional fluorescence microscopy to visualize individual peptide–I-Ek class II MHC complexes labelled with the phycobiliprotein phycoerythrin in an effort to characterize T-cell sensitivity and the requirements for forming an immunological synapse in single cells. We show that T cells expressing the CD4 antigen respond with transient calcium signalling to even a single agonist peptide–MHC ligand, and that the organization of molecules in the contact zone of the T cell and APC takes on the characteristics of an immunological synapse when only about ten agonists are present. This sensitivity is highly dependant on CD4, because blocking this molecule with antibodies renders T cells unable to detect less than about 30 ligands.", "title": "Direct observation of ligand recognition by T cells" }, { "docid": "38623601", "text": "Autophagy is the principal catabolic response to nutrient starvation and is necessary to clear dysfunctional or damaged organelles, but excessive autophagy can be cytotoxic or cytostatic and contributes to cell death. Depending on the abundance of enzymes involved in molecule biosynthesis, cells can be dependent on uptake of exogenous nutrients to provide these molecules. Argininosuccinate synthetase 1 (ASS1) is a key enzyme in arginine biosynthesis, and its abundance is reduced in many solid tumors, making them sensitive to external arginine depletion. We demonstrated that prolonged arginine starvation by exposure to ADI-PEG20 (pegylated arginine deiminase) induced autophagy-dependent death of ASS1-deficient breast cancer cells, because these cells are arginine auxotrophs (dependent on uptake of extracellular arginine). Indeed, these breast cancer cells died in culture when exposed to ADI-PEG20 or cultured in the absence of arginine. Arginine starvation induced mitochondrial oxidative stress, which impaired mitochondrial bioenergetics and integrity. Furthermore, arginine starvation killed breast cancer cells in vivo and in vitro only if they were autophagy-competent. Thus, a key mechanism underlying the lethality induced by prolonged arginine starvation was the cytotoxic autophagy that occurred in response to mitochondrial damage. Last, ASS1 was either low in abundance or absent in more than 60% of 149 random breast cancer biosamples, suggesting that patients with such tumors could be candidates for arginine starvation therapy.", "title": "Arginine Starvation Impairs Mitochondrial Respiratory Function in ASS1-Deficient Breast Cancer Cells" }, { "docid": "17163294", "text": "BACKGROUND Accumulating evidence has shown that cancer cell metabolism differs from that of normal cells. However, up to now it is not clear whether different cancer types are characterized by a specific metabolite profile. Therefore, this study aims to evaluate whether the plasma metabolic phenotype allows to discriminate between lung and breast cancer. \n PATIENTS AND METHODS The proton nuclear magnetic resonance spectrum of plasma is divided into 110 integration regions, representing the metabolic phenotype. These integration regions reflect the relative metabolite concentrations and were used to train a classification model in discriminating between 80 female breast cancer patients and 54 female lung cancer patients, all with an adenocarcinoma. The validity of the model was examined by permutation testing and by classifying an independent validation cohort of 60 female breast cancer patients and 81 male lung cancer patients, all with an adenocarcinoma. \n RESULTS The model allows to classify 99% of the breast cancer patients and 93% of the lung cancer patients correctly with an area under the curve (AUC) of 0.96 and can be validated in the independent cohort with a sensitivity of 89%, a specificity of 82% and an AUC of 0.94. Decreased levels of sphingomyelin and phosphatidylcholine (phospholipids with choline head group) and phospholipids with short, unsaturated fatty acid chains next to increased levels of phospholipids with long, saturated fatty acid chains seem to indicate that cell membranes of lung tumors are more rigid and less sensitive to lipid peroxidation. The other discriminating metabolites are pointing to a more pronounced response of the body to the Warburg effect for lung cancer. \n CONCLUSION Metabolic phenotyping of plasma allows to discriminate between lung and breast cancer, indicating that the metabolite profile reflects more than a general cancer marker. CLINICAL TRIAL REGISTRATION NUMBER NCT02362776.", "title": "Metabolic phenotyping of human blood plasma: a powerful tool to discriminate between cancer types?" }, { "docid": "52850476", "text": "The analysis of mitochondrial DNA (mtDNA) has been a potent tool in our understanding of human evolution, owing to characteristics such as high copy number, apparent lack of recombination, high substitution rate and maternal mode of inheritance. However, almost all studies of human evolution based on mtDNA sequencing have been confined to the control region, which constitutes less than 7% of the mitochondrial genome. These studies are complicated by the extreme variation in substitution rate between sites, and the consequence of parallel mutations causing difficulties in the estimation of genetic distance and making phylogenetic inferences questionable. Most comprehensive studies of the human mitochondrial molecule have been carried out through restriction-fragment length polymorphism analysis, providing data that are ill suited to estimations of mutation rate and therefore the timing of evolutionary events. Here, to improve the information obtained from the mitochondrial molecule for studies of human evolution, we describe the global mtDNA diversity in humans based on analyses of the complete mtDNA sequence of 53 humans of diverse origins. Our mtDNA data, in comparison with those of a parallel study of the Xq13.3 region in the same individuals, provide a concurrent view on human evolution with respect to the age of modern humans.", "title": "Mitochondrial genome variation and the origin of modern humans." }, { "docid": "23698769", "text": "DNA polymerase μ (Pol μ) is the only template-dependent human DNA polymerase capable of repairing double-strand DNA breaks (DSBs) with unpaired 3′ ends in nonhomologous end joining (NHEJ). To probe this function, we structurally characterized Pol μ's catalytic cycle for single-nucleotide incorporation. These structures indicate that, unlike other template-dependent DNA polymerases, Pol μ shows no large-scale conformational changes in protein subdomains, amino acid side chains or DNA upon dNTP binding or catalysis. Instead, the only major conformational change is seen earlier in the catalytic cycle, when the flexible loop 1 region repositions upon DNA binding. Pol μ variants with changes in loop 1 have altered catalytic properties and are partially defective in NHEJ. The results indicate that specific loop 1 residues contribute to Pol μ's unique ability to catalyze template-dependent NHEJ of DSBs with unpaired 3′ ends.", "title": "Sustained active site rigidity during synthesis by human DNA polymerase μ" }, { "docid": "15983148", "text": "Nervous system function requires proper development of two functional and morphological domains of neurons, axons and dendrites. Although both these domains are equally important for signal transmission, our understanding of dendrite development remains relatively poor. Here, we show that in C. elegans the Wnt ligand, LIN-44, and its Frizzled receptor, LIN-17, regulate dendrite development of the PQR oxygen sensory neuron. In lin-44 and lin-17 mutants, PQR dendrites fail to form, display stunted growth, or are misrouted. Manipulation of temporal and spatial expression of LIN-44, combined with cell-ablation experiments, indicates that this molecule is patterned during embryogenesis and acts as an attractive cue to define the site from which the dendrite emerges. Genetic interaction between lin-44 and lin-17 suggests that the LIN-44 signal is transmitted through the LIN-17 receptor, which acts cell autonomously in PQR. Furthermore, we provide evidence that LIN-17 interacts with another Wnt molecule, EGL-20, and functions in parallel to MIG-1/Frizzled in this process. Taken together, our results reveal a crucial role for Wnt and Frizzled molecules in regulating dendrite development in vivo.", "title": "LIN-44/Wnt Directs Dendrite Outgrowth through LIN-17/Frizzled in C. elegans Neurons" }, { "docid": "33036897", "text": "Tyrosol and farnesol are quorum-sensing molecules produced by Candida albicans which accelerate and block, respectively, the morphological transition from yeasts to hyphae. In this study, we have investigated the secretion of tyrosol by C. albicans and explored its likely role in biofilm development. Both planktonic (suspended) cells and biofilms of four C. albicans strains, including three mutants with defined defects in the Efg 1 and Cph 1 morphogenetic signaling pathways, synthesized extracellular tyrosol during growth at 37 degrees C. There was a correlation between tyrosol production and biomass for both cell types. However, biofilm cells secreted at least 50% more tyrosol than did planktonic cells when tyrosol production was related to cell dry weight. The addition of exogenous farnesol to a wild-type strain inhibited biofilm formation by up to 33% after 48 h. Exogenous tyrosol appeared to have no effect, but scanning electron microscopy revealed that tyrosol stimulated hypha production during the early stages (1 to 6 h) of biofilm development. Experiments involving the simultaneous addition of tyrosol and farnesol at different concentrations suggested that the action of farnesol was dominant, and 48-h biofilms formed in the presence of both compounds consisted almost entirely of yeast cells. When biofilm supernatants were tested for their abilities to inhibit or enhance germ tube formation by planktonic cells, the results indicated that tyrosol activity exceeds that of farnesol after 14 h, but not after 24 h, and that farnesol activity increases significantly during the later stages (48 to 72 h) of biofilm development. Overall, our results support the conclusion that tyrosol acts as a quorum-sensing molecule for biofilms as well as for planktonic cells and that its action is most significant during the early and intermediate stages of biofilm formation.", "title": "Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development." }, { "docid": "26117607", "text": "Down syndrome cell adhesion molecule (Dscam) seems likely to play a key role in the \"alternative adaptive immunity\" that has been reported in invertebrates. Dscam consists of a cytoplasmic tail that is involved in signal transduction and a hypervariable extracellular region that might use a pathogen recognition mechanism similar to that used by the vertebrate antibodies. In our previous paper, we isolated a unique tail-less form of Dscam from Litopenaeus vannamei. In this study, we report the first membrane-bound form of shrimp Dscam: PmDscam was isolated from Penaeus monodon, and it occurred in both membrane-bound and tail-less forms. Phylogenetic analysis showed that while the crustacean Dscams from shrimp and water flea did not share a single subclade, they were distinct from the invertebrate Dscam-like molecules and from the insecta Dscams. In the extracellular region, the variable regions of PmDscam were located in N-terminal Ig2, N-terminal Ig3 and the entire Ig7 domain. The PmDscam extracellular variants and transmembrane domain variants were produced by mutually exclusive alternative splicing events. The cytoplasmic tail variants were produced by exon inclusion/exclusion. Based on the genomic organization of Daphnia Dscam's cytoplasmic tail, we propose a model of how the shrimp Dscam genomic locus might use Type III polyadenylation to generate both the tail-less and membrane-bound forms.", "title": "Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported." }, { "docid": "306006", "text": "T cell activation is predicated on the interaction between the T cell receptor and peptide-major histocompatibility (pMHC) ligands. The factors that determine the stimulatory potency of a pMHC molecule remain unclear. We describe results showing that a peptide exhibiting many hallmarks of a weak agonist stimulates T cells to proliferate more than the wild-type agonist ligand. An in silico approach suggested that the inability to form the central supramolecular activation cluster (cSMAC) could underlie the increased proliferation. This conclusion was supported by experiments that showed that enhancing cSMAC formation reduced stimulatory capacity of the weak peptide. Our studies highlight the fact that a complex interplay of factors determines the quality of a T cell antigen.", "title": "The stimulatory potency of T cell antigens is influenced by the formation of the immunological synapse." }, { "docid": "42489926", "text": "p53 regulates a key pathway which protects normal tissues from tumor development that may result from diverse forms of stress. In the absence of stress, growth suppressive and proapoptotic activity of p53 is inhibited by MDM2 which binds p53 and negatively regulates its activity and stability. MDM2 antagonists could activate p53 and may offer a novel therapeutic approach to cancer. Recently, we identified the first potent and selective low molecular weight inhibitors of MDM2-p53 binding, the Nutlins. These molecules activate the p53 pathway and suppress tumor growth in vitro and in vivo. They represent valuable new tools for studying the p53 pathway and its defects in cancer. Nutlins induce p53-dependent apoptosis in human cancer cells but appear cytostatic to proliferating normal cells. Their potent activity against osteosarcoma xenografts suggests that MDM2 antagonists may have clinical utility in the treatment of tumors with wild-type p53.", "title": "Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics." }, { "docid": "28086354", "text": "Morphogenesis of the adult structures of holometabolous insects is regulated by ecdysteroids and juvenile hormones and involves cell-cell interactions mediated in part by the cell surface integrin receptors and their extracellular matrix (ECM) ligands. These adhesion molecules and their regulation by hormones are not well characterized. We describe the gene structure of a newly described ECM molecule, tenectin, and demonstrate that it is a hormonally regulated ECM protein required for proper morphogenesis of the adult wing and male genitalia. Tenectin's function as a new ligand of the PS2 integrins is demonstrated by both genetic interactions in the fly and by cell spreading and cell adhesion assays in cultured cells. Its interaction with the PS2 integrins is dependent on RGD and RGD-like motifs. Tenectin's function in looping morphogenesis in the development of the male genitalia led to experiments that demonstrate a role for PS integrins in the execution of left-right asymmetry.", "title": "Tenectin is a novel alphaPS2betaPS integrin ligand required for wing morphogenesis and male genital looping in Drosophila." }, { "docid": "41165286", "text": "Bacteroidales are the most abundant Gram-negative bacteria of the human intestinal microbiota comprising more than half of the bacteria in many individuals. Some of the factors that these bacteria use to establish and maintain themselves in this ecosystem are beginning to be identified. However, ecological competition, especially interference competition where one organism directly harms another, is largely unexplored. To begin to understand the relevance of this ecological principle as it applies to these abundant gut bacteria and factors that may promote such competition, we screened Bacteroides fragilis for the production of antimicrobial molecules. We found that the production of extracellularly secreted antimicrobial molecules is widespread in this species. The first identified molecule, described in this manuscript, contains a membrane attack complex/perforin (MACPF) domain present in host immune molecules that kill bacteria and virally infected cells by pore formation, and mutations affecting key residues of this domain abrogated its activity. This antimicrobial molecule, termed BSAP-1, is secreted from the cell in outer membrane vesicles and no additional proteins are required for its secretion, processing or immunity of the producing cell. This study provides the first insight into secreted molecules that promote competitive interference among Bacteroidales strains of the human gut.", "title": "An antimicrobial protein of the gut symbiont Bacteroides fragilis with a MACPF domain of host immune proteins." }, { "docid": "35004872", "text": "Asbestos has been described as a physical carcinogen in that its carcinogenic effects appear to be related primarily to fiber dimensions. It has been hypothesized that long asbestos fibers may interfere with chromosome distribution during cell division, causing genomic changes that lead to cell transformation and neoplastic progression. Using high-resolution time-lapse light microscopy and serial-section electron microscopy, we have followed individual crocidolite asbestos fibers through the later stages of cell division in LLC-MK2 epithelial cells, and have detailed for the first time their effect on cytokinesis. We found that long fibers (15-55 microgram), trapped by the cleavage furrow, sterically blocked cytokinesis, sometimes resulting in the formation of a binucleated cell. The ends of blocking fibers were usually found within invaginations of the newly formed nuclei. Nuclear envelope-fiber attachment was evident when a chromatin strand ran with the fiber into the intercellular bridge. Such strands may break, causing chromosome structural rearrangements. Our data are the first to show that individual crocidolite fibers can cause genomic changes by sterically blocking cytokinesis and that fiber length and affinity for the nuclear envelope are important factors. Such genomic changes may be among the initial events leading to asbestos-induced cancers.", "title": "Long crocidolite asbestos fibers cause polyploidy by sterically blocking cytokinesis." }, { "docid": "11335781", "text": "The emergence of immuno-oncology as the first broadly successful strategy for metastatic cancer will require clinicians to integrate this new pillar of medicine with chemotherapy, radiation, and targeted small-molecule compounds. Of equal importance is gaining an understanding of the limitations and toxicities of immunotherapy. Immunotherapy was initially perceived to be a relatively less toxic approach to cancer treatment than other available therapies—and surely it is, when compared to those. However, as the use of immunotherapy becomes more common, especially as first- and second-line treatments, immunotoxicity and autoimmunity are emerging as the Achilles' heel of immunotherapy. In this Perspective, we discuss evidence that the occurrence of immunotoxicity bodes well for the patient, and describe mechanisms that might be related to the induction of autoimmunity. We then explore approaches to limit immunotoxicity, and discuss the future directions of research and reporting that are needed to diminish it.", "title": "Is autoimmunity the Achilles' heel of cancer immunotherapy?" } ]
423
Folate and vitamin B12 levels influence the association between homocysteine and preeclampsia.
[ { "docid": "8595678", "text": "BACKGROUND The MTHFR 677C→T polymorphism has been associated with raised homocysteine concentration and increased risk of stroke. A previous overview showed that the effects were greatest in regions with low dietary folate consumption, but differentiation between the effect of folate and small-study bias was difficult. A meta-analysis of randomised trials of homocysteine-lowering interventions showed no reduction in coronary heart disease events or stroke, but the trials were generally set in populations with high folate consumption. We aimed to reduce the effect of small-study bias and investigate whether folate status modifies the association between MTHFR 677C→T and stroke in a genetic analysis and meta-analysis of randomised controlled trials. \n METHODS We established a collaboration of genetic studies consisting of 237 datasets including 59,995 individuals with data for homocysteine and 20,885 stroke events. We compared the genetic findings with a meta-analysis of 13 randomised trials of homocysteine-lowering treatments and stroke risk (45,549 individuals, 2314 stroke events, 269 transient ischaemic attacks). \n FINDINGS The effect of the MTHFR 677C→T variant on homocysteine concentration was larger in low folate regions (Asia; difference between individuals with TT versus CC genotype, 3·12 μmol/L, 95% CI 2·23 to 4·01) than in areas with folate fortification (America, Australia, and New Zealand, high; 0·13 μmol/L, -0·85 to 1·11). The odds ratio (OR) for stroke was also higher in Asia (1·68, 95% CI 1·44 to 1·97) than in America, Australia, and New Zealand, high (1·03, 0·84 to 1·25). Most randomised trials took place in regions with high or increasing population folate concentrations. The summary relative risk (RR) of stroke in trials of homocysteine-lowering interventions (0·94, 95% CI 0·85 to 1·04) was similar to that predicted for the same extent of homocysteine reduction in large genetic studies in populations with similar folate status (predicted RR 1·00, 95% CI 0·90 to 1·11). Although the predicted effect of homocysteine reduction from large genetic studies in low folate regions (Asia) was larger (RR 0·78, 95% CI 0·68 to 0·90), no trial has evaluated the effect of lowering of homocysteine on stroke risk exclusively in a low folate region. \n INTERPRETATION In regions with increasing levels or established policies of population folate supplementation, evidence from genetic studies and randomised trials is concordant in suggesting an absence of benefit from lowering of homocysteine for prevention of stroke. Further large-scale genetic studies of the association between MTHFR 677C→T and stroke in low folate settings are needed to distinguish effect modification by folate from small-study bias. If future randomised trials of homocysteine-lowering interventions for stroke prevention are undertaken, they should take place in regions with low folate consumption. \n FUNDING Full funding sources listed at end of paper (see Acknowledgments).", "title": "Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials" } ]
[ { "docid": "42441846", "text": "INTRODUCTION Elevated plasma total homocysteine is a major risk for coronary artery disease (CAD). Methyltetrahydrofolate reductase (MTHFR) is a main regulatory enzyme in homocysteine metabolism; a common C677T mutation in the MTHFR gene results in decreased enzyme activity, and contributes to increased homocysteine levels and decreased folate levels. We investigated the frequency of MTHFR C677T alleles in a Korean population, determined the genotype-specific threshold levels of folate or vitamin B12, and investigated the relationship between the TT genotype and the risk of CAD. MATERIALS AND METHODS We enrolled a study population of 163 CAD patients and 50 control subjects, and screened the MTHFR C677T polymorphism using real-time PCR with melting point analysis. Levels of plasma homocysteine, folate and vitamin B12 were also determined. We then defined the genotype-specific threshold values of folate and vitamin B12 required to keep homocysteine levels in a normal range for individuals of each MTHFR C677T genotype. \n RESULTS The frequency of the TT genotype was 18% in control subjects and 26% in patients group (P>0.05). Individuals homozygous for the TT genotype had significantly elevated homocysteine levels (P<0.05). The genotype-specific folate threshold level was significantly higher in TT individuals than in the CC or CT genotypes. The OR of individuals with low folate status and the TT genotype to estimate the relative risk of CAD was 2.2 and the OR of those with high folate status and the TT genotype was 1.5 (95% CI, 0.5-9.6 and 0.7-3.2, respectively). \n CONCLUSION We were able to define a gene-nutrient interaction that shows a higher risk for CAD based on specific threshold folate levels required by different MTHFR C677T genotypes in a Korean population.", "title": "Gene--nutrition interactions in coronary artery disease: correlation between the MTHFR C677T polymorphism and folate and homocysteine status in a Korean population." }, { "docid": "37424881", "text": "OBJECTIVE Folate and vitamin B12 are two vital regulators in the metabolic process of homocysteine, which is a risk factor of atherothrombotic events. Low folate intake or low plasma folate concentration is associated with increased stroke risk. Previous randomized controlled trials presented discordant findings in the effect of folic acid supplementation-based homocysteine lowering on stroke risk. The aim of the present review was to perform a meta-analysis of relevant randomized controlled trials to check the how different folate fortification status might affect the effects of folic acid supplementation in lowering homocysteine and reducing stroke risk. \n DESIGN Relevant randomized controlled trials were identified through formal literature search. Homocysteine reduction was compared in subgroups stratified by folate fortification status. Relative risks with 95 % confidence intervals were used as a measure to assess the association between folic acid supplementation and stroke risk. \n SETTING The meta-analysis included fourteen randomized controlled trials, SUBJECTS A total of 39 420 patients. \n RESULTS Homocysteine reductions were 26·99 (sd 1·91) %, 18·38 (sd 3·82) % and 21·30 (sd 1·98) %, respectively, in the subgroups without folate fortification, with folate fortification and with partial folate fortification. Significant difference was observed between the subgroups with folate fortification and without folate fortification (P=0·05). The relative risk of stroke was 0·88 (95 % CI 0·77, 1·00, P=0·05) in the subgroup without folate fortification, 0·94 (95 % CI 0·58, 1·54, P=0·82) in the subgroup with folate fortification and 0·91 (95 % CI 0·82, 1·01, P=0·09) in the subgroup with partial folate fortification. \n CONCLUSIONS Folic acid supplementation might have a modest benefit on stroke prevention in regions without folate fortification.", "title": "The effect of folate fortification on folic acid-based homocysteine-lowering intervention and stroke risk: a meta-analysis." }, { "docid": "18557974", "text": "High plasma total homocysteine (tHcy) concentration is reported to be a risk factor for vascular diseases. We investigated the extent to which serum folate and plasma tHcy respond to a high intake of natural folate from food. Thirty-seven healthy females volunteered t o participate in a crossover dietary intervention. The study included a baseline period and two 5-week diet periods (low- and high-folate diets) with a 3-week washout in between. The low-folate diet contained one serving of both vegetables and fruit/d, while during the high-folate diet the subjects ate at least seven servings of vegetables, berries, and citrus fruit/d. Serum and erythrocyte (RBC) folate, serum vitamin B (12), and plasma tHcy concentrations were measured at the base-line and at the end of each diet period. The mean concentrations of serum and RBC folate were 11.0 (SD 3.0) nmol/l and 412 (SD 120) nmol/l at the end of the low-folate diet and 78 (95 % CI 62, 94) % and 14 (95 % CI 8, 20) % higher in response to the high-folate diet (P< 0.001). The serum concentration of vitamin B12 remained unchanged during the intervention. The mean plasma tHcy concentration was 8.0 pmol/ at the end of the low-folate diet and decreased by 13 (95% CI 9, 18) % in response to the high-folate diet (P<0.001). In conclusion, a diet high in fresh berries, citrus fruit, and vegetables effectively increases serum and RBC folate and decreases plasma homocysteine.", "title": "British Journal of Nutrition (2003), 89, 295–301 q The Authors 2003 DOI: 10.1079/BJN2002776 Plasma homocysteine concentration is decreased by dietary intervention*" }, { "docid": "33409100", "text": "CONTEXT High plasma homocysteine levels are a risk factor for mortality and vascular disease in observational studies of patients with chronic kidney disease. Folic acid and B vitamins decrease homocysteine levels in this population but whether they lower mortality is unknown. \n OBJECTIVE To determine whether high doses of folic acid and B vitamins administered daily reduce mortality in patients with chronic kidney disease. \n DESIGN, SETTING, AND PARTICIPANTS Double-blind randomized controlled trial (2001-2006) in 36 US Department of Veterans Affairs medical centers. Median follow-up was 3.2 years for 2056 participants aged 21 years or older with advanced chronic kidney disease (estimated creatinine clearance < or =30 mL/min) (n = 1305) or end-stage renal disease (n = 751) and high homocysteine levels (> or = 15 micromol/L). \n INTERVENTION Participants received a daily capsule containing 40 mg of folic acid, 100 mg of pyridoxine hydrochloride (vitamin B6), and 2 mg of cyanocobalamin (vitamin B12) or a placebo. \n MAIN OUTCOME MEASURES The primary outcome was all-cause mortality. Secondary outcomes included myocardial infarction (MI), stroke, amputation of all or part of a lower extremity, a composite of these 3 plus all-cause mortality, time to initiation of dialysis, and time to thrombosis of arteriovenous access in hemodialysis patients. \n RESULTS Mean baseline homocysteine level was 24.0 micromol/L in the vitamin group and 24.2 micromol/L in the placebo group. It was lowered 6.3 micromol/L (25.8%; P < .001) in the vitamin group and 0.4 micromol/L (1.7%; P = .14) in the placebo group at 3 months, but there was no significant effect on mortality (448 vitamin group deaths vs 436 placebo group deaths) (hazard ratio [HR], 1.04; 95% CI, 0.91-1.18). No significant effects were demonstrated for secondary outcomes or adverse events: there were 129 MIs in the vitamin group vs 150 for placebo (HR, 0.86; 95% CI, 0.67-1.08), 37 strokes in the vitamin group vs 41 for placebo (HR, 0.90; 95% CI, 0.58-1.40), and 60 amputations in the vitamin group vs 53 for placebo (HR, 1.14; 95% CI, 0.79-1.64). In addition, the composite of MI, stroke, and amputations plus mortality (P = .85), time to dialysis (P = .38), and time to thrombosis in hemodialysis patients (P = .97) did not differ between the vitamin and placebo groups. \n CONCLUSION Treatment with high doses of folic acid and B vitamins did not improve survival or reduce the incidence of vascular disease in patients with advanced chronic kidney disease or end-stage renal disease. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00032435.", "title": "Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: a randomized controlled trial." }, { "docid": "16252863", "text": "The list of preventable and reversible risk factors for atherosclerotic cardiovascular disease continues to grow. Cigarette smoking, high blood pressure, physical inactivity, elevated cholesterol, underlying lipoprotein abnormalities, lipoprotein(a), diabetes, overweight, male gender, and age are well-established risk factors. During the 1990s, there have been many reports associating elevated plasma homocysteine levels with arteriosclerotic cardiovascular disease and consistent evidence that dietary and supplemental folic acid can reduce homocysteine levels.1 2 The article by Robinson and colleagues3 in this issue of Circulation presents further evidence of the importance of homocysteine and suggestive evidence that plasma folate and plasma pyrixodal-l-phosphate (vitamin B6) are protective factors. Their study is part of the European Concerted Action Project,4 which examined 750 patients younger than age 60 with diagnoses within the previous 12 months of coronary, cerebrovascular, or peripheral vascular disease and 800 healthy control subjects. The patient groups were young (47 years for cases and 44 years for control subjects) and heterogeneous, with nonfatal clinical events or symptoms of arteriosclerotic cardiovascular disease supported by ECG, angiographic, or Doppler evidence; the study involved 19 centers in nine European countries. Men in the highest quintile for fasting total homocysteine (tHcy), compared with the remainder of the population, had an estimated relative risk of 2.2 (95% confidence interval [CI], 1.6 to 2.9), with a striking dose-response relationship and a more-than-multiplicative interaction with cigarette smoking and high blood pressure on vascular disease risk4 ; the corresponding estimated relative risk for coronary heart disease was similar (2.0; 95% CI 1.6 to 2.8). (tHcy is the sum of homocysteine and homocysteinyl moieties of oxidized disulfides, homocystine, and cysteine- homocysteine. ) Robinson and colleagues3 examined three B vitamins in detail to determine their effects on fasting and post–methionine-loading tHcy levels and any independent effects on cardiovascular disease …", "title": "Preventing coronary heart disease: B vitamins and homocysteine." }, { "docid": "12810152", "text": "CONTEXT Hyperhomocysteinemia is caused by genetic and lifestyle influences, including low intakes of folate and vitamin B6. However, prospective data relating intake of these vitamins to risk of coronary heart disease (CHD) are not available. \n OBJECTIVE To examine intakes of folate and vitamin B6 in relation to the incidence of nonfatal myocardial infarction (MI) and fatal CHD. \n DESIGN Prospective cohort study. \n SETTING AND PATIENTS In 1980, a total of 80082 women from the Nurses' Health Study with no previous history of cardiovascular disease, cancer, hypercholesterolemia, or diabetes completed a detailed food frequency questionnaire from which we derived usual intake of folate and vitamin B6. \n MAIN OUTCOME MEASURE Nonfatal MI and fatal CHD confirmed by World Health Organization criteria. \n RESULTS During 14 years of follow-up, we documented 658 incident cases of nonfatal MI and 281 cases of fatal CHD. After controlling for cardiovascular risk factors, including smoking and hypertension and intake of alcohol, fiber, vitamin E, and saturated, polyunsaturated, and trans fat, the relative risks (RRs) of CHD between extreme quintiles were 0.69 (95% confidence interval [CI], 0.55-0.87) for folate (median intake, 696 microg/d vs 158 microg/d) and 0.67 (95% CI, 0.53-0.85) for vitamin B6 (median intake, 4.6 mg/d vs 1.1 mg/d). Controlling for the same variables, the RR was 0.55 (95% CI, 0.41-0.74) among women in the highest quintile of both folate and vitamin B6 intake compared with the opposite extreme. Risk of CHD was reduced among women who regularly used multiple vitamins (RR=0.76; 95% CI, 0.65-0.90), the major source of folate and vitamin B6, and after excluding multiple vitamin users, among those with higher dietary intakes of folate and vitamin B6. In a subgroup analysis, compared with nondrinkers, the inverse association between a high-folate diet and CHD was strongest among women who consumed up to 1 alcoholic beverage per day (RR =0.69; 95% CI, 0.49-0.97) or more than 1 drink per day (RR=0.27; 95% CI, 0.13-0.58). \n CONCLUSION These results suggest that intake of folate and vitamin B6 above the current recommended dietary allowance may be important in the primary prevention of CHD among women.", "title": "Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women." }, { "docid": "19278208", "text": "Background/Objectives:Folic acid supplementation has been suggested to reduce the risk of preeclampsia. However, results from few epidemiologic studies have been inconclusive. We investigated the hypothesis that folic acid supplementation and dietary folate intake before conception and during pregnancy reduce the risk of preeclampsia. Subjects/Methods:A birth cohort study was conducted in 2010–2012 at the Gansu Provincial Maternity & Child Care Hospital in Lanzhou, China. A total of 10 041 pregnant women without chronic hypertension or gestational hypertension were enrolled. Results:Compared with nonusers, folic acid supplement users had a reduced risk of preeclampsia (OR=0.61, 95% CI: 0.43–0.87). A significant dose–response of duration of use was observed among women who used folic acid supplemention during pregnancy only (P-trend=0.007). The reduced risk associated with folic acid supplement was similar for mild or severe preeclampsia and for early- or late-onset preeclampsia, although the statistical significant associations were only observed for mild (OR=0.50, 95% CI: 0.30–0.81) and late-onset (OR=0.60, 95% CI: 0.42–0.86) preeclampsia. The reduced risk associated with dietary folate intake during pregnancy was only seen for severe preeclampsia (OR=0.52, 95% CI: 0.31–0.87, for the highest quartile of dietary folate intake compared with the lowest).Conclusions:Our study results suggest that folic acid supplementation and higher dietary folate intake during pregnancy reduce the risk of preeclampsia. Future studies are needed to confirm the associations.", "title": "Folic acid supplementation and dietary folate intake, and risk of preeclampsia" }, { "docid": "10557471", "text": "The aim of the present investigation was to study the effect of a dietary intervention which combined nutrition information with increased availability of vegetables, fruits and wholegrain bread. The effect of the intervention was determined by changes in the intake of vegetables, fruits, wholegrain bread and estimated nutrients. Furthermore, the study investigated whether changes in relative contribution from different food sources of folate were related to changes in the concentration of plasma total homocysteine (p-tHcy). The 5-month intervention study included 376 male recruits from the Norwegian National Guard, Vaernes (intervention group) and 105 male recruits from the Norwegian National Guard, Heggelia (control group). The study resulted in an increase in the total consumption of vegetables, fruits, berries and juice (P < 0.001) and of wholegrain bread (P < 0.001). The participants in the intervention group showed a higher increase in the intake of dietary fibre (P < 0.001) and folate (P < 0.001) compared with the control group. The relative contribution of folate intake from fruits, vegetables and wholegrain bread was higher in the intervention group compared with the control group (P < 0.001 for all). The increased intake of folate from wholegrain bread was inversely associated with a reduced concentration of p-tHcy (P = 0.017). In summary, the dietary intervention resulted in an increased intake of vegetables, fruits and wholegrain bread and a subsequent increase in folate intake from these food components. Reduction in the concentration of p-tHcy was significantly related to an increased folate intake due to an increased consumption of wholegrain bread.", "title": "Association between folate intake from different food sources in Norway and homocysteine status in a dietary intervention among young male adults." }, { "docid": "11705328", "text": "BACKGROUND Lowering serum homocysteine levels with folic acid is expected to reduce mortality from ischemic heart disease. Homocysteine reduction is known to be maximal at a folic acid dosage of 1 mg/d, but the effect of lower doses (relevant to food fortification) is unclear. \n METHODS We randomized 151 patients with ischemic heart disease to 1 of 5 dosages of folic acid (0.2, 0.4, 0.6, 0.8, and 1.0 mg/d) or placebo. Fasting blood samples for serum homocysteine and serum folate analysis were taken initially, after 3 months of supplementation, and 3 months after folic acid use was discontinued. \n RESULTS Median serum homocysteine level decreased with increasing folic acid dosage, to a maximum at 0.8 mg of folic acid per day, when the homocysteine reduction (placebo adjusted) was 2.7 micromol/L (23%), similar to the known effect of folic acid dosages of 1 mg/d and above. The higher a person's initial serum homocysteine level, the greater was the response to folic acid, but there were statistically significant reductions regardless of the initial level. Serum folate level increased approximately linearly (5.5 nmol/L for every 0.1 mg of folic acid). Within-person fluctuations over time in serum homocysteine levels, measured in the placebo group, were large compared with the effect of folic acid, indicating that monitoring of the reduction in an individual is impractical. \n CONCLUSIONS A dosage of folic acid of 0.8 mg/d appears necessary to achieve the maximum reduction in serum homocysteine level across the range of homocysteine levels in the population. Current US food fortification levels will achieve only a small proportion of the achievable homocysteine reduction.", "title": "Randomized trial of folic acid supplementation and serum homocysteine levels." }, { "docid": "15615957", "text": "UNLABELLED Fruit and vegetable consumption has been inversely associated with the risk of chronic diseases including cancer and cardiovascular disease, with the beneficial effects attributed to a variety of protective antioxidants, carotenoids and phytonutrients. The objective of the present study was to determine the effect of supplementation with dehydrated concentrates from mixed fruit and vegetable juices (Juice Plus+R) on serum antioxidant and folate status, plasma homocysteine levels and markers for oxidative stress and DNA damage. Japanese subjects (n=60; age 27.8 yrs; BMI 22.1) were recruited to participate in a double-blind placebo controlled study and were randomized into 2 groups of 30, matched for sex, age, BMI and smoking status (39 males, 22 smokers; 21 females, 13 smokers). Subjects were given encapsulated supplements containing mixed fruit and vegetable juice concentrates or a matching placebo for 28 days, with blood and urine samples collected at baseline, day 14 and day 28 for analytical testing. Compared with the placebo, 28 day supplementation significantly increased the concentration of serum beta-carotene 528% (p<0.0001), lycopene 80.2% (p<0.0005), and alpha tocopherol 39.5% (p<0.0001). Serum folate increased 174.3% (p<0.0001) and correlated with a decrease in plasma homocysteine of -19.9% (p<0.03). Compared with baseline, measures of oxidative stress decreased with serum lipid peroxides declining -10.5% (p<0.02) and urine 8OHdG decreasing -21.1% (p<0.02). Evaluation of data from smokers only (n=17) after 28 days of active supplementation showed comparable changes. \n CONCLUSION In the absence of dietary modification, supplementation with the fruit and vegetable juice concentrate capsules proved to be a highly bioavailable source of phytonutrients. Important antioxidants were elevated to desirable levels associated with decreased risk of disease while markers of oxidative stress were reduced, and folate status improved with a concomitant decrease in homocysteine, and these benefits occurred to a similar extent in smokers when compared to non-smokers.", "title": "Original Article" }, { "docid": "21636085", "text": "BACKGROUND Increased plasma homocysteine is associated with coronary artery disease, peripheral vascular disease and venous thrombosis. Folic acid is the most effective therapy for reducing homocysteine levels. The lowest effective supplement of folic acid is not known, particularly for the elderly who have the highest prevalence of these conditions. AIM To explore the effects of daily supplements of 0, 50, 100, 200, 400 and 600 microg folic acid on plasma homocysteine in an elderly population. \n DESIGN Randomized double-blind placebo-controlled trial. \n METHODS Participants (n=368) aged 65-75 years were randomly allocated to receive one of the treatments for 6 weeks. Plasma homocysteine was recorded after 3 weeks and 6 weeks of supplementation. \n RESULTS Only the 400 microg and 600 microg groups had significantly lower homocysteine levels compared to placebo (p=0.038 and p<0.001, respectively). Using multiple linear regression and each individual's total folic acid intake (diet plus supplement), a total daily folic acid intake of 926 microg per day would be required to ensure that 95% of the elderly population would be without cardiovascular risk from folate deficiency. DISCUSSION A daily folic acid intake of 926 microg is unlikely to be achieved by diet alone. Individual supplementation or fortification of food with folic acid will be required to reach this target.", "title": "The effect of folic acid supplementation on plasma homocysteine in an elderly population." }, { "docid": "18256197", "text": "BACKGROUND AND PURPOSE The level of total homocysteine (tHcy) that confers a risk of ischemic stroke is unsettled, and no prospective cohort studies have included sufficient elderly minority subjects. We investigated the association between mild to moderate fasting tHcy level and the incidence of ischemic stroke, myocardial infarction, and vascular death in a multiethnic prospective study. \n METHODS A population-based cohort was followed for vascular events (stroke, myocardial infarction, and vascular death). Baseline values of tHcy and methylmalonic acid were measured among 2939 subjects (mean age, 69+/-10; 61% women, 53% Hispanics, 24% blacks, and 20% whites). Cox proportional models were used to calculate hazard ratios (HRs) and 95% CIs in tHcy categories after adjusting for age, race, education, renal insufficiency, B12 deficiency, and other risk factors. \n RESULTS The adjusted HR for a tHcy level > or =15 micromol/L compared with <10 micromol/L was greatest for vascular death (HR=6.04; 95% CI, 3.44 to 10.60), followed by combined vascular events (HR=2.27; 95% CI, 1.51 to 3.43), ischemic stroke (HR=2.01; 95% CI, 1.00 to 4.05), and nonvascular death (HR=2.02; 95% CI, 1.31 to 3.14). Mild to moderate elevations of tHcy of 10 to 15 micromol/L were not significantly predictive of ischemic stroke, but increased the risk of vascular death (2.27; 95% CI, 1.44 to 3.60) and combined vascular events (1.42; 95% CI, 1.06 to 1.88). The effect of tHcy was stronger among whites and Hispanics, but not a significant risk factor for blacks. \n CONCLUSIONS Total Hcy elevations above 15 micromol/L are an independent risk factor for ischemic stroke, whereas mild elevations of tHcy of 10 to 15 micromol/L are less predictive. The vascular effects of tHcy are greatest among whites and Hispanics, and less among blacks.", "title": "Homocysteine and the risk of ischemic stroke in a triethnic cohort: the NOrthern MAnhattan Study." }, { "docid": "3215494", "text": "Hyperhomocysteinemia has recently been identified as an important risk factor for atherosclerotic vascular disease. This article reviews homocysteine metabolism, causes of hyperhomocysteinemia, the pathophysiological findings of this disorder, and epidemiological studies of homocysteine and vascular disease. Screening for hyperhomocysteinemia should be considered for patients at high risk for vascular disease or abnormalities of homocysteine metabolism. For primary prevention of vascular disease, treatment of patients with homocysteine levels of 14 micromol/L or higher should be considered. For secondary prevention, treatment of patients with homocysteine levels of 11 micromol/L or higher should be considered. Treatment is most conveniently administered as a folic acid supplement (400-1000 microg) and a high-potency multivitamin that contains at least 400 microg of folate. Higher doses of folic acid and cyanocobalamin supplements may be required in some patients. Until prospective clinical trial data become available, these conservative recommendations provide a safe, effective, and evidence-based approach to the diagnosis, evaluation, and management of patients with hyperhomocysteinemia.", "title": "Hyperhomocysteinemia and atherosclerotic vascular disease: pathophysiology, screening, and treatment. off." }, { "docid": "4442799", "text": "BACKGROUND Soy protein or its components may protect against the atherosclerotic cardiovascular disease (CVD) risk factors total homocysteine (tHcy), C-reactive protein (CRP), and excess body iron, which generally increase with menopause. \n OBJECTIVE The primary objective of this study was to determine the independent effect of the soy protein components isoflavones and phytate on CVD risk factors in postmenopausal women. The secondary objective was to identify factors [blood lipids, oxidative stress indexes, serum ferritin, plasma folate, plasma vitamin B-12, and body mass index (BMI)] contributing to tHcy and CRP concentrations. \n DESIGN In a double-blind, 6-wk study, 55 postmenopausal women aged 47-72 y were randomly assigned to 1 of 4 soy protein (40 g/d) isolate treatments: native phytate and native isoflavone (n = 14), native phytate and low isoflavone (n = 13), low phytate and native isoflavone (n = 14), or low phytate and low isoflavone (n = 14). We measured iron indexes, tHcy, CRP, and BMI. \n RESULTS Soy protein with native phytate significantly reduced tHcy (P = 0.017), transferrin saturation (P = 0.027), and ferritin (P = 0.029), whereas soy protein with native isoflavones had no effect on any variables. At baseline, BMI was highly correlated with tHcy (r = 0.39, P = 0.003) and CRP (r = 0.55, P < 0.0001), whereas HDL cholesterol was correlated with CRP (r = -0.30, P = 0.02). Multiple regression analysis showed that LDL cholesterol and BMI contributed significantly (R2= 19.9%, P = 0.003) to the overall variance in tHcy. \n CONCLUSION Consuming phytate-rich foods and maintaining a healthy weight may reduce atherosclerotic CVD risk factors in postmenopausal women.", "title": "Effects of soy isoflavones and phytate on homocysteine, C-reactive protein, and iron status in postmenopausal women." }, { "docid": "25439264", "text": "Abstract Hyperhomocysteinemia has been suggested as a possible risk factor in women suffering from habitual abortions, placental abruption or infarcts, preeclampsia, and/or intrauterine growth retardation. However, little is known about the pathogenic mechanisms underlying the action of homocysteine. The present study investigated the in vitro ability of homocysteine to affect trophoblast gonadotropin secretion and to induce cell death. In primary human trophoblast cells, homocysteine treatment (20 μmol/L) resulted in cellular flattening and enlargement, extension of pseudopodia, and cellular vacuolization. Cellular detachment, apoptosis, and necrosis were favored. With in situ nick end labeling, we investigated DNA degradation, and we used M30 CytoDEATH to selectively stain the cytoplasm of apoptotic cells. Cytochrome c release from mitochondria to the cytosol and DNA cleavage in agarose gel have been investigated. Homocysteine, but not cysteine, induced trophoblast apoptosis and significantly reduced human chorionic gonadotropin secretion. These findings suggest that trophoblast cell death might represent a pathogenic mechanism by which homocysteine may cause pregnancy complications related to placental diseases.", "title": "Homocysteine Induces Trophoblast Cell Death with Apoptotic Features1" }, { "docid": "9813098", "text": "Young patients with an ischaemic stroke or transient ischaemic attack (TIA) often have no vascular risk factors. Hyperhomocysteinaemia is an established risk factor for stroke in elderly patients but it is uncertain whether it is also important for the prognosis of young ischaemic stroke and TIA patients. We examined the possible effect of the plasma homocysteine level on the risk of recurrent vascular events in patients between 18 and 45 years of age. The study population consisted of 161 consecutive patients with a recent cerebral infarction or TIA. Data on the primary event and the homocysteine level were collected retrospectively from hospital records. General practitioners and patients were contacted by telephone to record vascular events and the type of medication used during the follow–up period. Vascular events included cerebral infarction, TIA, pulmonary embolism, venous thrombosis, myocardial infarction and peripheral arterial disease. A Kaplan- Meier curve showed a dose effect relationship between event-free survival time and tertiles of the homocysteine level (Log rank statistic 5.91; p = 0.05). The Cox hazard ratio, after adjustment for homocysteine lowering treatment, was 1.7 (95 % CI, 1.1 to 2.8) for any vascular outcome event, 1.9 (95% CI, 1.1 to 3.0) for arterial outcome events and 1.8 (95 % CI, 1.1 to 2.9) for cerebral outcome events. In spite of our small number of outcome events we found a significant association at the 95% confidence level between homocysteine level and the risk of recurrent vascular events in young patients with an ischaemic stroke or TIA. The association is of the same magnitude as in elderly people.", "title": "Plasma homocysteine is a risk factor for recurrent vascular events in young patients with an ischaemic stroke or TIA" }, { "docid": "20083834", "text": "Background/Objective:To investigate the effect of soy protein containing isoflavones on homocysteine (Hcy), C-reactive protein (CRP), soluble E-selectin (sE-selectin), soluble vascular adhesion molecule-1 (sVCAM-1) and soluble intercellular adhesion molecule-1 (sICAM-1).Subject/Methods:In a randomized crossover design, 34 postmenopausal women consumed soy protein isolate (26±5 g protein containing 44±8 mg isoflavones per day) or milk protein isolate (26±5 g protein per day) for 6 weeks each. Fasting blood samples were collected at the end of each diet period and end points analyzed by enzyme-linked immunosorbent assay. Results:Concentrations of Hcy, CRP, sE-selectin, sVCAM-1 and sICAM-1 were not different between soy and milk diet treatments. Results did not differ by equol production status or by baseline lipid concentration. Adjustment for intake of folate and methionine did not alter the Hcy results. Conclusions:These data suggest that decreasing vascular inflammation and Hcy concentration are not likely mechanisms by which soy consumption reduces coronary heart disease risk.", "title": "Consumption of isoflavone-rich soy protein does not alter homocysteine or markers of inflammation in postmenopausal women" }, { "docid": "5152028", "text": "BACKGROUND Homocysteine is a risk factor for coronary artery disease (CAD), although a causal relation remains to be proven. The importance of determining direct causality rests in the fact that plasma homocysteine can be safely and inexpensively reduced by 25% with folic acid. This reduction is maximally achieved by doses of 0.4 mg/d. High-dose folic acid (5 mg/d) improves endothelial function in CAD, although the mechanism is controversial. It has been proposed that improvement occurs through reduction in total (tHcy) or free (non-protein bound) homocysteine (fHcy). We investigated the effects of folic acid on endothelial function before a change in homocysteine in patients with CAD. \n METHODS AND RESULTS A randomized, placebo-controlled study of folic acid (5 mg/d) for 6 weeks was undertaken in 33 patients. Endothelial function, assessed by flow-mediated dilatation (FMD), was measured before, at 2 and 4 hours after the first dose of folic acid, and after 6 weeks of treatment. Plasma folate increased markedly by 1 hour (200 compared with 25.8 nmol/L; P<0.001). FMD improved at 2 hours (83 compared with 47 microm; P<0.001) and was largely complete by 4 hours (101 compared with 51 microm; P<0.001). tHcy did not significantly differ acutely (4-hour tHcy, 9.56 compared with 9.79 micromol/L; P=NS). fHcy did not differ at 3 hours but was slightly reduced at 4 hours (1.55 compared with 1.78 micromol/L; P=0.02). FMD improvement did not correlate with reductions in either fHcy or tHcy at any time. \n CONCLUSIONS These data suggest that folic acid improves endothelial function in CAD acutely by a mechanism largely independent of homocysteine.", "title": "Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering." }, { "docid": "38551172", "text": "Mammographic density is a strong risk factor for breast cancer, but the underlying biology for this association is unknown. Studies suggest that vitamin D may reduce breast cancer risk and dietary vitamin D intake has been associated with reduced breast density. We conducted a case-control study nested within the Nurses' Health Study cohort consisting of 463 and 497 postmenopausal cases and controls, respectively. We examined the association between mammographic density and plasma levels of 25-hydroxyvitamin D [25(OH)D] and 1,25-dihydroxyvitamin D [1,25(OH)(2)D]. We assessed whether plasma vitamin D metabolites modify the association between breast density and breast cancer. Percent mammographic density was measured from digitized film mammograms. Generalized linear models were used to determine mean percent breast density per quartile of vitamin D metabolite. Logistic regression models were used to calculate relative risks and confidence intervals. All models were adjusted for matching variables and potential confounders. We found no cross-sectional association between circulating levels of 25(OH)D or 1,25(OH)(2)D with mammographic density. Women in the highest tertile of mammographic density and lowest tertile of plasma 25(OH)D had 4 times greater risk of breast cancer than women with the lowest mammographic density and highest plasma 25(OH)D levels (RR = 3.8; 95% CI: 2.0-7.3). The overall interaction between mammographic density and plasma 25(OH)D was nonsignificant (p-het = 0.20). These results indicate that the association between mammographic density and breast cancer is independent of plasma vitamin D metabolites in postmenopausal women. Further research examining vitamin D, mammographic density and breast cancer risk is warranted.", "title": "Mammographic density, plasma vitamin D levels and risk of breast cancer in postmenopausal women." } ]
425
For every 1,000 children with cerebral palsy, more than 300 of them are premature or underweight at birth.
[ { "docid": "33257464", "text": "CONTEXT Although cerebral palsy (CP) among extremely premature infants has been reported as a major morbidity outcome, there are difficulties comparing published CP rates from many sites over various birth years. \n OBJECTIVE To assess the changes in population-based, gestational age-specific prevalence rates of CP among extremely premature infants over 30 years. \n DESIGN Prospective population-based longitudinal outcome study. \n SETTING AND PARTICIPANTS In Northern Alberta, 2318 infants 20 to 27 weeks' gestational age with birth weights of 500 to 1249 g were liveborn from 1974 through 2003. By 2 years of age, 1437 (62%) had died, 23 (1%) were lost to follow-up, and 858 (37%) had received multidisciplinary neurodevelopmental assessment. \n MAIN OUTCOME MEASURE Population-based prevalence rates of CP were determined. Logistic regression with linear spline was used to assess changes in CP prevalence over time. \n RESULTS At age 2 years, 122 (14.2%) of 858 survivors had CP. This diagnosis was confirmed for each child by age 3 years or older. Among those whose gestational age was 20 to 25 weeks, population-based survival increased from 4% to 31% (P<.001), while CP prevalence per 1000 live births increased monotonically from 0 to 110 until the years 1992-1994 (P<.001) and decreased thereafter to 22 in the years 2001-2003 (P<.001). Among those whose gestational age was 26 to 27 weeks, population-based survival increased from 23% to between 75% and 80% (P<.001), while CP prevalence per 1000 live births increased monotonically from 15 to 155 until the years 1992-1994 (P<.001) and then decreased to 16 in the years 2001-2003 (P<.001). For all survivors born in the years 2001-2003, CP prevalence was 19 per 1000 live births. \n CONCLUSION Population-based CP prevalence rates for children whose gestational age was 20 to 27 weeks and whose birth weight ranged from 500 to 1249 g show steady reductions in the last decade with stable or reducing mortality, reversing trends prior to 1992-1994.", "title": "Changes in the prevalence of cerebral palsy for children born very prematurely within a population-based program over 30 years." } ]
[ { "docid": "20645335", "text": "OBJECTIVE To systematically review and integrate data on the neurodevelopmental outcome of children after administration of a single course of antenatal corticosteroids for threatened preterm labor. \n DATA SOURCES MEDLINE, Scopus, CENTRAL, and www.clinicaltrials.gov (inception to August 2014) using combinations of the terms \"prenatal,\" \"antenatal,\" \"cortico*,\" \"*steroid*,\" \"betamethasone,\" \"dexamethasone,\" \"neurodevelopment*,\" \"*development*,\" and \"follow-up. \" We perused the references of the retrieved articles. \n METHODS OF STUDY SELECTION We included randomized and nonrandomized trials reporting on the neurodevelopmental outcomes of children whose mothers were administered a single course of betamethasone or dexamethasone antenatally for threatened preterm birth as opposed to placebo or no treatment. TABULATION, INTEGRATION, AND RESULTS Summary risk ratio (RR) was calculated for dichotomous data; standardized mean difference was calculated for trials that measured the same outcome but used different methods. Heterogeneity was assessed using the I statistic. Sensitivity and subgroup analyses were planned according to study design, specific steroid, and mean gestational age at birth. A single course of antenatal corticosteroids was associated with reduced risk for cerebral palsy (seven studies; treated: 390 of 5,199, untreated: 146 of 1,379; RR 0.678, 95% confidence interval [CI] 0.564-0.815), psychomotor development index less than 70 (two studies; treated: 783 of 3,049, untreated: 258 of 969; RR 0.829, 95% CI 0.737-0.933), and severe disability (five studies; treated: 1,567 of 4,840, untreated: 475 of 1,211; RR 0.787, 95% CI 0.729-0.850). Steroid treatment increased the rates of intact survival (six studies; treated: 1,082 of 2,013, untreated: 273 of 561; RR 1.186, 95% CI 1.056-1.332). Betamethasone was found to significantly decrease the risk for severe disability and increase the rate of intact survival. Dexamethasone increased the rate of intact survival; however, data for dexametasone and the other planned subgroup analyses were limited (fewer than 1,000 children at most). The major limitations involved inclusion of nonrandomized studies and scarcity of data on finer neurodevelopmental outcomes. \n CONCLUSION A single course of antenatal corticosteroids in women at high risk for preterm birth appears to improve most neurodevelopmental outcomes in offspring born before 34 weeks of gestation.", "title": "Neurodevelopmental Outcome After a Single Course of Antenatal Steroids in Children Born Preterm: A Systematic Review and Meta-analysis." }, { "docid": "13791044", "text": "CONTEXT Although preterm delivery is a well-established risk factor for cerebral palsy (CP), preterm deliveries contribute only a minority of affected infants. There is little information on the relation of CP risk to gestational age in the term range, where most CP occurs. \n OBJECTIVE To determine whether timing of birth in the term and postterm period is associated with risk of CP. \n DESIGN, SETTING, AND PARTICIPANTS Population-based follow-up study using the Medical Birth Registry of Norway to identify 1,682,441 singleton children born in the years 1967-2001 with a gestational age of 37 through 44 weeks and no congenital anomalies. The cohort was followed up through 2005 by linkage to other national registries. \n MAIN OUTCOME MEASURES Absolute and relative risk of CP for children surviving to at least 4 years of age. \n RESULTS Of the cohort of term and postterm children, 1938 were registered with CP in the National Insurance Scheme. Infants born at 40 weeks had the lowest risk of CP, with a prevalence of 0.99/1000 (95% confidence interval [CI], 0.90-1.08). Risk for CP was higher with earlier or later delivery, with a prevalence at 37 weeks of 1.91/1000 (95% CI, 1.58-2.25) and a relative risk (RR) of 1.9 (95% CI, 1.6-2.4), a prevalence at 38 weeks of 1.25/1000 (95% CI, 1.07-1.42) and an RR of 1.3 (95% CI, 1.1-1.6), a prevalence at 42 weeks of 1.36/1000 (95% CI, 1.19-1.53) and an RR of 1.4 (95% CI, 1.2-1.6), and a prevalence after 42 weeks of 1.44 (95% CI, 1.15-1.72) and an RR of 1.4 (95% CI, 1.1-1.8). These associations were even stronger in a subset with gestational age based on ultrasound measurements: at 37 weeks the prevalence was 1.17/1000 (95% CI, 0.30-2.04) and the relative risk was 3.7 (95% CI, 1.5-9.1). At 42 weeks the prevalence was 0.85/1000 (95% CI, 0.33-1.38) and the relative risk was 2.4 (95% CI, 1.1-5.3). Adjustment for infant sex, maternal age, and various socioeconomic measures had little effect. \n CONCLUSION Compared with delivery at 40 weeks' gestation, delivery at 37 or 38 weeks or at 42 weeks or later was associated with an increased risk of CP.", "title": "Cerebral palsy among term and postterm births." }, { "docid": "27129115", "text": "BACKGROUND Epidemiological and basic science evidence suggests that magnesium sulphate before birth may be neuroprotective for the fetus. \n OBJECTIVES To assess the effects of magnesium sulphate as a neuroprotective agent when given to women considered at risk of preterm birth. SEARCH STRATEGY We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 August 2008). SELECTION CRITERIA Randomised controlled trials of antenatal magnesium sulphate therapy in women threatening or likely to give birth at less than 37 weeks' gestational age. For one subgroup analysis, studies were broadly categorised by the primary intent of the study into \"neuroprotective intent\", or \"other intent (maternal neuroprotective - pre-eclampsia)\", or \"other intent (tocolytic)\". \n DATA COLLECTION AND ANALYSIS At least two authors assessed trial eligibility and quality, and extracted data. \n MAIN RESULTS Five trials (6145 babies) were eligible for this review. Antenatal magnesium sulphate therapy given to women at risk of preterm birth substantially reduced the risk of cerebral palsy in their child (Relative Risk (RR) 0.68; 95% Confidence interval (CI) 0.54 to 0.87; five trials; 6145 infants). There was also a significant reduction in the rate of substantial gross motor dysfunction (RR 0.61; 95% CI 0.44 to 0.85; four trials; 5980 infants). No statistically significant effect of antenatal magnesium sulphate therapy was detected on paediatric mortality (RR 1.04; 95% CI 0.92 to 1.17; five trials; 6145 infants), or on other neurological impairments or disabilities in the first few years of life. Overall there were no significant effects of antenatal magnesium therapy on combined rates of mortality with cerebral palsy, although there were significant reductions for the neuroprotective groups RR 0.85; 95% CI 0.74 to 0.98; four trials; 4446 infants, but not for the other intent subgroups. There were higher rates of minor maternal side effects in the magnesium groups, but no significant effects on major maternal complications. AUTHORS' CONCLUSIONS The neuroprotective role for antenatal magnesium sulphate therapy given to women at risk of preterm birth for the preterm fetus is now established. The number of women needed to be treated to benefit one baby by avoiding cerebral palsy is 63 (95% confidence interval 43 to 87). Given the beneficial effects of magnesium sulphate on substantial gross motor function in early childhood, outcomes later in childhood should be evaluated to determine the presence or absence of later potentially important neurological effects, particularly on motor or cognitive function.", "title": "Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus." }, { "docid": "23073816", "text": "Allogeneic umbilical cord blood (UCB) has therapeutic potential for cerebral palsy (CP). Concomitant administration of recombinant human erythropoietin (rhEPO) may boost the efficacy of UCB, as it has neurotrophic effects. The objectives of this study were to assess the safety and efficacy of allogeneic UCB potentiated with rhEPO in children with CP. Children with CP were randomly assigned to one of three parallel groups: the pUCB group, which received allogeneic UCB potentiated with rhEPO; the EPO group, which received rhEPO and placebo UCB; and the Control group, which received placebo UCB and placebo rhEPO. All participants received rehabilitation therapy. The main outcomes were changes in scores on the following measures during the 6 months treatment period: the gross motor performance measure (GMPM), gross motor function measure, and Bayley scales of infant development-II (BSID-II) Mental and Motor scales (18). F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET/CT) and diffusion tensor images (DTI) were acquired at baseline and followed up to detect changes in the brain. In total, 96 subjects completed the study. Compared with the EPO (n = 33) and Control (n = 32) groups, the pUCB (n = 31) group had significantly higher scores on the GMPM and BSID-II Mental and Motor scales at 6 months. DTI revealed significant correlations between the GMPM increment and changes in fractional anisotropy in the pUCB group. 18F-FDG-PET/CT showed differential activation and deactivation patterns between the three groups. The incidence of serious adverse events did not differ between groups. In conclusion, UCB treatment ameliorated motor and cognitive dysfunction in children with CP undergoing active rehabilitation, accompanied by structural and metabolic changes in the brain.", "title": "Umbilical Cord Blood Therapy Potentiated with Erythropoietin for Children with Cerebral Palsy: A Double-blind, Randomized, Placebo-Controlled Trial" }, { "docid": "1606628", "text": "CONTEXT One key target of the United Nations Millennium Development goals is to reduce the prevalence of underweight among children younger than 5 years by half between 1990 and 2015. \n OBJECTIVE To estimate trends in childhood underweight by geographic regions of the world. \n DESIGN, SETTING, AND PARTICIPANTS Time series study of prevalence of underweight, defined as weight 2 SDs below the mean weight for age of the National Center for Health Statistics and World Health Organization (WHO) reference population. National prevalence rates derived from the WHO Global Database on Child Growth and Malnutrition, which includes data on approximately 31 million children younger than 5 years who participated in 419 national nutritional surveys in 139 countries from 1965 through 2002. \n MAIN OUTCOME MEASURES Linear mixed-effects modeling was used to estimate prevalence rates and numbers of underweight children by region in 1990 and 2015 and to calculate the changes (ie, increase or decrease) to these values between 1990 and 2015. \n RESULTS Worldwide, underweight prevalence was projected to decline from 26.5% in 1990 to 17.6% in 2015, a change of -34% (95% confidence interval [CI], -43% to -23%). In developed countries, the prevalence was estimated to decrease from 1.6% to 0.9%, a change of -41% (95% CI, -92% to 343%). In developing regions, the prevalence was forecasted to decline from 30.2% to 19.3%, a change of -36% (95% CI, -45% to -26%). In Africa, the prevalence of underweight was forecasted to increase from 24.0% to 26.8%, a change of 12% (95% CI, 8%-16%). In Asia, the prevalence was estimated to decrease from 35.1% to 18.5%, a change of -47% (95% CI, -58% to -34%). Worldwide, the number of underweight children was projected to decline from 163.8 million in 1990 to 113.4 million in 2015, a change of -31% (95% CI, -40% to -20%). Numbers are projected to decrease in all subregions except the subregions of sub-Saharan, Eastern, Middle, and Western Africa, which are expected to experience substantial increases in the number of underweight children. \n CONCLUSIONS An overall improvement in the global situation is anticipated; however, neither the world as a whole, nor the developing regions, are expected to achieve the Millennium Development goals. This is largely due to the deteriorating situation in Africa where all subregions, except Northern Africa, are expected to fail to meet the goal.", "title": "Estimates of global prevalence of childhood underweight in 1990 and 2015." }, { "docid": "4983", "text": "Alterations of the architecture of cerebral white matter in the developing human brain can affect cortical development and result in functional disabilities. A line scan diffusion-weighted magnetic resonance imaging (MRI) sequence with diffusion tensor analysis was applied to measure the apparent diffusion coefficient, to calculate relative anisotropy, and to delineate three-dimensional fiber architecture in cerebral white matter in preterm (n = 17) and full-term infants (n = 7). To assess effects of prematurity on cerebral white matter development, early gestation preterm infants (n = 10) were studied a second time at term. In the central white matter the mean apparent diffusion coefficient at 28 wk was high, 1.8 microm2/ms, and decreased toward term to 1.2 microm2/ms. In the posterior limb of the internal capsule, the mean apparent diffusion coefficients at both times were similar (1.2 versus 1.1 microm2/ms). Relative anisotropy was higher the closer birth was to term with greater absolute values in the internal capsule than in the central white matter. Preterm infants at term showed higher mean diffusion coefficients in the central white matter (1.4 +/- 0.24 versus 1.15 +/- 0.09 microm2/ms, p = 0.016) and lower relative anisotropy in both areas compared with full-term infants (white matter, 10.9 +/- 0.6 versus 22.9 +/- 3.0%, p = 0.001; internal capsule, 24.0 +/- 4.44 versus 33.1 +/- 0.6% p = 0.006). Nonmyelinated fibers in the corpus callosum were visible by diffusion tensor MRI as early as 28 wk; full-term and preterm infants at term showed marked differences in white matter fiber organization. The data indicate that quantitative assessment of water diffusion by diffusion tensor MRI provides insight into microstructural development in cerebral white matter in living infants.", "title": "Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging." }, { "docid": "4423559", "text": "Environmental and genetic aberrations lead to neural tube closure defects (NTDs) in 1 out of every 1,000 births. Mouse and frog models for these birth defects have indicated that Van Gogh-like 2 (Vangl2, also known as Strabismus) and other components of planar cell polarity (PCP) signalling might control neurulation by promoting the convergence of neural progenitors to the midline. Here we show a novel role for PCP signalling during neurulation in zebrafish. We demonstrate that non-canonical Wnt/PCP signalling polarizes neural progenitors along the anteroposterior axis. This polarity is transiently lost during cell division in the neural keel but is re-established as daughter cells reintegrate into the neuroepithelium. Loss of zebrafish Vangl2 (in trilobite mutants) abolishes the polarization of neural keel cells, disrupts re-intercalation of daughter cells into the neuroepithelium, and results in ectopic neural progenitor accumulations and NTDs. Remarkably, blocking cell division leads to rescue of trilobite neural tube morphogenesis despite persistent defects in convergence and extension. These results reveal a function for PCP signalling in coupling cell division and morphogenesis at neurulation and indicate a previously unrecognized mechanism that might underlie NTDs.", "title": "Planar cell polarity signalling couples cell division and morphogenesis during neurulation" }, { "docid": "25742130", "text": "With respect to cervical cancer management, Finland and the Netherlands are comparable in relevant characteristics, e.g., fertility rate, age-of-mother at first birth and a national screening programme for several years. The aim of this study is to compare trends in incidence of and mortality from cervical cancer in Finland and the Netherlands in relation to the introduction and intensity of the screening programmes. Therefore, incidence and mortality rates were calculated using the Cancer Registries of Finland and the Netherlands. Data on screening intensity were obtained from the Finnish Cancer Registry and the Dutch evaluation centre at ErasmusMC-Rotterdam. Women aged 30-60 have been screened every 5 years, in Finland since 1992 and in the Netherlands since 1996. Screening protocols for smear taking and referral to the gynaecologist are comparable. Incidence and mortality rates have declined more in Finland. In 2003, age-adjusted incidence and mortality in Finland were 4.0 and 0.9 and in the Netherlands 4.9 and 1.4 per 100,000 woman-years, respectively. Excess smear use in the Netherlands was estimated to be 24 per 1,000 women during a 5-year interval compared to 121 in Finland. The decline in mortality in Finland seems to be almost completely related to the screening programme whereas in the Netherlands it was initially considered to be a natural decline. Differences in risk factors might also play a role: the Netherlands has higher population density and higher percentages of immigrants and (female) smokers. The greater excess smear use in Finland might also have affected incidence.", "title": "Mass screening programmes and trends in cervical cancer in Finland and the Netherlands." }, { "docid": "25938221", "text": "A specific retinopathy has been described in African children with cerebral malaria, but in adults this has not been extensively studied. Since the structure and function of the retinal vasculature greatly resembles the cerebral vasculature, study of retinal changes can reveal insights into the pathophysiology of cerebral malaria. A detailed observational study of malarial retinopathy in Bangladeshi adults was performed using high-definition portable retinal photography. Retinopathy was present in 17/27 adults (63%) with severe malaria and 14/20 adults (70%) with cerebral malaria. Moderate or severe retinopathy was more frequent in cerebral malaria (11/20, 55%) than in uncomplicated malaria (3/15, 20%; P=0.039), bacterial sepsis (0/5, 0%; P=0.038) or healthy controls (0/18, 0%; P<0.001). The spectrum of malarial retinopathy was similar to that previously described in African children, but no vessel discolouration was observed. The severity of retinal whitening correlated with admission venous plasma lactate (P=0.046), suggesting that retinal ischaemia represents systemic ischaemia. In conclusion, retinal changes related to microvascular obstruction were common in adults with severe falciparum malaria and correlated with disease severity and coma, suggesting that a compromised microcirculation has important pathophysiological significance in severe and cerebral malaria. Portable retinal photography has potential as a valuable tool to study malarial retinopathy.", "title": "The spectrum of retinopathy in adults with Plasmodium falciparum malaria" }, { "docid": "18104691", "text": "AIM This review explores the molecular, neurological, and behavioural outcomes in animal models of uterine artery ligation. We analyse the relevance of this type of model to the pathological and functional phenotypes that are consistent with cerebral palsy and its developmental comorbidities in humans. \n METHOD A literature search of the PubMed database was conducted for research using the uterine artery ligation model published between 1990 and 2013. From the studies included, any relevant neuroanatomical and behavioural deficits were then summarized from each document and used for further analysis. \n RESULTS There were 25 papers that met the criteria included for review, and several outcomes were summarized from the results of these papers. Fetuses with growth restriction demonstrated a gradient of reduced body weight with a relative sparing of brain mass. There was a significant reduction in the size of the somatosensory cortex, hippocampus, and corpus callosum. The motor cortex appeared to be spared of identifiable deficits. Apoptotic proteins were upregulated, while those important to neuronal survival, growth, and differentiation were downregulated. Neuronal apoptosis and astrogliosis occurred diffusely throughout the brain regions. White matter injury involved oligodendrocyte precursor maturation arrest, hypomyelination, and an aberrant organization of existing myelin. Animals with growth restriction demonstrated deficits in gait, memory, object recognition, and spatial processing. \n INTERPRETATION This review concludes that neuronal death, white matter injury, motor abnormalities, and cognitive deficits are important outcomes of uterine artery ligation in animal models. Therefore, this is a clinically relevant type of model, as these findings resemble deficits in human cerebral palsy.", "title": "Neurological outcomes of animal models of uterine artery ligation and relevance to human intrauterine growth restriction: a systematic review" }, { "docid": "1946610", "text": "BACKGROUND Tanzania has a well-developed network of commercial ITN retailers. In 2004, the government introduced a voucher subsidy for pregnant women and, in mid 2005, helped distribute free nets to under-fives in small number of districts, including Rufiji on the southern coast, during a child health campaign. Contributions of these multiple insecticide-treated net delivery strategies existing at the same time and place to coverage in a poor rural community were assessed. \n METHODS Cross-sectional household survey in 6,331 members of randomly selected 1,752 households of 31 rural villages of Demographic Surveillance System in Rufiji district, Southern Tanzania was conducted in 2006. A questionnaire was administered to every consenting respondent about net use, treatment status and delivery mechanism. \n FINDINGS Net use was 62.7% overall, 87.2% amongst infants (0 to 1 year), 81.8% amongst young children (>1 to 5 years), 54.5% amongst older children (6 to 15 years) and 59.6% amongst adults (>15 years). 30.2% of all nets had been treated six months prior to interview. The biggest source of nets used by infants was purchase from the private sector with a voucher subsidy (41.8%). Half of nets used by young children (50.0%) and over a third of those used by older children (37.2%) were obtained free of charge through the vaccination campaign. The largest source of nets amongst the population overall was commercial purchase (45.1% use) and was the primary means for protecting adults (60.2% use). All delivery mechanisms, especially sale of nets at full market price, under-served the poorest but no difference in equity was observed between voucher-subsidized and freely distributed nets. \n CONCLUSION All three delivery strategies enabled a poor rural community to achieve net coverage high enough to yield both personal and community level protection for the entire population. Each of them reached their relevant target group and free nets only temporarily suppressed the net market, illustrating that in this setting that these are complementary rather than mutually exclusive approaches.", "title": "Markets, voucher subsidies and free nets combine to achieve high bed net coverage in rural Tanzania" }, { "docid": "103007", "text": "The current reference curves of stature and weight for the UK were first published in 1966 and have been used ever since despite increasing concern that they may not adequately describe the growth of present day British children. Using current data from seven sources new reference curves have been estimated from birth to 20 years for children in 1990. The great majority of the data are nationally representative. The analysis used Cole's LMS method and has produced efficient estimates of the conventional centiles and gives a good fit to the data. These curves differ from the currently used curves at key ages for both stature and weight. In view of the concerns expressed about the current curves and the differences between them and the new curves, it is proposed that the curves presented here should be adopted as the new UK reference curves.", "title": "Cross sectional stature and weight reference curves for the UK, 1990." }, { "docid": "6387956", "text": "BACKGROUND Non-clinical psychotic symptoms appear common in children, but it is possible that a proportion of reported symptoms result from misinterpretation. There is a well-established association between pre-morbid low IQ score and schizophrenia. Psychosis-like symptoms in children may also be a risk factor for psychotic disorder but their relationship with IQ is unclear. AIMS To investigate the prevalence, nature and frequency of psychosis-like symptoms in 12-year-old children and study their relationship with IQ. \n METHOD Longitudinal study using the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. A total of 6455 children completed screening questions for 12 psychotic symptoms followed by a semi-structured clinical assessment. IQ was assessed at 8 years of age using the Wechsler Intelligence Scale for Children (3rd UK edition). \n RESULTS The 6-month period prevalence for one or more symptoms was 13.7% (95% CI 12.8-14.5). After adjustment for confounding variables, there was a non-linear association between IQ score and psychosis-like symptoms, such that only those with below average IQ score had an increased risk of reporting such symptoms. \n CONCLUSIONS Non-clinical psychotic symptoms occur in a significant proportion of 12-year-olds. Symptoms are associated with low IQ and also less strongly with a high IQ score. The pattern of association with IQ differs from that observed in schizophrenia.", "title": "IQ and non-clinical psychotic symptoms in 12-year-olds: results from the ALSPAC birth cohort" }, { "docid": "17450673", "text": "INTRODUCTION Various perinatal factors, including birth weight, birth order, maternal age, gestational age, twin status, and parental smoking, have been postulated to affect breast cancer risk in daughters by altering the hormonal environment of the developing fetal mammary glands. Despite ample biologic plausibility, epidemiologic studies to date have yielded conflicting results. We investigated the associations between perinatal factors and subsequent breast cancer risk through meta-analyses. \n METHODS We reviewed breast cancer studies published from January 1966 to February 2007 that included data on birth weight, birth order, maternal age, gestational age, twin status, and maternal or paternal smoking. Meta-analyses using random effect models were employed to summarize the results. \n RESULTS We found that heavier birth weights were associated with increased breast cancer risk, with studies involving five categories of birth weight identifying odds ratios (ORs) of 1.24 (95% confidence interval [CI] 1.04 to 1.48) for 4,000 g or more and 1.15 (95% CI 1.04 to 1.26) for 3,500 g to 3,999 g, relative to a birth weight of 2,500 to 2,599 g. These studies provided no support for a J-shaped relationship of birthweight to risk. Support for an association with birthweight was also derived from studies based on three birth weight categories (OR 1.15 [95% CI 1.01 to 1.31] for > or =4,000 g relative to <3,000 g) and two birth weight categories (OR 1.09 [95% CI 1.02 to 1.18] for > or =3,000 g relative to <3,000 g). Women born to older mothers and twins were also at some increased risk, but the results were heterogeneous across studies and publication years. Birth order, prematurity, and maternal smoking were unrelated to breast cancer risk. \n CONCLUSION Our findings provide some support for the hypothesis that in utero exposures reflective of higher endogenous hormone levels could affect risk for development of breast cancer in adulthood.", "title": "Intrauterine environments and breast cancer risk: meta-analysis and systematic review" }, { "docid": "980196", "text": "BACKGROUND Alcohol is a contributing cause of unintentional injuries, such as motor vehicle crashes. Prior research on the association between alcohol use and violent injury was limited to survey-based data, and the inclusion of cases from a single trauma centre, without adequate controls. Beyond these limitations was the inability of prior researchers to comprehensively capture most alcohol sales. In Ontario, most alcohol is sold through retail outlets run by the provincial government, and hospitals are financed under a provincial health care system. We assessed the risk of being hospitalized due to assault in association with retail alcohol sales across Ontario. \n METHODS AND FINDINGS We performed a population-based case-crossover analysis of all persons aged 13 years and older hospitalized for assault in Ontario from 1 April 2002 to 1 December 2004. On the day prior to each assault case's hospitalization, the volume of alcohol sold at the store in closest proximity to the victim's home was compared to the volume of alcohol sold at the same store 7 d earlier. Conditional logistic regression analysis was used to determine the associated relative risk (RR) of assault per 1,000 l higher daily sales of alcohol. Of the 3,212 persons admitted to hospital for assault, nearly 25% were between the ages of 13 and 20 y, and 83% were male. A total of 1,150 assaults (36%) involved the use of a sharp or blunt weapon, and 1,532 (48%) arose during an unarmed brawl or fight. For every 1,000 l more of alcohol sold per store per day, the relative risk of being hospitalized for assault was 1.13 (95% confidence interval [CI] 1.02-1.26). The risk was accentuated for males (1.18, 95% CI 1.05-1.33), youth aged 13 to 20 y (1.21, 95% CI 0.99-1.46), and those in urban areas (1.19, 95% CI 1.06-1.35). \n CONCLUSIONS The risk of being a victim of serious assault increases with alcohol sales, especially among young urban men. Akin to reducing the risk of driving while impaired, consideration should be given to novel methods of preventing alcohol-related violence.", "title": "Alcohol Sales and Risk of Serious Assault" }, { "docid": "24634621", "text": "PURPOSE Most patients with advanced pancreas cancer experience pain and must limit their daily activities because of tumor-related symptoms. To date, no treatment has had a significant impact on the disease. In early studies with gemcitabine, patients with pancreas cancer experienced an improvement in disease-related symptoms. Based on those findings, a definitive trial was performed to assess the effectiveness of gemcitabine in patients with newly diagnosed advanced pancreas cancer. \n PATIENTS AND METHODS One hundred twenty-six patients with advanced symptomatic pancreas cancer completed a lead-in period to characterize and stabilize pain and were randomized to receive either gemcitabine 1,000 mg/m2 weekly x 7 followed by 1 week of rest, then weekly x 3 every 4 weeks thereafter (63 patients), or to fluorouracil (5-FU) 600 mg/m2 once weekly (63 patients). The primary efficacy measure was clinical benefit response, which was a composite of measurements of pain (analgesic consumption and pain intensity), Karnofsky performance status, and weight. Clinical benefit required a sustained (> or = 4 weeks) improvement in at least one parameter without worsening in any others. Other measures of efficacy included response rate, time to progressive disease, and survival. \n RESULTS Clinical benefit response was experienced by 23.8% of gemcitabine-treated patients compared with 4.8% of 5-FU-treated patients (P = .0022). The median survival durations were 5.65 and 4.41 months for gemcitabine-treated and 5-FU-treated patients, respectively (P = .0025). The survival rate at 12 months was 18% for gemcitabine patients and 2% for 5-FU patients. Treatment was well tolerated. \n CONCLUSION This study demonstrates that gemcitabine is more effective than 5-FU in alleviation of some disease-related symptoms in patients with advanced, symptomatic pancreas cancer. Gemcitabine also confers a modest survival advantage over treatment with 5-FU.", "title": "Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial." }, { "docid": "4791384", "text": "BACKGROUND Historically, the main focus of studies of childhood mortality has been the infant and under-five mortality rates. Neonatal mortality (deaths <28 days of age) has received limited attention, although such deaths account for about 41% of all child deaths. To better assess progress, we developed annual estimates for neonatal mortality rates (NMRs) and neonatal deaths for 193 countries for the period 1990-2009 with forecasts into the future. \n METHODS AND FINDINGS We compiled a database of mortality in neonates and children (<5 years) comprising 3,551 country-years of information. Reliable civil registration data from 1990 to 2009 were available for 38 countries. A statistical model was developed to estimate NMRs for the remaining 155 countries, 17 of which had no national data. Country consultation was undertaken to identify data inputs and review estimates. In 2009, an estimated 3.3 million babies died in the first month of life-compared with 4.6 million neonatal deaths in 1990-and more than half of all neonatal deaths occurred in five countries of the world (44% of global livebirths): India 27.8% (19.6% of global livebirths), Nigeria 7.2% (4.5%), Pakistan 6.9% (4.0%), China 6.4% (13.4%), and Democratic Republic of the Congo 4.6% (2.1%). Between 1990 and 2009, the global NMR declined by 28% from 33.2 deaths per 1,000 livebirths to 23.9. The proportion of child deaths that are in the neonatal period increased in all regions of the world, and globally is now 41%. While NMRs were halved in some regions of the world, Africa's NMR only dropped 17.6% (43.6 to 35.9). \n CONCLUSIONS Neonatal mortality has declined in all world regions. Progress has been slowest in the regions with high NMRs. Global health programs need to address neonatal deaths more effectively if Millennium Development Goal 4 (two-thirds reduction in child mortality) is to be achieved.", "title": "Neonatal Mortality Levels for 193 Countries in 2009 with Trends since 1990: A Systematic Analysis of Progress, Projections, and Priorities" }, { "docid": "803312", "text": "The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development. Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions. These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype. Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue.", "title": "Cerebral organoids model human brain development and microcephaly" }, { "docid": "3716075", "text": "BACKGROUND Dengue is the most common arbovirus infection globally, but its burden is poorly quantified. We estimated dengue mortality, incidence, and burden for the Global Burden of Disease Study 2013. \n METHODS We modelled mortality from vital registration, verbal autopsy, and surveillance data using the Cause of Death Ensemble Modelling tool. We modelled incidence from officially reported cases, and adjusted our raw estimates for under-reporting based on published estimates of expansion factors. In total, we had 1780 country-years of mortality data from 130 countries, 1636 country-years of dengue case reports from 76 countries, and expansion factor estimates for 14 countries. \n FINDINGS We estimated an average of 9221 dengue deaths per year between 1990 and 2013, increasing from a low of 8277 (95% uncertainty estimate 5353-10 649) in 1992, to a peak of 11 302 (6790-13 722) in 2010. This yielded a total of 576 900 (330 000-701 200) years of life lost to premature mortality attributable to dengue in 2013. The incidence of dengue increased greatly between 1990 and 2013, with the number of cases more than doubling every decade, from 8·3 million (3·3 million-17·2 million) apparent cases in 1990, to 58·4 million (23·6 million-121·9 million) apparent cases in 2013. When accounting for disability from moderate and severe acute dengue, and post-dengue chronic fatigue, 566 000 (186 000-1 415 000) years lived with disability were attributable to dengue in 2013. Considering fatal and non-fatal outcomes together, dengue was responsible for 1·14 million (0·73 million-1·98 million) disability-adjusted life-years in 2013. \n INTERPRETATION Although lower than other estimates, our results offer more evidence that the true symptomatic incidence of dengue probably falls within the commonly cited range of 50 million to 100 million cases per year. Our mortality estimates are lower than those presented elsewhere and should be considered in light of the totality of evidence suggesting that dengue mortality might, in fact, be substantially higher. \n FUNDING Bill & Melinda Gates Foundation.", "title": "The global burden of dengue: an analysis from the Global Burden of Disease Study 2013." } ]
426
Forkhead 0 (fox0) transcription factors are involved in apoptosis.
[ { "docid": "16728949", "text": "The forkhead O (FoxO) family of transcription factors participates in diverse physiologic processes, including induction of cell-cycle arrest, stress resistance, differentiation, apoptosis, and metabolism. Several recent studies indicate that FoxO-dependent signaling is required for long-term regenerative potential of the hematopoietic stem cell (HSC) compartment through regulation of HSC response to physiologic oxidative stress, quiescence, and survival. These observations link FoxO function in mammalian systems with the evolutionarily conserved role of FoxO in promotion of stress resistance and longevity in lower phylogenetic systems. Furthermore, these findings have implications for aging in higher organisms and in malignant stem cell biology, and suggest that FoxOs may play an important role in the maintenance and integrity of stem cell compartments in a broad spectrum of tissues.", "title": "Cell Stem Cell Review FoxO Transcription Factors and Stem Cell Homeostasis: Insights from the Hematopoietic System" } ]
[ { "docid": "28937856", "text": "The Sir2 deacetylase modulates organismal life-span in various species. However, the molecular mechanisms by which Sir2 increases longevity are largely unknown. We show that in mammalian cells, the Sir2 homolog SIRT1 appears to control the cellular response to stress by regulating the FOXO family of Forkhead transcription factors, a family of proteins that function as sensors of the insulin signaling pathway and as regulators of organismal longevity. SIRT1 and the FOXO transcription factor FOXO3 formed a complex in cells in response to oxidative stress, and SIRT1 deacetylated FOXO3 in vitro and within cells. SIRT1 had a dual effect on FOXO3 function: SIRT1 increased FOXO3's ability to induce cell cycle arrest and resistance to oxidative stress but inhibited FOXO3's ability to induce cell death. Thus, one way in which members of the Sir2 family of proteins may increase organismal longevity is by tipping FOXO-dependent responses away from apoptosis and toward stress resistance.", "title": "Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase." }, { "docid": "83707680", "text": "Individuals affected with developmental disorders of speech and language have substantial difficulty acquiring expressive and/or receptive language in the absence of any profound sensory or neurological impairment and despite adequate intelligence and opportunity1. Although studies of twins consistently indicate that a significant genetic component is involved1,2,3, most families segregating speech and language deficits show complex patterns of inheritance, and a gene that predisposes individuals to such disorders has not been identified. We have studied a unique three-generation pedigree, KE, in which a severe speech and language disorder is transmitted as an autosomal-dominant monogenic trait4. Our previous work mapped the locus responsible, SPCH1, to a 5.6-cM interval of region 7q31 on chromosome 7 (ref. 5). We also identified an unrelated individual, CS, in whom speech and language impairment is associated with a chromosomal translocation involving the SPCH1 interval6. Here we show that the gene FOXP2, which encodes a putative transcription factor containing a polyglutamine tract and a forkhead DNA-binding domain, is directly disrupted by the translocation breakpoint in CS. In addition, we identify a point mutation in affected members of the KE family that alters an invariant amino-acid residue in the forkhead domain. Our findings suggest that FOXP2 is involved in the developmental process that culminates in speech and language.", "title": "A forkhead-domain gene is mutated in a severe speech and language disorder" }, { "docid": "29429111", "text": "Forkhead box transcription factor, class O (FOXO) is a mammalian homologue of DAF-16, which is known to regulate the lifespan of Caenorhabditis elegans and includes subfamilies of forkhead transcription factors such as AFX, FKHRL1, and FKHR. FKHR is phosphorylated on three sites (Thr-24, Ser-256, and Ser-319) in a phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner, thereby inhibiting death signals. We here documented dephosphorylation of FKHR following transient forebrain ischemia with its concomitant translocation into the nucleus in neurons in gerbil and mouse brains. The activation of FKHR preceded delayed neuronal death in the vulnerable hippocampal regions following ischemic brain injury. The FKHR activation was accompanied by an increase in DNA binding activity for FKHR-responsive element on the Fas ligand promoter. We also defined FKHR-induced downstream targets such as Fas ligand and Bim in brain ischemia. Therefore, we propose a new strategy to rescue neurons from delayed neuronal death by promoting the survival signaling. Sodium orthovanadate, a protein tyrosine phosphatase inhibitor, up-regulated Akt activity in the brain and in turn rescue neurons from delayed neuronal death by inhibiting FKHR-dependent or -independent death signals in neurons.", "title": "Transcriptional regulation of neuronal genes and its effect on neural functions: expression and function of forkhead transcription factors in neurons." }, { "docid": "4418070", "text": "Regulatory T (Treg) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting differentiation factor controlling Treg cell homeostasis and function, whereas the early Treg-cell-lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors. However, whether Foxo proteins act beyond the Treg-cell-commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1 and display reduced T-cell-receptor-induced Akt activation, Foxo1 phosphorylation and Foxo1 nuclear exclusion. Mice with Treg-cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to that seen in Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ∼300 Foxo1-bound target genes, including the pro-inflammatory cytokine Ifng, that do not seem to be directly regulated by Foxp3. These findings show that the evolutionarily ancient Akt–Foxo1 signalling module controls a novel genetic program indispensable for Treg cell function.", "title": "Novel Foxo1-dependent transcriptional programs control Treg cell function" }, { "docid": "30908508", "text": "Objective: To investigate the regulation of CD4+CD25+ Regulatory T cells (Tregs) on pro-inflammatory adhesion molecules, Krüppel-Like Factor-2 (KLF-2) and its downstream transcriptional targets in human umbilical vein endothelial cells (HUVECs) impaired by ox-LDL and the mechanisms of it. Methods and results: HUVECs were cultured in the continuous presence of ox-LDL(0 mg/L,25 mg/L,50 mg/L,100 mg/L) for 4, 6, 12 and 24 hours to allow identification of early-and late-induced genes, respectively, whereas non-stimulated controls were taken at 0 hours. The expression of pro-inflammatory adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), E-selectin, KLF-2 and its target genes eNOS, PAI-1 were determined by real time RT-PCR and/or western-blot analysis. Expression of pro-inflammatory adhesion molecules, KLF-2, eNOS and PAI-1 in HUVEC cultured alone or with anti-CD3 mAbs activated Tregs, followed by addition of ox-LDL (50 mg/L) for 6 hours, are compared to expression levels in control cultures. Ox-LDL treated HUVECs increased pro-inflammatory adhesion molecules expression, as well as increased PAI-1 but decreased eNOS expression accompanied with significant downregulating of KLF-2 at a dose and time dependent manner. Furthermore, ox-LDL increased pro-inflammatory adhesion molecules but inhibited KLF2 expression was reversed by addition of Tregs. Small interfering RNA reduced endogenous KLF-2 expression and partly reversed the suppressive effect of Tregs on HUVECs activation, which strongly implicate KLF-2 as a transcriptional regulator of the Tregs-mediated effects in endothelial cells. Mechanism studies reveal that Treg-mediated KLF2 expression in HUVECs impaired by ox-LDL requires cell contact as well as soluble factors. Conclusions: Tregs could protect endothelial function that is largely dependent on KLF2 and its downstream transcriptional targets regulation involving cell-to-cell contact and soluble factors.", "title": "CD4+CD25+Foxp3+Regulatory T Cells Protect Endothelial Function Impaired by Oxidized Low Density Lipoprotein via the KLF-2 Transcription Factor" }, { "docid": "17055665", "text": "FoxO transcription factors, inhibited by insulin/insulin-like growth factor signalling (IIS), are crucial players in numerous organismal processes including lifespan. Using genomic tools, we uncover over 700 direct dFOXO targets in adult female Drosophila. dFOXO is directly required for transcription of several IIS components and interacting pathways, such as TOR, in the wild-type fly. The genomic locations occupied by dFOXO in adults are different from those observed in larvae or cultured cells. These locations remain unchanged upon activation by stresses or reduced IIS, but the binding is increased and additional targets activated upon genetic reduction in IIS. We identify the part of the IIS transcriptional response directly controlled by dFOXO and the indirect effects and show that parts of the transcriptional response to IIS reduction do not require dfoxo. Promoter analyses revealed GATA and other forkhead factors as candidate mediators of the indirect and dfoxo-independent effects. We demonstrate genome-wide evolutionary conservation of dFOXO targets between the fly and the worm Caenorhabditis elegans, enriched for a second tier of regulators including the dHR96/daf-12 nuclear hormone receptor.", "title": "Genome-wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling" }, { "docid": "8002887", "text": "Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.", "title": "Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs" }, { "docid": "23535770", "text": "Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.", "title": "Potential role of NF-kappaB in adult neural stem cells: the underrated steersman?" }, { "docid": "25510546", "text": "Increased lipid supply causes beta cell death, which may contribute to reduced beta cell mass in type 2 diabetes. We investigated whether endoplasmic reticulum (ER) stress is necessary for lipid-induced apoptosis in beta cells and also whether ER stress is present in islets of an animal model of diabetes and of humans with type 2 diabetes. Expression of genes involved in ER stress was evaluated in insulin-secreting MIN6 cells exposed to elevated lipids, in islets isolated from db/db mice and in pancreas sections of humans with type 2 diabetes. Overproduction of the ER chaperone heat shock 70 kDa protein 5 (HSPA5, previously known as immunoglobulin heavy chain binding protein [BIP]) was performed to assess whether attenuation of ER stress affected lipid-induced apoptosis. We demonstrated that the pro-apoptotic fatty acid palmitate triggers a comprehensive ER stress response in MIN6 cells, which was virtually absent using non-apoptotic fatty acid oleate. Time-dependent increases in mRNA levels for activating transcription factor 4 (Atf4), DNA-damage inducible transcript 3 (Ddit3, previously known as C/EBP homologous protein [Chop]) and DnaJ homologue (HSP40) C3 (Dnajc3, previously known as p58) correlated with increased apoptosis in palmitate- but not in oleate-treated MIN6 cells. Attenuation of ER stress by overproduction of HSPA5 in MIN6 cells significantly protected against lipid-induced apoptosis. In islets of db/db mice, a variety of marker genes of ER stress were also upregulated. Increased processing (activation) of X-box binding protein 1 (Xbp1) mRNA was also observed, confirming the existence of ER stress. Finally, we observed increased islet protein production of HSPA5, DDIT3, DNAJC3 and BCL2-associated X protein in human pancreas sections of type 2 diabetes subjects. Our results provide evidence that ER stress occurs in type 2 diabetes and is required for aspects of the underlying beta cell failure.", "title": "Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes" }, { "docid": "14864285", "text": "Longevity is regulated by the daf-2 gene network in Caenorhabditis elegans. Mutations in the daf-2 gene, which encodes a member of the insulin receptor family, confer the life extension (Age) phenotype and the constitutive dauer (a growth-arrested larval form specialized for dispersal) formation phenotype. The Age phenotype is mutually potentiated by two life extension mutations in the daf-2 gene and the clk-1 gene, a homologue of yeast CAT5/COQ7 known to regulate ubiquinone biosynthesis. In this study, we demonstrated that the daf-2 mutation also conferred an oxidative stress resistance (Oxr) phenotype, which was also enhanced by the clk-1 mutation. Similar to the Age phenotype, the Oxr phenotype was regulated by the genetic pathway of insulin-like signaling from daf-2 to the daf-16 gene, a homologue of the HNF-3/forkhead transcription factor. These findings led us to examine whether the insulin-like signaling pathway regulates the gene expression of antioxidant defense enzymes. We found that the mRNA level of the sod-3 gene, which encodes Mn-superoxide dismutase (SOD), was much higher in daf-2 mutants than in the wild type. Moreover, the increased sod-3 gene expression phenotype is regulated by the insulin-like signaling pathway. Although the clk-1 mutant itself did not display Oxr and the increased sod-3 expression phenotypes, the clk-1 mutation enhanced them in the daf-2 mutant, suggesting that clk-1 is involved in longevity in two ways: clk-1 composes the original clk-1 longevity program and the daf-2 longevity program. These observations suggest that the daf-2 gene network controls longevity by regulating the Mn-SOD-associated antioxidant defense system. This system appears to play a role in efficient life maintenance at the dauer stage.", "title": "YOKO HONDA AND SHUJI HONDA 1" }, { "docid": "14496749", "text": "Oxidative stress influences cell survival and homeostasis, but the mechanisms underlying the biological effects of oxidative stress remain to be elucidated. Here, we demonstrate that the protein kinase MST1 mediates oxidative-stress-induced cell death in primary mammalian neurons by directly activating the FOXO transcription factors. MST1 phosphorylates FOXO proteins at a conserved site within the forkhead domain that disrupts their interaction with 14-3-3 proteins, promotes FOXO nuclear translocation, and thereby induces cell death in neurons. We also extend the MST-FOXO signaling link to nematodes. Knockdown of the C. elegans MST1 ortholog CST-1 shortens life span and accelerates tissue aging, while overexpression of cst-1 promotes life span and delays aging. The cst-1-induced life-span extension occurs in a daf-16-dependent manner. The identification of the FOXO transcription factors as major and evolutionarily conserved targets of MST1 suggests that MST kinases play important roles in diverse biological processes including cellular responses to oxidative stress and longevity.", "title": "A Conserved MST-FOXO Signaling Pathway Mediates Oxidative-Stress Responses and Extends Life Span" }, { "docid": "42873134", "text": "Type 1 and type 2 diabetes are characterized by progressive beta-cell failure. Apoptosis is probably the main form of beta-cell death in both forms of the disease. It has been suggested that the mechanisms leading to nutrient- and cytokine-induced beta-cell death in type 2 and type 1 diabetes, respectively, share the activation of a final common pathway involving interleukin (IL)-1beta, nuclear factor (NF)-kappaB, and Fas. We review herein the similarities and differences between the mechanisms of beta-cell death in type 1 and type 2 diabetes. In the insulitis lesion in type 1 diabetes, invading immune cells produce cytokines, such as IL-1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma. IL-1beta and/or TNF-alpha plus IFN-gamma induce beta-cell apoptosis via the activation of beta-cell gene networks under the control of the transcription factors NF-kappaB and STAT-1. NF-kappaB activation leads to production of nitric oxide (NO) and chemokines and depletion of endoplasmic reticulum (ER) calcium. The execution of beta-cell death occurs through activation of mitogen-activated protein kinases, via triggering of ER stress and by the release of mitochondrial death signals. Chronic exposure to elevated levels of glucose and free fatty acids (FFAs) causes beta-cell dysfunction and may induce beta-cell apoptosis in type 2 diabetes. Exposure to high glucose has dual effects, triggering initially \"glucose hypersensitization\" and later apoptosis, via different mechanisms. High glucose, however, does not induce or activate IL-1beta, NF-kappaB, or inducible nitric oxide synthase in rat or human beta-cells in vitro or in vivo in Psammomys obesus. FFAs may cause beta-cell apoptosis via ER stress, which is NF-kappaB and NO independent. Thus, cytokines and nutrients trigger beta-cell death by fundamentally different mechanisms, namely an NF-kappaB-dependent mechanism that culminates in caspase-3 activation for cytokines and an NF-kappaB-independent mechanism for nutrients. This argues against a unifying hypothesis for the mechanisms of beta-cell death in type 1 and type 2 diabetes and suggests that different approaches will be required to prevent beta-cell death in type 1 and type 2 diabetes.", "title": "Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities." }, { "docid": "22896384", "text": "The airways of the lung develop through a reiterative process of branching morphogenesis that gives rise to the intricate and extensive surface area required for postnatal respiration. The forkhead transcription factors Foxp2 and Foxp1 are expressed in multiple foregut-derived tissues including the lung and intestine. In this report, we show that loss of Foxp2 in mouse leads to defective postnatal lung alveolarization, contributing to postnatal lethality. Using in vitro and in vivo assays, we show that T1alpha, a lung alveolar epithelial type 1 cell-restricted gene crucial for lung development and function, is a direct target of Foxp2 and Foxp1. Remarkably, loss of a single Foxp1 allele in addition to complete loss of Foxp2 results in increased severity of morphological defects in mutant lungs and leads to perinatal loss of all Foxp2(-/-);Foxp1(+/-) mice. Expression of N-myc and Hop, crucial regulators of lung development, is compromised in Foxp2(-/-);Foxp1(+/-) mutants. In addition to the defects in lung development, esophageal muscle development is disrupted in Foxp2(-/-);Foxp1(+/-) embryos, a tissue where Foxp2 and Foxp1 are co-expressed. These data identify Foxp2 and Foxp1 as crucial regulators of lung and esophageal development, underscoring the necessity of these transcription factors in the development of anterior foregut-derived tissues and demonstrating functional cooperativity between members of the Foxp1/2/4 family in tissues where they are co-expressed.", "title": "Foxp2 and Foxp1 cooperatively regulate lung and esophagus development." }, { "docid": "6896063", "text": "p53 functions as a transcription factor involved in cell-cycle control, DNA repair, apoptosis and cellular stress responses. However, besides inducing cell growth arrest and apoptosis, p53 activation also modulates cellular senescence and organismal aging. Senescence is an irreversible cell-cycle arrest that has a crucial role both in aging and as a robust physiological antitumor response, which counteracts oncogenic insults. Therefore, via the regulation of senescence, p53 contributes to tumor growth suppression, in a manner strictly dependent by its expression and cellular context. In this review, we focus on the recent advances on the contribution of p53 to cellular senescence and its implication for cancer therapy, and we will discuss p53’s impact on animal lifespan. Moreover, we describe p53-mediated regulation of several physiological pathways that could mediate its role in both senescence and aging.", "title": "Senescence and aging: the critical roles of p53" }, { "docid": "919007", "text": "The forkhead box (Fox) family of transcription factors, which originated in unicellular eukaryotes, has expanded over time through multiple duplication events, and sometimes through gene loss, to over 40 members in mammals. Fox genes have evolved to acquire a specialized function in many key biological processes. Mutations in Fox genes have a profound effect on human disease, causing phenotypes as varied as cancer, glaucoma and language disorders. We summarize the salient features of the evolution of the Fox gene family and highlight the diverse contribution of various Fox subfamilies to developmental processes, from organogenesis to speech acquisition.", "title": "The evolution of Fox genes and their role in development and disease" }, { "docid": "9393969", "text": "Organisms are constantly challenged by stresses and privations and require adaptive responses for their survival. The forkhead box O (FOXO) transcription factor DAF-16 (hereafter referred to as DAF-16/FOXO) is a central nexus in these responses, but despite its importance little is known about how it regulates its target genes. Proteomic identification of DAF-16/FOXO-binding partners in Caenorhabditis elegans and their subsequent functional evaluation by RNA interference revealed several candidate DAF-16/FOXO cofactors, most notably the chromatin remodeller SWI/SNF. DAF-16/FOXO and SWI/SNF form a complex and globally co-localize at DAF-16/FOXO target promoters. We show that specifically for gene activation, DAF-16/FOXO depends on SWI/SNF, facilitating SWI/SNF recruitment to target promoters, to activate transcription by presumed remodelling of local chromatin. For the animal, this translates into an essential role for SWI/SNF in DAF-16/FOXO-mediated processes, in particular dauer formation, stress resistance and the promotion of longevity. Thus, we give insight into the mechanisms of DAF-16/FOXO-mediated transcriptional regulation and establish a critical link between ATP-dependent chromatin remodelling and lifespan regulation.", "title": "DAF-16/FOXO employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity" }, { "docid": "7465900", "text": "BACKGROUND & AIMS Helicobacter pylori-induced gastric epithelial cell (GEC) apoptosis is a complex process that includes activation of the tumor suppressor p53. p53-mediated apoptosis involves p53 activation, bax transcription, and cytochrome c release from mitochondria. Apurinic/apyrimidinic endonuclease-1 (APE-1) regulates transcriptional activity of p53, and H pylori induce APE-1 expression in human GECs. H pylori infection increases intracellular calcium ion concentration [Ca2+]i of GECs, which induces APE-1 acetylation. We investigated the effects of H pylori infection and APE-1 acetylation on GEC apoptosis. \n METHODS AGS cells (wild-type or with suppressed APE-1), KATO III cells, and cells isolated from gastric biopsy specimens were infected with H pylori. Effects were examined by immunoblotting, real-time reverse-transcription polymerase chain reaction, immunoprecipitation, immunofluorescence microscopy, chromatin immunoprecipitation, mobility shift, DNA binding, and luciferase assays. \n RESULTS H pylori infection increased [Ca2+]i and acetylation of APE-1 in GECs, but the acetylation status of APE-1 did not affect the transcriptional activity of p53. In GECs, expression of a form of APE-1 that could not be acetylated increased total and mitochondrial levels of Bax and induced release of cytochrome c and fragmentation of DNA; expression of wild-type APE-1 reduced these apoptotic events. We identified a negative calcium response element in the human bax promoter and found that poly (adenosine diphosphate-ribose) polymerase 1 recruited the acetylated APE-1/histone deacetylase-1 repressor complex to bax nCaRE. \n CONCLUSIONS H pylori-mediated acetylation of APE-1 suppresses Bax expression; this prevents p53-mediated apoptosis when H pylori infect GECs.", "title": "Acetylation of apurinic/apyrimidinic endonuclease-1 regulates Helicobacter pylori-mediated gastric epithelial cell apoptosis." }, { "docid": "3710557", "text": "β-catenin (encoded by CTNNB1) is a subunit of the cell surface cadherin protein complex that acts as an intracellular signal transducer in the WNT signaling pathway; alterations in its activity have been associated with the development of hepatocellular carcinoma and other liver diseases. Other than WNT, additional signaling pathways also can converge at β-catenin. β-catenin also interacts with transcription factors such as T-cell factor, forkhead box protein O, and hypoxia inducible factor 1α to regulate the expression of target genes. We discuss the role of β-catenin in metabolic zonation of the adult liver. β-catenin also regulates the expression of genes that control metabolism of glucose, nutrients, and xenobiotics; alterations in its activity may contribute to the pathogenesis of nonalcoholic steatohepatitis. Alterations in β-catenin signaling may lead to activation of hepatic stellate cells, which is required for fibrosis. Many hepatic tumors such as hepatocellular adenomas, hepatocellular cancers, and hepatoblastomas have mutations in CTNNB1 that result in constitutive activation of β-catenin, so this molecule could be a therapeutic target. We discuss how alterations in β-catenin activity contribute to liver disease and how these might be used in diagnosis and prognosis, as well as in the development of therapeutics.", "title": "β-Catenin Signaling and Roles in Liver Homeostasis, Injury, and Tumorigenesis." }, { "docid": "10218447", "text": "Isorhamnetin is one member of flavonoid components which has been used in the treatment of heart disease. Recently the in vitro anti-cancer effect of isorhamnetin on human esophageal squamous carcinoma cell line Eca-109 was investigated in our lab. When Eca-109 cells were in vitro exposed to the graded doses of isorhamnetin (0-80 microg/ml) for 48 h, respectively, isorhamnetin exhibited cytostatic effect on the treated cells, with an IC(50) of 40+/-0.08 microg/ml as estimated by MTT assay. Inhibition on proliferation by isorhamnetin was detected by trypan blue exclusion assay, clone formation test, immunocytochemical assay of PCNA and (3)H-thymidine uptake analysis. Cell cycle distribution was measured by FCM. It was found that the viability of Eca-109 cells was significantly hampered by isorhamnetin. Compared with the negative control group, the treated group which was exposed to isorhamnetin had increased population in G(0)/G(1) phase from 74.6 to 84 while had a significant reduction in G(2)/M phase from 11.9 to 5.8. In addition to its cytostatic effect, isorhamnetin also showed stimulatory effect on apoptosis. Typical apoptotic morphology such as condensation and fragmentation of nuclei and blebbing membrane of the apoptotic cells could be observed through transmission electron microscope. Moreover, the sharp increase in apoptosis rate between the control and treated group were detected by FCM from 6.3 to 16.3. To explore the possible molecular mechanisms that underlie the growth inhibition and apoptosis stimulatory effects of isorhamnetin, the expressions of six proliferation- and death-related genes were detected by FCM. Expressions of bcl-2, c-myc and H-ras were downregulated whereas Bax, c-fos and p53 were upregulated. However, the in vivo experiments were required to further confirm the anti-cancer effects of isorhamnetin. In conclusion, isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit proliferation but also induce apoptosis of Eca-109 cells.", "title": "The flavonoid component isorhamnetin in vitro inhibits proliferation and induces apoptosis in Eca-109 cells." } ]
428
Forkhead 0 (fox0) transcription factors are involved in cellular differentiation.
[ { "docid": "16728949", "text": "The forkhead O (FoxO) family of transcription factors participates in diverse physiologic processes, including induction of cell-cycle arrest, stress resistance, differentiation, apoptosis, and metabolism. Several recent studies indicate that FoxO-dependent signaling is required for long-term regenerative potential of the hematopoietic stem cell (HSC) compartment through regulation of HSC response to physiologic oxidative stress, quiescence, and survival. These observations link FoxO function in mammalian systems with the evolutionarily conserved role of FoxO in promotion of stress resistance and longevity in lower phylogenetic systems. Furthermore, these findings have implications for aging in higher organisms and in malignant stem cell biology, and suggest that FoxOs may play an important role in the maintenance and integrity of stem cell compartments in a broad spectrum of tissues.", "title": "Cell Stem Cell Review FoxO Transcription Factors and Stem Cell Homeostasis: Insights from the Hematopoietic System" } ]
[ { "docid": "4418070", "text": "Regulatory T (Treg) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting differentiation factor controlling Treg cell homeostasis and function, whereas the early Treg-cell-lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors. However, whether Foxo proteins act beyond the Treg-cell-commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1 and display reduced T-cell-receptor-induced Akt activation, Foxo1 phosphorylation and Foxo1 nuclear exclusion. Mice with Treg-cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to that seen in Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ∼300 Foxo1-bound target genes, including the pro-inflammatory cytokine Ifng, that do not seem to be directly regulated by Foxp3. These findings show that the evolutionarily ancient Akt–Foxo1 signalling module controls a novel genetic program indispensable for Treg cell function.", "title": "Novel Foxo1-dependent transcriptional programs control Treg cell function" }, { "docid": "83707680", "text": "Individuals affected with developmental disorders of speech and language have substantial difficulty acquiring expressive and/or receptive language in the absence of any profound sensory or neurological impairment and despite adequate intelligence and opportunity1. Although studies of twins consistently indicate that a significant genetic component is involved1,2,3, most families segregating speech and language deficits show complex patterns of inheritance, and a gene that predisposes individuals to such disorders has not been identified. We have studied a unique three-generation pedigree, KE, in which a severe speech and language disorder is transmitted as an autosomal-dominant monogenic trait4. Our previous work mapped the locus responsible, SPCH1, to a 5.6-cM interval of region 7q31 on chromosome 7 (ref. 5). We also identified an unrelated individual, CS, in whom speech and language impairment is associated with a chromosomal translocation involving the SPCH1 interval6. Here we show that the gene FOXP2, which encodes a putative transcription factor containing a polyglutamine tract and a forkhead DNA-binding domain, is directly disrupted by the translocation breakpoint in CS. In addition, we identify a point mutation in affected members of the KE family that alters an invariant amino-acid residue in the forkhead domain. Our findings suggest that FOXP2 is involved in the developmental process that culminates in speech and language.", "title": "A forkhead-domain gene is mutated in a severe speech and language disorder" }, { "docid": "28937856", "text": "The Sir2 deacetylase modulates organismal life-span in various species. However, the molecular mechanisms by which Sir2 increases longevity are largely unknown. We show that in mammalian cells, the Sir2 homolog SIRT1 appears to control the cellular response to stress by regulating the FOXO family of Forkhead transcription factors, a family of proteins that function as sensors of the insulin signaling pathway and as regulators of organismal longevity. SIRT1 and the FOXO transcription factor FOXO3 formed a complex in cells in response to oxidative stress, and SIRT1 deacetylated FOXO3 in vitro and within cells. SIRT1 had a dual effect on FOXO3 function: SIRT1 increased FOXO3's ability to induce cell cycle arrest and resistance to oxidative stress but inhibited FOXO3's ability to induce cell death. Thus, one way in which members of the Sir2 family of proteins may increase organismal longevity is by tipping FOXO-dependent responses away from apoptosis and toward stress resistance.", "title": "Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase." }, { "docid": "29429111", "text": "Forkhead box transcription factor, class O (FOXO) is a mammalian homologue of DAF-16, which is known to regulate the lifespan of Caenorhabditis elegans and includes subfamilies of forkhead transcription factors such as AFX, FKHRL1, and FKHR. FKHR is phosphorylated on three sites (Thr-24, Ser-256, and Ser-319) in a phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner, thereby inhibiting death signals. We here documented dephosphorylation of FKHR following transient forebrain ischemia with its concomitant translocation into the nucleus in neurons in gerbil and mouse brains. The activation of FKHR preceded delayed neuronal death in the vulnerable hippocampal regions following ischemic brain injury. The FKHR activation was accompanied by an increase in DNA binding activity for FKHR-responsive element on the Fas ligand promoter. We also defined FKHR-induced downstream targets such as Fas ligand and Bim in brain ischemia. Therefore, we propose a new strategy to rescue neurons from delayed neuronal death by promoting the survival signaling. Sodium orthovanadate, a protein tyrosine phosphatase inhibitor, up-regulated Akt activity in the brain and in turn rescue neurons from delayed neuronal death by inhibiting FKHR-dependent or -independent death signals in neurons.", "title": "Transcriptional regulation of neuronal genes and its effect on neural functions: expression and function of forkhead transcription factors in neurons." }, { "docid": "14496749", "text": "Oxidative stress influences cell survival and homeostasis, but the mechanisms underlying the biological effects of oxidative stress remain to be elucidated. Here, we demonstrate that the protein kinase MST1 mediates oxidative-stress-induced cell death in primary mammalian neurons by directly activating the FOXO transcription factors. MST1 phosphorylates FOXO proteins at a conserved site within the forkhead domain that disrupts their interaction with 14-3-3 proteins, promotes FOXO nuclear translocation, and thereby induces cell death in neurons. We also extend the MST-FOXO signaling link to nematodes. Knockdown of the C. elegans MST1 ortholog CST-1 shortens life span and accelerates tissue aging, while overexpression of cst-1 promotes life span and delays aging. The cst-1-induced life-span extension occurs in a daf-16-dependent manner. The identification of the FOXO transcription factors as major and evolutionarily conserved targets of MST1 suggests that MST kinases play important roles in diverse biological processes including cellular responses to oxidative stress and longevity.", "title": "A Conserved MST-FOXO Signaling Pathway Mediates Oxidative-Stress Responses and Extends Life Span" }, { "docid": "3748310", "text": "Although the essential role of the adaptor protein SLP-65 in pre-B cell differentiation is established, the molecular mechanism underlying its function is poorly understood. In this study, we uncover a link between SLP-65–dependent signaling and the phosphoinositide-3-OH kinase (PI(3)K)–protein kinase B (PKB)–Foxo pathway. We show that the forkhead box transcription factor Foxo3a promotes light chain rearrangement in pre-B cells. Our data suggest that PKB suppresses light chain recombination by phosphorylating Foxo proteins, whereas reconstitution of SLP-65 function counteracts PKB activation and promotes Foxo3a and Foxo1 activity in pre-B cells. Together, these data illuminate a molecular function of SLP-65 and identify a key role for Foxo proteins in the regulation of light chain recombination, receptor editing and B cell selection.", "title": "SLP-65 regulates immunoglobulin light chain gene recombination through the PI(3)K-PKB-Foxo pathway" }, { "docid": "18546584", "text": "CD4(+) helper T (Th) cells play a crucial role in the delicate balance between host defense and autoimmune disease. Two important populations of helper T cells are the proinflammatory, interleukin-17 (IL-17)-producing (Th17) cells and the anti-inflammatory forkhead box P3-positive (FoxP3(+)) T regulatory (Treg) cells. Here we show that all-trans retinoic acid (ATRA) and other agonists of the retinoic acid receptor alpha (RARalpha) inhibit the formation of Th17 cells and promote FoxP3 expression. Conversely, inhibition of retinoic acid signaling constrains transforming growth factor beta (TGF-beta1) induction of FoxP3. The effect of ATRA is mediated independently of IL-2, signal transducer and activator of transcription 5 (Stat5) and Stat3, representing a novel mechanism for the induction of FoxP3 in CD4 T cells. As previous studies have shown that vitamin A derivatives are protective in animal models of autoimmune disease, the current data suggest a previously unrecognized role for RARalpha in the regulation of CD4(+) T-cell differentiation and provide a mechanism for the anti-inflammatory effects of retinoic acid.", "title": "Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway." }, { "docid": "30908508", "text": "Objective: To investigate the regulation of CD4+CD25+ Regulatory T cells (Tregs) on pro-inflammatory adhesion molecules, Krüppel-Like Factor-2 (KLF-2) and its downstream transcriptional targets in human umbilical vein endothelial cells (HUVECs) impaired by ox-LDL and the mechanisms of it. Methods and results: HUVECs were cultured in the continuous presence of ox-LDL(0 mg/L,25 mg/L,50 mg/L,100 mg/L) for 4, 6, 12 and 24 hours to allow identification of early-and late-induced genes, respectively, whereas non-stimulated controls were taken at 0 hours. The expression of pro-inflammatory adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), E-selectin, KLF-2 and its target genes eNOS, PAI-1 were determined by real time RT-PCR and/or western-blot analysis. Expression of pro-inflammatory adhesion molecules, KLF-2, eNOS and PAI-1 in HUVEC cultured alone or with anti-CD3 mAbs activated Tregs, followed by addition of ox-LDL (50 mg/L) for 6 hours, are compared to expression levels in control cultures. Ox-LDL treated HUVECs increased pro-inflammatory adhesion molecules expression, as well as increased PAI-1 but decreased eNOS expression accompanied with significant downregulating of KLF-2 at a dose and time dependent manner. Furthermore, ox-LDL increased pro-inflammatory adhesion molecules but inhibited KLF2 expression was reversed by addition of Tregs. Small interfering RNA reduced endogenous KLF-2 expression and partly reversed the suppressive effect of Tregs on HUVECs activation, which strongly implicate KLF-2 as a transcriptional regulator of the Tregs-mediated effects in endothelial cells. Mechanism studies reveal that Treg-mediated KLF2 expression in HUVECs impaired by ox-LDL requires cell contact as well as soluble factors. Conclusions: Tregs could protect endothelial function that is largely dependent on KLF2 and its downstream transcriptional targets regulation involving cell-to-cell contact and soluble factors.", "title": "CD4+CD25+Foxp3+Regulatory T Cells Protect Endothelial Function Impaired by Oxidized Low Density Lipoprotein via the KLF-2 Transcription Factor" }, { "docid": "25606339", "text": "TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetic modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests that TLR3 can act as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects.", "title": "Toll-like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication." }, { "docid": "13798951", "text": "CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.", "title": "Differentiation of effector CD4 T cell populations (*)." }, { "docid": "17055665", "text": "FoxO transcription factors, inhibited by insulin/insulin-like growth factor signalling (IIS), are crucial players in numerous organismal processes including lifespan. Using genomic tools, we uncover over 700 direct dFOXO targets in adult female Drosophila. dFOXO is directly required for transcription of several IIS components and interacting pathways, such as TOR, in the wild-type fly. The genomic locations occupied by dFOXO in adults are different from those observed in larvae or cultured cells. These locations remain unchanged upon activation by stresses or reduced IIS, but the binding is increased and additional targets activated upon genetic reduction in IIS. We identify the part of the IIS transcriptional response directly controlled by dFOXO and the indirect effects and show that parts of the transcriptional response to IIS reduction do not require dfoxo. Promoter analyses revealed GATA and other forkhead factors as candidate mediators of the indirect and dfoxo-independent effects. We demonstrate genome-wide evolutionary conservation of dFOXO targets between the fly and the worm Caenorhabditis elegans, enriched for a second tier of regulators including the dHR96/daf-12 nuclear hormone receptor.", "title": "Genome-wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling" }, { "docid": "8002887", "text": "Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.", "title": "Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs" }, { "docid": "3174305", "text": "DNA cytosine methylation is a central epigenetic modification that has essential roles in cellular processes including genome regulation, development and disease. Here we present the first genome-wide, single-base-resolution maps of methylated cytosines in a mammalian genome, from both human embryonic stem cells and fetal fibroblasts, along with comparative analysis of messenger RNA and small RNA components of the transcriptome, several histone modifications, and sites of DNA–protein interaction for several key regulatory factors. Widespread differences were identified in the composition and patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic stem cells was in a non-CG context, suggesting that embryonic stem cells may use different methylation mechanisms to affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and depletion in protein binding sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells, and was restored in induced pluripotent stem cells. We identified hundreds of differentially methylated regions proximal to genes involved in pluripotency and differentiation, and widespread reduced methylation levels in fibroblasts associated with lower transcriptional activity. These reference epigenomes provide a foundation for future studies exploring this key epigenetic modification in human disease and development.", "title": "Human DNA methylomes at base resolution show widespread epigenomic differences" }, { "docid": "12315072", "text": "At the cellular level, development progresses through successive regulatory states, each characterized by their specific gene expression profile. However, the molecular mechanisms regulating first the priming and then maintenance of gene expression within one developmental pathway are essentially unknown. The hematopoietic system represents a powerful experimental model to address these questions and here we have focused on a regulatory circuit playing a central role in myelopoiesis: the transcription factor PU.1, its target gene colony-stimulating-factor 1 receptor (Csf1r), and key upstream regulators such as RUNX1. We find that during ontogeny, chromatin unfolding precedes the establishment of active histone marks and the formation of stable transcription factor complexes at the Pu.1 locus and we show that chromatin remodeling is mediated by the transient binding of RUNX1 to Pu.1 cis-elements. By contrast, chromatin reorganization of Csf1r requires prior expression of PU.1 together with RUNX1 binding. Once the full hematopoietic program is established, stable transcription factor complexes and active chromatin can be maintained without RUNX1. Our experiments therefore demonstrate how individual transcription factors function in a differentiation stage-specific manner to differentially affect the initiation versus maintenance of a developmental program.", "title": "Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program." }, { "docid": "14225271", "text": "Differentiating somatic cells are progressively restricted to specialized functions during ontogeny, but they can be experimentally directed to form other cell types, including those with complete embryonic potential. Early nuclear reprogramming methods, such as somatic cell nuclear transfer (SCNT) and cell fusion, posed significant technical hurdles to precise dissection of the regulatory programmes governing cell identity. However, the discovery of reprogramming by ectopic expression of a defined set of transcription factors, known as direct reprogramming, provided a tractable platform to uncover molecular characteristics of cellular specification and differentiation, cell type stability and pluripotency. We discuss the control and maintenance of cellular identity during developmental transitions as they have been studied using direct reprogramming, with an emphasis on transcriptional and epigenetic regulation.", "title": "Molecular features of cellular reprogramming and development" }, { "docid": "45143088", "text": "Long non-coding RNAs (lncRNAs) are involved in regulating chromatin modifications, gene transcription, mRNA translation, and protein function. We recently reported a high variation in the basal expression levels of a panel of lncRNAs in HeLa and MCF-7 cells and their differential response to DNA damage induction. Here, we hypothesized that lncRNA molecules with different cellular expression may have a differential abundance in secreted exosomes, and their exosome levels would reflect cellular response to DNA damage. MALAT1, HOTAIR, lincRNA-p21, GAS5, TUG1, CCND1-ncRNA in exosomes secreted from cultured cells were characterized. A different expression pattern of lncRNAs in exosomes was seen compared to cells. RNA molecules with relative low expression levels (lincRNA-p21, HOTAIR, ncRNA-CCND1) were highly enriched in exosomes. TUG1 and GAS5 levels were moderately elevated in exosomes, whereas MALAT1--which was the most abundant molecule in cells--was present at levels comparable to its cellular levels. lincRNA-p21 and ncRNA-CCND1 were the main molecules; exosome levels of them best reflect the change of their cellular levels upon exposure of the cells to bleomycin-induced DNA damage. In conclusion, we provide evidence that lncRNAs have a differential abundance in exosomes, indicating a selective loading.", "title": "Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes." }, { "docid": "195680777", "text": "BACKGROUND Moderate differences in efficacy between adjuvant chemotherapy regimens for breast cancer are plausible, and could affect treatment choices. We sought any such differences. \n METHODS We undertook individual-patient-data meta-analyses of the randomised trials comparing: any taxane-plus-anthracycline-based regimen versus the same, or more, non-taxane chemotherapy (n=44,000); one anthracycline-based regimen versus another (n=7000) or versus cyclophosphamide, methotrexate, and fluorouracil (CMF; n=18,000); and polychemotherapy versus no chemotherapy (n=32,000). The scheduled dosages of these three drugs and of the anthracyclines doxorubicin (A) and epirubicin (E) were used to define standard CMF, standard 4AC, and CAF and CEF. Log-rank breast cancer mortality rate ratios (RRs) are reported. \n FINDINGS In trials adding four separate cycles of a taxane to a fixed anthracycline-based control regimen, extending treatment duration, breast cancer mortality was reduced (RR 0·86, SE 0·04, two-sided significance [2p]=0·0005). In trials with four such extra cycles of a taxane counterbalanced in controls by extra cycles of other cytotoxic drugs, roughly doubling non-taxane dosage, there was no significant difference (RR 0·94, SE 0·06, 2p=0·33). Trials with CMF-treated controls showed that standard 4AC and standard CMF were equivalent (RR 0·98, SE 0·05, 2p=0·67), but that anthracycline-based regimens with substantially higher cumulative dosage than standard 4AC (eg, CAF or CEF) were superior to standard CMF (RR 0·78, SE 0·06, 2p=0·0004). Trials versus no chemotherapy also suggested greater mortality reductions with CAF (RR 0·64, SE 0·09, 2p<0·0001) than with standard 4AC (RR 0·78, SE 0·09, 2p=0·01) or standard CMF (RR 0·76, SE 0·05, 2p<0·0001). In all meta-analyses involving taxane-based or anthracycline-based regimens, proportional risk reductions were little affected by age, nodal status, tumour diameter or differentiation (moderate or poor; few were well differentiated), oestrogen receptor status, or tamoxifen use. Hence, largely independently of age (up to at least 70 years) or the tumour characteristics currently available to us for the patients selected to be in these trials, some taxane-plus-anthracycline-based or higher-cumulative-dosage anthracycline-based regimens (not requiring stem cells) reduced breast cancer mortality by, on average, about one-third. 10-year overall mortality differences paralleled breast cancer mortality differences, despite taxane, anthracycline, and other toxicities. \n INTERPRETATION 10-year gains from a one-third breast cancer mortality reduction depend on absolute risks without chemotherapy (which, for oestrogen-receptor-positive disease, are the risks remaining with appropriate endocrine therapy). Low absolute risk implies low absolute benefit, but information was lacking about tumour gene expression markers or quantitative immunohistochemistry that might help to predict risk, chemosensitivity, or both. \n FUNDING Cancer Research UK; British Heart Foundation; UK Medical Research Council.", "title": "Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials." }, { "docid": "14864285", "text": "Longevity is regulated by the daf-2 gene network in Caenorhabditis elegans. Mutations in the daf-2 gene, which encodes a member of the insulin receptor family, confer the life extension (Age) phenotype and the constitutive dauer (a growth-arrested larval form specialized for dispersal) formation phenotype. The Age phenotype is mutually potentiated by two life extension mutations in the daf-2 gene and the clk-1 gene, a homologue of yeast CAT5/COQ7 known to regulate ubiquinone biosynthesis. In this study, we demonstrated that the daf-2 mutation also conferred an oxidative stress resistance (Oxr) phenotype, which was also enhanced by the clk-1 mutation. Similar to the Age phenotype, the Oxr phenotype was regulated by the genetic pathway of insulin-like signaling from daf-2 to the daf-16 gene, a homologue of the HNF-3/forkhead transcription factor. These findings led us to examine whether the insulin-like signaling pathway regulates the gene expression of antioxidant defense enzymes. We found that the mRNA level of the sod-3 gene, which encodes Mn-superoxide dismutase (SOD), was much higher in daf-2 mutants than in the wild type. Moreover, the increased sod-3 gene expression phenotype is regulated by the insulin-like signaling pathway. Although the clk-1 mutant itself did not display Oxr and the increased sod-3 expression phenotypes, the clk-1 mutation enhanced them in the daf-2 mutant, suggesting that clk-1 is involved in longevity in two ways: clk-1 composes the original clk-1 longevity program and the daf-2 longevity program. These observations suggest that the daf-2 gene network controls longevity by regulating the Mn-SOD-associated antioxidant defense system. This system appears to play a role in efficient life maintenance at the dauer stage.", "title": "YOKO HONDA AND SHUJI HONDA 1" }, { "docid": "13290521", "text": "MicroRNAs (miRNAs) are a family of short, non-coding RNA molecules (∼22nt) involved in post-transcriptional control of gene expression. They act via base-pairing with mRNA transcripts that harbour target sequences, resulting in accelerated mRNA decay and/or translational attenuation. Given miRNAs mediate the expression of molecules involved in many aspects of normal cell development and functioning, it is not surprising that aberrant miRNA expression is closely associated with many human diseases. Their pivotal role in driving a range of normal cellular physiology as well as pathological processes has established miRNAs as potential therapeutics, as well as potential diagnostic and prognostic tools in human health. MicroRNA-7 (miR-7) is a highly conserved miRNA which displays restricted spatiotemporal expression during development and in maturity. In humans and mice, mature miR-7 is generated from three different genes, illustrating unexpected redundancy and also the importance of this miRNA in regulating key cellular processes. In this review we examine the expanding role of miR-7 in the context of health, with emphasis on organ differentiation and development, as well as in various mammalian diseases, particularly of the brain, heart, endocrine pancreas and skin, as well as in cancer. The more we learn about miR-7, the more we realise the complexity of its regulation and potential functional application both from a biomarker and therapeutic perspective.", "title": "MicroRNA-7: A miRNA with expanding roles in development and disease." } ]
429
Formation of N-terminal pyroglutamate by glutamine cyclase (GC) competes with NTAQ1 for Nt-Gln substrates.
[ { "docid": "36540079", "text": "Deamidation of N-terminal Gln by Nt(Q)-amidase, an N-terminal amidohydrolase, is a part of the N-end rule pathway of protein degradation. We detected the activity of Nt(Q)-amidase, termed Ntaq1, in mouse tissues, purified Ntaq1 from bovine brains, identified its gene, and began analyzing this enzyme. Ntaq1 is highly conserved among animals, plants, and some fungi, but its sequence is dissimilar to sequences of other amidases. An earlier mutant in the Drosophila Cg8253 gene that we show here to encode Nt(Q)-amidase has defective long-term memory. Other studies identified protein ligands of the uncharacterized human C8orf32 protein that we show here to be the Ntaq1 Nt(Q)-amidase. Remarkably, \"high-throughput\" studies have recently solved the crystal structure of C8orf32 (Ntaq1). Our site-directed mutagenesis of Ntaq1 and its crystal structure indicate that the active site and catalytic mechanism of Nt(Q)-amidase are similar to those of transglutaminases.", "title": "Glutamine-specific N-terminal amidase, a component of the N-end rule pathway." } ]
[ { "docid": "10169908", "text": "PURPOSE We have previously identified solute-linked carrier family A1 member 5 (SLC1A5) as an overexpressed protein in a shotgun proteomic analysis of stage I non-small cell lung cancer (NSCLC) when compared with matched controls. We hypothesized that overexpression of SLC1A5 occurs to meet the metabolic demand for lung cancer cell growth and survival. EXPERIMENTAL DESIGN To test our hypothesis, we first analyzed the protein expression of SLC1A5 in archival lung cancer tissues by immunohistochemistry and immunoblotting (N = 98) and in cell lines (N = 36). To examine SLC1A5 involvement in amino acid transportation, we conducted kinetic analysis of l-glutamine (Gln) uptake in lung cancer cell lines in the presence and absence of a pharmacologic inhibitor of SLC1A5, gamma-l-Glutamyl-p-Nitroanilide (GPNA). Finally, we examined the effect of Gln deprivation and uptake inhibition on cell growth, cell-cycle progression, and growth signaling pathways of five lung cancer cell lines. \n RESULTS Our results show that (i) SLC1A5 protein is expressed in 95% of squamous cell carcinomas (SCC), 74% of adenocarcinomas (ADC), and 50% of neuroendocrine tumors; (ii) SLC1A5 is located at the cytoplasmic membrane and is significantly associated with SCC histology and male gender; (iii) 68% of Gln is transported in a Na(+)-dependent manner, 50% of which is attributed to SLC1A5 activity; and (iv) pharmacologic and genetic targeting of SLC1A5 decreased cell growth and viability in lung cancer cells, an effect mediated in part by mTOR signaling. \n CONCLUSIONS These results suggest that SLC1A5 plays a key role in Gln transport controlling lung cancer cells' metabolism, growth, and survival.", "title": "SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival." }, { "docid": "42314147", "text": "Sp1-like proteins are characterized by three conserved C-terminal zinc finger motifs that bind GC-rich sequences found in promoters of numerous genes essential for mammalian cell homeostasis. These proteins behave as transcriptional activators or repressors. Although significant information has been reported on the molecular mechanisms by which Sp1-like activators function, relatively little is known about mechanisms for repressor proteins. Here we report the functional characterization of BTEB3, a ubiquitously expressed Sp1-like transcriptional repressor. GAL4 assays show that the N terminus of BTEB3 contains regions that can act as direct repressor domains. Immunoprecipitation assays reveal that BTEB3 interacts with the co-repressor mSin3A and the histone deacetylase protein HDAC-1. Gel shift assays demonstrate that BTEB3 specifically binds the BTE site, a well characterized GC-rich DNA element, with an affinity similar to that of Sp1. Reporter and gel shift assays in Chinese hamster ovary cells show that BTEB3 can also mediate repression by competing with Sp1 for BTE binding. Thus, the characterization of this protein expands the repertoire of BTEB-like members of the Sp1 family involved in transcriptional repression. Furthermore, our results suggest a mechanism of repression for BTEB3 involving direct repression by the N terminus via interaction with mSin3A and HDAC-1 and competition with Sp1 via the DNA-binding domain.", "title": "The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1." }, { "docid": "14782049", "text": "The cognitive deficits observed in children with cyanotic congenital heart disease suggest involvement of the developing hippocampus. Chronic postnatal hypoxia present during infancy in these children may play a role in these impairments. To understand the biochemical mechanisms of hippocampal injury in chronic hypoxia, a neurochemical profile consisting of 15 metabolite concentrations and 2 metabolite ratios in the hippocampus was evaluated in a rat model of chronic postnatal hypoxia using in vivo 1H NMR spectroscopy at 9.4 T. Chronic hypoxia was induced by continuously exposing rats (n = 23) to 10% O2 from postnatal day (P) 3 to P28. Fifteen metabolites were quantified from a volume of 9-11 microl centered on the left hippocampus on P14, P21, and P28 and were compared with normoxic controls (n = 14). The developmental trajectory of neurochemicals in chronic hypoxia was similar to that seen in normoxia. However, chronic hypoxia had an effect on the concentrations of the following neurochemicals: aspartate, creatine, phosphocreatine, GABA, glutamate, glutamine, glutathione, myoinositol, N-acetylaspartate (NAA), phosphorylethanolamine, and phosphocreatine/creatine (PCr/Cr) and glutamate/glutamine (Glu/Gln) ratios (P < 0.001 each, except glutamate, P = 0.04). The increased PCr/Cr ratio is consistent with decreased brain energy consumption. Given the well-established link between excitatory neurotransmission and brain energy metabolism, we postulate that elevated glutamate, Glu/Gln ratio, and GABA indicate suppressed excitatory neurotransmission in an energy-limited environment. Decreased NAA and phosphorylethanolamine suggest reduced neuronal integrity and phospholipid metabolism. The altered hippocampal neurochemistry during its development may underlie some of the cognitive deficits present in human infants at risk of chronic hypoxia.", "title": "In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus." }, { "docid": "22191759", "text": "Cathelicidins are a novel family of antimicrobial peptide precursors from mammalian myeloid cells. They are characterized by a conserved N-terminal region while the C-terminal antimicrobial domain can vary considerably in both primary sequence and length. Four cathelicidins, proBac5, proBac7, prododecapeptide and proBMAP-28, have been concurrently purified from bovine neutrophils, using simple and rapid methodologies. The correlation of ES-MS data from the purified proteins with their cDNA-deduced sequences has revealed several common features of their primary sequence, such as the presence of N-terminal 5-oxoproline (pyroglutamate) residues and two disulfide bridges in a 1-2, 3-4 arrangement. The N-terminal domains of the cathelicidins present one or two Asp-Pro bonds, which are particularly acid-labile in proBac5 and proBac7, but stable in prododecapeptide. This suggests that the spatial organization around these bonds may vary in different cathelicidins, and favour hydrolysis in some cases. An unexpected feature of the prododecapeptide is that it exists as dimers formed by three possible combinations of its two isoforms. The isolation of a truncated, monomeric form of this protein, lacking the cysteine-containing antimicrobial dodecapeptide, indicates that dimerization occurs via disulfide bridge formation at the level of the C-terminal domain and that the dodecapeptide is likely released as a dimer from its precursor. Sequence-based secondary structure predictions and CD results indicate for cathelicidins a 30-50% content of extended conformation and <20% content of alpha-helical conformation, with the alpha-helical segment placed near the N-terminus. Finally, similarity searching and topology-based structure prediction underline a significant sequential and structural similarity between the conserved N-terminal domain of cathelicidins and cystatin-like domains, placing this family within the cystatin superfamily. When assayed against cathepsin L, unlike the potent cystatin inhibitors, three of the four cathelicidins show only a poor inhibitory activity (Ki = 0.6-3 microM).", "title": "Purification and structural characterization of bovine cathelicidins, precursors of antimicrobial peptides." }, { "docid": "23576726", "text": "Increased tolerance of crops to low oxygen (hypoxia) during flooding is a key target for food security. In Arabidopsis thaliana (L.) Heynh., the N-end rule pathway of targeted proteolysis controls plant responses to hypoxia by regulating the stability of group VII ethylene response factor (ERFVII) transcription factors, controlled by the oxidation status of amino terminal (Nt)-cysteine (Cys). Here, we show that the barley (Hordeum vulgare L.) ERFVII BERF1 is a substrate of the N-end rule pathway in vitro. Furthermore, we show that Nt-Cys acts as a sensor for hypoxia in vivo, as the stability of the oxygen-sensor reporter protein MCGGAIL-GUS increased in waterlogged transgenic plants. Transgenic RNAi barley plants, with reduced expression of the N-end rule pathway N-recognin E3 ligase PROTEOLYSIS6 (HvPRT6), showed increased expression of hypoxia-associated genes and altered seed germination phenotypes. In addition, in response to waterlogging, transgenic plants showed sustained biomass, enhanced yield, retention of chlorophyll, and enhanced induction of hypoxia-related genes. HvPRT6 RNAi plants also showed reduced chlorophyll degradation in response to continued darkness, often associated with waterlogged conditions. Barley Targeting Induced Local Lesions IN Genomes (TILLING) lines, containing mutant alleles of HvPRT6, also showed increased expression of hypoxia-related genes and phenotypes similar to RNAi lines. We conclude that the N-end rule pathway represents an important target for plant breeding to enhance tolerance to waterlogging in barley and other cereals.", "title": "Enhanced waterlogging tolerance in barley by manipulation of expression of the N‐end rule pathway E3 ligase PROTEOLYSIS6 " }, { "docid": "3085264", "text": "In the brain, glutamatergic neurotransmission is terminated predominantly by the rapid uptake of synaptically released glutamate into astrocytes through the Na(+)-dependent glutamate transporters GLT-1 and GLAST and its subsequent conversion into glutamine by the enzyme glutamine synthetase (GS). To date, several factors have been identified that rapidly alter glial glutamate uptake by post-translational modification of glutamate transporters. The only condition known to affect the expression of glial glutamate transporters and GS is the coculturing of glia with neurons. We now demonstrate that neurons regulate glial glutamate turnover via pituitary adenylate cyclase-activating polypeptide (PACAP). In the cerebral cortex PACAP is synthesized by neurons and acts on the subpopulation of astroglia involved in glutamate turnover. Exposure of astroglia to PACAP increased the maximal velocity of [(3)H]glutamate uptake by promoting the expression of GLT-1, GLAST, and GS. Moreover, the stimulatory effects of neuron-conditioned medium on glial glutamate transporter expression were attenuated in the presence of PACAP-inactivating antibodies or the PACAP receptor antagonist PACAP 6-38. In contrast to PACAP, vasoactive intestinal peptide promoted glutamate transporter expression only at distinctly higher concentrations, suggesting that PACAP exerts its effects on glial glutamate turnover via PAC1 receptors. Although PAC1 receptor-dependent activation of protein kinase A (PKA) was sufficient to promote the expression of GLAST, the activation of both PKA and protein kinase C (PKC) was required to promote GLT-1 expression optimally. Given the existence of various PAC1 receptor isoforms that activate PKA and PKC to different levels, these findings point to a complex mechanism by which PACAP regulates glial glutamate transport and metabolism. Disturbances of these regulatory mechanisms could represent a major cause for glutamate-associated neurological and psychiatric disorders.", "title": "Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a Neuron-Derived Peptide Regulating Glial Glutamate Transport and Metabolism" }, { "docid": "12451492", "text": "OBJECTIVE One of the theories involved in the pathogenesis of pregnancy induced hypertension involves salt and water retention. We aimed to measure the proenzyme convertase corin, responsible for pro-atrial natriuretic peptide (ANP) cleavage to active ANP, in plasma of hypertensive pregnant females. STUDY DESIGN Sixty pregnant females suffering from pregnancy induced hypertension in second and third trimesters of pregnancy were compared to twenty eight healthy pregnant females of the same gestational period. Concomitant urine and plasma samples were collected for the determination of some biochemical parameters. Plasma soluble corin and N-terminal (NT) pro-ANP (1-98) values were determined in both groups using enzyme immunoassays. \n RESULTS Plasma soluble corin mean value was significantly higher in the patient group compared to the control group. Upon dividing the patient group according to blood pressure, plasma NT pro-ANP showed significantly higher mean value in the group with blood pressure⩾140/90mmHg compared to the group with blood pressure<140/90mmHg and control group. \n CONCLUSIONS High plasma soluble corin and NT pro-ANP values in hypertensive pregnant females particularly those with blood pressure⩾140/90mmHg speculates an ANP receptor/ post receptor signaling defect, which would aggravate the pregnancy induced hypertensive state.", "title": "Plasma soluble corin and N-terminal pro-atrial natriuretic peptide levels in pregnancy induced hypertension." }, { "docid": "15790930", "text": "In the present study, the relationship between short interfering RNA (siRNA) sequence and RNA interference (RNAi) effect was extensively analyzed using 62 targets of four exogenous and two endogenous genes and three mammalian and Drosophila cells. We present the rules that may govern siRNA sequence preference and in accordance with which highly effective siRNAs essential for systematic mammalian functional genomics can be readily designed. These rules indicate that siRNAs which simultaneously satisfy all four of the following sequence conditions are capable of inducing highly effective gene silencing in mammalian cells: (i) A/U at the 5' end of the antisense strand; (ii) G/C at the 5' end of the sense strand; (iii) at least five A/U residues in the 5' terminal one-third of the antisense strand; and (iv) the absence of any GC stretch of more than 9 nt in length. siRNAs opposite in features with respect to the first three conditions give rise to little or no gene silencing in mammalian cells. Essentially the same rules for siRNA sequence preference were found applicable to DNA-based RNAi in mammalian cells and in ovo RNAi using chick embryos. In contrast to mammalian and chick cells, little siRNA sequence preference could be detected in Drosophila in vivo RNAi.", "title": "Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference." }, { "docid": "15663829", "text": "BACKGROUND Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded. \n METHODS AND FINDINGS We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%-36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91-0.97) was similar to that expected (0.96, 0.93-0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74-0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15-0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders. \n CONCLUSIONS Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions. Please see later in the article for the Editors' Summary.", "title": "Mendelian Randomization Study of B-Type Natriuretic Peptide and Type 2 Diabetes: Evidence of Causal Association from Population Studies" }, { "docid": "23160444", "text": "Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration.", "title": "Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones." }, { "docid": "4445629", "text": "OBJECTIVES The aim of this study was to determine the prognostic value of plasma corin in patients with chronic heart failure (CHF). \n BACKGROUND In recent years, accumulating evidence has indicated that corin plays a critical role in regulating blood pressure and cardiac function. \n METHODS We enrolled 1,148 consecutive CHF patients in a prospective cohort study and explored the association between plasma corin levels and clinical prognosis using multivariate Cox regression analysis. \n RESULTS Patients with low corin levels (<458 pg/ml) were more likely to be women and to be hypertensive. Low corin was found to be associated with an increase in New York Heart Association (NYHA) functional class and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels, and a decrease in left ventricular ejection fraction (LVEF) and the estimated glomerular filtration rate (eGFR). Multivariate Cox regression analysis suggested that log corin was an independent predictor of major adverse cardiac event(s) (MACE) (hazard ratio: 0.62; 95% confidence interval: 0.39 to 0.95), together with age, diabetes, NYHA functional class, LVEF, eGFR, and log NT-proBNP. In addition, log corin was also a significant predictor for cardiovascular death (p = 0.041) and heart failure rehospitalization (p = 0.015) after adjustment for clinical variables and established biomarkers of adverse prognosis. The Kaplan-Meier survival curves showed that low corin was a significant predictor of MACE in patients with NT-proBNP levels above and below the median. \n CONCLUSIONS Our study demonstrates that plasma corin is a valuable prognostic marker of MACE in patients with CHF, independent of established conventional risk factors.", "title": "Plasma Corin as a Predictor of Cardiovascular Events in Patients With Chronic Heart Failure." }, { "docid": "5702790", "text": "Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs (miRNAs) from pre-miRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage and an N-terminal helicase motif, whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate.", "title": "Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease." }, { "docid": "11718220", "text": "BACKGROUND Deep vein thrombosis (DVT) and pulmonary embolism are common after stroke. In small trials of patients undergoing surgery, graduated compression stockings (GCS) reduce the risk of DVT. National stroke guidelines extrapolating from these trials recommend their use in patients with stroke despite insufficient evidence. We assessed the effectiveness of thigh-length GCS to reduce DVT after stroke. \n METHODS In this outcome-blinded, randomised controlled trial, 2518 patients who were admitted to hospital within 1 week of an acute stroke and who were immobile were enrolled from 64 centres in the UK, Italy, and Australia. Patients were allocated via a central randomisation system to routine care plus thigh-length GCS (n=1256) or to routine care plus avoidance of GCS (n=1262). A technician who was blinded to treatment allocation undertook compression Doppler ultrasound of both legs at about 7-10 days and, when practical, again at 25-30 days after enrolment. The primary outcome was the occurrence of symptomatic or asymptomatic DVT in the popliteal or femoral veins. Analyses were by intention to treat. This study is registered, number ISRCTN28163533. \n FINDINGS All patients were included in the analyses. The primary outcome occurred in 126 (10.0%) patients allocated to thigh-length GCS and in 133 (10.5%) allocated to avoid GCS, resulting in a non-significant absolute reduction in risk of 0.5% (95% CI -1.9% to 2.9%). Skin breaks, ulcers, blisters, and skin necrosis were significantly more common in patients allocated to GCS than in those allocated to avoid their use (64 [5%] vs 16 [1%]; odds ratio 4.18, 95% CI 2.40-7.27). \n INTERPRETATION These data do not lend support to the use of thigh-length GCS in patients admitted to hospital with acute stroke. National guidelines for stroke might need to be revised on the basis of these results. \n FUNDING Medical Research Council (UK), Chief Scientist Office of Scottish Government, Chest Heart and Stroke Scotland, Tyco Healthcare (Covidien) USA, and UK Stroke Research Network.", "title": "Effectiveness of thigh-length graduated compression stockings to reduce the risk of deep vein thrombosis after stroke (CLOTS trial 1): a multicentre, randomised controlled trial" }, { "docid": "31107919", "text": "G protein-coupled receptors (GPCRs) from the secretin-like (class B) family are key players in hormonal homeostasis and are important drug targets for the treatment of metabolic disorders and neuronal diseases. They consist of a large N-terminal extracellular domain (ECD) and a transmembrane domain (TMD) with the GPCR signature of seven transmembrane helices. Class B GPCRs are activated by peptide hormones with their C termini bound to the receptor ECD and their N termini bound to the TMD. It is thought that the ECD functions as an affinity trap to bind and localize the hormone to the receptor. This in turn would allow the hormone N terminus to insert into the TMD and induce conformational changes of the TMD to activate downstream signaling. In contrast to this prevailing model, we demonstrate that human class B GPCRs vary widely in their requirement of the ECD for activation. In one group, represented by corticotrophin-releasing factor receptor 1 (CRF1R), parathyroid hormone receptor (PTH1R), and pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1R), the ECD requirement for high affinity hormone binding can be bypassed by induced proximity and mass action effects, whereas in the other group, represented by glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), the ECD is required for signaling even when the hormone is covalently linked to the TMD. Furthermore, the activation of GLP-1R by small molecules that interact with the intracellular side of the receptor is dependent on the presence of its ECD, suggesting a direct role of the ECD in GLP-1R activation.", "title": "Differential Requirement of the Extracellular Domain in Activation of Class B G Protein-coupled Receptors." }, { "docid": "44562221", "text": "Endogenous glucocorticoids (GC) play an important role in the termination of the inflammatory response following infection and tissue injury. However, recent findings indicate that stress can impair the anti-inflammatory capacities of these hormones. Lipopolysaccharide (LPS)-stimulated splenocytes of mice that were repeatedly subjected to social disruption (SDR) stress were less sensitive to the immunosuppressive effects of corticosterone (CORT) as demonstrated by an increased production of pro-inflammatory cytokines and enhanced cell survival. Myeloid cells expressing the marker CD11b were shown to play a key role in this process. Here we investigated the role of the bone marrow as a potential source of the GC-insensitive cells. The study revealed that LPS-stimulated bone marrow cells, in the absence of experimental stress, were virtually GC-resistant and retained high levels of cell viability after treatment with CORT. Recurrent exposure to the acute stressor over a period of 2, 4 or 6 days led to an increase in the GC sensitivity of the bone marrow cells. This increase in GC sensitivity was associated with enhanced mRNA expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), an increase in the number of myeloid progenitors, and a decrease in the proportion of mature CD11b+ cells. The changes in the cellular composition of the bone marrow were accompanied by an increase in splenic CD11b+ cell numbers. Simultaneous assessment of the GC sensitivity in bone marrow and spleen revealed a significant negative correlation between both tissues suggesting that social stress causes the redistribution of GC-insensitive myeloid cells from the bone marrow to the spleen.", "title": "Tissue-specific alterations in the glucocorticoid sensitivity of immune cells following repeated social defeat in mice" }, { "docid": "12207340", "text": "The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5'-terminated strands in a process termed end resection. End resection generates 3'-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5'-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3'-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome.", "title": "Mechanism and regulation of DNA end resection in eukaryotes." }, { "docid": "3468459", "text": "Mammalian cells depend on growth factor signaling to take up nutrients; however, coordination of glucose and glutamine uptake has been a mystery. In this issue of Genes & Development, Wellen and colleagues (pp. 2784-2799) show that glucose flux through the hexosamine biosynthesis pathway regulates growth factor receptor glycosylation and enables glutamine consumption. This mechanism ensures that cells do not engage in anabolic metabolism when nutrients are limiting, and highlights how substrate availability for protein modifications can modulate cell signaling.", "title": "Metabolism strikes back: metabolic flux regulates cell signaling." }, { "docid": "12225214", "text": "Ubiquitination controls a broad range of cellular functions. The last step of the ubiquitination pathway is regulated by enzyme type 3 (E3) ubiquitin ligases. E3 enzymes are responsible for substrate specificity and catalyze the formation of an isopeptide bond between a lysine residue of the substrate (or the N terminus of the substrate) and ubiquitin. MIR1 and MIR2 are two E3 ubiquitin ligases encoded by Kaposi's sarcoma-associated herpesvirus that mediate the ubiquitination of major histocompatibility complex class I (MHC I) molecules and subsequent internalization. Here, we found that MIR1, but not MIR2, promoted down-regulation of MHC I molecules lacking lysine residues in their intracytoplasmic domain. In the presence of MIR1, these MHC I molecules were ubiquitinated, and their association with ubiquitin was sensitive to beta2-mercaptoethanol, unlike lysine-ubiquitin bonds. This form of ubiquitination required a cysteine residue in the intracytoplasmic tail of MHC I molecules. An MHC I molecule containing a single cysteine residue in an artificial glycine and alanine intracytoplasmic domain was endocytosed and degraded in the presence of MIR1. Thus, ubiquitination can occur on proteins lacking accessible lysines or an accessible N terminus.", "title": "Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase." }, { "docid": "20672596", "text": "Maximum activities of some key enzymes of metabolism were studied in elicited (inflammatory) macrophages of the mouse and lymph-node lymphocytes of the rat. The activity of hexokinase in the macrophage is very high, as high as that in any other major tissue of the body, and higher than that of phosphorylase or 6-phosphofructokinase, suggesting that glucose is a more important fuel than glycogen and that the pentose phosphate pathway is also important in these cells. The latter suggestion is supported by the high activities of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. However, the rate of glucose utilization by 'resting' macrophages incubated in vitro is less than the 10% of the activity of 6-phosphofructokinase: this suggests that the rate of glycolysis is increased dramatically during phagocytosis or increased secretory activity. The macrophages possess higher activities of citrate synthase and oxoglutarate dehydrogenase than do lymphocytes, suggesting that the tricarboxylic acid cycle may be important in energy generation in these cells. The activity of 3-oxoacid CoA-transferase is higher in the macrophage, but that of 3-hydroxybutyrate dehydrogenase is very much lower than those in the lymphocytes. The activity of carnitine palmitoyltransferase is higher in macrophages, suggesting that fatty acids as well as acetoacetate could provide acetyl-CoA as substrate for the tricarboxylic acid cycle. No detectable rate of acetoacetate or 3-hydroxybutyrate utilization was observed during incubation of resting macrophages, but that of oleate was 1.0 nmol/h per mg of protein or about 2.2% of the activity of palmitoyltransferase. The activity of glutaminase is about 4-fold higher in macrophages than in lymphocytes, which suggests that the rate of glutamine utilization could be very high. The rate of utilization of glutamine by resting incubated macrophages was similar to that reported for rat lymphocytes, but was considerably lower than the activity of glutaminase.", "title": "Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages." } ]
430
FoxO3a activation in neuronal death is inhibited by reactive oxygen species (ROS).
[ { "docid": "28937856", "text": "The Sir2 deacetylase modulates organismal life-span in various species. However, the molecular mechanisms by which Sir2 increases longevity are largely unknown. We show that in mammalian cells, the Sir2 homolog SIRT1 appears to control the cellular response to stress by regulating the FOXO family of Forkhead transcription factors, a family of proteins that function as sensors of the insulin signaling pathway and as regulators of organismal longevity. SIRT1 and the FOXO transcription factor FOXO3 formed a complex in cells in response to oxidative stress, and SIRT1 deacetylated FOXO3 in vitro and within cells. SIRT1 had a dual effect on FOXO3 function: SIRT1 increased FOXO3's ability to induce cell cycle arrest and resistance to oxidative stress but inhibited FOXO3's ability to induce cell death. Thus, one way in which members of the Sir2 family of proteins may increase organismal longevity is by tipping FOXO-dependent responses away from apoptosis and toward stress resistance.", "title": "Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase." } ]
[ { "docid": "36838958", "text": "Uncoupling protein 1 (Ucp1), which is localized in the mitochondrial inner membrane of mammalian brown adipose tissue (BAT), generates heat by uncoupling oxidative phosphorylation. Upon cold exposure or nutritional abundance, sympathetic neurons stimulate BAT to express Ucp1 to induce energy dissipation and thermogenesis. Accordingly, increased Ucp1 expression reduces obesity in mice and is correlated with leanness in humans. Despite this significance, there is currently a limited understanding of how Ucp1 expression is physiologically regulated at the molecular level. Here, we describe the involvement of Sestrin2 and reactive oxygen species (ROS) in regulation of Ucp1 expression. Transgenic overexpression of Sestrin2 in adipose tissues inhibited both basal and cold-induced Ucp1 expression in interscapular BAT, culminating in decreased thermogenesis and increased fat accumulation. Endogenous Sestrin2 is also important for suppressing Ucp1 expression because BAT from Sestrin2(-/-) mice exhibited a highly elevated level of Ucp1 expression. The redox-inactive mutant of Sestrin2 was incapable of regulating Ucp1 expression, suggesting that Sestrin2 inhibits Ucp1 expression primarily through reducing ROS accumulation. Consistently, ROS-suppressing antioxidant chemicals, such as butylated hydroxyanisole and N-acetylcysteine, inhibited cold- or cAMP-induced Ucp1 expression as well. p38 MAPK, a signaling mediator required for cAMP-induced Ucp1 expression, was inhibited by either Sestrin2 overexpression or antioxidant treatments. Taken together, these results suggest that Sestrin2 and antioxidants inhibit Ucp1 expression through suppressing ROS-mediated p38 MAPK activation, implying a critical role of ROS in proper BAT metabolism.", "title": "Sestrin2 inhibits uncoupling protein 1 expression through suppressing reactive oxygen species." }, { "docid": "10993232", "text": "Recent observations have suggested that classic antibiotics kill bacteria by stimulating the formation of reactive oxygen species (ROS). If true, this notion might guide new strategies to improve antibiotic efficacy. In this study, the model was directly tested. Contrary to the hypothesis, antibiotic treatment did not accelerate the formation of hydrogen peroxide in Escherichia coli and did not elevate intracellular free iron, an essential reactant for the production of lethal damage. Lethality persisted in the absence of oxygen, and DNA repair mutants were not hypersensitive, undermining the idea that toxicity arose from oxidative DNA lesions. We conclude that these antibiotic exposures did not produce ROS and that lethality more likely resulted from the direct inhibition of cell-wall assembly, protein synthesis, and DNA replication.", "title": "Cell death from antibiotics without the involvement of reactive oxygen species." }, { "docid": "2543135", "text": "Autophagy plays a central role in regulating important cellular functions such as cell survival during starvation and control of infectious pathogens. Recently, it has been shown that autophagy can induce cells to die; however, the mechanism of the autophagic cell death program is unclear. We now show that caspase inhibition leading to cell death by means of autophagy involves reactive oxygen species (ROS) accumulation, membrane lipid oxidation, and loss of plasma membrane integrity. Inhibition of autophagy by chemical compounds or knocking down the expression of key autophagy proteins such as ATG7, ATG8, and receptor interacting protein (RIP) blocks ROS accumulation and cell death. The cause of abnormal ROS accumulation is the selective autophagic degradation of the major enzymatic ROS scavenger, catalase. Caspase inhibition directly induces catalase degradation and ROS accumulation, which can be blocked by autophagy inhibitors. These findings unveil a molecular mechanism for the role of autophagy in cell death and provide insight into the complex relationship between ROS and nonapoptotic programmed cell death.", "title": "Autophagic programmed cell death by selective catalase degradation." }, { "docid": "19922508", "text": "Reactive oxygen species (ROS) are potentially harmful to cells because of their ability to oxidize cell constituents such as DNA, proteins, and lipids. However, at low levels, and under tight control, this feature makes them excellent modifiers in a variety of signal transduction pathways, including autophagy. Autophagy was traditionally associated with oxidative stress, acting in the degradation of oxidized proteins and organelles. Recently, a signaling role was suggested for ROS in the regulation of autophagy, leading, under different circumstances, either to survival or to death. To study the effects of ROS on this pathway, one must determine the localization, intensity, kinetics, and essentiality of the oxidative signal in autophagy. Moreover, once characterized, detection and manipulation of ROS formation could be used to monitor and control autophagic activity. In this chapter we discuss methods to examine ROS in the context of autophagy.", "title": "Monitoring starvation-induced reactive oxygen species formation." }, { "docid": "23887844", "text": "Neurons and cancer cells use glucose extensively, yet the precise advantage of this adaptation remains unclear. These two seemingly disparate cell types also show an increased regulation of the apoptotic pathway, which allows for their long-term survival. Here we show that both neurons and cancer cells strictly inhibit cytochrome c-mediated apoptosis by a mechanism dependent on glucose metabolism. We report that the pro-apoptotic activity of cytochrome c is influenced by its redox state and that increases in reactive oxygen species (ROS) following an apoptotic insult lead to the oxidation and activation of cytochrome c. In healthy neurons and cancer cells, however, cytochrome c is reduced and held inactive by intracellular glutathione (GSH), generated as a result of glucose metabolism by the pentose phosphate pathway. These results uncover a striking similarity in apoptosis regulation between neurons and cancer cells and provide insight into an adaptive advantage offered by the Warburg effect for cancer cell evasion of apoptosis and for long-term neuronal survival.", "title": "Glucose Metabolism Inhibits Apoptosis in Neurons and Cancer Cells by Redox Inactivation of Cytochrome c" }, { "docid": "6000423", "text": "Despite genetic heterogeneity, myelodysplastic syndromes (MDSs) share features of cytological dysplasia and ineffective hematopoiesis. We report that a hallmark of MDSs is activation of the NLRP3 inflammasome, which drives clonal expansion and pyroptotic cell death. Independent of genotype, MDS hematopoietic stem and progenitor cells (HSPCs) overexpress inflammasome proteins and manifest activated NLRP3 complexes that direct activation of caspase-1, generation of interleukin-1β (IL-1β) and IL-18, and pyroptotic cell death. Mechanistically, pyroptosis is triggered by the alarmin S100A9 that is found in excess in MDS HSPCs and bone marrow plasma. Further, like somatic gene mutations, S100A9-induced signaling activates NADPH oxidase (NOX), increasing levels of reactive oxygen species (ROS) that initiate cation influx, cell swelling, and β-catenin activation. Notably, knockdown of NLRP3 or caspase-1, neutralization of S100A9, and pharmacologic inhibition of NLRP3 or NOX suppress pyroptosis, ROS generation, and nuclear β-catenin in MDSs and are sufficient to restore effective hematopoiesis. Thus, alarmins and founder gene mutations in MDSs license a common redox-sensitive inflammasome circuit, which suggests new avenues for therapeutic intervention.", "title": "The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype." }, { "docid": "25251625", "text": "The use of caspase inhibitors has revealed the existence of alternative backup cell death programs for apoptosis. The broad-spectrum caspase inhibitor zVAD-fmk modulates the three major types of cell death. Addition of zVAD-fmk blocks apoptotic cell death, sensitizes cells to necrotic cell death, and induces autophagic cell death. Several studies have shown a crucial role for the kinase RIP1 and the adenosine nucleotide translocator (ANT)-cyclophilin D (CypD) complex in necrotic cell death. The underlying mechanism of zVAD-fmk-mediated sensitization to necrotic cell death involves the inhibition of caspase-8-mediated proteolysis of RIP1 and disturbance of the ANT-CypD interaction. RIP1 is also involved in autophagic cell death. Caspase inhibitors and knockdown studies have revealed negative roles for catalase and caspase-8 in autophagic cell death. The positive role of RIP1 and the negative role of caspase-8 in both necrotic and autophagic cell death suggest that the pathways of these two types of cell death are interconnected. Necrotic cell death represents a rapid cellular response involving mitochondrial reactive oxygen species (ROS) production, decreased adenosine triphosphate concentration, and other cellular insults, whereas autophagic cell death first starts as a survival attempt by cleaning up ROS-damaged mitochondria. However, when this process occurs in excess, autophagy itself becomes cytotoxic and eventually leads to autophagic cell death. A better understanding of the molecular mechanisms of these alternative cell death pathways may provide therapeutic tools to combat cell death associated with neurodegenerative diseases, ischemia-reperfusion pathologies, and infectious diseases, and may also facilitate the development of alternative cytotoxic strategies in cancer treatment.", "title": "Caspase inhibitors promote alternative cell death pathways." }, { "docid": "14092737", "text": "α-synuclein dysregulation is a critical aspect of Parkinson's disease pathology. Recent studies have observed that α-synuclein aggregates are cytotoxic to cells in culture and that this toxicity can be spread between cells. However, the molecular mechanisms governing this cytotoxicity and spread are poorly characterized. Recent studies of viruses and bacteria, which achieve their cytoplasmic entry by rupturing intracellular vesicles, have utilized the redistribution of galectin proteins as a tool to measure vesicle rupture by these organisms. Using this approach, we demonstrate that α-synuclein aggregates can induce the rupture of lysosomes following their endocytosis in neuronal cell lines. This rupture can be induced by the addition of α-synuclein aggregates directly into cells as well as by cell-to-cell transfer of α-synuclein. We also observe that lysosomal rupture by α-synuclein induces a cathepsin B dependent increase in reactive oxygen species (ROS) in target cells. Finally, we observe that α-synuclein aggregates can induce inflammasome activation in THP-1 cells. Lysosomal rupture is known to induce mitochondrial dysfunction and inflammation, both of which are well established aspects of Parkinson's disease, thus connecting these aspects of Parkinson's disease to the propagation of α-synuclein pathology in cells.", "title": "Alpha-Synuclein Induces Lysosomal Rupture and Cathepsin Dependent Reactive Oxygen Species Following Endocytosis" }, { "docid": "4399311", "text": "An inflammatory response initiated by the NLRP3 inflammasome is triggered by a variety of situations of host ‘danger’, including infection and metabolic dysregulation. Previous studies suggested that NLRP3 inflammasome activity is negatively regulated by autophagy and positively regulated by reactive oxygen species (ROS) derived from an uncharacterized organelle. Here we show that mitophagy/autophagy blockade leads to the accumulation of damaged, ROS-generating mitochondria, and this in turn activates the NLRP3 inflammasome. Resting NLRP3 localizes to endoplasmic reticulum structures, whereas on inflammasome activation both NLRP3 and its adaptor ASC redistribute to the perinuclear space where they co-localize with endoplasmic reticulum and mitochondria organelle clusters. Notably, both ROS generation and inflammasome activation are suppressed when mitochondrial activity is dysregulated by inhibition of the voltage-dependent anion channel. This indicates that NLRP3 inflammasome senses mitochondrial dysfunction and may explain the frequent association of mitochondrial damage with inflammatory diseases.", "title": "A role for mitochondria in NLRP3 inflammasome activation" }, { "docid": "24746892", "text": "Bactericidal antibiotics kill by modulating their respective targets. This traditional view has been challenged by studies that propose an alternative, unified mechanism of killing, whereby toxic reactive oxygen species (ROS) are produced in the presence of antibiotics. We found no correlation between an individual cell's probability of survival in the presence of antibiotic and its level of ROS. An ROS quencher, thiourea, protected cells from antibiotics present at low concentrations, but the effect was observed under anaerobic conditions as well. There was essentially no difference in survival of bacteria treated with various antibiotics under aerobic or anaerobic conditions. This suggests that ROS do not play a role in killing of bacterial pathogens by antibiotics.", "title": "Killing by bactericidal antibiotics does not depend on reactive oxygen species." }, { "docid": "5765455", "text": "Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop acute myelogenous leukemia (AML). The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is loss of chromosomal material (genomic instability). Using our two-step mouse model for myeloid leukemic disease progression involving overexpression of human mutant NRAS and BCL2 genes, we show that there is a stepwise increase in the frequency of DNA damage leading to an increased frequency of error-prone repair of double-strand breaks (DSB) by nonhomologous end-joining. There is a concomitant increase in reactive oxygen species (ROS) in these transgenic mice with disease progression. Importantly, RAC1, an essential component of the ROS-producing NADPH oxidase, is downstream of RAS, and we show that ROS production in NRAS/BCL2 mice is in part dependent on RAC1 activity. DNA damage and error-prone repair can be decreased or reversed in vivo by N-acetyl cysteine antioxidant treatment. Our data link gene abnormalities to constitutive DNA damage and increased DSB repair errors in vivo and provide a mechanism for an increase in the error rate of DNA repair with MDS disease progression. These data suggest treatment strategies that target RAS/RAC pathways and ROS production in human MDS/AML.", "title": "Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia?" }, { "docid": "22696649", "text": "How the number of immune cells recruited to sites of infection is determined and adjusted to differences in the cellular stoichiometry between host and pathogen is unknown. Here, we have uncovered a role for reactive oxygen species (ROS) as sensors of microbe size. By sensing the differential localization of ROS generated in response to microbes of different size, neutrophils tuned their interleukin (IL)-1β expression via the selective oxidation of NF-κB, in order to implement distinct inflammatory programs. Small microbes triggered ROS intracellularly, suppressing IL-1β expression to limit neutrophil recruitment as each phagocyte eliminated numerous pathogens. In contrast, large microbes triggered ROS extracellularly, amplifying IL-1β expression to recruit numerous neutrophils forming cooperative clusters. Defects in ROS-mediated microbe size sensing resulted in large neutrophil infiltrates and clusters in response to small microbes that contribute to inflammatory disease. These findings highlight the impact of ROS localization on signal transduction.", "title": "Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size" }, { "docid": "29073751", "text": "Rac and Rho GTPases function as critical regulators of actin cytoskeleton remodelling during cell spreading and migration. Here we demonstrate that Rac-mediated reactive oxygen species (ROS) production results in the downregulation of Rho activity. The redox-dependent decrease in Rho activity is required for Rac-induced formation of membrane ruffles and integrin-mediated cell spreading. The pathway linking generation of ROS to downregulation of Rho involves inhibition of the low-molecular-weight protein tyrosine phosphatase (LMW-PTP) and then an increase in the tyrosine phosphorylation and activation of its target, p190Rho-GAP. Our findings define a novel mechanism for the coupling of changes in cellular redox state to the control of actin cytoskeleton rearrangements by Rho GTPases.", "title": "Redox-dependent downregulation of Rho by Rac" }, { "docid": "6650933", "text": "Green tea polyphenols (GTPPs) are considered beneficial to human health, especially as chemopreventive agents. Recently, cytotoxic reactive oxygen species (ROS) were identified in tumor and certain normal cell cultures incubated with high concentrations of the most abundant GTPP, (-)-epigallocatechin-3-gallate (EGCG). If EGCG also provokes the production of ROS in normal epithelial cells, it may preclude the topical use of EGCG at higher doses. The current study examined the oxidative status of normal epithelial, normal salivary gland, and oral carcinoma cells treated with EGCG, using ROS measurement and catalase and superoxide dismutase activity assays. The results demonstrated that high concentrations of EGCG induced oxidative stress only in tumor cells. In contrast, EGCG reduced ROS in normal cells to background levels. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and 5-bromodeoxyuridine incorporation data were also compared between the two oral carcinoma cell lines treated by EGCG, which suggest that a difference in the levels of endogenous catalase activity may play an important role in reducing oxidative stress provoked by EGCG in tumor cells. It is concluded that pathways activated by GTPPs or EGCG in normal epithelial versus tumor cells create different oxidative environments, favoring either normal cell survival or tumor cell destruction. This finding may lead to applications of naturally occurring polyphenols to enhance the effectiveness of chemo/radiation therapy to promote cancer cell death while protecting normal cells.", "title": "Green tea polyphenol causes differential oxidative environments in tumor versus normal epithelial cells." }, { "docid": "9878167", "text": "Neutrophil extracellular traps (NETs) represent extracellular structures able to bind and kill microorganisms. It is believed that they are generated by neutrophils undergoing cell death, allowing these dying or dead cells to kill microbes. We show that, following priming with granulocyte/macrophage colony-stimulating factor (GM-CSF) and subsequent short-term toll-like receptor 4 (TLR4) or complement factor 5a (C5a) receptor stimulation, viable neutrophils are able to generate NETs. Strikingly, NETs formed by living cells contain mitochondrial, but no nuclear, DNA. Pharmacological or genetic approaches to block reactive oxygen species (ROS) production suggested that NET formation is ROS dependent. Moreover, neutrophil populations stimulated with GM-CSF and C5a showed increased survival compared with resting neutrophils, which did not generate NETs. In conclusion, mitochondrial DNA release by neutrophils and NET formation do not require neutrophil death and do also not limit the lifespan of these cells.", "title": "Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps" }, { "docid": "2686003", "text": "Anthocyanins are a group of naturally occurring phenolic compounds widely available in fruits and vegetables in human diets. They have broad biological activities including anti-mutagenesis and anticarcinogenesis, which are generally attributed to their antioxidant activities. We studied the effects and the mechanisms of the most common type of anthocyanins, cyanidin-3-rutinoside, in several leukemia and lymphoma cell lines. We found that cyanidin-3-rutinoside extracted and purified from the black raspberry cultivar Jewel induced apoptosis in HL-60 cells in a dose- and time-dependent manner. Paradoxically, this compound induced the accumulation of peroxides, which are involved in the induction of apoptosis in HL-60 cells. In addition, cyanidin-3-rutinoside treatment resulted in reactive oxygen species (ROS)-dependent activation of p38 MAPK and JNK, which contributed to cell death by activating the mitochondrial pathway mediated by Bim. Down-regulation of Bim or overexpression of Bcl-2 or Bcl-x(L) considerably blocked apoptosis. Notably, cyanidin-3-rutinoside treatment did not lead to increased ROS accumulation in normal human peripheral blood mononuclear cells and had no cytotoxic effects on these cells. These results indicate that cyanidin-3-rutinoside has the potential to be used in leukemia therapy with the advantages of being widely available and selective against tumors.", "title": "Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress." }, { "docid": "1049501", "text": "Neutrophil extracellular traps (NETs) are implicated in autoimmunity, but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes (RNP ICs), inducers of NETosis, require mitochondrial reactive oxygen species (ROS) for maximal NET stimulation. After RNP IC stimulation of neutrophils, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro, and when this DNA is injected into mice, it stimulates type I interferon (IFN) signaling through a pathway dependent on the DNA sensor STING. Mitochondrial ROS are also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus. This was also observed in individuals with chronic granulomatous disease, who lack NADPH oxidase activity but still develop autoimmunity and type I IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type I IFN responses in a mouse model of lupus. Together, these findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases.", "title": "Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease" }, { "docid": "14972169", "text": "Exposure during the organogenesis stage of the mouse embryo to the model teratogen, hydroxyurea (HU), induces curly tail and limb malformations. Oxidative stress contributes to the developmental toxicity of HU. Reactive oxygen species (ROS) interact with polyunsaturated bilipid membranes to form α,β-unsaturated reactive aldehydes; 4-hydroxy-2-nonenal (4-HNE), one of the most cytotoxic of these aldehydes, covalently adducts with proteins, lipids, and nucleic acids. The goal of the current study is to determine if HU exposure of CD1 mice on gestation day 9 generates region-specific 4-HNE-protein adducts in the embryo and to identify the proteins targeted. The formation of 4-HNE-protein adducts was elevated in the caudal region of control embryos; HU exposure further increased 4-HNE-protein adduct formation in this area. Interestingly, three of the 4-HNE-modified proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutamate oxaloacetate transaminase 2, and aldolase 1, A isoform, are involved in energy metabolism. The formation of 4-HNE-GAPDH protein adducts reduced GAPDH enzymatic activity by 20% and attenuated lactate production by 40%. Furthermore, HU exposure induced the nuclear translocation of GAPDH in the caudal region of exposed embryos; this nuclear translocation may be associated with the reactivation of oxidized proteins involved in DNA repair, such as apurinic/apyrimidinic endonuclease-1, and the stimulation of E1A-associated P300 protein/creb-binding protein (p300/CBP) activity, initiating cell death in a p53-dependent pathway. We propose that GAPDH is a redox-sensitive target in the embryo and may play a role in a stress response during development.", "title": "Teratogen-Induced Oxidative Stress Targets Glyceraldehyde-3-Phosphate Dehydrogenase in the Organogenesis Stage Mouse Embryo" }, { "docid": "15381976", "text": "Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2',7'-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by morin, implying that ROS/MAPK signaling contributes to the relief of airway inflammation. Our findings indicate for the first time that morin alleviates airway inflammation in chronic asthma, which probably occurs via the oxidative stress-responsive MAPK pathway, highlighting a novel profile of morin as a potent agent for asthma management.", "title": "Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling." }, { "docid": "1941721", "text": "Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86(-/-) SOD1 transgenic embryos over that seen in Ku86(-/-) embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.", "title": "Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants" } ]
432
Foxk2 regulates autophagy genes in muscle cells and fibroblast cells.
[ { "docid": "8002887", "text": "Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.", "title": "Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs" } ]
[ { "docid": "31882215", "text": "We describe robust induction of autophagy during the reprogramming of mouse fibroblasts to induced pluripotent stem cells by four reprogramming factors (Sox2, Oct4, Klf4 and c-Myc), henceforth 4F. This process occurs independently of p53 activation, and is mediated by the synergistic downregulation of mechanistic target of rapamycin complex 1 (mTORC1) and the induction of autophagy-related genes. The 4F coordinately repress mTORC1, but bifurcate in their regulation of autophagy-related genes, with Klf4 and c-Myc inducing them but Sox2 and Oct4 inhibiting them. On one hand, inhibition of mTORC1 facilitates reprogramming by promoting cell reshaping (mitochondrial remodelling and cell size reduction). On the other hand, mTORC1 paradoxically impairs reprogramming by triggering autophagy. Autophagy does not participate in cell reshaping in reprogramming but instead degrades p62, whose accumulation in autophagy-deficient cells facilitates reprogramming. Our results thus reveal a complex signalling network involving mTORC1 inhibition and autophagy induction in the early phase of reprogramming, whose delicate balance ultimately determines reprogramming efficiency.", "title": "Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming" }, { "docid": "6227220", "text": "Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.", "title": "Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine" }, { "docid": "982650", "text": "BACKGROUND & AIMS Tumor cells survive hypoxic conditions by inducing autophagy. We investigated the roles of microRNAs (miRNAs) in regulating autophagy of hepatocellular carcinoma (HCC) cells under hypoxic conditions. \n METHODS We used gain- and loss-of-function methods to evaluate the effect of miRNAs on autophagy in human HCC cell lines (Huh7 and Hep3B) under hypoxic conditions. Autophagy was quantified by immunoblot, immunofluoresence, and transmission electron microscopy analyses, and after incubation of cells with bafilomycin A1. We used a luciferase reporter assay to confirm associations between miRNAs and their targets. We analyzed growth of HCC xenograft tumors in nude mice. \n RESULTS miR-375 was down-regulated in HCC cells and tissues; it inhibited autophagy under hypoxic conditions by suppressing the conversion of LC3I to LC3II and thereby autophagic flux. The ability of miR-375 to inhibit autophagy was independent of its ability to regulate 3'-phosphoinositide-dependent protein kinase-1-AKT-mammalian target of rapamycin signaling, but instead involved suppression of ATG7, an autophagy-associated gene. miR-375 bound directly to a predicted site in the 3' untranslated region of ATG7. Up-regulating miR-375 or down-regulating ATG7 inhibited mitochondrial autophagy of HCC cells, reduced the elimination of damaged mitochondria under hypoxia, increased release of mitochondrial apoptotic proteins, and reduced viability of HCC cells. In mice, xenograft tumors that expressed miR-375 had fewer autophagic cells, larger areas of necrosis, and grew more slowly than tumors from HCC cells that expressed lower levels of miR-375. \n CONCLUSIONS miR-375 inhibits autophagy by reducing expression of ATG7 and impairs viability of HCC cells under hypoxic conditions in culture and in mice. miRNAs that inhibit autophagy of cancer cells might be developed as therapeutics.", "title": "miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions." }, { "docid": "27647593", "text": "Cancer cells do not exist as pure homogeneous populations in vivo. Instead they are embedded in \"cancer cell nests\" that are surrounded by stromal cells, especially cancer associated fibroblasts. Thus, it is not unreasonable to suspect that stromal fibroblasts could influence the metabolism of adjacent cancer cells, and visa versa. In accordance with this idea, we have recently proposed that the Warburg effect in cancer cells may be due to culturing cancer cells by themselves, out of their normal stromal context or tumor microenvironment. In fact, when cancer cells are co-cultured with fibroblasts, then cancer cells increase their mitochondrial mass, while fibroblasts lose their mitochondria. An in depth analysis of this phenomenon reveals that aggressive cancer cells are \"parasites\" that use oxidative stress as a \"weapon\" to extract nutrients from surrounding stromal cells. Oxidative stress in fibroblasts induces the autophagic destruction of mitochondria, by mitophagy. Then, stromal cells are forced to undergo aerobic glycolysis, and produce energy-rich nutrients (such as lactate and ketones) to \"feed\" cancer cells. This mechanism would allow cancer cells to seed anywhere, without blood vessels as a food source, as they could simply induce oxidative stress wherever they go, explaining how cancer cells survive during metastasis. We suggest that stromal catabolism, via autophagy and mitophagy, fuels the anabolic growth of tumor cells, promoting tumor progression and metastasis. We have previously termed this new paradigm \"The Autophagic Tumor Stroma Model of Cancer Metabolism\", or the \"Reverse Warburg Effect\". We also discuss how glutamine addiction (glutaminolysis) in cancer cells fits well with this new model, by promoting oxidative mitochondrial metabolism in aggressive cancer cells.", "title": "Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment." }, { "docid": "3504761", "text": "The MAP kinase kinase kinase TGFβ-activated kinase 1 (TAK1) is activated by TLRs, IL-1, TNF, and TGFβ and in turn activates IKK-NF-κB and JNK, which regulate cell survival, growth, tumorigenesis, and metabolism. TAK1 signaling also upregulates AMPK activity and autophagy. Here, we investigated TAK1-dependent regulation of autophagy, lipid metabolism, and tumorigenesis in the liver. Fasted mice with hepatocyte-specific deletion of Tak1 exhibited severe hepatosteatosis with increased mTORC1 activity and suppression of autophagy compared with their WT counterparts. TAK1-deficient hepatocytes exhibited suppressed AMPK activity and autophagy in response to starvation or metformin treatment; however, ectopic activation of AMPK restored autophagy in these cells. Peroxisome proliferator-activated receptor α (PPARα) target genes and β-oxidation, which regulate hepatic lipid degradation, were also suppressed in hepatocytes lacking TAK1. Due to suppression of autophagy and β-oxidation, a high-fat diet challenge aggravated steatohepatitis in mice with hepatocyte-specific deletion of Tak1. Notably, inhibition of mTORC1 restored autophagy and PPARα target gene expression in TAK1-deficient livers, indicating that TAK1 acts upstream of mTORC1. mTORC1 inhibition also suppressed spontaneous liver fibrosis and hepatocarcinogenesis in animals with hepatocyte-specific deletion of Tak1. These data indicate that TAK1 regulates hepatic lipid metabolism and tumorigenesis via the AMPK/mTORC1 axis, affecting both autophagy and PPARα activity.", "title": "TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis." }, { "docid": "7548577", "text": "In the yeast Saccharomyces cerevisiae, glycogen is accumulated as a carbohydrate reserve when cells are deprived of nutrients. Yeast mutated in SNF1, a gene encoding a protein kinase required for glucose derepression, has diminished glycogen accumulation and concomitant inactivation of glycogen synthase. Restoration of synthesis in an snf1 strain results only in transient glycogen accumulation, implying the existence of other SNF1-dependent controls of glycogen storage. A genetic screen revealed that two genes involved in autophagy, APG1 and APG13, may be regulated by SNF1. Increased autophagic activity was observed in wild-type cells entering the stationary phase, but this induction was impaired in an snf1 strain. Mutants defective for autophagy were able to synthesize glycogen upon approaching the stationary phase, but were unable to maintain their glycogen stores, because subsequent synthesis was impaired and degradation by phosphorylase, Gph1p, was enhanced. Thus, deletion of GPH1 partially reversed the loss of glycogen accumulation in autophagy mutants. Loss of the vacuolar glucosidase, SGA1, also protected glycogen stores, but only very late in the stationary phase. Gph1p and Sga1p may therefore degrade physically distinct pools of glycogen. Pho85p is a cyclin-dependent protein kinase that antagonizes SNF1 control of glycogen synthesis. Induction of autophagy in pho85 mutants entering the stationary phase was exaggerated compared to the level in wild-type cells, but was blocked in apg1 pho85 mutants. We propose that Snf1p and Pho85p are, respectively, positive and negative regulators of autophagy, probably via Apg1 and/or Apg13. Defective glycogen storage in snf1 cells can be attributed to both defective synthesis upon entry into stationary phase and impaired maintenance of glycogen levels caused by the lack of autophagy.", "title": "Antagonistic Controls of Autophagy and Glycogen Accumulation by Snf1p, the Yeast Homolog of AMP-Activated Protein Kinase, and the Cyclin-Dependent" }, { "docid": "6807122", "text": "Activated fibroblasts are associated with many different tumors. Myofibroblasts, activated fibroblasts, and perivascular mesenchymal cells such as pericytes play a role in cancer progression. Many studies suggest that myofibroblasts facilitate tumor growth and cancer progression. The source for myofibroblasts and other activated fibroblasts within the tumors is still debated. Although de novo activation of quiescent fibroblasts into alpha-smooth muscle actin (alpha SMA)-positive myofibroblasts is one likely source, epithelial to mesenchymal transition and bone marrow recruitment are also evolving as possible mechanisms for the emergence of a heterogeneous population of carcinoma-associated fibroblasts. Here, we show that transforming growth factor-beta1 could induce proliferating endothelial cells to undergo a phenotypic conversion into fibroblast-like cells. Such endothelial to mesenchymal transition (EndMT) is associated with the emergence of mesenchymal marker fibroblast-specific protein-1 (FSP1) and down-regulation of CD31/PECAM. Additionally, we show EndMT in tumors using the B16F10 melanoma model and the Rip-Tag2 spontaneous pancreatic carcinoma model. Crossing Tie2-Cre mice with R26Rosa-lox-Stop-lox-LacZ mice allows for irreversible tagging of endothelial cells. We provide unequivocal evidence for EndMT at the invasive front of the tumors in these transgenic mice. Collectively, our results show that EndMT is a unique mechanism for the accumulation of carcinoma-associated fibroblasts and suggest that antiangiogenic treatment of tumors may have a direct effect in decreasing activated fibroblasts that likely facilitate cancer progression.", "title": "Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts." }, { "docid": "33507866", "text": "A critical regulator of autophagy is the Class III PI3K Vps34 (also called PIK3C3). Although Vps34 is known to play an essential role in autophagy in yeast, its role in mammals remains elusive. To elucidate the physiological function of Vps34 and to determine its precise role in autophagy, we have generated Vps34(f/f) mice, in which expression of Cre recombinase results in a deletion of exon 4 of Vps34 and a frame shift causing a deletion of 755 of the 887 amino acids of Vps34. Acute ablation of Vps34 in MEFs upon adenoviral Cre infection results in a diminishment of localized generation of phosphatidylinositol 3-phosphate and blockade of both endocytic and autophagic degradation. Starvation-induced autophagosome formation is blocked in both Vps34-null MEFs and liver. Liver-specific Albumin-Cre;Vps34(f/f) mice developed hepatomegaly and hepatic steatosis, and impaired protein turnover. Ablation of Vps34 in the heart of muscle creatine kinase-Cre;Vps34(f/f) mice led to cardiomegaly and decreased contractility. In addition, while amino acid-stimulated mTOR activation was suppressed in the absence of Vps34, the steady-state level of mTOR signaling was not affected in Vps34-null MEFs, liver, or cardiomyocytes. Taken together, our results indicate that Vps34 plays an essential role in regulating functional autophagy and is indispensable for normal liver and heart function.", "title": "Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function." }, { "docid": "34328964", "text": "The localization and synthesis of basic fibroblast growth factor (bFGF) in the rat carotid artery were investigated at times of chronic smooth muscle cell proliferation. Immunocytochemical staining showed the presence of bFGF in the uninjured arterial wall, and after balloon injury, this cellular staining was decreased. Western and northern blot analyses likewise showed that the amount of bFGF protein and mRNA decreased after injury. A neutralizing antibody to bFGF was administered 4 and 5 days after injury and was found to have no effect on intimal smooth muscle cell proliferation. These data suggest that an increase in the expression of bFGF is not necessary for chronic smooth muscle cell proliferation observed after balloon catheter injury and that bFGF is not the major mitogen responsible for intimal smooth muscle cell proliferation.", "title": "Intimal smooth muscle cell proliferation after balloon catheter injury. The role of basic fibroblast growth factor." }, { "docid": "3619372", "text": "Stem cell-based approaches to cardiac regeneration are increasingly viable strategies for treating heart failure. Generating abundant and functional autologous cells for transplantation in such a setting, however, remains a significant challenge. Here, we isolated a cell population with extensive proliferation capacity and restricted cardiovascular differentiation potentials during cardiac transdifferentiation of mouse fibroblasts. These induced expandable cardiovascular progenitor cells (ieCPCs) proliferated extensively for more than 18 passages in chemically defined conditions, with 10(5) starting fibroblasts robustly producing 10(16) ieCPCs. ieCPCs expressed cardiac signature genes and readily differentiated into functional cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) in vitro, even after long-term expansion. When transplanted into mouse hearts following myocardial infarction, ieCPCs spontaneously differentiated into CMs, ECs, and SMCs and improved cardiac function for up to 12 weeks after transplantation. Thus, ieCPCs are a powerful system to study cardiovascular specification and provide strategies for regenerative medicine in the heart.", "title": "Expandable Cardiovascular Progenitor Cells Reprogrammed from Fibroblasts." }, { "docid": "33569870", "text": "The physiological role of autophagic flux within the vascular endothelial layer remains poorly understood. Here, we show that in primary endothelial cells, oxidized and native LDL stimulates autophagosome formation. Moreover, by both confocal and electron microscopy, excess native or modified LDL appears to be engulfed within autophagic structures. Transient knockdown of the essential autophagy gene ATG7 resulted in higher levels of intracellular (125) I-LDL and oxidized LDL (OxLDL) accumulation, suggesting that in endothelial cells, autophagy may represent an important mechanism to regulate excess, exogenous lipids. The physiological importance of these observations was assessed using mice containing a conditional deletion of ATG7 within the endothelium. Following acute intravenous infusion of fluorescently labeled OxLDL, mice lacking endothelial expression of ATG7 demonstrated prolonged retention of OxLDL within the retinal pigment epithelium (RPE) and choroidal endothelium of the eye. In a chronic model of lipid excess, we analyzed atherosclerotic burden in ApoE(-/-) mice with or without endothelial autophagic flux. The absence of endothelial autophagy markedly increased atherosclerotic burden. Thus, in both an acute and chronic in vivo model, endothelial autophagy appears critically important in limiting lipid accumulation within the vessel wall. As such, strategies that stimulate autophagy, or prevent the age-dependent decline in autophagic flux, might be particularly beneficial in treating atherosclerotic vascular disease.", "title": "Intact endothelial autophagy is required to maintain vascular lipid homeostasis." }, { "docid": "24349992", "text": "Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a \"lethal tumor micro-environment. \" Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a \"metabolic\" and \"mutagenic\" motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the \"Reverse Warburg Effect\"). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use \"oxidative stress\" in adjacent fibroblasts (i) as an \"engine\" to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the \"field effect\" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively \"contagious\"--spread from cell-to-cell like a virus--creating an \"oncogenic/mutagenic\" field promoting widespread DNA damage.", "title": "Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells." }, { "docid": "25576204", "text": "Malignant cells often display defects in autophagy, an evolutionarily conserved pathway for degrading long-lived proteins and cytoplasmic organelles. However, as yet, there is no genetic evidence for a role of autophagy genes in tumor suppression. The beclin 1 autophagy gene is monoallelically deleted in 40-75% of cases of human sporadic breast, ovarian, and prostate cancer. Therefore, we used a targeted mutant mouse model to test the hypothesis that monoallelic deletion of beclin 1 promotes tumorigenesis. Here we show that heterozygous disruption of beclin 1 increases the frequency of spontaneous malignancies and accelerates the development of hepatitis B virus-induced premalignant lesions. Molecular analyses of tumors in beclin 1 heterozygous mice show that the remaining wild-type allele is neither mutated nor silenced. Furthermore, beclin 1 heterozygous disruption results in increased cellular proliferation and reduced autophagy in vivo. These findings demonstrate that beclin 1 is a haplo-insufficient tumor-suppressor gene and provide genetic evidence that autophagy is a novel mechanism of cell-growth control and tumor suppression. Thus, mutation of beclin 1 or other autophagy genes may contribute to the pathogenesis of human cancers.", "title": "Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene." }, { "docid": "11903247", "text": "Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53−/− cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.", "title": "Regulation of autophagy by cytoplasmic p53" }, { "docid": "2543135", "text": "Autophagy plays a central role in regulating important cellular functions such as cell survival during starvation and control of infectious pathogens. Recently, it has been shown that autophagy can induce cells to die; however, the mechanism of the autophagic cell death program is unclear. We now show that caspase inhibition leading to cell death by means of autophagy involves reactive oxygen species (ROS) accumulation, membrane lipid oxidation, and loss of plasma membrane integrity. Inhibition of autophagy by chemical compounds or knocking down the expression of key autophagy proteins such as ATG7, ATG8, and receptor interacting protein (RIP) blocks ROS accumulation and cell death. The cause of abnormal ROS accumulation is the selective autophagic degradation of the major enzymatic ROS scavenger, catalase. Caspase inhibition directly induces catalase degradation and ROS accumulation, which can be blocked by autophagy inhibitors. These findings unveil a molecular mechanism for the role of autophagy in cell death and provide insight into the complex relationship between ROS and nonapoptotic programmed cell death.", "title": "Autophagic programmed cell death by selective catalase degradation." }, { "docid": "23253955", "text": "The segmented mesoderm in vertebrates gives rise to a variety of cell types in the embryo including the axial skeleton and muscle. A number of transcription factors containing a paired domain (Pax proteins) are expressed in the segmented mesoderm during embryogenesis. These include Pax-3 and a closely related gene, Pax-7, both of which are expressed in the segmental plate and in the dermomyotome. In this paper, we show that signals from the notochord pattern the expression of Pax-3, Pax-7 and Pax-9 in somites and the subsequent differentiation of cell types that arise from the somitic mesoderm. We directly assess the role of the Pax-3 gene in the differentiation of cell types derived from the dermomyotome by analyzing the development of muscle in splotch mouse embryos which lack a functional Pax-3 gene. A population of Pax-3-expressing cells derived from the dermomyotome that normally migrate into the limb are absent in homozygous splotch embryos and, as a result, limb muscles are lost. No abnormalities were detected in the trunk musculature of splotch embryos indicating that Pax-3 is necessary for the development of the limb but not trunk muscle.", "title": "Regulation of Pax-3 expression in the dermomyotome and its role in muscle development." }, { "docid": "33667484", "text": "Programmed cell death (PCD), referring to apoptosis, autophagy and programmed necrosis, is proposed to be death of a cell in any pathological format, when mediated by an intracellular program. These three forms of PCD may jointly decide the fate of cells of malignant neoplasms; apoptosis and programmed necrosis invariably contribute to cell death, whereas autophagy can play either pro-survival or pro-death roles. Recent bulk of accumulating evidence has contributed to a wealth of knowledge facilitating better understanding of cancer initiation and progression with the three distinctive types of cell death. To be able to decipher PCD signalling pathways may aid development of new targeted anti-cancer therapeutic strategies. Thus in this review, we present a brief outline of apoptosis, autophagy and programmed necrosis pathways and apoptosis-related microRNA regulation, in cancer. Taken together, understanding PCD and the complex interplay between apoptosis, autophagy and programmed necrosis may ultimately allow scientists and clinicians to harness the three types of PCD for discovery of further novel drug targets, in the future cancer treatment.", "title": "Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis." }, { "docid": "53033275", "text": "Autophagy is a ubiquitous catabolic process by which damaged or harmful intracellular components are delivered to the lysosomes for self-digestion and recycling. It is critical in cancer treatment. Therapy-induced autophagy predominantly acts as a pro-survival mechanism, but progressive autophagy can lead to non-apoptotic cell death, also known as autophagic cell death. Plants or herbs contain various natural compounds that are widely used in the treatment of many types of malignancies. Emerging evidence indicates that phytochemicals targeting the autophagic pathway are promising agents for cancer treatment. However, these compounds play different roles in autophagy. In this review, we discussed the role of autophagy in cancer development and therapy, and focussed on elucidating the anti-cancer activities of autophagic modulators, especially phytochemicals. Notably, we described a novel premise that the dynamic role of phytochemicals should be evaluated in regulation of autophagy in cancer.", "title": "Autophagy and its potent modulators from phytochemicals in cancer treatment" }, { "docid": "19922508", "text": "Reactive oxygen species (ROS) are potentially harmful to cells because of their ability to oxidize cell constituents such as DNA, proteins, and lipids. However, at low levels, and under tight control, this feature makes them excellent modifiers in a variety of signal transduction pathways, including autophagy. Autophagy was traditionally associated with oxidative stress, acting in the degradation of oxidized proteins and organelles. Recently, a signaling role was suggested for ROS in the regulation of autophagy, leading, under different circumstances, either to survival or to death. To study the effects of ROS on this pathway, one must determine the localization, intensity, kinetics, and essentiality of the oxidative signal in autophagy. Moreover, once characterized, detection and manipulation of ROS formation could be used to monitor and control autophagic activity. In this chapter we discuss methods to examine ROS in the context of autophagy.", "title": "Monitoring starvation-induced reactive oxygen species formation." } ]
434
Foxp3 enables the expression of transcriptional regulators implicated in memory T cell development.
[ { "docid": "9500590", "text": "Regulatory T (Treg) cells, whose differentiation and function are controlled by X chromosome-encoded transcription factor Foxp3, are generated in the thymus (tTreg) and extrathymically (peripheral, pTreg), and their deficiency results in fatal autoimmunity. Here, we demonstrate that a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but dispensable for tTreg cell generation, is present only in placental mammals. CNS1 is largely composed of mammalian-wide interspersed repeats (MIR) that have undergone retrotransposition during early mammalian radiation. During pregnancy, pTreg cells specific to a model paternal alloantigen were generated in a CNS1-dependent manner and accumulated in the placenta. Furthermore, when mated with allogeneic, but not syngeneic, males, CNS1-deficient females showed increased fetal resorption accompanied by increased immune cell infiltration and defective remodeling of spiral arteries. Our results suggest that, during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells emerged in placental animals to enforce maternal-fetal tolerance.", "title": "Extrathymic Generation of Regulatory T Cells in Placental Mammals Mitigates Maternal-Fetal Conflict" } ]
[ { "docid": "41877386", "text": "CD4(+)CD25(+) regulatory T cells (T regs) play a major role in the maintenance of self-tolerance and immune suppression, although the mechanisms controlling T reg development and suppressor function remain incompletely understood. Herein, we provide evidence that Kruppel-like factor 10 (KLF10/TIEG1) constitutes an important regulator of T regulatory cell suppressor function and CD4(+)CD25(-) T cell activation through distinct mechanisms involving transforming growth factor (TGF)-beta1 and Foxp3. KLF10 overexpressing CD4(+)CD25(-) T cells induced both TGF-beta1 and Foxp3 expression, an effect associated with reduced T-Bet (Th1 marker) and Gata3 (Th2 marker) mRNA expression. Consistently, KLF10(-/-) CD4(+)CD25(-) T cells have enhanced differentiation along both Th1 and Th2 pathways and elaborate higher levels of Th1 and Th2 cytokines. Furthermore, KLF10(-/-) CD4(+)CD25(-) T cell effectors cannot be appropriately suppressed by wild-type T regs. Surprisingly, KLF10(-/-) T reg cells have reduced suppressor function, independent of Foxp3 expression, with decreased expression and elaboration of TGF-beta1, an effect completely rescued by exogenous treatment with TGF-beta1. Mechanistic studies demonstrate that in response to TGF-beta1, KLF10 can transactivate both TGF-beta1 and Foxp3 promoters, implicating KLF10 in a positive feedback loop that may promote cell-intrinsic control of T cell activation. Finally, KLF10(-/-) CD4(+)CD25(-) T cells promoted atherosclerosis by approximately 2-fold in ApoE(-/-)/scid/scid mice with increased leukocyte accumulation and peripheral pro-inflammatory cytokines. Thus, KLF10 is a critical regulator in the transcriptional network controlling TGF-beta1 in both CD4(+)CD25(-) T cells and T regs and plays an important role in regulating atherosclerotic lesion formation in mice.", "title": "Kruppel-like factor KLF10 targets transforming growth factor-beta1 to regulate CD4(+)CD25(-) T cells and T regulatory cells." }, { "docid": "4418070", "text": "Regulatory T (Treg) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting differentiation factor controlling Treg cell homeostasis and function, whereas the early Treg-cell-lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors. However, whether Foxo proteins act beyond the Treg-cell-commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1 and display reduced T-cell-receptor-induced Akt activation, Foxo1 phosphorylation and Foxo1 nuclear exclusion. Mice with Treg-cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to that seen in Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ∼300 Foxo1-bound target genes, including the pro-inflammatory cytokine Ifng, that do not seem to be directly regulated by Foxp3. These findings show that the evolutionarily ancient Akt–Foxo1 signalling module controls a novel genetic program indispensable for Treg cell function.", "title": "Novel Foxo1-dependent transcriptional programs control Treg cell function" }, { "docid": "13398997", "text": "The CD28/cytotoxic T-lymphocyte antigen 4 (CTLA-4)blocker belatacept selectively inhibits alloreactive T cell responses but is associated with a high incidence of acute rejection following renal transplantation,which led us to investigate the etiology of belatacept–resistant graft rejection. T cells can differentiate into functionally distinct subsets of memory T cellsthat collectively enable protection against diverse classes of pathogens and can cross-react with allogeneicantigen and mediate graft rejection. T helper 17(Th17) cells are a pro-inflammatory CD4+ lineage that provides immunity to pathogens and are pathogenic in autoimmune disease. We found that T helper 1 (Th1)and Th17 memory compartments contained a similar frequency of divided cells following allogeneic stimulation. Compared to Th1 cells, Th17 memory cells expressed significantly higher levels of the coinhibitory molecule CTLA-4. Stimulation in the presence of belatacept inhibited Th1 responses but augmented Th17 cells due to greater sensitivity to coinhibition by CTLA-4. Th17 cells from renal transplant recipients were resistant to ex vivo CD28/CTLA-4 blockade with belatacept, and an elevated frequency of Th17 memory cells was associated with acute rejection during belatacept therapy. These data highlight important differences in costimulatory and coinhibitory requirements of CD4+ memory subsets, and demonstrate that the heterogeneity of pathogen-derived memory has implications for immunomodulation strategies.", "title": "High CTLA-4 expression on Th17 cells results in increased sensitivity to CTLA-4 coinhibition and resistance to belatacept." }, { "docid": "10359591", "text": "Interleukin(IL)-2 and inflammation regulate effector and memory cytolytic T-lymphocyte (CTL) generation during infection. We demonstrate a complex interplay between IL-2 and inflammatory signals during CTL differentiation. IL-2 stimulation induced the transcription factor eomesodermin (Eomes), upregulated perforin (Prf1) transcription, and repressed re-expression of memory CTL markers Bcl6 and IL-7Ralpha. Binding of Eomes and STAT5 to Prf1 cis-regulatory regions correlated with transcriptional initiation (increased recruitment of RNA polymerase II to the Prf1 promoter). Inflammation (CpG, IL-12) enhanced expression of IL-2Ralpha and the transcription factor T-bet, but countered late Eomes and perforin induction while preventing IL-7Ralpha repression by IL-2. After infection of mice with lymphocytic choriomeningitis virus, IL-2Ralpha-deficient effector CD8(+) T cells expressed more Bcl6 but less perforin and granzyme B, formed fewer KLRG-1(+) and T-bet-expressing CTL, and killed poorly. Thus, inflammation influences both effector and memory CTL differentiation, whereas persistent IL-2 stimulation promotes effector at the expense of memory CTL development.", "title": "Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells." }, { "docid": "266641", "text": "Regulatory T (T reg) cells are critical regulators of immune tolerance. Most T reg cells are defined based on expression of CD4, CD25, and the transcription factor, FoxP3. However, these markers have proven problematic for uniquely defining this specialized T cell subset in humans. We found that the IL-7 receptor (CD127) is down-regulated on a subset of CD4+ T cells in peripheral blood. We demonstrate that the majority of these cells are FoxP3+, including those that express low levels or no CD25. A combination of CD4, CD25, and CD127 resulted in a highly purified population of T reg cells accounting for significantly more cells that previously identified based on other cell surface markers. These cells were highly suppressive in functional suppressor assays. In fact, cells separated based solely on CD4 and CD127 expression were anergic and, although representing at least three times the number of cells (including both CD25+CD4+ and CD25−CD4+ T cell subsets), were as suppressive as the “classic” CD4+CD25hi T reg cell subset. Finally, we show that CD127 can be used to quantitate T reg cell subsets in individuals with type 1 diabetes supporting the use of CD127 as a biomarker for human T reg cells.", "title": "CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells" }, { "docid": "18546584", "text": "CD4(+) helper T (Th) cells play a crucial role in the delicate balance between host defense and autoimmune disease. Two important populations of helper T cells are the proinflammatory, interleukin-17 (IL-17)-producing (Th17) cells and the anti-inflammatory forkhead box P3-positive (FoxP3(+)) T regulatory (Treg) cells. Here we show that all-trans retinoic acid (ATRA) and other agonists of the retinoic acid receptor alpha (RARalpha) inhibit the formation of Th17 cells and promote FoxP3 expression. Conversely, inhibition of retinoic acid signaling constrains transforming growth factor beta (TGF-beta1) induction of FoxP3. The effect of ATRA is mediated independently of IL-2, signal transducer and activator of transcription 5 (Stat5) and Stat3, representing a novel mechanism for the induction of FoxP3 in CD4 T cells. As previous studies have shown that vitamin A derivatives are protective in animal models of autoimmune disease, the current data suggest a previously unrecognized role for RARalpha in the regulation of CD4(+) T-cell differentiation and provide a mechanism for the anti-inflammatory effects of retinoic acid.", "title": "Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway." }, { "docid": "22210434", "text": "The kinase TAK1 is critical for innate and B cell immunity. The function of TAK1 in T cells is unclear, however. We show here that T cell–specific deletion of the gene encoding TAK1 resulted in reduced development of thymocytes, especially of regulatory T cells expressing the transcription factor Foxp3. In mature thymocytes, TAK1 was required for interleukin 7–mediated survival and T cell receptor–dependent activation of transcription factor NF-κB and the kinase Jnk. In effector T cells, TAK1 was dispensable for T cell receptor–dependent NF-κB activation and cytokine production, but was important for proliferation and activation of the kinase p38 in response to interleukins 2, 7 and 15. Thus, TAK1 is essential for the integration of T cell receptor and cytokine signals to regulate the development, survival and function of T cells.", "title": "The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function" }, { "docid": "30908508", "text": "Objective: To investigate the regulation of CD4+CD25+ Regulatory T cells (Tregs) on pro-inflammatory adhesion molecules, Krüppel-Like Factor-2 (KLF-2) and its downstream transcriptional targets in human umbilical vein endothelial cells (HUVECs) impaired by ox-LDL and the mechanisms of it. Methods and results: HUVECs were cultured in the continuous presence of ox-LDL(0 mg/L,25 mg/L,50 mg/L,100 mg/L) for 4, 6, 12 and 24 hours to allow identification of early-and late-induced genes, respectively, whereas non-stimulated controls were taken at 0 hours. The expression of pro-inflammatory adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), E-selectin, KLF-2 and its target genes eNOS, PAI-1 were determined by real time RT-PCR and/or western-blot analysis. Expression of pro-inflammatory adhesion molecules, KLF-2, eNOS and PAI-1 in HUVEC cultured alone or with anti-CD3 mAbs activated Tregs, followed by addition of ox-LDL (50 mg/L) for 6 hours, are compared to expression levels in control cultures. Ox-LDL treated HUVECs increased pro-inflammatory adhesion molecules expression, as well as increased PAI-1 but decreased eNOS expression accompanied with significant downregulating of KLF-2 at a dose and time dependent manner. Furthermore, ox-LDL increased pro-inflammatory adhesion molecules but inhibited KLF2 expression was reversed by addition of Tregs. Small interfering RNA reduced endogenous KLF-2 expression and partly reversed the suppressive effect of Tregs on HUVECs activation, which strongly implicate KLF-2 as a transcriptional regulator of the Tregs-mediated effects in endothelial cells. Mechanism studies reveal that Treg-mediated KLF2 expression in HUVECs impaired by ox-LDL requires cell contact as well as soluble factors. Conclusions: Tregs could protect endothelial function that is largely dependent on KLF2 and its downstream transcriptional targets regulation involving cell-to-cell contact and soluble factors.", "title": "CD4+CD25+Foxp3+Regulatory T Cells Protect Endothelial Function Impaired by Oxidized Low Density Lipoprotein via the KLF-2 Transcription Factor" }, { "docid": "7399084", "text": "T cell homeostasis is crucial for a functional immune system, as the accumulation of T cells resulting from lack of regulatory T cells or an inability to shut down immune responses can lead to inflammation and autoimmune pathology. Here we show that Blimp-1, a transcriptional repressor that is a 'master regulator' of terminal B cell differentiation, was expressed in a subset of antigen-experienced CD4+ and CD8+ T cells. Mice reconstituted with fetal liver stem cells expressing a mutant Blimp-1 lacking the DNA-binding domain developed a lethal multiorgan inflammatory disease caused by an accumulation of effector and memory T cells. These data identify Blimp-1 as an essential regulator of T cell homeostasis and suggest that Blimp-1 regulates both B cell and T cell differentiation.", "title": "Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance" }, { "docid": "22517564", "text": "Retinoids (e.g., vitamin A and its derivatives) can regulate immune responses. The aim of this study was to determine whether all-trans retinaldehyde (retinal), a vitamin A derivative, can inhibit inflammatory responses and joint destruction in DBA/1J mice with collagen-induced arthritis (CIA). The arthritis score and incidence of arthritis were lower in mice treated with retinal compared to those treated with cottonseed oil. Histopathologic evidence of joint damage was lower in mice treated with retinal, corresponding with a reduction in the infiltration of immune cells in mice treated with retinal type II collagen (CII)-stimulated spleen cells. In addition, the expression of proinflammatory cytokines, oxidative stress proteins, and osteoclast markers were significantly reduced in mice treated with retinal. In vitro, retinal induced increased Foxp3 expression and inhibited Th17 development. The proportion of Foxp3(+) Treg cells was increased in the spleens of mice treated with retinal, whereas the proportion of Th17 cells was reduced. In both mice and a human culture system, tartrate-resistant acid phosphatase (TRAP) positive mononuclear cells and multinucleated cells were significantly reduced after treatment with retinal. The expression of osteoclast differentiation markers was dramatically decreased upon addition of retinal. This is the first study to demonstrate the therapeutic effect of retinal on an autoimmune arthritis model in mice through reciprocal regulation of Th17 and regulatory T cells and protection of differentiation and activation of osteoclasts. Taken together, our findings indicate that retinal has profound immunoregulatory functions and potential value for the treatment of autoimmune inflammatory disorders.", "title": "Retinal attenuates inflammatory arthritis by reciprocal regulation of IL-17-producing T cells and Foxp3(+) regulatory T cells and the inhibition of osteoclastogenesis." }, { "docid": "20220731", "text": "Foxp3(+)CD4(+)CD25(+) regulatory T cells can differentiate from Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) naive T cells. However, the impact of these two processes on size and composition of the peripheral repertoire of regulatory T cells is unclear. Here we followed the fate of individual Foxp3(+)CD4(+)CD25(+) thymocytes and T cells in vivo in T cell receptor (TCR) transgenic mice that express a restricted but polyclonal repertoire of TCRs. By utilizing high-throughput single-cell analysis, we showed that Foxp3(+)CD4(+) peripheral T cells were derived from thymic precursors that expressed a different TCRs than Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) T cells. Furthermore, the diversity of TCRs on Foxp3(+)CD4(+) regulatory T cells exceeded the diversity of TCRs on Foxp3(-)CD4(+) naive T cells, even in mice that lack expression of tissue-specific antigens. Our results imply that higher TCR diversity on Foxp3(+) regulatory T cells helps these cells to match the specificities of autoreactive and naive T cells.", "title": "Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells." }, { "docid": "36216395", "text": "BACKGROUND & AIMS The therapeutic application of regulatory T cells (Tregs) for the treatment of inflammatory diseases is limited by the scarcity of antigen-specific Tregs. A preferred approach to endow effector T cells (Teff) with a desired specificity uses chimeric immune receptors with antibody-type specificity. Accordingly, employing such chimeric immune receptors to redirect Tregs to sites of inflammation may be a useful therapeutic approach to alleviate a broad scope of diseases in which an uncontrolled inflammatory response plays a major role. \n METHODS To enable application of the approach in clinical setting, which requires the genetic modification of the patient's own Tregs, we describe here a novel protocol that allows the efficient retroviral transduction and 2,4,6-trinitrophenol-specific expansion of murine naturally occurring regulatory T cells (nTregs), with a 2,4,6-trinitrophenol-specific tripartite chimeric receptor. \n RESULTS Transduced Tregs maintained their Foxp3 level, could undergo repeated expansion upon ex vivo encounter with their cognate antigen in a major histocompatibility complex-independent, costimulation-independent, and contact-dependent manner and specifically suppressed Teff cells. Adoptive transfer of small numbers of the transduced nTregs was associated with antigen-specific, dose-dependent amelioration of trinitrobenzenesulphonic acid colitis. \n CONCLUSIONS This study demonstrates that nTregs can be efficiently transduced to express functional, antigen-specific chimeric receptors that enable the specific suppression of effector T cells both in vitro and in vivo. This approach may enable future cell-based therapeutic application in inflammatory bowel disease, as well as other inflammatory disorders.", "title": "Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor." }, { "docid": "3835423", "text": "Tissue-resident memory T (Trm) cells provide enhanced protection against infection at mucosal sites. Here we found that CD4(+) T cells are important for the formation of functional lung-resident CD8(+) T cells after influenza virus infection. In the absence of CD4(+) T cells, CD8(+) T cells displayed reduced expression of CD103 (Itgae), were mislocalized away from airway epithelia, and demonstrated an impaired ability to recruit CD8(+) T cells to the lung airways upon heterosubtypic challenge. CD4(+) T cell-derived interferon-γ was necessary for generating lung-resident CD103(+) CD8(+) Trm cells. Furthermore, expression of the transcription factor T-bet was increased in \"unhelped\" lung Trm cells, and a reduction in T-bet rescued CD103 expression in the absence of CD4(+) T cell help. Thus, CD4(+) T cell-dependent signals are important to limit expression of T-bet and allow for the development of CD103(+) CD8(+) Trm cells in the lung airways following respiratory infection.", "title": "CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection." }, { "docid": "22997657", "text": "The transcription factor Kruppel-like factor 2 (KLF2) was proposed to regulate genes involved in cell cycle entry and T cell trafficking; however, the physiological role of its expression in postactivated T cells is not well defined. Previous studies suggested that the cytokines IL-2 and IL-15 differentially regulate KLF2 re-expression in postactivation T cells and that these cytokines also influence effector versus memory T cell differentiation. Using conditional and inducible KLF2-knockout model systems, we tested the specific role of KLF2 expression in activated CD8(+) T cells cultured with these cytokines. KLF2 was required for effective transcription of sphingosine-1-phosphate receptor-1 (S1P(1)) and CD62L in postactivation T cells. However, although different cytokines dramatically altered the expression of cell-cycle-related genes, endogenous KLF2 had a minimal impact. Correspondingly, KLF2-deficient T cells showed dysregulated trafficking but not altered proliferative characteristics following in vivo responses to Ag. Thus, our data help to define KLF2-dependent and -independent aspects of activated CD8(+) T cell differentiation and argue against a physiological role in cell cycle regulation.", "title": "Kruppel-like factor 2 is required for trafficking but not quiescence in postactivated T cells." }, { "docid": "24879055", "text": "CD4(+) T follicular helper (Tfh) cells provide the required signals to B cells for germinal center reactions that are necessary for long-lived antibody responses. However, it remains unclear whether there are CD4(+) memory T cells committed to the Tfh cell lineage after antigen clearance. By using adoptive transfer of antigen-specific memory CD4(+) T cell subpopulations in the lymphocytic choriomeningitis virus infection model, we found that there are distinct memory CD4(+) T cell populations with commitment to either Tfh- or Th1-cell lineages. Our conclusions are based on gene expression profiles, epigenetic studies, and phenotypic and functional analyses. Our findings indicate that CD4(+) memory T cells \"remember\" their previous effector lineage after antigen clearance, being poised to reacquire their lineage-specific effector functions upon antigen reencounter. These findings have important implications for rational vaccine design, where improving the generation and engagement of memory Tfh cells could be used to enhance vaccine-induced protective immunity.", "title": "Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection." }, { "docid": "5508750", "text": "Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream 'pioneering' factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy.", "title": "Molecular regulation of effector and memory T cell differentiation" }, { "docid": "21320417", "text": "T cell memory induced by prior infection or vaccination provides enhanced protection against subsequent microbial infections. The processes involved in generating and maintaining T cell memory are becoming better understood due to recent technological advances in identifying memory T cells and monitoring their behavior and function in vivo. Memory T cells develop in response to a progressive set of cues-starting with signals from antigen-loaded, activated antigen-presenting cells (APCs) and inflammatory mediators induced by the innate immune response, to the poorly defined subsequent signals triggered as the immune response wanes toward homeostasis. The persistence of the resting memory T cells that eventually develop is regulated by cytokines. This chapter discusses recent findings on how memory T cells develop to confer long-term protective immunity.", "title": "T cell memory." }, { "docid": "22198971", "text": "CD4 memory T cells surviving in the absence of MHC class II contact lose their characteristic memory function. To investigate the mechanisms underlying the impaired function of memory T cells in the absence of MHC class II molecules, we analyzed gene expression profiles of resting memory T cells isolated from MHC class II-competent or -deficient hosts. The analysis focused on five transcripts related to T cell activation, metabolism, and survival that are underexpressed in resting memory T cells from MHC class II-deficient hosts compared with MHC class II-competent hosts. CD4 memory cells isolated from MHC class II-deficient hosts display alterations in their degree of differentiation as well as metabolic activity, and these changes are already manifest in the effector phase despite the presence of Ag-expressing dendritic cells. Our data suggest that the absence of interactions with noncognate MHC class II molecules compromises the progressive accumulation of signals that ensure optimal survival and fitness to sustain the metabolic activity of activated T cells and shape the functional capacity of the future memory compartment. Signals via AKT coordinate survival and metabolic pathways and may be one of the crucial events linking interaction with MHC class II molecules to the successful generation of a long-lived functional memory CD4 T cell population.", "title": "Noncognate interaction with MHC class II molecules is essential for maintenance of T cell metabolism to establish optimal memory CD4 T cell function." }, { "docid": "42693833", "text": "Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively. Diversified and selected IgAs contributed to maintenance of diversified and balanced microbiota, which in turn facilitated the expansion of Foxp3(+) T cells, induction of GCs, and IgA responses in the gut through a symbiotic regulatory loop. Thus, the adaptive immune system, through cellular and molecular components that are required for immune tolerance and through the diversification as well as selection of antibody repertoire, mediates host-microbial symbiosis by controlling the richness and balance of bacterial communities required for homeostasis.", "title": "Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis." }, { "docid": "23535770", "text": "Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.", "title": "Potential role of NF-kappaB in adult neural stem cells: the underrated steersman?" } ]
435
Foxp3 represses the expression of transcriptional regulators implicated in memory T cell development.
[ { "docid": "9500590", "text": "Regulatory T (Treg) cells, whose differentiation and function are controlled by X chromosome-encoded transcription factor Foxp3, are generated in the thymus (tTreg) and extrathymically (peripheral, pTreg), and their deficiency results in fatal autoimmunity. Here, we demonstrate that a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but dispensable for tTreg cell generation, is present only in placental mammals. CNS1 is largely composed of mammalian-wide interspersed repeats (MIR) that have undergone retrotransposition during early mammalian radiation. During pregnancy, pTreg cells specific to a model paternal alloantigen were generated in a CNS1-dependent manner and accumulated in the placenta. Furthermore, when mated with allogeneic, but not syngeneic, males, CNS1-deficient females showed increased fetal resorption accompanied by increased immune cell infiltration and defective remodeling of spiral arteries. Our results suggest that, during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells emerged in placental animals to enforce maternal-fetal tolerance.", "title": "Extrathymic Generation of Regulatory T Cells in Placental Mammals Mitigates Maternal-Fetal Conflict" } ]
[ { "docid": "10359591", "text": "Interleukin(IL)-2 and inflammation regulate effector and memory cytolytic T-lymphocyte (CTL) generation during infection. We demonstrate a complex interplay between IL-2 and inflammatory signals during CTL differentiation. IL-2 stimulation induced the transcription factor eomesodermin (Eomes), upregulated perforin (Prf1) transcription, and repressed re-expression of memory CTL markers Bcl6 and IL-7Ralpha. Binding of Eomes and STAT5 to Prf1 cis-regulatory regions correlated with transcriptional initiation (increased recruitment of RNA polymerase II to the Prf1 promoter). Inflammation (CpG, IL-12) enhanced expression of IL-2Ralpha and the transcription factor T-bet, but countered late Eomes and perforin induction while preventing IL-7Ralpha repression by IL-2. After infection of mice with lymphocytic choriomeningitis virus, IL-2Ralpha-deficient effector CD8(+) T cells expressed more Bcl6 but less perforin and granzyme B, formed fewer KLRG-1(+) and T-bet-expressing CTL, and killed poorly. Thus, inflammation influences both effector and memory CTL differentiation, whereas persistent IL-2 stimulation promotes effector at the expense of memory CTL development.", "title": "Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells." }, { "docid": "41877386", "text": "CD4(+)CD25(+) regulatory T cells (T regs) play a major role in the maintenance of self-tolerance and immune suppression, although the mechanisms controlling T reg development and suppressor function remain incompletely understood. Herein, we provide evidence that Kruppel-like factor 10 (KLF10/TIEG1) constitutes an important regulator of T regulatory cell suppressor function and CD4(+)CD25(-) T cell activation through distinct mechanisms involving transforming growth factor (TGF)-beta1 and Foxp3. KLF10 overexpressing CD4(+)CD25(-) T cells induced both TGF-beta1 and Foxp3 expression, an effect associated with reduced T-Bet (Th1 marker) and Gata3 (Th2 marker) mRNA expression. Consistently, KLF10(-/-) CD4(+)CD25(-) T cells have enhanced differentiation along both Th1 and Th2 pathways and elaborate higher levels of Th1 and Th2 cytokines. Furthermore, KLF10(-/-) CD4(+)CD25(-) T cell effectors cannot be appropriately suppressed by wild-type T regs. Surprisingly, KLF10(-/-) T reg cells have reduced suppressor function, independent of Foxp3 expression, with decreased expression and elaboration of TGF-beta1, an effect completely rescued by exogenous treatment with TGF-beta1. Mechanistic studies demonstrate that in response to TGF-beta1, KLF10 can transactivate both TGF-beta1 and Foxp3 promoters, implicating KLF10 in a positive feedback loop that may promote cell-intrinsic control of T cell activation. Finally, KLF10(-/-) CD4(+)CD25(-) T cells promoted atherosclerosis by approximately 2-fold in ApoE(-/-)/scid/scid mice with increased leukocyte accumulation and peripheral pro-inflammatory cytokines. Thus, KLF10 is a critical regulator in the transcriptional network controlling TGF-beta1 in both CD4(+)CD25(-) T cells and T regs and plays an important role in regulating atherosclerotic lesion formation in mice.", "title": "Kruppel-like factor KLF10 targets transforming growth factor-beta1 to regulate CD4(+)CD25(-) T cells and T regulatory cells." }, { "docid": "4418070", "text": "Regulatory T (Treg) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting differentiation factor controlling Treg cell homeostasis and function, whereas the early Treg-cell-lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors. However, whether Foxo proteins act beyond the Treg-cell-commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1 and display reduced T-cell-receptor-induced Akt activation, Foxo1 phosphorylation and Foxo1 nuclear exclusion. Mice with Treg-cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to that seen in Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ∼300 Foxo1-bound target genes, including the pro-inflammatory cytokine Ifng, that do not seem to be directly regulated by Foxp3. These findings show that the evolutionarily ancient Akt–Foxo1 signalling module controls a novel genetic program indispensable for Treg cell function.", "title": "Novel Foxo1-dependent transcriptional programs control Treg cell function" }, { "docid": "266641", "text": "Regulatory T (T reg) cells are critical regulators of immune tolerance. Most T reg cells are defined based on expression of CD4, CD25, and the transcription factor, FoxP3. However, these markers have proven problematic for uniquely defining this specialized T cell subset in humans. We found that the IL-7 receptor (CD127) is down-regulated on a subset of CD4+ T cells in peripheral blood. We demonstrate that the majority of these cells are FoxP3+, including those that express low levels or no CD25. A combination of CD4, CD25, and CD127 resulted in a highly purified population of T reg cells accounting for significantly more cells that previously identified based on other cell surface markers. These cells were highly suppressive in functional suppressor assays. In fact, cells separated based solely on CD4 and CD127 expression were anergic and, although representing at least three times the number of cells (including both CD25+CD4+ and CD25−CD4+ T cell subsets), were as suppressive as the “classic” CD4+CD25hi T reg cell subset. Finally, we show that CD127 can be used to quantitate T reg cell subsets in individuals with type 1 diabetes supporting the use of CD127 as a biomarker for human T reg cells.", "title": "CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells" }, { "docid": "18546584", "text": "CD4(+) helper T (Th) cells play a crucial role in the delicate balance between host defense and autoimmune disease. Two important populations of helper T cells are the proinflammatory, interleukin-17 (IL-17)-producing (Th17) cells and the anti-inflammatory forkhead box P3-positive (FoxP3(+)) T regulatory (Treg) cells. Here we show that all-trans retinoic acid (ATRA) and other agonists of the retinoic acid receptor alpha (RARalpha) inhibit the formation of Th17 cells and promote FoxP3 expression. Conversely, inhibition of retinoic acid signaling constrains transforming growth factor beta (TGF-beta1) induction of FoxP3. The effect of ATRA is mediated independently of IL-2, signal transducer and activator of transcription 5 (Stat5) and Stat3, representing a novel mechanism for the induction of FoxP3 in CD4 T cells. As previous studies have shown that vitamin A derivatives are protective in animal models of autoimmune disease, the current data suggest a previously unrecognized role for RARalpha in the regulation of CD4(+) T-cell differentiation and provide a mechanism for the anti-inflammatory effects of retinoic acid.", "title": "Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway." }, { "docid": "22210434", "text": "The kinase TAK1 is critical for innate and B cell immunity. The function of TAK1 in T cells is unclear, however. We show here that T cell–specific deletion of the gene encoding TAK1 resulted in reduced development of thymocytes, especially of regulatory T cells expressing the transcription factor Foxp3. In mature thymocytes, TAK1 was required for interleukin 7–mediated survival and T cell receptor–dependent activation of transcription factor NF-κB and the kinase Jnk. In effector T cells, TAK1 was dispensable for T cell receptor–dependent NF-κB activation and cytokine production, but was important for proliferation and activation of the kinase p38 in response to interleukins 2, 7 and 15. Thus, TAK1 is essential for the integration of T cell receptor and cytokine signals to regulate the development, survival and function of T cells.", "title": "The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function" }, { "docid": "30908508", "text": "Objective: To investigate the regulation of CD4+CD25+ Regulatory T cells (Tregs) on pro-inflammatory adhesion molecules, Krüppel-Like Factor-2 (KLF-2) and its downstream transcriptional targets in human umbilical vein endothelial cells (HUVECs) impaired by ox-LDL and the mechanisms of it. Methods and results: HUVECs were cultured in the continuous presence of ox-LDL(0 mg/L,25 mg/L,50 mg/L,100 mg/L) for 4, 6, 12 and 24 hours to allow identification of early-and late-induced genes, respectively, whereas non-stimulated controls were taken at 0 hours. The expression of pro-inflammatory adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), E-selectin, KLF-2 and its target genes eNOS, PAI-1 were determined by real time RT-PCR and/or western-blot analysis. Expression of pro-inflammatory adhesion molecules, KLF-2, eNOS and PAI-1 in HUVEC cultured alone or with anti-CD3 mAbs activated Tregs, followed by addition of ox-LDL (50 mg/L) for 6 hours, are compared to expression levels in control cultures. Ox-LDL treated HUVECs increased pro-inflammatory adhesion molecules expression, as well as increased PAI-1 but decreased eNOS expression accompanied with significant downregulating of KLF-2 at a dose and time dependent manner. Furthermore, ox-LDL increased pro-inflammatory adhesion molecules but inhibited KLF2 expression was reversed by addition of Tregs. Small interfering RNA reduced endogenous KLF-2 expression and partly reversed the suppressive effect of Tregs on HUVECs activation, which strongly implicate KLF-2 as a transcriptional regulator of the Tregs-mediated effects in endothelial cells. Mechanism studies reveal that Treg-mediated KLF2 expression in HUVECs impaired by ox-LDL requires cell contact as well as soluble factors. Conclusions: Tregs could protect endothelial function that is largely dependent on KLF2 and its downstream transcriptional targets regulation involving cell-to-cell contact and soluble factors.", "title": "CD4+CD25+Foxp3+Regulatory T Cells Protect Endothelial Function Impaired by Oxidized Low Density Lipoprotein via the KLF-2 Transcription Factor" }, { "docid": "7399084", "text": "T cell homeostasis is crucial for a functional immune system, as the accumulation of T cells resulting from lack of regulatory T cells or an inability to shut down immune responses can lead to inflammation and autoimmune pathology. Here we show that Blimp-1, a transcriptional repressor that is a 'master regulator' of terminal B cell differentiation, was expressed in a subset of antigen-experienced CD4+ and CD8+ T cells. Mice reconstituted with fetal liver stem cells expressing a mutant Blimp-1 lacking the DNA-binding domain developed a lethal multiorgan inflammatory disease caused by an accumulation of effector and memory T cells. These data identify Blimp-1 as an essential regulator of T cell homeostasis and suggest that Blimp-1 regulates both B cell and T cell differentiation.", "title": "Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance" }, { "docid": "22517564", "text": "Retinoids (e.g., vitamin A and its derivatives) can regulate immune responses. The aim of this study was to determine whether all-trans retinaldehyde (retinal), a vitamin A derivative, can inhibit inflammatory responses and joint destruction in DBA/1J mice with collagen-induced arthritis (CIA). The arthritis score and incidence of arthritis were lower in mice treated with retinal compared to those treated with cottonseed oil. Histopathologic evidence of joint damage was lower in mice treated with retinal, corresponding with a reduction in the infiltration of immune cells in mice treated with retinal type II collagen (CII)-stimulated spleen cells. In addition, the expression of proinflammatory cytokines, oxidative stress proteins, and osteoclast markers were significantly reduced in mice treated with retinal. In vitro, retinal induced increased Foxp3 expression and inhibited Th17 development. The proportion of Foxp3(+) Treg cells was increased in the spleens of mice treated with retinal, whereas the proportion of Th17 cells was reduced. In both mice and a human culture system, tartrate-resistant acid phosphatase (TRAP) positive mononuclear cells and multinucleated cells were significantly reduced after treatment with retinal. The expression of osteoclast differentiation markers was dramatically decreased upon addition of retinal. This is the first study to demonstrate the therapeutic effect of retinal on an autoimmune arthritis model in mice through reciprocal regulation of Th17 and regulatory T cells and protection of differentiation and activation of osteoclasts. Taken together, our findings indicate that retinal has profound immunoregulatory functions and potential value for the treatment of autoimmune inflammatory disorders.", "title": "Retinal attenuates inflammatory arthritis by reciprocal regulation of IL-17-producing T cells and Foxp3(+) regulatory T cells and the inhibition of osteoclastogenesis." }, { "docid": "18882947", "text": "The HMG-box factor Tcf1 is required during T-cell development in the thymus and mediates the nuclear response to Wnt signals. Tcf1(-/-) mice have previously been characterized and show developmental blocks at the CD4-CD8- double negative (DN) to CD4+CD8+ double positive transition. Due to the blocks in T-cell development, Tcf1(-/-) mice normally have a very small thymus. Unexpectedly, a large proportion of Tcf1(-/-) mice spontaneously develop thymic lymphomas with 50% of mice developing a thymic lymphoma/leukemia at the age of 16 wk. These lymphomas are clonal, highly metastatic, and paradoxically show high Wnt signaling when crossed with Wnt reporter mice and have high expression of Wnt target genes Lef1 and Axin2. In wild-type thymocytes, Tcf1 is higher expressed than Lef1, with a predominance of Wnt inhibitory isoforms. Loss of Tcf1 as repressor of Lef1 leads to high Wnt activity and is the initiating event in lymphoma development, which is exacerbated by activating Notch1 mutations. Thus, Notch1 and loss of Tcf1 functionally act as collaborating oncogenic events. Tcf1 deficiency predisposes to the development of thymic lymphomas by ectopic up-regulation of Lef1 due to lack of Tcf1 repressive isoforms and frequently by cooperating activating mutations in Notch1. Tcf1 therefore functions as a T-cell-specific tumor suppressor gene, besides its established role as a Wnt responsive transcription factor. Thus, Tcf1 acts as a molecular switch between proliferative and repressive signals during T-lymphocyte development in the thymus.", "title": "The Nuclear Effector of Wnt-Signaling, Tcf1, Functions as a T-Cell–Specific Tumor Suppressor for Development of Lymphomas" }, { "docid": "20220731", "text": "Foxp3(+)CD4(+)CD25(+) regulatory T cells can differentiate from Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) naive T cells. However, the impact of these two processes on size and composition of the peripheral repertoire of regulatory T cells is unclear. Here we followed the fate of individual Foxp3(+)CD4(+)CD25(+) thymocytes and T cells in vivo in T cell receptor (TCR) transgenic mice that express a restricted but polyclonal repertoire of TCRs. By utilizing high-throughput single-cell analysis, we showed that Foxp3(+)CD4(+) peripheral T cells were derived from thymic precursors that expressed a different TCRs than Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) T cells. Furthermore, the diversity of TCRs on Foxp3(+)CD4(+) regulatory T cells exceeded the diversity of TCRs on Foxp3(-)CD4(+) naive T cells, even in mice that lack expression of tissue-specific antigens. Our results imply that higher TCR diversity on Foxp3(+) regulatory T cells helps these cells to match the specificities of autoreactive and naive T cells.", "title": "Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells." }, { "docid": "3835423", "text": "Tissue-resident memory T (Trm) cells provide enhanced protection against infection at mucosal sites. Here we found that CD4(+) T cells are important for the formation of functional lung-resident CD8(+) T cells after influenza virus infection. In the absence of CD4(+) T cells, CD8(+) T cells displayed reduced expression of CD103 (Itgae), were mislocalized away from airway epithelia, and demonstrated an impaired ability to recruit CD8(+) T cells to the lung airways upon heterosubtypic challenge. CD4(+) T cell-derived interferon-γ was necessary for generating lung-resident CD103(+) CD8(+) Trm cells. Furthermore, expression of the transcription factor T-bet was increased in \"unhelped\" lung Trm cells, and a reduction in T-bet rescued CD103 expression in the absence of CD4(+) T cell help. Thus, CD4(+) T cell-dependent signals are important to limit expression of T-bet and allow for the development of CD103(+) CD8(+) Trm cells in the lung airways following respiratory infection.", "title": "CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection." }, { "docid": "22997657", "text": "The transcription factor Kruppel-like factor 2 (KLF2) was proposed to regulate genes involved in cell cycle entry and T cell trafficking; however, the physiological role of its expression in postactivated T cells is not well defined. Previous studies suggested that the cytokines IL-2 and IL-15 differentially regulate KLF2 re-expression in postactivation T cells and that these cytokines also influence effector versus memory T cell differentiation. Using conditional and inducible KLF2-knockout model systems, we tested the specific role of KLF2 expression in activated CD8(+) T cells cultured with these cytokines. KLF2 was required for effective transcription of sphingosine-1-phosphate receptor-1 (S1P(1)) and CD62L in postactivation T cells. However, although different cytokines dramatically altered the expression of cell-cycle-related genes, endogenous KLF2 had a minimal impact. Correspondingly, KLF2-deficient T cells showed dysregulated trafficking but not altered proliferative characteristics following in vivo responses to Ag. Thus, our data help to define KLF2-dependent and -independent aspects of activated CD8(+) T cell differentiation and argue against a physiological role in cell cycle regulation.", "title": "Kruppel-like factor 2 is required for trafficking but not quiescence in postactivated T cells." }, { "docid": "24879055", "text": "CD4(+) T follicular helper (Tfh) cells provide the required signals to B cells for germinal center reactions that are necessary for long-lived antibody responses. However, it remains unclear whether there are CD4(+) memory T cells committed to the Tfh cell lineage after antigen clearance. By using adoptive transfer of antigen-specific memory CD4(+) T cell subpopulations in the lymphocytic choriomeningitis virus infection model, we found that there are distinct memory CD4(+) T cell populations with commitment to either Tfh- or Th1-cell lineages. Our conclusions are based on gene expression profiles, epigenetic studies, and phenotypic and functional analyses. Our findings indicate that CD4(+) memory T cells \"remember\" their previous effector lineage after antigen clearance, being poised to reacquire their lineage-specific effector functions upon antigen reencounter. These findings have important implications for rational vaccine design, where improving the generation and engagement of memory Tfh cells could be used to enhance vaccine-induced protective immunity.", "title": "Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection." }, { "docid": "13398997", "text": "The CD28/cytotoxic T-lymphocyte antigen 4 (CTLA-4)blocker belatacept selectively inhibits alloreactive T cell responses but is associated with a high incidence of acute rejection following renal transplantation,which led us to investigate the etiology of belatacept–resistant graft rejection. T cells can differentiate into functionally distinct subsets of memory T cellsthat collectively enable protection against diverse classes of pathogens and can cross-react with allogeneicantigen and mediate graft rejection. T helper 17(Th17) cells are a pro-inflammatory CD4+ lineage that provides immunity to pathogens and are pathogenic in autoimmune disease. We found that T helper 1 (Th1)and Th17 memory compartments contained a similar frequency of divided cells following allogeneic stimulation. Compared to Th1 cells, Th17 memory cells expressed significantly higher levels of the coinhibitory molecule CTLA-4. Stimulation in the presence of belatacept inhibited Th1 responses but augmented Th17 cells due to greater sensitivity to coinhibition by CTLA-4. Th17 cells from renal transplant recipients were resistant to ex vivo CD28/CTLA-4 blockade with belatacept, and an elevated frequency of Th17 memory cells was associated with acute rejection during belatacept therapy. These data highlight important differences in costimulatory and coinhibitory requirements of CD4+ memory subsets, and demonstrate that the heterogeneity of pathogen-derived memory has implications for immunomodulation strategies.", "title": "High CTLA-4 expression on Th17 cells results in increased sensitivity to CTLA-4 coinhibition and resistance to belatacept." }, { "docid": "5508750", "text": "Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream 'pioneering' factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy.", "title": "Molecular regulation of effector and memory T cell differentiation" }, { "docid": "15600979", "text": "EMSY links the BRCA2 pathway to sporadic breast/ovarian cancer. It encodes a nuclear protein that binds to the BRCA2 N-terminal domain implicated in chromatin/transcription regulation, but when sporadically amplified/overexpressed, increased EMSY level represses BRCA2 transactivation potential and induces chromosomal instability, mimicking the activity of BRCA2 mutations in the development of hereditary breast/ovarian cancer. In addition to chromatin/transcription regulation, EMSY may also play a role in the DNA-damage response, suggested by its ability to localize at chromatin sites of DNA damage/repair. This implies that EMSY overexpression may also repress BRCA2 in DNA-damage replication/checkpoint and recombination/repair, coordinated processes that also require its interacting proteins: PALB2, the partner and localizer of BRCA2; RPA, replication/checkpoint protein A; and RAD51, the inseparable recombination/repair enzyme. Here, using a well-characterized recombination/repair assay system, we demonstrate that a slight increase in EMSY level can indeed repress these two processes independently of transcriptional interference/repression. Since EMSY, RPA and PALB2 all bind to the same BRCA2 region, these findings further support a scenario wherein: (a) EMSY amplification may mimic BRCA2 deficiency, at least by overriding RPA and PALB2, crippling the BRCA2/RAD51 complex at DNA-damage and replication/transcription sites; and (b) BRCA2/RAD51 may coordinate these processes by employing at least EMSY, PALB2 and RPA. We extensively discuss the molecular details of how this can happen to ascertain its implications for a novel recombination mechanism apparently conceived as checkpoint rather than a DNA repair system for cell division, survival, death, and human diseases, including the tissue specificity of cancer predisposition, which may renew our thinking about targeted therapy and prevention.", "title": "EMSY overexpression disrupts the BRCA2/RAD51 pathway in the DNA-damage response: implications for chromosomal instability/recombination syndromes as checkpoint diseases" }, { "docid": "21320417", "text": "T cell memory induced by prior infection or vaccination provides enhanced protection against subsequent microbial infections. The processes involved in generating and maintaining T cell memory are becoming better understood due to recent technological advances in identifying memory T cells and monitoring their behavior and function in vivo. Memory T cells develop in response to a progressive set of cues-starting with signals from antigen-loaded, activated antigen-presenting cells (APCs) and inflammatory mediators induced by the innate immune response, to the poorly defined subsequent signals triggered as the immune response wanes toward homeostasis. The persistence of the resting memory T cells that eventually develop is regulated by cytokines. This chapter discusses recent findings on how memory T cells develop to confer long-term protective immunity.", "title": "T cell memory." }, { "docid": "22198971", "text": "CD4 memory T cells surviving in the absence of MHC class II contact lose their characteristic memory function. To investigate the mechanisms underlying the impaired function of memory T cells in the absence of MHC class II molecules, we analyzed gene expression profiles of resting memory T cells isolated from MHC class II-competent or -deficient hosts. The analysis focused on five transcripts related to T cell activation, metabolism, and survival that are underexpressed in resting memory T cells from MHC class II-deficient hosts compared with MHC class II-competent hosts. CD4 memory cells isolated from MHC class II-deficient hosts display alterations in their degree of differentiation as well as metabolic activity, and these changes are already manifest in the effector phase despite the presence of Ag-expressing dendritic cells. Our data suggest that the absence of interactions with noncognate MHC class II molecules compromises the progressive accumulation of signals that ensure optimal survival and fitness to sustain the metabolic activity of activated T cells and shape the functional capacity of the future memory compartment. Signals via AKT coordinate survival and metabolic pathways and may be one of the crucial events linking interaction with MHC class II molecules to the successful generation of a long-lived functional memory CD4 T cell population.", "title": "Noncognate interaction with MHC class II molecules is essential for maintenance of T cell metabolism to establish optimal memory CD4 T cell function." }, { "docid": "42693833", "text": "Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively. Diversified and selected IgAs contributed to maintenance of diversified and balanced microbiota, which in turn facilitated the expansion of Foxp3(+) T cells, induction of GCs, and IgA responses in the gut through a symbiotic regulatory loop. Thus, the adaptive immune system, through cellular and molecular components that are required for immune tolerance and through the diversification as well as selection of antibody repertoire, mediates host-microbial symbiosis by controlling the richness and balance of bacterial communities required for homeostasis.", "title": "Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis." } ]
441
G-CSF increases the expansion and infiltration of MDSCs into tumors.
[ { "docid": "2014909", "text": "Myeloid-derived suppressor cells (MDSCs) play critical roles in primary and metastatic cancer progression. MDSC regulation is widely variable even among patients harbouring the same type of malignancy, and the mechanisms governing such heterogeneity are largely unknown. Here, integrating human tumour genomics and syngeneic mammary tumour models, we demonstrate that mTOR signalling in cancer cells dictates a mammary tumour's ability to stimulate MDSC accumulation through regulating G-CSF. Inhibiting this pathway or its activators (for example, FGFR) impairs tumour progression, which is partially rescued by restoring MDSCs or G-CSF. Tumour-initiating cells (TICs) exhibit elevated G-CSF. MDSCs reciprocally increase TIC frequency through activating Notch in tumour cells, forming a feedforward loop. Analyses of primary breast cancers and patient-derived xenografts corroborate these mechanisms in patients. These findings establish a non-canonical oncogenic role of mTOR signalling in recruiting pro-tumorigenic MDSCs and show how defined cancer subsets may evolve to promote and depend on a distinct immune microenvironment.", "title": "Oncogenic mTOR signaling recruits myeloid-derived suppressor cells to promote tumor initiation" } ]
[ { "docid": "25726838", "text": "The role of immune responses in tumor development is a central issue for tumor biology and immunology. IL-17 is an important cytokine for inflammatory and autoimmune diseases. Although IL-17-producing cells are detected in cancer patients and tumor-bearing mice, the role of IL-17 in tumor development is controversial, and mechanisms remain to be fully elucidated. In the current study, we found that the development of tumors was inhibited in IL-17R-deficient mice. A defect in IFN-gammaR increased tumor growth, whereas tumor growth was inhibited in mice that were deficient in both IL-17R and IFN-gammaR compared with wild-type animals. Further experiments showed that neutralization of IL-17 by Abs inhibited tumor growth in wild-type mice, whereas systemic administration of IL-17 promoted tumor growth. The IL-17R deficiency increased CD8 T cell infiltration, whereas it reduced the infiltration of myeloid-derived suppressor cells (MDSCs) in tumors. In contrast, administration of IL-17 inhibited CD8 T cell infiltration and increased MDSCs in tumors. Further analysis indicated that IL-17 was required for the development and tumor-promoting activity of MDSCs in tumor-bearing mice. These data demonstrate that IL-17-mediated responses promote tumor development through the induction of tumor-promoting microenvironments at tumor sites. IL-17-mediated regulation of MDSCs is a primary mechanism for its tumor-promoting effects. The study provides novel insights into the role of IL-17 in tumor development and has major implications for targeting IL-17 in treatment of tumors.", "title": "IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells." }, { "docid": "2030623", "text": "Myeloid-derived suppressor cells (MDSC) promote tumor growth by inhibiting T-cell immunity and promoting malignant cell proliferation and migration. The therapeutic potential of blocking MDSC in tumors has been limited by their heterogeneity, plasticity, and resistance to various chemotherapy agents. Recent studies have highlighted the role of energy metabolic pathways in the differentiation and function of immune cells; however, the metabolic characteristics regulating MDSC remain unclear. We aimed to determine the energy metabolic pathway(s) used by MDSC, establish its impact on their immunosuppressive function, and test whether its inhibition blocks MDSC and enhances antitumor therapies. Using several murine tumor models, we found that tumor-infiltrating MDSC (T-MDSC) increased fatty acid uptake and activated fatty acid oxidation (FAO). This was accompanied by an increased mitochondrial mass, upregulation of key FAO enzymes, and increased oxygen consumption rate. Pharmacologic inhibition of FAO blocked immune inhibitory pathways and functions in T-MDSC and decreased their production of inhibitory cytokines. FAO inhibition alone significantly delayed tumor growth in a T-cell-dependent manner and enhanced the antitumor effect of adoptive T-cell therapy. Furthermore, FAO inhibition combined with low-dose chemotherapy completely inhibited T-MDSC immunosuppressive effects and induced a significant antitumor effect. Interestingly, a similar increase in fatty acid uptake and expression of FAO-related enzymes was found in human MDSC in peripheral blood and tumors. These results support the possibility of testing FAO inhibition as a novel approach to block MDSC and enhance various cancer therapies.", "title": "Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies" }, { "docid": "3559136", "text": "Tumor-associated macrophages (TAM) contribute to all aspects of tumor progression. Use of CSF1R inhibitors to target TAM is therapeutically appealing, but has had very limited anti-tumor effects. Here, we have identified the mechanism that limited the effect of CSF1R targeted therapy. We demonstrated that carcinoma-associated fibroblasts (CAF) are major sources of chemokines that recruit granulocytes to tumors. CSF1 produced by tumor cells caused HDAC2-mediated downregulation of granulocyte-specific chemokine expression in CAF, which limited migration of these cells to tumors. Treatment with CSF1R inhibitors disrupted this crosstalk and triggered a profound increase in granulocyte recruitment to tumors. Combining CSF1R inhibitor with a CXCR2 antagonist blocked granulocyte infiltration of tumors and showed strong anti-tumor effects.", "title": "Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors." }, { "docid": "24612804", "text": "IL-17 is a novel, CD4+ T cell-restricted cytokine. In vivo, it stimulates hematopoiesis and causes neutrophilia consisting of mature granulocytes. In this study, we show that IL-17-mediated granulopoiesis requires G-CSF release and the presence or induction of the transmembrane form of stem cell factor (SCF) for optimal granulopoiesis. However, IL-17 also protects mice from G-CSF neutralization-induced neutropenia. G-CSF neutralization completely reversed IL-17-induced BM progenitor expansion, whereas splenic CFU-GM/CFU-granulocyte-erythrocyte-megakaryocyte-monocyte was only reduced by 50% in both Sl/Sld and littermate control mice. Thus, there remained a significant SCF/G-CSF-independent effect of IL-17 on splenic granulopoiesis, resulting in a preservation of mature circulating granulocytes. IL-17 is a cytokine that potentially interconnects lymphocytic and myeloid host defense and may have potential for therapeutic development.", "title": "Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis." }, { "docid": "5774746", "text": "S100A4 is implicated in metastasis and chronic inflammation, but its function remains uncertain. Here we establish an S100A4-dependent link between inflammation and metastatic tumor progression. We found that the acute-phase response proteins serum amyloid A (SAA) 1 and SAA3 are transcriptional targets of S100A4 via Toll-like receptor 4 (TLR4)/nuclear factor-κB signaling. SAA proteins stimulated the transcription of RANTES (regulated upon activation normal T-cell expressed and presumably secreted), G-CSF (granulocyte-colony-stimulating factor) and MMP2 (matrix metalloproteinase 2), MMP3, MMP9 and MMP13. We have also shown for the first time that SAA stimulate their own transcription as well as that of proinflammatory S100A8 and S100A9 proteins. Moreover, they strongly enhanced tumor cell adhesion to fibronectin, and stimulated migration and invasion of human and mouse tumor cells. Intravenously injected S100A4 protein induced expression of SAA proteins and cytokines in an organ-specific manner. In a breast cancer animal model, ectopic expression of SAA1 or SAA3 in tumor cells potently promoted widespread metastasis formation accompanied by a massive infiltration of immune cells. Furthermore, coordinate expression of S100A4 and SAA in tumor samples from colorectal carcinoma patients significantly correlated with reduced overall survival. These data show that SAA proteins are effectors for the metastasis-promoting functions of S100A4, and serve as a link between inflammation and tumor progression.", "title": "A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4" }, { "docid": "15435343", "text": "The inflammasome is a proteolysis complex that generates the active forms of the proinflammatory cytokines interleukin (IL)-1β and IL-18. Inflammasome activation is mediated by NLR proteins that respond to microbial and nonmicrobial stimuli. Among NLRs, NLRP3 senses the widest array of stimuli and enhances adaptive immunity. However, its role in antitumor immunity is unknown. Therefore, we evaluated the function of the NLRP3 inflammasome in the immune response using dendritic cell vaccination against the poorly immunogenic melanoma cell line B16-F10. Vaccination of Nlrp3(-/-) mice led to a relative 4-fold improvement in survival relative to control animals. Immunity depended on CD8(+) T cells and exhibited immune specificity and memory. Increased vaccine efficacy in Nlrp3(-/-) hosts did not reflect differences in dendritic cells but rather differences in myeloid-derived suppressor cells (MDSC). Although Nlrp3 was expressed in MDSCs, the absence of Nlrp3 did not alter either their functional capacity to inhibit T cells or their presence in peripheral lymphoid tissues. Instead, the absence of Nlrp3 caused a 5-fold reduction in the number of tumor-associated MDSCs found in host mice. Adoptive transfer experiments also showed that Nlrp3(-/-) MDSCs were less efficient in reaching the tumor site. Depleting MDSCs with an anti-Gr-1 antibody increased the survival of tumor-bearing wild-type mice but not Nlrp3(-/-) mice. We concluded that Nlrp3 was critical for accumulation of MDSCs in tumors and for inhibition of antitumor T-cell immunity after dendritic cell vaccination. Our findings establish an unexpected role for Nlrp3 in impeding antitumor immune responses, suggesting novel approaches to improve the response to antitumor vaccines by limiting Nlrp3 signaling.", "title": "The inflammasome component NLRP3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells." }, { "docid": "5836", "text": "Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33’s immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells. S100A9 transgenic mice displayed bone marrow accumulation of MDSC accompanied by development of progressive multilineage cytopenias and cytological dysplasia. Importantly, early forced maturation of MDSC by either all-trans-retinoic acid treatment or active immunoreceptor tyrosine-based activation motif–bearing (ITAM-bearing) adapter protein (DAP12) interruption of CD33 signaling rescued the hematologic phenotype. These findings indicate that primary bone marrow expansion of MDSC driven by the S100A9/CD33 pathway perturbs hematopoiesis and contributes to the development of MDS.", "title": "Induction of myelodysplasia by myeloid-derived suppressor cells." }, { "docid": "10486817", "text": "BACKGROUND Cellular nucleic acid binding protein (CNBP) has been implicated in vertebrate craniofacial development and in myotonic dystrophy type 2 (DM2) and sporadic inclusion body myositis (sIBM) human diseases by controlling cell proliferation and survival to mediate neural crest expansion. CNBP has been found to bind single-stranded nucleic acid and promote rearrangements of nucleic acid secondary structure in an ATP-independent manner, acting as a nucleic acid chaperone. \n METHODS A variety of methods were used, including cell viability assays, wound-scratch assays, chemotaxis assays, invasion assays, circular dichroic (CD) spectroscopy, NMR spectroscopy, chromatin immunoprecipitation, expression and purification of recombinant human CNBP, electrophoretic mobility shift assay (EMSA), surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET) analyses, luciferase reporter assay, Western blotting, and isothermal titration calorimetry (ITC). \n RESULTS Up-regulation of CNBP induced human fibrosarcoma cell death and suppressed fibrosarcoma cell motility and invasiveness. It was found that CNBP transcriptionally down-regulated the expression of heterogeneous ribonucleoprotein K (hnRNP K) through its conversion of a G-rich sequence into G-quadruplex in the promoter of hnRNP K. G-quadruplex stabilizing ligand tetra-(N-methyl-4-pyridyl) porphyrin (TMPyP4) could interact with and stabilize the G-quadruplex, resulting in downregulation of hnRNP K transcription. \n CONCLUSIONS CNBP overexpression caused increase of cell death and suppression of cell metastasis through its induction of G-quadruplex formation in the promoter of hnRNP K resulting in hnRNP K down-regulation. GENERAL SIGNIFICANCE The present result provided a new solution for controlling hnRNP K expression, which should shed light on new anticancer drug design and development.", "title": "Cellular nucleic acid binding protein suppresses tumor cell metastasis and induces tumor cell death by downregulating heterogeneous ribonucleoprotein K in fibrosarcoma cells." }, { "docid": "5483793", "text": "Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide–major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor (TCR)-CD8 complex. This process makes CD8-expressing T cells unable to bind pMHC and to respond to the specific peptide, although they retain their ability to respond to nonspecific stimulation. Nitration of TCR-CD8 is induced by MDSCs through hyperproduction of reactive oxygen species and peroxynitrite during direct cell-cell contact. Molecular modeling suggests specific sites of nitration that might affect the conformational flexibility of TCR-CD8 and its interaction with pMHC. These data identify a previously unknown mechanism of T-cell tolerance in cancer that is also pertinent to many pathological conditions associated with accumulation of MDSCs.", "title": "Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer" }, { "docid": "19510470", "text": "Cancer stem cells have been proposed to be important for initiation, maintenance and recurrence of various malignancies, including acute myeloid leukemia (AML). We have previously reported that CD34+CD38− human primary AML stem cells residing in the endosteal region of the bone marrow are relatively chemotherapy resistant. Using a NOD/SCID/IL2rγnull mouse model of human AML, we now show that the AML stem cells in the endosteal region are cell cycle quiescent and that these stem cells can be induced to enter the cell cycle by treatment with granulocyte colony-stimulating factor (G-CSF). In combination with cell cycle-dependent chemotherapy, G-CSF treatment significantly enhances induction of apoptosis and elimination of human primary AML stem cells in vivo. The combination therapy leads to significantly increased survival of secondary recipients after transplantation of leukemia cells compared with chemotherapy alone.", "title": "Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML" }, { "docid": "12827098", "text": "Despite accumulating evidence suggesting local self-maintenance of tissue macrophages in the steady state, the dogma remains that tissue macrophages derive from monocytes. Using parabiosis and fate-mapping approaches, we confirmed that monocytes do not show significant contribution to tissue macrophages in the steady state. Similarly, we found that after depletion of lung macrophages, the majority of repopulation occurred by stochastic cellular proliferation in situ in a macrophage colony-stimulating factor (M-Csf)- and granulocyte macrophage (GM)-CSF-dependent manner but independently of interleukin-4. We also found that after bone marrow transplantation, host macrophages retained the capacity to expand when the development of donor macrophages was compromised. Expansion of host macrophages was functional and prevented the development of alveolar proteinosis in mice transplanted with GM-Csf-receptor-deficient progenitors. Collectively, these results indicate that tissue-resident macrophages and circulating monocytes should be classified as mononuclear phagocyte lineages that are independently maintained in the steady state.", "title": "Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes." }, { "docid": "13509809", "text": "The bone marrow (BM) niche comprises multiple cell types that regulate hematopoietic stem/progenitor cell (HSPC) migration out of the niche and into the circulation. Here, we demonstrate that osteocytes, the major cellular component of mature bone, are regulators of HSPC egress. Granulocyte colony-stimulating factor (G-CSF), used clinically to mobilize HSPCs, induces changes in the morphology and gene expression of the osteocytic network that precedes changes in osteoblasts. This rapid response is likely under control of the sympathetic nervous system, since osteocytes express the β2-adrenergic receptor and surgical sympathectomy prevents it. Mice with targeted ablation of osteocytes or a disrupted osteocyte network have comparable numbers of HSPCs in the BM but fail to mobilize HSPCs in response to G-CSF. Taken together, these results indicate that the BM/bone niche interface is critically controlled from inside of the bone matrix and establish an important physiological role for skeletal tissues in hematopoietic function.", "title": "Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells." }, { "docid": "654735", "text": "Glioma is a most common type of primary brain tumors. Extracellular vesicles, in the form of exosomes, are known to mediate cell-cell communication by transporting cell-derived proteins and nucleic acids, including various microRNAs (miRNAs). Here we examined the cerebrospinal fluid (CSF) from patients with recurrent glioma for the levels of cancer-related miRNAs, and evaluated the values for prognosis by comparing the measures of CSF-, serum-, and exosome-contained miR-21 levels. Samples from seventy glioma patients following surgery were compared with those from brain trauma patients as a non-tumor control group. Exosomal miR-21 levels in the CSF of glioma patients were found significantly higher than in the controls; whereas no difference was detected in serum-derived exosomal miR-21 expression. The CSF-derived exosomal miR-21 levels correlated with tumor spinal/ventricle metastasis and the recurrence with anatomical site preference. From additional 198 glioma tissue samples, we verified that miR-21 levels associated with tumor grade of diagnosis and negatively correlated with the median values of patient overall survival time. We further used a lentiviral inhibitor to suppress miR-21 expression in U251 cells. The results showed that the levels of miR-21 target genes of PTEN, RECK and PDCD4 were up-regulated at protein levels. Therefore, we concluded that the exosomal miR-21 levels could be demonstrated as a promising indicator for glioma diagnosis and prognosis, particularly with values to predict tumor recurrence or metastasis.", "title": "Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients" }, { "docid": "2242416", "text": "The present study was designed to determine the effects of physical training on the development of cancer induced by the injection of Ehrlich tumor cells in mice. Male Swiss mice were subjected to a swim training protocol (5 days/wk for 6 wk, 1 h at 50% of maximal capacity-trained groups) or remained sedentary in their cages (sedentary groups). The inoculation of Ehrlich tumor cells was performed at the end of the fourth week, and animals were killed after 6 wk of training. Heart and solid tumor weights were recorded, and tumor volumes were calculated. Portions of the tumors were used for the evaluation of macrophages and neutrophil accumulation or fixed in neutral 10% buffered formalin for histological analysis. The tumor volume and weight were, respectively, approximately 270% and 280% greater in sedentary mice than in trained mice. Macrophage infiltration in the tumor tissue was significantly lower in trained mice (0.65 +/- 0.16 vs. 1.78 +/- 0.43 macrophages x 10(3) in the sedentary group). Moreover, neutrophil accumulation in tumors was slightly reduced after exercise training, and the amount of tumor cells was reduced in trained mice. Exercise capacity was substantially increased in trained mice, as determined by a 440% increase in the exercise time at 50% of maximal capacity. In summary, swim training retarded the development of Ehrlich tumors in mice, accompanied by a reduction in macrophage infiltration and neutrophil accumulation. These findings provide conceptual support for clinical observations that controlled physical activities may be a therapeutically important approach to preventing cancer progression and may improve the outcome of cancer treatment.", "title": "Swim training suppresses tumor growth in mice." }, { "docid": "5377642", "text": "&NA; Despite the importance of programmed cell death‐1 (PD‐1) in inhibiting T cell effector activity, the mechanisms regulating its expression remain poorly defined. We found that the chromatin organizer special AT‐rich sequence‐binding protein‐1 (Satb1) restrains PD‐1 expression induced upon T cell activation by recruiting a nucleosome remodeling deacetylase (NuRD) complex to Pdcd1 regulatory regions. Satb1 deficienct T cells exhibited a 40‐fold increase in PD‐1 expression. Tumor‐derived transforming growth factor &bgr; (Tgf‐&bgr;) decreased Satb1 expression through binding of Smad proteins to the Satb1 promoter. Smad proteins also competed with the Satb1‐NuRD complex for binding to Pdcd1 enhancers, releasing Pdcd1 expression from Satb1‐mediated repression, Satb1‐deficient tumor‐reactive T cells lost effector activity more rapidly than wild‐type lymphocytes at tumor beds expressing PD‐1 ligand (CD274), and these differences were abrogated by sustained CD274 blockade. Our findings suggest that Satb1 functions to prevent premature T cell exhaustion by regulating Pdcd1 expression upon T cell activation. Dysregulation of this pathway in tumor‐infiltrating T cells results in diminished anti‐tumor immunity. Graphical Abstract Figure. No caption available. HighlightsT cell activation increased the expression of Satb1 in mature CD8+ and CD4+ T cellsRecruitment of the NuRD repression complex by Satb1 inhibits expression of Pdcd1In tumors, TGF‐&bgr; inhibits Satb1 expression in T cells, increasing Pdcd1 expressionSatb1−/− T cells express high amounts of PD‐1 and have decreased anti‐tumor activity &NA; Stephen et al. show that the chromatin organizer Satb1 controls expression levels of PD‐1 upon T cell activation through the recruitment of a de‐acetylase complex to regulatory regions of the Pdcd1 gene. Tumor‐derived TGF‐&bgr; dysregulates this pathway, unleashing PD‐1 expression in tumor‐infiltrating T cells and decreasing anti‐tumor immunity.", "title": "SATB1 Expression Governs Epigenetic Repression of PD‐1 in Tumor‐Reactive T Cells" }, { "docid": "313403", "text": "The tumor microenvironment is composed of tumor cells, fibroblasts, endothelial cells and infiltrating immune cells, which may inhibit or promote tumor growth and progression. The objectives of this retrospective study were to characterize the density of tumor-associated macrophages (TAMs) in breast cancer, and to correlate the density of TAMs with clinicopathological parameters. Paraffin-embedded specimens and clinicopathological data, including up to 5 years follow-up information, were obtained from 172 breast cancer patients. Immunohistochemical staining for CD68 (marker for macrophages) was performed and evaluated in a blinded fashion. We found that TAMs were significantly frequent in high histopathological grade breast cancer patients. Breast cancer patients with a high density of TAMs had significantly lower rates of disease-free survival and 5-year overall survival than patients with low density of TAMs. Furthermore, high-infiltration of TAMs indicated worse survival rate for patients with node-negative breast cancer. In conclusion, the number of TAMs in the tumor stroma is an independent predictor of survival time for breast cancer patients. High-infiltration of TAMs is a significant unfavorable prognostic factor for patients with invasive breast cancer and, as such, is a potentially useful prognostic marker for breast cancer.", "title": "High-Infiltration of Tumor-Associated Macrophages Predicts Unfavorable Clinical Outcome for Node-Negative Breast Cancer" }, { "docid": "5132358", "text": "Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.", "title": "Chimeric antigen receptor-modified T cells for acute lymphoid leukemia." }, { "docid": "46565020", "text": "BACKGROUND AN1792 (beta-amyloid [Abeta]1-42) immunization reduces Abeta plaque burden and preserves cognitive function in APP transgenic mice. The authors report the results of a phase IIa immunotherapy trial of AN1792(QS-21) in patients with mild to moderate Alzheimer disease (AD) that was interrupted because of meningoencephalitis in 6% of immunized patients. \n METHODS This randomized, multicenter, placebo-controlled, double-blind trial of IM AN1792 225 microg plus the adjuvant QS-21 50 microg (300 patients) and saline (72 patients) included patients aged 50 to 85 years with probable AD, Mini-Mental State Examination (MMSE) 15 to 26. Injections were planned for months 0, 1, 3, 6, 9, and 12. Safety and tolerability were evaluated, and pilot efficacy (AD Assessment Scale-Cognitive Subscale [ADAS-Cog], MRI, neuropsychological test battery [NTB], CSF tau, and Abeta42) was assessed in anti-AN1792 antibody responder patients (immunoglobulin G titer > or = 1:2,200). \n RESULTS Following reports of meningoencephalitis (overall 18/300 [6%]), immunization was stopped after one (2 patients), two (274 patients), or three (24 patients) injections. Of the 300 AN1792(QS-21)-treated patients, 59 (19.7%) developed the predetermined antibody response. Double-blind assessments were maintained for 12 months. No significant differences were found between antibody responder and placebo groups for ADAS-Cog, Disability Assessment for Dementia, Clinical Dementia Rating, MMSE, or Clinical Global Impression of Change, but analyses of the z-score composite across the NTB revealed differences favoring antibody responders (0.03 +/- 0.37 vs -0.20 +/- 0.45; p = 0.020). In the small subset of subjects who had CSF examinations, CSF tau was decreased in antibody responders (n = 11) vs placebo subjects (n = 10; p < 0.001). \n CONCLUSION Although interrupted, this trial provides an indication that Abeta immunotherapy may be useful in Alzheimer disease.", "title": "Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial." }, { "docid": "23816832", "text": "Diagnosis of multiple sclerosis (MS) requires the exclusion of other possible diagnoses. For this reason, the cerebrospinal fluid (CSF) should be routinely analysed in patients with a first clinical event suggestive of MS. CSF analysis is no longer mandatory for diagnosis of relapsing–remitting MS, as long as MRI diagnostic criteria are fulfilled. However, caution is required in diagnosing MS in patients with negative MRI findings or in the absence of CSF analysis, as CSF investigation is useful to eliminate other causes of disease. The detection of oligoclonal IgG bands in CSF has potential prognostic value and is helpful for clinical decision-making. In addition, CSF analysis is important for research into the pathogenesis of MS. Pathophysiological and neurodegenerative findings of inflammation in MS have been derived from CSF investigations. Novel CSF biomarkers, though not yet validated, have been identified for diagnosis of MS and for ascertaining disease activity, prognosis and response to treatment, and are likely to increase in number with modern detection techniques. In this Review, we summarize CSF findings that shed light on the differential diagnosis of MS, and highlight the potential of novel biomarkers for this disease that could advance understanding of its pathophysiology.", "title": "The utility of cerebrospinal fluid analysis in patients with multiple sclerosis" } ]
444
GATA3 regulates cell cycle progression in bone marrow hematopoietic stem cells.
[ { "docid": "10165258", "text": "Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin(-)Sca1(+)c-Kit(hi)CD150(+)CD48(-)) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well documented that GATA-3 is expressed in HSCs, a role for GATA-3 in any prethymic progenitor cell has not been established. In the present study, we show that Gata3-null mutant mice generate fewer LT-HSCs and that fewer Gata3-null LT-HSCs are in cycle. Furthermore, Gata3 mutant hematopoietic progenitor cells fail to be recruited into an increased cycling state after 5-fluorouracil-induced myelosuppression. Therefore, GATA-3 is required for the maintenance of a normal number of LT-HSCs and for their entry into the cell cycle.", "title": "GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry." } ]
[ { "docid": "10526279", "text": "Androgens are widely used for treating Fanconi anemia (FA) and other human bone marrow failure syndromes, but their mode of action remains incompletely understood. Aged Fancd2(-/-) mice were used to assess the therapeutic efficacy of oxymetholone (OXM) and its mechanism of action. Eighteen-month-old Fancd2(-/-) mice recapitulated key human FA phenotypes, including reduced bone marrow cellularity, red cell macrocytosis, and peripheral pancytopenia. As in humans, chronic OXM treatment significantly improved these hematological parameters and stimulated the proliferation of hematopoietic stem and progenitor cells. RNA-Seq analysis implicated downregulation of osteopontin as an important potential mechanism for the drug's action. Consistent with the increased stem cell proliferation, competitive repopulation assays demonstrated that chronic OXM therapy eventually resulted in stem cell exhaustion. These results expand our knowledge of the regulation of hematopoietic stem cell proliferation and have direct clinical implications for the treatment of bone marrow failure.", "title": "Oxymetholone Therapy of Fanconi Anemia Suppresses Osteopontin Transcription and Induces Hematopoietic Stem Cell Cycling" }, { "docid": "7583161", "text": "In semisyngeneic heterotopic bone marrow transplants the donor or recipient origin of cells of osteogenic and hematopoietic tissues was identified by chromosome markers (T6) and by reverse transplantation into the initial donor line. In syngeneic and semisyngeneic grafts of bone marrow under the renal capsule bone and bone marrow are formed. In allogeneic grafts only bone is formed; this bone is subsequently resorbed. In 14-month semisyngeneic transplants the bone marrow consists of recipient cells. This is true for both the proliferating pool and the stem cells of hematopoietic tissue. At the same time, osteogenic precursor cells and bone tissue in these transplants are of donor origin. A discussion is presented of the interrelationship between determinated osteogenic precursor cells (preosteoblasts) and hematopoietic stem cells (or their descendants) in which osteogenesis is inducible.", "title": "Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues." }, { "docid": "40234452", "text": "Mouse long-term hematopoietic reconstituting cells exist in the c-Kit+Sca-1+Lin- (KSL) cell population; among them, CD34(low/-) cells represent the most highly purified population of hematopoietic stem cells in the adult bone marrow. Here, we demonstrate that retrovirus-mediated transduction of CD34(low/-)c-Kit+Sca-1+Lin- (34-KSL) cells with the HES-1 gene, which encodes a basic helix-loop-helix transcription factor functioning downstream of the Notch receptor, and is a key molecule for the growth phase of neural stem cells in the embryo, preserves the long-term reconstituting activity of these cells in vitro. We also show that cells derived from the HES-1-transduced 34-KSL population produce progenies characterized by negative Hoechst dye staining, which defines the side population, and by CD34(low/-) profile in the bone marrow KSL population in each recipient mouse at ratios 3.5- and 7.8-fold those produced by nontransduced 34-KSL-derived competitor cells. We conclude that HES-1 preserves the long-term reconstituting hematopoietic activity of 34-KSL stem cells ex vivo. Up-regulation of HES-1 protein in the 34-KSL population before unnecessary cell division, that is, without retrovirus transduction, may represent a potent approach to absolute expansion of hematopoietic stem cells.", "title": "HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo." }, { "docid": "9911547", "text": "The physiologic roles of angiopoietin-like proteins (Angptls) in the hematopoietic system remain unknown. Here we show that hematopoietic stem cells (HSCs) in Angptl3-null mice are decreased in number and quiescence. HSCs transplanted into Angptl3-null recipient mice exhibited impaired repopulation. Bone marrow sinusoidal endothelial cells express high levels of Angptl3 and are adjacent to HSCs. Importantly, bone marrow stromal cells or endothelium deficient in Angptl3 have a significantly decreased ability to support the expansion of repopulating HSCs. Angptl3 represses the expression of the transcription factor Ikaros, whose unregulated overexpression diminishes the repopulation activity of HSCs. Angptl3, as an extrinsic factor, thus supports the stemness of HSCs in the bone marrow niche.", "title": "Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche." }, { "docid": "2853291", "text": "Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. In this study, we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin(-) MSCs participate in fetal skeletogenesis and lose MSC activity soon after birth. In contrast, quiescent neural crest-derived nestin(+) cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP(+) Pdgfrα(-) cell population also contains Schwann cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation.", "title": "The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function" }, { "docid": "13509809", "text": "The bone marrow (BM) niche comprises multiple cell types that regulate hematopoietic stem/progenitor cell (HSPC) migration out of the niche and into the circulation. Here, we demonstrate that osteocytes, the major cellular component of mature bone, are regulators of HSPC egress. Granulocyte colony-stimulating factor (G-CSF), used clinically to mobilize HSPCs, induces changes in the morphology and gene expression of the osteocytic network that precedes changes in osteoblasts. This rapid response is likely under control of the sympathetic nervous system, since osteocytes express the β2-adrenergic receptor and surgical sympathectomy prevents it. Mice with targeted ablation of osteocytes or a disrupted osteocyte network have comparable numbers of HSPCs in the BM but fail to mobilize HSPCs in response to G-CSF. Taken together, these results indicate that the BM/bone niche interface is critically controlled from inside of the bone matrix and establish an important physiological role for skeletal tissues in hematopoietic function.", "title": "Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells." }, { "docid": "17271462", "text": "The quiescent state is thought to be an indispensable property for the maintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with their particular microenvironments, known as the stem cell niches, is critical for adult hematopoiesis in the bone marrow (BM). Here, we demonstrate that HSCs expressing the receptor tyrosine kinase Tie2 are quiescent and antiapoptotic, and comprise a side-population (SP) of HSCs, which adhere to osteoblasts (OBs) in the BM niche. The interaction of Tie2 with its ligand Angiopoietin-1 (Ang-1) induced cobblestone formation of HSCs in vitro and maintained in vivo long-term repopulating activity of HSCs. Furthermore, Ang-1 enhanced the ability of HSCs to become quiescent and induced adhesion to bone, resulting in protection of the HSC compartment from myelosuppressive stress. These data suggest that the Tie2/Ang-1 signaling pathway plays a critical role in the maintenance of HSCs in a quiescent state in the BM niche.", "title": "Tie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche" }, { "docid": "5836", "text": "Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33’s immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells. S100A9 transgenic mice displayed bone marrow accumulation of MDSC accompanied by development of progressive multilineage cytopenias and cytological dysplasia. Importantly, early forced maturation of MDSC by either all-trans-retinoic acid treatment or active immunoreceptor tyrosine-based activation motif–bearing (ITAM-bearing) adapter protein (DAP12) interruption of CD33 signaling rescued the hematologic phenotype. These findings indicate that primary bone marrow expansion of MDSC driven by the S100A9/CD33 pathway perturbs hematopoiesis and contributes to the development of MDS.", "title": "Induction of myelodysplasia by myeloid-derived suppressor cells." }, { "docid": "5107861", "text": "Exposure to psychosocial stress is a risk factor for many diseases, including atherosclerosis. Although incompletely understood, interaction between the psyche and the immune system provides one potential mechanism linking stress and disease inception and progression. Known cross-talk between the brain and immune system includes the hypothalamic-pituitary-adrenal axis, which centrally drives glucocorticoid production in the adrenal cortex, and the sympathetic-adrenal-medullary axis, which controls stress-induced catecholamine release in support of the fight-or-flight reflex. It remains unknown, however, whether chronic stress changes hematopoietic stem cell activity. Here we show that stress increases proliferation of these most primitive hematopoietic progenitors, giving rise to higher levels of disease-promoting inflammatory leukocytes. We found that chronic stress induced monocytosis and neutrophilia in humans. While investigating the source of leukocytosis in mice, we discovered that stress activates upstream hematopoietic stem cells. Under conditions of chronic variable stress in mice, sympathetic nerve fibers released surplus noradrenaline, which signaled bone marrow niche cells to decrease CXCL12 levels through the β3-adrenergic receptor. Consequently, hematopoietic stem cell proliferation was elevated, leading to an increased output of neutrophils and inflammatory monocytes. When atherosclerosis-prone Apoe(-/-) mice were subjected to chronic stress, accelerated hematopoiesis promoted plaque features associated with vulnerable lesions that cause myocardial infarction and stroke in humans.", "title": "Chronic variable stress activates hematopoietic stem cells" }, { "docid": "46193388", "text": "Bone marrow stem cells give rise to a variety of hematopoietic lineages and repopulate the blood throughout adult life. We show that, in a strain of mice incapable of developing cells of the myeloid and lymphoid lineages, transplanted adult bone marrow cells migrated into the brain and differentiated into cells that expressed neuron-specific antigens. These findings raise the possibility that bone marrow-derived cells may provide an alternative source of neurons in patients with neurodegenerative diseases or central nervous system injury.", "title": "Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow." }, { "docid": "39851630", "text": "Defective hematopoiesis supporting capacity of bone marrow (BM) stroma has been implicated in the pathophysiology of myelodysplastic syndromes (MDS). The aim of this study is to explore whether the BM stroma progenitors, namely the mesenchymal stem cells (MSCs), are primarily affected in MDS by evaluating the reserves, the functional properties, as well as the cytogenetic characteristics, in comparison to BM hematopoietic cells, in patients with de novo MDS (n = 13). The number, differentiation potential toward adipocytes/chondrocytes/osteoblasts and immunosuppressive function in terms of inhibition of mitogen-induced T-cell proliferation did not differ significantly between patient and normal (n = 20) MSCs. Patient MSCs did not show any aberrations in the production of proinflammatory or growth-promoting cytokines and did not harbor the cytogenetic abnormalities present in hematopoietic cells. Occasional patient and normal MSC cultures, however, developed irrelevant chromosomal alterations (trisomies 5 and 7) with uncertain pathophysiologic significance. Compared to controls, patient MSCs displayed impaired proliferative and clonogenic potential through passages that might represent a nonspecific abnormality associated with the chronic inflammatory process present in patients' BM. These data suggest that BM MSCs from MDS patients do not belong to the abnormal clone and do not represent the main cellular source contributing to the inflammatory marrow microenvironment.", "title": "Reserves, functional, immunoregulatory, and cytogenetic properties of bone marrow mesenchymal stem cells in patients with myelodysplastic syndromes." }, { "docid": "32170702", "text": "Maintenance of hematopoietic stem cells (HSCs) depends on interaction with their niche. Here we show that the long-term (LT)-HSCs expressing the thrombopoietin (THPO) receptor, MPL, are a quiescent population in adult bone marrow (BM) and are closely associated with THPO-producing osteoblastic cells. THPO/MPL signaling upregulated beta1-integrin and cyclin-dependent kinase inhibitors in HSCs. Furthermore, inhibition and stimulation of THPO/MPL pathway by treatments with anti-MPL neutralizing antibody, AMM2, and with THPO showed reciprocal regulation of quiescence of LT-HSC. AMM2 treatment reduced the number of quiescent LT-HSCs and allowed exogenous HSC engraftment without irradiation. By contrast, exogenous THPO transiently increased quiescent HSC population and subsequently induced HSC proliferation in vivo. Altogether, these observations suggest that THPO/MPL signaling plays a critical role of LT-HSC regulation in the osteoblastic niche.", "title": "Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche." }, { "docid": "34982259", "text": "The hematopoietic system is one of the first complex tissues to develop in the mammalian conceptus. Of particular interest in the field of developmental hematopoiesis is the origin of adult bone marrow hematopoietic stem cells. Tracing their origin is complicated because blood is a mobile tissue and because hematopoietic cells emerge from many embryonic sites. The origin of the adult mammalian blood system remains a topic of lively discussion and intense research. Interest is also focused on developmental signals that induce the adult hematopoietic stem cell program, as these may prove useful for generating and expanding these clinically important cell populations ex vivo. This review presents a historical overview of and the most recent data on the developmental origins of hematopoiesis.", "title": "Of lineage and legacy: the development of mammalian hematopoietic stem cells" }, { "docid": "12130067", "text": "Formation of the hematopoietic stem cell (HSC) niche in bone marrow (BM) is tightly associated with endochondral ossification, but little is known about the mechanisms involved. We used the oc/oc mouse, a mouse model with impaired endochondral ossification caused by a loss of osteoclast (OCL) activity, to investigate the role of osteoblasts (OBLs) and OCLs in the HSC niche formation. The absence of OCL activity resulted in a defective HSC niche associated with an increased proportion of mesenchymal progenitors but reduced osteoblastic differentiation, leading to impaired HSC homing to the BM. Restoration of OCL activity reversed the defect in HSC niche formation. Our data demonstrate that OBLs are required for establishing HSC niches and that osteoblastic development is induced by OCLs. These findings broaden our knowledge of the HSC niche formation, which is critical for understanding normal and pathological hematopoiesis.", "title": "Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow" }, { "docid": "23727313", "text": "MicroRNAs (miRNAs) are a recently identified class of epigenetic elements consisting of small noncoding RNAs that bind to the 3' untranslated region of mRNAs and down-regulate their translation to protein. miRNAs play critical roles in many different cellular processes including metabolism, apoptosis, differentiation, and development. We found 33 miRNAs expressed in CD34+ hematopoietic stem-progenitor cells (HSPCs) from normal human bone marrow and mobilized human peripheral blood stem cell harvests. We then combined these data with human HSPC mRNA expression data and with miRNA-mRNA target predictions, into a previously undescribed miRNA:mRNA interaction database called the Transcriptome Interaction Database. The in silico predictions from the Transcriptome Interaction Database pointed to miRNA control of hematopoietic differentiation through translational control of mRNAs critical to hematopoiesis. From these predictions, we formulated a model for miRNA control of stages of hematopoiesis in which many of the genes specifying hematopoietic differentiation are expressed by HSPCs, but are held in check by miRNAs until differentiation occurs. We validated miRNA control of several of these target mRNAs by demonstrating that their translation in fact is decreased by miRNAs. Finally, we chose miRNA-155 for functional characterization in hematopoiesis, because we predicted that it would control both myelopoiesis and erythropoiesis. As predicted, miRNA-155 transduction greatly reduced both myeloid and erythroid colony formation of normal human HSPCs.", "title": "CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control." }, { "docid": "25516011", "text": "Mouse bone marrow hematopoietic stem cells were isolated with the use of a variety of phenotypic markers. These cells can proliferate and differentiate with approximately unit efficiency into myelomonocytic cells, B cells, or T cells. Thirty of these cells are sufficient to save 50 percent of lethally irradiated mice, and to reconstitute all blood cell types in the survivors.", "title": "Purification and characterization of mouse hematopoietic stem cells." }, { "docid": "20186814", "text": "Muscle satellite cells have long been considered a distinct myogenic lineage responsible for postnatal growth, repair, and maintenance of skeletal muscle. Recent studies in mice, however, have revealed the potential for highly purified hematopoietic stem cells from bone marrow to participate in muscle regeneration. Perhaps more significantly, a population of putative stem cells isolated directly from skeletal muscle efficiently reconstitutes the hematopoietic compartment and participates in muscle regeneration following intravenous injection in mice. The plasticity of muscle stem cells has raised important questions regarding the relationship between the muscle-derived stem cells and the skeletal muscle satellite cells. Furthermore, the ability of hematopoietic cells to undergo myogenesis has prompted new investigations into the embryonic origin of satellite cells. Recent developmental studies suggest that a population of satellite cells is derived from progenitors in the embryonic vasculature. Taken together, these studies provide the first evidence that pluripotential stem cells are present within adult skeletal muscle. Tissue-specific stem cells, including satellite cells, may share a common embryonic origin and possess the capacity to activate diverse genetic programs in response to environmental stimuli. Manipulation of such tissue-specific stem cells may eventually revolutionize therapies for degenerative diseases, including muscular dystrophy.", "title": "A new look at the origin, function, and \"stem-cell\" status of muscle satellite cells." }, { "docid": "38899659", "text": "Cells of the osteoblast lineage provide critical support for B lymphopoiesis in the bone marrow (BM). Parathyroid hormone (PTH) signaling in osteoblastic cells through its receptor (PPR) is an important regulator of hematopoietic stem cells; however, its role in regulation of B lymphopoiesis is not clear. Here we demonstrate that deletion of PPR in osteoprogenitors results in a significant loss of trabecular and cortical bone. PPR signaling in osteoprogenitors, but not in mature osteoblasts or osteocytes, is critical for B-cell precursor differentiation via IL-7 production. Interestingly, despite a severe reduction in B-cell progenitors in BM, mature B-lymphocytes were increased 3.5-fold in the BM of mice lacking PPR in osteoprogenitors. This retention of mature IgD(+) B cells in the BM was associated with increased expression of vascular cell adhesion molecule 1 (VCAM1) by PPR-deficient osteoprogenitors, and treatment with VCAM1 neutralizing antibody increased mobilization of B lymphocytes from mutant BM. Our results demonstrate that PPR signaling in early osteoblasts is necessary for B-cell differentiation via IL-7 secretion and for B-lymphocyte mobilization via VCAM1.", "title": "PTH Signaling in Osteoprogenitors Is Essential for B-Lymphocyte Differentiation and Mobilization." }, { "docid": "54561384", "text": "Hematopoietic stem cells (HSCs) sustain blood formation throughout life and are the functional units of bone marrow transplantation. We show that transient expression of six transcription factors Run1t1, Hlf, Lmo2, Prdm5, Pbx1, and Zfp37 imparts multilineage transplantation potential onto otherwise committed lymphoid and myeloid progenitors and myeloid effector cells. Inclusion of Mycn and Meis1 and use of polycistronic viruses increase reprogramming efficacy. The reprogrammed cells, designated induced-HSCs (iHSCs), possess clonal multilineage differentiation potential, reconstitute stem/progenitor compartments, and are serially transplantable. Single-cell analysis revealed that iHSCs derived under optimal conditions exhibit a gene expression profile that is highly similar to endogenous HSCs. These findings demonstrate that expression of a set of defined factors is sufficient to activate the gene networks governing HSC functional identity in committed blood cells. Our results raise the prospect that blood cell reprogramming may be a strategy for derivation of transplantable stem cells for clinical application.", "title": "Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors." } ]
445
GATA3 regulates self-renewal capacity in bone marrow hematopoietic stem cells.
[ { "docid": "10165258", "text": "Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin(-)Sca1(+)c-Kit(hi)CD150(+)CD48(-)) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well documented that GATA-3 is expressed in HSCs, a role for GATA-3 in any prethymic progenitor cell has not been established. In the present study, we show that Gata3-null mutant mice generate fewer LT-HSCs and that fewer Gata3-null LT-HSCs are in cycle. Furthermore, Gata3 mutant hematopoietic progenitor cells fail to be recruited into an increased cycling state after 5-fluorouracil-induced myelosuppression. Therefore, GATA-3 is required for the maintenance of a normal number of LT-HSCs and for their entry into the cell cycle.", "title": "GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry." } ]
[ { "docid": "10015292", "text": "Highly regenerative tissues such as blood must possess effective DNA damage responses (DDR) that balance long-term regeneration with protection from leukemogenesis. Hematopoietic stem cells (HSCs) sustain life-long blood production, yet their response to DNA damage remains largely unexplored. We report that human HSCs exhibit delayed DNA double-strand break rejoining, persistent gammaH2AX foci, and enhanced p53- and ASPP1-dependent apoptosis after gamma-radiation compared to progenitors. p53 inactivation or Bcl-2 overexpression reduced radiation-induced apoptosis and preserved in vivo repopulating HSC function. Despite similar protection from irradiation-induced apoptosis, only Bcl-2-overexpressing HSCs showed higher self-renewal capacity, establishing that intact p53 positively regulates self-renewal independently from apoptosis. The reduced self-renewal of HSCs with inactivated p53 was associated with increased spontaneous gammaH2AX foci in secondary transplants of HSCs. Our data reveal distinct physiological roles of p53 that together ensure optimal HSC function: apoptosis regulation and prevention of gammaH2AX foci accumulation upon HSC self-renewal.", "title": "A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal." }, { "docid": "18489989", "text": "Embryonic stem (ES) cells homozygous for a Shp-2 mutation (Shp-2(Delta46-110)) demonstrate leukemia inhibitory factor (LIF) hypersensitivity and increased LIF-stimulated phosphorylation of signal transducer and activator of transcription (STAT3). We hypothesized that LIF-responsive genes in Shp-2(Delta46-110) cells would represent potential candidates for molecules vital for ES cell self-renewal. Using microarray analysis, we detected 41 genes whose expression was modified by LIF in Shp-2(Delta46-110) ES cells. Induction of 2 significantly up-regulated genes, suppressor of cytokine signaling-3 (SOCS-3) and Kruppel-like factor 4 (Klf4), was verified using Northern blotting. ES cells overexpressing SOCS-3 had an increased capacity to differentiate to hematopoietic progenitors, rather than to self-renew. In contrast, ES cells overexpressing Klf4 had a greater capacity to self-renew based on secondary embryoid body (EB) formation. Klf4-transduced d6 EBs expressed higher levels of Oct-4, consistent with the notion that Klf4 promotes ES cell self-renewal. These findings verify the negative role of SOCS-3 on LIF signaling and provide a novel role for Klf4 in ES cell function.", "title": "Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4." }, { "docid": "4380004", "text": "The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin+ MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent ‘mesenspheres’ that can self-renew and expand in serial transplantations. Nestin+ MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or β3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin+ cells and favours their osteoblastic differentiation, in vivo nestin+ cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin+ MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin+ cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.", "title": "Mesenchymal and haematopoietic stem cells form a unique bone marrow niche" }, { "docid": "13116880", "text": "The mammalian blood system, containing more than 10 distinct mature cell types, stands on one specific cell type, hematopoietic stem cell (HSC). Within the system, only HSCs possess the ability of both multipotency and self-renewal. Multipotency is the ability to differentiate into all functional blood cells. Self-renewal is the ability to give rise to HSC itself without differentiation. Since mature blood cells (MBCs) are predominantly short-lived, HSCs continuously provide more differentiated progenitors while properly maintaining the HSC pool size throughout life by precisely balancing self-renewal and differentiation. Thus, understanding the mechanisms of self-renewal and differentiation of HSC has been a central issue. In this review, we focus on the hierarchical structure of the hematopoietic system, the current understanding of microenvironment and molecular cues regulating self-renewal and differentiation of adult HSCs, and the currently emerging systems approaches to understand HSC biology.", "title": "Hematopoietic stem cell: self-renewal versus differentiation." }, { "docid": "25985964", "text": "Very small embryonic-like stem cells (VSELs) are possibly lost during cord blood banking and bone marrow (BM) processing for autologus stem cell therapy mainly because of their small size. The present study was conducted on human umbilical cord blood (UCB, n=6) and discarded red blood cells (RBC) fraction obtained after separation of mononuclear cells from human BM (n=6), to test this hypothesis. The results show that VSELs, which are pluripotent stem cells with maximum regenerative potential, settle along with the RBCs during Ficoll-Hypaque density separation. These cells are very small in size (3-5 μm), have high nucleo-cytoplasmic ratio, and express nuclear Oct-4, cell surface protein SSEA-4, and other pluripotent markers such as Nanog, Sox-2, Rex-1, and Tert as indicated by immunolocalization and quantitative polymerase chain reaction (Q-PCR) studies. Interestingly, a distinct population of slightly larger, round hematopoietic stem cells (HSCs) with cytoplasmic Oct-4 were detected in the \"buffy\" coat, which usually gets banked or used during autologus stem cell therapy. Immunohistochemical studies on the umbilical cord tissue (UCT) sections (n=3) showed the presence of nuclear Oct-4-positive VSELs and many fibroblast-like mesenchymal stem cells (MSCs) with cytoplasmic Oct-4. These VSELs with nuclear Oct-4, detected in UCB, UCT, and discarded RBC fraction obtained after BM processing, may persist throughout life, maintain tissue homeostasis, and undergo asymmetric cell division to self-renew as well as produce larger progenitor stem cells, viz. HSCs or MSCs, which follow differentiation trajectories depending on the somatic niche. Hence, it can be concluded that the true stem cells in adult body tissues are the VSELs, whereas the HSCs and MSCs are actually progenitor stem cells that arise by asymmetric cell division of VSELs. The results of the present study may help explain low efficacy reported during adult autologous stem cell trials, wherein unknowingly progenitor stem cells are injected rather than the pluripotent stem cells with maximum regenerative potential.", "title": "Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy." }, { "docid": "10526279", "text": "Androgens are widely used for treating Fanconi anemia (FA) and other human bone marrow failure syndromes, but their mode of action remains incompletely understood. Aged Fancd2(-/-) mice were used to assess the therapeutic efficacy of oxymetholone (OXM) and its mechanism of action. Eighteen-month-old Fancd2(-/-) mice recapitulated key human FA phenotypes, including reduced bone marrow cellularity, red cell macrocytosis, and peripheral pancytopenia. As in humans, chronic OXM treatment significantly improved these hematological parameters and stimulated the proliferation of hematopoietic stem and progenitor cells. RNA-Seq analysis implicated downregulation of osteopontin as an important potential mechanism for the drug's action. Consistent with the increased stem cell proliferation, competitive repopulation assays demonstrated that chronic OXM therapy eventually resulted in stem cell exhaustion. These results expand our knowledge of the regulation of hematopoietic stem cell proliferation and have direct clinical implications for the treatment of bone marrow failure.", "title": "Oxymetholone Therapy of Fanconi Anemia Suppresses Osteopontin Transcription and Induces Hematopoietic Stem Cell Cycling" }, { "docid": "7583161", "text": "In semisyngeneic heterotopic bone marrow transplants the donor or recipient origin of cells of osteogenic and hematopoietic tissues was identified by chromosome markers (T6) and by reverse transplantation into the initial donor line. In syngeneic and semisyngeneic grafts of bone marrow under the renal capsule bone and bone marrow are formed. In allogeneic grafts only bone is formed; this bone is subsequently resorbed. In 14-month semisyngeneic transplants the bone marrow consists of recipient cells. This is true for both the proliferating pool and the stem cells of hematopoietic tissue. At the same time, osteogenic precursor cells and bone tissue in these transplants are of donor origin. A discussion is presented of the interrelationship between determinated osteogenic precursor cells (preosteoblasts) and hematopoietic stem cells (or their descendants) in which osteogenesis is inducible.", "title": "Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues." }, { "docid": "16627684", "text": "Stem cells persist throughout life in diverse tissues by undergoing self-renewing divisions. Self-renewal capacity declines with age, partly because of increasing expression of the tumor suppressor p16(Ink4a). We discovered that the Hmga2 transcriptional regulator is highly expressed in fetal neural stem cells but that expression declines with age. This decrease is partly caused by the increasing expression of let-7b microRNA, which is known to target HMGA2. Hmga2-deficient mice show reduced stem cell numbers and self-renewal throughout the central and peripheral nervous systems of fetal and young-adult mice but not old-adult mice. Furthermore, p16(Ink4a) and p19(Arf) expression were increased in Hmga2-deficient fetal and young-adult stem cells, and deletion of p16(Ink4a) and/or p19(Arf) partially restored self-renewal capacity. let-7b overexpression reduced Hmga2 and increased p16(Ink4a)/p19(Arf) expression. Hmga2 thus promotes fetal and young-adult stem cell self-renewal by decreasing p16(Ink4a)/p19(Arf) expression. Changes in let-7 and Hmga2 expression during aging contribute to the decline in neural stem cell function.", "title": "Hmga2 Promotes Neural Stem Cell Self-Renewal in Young but Not Old Mice by Reducing p16Ink4a and p19Arf Expression" }, { "docid": "39851630", "text": "Defective hematopoiesis supporting capacity of bone marrow (BM) stroma has been implicated in the pathophysiology of myelodysplastic syndromes (MDS). The aim of this study is to explore whether the BM stroma progenitors, namely the mesenchymal stem cells (MSCs), are primarily affected in MDS by evaluating the reserves, the functional properties, as well as the cytogenetic characteristics, in comparison to BM hematopoietic cells, in patients with de novo MDS (n = 13). The number, differentiation potential toward adipocytes/chondrocytes/osteoblasts and immunosuppressive function in terms of inhibition of mitogen-induced T-cell proliferation did not differ significantly between patient and normal (n = 20) MSCs. Patient MSCs did not show any aberrations in the production of proinflammatory or growth-promoting cytokines and did not harbor the cytogenetic abnormalities present in hematopoietic cells. Occasional patient and normal MSC cultures, however, developed irrelevant chromosomal alterations (trisomies 5 and 7) with uncertain pathophysiologic significance. Compared to controls, patient MSCs displayed impaired proliferative and clonogenic potential through passages that might represent a nonspecific abnormality associated with the chronic inflammatory process present in patients' BM. These data suggest that BM MSCs from MDS patients do not belong to the abnormal clone and do not represent the main cellular source contributing to the inflammatory marrow microenvironment.", "title": "Reserves, functional, immunoregulatory, and cytogenetic properties of bone marrow mesenchymal stem cells in patients with myelodysplastic syndromes." }, { "docid": "40234452", "text": "Mouse long-term hematopoietic reconstituting cells exist in the c-Kit+Sca-1+Lin- (KSL) cell population; among them, CD34(low/-) cells represent the most highly purified population of hematopoietic stem cells in the adult bone marrow. Here, we demonstrate that retrovirus-mediated transduction of CD34(low/-)c-Kit+Sca-1+Lin- (34-KSL) cells with the HES-1 gene, which encodes a basic helix-loop-helix transcription factor functioning downstream of the Notch receptor, and is a key molecule for the growth phase of neural stem cells in the embryo, preserves the long-term reconstituting activity of these cells in vitro. We also show that cells derived from the HES-1-transduced 34-KSL population produce progenies characterized by negative Hoechst dye staining, which defines the side population, and by CD34(low/-) profile in the bone marrow KSL population in each recipient mouse at ratios 3.5- and 7.8-fold those produced by nontransduced 34-KSL-derived competitor cells. We conclude that HES-1 preserves the long-term reconstituting hematopoietic activity of 34-KSL stem cells ex vivo. Up-regulation of HES-1 protein in the 34-KSL population before unnecessary cell division, that is, without retrovirus transduction, may represent a potent approach to absolute expansion of hematopoietic stem cells.", "title": "HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo." }, { "docid": "9911547", "text": "The physiologic roles of angiopoietin-like proteins (Angptls) in the hematopoietic system remain unknown. Here we show that hematopoietic stem cells (HSCs) in Angptl3-null mice are decreased in number and quiescence. HSCs transplanted into Angptl3-null recipient mice exhibited impaired repopulation. Bone marrow sinusoidal endothelial cells express high levels of Angptl3 and are adjacent to HSCs. Importantly, bone marrow stromal cells or endothelium deficient in Angptl3 have a significantly decreased ability to support the expansion of repopulating HSCs. Angptl3 represses the expression of the transcription factor Ikaros, whose unregulated overexpression diminishes the repopulation activity of HSCs. Angptl3, as an extrinsic factor, thus supports the stemness of HSCs in the bone marrow niche.", "title": "Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche." }, { "docid": "15728433", "text": "Autophagy is a constitutive lysosomal catabolic pathway that degrades damaged organelles and protein aggregates. Stem cells are characterized by self-renewal, pluripotency, and quiescence; their long life span, limited capacity to dilute cellular waste and spent organelles due to quiescence, along with their requirement for remodeling in order to differentiate, all suggest that they require autophagy more than other cell types. Here, we review the current literature on the role of autophagy in embryonic and adult stem cells, including hematopoietic, mesenchymal, and neuronal stem cells, highlighting the diverse and contrasting roles autophagy plays in their biology. Furthermore, we review the few studies on stem cells, lysosomal activity, and autophagy. Novel techniques to detect autophagy in primary cells are required to study autophagy in different stem cell types. These will help to elucidate the importance of autophagy in stem cells during transplantation, a promising therapeutic approach for many diseases.", "title": "Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging" }, { "docid": "20186814", "text": "Muscle satellite cells have long been considered a distinct myogenic lineage responsible for postnatal growth, repair, and maintenance of skeletal muscle. Recent studies in mice, however, have revealed the potential for highly purified hematopoietic stem cells from bone marrow to participate in muscle regeneration. Perhaps more significantly, a population of putative stem cells isolated directly from skeletal muscle efficiently reconstitutes the hematopoietic compartment and participates in muscle regeneration following intravenous injection in mice. The plasticity of muscle stem cells has raised important questions regarding the relationship between the muscle-derived stem cells and the skeletal muscle satellite cells. Furthermore, the ability of hematopoietic cells to undergo myogenesis has prompted new investigations into the embryonic origin of satellite cells. Recent developmental studies suggest that a population of satellite cells is derived from progenitors in the embryonic vasculature. Taken together, these studies provide the first evidence that pluripotential stem cells are present within adult skeletal muscle. Tissue-specific stem cells, including satellite cells, may share a common embryonic origin and possess the capacity to activate diverse genetic programs in response to environmental stimuli. Manipulation of such tissue-specific stem cells may eventually revolutionize therapies for degenerative diseases, including muscular dystrophy.", "title": "A new look at the origin, function, and \"stem-cell\" status of muscle satellite cells." }, { "docid": "13509809", "text": "The bone marrow (BM) niche comprises multiple cell types that regulate hematopoietic stem/progenitor cell (HSPC) migration out of the niche and into the circulation. Here, we demonstrate that osteocytes, the major cellular component of mature bone, are regulators of HSPC egress. Granulocyte colony-stimulating factor (G-CSF), used clinically to mobilize HSPCs, induces changes in the morphology and gene expression of the osteocytic network that precedes changes in osteoblasts. This rapid response is likely under control of the sympathetic nervous system, since osteocytes express the β2-adrenergic receptor and surgical sympathectomy prevents it. Mice with targeted ablation of osteocytes or a disrupted osteocyte network have comparable numbers of HSPCs in the BM but fail to mobilize HSPCs in response to G-CSF. Taken together, these results indicate that the BM/bone niche interface is critically controlled from inside of the bone matrix and establish an important physiological role for skeletal tissues in hematopoietic function.", "title": "Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells." }, { "docid": "17271462", "text": "The quiescent state is thought to be an indispensable property for the maintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with their particular microenvironments, known as the stem cell niches, is critical for adult hematopoiesis in the bone marrow (BM). Here, we demonstrate that HSCs expressing the receptor tyrosine kinase Tie2 are quiescent and antiapoptotic, and comprise a side-population (SP) of HSCs, which adhere to osteoblasts (OBs) in the BM niche. The interaction of Tie2 with its ligand Angiopoietin-1 (Ang-1) induced cobblestone formation of HSCs in vitro and maintained in vivo long-term repopulating activity of HSCs. Furthermore, Ang-1 enhanced the ability of HSCs to become quiescent and induced adhesion to bone, resulting in protection of the HSC compartment from myelosuppressive stress. These data suggest that the Tie2/Ang-1 signaling pathway plays a critical role in the maintenance of HSCs in a quiescent state in the BM niche.", "title": "Tie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche" }, { "docid": "18909530", "text": "Self-renewal and differentiation of stem cells depend on asymmetric division and polarized motility processes that in other cell types are modulated by nonmuscle myosin-II (MII) forces and matrix mechanics. Here, mass spectrometry-calibrated intracellular flow cytometry of human hematopoiesis reveals MIIB to be a major isoform that is strongly polarized in hematopoietic stem cells and progenitors (HSC/Ps) and thereby downregulated in differentiated cells via asymmetric division. MIIA is constitutive and activated by dephosphorylation during cytokine-triggered differentiation of cells grown on stiff, endosteum-like matrix, but not soft, marrow-like matrix. In vivo, MIIB is required for generation of blood, while MIIA is required for sustained HSC/P engraftment. Reversible inhibition of both isoforms in culture with blebbistatin enriches for long-term hematopoietic multilineage reconstituting cells by 5-fold or more as assessed in vivo. Megakaryocytes also become more polyploid, producing 4-fold more platelets. MII is thus a multifunctional node in polarized division and niche sensing.", "title": "Contractile forces sustain and polarize hematopoiesis from stem and progenitor cells." }, { "docid": "2853291", "text": "Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. In this study, we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin(-) MSCs participate in fetal skeletogenesis and lose MSC activity soon after birth. In contrast, quiescent neural crest-derived nestin(+) cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP(+) Pdgfrα(-) cell population also contains Schwann cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation.", "title": "The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function" }, { "docid": "16361581", "text": "Notch receptors expressed on hematopoietic stem cells interact with their ligands on bone marrow stromal cells and thereby control cell fate decisions and survival. We recently demonstrated that Notch signaling is involved in proliferation and survival of B cell-derived tumor cells of classic Hodgkin disease and described a novel mechanism for the oncogenic capacity of Notch. In this study we investigated whether Notch signaling is involved in the tight interactions between neoplastic plasma cells and their bone marrow microenvironment, which are essential for tumor cell growth in multiple myeloma (MM). Here we demonstrate that Notch receptors and their ligand Jagged1 are highly expressed in cultured and primary MM cells, whereas nonneoplastic counterparts show low to undetectable levels of Notch. Functional data indicate that ligand-induced Notch signaling is a growth factor for MM cells and suggest that these interactions contribute to myelomagenesis in vivo.", "title": "Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells." }, { "docid": "33677323", "text": "MicroRNAs are frequently deregulated in cancer. Here we show that miR-22 is upregulated in myelodysplastic syndrome (MDS) and leukemia and its aberrant expression correlates with poor survival. To explore its role in hematopoietic stem cell function and malignancy, we generated transgenic mice conditionally expressing miR-22 in the hematopoietic compartment. These mice displayed reduced levels of global 5-hydroxymethylcytosine (5-hmC) and increased hematopoietic stem cell self-renewal accompanied by defective differentiation. Conversely, miR-22 inhibition blocked proliferation in both mouse and human leukemic cells. Over time, miR-22 transgenic mice developed MDS and hematological malignancies. We also identify TET2 as a key target of miR-22 in this context. Ectopic expression of TET2 suppressed the miR-22-induced phenotypes. Downregulation of TET2 protein also correlated with poor clinical outcomes and miR-22 overexpression in MDS patients. Our results therefore identify miR-22 as a potent proto-oncogene and suggest that aberrations in the miR-22/TET2 regulatory network are common in hematopoietic malignancies.", "title": "The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation." } ]
447
Gastric infection with Helicobacter pylori decreases risk of gastric cancer in humans.
[ { "docid": "2052720", "text": "OBJECTIVE To investigate the association between gastric cancer and prior infection with Helicobacter pylori. \n DESIGN Case-control comparison of prevalence of IgG antibodies to H pylori in blood samples collected prospectively, before diagnosis of gastric cancer in the cases. Presence of H pylori antibody (greater than 10 micrograms IgG/ml) determined by enzyme linked immunosorbent assay (ELISA). SUBJECTS 29 men with a subsequent diagnosis of gastric cancer and 116 aged matched controls selected from over 22,000 middle aged men participating in two ongoing cohort studies (the British United Provident Association study and the Caerphilly collaborative heart disease study), who had provided blood samples during 1975-1982. \n RESULTS 20 of the 29 cases (69%) and 54 of the 116 controls (47%) were positive for H pylori specific antibody. The median specific IgG concentration was significantly higher in the cases than controls (90 micrograms/ml v 3.6 micrograms/ml, p less than 0.01). The estimated odds ratio for the risk of gastric cancer in those with a history of infection with H pylori was 2.77 (95% confidence interval 1.04 to 7.97, 2p = 0.039). \n CONCLUSIONS H pylori infection may be an important cause of gastric cancer; between 35% and 55% of all cases may be associated with such an infection.", "title": "Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation." } ]
[ { "docid": "24705390", "text": "BACKGROUND & AIMS Helicobacter pylori is an important etiologic factor in the development of gastric cancer. The aim of this study was to analyze the role of H. pylori infections in the induction of mutagenic events in gastric epithelial cells. The effect of a high-salt diet as a genotoxic risk factor was also investigated. \n METHODS Big Blue transgenic male mice (C57Bl/6) were inoculated with H. pylori (strain SS1) or Helicobacter felis (strain CS1) for 6 and 12 months. The frequency and spectrum of mutations at the stomach level were assessed. Inflammatory host response and inducible nitric oxide synthase (iNOS) expression by reverse-transcription polymerase chain reaction and immunohistochemistry analysis were also performed. \n RESULTS After 6 months, the gastric mutant frequency was 4-fold and 1.7-fold higher in mice infected with H. pylori and H. felis, respectively, than in uninfected mice. It was associated with a high frequency of transversions (AT --> CG and GC --> TA) known to result from oxidative damages. The Helicobacter-infected mice exhibited severe gastritis and a high level of iNOS messenger RNA expression. Hyperplasia developed 12 months after inoculation, and both the mutagenic effects and iNOS expression decreased in H. pylori- and H. felis-infected mice. No synergistic effects of a high-salt diet and Helicobacter infection were observed regarding the frequency of gastric mutation. \n CONCLUSIONS A direct gastric mutagenic effect due to H. pylori infection in the Big Blue transgenic mouse model has been shown 6 months after inoculation. This genotoxicity can be attributable to oxidative DNA damage involving the inflammatory host response.", "title": "Chronic Helicobacter pylori infections induce gastric mutations in mice." }, { "docid": "22703082", "text": "Infection with Helicobacter pylori (H. pylori) is a risk factor for the development of gastric cancer. Here we show that infection of gastric epithelial cells with 'cag' pathogenicity island (cagPAI)-positive H. pylori induced aberrant expression of activation-induced cytidine deaminase (AID), a member of the cytidine-deaminase family that acts as a DNA- and RNA-editing enzyme, via the IκB kinase–dependent nuclear factor-κB activation pathway. H. pylori–mediated upregulation of AID resulted in the accumulation of nucleotide alterations in the TP53 tumor suppressor gene in gastric cells in vitro. Our findings provide evidence that aberrant AID expression caused by H. pylori infection might be a mechanism of mutation accumulation in the gastric mucosa during H. pylori–associated gastric carcinogenesis.", "title": "Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium" }, { "docid": "26488879", "text": "Helicobacter pylori persistently colonizes humans, causing gastritis, ulcers, and gastric cancer. Adherence to the gastric epithelium has been shown to enhance inflammation, yet only a few H. pylori adhesins have been paired with targets in host tissue. The alpAB locus has been reported to encode adhesins involved in adherence to human gastric tissue. We report that abrogation of H. pylori AlpA and AlpB reduces binding of H. pylori to laminin while expression of plasmid-borne alpA or alpB confers laminin-binding ability to Escherichia coli. An H. pylori strain lacking only AlpB is also deficient in laminin binding. Thus, we conclude that both AlpA and AlpB contribute to H. pylori laminin binding. Contrary to expectations, the H. pylori SS1 mutant deficient in AlpA and AlpB causes more severe inflammation than the isogenic wild-type strain in gerbils. Identification of laminin as the target of AlpA and AlpB will facilitate future investigations of host-pathogen interactions occurring during H. pylori infection.", "title": "Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils." }, { "docid": "39550665", "text": "BACKGROUND & AIMS Chronic infection with the bacterial pathogen Helicobacter pylori causes gastric disorders, ranging from chronic gastritis to gastric adenocarcinoma. Only a subset of infected persons will develop overt disease; most remains asymptomatic despite lifelong colonization. This study aims to elucidate the differential susceptibility to H pylori that is found both across and within populations. \n METHODS We have established a C57BL/6 mouse model of H pylori infection with a strain that is capable of delivering the virulence factor cytotoxin-associated gene A (CagA) into host cells through the activity of a Cag-pathogenicity island-encoded type IV secretion system. \n RESULTS Mice infected at 5-6 weeks of age with CagA(+)H pylori rapidly develop gastritis, gastric atrophy, epithelial hyperplasia, and metaplasia in a type IV secretion system-dependent manner. In contrast, mice infected during the neonatal period with the same strain are protected from preneoplastic lesions. Their protection results from the development of H pylori-specific peripheral immunologic tolerance, which requires transforming growth factor-β signaling and is mediated by long-lived, inducible regulatory T cells, and which controls the local CD4(+) T-cell responses that trigger premalignant transformation. Tolerance to H pylori develops in the neonatal period because of a biased ratio of T-regulatory to T-effector cells and is favored by prolonged low-dose exposure to antigen. \n CONCLUSIONS Using a novel CagA(+)H pylori infection model, we report here that the development of tolerance to H pylori protects from gastric cancer precursor lesions. The age at initial infection may thus account for the differential susceptibility of infected persons to H pylori-associated disease manifestations.", "title": "Tolerance rather than immunity protects from Helicobacter pylori-induced gastric preneoplasia." }, { "docid": "29367554", "text": "BACKGROUND & AIMS Although the p53 tumor suppressor has been extensively studied, many critical questions remain unanswered about the biological functions of p53 homologs, p73 and p63. Accumulating evidence suggests that both p73 and p63 play important roles in regulation of apoptosis, cell differentiation, and therapeutic drug sensitivity. \n METHODS Gastric epithelial cells were cocultured with Helicobacter pylori, and the roles of p63 and p73 proteins were assessed by luciferase reporter, real-time polymerase chain reaction, immunoblotting, and cell survival assays. Short hairpin RNA and dominant-negative mutants were used to inhibit activity of p73 and p63 isoforms. Human and murine gastric tissues were analyzed by immunohistochemistry with p73 and p63 antibodies and modified Steiner's silver method. \n RESULTS Interaction of H pylori with gastric epithelial cells leads to robust up-regulation of p73 protein in vitro and in vivo in human gastritis specimens and H pylori-infected mice. The p73 increase resulted in up-regulation of pro-apoptotic genes, NOXA, PUMA, and FAS receptor in gastric epithelial cells. Down-regulation of p73 activity suppressed cell death and Fas receptor induced by H pylori. Bacterial virulence factors within the cag pathogenicity island, c-Abl tyrosine kinase, and interaction with p63 isoforms control the activity of p73. \n CONCLUSION Our findings implicate p73 in H pylori-induced apoptosis and more generally suggest that the p53 family may play a role in the epithelial cell response to H pylori infection.", "title": "Interaction of Helicobacter pylori with gastric epithelial cells is mediated by the p53 protein family." }, { "docid": "7465900", "text": "BACKGROUND & AIMS Helicobacter pylori-induced gastric epithelial cell (GEC) apoptosis is a complex process that includes activation of the tumor suppressor p53. p53-mediated apoptosis involves p53 activation, bax transcription, and cytochrome c release from mitochondria. Apurinic/apyrimidinic endonuclease-1 (APE-1) regulates transcriptional activity of p53, and H pylori induce APE-1 expression in human GECs. H pylori infection increases intracellular calcium ion concentration [Ca2+]i of GECs, which induces APE-1 acetylation. We investigated the effects of H pylori infection and APE-1 acetylation on GEC apoptosis. \n METHODS AGS cells (wild-type or with suppressed APE-1), KATO III cells, and cells isolated from gastric biopsy specimens were infected with H pylori. Effects were examined by immunoblotting, real-time reverse-transcription polymerase chain reaction, immunoprecipitation, immunofluorescence microscopy, chromatin immunoprecipitation, mobility shift, DNA binding, and luciferase assays. \n RESULTS H pylori infection increased [Ca2+]i and acetylation of APE-1 in GECs, but the acetylation status of APE-1 did not affect the transcriptional activity of p53. In GECs, expression of a form of APE-1 that could not be acetylated increased total and mitochondrial levels of Bax and induced release of cytochrome c and fragmentation of DNA; expression of wild-type APE-1 reduced these apoptotic events. We identified a negative calcium response element in the human bax promoter and found that poly (adenosine diphosphate-ribose) polymerase 1 recruited the acetylated APE-1/histone deacetylase-1 repressor complex to bax nCaRE. \n CONCLUSIONS H pylori-mediated acetylation of APE-1 suppresses Bax expression; this prevents p53-mediated apoptosis when H pylori infect GECs.", "title": "Acetylation of apurinic/apyrimidinic endonuclease-1 regulates Helicobacter pylori-mediated gastric epithelial cell apoptosis." }, { "docid": "8654183", "text": "BACKGROUND AND AIMS Previous in vitro and in vivo studies have revealed an association between Helicobacter pylori infection and apoptosis in gastric epithelial cells. Although involvement of the Bcl-2 family of proteins as well as cytochrome c release has been demonstrated in H pylori induced cell death, the exact role of the mitochondria during this type of programmed cell death has not been fully elucidated. Therefore, we sought to determine whether or not Bax translocation and mitochondrial fragmentation occur on exposure of gastric epithelial cells to H pylori, resulting in cell death. \n METHODS Experiments were performed with human gastric adenocarcinoma (AGS) cells, AGS cells transfected with the HPV-E6 gene (which inactivates p53 function), AGS-neo cells (transfected with the backbone construct), mouse embryonic fibroblasts (MEFs), and p19(ARF) null (ARF(-/-)) MEFs. Cells were incubated with a cag positive H pylori strain for up to 24 hours, lysed, and cytoplasmic and mitochondrial membrane fractions were analysed by western blot for Bax translocation. \n RESULTS Bax translocation was detected in AGS, AGS-neo, and normal MEF cells after exposure to H pylori for three hours, but not in ARF(-/-) MEFs cells. Translocation of Bax after H pylori incubation was also detected in AGS-E6 cells (inactive p53 gene) but to a lesser degree than in AGS-neo cells. In parallel studies, the mitochondrial morphology of living cells infected with H pylori was assessed by confocal microscopy. Mitochondrial fragmentation was detectable after 10 hours of H pylori incubation with AGS cells and after seven hours with MEF cells. In wild-type MEFs, mitochondrial fragmentation was significantly increased in comparison with ARF null MEFs (43% v 10.4%, respectively). Furthermore, mitochondrial depolarisation and caspase-3 activity were initiated within four hours in cells incubated with H pylori, and these events were inhibited by forced expression of Bcl-2. \n CONCLUSIONS These data suggest that during H pylori induced apoptosis, Bax translocates to the mitochondria which subsequently undergo depolarisation and profound fragmentation. Functional ARF and p53 proteins may play an important role in H pylori induced mitochondrial modification.", "title": "Bax translocation and mitochondrial fragmentation induced by Helicobacter pylori." }, { "docid": "4387784", "text": "Half the world's population is chronically infected with Helicobacter pylori, causing gastritis, gastric ulcers and an increased incidence of gastric adenocarcinoma. Its proton-gated inner-membrane urea channel, HpUreI, is essential for survival in the acidic environment of the stomach. The channel is closed at neutral pH and opens at acidic pH to allow the rapid access of urea to cytoplasmic urease. Urease produces NH(3) and CO(2), neutralizing entering protons and thus buffering the periplasm to a pH of roughly 6.1 even in gastric juice at a pH below 2.0. Here we report the structure of HpUreI, revealing six protomers assembled in a hexameric ring surrounding a central bilayer plug of ordered lipids. Each protomer encloses a channel formed by a twisted bundle of six transmembrane helices. The bundle defines a previously unobserved fold comprising a two-helix hairpin motif repeated three times around the central axis of the channel, without the inverted repeat of mammalian-type urea transporters. Both the channel and the protomer interface contain residues conserved in the AmiS/UreI superfamily, suggesting the preservation of channel architecture and oligomeric state in this superfamily. Predominantly aromatic or aliphatic side chains line the entire channel and define two consecutive constriction sites in the middle of the channel. Mutation of Trp 153 in the cytoplasmic constriction site to Ala or Phe decreases the selectivity for urea in comparison with thiourea, suggesting that solute interaction with Trp 153 contributes specificity. The previously unobserved hexameric channel structure described here provides a new model for the permeation of urea and other small amide solutes in prokaryotes and archaea.", "title": "Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori" }, { "docid": "17464771", "text": "Carriage of Helicobacter pylori strains producing more active (s1/i1) forms of VacA is strongly associated with gastric adenocarcinoma. To our knowledge, we are the first to determine effects of different polymorphic forms of VacA on inflammation and metaplasia in the mouse stomach. Bacteria producing the less active s2/i2 form of VacA colonized mice more efficiently than mutants null for VacA or producing more active forms of it, providing the first evidence of a positive role for the minimally active s2/i2 toxin. Strains producing more active toxin forms induced more severe and extensive metaplasia and inflammation in the mouse stomach than strains producing weakly active (s2/i2) toxin. We also examined the association in humans, controlling for cagPAI status. In human gastric biopsy specimens, the vacA i1 allele was strongly associated with precancerous intestinal metaplasia, with almost complete absence of intestinal metaplasia in subjects infected with i2-type strains, even in a vacA s1, cagA(+) background.", "title": "A Role for the Vacuolating Cytotoxin, VacA, in Colonization and Helicobacter pylori–Induced Metaplasia in the Stomach" }, { "docid": "14729253", "text": "BACKGROUND Data on genetic susceptibility to sporadic gastric carcinoma have been published at a growing pace, but to date no comprehensive overview and quantitative summary has been available. \n METHODS We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing stomach cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Meta-analysis was also conducted for subgroups, which were defined by ethnicity (Asian vs Caucasian), tumour histology (intestinal vs diffuse), tumour site (cardia vs non-cardia) and Helicobacter pylori infection status (positive vs negative). \n RESULTS Literature search identified 824 eligible studies comprising 2 530 706 subjects (cases: 261 386 (10.3%)) and investigating 2841 polymorphisms involving 952 distinct genes. Overall, we performed 456 primary and subgroup meta-analyses on 156 variants involving 101 genes. We identified 11 variants significantly associated with disease risk and assessed to have a high level of summary evidence: MUC1 rs2070803 at 1q22 (diffuse carcinoma subgroup), MTX1 rs2075570 at 1q22 (diffuse), PSCA rs2294008 at 8q24.2 (non-cardia), PRKAA1 rs13361707 5p13 (non-cardia), PLCE1 rs2274223 10q23 (cardia), TGFBR2 rs3087465 3p22 (Asian), PKLR rs3762272 1q22 (diffuse), PSCA rs2976392 (intestinal), GSTP1 rs1695 11q13 (Asian), CASP8 rs3834129 2q33 (mixed) and TNF rs1799724 6p21.3 (mixed), with the first nine variants characterised by a low FPRP. We also identified polymorphisms with lower quality significant associations (n=110). \n CONCLUSIONS We have identified several high-quality biomarkers of gastric cancer susceptibility. These data will form the backbone of an annually updated online resource that will be integral to the study of gastric carcinoma genetics and may inform future screening programmes.", "title": "Genetic variation and gastric cancer risk: a field synopsis and meta-analysis." }, { "docid": "20330519", "text": "Helicobacter pylori infection causes gastric pathology such as ulcer and carcinoma. Because H. pylori is auxotrophic for cholesterol, we have explored the assimilation of cholesterol by H. pylori in infection. Here we show that H. pylori follows a cholesterol gradient and extracts the lipid from plasma membranes of epithelial cells for subsequent glucosylation. Excessive cholesterol promotes phagocytosis of H. pylori by antigen-presenting cells, such as macrophages and dendritic cells, and enhances antigen-specific T cell responses. A cholesterol-rich diet during bacterial challenge leads to T cell–dependent reduction of the H. pylori burden in the stomach. Intrinsic α-glucosylation of cholesterol abrogates phagocytosis of H. pylori and subsequent T cell activation. We identify the gene hp0421 as encoding the enzyme cholesterol-α-glucosyltransferase responsible for cholesterol glucosylation. Generation of knockout mutants lacking hp0421 corroborates the importance of cholesteryl glucosides for escaping phagocytosis, T cell activation and bacterial clearance in vivo. Thus, we propose a mechanism regulating the host–pathogen interaction whereby glucosylation of a lipid tips the scales towards immune evasion or response.", "title": "Cholesterol glucosylation promotes immune evasion by Helicobacter pylori" }, { "docid": "34258065", "text": "Helicobacter infection is a chronic persistent condition which is responsible for the majority of cases of gastric and duodenal ulcers, and gastric cancer. The study of the bacteria, the interaction of the bacteria with the host, and the host immune response has greatly benefited from standardization of culture techniques and animal models. The following chapters will describe the clinical aspects of infection and touch on the important techniques for optimal investigation of this infection.", "title": "Helicobacter species methods and protocols. Introduction." }, { "docid": "2099400", "text": "Helicobacter pylori induces motogenic and cytoskeletal responses in gastric epithelial cells. We demonstrate that these responses can be induced via independent signaling pathways that often occur in parallel. The cag pathogenicity island appears to be nonessential for induction of motility, whereas the elongation phenotype depends on translocation and phosphorylation of CagA.", "title": "Helicobacter pylori induces AGS cell motility and elongation via independent signaling pathways." }, { "docid": "2837758", "text": "Epitope vaccine is a promising option for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. In this study, we constructed a multi-epitope vaccine with five epitopes and mucosal adjuvant E. coli heat-labile enterotoxin B subunit (LTB) named HUepi-LTB and evaluated its therapeutic effect against H. pylori infection in BALB/c mice model. HUepi-LTB containing three Th epitopes from UreB and two B cell epitopes from UreB and HpaA was constructed and expressed in E. coli. Oral therapeutic immunization with HUepi-LTB significantly decreased H. pylori colonization compared with oral immunization with PBS, and the protection was correlated with antigen-specific CD4+ T cells and IgG and mucosal IgA antibody responses. This multi-epitope vaccine may be a promising vaccine candidate that may help to control H. pylori infection.", "title": "Therapeutic efficacy of a multi-epitope vaccine against Helicobacter pylori infection in BALB/c mice model." }, { "docid": "13965483", "text": "Epitope vaccine based on the enzyme urease of Helicobacter pylori is a promising option for prophylactic and therapeutic vaccination against H. pylori infection. In our previous study, the epitope vaccine CTB-UA, which was composed of the mucosal adjuvant cholera toxin B subunit (CTB) and an epitope (UreA183–203) from the H. pylori urease A subunit (UreA) was constructed. This particular vaccine was shown to have good immunogenicity and immunoreactivity and could induce specific neutralizing antibodies, which exhibited effectively inhibitory effects on the enzymatic activity of H. pylori urease. In this study, the prophylactic and therapeutic efficacy of the epitope vaccine CTB-UA was evaluated in a BALB/c mice model. The experimental results indicated that oral prophylactic or therapeutic immunization with CTB-UA significantly decreased H. pylori colonization compared with oral immunization with PBS. The results also revealed that the protection was correlated with antigen-specific IgG, IgA, and mucosal secretory IgA antibody responses. CTB-UA may be a promising vaccine candidate for the control of H. pylori infection.", "title": "Prophylactic and therapeutic efficacy of the epitope vaccine CTB-UA against Helicobacter pylori infection in a BALB/c mice model" }, { "docid": "22049489", "text": "The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator in H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy.", "title": "The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1." }, { "docid": "2205779", "text": "MicroRNAs (miRNAs) play crucial roles during the occurrence and development of gastric cancer. Conventional serological tests for screening gastric cancer have limits on sensitivity and specificity. Several miRNAs in peripheral blood have been used as biomarkers of gastric cancer. However, most of these miRNAs are shared by several types of cancer. Thanks to the tissue specificity of gastric juice, here we examined the feasibility of using gastric juice miR-129-1/2, which are aberrantly expressed in gastric cancer, to screen gastric cancer. Total of 141 gastric juices samples from gastric cancer, gastric ulcer, atrophic gastritis, and minimal gastritis patients or subjects with normal mucosa were collected by gastroscopy. The gastric juice miR-129-1/2 levels were detected by quantitative reverse transcription-polymerase chain reaction. A receiver operating characteristic (ROC) curve was constructed for differentiating patients with gastric cancer from patients with benign gastric diseases. We showed that, compared with patients with benign gastric diseases, patients with gastric cancer had significantly lower levels of gastric juice miR-129-1-3p and miR-129-2-3p. The areas under ROC curve (AUC) were 0.639 and 0.651 for miR-129-1-3p and miR-129-2-3p, respectively. Using the parallel combination test, the AUC was up to 0.656. In summary, our results suggest that gastric juice miR-129-1-3p and miR-129-2-3p are potential biomarkers for the screening gastric cancer, and the detection of gastric juice miRNAs is a convenient non-invasion method for the diagnosis of gastric cancer.", "title": "Gastric juice miR-129 as a potential biomarker for screening gastric cancer" }, { "docid": "21414718", "text": "Trefoil factor family 1 (TFF1) is a member of the TFF-domain peptide family involved in epithelial restitution and cell motility. Recently, we screened Piezo1 as a candidate TFF1-binding protein. We aimed to confirm Piezo1 as a novel TFF1 binding protein and to assess the role of this interaction in mediating gastric cancer cell mobility. This interaction was confirmed by co-immunoprecipitation and co-localisation of TFF1 and Piezo1 in GES-1 cells. We used stable RNA interference to knockdown Piezo1 protein expression and restored the expression of TFF1 in the gastric cancer cell lines SGC-7901 and BGC-823. Cell motility was evaluated using invasion assay and migration assay in vitro. The expression levels of the integrin subunits β1, β5, α1 as well as the expression of β-catenin and E-cadherin were detected by Western blot. We demonstrate that TFF1, but not TFF2 or TFF3, bind to and co-localize with Piezo1 in the cytoplasm in vitro. TFF1 interacts with the C-terminal portion of the Piezo1 protein. Wound healing and trans-well assays demonstrated that the restored expression of TFF1 promoted cell mobility in gastric cancer cells, and this effect was attenuated by the knockdown of Piezo1. Western blots demonstrated the decreased expression of integrin β1 in Piezo1-knockdown cells. Our data demonstrate that Piezo1 is a novel TFF1 binding protein that is important for TFF1-mediated cell migration and suggest that this interaction may be a therapeutic target in the invasion and metastasis of gastric cancer.", "title": "Piezo1 Is as a Novel Trefoil Factor Family 1 Binding Protein that Promotes Gastric Cancer Cell Mobility In Vitro" }, { "docid": "52925737", "text": "BACKGROUND Exosomes are extracellular vesicles that mediate cellular communication in health and diseases. Neutrophils could be polarized to a pro-tumor phenotype by tumor. The function of tumor-derived exosomes in neutrophil regulation remains unclear. \n METHODS We investigated the effects of gastric cancer cell-derived exosomes (GC-Ex) on the pro-tumor activation of neutrophils and elucidated the underlying mechanisms. \n RESULTS GC-Ex prolonged neutrophil survival and induced expression of inflammatory factors in neutrophils. GC-Ex-activated neutrophils, in turn, promoted gastric cancer cell migration. GC-Ex transported high mobility group box-1 (HMGB1) that activated NF-κB pathway through interaction with TLR4, resulting in an increased autophagic response in neutrophils. Blocking HMGB1/TLR4 interaction, NF-κB pathway, and autophagy reversed GC-Ex-induced neutrophil activation. Silencing HMGB1 in gastric cancer cells confirmed HMGB1 as a key factor for GC-Ex-mediated neutrophil activation. Furthermore, HMGB1 expression was upregulated in gastric cancer tissues. Increased HMGB1 expression was associated with poor prognosis in patients with gastric cancer. Finally, gastric cancer tissue-derived exosomes acted similarly as exosomes derived from gastric cancer cell lines in neutrophil activation. \n CONCLUSION We demonstrate that gastric cancer cell-derived exosomes induce autophagy and pro-tumor activation of neutrophils via HMGB1/TLR4/NF-κB signaling, which provides new insights into mechanisms for neutrophil regulation in cancer and sheds lights on the multifaceted role of exosomes in reshaping tumor microenvironment.", "title": "Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration" } ]
448
Gastric infection with Helicobacter pylori increases risk of gastric cancer in humans.
[ { "docid": "2052720", "text": "OBJECTIVE To investigate the association between gastric cancer and prior infection with Helicobacter pylori. \n DESIGN Case-control comparison of prevalence of IgG antibodies to H pylori in blood samples collected prospectively, before diagnosis of gastric cancer in the cases. Presence of H pylori antibody (greater than 10 micrograms IgG/ml) determined by enzyme linked immunosorbent assay (ELISA). SUBJECTS 29 men with a subsequent diagnosis of gastric cancer and 116 aged matched controls selected from over 22,000 middle aged men participating in two ongoing cohort studies (the British United Provident Association study and the Caerphilly collaborative heart disease study), who had provided blood samples during 1975-1982. \n RESULTS 20 of the 29 cases (69%) and 54 of the 116 controls (47%) were positive for H pylori specific antibody. The median specific IgG concentration was significantly higher in the cases than controls (90 micrograms/ml v 3.6 micrograms/ml, p less than 0.01). The estimated odds ratio for the risk of gastric cancer in those with a history of infection with H pylori was 2.77 (95% confidence interval 1.04 to 7.97, 2p = 0.039). \n CONCLUSIONS H pylori infection may be an important cause of gastric cancer; between 35% and 55% of all cases may be associated with such an infection.", "title": "Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation." } ]
[ { "docid": "24705390", "text": "BACKGROUND & AIMS Helicobacter pylori is an important etiologic factor in the development of gastric cancer. The aim of this study was to analyze the role of H. pylori infections in the induction of mutagenic events in gastric epithelial cells. The effect of a high-salt diet as a genotoxic risk factor was also investigated. \n METHODS Big Blue transgenic male mice (C57Bl/6) were inoculated with H. pylori (strain SS1) or Helicobacter felis (strain CS1) for 6 and 12 months. The frequency and spectrum of mutations at the stomach level were assessed. Inflammatory host response and inducible nitric oxide synthase (iNOS) expression by reverse-transcription polymerase chain reaction and immunohistochemistry analysis were also performed. \n RESULTS After 6 months, the gastric mutant frequency was 4-fold and 1.7-fold higher in mice infected with H. pylori and H. felis, respectively, than in uninfected mice. It was associated with a high frequency of transversions (AT --> CG and GC --> TA) known to result from oxidative damages. The Helicobacter-infected mice exhibited severe gastritis and a high level of iNOS messenger RNA expression. Hyperplasia developed 12 months after inoculation, and both the mutagenic effects and iNOS expression decreased in H. pylori- and H. felis-infected mice. No synergistic effects of a high-salt diet and Helicobacter infection were observed regarding the frequency of gastric mutation. \n CONCLUSIONS A direct gastric mutagenic effect due to H. pylori infection in the Big Blue transgenic mouse model has been shown 6 months after inoculation. This genotoxicity can be attributable to oxidative DNA damage involving the inflammatory host response.", "title": "Chronic Helicobacter pylori infections induce gastric mutations in mice." }, { "docid": "22703082", "text": "Infection with Helicobacter pylori (H. pylori) is a risk factor for the development of gastric cancer. Here we show that infection of gastric epithelial cells with 'cag' pathogenicity island (cagPAI)-positive H. pylori induced aberrant expression of activation-induced cytidine deaminase (AID), a member of the cytidine-deaminase family that acts as a DNA- and RNA-editing enzyme, via the IκB kinase–dependent nuclear factor-κB activation pathway. H. pylori–mediated upregulation of AID resulted in the accumulation of nucleotide alterations in the TP53 tumor suppressor gene in gastric cells in vitro. Our findings provide evidence that aberrant AID expression caused by H. pylori infection might be a mechanism of mutation accumulation in the gastric mucosa during H. pylori–associated gastric carcinogenesis.", "title": "Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium" }, { "docid": "26488879", "text": "Helicobacter pylori persistently colonizes humans, causing gastritis, ulcers, and gastric cancer. Adherence to the gastric epithelium has been shown to enhance inflammation, yet only a few H. pylori adhesins have been paired with targets in host tissue. The alpAB locus has been reported to encode adhesins involved in adherence to human gastric tissue. We report that abrogation of H. pylori AlpA and AlpB reduces binding of H. pylori to laminin while expression of plasmid-borne alpA or alpB confers laminin-binding ability to Escherichia coli. An H. pylori strain lacking only AlpB is also deficient in laminin binding. Thus, we conclude that both AlpA and AlpB contribute to H. pylori laminin binding. Contrary to expectations, the H. pylori SS1 mutant deficient in AlpA and AlpB causes more severe inflammation than the isogenic wild-type strain in gerbils. Identification of laminin as the target of AlpA and AlpB will facilitate future investigations of host-pathogen interactions occurring during H. pylori infection.", "title": "Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils." }, { "docid": "29367554", "text": "BACKGROUND & AIMS Although the p53 tumor suppressor has been extensively studied, many critical questions remain unanswered about the biological functions of p53 homologs, p73 and p63. Accumulating evidence suggests that both p73 and p63 play important roles in regulation of apoptosis, cell differentiation, and therapeutic drug sensitivity. \n METHODS Gastric epithelial cells were cocultured with Helicobacter pylori, and the roles of p63 and p73 proteins were assessed by luciferase reporter, real-time polymerase chain reaction, immunoblotting, and cell survival assays. Short hairpin RNA and dominant-negative mutants were used to inhibit activity of p73 and p63 isoforms. Human and murine gastric tissues were analyzed by immunohistochemistry with p73 and p63 antibodies and modified Steiner's silver method. \n RESULTS Interaction of H pylori with gastric epithelial cells leads to robust up-regulation of p73 protein in vitro and in vivo in human gastritis specimens and H pylori-infected mice. The p73 increase resulted in up-regulation of pro-apoptotic genes, NOXA, PUMA, and FAS receptor in gastric epithelial cells. Down-regulation of p73 activity suppressed cell death and Fas receptor induced by H pylori. Bacterial virulence factors within the cag pathogenicity island, c-Abl tyrosine kinase, and interaction with p63 isoforms control the activity of p73. \n CONCLUSION Our findings implicate p73 in H pylori-induced apoptosis and more generally suggest that the p53 family may play a role in the epithelial cell response to H pylori infection.", "title": "Interaction of Helicobacter pylori with gastric epithelial cells is mediated by the p53 protein family." }, { "docid": "39550665", "text": "BACKGROUND & AIMS Chronic infection with the bacterial pathogen Helicobacter pylori causes gastric disorders, ranging from chronic gastritis to gastric adenocarcinoma. Only a subset of infected persons will develop overt disease; most remains asymptomatic despite lifelong colonization. This study aims to elucidate the differential susceptibility to H pylori that is found both across and within populations. \n METHODS We have established a C57BL/6 mouse model of H pylori infection with a strain that is capable of delivering the virulence factor cytotoxin-associated gene A (CagA) into host cells through the activity of a Cag-pathogenicity island-encoded type IV secretion system. \n RESULTS Mice infected at 5-6 weeks of age with CagA(+)H pylori rapidly develop gastritis, gastric atrophy, epithelial hyperplasia, and metaplasia in a type IV secretion system-dependent manner. In contrast, mice infected during the neonatal period with the same strain are protected from preneoplastic lesions. Their protection results from the development of H pylori-specific peripheral immunologic tolerance, which requires transforming growth factor-β signaling and is mediated by long-lived, inducible regulatory T cells, and which controls the local CD4(+) T-cell responses that trigger premalignant transformation. Tolerance to H pylori develops in the neonatal period because of a biased ratio of T-regulatory to T-effector cells and is favored by prolonged low-dose exposure to antigen. \n CONCLUSIONS Using a novel CagA(+)H pylori infection model, we report here that the development of tolerance to H pylori protects from gastric cancer precursor lesions. The age at initial infection may thus account for the differential susceptibility of infected persons to H pylori-associated disease manifestations.", "title": "Tolerance rather than immunity protects from Helicobacter pylori-induced gastric preneoplasia." }, { "docid": "7465900", "text": "BACKGROUND & AIMS Helicobacter pylori-induced gastric epithelial cell (GEC) apoptosis is a complex process that includes activation of the tumor suppressor p53. p53-mediated apoptosis involves p53 activation, bax transcription, and cytochrome c release from mitochondria. Apurinic/apyrimidinic endonuclease-1 (APE-1) regulates transcriptional activity of p53, and H pylori induce APE-1 expression in human GECs. H pylori infection increases intracellular calcium ion concentration [Ca2+]i of GECs, which induces APE-1 acetylation. We investigated the effects of H pylori infection and APE-1 acetylation on GEC apoptosis. \n METHODS AGS cells (wild-type or with suppressed APE-1), KATO III cells, and cells isolated from gastric biopsy specimens were infected with H pylori. Effects were examined by immunoblotting, real-time reverse-transcription polymerase chain reaction, immunoprecipitation, immunofluorescence microscopy, chromatin immunoprecipitation, mobility shift, DNA binding, and luciferase assays. \n RESULTS H pylori infection increased [Ca2+]i and acetylation of APE-1 in GECs, but the acetylation status of APE-1 did not affect the transcriptional activity of p53. In GECs, expression of a form of APE-1 that could not be acetylated increased total and mitochondrial levels of Bax and induced release of cytochrome c and fragmentation of DNA; expression of wild-type APE-1 reduced these apoptotic events. We identified a negative calcium response element in the human bax promoter and found that poly (adenosine diphosphate-ribose) polymerase 1 recruited the acetylated APE-1/histone deacetylase-1 repressor complex to bax nCaRE. \n CONCLUSIONS H pylori-mediated acetylation of APE-1 suppresses Bax expression; this prevents p53-mediated apoptosis when H pylori infect GECs.", "title": "Acetylation of apurinic/apyrimidinic endonuclease-1 regulates Helicobacter pylori-mediated gastric epithelial cell apoptosis." }, { "docid": "8654183", "text": "BACKGROUND AND AIMS Previous in vitro and in vivo studies have revealed an association between Helicobacter pylori infection and apoptosis in gastric epithelial cells. Although involvement of the Bcl-2 family of proteins as well as cytochrome c release has been demonstrated in H pylori induced cell death, the exact role of the mitochondria during this type of programmed cell death has not been fully elucidated. Therefore, we sought to determine whether or not Bax translocation and mitochondrial fragmentation occur on exposure of gastric epithelial cells to H pylori, resulting in cell death. \n METHODS Experiments were performed with human gastric adenocarcinoma (AGS) cells, AGS cells transfected with the HPV-E6 gene (which inactivates p53 function), AGS-neo cells (transfected with the backbone construct), mouse embryonic fibroblasts (MEFs), and p19(ARF) null (ARF(-/-)) MEFs. Cells were incubated with a cag positive H pylori strain for up to 24 hours, lysed, and cytoplasmic and mitochondrial membrane fractions were analysed by western blot for Bax translocation. \n RESULTS Bax translocation was detected in AGS, AGS-neo, and normal MEF cells after exposure to H pylori for three hours, but not in ARF(-/-) MEFs cells. Translocation of Bax after H pylori incubation was also detected in AGS-E6 cells (inactive p53 gene) but to a lesser degree than in AGS-neo cells. In parallel studies, the mitochondrial morphology of living cells infected with H pylori was assessed by confocal microscopy. Mitochondrial fragmentation was detectable after 10 hours of H pylori incubation with AGS cells and after seven hours with MEF cells. In wild-type MEFs, mitochondrial fragmentation was significantly increased in comparison with ARF null MEFs (43% v 10.4%, respectively). Furthermore, mitochondrial depolarisation and caspase-3 activity were initiated within four hours in cells incubated with H pylori, and these events were inhibited by forced expression of Bcl-2. \n CONCLUSIONS These data suggest that during H pylori induced apoptosis, Bax translocates to the mitochondria which subsequently undergo depolarisation and profound fragmentation. Functional ARF and p53 proteins may play an important role in H pylori induced mitochondrial modification.", "title": "Bax translocation and mitochondrial fragmentation induced by Helicobacter pylori." }, { "docid": "4387784", "text": "Half the world's population is chronically infected with Helicobacter pylori, causing gastritis, gastric ulcers and an increased incidence of gastric adenocarcinoma. Its proton-gated inner-membrane urea channel, HpUreI, is essential for survival in the acidic environment of the stomach. The channel is closed at neutral pH and opens at acidic pH to allow the rapid access of urea to cytoplasmic urease. Urease produces NH(3) and CO(2), neutralizing entering protons and thus buffering the periplasm to a pH of roughly 6.1 even in gastric juice at a pH below 2.0. Here we report the structure of HpUreI, revealing six protomers assembled in a hexameric ring surrounding a central bilayer plug of ordered lipids. Each protomer encloses a channel formed by a twisted bundle of six transmembrane helices. The bundle defines a previously unobserved fold comprising a two-helix hairpin motif repeated three times around the central axis of the channel, without the inverted repeat of mammalian-type urea transporters. Both the channel and the protomer interface contain residues conserved in the AmiS/UreI superfamily, suggesting the preservation of channel architecture and oligomeric state in this superfamily. Predominantly aromatic or aliphatic side chains line the entire channel and define two consecutive constriction sites in the middle of the channel. Mutation of Trp 153 in the cytoplasmic constriction site to Ala or Phe decreases the selectivity for urea in comparison with thiourea, suggesting that solute interaction with Trp 153 contributes specificity. The previously unobserved hexameric channel structure described here provides a new model for the permeation of urea and other small amide solutes in prokaryotes and archaea.", "title": "Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori" }, { "docid": "17464771", "text": "Carriage of Helicobacter pylori strains producing more active (s1/i1) forms of VacA is strongly associated with gastric adenocarcinoma. To our knowledge, we are the first to determine effects of different polymorphic forms of VacA on inflammation and metaplasia in the mouse stomach. Bacteria producing the less active s2/i2 form of VacA colonized mice more efficiently than mutants null for VacA or producing more active forms of it, providing the first evidence of a positive role for the minimally active s2/i2 toxin. Strains producing more active toxin forms induced more severe and extensive metaplasia and inflammation in the mouse stomach than strains producing weakly active (s2/i2) toxin. We also examined the association in humans, controlling for cagPAI status. In human gastric biopsy specimens, the vacA i1 allele was strongly associated with precancerous intestinal metaplasia, with almost complete absence of intestinal metaplasia in subjects infected with i2-type strains, even in a vacA s1, cagA(+) background.", "title": "A Role for the Vacuolating Cytotoxin, VacA, in Colonization and Helicobacter pylori–Induced Metaplasia in the Stomach" }, { "docid": "14729253", "text": "BACKGROUND Data on genetic susceptibility to sporadic gastric carcinoma have been published at a growing pace, but to date no comprehensive overview and quantitative summary has been available. \n METHODS We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing stomach cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Meta-analysis was also conducted for subgroups, which were defined by ethnicity (Asian vs Caucasian), tumour histology (intestinal vs diffuse), tumour site (cardia vs non-cardia) and Helicobacter pylori infection status (positive vs negative). \n RESULTS Literature search identified 824 eligible studies comprising 2 530 706 subjects (cases: 261 386 (10.3%)) and investigating 2841 polymorphisms involving 952 distinct genes. Overall, we performed 456 primary and subgroup meta-analyses on 156 variants involving 101 genes. We identified 11 variants significantly associated with disease risk and assessed to have a high level of summary evidence: MUC1 rs2070803 at 1q22 (diffuse carcinoma subgroup), MTX1 rs2075570 at 1q22 (diffuse), PSCA rs2294008 at 8q24.2 (non-cardia), PRKAA1 rs13361707 5p13 (non-cardia), PLCE1 rs2274223 10q23 (cardia), TGFBR2 rs3087465 3p22 (Asian), PKLR rs3762272 1q22 (diffuse), PSCA rs2976392 (intestinal), GSTP1 rs1695 11q13 (Asian), CASP8 rs3834129 2q33 (mixed) and TNF rs1799724 6p21.3 (mixed), with the first nine variants characterised by a low FPRP. We also identified polymorphisms with lower quality significant associations (n=110). \n CONCLUSIONS We have identified several high-quality biomarkers of gastric cancer susceptibility. These data will form the backbone of an annually updated online resource that will be integral to the study of gastric carcinoma genetics and may inform future screening programmes.", "title": "Genetic variation and gastric cancer risk: a field synopsis and meta-analysis." }, { "docid": "20330519", "text": "Helicobacter pylori infection causes gastric pathology such as ulcer and carcinoma. Because H. pylori is auxotrophic for cholesterol, we have explored the assimilation of cholesterol by H. pylori in infection. Here we show that H. pylori follows a cholesterol gradient and extracts the lipid from plasma membranes of epithelial cells for subsequent glucosylation. Excessive cholesterol promotes phagocytosis of H. pylori by antigen-presenting cells, such as macrophages and dendritic cells, and enhances antigen-specific T cell responses. A cholesterol-rich diet during bacterial challenge leads to T cell–dependent reduction of the H. pylori burden in the stomach. Intrinsic α-glucosylation of cholesterol abrogates phagocytosis of H. pylori and subsequent T cell activation. We identify the gene hp0421 as encoding the enzyme cholesterol-α-glucosyltransferase responsible for cholesterol glucosylation. Generation of knockout mutants lacking hp0421 corroborates the importance of cholesteryl glucosides for escaping phagocytosis, T cell activation and bacterial clearance in vivo. Thus, we propose a mechanism regulating the host–pathogen interaction whereby glucosylation of a lipid tips the scales towards immune evasion or response.", "title": "Cholesterol glucosylation promotes immune evasion by Helicobacter pylori" }, { "docid": "34258065", "text": "Helicobacter infection is a chronic persistent condition which is responsible for the majority of cases of gastric and duodenal ulcers, and gastric cancer. The study of the bacteria, the interaction of the bacteria with the host, and the host immune response has greatly benefited from standardization of culture techniques and animal models. The following chapters will describe the clinical aspects of infection and touch on the important techniques for optimal investigation of this infection.", "title": "Helicobacter species methods and protocols. Introduction." }, { "docid": "2099400", "text": "Helicobacter pylori induces motogenic and cytoskeletal responses in gastric epithelial cells. We demonstrate that these responses can be induced via independent signaling pathways that often occur in parallel. The cag pathogenicity island appears to be nonessential for induction of motility, whereas the elongation phenotype depends on translocation and phosphorylation of CagA.", "title": "Helicobacter pylori induces AGS cell motility and elongation via independent signaling pathways." }, { "docid": "22049489", "text": "The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator in H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy.", "title": "The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1." }, { "docid": "52925737", "text": "BACKGROUND Exosomes are extracellular vesicles that mediate cellular communication in health and diseases. Neutrophils could be polarized to a pro-tumor phenotype by tumor. The function of tumor-derived exosomes in neutrophil regulation remains unclear. \n METHODS We investigated the effects of gastric cancer cell-derived exosomes (GC-Ex) on the pro-tumor activation of neutrophils and elucidated the underlying mechanisms. \n RESULTS GC-Ex prolonged neutrophil survival and induced expression of inflammatory factors in neutrophils. GC-Ex-activated neutrophils, in turn, promoted gastric cancer cell migration. GC-Ex transported high mobility group box-1 (HMGB1) that activated NF-κB pathway through interaction with TLR4, resulting in an increased autophagic response in neutrophils. Blocking HMGB1/TLR4 interaction, NF-κB pathway, and autophagy reversed GC-Ex-induced neutrophil activation. Silencing HMGB1 in gastric cancer cells confirmed HMGB1 as a key factor for GC-Ex-mediated neutrophil activation. Furthermore, HMGB1 expression was upregulated in gastric cancer tissues. Increased HMGB1 expression was associated with poor prognosis in patients with gastric cancer. Finally, gastric cancer tissue-derived exosomes acted similarly as exosomes derived from gastric cancer cell lines in neutrophil activation. \n CONCLUSION We demonstrate that gastric cancer cell-derived exosomes induce autophagy and pro-tumor activation of neutrophils via HMGB1/TLR4/NF-κB signaling, which provides new insights into mechanisms for neutrophil regulation in cancer and sheds lights on the multifaceted role of exosomes in reshaping tumor microenvironment.", "title": "Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration" }, { "docid": "2837758", "text": "Epitope vaccine is a promising option for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. In this study, we constructed a multi-epitope vaccine with five epitopes and mucosal adjuvant E. coli heat-labile enterotoxin B subunit (LTB) named HUepi-LTB and evaluated its therapeutic effect against H. pylori infection in BALB/c mice model. HUepi-LTB containing three Th epitopes from UreB and two B cell epitopes from UreB and HpaA was constructed and expressed in E. coli. Oral therapeutic immunization with HUepi-LTB significantly decreased H. pylori colonization compared with oral immunization with PBS, and the protection was correlated with antigen-specific CD4+ T cells and IgG and mucosal IgA antibody responses. This multi-epitope vaccine may be a promising vaccine candidate that may help to control H. pylori infection.", "title": "Therapeutic efficacy of a multi-epitope vaccine against Helicobacter pylori infection in BALB/c mice model." }, { "docid": "13965483", "text": "Epitope vaccine based on the enzyme urease of Helicobacter pylori is a promising option for prophylactic and therapeutic vaccination against H. pylori infection. In our previous study, the epitope vaccine CTB-UA, which was composed of the mucosal adjuvant cholera toxin B subunit (CTB) and an epitope (UreA183–203) from the H. pylori urease A subunit (UreA) was constructed. This particular vaccine was shown to have good immunogenicity and immunoreactivity and could induce specific neutralizing antibodies, which exhibited effectively inhibitory effects on the enzymatic activity of H. pylori urease. In this study, the prophylactic and therapeutic efficacy of the epitope vaccine CTB-UA was evaluated in a BALB/c mice model. The experimental results indicated that oral prophylactic or therapeutic immunization with CTB-UA significantly decreased H. pylori colonization compared with oral immunization with PBS. The results also revealed that the protection was correlated with antigen-specific IgG, IgA, and mucosal secretory IgA antibody responses. CTB-UA may be a promising vaccine candidate for the control of H. pylori infection.", "title": "Prophylactic and therapeutic efficacy of the epitope vaccine CTB-UA against Helicobacter pylori infection in a BALB/c mice model" }, { "docid": "2205779", "text": "MicroRNAs (miRNAs) play crucial roles during the occurrence and development of gastric cancer. Conventional serological tests for screening gastric cancer have limits on sensitivity and specificity. Several miRNAs in peripheral blood have been used as biomarkers of gastric cancer. However, most of these miRNAs are shared by several types of cancer. Thanks to the tissue specificity of gastric juice, here we examined the feasibility of using gastric juice miR-129-1/2, which are aberrantly expressed in gastric cancer, to screen gastric cancer. Total of 141 gastric juices samples from gastric cancer, gastric ulcer, atrophic gastritis, and minimal gastritis patients or subjects with normal mucosa were collected by gastroscopy. The gastric juice miR-129-1/2 levels were detected by quantitative reverse transcription-polymerase chain reaction. A receiver operating characteristic (ROC) curve was constructed for differentiating patients with gastric cancer from patients with benign gastric diseases. We showed that, compared with patients with benign gastric diseases, patients with gastric cancer had significantly lower levels of gastric juice miR-129-1-3p and miR-129-2-3p. The areas under ROC curve (AUC) were 0.639 and 0.651 for miR-129-1-3p and miR-129-2-3p, respectively. Using the parallel combination test, the AUC was up to 0.656. In summary, our results suggest that gastric juice miR-129-1-3p and miR-129-2-3p are potential biomarkers for the screening gastric cancer, and the detection of gastric juice miRNAs is a convenient non-invasion method for the diagnosis of gastric cancer.", "title": "Gastric juice miR-129 as a potential biomarker for screening gastric cancer" }, { "docid": "2494748", "text": "There are limited reports on methylation analysis of the premalignant lesions of gastric carcinoma thus far. This is despite the fact that gastric carcinoma is one of the tumors with a high frequency of CpG island hypermethylation. To determine the frequency and timing of hypermethylation during multistep gastric carcinogenesis, non-neoplastic gastric mucosa (n = 118), adenomas (n = 61), and carcinomas (n = 64) were analyzed for their p16, human Mut L homologue 1 (hMLH1), death-associated protein (DAP)-kinase, thromobospondin-1 (THBS1), and tissue inhibitor of metalloproteinase 3 (TIMP-3) methylation status using methylation-specific PCR. Three different classes of methylation behaviors were found in the five tested genes. DAP-kinase was methylated at a similar frequency in all four stages, whereas hMLH1 and p16 were methylated in cancer samples (20.3% and 42.2%, respectively) more frequently than in intestinal metaplasia (6.3% and 2.1%, respectively) or adenomas (9.8% and 11.5%, respectively). However, hMLH1 and p16 were not methylated in chronic gastritis. THBS-1 and TIMP-3 were methylated in all stages but showed a marked increase in hypermethylation frequency from chronic gastritis (10.1% and 14.5%, respectively) to intestinal metaplasia (34.7% and 36.7%, respectively; P < 0.05) and from adenomas (28.3% and 26.7%, respectively) to carcinomas (48.4% and 57.4%, respectively: P < 0.05). The hMLH1, THBS1, and TIMP-3 hypermethylation frequencies were similar in both intestinal metaplasia and adenomas, but the p16 hypermethylation frequency tended to be higher in adenomas (11.5%) than in intestinal metaplasia (2.1%; P = 0.073). The average number of methylated genes was 0.6, 1.1, 1.1, and 2.0 per five genes per sample in chronic gastritis, intestinal metaplasia, adenomas, and carcinomas, respectively. This shows a marked increase in methylated genes from non-metaplastic mucosa to intestinal metaplasia (P = 0.001) as well as from premalignant lesions to carcinomas (P = 0.002). These results suggest that CpG island hypermethylation occur early in multistep gastric carcinogenesis and tend to accumulate along the multistep carcinogenesis.", "title": "CpG island methylation in premalignant stages of gastric carcinoma." } ]
449
Gastric lavage is an effective treatment for acute paraquat poisoning.
[ { "docid": "12209494", "text": "BACKGROUND The case-fatality for intentional self-poisoning in the rural developing world is 10-50-fold higher than that in industrialised countries, mostly because of the use of highly toxic pesticides and plants. We therefore aimed to assess whether routine treatment with multiple-dose activated charcoal, to interrupt enterovascular or enterohepatic circulations, offers benefit compared with no charcoal in such an environment. \n METHODS We did an open-label, parallel group, randomised, controlled trial of six 50 g doses of activated charcoal at 4-h intervals versus no charcoal versus one 50 g dose of activated charcoal in three Sri Lankan hospitals. 4632 patients were randomised to receive no charcoal (n=1554), one dose of charcoal (n=1545), or six doses of charcoal (n=1533); outcomes were available for 4629 patients. 2338 (51%) individuals had ingested pesticides, whereas 1647 (36%) had ingested yellow oleander (Thevetia peruviana) seeds. Mortality was the primary outcome measure. Analysis was by intention to treat. The trial is registered with controlled-trials.com as ISRCTN02920054. \n FINDINGS Mortality did not differ between the groups. 97 (6.3%) of 1531 participants in the multiple-dose group died, compared with 105 (6.8%) of 1554 in the no charcoal group (adjusted odds ratio 0.96, 95% CI 0.70-1.33). No differences were noted for patients who took particular poisons, were severely ill on admission, or who presented early. \n INTERPRETATION We cannot recommend the routine use of multiple-dose activated charcoal in rural Asia Pacific; although further studies of early charcoal administration might be useful, effective affordable treatments are urgently needed.", "title": "Multiple-dose activated charcoal in acute self-poisoning: a randomised controlled trial" }, { "docid": "3430789", "text": "The present study retrospectively analyzed 19 patients diagnosed with paraquat (PQ) poisoning with the aim to investigate the effect of activated charcoal hemoperfusion on renal function and PQ elimination. The results indicated that 7 patients died and 12 survived. Non-oliguric renal failure occurred in all of the 7 patients who died. Among the 12 surviving patients, 10 had normal renal function and 2 developed non-oliguric renal failure. There was a linear correlation between plasma and urine paraquat concentration prior to and during activated charcoal hemoperfusion. The equation parameters together with the correlation coefficient on admission were as follows: Y=0.5820+1.7348X (R2=0.678; F=35.768; P<0.0001). The equation parameters together with the correlation coefficient were as follows during activated charcoal hemoperfusion: Y=0.6827+1.2649X (R2=0.626; F=50.308; P<0.0001). Therefore, it was concluded that in patients with normal renal function, the elimination kinetics of PQ by the kidneys were only associated with the plasma PQ concentration. Activated charcoal hemoperfusion had little effect on avoiding acute kidney injury in patients with severe PQ poisoning.", "title": "Effect of activated charcoal hemoperfusion on renal function in patients with paraquat poisoning." } ]
[ { "docid": "33203108", "text": "INTRODUCTION Paraquat is a commonly ingested poison especially in Southern India. There is no antidote for paraquat poison and consumption is often fatal. The usual cause of death is either acute lung injury or multi-organ failure. AIM To evaluate the role of early haemoperfusion as a therapy in paraquat poisoned patients. MATERIALS AND METHODS This study was a retrospective analysis of patients admitted to a Tertiary Medical College Hospital between January 2012 and December 2015 with history of paraquat consumption, comparing outcomes in those who received only gastric lavage and symptomatic treatment with those who received haemoperfusion as a therapy. The role of early haemoperfusion (≤ 6 hours) vs late haemoperfusion (> 6 hours) in paraquat poisoned patients was also compared. The data of these patients was extracted and analysed with respect to age, sex, mode of treatment, the outcome in patients who received early and late haemoperfusion. \n RESULTS A total of 101 patients were studied out of which 62 died. Deaths were more in those patients who received only gastric lavage with symptomatic treatment as therapy compared to those who received haemoperfusion i.e., 92.1% vs 42.9% respectively. We also found that, the survival rate was better in patients who received early haemoperfusion. \n CONCLUSION Early haemoperfusion was helpful in the management of severe paraquat poisoning and improved the survival rate in these patients.", "title": "Golden Hours in Severe Paraquat Poisoning-The Role of Early Haemoperfusion Therapy." }, { "docid": "8447873", "text": "BACKGROUND Organophosphorus pesticide (OP) self-poisoning is a major problem in the developing rural world. There is little clinical trial data to guide therapy, hindering the identification of best therapy. Despite the recognition of adverse effects, gastric lavage is commonly done in Asia. We aimed to identify studies assessing its effectiveness. \n METHOD We systematically searched the literature for controlled clinical studies that assessed the effect of gastric lavage in OP pesticide self-poisoning. \n RESULTS All 56 studies identified were Chinese and reported benefit from the intervention studied, including multiple gastric lavages, use of norepinephrine or pralidoxime in the lavage fluid, concurrent treatment with naloxone or scopolamine, insertion of the gastric tube via a laparotomy incision, and lavage later than 12 h post-ingestion. However, only 23 were RCTs and none presented adequate methodology for their quality to be assessed. The patient population and study treatment protocol were not defined - large variation in case fatality in the control arm of the studies (from 4.5 to 93%) suggests marked variation between studies and likely between study arms. No study compared an intervention against a control group receiving no gastric lavage or provided any data to indicate whether a significant quantity of poison was removed. \n CONCLUSION Despite widespread use of multiple gastric lavages for OP pesticide poisoning across Asia, there is currently no high-quality evidence to support its clinical effectiveness. There is a need for studies to identify in which patients and for what duration gastric lavage is able to remove significant quantities of poison. Following these studies, large clinical trials will be required to address the effectiveness and safety of gastric lavage (either single or multiple) in acute OP pesticide poisoning.", "title": "Systematic review of controlled clinical trials of gastric lavage in acute organophosphorus pesticide poisoning." }, { "docid": "22547508", "text": "Acute paraquat poisoning is often fatal. Many studies have investigated successful treatment modalities, but no standard treatment yet exists. The purpose of this study was to determine the predictors of survival after acute paraquat poisoning in 602 patients. The paraquat exposure was assessed based on the amount of ingested paraquat and a semiquantitative measure of the urine level of paraquat. Initial clinical parameters including vital signs, hemoglobin, white-blood-cell count, pH, PaCO2, PaO2, blood urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase, total bilirubin, amylase, and glucose were obtained at the time of arrival at the emergency room. Outcomes after acute paraquat poisoning were categorized as survivors and nonsurvivors. Multiple logistic regression analysis was applied to assess the predictors of survival after acute paraquat poisoning. Some patients (55.5%) survived after oral ingestion of paraquat, whereas all those exposed to paraquat percutaneous or inhalational route survived. The amount of paraquat (24.5% concentrate of 1,1'-dimethyl-4,4'-bipyridium dichloride) ingested was 45.6 +/- 74.1 mL (mean +/- SD). In addition to degree of paraquat exposure, survival after acute paraquat poisoning was associated with age, respiratory rate, pH, PaCO2, hemoglobin, white-blood-cell count, blood urea nitrogen, amylase, and the number of failed organs in multiple logistic regression analysis. In conclusion, young age, percutaneous or inhalational route, exposure to less paraquat, and lesser degrees of leukocytosis, acidosis, and renal, hepatic, and pancreatic failures on admission are good prognostic factors of survival after acute paraquat poisoning.", "title": "Predictors of survival after acute paraquat poisoning." }, { "docid": "19132741", "text": "Paraquat, a quarternary nitrogen herbicide, is a highly toxic compound for humans and animals and many cases of acute poisoning and death have been reported over the past few decades. The mechanisms of paraquat toxicity involve: the generation of the superoxide anion, which can lead to the formation of more toxic reactive oxygen species, such as hydrogen peroxide and hydroxyl radical; and the oxidation of the cellular NADPH, the major source of reducing equivalents for the intracellular reduction of paraquat, which results in the disruption of important NADPH-requiring biochemical processes. The major cause of death in paraquat poisoning is respiratory failure due to an oxidative insult to the alveolar epithelium with subsequent obliterating fibrosis. Management of paraquat poisoning has remained mostly supportive and has been directed towards the modification of the toxicokinetics of the poison. Currently, there are no true pharmacological antagonists for paraquat and there are no chelating agents capable of binding the poison in the blood or other tissues. Recognizing the fact that paraquat induces its toxic effects via oxidative stress-mediated mechanisms, innovations in the management of paraquat poisoning are directed towards the use of antioxidants. In this review, the status of antioxidants in ameliorating or treating the toxic effects produced by paraquat is presented.", "title": "Role of antioxidants in paraquat toxicity." }, { "docid": "24097933", "text": "Paraquat poisoning is characterized by multiorgan failure and pulmonary fibrosis with respiratory failure. Multiorgan failure with circulatory collapse is a major cause of early death within 3 days of paraquat ingestion. Recent studies suggested that continuous venovenous hemofiltration (CVVH) had a role in the treatment of multiorgan failure by promoting hemodynamic stability. We therefore evaluated the effect of prophylactic CVVH in 80 patients with paraquat poisoning (August 1996 to February 1999). The amount ingested was 2.1 +/- 1.0 mouthfuls (as 20% concentrate). All patients were treated with hemoperfusion (HP; duration, 6.4 +/- 3.0 hours) within 24 hours of ingestion and then randomly assigned to the HP-alone or HP-CVVH group. Forty-four patients underwent HP only, and 36 patients underwent CVVH (duration, 57.4 +/- 31.3 hours; ultrafiltration volume, 40.2 +/- 4.8 L/d) after HP. Although time to death after ingestion was significantly longer in the HP-CVVH than HP group (5.0 +/- 5.0 versus 2.5 +/- 2.1 days; P < 0.05), there was no difference in mortality rates between the two groups (66.7% versus 63.6%; P = 0.82). In the HP group, early circulatory collapse was a major cause of death compared with the HP-CVVH group, in which late respiratory failure was a major cause of death. In conclusion, prophylactic CVVH after HP prevented early death caused by circulatory collapse and prolonged survival time. However, it could not prevent late death caused by respiratory failure and did not provide a survival benefit in acute paraquat poisoning.", "title": "Failure of continuous venovenous hemofiltration to prevent death in paraquat poisoning." }, { "docid": "41294031", "text": "BACKGROUND Paraquat is an effective and widely used herbicide but is also a lethal poison. In many developing countries paraquat is widely available and inexpensive, making poisoning prevention difficult. However most of the people who become poisoned from paraquat have taken it as a means of suicide. Standard treatment for paraquat poisoning both prevents further absorption and reduces the load of paraquat in the blood through haemoperfusion or haemodialysis. The effectiveness of standard treatments is extremely limited. The immune system plays an important role in exacerbating paraquat-induced lung fibrosis. Immunosuppressive treatment using glucocorticoid and cyclophosphamide in combination is being developed and studied. \n OBJECTIVES To assess the effects of glucocorticoid with cyclophosphamide on mortality in patients with paraquat-induced lung fibrosis. SEARCH METHODS To identify randomised controlled trials (RCTs) on this topic, we searched the Cochrane Injuries Group's Specialised Register (searched 1 February 2012), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 1), MEDLINE (Ovid SP) (1946 January Week 3 2012), EMBASE (Ovid SP) (1947 to Week 4 2012), ISI Web of Science: Science Citation Index Expanded (SCI-EXPANDED) (1970 to January 2012), ISI Web of Science: Conference Proceedings Citation Index - Science (CPCI-S) (1990 to January 2012), Chinese Biomedical Literature and Retrieval System (CBM) (1978 to April 2012), Chinese Medical Current Contents (CMCC) (1995 to April 2012), and Chinese Medical Academic Conference (CMAC) (1994 to April 2012). Searches were completed on English language databases on 1 February 2012 and on Chinese language databases on 12 April 2012. SELECTION CRITERIA RCTs were included in this review. All patients were to receive standard care, plus the intervention or control. The intervention was glucocorticoid with cyclophosphamide in combination versus a control of a placebo, standard care alone or any other therapy in addition to standard care. \n DATA COLLECTION AND ANALYSIS The mortality risk ratio (RR) and 95% confidence interval (CI) was calculated for each study on an intention-to-treat basis. Data for all-cause mortality at final follow-up were summarised in a meta-analysis using a fixed-effect model. \n MAIN RESULTS This systematic review includes three trials with a combined total of 164 participants who had moderate to severe paraquat poisoning. Patients who received glucocorticoid with cyclophosphamide in addition to standard care had a lower risk of death at final follow-up than those receiving standard care only (RR 0.72; 95% CI 0.59 to 0.89). AUTHORS' CONCLUSIONS Based on the findings of three small RCTs of moderate to severely poisoned patients, glucocorticoid with cyclophosphamide in addition to standard care may be a beneficial treatment for patients with paraquat-induced lung fibrosis. To enable further study of the effects of glucocorticoid with cyclophosphamide for patients with moderate to severe paraquat poisoning, hospitals may provide this treatment as part of an RCT with allocation concealment.", "title": "Glucocorticoid with cyclophosphamide for paraquat-induced lung fibrosis." }, { "docid": "40005757", "text": "Serious exposure to the herbicide paraquat usually results in death, either due to gastrointestinal caustic lesions, shock, and acute respiratory distress syndrome or related to the progressive development of pulmonary fibrosis associated with refractory hypoxemia. We report a case of suicidal paraquat ingestion in a 59-year-old man. Most of the indicators of poor prognosis were encountered in this patient. Treatment consisted of early digestive decontamination and hemodialysis, followed by antioxidant therapy, including the administration of deferoxamine (100 mg/kg in 24 h) and a continuous infusion of acetylcysteine (300 mg/kg/d during 3 weeks). The patient only developed a nonoliguric acute renal failure, a mild alteration of liver tests, and an impairment of CO transfer factor without any respiratory complaint. Renal and hepatic disturbances completely resolved within 1 month, whereas CO transfer factor remained altered 14 months later. This observation suggests that early administration of an antioxidant therapy, including deferoxamine and acetylcysteine could be usefully associated with measures that prevent digestive absorption or enhance elimination to limit systemic toxicity in potentially fatal paraquat poisoning.", "title": "Survival in a case of massive paraquat ingestion." }, { "docid": "25104843", "text": "We report on a patient treated with hemoperfusion-hemodialysis (HP-HD) for severe paraquat poisoning. This procedure was adopted since the combination of adsorption and dialysis may improve overall drug removal. On admission blood paraquat was 15.8 micrograms/ml. He received conventional treatment and combined HP-HD which started within 3 hours after ingestion of the chemical and lasted 5 hours. Blood samples were obtained during and after HP-HD. The samples during HP-HD were taken before the charcoal column, between the charcoal column and the artificial kidney and after the artificial kidney. Blood clearances of paraquat were 116 +/- 32 ml/min (n=6) for the charcoal column (HP), 90 +/- 54 ml/min (n=6) for the artificial kidney (HD) and 151 +/- 37 ml/min (n=6) for the combined systems (HP-HD). After HP-HD a limited rebound of blood paraquat level was seen. One day after admission renal and hepatic failure had developed, and the patient died after 5 days. Tissue paraquat levels (microgram/g wet tissue) were: skeletal muscle 9.4, pancreas 6.0, prostate 5.6, thyroid 4.2, lungs 4.0, bone marrow 4.0, kidney 3.1, spleen 2.9, adrenal 2.9, heart 2.8, liver 2.3, stomach and testis below 1.0. Measurements of blood levels demonstrated the efficient clearances of paraquat with HP-HD from the central (plasma) compartment. However, the present results confirmed those previously reported which suggest that the efficiency of short HP-HD in treating severe paraquat poisoning is questionable since paraquat levels in the peripheral (tissue) compartment remain elevated.", "title": "Hemoperfusion-hemodialysis ineffective for paraquat removal in life-threatening poisoning?" }, { "docid": "24525112", "text": "Paraquat intoxication is a fatal problem. Most paraquat intoxications happen through oral administration. We report a case of death after intravenous paraquat injection. There is little clinical data on parenteral paraquat exposure, and we describe this case and fatal progression. Toxic symptoms and severe organ function impairment developed soon after injection. Treatment with repeated activated charcoal hemoperfusion with pulse steroids, cyclophosphamide, and antioxidants was attempted. The patient died from multiple organ failure 3 days after intoxication. This case indicates that paraquat intoxication via intravenous injection, even in very small amounts, has an extremely poor prognosis.", "title": "A case of paraquat intoxication caused by intravenous injection." }, { "docid": "9976969", "text": "Psychiatric illness is a significant risk factor for both attempted and completed suicide and psychotropic medications account for 80% of all drug overdoses involving prescription medications. One challenge facing clinicians is to balance the benefit of treatment against the risk of drug overdose. The aim of the present study was to compare the age and gender distribution of patients prescribed psychotropic drugs with patients attempting and completing suicide with these drugs. Data were obtained from the Australian census and studies of general practitioner prescribing, patients who committed suicide or presented with self-poisoning within a defined geographic area. The characteristics of these populations were compared to calculate odds ratios for attempting or completing suicide with psychotropic drugs, before and after correction for rates of prescription, in different age and gender groups. The odds ratios (ORs) for self-poisoning were higher for those aged less than 45 years and yet this group was least likely to be prescribed psychotropic drugs. Men had a much higher rate of completed suicide using more lethal methods. The ORs for self-poisoning and suicide with psychotropic drugs, after correction for prescription rates, for those aged 15 to 24 years were 11.1 and 1.7, respectively. Those aged 25 to 44 years had ORs of 4.9 and 4.3, and, by contrast, those over 75 years had ORs of 0.03 and 0. Women were slightly more likely to poison themselves with psychotropic drugs (OR 1.2). However, the situation reversed after correction for prescription rates (OR 0.69). It is concluded that greater caution should be exercised in prescribing for those under 45 years of age, given their relatively higher risk of drug overdose, and that the least toxic compounds should be used. The risk (of self-poisoning) among the elderly may have been overstated, so that some patients may have been denied the benefit of adequate treatment.", "title": "An analysis of age and gender influences on the relative risk for suicide and psychotropic drug self-poisoning." }, { "docid": "12943966", "text": "Ghrelin is a hunger hormone with gastroprokinetic properties but the factors controlling ghrelin secretion from the stomach are unknown. Bitter taste receptors (T2R) and the gustatory G proteins, α-gustducin (gust) and α-transducin, are expressed in the gut and are involved in the chemosensation of nutrients. This study aimed to investigate whether T2R-agonists affect (i) ghrelin release via α-gustducin and (ii) food intake and gastric emptying via the release of ghrelin. The mouse stomach contains two ghrelin cell populations: cells containing octanoyl and desoctanoyl ghrelin, which were colocalized with α-gustducin and α-transducin, and cells staining for desoctanoyl ghrelin. Gavage of T2R-agonists increased plasma octanoyl ghrelin levels in WT mice but the effect was partially blunted in gust(-/-) mice. Intragastric administration of T2R-agonists increased food intake during the first 30 min in WT but not in gust(-/-) and ghrelin receptor knockout mice. This increase was accompanied by an increase in the mRNA expression of agouti-related peptide in the hypothalamus of WT but not of gust(-/-) mice. The temporary increase in food intake was followed by a prolonged decrease (next 4 h), which correlated with an inhibition of gastric emptying. The delay in emptying, which was partially counteracted by ghrelin, was not mediated by cholecystokinin and GLP-1 but involved a direct inhibitory effect of T2R-agonists on gastric contractility. This study is unique in providing functional evidence that activation of bitter taste receptors stimulates ghrelin secretion. Modulation of endogenous ghrelin levels by tastants may provide novel therapeutic applications for the treatment of weight -and gastrointestinal motility disorders.", "title": "Bitter taste receptors and α-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying." }, { "docid": "12442311", "text": "BACKGROUND The analgesic co-proxamol (paracetamol/dextropropoxyphene combination) has been widely involved in fatal poisoning. Concerns about its safety/effectiveness profile and widespread use for suicidal poisoning prompted its withdrawal in the UK in 2005, with partial withdrawal between 2005 and 2007, and full withdrawal in 2008. Our objective in this study was to assess the association between co-proxamol withdrawal and prescribing and deaths in England and Wales in 2005-2010 compared with 1998-2004, including estimation of possible substitution effects by other analgesics. \n METHODS AND FINDINGS We obtained prescribing data from the NHS Health and Social Care Information Centre (England) and Prescribing Services Partneriaeth Cydwasanaethau GIG Cymru (Wales), and mortality data from the Office for National Statistics. We carried out an interrupted time-series analysis of prescribing and deaths (suicide, open verdicts, accidental poisonings) involving single analgesics. The reduction in prescribing of co-proxamol following its withdrawal in 2005 was accompanied by increases in prescribing of several other analgesics (co-codamol, paracetamol, codeine, co-dydramol, tramadol, oxycodone, and morphine) during 2005-2010 compared with 1998-2004. These changes were associated with major reductions in deaths due to poisoning with co-proxamol receiving verdicts of suicide and undetermined cause of -21 deaths (95% CI -34 to -8) per quarter, equating to approximately 500 fewer suicide deaths (-61%) over the 6 years 2005-2010, and -25 deaths (95% CI -38 to -12) per quarter, equating to 600 fewer deaths (-62%) when accidental poisoning deaths were included. There was little observed change in deaths involving other analgesics, apart from an increase in oxycodone poisonings, but numbers were small. Limitations were that the study was based on deaths involving single drugs alone and changes in deaths involving prescribed morphine could not be assessed. \n CONCLUSIONS During the 6 years following the withdrawal of co-proxamol in the UK, there was a major reduction in poisoning deaths involving this drug, without apparent significant increase in deaths involving other analgesics.", "title": "Six-Year Follow-Up of Impact of Co-proxamol Withdrawal in England and Wales on Prescribing and Deaths: Time-Series Study" }, { "docid": "33127778", "text": "Since the concept of early gastric cancer was first described in Japan in 1962, its treatment has evolved from curative surgical resection to endoscopic resection, initially with polypectomy to more recently with endoscopic submucosal dissection. As worldwide experience with these endoscopic techniques evolve and gain acceptance, studies have confirmed its comparable effectiveness with historical surgical outcomes in carefully selected patients. The criteria for endoscopic resection have expanded to offer more patients improved quality of life, avoiding the morbidity and mortality associated with surgery. This article summarizes the evolutional role of endoscopic and surgical therapy in early gastric cancer.", "title": "Early gastric cancer and dysplasia." }, { "docid": "46346525", "text": "Mu transposons carrying the chloramphenicol resistance marker have been inserted into the cloned Escherichia coli genes sodA and sodB coding for manganese superoxide dismutase (MnSOD) and iron superoxide dismutase (FeSOD) respectively, creating mutations and gene fusions. The mutated sodA or sodB genes were introduced into the bacterial chromosome by allelic exchange. The resulting mutants were shown to lack the corresponding SOD by activity measurements and immunoblot analysis. Aerobically, in rich medium, the absence of FeSOD or MnSOD had no major effect on growth or sensitivity to the superoxide generator, paraquat. In minimal medium aerobic growth was not affected, but the sensitivity to paraquat was increased, especially in the sodA mutant. A sodA sodB double mutant completely devoid of SOD was also obtained. It was able to grow aerobically in rich medium, its catalase level was unaffected and it was highly sensitive to paraquat and hydrogen peroxide; the double mutant was unable to grow aerobically on minimal glucose medium. Growth could be restored by removing oxygen, by providing an SOD-overproducing plasmid or by supplementing the medium with the 20 amino acids. It is concluded that the total absence of SOD in E. coli creates a conditional sensitivity to oxygen.", "title": "Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?" }, { "docid": "24705390", "text": "BACKGROUND & AIMS Helicobacter pylori is an important etiologic factor in the development of gastric cancer. The aim of this study was to analyze the role of H. pylori infections in the induction of mutagenic events in gastric epithelial cells. The effect of a high-salt diet as a genotoxic risk factor was also investigated. \n METHODS Big Blue transgenic male mice (C57Bl/6) were inoculated with H. pylori (strain SS1) or Helicobacter felis (strain CS1) for 6 and 12 months. The frequency and spectrum of mutations at the stomach level were assessed. Inflammatory host response and inducible nitric oxide synthase (iNOS) expression by reverse-transcription polymerase chain reaction and immunohistochemistry analysis were also performed. \n RESULTS After 6 months, the gastric mutant frequency was 4-fold and 1.7-fold higher in mice infected with H. pylori and H. felis, respectively, than in uninfected mice. It was associated with a high frequency of transversions (AT --> CG and GC --> TA) known to result from oxidative damages. The Helicobacter-infected mice exhibited severe gastritis and a high level of iNOS messenger RNA expression. Hyperplasia developed 12 months after inoculation, and both the mutagenic effects and iNOS expression decreased in H. pylori- and H. felis-infected mice. No synergistic effects of a high-salt diet and Helicobacter infection were observed regarding the frequency of gastric mutation. \n CONCLUSIONS A direct gastric mutagenic effect due to H. pylori infection in the Big Blue transgenic mouse model has been shown 6 months after inoculation. This genotoxicity can be attributable to oxidative DNA damage involving the inflammatory host response.", "title": "Chronic Helicobacter pylori infections induce gastric mutations in mice." }, { "docid": "32450297", "text": "THE herbicide paraquat (N,N′-dimethyl 4,4′-bipyridilium) can produce widespread oedema and fibrosis in the human lung after accidental ingestion1–3. In those cases where death occurs after several weeks, there are no apparent pulmonary changes during the first few days following ingestion. Animal experiments in a variety of species have shown the lung to be the major target organ4–6. After administration of paraquat to animals, the lung has a high initial concentration and retains paraquat7–9. This retention appears to be related to the development of lung damage7 (L. L. Smith and M. S. Rose, unpublished work). The mechanism of retention of paraquat by the lung is at present not understood.", "title": "Evidence for energy-dependent accumulation of paraquat into rat lung" }, { "docid": "52925737", "text": "BACKGROUND Exosomes are extracellular vesicles that mediate cellular communication in health and diseases. Neutrophils could be polarized to a pro-tumor phenotype by tumor. The function of tumor-derived exosomes in neutrophil regulation remains unclear. \n METHODS We investigated the effects of gastric cancer cell-derived exosomes (GC-Ex) on the pro-tumor activation of neutrophils and elucidated the underlying mechanisms. \n RESULTS GC-Ex prolonged neutrophil survival and induced expression of inflammatory factors in neutrophils. GC-Ex-activated neutrophils, in turn, promoted gastric cancer cell migration. GC-Ex transported high mobility group box-1 (HMGB1) that activated NF-κB pathway through interaction with TLR4, resulting in an increased autophagic response in neutrophils. Blocking HMGB1/TLR4 interaction, NF-κB pathway, and autophagy reversed GC-Ex-induced neutrophil activation. Silencing HMGB1 in gastric cancer cells confirmed HMGB1 as a key factor for GC-Ex-mediated neutrophil activation. Furthermore, HMGB1 expression was upregulated in gastric cancer tissues. Increased HMGB1 expression was associated with poor prognosis in patients with gastric cancer. Finally, gastric cancer tissue-derived exosomes acted similarly as exosomes derived from gastric cancer cell lines in neutrophil activation. \n CONCLUSION We demonstrate that gastric cancer cell-derived exosomes induce autophagy and pro-tumor activation of neutrophils via HMGB1/TLR4/NF-κB signaling, which provides new insights into mechanisms for neutrophil regulation in cancer and sheds lights on the multifaceted role of exosomes in reshaping tumor microenvironment.", "title": "Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration" }, { "docid": "25786167", "text": "BACKGROUND The quality of histopathology slides of endoscopic biopsies from different laboratories varies, but the effect of biopsy quality on outcome is unknown. HYPOTHESIS The ability to demonstrate a histologic lesion in the stomach or duodenum of a dog or cat is affected by the quality of endoscopic biopsy samples submitted. More endoscopic samples are needed to find a lesion in poor-quality tissue specimens. ANIMALS Tissues from 99 dogs and 51 cats were examined as clinical cases at 8 veterinary institutions or practices in 5 countries. \n METHODS Histopathology slides from sequential cases that underwent endoscopic biopsy were submitted by participating institutions. Quality of the histologic section of tissue (inadequate, marginal, adequate), type of lesion (lymphangiectasia, crypt lesion, villus blunting, cellular infiltrate), and severity of lesion (normal, mild, moderate, severe) were determined. Sensitivity of different quality tissue samples for finding different lesions was determined. \n RESULTS Fewer samples were required from dogs for diagnosis as the quality of the sample improved from inadequate to marginal to adequate. Duodenal lesions in cats displayed the same trend except for moderate duodenal infiltrates for which quality of tissue sample made no difference. Gastric lesions in dogs and mild gastric lesions in cats had the same trend, whereas the number of tissue samples needed to diagnose moderately severe gastric lesions in cats was not affected by the quality of tissue sample. \n CONCLUSIONS AND CLINICAL IMPORTANCE The quality of endoscopically obtained tissue samples has a profound effect on their sensitivity for identifying certain lesions, and there are differences between biopsies of canine and feline tissues.", "title": "Effect of sample quality on the sensitivity of endoscopic biopsy for detecting gastric and duodenal lesions in dogs and cats." } ]
453
General exercise therapy is more effective than rotator cuff exercises in reducing pain and improving function of the shoulder.
[ { "docid": "4200695", "text": "OBJECTIVE To evaluate if a specific exercise strategy, targeting the rotator cuff and scapula stabilisers, improves shoulder function and pain more than unspecific exercises in patients with subacromial impingement syndrome, thereby decreasing the need for arthroscopic subacromial decompression. \n DESIGN Randomised, participant and single assessor blinded, controlled study. \n SETTING Department of orthopaedics in a Swedish university hospital. \n PARTICIPANTS 102 patients with long standing (over six months) persistent subacromial impingement syndrome in whom earlier conservative treatment had failed, recruited through orthopaedic specialists. \n INTERVENTIONS The specific exercise strategy consisted of strengthening eccentric exercises for the rotator cuff and concentric/eccentric exercises for the scapula stabilisers in combination with manual mobilisation. The control exercise programme consisted of unspecific movement exercises for the neck and shoulder. Patients in both groups received five to six individual guided treatment sessions during 12 weeks. In between these supervised sessions the participants performed home exercises once or twice a day for 12 weeks. \n MAIN OUTCOME MEASURES The primary outcome was the Constant-Murley shoulder assessment score evaluating shoulder function and pain. Secondary outcomes were patients' global impression of change because of treatment and decision regarding surgery. \n RESULTS Most (97, 95%) participants completed the 12 week study. There was a significantly greater improvement in the Constant-Murley score in the specific exercise group than in the control exercise group (24 points (95% confidence interval 19 to 28.0) v 9 points (5 to 13); mean difference between group: 15 points (8.5 to 20.6)). Significantly more patients in the specific exercise group reported successful outcome (defined as large improvement or recovered) in the patients' global assessment of change because of treatment: 69% (35/51) v 24% (11/46); odds ratio 7.6, 3.1 to 18.9; P<0.001. A significantly lower proportion of patients in the specific exercise group subsequently chose to undergo surgery: 20% (10/51) v 63% (29/46); odds ratio 7.7, 3.1 to 19.4; P<0.001). \n CONCLUSION A specific exercise strategy, focusing on strengthening eccentric exercises for the rotator cuff and concentric/eccentric exercises for the scapula stabilisers, is effective in reducing pain and improving shoulder function in patients with persistent subacromial impingement syndrome. By extension, this exercise strategy reduces the need for arthroscopic subacromial decompression within the three month timeframe used in the study. \n TRIAL REGISTRATION Clinical trials NCT01037673.", "title": "Effect of specific exercise strategy on need for surgery in patients with subacromial impingement syndrome: randomised controlled study" } ]
[ { "docid": "38493521", "text": "BACKGROUND While many treatments, including corticosteroid injections in and around the shoulder, are advocated to be of benefit for shoulder pain, few are of proven efficacy. This review of corticosteroid injections for shoulder pain is one in a series of reviews of varying interventions for shoulder disorders. \n OBJECTIVES To determine the efficacy and safety of corticosteroid injections in the treatment of adults with shoulder pain. SEARCH STRATEGY MEDLINE, EMBASE, CINAHL, Central and Science Citation Index were searched up to and including June 2002. SELECTION CRITERIA Randomised and pseudo-randomised trials in all languages of corticosteroid injections compared to placebo or another intervention, or of varying types and dosages of steroid injection in adults with shoulder pain. Specific exclusions were duration of shoulder pain less than three weeks, rheumatoid arthritis, polymyalgia rheumatica and fracture. \n DATA COLLECTION AND ANALYSIS Trial inclusion and methodological quality was assessed by two independent reviewers according to predetermined criteria. Results are presented separately for rotator cuff disease, adhesive capsulitis, full thickness rotator cuff tear and mixed diagnoses, and, where possible, combined in meta-analysis. \n MAIN RESULTS Twenty-six trials met inclusion criteria. The number, site and dosage of injections varied widely between studies. The number of participants per trial ranged from 20 to 114 (median 52 participants). Methodological quality was variable. For rotator cuff disease, subacromial steroid injection was demonstrated to have a small benefit over placebo in some trials however no benefit of subacromial steroid injection over NSAID was demonstrated based upon the pooled results of three trials. For adhesive capsulitis, two trials suggested a possible early benefit of intra-articular steroid injection over placebo but there was insufficient data for pooling of any of the trials. One trial suggested short-term benefit of intra-articular corticosteroid injection over physiotherapy in the short-term (success at seven weeks RR=1.66 (1.21, 2.28). REVIEWER'S CONCLUSIONS Despite many RCTs of corticosteroid injections for shoulder pain, their small sample sizes, variable methodological quality and heterogeneity means that there is little overall evidence to guide treatment. Subacromial corticosteroid injection for rotator cuff disease and intra-articular injection for adhesive capsulitis may be beneficial although their effect may be small and not well-maintained. There is a need for further trials investigating the efficacy of corticosteroid injections for shoulder pain. Other important issues that remain to be clarified include whether the accuracy of needle placement, anatomical site, frequency, dose and type of corticosteroid influences efficacy.", "title": "Corticosteroid injections for shoulder pain." }, { "docid": "44586415", "text": "QUESTION Do clinical tests accurately diagnose rotator cuff pathology? \n DESIGN A systematic review of investigations into the diagnostic accuracy of clinical tests for rotator cuff pathology. \n PARTICIPANTS People with shoulder pain who underwent clinical testing in order to diagnose rotator cuff pathology. \n OUTCOME MEASURES The diagnostic accuracy of clinical tests was determined using likelihood ratios. \n RESULTS Thirteen studies met the inclusion criteria. The 13 studies evaluated 14 clinical tests in 89 separate evaluations of diagnostic accuracy. Only one evaluation, palpation for supraspinatus ruptures, resulted in significant positive and negative likelihood ratios. Eight of the 89 evaluations resulted in either significant positive or negative likelihood ratios. However, none of these eight positive or negative likelihood ratios were found in other studies. Of the 89 evaluations of clinical tests 71 (80%) did not result in either significant positive or negative likelihood ratio evaluations across different studies. \n CONCLUSION Overall, most tests for rotator cuff pathology were inaccurate and cannot be recommended for clinical use. At best, suspicion of a rotator cuff tear may be heightened by a positive palpation, combined Hawkins/painful arc/infraspinatus test, Napoleon test, lift-off test, belly-press test, or drop-arm test, and it may be reduced by a negative palpation, empty can test or Hawkins-Kennedy test.", "title": "Most clinical tests cannot accurately diagnose rotator cuff pathology: a systematic review." }, { "docid": "11933721", "text": "UNLABELLED Biomechanical studies suggest a suture bridge technique enhances rotator cuff tendon footprint contact area, holding strength, and mean contact pressure. Based on these studies, we asked whether (1) the suture bridge technique would provide a high rate of cuff integrity after surgery, (2) the status of the repaired cuff would change with time, (3) preoperative factors could predict postoperative cuff integrity, and (4) patients with retears had less favorable pain, functional scores, range of motion (ROM), and muscle strength compared with those with intact repairs. We prospectively followed 78 patients with arthroscopic repairs in whom we used the suture bridge technique. The integrity of the rotator cuff repair was determined using ultrasonographic evaluation at 4.5 and 12 months after surgery. Ultrasonography revealed intact cuffs in 91% at 4.5 months postoperatively, all of which were maintained at the 12-month followup. Failure rates were 17.6% (three of 17) for massive tears, 11.1% (two of 18) for large tears, 6.3% (two of 32) for medium tears, and no failures for small tears. Preoperative fatty degeneration of the supraspinatus muscle was a strong predictor of cuff integrity. We found no correlation between the integrity and clinical outcomes except for a temporary decrease of abduction strength at 6 months. Arthroscopic repair using suture bridge technique can achieve a low retear rate in shoulders treated for rotator cuff tears, but the occurrence of retear did not influence the outcome. LEVEL OF EVIDENCE Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.", "title": "Does an arthroscopic suture bridge technique maintain repair integrity?: a serial evaluation by ultrasonography." }, { "docid": "53779698", "text": "INTRODUCTION Patients with symptomatic peripheral artery disease (PAD) exhibit reduced functional capacity and increased mortality due to cardiovascular disease. Although exercise has been a cornerstone for clinical treatment to improve walking capacity in patients with symptomatic PAD, its effects on cardiovascular parameters have been poorly explored. Areas covered: This review examines the role of exercise in improving blood pressure in patients with symptomatic PAD and summarizes the current evidence on the acute (single bout of exercise) and chronic effects of walking and resistance exercise on blood pressure and its determinants. Expert commentary: In patients with symptomatic PAD, exercise promotes acute and chronic reductions in blood pressure. These effects were observed particularly after walking and resistance exercise. Future studies are necessary to investigate the effects of other exercise modalities, especially non-painful exercises, on cardiovascular function in patients with symptomatic PAD.", "title": "Exercise as a therapeutic approach to improve blood pressure in patients with peripheral arterial disease: current literature and future directions." }, { "docid": "42950029", "text": "Rotator cuff tears account for almost 50% of major shoulder injuries but are sometimes difficult to diagnose. To aid diagnosis, we did a prospective study, comparing results of 23 clinical tests from 400 patients with and without rotator cuff tears. Three simple tests were predictive for rotator cuff tear: supraspinatus weakness, weakness in external rotation, and impingement. When all three were positive, or if two tests were positive and the patient was aged 60 or older, the individual had a 98% chance of having a rotator cuff tear; combined absence of these features excluded this diagnosis.", "title": "Diagnosis of rotator cuff tears." }, { "docid": "41976370", "text": "OBJECTIVE Our aim was to provide a quantitative assessment of the exposure-response relationships between work-related physical and psychosocial factors and the occurrence of specific shoulder disorders in occupational populations. \n METHODS A systematic review of the literature was conducted on the associations between type of work, physical load factors, and psychosocial aspects at work, on the one hand, and the occurrence of tendinitis of the biceps tendon, rotator cuff tears, subacromial impingement syndrome (SIS), and suprascapular nerve compression, on the other hand. Associations between work factors and shoulder disorders were expressed in quantitative measures as odds ratio (OR) or relative risk (RR). \n RESULTS The occurrence of SIS was associated with force requirements >10% maximal voluntary contraction (MVC), lifting >20 kg >10 times/day, and high-level of hand force >1 hour/day (OR 2.8-4.2). Repetitive movements of the shoulder, repetitive motion of the hand/wrist >2 hours/day, hand-arm vibration, and working with hand above shoulder level showed an association with SIS (OR 1.04-4.7) as did upper-arm flexion > or =45 degrees > or =15% of time (OR 2.43) and duty cycle of forceful exertions > or =9% time or duty cycle of forceful pinch >0% of time (OR 2.66). High psychosocial job demand was also associated with SIS (OR 1.5-3.19). Jobs in the fish processing industry had the highest risk for both tendinitis of the biceps tendon as well as SIS (OR 2.28 and 3.38, respectively). Work in a slaughterhouse and as a betel pepper leaf culler were associated with the occurrence of SIS only (OR 5.27 and 4.68, respectively). None of the included articles described the association between job title/risk factors and the occurrence of rotator cuff tears or suprascapular nerve compression. \n CONCLUSIONS Highly repetitive work, forceful exertion in work, awkward postures, and high psychosocial job demand are associated with the occurrence of SIS.", "title": "Associations between work-related factors and specific disorders of the shoulder--a systematic review of the literature." }, { "docid": "40631095", "text": "Increased dyspnea and reduced exercise capacity in pulmonary arterial hypertension (PAH) can be partly attributed to impaired respiratory muscle function. This prospective study was designed to assess the impact of exercise and respiratory training on respiratory muscle strength and 6-min walking distance (6MWD) in PAH patients. Patients with invasively confirmed PAH underwent 3 weeks of in-hospital exercise and respiratory training, which was continued at home for another 12 weeks. Medication remained constant during the study period. Blinded observers assessed efficacy parameters at baseline (I) and after 3 (II) and 15 weeks (III). Respiratory muscle function was assessed by twitch mouth pressure (TwPmo) during nonvolitional supramaximal magnetic phrenic nerve stimulation. Seven PAH patients (4 women; mean pulmonary artery pressure 45 ± 11 mmHg, median WHO functional class 3.1 ± 0.4, idiopathic/associated PAH n = 5/2) were included. The training program was feasible and well tolerated by all patients with excellent compliance. TwPmo was I: 0.86 ± 0.37 kPa, II: 1.04 ± 0.29 kPa, and III: 1.27 ± 0.44 kPa, respectively. 6MWD was I: 417 ± 51 m, II: 509 ± 39 m, and III: 498 ± 39 m, respectively. Both TwPmo (+0.41 ± 0.34 kPa, +56 ± 39 %) and 6MWD (+81 ± 30 m, +20 ± 9 %) increased significantly in the period between baseline and the final assessment (pairwise comparison: p = 0.012/<0.001; RM-ANOVA considering I, II, III: p = 0.037/<0.001). Exercise and respiratory training as an adjunct to medical therapy may be effective in patients with PAH to improve respiratory muscle strength and exercise capacity. Future, randomized, controlled trials should be carried out to further investigate these findings.", "title": "The Combination of Exercise and Respiratory Training Improves Respiratory Muscle Function in Pulmonary Hypertension" }, { "docid": "5687200", "text": "AIMS The aim of this study was to compare the effects of calorie-restricted vegetarian and conventional diabetic diets alone and in combination with exercise on insulin resistance, visceral fat and oxidative stress markers in subjects with Type 2 diabetes. \n METHODS A 24-week, randomized, open, parallel design was used. Seventy-four patients with Type 2 diabetes were randomly assigned to either the experimental group (n = 37), which received a vegetarian diet, or the control group (n = 37), which received a conventional diabetic diet. Both diets were isocaloric, calorie restricted (-500 kcal/day). All meals during the study were provided. The second 12 weeks of the diet were combined with aerobic exercise. Participants were examined at baseline, 12 weeks and 24 weeks. Primary outcomes were: insulin sensitivity measured by hyperinsulinaemic isoglycaemic clamp; volume of visceral and subcutaneous fat measured by magnetic resonance imaging; and oxidative stress measured by thiobarbituric acid reactive substances. Analyses were by intention to treat. \n RESULTS Forty-three per cent of participants in the experimental group and 5% of participants in the control group reduced diabetes medication (P < 0.001). Body weight decreased more in the experimental group than in the control group [-6.2 kg (95% CI -6.6 to -5.3) vs. -3.2 kg (95% CI -3.7 to -2.5); interaction group × time P = 0.001]. An increase in insulin sensitivity was significantly greater in the experimental group than in the control group [30% (95% CI 24.5-39) vs. 20% (95% CI 14-25), P = 0.04]. A reduction in both visceral and subcutaneous fat was greater in the experimental group than in the control group (P = 0.007 and P = 0.02, respectively). Plasma adiponectin increased (P = 0.02) and leptin decreased (P = 0.02) in the experimental group, with no change in the control group. Vitamin C, superoxide dismutase and reduced glutathione increased in the experimental group (P = 0.002, P < 0.001 and P = 0.02, respectively). Differences between groups were greater after the addition of exercise training. Changes in insulin sensitivity and enzymatic oxidative stress markers correlated with changes in visceral fat. \n CONCLUSIONS A calorie-restricted vegetarian diet had greater capacity to improve insulin sensitivity compared with a conventional diabetic diet over 24 weeks. The greater loss of visceral fat and improvements in plasma concentrations of adipokines and oxidative stress markers with this diet may be responsible for the reduction of insulin resistance. The addition of exercise training further augmented the improved outcomes with the vegetarian diet.", "title": "Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes" }, { "docid": "4164929", "text": "Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise.", "title": "The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise." }, { "docid": "2028532", "text": "The aims of this randomised controlled trial were to determine if a high-intensity functional exercise program improves balance, gait ability, and lower-limb strength in older persons dependent in activities of daily living and if an intake of protein-enriched energy supplement immediately after the exercises increases the effects of the training. One hundred and ninety-one older persons dependent in activities of daily living, living in residential care facilities, and with a Mini-Mental State Examination (MMSE) score of ? 10 participated. They were randomised to a high-intensity functional exercise program or a control activity, which included 29 sessions over 3 months, as well as to protein-enriched energy supplement or placebo. Berg Balance Scale, self-paced and maximum gait speed, and one-repetition maximum in lower-limb strength were followed-up at three and six months and analysed by 2 x 2 factorial ANCOVA, using the intention-to-treat principle. At three months, the exercise group had improved significantly in self-paced gait speed compared with the control group (mean difference 0.04 m/s, p = 0.02). At six months, there were significant improvements favouring the exercise group for Berg Balance Scale (1.9 points, p = 0.05), self-paced gait speed (0.05 m/s, p = 0.009), and lower-limb strength (10.8 kg, p = 0.03). No interaction effects were seen between the exercise and nutrition interventions. In conclusion, a high-intensity functional exercise program has positive long-term effects in balance, gait ability, and lower-limb strength for older persons dependent in activities of daily living. An intake of protein-enriched energy supplement immediately after the exercises does not appear to increase the effects of the training.", "title": "High-intensity functional exercise program and protein-enriched energy supplement for older persons dependent in activities of daily living: a randomised controlled trial." }, { "docid": "40164383", "text": "CONTEXT Mesenchymal stem cells (MSCs) are under evaluation as a therapy for ischemic cardiomyopathy (ICM). Both autologous and allogeneic MSC therapies are possible; however, their safety and efficacy have not been compared. \n OBJECTIVE To test whether allogeneic MSCs are as safe and effective as autologous MSCs in patients with left ventricular (LV) dysfunction due to ICM. \n DESIGN, SETTING, AND PATIENTS A phase 1/2 randomized comparison (POSEIDON study) in a US tertiary-care referral hospital of allogeneic and autologous MSCs in 30 patients with LV dysfunction due to ICM between April 2, 2010, and September 14, 2011, with 13-month follow-up. \n INTERVENTION Twenty million, 100 million, or 200 million cells (5 patients in each cell type per dose level) were delivered by transendocardial stem cell injection into 10 LV sites. \n MAIN OUTCOME MEASURES Thirty-day postcatheterization incidence of predefined treatment-emergent serious adverse events (SAEs). Efficacy assessments included 6-minute walk test, exercise peak VO2, Minnesota Living with Heart Failure Questionnaire (MLHFQ), New York Heart Association class, LV volumes, ejection fraction (EF), early enhancement defect (EED; infarct size), and sphericity index. \n RESULTS Within 30 days, 1 patient in each group (treatment-emergent SAE rate, 6.7%) was hospitalized for heart failure, less than the prespecified stopping event rate of 25%. The 1-year incidence of SAEs was 33.3% (n = 5) in the allogeneic group and 53.3% (n = 8) in the autologous group (P = .46). At 1 year, there were no ventricular arrhythmia SAEs observed among allogeneic recipients compared with 4 patients (26.7%) in the autologous group (P = .10). Relative to baseline, autologous but not allogeneic MSC therapy was associated with an improvement in the 6-minute walk test and the MLHFQ score, but neither improved exercise VO2 max. Allogeneic and autologous MSCs reduced mean EED by −33.21% (95% CI, −43.61% to −22.81%; P < .001) and sphericity index but did not increase EF. Allogeneic MSCs reduced LV end-diastolic volumes. Low-dose concentration MSCs (20 million cells) produced greatest reductions in LV volumes and increased EF. Allogeneic MSCs did not stimulate significant donor-specific alloimmune reactions. \n CONCLUSIONS In this early-stage study of patients with ICM, transendocardial injection of allogeneic and autologous MSCs without a placebo control were both associated with low rates of treatment-emergent SAEs, including immunologic reactions. In aggregate, MSC injection favorably affected patient functional capacity, quality of life, and ventricular remodeling. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01087996.", "title": "Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial." }, { "docid": "52175065", "text": "KEY POINTS The vascular endothelial growth factor (VEGF) responses to acute submaximal exercise and training effects in patients with heart failure with reduced ejection fraction (HFrEF) were investigated. Six patients and six healthy matched controls performed knee-extensor exercise (KE) at 50% of maximum work rate before and after (only patients) KE training. Muscle biopsies were taken to assess skeletal muscle structure and the angiogenic response. Before training, during this submaximal KE exercise, patients with HFrEF exhibited higher leg vascular resistance and greater noradrenaline spillover. Skeletal muscle structure and VEGF response were generally not different between groups. Following training, resistance was no longer elevated and noradrenaline spillover was curtailed in the patients. Although, in the trained state, VEGF did not respond to acute exercise, capillarity was augmented. Muscle fibre cross-sectional area and percentage area of type I fibres increased and mitochondrial volume density exceeded that of controls. Structural/functional plasticity and appropriate angiogenic signalling were observed in skeletal muscle of patients with HFrEF. ABSTRACT This study examined the response to acute submaximal exercise and the effect of training in patients with heart failure with reduced ejection fraction (HFrEF). The acute angiogenic response to submaximal exercise in HFrEF after small muscle mass training is debated. The direct Fick method, with vascular pressures, was performed across the leg during knee-extensor exercise (KE) at 50% of maximum work rate (WRmax ) in patients (n = 6) and controls (n = 6) and then after KE training in patients. Muscle biopsies facilitated the assessment of skeletal muscle structure and vascular endothelial growth factor (VEGF) mRNA levels. Prior to training, HFrEF exhibited significantly higher leg vascular resistance (LVR) (≈15%) and significantly greater noradrenaline spillover (≈385%). Apart from mitochondrial volume density, which was significantly lower (≈22%) in HFrEF, initial skeletal muscle structure, including capillarity, was not different between groups. Resting VEGF mRNA levels, and the increase with exercise, was not different between patients and controls. Following training, LVR was no longer elevated and noradrenaline spillover was curtailed. Skeletal muscle capillarity increased with training, as assessed by capillary-to-fibre ratio (≈13%) and number of capillaries around a fibre (NCAF ) (≈19%). VEGF mRNA was now not significantly increased by acute exercise. Muscle fibre cross-sectional area and percentage area of type I fibres both increased significantly with training (≈18% and ≈21%, respectively), while the percentage area of type II fibres fell significantly (≈11%), and mitochondrial volume density now exceeded that of controls. These data reveal structural and functional plasticity and appropriate angiogenic signalling in skeletal muscle of HFrEF patients.", "title": "Acute and chronic exercise in patients with heart failure with reduced ejection fraction: evidence of structural and functional plasticity and intact angiogenic signalling in skeletal muscle" }, { "docid": "17691617", "text": "OBJECTIVES To investigate the effects of a high-intensity functional exercise program on independence in activities of daily living (ADLs) and balance in older people with dementia and whether exercise effects differed between dementia types. \n DESIGN Cluster-randomized controlled trial: Umeå Dementia and Exercise (UMDEX) study. \n SETTING Residential care facilities, Umeå, Sweden. \n PARTICIPANTS Individuals aged 65 and older with a dementia diagnosis, a Mini-Mental State Examination score of 10 or greater, and dependence in ADLs (N=186). \n INTERVENTION Ninety-three participants each were allocated to the high-intensity functional exercise program, comprising lower limb strength and balance exercises, and 93 to a seated control activity. \n MEASUREMENTS Blinded assessors measured ADL independence using the Functional Independence Measure (FIM) and Barthel Index (BI) and balance using the Berg Balance Scale (BBS) at baseline and 4 (directly after intervention completion) and 7 months. \n RESULTS Linear mixed models showed no between-group effect on ADL independence at 4 (FIM=1.3, 95% confidence interval (CI)=-1.6-4.3; BI=0.6, 95% CI=-0.2-1.4) or 7 (FIM=0.8, 95% CI=-2.2-3.8; BI=0.6, 95% CI=-0.3-1.4) months. A significant between-group effect on balance favoring exercise was observed at 4 months (BBS=4.2, 95% CI=1.8-6.6). In interaction analyses, exercise effects differed significantly between dementia types. Positive between-group exercise effects were found in participants with non-Alzheimer's dementia according to the FIM at 7 months and BI and BBS at 4 and 7 months. \n CONCLUSION In older people with mild to moderate dementia living in residential care facilities, a 4-month high-intensity functional exercise program appears to slow decline in ADL independence and improve balance, albeit only in participants with non-Alzheimer's dementia.", "title": "Effects of a High-Intensity Functional Exercise Program on Dependence in Activities of Daily Living and Balance in Older Adults with Dementia" }, { "docid": "4463588", "text": "BACKGROUND Little is known about how the intensity of exercise influences cardiovascular fitness and body composition, especially in obese adolescents. \n OBJECTIVE Our goal was to determine the effects of physical training intensity on the cardiovascular fitness, percentage of body fat (%BF), and visceral adipose tissue (VAT) of obese adolescents. \n DESIGN Obese 13-16-y-olds (n = 80) were assigned to 1) biweekly lifestyle education (LSE), 2) LSE + moderate-intensity physical training, or 3) LSE + high-intensity physical training. The intervention lasted 8 mo. Physical training was offered 5 d/wk, and the target energy expenditure for all subjects in physical training groups was 1047 kJ (250 kcal)/session. Cardiovascular fitness was measured with a multistage treadmill test, %BF with dual-energy X-ray absorptiometry, and VAT with magnetic resonance imaging. \n RESULTS The increase in cardiovascular fitness in the high-intensity physical training group, but not in the moderate-intensity group, was significantly greater than that in the LSE alone group (P = 0.009); no other comparisons of the 3 groups were significant. Compared with the LSE alone group, a group composed of subjects in both physical training groups combined who attended training sessions >or=2 d/wk showed favorable changes in cardiovascular fitness (P < 0.001), %BF (P = 0.001), and VAT (P = 0.029). We found no evidence that the high-intensity physical training was more effective than the moderate-intensity physical training in enhancing body composition. \n CONCLUSIONS The cardiovascular fitness of obese adolescents was significantly improved by physical training, especially high-intensity physical training. The physical training also reduced both visceral and total-body adiposity, but there was no clear effect of the intensity of physical training.", "title": "Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents." }, { "docid": "2242416", "text": "The present study was designed to determine the effects of physical training on the development of cancer induced by the injection of Ehrlich tumor cells in mice. Male Swiss mice were subjected to a swim training protocol (5 days/wk for 6 wk, 1 h at 50% of maximal capacity-trained groups) or remained sedentary in their cages (sedentary groups). The inoculation of Ehrlich tumor cells was performed at the end of the fourth week, and animals were killed after 6 wk of training. Heart and solid tumor weights were recorded, and tumor volumes were calculated. Portions of the tumors were used for the evaluation of macrophages and neutrophil accumulation or fixed in neutral 10% buffered formalin for histological analysis. The tumor volume and weight were, respectively, approximately 270% and 280% greater in sedentary mice than in trained mice. Macrophage infiltration in the tumor tissue was significantly lower in trained mice (0.65 +/- 0.16 vs. 1.78 +/- 0.43 macrophages x 10(3) in the sedentary group). Moreover, neutrophil accumulation in tumors was slightly reduced after exercise training, and the amount of tumor cells was reduced in trained mice. Exercise capacity was substantially increased in trained mice, as determined by a 440% increase in the exercise time at 50% of maximal capacity. In summary, swim training retarded the development of Ehrlich tumors in mice, accompanied by a reduction in macrophage infiltration and neutrophil accumulation. These findings provide conceptual support for clinical observations that controlled physical activities may be a therapeutically important approach to preventing cancer progression and may improve the outcome of cancer treatment.", "title": "Swim training suppresses tumor growth in mice." }, { "docid": "2820454", "text": "BACKGROUND Pulmonary hypertension (PH) is associated with restricted physical capacity, limited quality of life, and a poor prognosis because of right heart failure. The present study is the first prospective randomized study to evaluate the effects of exercise and respiratory training in patients with severe symptomatic PH. \n METHODS AND RESULTS Thirty patients with PH (21 women; mean age, 50+/-13 years; mean pulmonary artery pressure, 50+/-15 mm Hg; mean World Health Organization [WHO] class, 2.9+/-0.5; pulmonary arterial hypertension, n=23; chronic thromboembolic PH, n=7) on stable disease-targeted medication were randomly assigned to a control (n=15) and a primary training (n=15) group. Medication remained unchanged during the study period. Primary end points were the changes from baseline to week 15 in the distance walked in 6 minutes and in scores of the Short Form Health Survey quality-of-life questionnaire. Changes in WHO functional class, Borg scale, and parameters of echocardiography and gas exchange also were assessed. At week 15, patients in the primary and secondary training groups had an improved 6-minute walking distance; the mean difference between the control and the primary training group was 111 m (95% confidence interval, 65 to 139 m; P<0.001). Exercise training was well tolerated and improved scores of quality of life, WHO functional class, peak oxygen consumption, oxygen consumption at the anaerobic threshold, and achieved workload. Systolic pulmonary artery pressure values at rest did not change significantly after 15 weeks of exercise and respiratory training (from 61+/-18 to 54+/-18 mm Hg) within the training group. \n CONCLUSIONS This study indicates that respiratory and physical training could be a promising adjunct to medical treatment in severe PH. The effects add to the beneficial results of modern medical treatment.", "title": "Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension." }, { "docid": "40817021", "text": "CONTEXT Findings from previous studies of the effects of exercise training on patient-reported health status have been inconsistent. \n OBJECTIVE To test the effects of exercise training on health status among patients with heart failure. \n DESIGN, SETTING, AND PATIENTS Multicenter, randomized controlled trial among 2331 medically stable outpatients with heart failure with left ventricular ejection fraction of 35% or less. Patients were randomized from April 2003 through February 2007. \n INTERVENTIONS Usual care plus aerobic exercise training (n = 1172), consisting of 36 supervised sessions followed by home-based training, vs usual care alone (n = 1159). Randomization was stratified by heart failure etiology, which was a covariate in all models. \n MAIN OUTCOME MEASURES Kansas City Cardiomyopathy Questionnaire (KCCQ) overall summary scale and key subscales at baseline, every 3 months for 12 months, and annually thereafter for up to 4 years. The KCCQ is scored from 0 to 100 with higher scores corresponding to better health status. Treatment group effects were estimated using linear mixed models according to the intention-to-treat principle. \n RESULTS Median follow-up was 2.5 years. At 3 months, usual care plus exercise training led to greater improvement in the KCCQ overall summary score (mean, 5.21; 95% confidence interval, 4.42 to 6.00) compared with usual care alone (3.28; 95% confidence interval, 2.48 to 4.09). The additional 1.93-point increase (95% confidence interval, 0.84 to 3.01) in the exercise training group was statistically significant (P < .001). After 3 months, there were no further significant changes in KCCQ score for either group (P = .85 for the difference between slopes), resulting in a sustained, greater improvement overall for the exercise group (P < .001). Results were similar on the KCCQ subscales, and no subgroup interactions were detected. \n CONCLUSIONS Exercise training conferred modest but statistically significant improvements in self-reported health status compared with usual care without training. Improvements occurred early and persisted over time. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00047437.", "title": "Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial." }, { "docid": "2774906", "text": "Physical activity protects against cardiovascular disease, and physiological cardiac hypertrophy associated with regular exercise is usually beneficial, in marked contrast to pathological hypertrophy associated with disease. The p110alpha isoform of phosphoinositide 3-kinase (PI3K) plays a critical role in the induction of exercise-induced hypertrophy. Whether it or other genes activated in the athlete's heart might have an impact on cardiac function and survival in a setting of heart failure is unknown. To examine whether progressive exercise training and PI3K(p110alpha) activity affect survival and/or cardiac function in two models of heart disease, we subjected a transgenic mouse model of dilated cardiomyopathy (DCM) to swim training, genetically crossed cardiac-specific transgenic mice with increased or decreased PI3K(p110alpha) activity to the DCM model, and subjected PI3K(p110alpha) transgenics to acute pressure overload (ascending aortic constriction). Life-span, cardiac function, and molecular markers of pathological hypertrophy were examined. Exercise training and increased cardiac PI3K(p110alpha) activity prolonged survival in the DCM model by 15-20%. In contrast, reduced PI3K(p110alpha) activity drastically shortened lifespan by approximately 50%. Increased PI3K(p110alpha) activity had a favorable effect on cardiac function and fibrosis in the pressure-overload model and attenuated pathological growth. PI3K(p110alpha) signaling negatively regulated G protein-coupled receptor stimulated extracellular responsive kinase and Akt (via PI3K, p110gamma) activation in isolated cardiomyocytes. These findings suggest that exercise and enhanced PI3K(p110alpha) activity delay or prevent progression of heart disease, and that supraphysiologic activity can be beneficial. Identification of genes important for hypertrophy in the athlete's heart could offer new strategies for treating heart failure.", "title": "Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy." }, { "docid": "35271381", "text": "Aerobic exercise training induces an increase in coronary blood flow capacity that is associated with altered control of coronary vascular resistance and, therefore, coronary blood flow. The relative importance of metabolic, myogenic, endothelium-mediated, and neurohumoral control systems varies throughout the coronary arterial tree, and these control systems contribute in parallel to regulating coronary vascular resistance to differing degrees at each level in the coronary arterial tree. In addition to this nonuniformity of the relative importance of vascular control systems in the coronary arterial tree, it appears that exercise training-induced adaptations are also distributed spatially, in a nonuniform manner throughout the coronary tree. As a result, it is necessary to examine training-induced adaptations throughout the coronary arterial tree. Adaptations in endothelium-mediated control play a role in training-induced changes in control of coronary vascular resistance, and there is evidence that the effects of training may be different in large coronary arteries than in the microcirculation. Also, there is evidence that the mode, frequency, and intensity of exercise training bouts and duration of training may influence the adaptive changes in endothelial function. Exercise training has also been shown to induce changes in responses of coronary vascular smooth muscle to vasoactive agents and alterations in the cellular-molecular control of intracellular Ca2+ in coronary vascular smooth muscle of conduit coronary arteries and to enhance myogenic reactivity of coronary resistance arteries. Exercise training also appears to have different effects on vascular smooth muscle in large coronary arteries than in the microcirculation. For example, adenosine sensitivity is increased in conduit coronary arteries and large resistance arteries after training but is not altered in small coronary resistance arteries of trained animals. Although much remains to be studied, evidence clearly indicates that chronic exercise alters the phenotype of coronary endothelial and vascular smooth muscle cells and that plasticity of these cells plays a role in adaptation of the cardiovascular system in exercise training.", "title": "Exercise training-induced adaptations in the coronary circulation." } ]
454
General exercise therapy is more effective than scapular stabilizer exercises in reducing pain and improving function of the shoulder.
[ { "docid": "4200695", "text": "OBJECTIVE To evaluate if a specific exercise strategy, targeting the rotator cuff and scapula stabilisers, improves shoulder function and pain more than unspecific exercises in patients with subacromial impingement syndrome, thereby decreasing the need for arthroscopic subacromial decompression. \n DESIGN Randomised, participant and single assessor blinded, controlled study. \n SETTING Department of orthopaedics in a Swedish university hospital. \n PARTICIPANTS 102 patients with long standing (over six months) persistent subacromial impingement syndrome in whom earlier conservative treatment had failed, recruited through orthopaedic specialists. \n INTERVENTIONS The specific exercise strategy consisted of strengthening eccentric exercises for the rotator cuff and concentric/eccentric exercises for the scapula stabilisers in combination with manual mobilisation. The control exercise programme consisted of unspecific movement exercises for the neck and shoulder. Patients in both groups received five to six individual guided treatment sessions during 12 weeks. In between these supervised sessions the participants performed home exercises once or twice a day for 12 weeks. \n MAIN OUTCOME MEASURES The primary outcome was the Constant-Murley shoulder assessment score evaluating shoulder function and pain. Secondary outcomes were patients' global impression of change because of treatment and decision regarding surgery. \n RESULTS Most (97, 95%) participants completed the 12 week study. There was a significantly greater improvement in the Constant-Murley score in the specific exercise group than in the control exercise group (24 points (95% confidence interval 19 to 28.0) v 9 points (5 to 13); mean difference between group: 15 points (8.5 to 20.6)). Significantly more patients in the specific exercise group reported successful outcome (defined as large improvement or recovered) in the patients' global assessment of change because of treatment: 69% (35/51) v 24% (11/46); odds ratio 7.6, 3.1 to 18.9; P<0.001. A significantly lower proportion of patients in the specific exercise group subsequently chose to undergo surgery: 20% (10/51) v 63% (29/46); odds ratio 7.7, 3.1 to 19.4; P<0.001). \n CONCLUSION A specific exercise strategy, focusing on strengthening eccentric exercises for the rotator cuff and concentric/eccentric exercises for the scapula stabilisers, is effective in reducing pain and improving shoulder function in patients with persistent subacromial impingement syndrome. By extension, this exercise strategy reduces the need for arthroscopic subacromial decompression within the three month timeframe used in the study. \n TRIAL REGISTRATION Clinical trials NCT01037673.", "title": "Effect of specific exercise strategy on need for surgery in patients with subacromial impingement syndrome: randomised controlled study" } ]
[ { "docid": "53779698", "text": "INTRODUCTION Patients with symptomatic peripheral artery disease (PAD) exhibit reduced functional capacity and increased mortality due to cardiovascular disease. Although exercise has been a cornerstone for clinical treatment to improve walking capacity in patients with symptomatic PAD, its effects on cardiovascular parameters have been poorly explored. Areas covered: This review examines the role of exercise in improving blood pressure in patients with symptomatic PAD and summarizes the current evidence on the acute (single bout of exercise) and chronic effects of walking and resistance exercise on blood pressure and its determinants. Expert commentary: In patients with symptomatic PAD, exercise promotes acute and chronic reductions in blood pressure. These effects were observed particularly after walking and resistance exercise. Future studies are necessary to investigate the effects of other exercise modalities, especially non-painful exercises, on cardiovascular function in patients with symptomatic PAD.", "title": "Exercise as a therapeutic approach to improve blood pressure in patients with peripheral arterial disease: current literature and future directions." }, { "docid": "40631095", "text": "Increased dyspnea and reduced exercise capacity in pulmonary arterial hypertension (PAH) can be partly attributed to impaired respiratory muscle function. This prospective study was designed to assess the impact of exercise and respiratory training on respiratory muscle strength and 6-min walking distance (6MWD) in PAH patients. Patients with invasively confirmed PAH underwent 3 weeks of in-hospital exercise and respiratory training, which was continued at home for another 12 weeks. Medication remained constant during the study period. Blinded observers assessed efficacy parameters at baseline (I) and after 3 (II) and 15 weeks (III). Respiratory muscle function was assessed by twitch mouth pressure (TwPmo) during nonvolitional supramaximal magnetic phrenic nerve stimulation. Seven PAH patients (4 women; mean pulmonary artery pressure 45 ± 11 mmHg, median WHO functional class 3.1 ± 0.4, idiopathic/associated PAH n = 5/2) were included. The training program was feasible and well tolerated by all patients with excellent compliance. TwPmo was I: 0.86 ± 0.37 kPa, II: 1.04 ± 0.29 kPa, and III: 1.27 ± 0.44 kPa, respectively. 6MWD was I: 417 ± 51 m, II: 509 ± 39 m, and III: 498 ± 39 m, respectively. Both TwPmo (+0.41 ± 0.34 kPa, +56 ± 39 %) and 6MWD (+81 ± 30 m, +20 ± 9 %) increased significantly in the period between baseline and the final assessment (pairwise comparison: p = 0.012/<0.001; RM-ANOVA considering I, II, III: p = 0.037/<0.001). Exercise and respiratory training as an adjunct to medical therapy may be effective in patients with PAH to improve respiratory muscle strength and exercise capacity. Future, randomized, controlled trials should be carried out to further investigate these findings.", "title": "The Combination of Exercise and Respiratory Training Improves Respiratory Muscle Function in Pulmonary Hypertension" }, { "docid": "5687200", "text": "AIMS The aim of this study was to compare the effects of calorie-restricted vegetarian and conventional diabetic diets alone and in combination with exercise on insulin resistance, visceral fat and oxidative stress markers in subjects with Type 2 diabetes. \n METHODS A 24-week, randomized, open, parallel design was used. Seventy-four patients with Type 2 diabetes were randomly assigned to either the experimental group (n = 37), which received a vegetarian diet, or the control group (n = 37), which received a conventional diabetic diet. Both diets were isocaloric, calorie restricted (-500 kcal/day). All meals during the study were provided. The second 12 weeks of the diet were combined with aerobic exercise. Participants were examined at baseline, 12 weeks and 24 weeks. Primary outcomes were: insulin sensitivity measured by hyperinsulinaemic isoglycaemic clamp; volume of visceral and subcutaneous fat measured by magnetic resonance imaging; and oxidative stress measured by thiobarbituric acid reactive substances. Analyses were by intention to treat. \n RESULTS Forty-three per cent of participants in the experimental group and 5% of participants in the control group reduced diabetes medication (P < 0.001). Body weight decreased more in the experimental group than in the control group [-6.2 kg (95% CI -6.6 to -5.3) vs. -3.2 kg (95% CI -3.7 to -2.5); interaction group × time P = 0.001]. An increase in insulin sensitivity was significantly greater in the experimental group than in the control group [30% (95% CI 24.5-39) vs. 20% (95% CI 14-25), P = 0.04]. A reduction in both visceral and subcutaneous fat was greater in the experimental group than in the control group (P = 0.007 and P = 0.02, respectively). Plasma adiponectin increased (P = 0.02) and leptin decreased (P = 0.02) in the experimental group, with no change in the control group. Vitamin C, superoxide dismutase and reduced glutathione increased in the experimental group (P = 0.002, P < 0.001 and P = 0.02, respectively). Differences between groups were greater after the addition of exercise training. Changes in insulin sensitivity and enzymatic oxidative stress markers correlated with changes in visceral fat. \n CONCLUSIONS A calorie-restricted vegetarian diet had greater capacity to improve insulin sensitivity compared with a conventional diabetic diet over 24 weeks. The greater loss of visceral fat and improvements in plasma concentrations of adipokines and oxidative stress markers with this diet may be responsible for the reduction of insulin resistance. The addition of exercise training further augmented the improved outcomes with the vegetarian diet.", "title": "Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes" }, { "docid": "4164929", "text": "Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise.", "title": "The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise." }, { "docid": "2028532", "text": "The aims of this randomised controlled trial were to determine if a high-intensity functional exercise program improves balance, gait ability, and lower-limb strength in older persons dependent in activities of daily living and if an intake of protein-enriched energy supplement immediately after the exercises increases the effects of the training. One hundred and ninety-one older persons dependent in activities of daily living, living in residential care facilities, and with a Mini-Mental State Examination (MMSE) score of ? 10 participated. They were randomised to a high-intensity functional exercise program or a control activity, which included 29 sessions over 3 months, as well as to protein-enriched energy supplement or placebo. Berg Balance Scale, self-paced and maximum gait speed, and one-repetition maximum in lower-limb strength were followed-up at three and six months and analysed by 2 x 2 factorial ANCOVA, using the intention-to-treat principle. At three months, the exercise group had improved significantly in self-paced gait speed compared with the control group (mean difference 0.04 m/s, p = 0.02). At six months, there were significant improvements favouring the exercise group for Berg Balance Scale (1.9 points, p = 0.05), self-paced gait speed (0.05 m/s, p = 0.009), and lower-limb strength (10.8 kg, p = 0.03). No interaction effects were seen between the exercise and nutrition interventions. In conclusion, a high-intensity functional exercise program has positive long-term effects in balance, gait ability, and lower-limb strength for older persons dependent in activities of daily living. An intake of protein-enriched energy supplement immediately after the exercises does not appear to increase the effects of the training.", "title": "High-intensity functional exercise program and protein-enriched energy supplement for older persons dependent in activities of daily living: a randomised controlled trial." }, { "docid": "40164383", "text": "CONTEXT Mesenchymal stem cells (MSCs) are under evaluation as a therapy for ischemic cardiomyopathy (ICM). Both autologous and allogeneic MSC therapies are possible; however, their safety and efficacy have not been compared. \n OBJECTIVE To test whether allogeneic MSCs are as safe and effective as autologous MSCs in patients with left ventricular (LV) dysfunction due to ICM. \n DESIGN, SETTING, AND PATIENTS A phase 1/2 randomized comparison (POSEIDON study) in a US tertiary-care referral hospital of allogeneic and autologous MSCs in 30 patients with LV dysfunction due to ICM between April 2, 2010, and September 14, 2011, with 13-month follow-up. \n INTERVENTION Twenty million, 100 million, or 200 million cells (5 patients in each cell type per dose level) were delivered by transendocardial stem cell injection into 10 LV sites. \n MAIN OUTCOME MEASURES Thirty-day postcatheterization incidence of predefined treatment-emergent serious adverse events (SAEs). Efficacy assessments included 6-minute walk test, exercise peak VO2, Minnesota Living with Heart Failure Questionnaire (MLHFQ), New York Heart Association class, LV volumes, ejection fraction (EF), early enhancement defect (EED; infarct size), and sphericity index. \n RESULTS Within 30 days, 1 patient in each group (treatment-emergent SAE rate, 6.7%) was hospitalized for heart failure, less than the prespecified stopping event rate of 25%. The 1-year incidence of SAEs was 33.3% (n = 5) in the allogeneic group and 53.3% (n = 8) in the autologous group (P = .46). At 1 year, there were no ventricular arrhythmia SAEs observed among allogeneic recipients compared with 4 patients (26.7%) in the autologous group (P = .10). Relative to baseline, autologous but not allogeneic MSC therapy was associated with an improvement in the 6-minute walk test and the MLHFQ score, but neither improved exercise VO2 max. Allogeneic and autologous MSCs reduced mean EED by −33.21% (95% CI, −43.61% to −22.81%; P < .001) and sphericity index but did not increase EF. Allogeneic MSCs reduced LV end-diastolic volumes. Low-dose concentration MSCs (20 million cells) produced greatest reductions in LV volumes and increased EF. Allogeneic MSCs did not stimulate significant donor-specific alloimmune reactions. \n CONCLUSIONS In this early-stage study of patients with ICM, transendocardial injection of allogeneic and autologous MSCs without a placebo control were both associated with low rates of treatment-emergent SAEs, including immunologic reactions. In aggregate, MSC injection favorably affected patient functional capacity, quality of life, and ventricular remodeling. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01087996.", "title": "Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial." }, { "docid": "52175065", "text": "KEY POINTS The vascular endothelial growth factor (VEGF) responses to acute submaximal exercise and training effects in patients with heart failure with reduced ejection fraction (HFrEF) were investigated. Six patients and six healthy matched controls performed knee-extensor exercise (KE) at 50% of maximum work rate before and after (only patients) KE training. Muscle biopsies were taken to assess skeletal muscle structure and the angiogenic response. Before training, during this submaximal KE exercise, patients with HFrEF exhibited higher leg vascular resistance and greater noradrenaline spillover. Skeletal muscle structure and VEGF response were generally not different between groups. Following training, resistance was no longer elevated and noradrenaline spillover was curtailed in the patients. Although, in the trained state, VEGF did not respond to acute exercise, capillarity was augmented. Muscle fibre cross-sectional area and percentage area of type I fibres increased and mitochondrial volume density exceeded that of controls. Structural/functional plasticity and appropriate angiogenic signalling were observed in skeletal muscle of patients with HFrEF. ABSTRACT This study examined the response to acute submaximal exercise and the effect of training in patients with heart failure with reduced ejection fraction (HFrEF). The acute angiogenic response to submaximal exercise in HFrEF after small muscle mass training is debated. The direct Fick method, with vascular pressures, was performed across the leg during knee-extensor exercise (KE) at 50% of maximum work rate (WRmax ) in patients (n = 6) and controls (n = 6) and then after KE training in patients. Muscle biopsies facilitated the assessment of skeletal muscle structure and vascular endothelial growth factor (VEGF) mRNA levels. Prior to training, HFrEF exhibited significantly higher leg vascular resistance (LVR) (≈15%) and significantly greater noradrenaline spillover (≈385%). Apart from mitochondrial volume density, which was significantly lower (≈22%) in HFrEF, initial skeletal muscle structure, including capillarity, was not different between groups. Resting VEGF mRNA levels, and the increase with exercise, was not different between patients and controls. Following training, LVR was no longer elevated and noradrenaline spillover was curtailed. Skeletal muscle capillarity increased with training, as assessed by capillary-to-fibre ratio (≈13%) and number of capillaries around a fibre (NCAF ) (≈19%). VEGF mRNA was now not significantly increased by acute exercise. Muscle fibre cross-sectional area and percentage area of type I fibres both increased significantly with training (≈18% and ≈21%, respectively), while the percentage area of type II fibres fell significantly (≈11%), and mitochondrial volume density now exceeded that of controls. These data reveal structural and functional plasticity and appropriate angiogenic signalling in skeletal muscle of HFrEF patients.", "title": "Acute and chronic exercise in patients with heart failure with reduced ejection fraction: evidence of structural and functional plasticity and intact angiogenic signalling in skeletal muscle" }, { "docid": "17691617", "text": "OBJECTIVES To investigate the effects of a high-intensity functional exercise program on independence in activities of daily living (ADLs) and balance in older people with dementia and whether exercise effects differed between dementia types. \n DESIGN Cluster-randomized controlled trial: Umeå Dementia and Exercise (UMDEX) study. \n SETTING Residential care facilities, Umeå, Sweden. \n PARTICIPANTS Individuals aged 65 and older with a dementia diagnosis, a Mini-Mental State Examination score of 10 or greater, and dependence in ADLs (N=186). \n INTERVENTION Ninety-three participants each were allocated to the high-intensity functional exercise program, comprising lower limb strength and balance exercises, and 93 to a seated control activity. \n MEASUREMENTS Blinded assessors measured ADL independence using the Functional Independence Measure (FIM) and Barthel Index (BI) and balance using the Berg Balance Scale (BBS) at baseline and 4 (directly after intervention completion) and 7 months. \n RESULTS Linear mixed models showed no between-group effect on ADL independence at 4 (FIM=1.3, 95% confidence interval (CI)=-1.6-4.3; BI=0.6, 95% CI=-0.2-1.4) or 7 (FIM=0.8, 95% CI=-2.2-3.8; BI=0.6, 95% CI=-0.3-1.4) months. A significant between-group effect on balance favoring exercise was observed at 4 months (BBS=4.2, 95% CI=1.8-6.6). In interaction analyses, exercise effects differed significantly between dementia types. Positive between-group exercise effects were found in participants with non-Alzheimer's dementia according to the FIM at 7 months and BI and BBS at 4 and 7 months. \n CONCLUSION In older people with mild to moderate dementia living in residential care facilities, a 4-month high-intensity functional exercise program appears to slow decline in ADL independence and improve balance, albeit only in participants with non-Alzheimer's dementia.", "title": "Effects of a High-Intensity Functional Exercise Program on Dependence in Activities of Daily Living and Balance in Older Adults with Dementia" }, { "docid": "4463588", "text": "BACKGROUND Little is known about how the intensity of exercise influences cardiovascular fitness and body composition, especially in obese adolescents. \n OBJECTIVE Our goal was to determine the effects of physical training intensity on the cardiovascular fitness, percentage of body fat (%BF), and visceral adipose tissue (VAT) of obese adolescents. \n DESIGN Obese 13-16-y-olds (n = 80) were assigned to 1) biweekly lifestyle education (LSE), 2) LSE + moderate-intensity physical training, or 3) LSE + high-intensity physical training. The intervention lasted 8 mo. Physical training was offered 5 d/wk, and the target energy expenditure for all subjects in physical training groups was 1047 kJ (250 kcal)/session. Cardiovascular fitness was measured with a multistage treadmill test, %BF with dual-energy X-ray absorptiometry, and VAT with magnetic resonance imaging. \n RESULTS The increase in cardiovascular fitness in the high-intensity physical training group, but not in the moderate-intensity group, was significantly greater than that in the LSE alone group (P = 0.009); no other comparisons of the 3 groups were significant. Compared with the LSE alone group, a group composed of subjects in both physical training groups combined who attended training sessions >or=2 d/wk showed favorable changes in cardiovascular fitness (P < 0.001), %BF (P = 0.001), and VAT (P = 0.029). We found no evidence that the high-intensity physical training was more effective than the moderate-intensity physical training in enhancing body composition. \n CONCLUSIONS The cardiovascular fitness of obese adolescents was significantly improved by physical training, especially high-intensity physical training. The physical training also reduced both visceral and total-body adiposity, but there was no clear effect of the intensity of physical training.", "title": "Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents." }, { "docid": "38493521", "text": "BACKGROUND While many treatments, including corticosteroid injections in and around the shoulder, are advocated to be of benefit for shoulder pain, few are of proven efficacy. This review of corticosteroid injections for shoulder pain is one in a series of reviews of varying interventions for shoulder disorders. \n OBJECTIVES To determine the efficacy and safety of corticosteroid injections in the treatment of adults with shoulder pain. SEARCH STRATEGY MEDLINE, EMBASE, CINAHL, Central and Science Citation Index were searched up to and including June 2002. SELECTION CRITERIA Randomised and pseudo-randomised trials in all languages of corticosteroid injections compared to placebo or another intervention, or of varying types and dosages of steroid injection in adults with shoulder pain. Specific exclusions were duration of shoulder pain less than three weeks, rheumatoid arthritis, polymyalgia rheumatica and fracture. \n DATA COLLECTION AND ANALYSIS Trial inclusion and methodological quality was assessed by two independent reviewers according to predetermined criteria. Results are presented separately for rotator cuff disease, adhesive capsulitis, full thickness rotator cuff tear and mixed diagnoses, and, where possible, combined in meta-analysis. \n MAIN RESULTS Twenty-six trials met inclusion criteria. The number, site and dosage of injections varied widely between studies. The number of participants per trial ranged from 20 to 114 (median 52 participants). Methodological quality was variable. For rotator cuff disease, subacromial steroid injection was demonstrated to have a small benefit over placebo in some trials however no benefit of subacromial steroid injection over NSAID was demonstrated based upon the pooled results of three trials. For adhesive capsulitis, two trials suggested a possible early benefit of intra-articular steroid injection over placebo but there was insufficient data for pooling of any of the trials. One trial suggested short-term benefit of intra-articular corticosteroid injection over physiotherapy in the short-term (success at seven weeks RR=1.66 (1.21, 2.28). REVIEWER'S CONCLUSIONS Despite many RCTs of corticosteroid injections for shoulder pain, their small sample sizes, variable methodological quality and heterogeneity means that there is little overall evidence to guide treatment. Subacromial corticosteroid injection for rotator cuff disease and intra-articular injection for adhesive capsulitis may be beneficial although their effect may be small and not well-maintained. There is a need for further trials investigating the efficacy of corticosteroid injections for shoulder pain. Other important issues that remain to be clarified include whether the accuracy of needle placement, anatomical site, frequency, dose and type of corticosteroid influences efficacy.", "title": "Corticosteroid injections for shoulder pain." }, { "docid": "2242416", "text": "The present study was designed to determine the effects of physical training on the development of cancer induced by the injection of Ehrlich tumor cells in mice. Male Swiss mice were subjected to a swim training protocol (5 days/wk for 6 wk, 1 h at 50% of maximal capacity-trained groups) or remained sedentary in their cages (sedentary groups). The inoculation of Ehrlich tumor cells was performed at the end of the fourth week, and animals were killed after 6 wk of training. Heart and solid tumor weights were recorded, and tumor volumes were calculated. Portions of the tumors were used for the evaluation of macrophages and neutrophil accumulation or fixed in neutral 10% buffered formalin for histological analysis. The tumor volume and weight were, respectively, approximately 270% and 280% greater in sedentary mice than in trained mice. Macrophage infiltration in the tumor tissue was significantly lower in trained mice (0.65 +/- 0.16 vs. 1.78 +/- 0.43 macrophages x 10(3) in the sedentary group). Moreover, neutrophil accumulation in tumors was slightly reduced after exercise training, and the amount of tumor cells was reduced in trained mice. Exercise capacity was substantially increased in trained mice, as determined by a 440% increase in the exercise time at 50% of maximal capacity. In summary, swim training retarded the development of Ehrlich tumors in mice, accompanied by a reduction in macrophage infiltration and neutrophil accumulation. These findings provide conceptual support for clinical observations that controlled physical activities may be a therapeutically important approach to preventing cancer progression and may improve the outcome of cancer treatment.", "title": "Swim training suppresses tumor growth in mice." }, { "docid": "24634621", "text": "PURPOSE Most patients with advanced pancreas cancer experience pain and must limit their daily activities because of tumor-related symptoms. To date, no treatment has had a significant impact on the disease. In early studies with gemcitabine, patients with pancreas cancer experienced an improvement in disease-related symptoms. Based on those findings, a definitive trial was performed to assess the effectiveness of gemcitabine in patients with newly diagnosed advanced pancreas cancer. \n PATIENTS AND METHODS One hundred twenty-six patients with advanced symptomatic pancreas cancer completed a lead-in period to characterize and stabilize pain and were randomized to receive either gemcitabine 1,000 mg/m2 weekly x 7 followed by 1 week of rest, then weekly x 3 every 4 weeks thereafter (63 patients), or to fluorouracil (5-FU) 600 mg/m2 once weekly (63 patients). The primary efficacy measure was clinical benefit response, which was a composite of measurements of pain (analgesic consumption and pain intensity), Karnofsky performance status, and weight. Clinical benefit required a sustained (> or = 4 weeks) improvement in at least one parameter without worsening in any others. Other measures of efficacy included response rate, time to progressive disease, and survival. \n RESULTS Clinical benefit response was experienced by 23.8% of gemcitabine-treated patients compared with 4.8% of 5-FU-treated patients (P = .0022). The median survival durations were 5.65 and 4.41 months for gemcitabine-treated and 5-FU-treated patients, respectively (P = .0025). The survival rate at 12 months was 18% for gemcitabine patients and 2% for 5-FU patients. Treatment was well tolerated. \n CONCLUSION This study demonstrates that gemcitabine is more effective than 5-FU in alleviation of some disease-related symptoms in patients with advanced, symptomatic pancreas cancer. Gemcitabine also confers a modest survival advantage over treatment with 5-FU.", "title": "Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial." }, { "docid": "2820454", "text": "BACKGROUND Pulmonary hypertension (PH) is associated with restricted physical capacity, limited quality of life, and a poor prognosis because of right heart failure. The present study is the first prospective randomized study to evaluate the effects of exercise and respiratory training in patients with severe symptomatic PH. \n METHODS AND RESULTS Thirty patients with PH (21 women; mean age, 50+/-13 years; mean pulmonary artery pressure, 50+/-15 mm Hg; mean World Health Organization [WHO] class, 2.9+/-0.5; pulmonary arterial hypertension, n=23; chronic thromboembolic PH, n=7) on stable disease-targeted medication were randomly assigned to a control (n=15) and a primary training (n=15) group. Medication remained unchanged during the study period. Primary end points were the changes from baseline to week 15 in the distance walked in 6 minutes and in scores of the Short Form Health Survey quality-of-life questionnaire. Changes in WHO functional class, Borg scale, and parameters of echocardiography and gas exchange also were assessed. At week 15, patients in the primary and secondary training groups had an improved 6-minute walking distance; the mean difference between the control and the primary training group was 111 m (95% confidence interval, 65 to 139 m; P<0.001). Exercise training was well tolerated and improved scores of quality of life, WHO functional class, peak oxygen consumption, oxygen consumption at the anaerobic threshold, and achieved workload. Systolic pulmonary artery pressure values at rest did not change significantly after 15 weeks of exercise and respiratory training (from 61+/-18 to 54+/-18 mm Hg) within the training group. \n CONCLUSIONS This study indicates that respiratory and physical training could be a promising adjunct to medical treatment in severe PH. The effects add to the beneficial results of modern medical treatment.", "title": "Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension." }, { "docid": "40817021", "text": "CONTEXT Findings from previous studies of the effects of exercise training on patient-reported health status have been inconsistent. \n OBJECTIVE To test the effects of exercise training on health status among patients with heart failure. \n DESIGN, SETTING, AND PATIENTS Multicenter, randomized controlled trial among 2331 medically stable outpatients with heart failure with left ventricular ejection fraction of 35% or less. Patients were randomized from April 2003 through February 2007. \n INTERVENTIONS Usual care plus aerobic exercise training (n = 1172), consisting of 36 supervised sessions followed by home-based training, vs usual care alone (n = 1159). Randomization was stratified by heart failure etiology, which was a covariate in all models. \n MAIN OUTCOME MEASURES Kansas City Cardiomyopathy Questionnaire (KCCQ) overall summary scale and key subscales at baseline, every 3 months for 12 months, and annually thereafter for up to 4 years. The KCCQ is scored from 0 to 100 with higher scores corresponding to better health status. Treatment group effects were estimated using linear mixed models according to the intention-to-treat principle. \n RESULTS Median follow-up was 2.5 years. At 3 months, usual care plus exercise training led to greater improvement in the KCCQ overall summary score (mean, 5.21; 95% confidence interval, 4.42 to 6.00) compared with usual care alone (3.28; 95% confidence interval, 2.48 to 4.09). The additional 1.93-point increase (95% confidence interval, 0.84 to 3.01) in the exercise training group was statistically significant (P < .001). After 3 months, there were no further significant changes in KCCQ score for either group (P = .85 for the difference between slopes), resulting in a sustained, greater improvement overall for the exercise group (P < .001). Results were similar on the KCCQ subscales, and no subgroup interactions were detected. \n CONCLUSIONS Exercise training conferred modest but statistically significant improvements in self-reported health status compared with usual care without training. Improvements occurred early and persisted over time. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00047437.", "title": "Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial." }, { "docid": "2774906", "text": "Physical activity protects against cardiovascular disease, and physiological cardiac hypertrophy associated with regular exercise is usually beneficial, in marked contrast to pathological hypertrophy associated with disease. The p110alpha isoform of phosphoinositide 3-kinase (PI3K) plays a critical role in the induction of exercise-induced hypertrophy. Whether it or other genes activated in the athlete's heart might have an impact on cardiac function and survival in a setting of heart failure is unknown. To examine whether progressive exercise training and PI3K(p110alpha) activity affect survival and/or cardiac function in two models of heart disease, we subjected a transgenic mouse model of dilated cardiomyopathy (DCM) to swim training, genetically crossed cardiac-specific transgenic mice with increased or decreased PI3K(p110alpha) activity to the DCM model, and subjected PI3K(p110alpha) transgenics to acute pressure overload (ascending aortic constriction). Life-span, cardiac function, and molecular markers of pathological hypertrophy were examined. Exercise training and increased cardiac PI3K(p110alpha) activity prolonged survival in the DCM model by 15-20%. In contrast, reduced PI3K(p110alpha) activity drastically shortened lifespan by approximately 50%. Increased PI3K(p110alpha) activity had a favorable effect on cardiac function and fibrosis in the pressure-overload model and attenuated pathological growth. PI3K(p110alpha) signaling negatively regulated G protein-coupled receptor stimulated extracellular responsive kinase and Akt (via PI3K, p110gamma) activation in isolated cardiomyocytes. These findings suggest that exercise and enhanced PI3K(p110alpha) activity delay or prevent progression of heart disease, and that supraphysiologic activity can be beneficial. Identification of genes important for hypertrophy in the athlete's heart could offer new strategies for treating heart failure.", "title": "Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy." }, { "docid": "35271381", "text": "Aerobic exercise training induces an increase in coronary blood flow capacity that is associated with altered control of coronary vascular resistance and, therefore, coronary blood flow. The relative importance of metabolic, myogenic, endothelium-mediated, and neurohumoral control systems varies throughout the coronary arterial tree, and these control systems contribute in parallel to regulating coronary vascular resistance to differing degrees at each level in the coronary arterial tree. In addition to this nonuniformity of the relative importance of vascular control systems in the coronary arterial tree, it appears that exercise training-induced adaptations are also distributed spatially, in a nonuniform manner throughout the coronary tree. As a result, it is necessary to examine training-induced adaptations throughout the coronary arterial tree. Adaptations in endothelium-mediated control play a role in training-induced changes in control of coronary vascular resistance, and there is evidence that the effects of training may be different in large coronary arteries than in the microcirculation. Also, there is evidence that the mode, frequency, and intensity of exercise training bouts and duration of training may influence the adaptive changes in endothelial function. Exercise training has also been shown to induce changes in responses of coronary vascular smooth muscle to vasoactive agents and alterations in the cellular-molecular control of intracellular Ca2+ in coronary vascular smooth muscle of conduit coronary arteries and to enhance myogenic reactivity of coronary resistance arteries. Exercise training also appears to have different effects on vascular smooth muscle in large coronary arteries than in the microcirculation. For example, adenosine sensitivity is increased in conduit coronary arteries and large resistance arteries after training but is not altered in small coronary resistance arteries of trained animals. Although much remains to be studied, evidence clearly indicates that chronic exercise alters the phenotype of coronary endothelial and vascular smooth muscle cells and that plasticity of these cells plays a role in adaptation of the cardiovascular system in exercise training.", "title": "Exercise training-induced adaptations in the coronary circulation." }, { "docid": "25301182", "text": "CONTEXT Limited information exists regarding the role of left ventricular function in predicting exercise capacity and impact on age- and sex-related differences. \n OBJECTIVES To determine the impact of measures of cardiac function assessed by echocardiography on exercise capacity and to determine if these associations are modified by sex or advancing age. \n DESIGN Cross-sectional study of patients undergoing exercise echocardiography with routine measurements of left ventricular systolic and diastolic function by 2-dimensional and Doppler techniques. Analyses were conducted to determine the strongest correlates of exercise capacity and the age and sex interactions of these variables with exercise capacity. \n SETTING Large tertiary referral center in Rochester, Minnesota, in 2006. \n PARTICIPANTS Patients undergoing exercise echocardiography using the Bruce protocol (N = 2867). Patients with echocardiographic evidence of exercise-induced ischemia, ejection fractions lower than 50%, or significant valvular heart disease were excluded. \n MAIN OUTCOME MEASURE Exercise capacity in metabolic equivalents (METs). \n RESULTS Diastolic dysfunction was strongly and inversely associated with exercise capacity. Compared with normal function, after multivariate adjustment, those with moderate/severe resting diastolic dysfunction (-1.30 METs; 95% confidence interval [CI], -1.52 to -0.99; P < .001) and mild resting diastolic dysfunction (-0.70 METs; 95% CI, -0.88 to -0.46; P < .001) had substantially lower exercise capacity. Variation of left ventricular systolic function within the normal range was not associated with exercise capacity. Left ventricular filling pressures measured by resting E/e' of 15 or greater (-0.41 METs; 95% CI, -0.70 to -0.11; P = .007) or postexercise E/e' of 15 or greater (-0.41 METs; 95% CI, -0.71 to -0.11; P = .007) were similarly associated with a reduction in exercise capacity, each in separate multivariate analyses. Individuals with impaired relaxation (mild dysfunction) or resting E/e' of 15 or greater had a progressive increase in the magnitude of reduction in exercise capacity with advancing age (P < .001 and P = .02, respectively). Other independent correlates of exercise capacity were age (unstandardized beta coefficient, -0.85 METs; 95% CI, -0.92 to -0.77, per 10-year increment; P < .001), female sex (-1.98 METs; 95% CI, -2.15 to -1.84; P < .001), and body mass index greater than 30 (-1.24 METs; 95% CI, -1.41 to -1.10; P < .001). \n CONCLUSION In this large cross-sectional study of those referred for exercise echocardiography and not limited by ischemia, abnormalities of left ventricular diastolic function were independently associated with exercise capacity.", "title": "Left ventricular function and exercise capacity." }, { "docid": "7198295", "text": "The aim of the study was to determine the effect of single whole-body cryotherapy (WBC) session applied prior to submaximal exercise on the activity of antioxidant enzymes, the concentration of lipid peroxidation products, total oxidative status, and the level of cytokines in blood of volleyball players. The study group consisted of 18 male professional volleyball players, who were subjected to extremely cold air (-130°C) prior to exercise performed on cycloergometer. Blood samples were taken five times: before WBC, after WBC procedure, after exercise preceded by cryotherapy (WBC exercise), and before and after exercise without WBC (control exercise). The activity of catalase statistically significantly increased after control exercise. Moreover, the activity of catalase and superoxide dismutase was lower after WBC exercise than after control exercise (P < 0.001). After WBC exercise, the level of IL-6 and IL-1β was also lower (P < 0.001) than after control exercise. The obtained results may suggest that cryotherapy prior to exercise may have some antioxidant and anti-inflammatory properties. The relations between the level of studied oxidative stress and inflammatory markers may testify to the contribution of reactive oxygen species in cytokines release into the blood system in response to exercise and WBC.", "title": "The Effect of Submaximal Exercise Preceded by Single Whole-Body Cryotherapy on the Markers of Oxidative Stress and Inflammation in Blood of Volleyball Players" }, { "docid": "6191684", "text": "CONTEXT Chronic tension-type headaches are characterized by near-daily headaches and often are difficult to manage in primary practice. Behavioral and pharmacological therapies each appear modestly effective, but data are lacking on their separate and combined effects. \n OBJECTIVE To evaluate the clinical efficacy of behavioral and pharmacological therapies, singly and combined, for chronic tension-type headaches. \n DESIGN AND SETTING Randomized placebo-controlled trial conducted from August 1995 to January 1998 at 2 outpatient sites in Ohio. \n PARTICIPANTS Two hundred three adults (mean age, 37 years; 76% women) with diagnosis of chronic tension-type headaches (mean, 26 headache d/mo). \n INTERVENTIONS Participants were randomly assigned to receive tricyclic antidepressant (amitriptyline hydrochloride, up to 100 mg/d, or nortriptyline hydrochloride, up to 75 mg/d) medication (n = 53), placebo (n = 48), stress management (eg, relaxation, cognitive coping) therapy (3 sessions and 2 telephone contacts) plus placebo (n = 49), or stress management therapy plus antidepressant medication (n = 53). \n MAIN OUTCOME MEASURES Monthly headache index scores calculated as the mean of pain ratings (0-10 scale) recorded by participants in a daily diary 4 times per day; number of days per month with at least moderate pain (pain rating >/=5), analgesic medication use, and Headache Disability Inventory scores, compared by intervention group. \n RESULTS Tricyclic antidepressant medication and stress management therapy each produced larger reductions in headache activity, analgesic medication use, and headache-related disability than placebo, but antidepressant medication yielded more rapid improvements in headache activity. Combined therapy was more likely to produce clinically significant (>/=50%) reductions in headache index scores (64% of participants) than antidepressant medication (38% of participants; P =.006), stress management therapy (35%; P =.003), or placebo (29%; P =.001). On other measures the combined therapy and its 2 component therapies produced similar outcomes. \n CONCLUSIONS Our results indicate that antidepressant medication and stress management therapy are each modestly effective in treating chronic tension-type headaches. Combined therapy may improve outcome relative to monotherapy.", "title": "Management of chronic tension-type headache with tricyclic antidepressant medication, stress management therapy, and their combination: a randomized controlled trial." } ]
455
Genes involved in pre-mRNA splicing have a significant impact on genome stability.
[ { "docid": "12643937", "text": "Signaling pathways that respond to DNA damage are essential for the maintenance of genome stability and are linked to many diseases, including cancer. Here, a genome-wide siRNA screen was employed to identify additional genes involved in genome stabilization by monitoring phosphorylation of the histone variant H2AX, an early mark of DNA damage. We identified hundreds of genes whose downregulation led to elevated levels of H2AX phosphorylation (gammaH2AX) and revealed links to cellular complexes and to genes with unclassified functions. We demonstrate a widespread role for mRNA-processing factors in preventing DNA damage, which in some cases is caused by aberrant RNA-DNA structures. Furthermore, we connect increased gammaH2AX levels to the neurological disorder Charcot-Marie-Tooth (CMT) syndrome, and we find a role for several CMT proteins in the DNA-damage response. These data indicate that preservation of genome stability is mediated by a larger network of biological processes than previously appreciated.", "title": "A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability." } ]
[ { "docid": "4162857", "text": "RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II (Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice sites are protected from nuclear degradation, presumably because the local concentration of the splicing machinery is sufficiently high to ensure its association over interactions with nucleases. Furthermore, the process of transcription influences alternative splicing of newly synthesized pre-mRNAs. Because other RNA polymerases do not provide similar protection from nucleases, and their RNA products display altered splicing patterns, the link between transcription and RNA processing is RNA Pol II-specific. We propose that the connection between transcription by Pol II and pre-mRNA splicing guarantees an extended half-life and proper processing of nascent pre-mRNAs.", "title": "Linking Splicing to Pol II Transcription Stabilizes Pre-mRNAs and Influences Splicing Patterns" }, { "docid": "20585600", "text": "To explore the structural basis of alternative splicing, we have analyzed the splicing of pre-mRNAs containing an optional exon, E4, from the preprotachykinin gene. This gene encodes substance P and related tachykinin peptides by alternative splicing of a common pre-mRNA. We have shown that alternative splicing of preprotachykinin pre-mRNA occurs by preferential skipping of optional E4. The competing mechanism that incorporates E4 into the final spliced RNA is constrained by an initial block to splicing of the immediate upstream intervening sequence (IVS), IVS3. This block is relieved by sequential splicing, in which the immediate downstream IVS4 is removed first. The structural change resulting from the first splicing event is directly responsible for activation of IVS3 splicing. This structural rearrangement replaces IVS4 sequences with E5 and its adjacent IVS5 sequences. To determine how this structural change promoted IVS3 splicing, we asked what structural change(s) would restore activity of IVS3 splicing-defective mutants. The most significant effect was observed by a 2-nucleotide substitution that converted the 5' splice site of E4 to an exact consensus match, GUAAGU. Exon 5 sequences alone were found not to promote splicing when present in one or multiple copies. However, when a 15-nucleotide segment of IVS5 containing GUAAGU was inserted into a splicing-defective mutant just downstream of the hybrid exon segment E4E5, splicing activity was recovered. Curiously, the 72-nucleotide L2 exon of adenovirus, without its associated 5' splice site, activates splicing when juxtaposed to E4. Models for the activation of splicing by an RNA structural change are discussed.", "title": "A Sequential splicing mechanism promotes selection of an optimal exon by repositioning a downstream 5' splice site in preprotachykinin pre-mRNA." }, { "docid": "7860396", "text": "The pathway of gene expression in higher eukaryotes involves a highly complex network of physical and functional interactions among the different machines involved in each step of the pathway. Here we established an efficient in vitro system to determine how RNA polymerase II (RNAP II) transcription is functionally coupled to pre-mRNA splicing. Strikingly, our data show that nascent pre-messenger RNA (pre-mRNA) synthesized by RNAP II is immediately and quantitatively directed into the spliceosome assembly pathway. In contrast, nascent pre-mRNA synthesized by T7 RNA polymerase is quantitatively assembled into the nonspecific H complex, which consists of heterogeneous nuclear ribonucleoprotein (hnRNP) proteins and is inhibitory for spliceosome assembly. Consequently, RNAP II transcription results in a dramatic increase in both the kinetics of splicing and overall yield of spliced mRNA relative to that observed for T7 transcription. We conclude that RNAP II mediates the functional coupling of transcription to splicing by directing the nascent pre-mRNA into spliceosome assembly, thereby bypassing interaction of the pre-mRNA with the inhibitory hnRNP proteins.", "title": "Functional coupling of RNAP II transcription to spliceosome assembly." }, { "docid": "10423989", "text": "The nuclear matrix antigen recognized by the monoclonal antibody (mAb) B1C8 is a novel serine (S) and arginine (R)-rich protein associated with splicing complexes and is named here SRm160 (SR-related matrix protein of 160 kD). SRm160 contains multiple SR repeats, but unlike proteins of the SR family of splicing factors, lacks an RNA recognition motif. SRm160 and a related protein SRm300 (the 300-kD nuclear matrix antigen recognized by mAb B4A11) form a complex that is required for the splicing of specific pre-mRNAs. The SRm160/300 complex associates with splicing complexes and promotes splicing through interactions with SR family proteins. Binding of SRm160/300 to pre-mRNA is normally also dependent on U1 snRNP and is stabilized by U2 snRNP. Thus, SRm160/300 forms multiple interactions with components bound directly to important sites within pre-mRNA. The results suggest that a complex of the nuclear matrix proteins SRm160 and SRm300 functions as a coactivator of pre-mRNA splicing.", "title": "A coactivator of pre-mRNA splicing." }, { "docid": "13384318", "text": "Pre-mRNA splicing is a fundamental process required for the expression of most metazoan genes. It is carried out by the spliceosome, which catalyzes the removal of noncoding intronic sequences to assemble exons into mature mRNAs prior to export and translation. Given the complexity of higher eukaryotic genes and the relatively low level of splice site conservation, the precision of the splicing machinery in recognizing and pairing splice sites is impressive. Introns ranging in size from <100 up to 100,000 bases are removed efficiently. At the same time, a large number of alternative splicing events are observed between different cell types, during development, or during other biological processes. This extensive alternative splicing implies a significant flexibility of the spliceosome to identify and process exons within a given pre-mRNA. To reach this flexibility, splice site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice site strength, the presence or absence of splicing regulators, RNA secondary structures, the exon/intron architecture, and the process of pre-mRNA synthesis itself. The relative contributions of each of these parameters control how efficiently splice sites are recognized and flanking introns are removed.", "title": "Combinatorial control of exon recognition." }, { "docid": "365896", "text": "We describe methods for obtaining a quantitative description of RNA processing at high resolution in budding yeast. As a model gene expression system, we constructed tetON (for induction studies) and tetOFF (for repression, derepression, and RNA degradation studies) yeast strains with a series of reporter genes integrated in the genome under the control of a tetO7 promoter. Reverse transcription and quantitative real-time-PCR (RT-qPCR) methods were adapted to allow the determination of mRNA abundance as the average number of copies per cell in a population. Fluorescence in situ hybridization (FISH) measurements of transcript numbers in individual cells validated the RT-qPCR approach for the average copy-number determination despite the broad distribution of transcript levels within a population of cells. In addition, RT-qPCR was used to distinguish the products of the different steps in splicing of the reporter transcripts, and methods were developed to map and quantify 3'-end cleavage and polyadenylation. This system permits pre-mRNA production, splicing, 3'-end maturation and degradation to be quantitatively monitored with unprecedented kinetic detail, suitable for mathematical modeling. Using this approach, we demonstrate that reporter transcripts are spliced prior to their 3'-end cleavage and polyadenylation, that is, cotranscriptionally.", "title": "RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and 3'-end processing in Saccharomyces cerevisiae." }, { "docid": "29828242", "text": "The development of in vitro assays to analyze pre-mRNA splicing resulted in the discovery of many fundamental features characterizing splicing signals and the machinery that completes this process. Because in vitro assays can be manipulated by various biochemical approaches, the versatility of investigating alternative pre-mRNA splicing in the test tube appears endless. Importantly, modifications in reaction conditions can lead to the accumulation, isolation, and characterization of reaction intermediates, a prerequisite for gaining mechanistic insights into how the spliceosome carries out intron removal, and how regulatory elements assist the general splicing machinery in defining splice sites and alternative exons. These considerable experimental advantages have made the in vitro splicing system a standard assay, even though this approach is independent from RNA transcription and other RNA processing events, and in some respects deviates from the natural process of mRNA biogenesis. Here, we describe the tools and techniques necessary to carry out in vitro splicing assays. Analyses of various experimental designs are presented to highlight the approaches taken to gain insights into the mechanisms by which splice site recognition and activation are communicated with the general splicing machinery. Methods to measure the kinetics of splicing, to observe the formation of the pre-spliceosomal complexes, and to manipulate and modify the in vitro system to resolve the regulatory influences in alternative splicing are presented.", "title": "Analyzing mechanisms of alternative pre-mRNA splicing using in vitro splicing assays." }, { "docid": "20374609", "text": "We analyzed the in vitro splicing pathways of three multi-intervening-sequence (IVS) pre-mRNAs: human beta-globin, which contains two IVSs (K. M. Lang, V. L. van Santen, and R. A. Spritz, EMBO J. 4:1991-1996, 1985); rat alpha-lactalbumin, which contains three IVSs; and murine interleukin-3, which contains four IVSs. We found that there are highly preferred pathways of IVS removal from these multi-IVS pre-mRNAs in vitro. The three IVSs of rat alpha-lactalbumin pre-mRNA were excised sequentially from 5' to 3'; in most molecules, IVS1 was removed first, followed by IVS2 and finally by IVS3. The splicing pathway of interleukin-3 pre-mRNA in vitro was more complex. The four IVSs were excised in a highly preferred temporal order, but the order was not strictly sequential or directional. In most molecules, IVS1 and IVS4 were removed first, either simultaneously or in rapid succession. Subsequently, IVS2 was excised, followed by IVS3. The observed splicing pathways apparently resulted from differences in lag times and maximum excision rates of the different IVSs. We detected no exon skipping during splicing of these transcripts in vitro. These observations have implication for proposed models of splice site selection.", "title": "In vitro splicing pathways of pre-mRNAs containing multiple intervening sequences?" }, { "docid": "344240", "text": "Actions of protein products resulting from alternative splicing of the Igf1 gene have received increasing attention in recent years. However, the significance and functional relevance of these observations remain poorly defined. To address functions of IGF-I splice variants, we examined the impact of loss of IGF-IEa and IGF-IEb on the proliferation and differentiation of cultured mouse myoblasts. RNA interference-mediated reductions in total IGF-I, IGF-IEa alone, or IGF-IEb alone had no effect on cell viability in growth medium. However, cells deficient in total IGF-I or IGF-IEa alone proliferated significantly slower than control cells or cells deficient in IGF-IEb in serum-free media. Simultaneous loss of both or specific loss of either splice variant significantly inhibited myosin heavy chain (MyHC) immunoreactivity by 70-80% (P < 0.01) under differentiation conditions (48 h in 2% horse serum) as determined by Western immunoblotting. This loss in protein was associated with reduced MyHC isoform mRNAs, because reductions in total IGF-I or IGF-IEa mRNA significantly reduced MyHC mRNAs by approximately 50-75% (P < 0.05). Loss of IGF-IEb also reduced MyHC isoform mRNA significantly, with the exception of Myh7, but to a lesser degree (∼20-40%, P < 0.05). Provision of mature IGF-I, but not synthetic E peptides, restored Myh3 expression to control levels in cells deficient in IGF-IEa or IGF-IEb. Collectively, these data suggest that IGF-I splice variants may regulate myoblast differentiation through the actions of mature IGF-I and not the E peptides.", "title": "Loss of IGF-IEa or IGF-IEb impairs myogenic differentiation." }, { "docid": "7029990", "text": "One type of RNA editing involves the conversion of adenosine residues into inosine in double-stranded RNA through the action of adenosine deaminases acting on RNA (ADAR). A-to-I RNA editing of the coding sequence could result in synthesis of proteins not directly encoded in the genome. ADAR edits also non-coding sequences of target RNAs, such as introns and 3'-untranslated regions, which may affect splicing, translation, and mRNA stability. Three mammalian ADAR gene family members (ADAR1-3) have been identified. Here we investigated phenotypes of mice homozygous for ADAR1 null mutation. Although live ADAR1-/- embryos with normal gross appearance could be recovered up to E11.5, widespread apoptosis was detected in many tissues. Fibroblasts derived from ADAR1-/- embryos were also prone to apoptosis induced by serum deprivation. Our results demonstrate an essential requirement for ADAR1 in embryogenesis and suggest that it functions to promote survival of numerous tissues by editing one or more double-stranded RNAs required for protection against stress-induced apoptosis.", "title": "Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene." }, { "docid": "4313478", "text": "Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.", "title": "Translational control of intron splicing in eukaryotes" }, { "docid": "21330280", "text": "Ribonucleoproteins (RNPs) mediate key cellular functions such as gene expression and its regulation. Whereas most RNP enzymes are stable in composition and harbor preformed active sites, the spliceosome, which removes noncoding introns from precursor messenger RNAs (pre-mRNAs), follows fundamentally different strategies. In order to provide both accuracy to the recognition of reactive splice sites in the pre-mRNA and flexibility to the choice of splice sites during alternative splicing, the spliceosome exhibits exceptional compositional and structural dynamics that are exploited during substrate-dependent complex assembly, catalytic activation, and active site remodeling.", "title": "The Spliceosome: Design Principles of a Dynamic RNP Machine" }, { "docid": "946756", "text": "A protein of molecular size 62,000 daltons (p62) was detected in HeLa cell nuclear extracts by UV cross-linking to mRNA precursors. p62 binds specifically to the polypyrimidine tract of the 3' splice site region of introns. p62 purified to homogeneity binds the polypyrimidine tract of pre-mRNAs. This binding does not require the AG dinucleotide at the 3' splice site. Alterations in the polypyrimidine tract that reduce the binding of p62 yield a corresponding reduction in the efficiency of formation of a U2 snRNP/pre-mRNA complex and splicing. The p62 protein is retained in the spliceosome, where it remains bound to the pre-mRNA. This polypyrimidine tract binding protein (pPTB) is proposed to be a critical component in recognition of the 3' splice site during splicing.", "title": "Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns." }, { "docid": "4067274", "text": "Differential splice site pairing establishes alternative splicing patterns resulting in the generation of multiple mRNA isoforms. This process is carried out by the spliceosome, which is activated by a series of sequential structural rearrangements of its five core snRNPs. To determine when splice sites become functionally paired, we carried out a series of kinetic trap experiments using pre-mRNAs that undergo alternative 5' splice site selection or alternative exon inclusion. We show that commitment to splice site pairing in both cases occurs in the A complex, which is characterized by the ATP-dependent association of the U2 snRNP with the branch point. Interestingly, the timing of splice site pairing is independent of the intron or exon definition modes of splice site recognition. Using the ATP analog ATPgammaS, we showed that ATP hydrolysis is required for splice site pairing independent from U2 snRNP binding to the pre-mRNA. These results identify the A complex as the spliceosomal assembly step dedicated to splice site pairing and suggest that ATP hydrolysis locks splice sites into a splicing pattern after stable U2 snRNP association to the branch point.", "title": "Spliceosome assembly pathways for different types of alternative splicing converge during commitment to splice site pairing in the A complex." }, { "docid": "22544171", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.", "title": "Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome" }, { "docid": "3868322", "text": "Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP) gene have been associated with HDL levels, risk for coronary artery disease (CAD), and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5-7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4 × 10(-5), allele frequency 33%). In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9), has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8 × 10(-10)) and intron 8 polymorphism rs9930761-T>C (5.6 × 10(-8)) (in high linkage disequilibrium with allele frequencies 6-7%). rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9.The effect of these polymorphisms was evaluated in two clinical studies. In the Whitehall II study of 4745 subjects, both rs247616 and rs5883T/rs9930761C were independently associated with increased HDL-C levels in males with similar effect size (rs247616 p = 9.6 × 10(-28) and rs5883 p = 8.6 × 10(-10), adjusted for rs247616). In an independent multiethnic US cohort of hypertensive subjects with CAD (INVEST-GENE), rs5883T/rs9930761C alone were significantly associated with increased incidence of MI, stroke, and all-cause mortality in males (rs5883: OR 2.36 (CI 1.29-4.30), p = 0.005, n = 866). These variants did not reach significance in females in either study. Similar to earlier results linking low CETP activity with poor outcomes in males, our results suggest genetic, sex-dependent CETP splicing effects on cardiovascular risk by a mechanism independent of circulating HDL-C levels.", "title": "Cholesteryl Ester Transfer Protein (CETP) Polymorphisms Affect mRNA Splicing, HDL Levels, and Sex-Dependent Cardiovascular Risk" }, { "docid": "18924534", "text": "The mammalian genome harbors thousands of long noncoding RNA (lncRNA) genes. Recent studies have indicated the involvement of several of these lncRNAs in the regulation of gene expression. lncRNAs play crucial roles in various biological processes ranging from epigenetic gene regulation, transcriptional control, to post-transcriptional regulation. lncRNAs are localized in various subcellular compartments, and major proportion of these are retained in the cell nucleus and could be broadly classified as nuclear-retained lncRNAs (nrRNAs). Based on the identified functions, members of the nrRNAs execute diverse roles, including providing architectural support to the hierarchical subnuclear organization and influencing the recruitment of chromatin modifier factors to specific chromatin sites. In this review, we will summarize the recently described roles of mammalian nrRNAs in controlling gene expression by influencing chromatin organization, transcription, pre-mRNA processing, nuclear organization, and their involvement in disease.", "title": "Functional insights into the role of nuclear-retained long noncoding RNAs in gene expression control in mammalian cells" }, { "docid": "30261663", "text": "In eukaryotes, a surveillance mechanism known as nonsense-mediated decay (NMD) degrades the mRNA when a premature-termination codon (PTC) is present. NMD requires translation to read the frame of the mRNA and detect the PTC. During pre-mRNA splicing, the exon-exon junction complex (EJC) is recruited to a region 20-24 nt upstream of the exon junction on the mature mRNA. The presence of a PTC upstream from the EJC elicits NMD. Eukaryotic initiation factor 4A (eIF4A) III is a nuclear protein that interacts physically or functionally with translation initiation factors eIF4G and eIF4B, respectively, and shares strikingly high identity with the initiation factors eIF4AI/II. Here we show that siRNA against eIF4AIII, but not against eIF4AI/II, inhibits NMD. Moreover, eIF4AIII, but not eIF4AI, is specifically recruited to the EJC during splicing. The observations that eIF4AIII is loaded onto the mRNA during splicing in the nucleus, has properties related to a translation initiation factor, and functions in NMD raises the possibility that eIF4AIII substitutes for eIF4AI/II during NMD.", "title": "A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay." }, { "docid": "8126244", "text": "Biogenesis of ribosomes is an essential cellular process conserved across all eukaryotes and is known to require >170 genes for the assembly, modification, and trafficking of ribosome components through multiple cellular compartments. Despite intensive study, this pathway likely involves many additional genes. Here, we employ network-guided genetics-an approach for associating candidate genes with biological processes that capitalizes on recent advances in functional genomic and proteomic studies-to computationally identify additional ribosomal biogenesis genes. We experimentally evaluated >100 candidate yeast genes in a battery of assays, confirming involvement of at least 15 new genes, including previously uncharacterized genes (YDL063C, YIL091C, YOR287C, YOR006C/TSR3, YOL022C/TSR4). We associate the new genes with specific aspects of ribosomal subunit maturation, ribosomal particle association, and ribosomal subunit nuclear export, and we identify genes specifically required for the processing of 5S, 7S, 20S, 27S, and 35S rRNAs. These results reveal new connections between ribosome biogenesis and mRNA splicing and add >10% new genes-most with human orthologs-to the biogenesis pathway, significantly extending our understanding of a universally conserved eukaryotic process.", "title": "Rational Extension of the Ribosome Biogenesis Pathway Using Network-Guided Genetics" } ]
456
Genes regulated by Esrrb transcription factor are sensitive to Mbd3 function.
[ { "docid": "30507607", "text": "Transcription factors, such as Oct4, are critical for establishing and maintaining pluripotent cell identity. Whereas the genomic locations of several pluripotency transcription factors have been reported, the spectrum of their interaction partners is underexplored. Here, we use an improved affinity protocol to purify Oct4-interacting proteins from mouse embryonic stem cells (ESCs). Subsequent purification of Oct4 partners Sall4, Tcfcp2l1, Dax1, and Esrrb resulted in an Oct4 interactome of 166 proteins, including transcription factors and chromatin-modifying complexes with documented roles in self-renewal, but also many factors not previously associated with the ESC network. We find that Esrrb associated with the basal transcription machinery and also detect interactions between transcription factors and components of the TGF-beta, Notch, and Wnt signaling pathways. Acute depletion of Oct4 reduced binding of Tcfcp2l1, Dax1, and Esrrb to several target genes. In conclusion, our purification protocol allowed us to bring greater definition to the circuitry controlling pluripotent cell identity.", "title": "An Oct4-Centered Protein Interaction Network in Embryonic Stem Cells" } ]
[ { "docid": "6826100", "text": "Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4, and Myc (OSKM) into cells. Although iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation. Reliably high-quality iPSCs will be needed for future therapeutic applications. Here, we show that one major determinant of iPSC quality is the combination of reprogramming factors used. Based on tetraploid complementation, we found that ectopic expression of Sall4, Nanog, Esrrb, and Lin28 (SNEL) in mouse embryonic fibroblasts (MEFs) generated high-quality iPSCs more efficiently than other combinations of factors including OSKM. Although differentially methylated regions, transcript number of master regulators, establishment of specific superenhancers, and global aneuploidy were comparable between high- and low-quality lines, aberrant gene expression, trisomy of chromosome 8, and abnormal H2A.X deposition were distinguishing features that could potentially also be applicable to human.", "title": "The developmental potential of iPSCs is greatly influenced by reprogramming factor selection." }, { "docid": "42565477", "text": "The molecular mechanism underlying G1/S checkpoint bypass in mouse embryonic stem cells (ESCs) remains unknown. DNA damage blocks S phase entry by inhibiting the CDK2 kinase through destruction of its activator, the Cdc25A phosphatase. We observed high Cdc25A levels in G1 that persist even after DNA damage in mouse ESCs. We also found higher expression of Dub3, a deubiquitylase that controls Cdc25A protein abundance. Moreover, we demonstrate that the Dub3 gene is a direct target of Esrrb, a key transcription factor of the self-renewal machinery. We show that Dub3 expression is strongly downregulated during neural conversion and precedes Cdc25A destabilization, while forced Dub3 expression in ESCs becomes lethal upon differentiation, concomitant to cell-cycle remodeling and lineage commitment. Finally, knockdown of either Dub3 or Cdc25A induced spontaneous differentiation of ESCs. Altogether, these findings couple the self-renewal machinery to cell-cycle control through a deubiquitylase in ESCs.", "title": "High Dub3 expression in mouse ESCs couples the G1/S checkpoint to pluripotency." }, { "docid": "26596106", "text": "In the yeast S. cerevisiae, ribosome assembly is linked to environmental conditions by the coordinate transcriptional regulation of genes required for ribosome biogenesis. In this study we show that two nonessential stress-responsive genes, YAR1 and LTV1, function in 40S subunit production. We provide genetic and biochemical evidence that Yar1, a small ankyrin-repeat protein, physically interacts with RpS3, a component of the 40S subunit, and with Ltv1, a protein recently identified as a substoichiometric component of a 43S preribosomal particle. We demonstrate that cells lacking YAR1 or LTV1 are hypersensitive to particular protein synthesis inhibitors and exhibit aberrant polysome profiles, with a reduced absolute number of 40S subunits and an excess of free 60S subunits. Surprisingly, both mutants are also hypersensitive to a variety of environmental stress conditions. Overexpression of RPS3 suppresses both the stress sensitivity and the ribosome biogenesis defect of Deltayar1 mutants, but does not suppress either defect in Deltaltv1 mutants. We propose that YAR1 and LTV1 play distinct, nonessential roles in 40S subunit production. The stress-sensitive phenotypes of strains lacking these genes reveal a hitherto unknown link between ribosome biogenesis factors and environmental stress sensitivity.", "title": "Genetic and biochemical interactions among Yar1, Ltv1 and Rps3 define novel links between environmental stress and ribosome biogenesis in Saccharomyces cerevisiae." }, { "docid": "4324278", "text": "The rapamycin-sensitive TOR signalling pathway in Saccharomyces cerevisiae activates a cell-growth program in response to nutrients such as nitrogen and carbon. The TOR1 and TOR2 kinases (TOR) control cytoplasmic protein synthesis and degradation through the conserved TAP42 protein. Upon phosphorylation by TOR, TAP42 binds and possibly inhibits type 2A and type-2A-related phosphatases; however, the mechanism by which TOR controls nuclear events such as global repression of starvation-specific transcription is unknown. Here we show that TOR prevents transcription of genes expressed upon nitrogen limitation by promoting the association of the GATA transcription factor GLN3 with the cytoplasmic protein URE2. The binding of GLN3 to URE2 requires TOR-dependent phosphorylation of GLN3. Phosphorylation and cytoplasmic retention of GLN3 are also dependent on the TOR effector TAP42, and are antagonized by the type-2A-related phosphatase SIT4. TOR inhibits expression of carbon-source-regulated genes by stimulating the binding of the transcriptional activators MSN2 and MSN4 to the cytoplasmic 14-3-3 protein BMH2. Thus, the TOR signalling pathway broadly controls nutrient metabolism by sequestering several transcription factors in the cytoplasm.", "title": "The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors." }, { "docid": "14116046", "text": "Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in lipid/glucose homeostasis and various immune functions, and have been implicated in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance. The resistance to hepatosteatosis in RORα-deficient mice is related to the reduced expression of several genes regulating lipid synthesis, transport, and storage. Adipose tissue-associated inflammation, which plays a critical role in the development of insulin resistance, is considerably diminished in RORα-deficient mice as indicated by the reduced infiltration of M1 macrophages and decreased expression of many proinflammatory genes. Deficiency in RORγ also protects against diet-induced insulin resistance by a mechanism that appears different from that in RORα deficiency. Recent studies indicated that RORs provide an important link between the circadian clock machinery and its regulation of metabolic genes and metabolic syndrome. As ligand-dependent transcription factors, RORs may provide novel therapeutic targets in the management of obesity and associated metabolic diseases, including hepatosteatosis, adipose tissue-associated inflammation, and insulin resistance.", "title": "Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity" }, { "docid": "8290760", "text": "During cellular reprogramming, only a small fraction of cells become induced pluripotent stem cells (iPSCs). Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. We utilized two gene expression technologies to profile 48 genes in single cells at various stages during the reprogramming process. Analysis of early stages revealed considerable variation in gene expression between cells in contrast to late stages. Expression of Esrrb, Utf1, Lin28, and Dppa2 is a better predictor for cells to progress into iPSCs than expression of the previously suggested reprogramming markers Fbxo15, Fgf4, and Oct4. Stochastic gene expression early in reprogramming is followed by a late hierarchical phase with Sox2 being the upstream factor in a gene expression hierarchy. Finally, downstream factors derived from the late phase, which do not include Oct4, Sox2, Klf4, c-Myc, and Nanog, can activate the pluripotency circuitry.", "title": "Single-Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase" }, { "docid": "13958154", "text": "Pancreatic β-cell dysfunction and death are central in the pathogenesis of type 2 diabetes (T2D). Saturated fatty acids cause β-cell failure and contribute to diabetes development in genetically predisposed individuals. Here we used RNA sequencing to map transcripts expressed in five palmitate-treated human islet preparations, observing 1,325 modified genes. Palmitate induced fatty acid metabolism and endoplasmic reticulum (ER) stress. Functional studies identified novel mediators of adaptive ER stress signaling. Palmitate modified genes regulating ubiquitin and proteasome function, autophagy, and apoptosis. Inhibition of autophagic flux and lysosome function contributed to lipotoxicity. Palmitate inhibited transcription factors controlling β-cell phenotype, including PAX4 and GATA6. Fifty-nine T2D candidate genes were expressed in human islets, and 11 were modified by palmitate. Palmitate modified expression of 17 splicing factors and shifted alternative splicing of 3,525 transcripts. Ingenuity Pathway Analysis of modified transcripts and genes confirmed that top changed functions related to cell death. Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis of transcription factor binding sites in palmitate-modified transcripts revealed a role for PAX4, GATA, and the ER stress response regulators XBP1 and ATF6. This human islet transcriptome study identified novel mechanisms of palmitate-induced β-cell dysfunction and death. The data point to cross talk between metabolic stress and candidate genes at the β-cell level.", "title": "RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate." }, { "docid": "20052986", "text": "Circadian rhythms are oscillations of physiology, behavior, and metabolism that have period lengths near 24 hours. In several model organisms and humans, circadian clock genes have been characterized and found to be transcription factors. Because of this, researchers have used microarrays to characterize global regulation of gene expression and algorithmic approaches to detect cycling. This article presents a new algorithm, JTK_CYCLE, designed to efficiently identify and characterize cycling variables in large data sets. Compared with COSOPT and the Fisher's G test, two commonly used methods for detecting cycling transcripts, JTK_CYCLE distinguishes between rhythmic and nonrhythmic transcripts more reliably and efficiently. JTK_CYCLE's increased resistance to outliers results in considerably greater sensitivity and specificity. Moreover, JTK_CYCLE accurately measures the period, phase, and amplitude of cycling transcripts, facilitating downstream analyses. Finally, JTK_CYCLE is several orders of magnitude faster than COSOPT, making it ideal for large-scale data sets. JTK_CYCLE was used to analyze legacy data sets including NIH3T3 cells, which have comparatively low amplitude oscillations. JTK_CYCLE's improved power led to the identification of a novel cluster of RNA-interacting genes whose abundance is under clear circadian regulation. These data suggest that JTK_CYCLE is an ideal tool for identifying and characterizing oscillations in genome-scale data sets.", "title": "JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets." }, { "docid": "34071621", "text": "Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN-SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings.", "title": "Nuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation" }, { "docid": "22362025", "text": "Small regulatory RNAs are key regulators of gene expression. One class of small regulatory RNAs, termed the endogenous small interfering RNAs (endo siRNAs), is thought to negatively regulate cellular transcripts via an RNA interference (RNAi)-like mechanism termed endogenous RNAi (endo RNAi). A complex of proteins composed of ERI-1/3/5, RRF-3, and DICER (the ERI/DICER complex) mediates endo RNAi processes in Caenorhabditis elegans. We conducted a genetic screen to identify additional components of the endo RNAi machinery. Our screen recovered alleles of eri-9, which encodes a novel DICER-interacting protein, and a missense mutation within the helicase domain of DICER [DCR-1(G492R)]. ERI-9(-) and DCR-1(G492) animals exhibit defects in endo siRNA expression and a concomitant failure to regulate mRNAs that exhibit sequence homology to these endo siRNAs, indicating that ERI-9 and the DCR-1 helicase domain function in the C. elegans endo RNAi pathway. We define a subset of Eri mutant animals (including eri-1, rrf-3, eri-3, and dcr-1, but not eri-9 or ergo-1) that exhibit temperature-sensitive, sperm-specific sterility and defects in X chromosome segregation. Among these mutants we find multiple aberrations in sperm development beginning with cytokinesis and extending through terminal differentiation. These results identify novel components of the endo RNAi machinery, demonstrate differential requirements for the Eri factors in the sperm-producing germline, and begin to delineate the functional requirement for the ERI/DICER complex in sperm development.", "title": "Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in Caenorhabditis elegans." }, { "docid": "30933307", "text": "It is generally accepted that, following primary infection, human cytomegalovirus (HCMV) establishes lifelong latency in CD34(+) progenitor cells and other derivative cells of the myeloid lineage. In this study, we show that the viral UL144 gene is expressed during latent infection in two cell types of the myeloid lineage, CD34(+) and CD14(+) monocytes, and that the UL144 protein is functional in latently infected monocytes. However, this latency-associated expression of UL144 occurs only in certain isolates of HCMV and depends on the presence of functional GATA-2 transcription factor binding sites in the UL144 promoter, in contrast to the viral latency-associated gene LUNA, which we also show is regulated by GATA-2 but expressed uniformly during latent infection independent of the virus isolate. Taken together, these data suggest that the HCMV latency-associated transcriptome may be virus isolate specific and dependent on the repertoire of transcription factor binding sites in the promoters of latency-associated genes.", "title": "The myeloid transcription factor GATA-2 regulates the viral UL144 gene during human cytomegalovirus latency in an isolate-specific manner." }, { "docid": "21622715", "text": "Transcriptional factors binding to cAMP-responsive elements (CREs) in the promoters of various genes belong to the basic domain-leucine zipper superfamily and are composed of three genes in mammals, CREB, CREM, and ATF-1. A large number of CREB, CREM, and ATF-1 proteins are generated by posttranscriptional events, mostly alternative splicing, and regulate gene expression by acting as activators or repressors. Activation is classically brought about by signaling-dependent phosphorylation of a key acceptor site (Ser133 in CREB) by a number of possible kinases, including PKA, CamKIV, and Rsk-2. Phosphorylation is the prerequisite for the interaction of CBP (CREB-binding protein), a co-activator that has also histone acetyltransferase activity. Repression may involve dynamic dephosphorylation of the activators and thus decreased association with CBP. Another pathway of transcriptional repression on CRE sites implicates the inducible repressor ICER (inducible cAMP early repressor), a product of the CREM gene. Being an inducible repressor, ICER is involved in autoregulatory feedback loops of transcription that govern the down-regulation of early response genes, such as the proto-oncogene c-fos. The liver represents a remarkable physiological setting where cAMP-responsive signaling plays a major role. Indeed, a finely tuned program of gene expression is triggered by partial hepatectomy, so that through specific checkpoints a coordinated regeneration of the tissue is obtained. Temporal kinetics of transcriptional activation after hepatectomy reveals a pattern of early induction for several genes, some of them controlled by the CREB/CREM transcription factors. An important role of CREM in liver physiology was suggested by the robust induction of ICER after partial hepatectomy. The delay in tissue regeneration in CREM-deficient mice confirmed the important function of this factor in regulating hepatocyte proliferation. As gene induction is accompanied by critical changes in chromatin organization, the deciphering of the specific modification codes that histones display during liver regeneration and physiology will provide exciting new insights into the dynamics of chromatin architecture.", "title": "Coupling cAMP signaling to transcription in the liver: pivotal role of CREB and CREM." }, { "docid": "27693891", "text": "Gene regulatory factors encoded by the nuclear genome are essential for mitochondrial biogenesis and function. Some of these factors act exclusively within the mitochondria to regulate the control of mitochondrial transcription, translation, and other functions. Others govern the expression of nuclear genes required for mitochondrial metabolism and organelle biogenesis. The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators play a major role in transducing and integrating physiological signals governing metabolism, differentiation, and cell growth to the transcriptional machinery controlling mitochondrial functional capacity. Thus, the PGC-1 coactivators serve as a central component of the transcriptional regulatory circuitry that coordinately controls the energy-generating functions of mitochondria in accordance with the metabolic demands imposed by changing physiological conditions, senescence, and disease.", "title": "Transcriptional integration of mitochondrial biogenesis." }, { "docid": "12315072", "text": "At the cellular level, development progresses through successive regulatory states, each characterized by their specific gene expression profile. However, the molecular mechanisms regulating first the priming and then maintenance of gene expression within one developmental pathway are essentially unknown. The hematopoietic system represents a powerful experimental model to address these questions and here we have focused on a regulatory circuit playing a central role in myelopoiesis: the transcription factor PU.1, its target gene colony-stimulating-factor 1 receptor (Csf1r), and key upstream regulators such as RUNX1. We find that during ontogeny, chromatin unfolding precedes the establishment of active histone marks and the formation of stable transcription factor complexes at the Pu.1 locus and we show that chromatin remodeling is mediated by the transient binding of RUNX1 to Pu.1 cis-elements. By contrast, chromatin reorganization of Csf1r requires prior expression of PU.1 together with RUNX1 binding. Once the full hematopoietic program is established, stable transcription factor complexes and active chromatin can be maintained without RUNX1. Our experiments therefore demonstrate how individual transcription factors function in a differentiation stage-specific manner to differentially affect the initiation versus maintenance of a developmental program.", "title": "Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program." }, { "docid": "18924534", "text": "The mammalian genome harbors thousands of long noncoding RNA (lncRNA) genes. Recent studies have indicated the involvement of several of these lncRNAs in the regulation of gene expression. lncRNAs play crucial roles in various biological processes ranging from epigenetic gene regulation, transcriptional control, to post-transcriptional regulation. lncRNAs are localized in various subcellular compartments, and major proportion of these are retained in the cell nucleus and could be broadly classified as nuclear-retained lncRNAs (nrRNAs). Based on the identified functions, members of the nrRNAs execute diverse roles, including providing architectural support to the hierarchical subnuclear organization and influencing the recruitment of chromatin modifier factors to specific chromatin sites. In this review, we will summarize the recently described roles of mammalian nrRNAs in controlling gene expression by influencing chromatin organization, transcription, pre-mRNA processing, nuclear organization, and their involvement in disease.", "title": "Functional insights into the role of nuclear-retained long noncoding RNAs in gene expression control in mammalian cells" }, { "docid": "20179918", "text": "Both signal transducer and activator of transcription 3 (STAT3) and SALL4 are important in maintaining the pluripotent and self-renewal state of embryonic stem cells. We hypothesized that STAT3, a latent transcriptional factor, may regulate the gene expression of SALL4. In support of this hypothesis, DNA sequence analysis of the SALL4 gene promoter revealed four putative STAT3-binding sites. Using a SALL4-luciferase reporter gene assay, we found that modulation of the STAT3 activity significantly up-regulated the luciferase activity. By chromatin immunoprecipitation, the segment of the SALL4 promoter showing the highest affinity to STAT3 was localized to -366 to -163, in which there was only one putative STAT3 binding site starting at -199. Site-directed mutagenesis of all four putative STAT3-binding sites in the SALL4 promoter significantly reduced its responsiveness to STAT3, although the most dramatic effect was seen at the binding site starting at -199. We further tested the functional relationship between STAT3 and SALL4 using MDA-MB-231, a breast cell line carrying constitutive SALL4 expression and STAT3 activity. Down-regulation of the STAT3 activity using a dominant-negative construct resulted in a significant decrease in the expression of SALL4. To conclude, our data suggest that STAT3 and SALL4 probably cooperate in both physiological and pathological states.", "title": "Signal transducer and activator of transcription 3 is a transcriptional factor regulating the gene expression of SALL4." }, { "docid": "2452989", "text": "KLF1 regulates a diverse suite of genes to direct erythroid cell differentiation from bipotent progenitors. To determine the local cis-regulatory contexts and transcription factor networks in which KLF1 operates, we performed KLF1 ChIP-seq in the mouse. We found at least 945 sites in the genome of E14.5 fetal liver erythroid cells which are occupied by endogenous KLF1. Many of these recovered sites reside in erythroid gene promoters such as Hbb-b1, but the majority are distant to any known gene. Our data suggests KLF1 directly regulates most aspects of terminal erythroid differentiation including production of alpha- and beta-globin protein chains, heme biosynthesis, coordination of proliferation and anti-apoptotic pathways, and construction of the red cell membrane and cytoskeleton by functioning primarily as a transcriptional activator. Additionally, we suggest new mechanisms for KLF1 cooperation with other transcription factors, in particular the erythroid transcription factor GATA1, to maintain homeostasis in the erythroid compartment.", "title": "A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells." }, { "docid": "4418070", "text": "Regulatory T (Treg) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting differentiation factor controlling Treg cell homeostasis and function, whereas the early Treg-cell-lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors. However, whether Foxo proteins act beyond the Treg-cell-commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1 and display reduced T-cell-receptor-induced Akt activation, Foxo1 phosphorylation and Foxo1 nuclear exclusion. Mice with Treg-cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to that seen in Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ∼300 Foxo1-bound target genes, including the pro-inflammatory cytokine Ifng, that do not seem to be directly regulated by Foxp3. These findings show that the evolutionarily ancient Akt–Foxo1 signalling module controls a novel genetic program indispensable for Treg cell function.", "title": "Novel Foxo1-dependent transcriptional programs control Treg cell function" }, { "docid": "22150633", "text": "Embryonic stem (ES) cells are unique in their ability to self-renew indefinitely and maintain pluripotency. These properties require transcription factors that specify the gene expression programme of ES cells. It has been possible to reverse the highly differentiated state of somatic cells back to a pluripotent state with a combination of four transcription factors: Klf4 is one of the reprogramming factors required, in conjunction with Oct4, Sox2 and c-Myc. Maintenance of self-renewal and pluripotency of ES cells requires Oct4, Sox2 and c-Myc, but Klf4 is dispensable. Here, we show that Krüppel-like factors are required for the self-renewal of ES cells. Simultaneous depletion of Klf2, Klf4 and Klf5 lead to ES cell differentiation. Chromatin immunoprecipitation coupled to microarray assay reveals that these Klf proteins share many common targets of Nanog, suggesting a close functional relationship between these factors. Expression analysis after triple RNA interference (RNAi) of the Klfs shows that they regulate key pluripotency genes, such as Nanog. Taken together, our study provides new insight into how the core Klf circuitry integrates into the Nanog transcriptional network to specify gene expression that is unique to ES cells.", "title": "A core Klf circuitry regulates self-renewal of embryonic stem cells" } ]
458
Genetic deficiency of mast cells leads to decreased weight gain in a mouse model of diet-induced obesity.
[ { "docid": "597790", "text": "Although mast cell functions have classically been related to allergic responses, recent studies indicate that these cells contribute to other common diseases such as multiple sclerosis, rheumatoid arthritis, atherosclerosis, aortic aneurysm and cancer. This study presents evidence that mast cells also contribute to diet-induced obesity and diabetes. For example, white adipose tissue (WAT) from obese humans and mice contain more mast cells than WAT from their lean counterparts. Furthermore, in the context of mice on a Western diet, genetically induced deficiency of mast cells, or their pharmacological stabilization, reduces body weight gain and levels of inflammatory cytokines, chemokines and proteases in serum and WAT, in concert with improved glucose homeostasis and energy expenditure. Mechanistic studies reveal that mast cells contribute to WAT and muscle angiogenesis and associated cell apoptosis and cathepsin activity. Adoptive transfer experiments of cytokine-deficient mast cells show that these cells, by producing interleukin-6 (IL-6) and interferon-gamma (IFN-gamma), contribute to mouse adipose tissue cysteine protease cathepsin expression, apoptosis and angiogenesis, thereby promoting diet-induced obesity and glucose intolerance. Our results showing reduced obesity and diabetes in mice treated with clinically available mast cell-stabilizing agents suggest the potential of developing new therapies for these common human metabolic disorders.", "title": "Deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice" } ]
[ { "docid": "52865789", "text": "OBJECTIVE IL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO) mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues. \n METHODS Control and IL-15 KO mice were maintained on high fat diet (HFD) or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells. \n RESULTS Our results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues. \n CONCLUSIONS Absence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome.", "title": "Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues" }, { "docid": "18450716", "text": "Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion.", "title": "Noncanonical Wnt Signaling Promotes Obesity-Induced Adipose Tissue Inflammation and Metabolic Dysfunction Independent of Adipose Tissue Expansion" }, { "docid": "1365188", "text": "Several data suggest that fermentable dietary fiber could play a role in the control of obesity and associated metabolic disorders. The aim of this study was to investigate the putative role of short chain fructo-oligosaccharide (OFS) - a non-digestible oligosaccharide - in mice fed a standard diet and in mice fed two distinct high fat diets inducing metabolic disorders associated to obesity. We confirmed, in mice, several effects previously shown in rats fed a standard diet enriched with OFS, namely an increase in total and empty caecum weight, a significant decrease in epididymal fat mass, and an increase in colonic and portal plasma glucagon-like peptide-1 (GLP-1), a phenomenon positively correlated with a higher colonic proglucagon mRNA level. Curiously, 4-week treatment with OFS added at the same dose induced different effects when added in the two different high fat diets. OFS decreased energy intake, body weight gain, glycemia, and epididymal fat mass only when added together with the high fat-carbohydrate free diet, in which OFS promoted colonic proglucagon expression and insulin secretion. Our results support an association between the increase in proglucagon expression in the proximal colon and OFS effects on glycemia, fat mass development, and/or body weight gain. In conclusion, dietary oligosaccharides would constitute an interesting class of dietary fibers promoting, in certain conditions, endogenous GLP-1 production, with beneficial physiological consequences. This remains to be proven in human studies.", "title": "Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice." }, { "docid": "41310252", "text": "The epidemiological evidence that a high-fat diet promotes the development of obesity is considered suggestive but not definitive. The purpose of this paper is to provide a review of various epidemiological methods that have been used to address this issue as well as an updated summary of the existing evidence. Ecological studies describing dietary fat intake and obesity at the population level provide mixed results and are likely to be biased by both confounding and unknown data quality factors that differ systematically across the populations studied. Cross-sectional studies are generally in agreement that the concentration of fat in the diet is positively associated with relative weight. Prospective studies of diet in relation to subsequent weight change give inconsistent results. This may be due to behavioural factors such as dieting in response to weight gain; in addition, this type of study rarely takes into account the possible interaction between genetic predisposition and dietary fat in promoting weight gain. Finally, intervention studies in free-living subjects are considered, providing evidence of a consistent but short-lived period of active weight loss on low-fat diets. The experimental evidence on this relationship is more conclusive than the epidemiological evidence, although biological mechanisms remain controversial. Some areas for future epidemiological research involve: longitudinal studies of dietary fat intake as a predictor of growth in children; observational studies relating total dietary fat and specific types of fat to overall as well as regional adiposity; and randomized intervention studies of the effect of low-fat diets with particular emphasis on and familial predisposition to obesity and other possible modifying factors.", "title": "Dietary fat and obesity: evidence from epidemiology." }, { "docid": "6227220", "text": "Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.", "title": "Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine" }, { "docid": "10463997", "text": "Objectives: Autophagy is a highly regulated process that has an important role in the control of a wide range of cellular functions, such as organelle recycling, nutrient availability and tissue differentiation. A recent study has shown an increased autophagic activity in the adipose tissue of obese subjects, and a role for autophagy in obesity-associated insulin resistance was proposed. Body mass reduction is the most efficient approach to tackle insulin resistance in over-weight subjects; however, the impact of weight loss in adipose tissue autophagy is unknown. Subjects:Adipose tissue autophagy was evaluated in mice and humans. Results:First, a mouse model of diet-induced obesity and diabetes was maintained on a 15-day, 40% caloric restriction. At baseline, markers of autophagy were increased in obese mice as compared with lean controls. Upon caloric restriction, autophagy increased in the lean mice, whereas it decreased in the obese mice. The reintroduction of ad libitum feeding was sufficient to rapidly reduce autophagy in the lean mice and increase autophagy in the obese mice. In the second part of the study, autophagy was evaluated in the subcutaneous adipose tissue of nine obese-non-diabetic and six obese-diabetic subjects undergoing bariatric surgery for body mass reduction. Specimens were collected during the surgery and approximately 1 year later. Markers of systemic inflammation, such as tumor necrosis factor-1α, interleukin (IL)-6 and IL-1β were evaluated. As in the mouse model, human obesity was associated with increased autophagy, and body mass reduction led to an attenuation of autophagy in the adipose tissue. Conclusion:Obesity and caloric overfeeding are associated with the defective regulation of autophagy in the adipose tissue. The studies in obese-diabetic subjects undergoing improved metabolic control following calorie restriction suggest that autophagy and inflammation are regulated independently.", "title": "Defective regulation of adipose tissue autophagy in obesity" }, { "docid": "4641348", "text": "BACKGROUND/OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. \n MATERIALS/METHODS The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. \n RESULTS EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. \n CONCLUSIONS Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.", "title": "Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease" }, { "docid": "2605032", "text": "We investigated if whether intrauterine protein restriction in combination with overfeeding during lactation would cause adult-onset obesity and metabolic disorders. After birth, litters from dams fed with control (17% protein) and low protein (6% protein) diets were adjusted to a size of four (CO and LO groups, respectively) or eight (CC and LC groups, respectively) pups. All of the offspring were fed a diet containing 12% protein from the time of weaning until they were 90 d old. Compared to the CC and LC groups, the CO and LO groups had higher relative and absolute food intakes, oxygen consumption and carbon dioxide production; lower brown adipose tissue weight and lipid content and greater weight gain and absolute and relative white adipose tissue weight and absolute lipid content. Compared with the CO and CC rats, the LC and LO rats exhibited higher relative food intake, brown adipose tissue weight and lipid content, reduced oxygen consumption, carbon dioxide production and spontaneous activity, increased relative retroperitoneal adipose tissue weight and unaltered absolute white adipose tissue weight and lipid content. The fasting serum glucose was similar among the groups. The area under the glucose curve was higher in the LO and CO rats than in the LC and CC rats. The basal insulinemia and homeostasis model assessment of insulin resistance (HOMA-IR) were lower in the LO group than in the other groups. The total area under the insulin curve for the LO rats was similar to the CC rats, and both were lower than the CO and LC rats. Kitt was higher in the LO, LC and CO groups than in the CC group. Thus, intrauterine protein restriction followed by overfeeding during lactation did not induce obesity, but produced glucose intolerance by impairing pancreatic function in adulthood.", "title": "Intrauterine protein restriction combined with early postnatal overfeeding was not associated with adult-onset obesity but produced glucose intolerance by pancreatic dysfunction" }, { "docid": "12994780", "text": "Rationale:Atypical antipsychotic drugs (AAD) induce significant weight gain in female C57BL/6J mice. The effect of dietary fat on weight gain and serum lipids in this model is unknown. Objectives: Test the hypothesis that the obesigenic effects of these drugs are greater in the presence of a high-fat diet. Methods:Female C57BL/6J mice were treated with atypical antipsychotics for 3 weeks and fed either a low-fat or high-fat diet (4.6 vs 15.6% fat by wt). Food intake (FI), body weight (BW), body composition, and serum lipids were measured during treatment with optimized doses of olanzapine, quetiapine, and risperidone. Energy intake (EI) and feed efficiency (FE) were calculated. Group differences in change were analyzed via repeated measures analysis of variance (ANOVA). Serum lipid concentrations, EI and FE were compared using two-way ANOVA.Results:AAD-treated mice gained significantly more weight than controls after 3 weeks (P<0.001). Treatment and diet had significant effects on FI and EI over time (P<0.001). AAD-treated mice had significantly higher FE than controls (P<0.05); however, there was no significant drug by diet interaction (P=0.65). Risperidone low-fat mice gained significantly more absolute fat mass than placebo low-fat mice (P<0.05). All treatment groups, except quetiapine low-fat and olanzapine high-fat, gained significantly more absolute lean mass than placebo controls (P<0.05). Cholesterol levels were significantly lower in quetiapine and risperidone than placebo (P<0.05). Risperidone low-fat mice had significantly higher triglyceride levels than placebo and risperidone high-fat mice (P<0.05).Conclusions:A high-fat diet does not increase AAD-induced BW gain in female mice during a 3-week treatment period.", "title": "No effect of dietary fat on short-term weight gain in mice treated with atypical antipsychotic drugs" }, { "docid": "21547032", "text": "Objective:In mice and in humans, treatment with the second-generation antipsychotic drug olanzapine (OLZ) produces excessive weight gain, adiposity and secondary metabolic complications, including loss of glucose and insulin homeostasis. In mice consuming a high-fat (HF) diet, a similar phenotype develops, which is inhibited by the analgesic acetaminophen (APAP) and by the antioxidant tetrahydroindenoindole (THII). Therefore, we examined the ability of APAP and THII to prevent metabolic changes in mice receiving OLZ.Design and Measurement:C57BL/6J mice received either a normal diet or a HF diet, and were administered daily dosages of OLZ (3 mg kg−1 body weight), alone or with APAP (30 mg kg−1 body weight) or THII (4.5 mg kg−1 body weight), for 10 weeks. Parameters of body composition and metabolism, including glucose and insulin homeostasis and oxidative stress, were examined. Results:OLZ treatment doubled the HF diet-induced increases in body weight and percent body fat. These increases were partially prevented by both APAP and THII, although food consumption was constant in all groups. The THII protection was associated with an increase in whole body and mitochondrial respiration. OLZ also exacerbated, and both APAP and THII prevented, HF diet-induced loss of glucose tolerance and insulin resistance. As increased body fat promotes insulin resistance by a pathway involving oxidative stress, we evaluated production of reactive oxygen and lipid peroxidation in white adipose tissue (WAT). HF diet caused an increase in lipid peroxidation, NADPH-dependent O2 uptake and H2O2 production, which were further exacerbated by OLZ. APAP, THII and the NADPH oxidase inhibitor, diphenyleneiodonium chloride, each abolished oxidative stress in WAT.Conclusions:We conclude that both APAP and THII intervene in the development of obesity and metabolic complications associated with OLZ treatment.", "title": "Protection from olanzapine-induced metabolic toxicity in mice by acetaminophen and tetrahydroindenoindole" }, { "docid": "24347647", "text": "The proteasome is a multicatalytic enzyme complex responsible for the degradation of both normal and damaged proteins. An age-related decline in proteasomal activity has been implicated in various age-related pathologies. The relevance of decreased proteasomal activity to aging and age-related diseases remains unclear, however, because suitable animal models are not available. In the present study, we established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity. Tg mice exhibited a shortened life span and developed age-related phenotypes. In Tg mice, polyubiquitinated and oxidized proteins accumulated, and the expression levels of cellular proteins such as Bcl-xL and RNase L were altered. When Tg mice were fed a high-fat diet, they developed more pronounced obesity and hepatic steatosis than did wild-type mice. Consistent with its role in lipid droplet formation, the expression of adipose differentiation-related protein (ADRP) was elevated in the livers of Tg mice. Of note, obesity and hepatic steatosis induced by a high-fat diet were more pronounced in aged than in young wild-type mice, and aged wild-type mice had elevated levels of ADRP, suggesting that the metabolic abnormalities present in Tg mice mimic those in aged mice. Our results provide the first in vivo evidence that decreased proteasomal chymotrypsin-like activity affects longevity and aggravates age-related metabolic disorders, such as obesity and hepatic steatosis.", "title": "Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities." }, { "docid": "5108807", "text": "Ciliary neurotrophic factor (CNTF) induces weight loss and improves glucose tolerance in humans and rodents. CNTF is thought to act centrally by inducing hypothalamic neurogenesis to modulate food intake and peripherally by altering hepatic gene expression, in a manner similar to that of leptin. Here, we show that CNTF signals through the CNTFRα–IL-6R–gp130β receptor complex to increase fatty-acid oxidation and reduce insulin resistance in skeletal muscle by activating AMP-activated protein kinase (AMPK), independent of signaling through the brain. Thus, our findings further show that the antiobesogenic effects of CNTF in the periphery result from direct effects on skeletal muscle, and that these peripheral effects are not suppressed by diet-induced or genetic models of obesity, an essential requirement for the therapeutic treatment of obesity-related diseases.", "title": "CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK" }, { "docid": "5389095", "text": "Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin– and αvβ5 integrin–dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications.", "title": "Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids" }, { "docid": "31324978", "text": "Progerias are rare genetic diseases characterized by premature aging. Several progeroid disorders are caused by mutations that lead to the accumulation of a lipid-modified (farnesylated) form of prelamin A, a protein that contributes to the structural scaffolding for the cell nucleus. In progeria, the accumulation of farnesyl-prelamin A disrupts this scaffolding, leading to misshapen nuclei. Previous studies have shown that farnesyltransferase inhibitors (FTIs) reverse this cellular abnormality. We tested the efficacy of an FTI (ABT-100) in Zmpste24-deficient mice, a mouse model of progeria. The FTI-treated mice exhibited improved body weight, grip strength, bone integrity, and percent survival at 20 weeks of age. These results suggest that FTIs may have beneficial effects in humans with progeria.", "title": "A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria." }, { "docid": "10889845", "text": "Obesity and insulin resistance, the key features of metabolic syndrome, are closely associated with a state of chronic, low-grade inflammation characterized by abnormal macrophage infiltration into adipose tissues. Although it has been reported that chemokines promote leukocyte migration by activating class IB phosphoinositide-3 kinase (PI3Kγ) in inflammatory states, little is known about the role of PI3Kγ in obesity-induced macrophage infiltration into tissues, systemic inflammation, and the development of insulin resistance. In the present study, we used murine models of both diet-induced and genetically induced obesity to examine the role of PI3Kγ in the accumulation of tissue macrophages and the development of obesity-induced insulin resistance. Mice lacking p110γ (Pik3cg(-/-)), the catalytic subunit of PI3Kγ, exhibited improved systemic insulin sensitivity with enhanced insulin signaling in the tissues of obese animals. In adipose tissues and livers of obese Pik3cg(-/-) mice, the numbers of infiltrated proinflammatory macrophages were markedly reduced, leading to suppression of inflammatory reactions in these tissues. Furthermore, bone marrow-specific deletion and pharmacological blockade of PI3Kγ also ameliorated obesity-induced macrophage infiltration and insulin resistance. These data suggest that PI3Kγ plays a crucial role in the development of both obesity-induced inflammation and systemic insulin resistance and that PI3Kγ can be a therapeutic target for type 2 diabetes.", "title": "Blockade of class IB phosphoinositide-3 kinase ameliorates obesity-induced inflammation and insulin resistance." }, { "docid": "1428830", "text": "Atypical antipsychotics such as olanzapine often induce excessive weight gain and type 2 diabetes. However, the mechanisms underlying these drug-induced metabolic perturbations remain poorly understood. Here, we used an experimental model that reproduces olanzapine-induced hyperphagia and obesity in female C57BL/6 mice. We found that olanzapine treatment acutely increased food intake, impaired glucose tolerance, and altered physical activity and energy expenditure in mice. Furthermore, olanzapine-induced hyperphagia and weight gain were blunted in mice lacking the serotonin 2C receptor (HTR2C). Finally, we showed that treatment with the HTR2C-specific agonist lorcaserin suppressed olanzapine-induced hyperphagia and weight gain. Lorcaserin treatment also improved glucose tolerance in olanzapine-fed mice. Collectively, our studies suggest that olanzapine exerts some of its untoward metabolic effects via antagonism of HTR2C.", "title": "The atypical antipsychotic olanzapine causes weight gain by targeting serotonin receptor 2C." }, { "docid": "33918970", "text": "OBJECTIVE Oligofructose (OFS) is a prebiotic that reduces energy intake and fat mass via changes in gut satiety hormones and microbiota. The effects of OFS may vary depending on predisposition to obesity. The aim of this study was to examine the effect of OFS in diet-induced obese (DIO) and diet-resistant (DR) rats. \n METHODS Adult, male DIO, and DR rats were randomized to: high-fat/high-sucrose (HFS) diet or HFS diet + 10% OFS for 6 weeks. Body composition, food intake, gut microbiota, plasma gut hormones, and cannabinoid CB(1) receptor expression in the nodose ganglia were measured. \n RESULTS OFS reduced body weight, energy intake, and fat mass in both phenotypes (P < 0.05). Select gut microbiota differed in DIO versus DR rats (P < 0.05), the differences being eliminated by OFS. OFS did not modify plasma ghrelin or CB(1) expression in nodose ganglia, but plasma levels of GIP were reduced and PYY were elevated (P < 0.05) by OFS. \n CONCLUSIONS OFS was able to reduce body weight and adiposity in both prone and resistant obese phenotypes. OFS-induced changes in gut microbiota profiles in DIO and DR rats, along with changes in gut hormone levels, likely contribute to the sustained lower body weights.", "title": "Interactive effects of oligofructose and obesity predisposition on gut hormones and microbiota in diet-induced obese rats." }, { "docid": "14116046", "text": "Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in lipid/glucose homeostasis and various immune functions, and have been implicated in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance. The resistance to hepatosteatosis in RORα-deficient mice is related to the reduced expression of several genes regulating lipid synthesis, transport, and storage. Adipose tissue-associated inflammation, which plays a critical role in the development of insulin resistance, is considerably diminished in RORα-deficient mice as indicated by the reduced infiltration of M1 macrophages and decreased expression of many proinflammatory genes. Deficiency in RORγ also protects against diet-induced insulin resistance by a mechanism that appears different from that in RORα deficiency. Recent studies indicated that RORs provide an important link between the circadian clock machinery and its regulation of metabolic genes and metabolic syndrome. As ligand-dependent transcription factors, RORs may provide novel therapeutic targets in the management of obesity and associated metabolic diseases, including hepatosteatosis, adipose tissue-associated inflammation, and insulin resistance.", "title": "Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity" }, { "docid": "12672066", "text": "IMPORTANCE In 2011, the Centers for Medicare & Medicaid Services (CMS) approved intensive behavioral weight loss counseling for approximately 14 face-to-face, 10- to 15-minute sessions over 6 months for obese beneficiaries in primary care settings, when delivered by physicians and other CMS-defined primary care practitioners. \n OBJECTIVE To conduct a systematic review of behavioral counseling for overweight and obese patients recruited from primary care, as delivered by primary care practitioners working alone or with trained interventionists (eg, medical assistants, registered dietitians), or by trained interventionists working independently. EVIDENCE REVIEW We searched PubMed, CINAHL, and EMBASE for randomized controlled trials published between January 1980 and June 2014 that recruited overweight and obese patients from primary care; provided behavioral counseling (ie, diet, exercise, and behavioral therapy) for at least 3 months, with at least 6 months of postrandomization follow-up; included at least 15 participants per treatment group and objectively measured weights; and had a comparator, an intention-to-treat analysis, and attrition of less than 30% at 1 year or less than 40% at longer follow-up. \n FINDINGS Review of 3304 abstracts yielded 12 trials, involving 3893 participants, that met inclusion-exclusion criteria and prespecified quality ratings. No studies were found in which primary care practitioners delivered counseling that followed the CMS guidelines. Mean 6-month weight changes from baseline in the intervention groups ranged from a loss of 0.3 kg to 6.6 kg. In the control group, mean change ranged from a gain of 0.9 kg to a loss of 2.0 kg. Weight loss in both groups generally declined with longer follow-up (12-24 months). Interventions that prescribed both reduced energy intake (eg, ≥ 500 kcal/d) and increased physical activity (eg, ≥150 minutes a week of walking), with traditional behavioral therapy, generally produced larger weight loss than interventions without all 3 specific components. In the former trials, more treatment sessions, delivered in person or by telephone by trained interventionists, were associated with greater mean weight loss and likelihood of patients losing 5% or more of baseline weight. \n CONCLUSIONS AND RELEVANCE Intensive behavioral counseling can induce clinically meaningful weight loss, but there is little research on primary care practitioners providing such care. The present findings suggest that a range of trained interventionists, who deliver counseling in person or by telephone, could be considered for treating overweight or obesity in patients encountered in primary care settings.", "title": "Behavioral treatment of obesity in patients encountered in primary care settings: a systematic review." } ]
461
Genetic deletion of JAM-A increases gut permeability.
[ { "docid": "40096222", "text": "Mice lacking junctional adhesion molecule A (JAM-A, encoded by F11r) exhibit enhanced intestinal epithelial permeability, bacterial translocation, and elevated colonic lymphocyte numbers, yet do not develop colitis. To investigate the contribution of adaptive immune compensation in response to increased intestinal epithelial permeability, we examined the susceptibility of F11r(-/-)Rag1(-/-) mice to acute colitis. Although negligible contributions of adaptive immunity in F11r(+/+)Rag1(-/-) mice were observed, F11r(-/-)Rag1(-/-) mice exhibited increased microflora-dependent colitis. Elimination of T cell subsets and cytokine analyses revealed a protective role for TGF-β-producing CD4(+) T cells in F11r(-/-) mice. Additionally, loss of JAM-A resulted in elevated mucosal and serum IgA that was dependent upon CD4(+) T cells and TGF-β. Absence of IgA in F11r(+/+)Igha(-/-) mice did not affect disease, whereas F11r(-/-)Igha(-/-) mice displayed markedly increased susceptibility to acute injury-induced colitis. These data establish a role for adaptive immune-mediated protection from acute colitis under conditions of intestinal epithelial barrier compromise.", "title": "Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis." } ]
[ { "docid": "15578265", "text": "Several lines of evidence suggest a role for the gut microbiome in type 1 diabetes. Treating diabetes-prone rodents with probiotics or antibiotics prevents the development of the disorder. Diabetes-prone rodents also have a distinctly different gut microbiome compared with healthy rodents. Recent studies in children with a high genetic risk for type 1 diabetes demonstrate significant differences in the gut microbiome between children who develop autoimmunity for the disease and those who remain healthy. However, the differences in microbiome composition between autoimmune and healthy children are not consistent across all studies because of the strong environmental influences on microbiome composition, particularly diet and geography. Controlling confounding factors of microbiome composition uncovers bacterial associations with disease. For example, in a human cohort from a single Finnish city where geography is confined, a strong association between one dominant bacterial species, Bacteroides dorei, and type 1 diabetes was discovered (Davis-Richardson et al. Front Microbiol 2014;5:678). Beyond this, recent DNA methylation analyses suggest that a thorough epigenetic analysis of the gut microbiome may be warranted. These studies suggest a testable model whereby a diet high in fat and gluten and low in resistant starch may be the primary driver of gut dysbiosis. This dysbiosis may cause a lack of butyrate production by gut bacteria, which, in turn, leads to the development of a permeable gut followed by autoimmunity. The bacterial community responsible for these changes in butyrate production may vary around the world, but bacteria of the genus Bacteroides are thought to play a key role.", "title": "A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes" }, { "docid": "52805891", "text": "Environmental factors and host genetics interact to control the gut microbiota, which may have a role in the development of obesity and insulin resistance. TLR2-deficient mice, under germ-free conditions, are protected from diet-induced insulin resistance. It is possible that the presence of gut microbiota could reverse the phenotype of an animal, inducing insulin resistance in an animal genetically determined to have increased insulin sensitivity, such as the TLR2 KO mice. In the present study, we investigated the influence of gut microbiota on metabolic parameters, glucose tolerance, insulin sensitivity, and signaling of TLR2-deficient mice. We investigated the gut microbiota (by metagenomics), the metabolic characteristics, and insulin signaling in TLR2 knockout (KO) mice in a non-germ free facility. Results showed that the loss of TLR2 in conventionalized mice results in a phenotype reminiscent of metabolic syndrome, characterized by differences in the gut microbiota, with a 3-fold increase in Firmicutes and a slight increase in Bacteroidetes compared with controls. These changes in gut microbiota were accompanied by an increase in LPS absorption, subclinical inflammation, insulin resistance, glucose intolerance, and later, obesity. In addition, this sequence of events was reproduced in WT mice by microbiota transplantation and was also reversed by antibiotics. At the molecular level the mechanism was unique, with activation of TLR4 associated with ER stress and JNK activation, but no activation of the IKKβ-IκB-NFκB pathway. Our data also showed that in TLR2 KO mice there was a reduction in regulatory T cell in visceral fat, suggesting that this modulation may also contribute to the insulin resistance of these animals. Our results emphasize the role of microbiota in the complex network of molecular and cellular interactions that link genotype to phenotype and have potential implications for common human disorders involving obesity, diabetes, and even other immunological disorders.", "title": "Gut Microbiota Is a Key Modulator of Insulin Resistance in TLR 2 Knockout Mice" }, { "docid": "12658073", "text": "The gut microbiota has been proposed as an environmental factor that affects the development of metabolic and inflammatory diseases in mammals. Recent reports indicate that gut bacteria-derived lipopolysaccharide (LPS) can initiate obesity and insulin resistance in mice; however, the molecular interactions responsible for microbial regulation of host metabolism and mediators of inflammation have not been studied in detail. Hepatic serum amyloid A (SAA) proteins are markers and proposed mediators of inflammation that exhibit increased levels in serum of insulin-resistant mice. Adipose tissue-derived SAA3 displays monocyte chemotactic activity and may play a role in metabolic inflammation associated with obesity and insulin resistance. To investigate a potential mechanistic link between the intestinal microbiota and induction of proinflammatory host factors, we performed molecular analyses of germ-free, conventionally raised and genetically modified Myd88-/- mouse models. SAA3 expression was determined to be significantly augmented in adipose (9.9+/-1.9-fold; P<0.001) and colonic tissue (7.0+/-2.3-fold; P<0.05) by the presence of intestinal microbes. In the colon, we provided evidence that SAA3 is partially regulated through the Toll-like receptor (TLR)/MyD88/NF-kappaB signaling axis. We identified epithelial cells and macrophages as cellular sources of SAA3 in the colon and found that colonic epithelial expression of SAA3 may be part of an NF-kappaB-dependent response to LPS from gut bacteria. In vitro experiments showed that LPS treatments of both epithelial cells and macrophages induced SAA3 expression (27.1+/-2.5-fold vs. 1.6+/-0.1-fold, respectively). Our data suggest that LPS, and potentially other products of the indigenous gut microbiota, might elevate cytokine expression in tissues and thus exacerbate chronic low-grade inflammation observed in obesity.", "title": "Regulation of Serum Amyloid A3 (SAA3) in Mouse Colonic Epithelium and Adipose Tissue by the Intestinal Microbiota" }, { "docid": "2604063", "text": "The intestinal microbiota has become a relevant aspect of human health. Microbial colonization runs in parallel with immune system maturation and plays a role in intestinal physiology and regulation. Increasing evidence on early microbial contact suggest that human intestinal microbiota is seeded before birth. Maternal microbiota forms the first microbial inoculum, and from birth, the microbial diversity increases and converges toward an adult-like microbiota by the end of the first 3-5 years of life. Perinatal factors such as mode of delivery, diet, genetics, and intestinal mucin glycosylation all contribute to influence microbial colonization. Once established, the composition of the gut microbiota is relatively stable throughout adult life, but can be altered as a result of bacterial infections, antibiotic treatment, lifestyle, surgical, and a long-term change in diet. Shifts in this complex microbial system have been reported to increase the risk of disease. Therefore, an adequate establishment of microbiota and its maintenance throughout life would reduce the risk of disease in early and late life. This review discusses recent studies on the early colonization and factors influencing this process which impact on health.", "title": "The composition of the gut microbiota throughout life, with an emphasis on early life" }, { "docid": "2565138", "text": "OBJECTIVE Pancreatic ductal adenocarcinoma (PDA) is characterised by stromal desmoplasia and vascular dysfunction, which critically impair drug delivery. This study examines the role of an abundant extracellular matrix component, the megadalton glycosaminoglycan hyaluronan (HA), as a novel therapeutic target in PDA. \n METHODS Using a genetically engineered mouse model of PDA, the authors enzymatically depleted HA by a clinically formulated PEGylated human recombinant PH20 hyaluronidase (PEGPH20) and examined tumour perfusion, vascular permeability and drug delivery. The preclinical utility of PEGPH20 in combination with gemcitabine was assessed by short-term and survival studies. \n RESULTS PEGPH20 rapidly and sustainably depleted HA, inducing the re-expansion of PDA blood vessels and increasing the intratumoral delivery of two chemotherapeutic agents, doxorubicin and gemcitabine. Moreover, PEGPH20 triggered fenestrations and interendothelial junctional gaps in PDA tumour endothelia and promoted a tumour-specific increase in macromolecular permeability. Finally, combination therapy with PEGPH20 and gemcitabine led to inhibition of PDA tumour growth and prolonged survival over gemcitabine monotherapy, suggesting immediate clinical utility. \n CONCLUSIONS The authors demonstrate that HA impedes the intratumoral vasculature in PDA and propose that its enzymatic depletion be explored as a means to improve drug delivery and response in patients with pancreatic cancer.", "title": "Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer" }, { "docid": "6372244", "text": "Antibiotics can have significant and long-lasting effects on the gastrointestinal tract microbiota, reducing colonization resistance against pathogens including Clostridium difficile. Here we show that antibiotic treatment induces substantial changes in the gut microbial community and in the metabolome of mice susceptible to C. difficile infection. Levels of secondary bile acids, glucose, free fatty acids and dipeptides decrease, whereas those of primary bile acids and sugar alcohols increase, reflecting the modified metabolic activity of the altered gut microbiome. In vitro and ex vivo analyses demonstrate that C. difficile can exploit specific metabolites that become more abundant in the mouse gut after antibiotics, including the primary bile acid taurocholate for germination, and carbon sources such as mannitol, fructose, sorbitol, raffinose and stachyose for growth. Our results indicate that antibiotic-mediated alteration of the gut microbiome converts the global metabolic profile to one that favours C. difficile germination and growth.", "title": "Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection" }, { "docid": "32454714", "text": "Mucosal tolerance has been considered a potentially important pathway for the treatment of autoimmune disease, including human multiple sclerosis and experimental conditions such as experimental autoimmune encephalomyelitis (EAE). There is limited information on the capacity of commensal gut bacteria to induce and maintain peripheral immune tolerance. Inbred SJL and C57BL/6 mice were treated orally with a broad spectrum of antibiotics to reduce gut microflora. Reduction of gut commensal bacteria impaired the development of EAE. Intraperitoneal antibiotic-treated mice showed no significant decline in the gut microflora and developed EAE similar to untreated mice, suggesting that reduction in disease activity was related to alterations in the gut bacterial population. Protection was associated with a reduction of proinflammatory cytokines and increases in IL-10 and IL-13. Adoptive transfer of low numbers of IL-10-producing CD25(+)CD4(+) T cells (>75% FoxP3(+)) purified from cervical lymph nodes of commensal bacteria reduced mice and in vivo neutralization of CD25(+) cells suggested the role of regulatory T cells maintaining peripheral immune homeostasis. Our data demonstrate that antibiotic modification of gut commensal bacteria can modulate peripheral immune tolerance that can protect against EAE. This approach may offer a new therapeutic paradigm in the treatment of multiple sclerosis and perhaps other autoimmune conditions.", "title": "Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis." }, { "docid": "21369472", "text": "Progressive kidney failure is a genetically and clinically heterogeneous group of disorders. Podocyte foot processes and the interposed glomerular slit diaphragm are essential components of the permeability barrier in the kidney. Mutations in genes encoding structural proteins of the podocyte lead to the development of proteinuria, resulting in progressive kidney failure and focal segmental glomerulosclerosis. Here, we show that the canonical transient receptor potential 6 (TRPC6) ion channel is expressed in podocytes and is a component of the glomerular slit diaphragm. We identified five families with autosomal dominant focal segmental glomerulosclerosis in which disease segregated with mutations in the gene TRPC6 on chromosome 11q. Two of the TRPC6 mutants had increased current amplitudes. These data show that TRPC6 channel activity at the slit diaphragm is essential for proper regulation of podocyte structure and function.", "title": "TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function" }, { "docid": "52824661", "text": "Previous studies indicated that transforming growth factor (TGF)-β-mediated exosomal microRNAs (miRNAs) regulate the migration and invasion of lung cancer cells; however, whether and how TGF-β-mediated exosomal long noncoding (lnc) RNAs regulate migration and invasion of lung cancer cells remains unclear. Here, coculture experiments showed that TGF-β pretreatment increased the migration and invasion potential of lung cancer cells and TGF-β pretreated A549 cells increases vascular permeability. Furthermore, we found that TGF-β-mediated exosomes, as carriers of intercellular communication, regulated lung cancer invasion, and vascular permeability. Transcriptional analysis also revealed that lnc-MMP2-2 was highly enriched in TGF-β-mediated exosomes and might function by increasing the expression of matrix metalloproteinase (MMP)2 through its enhancer activity, with ectopic expression and silencing of lnc-MMP2-2 affecting lung cancer invasion and vascular permeability. Additionally, lnc-MMP2-2 and MMP2 expression was assessed semiquantitatively, and tissue-specific correlations between lnc-MMP2-2 and MMP2 expression were evaluated. These results suggested that exosomal lnc-MMP2-2 might regulate the migration and invasion of lung cancer cells into the vasculature by promoting MMP2 expression, suggesting this lncRNA as a novel therapeutic target and predictive marker of tumor metastasis in lung cancer.", "title": "TGF‐β‐mediated exosomal lnc‐MMP2‐2 regulates migration and invasion of lung cancer cells to the vasculature by promoting MMP2 expression" }, { "docid": "21956124", "text": "BACKGROUND Prebiotics are short-chain carbohydrates that alter the composition, or metabolism, of the gut microbiota in a beneficial manner. It is therefore expected that prebiotics will improve health in a way similar to probiotics, whilst at the same time being cheaper, and carrying less risk and being easier to incorporate into the diet than probiotics. AIM To review published evidence for prebiotic effects on gut function and human health. \n METHODS We searched the Science Citation Index with the terms prebiotic, microbiota, gut bacteria, large intestine, mucosa, bowel habit, constipation, diarrhoea, inflammatory bowel disease, Crohn's disease, ulcerative colitis, pouchitis, calcium and cancer, focussing principally on studies in humans and reports in the English language. Search of the Cochrane Library did not identify any clinical study or meta-analysis on this topic. \n RESULTS Three prebiotics, oligofructose, galacto-oligosaccharides and lactulose, clearly alter the balance of the large bowel microbiota by increasing bifidobacteria and Lactobacillus numbers. These carbohydrates are fermented and give rise to short-chain fatty acid and intestinal gas; however, effects on bowel habit are relatively small. Randomized-controlled trials of their effect in a clinical context are few, although animal studies show anti-inflammatory effects in inflammatory bowel disease, while calcium absorption is increased. \n CONCLUSIONS It is still early days for prebiotics, but they offer the potential to modify the gut microbial balance in such a way as to bring direct health benefits cheaply and safely.", "title": "Review article: prebiotics in the gastrointestinal tract." }, { "docid": "25576204", "text": "Malignant cells often display defects in autophagy, an evolutionarily conserved pathway for degrading long-lived proteins and cytoplasmic organelles. However, as yet, there is no genetic evidence for a role of autophagy genes in tumor suppression. The beclin 1 autophagy gene is monoallelically deleted in 40-75% of cases of human sporadic breast, ovarian, and prostate cancer. Therefore, we used a targeted mutant mouse model to test the hypothesis that monoallelic deletion of beclin 1 promotes tumorigenesis. Here we show that heterozygous disruption of beclin 1 increases the frequency of spontaneous malignancies and accelerates the development of hepatitis B virus-induced premalignant lesions. Molecular analyses of tumors in beclin 1 heterozygous mice show that the remaining wild-type allele is neither mutated nor silenced. Furthermore, beclin 1 heterozygous disruption results in increased cellular proliferation and reduced autophagy in vivo. These findings demonstrate that beclin 1 is a haplo-insufficient tumor-suppressor gene and provide genetic evidence that autophagy is a novel mechanism of cell-growth control and tumor suppression. Thus, mutation of beclin 1 or other autophagy genes may contribute to the pathogenesis of human cancers.", "title": "Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene." }, { "docid": "4492358", "text": "The colonization process of the infant gut microbiome has been called chaotic, but this view could reflect insufficient documentation of the factors affecting the microbiome. We performed a 2.5-y case study of the assembly of the human infant gut microbiome, to relate life events to microbiome composition and function. Sixty fecal samples were collected from a healthy infant along with a diary of diet and health status. Analysis of >300,000 16S rRNA genes indicated that the phylogenetic diversity of the microbiome increased gradually over time and that changes in community composition conformed to a smooth temporal gradient. In contrast, major taxonomic groups showed abrupt shifts in abundance corresponding to changes in diet or health. Community assembly was nonrandom: we observed discrete steps of bacterial succession punctuated by life events. Furthermore, analysis of ≈ 500,000 DNA metagenomic reads from 12 fecal samples revealed that the earliest microbiome was enriched in genes facilitating lactate utilization, and that functional genes involved in plant polysaccharide metabolism were present before the introduction of solid food, priming the infant gut for an adult diet. However, ingestion of table foods caused a sustained increase in the abundance of Bacteroidetes, elevated fecal short chain fatty acid levels, enrichment of genes associated with carbohydrate utilization, vitamin biosynthesis, and xenobiotic degradation, and a more stable community composition, all of which are characteristic of the adult microbiome. This study revealed that seemingly chaotic shifts in the microbiome are associated with life events; however, additional experiments ought to be conducted to assess how different infants respond to similar life events.", "title": "Succession of microbial consortia in the developing infant gut microbiome." }, { "docid": "20942644", "text": "Sulfolobus islandicus is being used as a model for studying archaeal biology, geo-biology and evolution. However, no genetic system is available for this organism. To produce an S. islandicus mutant suitable for genetic analyses, we screened for colonies with a spontaneous pyrEF mutation. One mutant was obtained containing only 233 bp of the original pyrE sequence in the mutant allele and it was used as a host to delete the β-glycosidase (lacS) gene. Two unmarked gene deletion methods were employed, namely plasmid integration and segregation, and marker replacement and looping out, and unmarked lacS mutants were obtained by each method. A new alternative recombination mechanism, i.e., marker circularization and integration, was shown to operate in the latter method, which did not yield the designed deletion mutation. Subsequently, Sulfolobus–E. coli plasmid shuttle vectors were constructed, which genetically complemented ΔpyrEFΔlacS mutation after transformation. Thus, a complete set of genetic tools was established for S. islandicus with pyrEF and lacS as genetic markers.", "title": "Unmarked gene deletion and host–vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus" }, { "docid": "14362678", "text": "Mitochondrial permeability transition pore (mPTP) is involved in cardiac dysfunction during chronic β-adrenergic receptor (β-AR) stimulation. The mechanism by which chronic β-AR stimulation leads to mPTP openings is elusive. Here, we show that chronic administration of isoproterenol (ISO) persistently increases the frequency of mPTP openings followed by mitochondrial damage and cardiac dysfunction. Mechanistically, this effect is mediated by phosphorylation of mitochondrial fission protein, dynamin-related protein 1 (Drp1), by Ca2+/calmodulin-dependent kinase II (CaMKII) at a serine 616 (S616) site. Mutating this phosphorylation site or inhibiting Drp1 activity blocks CaMKII- or ISO-induced mPTP opening and myocyte death in vitro and rescues heart hypertrophy in vivo. In human failing hearts, Drp1 phosphorylation at S616 is increased. These results uncover a pathway downstream of chronic β-AR stimulation that links CaMKII, Drp1 and mPTP to bridge cytosolic stress signal with mitochondrial dysfunction in the heart.", "title": "CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation" }, { "docid": "11921405", "text": "The gut mucosal epithelium separates the host from the microbiota, but enteropathogens such as Salmonella Typhimurium (S.Tm) can invade and breach this barrier. Defenses against such acute insults remain incompletely understood. Using a murine model of Salmonella enterocolitis, we analyzed mechanisms limiting pathogen loads in the epithelium during early infection. Although the epithelium-invading S.Tm replicate initially, this intraepithelial replicative niche is restricted by expulsion of infected enterocytes into the lumen. This mechanism is compromised if inflammasome components (NAIP1-6, NLRC4, caspase-1/-11) are deleted, or ablated specifically in the epithelium, resulting in ∼100-fold higher intraepithelial loads and accelerated lymph node colonization. Interestingly, the cytokines downstream of inflammasome activation, interleukin (IL)-1α/β and IL-18, appear dispensable for epithelial restriction of early infection. These data establish the role of an epithelium-intrinsic inflammasome, which drives expulsion of infected cells to restrict the pathogen's intraepithelial proliferation. This may represent a general defense mechanism against mucosal infections.", "title": "Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa." }, { "docid": "8083310", "text": "Impaired erythropoiesis in the deletion 5q (del(5q)) subtype of myelodysplastic syndrome (MDS) has been linked to heterozygous deletion of RPS14, which encodes the ribosomal protein small subunit 14. We generated mice with conditional inactivation of Rps14 and demonstrated an erythroid differentiation defect that is dependent on the tumor suppressor protein p53 (encoded by Trp53 in mice) and is characterized by apoptosis at the transition from polychromatic to orthochromatic erythroblasts. This defect resulted in age-dependent progressive anemia, megakaryocyte dysplasia and loss of hematopoietic stem cell (HSC) quiescence. As assessed by quantitative proteomics, mutant erythroblasts expressed higher levels of proteins involved in innate immune signaling, notably the heterodimeric S100 calcium-binding proteins S100a8 and S100a9. S100a8—whose expression was increased in mutant erythroblasts, monocytes and macrophages—is functionally involved in the erythroid defect caused by the Rps14 deletion, as addition of recombinant S100a8 was sufficient to induce a differentiation defect in wild-type erythroid cells, and genetic inactivation of S100a8 expression rescued the erythroid differentiation defect of Rps14-haploinsufficient HSCs. Our data link Rps14 haploinsufficiency in del(5q) MDS to activation of the innate immune system and induction of S100A8-S100A9 expression, leading to a p53-dependent erythroid differentiation defect.", "title": "Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9" }, { "docid": "13714201", "text": "Aims The gut microbiome influences metabolic syndrome (MetS) and inflammation and is therapeutically modifiable. Arterial stiffness is poorly correlated with most traditional risk factors. Our aim was to examine whether gut microbial composition is associated with arterial stiffness. Methods and results We assessed the correlation between carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, and gut microbiome composition in 617 middle-aged women from the TwinsUK cohort with concurrent serum metabolomics data. Pulse wave velocity was negatively correlated with gut microbiome alpha diversity (Shannon index, Beta(SE)= -0.25(0.07), P = 1 × 10-4) after adjustment for covariates. We identified seven operational taxonomic units associated with PWV after adjusting for covariates and multiple testing-two belonging to the Ruminococcaceae family. Associations between microbe abundances, microbe diversity, and PWV remained significant after adjustment for levels of gut-derived metabolites (indolepropionate, trimethylamine oxide, and phenylacetylglutamine). We linearly combined the PWV-associated gut microbiome-derived variables and found that microbiome factors explained 8.3% (95% confidence interval 4.3-12.4%) of the variance in PWV. A formal mediation analysis revealed that only a small proportion (5.51%) of the total effect of the gut microbiome on PWV was mediated by insulin resistance and visceral fat, c-reactive protein, and cardiovascular risk factors after adjusting for age, body mass index, and mean arterial pressure. Conclusions Gut microbiome diversity is inversely associated with arterial stiffness in women. The effect of gut microbiome composition on PWV is only minimally mediated by MetS. This first human observation linking the gut microbiome to arterial stiffness suggests that targeting the microbiome may be a way to treat arterial ageing.", "title": "Gut microbial diversity is associated with lower arterial stiffness in women" }, { "docid": "27602752", "text": "Encephalitis and dementia associated with acquired immunodeficiency syndrome (AIDS) are characterized by leukocyte infiltration into the CNS, microglia activation, aberrant chemokine expression, blood-brain barrier (BBB) disruption, and eventual loss of neurons. Little is known about whether human immunodeficiency virus 1 (HIV-1) infection of leukocytes affects their ability to transmigrate in response to chemokines and to alter BBB integrity. We now demonstrate that HIV infection of human leukocytes results in their increased transmigration across our tissue culture model of the human BBB in response to the chemokine CCL2, as well as in disruption of the BBB, as evidenced by enhanced permeability, reduction of tight junction proteins, and expression of matrix metalloproteinases (MMP)-2 and MMP-9. HIV-infected cells added to our model did not transmigrate in the absence of CCL2, nor did this condition alter BBB integrity. The chemokines CXCL10/interferon-gamma-inducible protein of 10 kDa, CCL3/macrophage inflammatory protein-1alpha, or CCL5/RANTES (regulated on activation normal T-cell expressed and secreted) did not enhance HIV-infected leukocyte transmigration or BBB permeability. The increased capacity of HIV-infected leukocytes to transmigrate in response to CCL2 correlated with their increased expression of CCR2, the chemokine receptor for CCL2. These data suggest that CCL2, but not other chemokines, plays a key role in infiltration of HIV-infected leukocytes into the CNS and the subsequent pathology characteristic of NeuroAIDS.", "title": "CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS." }, { "docid": "12948892", "text": "Evidence has been accumulated that glioblastoma cells release and exploit glutamate for proliferation and migration by autocrine or paracrine loops through Ca2+-permeable AMPA-type glutamate receptors. Here, we show that Ca2+ signaling mediated by AMPA receptor regulates the growth and motility of glioblastoma cells via activation of Akt. Ca2+ supplied through Ca2+-permeable AMPA receptor phosphorylated Akt at Ser-473, thereby facilitating proliferation and mobility. A dominant-negative form of Akt inhibited cell proliferation and migration accelerated by overexpression of Ca2+-permeable AMPA receptor. In contrast, introduction of a constitutively active form of Akt rescued tumor cells from apoptosis induced by the conversion of Ca2+-permeable AMPA receptor to Ca2+-impermeable receptors by the delivery of GluR2 cDNA. Therefore, Akt functions as downstream effectors for Ca2+-signaling mediated by AMPA receptor in glioblastoma cells. The activation of the glutamate-AMPA receptor-Akt pathway may contribute to the high degree of anaplasia and invasive growth of human glioblastoma. This novel pathway might give an alternative therapeutic target.", "title": "Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation." } ]
463
Genomic aberrations of metastases provide information for targeted therapy.
[ { "docid": "19736671", "text": "Human tumors show a high level of genetic heterogeneity, but the processes that influence the timing and route of metastatic dissemination of the subclones are unknown. Here we have used whole-exome sequencing of 103 matched benign, malignant and metastatic skin tumors from genetically heterogeneous mice to demonstrate that most metastases disseminate synchronously from the primary tumor, supporting parallel rather than linear evolution as the predominant model of metastasis. Shared mutations between primary carcinomas and their matched metastases have the distinct A-to-T signature of the initiating carcinogen dimethylbenzanthracene, but non-shared mutations are primarily G-to-T, a signature associated with oxidative stress. The existence of carcinomas that either did or did not metastasize in the same host animal suggests that there are tumor-intrinsic factors that influence metastatic seeding. We also demonstrate the importance of germline polymorphisms in determining allele-specific mutations, and we identify somatic genetic alterations that are specifically related to initiation of carcinogenesis by Hras or Kras mutations. Mouse tumors that mimic the genetic heterogeneity of human cancers can aid our understanding of the clonal evolution of metastasis and provide a realistic model for the testing of novel therapies.", "title": "Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers" } ]
[ { "docid": "4325398", "text": "Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.", "title": "Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes" }, { "docid": "1389264", "text": "Brain metastases represent the greatest clinical challenge in treating HER2-positive breast cancer. We report the development of orthotopic patient-derived xenografts (PDXs) of HER2-expressing breast cancer brain metastases (BCBM), and their use for the identification of targeted combination therapies. Combined inhibition of PI3K and mTOR resulted in durable tumor regressions in three of five PDXs, and therapeutic response was correlated with a reduction in the phosphorylation of 4EBP1, an mTORC1 effector. The two nonresponding PDXs showed hypermutated genomes with enrichment of mutations in DNA-repair genes, which suggests an association of genomic instability with therapeutic resistance. These findings suggest that a biomarker-driven clinical trial of PI3K inhibitor in combination with an mTOR inhibitor should be conducted for patients with HER2-positive BCBM.", "title": "Combination inhibition of PI3K and mTORC1 yields durable remissions in orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases" }, { "docid": "25504006", "text": "Growing evidence for intratumour heterogeneity informs us that single-site biopsies fall short of revealing the complete genomic landscape of a tumour. With an expanding repertoire of targeted agents entering the clinic, screening tumours for genomic aberrations is increasingly important, as is interrogating the tumours for resistance mechanisms upon disease progression. Multiple biopsies separated spatially and temporally are impractical, uncomfortable for the patient and not without risk. Here, we describe how circulating tumour cells (CTCs), captured from a minimally invasive blood test—and readily amenable to serial sampling—have the potential to inform intratumour heterogeneity and tumour evolution, although it remains to be determined how useful this will be in the clinic. Technologies for detecting and isolating CTCs include the validated CellSearch® system, but other technologies are gaining prominence. We also discuss how recent CTC discoveries map to mechanisms of haematological spread, previously described in preclinical models, including evidence for epithelial–mesenchymal transition, collective cell migration and cells with tumour-initiating capacity within the circulation. Advances in single-cell molecular analysis are enhancing our ability to explore mechanisms of metastasis, and the combination of CTC and cell-free DNA assays are anticipated to provide invaluable blood-borne biomarkers for real-time patient monitoring and treatment stratification.", "title": "Molecular analysis of circulating tumour cells—biology and biomarkers" }, { "docid": "8037453", "text": "PURPOSE Three large, randomized trials of patients with bone metastases recently demonstrated that zoledronic acid reduces the risk of skeletal-related events. These trials provide an opportunity for investigating the correlation between bone metabolism and clinical outcome during bisphosphonate therapy. \n PATIENTS AND METHODS Urinary measurements of N-telopeptide (Ntx) and serum bone alkaline phosphatase (BAP) were obtained in 1,824 bisphosphonate-treated patients-1,462 with zoledronic acid (breast, 490; prostate, 411; myeloma, 210; non-small-cell lung, 183; other, 168) and 362 with pamidronate (breast, 254; myeloma, 108). This exploratory cohort analysis grouped patients by baseline and most recent levels of Ntx as low (< 50 nmol/mmol creatinine), moderate (50 to 99 nmol/mmol creatinine), or high (> or = 100 nmol/mmol creatinine), and BAP as low (< 146 U/L) or high (> or = 146 U/L). The relative risks for negative clinical outcomes were estimated for each group using multiple-event and Cox regression models with time-varying covariates. \n RESULTS Patients with high and moderate Ntx levels had 2-fold increases in their risk of skeletal complications and disease progression compared with patients with low Ntx levels (P < .001 for all). High Ntx levels in each solid tumor category were associated with a 4- to 6-fold increased risk of death on study, and moderate Ntx levels a 2- to 4-fold increased risk compared with low Ntx levels (P < .001 for all). Bone alkaline phosphatase also showed some correlation with risk of negative clinical outcomes. \n CONCLUSION The bone resorption marker Ntx provides valuable prognostic information in patients with bone metastases receiving bisphosphonates.", "title": "Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid." }, { "docid": "13030852", "text": "Plasma alkaline phosphatase isoenzyme activities were determined in patients with breast cancer to diagnose and monitor bone and liver metastases. Bone alkaline phosphatase activity was increased in 21 of 50 patients (42%) with radiologically confirmed bone metastases, while total alkaline phosphatase activity was increased in only 10 of 50 (20%); liver alkaline phosphatase activity was raised in 12 of 25 patients (48%) with liver metastases. All patients with liver metastases had bone metastases. Bone alkaline phosphatase activity was significantly higher in patients with symptomatic bone disease. Isoenzyme determination provided additional information that would have changed patient management in five of 20 patients who were monitored serially. Measurement of alkaline phosphatase isoenzyme activity, though less sensitive than imaging procedures, can assist in screening for, and in early detection of, a high proportion of bone and liver metastases, and can provide useful objective evidence of their response to treatment.", "title": "Identification of bone and liver metastases from breast cancer by measurement of plasma alkaline phosphatase isoenzyme activity." }, { "docid": "14717213", "text": "Over the years, methods of cytogenetic analysis evolved and became part of routine laboratory testing, providing valuable diagnostic and prognostic information in hematologic disorders. Karyotypic aberrations contribute to the understanding of the molecular pathogenesis of disease and thereby to rational application of therapeutic modalities. Most of the progress in this field stems from the application of metaphase cytogenetics (MC), but recently, novel molecular technologies have been introduced that complement MC and overcome many of the limitations of traditional cytogenetics, including a need for cell culture. Whole genome scanning using comparative genomic hybridization and single nucleotide polymorphism arrays (CGH-A; SNP-A) can be used for analysis of somatic or clonal unbalanced chromosomal defects. In SNP-A, the combination of copy number detection and genotyping enables diagnosis of copy-neutral loss of heterozygosity, a lesion that cannot be detected using MC but may have important pathogenetic implications. Overall, whole genome scanning arrays, despite the drawback of an inability to detect balanced translocations, allow for discovery of chromosomal defects in a higher proportion of patients with hematologic malignancies. Newly detected chromosomal aberrations, including somatic uniparental disomy, may lead to more precise prognostic schemes in many diseases.", "title": "Corresponding author:" }, { "docid": "6363093", "text": "BACKGROUND Glioblastoma multiforme (GBM) is an umbrella designation that includes a heterogeneous group of primary brain tumors. Several classification strategies of GBM have been reported, some by clinical course and others by resemblance to cell types either in the adult or during development. From a practical and therapeutic standpoint, classifying GBMs by signal transduction pathway activation and by mutation in pathway member genes may be particularly valuable for the development of targeted therapies. \n METHODOLOGY/PRINCIPAL FINDINGS We performed targeted proteomic analysis of 27 surgical glioma samples to identify patterns of coordinate activation among glioma-relevant signal transduction pathways, then compared these results with integrated analysis of genomic and expression data of 243 GBM samples from The Cancer Genome Atlas (TCGA). In the pattern of signaling, three subclasses of GBM emerge which appear to be associated with predominance of EGFR activation, PDGFR activation, or loss of the RAS regulator NF1. The EGFR signaling class has prominent Notch pathway activation measured by elevated expression of Notch ligands, cleaved Notch receptor, and downstream target Hes1. The PDGF class showed high levels of PDGFB ligand and phosphorylation of PDGFRbeta and NFKB. NF1-loss was associated with lower overall MAPK and PI3K activation and relative overexpression of the mesenchymal marker YKL40. These three signaling classes appear to correspond with distinct transcriptomal subclasses of primary GBM samples from TCGA for which copy number aberration and mutation of EGFR, PDGFRA, and NF1 are signature events. \n CONCLUSIONS/SIGNIFICANCE Proteomic analysis of GBM samples revealed three patterns of expression and activation of proteins in glioma-relevant signaling pathways. These three classes are comprised of roughly equal numbers showing either EGFR activation associated with amplification and mutation of the receptor, PDGF-pathway activation that is primarily ligand-driven, or loss of NF1 expression. The associated signaling activities correlating with these sentinel alterations provide insight into glioma biology and therapeutic strategies.", "title": "Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations" }, { "docid": "25915873", "text": "PURPOSE Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. \n RESULTS Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. EXPERIMENTAL DESIGN We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. \n CONCLUSION Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.", "title": "Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation." }, { "docid": "21692235", "text": "The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.", "title": "Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1." }, { "docid": "1836154", "text": "Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas ( TCGA) pilot project aims to assess the value of large- scale multi- dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas - the most common type of primary adult brain cancer - and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol- 3- OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.", "title": "Comprehensive genomic characterization defines human glioblastoma genes and core pathways" }, { "docid": "195689757", "text": "A key aberrant biological difference between tumor cells and normal differentiated cells is altered metabolism, whereby cancer cells acquire a number of stable genetic and epigenetic alterations to retain proliferation, survive under unfavorable microenvironments and invade into surrounding tissues. A classic biochemical adaptation is the metabolic shift to aerobic glycolysis rather than mitochondrial oxidative phosphorylation, regardless of oxygen availability, a phenomenon termed the \"Warburg Effect\". Aerobic glycolysis, characterized by high glucose uptake, low oxygen consumption and elevated production of lactate, is associated with a survival advantage as well as the generation of substrates such as fatty acids, amino acids and nucleotides necessary in rapidly proliferating cells. This review discusses the role of key metabolic enzymes and their association with aerobic glycolysis in Glioblastoma Multiforme (GBM), an aggressive, highly glycolytic and deadly brain tumor. Targeting key metabolic enzymes involved in modulating the \"Warburg Effect\" may provide a novel therapeutic approach either singularly or in combination with existing therapies in GBMs.", "title": "Targeting metabolic remodeling in glioblastoma multiforme." }, { "docid": "13256155", "text": "BACKGROUND Molecularly targeted agents have been reported to have anti-tumour activity for patients whose tumours harbour the matching molecular alteration. These results have led to increased off-label use of molecularly targeted agents on the basis of identified molecular alterations. We assessed the efficacy of several molecularly targeted agents marketed in France, which were chosen on the basis of tumour molecular profiling but used outside their indications, in patients with advanced cancer for whom standard-of-care therapy had failed. \n METHODS The open-label, randomised, controlled phase 2 SHIVA trial was done at eight French academic centres. We included adult patients with any kind of metastatic solid tumour refractory to standard of care, provided they had an Eastern Cooperative Oncology Group performance status of 0 or 1, disease that was accessible for a biopsy or resection of a metastatic site, and at least one measurable lesion. The molecular profile of each patient's tumour was established with a mandatory biopsy of a metastatic tumour and large-scale genomic testing. We only included patients for whom a molecular alteration was identified within one of three molecular pathways (hormone receptor, PI3K/AKT/mTOR, RAF/MEK), which could be matched to one of ten regimens including 11 available molecularly targeted agents (erlotinib, lapatinib plus trastuzumab, sorafenib, imatinib, dasatinib, vemurafenib, everolimus, abiraterone, letrozole, tamoxifen). We randomly assigned these patients (1:1) to receive a matched molecularly targeted agent (experimental group) or treatment at physician's choice (control group) by central block randomisation (blocks of size six). Randomisation was done centrally with a web-based response system and was stratified according to the Royal Marsden Hospital prognostic score (0 or 1 vs 2 or 3) and the altered molecular pathway. Clinicians and patients were not masked to treatment allocation. Treatments in both groups were given in accordance with the approved product information and standard practice protocols at each institution and were continued until evidence of disease progression. The primary endpoint was progression-free survival in the intention-to-treat population, which was not assessed by independent central review. We assessed safety in any patients who received at least one dose of their assigned treatment. This trial is registered with ClinicalTrials.gov, number NCT01771458. \n FINDINGS Between Oct 4, 2012, and July 11, 2014, we screened 741 patients with any tumour type. 293 (40%) patients had at least one molecular alteration matching one of the 10 available regimens. At the time of data cutoff, Jan 20, 2015, 195 (26%) patients had been randomly assigned, with 99 in the experimental group and 96 in the control group. All patients in the experimental group started treatment, as did 92 in the control group. Two patients in the control group received a molecularly targeted agent: both were included in their assigned group for efficacy analyses, the patient who received an agent that was allowed in the experimental group was included in the experimental group for the purposes of safety analyses, while the other patient, who received a molecularly targeted agent and chemotherapy, was kept in the control group for safety analyses. Median follow-up was 11·3 months (IQR 5·8-11·6) in the experimental group and 11·3 months (8·1-11·6) in the control group at the time of the primary analysis of progression-free survival. Median progression-free survival was 2·3 months (95% CI 1·7-3·8) in the experimental group versus 2·0 months (1·8-2·1) in the control group (hazard ratio 0·88, 95% CI 0·65-1·19, p=0·41). In the safety population, 43 (43%) of 100 patients treated with a molecularly targeted agent and 32 (35%) of 91 patients treated with cytotoxic chemotherapy had grade 3-4 adverse events (p=0·30). \n INTERPRETATION The use of molecularly targeted agents outside their indications does not improve progression-free survival compared with treatment at physician's choice in heavily pretreated patients with cancer. Off-label use of molecularly targeted agents should be discouraged, but enrolment in clinical trials should be encouraged to assess predictive biomarkers of efficacy.", "title": "Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial." }, { "docid": "10958594", "text": "The aim of this study was to determine trends in incidence, treatment and survival of colorectal cancer (CRC) patients with synchronous metastases (Stage IV) in the Netherlands. This nationwide population-based study included 160,278 patients diagnosed with CRC between 1996 and 2011. We evaluated changes in stage distribution, location of synchronous metastases and treatment in four consecutive periods, using Chi square tests for trend. Median survival in months was determined, using Kaplan–Meier analysis. The proportion of Stage IV CRC patients (n = 33,421) increased from 19 % (1996–1999) to 23 % (2008–2011, p < 0.001). This was predominantly due to a major increase in the incidence of lung metastases (1.7–5.0 % of all CRC patients). During the study period, the primary tumor was resected less often in Stage IV patients (65–46 %) and the use of systemic treatment has increased (29–60 %). Also an increase in metastasectomy was found in patients with one metastatic site, especially in patients with liver-only disease (5–18 %, p < 0.001). Median survival of all Stage IV CRC patients increased from 7 to 12 months. Especially in patients with metastases confined to the liver or lungs this improvement in survival was apparent (9–16 and 12–24 months respectively, both p < 0.001). In the last two decades, more lung metastases were detected and an increasing proportion of Stage IV CRC patients was treated with systemic therapy and/or metastasectomy. Survival of patients has significantly improved. However, the prognosis of Stage IV patients becomes increasingly diverse.", "title": "Nationwide trends in incidence, treatment and survival of colorectal cancer patients with synchronous metastases" }, { "docid": "41782935", "text": "Alzheimer's disease (AD), the most common form of dementia in western societies, is a pathologically and clinically heterogeneous disease with a strong genetic component. The recent advances in high-throughput genome technologies allowing for the rapid analysis of millions of polymorphisms in thousands of subjects has significantly advanced our understanding of the genomic underpinnings of AD susceptibility. During the last 5 years, genome-wide association and whole-exome- and whole-genome sequencing studies have mapped more than 20 disease-associated loci, providing insights into the molecular pathways involved in AD pathogenesis and hinting at potential novel therapeutic targets. This review article summarizes the challenges and opportunities of when using genomic information for the diagnosis and prognosis of AD.", "title": "Genetic diagnosis and prognosis of Alzheimer's disease: challenges and opportunities." }, { "docid": "21479575", "text": "Mouse pluripotent stem cells (PSCs) are the best studied pluripotent system and are regarded as the \"gold standard\" to which human PSCs are compared. However, while the genomic integrity of human PSCs has recently drawn much attention, mouse PSCs have not been systematically evaluated in this regard. The genomic stability of PSCs is a matter of profound significance, as it affects their pluripotency, differentiation, and tumorigenicity. We thus performed a thorough analysis of the genomic integrity of 325 samples of mouse PSCs, including 127 induced pluripotent stem cell (iPSC) samples. We found that genomic aberrations occur frequently in mouse embryonic stem cells of various mouse strains, add in mouse iPSCs of various cell origins and derivation techniques. Four hotspots of chromosomal aberrations were detected: full trisomy 11 (with a minimally recurrent gain in 11qE2), full trisomy 8, and deletions in chromosomes 10qB and 14qC-14qE. The most recurrent aberration in mouse PSCs, gain 11qE2, turned out to be fully syntenic to the common aberration 17q25 in human PSCs, while other recurrent aberrations were found to be species specific. Analysis of chromosomal aberrations in 74 samples of rhesus macaque PSCs revealed a gain in chromosome 16q, syntenic to the hotspot in human 17q. Importantly, these common aberrations jeopardize the interpretation of published comparisons of PSCs, which were unintentionally conducted between normal and aberrant cells. Therefore, this work emphasizes the need to carefully monitor genomic integrity of PSCs from all species, for their proper use in biomedical research.", "title": "High prevalence of evolutionarily conserved and species-specific genomic aberrations in mouse pluripotent stem cells." }, { "docid": "3329824", "text": "BACKGROUND Central nervous system (CNS) disease as the site of first relapse after exposure to adjuvant trastuzumab has been reported. We carried out comprehensive meta-analysis to determine the risk of CNS metastases as the first site of recurrence in patients with HER2-positive breast cancer who received adjuvant trastuzumab. \n METHODS Eligible studies include randomized trials of adjuvant trastuzumab administered for 1 year to patients with HER2-positive breast cancer who reported CNS metastases as first site of disease recurrence. Statistical analyses were conducted to calculate the incidence, relative risk (RR), and 95% confidence intervals (CIs) using fixed-effects inverse variance and random-effects models. \n RESULTS A total of 9020 patients were included. The incidence of CNS metastases as first site of disease recurrence in HER2-positive patients receiving adjuvant trastuzumab was 2.56% (95% CI 2.07% to 3.01%) compared with 1.94% (95% CI 1.54% to 2.38%) in HER2-positive patients who did not receive adjuvant trastuzumab. The RR of the CNS as first site of relapse in trastuzumab-treated patients was 1.35 (95% CI 1.02-1.78, P = 0.038) compared with control arms without trastuzumab therapy. The ratio of CNS metastases to total number of recurrence events was 16.94% (95% CI 10.85% to 24.07%) and 8.33% (95% CI 6.49% to 10.86%) for the trastuzumab-treated and control groups, respectively. No statistically significant differences were found based on trastuzumab schedule or median follow-up time. No evidence of publication bias was observed. \n CONCLUSIONS Adjuvant trastuzumab is associated with a significant increased risk of CNS metastases as the site of first recurrence in HER2-positive breast cancer patients.", "title": "Incidence and risk of central nervous system metastases as site of first recurrence in patients with HER2-positive breast cancer treated with adjuvant trastuzumab." }, { "docid": "3944632", "text": "CONTEXT In patients with brain metastases, it is unclear whether adding up-front whole-brain radiation therapy (WBRT) to stereotactic radiosurgery (SRS) has beneficial effects on mortality or neurologic function compared with SRS alone. \n OBJECTIVE To determine if WBRT combined with SRS results in improvements in survival, brain tumor control, functional preservation rate, and frequency of neurologic death. \n DESIGN, SETTING, AND PATIENTS Randomized controlled trial of 132 patients with 1 to 4 brain metastases, each less than 3 cm in diameter, enrolled at 11 hospitals in Japan between October 1999 and December 2003. \n INTERVENTIONS Patients were randomly assigned to receive WBRT plus SRS (65 patients) or SRS alone (67 patients). \n MAIN OUTCOME MEASURES The primary end point was overall survival; secondary end points were brain tumor recurrence, salvage brain treatment, functional preservation, toxic effects of radiation, and cause of death. \n RESULTS The median survival time and the 1-year actuarial survival rate were 7.5 months and 38.5% (95% confidence interval, 26.7%-50.3%) in the WBRT + SRS group and 8.0 months and 28.4% (95% confidence interval, 17.6%-39.2%) for SRS alone (P = .42). The 12-month brain tumor recurrence rate was 46.8% in the WBRT + SRS group and 76.4% for SRS alone group (P<.001). Salvage brain treatment was less frequently required in the WBRT + SRS group (n = 10) than with SRS alone (n = 29) (P<.001). Death was attributed to neurologic causes in 22.8% of patients in the WBRT + SRS group and in 19.3% of those treated with SRS alone (P = .64). There were no significant differences in systemic and neurologic functional preservation and toxic effects of radiation. \n CONCLUSIONS Compared with SRS alone, the use of WBRT plus SRS did not improve survival for patients with 1 to 4 brain metastases, but intracranial relapse occurred considerably more frequently in those who did not receive WBRT. Consequently, salvage treatment is frequently required when up-front WBRT is not used. \n TRIAL REGISTRATION umin.ac.jp/ctr Identifier: C000000412.", "title": "Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial." }, { "docid": "18987782", "text": "The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA. Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Emu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc-overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap-dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (also known as Cdc2l and PITSLRE), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Emu-Myc/+ mice. When accurate translational control is re-established in Emu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level.", "title": "Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency" }, { "docid": "5935987", "text": "When it comes to the epigenome, there is a fine line between clarity and confusion-walk that line and you will discover another fascinating level of transcription control. With the genetic code representing the cornerstone of rules for information that is encoded to proteins somewhere above the genome level there is a set of rules by which chemical information is also read. These epigenetic modifications show a different side of the genetic code that is diverse and regulated, hence modifying genetic transcription transiently, ranging from short- to long-term alterations. While this complexity brings exquisite control it also poses a formidable challenge to efforts to decode mechanisms underlying complex disease. Recent technological and computational advances have improved unbiased acquisition of epigenomic patterns to improve our understanding of the complex chromatin landscape. Key to resolving distinct chromatin signatures of diabetic complications is the identification of the true physiological targets of regulatory proteins, such as reader proteins that recognise, writer proteins that deposit and eraser proteins that remove specific chemical moieties. But how might a diverse group of proteins regulate the diabetic landscape from an epigenomic perspective? Drawing from an ever-expanding compendium of experimental and clinical studies, this review details the current state-of-play and provides a perspective of chromatin-dependent mechanisms implicated in diabetic complications, with a special focus on diabetic nephropathy. We hypothesise a codified signature of the diabetic epigenome and provide examples of prime candidates for chemical modification. As for the pharmacological control of epigenetic marks, we explore future strategies to expedite and refine the search for clinically relevant discoveries. We also consider the challenges associated with therapeutic strategies targeting epigenetic pathways.", "title": "Epigenetics in diabetic nephropathy, immunity and metabolism" } ]
466
Genomic sequences involved in alternative splicing responsible for Hutchinson-Gilford progeria syndrome (HGPS) are abundant in the ''progerinonly'' allele of Lmna knock-in models.
[ { "docid": "22544171", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.", "title": "Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome" } ]
[ { "docid": "15692098", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a rare but well known entity characterized by extreme short stature, low body weight, early loss of hair, lipodystrophy, scleroderma, decreased joint mobility, osteolysis, and facial features that resemble aged persons. Cardiovascular compromise leads to early demise. Cognitive development is normal. Data on 10 of our own cases and 132 cases from literature are presented. The incidence in the last century in the Netherlands was 1:4,000,000. Sex ratio was 1.2:1. Main first symptoms were failure to thrive (55%), hair loss (40%), skin problems (28%), and lipodystrophy (20%). Mean age at diagnosis was 2.9 years. Growth in weight was more disturbed than growth in height, and growth delay started already prenatally. Mean height > 13 years was 109.0 cm, mean weight was 14.5 kg. Osteolysis was wide-spread but not expressed, except in the viscerocranium, and remained limited to membranous formed bone. Lipodystrophy is generalized, only intra-abdominal fat depositions remain present. Cardiovascular problems are extremely variable, both in age of onset and nature. Stroke and coronary dysfunctioning are most frequent. Pathologic findings in coronaries and aorta resemble sometimes the findings in elderly persons, but can also be much more limited. Loss of smooth muscle cells seems the most important finding. Mean age of demise was 12.6 years. Patients can be subdivided in patients with classical HGPS, which follows an autosomal dominant pattern of inheritance, (almost) all cases representing spontaneous mutations, and in non-classical progeria, in whom growth can be less retarded, scalp hair remains present for a longer time, lipodystrophy is more slowly progressive, osteolysis is more expressed except in the face, and survival well into adulthood is not uncommon. Pattern of inheritance of non-classical progeria is most probably autosomal recessive. The cause of HGPS is an abnormally formed Lamin A, either directly by a mutated LMNA gene, or through abnormal posttranslational processing (ZMPSTE24 gene mutations). Of 34 LMNA mutations found in progeria patients, there were 26 classical p. G608G mutations (76%). Pathogenesis is most likely to follow several different pathways. Potential therapeutic strategies are developed along these lines and include RNA interference techniques and inhibition of the dominant-negative influence of abnormally formed Lamin A on polymerization with normally formed Lamin A.", "title": "Hutchinson-Gilford progeria syndrome: review of the phenotype" }, { "docid": "34747208", "text": "Mutations in the nuclear structural protein lamin A cause the premature aging syndrome Hutchinson-Gilford progeria (HGPS). Whether lamin A plays any role in normal aging is unknown. We show that the same molecular mechanism responsible for HGPS is active in healthy cells. Cell nuclei from old individuals acquire defects similar to those of HGPS patient cells, including changes in histone modifications and increased DNA damage. Age-related nuclear defects are caused by sporadic use, in healthy individuals, of the same cryptic splice site in lamin A whose constitutive activation causes HGPS. Inhibition of this splice site reverses the nuclear defects associated with aging. These observations implicate lamin A in physiological aging.", "title": "Lamin A-dependent nuclear defects in human aging." }, { "docid": "834336", "text": "Hutchinson–Gilford progeria syndrome (HGPS; OMIM 176670) is an extremely rare but devastating disorder that mimics premature aging.1–3 Affected children appear normal at birth but typically develop failure to thrive in the first two years. Other features include alopecia, micrognathia, loss of subcutaneous fat with prominent veins, abnormal dentition, sclerodermatous skin changes, and osteolysis of the clavicles and distal phalanges. The mean age of death is at age 13 years, most commonly due to atherosclerosis. HGPS is mainly sporadic in occurrence, but a genetic cause has now been implicated following the identification of de novo heterozygous mutations in the LMNA gene in the majority of HGPS patients.4,5 A single family showing autosomal recessive inheritance of homozygous LMNA mutations has also been reported.6 LMNA encodes lamins A and C, components of the nuclear lamina, a meshwork underlying the nuclear envelope that serves as a structural support and is also thought to contribute to chromatin organisation and the regulation of gene expression.7,8 Interestingly, mutations in LMNA have recently been associated with at least eight inherited disorders, known as laminopathies, with differential dystrophic effects on a variety of tissues including muscle, neurones, skin, bone, and adipose tissue (reviewed in Mounkes et al 9). However, the realisation that these disorders share common genetic defects has led to clinical re-evaluation, with emerging evidence of significant phenotypic overlap.10 Hence the laminopathies might reasonably be considered as a spectrum of related diseases. HGPS has phenotypic similarities to several other laminopathies, in particular the atypical Werner’s syndrome11 and mandibuloacral dysplasia (MAD; OMIM 248370 and 608612).12 These diseases are associated with lipodystrophy,3,13 which is the most prominent feature of another laminopathy, familial partial lipodystrophy of the Dunnigan variety (OMIM 151660).14 MAD has been further classified as two …", "title": "Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype." }, { "docid": "14178995", "text": "The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not understood. Here we present evidence that in HGPS and RD fibroblasts, DNA damage checkpoints are persistently activated because of the compromise in genomic integrity. Inactivation of checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient cells can partially overcome their early replication arrest. Treatment of patient cells with a protein farnesyltransferase inhibitor (FTI) did not result in reduction of DNA double-strand breaks and damage checkpoint signaling, although the treatment significantly reversed the aberrant shape of their nuclei. This suggests that DNA damage accumulation and aberrant nuclear morphology are independent phenotypes arising from prelamin A accumulation in these progeroid syndromes. Since DNA damage accumulation is an important contributor to the symptoms of HGPS, our results call into question the possibility of treatment of HGPS with FTIs alone.", "title": "Summary" }, { "docid": "7468449", "text": "Ever since the first demonstration of their repetitive sequence and unique replication pathway, telomeres have beguiled researchers with how they function in protecting chromosome ends. Of course much has been learned over the years, and we now appreciate that telomeres are comprised of the multimeric protein/DNA shelterin complex and that the formation of t-loops provides protection from DNA damage machinery. Deriving their name from D-loops, t-loops are generated by the insertion of the 3' overhang into telomeric repeats facilitated by the binding of TRF2. Recent studies have uncovered novel forms of chromosome end-structure that may implicate telomere organization in cellular processes beyond its essential role in telomere protection and homeostasis. In particular, we have recently described that t-loops form in a TRF2-dependent manner at interstitial telomere repeat sequences, which we termed interstitial telomere loops (ITLs). These structures are also dependent on association of lamin A/C, a canonical component of the nucleoskeleton that is mutated in myriad human diseases, including human segmental progeroid syndromes. Since ITLs are associated with telomere stability and require functional lamin A/C, our study suggests a mechanistic link between cellular aging (replicative senescence induced by telomere shortening) and organismal aging (modeled by Hutchinson Gilford Progeria Syndrome). Here we speculate on other potential ramifications of ITL formation, from gene expression to genome stability to chromosome structure.", "title": "A beginning of the end: new insights into the functional organization of telomeres" }, { "docid": "27061085", "text": "High-throughput mRNA sequencing (RNA-Seq) promises simultaneous transcript discovery and abundance estimation. However, this would require algorithms that are not restricted by prior gene annotations and that account for alternative transcription and splicing. Here we introduce such algorithms in an open-source software program called Cufflinks. To test Cufflinks, we sequenced and analyzed >430 million paired 75-bp RNA-Seq reads from a mouse myoblast cell line over a differentiation time series. We detected 13,692 known transcripts and 3,724 previously unannotated ones, 62% of which are supported by independent expression data or by homologous genes in other species. Over the time series, 330 genes showed complete switches in the dominant transcription start site (TSS) or splice isoform, and we observed more subtle shifts in 1,304 other genes. These results suggest that Cufflinks can illuminate the substantial regulatory flexibility and complexity in even this well-studied model of muscle development and that it can improve transcriptome-based genome annotation.", "title": "Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation." }, { "docid": "4313478", "text": "Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.", "title": "Translational control of intron splicing in eukaryotes" }, { "docid": "20585600", "text": "To explore the structural basis of alternative splicing, we have analyzed the splicing of pre-mRNAs containing an optional exon, E4, from the preprotachykinin gene. This gene encodes substance P and related tachykinin peptides by alternative splicing of a common pre-mRNA. We have shown that alternative splicing of preprotachykinin pre-mRNA occurs by preferential skipping of optional E4. The competing mechanism that incorporates E4 into the final spliced RNA is constrained by an initial block to splicing of the immediate upstream intervening sequence (IVS), IVS3. This block is relieved by sequential splicing, in which the immediate downstream IVS4 is removed first. The structural change resulting from the first splicing event is directly responsible for activation of IVS3 splicing. This structural rearrangement replaces IVS4 sequences with E5 and its adjacent IVS5 sequences. To determine how this structural change promoted IVS3 splicing, we asked what structural change(s) would restore activity of IVS3 splicing-defective mutants. The most significant effect was observed by a 2-nucleotide substitution that converted the 5' splice site of E4 to an exact consensus match, GUAAGU. Exon 5 sequences alone were found not to promote splicing when present in one or multiple copies. However, when a 15-nucleotide segment of IVS5 containing GUAAGU was inserted into a splicing-defective mutant just downstream of the hybrid exon segment E4E5, splicing activity was recovered. Curiously, the 72-nucleotide L2 exon of adenovirus, without its associated 5' splice site, activates splicing when juxtaposed to E4. Models for the activation of splicing by an RNA structural change are discussed.", "title": "A Sequential splicing mechanism promotes selection of an optimal exon by repositioning a downstream 5' splice site in preprotachykinin pre-mRNA." }, { "docid": "3868322", "text": "Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP) gene have been associated with HDL levels, risk for coronary artery disease (CAD), and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5-7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4 × 10(-5), allele frequency 33%). In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9), has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8 × 10(-10)) and intron 8 polymorphism rs9930761-T>C (5.6 × 10(-8)) (in high linkage disequilibrium with allele frequencies 6-7%). rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9.The effect of these polymorphisms was evaluated in two clinical studies. In the Whitehall II study of 4745 subjects, both rs247616 and rs5883T/rs9930761C were independently associated with increased HDL-C levels in males with similar effect size (rs247616 p = 9.6 × 10(-28) and rs5883 p = 8.6 × 10(-10), adjusted for rs247616). In an independent multiethnic US cohort of hypertensive subjects with CAD (INVEST-GENE), rs5883T/rs9930761C alone were significantly associated with increased incidence of MI, stroke, and all-cause mortality in males (rs5883: OR 2.36 (CI 1.29-4.30), p = 0.005, n = 866). These variants did not reach significance in females in either study. Similar to earlier results linking low CETP activity with poor outcomes in males, our results suggest genetic, sex-dependent CETP splicing effects on cardiovascular risk by a mechanism independent of circulating HDL-C levels.", "title": "Cholesteryl Ester Transfer Protein (CETP) Polymorphisms Affect mRNA Splicing, HDL Levels, and Sex-Dependent Cardiovascular Risk" }, { "docid": "26117607", "text": "Down syndrome cell adhesion molecule (Dscam) seems likely to play a key role in the \"alternative adaptive immunity\" that has been reported in invertebrates. Dscam consists of a cytoplasmic tail that is involved in signal transduction and a hypervariable extracellular region that might use a pathogen recognition mechanism similar to that used by the vertebrate antibodies. In our previous paper, we isolated a unique tail-less form of Dscam from Litopenaeus vannamei. In this study, we report the first membrane-bound form of shrimp Dscam: PmDscam was isolated from Penaeus monodon, and it occurred in both membrane-bound and tail-less forms. Phylogenetic analysis showed that while the crustacean Dscams from shrimp and water flea did not share a single subclade, they were distinct from the invertebrate Dscam-like molecules and from the insecta Dscams. In the extracellular region, the variable regions of PmDscam were located in N-terminal Ig2, N-terminal Ig3 and the entire Ig7 domain. The PmDscam extracellular variants and transmembrane domain variants were produced by mutually exclusive alternative splicing events. The cytoplasmic tail variants were produced by exon inclusion/exclusion. Based on the genomic organization of Daphnia Dscam's cytoplasmic tail, we propose a model of how the shrimp Dscam genomic locus might use Type III polyadenylation to generate both the tail-less and membrane-bound forms.", "title": "Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported." }, { "docid": "4378885", "text": "Understanding the genetic mechanisms underlying natural variation in gene expression is a central goal of both medical and evolutionary genetics, and studies of expression quantitative trait loci (eQTLs) have become an important tool for achieving this goal. Although all eQTL studies so far have assayed messenger RNA levels using expression microarrays, recent advances in RNA sequencing enable the analysis of transcript variation at unprecedented resolution. We sequenced RNA from 69 lymphoblastoid cell lines derived from unrelated Nigerian individuals that have been extensively genotyped by the International HapMap Project. By pooling data from all individuals, we generated a map of the transcriptional landscape of these cells, identifying extensive use of unannotated untranslated regions and more than 100 new putative protein-coding exons. Using the genotypes from the HapMap project, we identified more than a thousand genes at which genetic variation influences overall expression levels or splicing. We demonstrate that eQTLs near genes generally act by a mechanism involving allele-specific expression, and that variation that influences the inclusion of an exon is enriched within and near the consensus splice sites. Our results illustrate the power of high-throughput sequencing for the joint analysis of variation in transcription, splicing and allele-specific expression across individuals.", "title": "Understanding mechanisms underlying human gene expression variation with RNA sequencing" }, { "docid": "1332250", "text": "Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.", "title": "The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima " }, { "docid": "6144337", "text": "Activation of the insect innate immune system is dependent on a limited number of pattern recognition receptors (PRRs) capable of interacting with pathogen-associated molecular pattern. Here we report a novel role of an alternatively spliced hypervariable immunoglobulin domain-encoding gene, Dscam, in generating a broad range of PRRs implicated in immune defense in the malaria vector Anopheles gambiae. The mosquito Down syndrome cell adhesion molecule gene, AgDscam, has a complex genome organization with 101 exons that can produce over 31,000 potential alternative splice forms with different combinations of adhesive domains and interaction specificities. AgDscam responds to infection by producing pathogen challenge-specific splice form repertoires. Transient silencing of AgDscam compromises the mosquito's resistance to infections with bacteria and the malaria parasite Plasmodium. AgDscam is mediating phagocytosis of bacteria with which it can associate and defend against in a splice form–specific manner. AgDscam is a hypervariable PRR of the A. gambiae innate immune system.", "title": "AgDscam, a Hypervariable Immunoglobulin Domain-Containing Receptor of the Anopheles gambiae Innate Immune System " }, { "docid": "13123189", "text": "BACKGROUND RNA-Seq is revolutionizing the way transcript abundances are measured. A key challenge in transcript quantification from RNA-Seq data is the handling of reads that map to multiple genes or isoforms. This issue is particularly important for quantification with de novo transcriptome assemblies in the absence of sequenced genomes, as it is difficult to determine which transcripts are isoforms of the same gene. A second significant issue is the design of RNA-Seq experiments, in terms of the number of reads, read length, and whether reads come from one or both ends of cDNA fragments. \n RESULTS We present RSEM, an user-friendly software package for quantifying gene and isoform abundances from single-end or paired-end RNA-Seq data. RSEM outputs abundance estimates, 95% credibility intervals, and visualization files and can also simulate RNA-Seq data. In contrast to other existing tools, the software does not require a reference genome. Thus, in combination with a de novo transcriptome assembler, RSEM enables accurate transcript quantification for species without sequenced genomes. On simulated and real data sets, RSEM has superior or comparable performance to quantification methods that rely on a reference genome. Taking advantage of RSEM's ability to effectively use ambiguously-mapping reads, we show that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads. On the other hand, estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired-end reads, depending on the number of possible splice forms for each gene. \n CONCLUSIONS RSEM is an accurate and user-friendly software tool for quantifying transcript abundances from RNA-Seq data. As it does not rely on the existence of a reference genome, it is particularly useful for quantification with de novo transcriptome assemblies. In addition, RSEM has enabled valuable guidance for cost-efficient design of quantification experiments with RNA-Seq, which is currently relatively expensive.", "title": "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome" }, { "docid": "39929509", "text": "Mutations in WT1 are associated with developmental syndromes that affect the urogenital system and neoplasms, including Wilms tumour, acute myeloid leukemia, and breast and prostate cancers. The WT1 protein belongs to the early growth response family of zinc-finger transcription factors. Uniquely to WT1, an evolutionarily conserved alternative splice event inserts the tripeptide KTS, between zinc fingers 3 and 4. Whereas -KTS isoforms bind DNA and activate or repress transcription, +KTS isoforms bind DNA less efficiently and interact with splice factors and RNA in vitro and in vivo. Although candidate DNA targets have been found, physiological mRNA targets are yet to be defined. We examined the distribution of WT1 in ribonucleoprotein (RNP) complexes in nuclear extract prepared from M15 cells, a mouse mesonephric fetal kidney cell line. WT1 cofractionated with the splice factor PSF in large RNP particles >or=2 MDa. We also found that PSF co-immunoprecipitated with WT1, suggesting a functional interaction between these 2 multifunctional proteins. Using yeast three-hybrid library constructed from the co-immunoprecipitated RNA we found that WT1 (+KTS) binds close to or at the start codon of alpha-actinin 1 (ACTN1) mRNA. A band shift assay confirmed the ability of the WT1 zinc-finger domain (+KTS) to bind this sequence in vitro. ACTN1 is the first likely physiological mRNA target of WT1.", "title": "The Wilms tumour suppressor protein WT1 (+KTS isoform) binds alpha-actinin 1 mRNA via its zinc-finger domain." }, { "docid": "21853444", "text": "Alternative initiation, splicing, and polyadenylation are key mechanisms used by many organisms to generate diversity among mature mRNA transcripts originating from the same transcription unit. While previous computational analyses of alternative polyadenylation have focused on polyadenylation activities within or downstream of the normal 3'-terminal exons, we present the results of the first genome-wide analysis of patterns of alternative polyadenylation in the human, mouse, and rat genomes occurring over the entire transcribed regions of mRNAs using 3'-ESTs with poly(A) tails aligned to genomic sequences. Four distinct classes of patterns of alternative polyadenylation result from this analysis: tandem poly(A) sites, composite exons, hidden exons, and truncated exons. We estimate that at least 49% (human), 31% (mouse), and 28% (rat) of polyadenylated transcription units have alternative polyadenylation. A portion of these alternative polyadenylation events result in new protein isoforms.", "title": "Computational analysis of 3'-ends of ESTs shows four classes of alternative polyadenylation in human, mouse, and rat." }, { "docid": "41852733", "text": "Ehlers-Danlos syndrome (EDS) type I (the classical variety) is a dominantly inherited, genetically heterogeneous connective-tissue disorder. Mutations in the COL5A1 and COL5A2 genes, which encode type V collagen, have been identified in several individuals. Most mutations affect either the triple-helical domain of the protein or the expression of one COL5A1 allele. We identified a novel splice-acceptor mutation (IVS4-2A-->G) in the N-propeptide-encoding region of COL5A1, in one patient with EDS type I. The outcome of this mutation was complex: In the major product, both exons 5 and 6 were skipped; other products included a small amount in which only exon 5 was skipped and an even smaller amount in which cryptic acceptor sites within exon 5 were used. All products were in frame. Pro-alpha1(V) chains with abnormal N-propeptides were secreted and were incorporated into extracellular matrix, and the mutation resulted in dramatic alterations in collagen fibril structure. The two-exon skip occurred in transcripts in which intron 5 was removed rapidly relative to introns 4 and 6, leaving a large (270 nt) composite exon that can be skipped in its entirety. The transcripts in which only exon 5 was skipped were derived from those in which intron 6 was removed prior to intron 5. The use of cryptic acceptor sites in exon 5 occurred in transcripts in which intron 4 was removed subsequent to introns 5 and 6. These findings suggest that the order of intron removal plays an important role in the outcome of splice-site mutations and provide a model that explains why multiple products derive from a mutation at a single splice site.", "title": "Order of intron removal influences multiple splice outcomes, including a two-exon skip, in a COL5A1 acceptor-site mutation that results in abnormal pro-alpha1(V) N-propeptides and Ehlers-Danlos syndrome type I." }, { "docid": "9769310", "text": "The phenomenon of parental imprinting involves the preferential expression of one parental allele of a subset of chromosomal genes and has so far only been documented in the mouse. We show here, by exploiting sequence polymorphisms in exon nine of the human insulin–like growth factor 2 (IGF2) gene, that only the paternally–inherited allele is active in embryonic and extra–embryonic cells from first trimester pregnancies. In addition, only the paternal allele is expressed in tissues from a patient who suffered from Beckwith–Wiedemann syndrome. Thus the parental imprinting of IGF2 appears to be evolutionarily conserved from mouse to man and has implications for the generation of the Beckwith–Wiedemann syndrome.", "title": "IGF2 is parentally imprinted during human embryogenesis and in the Beckwith–Wiedemann syndrome" }, { "docid": "14717500", "text": "Genome-wide association studies (GWAS) have now identified at least 2,000 common variants that appear associated with common diseases or related traits (http://www.genome.gov/gwastudies), hundreds of which have been convincingly replicated. It is generally thought that the associated markers reflect the effect of a nearby common (minor allele frequency >0.05) causal site, which is associated with the marker, leading to extensive resequencing efforts to find causal sites. We propose as an alternative explanation that variants much less common than the associated one may create \"synthetic associations\" by occurring, stochastically, more often in association with one of the alleles at the common site versus the other allele. Although synthetic associations are an obvious theoretical possibility, they have never been systematically explored as a possible explanation for GWAS findings. Here, we use simple computer simulations to show the conditions under which such synthetic associations will arise and how they may be recognized. We show that they are not only possible, but inevitable, and that under simple but reasonable genetic models, they are likely to account for or contribute to many of the recently identified signals reported in genome-wide association studies. We also illustrate the behavior of synthetic associations in real datasets by showing that rare causal mutations responsible for both hearing loss and sickle cell anemia create genome-wide significant synthetic associations, in the latter case extending over a 2.5-Mb interval encompassing scores of \"blocks\" of associated variants. In conclusion, uncommon or rare genetic variants can easily create synthetic associations that are credited to common variants, and this possibility requires careful consideration in the interpretation and follow up of GWAS signals.", "title": "Rare Variants Create Synthetic Genome-Wide Associations" } ]
469
Glial calcium waves influence seizures.
[ { "docid": "1410197", "text": "Seizures in focal epilepsies are sustained by a highly synchronous neuronal discharge that arises at restricted brain sites and subsequently spreads to large portions of the brain. Despite intense experimental research in this field, the earlier cellular events that initiate and sustain a focal seizure are still not well defined. Their identification is central to understand the pathophysiology of focal epilepsies and to develop new pharmacological therapies for drug-resistant forms of epilepsy. The prominent involvement of astrocytes in ictogenesis was recently proposed. We test here whether a cooperation between astrocytes and neurons is a prerequisite to support ictal (seizure-like) and interictal epileptiform events. Simultaneous patch-clamp recording and Ca2+ imaging techniques were performed in a new in vitro model of focal seizures induced by local applications of N-methyl-D-aspartic acid (NMDA) in rat entorhinal cortex slices. We found that a Ca2+ elevation in astrocytes correlates with both the initial development and the maintenance of a focal, seizure-like discharge. A delayed astrocyte activation during ictal discharges was also observed in other models (including the whole in vitro isolated guinea pig brain) in which the site of generation of seizure activity cannot be precisely monitored. In contrast, interictal discharges were not associated with Ca2+ changes in astrocytes. Selective inhibition or stimulation of astrocyte Ca2+ signalling blocked or enhanced, respectively, ictal discharges, but did not affect interictal discharge generation. Our data reveal that neurons engage astrocytes in a recurrent excitatory loop (possibly involving gliotransmission) that promotes seizure ignition and sustains the ictal discharge. This neuron-astrocyte interaction may represent a novel target to develop effective therapeutic strategies to control seizures.", "title": "An Excitatory Loop with Astrocytes Contributes to Drive Neurons to Seizure Threshold" } ]
[ { "docid": "15889329", "text": "Brain glial cells, five times more prevalent than neurons, have recently received attention for their potential involvement in epileptic seizures. Microglia and astrocytes, associated with inflammatory innate immune responses, are responsible for surveillance of brain damage that frequently results in seizures. Thus, an intriguing suggestion has been put forward that seizures may be facilitated and perhaps triggered by brain immune responses. Indeed, recent evidence strongly implicates innate immune responses in lowering seizure threshold in experimental models of epilepsy, yet, there is no proof that they can play an independent role in initiating seizures in vivo. Here, we show that cortical innate immune responses alone produce profound increases of brain excitability resulting in focal seizures. We found that cortical application of lipopolysaccharide, binding to toll-like receptor 4 (TLR4), triples evoked field potential amplitudes and produces focal epileptiform discharges. These effects are prevented by pre-application of interleukin-1 receptor antagonist. Our results demonstrate how the innate immune response may participate in acute seizures, increasing neuronal excitability through interleukin-1 release in response to TLR4 detection of the danger signals associated with infections of the central nervous system and with brain injury. These results suggest an important role of innate immunity in epileptogenesis and focus on glial inhibition, through pharmacological blockade of TLR4 and the pro-inflammatory mediators released by activated glia, in the study and treatment of seizure disorders in humans.", "title": "A JOURNAL OF NEUROLOGY" }, { "docid": "17150648", "text": "Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity.", "title": "Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes." }, { "docid": "21767325", "text": "Arterial stiffness and wave reflections exert a number of adverse effects on cardiovascular function and disease risk and are associated with a greater rate of mortality in patients with end-stage renal failure and essential hypertension. Accordingly, the prevention and treatment of arterial stiffness are of paramount importance. Because arterial stiffening is being recognized as a critical precursor of cardiovascular disease (CVD), it is essential to understand the role of lifestyle modifications on preventing and reversing arterial stiffening. Available evidence indicates that lifestyle modifications, in particular aerobic exercise and sodium restriction, appear to be clinically efficacious therapeutic interventions for preventing and treating arterial stiffening. Thus, sufficient evidence is available to recommend lifestyle modifications as part of a first-line therapeutic approach for arterial stiffening. However, more information is needed for a full understanding and optimal use of lifestyle modifications in the management of arterial stiffening.", "title": "Influence of lifestyle modification on arterial stiffness and wave reflections." }, { "docid": "17101262", "text": "Protoplasmic astrocytes in mammalian CNS tissues in vivo have a highly complex 3D morphology, but in dissociated cell cultures they often assume a flattened, fibroblast-like morphology bearing only a few, simple processes. By fluorescent labeling and confocal reconstruction we show that many astrocytes in organotypic hippocampal slice cultures exhibit a more native complex cytoarchitecture. Although astrocytes at the surface of slice cultures show a reactive form with several thick glial fibrillary acidic protein (GFAP)-positive processes, astrocytes situated in deeper portions of tissue slices retain a highly complex 3D morphology with many fine spine- or veil-like protrusions. Dozens of astrocytes can be labeled in single slice cultures by gene gun-mediated ballistic delivery of gold or tungsten particles carrying cDNAs (Biolistics), lipophilic dyes (DiOlistics), or fluorescent intracellular calcium indicators (Calistics). Expression of a membrane-targeted form of eGFP (Lck-GFP) is superior to soluble eGFP for resolving fine astrocytic processes. Time-lapse confocal imaging of Lck-GFP transfected astrocytes or \"calistically\" labeled astrocytes show structural remodeling and calcium transients, respectively. This approach provides an in vitro system for investigating the functional architecture, development and dynamic remodeling of astrocytes and their relationships to neurons and glia in live mammalian brain tissues.", "title": "Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures" }, { "docid": "2547636", "text": "Human skin copes with harmful environmental factors that are circadian in nature, yet how circadian rhythms modulate the function of human epidermal stem cells is mostly unknown. Here we show that in human epidermal stem cells and their differentiated counterparts, core clock genes peak in a successive and phased manner, establishing distinct temporal intervals during the 24 hr day period. Each of these successive clock waves is associated with a peak in the expression of subsets of transcripts that temporally segregate the predisposition of epidermal stem cells to respond to cues that regulate their proliferation or differentiation, such as TGFβ and calcium. Accordingly, circadian arrhythmia profoundly affects stem cell function in culture and in vivo. We hypothesize that this intricate mechanism ensures homeostasis by providing epidermal stem cells with environmentally relevant temporal functional cues during the course of the day and that its perturbation may contribute to aging and carcinogenesis.", "title": "Human epidermal stem cell function is regulated by circadian oscillations." }, { "docid": "44572913", "text": "On the basis of previous epidemiological, clinical and experimental studies, it was demonstrated that adequate calcium intake during growth may influence peak bone mass/density, and may be instrumental in preventing subsequent postmenopausal and senile osteoporosis. Calcium intake during adolescence appears to affect skeletal calcium retention directly, and a calcium intake of up to 1600 mg d-1 may be required. Therefore, adolescent females at the time of puberty probably represent the optimal population for early prevention of osteoporosis with calcium. Young individuals must be in positive calcium balance to provide the calcium necessary for skeletal modelling and consolidation, but the degree of positive balance required to achieve peak bone mass and density is unknown. To assess calcium requirements in young individuals, and also to evaluate the determinants of calcium metabolism during the period of acquisition of peak bone mass, 487 calcium balances from previously published reports have been collected and analysed according to developmental phase and calcium intake. The results of this analysis showed that calcium intake and skeletal modelling/turnover are the most important determinants of calcium balance during growth. The highest requirements for calcium are during infancy and adolescence, and then during childhood and young adulthood. Infants (adequate vitamin D supply) and adolescents have higher calcium absorption than children and young adults to meet their high calcium requirements. Calcium absorption during the periods of rapid bone modelling/turnover is probably mediated by Nicolaysen's endogenous factor. Urinary calcium increases with age, and reaches a maximum by the end of puberty. The results also show that calcium intake has little effect on urinary calcium excretion during the period of most rapid skeletal formation: a weak correlation is present in children and young adults. On the basis of the above studies it was suggested that the RDA for calcium should be higher than currently established for children, adolescents, and young adults, in order to ensure a level of skeletal retention of calcium sufficient for maximal peak bone mass. In addition to nutrition, heredity (both parents) and endocrine factors (sexual development) appear to have profound effects on peak bone mass formation. Most of the skeletal mass will be accumulated by late adolescence, indicating early timing of peak bone mass.", "title": "Calcium and peak bone mass." }, { "docid": "37592824", "text": "Sixty-seven patients with temporal lobe epilepsy without circumscribed, potentially epileptogenic lesions, who were studied with intracranial electrodes and who became seizure free following temporal lobectomy were retrospectively evaluated with regard to preoperative scalp electroencephalographic (EEG) findings, neuropsychological test results, neuroimaging findings, results of surgery, and pathology of resected tissue. Interictal scalp EEG showed paroxysmal abnormalities during prolonged monitoring in 64 patients (96%). These were localized in the anterior temporal region in 60 (94%) of these 64 patients. Bilateral independent paroxysmal activity occurred in 42% of the patients and was preponderant over the side of seizure origin in half. Ictal EEG changes were rarely detected at the time of clinical seizure onset, but lateralized buildup of rhythmic seizure activity during the seizure occurred in 80% of patients. In 13%, the scalp EEG seizure buildup was, however, contralateral to the side of seizure origin as subsequently determined by depth EEG and curative surgery. Lateralized postictal slowing, when present, was a very reliable lateralizing finding. Neuropsychological testing provided lateralizing findings concordant with the side of seizure origin in 73% of patients. When neuropsychological testing produced discordant results or nonlateralizing findings, those patients were usually found to have right temporal seizure origin. Intracarotid amobarbital (Amytal) testing demonstrated absent or marginal memory functions on the side of seizure onset in 63% of patients, but 26 patients (37%) had bilaterally intact memory. In those patients who had magnetic resonance imaging, it was very sensitive in detecting subtle medial temporal abnormalities. These abnormalities were present in 23 of 28 magnetic resonance images, and corresponded with mesial temporal sclerosis on pathological examination in all but 2 patients.(ABSTRACT TRUNCATED AT 250 WORDS)", "title": "Characteristics of medial temporal lobe epilepsy: II. Interictal and ictal scalp electroencephalography, neuropsychological testing, neuroimaging, surgical results, and pathology." }, { "docid": "13714201", "text": "Aims The gut microbiome influences metabolic syndrome (MetS) and inflammation and is therapeutically modifiable. Arterial stiffness is poorly correlated with most traditional risk factors. Our aim was to examine whether gut microbial composition is associated with arterial stiffness. Methods and results We assessed the correlation between carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, and gut microbiome composition in 617 middle-aged women from the TwinsUK cohort with concurrent serum metabolomics data. Pulse wave velocity was negatively correlated with gut microbiome alpha diversity (Shannon index, Beta(SE)= -0.25(0.07), P = 1 × 10-4) after adjustment for covariates. We identified seven operational taxonomic units associated with PWV after adjusting for covariates and multiple testing-two belonging to the Ruminococcaceae family. Associations between microbe abundances, microbe diversity, and PWV remained significant after adjustment for levels of gut-derived metabolites (indolepropionate, trimethylamine oxide, and phenylacetylglutamine). We linearly combined the PWV-associated gut microbiome-derived variables and found that microbiome factors explained 8.3% (95% confidence interval 4.3-12.4%) of the variance in PWV. A formal mediation analysis revealed that only a small proportion (5.51%) of the total effect of the gut microbiome on PWV was mediated by insulin resistance and visceral fat, c-reactive protein, and cardiovascular risk factors after adjusting for age, body mass index, and mean arterial pressure. Conclusions Gut microbiome diversity is inversely associated with arterial stiffness in women. The effect of gut microbiome composition on PWV is only minimally mediated by MetS. This first human observation linking the gut microbiome to arterial stiffness suggests that targeting the microbiome may be a way to treat arterial ageing.", "title": "Gut microbial diversity is associated with lower arterial stiffness in women" }, { "docid": "25974070", "text": "The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.", "title": "Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function." }, { "docid": "14924526", "text": "Febrile (fever-induced) seizures affect 3–5% of infants and young children. Despite the high incidence of febrile seizures, their contribution to the development of epilepsy later in life has remained controversial. Combining a new rat model of complex febrile seizures and patch clamp techniques, we determined that hyperthermia-induced seizures in the immature rat cause a selective presynaptic increase in inhibitory synaptic transmission in the hippocampus that lasts into adulthood. The long-lasting nature of these potent alterations in synaptic communication after febrile seizures does not support the prevalent view of the 'benign' nature of early-life febrile convulsions.", "title": "Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits" }, { "docid": "23670644", "text": "BACKGROUND The ketogenic diet has been widely and successfully used to treat children with drug-resistant epilepsy since the 1920s. The aim of this study was to test the efficacy of the ketogenic diet in a randomised controlled trial. \n METHODS 145 children aged between 2 and 16 years who had at least daily seizures (or more than seven seizures per week), had failed to respond to at least two antiepileptic drugs, and had not been treated previously with the ketogenic diet participated in a randomised controlled trial of its efficacy to control seizures. Enrolment for the trial ran between December, 2001, and July, 2006. Children were seen at one of two hospital centres or a residential centre for young people with epilepsy. Children were randomly assigned to receive a ketogenic diet, either immediately or after a 3-month delay, with no other changes to treatment (control group). Neither the family nor investigators were blinded to the group assignment. Early withdrawals were recorded, and seizure frequency on the diet was assessed after 3 months and compared with that of the controls. The primary endpoint was a reduction in seizures; analysis was intention to treat. Tolerability of the diet was assessed by questionnaire at 3 months. The trial is registered with ClinicalTrials.gov, number NCT00564915. \n FINDINGS 73 children were assigned to the ketogenic diet and 72 children to the control group. Data from 103 children were available for analysis: 54 on the ketogenic diet and 49 controls. Of those who did not complete the trial, 16 children did not receive their intervention, 16 did not provide adequate data, and ten withdrew from the treatment before the 3-month review, six because of intolerance. After 3 months, the mean percentage of baseline seizures was significantly lower in the diet group than in the controls (62.0%vs 136.9%, 75% decrease, 95% CI 42.4-107.4%; p<0.0001). 28 children (38%) in the diet group had greater than 50% seizure reduction compared with four (6%) controls (p<0.0001), and five children (7%) in the diet group had greater than 90% seizure reduction compared with no controls (p=0.0582). There was no significant difference in the efficacy of the treatment between symptomatic generalised or symptomatic focal syndromes. The most frequent side-effects reported at 3-month review were constipation, vomiting, lack of energy, and hunger. \n INTERPRETATION The results from this trial of the ketogenic diet support its use in children with treatment-intractable epilepsy. \n FUNDING HSA Charitable Trust; Smiths Charity; Scientific Hospital Supplies; Milk Development Council.", "title": "The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial." }, { "docid": "30221601", "text": "The delineation of dopamine dysfunction in the mentally ill has been a long-standing quest of biological psychiatry. The present study focuses on a recently recognized group of dopamine receptor-interacting proteins as possible novel sites of dysfunction in schizophrenic and bipolar patients. We demonstrate that the dorsolateral prefrontal cortex in schizophrenia and bipolar cases from the Stanley Foundation Neuropathology Consortium display significantly elevated levels of the D2 dopamine receptor desensitization regulatory protein, neuronal calcium sensor-1. These levels of neuronal calcium sensor-1 were not influenced by age, gender, hemisphere, cause of death, postmortem period, alcohol consumption, or antipsychotic and mood stabilizing medications. The present study supports the hypothesis that schizophrenia and bipolar disorder may be associated with abnormalities in dopamine receptor-interacting proteins.", "title": "Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients." }, { "docid": "25416944", "text": "PURPOSE Mutations in the leucine rich, glioma inactivated gene (LGI1) were recently described in a small number of families with autosomal dominant lateral temporal epilepsy (ADLTE). ADLTE is characterized by partial seizures with symptoms suggestive of a lateral temporal onset, including frequent auditory aura. Here we report the results of clinical and genetic analyses of two newly identified families with ADTLE. \n METHODS We identified two families whose seizure semiology was suggestive of ADLTE. Evaluation included a detailed history and neurologic examination, as well as collection of DNA. The coding sequence of the LGI1 gene from affected subjects from both families was analyzed for evidence of mutation. \n RESULTS Each patient had a history of partial seizures, often with secondary generalization earlier in the course. Auditory aura was reported by approximately two thirds of affected patients in each pedigree. Novel mutations in LGI1 were detected in both families. A heterozygous single-nucleotide deletion at position 329 (del 329C) was detected in affected individuals from one family, whereas patients from the second family had a nonsynonymous variation, corresponding to C435G. \n CONCLUSIONS We identified two novel mutations in the LGI1 gene. The phenotype of these two families was similar to that of other kindreds with ADLTE, as auditory aura was absent in one third of affected individuals. Our results further support that LGI1 mutations should be considered in patients with a history of partial seizures if the semiology of seizures is consistent with the onset in the lateral temporal lobe.", "title": "Autosomal dominant lateral temporal epilepsy: two families with novel mutations in the LGI1 gene." }, { "docid": "3870062", "text": "Chondroitin sulphate proteoglycans (CSPGs) upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs). Chondroitin 6-sulphotransferase-1 (C6ST-1) is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs). Using C6ST-1 knockout mice (KO), we studied post-injury changes in chondroitin sulphotransferase (CSST) expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT) showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury.", "title": "6-Sulphated Chondroitins Have a Positive Influence on Axonal Regeneration" }, { "docid": "29723642", "text": "The prodynorphin gene (PDYN) encoding the anticonvulsant peptide dynorphin is a strong candidate for a seizure suppressor gene and thus a possible modulator of susceptibility to temporal lobe epilepsy. We performed a case control association study in 155 patients with nonlesional temporal lobe epilepsy and 202 controls and found that PDYN promotor low-expression L-alleles confer an increased risk for temporal lobe epilepsy in patients with a family history for seizures. Irrespective of the familial background, L-homozygotes display a higher risk for secondarily generalized seizures and status epilepticus.", "title": "A functional polymorphism in the prodynorphin gene promotor is associated with temporal lobe epilepsy." }, { "docid": "116792", "text": "Understanding molecular mechanisms mediating epileptogenesis is critical for developing more effective therapies for epilepsy. We recently found that the mammalian target of rapamycin (mTOR) signaling pathway is involved in epileptogenesis, and mTOR inhibitors prevent epilepsy in a mouse model of tuberous sclerosis complex. Here, we investigated the potential role of mTOR in a rat model of temporal lobe epilepsy initiated by status epilepticus. Acute kainate-induced seizures resulted in biphasic activation of the mTOR pathway, as evident by an increase in phospho-S6 (P-S6) expression. An initial rise in P-S6 expression started approximately 1 h after seizure onset, peaked at 3-6 h, and returned to baseline by 24 h in both hippocampus and neocortex, reflecting widespread stimulation of mTOR signaling by acute seizure activity. After resolution of status epilepticus, a second increase in P-S6 was observed in hippocampus only, which started at 3 d, peaked 5-10 d, and persisted for several weeks after kainate injection, correlating with the development of chronic epileptogenesis within hippocampus. The mTOR inhibitor rapamycin, administered before kainate, blocked both the acute and chronic phases of seizure-induced mTOR activation and decreased kainate-induced neuronal cell death, neurogenesis, mossy fiber sprouting, and the development of spontaneous epilepsy. Late rapamycin treatment, after termination of status epilepticus, blocked the chronic phase of mTOR activation and reduced mossy fiber sprouting and epilepsy but not neurogenesis or neuronal death. These findings indicate that mTOR signaling mediates mechanisms of epileptogenesis in the kainate rat model and that mTOR inhibitors have potential antiepileptogenic effects in this model.", "title": "The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy." }, { "docid": "30534237", "text": "BACKGROUND Dysfunction of gamma-aminobutyric acid (GABA) (B) receptors has been implicated in the pathogenesis of temporal lobe epilepsy (TLE). \n OBJECTIVE To evaluate the genetic contribution of cloned human GABA(B) receptors to TLE. \n METHODS The authors genotyped 141 patients (78 women and 63 men; mean age = 49.1 +/- 18.0 years) with nonlesional TLE and 372 age- and sex-matched normal individuals for the known polymorphism G1465A in the human GABA(B) receptor 1 [GABA(B[1])] gene. \n RESULTS There was a highly significant overrepresentation of the G1465A heterozygote in patients with TLE compared with controls. The A/G genotype was found in 17% of the 141 patients with TLE and in only 0.5% of the 372 controls (p < 0.0001). The authors also found that patients carrying the A allele had a significantly higher risk (p = 0.003, OR = 6.47, 95% CI = 2.02 to 20.76) of developing drug-resistant TLE. Furthermore, the age at onset of seizures tended to be lower in patients with A/G genotype, but the difference was not significant. \n CONCLUSIONS The results of this study indicate that the GABA(B[1]) polymorphism (G1465A) confers a highly increased susceptibility to TLE. Moreover, it seems to influence the severity of this common epileptic disorder.", "title": "GABA(B) receptor 1 polymorphism (G1465A) is associated with temporal lobe epilepsy." }, { "docid": "20602517", "text": "The endogenous circadian rhythm of melatonin, driven by the suprachiasmatic nucleus, exhibits a close association with the endogenous circadian component of the sleep propensity rhythm and the endogenous circadian component of the variation in electroencephalogram (EEG) oscillations such as sleep spindles and slow waves. This association is maintained even when the sleep-wake cycle is desynchronized from the endogenous circadian rhythm of melatonin. Administration of melatonin during the day increases daytime sleep propensity as indexed by both the latency to sleep onset and sleep consolidation. The EEG during daytime sleep after melatonin administration exhibits characteristics reminiscent of the nocturnal sleep EEG, that is, increased sleep spindle activity and reduced slow-wave sleep and slow-wave activity, as detected by quantitative EEG analysis. Administration of higher doses of melatonin (5 mg or more) prior to nocturnal sleep results in an increase in rapid eye movement (REM) sleep. These data demonstrate that melatonin exerts effects on the main characteristics of human sleep, that is, latency to sleep onset, sleep consolidation, slow waves, sleep spindles, and REM sleep. There is a need for further studies using physiological doses and delivery systems that generate physiological plasma melatonin profiles to firmly establish the role of the endogenous circadian rhythm of melatonin in the circadian regulation of sleep.", "title": "Melatonin and the circadian regulation of sleep initiation, consolidation, structure, and the sleep EEG." }, { "docid": "36860856", "text": "Computer techniques readily extract from the brainwaves an orderly sequence of brain potentials locked in time to sound stimuli. The potentials that appear 8 to 80 msec after the stimulus resemble 3 or 4 cycles of a 40-Hz sine wave; we show here that these waves combined to form a single, stable, composite wave when the sounds are repeated at rates around 40 per sec. This phenomenon, the 40-Hz event-related potential (ERP), displays several properties of theoretical and practical interest. First, it reportedly disappears with surgical anesthesia, and it resembles similar phenomena in the visual and olfactory system, facts which suggest that adequate processing of sensory information may require cyclical brain events in the 30- to 50-Hz range. Second, latency and amplitude measurements on the 40-Hz ERP indicate it may contain useful information on the number and basilar membrane location of the auditory nerve fibers a given tone excites. Third, the response is present at sound intensities very close to normal adult thresholds for the audiometric frequencies, a fact that could have application in clinical hearing testing.", "title": "A 40-Hz auditory potential recorded from the human scalp." } ]
470
Glioblastoma multiforme (GBM) is characterized by extensive invasion, rapid growth, necrosis, and angiogenesis.
[ { "docid": "12685434", "text": "Although GBP1 (guanylate binding protein 1) was among the first interferon-inducible proteins identified, its function is still largely unknown. Epidermal growth factor receptor (EGFR) activation by amplification or mutation is one of the most frequent genetic lesions in a variety of human tumors. These include glioblastoma multiforme (GBM), which is characterized by independent but interrelated features of extensive invasion into normal brain parenchyma, rapid growth, necrosis, and angiogenesis. In this study, we show that EGFR activation promoted GBP1 expression in GBM cell lines through a signaling pathway involving Src and p38 mitogen-activated protein kinase. Moreover, we identified YY1 (Yin Yang 1) as the downstream transcriptional regulator regulating EGFR-driven GBP1 expression. GBP1 was required for EGFR-mediated MMP1 (matrix metalloproteinase 1) expression and glioma cell invasion in vitro. Although deregulation of GBP1 expression did not affect glioma cell proliferation, overexpression of GBP1 enhanced glioma cell invasion through MMP1 induction, which required its C-terminal helical domain and was independent of its GTPase activity. Reducing GBP1 levels by RNA interference in invasive GBM cells also markedly inhibited their ability to infiltrate the brain parenchyma of mice. GBP1 expression was high and positively correlated with EGFR expression in human GBM tumors and cell lines, particularly those of the neural subtype. Together, these findings establish GBP1 as a previously unknown link between EGFR activity and MMP1 expression and nominate it as a novel potential therapeutic target for inhibiting GBM invasion.", "title": "Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma" } ]
[ { "docid": "13235609", "text": "Inhibition of VEGF signaling leads to a proinvasive phenotype in mouse models of glioblastoma multiforme (GBM) and in a subset of GBM patients treated with bevacizumab. Here, we demonstrate that vascular endothelial growth factor (VEGF) directly and negatively regulates tumor cell invasion through enhanced recruitment of the protein tyrosine phosphatase 1B (PTP1B) to a MET/VEGFR2 heterocomplex, thereby suppressing HGF-dependent MET phosphorylation and tumor cell migration. Consequently, VEGF blockade restores and increases MET activity in GBM cells in a hypoxia-independent manner, while inducing a program reminiscent of epithelial-to-mesenchymal transition highlighted by a T-cadherin to N-cadherin switch and enhanced mesenchymal features. Inhibition of MET in GBM mouse models blocks mesenchymal transition and invasion provoked by VEGF ablation, resulting in substantial survival benefit.", "title": "VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex." }, { "docid": "7028976", "text": "Epidermal growth factor receptor (EGFR) is a known diagnostic and, although controversial, prognostic marker of human glioblastoma multiforme (GBM). However, its functional role and biological significance in GBM remain elusive. Here, we show that multiple GBM cell subpopulations could be purified from the specimens of patients with GBM and from cancer stem cell (CSC) lines based on the expression of EGFR and of other putative CSC markers. All these subpopulations are molecularly and functionally distinct, are tumorigenic, and need to express EGFR to promote experimental tumorigenesis. Among them, EGFR-expressing tumor-initiating cells (TIC) display the most malignant functional and molecular phenotype. Accordingly, modulation of EGFR expression by gain-of-function and loss-of-function strategies in GBM CSC lines enhances and reduces their tumorigenic ability, respectively, suggesting that EGFR plays a fundamental role in gliomagenesis. These findings open up the possibility of new therapeutically relevant scenarios, as the presence of functionally heterogeneous EGFR(pos) and EGFR(neg) TIC subpopulations within the same tumor might affect clinical response to treatment.", "title": "Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis." }, { "docid": "15570691", "text": "Activation of cyclin-dependent kinases 4 and 6 (cdk4/6) occurs in the majority of glioblastoma multiforme (GBM) tumors, and represents a promising molecular target for the development of small molecule inhibitors. In the current study, we investigated the molecular determinants and in vivo response of diverse GBM cell lines and xenografts to PD-0332991, a cdk4/6-specific inhibitor. In vitro testing of PD-0332991 against a panel of GBM cell lines revealed a potent G(1) cell cycle arrest and induction of senescence in each of 16 retinoblastoma protein (Rb)-proficient cell lines regardless of other genetic lesions, whereas 5 cell lines with homozygous inactivation of Rb were completely resistant to treatment. Short hairpin RNA depletion of Rb expression conferred resistance of GBM cells to PD-0332991, further demonstrating a requirement of Rb for sensitivity to cdk4/6 inhibition. PD-0332991 was found to efficiently cross the blood-brain barrier and proved highly effective in suppressing the growth of intracranial GBM xenograft tumors, including those that had recurred after initial therapy with temozolomide. Remarkably, no mice receiving PD-0332991 died as a result of disease progression while on therapy. Additionally, the combination of PD-0332991 and radiation therapy resulted in significantly increased survival benefit compared with either therapy alone. In total, our results support clinical trial evaluation of PD-0332991 against newly diagnosed as well as recurrent GBM, and indicate that Rb status is the primary determinant of potential benefit from this therapy.", "title": "Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts." }, { "docid": "195689757", "text": "A key aberrant biological difference between tumor cells and normal differentiated cells is altered metabolism, whereby cancer cells acquire a number of stable genetic and epigenetic alterations to retain proliferation, survive under unfavorable microenvironments and invade into surrounding tissues. A classic biochemical adaptation is the metabolic shift to aerobic glycolysis rather than mitochondrial oxidative phosphorylation, regardless of oxygen availability, a phenomenon termed the \"Warburg Effect\". Aerobic glycolysis, characterized by high glucose uptake, low oxygen consumption and elevated production of lactate, is associated with a survival advantage as well as the generation of substrates such as fatty acids, amino acids and nucleotides necessary in rapidly proliferating cells. This review discusses the role of key metabolic enzymes and their association with aerobic glycolysis in Glioblastoma Multiforme (GBM), an aggressive, highly glycolytic and deadly brain tumor. Targeting key metabolic enzymes involved in modulating the \"Warburg Effect\" may provide a novel therapeutic approach either singularly or in combination with existing therapies in GBMs.", "title": "Targeting metabolic remodeling in glioblastoma multiforme." }, { "docid": "22901758", "text": "The identification of brain tumor stem-like cells (BTSCs) has implicated a role of biological self-renewal mechanisms in clinical brain tumor initiation and propagation. The molecular mechanisms underlying the tumor-forming capacity of BTSCs, however, remain unknown. Here, we have generated molecular signatures of glioblastoma multiforme (GBM) using gene expression profiles of BTSCs and have identified both Sonic Hedgehog (SHH) signaling-dependent and -independent BTSCs and their respective glioblastoma surgical specimens. BTSC proliferation could be abrogated in a pathway-dependent fashion in vitro and in an intracranial tumor model in athymic mice. Both SHH-dependent and -independent brain tumor growth required phosphoinositide 3-kinase-mammalian target of rapamycin signaling. In human GBMs, the levels of SHH and PTCH1 expression were significantly higher in PTEN-expressing tumors than in PTEN-deficient tumors. In addition, we show that hyperactive SHH-GLI signaling in PTEN-coexpressing human GBM is associated with reduced survival time. Thus, distinct proliferation signaling dependence may underpin glioblastoma propagation by BTSCs. Modeling these BTSC proliferation mechanisms may provide a rationale for individualized glioblastoma treatment.", "title": "Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas." }, { "docid": "5123516", "text": "Significant endeavor has been applied to identify functional therapeutic targets in glioblastoma (GBM) to halt the growth of this aggressive cancer. We show that the receptor tyrosine kinase EphA3 is frequently overexpressed in GBM and, in particular, in the most aggressive mesenchymal subtype. Importantly, EphA3 is highly expressed on the tumor-initiating cell population in glioma and appears critically involved in maintaining tumor cells in a less differentiated state by modulating mitogen-activated protein kinase signaling. EphA3 knockdown or depletion of EphA3-positive tumor cells reduced tumorigenic potential to a degree comparable to treatment with a therapeutic radiolabelled EphA3-specific monoclonal antibody. These results identify EphA3 as a functional, targetable receptor in GBM.", "title": "EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme." }, { "docid": "21692235", "text": "The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.", "title": "Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1." }, { "docid": "470625", "text": "Genomic alterations leading to aberrant activation of cyclin/cyclin-dependent kinase (cdk) complexes drive the pathogenesis of many common human tumor types. In the case of glioblastoma multiforme (GBM), these alterations are most commonly due to homozygous deletion of p16(INK4a) and less commonly due to genomic amplifications of individual genes encoding cyclins or cdks. Here, we describe deletion of the p18(INK4c) cdk inhibitor as a novel genetic alteration driving the pathogenesis of GBM. Deletions of p18(INK4c) often occurred in tumors also harboring homozygous deletions of p16(INK4a). Expression of p18(INK4c) was completely absent in 43% of GBM primary tumors studied by immunohistochemistry. Lentiviral reconstitution of p18(INK4c) expression at physiologic levels in p18(INK4c)-deficient but not p18(INK4c)-proficient GBM cells led to senescence-like G(1) cell cycle arrest. These studies identify p18(INK4c) as a GBM tumor suppressor gene, revealing an additional mechanism leading to aberrant activation of cyclin/cdk complexes in this terrible malignancy.", "title": "Identification of p18 INK4c as a tumor suppressor gene in glioblastoma multiforme." }, { "docid": "13244602", "text": "CD133+ populations of human glioblastoma multiforme (GBM) cells are reportedly enriched for tumor stem cells (TSCs) or tumor-initiating cells (TICs). Approximately 40% of freshly isolated GBM specimens, however, do not contain CD133+ tumor cells, raising the possibility that CD133 may not be a universal enrichment marker for GBM TSCs/TICs. Here we demonstrate that stage-specific embryonic antigen 1(SSEA-1/LeX)+ GBM cells fulfill the functional criteria for TSC/TIC, since (1) SSEA-1+ cells are highly tumorigenic in vivo, unlike SSEA-1- cells; (2) SSEA-1+ cells can give rise to both SSEA-1+ and SSEA-1- cells, thereby establishing a cellular hierarchy; and (3) SSEA-1+ cells have self-renewal and multilineage differentiation potentials. A distinct subpopulation of SSEA-1+ cells was present in all but one of the primary GBMs examined (n = 24), and most CD133+ tumor cells were also SSEA-1+, suggesting that SSEA-1 may be a general TSC/TIC enrichment marker in human GBMs.", "title": "SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma." }, { "docid": "15215393", "text": "Glioblastoma multiforme (GBM) is a particularly aggressive brain tumor and remains a clinically devastating disease. Despite innovative therapies for the treatment of GBM, there has been no significant increase in patient survival over the past decade. Enzymes that control epigenetic alterations are of considerable interest as targets for cancer therapy because of their critical roles in cellular processes that lead to oncogenesis. Several inhibitors of histone deacetylases (HDACs) have been developed and tested in GBM with moderate success. We found that treatment of GBM cells with HDAC inhibitors caused the accumulation of histone methylation, a modification removed by the lysine specific demethylase 1 (LSD1). This led us to examine the effects of simultaneously inhibiting HDACs and LSD1 as a potential combination therapy. We evaluated induction of apoptosis in GBM cell lines after combined inhibition of LSD1 and HDACs. LSD1 was inhibited by targeted short hairpin RNA or pharmacological means and inhibition of HDACs was achieved by treatment with either vorinostat or PCI-24781. Caspase-dependent apoptosis was significantly increased (>2-fold) in LSD1-knockdown GBM cells treated with HDAC inhibitors. Moreover, pharmacologically inhibiting LSD1 with the monoamine oxidase inhibitor tranylcypromine, in combination with HDAC inhibitors, led to synergistic apoptotic cell death in GBM cells; this did not occur in normal human astrocytes. Taken together, these results indicate that LSD1 and HDACs cooperate to regulate key pathways of cell death in GBM cell lines but not in normal counterparts, and they validate the combined use of LSD1 and HDAC inhibitors as a therapeutic approach for GBM.", "title": "Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors." }, { "docid": "67787658", "text": "Glioblastoma multiforme (GBM) is a fatal malignancy of the central nervous system, commonly associated with chemoresistance. The alkylating agent Temozolomide (TMZ) is the front-line chemotherapeutic agent and has undergone intense studies on resistance. These studies reported on mismatch repair gene upregulation, ABC-targeted drug efflux, and cell cycle alterations. The mechanism by which TMZ induces cell cycle arrest has not been well-established. TMZ-resistant GBM cells have been linked to microRNA (miRNA) and exosomes. A cell cycle miRNA array identified distinct miRNAs only in exosomes from TMZ-resistant GBM cell lines and primary spheres. We narrowed the miRs to miR-93 and -193 and showed in computational analyses that they could target Cyclin D1. Since Cyclin D1 is a major regulator of cell cycle progression, we performed cause-effect studies and showed a blunting effects of miR-93 and -193 in Cyclin D1 expression. These two miRs also decreased cell cycling quiescence and induced resistance to TMZ. Taken together, our data provide a mechanism by which GBM cells can exhibit TMZ-induced resistance through miRNA targeting of Cyclin D1. The data provide a number of therapeutic approaches to reverse chemoresistance at the miRNA, exosomal and cell cycle points.", "title": "Cycling Quiescence in Temozolomide Resistant Glioblastoma Cells Is Partly Explained by microRNA-93 and -193-Mediated Decrease of Cyclin D" }, { "docid": "6363093", "text": "BACKGROUND Glioblastoma multiforme (GBM) is an umbrella designation that includes a heterogeneous group of primary brain tumors. Several classification strategies of GBM have been reported, some by clinical course and others by resemblance to cell types either in the adult or during development. From a practical and therapeutic standpoint, classifying GBMs by signal transduction pathway activation and by mutation in pathway member genes may be particularly valuable for the development of targeted therapies. \n METHODOLOGY/PRINCIPAL FINDINGS We performed targeted proteomic analysis of 27 surgical glioma samples to identify patterns of coordinate activation among glioma-relevant signal transduction pathways, then compared these results with integrated analysis of genomic and expression data of 243 GBM samples from The Cancer Genome Atlas (TCGA). In the pattern of signaling, three subclasses of GBM emerge which appear to be associated with predominance of EGFR activation, PDGFR activation, or loss of the RAS regulator NF1. The EGFR signaling class has prominent Notch pathway activation measured by elevated expression of Notch ligands, cleaved Notch receptor, and downstream target Hes1. The PDGF class showed high levels of PDGFB ligand and phosphorylation of PDGFRbeta and NFKB. NF1-loss was associated with lower overall MAPK and PI3K activation and relative overexpression of the mesenchymal marker YKL40. These three signaling classes appear to correspond with distinct transcriptomal subclasses of primary GBM samples from TCGA for which copy number aberration and mutation of EGFR, PDGFRA, and NF1 are signature events. \n CONCLUSIONS/SIGNIFICANCE Proteomic analysis of GBM samples revealed three patterns of expression and activation of proteins in glioma-relevant signaling pathways. These three classes are comprised of roughly equal numbers showing either EGFR activation associated with amplification and mutation of the receptor, PDGF-pathway activation that is primarily ligand-driven, or loss of NF1 expression. The associated signaling activities correlating with these sentinel alterations provide insight into glioma biology and therapeutic strategies.", "title": "Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations" }, { "docid": "4312169", "text": "Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.", "title": "Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma" }, { "docid": "40710501", "text": "Because a subpopulation of cancer stem cells (tumor-initiating cells, TICs) is believed to be responsible for the development, progression, and recurrence of many tumors, we evaluated the in vitro sensitivity of human glioma TICs to epidermal growth factor receptor (EGFR) kinase inhibitors (erlotinib and gefitinib) and possible molecular determinants for their effects. Cells isolated from seven glioblastomas (GBM 1-7) and grown using neural stem cell permissive conditions were characterized for in vivo tumorigenicity, expression of tumor stem cell markers (CD133, nestin), and multilineage differentiation properties, confirming that these cultures are enriched in TICs. TIC cultures were challenged with increasing concentrations of erlotinib and gefitinib, and their survival was evaluated after 1-4 days. In most cases, a time- and concentration-dependent cell death was observed, although GBM 2 was completely insensitive to both drugs, and GBM 7 was responsive only to the highest concentrations tested. Using a radioligand binding assay, we show that all GBM TICs express EGFR. Erlotinib and gefitinib inhibited EGFR and ERK1/2 phosphorylation/activation in all GBMs, irrespective of the antiproliferative response observed. However, under basal conditions GBM 2 showed a high Akt phosphorylation that was completely insensitive to both drugs, whereas GBM 7 was completely insensitive to gefitinib, and Akt inactivation occurred only for the highest erlotinib concentration tested, showing a precise relationship with the antiproliferative effects of the drug. Interestingly, in GBM 2, phosphatase and tensin homolog expression was significantly down-regulated, possibly accounting for the insensitivity to the drugs. In conclusion, glioma TICs are responsive to anti-EGFR drugs, but phosphatase and tensin homolog expression and Akt inhibition seem to be necessary for such effect.", "title": "Different response of human glioma tumor-initiating cells to epidermal growth factor receptor kinase inhibitors." }, { "docid": "41293601", "text": "Glioblastoma (GBM) is a brain tumor that carries a dismal prognosis and displays considerable heterogeneity. We have recently identified recurrent H3F3A mutations affecting two critical amino acids (K27 and G34) of histone H3.3 in one-third of pediatric GBM. Here, we show that each H3F3A mutation defines an epigenetic subgroup of GBM with a distinct global methylation pattern, and that they are mutually exclusive with IDH1 mutations, which characterize a third mutation-defined subgroup. Three further epigenetic subgroups were enriched for hallmark genetic events of adult GBM and/or established transcriptomic signatures. We also demonstrate that the two H3F3A mutations give rise to GBMs in separate anatomic compartments, with differential regulation of transcription factors OLIG1, OLIG2, and FOXG1, possibly reflecting different cellular origins.", "title": "Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma." }, { "docid": "51706771", "text": "Glioblastoma (GBM) is the most aggressive and common form of brain cancer in adults. GBM is characterized by poor survival and remarkably high tumors heterogeneity (both intertumoral and intratumoral), and lack of effective therapies. Recent high-throughput data revealed heterogeneous genetic/genomic/epigenetic features and led to multiple methods aiming to classify tumors according to the key molecular events that drive the most aggressive cellular components so that targeted therapies can be developed for individual subtypes. However, GBM molecular subtypes have not led to improvement of patients outcomes. Targeted or tailored therapies for specific mutations or subtypes largely failed due to the complexities arising from intratumoral molecular heterogeneity. Most tumors develop resistance to treatment and soon recur. GBM stem cells (GSCs) have been identified. Recent single cell sequencing studies of GBM suggest that intratumoral cellular heterogeneity can be partially explained by tumor cell hierarchy arising from GBM stem cells. Therefore, the molecular subtypes based on patient derived GSCs may potentially lead to more effective subtype-specific treatments. In this paper, we review the molecular alterations of GBM and molecular subtyping methods as well as subtype plasticity in primary and recurrent tumors emphasizing the clinical relevance of potential targets for further drug development.", "title": "Comparison of glioblastoma (GBM) molecular classification methods." }, { "docid": "7898952", "text": "We have developed a nonheuristic genome topography scan (GTS) algorithm to characterize the patterns of genomic alterations in human glioblastoma (GBM), identifying frequent p18(INK4C) and p16(INK4A) codeletion. Functional reconstitution of p18(INK4C) in GBM cells null for both p16(INK4A) and p18(INK4C) resulted in impaired cell-cycle progression and tumorigenic potential. Conversely, RNAi-mediated depletion of p18(INK4C) in p16(INK4A)-deficient primary astrocytes or established GBM cells enhanced tumorigenicity in vitro and in vivo. Furthermore, acute suppression of p16(INK4A) in primary astrocytes induced a concomitant increase in p18(INK4C). Together, these findings uncover a feedback regulatory circuit in the astrocytic lineage and demonstrate a bona fide tumor suppressor role for p18(INK4C) in human GBM wherein it functions cooperatively with other INK4 family members to constrain inappropriate proliferation.", "title": "Feedback Circuit among INK4 Tumor Suppressors Constrains Human Glioblastoma Development" }, { "docid": "18600579", "text": "We report the development of a new method to induce glioblastoma multiforme in adult immunocompetent mice by injecting Cre-loxP–controlled lentiviral vectors expressing oncogenes. Cell type- or region-specific expression of activated forms of the oncoproteins Harvey-Ras and AKT in fewer than 60 glial fibrillary acidic protein–positive cells in the hippocampus, subventricular zone or cortex of mice heterozygous for the gene encoding the tumor suppressor Tp53 were tested. Mice developed glioblastoma multiforme when transduced either in the subventricular zone or the hippocampus. However, tumors were rarely detected when the mice were transduced in the cortex. Transplantation of brain tumor cells into naive recipient mouse brain resulted in the formation of glioblastoma multiforme–like tumors, which contained CD133+ cells, formed tumorspheres and could differentiate into neurons and astrocytes. We suggest that the use of Cre-loxP–controlled lentiviral vectors is a novel way to generate a mouse glioblastoma multiforme model in a region- and cell type-specific manner in adult mice.", "title": "Development of a novel mouse glioma model using lentiviral vectors" }, { "docid": "9737083", "text": "We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.", "title": "The Somatic Genomic Landscape of Glioblastoma" } ]
472
Glucose restriction to 0.05% reduces RLS (replicative life span) by 20-40% in S. cerevisiae.
[ { "docid": "7185591", "text": "Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been previously found to increase life span by reducing the levels of toxic rDNA circles in aged mother cells. We find that combining calorie restriction with either of these genetic interventions dramatically enhances longevity, resulting in the longest-lived yeast strain reported thus far. Further, calorie restriction results in a greater life span extension in cells lacking both Sir2 and Fob1 than in cells where Sir2 is present. These findings indicate that Sir2 and calorie restriction act in parallel pathways to promote longevity in yeast and, perhaps, higher eukaryotes.", "title": "Sir2-Independent Life Span Extension by Calorie Restriction in Yeast" }, { "docid": "26330861", "text": "Calorie restriction extends life-span in a wide variety of organisms. Although it has been suggested that calorie restriction may work by reducing the levels of reactive oxygen species produced during respiration, the mechanism by which this regimen slows aging is uncertain. Here, we mimicked calorie restriction in yeast by physiological or genetic means and showed a substantial extension in life-span. This extension was not observed in strains mutant for SIR2 (which encodes the silencing protein Sir2p) or NPT1 (a gene in a pathway in the synthesis of NAD, the oxidized form of nicotinamide adenine dinucleotide). These findings suggest that the increased longevity induced by calorie restriction requires the activation of Sir2p by NAD.", "title": "Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae." }, { "docid": "4414481", "text": "Calorie restriction (CR) extends lifespan in a wide spectrum of organisms and is the only regimen known to lengthen the lifespan of mammals. We established a model of CR in budding yeast Saccharomyces cerevisiae. In this system, lifespan can be extended by limiting glucose or by reducing the activity of the glucose-sensing cyclic-AMP-dependent kinase (PKA). Lifespan extension in a mutant with reduced PKA activity requires Sir2 and NAD (nicotinamide adenine dinucleotide). In this study we explore how CR activates Sir2 to extend lifespan. Here we show that the shunting of carbon metabolism toward the mitochondrial tricarboxylic acid cycle and the concomitant increase in respiration play a central part in this process. We discuss how this metabolic strategy may apply to CR in animals.", "title": "Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration" } ]
[ { "docid": "1754001", "text": "The sirtuins are a phylogenetically conserved family of NAD(+) -dependent protein deacetylases that consume one molecule of NAD(+) for every deacetylated lysine side chain. Their requirement for NAD(+) potentially makes them prone to regulation by fluctuations in NAD(+) or biosynthesis intermediates, thus linking them to cellular metabolism. The Sir2 protein from Saccharomyces cerevisiae is the founding sirtuin family member and has been well characterized as a histone deacetylase that functions in transcriptional silencing of heterochromatin domains and as a pro-longevity factor for replicative life span (RLS), defined as the number of times a mother cell divides (buds) before senescing. Deleting SIR2 shortens RLS, while increased gene dosage causes extension. Furthermore, Sir2 has been implicated in mediating the beneficial effects of caloric restriction (CR) on life span, not only in yeast, but also in higher eukaryotes. While this paradigm has had its share of disagreements and debate, it has also helped rapidly drive the aging research field forward. S. cerevisiae has four additional sirtuins, Hst1, Hst2, Hst3, and Hst4. This review discusses the function of Sir2 and the Hst homologs in replicative aging and chronological aging, and also addresses how the sirtuins are regulated in response to environmental stresses such as CR.", "title": "Yeast sirtuins and the regulation of aging." }, { "docid": "4463811", "text": "Dietary energy restriction has been a widely used means of experimentally extending mammalian life span. We report here that lifelong reduction in the concentration of a single dietary component, the essential amino acid L-methionine, from 0.86 to 0.17% of the diet results in a 30% longer life span of male Fischer 344 rats. Methionine restriction completely abolished growth, although food intake was actually greater on a body weight basis. Studies of energy consumption in early life indicated that the energy intake of 0.17% methionine-fed animals was near normal for animals of their size, although consumption per animal was below that of the much larger 0.86% methionine-fed rats. Increasing the energy intake of rats fed 0.17% methionine failed to increase their rate of growth, whereas restricting 0.85% methionine-fed rats to the food intake of 0.17% methionine-fed animals did not materially reduce growth, indicating that food restriction was not a factor in life span extension in these experiments. The biochemically well-defined pathways of methionine metabolism and utilization offer the potential for uncovering the precise mechanism(s) underlying this specific dietary restriction-related extension of life span.", "title": "Low methionine ingestion by rats extends life span." }, { "docid": "11527822", "text": "The SIR genes are determinants of life span in yeast mother cells. Here we show that life span regulation by the Sir proteins is independent of their role in nonhomologous end joining. The short life span of a sir3 or sir4 mutant is due to the simultaneous expression of a and alpha mating-type information, which indirectly causes an increase in rDNA recombination and likely increases the production of extrachromosomal rDNA circles. The short life span of a sir2 mutant also reveals a direct failure to repress recombination generated by the Fob1p-mediated replication block in the rDNA. Sir2p is a limiting component in promoting yeast longevity, and increasing the gene dosage extends the life span in wild-type cells. A possible role of the conserved SIR2 in mammalian aging is discussed.", "title": "The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13" }, { "docid": "6106004", "text": "Publisher Summary The budding yeast Saccharomyces cerevisiae ( S. cerevisiae ) divides asymmetrically. In vegetative growth, yeast cells reproduce by budding, and the position where the bud forms ultimately determines the plane of cell division. This chapter describes the detailed procedures for the separation and isolation of mothers and daughters. These protocols have been used by investigators studying aging, bud site selection, and other aspects of asymmetric cell division. The chapter describes the procedures for performing life span analysis by micromanipulation and the steps for the large-scale collection of old cells. At the beginning and the end of a life span, it can be difficult to distinguish mothers from daughters. At most points in the life span, daughter cells are smaller than the mothers that produced them. In addition, mother cells will generally bud a second time before their daughter cells form their first bud. One method for effective isolation of virgin daughter cells from mother cells, but not for recovery of old mothers, is called a “baby machine. ” Mother cells are attached to a membrane and allowed to divide. Daughter cells from these attached cells are eluted continuously by washing the membrane.", "title": "Separation of mother and daughter cells." }, { "docid": "23017040", "text": "Reduced dietary methionine intake (0.17% methionine, MR) and calorie restriction (CR) prolong lifespan in male Fischer 344 rats. Although the mechanisms are unclear, both regimens feature lower body weight and reductions in adiposity. Reduced fat deposition in CR is linked to preservation of insulin responsiveness in older animals. These studies examine the relationship between insulin responsiveness and visceral fat in MR and test whether, despite lower food intake observed in MR animals, decreased visceral fat accretion and preservation of insulin sensitivity is not secondary to CR. Accordingly, rats pair fed (pf) control diet (0.86% methinone, CF) to match the food intake of MR for 80 weeks exhibit insulin, glucose, and leptin levels similar to control-fed animals and comparable amounts of visceral fat. Conversely, MR rats show significantly reduced visceral fat compared to CF and PF with concomitant decreases in basal insulin, glucose, and leptin, and increased adiponectin and triiodothyronine. Daily energy expenditure in MR animals significantly exceeds that of both PF and CF. In a separate cohort, insulin responses of older MR animals as measured by oral glucose challenge are similar to young animals. Longitudinal assessments of MR and CF through 112 weeks of age reveal that MR prevents age-associated increases in serum lipids. By 16 weeks, MR animals show a 40% reduction in insulin-like growth factor-1 (IGF-1) that is sustained throughout life; CF IGF-1 levels decline much later, beginning at 112 weeks. Collectively, the results indicate that MR reduces visceral fat and preserves insulin activity in aging rats independent of energy restriction.", "title": "Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction." }, { "docid": "19460822", "text": "When the food intake of organisms such as yeast and rodents is reduced (dietary restriction), they live longer than organisms fed a normal diet. A similar effect is seen when the activity of nutrient-sensing pathways is reduced by mutations or chemical inhibitors. In rodents, both dietary restriction and decreased nutrient-sensing pathway activity can lower the incidence of age-related loss of function and disease, including tumors and neurodegeneration. Dietary restriction also increases life span and protects against diabetes, cancer, and cardiovascular disease in rhesus monkeys, and in humans it causes changes that protect against these age-related pathologies. Tumors and diabetes are also uncommon in humans with mutations in the growth hormone receptor, and natural genetic variants in nutrient-sensing pathways are associated with increased human life span. Dietary restriction and reduced activity of nutrient-sensing pathways may thus slow aging by similar mechanisms, which have been conserved during evolution. We discuss these findings and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.", "title": "Extending healthy life span--from yeast to humans." }, { "docid": "23664875", "text": "Termination of replication forks at the natural termini of the rDNA of Saccharomyces cerevisiae is controlled in a sequence-specific and polar mode by the interaction of the Fob1p replication terminator protein with the tandem Ter sites located in the nontranscribed spacers. Here we show, by both 2D gel analyses and chromatin immunoprecipitations (ChIP), that there exists a second level of global control mediated by the intra-S-phase checkpoint protein complex of Tof1p and Csm3p that protect stalled forks at Ter sites against the activity of the Rrm3p helicase (\"sweepase\"). The sweepase tends to release arrested forks presumably by the transient displacement of the Ter-bound Fob1p. Consistent with this mechanism, very few replication forks were arrested at the natural replication termini in the absence of the two checkpoint proteins. In the absence of the Rrm3p helicase, there was a slight enhancement of fork arrest at the Ter sites. Simultaneous deletions of the TOF1 (or CSM3), and the RRM3 genes restored fork arrest by removing both the fork-releasing and fork-protection activities. Other genes such as MRC1, WSS1, and PSY2 that are also involved in the MRC1 checkpoint pathway were not involved in this global control. This observation suggests that Tof1p-Csm3p function differently from MRC1 and the other above-mentioned genes. This mechanism is not restricted to the natural Ter sites but was also observed at fork arrest caused by the meeting of a replication fork with transcription approaching from the opposite direction.", "title": "The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae." }, { "docid": "23601616", "text": "Objective:Consumption of high-fat diet exerts adverse effects on learning and memory formation, which is linked to impaired hippocampal function. Activation of glucagon-like peptide-1 (GLP-1) signalling ameliorates detrimental effects of obesity-diabetes on cognitive function; however, mechanisms underlying these beneficial actions remain unclear. This study examined effects of daily subcutaneous treatment with GLP-1 mimetic, Liraglutide, on synaptic plasticity, hippocampal gene expression and metabolic control in adult obese diabetic (ob/ob) mice. Results:Long-term potentiation (LTP) induced by area CA1 was completely abolished in ob/ob mice compared with lean controls. Deleterious effects on LTP were rescued (P<0.001) with Liraglutide. Indeed, Liraglutide-treated mice exhibited superior LTP profile compared with lean controls (P<0.01). Expression of hippocampal brain-derived neurotropic factor and neurotrophic tyrosine kinase receptor-type 2 were not significantly different, but synaptophysin and Mash1 were decreased in ob/ob mice. Treatment with Liraglutide over 21 days increased expression of Mash1 in ob/ob mice (2.0-fold; P<0.01). These changes were associated with significantly reduced plasma glucose (21% reduction; P<0.05) and markedly improved plasma insulin concentrations (2.1- to 3.3-fold; P<0.05 to P<0.01). Liraglutide also significantly reduced the glycaemic excursion following an intraperitonal glucose load (area under curve (AUC) values: 22%; P<0.05) and markedly enhanced the insulin response to glucose (AUC values: 1.6-fold; P<0.05). O2 consumption, CO2 production, respiratory exchange ratio and energy expenditure were not altered by Liraglutide therapy. On day 21, accumulated food intake (32% reduction; P<0.05) and number of feeding bouts (32% reduction; P<0.05) were significantly reduced but simple energy restriction was not responsible for the beneficial actions of Liraglutide. Conclusion:Liraglutide elicits beneficial effects on metabolic control and synaptic plasticity in mice with severe obesity and insulin resistance mediated in part through increased expression of Mash1 believed to improve hippocampal neurogenesis and cell survival.", "title": "Liraglutide improves hippocampal synaptic plasticity associated with increased expression of Mash1 in ob/ob mice" }, { "docid": "15975146", "text": "The fungal pathogen, Cryptococcus neoformans, has been shown to undergo replicative aging. Old cells are characterized by advanced generational age and phenotypic changes that appear to mediate enhanced resistance to host and antifungal-based killing. As a consequence of this age-associated resilience, old cells accumulate during chronic infection. Based on these findings, we hypothesized that shifting the generational age of a pathogenic yeast population would alter its vulnerability to the host and affect its virulence. SIR2 is a well-conserved histone deacetylase, and a pivotal target for the development of anti-aging drugs. We tested its effect on C. neoformans' replicative lifespan (RLS). First, a mutant C. neoformans strain (sir2Δ) was generated, and confirmed a predicted shortened RLS in sir2Δ cells consistent with its known role in aging. Next, RLS analysis showed that treatment of C. neoformans with Sir2p-agonists resulted in a significantly prolonged RLS, whereas treatment with a Sir2p-antagonist shortened RLS. RLS modulating effects were dependent on SIR2 and not observed in sir2Δ cells. Because SIR2 loss resulted in a slightly impaired fitness, effects of genetic RLS modulation on virulence could not be compared with wild type cells. Instead we chose to chemically modulate RLS, and investigated the effect of Sir2p modulating drugs on C. neoformans cells in a Galleria mellonella infection model. Consistent with our hypothesis that shifts in the generational age of the infecting yeast population alters its vulnerability to host cells, we observed decreased virulence of C. neoformans in the Galleria host when RLS was prolonged by treatment with Sir2p agonists. In contrast, treatment with a Sir2p antagonist, which shortens RLS enhanced virulence in Galleria. In addition, combination of Sir2p agonists with antifungal therapy enhanced the antifungal's effect. Importantly, no difference in virulence was observed with drug treatment when sir2Δ cells were used for infection, which confirmed target specificity and ruled out non-specific effects of the drugs on the Galleria host. Thus, this study suggests that RLS modulating drugs, such as Sir2p agonists, shift lifespan and vulnerability of the fungal population, and should be further investigated as a potential class of novel antifungal drug targets that can enhance antifungal efficacy.", "title": "Modulation of Replicative Lifespan in Cryptococcus neoformans: Implications for Virulence" }, { "docid": "26596106", "text": "In the yeast S. cerevisiae, ribosome assembly is linked to environmental conditions by the coordinate transcriptional regulation of genes required for ribosome biogenesis. In this study we show that two nonessential stress-responsive genes, YAR1 and LTV1, function in 40S subunit production. We provide genetic and biochemical evidence that Yar1, a small ankyrin-repeat protein, physically interacts with RpS3, a component of the 40S subunit, and with Ltv1, a protein recently identified as a substoichiometric component of a 43S preribosomal particle. We demonstrate that cells lacking YAR1 or LTV1 are hypersensitive to particular protein synthesis inhibitors and exhibit aberrant polysome profiles, with a reduced absolute number of 40S subunits and an excess of free 60S subunits. Surprisingly, both mutants are also hypersensitive to a variety of environmental stress conditions. Overexpression of RPS3 suppresses both the stress sensitivity and the ribosome biogenesis defect of Deltayar1 mutants, but does not suppress either defect in Deltaltv1 mutants. We propose that YAR1 and LTV1 play distinct, nonessential roles in 40S subunit production. The stress-sensitive phenotypes of strains lacking these genes reveal a hitherto unknown link between ribosome biogenesis factors and environmental stress sensitivity.", "title": "Genetic and biochemical interactions among Yar1, Ltv1 and Rps3 define novel links between environmental stress and ribosome biogenesis in Saccharomyces cerevisiae." }, { "docid": "14145440", "text": "BACKGROUND DNA replication and mitosis are triggered by activation of kinase complexes, each made up of a cyclin and a cyclin-dependent kinase (Cdk). It had seemed possible that the association of Cdks with different classes of cyclins specifies whether S phase (replication) or M phase (mitosis) will occur. The recent finding that individual B-type cyclins (encoded by the genes CLB1-CLB6) can have functions in both processes in the budding yeast Saccharomyces cerevisiae casts doubt on this notion. \n RESULTS S. cerevisiae strains lacking C1b1-C1b4 undergo DNA replication once but fail to enter mitosis. We have isolated mutations in two genes, SIM1 and SIM2 (SIM2 is identical to SEC72), which allow such cells to undergo an extra round of DNA replication without mitosis. The Clb5 kinase, which promotes S phase, remains active during the G2-phase arrest of cells of the parental strain, but its activity declines rapidly in sim mutants. Increased expression of the CLB5 gene prevents re-replication. Thus, a cyclin B-kinase that promotes DNA replication in G1-phase cells can prevent re-replication in G2-phase cells. Inactivation of C1b kinases by expression of the specific C1b-Cdk1 inhibitor p40SIC1 is sufficient to induce a prereplicative state at origins of replication in cells blocked in G2/M phase by nocodazole. Re-activation of C1b-Cdk1 kinases induces a second round of DNA replication. \n CONCLUSIONS We propose that S-phase-promoting cyclin B--Cdk complexes prevent re-replication during S, G2 and M phases by inhibiting the transition of replication origins to a pre-replicative state. This model can explain both why origins 'fire' only once per S phase and why S phase is dependent on completion of the preceding M phase.", "title": "S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state" }, { "docid": "6277638", "text": "The target of rapamycin (TOR) pathway is a major nutrient-sensing pathway that, when genetically downregulated, increases life span in evolutionarily diverse organisms including mammals. The central component of this pathway, TOR kinase, is the target of the inhibitory drug rapamycin, a highly specific and well-described drug approved for human use. We show here that feeding rapamycin to adult Drosophila produces the life span extension seen in some TOR mutants. Increase in life span by rapamycin was associated with increased resistance to both starvation and paraquat. Analysis of the underlying mechanisms revealed that rapamycin increased longevity specifically through the TORC1 branch of the TOR pathway, through alterations to both autophagy and translation. Rapamycin could increase life span of weak insulin/Igf signaling (IIS) pathway mutants and of flies with life span maximized by dietary restriction, indicating additional mechanisms.", "title": "Mechanisms of Life Span Extension by Rapamycin in the Fruit Fly Drosophila melanogaster" }, { "docid": "14544564", "text": "Sterol-sensing nuclear receptors and insulin-like growth factor signaling play evolutionarily conserved roles in the control of aging. In the nematode Caenorhabditis elegans, bile acid-like steroid hormones known as dafachronic acids (DAs) influence longevity by binding to and regulating the activity of the conserved nuclear receptor DAF-12, and the insulin receptor (InsR) ortholog DAF-2 controls life span by inhibiting the FoxO transcription factor DAF-16. How the DA/DAF-12 pathway interacts with DAF-2/InsR signaling to control life span is poorly understood. Here we specifically investigated the roles of liganded and unliganded DAF-12 in life span control in the context of reduced DAF-2/InsR signaling. In animals with reduced daf-2/InsR activity, mutations that either reduce DA biosynthesis or fully abrogate DAF-12 activity shorten life span, suggesting that liganded DAF-12 promotes longevity. In animals with reduced DAF-2/InsR activity induced by daf-2/InsR RNAi, both liganded and unliganded DAF-12 promote longevity. However, in daf-2/InsR mutants, liganded and unliganded DAF-12 act in opposition to control life span. Thus, multiple DAF-12 activities influence life span in distinct ways in contexts of reduced DAF-2/InsR signaling. Our findings establish new roles for a conserved steroid signaling pathway in life span control and elucidate interactions among DA biosynthetic pathways, DAF-12, and DAF-2/InsR signaling in aging.", "title": "Influence of Steroid Hormone Signaling on Life Span Control by Caenorhabditis elegans Insulin-Like Signaling" }, { "docid": "6718824", "text": "Suboptimal developmental environments program offspring to lifelong metabolic problems. The aim of this study was to determine the impact of protein restriction in pregnancy on maternal liver lipid metabolism at 19 days of gestation (dG) and its effect on fetal brain development. Control (C) and restricted (R) mothers were fed with isocaloric diets containing 20 and 10% of casein. At 19 dG, maternal blood and livers and fetal livers and brains were collected. Serum insulin and leptin levels were determinate in mothers. Maternal and fetal liver lipid and fetal brain lipid quantification were performed. Maternal liver and fetal brain fatty acids were quantified by gas chromatography. In mothers, liver desaturase and elongase mRNAs were measured by RT-PCR. Maternal body and liver weights were similar in both groups. However, fat body composition, including liver lipids, was lower in R mothers. A higher fasting insulin at 19 dG in the R group was observed (C = 0.2 +/- 0.04 vs. R = 0.9 +/- 0.16 ng/ml, P < 0.01) and was inversely related to early growth retardation. Serum leptin in R mothers was significantly higher than that observed in C rats (C = 5 +/- 0.1 vs. R = 7 +/- 0.7 ng/ml, P < 0.05). In addition, protein restriction significantly reduced gene expression in maternal liver of desaturases and elongases and the concentration of arachidonic (AA) and docosahexanoic (DHA) acids. In fetus from R mothers, a low body weight (C = 3 +/- 0.3 vs. R = 2 +/- 0.1 g, P < 0.05), as well as liver and brain lipids, including the content of DHA in the brain, was reduced. This study showed that protein restriction during pregnancy may negatively impact normal fetal brain development by changes in maternal lipid metabolism.", "title": "Protein restriction during pregnancy affects maternal liver lipid metabolism and fetal brain lipid composition in the rat." }, { "docid": "13940200", "text": "Genome-wide association studies are now identifying disease-associated chromosome regions. However, even after convincing replication, the localization of the causal variant(s) requires comprehensive resequencing, extensive genotyping and statistical analyses in large sample sets leading to targeted functional studies. Here, we have localized the type 1 diabetes (T1D) association in the interleukin 2 receptor alpha (IL2RA) gene region to two independent groups of SNPs, spanning overlapping regions of 14 and 40 kb, encompassing IL2RA intron 1 and the 5′ regions of IL2RA and RBM17 (odds ratio = 2.04, 95% confidence interval = 1.70–2.45; P = 1.92 × 10−28; control frequency = 0.635). Furthermore, we have associated IL2RA T1D susceptibility genotypes with lower circulating levels of the biomarker, soluble IL-2RA (P = 6.28 × 10−28), suggesting that an inherited lower immune responsiveness predisposes to T1D.", "title": "Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes" }, { "docid": "35345807", "text": "Sirtuins are an evolutionarily conserved family of NAD(+)-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD(+) concentration through the combined action of NAD(+) biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD(+) precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD(+) salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD(+) concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD(+). The INAM-induced increase in NAD(+) was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD(+) salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD(+). We also provide evidence suggesting that INAM influences the expression of multiple NAD(+) biosynthesis and salvage pathways to promote homeostasis during stationary phase.", "title": "Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration." }, { "docid": "1576955", "text": "Mutations in daf-2 and age-1 cause a dramatic increase in longevity as well as developmental arrest at the dauer diapause stage in Caenorhabditis elegans. daf-2 and age-1 encode components of an insulin-like signaling pathway. Both daf-2 and age-1 act at a similar point in the genetic epistasis pathway for dauer arrest and longevity and regulate the activity of the daf-16 gene. Mutations in daf-16 cause a dauer-defective phenotype and are epistatic to the diapause arrest and life span extension phenotypes of daf-2 and age-1 mutants. Here we show that mutations in this pathway also affect fertility and embryonic development. Weak daf-2 alleles, and maternally rescued age-1 alleles that cause life span extension but do not arrest at the dauer stage, also reduce fertility and viability. We find that age-1(hx546) has reduced both maternal and zygotic age-1 activity. daf-16 mutations suppress all of the daf-2 and age-1 phenotypes, including dauer arrest, life span extension, reduced fertility, and viability defects. These data show that insulin signaling, mediated by DAF-2 through the AGE-1 phosphatidylinositol-3-OH kinase, regulates reproduction and embryonic development, as well as dauer diapause and life span, and that DAF-16 transduces these signals. The regulation of fertility, life span, and metabolism by an insulin-like signaling pathway is similar to the endocrine regulation of metabolism and fertility by mammalian insulin signaling.", "title": "An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans." } ]
473
Glycan adaptation involves insertion-deletion events.
[ { "docid": "4373433", "text": "Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.", "title": "Broad neutralization coverage of HIV by multiple highly potent antibodies" } ]
[ { "docid": "25942757", "text": "The substantial importance of P-selectin glycoprotein ligand 1 (PSGL-1) in leukocyte trafficking has continued to emerge beyond its initial identification as a selectin ligand. PSGL-1 seemed to be a relatively simple molecule with an extracellular mucin domain extended as a flexible rod, teleologically consistent with its primary role in tethering leukocytes to endothelial selectins. The rolling interaction between leukocyte and endothelium mediated by this selectin-PSGL-1 interaction requires branched O-glycan extensions on specific PSGL-1 amino acid residues. In some cells, such as neutrophils, the glycosyltransferases involved in formation of the O-glycans are constitutively expressed, while in other cells, such as T cells, they are expressed only after appropriate activation. Thus, PSGL-1 supports leukocyte recruitment in both innate and adaptive arms of the immune response. A complex array of amino acids within the selectins engage multiple sugar residues of the branched O-glycans on PSGL-1 and provide the molecular interactions responsible for the velcro-like catch bonds that support leukocyte rolling. Such binding of PSGL-1 can also induce signaling events that influence cell phenotype and function. Scrutiny of PSGL-1 has revealed a better understanding of how it performs as a selectin ligand and yielded unexpected insights that extend its scope from supporting leukocyte rolling in inflammatory settings to homeostasis including stem cell homing to the thymus and mature T-cell homing to secondary lymphoid organs. PSGL-1 has been found to bind homeostatic chemokines CCL19 and CCL21 and to support the chemotactic response to these chemokines. Surprisingly, the O-glycan modifications of PSGL-1 that support rolling mediated by selectins in inflammatory conditions interfere with PSGL-1 binding to homeostatic chemokines and thereby limit responsiveness to the chemotactic cues used in steady state T-cell traffic. The multi-level influence of PSGL-1 on cell traffic in both inflammatory and steady state settings is therefore substantially determined by the orchestrated addition of O-glycans. However, central as specific O-glycosylation is to PSGL-1 function, in vivo regulation of PSGL-1 glycosylation in T cells remains poorly understood. It is our purpose herein to review what is known, and not known, of PSGL-1 glycosylation and to update understanding of PSGL-1 functional scope.", "title": "PSGL-1 function in immunity and steady state homeostasis." }, { "docid": "2601135", "text": "A recent study of plasma neutralization breadth in HIV-1 infected individuals at nine International AIDS Vaccine Initiative (IAVI) sites reported that viral load, HLA-A*03 genotype, and subtype C infection were strongly associated with the development of neutralization breadth. Here, we refine the findings of that study by analyzing the impact of the transmitted/founder (T/F) envelope (Env), early Env diversification, and autologous neutralization on the development of plasma neutralization breadth in 21 participants identified during recent infection at two of those sites: Kigali, Rwanda (n = 9) and Lusaka, Zambia (n = 12). Single-genome analysis of full-length T/F Env sequences revealed that all 21 individuals were infected with a highly homogeneous population of viral variants, which were categorized as subtype C (n = 12), A1 (n = 7), or recombinant AC (n = 2). An extensive amino acid sequence-based analysis of variable loop lengths and glycosylation patterns in the T/F Envs revealed that a lower ratio of NXS to NXT-encoded glycan motifs correlated with neutralization breadth. Further analysis comparing amino acid sequence changes, insertions/deletions, and glycan motif alterations between the T/F Env and autologous early Env variants revealed that extensive diversification focused in the V2, V4, and V5 regions of gp120, accompanied by contemporaneous viral escape, significantly favored the development of breadth. These results suggest that more efficient glycosylation of subtype A and C T/F Envs through fewer NXS-encoded glycan sites is more likely to elicit antibodies that can transition from autologous to heterologous neutralizing activity following exposure to gp120 diversification. This initiates an Env-antibody co-evolution cycle that increases neutralization breadth, and is further augmented over time by additional viral and host factors. These findings suggest that understanding how variation in the efficiency of site-specific glycosylation influences neutralizing antibody elicitation and targeting could advance the design of immunogens aimed at inducing antibodies that can transition from autologous to heterologous neutralizing activity.", "title": "Diversification in the HIV-1 Envelope Hyper-variable Domains V2, V4, and V5 and Higher Probability of Transmitted/Founder Envelope Glycosylation Favor the Development of Heterologous Neutralization Breadth" }, { "docid": "24896957", "text": "Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The major conclusions are (i) the mutation rate of a wild-type E. coli strain is ~1 × 10(-3) per genome per generation; (ii) mutations in the wild-type strain have the expected mutational bias for G:C > A:T mutations, but the bias changes to A:T > G:C mutations in the absence of MMR; (iii) during replication, A:T > G:C transitions preferentially occur with A templating the lagging strand and T templating the leading strand, whereas G:C > A:T transitions preferentially occur with C templating the lagging strand and G templating the leading strand; (iv) there is a strong bias for transition mutations to occur at 5'ApC3'/3'TpG5' sites (where bases 5'A and 3'T are mutated) and, to a lesser extent, at 5'GpC3'/3'CpG5' sites (where bases 5'G and 3'C are mutated); (v) although the rate of small (≤4 nt) insertions and deletions is high at repeat sequences, these events occur at only 1/10th the genomic rate of base-pair substitutions. MMR activity is genetically regulated, and bacteria isolated from nature often lack MMR capacity, suggesting that modulation of MMR can be adaptive. Thus, comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions.", "title": "Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing." }, { "docid": "7177329", "text": "Neutralizing antibodies are likely to play a crucial part in a preventative HIV-1 vaccine. Although efforts to elicit broadly cross-neutralizing (BCN) antibodies by vaccination have been unsuccessful, a minority of individuals naturally develop these antibodies after many years of infection. How such antibodies arise, and the role of viral evolution in shaping these responses, is unknown. Here we show, in two HIV-1–infected individuals who developed BCN antibodies targeting the glycan at Asn332 on the gp120 envelope, that this glycan was absent on the initial infecting virus. However, this BCN epitope evolved within 6 months, through immune escape from earlier strain-specific antibodies that resulted in a shift of a glycan to position 332. Both viruses that lacked the glycan at amino acid 332 were resistant to the Asn332-dependent BCN monoclonal antibody PGT128 (ref. 8), whereas escaped variants that acquired this glycan were sensitive. Analysis of large sequence and neutralization data sets showed the 332 glycan to be significantly under-represented in transmitted subtype C viruses compared to chronic viruses, with the absence of this glycan corresponding with resistance to PGT128. These findings highlight the dynamic interplay between early antibodies and viral escape in driving the evolution of conserved BCN antibody epitopes.", "title": "Evolution of an HIV glycan–dependent broadly neutralizing antibody epitope through immune escape" }, { "docid": "10485142", "text": "Nasopharyngeal carcinoma (NPC) is a common disease in Hong Kong and southern provinces of China. EBV infection is believed to play a critical role in the development of NPC. Previous studies on the transformation mechanism of EBV genes were mostly performed in either NPC or nonnasopharyngeal epithelial cells which may not be representative of premalignant nasopharyngeal epithelial cells. Establishment of a representative cell system would greatly facilitate the elucidation of the role of EBV infection in the development of NPC. Using telomerase alone, we were able to establish an immortalized nasopharyngeal epithelial cell line from primary nonmalignant nasopharyngeal biopsies. The telomerase-immortalized nasopharyngeal epithelial cells are largely diploid in karyotype. Interestingly, this newly immortalized nasopharyngeal epithelial cell line, referred as NP460hTert, harbors genetic alterations previously identified in premalignant and malignant nasopharyngeal epithelial cells. These include inactivation of p16 by homozygous deletion of the p16(INK4A) locus and downregulation of RASSF1A expression. The deletion of the p16(INK4A) locus appears to be the most crucial event for the immortalization of nasopharyngeal epithelial cells by telomerase and precedes RASSF1A downregulation. In addition, detailed analysis of the cytogenetic changes by conventional cytogenetics, spectral karyotyping (SKY) and array-based CGH revealed a gain of a 17q21-q25 fragment on 11p15 chromosome in all NP460hTert cells which occurred before deletion of the p16(INK4A) locus. Gain of 17q has been previously reported in NPC. In addition, activation of NF-kappaB was observed in immortalized NP460hTert cells at the later population doublings, and may play a role in the survival of immortalized NP epithelial cells. Id1 which is commonly expressed in various human cancers, including NPC, was also upregulated in the immortalized NP460hTert cells. Thus, the establishment of an immortalized nasopharyngeal epithelial cell line harboring common genetic alterations present in premalignant and cancerous nasopharyngeal epithelial cells may provide a valuable cell system to examine for early events involved in NPC carcinogenesis, particularly in elucidating the role of EBV infection in NPC development.", "title": "Molecular and cytogenetic changes involved in the immortalization of nasopharyngeal epithelial cells by telomerase." }, { "docid": "22312627", "text": "Previous results have demonstrated that the silencing of adjacent genes encoding NADPH-dependent furfural oxidoreductases (yqhD dkgA) is responsible for increased furfural tolerance in an E. coli strain EMFR9 [Miller et al., Appl Environ Microbiol 75:4315–4323, 2009]. This gene silencing is now reported to result from the spontaneous insertion of an IS10 into the coding region of yqhC, an upstream gene. YqhC shares homology with transcriptional regulators belonging to the AraC/XylS family and was shown to act as a positive regulator of the adjacent operon encoding YqhD and DkgA. Regulation was demonstrated by constructing a chromosomal deletion of yqhC, a firefly luciferase reporter plasmid for yqhC, and by a direct comparison of furfural resistance and NADPH-dependent furfural reductase activity. Closely related bacteria contain yqhC, yqhD, and dkgA orthologs in the same arrangement as in E. coli LY180. Orthologs of yqhC are also present in more distantly related Gram-negative bacteria. Disruption of yqhC offers a useful approach to increase furfural tolerance in bacteria.", "title": "YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance" }, { "docid": "30034334", "text": "Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks and 5'-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair.", "title": "A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair." }, { "docid": "35861290", "text": "Substitute Teacher Despite the relative ease of genome manipulation in S. cerevisiae, researchers are always looking to learn still more convenient and rapid methods for substituting yeast promoters. Replacing a gene's native promoter with a heterolo-gous promoter of choice allows regulated expression and simplifies the task of discerning functional relevance. Although a host of clever chromosomal insertion strategies have been described over the years, the advent of the S. cerevisiae Genome Deletion Project provides an incredible resource for a further streamlined workflow. The strategy, explained by Liko et al. on p. 728 is appealingly simple. The genome deletion project resulted in a collection of strains in which a single ORF is replaced with a kanamycin resistance module. Although the purpose of the collection is to have a comprehensive resource of essentially all possible knockouts, the authors point out that for almost any given yeast promoter of interest there will be a strain in which the ORF imm...", "title": "Using the yeast gene deletion collection to customize gene expression." }, { "docid": "17553026", "text": "Human DNA polymerase mu (Polμ) is a family X member that has terminal transferase activity but, in spite of a non-orthodox selection of the template information, displays its maximal catalytic efficiency in DNA-templated reactions. As terminal deoxynucleotidyl transferase (TdT), Polμ has a specific loop (loop1) that could provide this enzyme with its terminal transferase activity. When loop1 was deleted, human Polμ lacked TdT activity but improved DNA-binding and DNA template-dependent polymerization. Interestingly, when loop1 from TdT was inserted in Polμ (substituting its cognate loop1), the resulting chimaera displayed TdT activity, preferentially inserting dGTP residues, but had a strongly reduced template-dependent polymerization activity. Therefore, a specialized loop in Polμ, that could adopt alternative conformations, appears to provide this enzyme with a dual capacity: (i) template independency to create new DNA information, in which loop1 would have an active role by acting as a ‘pseudotemplate’; (ii) template-dependent polymerization, in which loop1 must allow binding of the template strand. Recent in vivo and in vitro data suggest that such a dual capacity could be advantageous to resolve microhomology-mediated end-joining reactions.", "title": "A specific loop in human DNA polymerase mu allows switching between creative and DNA-instructed synthesis" }, { "docid": "11615422", "text": "The search for target genes involved in unbalanced acquired chromosomal abnormalities has been largely unsuccessful, because the breakpoints of these rearrangements are too variable. Here, we use the example of dicentric chromosomes in B cell precursor acute lymphoblastic leukemia to show that, despite this heterogeneity, single genes are targeted through a variety of mechanisms. FISH showed that, although they were heterogeneous, breakpoints on 9p resulted in the partial or complete deletion of PAX5. Molecular copy number counting further delineated the breakpoints and facilitated cloning with long-distance inverse PCR. This approach identified 5 fusion gene partners with PAX5: LOC392027 (7p12.1), SLCO1B3 (12p12), ASXL1 (20q11.1), KIF3B (20q11.21), and C20orf112 (20q11.1). In each predicted fusion protein, the DNA-binding paired domain of PAX5 was present. Using quantitative PCR, we demonstrated that both the deletion and gene fusion events resulted in the same underexpression of PAX5, which extended to the differential expression of the PAX5 target genes, EBF1, ALDH1A1, ATP9A, and FLT3. Further molecular analysis showed deletion and mutation of the homologous PAX5 allele, providing further support for the key role of PAX5. Here, we show that specific gene loci may be the target of heterogeneous translocation breakpoints in human cancer, acting through a variety of mechanisms. This approach indicates an application for the identification of cancer genes in solid tumours, where unbalanced chromosomal rearrangements are particularly prevalent and few genes have been identified. It can be extrapolated that this strategy will reveal that the same mechanisms operate in cancer pathogenesis in general.", "title": "Variable breakpoints target PAX5 in patients with dicentric chromosomes: a model for the basis of unbalanced translocations in cancer." }, { "docid": "10562341", "text": "The activation of T cells is the fundamental on switch for the adaptive immune system. Ca2+ signaling is essential for T cell activation and starts as initial, short-lived, localized Ca2+ signals. The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) forms rapidly upon T cell activation and stimulates early Ca2+ signaling. We developed a high-resolution imaging technique using multiple fluorescent Ca2+ indicator dyes to characterize these early signaling events and investigate the channels involved in NAADP-dependent Ca2+ signals. In the first seconds of activation of either primary murine T cells or human Jurkat cells with beads coated with an antibody against CD3, we detected Ca2+ signals with diameters close to the limit of detection and that were close to the activation site at the plasma membrane. In Jurkat cells in which the ryanodine receptor (RyR) was knocked down or in primary T cells from RyR1−/− mice, either these early Ca2+ signals were not detected or the number of signals was markedly reduced. Local Ca2+ signals observed within 20 ms upon microinjection of Jurkat cells with NAADP were also sensitive to RyR knockdown. In contrast, TRPM2 (transient receptor potential channel, subtype melastatin 2), a potential NAADP target channel, was not required for the formation of initial Ca2+ signals in primary T cells. Thus, through our high-resolution imaging method, we characterized early Ca2+ release events in T cells and obtained evidence for the involvement of RyR and NAADP in such signals.", "title": "Frontrunners of T cell activation: Initial, localized Ca2+ signals mediated by NAADP and the type 1 ryanodine receptor" }, { "docid": "14926162", "text": "The short stem and midrib (ssm) mutants of Arabidopsis thaliana show both semi-dwarf and wavy leaf phenotypes due to defects in the elongation of the stem internodes and leaves. Moreover, these abnormalities cannot be recovered by exogenous phytohormones. ssm was originally identified as a single recessive mutant of the ecotype Columbia (Col-0), but genetic crossing experiments have revealed that this mutant phenotype is restored by another gene that is functional in the ecotype Landsberg erecta (Ler) and not in Col-0. Map-based cloning of the gene that is defective in ssm mutants has uncovered a small deletion in the sixth intron of a gene encoding a syntaxin, VAM3/SYP22, which has been implicated in vesicle transport to the vacuole. This mutation appears to cause a peptide insertion in the deduced VAM3/SYP22 polypeptide sequence due to defective splicing of the shortened sixth intron. Significantly, when compared with the wild-type Ler genome, the wild-type Col-0 genome has a single base pair deletion causing a frameshift mutation in SYP23, a gene with the highest known homology to VAM3/SYP22. These findings suggest that VAM3/SYP22 and SYP23 have overlapping functions and that the vesicle transport mediated by these syntaxins is important for shoot morphogenesis.", "title": "Identification of an allele of VAM3/SYP22 that confers a semi-dwarf phenotype in Arabidopsis thaliana." }, { "docid": "516867", "text": "The unicellular eukaryotic organisms represent the popular model systems to understand aging in eukaryotes. Candida albicans, a polymorphic fungus, appears to be another distinctive unicellular aging model in addition to the budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe. The two types of Candida cells, yeast (blastospore) form and hyphal (filamentous) form, have similar replicative lifespan. Taking the advantage of morphologic changes, we are able to obtain cells of different ages. Old Candida cells tend to accumulate glycogen and oxidatively damaged proteins. Deletion of the SIR2 gene causes a decrease of lifespan, while insertion of an extra copy of SIR2 extends lifespan, indicating that like in S. cerevisiae, Sir2 regulates cellular aging in C. albicans. Interestingly, Sir2 deletion does not result in the accumulation of extra-chromosomal rDNA molecules, but influences the retention of oxidized proteins in mother cells, suggesting that the extra-chromosomal rDNA molecules may not be associated with cellular aging in C. albicans. This novel aging model, which allows efficient large-scale isolation of old cells, may facilitate biochemical characterizations and genomics/proteomics studies of cellular aging, and help to verify the aging pathways observed in other organisms including S. cerevisiae.", "title": "Candida albicans, a distinctive fungal model for cellular aging study" }, { "docid": "8352137", "text": "By employing the nuclear DNA of the African rice Oryza glaberrima as a reference genome, the timing, natures, mechanisms, and specificities of recent sequence evolution in the indica and japonica subspecies of Oryza sativa were identified. The data indicate that the genome sizes of both indica and japonica have increased substantially, >2% and >6%, respectively, since their divergence from a common ancestor, mainly because of the amplification of LTR-retrotransposons. However, losses of all classes of DNA sequence through unequal homologous recombination and illegitimate recombination have attenuated the growth of the rice genome. Small deletions have been particularly frequent throughout the genome. In >1 Mb of orthologous regions that we analyzed, no cases of complete gene acquisition or loss from either indica or japonica were found, nor was any example of precise transposon excision detected. The sequences between genes were observed to have a very high rate of divergence, indicating a molecular clock for transposable elements that is at least 2-fold more rapid than synonymous base substitutions within genes. We found that regions prone to frequent insertions and deletions also exhibit higher levels of point mutation. These results indicate a highly dynamic rice genome with competing processes for the generation and removal of genetic variation.", "title": "Rapid recent growth and divergence of rice nuclear genomes." }, { "docid": "35521287", "text": "The cardiorespiratory control system undergoes functional maturation after birth. Until this process is completed, the cardiorespiratory system is unstable, placing infants at risk for cardiorespiratory disturbances, especially during sleep. The profound influence of states of alertness on respiratory and cardiac control has been the focus of intense scrutiny during the last decade. The effects of rapid-eye movement (REM) sleep on various mechanisms involved in cardiorespiratory control are of particular significance during the postnatal period since newborns spend much of their time in this sleep state. In fullterm newborns, REM sleep occupies more than 50% of total sleep time, and this percentage is even greater in preterm newborns. From term to six months of age, the proportion of REM sleep decreases. Since respiratory and cardiac disturbances are known to occur selectively during REM sleep, the predominance of REM sleep may be a risk factor for abnormal sleep-related events during early infancy. Awareness of these developmental changes in sleep patterns is important for clinicians dealing with problems such as apparent life-threatening events (ALTE), sudden infant death syndrome (SIDS), and/or cardiorespiratory responses to respiratory disorders. Our current understanding of respiratory and cardiac control rests mainly on studies conducted during the first months of life. There is a paucity of data on late infancy and early childhood. The present paper will review available data on how sleep affects 1) ventilatory mechanics, in particular of the upper airways and the chest wall; ventilation and apnea; gas exchange; chemoreceptor function; and arousal responses; 2) changes in heart rate and heart rate variability, and the occurrence and mechanisms of bradycardia.", "title": "Cardiorespiratory adaptation during sleep in infants and children." }, { "docid": "12880573", "text": "The plcA gene of Listeria monocytogenes encodes a secreted phosphatidylinositol-specific phospholipase C (Pl-PLC). Recent studies have established that transposon mutations within plcA result in avirulence for mice and pleiotropic effects when examined in tissue-culture models of infection. Genetic analysis reveals that many of the effects of the transposon insertions are due to loss of readthrough transcription from plcA into the downstream gene prfA, which encodes an essential transcription factor of numerous L. monocytogenes virulence genes. Construction of an in-frame deletion within plcA had no effect on expression of prfA thus allowing direct assignment of a role of the Pl-PLC in pathogenesis. Pl-PLC was shown to play a significant role in mediating escape of L. monocytogenes from phagosomes of primary murine macrophages. Interestingly, this defect manifested itself in vivo in the liver but not in the spleen of infected mice.", "title": "Dual roles of plcA in Listeria monocytogenes pathogenesis." }, { "docid": "11255504", "text": "The Sleeping Beauty (SB) transposon mutagenesis system is a powerful tool that facilitates the discovery of mutations that accelerate tumorigenesis. In this study, we sought to identify mutations that cooperate with MYC, one of the most commonly dysregulated genes in human malignancy. We performed a forward genetic screen with a mouse model of MYC-induced liver cancer using SB-mediated mutagenesis. We sequenced insertions in 63 liver tumor nodules and identified at least 16 genes/loci that contribute to accelerated tumor development. RNAi-mediated knockdown in a liver progenitor cell line further validate three of these genes, Ncoa2/Src-2, Zfx, and Dtnb, as tumor suppressors in liver cancer. Moreover, deletion of Ncoa2/Src-2 in mice predisposes to diethylnitrosamine-induced liver tumorigenesis. These findings reveal genes and pathways that functionally restrain MYC-mediated liver tumorigenesis and therefore may provide targets for cancer therapy.", "title": "A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer." }, { "docid": "41599676", "text": "Congenital nephrotic syndrome, Finnish type (CNF or NPHS1), is an autosomal recessive disease characterized by massive proteinuria and development of nephrotic syndrome shortly after birth. The disease is most common in Finland, but many patients have been identified in other populations. The disease is caused by mutations in the gene for nephrin which is a key component of the glomerual ultrafilter, the podocyte slit diaphragm. A total of 30 mutations have been reported in the nephrin gene in patients with congenital nephrotic syndrome worldwide. In the Finnish population, two main mutations have been found. These two nonsense mutations account for over 94% of all mutations in Finland. Most mutations found in non-Finnish patients are missense mutations, but they include also nonsense and splice site mutations, as well as deletions and insertions. This mutation update summarizes the nature of all previously reported nephrin mutations and, additionally, describes 20 novel mutations recently identified in our laboratory.", "title": "Mutation spectrum in the nephrin gene (NPHS1) in congenital nephrotic syndrome." }, { "docid": "36399107", "text": "The tumor suppressor gene p16 (CDKN2/MTS-1/INK4A) can be inactivated by multiple genetic mechanisms. We analyzed 29 invasive primary head and neck squamous cell carcinomas (HNSCC) for p16 inactivation with immunohistochemistry utilizing a new monoclonal antibody (mAb), DCS-50. p16 staining of the primary lesions was correlated with genetic analysis including: (a) detailed microsatellite analysis of markers at the p16 locus to detect homozygous deletion; (b) sequence analysis of p16; and (c) Southern blot analysis to determine the methylation status of the 5' CpG island of p16. Twenty-four of 29 (83%) head and neck squamous cell carcinoma tumors displayed an absence of p16 nuclear staining using immunohistochemistry. Of these 24 tumors, we found that 16 (67%) harbored homozygous deletions, 5 (21%) were methylated, 1 displayed a rearrangement at the p16 locus, and 1 displayed a frameshift mutation in exon 1. These data suggest that: (a) inactivation of the p16 tumor suppressor gene is a frequent event in squamous cell carcinomas of the head and neck; (b) p16 is inactivated by several distinct and exclusive events including homozygous deletion, point mutation, and promoter methylation; and (c) immunohistochemical analysis for expression of the p16 gene product is an accurate and relatively simple method for evaluating p16 gene inactivation.", "title": "High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma." }, { "docid": "15478227", "text": "The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza.", "title": "Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution" } ]
474
Glycan adaptation is rarely observed in the B-cell repertoire.
[ { "docid": "4373433", "text": "Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.", "title": "Broad neutralization coverage of HIV by multiple highly potent antibodies" } ]
[ { "docid": "1471041", "text": "Celiac disease is an immune-mediated disorder in which mucosal autoantibodies to the enzyme transglutaminase 2 (TG2) are generated in response to the exogenous antigen gluten in individuals who express human leukocyte antigen HLA-DQ2 or HLA-DQ8 (ref. 3). We assessed in a comprehensive and nonbiased manner the IgA anti-TG2 response by expression cloning of the antibody repertoire of ex vivo–isolated intestinal antibody-secreting cells (ASCs). We found that TG2-specific plasma cells are markedly expanded within the duodenal mucosa in individuals with active celiac disease. TG2-specific antibodies were of high affinity yet showed little adaptation by somatic mutations. Unlike infection-induced peripheral blood plasmablasts, the TG2-specific ASCs had not recently proliferated and were not short-lived ex vivo. Altogether, these observations demonstrate that there is a germline repertoire with high affinity for TG2 that may favor massive generation of autoreactive B cells. TG2-specific antibodies did not block enzymatic activity and served as substrates for TG2-mediated crosslinking when expressed as IgD or IgM but not as IgA1 or IgG1. This could result in preferential recruitment of plasma cells from naive IgD- and IgM-expressing B cells, thus possibly explaining why the antibody response to TG2 bears signs of a primary immune response despite the disease chronicity.", "title": "High abundance of plasma cells secreting transglutaminase 2–specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions" }, { "docid": "25942757", "text": "The substantial importance of P-selectin glycoprotein ligand 1 (PSGL-1) in leukocyte trafficking has continued to emerge beyond its initial identification as a selectin ligand. PSGL-1 seemed to be a relatively simple molecule with an extracellular mucin domain extended as a flexible rod, teleologically consistent with its primary role in tethering leukocytes to endothelial selectins. The rolling interaction between leukocyte and endothelium mediated by this selectin-PSGL-1 interaction requires branched O-glycan extensions on specific PSGL-1 amino acid residues. In some cells, such as neutrophils, the glycosyltransferases involved in formation of the O-glycans are constitutively expressed, while in other cells, such as T cells, they are expressed only after appropriate activation. Thus, PSGL-1 supports leukocyte recruitment in both innate and adaptive arms of the immune response. A complex array of amino acids within the selectins engage multiple sugar residues of the branched O-glycans on PSGL-1 and provide the molecular interactions responsible for the velcro-like catch bonds that support leukocyte rolling. Such binding of PSGL-1 can also induce signaling events that influence cell phenotype and function. Scrutiny of PSGL-1 has revealed a better understanding of how it performs as a selectin ligand and yielded unexpected insights that extend its scope from supporting leukocyte rolling in inflammatory settings to homeostasis including stem cell homing to the thymus and mature T-cell homing to secondary lymphoid organs. PSGL-1 has been found to bind homeostatic chemokines CCL19 and CCL21 and to support the chemotactic response to these chemokines. Surprisingly, the O-glycan modifications of PSGL-1 that support rolling mediated by selectins in inflammatory conditions interfere with PSGL-1 binding to homeostatic chemokines and thereby limit responsiveness to the chemotactic cues used in steady state T-cell traffic. The multi-level influence of PSGL-1 on cell traffic in both inflammatory and steady state settings is therefore substantially determined by the orchestrated addition of O-glycans. However, central as specific O-glycosylation is to PSGL-1 function, in vivo regulation of PSGL-1 glycosylation in T cells remains poorly understood. It is our purpose herein to review what is known, and not known, of PSGL-1 glycosylation and to update understanding of PSGL-1 functional scope.", "title": "PSGL-1 function in immunity and steady state homeostasis." }, { "docid": "42377686", "text": "Deletions of the long arm of chromosome 14 [del(14q)] are rare but recurrently observed in mature B-cell neoplasms, particularly in chronic lymphocytic leukemia (CLL). To further characterize this aberration, we studied 81 cases with del(14q): 54 of CLL and 27 of small lymphocytic lymphoma (SLL), the largest reported series to date. Using karyotype and fluorescence in situ hybridization (FISH), the most frequent additional abnormality was trisomy 12 (tri12), observed in 28/79 (35%) cases, followed by del13q14 (12/79, 15%), delTP53 (11/80, 14%) delATM (5/79, 6%), and del6q21 (3/76, 4%). IGHV genes were unmutated in 41/53 (77%) patients, with a high frequency of IGHV1-69 (21/52, 40%). NOTCH1 gene was mutated in 14/45 (31%) patients. There was no significant difference in cytogenetic and molecular abnormalities between CLL and SLL. Investigations using FISH and SNP-array demonstrated the heterogeneous size of the 14q deletions. However, a group with the same del(14)(q24.1q32.33) was identified in 48% of cases. In this group, tri12 (P = 0.004) and NOTCH1 mutations (P = 0.02) were significantly more frequent than in the other patients. In CLL patients with del(14q), median treatment-free survival (TFS) was 27 months. In conclusion, del(14q) is associated with tri12 and with pejorative prognostic factors: unmutated IGHV genes (with over-representation of the IGHV1-69 repertoire), NOTCH1 mutations, and a short TFS.", "title": "14q deletions are associated with trisomy 12, NOTCH1 mutations and unmutated IGHV genes in chronic lymphocytic leukemia and small lymphocytic lymphoma." }, { "docid": "34254203", "text": "In this Opinion article, I address the role of the pre-B-cell receptor (pre-BCR) in the development of antigen-specific B cells in terms of immunoglobulin heavy chain (IgH) variable-region repertoire selection, precursor B-cell differentiation and proliferation, and IgH allelic exclusion. Comparisons with the role of the pre-T-cell receptor (pre-TCR) in T-cell development raise provocative questions. Why do B- and T-cell lineages both use a surrogate chain — the surrogate light chain and the pre-TCR α-chain, respectively — as a step to develop their repertoires of antigen-recognizing cells? What are the functions of the pre-BCR and pre-TCR in lymphocyte differentiation and antigen-receptor allelic exclusion? This article, together with the accompanying article by Harald von Boehmer, hopes to answer some of these questions.", "title": "The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire" }, { "docid": "37182501", "text": "Two mechanisms account for generation of the human antibody repertoire; V(D)J recombination during the early stages of B-cell development in the bone marrow and somatic mutation of immunoglobulin genes in mature B cells responding to antigen in the periphery. V(D)J recombination produces diversity by random joining of gene segments and somatic mutation by introducing random point mutations. Both are required to attain the degree of antigen receptor diversification that is necessary for immune protection: defects in either mechanism are associated with increased susceptibility to infection. However, the downside of producing enormous random diversity in the antibody repertoire is the generation of autoantibodies. To prevent autoimmunity B cells expressing autoantibodies are regulated by strict mechanisms that either modify the specificity of autoantibodies or the fate of cells expressing such antibodies. Abnormalities in B-cell self-tolerance are associated with a large number of autoimmune diseases, but the precise nature of the defects is less well defined. Here we summarize recent data on the self-reactive B-cell repertoire in healthy humans and in patients with autoimmunity.", "title": "B-cell self-tolerance in humans." }, { "docid": "7177329", "text": "Neutralizing antibodies are likely to play a crucial part in a preventative HIV-1 vaccine. Although efforts to elicit broadly cross-neutralizing (BCN) antibodies by vaccination have been unsuccessful, a minority of individuals naturally develop these antibodies after many years of infection. How such antibodies arise, and the role of viral evolution in shaping these responses, is unknown. Here we show, in two HIV-1–infected individuals who developed BCN antibodies targeting the glycan at Asn332 on the gp120 envelope, that this glycan was absent on the initial infecting virus. However, this BCN epitope evolved within 6 months, through immune escape from earlier strain-specific antibodies that resulted in a shift of a glycan to position 332. Both viruses that lacked the glycan at amino acid 332 were resistant to the Asn332-dependent BCN monoclonal antibody PGT128 (ref. 8), whereas escaped variants that acquired this glycan were sensitive. Analysis of large sequence and neutralization data sets showed the 332 glycan to be significantly under-represented in transmitted subtype C viruses compared to chronic viruses, with the absence of this glycan corresponding with resistance to PGT128. These findings highlight the dynamic interplay between early antibodies and viral escape in driving the evolution of conserved BCN antibody epitopes.", "title": "Evolution of an HIV glycan–dependent broadly neutralizing antibody epitope through immune escape" }, { "docid": "3330111", "text": "Neutrophils have long been viewed as the final effector cells of an acute inflammatory response, with a primary role in the clearance of extracellular pathogens. However, more recent evidence has extended the functions of these cells. The newly discovered repertoire of effector molecules in the neutrophil armamentarium includes a broad array of cytokines, extracellular traps and effector molecules of the humoral arm of the innate immune system. In addition, neutrophils are involved in the activation, regulation and effector functions of innate and adaptive immune cells. Accordingly, neutrophils have a crucial role in the pathogenesis of a broad range of diseases, including infections caused by intracellular pathogens, autoimmunity, chronic inflammation and cancer.", "title": "Neutrophils in the activation and regulation of innate and adaptive immunity" }, { "docid": "21392223", "text": "Expression of the receptor-type tyrosine phosphatase LAR was studied in cells of the murine hemopoietic system. The gene is expressed in all cells of the T cell lineage but not in cells of any other hemopoietic lineage and the level of expression in T cells is developmentally regulated. The CD4(-)8(-)44(+) early thymic immigrants and mature (CD4(+)8(-)/CD4(-)8(+)) thymocytes and T cells express low levels, whereas immature (CD4(-)8(-)44(-) and CD4(+)8(+)) thymocytes express high levels of LAR. Among bone marrow cells only uncommitted c-kit(+)B220(+)CD19(-) precursors, but not B cell lineage committed c-kit(+)B220(+)CD19(+) precursors, express low levels of LAR. In contrast to the c-kit(+)B220(+)CD19(+) pre-BI cells from normal mice, counterparts of pre-BI cells from PAX-5-deficient mice express LAR, indicating that PAX-5-mediated commitment to the B cell lineage results in suppression of LAR. During differentiation of PAX-5-deficient pre-BI cell line into non-T cell lineages, expression of LAR is switched off, but it is up-regulated during differentiation into thymocytes. Thus, within the hemopoietic system, LAR appears to be a T cell lineage-specific receptor-type phosphatase. However, surprisingly, truncation of its phosphatase domains has no obvious effect on T cell development, repertoire selection or function.", "title": "Within the hemopoietic system, LAR phosphatase is a T cell lineage-specific adhesion receptor-like protein whose phosphatase activity appears dispensable for T cell development, repertoire selection and function." }, { "docid": "20690388", "text": "Natural killer (NK) cell activation is strictly regulated to ensure that healthy cells are preserved, but tumour-transformed or virus-infected cells are recognized and eliminated. To carry out this selective killing, NK cells have an ample repertoire of receptors on their surface. Signalling by inhibitory and activating receptors by interaction with their ligands will determine whether the NK cell becomes activated and kills the target cell. Here, we show reduced expression of NKp46, NKp30, DNAM-1, CD244 and CD94/NKG2C activating receptors on NK cells from acute myeloid leukaemia patients. This reduction may be induced by chronic exposure to their ligands on leukaemic blasts. The analysis of ligands for NK cell-activating receptors showed that leukaemic blasts from the majority of patients express ligands for NK cell-activating receptors. DNAM-1 ligands are frequently expressed on blasts, whereas the expression of the NKG2D ligand MICA/B is found in half of the patients and CD48, a ligand for CD244, in only one-fourth of the patients. The decreased expression of NK cell-activating receptors and/or the heterogeneous expression of ligands for major receptors on leukaemic blasts can lead to an inadequate tumour immunosurveillance by NK cells. A better knowledge of the activating receptor repertoire on NK cells and their putative ligands on blasts together with the possibility to modulate their expression will open new possibilities for the use of NK cells in immunotherapy against leukaemia.", "title": "Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands" }, { "docid": "21274496", "text": "Simian immunodeficiency virus (SIV) naturally infects non-human primates in Africa. To date, 40 SIVs have been described both in natural hosts and in heterologous species. These viruses are highly diverse and the majority cluster in 6 relatively equidistant phylogenetic lineages. At least 8 SIVs are currently considered as recombinant viruses, based on different clustering patterns in different genomic regions. Only three types of genomes are known, based on the number of accessory genes: vpr-containing genomes, vpr-vpx containing genomes and vpr-vpu-containing genomes. vpx resulted by a duplication of the vpr gene following non-homologous recombination and is characteristic of SIVs infecting the Papionini tribe of monkeys and HIV-2 in humans. vpu is characteristic of SIVcpz and HIV-1 and may have originated from a recombination involving SIVs from cercopitecini monkeys. SIV seems to be non-pathogenic in the vast majority of natural hosts in spite of a high levels of viral replication. This is probably a consequence of virus-host adaptation, in which the incubation period of the disease generally exceeds the life span of the African primate host. SIVs also have a high propensity for cross-species transmission. In the new host, the outcome may vary from inapparent infection to highly pathogenic, the former being reported for African monkeys, whereas the latter being observed in macaques and humans. The high diversity of SIVs was generated by a high mutation rate due to a low fidelity of the reverse-transcriptase and active viral and host cell turnover, host-dependent evolution and recombination. Cross-species transmission is not rare, however preferential host switching may drive the majority of cross-species transmissions. Numerous SIVs tested so far are able to grow in vitro on human PBMC, therefore it has been postulated that SIV represents a threat for infection of humans in Central Africa and that AIDS is a zoonosis. However, although the simian origin of the two HIV types is broadly acknowledged, there are no data that AIDS is acquired like a zoonosis. SIV may undergo adaptation in the new human host in order to emerge in the general population. The study of SIV in their natural hosts should provide important clues to the real threat to human populations and also elucidate the mechanisms associated with a long-term persistent viral infection without clinical consequences for the host.", "title": "The history of SIVS and AIDS: epidemiology, phylogeny and biology of isolates from naturally SIV infected non-human primates (NHP) in Africa." }, { "docid": "12030680", "text": "The complex repertoire of immune receptors generated by B and T cells enables recognition of diverse threats to the host organism. In this work, we show that massively parallel DNA sequencing of rearranged immune receptor loci can provide direct detection and tracking of immune diversity and expanded clonal lymphocyte populations in physiological and pathological contexts. DNA was isolated from blood and tissue samples, a series of redundant primers was used to amplify diverse DNA rearrangements, and the resulting mixtures of barcoded amplicons were sequenced using long-read ultra deep sequencing. Individual DNA molecules were then characterized on the basis of DNA segments that had been joined to make a functional (or nonfunctional) immune effector. Current experimental designs can accommodate up to 150 samples in a single sequence run, with the depth of sequencing sufficient to identify stable and dynamic aspects of the immune repertoire in both normal and diseased circumstances. These data provide a high-resolution picture of immune spectra in normal individuals and in patients with hematological malignancies, illuminating, in the latter case, both the initial behavior of clonal tumor populations and the later suppression or re-emergence of such populations after treatment.", "title": "Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing." }, { "docid": "19854744", "text": "Using an antiserum raised to a recombinant coxsackie virus B3 capsid protein, VP1, an immunocytochemical technique was developed which was capable of detecting the presence of all coxsackie B viruses in formalin fixed paraffin embedded infected tissue culture cells. This technique was tested on autopsy heart and pancreas from 21 patients who were thought to have died of acute coxsackievirus B myocarditis. Cardiac myocytes were positive for the VP1 protein in 12 of 20 cases where the heart was available for study. Insulitis was present in the pancreas in seven of these cases and in all seven islet endocrine cells containing VP1 were found. VP1 was only rarely found in exocrine pancreas. In heart and pancreas, cells shown to contain VP1 usually showed signs of necrosis. Autopsy pancreases from 88 patients who had died at clinical presentation of Type 1 (insulin-dependent) diabetes mellitus showed no evidence of the presence of VP1. The continuing destruction of insulin-secreting B cells seen at the time of death in the diabetic pancreas is unlikely to be due to a direct cytopathic effect of a coxsackie B virus. However, this study does not exclude the possibility that a persistent infection of B cells by a defective enterovirus may result in their destruction by an autoimmune mechanism.", "title": "A search for the presence of the enteroviral capsid protein VP1 in pancreases of patients with Type 1 (insulin-dependent) diabetes and pancreases and hearts of infants who died of coxsackieviral myocarditis" }, { "docid": "42693833", "text": "Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively. Diversified and selected IgAs contributed to maintenance of diversified and balanced microbiota, which in turn facilitated the expansion of Foxp3(+) T cells, induction of GCs, and IgA responses in the gut through a symbiotic regulatory loop. Thus, the adaptive immune system, through cellular and molecular components that are required for immune tolerance and through the diversification as well as selection of antibody repertoire, mediates host-microbial symbiosis by controlling the richness and balance of bacterial communities required for homeostasis.", "title": "Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis." }, { "docid": "2601135", "text": "A recent study of plasma neutralization breadth in HIV-1 infected individuals at nine International AIDS Vaccine Initiative (IAVI) sites reported that viral load, HLA-A*03 genotype, and subtype C infection were strongly associated with the development of neutralization breadth. Here, we refine the findings of that study by analyzing the impact of the transmitted/founder (T/F) envelope (Env), early Env diversification, and autologous neutralization on the development of plasma neutralization breadth in 21 participants identified during recent infection at two of those sites: Kigali, Rwanda (n = 9) and Lusaka, Zambia (n = 12). Single-genome analysis of full-length T/F Env sequences revealed that all 21 individuals were infected with a highly homogeneous population of viral variants, which were categorized as subtype C (n = 12), A1 (n = 7), or recombinant AC (n = 2). An extensive amino acid sequence-based analysis of variable loop lengths and glycosylation patterns in the T/F Envs revealed that a lower ratio of NXS to NXT-encoded glycan motifs correlated with neutralization breadth. Further analysis comparing amino acid sequence changes, insertions/deletions, and glycan motif alterations between the T/F Env and autologous early Env variants revealed that extensive diversification focused in the V2, V4, and V5 regions of gp120, accompanied by contemporaneous viral escape, significantly favored the development of breadth. These results suggest that more efficient glycosylation of subtype A and C T/F Envs through fewer NXS-encoded glycan sites is more likely to elicit antibodies that can transition from autologous to heterologous neutralizing activity following exposure to gp120 diversification. This initiates an Env-antibody co-evolution cycle that increases neutralization breadth, and is further augmented over time by additional viral and host factors. These findings suggest that understanding how variation in the efficiency of site-specific glycosylation influences neutralizing antibody elicitation and targeting could advance the design of immunogens aimed at inducing antibodies that can transition from autologous to heterologous neutralizing activity.", "title": "Diversification in the HIV-1 Envelope Hyper-variable Domains V2, V4, and V5 and Higher Probability of Transmitted/Founder Envelope Glycosylation Favor the Development of Heterologous Neutralization Breadth" }, { "docid": "1550937", "text": "Lymphocytes provide optimal responses against pathogens with minimal inflammatory pathology. However, the intrinsic mechanisms regulating these responses are unknown. Here, we report that deletion of both transcription factors Egr2 and Egr3 in lymphocytes resulted in a lethal autoimmune syndrome with excessive serum proinflammatory cytokines but also impaired antigen receptor-induced proliferation of B and T cells. Egr2- and Egr3-defective B and T cells had hyperactive signal transducer and activator of transcription-1 (STAT1) and STAT3 while antigen receptor-induced activation of transcription factor AP-1 was severely impaired. We discovered that Egr2 and/or Egr3 directly induced expression of suppressor of cytokine signaling-1 (SOCS1) and SOCS3, inhibitors of STAT1 and STAT3, and also blocked the function of Batf, an AP-1 inhibitor, in B and T cells. Thus, Egr2 and Egr3 regulate B and T cell function in adaptive immune responses and homeostasis by promoting antigen receptor signaling and controlling inflammation.", "title": "The Transcription Factors Egr2 and Egr3 Are Essential for the Control of Inflammation and Antigen-Induced Proliferation of B and T Cells" }, { "docid": "1667063", "text": "To elucidate the transcriptional 'landscape' that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNAs (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus.", "title": "Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages" }, { "docid": "51952430", "text": "The toll-like receptor (TLR) and interleukin (IL)-1 family of receptors share several signaling components, including the most upstream adapter, MyD88. We previously reported the discovery of B cell adapter for phosphoinositide 3-kinase (BCAP) as a novel toll-IL-1 receptor homology domain-containing adapter that regulates inflammatory responses downstream of TLR signaling. Here we find that BCAP plays a critical role downstream of both IL-1 and IL-18 receptors to regulate T helper (Th) 17 and Th1 cell differentiation, respectively. Absence of T cell intrinsic BCAP did not alter development of naturally arising Th1 and Th17 lineages but led to defects in differentiation to pathogenic Th17 lineage cells. Consequently, mice that lack BCAP in T cells had reduced susceptibility to experimental autoimmune encephalomyelitis. More importantly, we found that BCAP is critical for IL-1R-induced phosphoinositide 3-kinase-Akt-mechanistic target of rapamycin (mTOR) activation, and minimal inhibition of mTOR completely abrogated IL-1β-induced differentiation of pathogenic Th17 cells, mimicking BCAP deficiency. This study establishes BCAP as a critical link between IL-1R and the metabolic status of activated T cells that ultimately regulates the differentiation of inflammatory Th17 cells.", "title": "BCAP links IL-1R to the PI3K–mTOR pathway and regulates pathogenic Th17 cell differentiation" }, { "docid": "15081770", "text": "We previously reported a strong IL4I1 gene expression in primary mediastinal B-cell lymphoma (PMBL) and recently identified the protein as a secreted L-phenylalanine oxidase, physiologically expressed by myeloid cells, which inhibits T-cell proliferation in vitro. Here, we analyzed the pattern of IL4I1 protein expression in 315 human lymphoid and non-lymphoid malignancies. Besides PMBL, IL4I1 expression in tumors was very frequent. IL4I1 was detected in tumor-associated macrophages from most of the tumors and in neoplastic cells from follicular lymphoma, classic and nodular lymphocyte predominant Hodgkin lymphomas and small lymphocytic lymphoma, three of which are germinal center derived. IL4I1-positive tumor cells were also detected in rare cases of solid cancers, mainly mesothelioma. The enzymatic activity paralleled protein expression, suggesting that IL4I1 is functional in vivo. Depending on the tumor type, IL4I1 may impact on different infiltrating lymphocyte populations with consequences on tumor evolution. In the particular case of follicular lymphoma cells, which are susceptible to antitumor cytotoxic T cells killing but depend on interactions with local T helper cells for survival, a high level of IL4I1 expression seems associated with the absence of bone marrow involvement and a better outcome. These findings plead for an evaluation of IL4I1 as a prognosis factor.", "title": "The novel immunosuppressive enzyme IL4I1 is expressed by neoplastic cells of several B-cell lymphomas and by tumor-associated macrophages" }, { "docid": "8883846", "text": "The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses.", "title": "Antibody-Based HIV-1 Vaccines: Recent Developments and Future Directions" }, { "docid": "10675756", "text": "BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease in which the colonic mucosa is infiltrated with plasma cells producing IgG autoantibodies. It is not known whether this represents a local mucosal response which has switched to IgG or a peripheral response which may have been initiated by peripheral antigen which homed to the colonic mucosa. The clonal distribution of IgG secreting cells and isotype switched variants in UC is not known. AIMS To investigate the clonal distribution of mucosal IgG in UC and to search for related IgG and IgA secreting cells in normal and diseased mucosa and blood in UC. To investigate characteristics which may discriminate between the mucosal and peripheral repertoire in the normal mucosa and in UC. \n PATIENTS Blood and normal and diseased mucosa from two patients with UC were studied. \n METHODS Immunoglobulin gene analysis and clone specific polymerase chain reaction were used to study the clonal distribution and characteristics of IgG and related IgA in the mucosa and blood of patients with UC. \n RESULTS The IgG response in the mucosa of UC patients included widespread clones of cells that were present in both the diseased mucosa and blood but that were scarce in normal mucosa. Clonally related IgA class switch variants, all IgA1, were detected but also only in the diseased mucosa and blood. This suggests that these clones home preferentially to the diseased mucosa. We showed that J(H)1 usage was characteristic of the peripheral repertoire, and that examples of J(H)1 usage were observed in mucosal IgG in UC. \n CONCLUSIONS Overall, these data are consistent with a model of UC in which a peripheral response is expressed and expanded in the colonic mucosa.", "title": "Related IgA1 and IgG producing cells in blood and diseased mucosa in ulcerative colitis." } ]
479
Gpr124 increases BBB breakdown in mouse models of ischemic stroke.
[ { "docid": "6325527", "text": "Although blood–brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt–β-catenin signaling. Constitutive activation of Wnt–β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption.", "title": "Gpr124 is essential for blood–brain barrier integrity in central nervous system disease" } ]
[ { "docid": "3761017", "text": "BACKGROUND Metformin, a widely used hypoglycemic drug, reduces stroke incidence and alleviates chronic inflammation in clinical trials. However, the effect of metformin in ischemic stroke is unclear. Here, we investigated the effect of metformin on ischemic stroke in mice and further explored the possible underlying mechanisms. \n METHODS Ninety-eight adult male CD-1 mice underwent 90-minute transient middle cerebral artery occlusion (tMCAO). Metformin (200 mg/kg) was administrated for up to 14 days. Neurobehavioral outcomes, brain infarct volume, inflammatory factors, blood-brain barrier (BBB) permeability and AMPK signaling pathways were evaluated following tMCAO. Oxygen glucose deprivation was performed on bEND.3 cells to explore the mechanisms of metformin in inhibiting inflammatory signaling pathways. \n RESULTS Infarct volume was reduced in metformin-treated mice compared to the control group following tMCAO (P < 0.05). Neurobehavioral outcomes were greatly improved in metformin-treated mice (P < 0.05). MPO+ cells, Gr1+ cells, MPO activity and BBB permeability were decreased after metformin administration (P < 0.05). In addition, metformin activated AMPK phosphorylation, inhibited NF-κB activation, down-regulated cytokine (IL-1β, IL-6, TNF-α) and ICAM-1 expression following tMCAO (P < 0.05). Furthermore, metformin activated AMPK signaling pathway and alleviated oxygen-glucose deprivation-induced ICAM-1 expression in bEND.3 cells (P < 0.05). Compound C, a selective AMPK inhibitor, eliminated this promotional effect. \n CONCLUSIONS Metformin down-regulated ICAM-1 in an AMPK-dependent manner, which could effectively prevent ischemia-induced brain injury by alleviating neutrophil infiltration, suggesting that metformin is a promising therapeutic agent in stroke therapy.", "title": "Metformin attenuates blood-brain barrier disruption in mice following middle cerebral artery occlusion" }, { "docid": "23627419", "text": "RATIONALE Although obstructive sleep apnea is associated with physiological perturbations that increase risk of hypertension and are proatherogenic, it is uncertain whether sleep apnea is associated with increased stroke risk in the general population. \n OBJECTIVES To quantify the incidence of ischemic stroke with sleep apnea in a community-based sample of men and women across a wide range of sleep apnea. \n METHODS Baseline polysomnography was performed between 1995 and 1998 in a longitudinal cohort study. The primary exposure was the obstructive apnea-hypopnea index (OAHI) and outcome was incident ischemic stroke. \n MEASUREMENTS AND MAIN RESULTS A total of 5,422 participants without a history of stroke at the baseline examination and untreated for sleep apnea were followed for a median of 8.7 years. One hundred ninety-three ischemic strokes were observed. In covariate-adjusted Cox proportional hazard models, a significant positive association between ischemic stroke and OAHI was observed in men (P value for linear trend: P = 0.016). Men in the highest OAHI quartile (>19) had an adjusted hazard ratio of 2.86 (95% confidence interval, 1.1-7.4). In the mild to moderate range (OAHI, 5-25), each one-unit increase in OAHI in men was estimated to increase stroke risk by 6% (95% confidence interval, 2-10%). In women, stroke was not significantly associated with OAHI quartiles, but increased risk was observed at an OAHI greater than 25. \n CONCLUSIONS The strong adjusted association between ischemic stroke and OAHI in community-dwelling men with mild to moderate sleep apnea suggests that this is an appropriate target for future stroke prevention trials.", "title": "Obstructive sleep apnea-hypopnea and incident stroke: the sleep heart health study." }, { "docid": "18256197", "text": "BACKGROUND AND PURPOSE The level of total homocysteine (tHcy) that confers a risk of ischemic stroke is unsettled, and no prospective cohort studies have included sufficient elderly minority subjects. We investigated the association between mild to moderate fasting tHcy level and the incidence of ischemic stroke, myocardial infarction, and vascular death in a multiethnic prospective study. \n METHODS A population-based cohort was followed for vascular events (stroke, myocardial infarction, and vascular death). Baseline values of tHcy and methylmalonic acid were measured among 2939 subjects (mean age, 69+/-10; 61% women, 53% Hispanics, 24% blacks, and 20% whites). Cox proportional models were used to calculate hazard ratios (HRs) and 95% CIs in tHcy categories after adjusting for age, race, education, renal insufficiency, B12 deficiency, and other risk factors. \n RESULTS The adjusted HR for a tHcy level > or =15 micromol/L compared with <10 micromol/L was greatest for vascular death (HR=6.04; 95% CI, 3.44 to 10.60), followed by combined vascular events (HR=2.27; 95% CI, 1.51 to 3.43), ischemic stroke (HR=2.01; 95% CI, 1.00 to 4.05), and nonvascular death (HR=2.02; 95% CI, 1.31 to 3.14). Mild to moderate elevations of tHcy of 10 to 15 micromol/L were not significantly predictive of ischemic stroke, but increased the risk of vascular death (2.27; 95% CI, 1.44 to 3.60) and combined vascular events (1.42; 95% CI, 1.06 to 1.88). The effect of tHcy was stronger among whites and Hispanics, but not a significant risk factor for blacks. \n CONCLUSIONS Total Hcy elevations above 15 micromol/L are an independent risk factor for ischemic stroke, whereas mild elevations of tHcy of 10 to 15 micromol/L are less predictive. The vascular effects of tHcy are greatest among whites and Hispanics, and less among blacks.", "title": "Homocysteine and the risk of ischemic stroke in a triethnic cohort: the NOrthern MAnhattan Study." }, { "docid": "37065914", "text": "BACKGROUND AND PURPOSE Soluble corin was decreased in coronary heart disease. Given the connections between cardiac dysfunction and stroke, circulating corin might be a candidate marker of stroke risk. However, the association between circulating corin and stroke has not yet been studied in humans. Here, we aimed to examine the association in patients wtith stroke and community-based healthy controls. \n METHODS Four hundred eighty-one patients with ischemic stroke, 116 patients with hemorrhagic stroke, and 2498 healthy controls were studied. Serum soluble corin and some conventional risk factors of stroke were examined. Because circulating corin was reported to be varied between men and women, the association between serum soluble corin and stroke was evaluated in men and women, respectively. \n RESULTS Patients with ischemic and hemorrhagic stroke had a significantly lower level of serum soluble corin than healthy controls in men and women (all P values, <0.05). In multivariate analysis, men in the lowest quartile of serum soluble corin were more likely to have ischemic (odds ratio [OR], 4.90; 95% confidence interval, 2.99-8.03) and hemorrhagic (OR, 17.57; 95% confidence interval, 4.85-63.71) stroke than men in the highest quartile. Women in the lowest quartile of serum soluble corin were also more likely to have ischemic (OR, 3.10; 95% confidence interval, 1.76-5.44) and hemorrhagic (OR, 8.54; 95% confidence interval, 2.35-31.02) stroke than women in the highest quartile. ORs of ischemic and hemorrhagic stroke were significantly increased with the decreasing levels of serum soluble corin in men and women (all P values for trend, <0.001). \n CONCLUSIONS Serum soluble corin was decreased in patients with stroke compared with healthy controls. Our findings raise the possibility that serum soluble corin may have a pathogenic role in stroke.", "title": "Serum Soluble Corin is Decreased in Stroke." }, { "docid": "27602752", "text": "Encephalitis and dementia associated with acquired immunodeficiency syndrome (AIDS) are characterized by leukocyte infiltration into the CNS, microglia activation, aberrant chemokine expression, blood-brain barrier (BBB) disruption, and eventual loss of neurons. Little is known about whether human immunodeficiency virus 1 (HIV-1) infection of leukocytes affects their ability to transmigrate in response to chemokines and to alter BBB integrity. We now demonstrate that HIV infection of human leukocytes results in their increased transmigration across our tissue culture model of the human BBB in response to the chemokine CCL2, as well as in disruption of the BBB, as evidenced by enhanced permeability, reduction of tight junction proteins, and expression of matrix metalloproteinases (MMP)-2 and MMP-9. HIV-infected cells added to our model did not transmigrate in the absence of CCL2, nor did this condition alter BBB integrity. The chemokines CXCL10/interferon-gamma-inducible protein of 10 kDa, CCL3/macrophage inflammatory protein-1alpha, or CCL5/RANTES (regulated on activation normal T-cell expressed and secreted) did not enhance HIV-infected leukocyte transmigration or BBB permeability. The increased capacity of HIV-infected leukocytes to transmigrate in response to CCL2 correlated with their increased expression of CCR2, the chemokine receptor for CCL2. These data suggest that CCL2, but not other chemokines, plays a key role in infiltration of HIV-infected leukocytes into the CNS and the subsequent pathology characteristic of NeuroAIDS.", "title": "CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS." }, { "docid": "32328114", "text": "Stroke ranks as the third leading cause of death in the United States. It is now estimated that there are more than 700 000 incident strokes annually and 4.4 million stroke survivors.1 2 The economic burden of stroke was estimated by the American Heart Association to be $51 billion (direct and indirect costs) in 1999.3 Despite the advent of treatment of selected patients with acute ischemic stroke with tissue plasminogen activator and the promise of other experimental therapies, the best approach to reducing the burden of stroke remains prevention.4 5 High-risk or stroke-prone individuals can be identified and targeted for specific interventions.6 This is important because epidemiological data suggest a substantial leveling off of prior declines in stroke-related mortality and a possible increase in stroke incidence.7 8 The Stroke Council of the American Heart Association formed an ad hoc writing group to provide a clear and concise overview of the evidence regarding various established and potential stroke risk factors. The writing group was chosen based on expertise in specific subject areas, and it used literature review, reference to previously published guidelines, and expert opinion to summarize existing evidence and formulate recommendations (Table 1⇓). View this table: Table 1. Levels of Evidence and Grading of Recommendations As given in Tables 2 through 4⇓⇓⇓, risk factors or risk markers for a first stroke were classified according to potential for modification (nonmodifiable, modifiable, or potentially modifiable) and strength of evidence (well documented, less well documented).5 The tables give the estimated prevalence, population attributable risk, relative risk, and risk reduction with treatment for each factor when known. Population attributable risk reflects the proportion of ischemic strokes in the population that can be attributed to a particular risk factor and is given by the formula 100×[prevalence(relative risk−1)/prevalence(relative risk−1)+1]). …", "title": "Primary prevention of ischemic stroke: A statement for healthcare professionals from the Stroke Council of the American Heart Association." }, { "docid": "33884866", "text": "OBJECTIVE The sphingosine-1-phosphate (S1P) receptor agonist fingolimod (FTY720), that has shown efficacy in advanced multiple sclerosis clinical trials, decreases reperfusion injury in heart, liver, and kidney. We therefore tested the therapeutic effects of fingolimod in several rodent models of focal cerebral ischemia. To assess the translational significance of these findings, we asked whether fingolimod improved long-term behavioral outcomes, whether delayed treatment was still effective, and whether neuroprotection can be obtained in a second species. \n METHODS We used rodent models of middle cerebral artery occlusion and cell-culture models of neurotoxicity and inflammation to examine the therapeutic potential and mechanisms of neuroprotection by fingolimod. \n RESULTS In a transient mouse model, fingolimod reduced infarct size, neurological deficit, edema, and the number of dying cells in the core and periinfarct area. Neuroprotection was accompanied by decreased inflammation, as fingolimod-treated mice had fewer activated neutrophils, microglia/macrophages, and intercellular adhesion molecule-1 (ICAM-1)-positive blood vessels. Fingolimod-treated mice showed a smaller infarct and performed better in behavioral tests up to 15 days after ischemia. Reduced infarct was observed in a permanent model even when mice were treated 4 hours after ischemic onset. Fingolimod also decreased infarct size in a rat model of focal ischemia. Fingolimod did not protect primary neurons against glutamate excitotoxicity or hydrogen peroxide, but decreased ICAM-1 expression in brain endothelial cells stimulated by tumor necrosis factor alpha. \n INTERPRETATION These findings suggest that anti-inflammatory mechanisms, and possibly vasculoprotection, rather than direct effects on neurons, underlie the beneficial effects of fingolimod after stroke. S1P receptors are a highly promising target in stroke treatment.", "title": "Fingolimod provides long-term protection in rodent models of cerebral ischemia." }, { "docid": "16760369", "text": "CONTEXT Clinicians and trialists have difficulty with identifying which patients are highest risk for cardiovascular events. Prior ischemic events, polyvascular disease, and diabetes mellitus have all been identified as predictors of ischemic events, but their comparative contributions to future risk remain unclear. \n OBJECTIVE To categorize the risk of cardiovascular events in stable outpatients with various initial manifestations of atherothrombosis using simple clinical descriptors. \n DESIGN, SETTING, AND PATIENTS Outpatients with coronary artery disease, cerebrovascular disease, or peripheral arterial disease or with multiple risk factors for atherothrombosis were enrolled in the global Reduction of Atherothrombosis for Continued Health (REACH) Registry and were followed up for as long as 4 years. Patients from 3647 centers in 29 countries were enrolled between 2003 and 2004 and followed up until 2008. Final database lock was in April 2009. \n MAIN OUTCOME MEASURES Rates of cardiovascular death, myocardial infarction, and stroke. \n RESULTS A total of 45,227 patients with baseline data were included in this 4-year analysis. During the follow-up period, a total of 5481 patients experienced at least 1 event, including 2315 with cardiovascular death, 1228 with myocardial infarction, 1898 with stroke, and 40 with both a myocardial infarction and stroke on the same day. Among patients with atherothrombosis, those with a prior history of ischemic events at baseline (n = 21,890) had the highest rate of subsequent ischemic events (18.3%; 95% confidence interval [CI], 17.4%-19.1%); patients with stable coronary, cerebrovascular, or peripheral artery disease (n = 15,264) had a lower risk (12.2%; 95% CI, 11.4%-12.9%); and patients without established atherothrombosis but with risk factors only (n = 8073) had the lowest risk (9.1%; 95% CI, 8.3%-9.9%) (P < .001 for all comparisons). In addition, in multivariable modeling, the presence of diabetes (hazard ratio [HR], 1.44; 95% CI, 1.36-1.53; P < .001), an ischemic event in the previous year (HR, 1.71; 95% CI, 1.57-1.85; P < .001), and polyvascular disease (HR, 1.99; 95% CI, 1.78-2.24; P < .001) each were associated with a significantly higher risk of the primary end point. \n CONCLUSION Clinical descriptors can assist clinicians in identifying high-risk patients within the broad range of risk for outpatients with atherothrombosis.", "title": "Comparative determinants of 4-year cardiovascular event rates in stable outpatients at risk of or with atherothrombosis." }, { "docid": "7157436", "text": "In the adult brain, new neurons are continuously generated in the subventricular zone and dentate gyrus, but it is unknown whether these neurons can replace those lost following damage or disease. Here we show that stroke, caused by transient middle cerebral artery occlusion in adult rats, leads to a marked increase of cell proliferation in the subventricular zone. Stroke-generated new neurons, as well as neuroblasts probably already formed before the insult, migrate into the severely damaged area of the striatum, where they express markers of developing and mature, striatal medium-sized spiny neurons. Thus, stroke induces differentiation of new neurons into the phenotype of most of the neurons destroyed by the ischemic lesion. Here we show that the adult brain has the capacity for self-repair after insults causing extensive neuronal death. If the new neurons are functional and their formation can be stimulated, a novel therapeutic strategy might be developed for stroke in humans.", "title": "Neuronal replacement from endogenous precursors in the adult brain after stroke" }, { "docid": "21571708", "text": "CONTEXT Circulating concentration of lipoprotein(a) (Lp[a]), a large glycoprotein attached to a low-density lipoprotein-like particle, may be associated with risk of coronary heart disease (CHD) and stroke. \n OBJECTIVE To assess the relationship of Lp(a) concentration with risk of major vascular and nonvascular outcomes. STUDY SELECTION Long-term prospective studies that recorded Lp(a) concentration and subsequent major vascular morbidity and/or cause-specific mortality published between January 1970 and March 2009 were identified through electronic searches of MEDLINE and other databases, manual searches of reference lists, and discussion with collaborators. \n DATA EXTRACTION Individual records were provided for each of 126,634 participants in 36 prospective studies. During 1.3 million person-years of follow-up, 22,076 first-ever fatal or nonfatal vascular disease outcomes or nonvascular deaths were recorded, including 9336 CHD outcomes, 1903 ischemic strokes, 338 hemorrhagic strokes, 751 unclassified strokes, 1091 other vascular deaths, 8114 nonvascular deaths, and 242 deaths of unknown cause. Within-study regression analyses were adjusted for within-person variation and combined using meta-analysis. Analyses excluded participants with known preexisting CHD or stroke at baseline. \n DATA SYNTHESIS Lipoprotein(a) concentration was weakly correlated with several conventional vascular risk factors and it was highly consistent within individuals over several years. Associations of Lp(a) with CHD risk were broadly continuous in shape. In the 24 cohort studies, the rates of CHD in the top and bottom thirds of baseline Lp(a) distributions, respectively, were 5.6 (95% confidence interval [CI], 5.4-5.9) per 1000 person-years and 4.4 (95% CI, 4.2-4.6) per 1000 person-years. The risk ratio for CHD, adjusted for age and sex only, was 1.16 (95% CI, 1.11-1.22) per 3.5-fold higher usual Lp(a) concentration (ie, per 1 SD), and it was 1.13 (95% CI, 1.09-1.18) following further adjustment for lipids and other conventional risk factors. The corresponding adjusted risk ratios were 1.10 (95% CI, 1.02-1.18) for ischemic stroke, 1.01 (95% CI, 0.98-1.05) for the aggregate of nonvascular mortality, 1.00 (95% CI, 0.97-1.04) for cancer deaths, and 1.00 (95% CI, 0.95-1.06) for nonvascular deaths other than cancer. \n CONCLUSION Under a wide range of circumstances, there are continuous, independent, and modest associations of Lp(a) concentration with risk of CHD and stroke that appear exclusive to vascular outcomes.", "title": "Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality." }, { "docid": "6158879", "text": "BACKGROUND Patients with diabetes mellitus (DM) are at high risk for recurrent cardiovascular events after acute coronary syndromes, in part because of increased platelet reactivity. The Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition With Prasugrel-Thrombolysis in Myocardial Infarction 38 (TRITON-TIMI 38) showed an overall reduction in ischemic events with more intensive antiplatelet therapy with prasugrel than with clopidogrel but with more bleeding. We compared prasugrel with clopidogrel among subjects with DM in TRITON-TIMI 38. \n METHODS AND RESULTS We classified 13 608 subjects on the basis of preexisting history of DM and further according to insulin use. Prespecified analyses of the primary (cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke) and key secondary end points, including net clinical benefit (death, nonfatal myocardial infarction, nonfatal stroke, and nonfatal TIMI major bleeding) were compared by use of the log-rank test. We found that 3146 subjects had a preexisting history of DM, including 776 receiving insulin. The primary end point was reduced significantly with prasugrel among subjects without DM (9.2% versus 10.6%; hazard ratio [HR], 0.86; P=0.02) and with DM (12.2% versus 17.0%; HR, 0.70; P<0.001, P(interaction)=0.09). A benefit for prasugrel was observed among DM subjects on insulin (14.3% versus 22.2%; HR, 0.63; P=0.009) and those not on insulin (11.5% versus 15.3%; HR, 0.74; P=0.009). Myocardial infarction was reduced with prasugrel by 18% among subjects without DM (7.2% versus 8.7%; HR, 0.82; P=0.006) and by 40% among subjects with DM (8.2% versus 13.2%; HR, 0.60; P<0.001, P(interaction)=0.02). Although TIMI major hemorrhage was increased among subjects without DM on prasugrel (1.6% versus 2.4%; HR, 1.43; P=0.02), the rates were similar among subjects with DM for clopidogrel and prasugrel (2.6% versus 2.5%; HR, 1.06; P=0.81, P(interaction)=0.29). Net clinical benefit with prasugrel was greater for subjects with DM (14.6% versus 19.2%; HR, 0.74; P=0.001) than for subjects without DM (11.5% versus 12.3%; HR, 0.92; P=0.16, P(interaction)=0.05). \n CONCLUSIONS Subjects with DM tended to have a greater reduction in ischemic events without an observed increase in TIMI major bleeding and therefore a greater net treatment benefit with prasugrel compared with clopidogrel. These data demonstrate that the more intensive oral antiplatelet therapy provided with prasugrel is of particular benefit to patients with DM.", "title": "Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-Thrombolysis in Myocardial Infarction 38." }, { "docid": "14753395", "text": "Neural signalling within the central nervous system (CNS) requires a highly controlled microenvironment. Cells at three key interfaces form barriers between the blood and the CNS: the blood-brain barrier (BBB), blood-CSF barrier and the arachnoid barrier. The BBB at the level of brain microvessel endothelium is the major site of blood-CNS exchange. The structure and function of the BBB is summarised, the physical barrier formed by the endothelial tight junctions, and the transport barrier resulting from membrane transporters and vesicular mechanisms. The roles of associated cells are outlined, especially the endfeet of astrocytic glial cells, and pericytes and microglia. The embryonic development of the BBB, and changes in pathology are described. The BBB is subject to short and long-term regulation, which may be disturbed in pathology. Any programme for drug discovery or delivery, to target or avoid the CNS, needs to consider the special features of the BBB.", "title": "Structure and function of the blood–brain barrier" }, { "docid": "23983289", "text": "OBJECTIVES We sought to determine which ICD-9-CM codes in Medicare Part A data identify cardiovascular and stroke risk factors. \n DESIGN AND PARTICIPANTS This was a cross-sectional study comparing ICD-9-CM data to structured medical record review from 23,657 Medicare beneficiaries aged 20 to 105 years who had atrial fibrillation. \n MEASUREMENTS Quality improvement organizations used standardized abstraction instruments to determine the presence of 9 cardiovascular and stroke risk factors. Using the chart abstractions as the gold standard, we assessed the accuracy of ICD-9-CM codes to identify these risk factors. \n MAIN RESULTS ICD-9-CM codes for all risk factors had high specificity (>0.95) and low sensitivity (< or =0.76). The positive predictive values were greater than 0.95 for 5 common, chronic risk factors-coronary artery disease, stroke/transient ischemic attack, heart failure, diabetes, and hypertension. The sixth common risk factor, valvular heart disease, had a positive predictive value of 0.93. For all 6 common risk factors, negative predictive values ranged from 0.52 to 0.91. The rare risk factors-arterial peripheral embolus, intracranial hemorrhage, and deep venous thrombosis-had high negative predictive value (> or =0.98) but moderate positive predictive values (range, 0.54-0.77) in this population. \n CONCLUSIONS Using ICD-9-CM codes alone, heart failure, coronary artery disease, diabetes, hypertension, and stroke can be ruled in but not necessarily ruled out. Where feasible, review of additional data (eg, physician notes or imaging studies) should be used to confirm the diagnosis of valvular disease, arterial peripheral embolus, intracranial hemorrhage, and deep venous thrombosis.", "title": "Accuracy of ICD-9-CM codes for identifying cardiovascular and stroke risk factors." }, { "docid": "9122283", "text": "RATIONALE Multiple biological mechanisms contribute to the efficacy of cardiac cell therapy. Most prominent among these are direct heart muscle and blood vessel regeneration from transplanted cells, as opposed to paracrine enhancement of tissue preservation and/or recruitment of endogenous repair. \n OBJECTIVE Human cardiac progenitor cells, cultured as cardiospheres (CSps) or as CSp-derived cells (CDCs), have been shown to be capable of direct cardiac regeneration in vivo. Here we characterized paracrine effects in CDC transplantation and investigated their relative importance versus direct differentiation of surviving transplanted cells. \n METHODS AND RESULTS In vitro, many growth factors were found in media conditioned by human adult CSps and CDCs; CDC-conditioned media exerted antiapoptotic effects on neonatal rat ventricular myocytes, and proangiogenic effects on human umbilical vein endothelial cells. In vivo, human CDCs secreted vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor 1 when transplanted into the same SCID mouse model of acute myocardial infarction where they were previously shown to improve function and to produce tissue regeneration. Injection of CDCs in the peri-infarct zone increased the expression of Akt, decreased apoptotic rate and caspase 3 level, and increased capillary density, indicating overall higher tissue resilience. Based on the number of human-specific cells relative to overall increases in capillary density and myocardial viability, direct differentiation quantitatively accounted for 20% to 50% of the observed effects. \n CONCLUSIONS Together with their spontaneous commitment to cardiac and angiogenic differentiation, transplanted CDCs serve as \"role models,\" recruiting endogenous regeneration and improving tissue resistance to ischemic stress. The contribution of the role model effect rivals or exceeds that of direct regeneration.", "title": "Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice." }, { "docid": "23785605", "text": "BACKGROUND Migraine, particularly with aura, is a risk factor for early-onset ischemic stroke. The underlying mechanisms are unknown, but may in part be due to migraineurs having an increased risk profile for cardiovascular disease. In this study, the authors compare the cardiovascular risk profile of adult migraineurs to that of nonmigraineurs. \n METHODS Participants (n = 5,755, 48% men, age 20 to 65 years) are from the Genetic Epidemiology of Migraine (GEM) study, a population-based study in the Netherlands. A total of 620 current migraineurs were identified: 31% with aura (MA), 64% without aura (MO), and 5% unclassified. Controls were 5,135 individuals without lifetime migraine. Measured cardiovascular risk factors included blood pressure (BP), serum total and high-density lipoprotein cholesterol (TC, HDL), smoking, oral contraceptive use, and the Framingham risk score for myocardial infarction or coronary heart disease (CHD) death. \n RESULTS Compared to controls, migraineurs were more likely to smoke (OR = 1.43 [1.1 to 1.8]), less likely to consume alcohol (OR = 0.58 [0.5 to 0.7]), and more likely to report a parental history of early myocardial infarction. Migraineurs with aura were more likely to have an unfavorable cholesterol profile (TC > or = 240 mg/dL [OR = 1.43 (0.97 to 2.1)], TC:HDL ratio > 5.0 [OR = 1.64 (1.1 to 2.4)]), have elevated BP (systolic BP > 140 mm Hg or diastolic BP > 90 mm Hg [OR = 1.76 (1.04 to 3.0)]), and report a history of early onset CHD or stroke (OR = 3.96 [1.1 to 14.3]); female migraineurs with aura were more likely to be using oral contraceptives (OR = 2.06 [1.05 to 4.0]). The odds of having an elevated Framingham risk score for CHD were approximately doubled for the migraineurs with aura. \n CONCLUSIONS Migraineurs, particularly with aura, have a higher cardiovascular risk profile than individuals without migraine.", "title": "Cardiovascular risk factors and migraine: the GEM population-based study." }, { "docid": "6472746", "text": "Chromosome segregation during cell division depends on stable attachment of kinetochores to spindle microtubules. Mitotic spindle formation and kinetochore-microtubule (K-MT) capture typically occur within minutes of nuclear envelope breakdown. In contrast, during meiosis I in mouse oocytes, formation of the acentrosomal bipolar spindle takes 3-4 h, and stabilization of K-MT attachments is delayed an additional 3-4 h. The mechanism responsible for this delay, which likely prevents stabilization of erroneous attachments during spindle formation, is unknown. Here we show that during meiosis I, attachments are regulated by CDK1 activity, which gradually increases through prometaphase and metaphase I. Partial reduction of CDK1 activity delayed formation of stable attachments, whereas a premature increase in CDK1 activity led to precocious formation of stable attachments and eventually lagging chromosomes at anaphase I. These results indicate that the slow increase in CDK1 activity in meiosis I acts as a timing mechanism to allow stable K-MT attachments only after bipolar spindle formation, thus preventing attachment errors.", "title": "Increased CDK1 activity determines the timing of kinetochore-microtubule attachments in meiosis I" }, { "docid": "2682997", "text": "Despite the importance of CNS blood vessels, the molecular mechanisms that regulate CNS angiogenesis and blood-brain barrier (BBB) formation are largely unknown. Here we analyze the role of Wnt/beta-catenin signaling in regulating the formation of CNS blood vessels. First, through the analysis of TOP-Gal Wnt reporter mice, we identify that canonical Wnt/beta-catenin signaling is specifically activated in CNS, but not non-CNS, blood vessels during development. This activation correlates with the expression of different Wnt ligands by neural progenitor cells in distinct locations throughout the CNS, including Wnt7a and Wnt7b in ventral regions and Wnt1, Wnt3, Wnt3a, and Wnt4 in dorsal regions. Blockade of Wnt/beta-catenin signaling in vivo specifically disrupts CNS, but not non-CNS, angiogenesis. These defects include reduction in vessel number, loss of capillary beds, and the formation of hemorrhagic vascular malformations that remain adherent to the meninges. Furthermore, we demonstrate that Wnt/beta-catenin signaling regulates the expression of the BBB-specific glucose transporter glut-1. Taken together these experiments reveal an essential role for Wnt/beta-catenin signaling in driving CNS-specific angiogenesis and provide molecular evidence that angiogenesis and BBB formation are in part linked.", "title": "Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis." }, { "docid": "8227227", "text": "The locations of cerebral infarctions were studied in 14 patients with tuberculous meningitis (TBM) and 173 patients with noninflammatory ischemic stroke (IS). In patients with TBM, 75% of infarctions occurred in the “TB zone” supplied by medial striate and thalamoperforating arteries; only 11% occurred in the “IS zone” supplied by lateral striate, anterior choroidal and thalamogeniculate arteries. In patients with IS 29% of infarctions occurred in the IS zone, 29% in the subcortical white matter, and 24% in (or involving) the cerebral cortex. Only 11% occurred in the TB zone. Bilaterally symmetrical infarctions of the TB zone were common with TMB (71%) but rare with IS (5%).", "title": "Locations of cerebral infarctions in tuberculous meningitis" }, { "docid": "5884524", "text": "BACKGROUND Although unstable coronary artery disease is the most common reason for admission to a coronary care unit, the long-term prognosis of patients with this diagnosis is unknown. This is particularly true for patients with diabetes mellitus, who are known to have a high morbidity and mortality after an acute myocardial infarction. \n METHODS AND RESULTS Prospectively collected data from 6 different countries in the Organization to Assess Strategies for Ischemic Syndromes (OASIS) registry were analyzed to determine the 2-year prognosis of diabetic and nondiabetic patients who were hospitalized with unstable angina or non-Q-wave myocardial infarction. Overall, 1718 of 8013 registry patients (21%) had diabetes. Diabetic patients had a higher rate of coronary bypass surgery than nondiabetic patients (23% versus 20%, P:<0.001) but had similar rates of catheterization and angioplasty. Diabetes independently predicted mortality (relative risk [RR], 1.57; 95% CI, 1.38 to 1.81; P:<0.001), as well as cardiovascular death, new myocardial infarction, stroke, and new congestive heart failure. Moreover, compared with their nondiabetic counterparts, women had a significantly higher risk than men (RR, 1.98; 95% CI, 1.60 to 2.44; and RR, 1.28; 95% CI, 1.06 to 1.56, respectively). Interestingly, diabetic patients without prior cardiovascular disease had the same event rates for all outcomes as nondiabetic patients with previous vascular disease. \n CONCLUSIONS Hospitalization for unstable angina or non-Q-wave myocardial infarction predicts a high 2-year morbidity and mortality; this is especially evident for patients with diabetes. Diabetic patients with no previous cardiovascular disease have the same long-term morbidity and mortality as nondiabetic patients with established cardiovascular disease after hospitalization for unstable coronary artery disease.", "title": "Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry." } ]
480
Gpr124 suppresses BBB breakdown in mouse models of ischemic stroke.
[ { "docid": "6325527", "text": "Although blood–brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt–β-catenin signaling. Constitutive activation of Wnt–β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption.", "title": "Gpr124 is essential for blood–brain barrier integrity in central nervous system disease" } ]
[ { "docid": "3761017", "text": "BACKGROUND Metformin, a widely used hypoglycemic drug, reduces stroke incidence and alleviates chronic inflammation in clinical trials. However, the effect of metformin in ischemic stroke is unclear. Here, we investigated the effect of metformin on ischemic stroke in mice and further explored the possible underlying mechanisms. \n METHODS Ninety-eight adult male CD-1 mice underwent 90-minute transient middle cerebral artery occlusion (tMCAO). Metformin (200 mg/kg) was administrated for up to 14 days. Neurobehavioral outcomes, brain infarct volume, inflammatory factors, blood-brain barrier (BBB) permeability and AMPK signaling pathways were evaluated following tMCAO. Oxygen glucose deprivation was performed on bEND.3 cells to explore the mechanisms of metformin in inhibiting inflammatory signaling pathways. \n RESULTS Infarct volume was reduced in metformin-treated mice compared to the control group following tMCAO (P < 0.05). Neurobehavioral outcomes were greatly improved in metformin-treated mice (P < 0.05). MPO+ cells, Gr1+ cells, MPO activity and BBB permeability were decreased after metformin administration (P < 0.05). In addition, metformin activated AMPK phosphorylation, inhibited NF-κB activation, down-regulated cytokine (IL-1β, IL-6, TNF-α) and ICAM-1 expression following tMCAO (P < 0.05). Furthermore, metformin activated AMPK signaling pathway and alleviated oxygen-glucose deprivation-induced ICAM-1 expression in bEND.3 cells (P < 0.05). Compound C, a selective AMPK inhibitor, eliminated this promotional effect. \n CONCLUSIONS Metformin down-regulated ICAM-1 in an AMPK-dependent manner, which could effectively prevent ischemia-induced brain injury by alleviating neutrophil infiltration, suggesting that metformin is a promising therapeutic agent in stroke therapy.", "title": "Metformin attenuates blood-brain barrier disruption in mice following middle cerebral artery occlusion" }, { "docid": "23627419", "text": "RATIONALE Although obstructive sleep apnea is associated with physiological perturbations that increase risk of hypertension and are proatherogenic, it is uncertain whether sleep apnea is associated with increased stroke risk in the general population. \n OBJECTIVES To quantify the incidence of ischemic stroke with sleep apnea in a community-based sample of men and women across a wide range of sleep apnea. \n METHODS Baseline polysomnography was performed between 1995 and 1998 in a longitudinal cohort study. The primary exposure was the obstructive apnea-hypopnea index (OAHI) and outcome was incident ischemic stroke. \n MEASUREMENTS AND MAIN RESULTS A total of 5,422 participants without a history of stroke at the baseline examination and untreated for sleep apnea were followed for a median of 8.7 years. One hundred ninety-three ischemic strokes were observed. In covariate-adjusted Cox proportional hazard models, a significant positive association between ischemic stroke and OAHI was observed in men (P value for linear trend: P = 0.016). Men in the highest OAHI quartile (>19) had an adjusted hazard ratio of 2.86 (95% confidence interval, 1.1-7.4). In the mild to moderate range (OAHI, 5-25), each one-unit increase in OAHI in men was estimated to increase stroke risk by 6% (95% confidence interval, 2-10%). In women, stroke was not significantly associated with OAHI quartiles, but increased risk was observed at an OAHI greater than 25. \n CONCLUSIONS The strong adjusted association between ischemic stroke and OAHI in community-dwelling men with mild to moderate sleep apnea suggests that this is an appropriate target for future stroke prevention trials.", "title": "Obstructive sleep apnea-hypopnea and incident stroke: the sleep heart health study." }, { "docid": "18256197", "text": "BACKGROUND AND PURPOSE The level of total homocysteine (tHcy) that confers a risk of ischemic stroke is unsettled, and no prospective cohort studies have included sufficient elderly minority subjects. We investigated the association between mild to moderate fasting tHcy level and the incidence of ischemic stroke, myocardial infarction, and vascular death in a multiethnic prospective study. \n METHODS A population-based cohort was followed for vascular events (stroke, myocardial infarction, and vascular death). Baseline values of tHcy and methylmalonic acid were measured among 2939 subjects (mean age, 69+/-10; 61% women, 53% Hispanics, 24% blacks, and 20% whites). Cox proportional models were used to calculate hazard ratios (HRs) and 95% CIs in tHcy categories after adjusting for age, race, education, renal insufficiency, B12 deficiency, and other risk factors. \n RESULTS The adjusted HR for a tHcy level > or =15 micromol/L compared with <10 micromol/L was greatest for vascular death (HR=6.04; 95% CI, 3.44 to 10.60), followed by combined vascular events (HR=2.27; 95% CI, 1.51 to 3.43), ischemic stroke (HR=2.01; 95% CI, 1.00 to 4.05), and nonvascular death (HR=2.02; 95% CI, 1.31 to 3.14). Mild to moderate elevations of tHcy of 10 to 15 micromol/L were not significantly predictive of ischemic stroke, but increased the risk of vascular death (2.27; 95% CI, 1.44 to 3.60) and combined vascular events (1.42; 95% CI, 1.06 to 1.88). The effect of tHcy was stronger among whites and Hispanics, but not a significant risk factor for blacks. \n CONCLUSIONS Total Hcy elevations above 15 micromol/L are an independent risk factor for ischemic stroke, whereas mild elevations of tHcy of 10 to 15 micromol/L are less predictive. The vascular effects of tHcy are greatest among whites and Hispanics, and less among blacks.", "title": "Homocysteine and the risk of ischemic stroke in a triethnic cohort: the NOrthern MAnhattan Study." }, { "docid": "37065914", "text": "BACKGROUND AND PURPOSE Soluble corin was decreased in coronary heart disease. Given the connections between cardiac dysfunction and stroke, circulating corin might be a candidate marker of stroke risk. However, the association between circulating corin and stroke has not yet been studied in humans. Here, we aimed to examine the association in patients wtith stroke and community-based healthy controls. \n METHODS Four hundred eighty-one patients with ischemic stroke, 116 patients with hemorrhagic stroke, and 2498 healthy controls were studied. Serum soluble corin and some conventional risk factors of stroke were examined. Because circulating corin was reported to be varied between men and women, the association between serum soluble corin and stroke was evaluated in men and women, respectively. \n RESULTS Patients with ischemic and hemorrhagic stroke had a significantly lower level of serum soluble corin than healthy controls in men and women (all P values, <0.05). In multivariate analysis, men in the lowest quartile of serum soluble corin were more likely to have ischemic (odds ratio [OR], 4.90; 95% confidence interval, 2.99-8.03) and hemorrhagic (OR, 17.57; 95% confidence interval, 4.85-63.71) stroke than men in the highest quartile. Women in the lowest quartile of serum soluble corin were also more likely to have ischemic (OR, 3.10; 95% confidence interval, 1.76-5.44) and hemorrhagic (OR, 8.54; 95% confidence interval, 2.35-31.02) stroke than women in the highest quartile. ORs of ischemic and hemorrhagic stroke were significantly increased with the decreasing levels of serum soluble corin in men and women (all P values for trend, <0.001). \n CONCLUSIONS Serum soluble corin was decreased in patients with stroke compared with healthy controls. Our findings raise the possibility that serum soluble corin may have a pathogenic role in stroke.", "title": "Serum Soluble Corin is Decreased in Stroke." }, { "docid": "33884866", "text": "OBJECTIVE The sphingosine-1-phosphate (S1P) receptor agonist fingolimod (FTY720), that has shown efficacy in advanced multiple sclerosis clinical trials, decreases reperfusion injury in heart, liver, and kidney. We therefore tested the therapeutic effects of fingolimod in several rodent models of focal cerebral ischemia. To assess the translational significance of these findings, we asked whether fingolimod improved long-term behavioral outcomes, whether delayed treatment was still effective, and whether neuroprotection can be obtained in a second species. \n METHODS We used rodent models of middle cerebral artery occlusion and cell-culture models of neurotoxicity and inflammation to examine the therapeutic potential and mechanisms of neuroprotection by fingolimod. \n RESULTS In a transient mouse model, fingolimod reduced infarct size, neurological deficit, edema, and the number of dying cells in the core and periinfarct area. Neuroprotection was accompanied by decreased inflammation, as fingolimod-treated mice had fewer activated neutrophils, microglia/macrophages, and intercellular adhesion molecule-1 (ICAM-1)-positive blood vessels. Fingolimod-treated mice showed a smaller infarct and performed better in behavioral tests up to 15 days after ischemia. Reduced infarct was observed in a permanent model even when mice were treated 4 hours after ischemic onset. Fingolimod also decreased infarct size in a rat model of focal ischemia. Fingolimod did not protect primary neurons against glutamate excitotoxicity or hydrogen peroxide, but decreased ICAM-1 expression in brain endothelial cells stimulated by tumor necrosis factor alpha. \n INTERPRETATION These findings suggest that anti-inflammatory mechanisms, and possibly vasculoprotection, rather than direct effects on neurons, underlie the beneficial effects of fingolimod after stroke. S1P receptors are a highly promising target in stroke treatment.", "title": "Fingolimod provides long-term protection in rodent models of cerebral ischemia." }, { "docid": "16760369", "text": "CONTEXT Clinicians and trialists have difficulty with identifying which patients are highest risk for cardiovascular events. Prior ischemic events, polyvascular disease, and diabetes mellitus have all been identified as predictors of ischemic events, but their comparative contributions to future risk remain unclear. \n OBJECTIVE To categorize the risk of cardiovascular events in stable outpatients with various initial manifestations of atherothrombosis using simple clinical descriptors. \n DESIGN, SETTING, AND PATIENTS Outpatients with coronary artery disease, cerebrovascular disease, or peripheral arterial disease or with multiple risk factors for atherothrombosis were enrolled in the global Reduction of Atherothrombosis for Continued Health (REACH) Registry and were followed up for as long as 4 years. Patients from 3647 centers in 29 countries were enrolled between 2003 and 2004 and followed up until 2008. Final database lock was in April 2009. \n MAIN OUTCOME MEASURES Rates of cardiovascular death, myocardial infarction, and stroke. \n RESULTS A total of 45,227 patients with baseline data were included in this 4-year analysis. During the follow-up period, a total of 5481 patients experienced at least 1 event, including 2315 with cardiovascular death, 1228 with myocardial infarction, 1898 with stroke, and 40 with both a myocardial infarction and stroke on the same day. Among patients with atherothrombosis, those with a prior history of ischemic events at baseline (n = 21,890) had the highest rate of subsequent ischemic events (18.3%; 95% confidence interval [CI], 17.4%-19.1%); patients with stable coronary, cerebrovascular, or peripheral artery disease (n = 15,264) had a lower risk (12.2%; 95% CI, 11.4%-12.9%); and patients without established atherothrombosis but with risk factors only (n = 8073) had the lowest risk (9.1%; 95% CI, 8.3%-9.9%) (P < .001 for all comparisons). In addition, in multivariable modeling, the presence of diabetes (hazard ratio [HR], 1.44; 95% CI, 1.36-1.53; P < .001), an ischemic event in the previous year (HR, 1.71; 95% CI, 1.57-1.85; P < .001), and polyvascular disease (HR, 1.99; 95% CI, 1.78-2.24; P < .001) each were associated with a significantly higher risk of the primary end point. \n CONCLUSION Clinical descriptors can assist clinicians in identifying high-risk patients within the broad range of risk for outpatients with atherothrombosis.", "title": "Comparative determinants of 4-year cardiovascular event rates in stable outpatients at risk of or with atherothrombosis." }, { "docid": "32328114", "text": "Stroke ranks as the third leading cause of death in the United States. It is now estimated that there are more than 700 000 incident strokes annually and 4.4 million stroke survivors.1 2 The economic burden of stroke was estimated by the American Heart Association to be $51 billion (direct and indirect costs) in 1999.3 Despite the advent of treatment of selected patients with acute ischemic stroke with tissue plasminogen activator and the promise of other experimental therapies, the best approach to reducing the burden of stroke remains prevention.4 5 High-risk or stroke-prone individuals can be identified and targeted for specific interventions.6 This is important because epidemiological data suggest a substantial leveling off of prior declines in stroke-related mortality and a possible increase in stroke incidence.7 8 The Stroke Council of the American Heart Association formed an ad hoc writing group to provide a clear and concise overview of the evidence regarding various established and potential stroke risk factors. The writing group was chosen based on expertise in specific subject areas, and it used literature review, reference to previously published guidelines, and expert opinion to summarize existing evidence and formulate recommendations (Table 1⇓). View this table: Table 1. Levels of Evidence and Grading of Recommendations As given in Tables 2 through 4⇓⇓⇓, risk factors or risk markers for a first stroke were classified according to potential for modification (nonmodifiable, modifiable, or potentially modifiable) and strength of evidence (well documented, less well documented).5 The tables give the estimated prevalence, population attributable risk, relative risk, and risk reduction with treatment for each factor when known. Population attributable risk reflects the proportion of ischemic strokes in the population that can be attributed to a particular risk factor and is given by the formula 100×[prevalence(relative risk−1)/prevalence(relative risk−1)+1]). …", "title": "Primary prevention of ischemic stroke: A statement for healthcare professionals from the Stroke Council of the American Heart Association." }, { "docid": "27602752", "text": "Encephalitis and dementia associated with acquired immunodeficiency syndrome (AIDS) are characterized by leukocyte infiltration into the CNS, microglia activation, aberrant chemokine expression, blood-brain barrier (BBB) disruption, and eventual loss of neurons. Little is known about whether human immunodeficiency virus 1 (HIV-1) infection of leukocytes affects their ability to transmigrate in response to chemokines and to alter BBB integrity. We now demonstrate that HIV infection of human leukocytes results in their increased transmigration across our tissue culture model of the human BBB in response to the chemokine CCL2, as well as in disruption of the BBB, as evidenced by enhanced permeability, reduction of tight junction proteins, and expression of matrix metalloproteinases (MMP)-2 and MMP-9. HIV-infected cells added to our model did not transmigrate in the absence of CCL2, nor did this condition alter BBB integrity. The chemokines CXCL10/interferon-gamma-inducible protein of 10 kDa, CCL3/macrophage inflammatory protein-1alpha, or CCL5/RANTES (regulated on activation normal T-cell expressed and secreted) did not enhance HIV-infected leukocyte transmigration or BBB permeability. The increased capacity of HIV-infected leukocytes to transmigrate in response to CCL2 correlated with their increased expression of CCR2, the chemokine receptor for CCL2. These data suggest that CCL2, but not other chemokines, plays a key role in infiltration of HIV-infected leukocytes into the CNS and the subsequent pathology characteristic of NeuroAIDS.", "title": "CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS." }, { "docid": "21571708", "text": "CONTEXT Circulating concentration of lipoprotein(a) (Lp[a]), a large glycoprotein attached to a low-density lipoprotein-like particle, may be associated with risk of coronary heart disease (CHD) and stroke. \n OBJECTIVE To assess the relationship of Lp(a) concentration with risk of major vascular and nonvascular outcomes. STUDY SELECTION Long-term prospective studies that recorded Lp(a) concentration and subsequent major vascular morbidity and/or cause-specific mortality published between January 1970 and March 2009 were identified through electronic searches of MEDLINE and other databases, manual searches of reference lists, and discussion with collaborators. \n DATA EXTRACTION Individual records were provided for each of 126,634 participants in 36 prospective studies. During 1.3 million person-years of follow-up, 22,076 first-ever fatal or nonfatal vascular disease outcomes or nonvascular deaths were recorded, including 9336 CHD outcomes, 1903 ischemic strokes, 338 hemorrhagic strokes, 751 unclassified strokes, 1091 other vascular deaths, 8114 nonvascular deaths, and 242 deaths of unknown cause. Within-study regression analyses were adjusted for within-person variation and combined using meta-analysis. Analyses excluded participants with known preexisting CHD or stroke at baseline. \n DATA SYNTHESIS Lipoprotein(a) concentration was weakly correlated with several conventional vascular risk factors and it was highly consistent within individuals over several years. Associations of Lp(a) with CHD risk were broadly continuous in shape. In the 24 cohort studies, the rates of CHD in the top and bottom thirds of baseline Lp(a) distributions, respectively, were 5.6 (95% confidence interval [CI], 5.4-5.9) per 1000 person-years and 4.4 (95% CI, 4.2-4.6) per 1000 person-years. The risk ratio for CHD, adjusted for age and sex only, was 1.16 (95% CI, 1.11-1.22) per 3.5-fold higher usual Lp(a) concentration (ie, per 1 SD), and it was 1.13 (95% CI, 1.09-1.18) following further adjustment for lipids and other conventional risk factors. The corresponding adjusted risk ratios were 1.10 (95% CI, 1.02-1.18) for ischemic stroke, 1.01 (95% CI, 0.98-1.05) for the aggregate of nonvascular mortality, 1.00 (95% CI, 0.97-1.04) for cancer deaths, and 1.00 (95% CI, 0.95-1.06) for nonvascular deaths other than cancer. \n CONCLUSION Under a wide range of circumstances, there are continuous, independent, and modest associations of Lp(a) concentration with risk of CHD and stroke that appear exclusive to vascular outcomes.", "title": "Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality." }, { "docid": "7157436", "text": "In the adult brain, new neurons are continuously generated in the subventricular zone and dentate gyrus, but it is unknown whether these neurons can replace those lost following damage or disease. Here we show that stroke, caused by transient middle cerebral artery occlusion in adult rats, leads to a marked increase of cell proliferation in the subventricular zone. Stroke-generated new neurons, as well as neuroblasts probably already formed before the insult, migrate into the severely damaged area of the striatum, where they express markers of developing and mature, striatal medium-sized spiny neurons. Thus, stroke induces differentiation of new neurons into the phenotype of most of the neurons destroyed by the ischemic lesion. Here we show that the adult brain has the capacity for self-repair after insults causing extensive neuronal death. If the new neurons are functional and their formation can be stimulated, a novel therapeutic strategy might be developed for stroke in humans.", "title": "Neuronal replacement from endogenous precursors in the adult brain after stroke" }, { "docid": "21181273", "text": "Prostaglandin E2 (PGE2) can stimulate tumor progression by modulating several proneoplastic pathways, including proliferation, angiogenesis, cell migration, invasion, and apoptosis. Although steady-state tissue levels of PGE2 stem from relative rates of biosynthesis and breakdown, most reports examining PGE2 have focused solely on the cyclooxygenase-dependent formation of this bioactive lipid. Enzymatic degradation of PGE2 involves the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). The present study examined a range of normal tissues in the human and mouse and found high levels of 15-PGDH in the large intestine. By contrast, the expression of 15-PGDH is decreased in several colorectal carcinoma cell lines and in other human malignancies such as breast and lung carcinomas. Consistent with these findings, we observe diminished 15-Pgdh expression in ApcMin+/- mouse adenomas. Enzymatic activity of 15-PGDH correlates with expression levels and the genetic disruption of 15-Pgdh completely blocks production of the urinary PGE2 metabolite. Finally, 15-PGDH expression and activity are significantly down-regulated in human colorectal carcinomas relative to matched normal tissue. In summary, these results suggest a novel tumor suppressive role for 15-PGDH due to loss of expression during colorectal tumor progression.", "title": "15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer." }, { "docid": "14753395", "text": "Neural signalling within the central nervous system (CNS) requires a highly controlled microenvironment. Cells at three key interfaces form barriers between the blood and the CNS: the blood-brain barrier (BBB), blood-CSF barrier and the arachnoid barrier. The BBB at the level of brain microvessel endothelium is the major site of blood-CNS exchange. The structure and function of the BBB is summarised, the physical barrier formed by the endothelial tight junctions, and the transport barrier resulting from membrane transporters and vesicular mechanisms. The roles of associated cells are outlined, especially the endfeet of astrocytic glial cells, and pericytes and microglia. The embryonic development of the BBB, and changes in pathology are described. The BBB is subject to short and long-term regulation, which may be disturbed in pathology. Any programme for drug discovery or delivery, to target or avoid the CNS, needs to consider the special features of the BBB.", "title": "Structure and function of the blood–brain barrier" }, { "docid": "23983289", "text": "OBJECTIVES We sought to determine which ICD-9-CM codes in Medicare Part A data identify cardiovascular and stroke risk factors. \n DESIGN AND PARTICIPANTS This was a cross-sectional study comparing ICD-9-CM data to structured medical record review from 23,657 Medicare beneficiaries aged 20 to 105 years who had atrial fibrillation. \n MEASUREMENTS Quality improvement organizations used standardized abstraction instruments to determine the presence of 9 cardiovascular and stroke risk factors. Using the chart abstractions as the gold standard, we assessed the accuracy of ICD-9-CM codes to identify these risk factors. \n MAIN RESULTS ICD-9-CM codes for all risk factors had high specificity (>0.95) and low sensitivity (< or =0.76). The positive predictive values were greater than 0.95 for 5 common, chronic risk factors-coronary artery disease, stroke/transient ischemic attack, heart failure, diabetes, and hypertension. The sixth common risk factor, valvular heart disease, had a positive predictive value of 0.93. For all 6 common risk factors, negative predictive values ranged from 0.52 to 0.91. The rare risk factors-arterial peripheral embolus, intracranial hemorrhage, and deep venous thrombosis-had high negative predictive value (> or =0.98) but moderate positive predictive values (range, 0.54-0.77) in this population. \n CONCLUSIONS Using ICD-9-CM codes alone, heart failure, coronary artery disease, diabetes, hypertension, and stroke can be ruled in but not necessarily ruled out. Where feasible, review of additional data (eg, physician notes or imaging studies) should be used to confirm the diagnosis of valvular disease, arterial peripheral embolus, intracranial hemorrhage, and deep venous thrombosis.", "title": "Accuracy of ICD-9-CM codes for identifying cardiovascular and stroke risk factors." }, { "docid": "37619697", "text": "BACKGROUND Phenylpropanolamine is commonly found in appetite suppressants and cough or cold remedies. Case reports have linked the use of products containing phenylpropanolamine to hemorrhagic stroke, often after the first use of these products. To study the association, we designed a case-control study. \n METHODS Men and women 18 to 49 years of age were recruited from 43 U.S. hospitals. Eligibility criteria included the occurrence of a subarachnoid or intracerebral hemorrhage within 30 days before enrollment and the absence of a previously diagnosed brain lesion. Random-digit dialing identified two matched control subjects per patient. \n RESULTS There were 702 patients and 1376 control subjects. For women, the adjusted odds ratio was 16.58 (95 percent confidence interval, 1.51 to 182.21; P=0.02) for the association between the use of appetite suppressants containing phenylpropanolamine and the risk of a hemorrhagic stroke and 3.13 (95 percent confidence interval, 0.86 to 11.46; P=0.08) for the association with the first use of a product containing phenylpropanolamine. All first uses of phenylpropanolamine involved cough or cold remedies. For men and women combined, the adjusted odds ratio was 1.49 (95 percent confidence interval, 0.84 to 2.64; P=0.17) for the association between the use of a product containing phenylpropanolamine and the risk of a hemorrhagic stroke, 1.23 (95 percent confidence interval, 0.68 to 2.24; P=0.49) for the association with the use of cough or cold remedies that contained phenylpropanolamine, and 15.92 (95 percent confidence interval, 1.38 to 184.13; P=0.03) for the association with the use of appetite suppressants that contained phenylpropanolamine. An analysis in men showed no increased risk of a hemorrhagic stroke in association with the use of cough or cold remedies containing phenylpropanolamine. No men reported the use of appetite suppressants. \n CONCLUSIONS The results suggest that phenylpropanolamine in appetite suppressants, and possibly in cough and cold remedies, is an independent risk factor for hemorrhagic stroke in women.", "title": "Phenylpropanolamine and the risk of hemorrhagic stroke." }, { "docid": "6158879", "text": "BACKGROUND Patients with diabetes mellitus (DM) are at high risk for recurrent cardiovascular events after acute coronary syndromes, in part because of increased platelet reactivity. The Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition With Prasugrel-Thrombolysis in Myocardial Infarction 38 (TRITON-TIMI 38) showed an overall reduction in ischemic events with more intensive antiplatelet therapy with prasugrel than with clopidogrel but with more bleeding. We compared prasugrel with clopidogrel among subjects with DM in TRITON-TIMI 38. \n METHODS AND RESULTS We classified 13 608 subjects on the basis of preexisting history of DM and further according to insulin use. Prespecified analyses of the primary (cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke) and key secondary end points, including net clinical benefit (death, nonfatal myocardial infarction, nonfatal stroke, and nonfatal TIMI major bleeding) were compared by use of the log-rank test. We found that 3146 subjects had a preexisting history of DM, including 776 receiving insulin. The primary end point was reduced significantly with prasugrel among subjects without DM (9.2% versus 10.6%; hazard ratio [HR], 0.86; P=0.02) and with DM (12.2% versus 17.0%; HR, 0.70; P<0.001, P(interaction)=0.09). A benefit for prasugrel was observed among DM subjects on insulin (14.3% versus 22.2%; HR, 0.63; P=0.009) and those not on insulin (11.5% versus 15.3%; HR, 0.74; P=0.009). Myocardial infarction was reduced with prasugrel by 18% among subjects without DM (7.2% versus 8.7%; HR, 0.82; P=0.006) and by 40% among subjects with DM (8.2% versus 13.2%; HR, 0.60; P<0.001, P(interaction)=0.02). Although TIMI major hemorrhage was increased among subjects without DM on prasugrel (1.6% versus 2.4%; HR, 1.43; P=0.02), the rates were similar among subjects with DM for clopidogrel and prasugrel (2.6% versus 2.5%; HR, 1.06; P=0.81, P(interaction)=0.29). Net clinical benefit with prasugrel was greater for subjects with DM (14.6% versus 19.2%; HR, 0.74; P=0.001) than for subjects without DM (11.5% versus 12.3%; HR, 0.92; P=0.16, P(interaction)=0.05). \n CONCLUSIONS Subjects with DM tended to have a greater reduction in ischemic events without an observed increase in TIMI major bleeding and therefore a greater net treatment benefit with prasugrel compared with clopidogrel. These data demonstrate that the more intensive oral antiplatelet therapy provided with prasugrel is of particular benefit to patients with DM.", "title": "Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-Thrombolysis in Myocardial Infarction 38." }, { "docid": "10766688", "text": "Population diversity data have recently provided profound, albeit inferential, insights into meiotic recombination across the human genome, revealing a landscape dominated by thousands of cross-over hotspots. However, very few of these putative hotspots have been directly analyzed for cross-over activity. We now describe a search for very active hotspots, by using extreme breakdown of marker association as a guide for high-resolution sperm cross-over analysis. This strategy has led to the isolation of the most active cross-over hotspots yet described. Their morphology, sequence attributes, and cross-over processes are very similar to those seen at less active hotspots, but their activity in sperm is poorly predicted from population diversity information. Several of these hotspots showed evidence for biased gene conversion accompanying cross-over, in some cases associated with variation between men in cross-over activity and with two hotspots showing complete presence/absence polymorphism in different men. Hotspot polymorphism is very common at less active hotspots but curiously was not seen at any of the most active hotspots. This contrasts with the prediction that extreme hotspots should be the most vulnerable to attenuation by meiotic drive in favor of mutations that suppress recombination and should therefore show rapid rate evolution and thus variation in activity between men. Finally, these very intense hotspots provide a valuable resource for dissecting meiotic recombination processes and pathways in humans.", "title": "Sperm cross-over activity in regions of the human genome showing extreme breakdown of marker association." }, { "docid": "2682997", "text": "Despite the importance of CNS blood vessels, the molecular mechanisms that regulate CNS angiogenesis and blood-brain barrier (BBB) formation are largely unknown. Here we analyze the role of Wnt/beta-catenin signaling in regulating the formation of CNS blood vessels. First, through the analysis of TOP-Gal Wnt reporter mice, we identify that canonical Wnt/beta-catenin signaling is specifically activated in CNS, but not non-CNS, blood vessels during development. This activation correlates with the expression of different Wnt ligands by neural progenitor cells in distinct locations throughout the CNS, including Wnt7a and Wnt7b in ventral regions and Wnt1, Wnt3, Wnt3a, and Wnt4 in dorsal regions. Blockade of Wnt/beta-catenin signaling in vivo specifically disrupts CNS, but not non-CNS, angiogenesis. These defects include reduction in vessel number, loss of capillary beds, and the formation of hemorrhagic vascular malformations that remain adherent to the meninges. Furthermore, we demonstrate that Wnt/beta-catenin signaling regulates the expression of the BBB-specific glucose transporter glut-1. Taken together these experiments reveal an essential role for Wnt/beta-catenin signaling in driving CNS-specific angiogenesis and provide molecular evidence that angiogenesis and BBB formation are in part linked.", "title": "Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis." }, { "docid": "118568", "text": "INTRODUCTION Endothelial activation leading to vascular barrier breakdown plays an essential role in the pathophysiology of multiple-organ dysfunction syndrome (MODS) in sepsis. Increasing evidence suggests that the function of the vessel-protective factor Angiopoietin-1 (Ang-1), a ligand of the endothelial-specific Tie2 receptor, is inhibited by its antagonist Angiopoietin-2 (Ang-2) during sepsis. In order to reverse the effects of the sepsis-induced suppression of Ang-1 and elevation of Ang-2 we aimed to investigate whether an intravenous injection of recombinant human (rh) Ang-1 protects against MODS in murine sepsis. \n METHODS Polymicrobiological abdominal sepsis was induced by cecal ligation and puncture (CLP). Mice were treated with either 1 μg of intravenous rhAng-1 or control buffer immediately after CLP induction and every 8h thereafter. Sham-operated animals served as time-matched controls. \n RESULTS Compared to buffer-treated controls, rhAng-1 treated septic mice showed significant improvements in several hematologic and biochemical indicators of MODS. Moreover, rhAng-1 stabilized endothelial barrier function, as evidenced by inhibition of protein leakage from lung capillaries into the alveolar compartment. Histological analysis revealed that rhAng-1 treatment attenuated leukocyte infiltration in lungs and kidneys of septic mice, probably due to reduced endothelial adhesion molecule expression in rhAng-1 treated mice. Finally, the protective effects of rhAng-1 treatment were reflected by an improved survival time in a lethal CLP model. \n CONCLUSIONS In a clinically relevant murine sepsis model, intravenous rhAng-1 treatment alone is sufficient to significantly improve a variety of sepsis-associated organ dysfunctions and survival time, most likely by preserving endothelial barrier function. Further studies are needed to pave the road for clinical application of this therapy concept.", "title": "Acute administration of recombinant Angiopoietin-1 ameliorates multiple-organ dysfunction syndrome and improves survival in murine sepsis." }, { "docid": "8227227", "text": "The locations of cerebral infarctions were studied in 14 patients with tuberculous meningitis (TBM) and 173 patients with noninflammatory ischemic stroke (IS). In patients with TBM, 75% of infarctions occurred in the “TB zone” supplied by medial striate and thalamoperforating arteries; only 11% occurred in the “IS zone” supplied by lateral striate, anterior choroidal and thalamogeniculate arteries. In patients with IS 29% of infarctions occurred in the IS zone, 29% in the subcortical white matter, and 24% in (or involving) the cerebral cortex. Only 11% occurred in the TB zone. Bilaterally symmetrical infarctions of the TB zone were common with TMB (71%) but rare with IS (5%).", "title": "Locations of cerebral infarctions in tuberculous meningitis" } ]
481
Guanine nucleotide dissociation inhibitor (Rho-GDI) interacts with the p75 NTR death domain
[ { "docid": "14706752", "text": "The multifunctional signaling protein p75 neurotrophin receptor (p75(NTR)) is a central regulator and major contributor to the highly invasive nature of malignant gliomas. Here, we show that neurotrophin-dependent regulated intramembrane proteolysis (RIP) of p75(NTR) is required for p75(NTR)-mediated glioma invasion, and identify a previously unnamed process for targeted glioma therapy. Expression of cleavage-resistant chimeras of p75(NTR) or treatment of animals bearing p75(NTR)-positive intracranial tumors with clinically applicable gamma-secretase inhibitors resulted in dramatically decreased glioma invasion and prolonged survival. Importantly, proteolytic processing of p75(NTR) was observed in p75(NTR)-positive patient tumor specimens and brain tumor initiating cells. This work highlights the importance of p75(NTR) as a therapeutic target, suggesting that gamma-secretase inhibitors may have direct clinical application for the treatment of malignant glioma.", "title": "Gamma-Secretase Represents a Therapeutic Target for the Treatment of Invasive Glioma Mediated by the p75 Neurotrophin Receptor" } ]
[ { "docid": "368506", "text": "The p75(NTR) neurotrophin receptor has been implicated in multiple biological and pathological processes. While significant advances have recently been made in understanding the physiologic role of p75(NTR) , many details and aspects remain to be determined. This is in part because the two existing knockout mouse models (Exons 3 or 4 deleted, respectively), both display features that defy definitive conclusions. Here we describe the generation of mice that carry a conditional p75(NTR) (p75(NTR-FX) ) allele made by flanking Exons 4-6, which encode the transmembrane and all cytoplasmic domains, by loxP sites. To validate this novel conditional allele, both neural crest-specific p75(NTR) /Wnt1-Cre mutants and conventional p75(NTR) null mutants were generated. Both mutants displayed abnormal hind limb reflexes, implying that loss of p75(NTR) in neural crest-derived cells causes a peripheral neuropathy similar to that seen in conventional p75(NTR) mutants. This novel conditional p75(NTR) allele will offer new opportunities to investigate the role of p75(NTR) in specific tissues and cells.", "title": "Generation of mice with a conditional allele for the p75(NTR) neurotrophin receptor gene." }, { "docid": "14119470", "text": "Ran is an abundant nuclear GTPase with a clear role in nuclear transport during interphase but with roles in mitotic regulation that are less well understood. The nucleotide-binding state of Ran is regulated by a GTPase activating protein, RanGAP1, and by a guanine nucleotide exchange factor, RCC1. Ran also interacts with a guanine nucleotide dissociation inhibitor, RanBP1. RanBP1 has a high affinity for GTP-bound Ran, and it acts as a cofactor for RanGAP1, increasing the rate of GAP-mediated GTP hydrolysis on Ran approximately tenfold. RanBP1 levels oscillate during the cell cycle [4], and increased concentrations of RanBP1 prolong mitosis in mammalian cells and in Xenopus egg extracts (our unpublished observations). We investigated how increased concentrations of RanBP1 disturb mitosis. We found that spindle assembly is dramatically disrupted when exogenous RanBP1 is added to M phase Xenopus egg extracts. We present evidence that the role of Ran in spindle assembly is independent of nuclear transport and is probably mediated through changes in microtubule dynamics.", "title": "The Ran GTPase regulates mitotic spindle assembly" }, { "docid": "8093935", "text": "Sec7-related guanine nucleotide exchange factors (GEFs) initiate vesicle budding from the Golgi membrane surface by converting the GTPase ARF to a GTP-bound, membrane-associated form. Here we report the crystal structure of the catalytic Sec7 homology domain of Arno, a human GEF for ARF1, determined at 2.2 angstroms resolution. The Sec7 domain is an elongated, all-helical protein with a distinctive hydrophobic groove that is phylogenetically conserved. Structure-based mutagenesis identifies the groove and an adjacent conserved loop as the ARF-interacting surface. The sites of Sec7 domain interaction on ARF1 have subsequently been mapped, by protein footprinting experiments, to the switch 1 and switch 2 GTPase regions, leading to a model for the interaction between ARF GTPases and Sec7 domain exchange factors.", "title": "Structure of the Guanine Nucleotide Exchange Factor Sec7 Domain of Human Arno and Analysis of the Interaction with ARF GTPase" }, { "docid": "24881307", "text": "Synapses are specialized cell-cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development.", "title": "Control of synapse development and plasticity by Rho GTPase regulatory proteins" }, { "docid": "14461101", "text": "Certain bacterial adhesins appear to promote a pathogen's extracellular lifestyle rather than its entry into host cells. However, little is known about the stimuli elicited upon such pathogen host-cell interactions. Here, we report that type IV pili (Tfp)-producing Neisseria gonorrhoeae (P(+)GC) induces an immediate recruitment of caveolin-1 (Cav1) in the host cell, which subsequently prevents bacterial internalization by triggering cytoskeletal rearrangements via downstream phosphotyrosine signaling. A broad and unbiased analysis of potential interaction partners for tyrosine-phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, were found to play a direct role in the Cav1-mediated prevention of bacterial uptake. Our findings, which have been extended to enteropathogenic Escherichia coli, highlight how Tfp-producing bacteria avoid host cell uptake. Further, our data establish a mechanistic link between Cav1 phosphorylation and pathogen-induced cytoskeleton reorganization and advance our understanding of caveolin function.", "title": "Tyrosine-Phosphorylated Caveolin-1 Blocks Bacterial Uptake by Inducing Vav2-RhoA-Mediated Cytoskeletal Rearrangements" }, { "docid": "24550453", "text": "NusG is a conserved regulatory protein that interacts with elongation complexes (ECs) of RNA polymerase, DNA, and RNA to modulate transcription in multiple and sometimes opposite ways. In Escherichia coli, NusG suppresses pausing and increases elongation rate, enhances termination by E. coli rho and phage HK022 Nun protein, and promotes antitermination by lambdaN and in ribosomal RNA operons. We report NMR studies that suggest that E. coli NusG consists of two largely independent N- and C-terminal structural domains, NTD and CTD, respectively. Based on tests of the functions of the NTD and CTD and variants of NusG in vivo and in vitro, we find that NTD alone is sufficient to suppress pausing and enhance transcript elongation in vitro. However, neither domain alone can enhance rho-dependent termination or support antitermination, indicating that interactions of both domains with ECs are required for these processes. We propose that the two domains of NusG mediate distinct interactions with ECs: the NTD interacts with RNA polymerase and the CTD interacts with rho and other regulators, providing NusG with different combinations of interactions to effect different regulatory outcomes.", "title": "Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators." }, { "docid": "10991183", "text": "How individual cells respond to mechanical forces is of considerable interest to biologists as force affects many aspects of cell behaviour. The application of force on integrins triggers cytoskeletal rearrangements and growth of the associated adhesion complex, resulting in increased cellular stiffness, also known as reinforcement. Although RhoA has been shown to play a role during reinforcement, the molecular mechanisms that regulate its activity are unknown. By combining biochemical and biophysical approaches, we identified two guanine nucleotide exchange factors (GEFs), LARG and GEF-H1, as key molecules that regulate the cellular adaptation to force. We show that stimulation of integrins with tensional force triggers activation of these two GEFs and their recruitment to adhesion complexes. Surprisingly, activation of LARG and GEF-H1 involves distinct signalling pathways. Our results reveal that LARG is activated by the Src family tyrosine kinase Fyn, whereas GEF-H1 catalytic activity is enhanced by ERK downstream of a signalling cascade that includes FAK and Ras.", "title": "The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins" }, { "docid": "5914739", "text": "The CD3ε and ζ cytoplasmic domains of the T cell receptor bind to the inner leaflet of the plasma membrane (PM), and a previous nuclear magnetic resonance structure showed that both tyrosines of the CD3ε immunoreceptor tyrosine-based activation motif partition into the bilayer. Electrostatic interactions between acidic phospholipids and clusters of basic CD3ε residues were previously shown to be essential for CD3ε and ζ membrane binding. Phosphatidylserine (PS) is the most abundant negatively charged lipid on the inner leaflet of the PM and makes a major contribution to membrane binding by the CD3ε cytoplasmic domain. Here, we show that TCR triggering by peptide--MHC complexes induces dissociation of the CD3ε cytoplasmic domain from the plasma membrane. Release of the CD3ε cytoplasmic domain from the membrane is accompanied by a substantial focal reduction in negative charge and available PS in TCR microclusters. These changes in the lipid composition of TCR microclusters even occur when TCR signaling is blocked with a Src kinase inhibitor. Local changes in the lipid composition of TCR microclusters thus render the CD3ε cytoplasmic domain accessible during early stages of T cell activation.", "title": "Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain" }, { "docid": "25251625", "text": "The use of caspase inhibitors has revealed the existence of alternative backup cell death programs for apoptosis. The broad-spectrum caspase inhibitor zVAD-fmk modulates the three major types of cell death. Addition of zVAD-fmk blocks apoptotic cell death, sensitizes cells to necrotic cell death, and induces autophagic cell death. Several studies have shown a crucial role for the kinase RIP1 and the adenosine nucleotide translocator (ANT)-cyclophilin D (CypD) complex in necrotic cell death. The underlying mechanism of zVAD-fmk-mediated sensitization to necrotic cell death involves the inhibition of caspase-8-mediated proteolysis of RIP1 and disturbance of the ANT-CypD interaction. RIP1 is also involved in autophagic cell death. Caspase inhibitors and knockdown studies have revealed negative roles for catalase and caspase-8 in autophagic cell death. The positive role of RIP1 and the negative role of caspase-8 in both necrotic and autophagic cell death suggest that the pathways of these two types of cell death are interconnected. Necrotic cell death represents a rapid cellular response involving mitochondrial reactive oxygen species (ROS) production, decreased adenosine triphosphate concentration, and other cellular insults, whereas autophagic cell death first starts as a survival attempt by cleaning up ROS-damaged mitochondria. However, when this process occurs in excess, autophagy itself becomes cytotoxic and eventually leads to autophagic cell death. A better understanding of the molecular mechanisms of these alternative cell death pathways may provide therapeutic tools to combat cell death associated with neurodegenerative diseases, ischemia-reperfusion pathologies, and infectious diseases, and may also facilitate the development of alternative cytotoxic strategies in cancer treatment.", "title": "Caspase inhibitors promote alternative cell death pathways." }, { "docid": "34498093", "text": "The dynein motor domain is composed of a tail, head, and stalk and is thought to generate a force to microtubules by swinging the tail against the head during its ATPase cycle. For this \"power stroke,\" dynein has to coordinate the tail swing with microtubule association/dissociation at the tip of the stalk. Although a detailed picture of the former process is emerging, the latter process remains to be elucidated. By using the single-headed recombinant motor domain of Dictyostelium cytoplasmic dynein, we address the questions of how the interaction of the motor domain with a microtubule is modulated by ATPase steps, how the two mechanical cycles (the microtubule association/dissociation and tail swing) are coordinated, and which ATPase site among the multiple sites in the motor domain regulates the coordination. Based on steady-state and pre-steady-state measurements, we demonstrate that the two mechanical cycles proceed synchronously at most of the intermediate states in the ATPase cycle: the motor domain in the poststroke state binds strongly to the microtubule with a K(d) of approximately 0.2 microM, whereas most of the motor domains in the prestroke state bind weakly to the microtubule with a K(d) of >10 microM. However, our results suggest that the timings of the microtubule affinity change and tail swing are staggered at the recovery stroke step in which the tail swings from the poststroke to the prestroke position. The ATPase site in the AAA1 module of the motor domain was found to be responsible for the coordination of these two mechanical processes.", "title": "The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein." }, { "docid": "207972", "text": "Early region 3 (E3) of group C human adenoviruses (Ad) encodes several inhibitors of tumor necrosis factor alpha (TNF-alpha) cytolysis, including an E3 14.7-kDa protein (E3-14.7K) and a heterodimer containing two polypeptides of 10.4 and 14.5 kDa. To understand the mechanism by which the viral proteins inhibit TNF-alpha functions, the E3-14.7K protein was used to screen a HeLa cell cDNA library to search for interacting proteins in the yeast two-hybrid system. A novel protein containing multiple leucine zipper domains without any significant homology with any known protein was identified and has been named FIP-2 (for 14.7K-interacting protein). FIP-2 interacted with E3-14.7K both in vitro and in vivo. It colocalized with Ad E3-14.7K in the cytoplasm, especially near the nuclear membrane, and caused redistribution of the viral protein. FIP-2 by itself does not cause cell death; however, it can reverse the protective effect of E3-14.7K on cell killing induced by overexpression of the intracellular domain of the 55-kDa TNF receptor or by RIP, a death protein involved in the TNF-alpha and Fas apoptosis pathways. Deletion analysis indicates that the reversal effect of FIP-2 depends on its interaction with E3-14.7K. Three major mRNA forms of FIP-2 have been detected in multiple human tissues, and expression of the transcripts was induced by TNF-alpha treatment in a time-dependent manner in two different cell lines. FIP-2 has consensus sequences for several potential posttranslational modifications. These data suggest that FIP-2 is one of the cellular targets for Ad E3-14.7K and that its mechanism of affecting cell death involves the TNF receptor, RIP, or a downstream molecule affected by either of these two molecules.", "title": "Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains." }, { "docid": "25842866", "text": "Most eukaryotic telomeres contain a repeating motif with stretches of guanine residues that form a 3'-terminal overhang extending beyond the telomeric duplex region. The telomeric repeat of hypotrichous ciliates, d(T(4)G(4)), forms a 16-nucleotide 3'-overhang. Such sequences can adopt parallel-stranded as well as antiparallel-stranded quadruplex conformations in vitro. Although it has been proposed that guanine-quadruplex conformations may have important cellular roles including telomere function, recombination, and transcription, evidence for the existence of this DNA structure in vivo has been elusive to date. We have generated high-affinity single-chain antibody fragment (scFv) probes for the guanine-quadruplex formed by the Stylonychia telomeric repeat, by ribosome display from the Human Combinatorial Antibody Library. Of the scFvs selected, one (Sty3) had an affinity of K(d) = 125 pM for the parallel-stranded guanine-quadruplex and could discriminate with at least 1,000-fold specificity between parallel or antiparallel quadruplex conformations formed by the same sequence motif. A second scFv (Sty49) bound both the parallel and antiparallel quadruplex with similar (K(d) = 3--5 nM) affinity. Indirect immunofluorescence studies show that Sty49 reacts specifically with the macronucleus but not the micronucleus of Stylonychia lemnae. The replication band, the region where replication and telomere elongation take place, was also not stained, suggesting that the guanine-quadruplex is resolved during replication. Our results provide experimental evidence that the telomeres of Stylonychia macronuclei adopt in vivo a guanine-quadruplex structure, indicating that this structure may have an important role for telomere functioning.", "title": "In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei." }, { "docid": "15426878", "text": "A model for the unidirectional movement of dynein is presented based on structural observations and biochemical experimental results available. In this model, the binding affinity of dynein for microtubule is independent of its nucleotide state and the change between strong and weak microtubule-binding is determined naturally by the variation of relative orientation between the stalk and microtubule as the stalk rotates following nucleotide-state transition. Thus the enigmatic communication from the ATP binding site in the globular domain to the far MT-binding site in the tip of the stalk, which is prerequisite in conventional models, is not required. Using the present model, the previous experimental results such as the effect of ATP and ADP bindings on dissociation of dynein from microtubule, the processive movement of single-headed axonemal dyneins at saturating ATP concentration, the load dependence of step size for the processive movement of two-headed cytoplasmic dyneins and the dependence of stall force on ATP concentration can be well explained.", "title": "Model for unidirectional movement of axonemal and cytoplasmic dynein molecules" }, { "docid": "16511863", "text": "BACKGROUND Although numerous signaling pathways are known to be activated in experimental cardiac hypertrophy, the molecular basis of the hypertrophic response inherent in human heart diseases remains largely unknown. Integrin-linked kinase (ILK) is a multifunctional protein kinase that physically links beta-integrins with the actin cytoskeleton, suggesting a potential mechanoreceptor role. \n METHODS AND RESULTS Here, we show a marked increase in ILK protein levels in hypertrophic ventricles of patients with congenital and acquired outflow tract obstruction. This increase in ILK was associated with activation of the Rho family guanine triphosphatases, Rac1 and Cdc42, and known hypertrophic signaling kinases, including extracellular signal-related kinases (ERK1/2) and p70 S6 kinase. Transgenic mice with cardiac-specific expression of a constitutively active ILK (ILK(S343D)) or wild-type ILK (ILK(WT)) exhibited a compensated ventricular hypertrophic phenotype and displayed an activation profile of guanine triphosphatases and downstream protein kinases concordant with that seen in human hypertrophy. In contrast, transgenic mice with cardiomyocyte-restricted expression of a kinase-inactive ILK (ILK(R211A)) were unable to mount a compensatory hypertrophic response to angiotensin II in vivo. \n CONCLUSIONS Taken together, these results identify ILK-regulated signaling as a broadly adaptive hypertrophic response mechanism relevant to a wide range of clinical heart disease.", "title": "Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice." }, { "docid": "6426919", "text": "Recently, mutations in the connection subdomain (CN) and RNase H domain of HIV-1 reverse transcriptase (RT) were observed to exhibit dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). To elucidate the mechanism by which CN and RH mutations confer resistance to NNRTIs, we hypothesized that these mutations reduce RNase H cleavage and provide more time for the NNRTI to dissociate from the RT, resulting in the resumption of DNA synthesis and enhanced NNRTI resistance. We observed that the effect of the reduction in RNase H cleavage on NNRTI resistance is dependent upon the affinity of each NNRTI to the RT and further influenced by the presence of NNRTI-binding pocket (BP) mutants. D549N, Q475A, and Y501A mutants, which reduce RNase H cleavage, enhance resistance to nevirapine (NVP) and delavirdine (DLV), but not to efavirenz (EFV) and etravirine (ETR), consistent with their increase in affinity for RT. Combining the D549N mutant with NNRTI BP mutants further increases NNRTI resistance from 3- to 30-fold, supporting the role of NNRTI-RT affinity in our NNRTI resistance model. We also demonstrated that CNs from treatment-experienced patients, previously reported to enhance NRTI resistance, also reduce RNase H cleavage and enhance NNRTI resistance in the context of the patient RT pol domain or a wild-type pol domain. Together, these results confirm key predictions of our NNRTI resistance model and provide support for a unifying mechanism by which CN and RH mutations can exhibit dual NRTI and NNRTI resistance.", "title": "A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors." }, { "docid": "18956141", "text": "Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD.", "title": "NEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-κB-Dependent and -Independent Functions" }, { "docid": "9185195", "text": "AIMS The vascular endothelial growth factor (VEGF) stimulates angiogenesis by induction of vessel permeability, proliferation, and migration of endothelial cells, an important process in ischaemic diseases. ADP-ribosylation factor (ARF) nucleotide-binding site opener (ARNO) (cytohesin-2) is a guanine exchange factor important for cellular signalling through ARF GTPases. However, a role for ARNO in VEGF-dependent endothelial processes has so far not been documented. Therefore, we investigated whether ARNO has a role in VEGF-dependent activation of endothelial cells and thus vessel permeability. \n METHODS AND RESULTS ARNO expression was observed in endothelial cells in vitro by RT-PCR, western blotting, and immunofluorescence as well as ex vivo by immunohistochemical staining of mouse aorta. Treatment with the cytohesin inhibitor SecinH3 or with an ARNO siRNA prevented VEGF-dependent Akt activation, assessed by detection of phosphorylated Akt, and proliferation of endothelial cells in vitro, measured by methylthiazoletetrazolium (MTT) reduction. In addition, ARNO suppression reduced VEGF-induced permeability in vessels of the mouse (C57BL/6) cremaster muscle in vivo, as measured by extravasation of fluorescein isothiocyanate (FITC)-dextran. Moreover, ARNO knock-down accelerated ligand-induced reduction in vascular endothelial growth factor receptor-2 (VEGFR-2) surface expression, internalization, and degradation, as assessed by flow cytometry and western blotting, respectively. \n CONCLUSION Our findings indicate an important and novel role for endothelial ARNO in VEGF-dependent initiation of angiogenesis by regulation of VEGFR-2 internalization in endothelial cells, resulting in the activation of the Akt pathway, vessel permeability, and ultimately endothelial proliferation. Thus, ARNO may be a new essential player in endothelial signalling and angiogenesis.", "title": "ARNO regulates VEGF-dependent tissue responses by stabilizing endothelial VEGFR-2 surface expression." }, { "docid": "6386930", "text": "Four-stranded nucleic acid structures called G-quadruplexes have been associated with important cellular processes, which should require G-quadruplex-protein interaction. However, the structural basis for specific G-quadruplex recognition by proteins has not been understood. The DEAH (Asp-Glu-Ala-His) box RNA helicase associated with AU-rich element (RHAU) (also named DHX36 or G4R1) specifically binds to and resolves parallel-stranded G-quadruplexes. Here we identified an 18-amino acid G-quadruplex-binding domain of RHAU and determined the structure of this peptide bound to a parallel DNA G-quadruplex. Our structure explains how RHAU specifically recognizes parallel G-quadruplexes. The peptide covers a terminal guanine base tetrad (G-tetrad), and clamps the G-quadruplex using three-anchor-point electrostatic interactions between three positively charged amino acids and negatively charged phosphate groups. This binding mode is strikingly similar to that of most ligands selected for specific G-quadruplex targeting. Binding to an exposed G-tetrad represents a simple and efficient way to specifically target G-quadruplex structures.", "title": "Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: Solution structure of a peptide-quadruplex complex." }, { "docid": "18041692", "text": "Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family.", "title": "Rho GTPase signalling in cell migration" } ]
482
Guanine nucleotide exchange factors (GEFs) mediate RhoA activation in response to tensional forces on fibronectin-binding integrins.
[ { "docid": "10991183", "text": "How individual cells respond to mechanical forces is of considerable interest to biologists as force affects many aspects of cell behaviour. The application of force on integrins triggers cytoskeletal rearrangements and growth of the associated adhesion complex, resulting in increased cellular stiffness, also known as reinforcement. Although RhoA has been shown to play a role during reinforcement, the molecular mechanisms that regulate its activity are unknown. By combining biochemical and biophysical approaches, we identified two guanine nucleotide exchange factors (GEFs), LARG and GEF-H1, as key molecules that regulate the cellular adaptation to force. We show that stimulation of integrins with tensional force triggers activation of these two GEFs and their recruitment to adhesion complexes. Surprisingly, activation of LARG and GEF-H1 involves distinct signalling pathways. Our results reveal that LARG is activated by the Src family tyrosine kinase Fyn, whereas GEF-H1 catalytic activity is enhanced by ERK downstream of a signalling cascade that includes FAK and Ras.", "title": "The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins" } ]
[ { "docid": "33076846", "text": "Polyploidization can precede the development of aneuploidy in cancer. Polyploidization in megakaryocytes (Mks), in contrast, is a highly controlled developmental process critical for efficient platelet production via unknown mechanisms. Using primary cells, we demonstrate that the guanine exchange factors GEF-H1 and ECT2, which are often overexpressed in cancer and are essential for RhoA activation during cytokinesis, must be downregulated for Mk polyploidization. The first (2N-4N) endomitotic cycle requires GEF-H1 downregulation, whereas subsequent cycles (>4N) require ECT2 downregulation. Exogenous expression of both GEF-H1 and ECT2 prevents endomitosis, resulting in proliferation of 2N Mks. Furthermore, we have shown that the mechanism by which polyploidization is prevented in Mks lacking Mkl1, which is mutated in megakaryocytic leukemia, is via elevated GEF-H1 expression; shRNA-mediated GEF-H1 knockdown alone rescues this ploidy defect. These mechanistic insights enhance our understanding of normal versus malignant megakaryocytopoiesis, as well as aberrant mitosis in aneuploid cancers.", "title": "Role of RhoA-specific guanine exchange factors in regulation of endomitosis in megakaryocytes." }, { "docid": "24881307", "text": "Synapses are specialized cell-cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development.", "title": "Control of synapse development and plasticity by Rho GTPase regulatory proteins" }, { "docid": "8093935", "text": "Sec7-related guanine nucleotide exchange factors (GEFs) initiate vesicle budding from the Golgi membrane surface by converting the GTPase ARF to a GTP-bound, membrane-associated form. Here we report the crystal structure of the catalytic Sec7 homology domain of Arno, a human GEF for ARF1, determined at 2.2 angstroms resolution. The Sec7 domain is an elongated, all-helical protein with a distinctive hydrophobic groove that is phylogenetically conserved. Structure-based mutagenesis identifies the groove and an adjacent conserved loop as the ARF-interacting surface. The sites of Sec7 domain interaction on ARF1 have subsequently been mapped, by protein footprinting experiments, to the switch 1 and switch 2 GTPase regions, leading to a model for the interaction between ARF GTPases and Sec7 domain exchange factors.", "title": "Structure of the Guanine Nucleotide Exchange Factor Sec7 Domain of Human Arno and Analysis of the Interaction with ARF GTPase" }, { "docid": "14461101", "text": "Certain bacterial adhesins appear to promote a pathogen's extracellular lifestyle rather than its entry into host cells. However, little is known about the stimuli elicited upon such pathogen host-cell interactions. Here, we report that type IV pili (Tfp)-producing Neisseria gonorrhoeae (P(+)GC) induces an immediate recruitment of caveolin-1 (Cav1) in the host cell, which subsequently prevents bacterial internalization by triggering cytoskeletal rearrangements via downstream phosphotyrosine signaling. A broad and unbiased analysis of potential interaction partners for tyrosine-phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, were found to play a direct role in the Cav1-mediated prevention of bacterial uptake. Our findings, which have been extended to enteropathogenic Escherichia coli, highlight how Tfp-producing bacteria avoid host cell uptake. Further, our data establish a mechanistic link between Cav1 phosphorylation and pathogen-induced cytoskeleton reorganization and advance our understanding of caveolin function.", "title": "Tyrosine-Phosphorylated Caveolin-1 Blocks Bacterial Uptake by Inducing Vav2-RhoA-Mediated Cytoskeletal Rearrangements" }, { "docid": "10530014", "text": "Monogenic deficiency diseases provide unique opportunities to define the contributions of individual molecules to human physiology and to identify pathologies arising from their dysfunction. Here we describe a deficiency disease in two human siblings that presented with severe bleeding, frequent infections and osteopetrosis at an early age. These symptoms are consistent with but more severe than those reported for people with leukocyte adhesion deficiency III (LAD-III). Mechanistically, these symptoms arose from an inability to activate the integrins expressed on hematopoietic cells, including platelets and leukocytes. Immortalized lymphocyte cell lines isolated from the two individuals showed integrin activation defects. Several proteins previously implicated in integrin activation, including Ras-associated protein-1 (RAP1) and calcium and diacylglycerol-regulated guanine nucleotide exchange factor-1 (CALDAG-GEF1), were present and functional in these cell lines. The genetic basis for this disease was traced to a point mutation in the coding region of the KINDLIN3 (official gene symbol FERMT3) gene. When wild-type KINDLIN-3 was expressed in the immortalized lymphocytes, their integrins became responsive to activation signals. These results identify a genetic disease that severely compromises the health of the affected individuals and establish an essential role of KINDLIN-3 in integrin activation in humans. Furthermore, allogeneic bone marrow transplantation was shown to alleviate the symptoms of the disease.", "title": "A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans" }, { "docid": "10669582", "text": "The protein cross-linking enzyme tissue transglutaminase binds in vitro with high affinity to fibronectin via its 42-kD gelatin-binding domain. Here we report that cell surface transglutaminase mediates adhesion and spreading of cells on the 42-kD fibronectin fragment, which lacks integrin-binding motifs. Overexpression of tissue transglutaminase increases its amount on the cell surface, enhances adhesion and spreading on fibronectin and its 42-kD fragment, enlarges focal adhesions, and amplifies adhesion-dependent phosphorylation of focal adhesion kinase. These effects are specific for tissue transglutaminase and are not shared by its functional homologue, a catalytic subunit of factor XIII. Adhesive function of tissue transglutaminase does not require its cross-linking activity but depends on its stable noncovalent association with integrins. Transglutaminase interacts directly with multiple integrins of β1 and β3 subfamilies, but not with β2 integrins. Complexes of transglutaminase with integrins are formed inside the cell during biosynthesis and accumulate on the surface and in focal adhesions. Together our results demonstrate that tissue transglutaminase mediates the interaction of integrins with fibronectin, thereby acting as an integrin-associated coreceptor to promote cell adhesion and spreading.", "title": "Tissue Transglutaminase Is an Integrin-Binding Adhesion Coreceptor for Fibronectin" }, { "docid": "14119470", "text": "Ran is an abundant nuclear GTPase with a clear role in nuclear transport during interphase but with roles in mitotic regulation that are less well understood. The nucleotide-binding state of Ran is regulated by a GTPase activating protein, RanGAP1, and by a guanine nucleotide exchange factor, RCC1. Ran also interacts with a guanine nucleotide dissociation inhibitor, RanBP1. RanBP1 has a high affinity for GTP-bound Ran, and it acts as a cofactor for RanGAP1, increasing the rate of GAP-mediated GTP hydrolysis on Ran approximately tenfold. RanBP1 levels oscillate during the cell cycle [4], and increased concentrations of RanBP1 prolong mitosis in mammalian cells and in Xenopus egg extracts (our unpublished observations). We investigated how increased concentrations of RanBP1 disturb mitosis. We found that spindle assembly is dramatically disrupted when exogenous RanBP1 is added to M phase Xenopus egg extracts. We present evidence that the role of Ran in spindle assembly is independent of nuclear transport and is probably mediated through changes in microtubule dynamics.", "title": "The Ran GTPase regulates mitotic spindle assembly" }, { "docid": "32532238", "text": "To understand how cells sense and adapt to mechanical stress, we applied tensional forces to magnetic microbeads bound to cell-surface integrin receptors and measured changes in bead displacement with sub-micrometer resolution using optical microscopy. Cells exhibited four types of mechanical responses: (1) an immediate viscoelastic response; (2) early adaptive behavior characterized by pulse-to-pulse attenuation in response to oscillatory forces; (3) later adaptive cell stiffening with sustained (>15 second) static stresses; and (4) a large-scale repositioning response with prolonged (>1 minute) stress. Importantly, these adaptation responses differed biochemically. The immediate and early responses were affected by chemically dissipating cytoskeletal prestress (isometric tension), whereas the later adaptive response was not. The repositioning response was prevented by inhibiting tension through interference with Rho signaling, similar to the case of the immediate and early responses, but it was also prevented by blocking mechanosensitive ion channels or by inhibiting Src tyrosine kinases. All adaptive responses were suppressed by cooling cells to 4 degrees C to slow biochemical remodeling. Thus, cells use multiple mechanisms to sense and respond to static and dynamic changes in the level of mechanical stress applied to integrins.", "title": "Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels." }, { "docid": "20943272", "text": "ADAM13 is a member of the disintegrin and metalloprotease protein family that is expressed on cranial neural crest cells surface and is essential for their migration. ADAM13 is an active protease that can cleave fibronectin in vitro and remodel a fibronectin substrate in vivo. Using a recombinant secreted protein containing both disintegrin and cysteine-rich domains of ADAM13, we show that this \"adhesive\" region of the protein binds directly to fibronectin. Fibronectin fusion proteins corresponding to the various functional domains were used to define the second heparin-binding domain as the ADAM13 binding site. Mutation of the syndecan-binding site (PPRR --> PPTM) within this domain abolishes binding of the recombinant disintegrin and cysteine-rich domains of ADAM13. We further show that the adhesive disintegrin and cysteine-rich domain of ADAM13 can promote cell adhesion via beta(1) integrins. This adhesion requires integrin activation and can be prevented by antibodies to the cysteine-rich domain of ADAM13 and beta(1) integrin. Finally, wild type, but not the E/A mutant of ADAM13 metalloprotease domain, can be shed from the cell surface, releasing the metalloprotease domain associated with the disintegrin and cysteine-rich domains. This suggests that ADAM13 shedding may involve its own metalloprotease activity and that the released protease may interact with both integrins and extracellular matrix proteins.", "title": "ADAM13 disintegrin and cysteine-rich domains bind to the second heparin-binding domain of fibronectin." }, { "docid": "9507605", "text": "The transition of cell–matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II–driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein–tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136–143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force.", "title": "Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCKindependent mechanism" }, { "docid": "9185195", "text": "AIMS The vascular endothelial growth factor (VEGF) stimulates angiogenesis by induction of vessel permeability, proliferation, and migration of endothelial cells, an important process in ischaemic diseases. ADP-ribosylation factor (ARF) nucleotide-binding site opener (ARNO) (cytohesin-2) is a guanine exchange factor important for cellular signalling through ARF GTPases. However, a role for ARNO in VEGF-dependent endothelial processes has so far not been documented. Therefore, we investigated whether ARNO has a role in VEGF-dependent activation of endothelial cells and thus vessel permeability. \n METHODS AND RESULTS ARNO expression was observed in endothelial cells in vitro by RT-PCR, western blotting, and immunofluorescence as well as ex vivo by immunohistochemical staining of mouse aorta. Treatment with the cytohesin inhibitor SecinH3 or with an ARNO siRNA prevented VEGF-dependent Akt activation, assessed by detection of phosphorylated Akt, and proliferation of endothelial cells in vitro, measured by methylthiazoletetrazolium (MTT) reduction. In addition, ARNO suppression reduced VEGF-induced permeability in vessels of the mouse (C57BL/6) cremaster muscle in vivo, as measured by extravasation of fluorescein isothiocyanate (FITC)-dextran. Moreover, ARNO knock-down accelerated ligand-induced reduction in vascular endothelial growth factor receptor-2 (VEGFR-2) surface expression, internalization, and degradation, as assessed by flow cytometry and western blotting, respectively. \n CONCLUSION Our findings indicate an important and novel role for endothelial ARNO in VEGF-dependent initiation of angiogenesis by regulation of VEGFR-2 internalization in endothelial cells, resulting in the activation of the Akt pathway, vessel permeability, and ultimately endothelial proliferation. Thus, ARNO may be a new essential player in endothelial signalling and angiogenesis.", "title": "ARNO regulates VEGF-dependent tissue responses by stabilizing endothelial VEGFR-2 surface expression." }, { "docid": "23141360", "text": "The morphogenesis of developing embryos and organs relies on the ability of cells to remodel their contacts with neighbouring cells. Using quantitative modelling and laser nano-dissection, we probed the mechanics of a morphogenetic process, the elongation of Drosophila melanogaster embryos, which results from polarized cell neighbour exchanges. We show that anisotropy of cortical tension at apical cell junctions is sufficient to drive tissue elongation. We estimated its value through comparisons between in silico and in vivo data using various tissue descriptors. Nano-dissection of the actomyosin network indicates that tension is anisotropically distributed and depends on myosin II accumulation. Junction relaxation after nano-dissection also suggests that cortical elastic forces are dominant in this process. Interestingly, fluctuations in vertex position (points where three or more cells meet) facilitate neighbour exchanges. We delineate the contribution of subcellular tensile activity polarizing junction remodelling, and the permissive role of vertex fluctuations during tissue elongation.", "title": "Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis" }, { "docid": "21164071", "text": "Integrins are membrane receptors which mediate cell-cell or cell-matrix adhesion. Integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) acts as a fibrinogen receptor of platelets and mediates platelet aggregation. Platelet activation is required for alpha IIb beta 3 to shift from noncompetent to competent for binding soluble fibrinogen. The steps involved in this transition are poorly understood. We have studied a variant of Glanzmann thrombasthenia, a congenital bleeding disorder characterized by absence of platelet aggregation and fibrinogen binding. The patient's platelets did not bind fibrinogen after platelet activation by ADP or thrombin, though his platelets contained alpha IIb beta 3. However, isolated alpha IIb beta 3 was able to bind to an Arg-Gly-Asp-Ser affinity column, and binding of soluble fibrinogen to the patient's platelets could be triggered by modulators of alpha IIb beta 3 conformation such as the Arg-Gly-Asp-Ser peptide and alpha-chymotrypsin. These data suggested that a functional Arg-Gly-Asp binding site was present within alpha IIb beta 3 and that the patient's defect was not secondary to a blockade of alpha IIb beta 3 in a noncompetent conformational state. This was evocative of a defect in the coupling between platelet activation and alpha IIb beta 3 up-regulation. We therefore sequenced the cytoplasmic domain of beta 3, following polymerase chain reaction (PCR) on platelet RNA, and found a T-->C mutation at nucleotide 2259, corresponding to a Ser-752-->Pro substitution. This mutation is likely to be responsible for the uncoupling of alpha IIb beta 3 from cellular activation because (i) it is not a polymorphism, (ii) it is the only mutation in the entire alpha IIb beta 3 sequence, and (iii) genetic analysis of the family showed that absence of the Pro-752 beta 3 allele was associated with the normal phenotype. Our data thus identify the C-terminal portion of the cytoplasmic domain of beta 3 as an intrinsic element in the coupling between alpha IIb beta 3 and platelet activation.", "title": "Ser-752-->Pro mutation in the cytoplasmic domain of integrin beta 3 subunit and defective activation of platelet integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia." }, { "docid": "20313748", "text": "Adherens junctions (AJs), which are organized by adhesion proteins and the underlying actin cytoskeleton, probably sense pulling forces from adjacent cells and modulate opposing forces to maintain tissue integrity, but the regulatory mechanism remains unknown at the molecular level. Although the possibility that α-catenin acts as a direct linker between the membrane and the actin cytoskeleton for AJ formation and function has been minimized, here we show that α-catenin recruits vinculin, another main actin-binding protein of AJs, through force-dependent changes in α-catenin conformation. We identified regions in the α-catenin molecule that are required for its force-dependent binding of vinculin by introducing mutant α-catenin into cells and using in vitro binding assays. Fluorescence recovery after photobleaching analysis for α-catenin mobility and the existence of an antibody recognizing α-catenin in a force-dependent manner further supported the notion that α-catenin is a tension transducer that translates mechanical stimuli into a chemical response, resulting in AJ development.", "title": "α-Catenin as a tension transducer that induces adherens junction development" }, { "docid": "16511863", "text": "BACKGROUND Although numerous signaling pathways are known to be activated in experimental cardiac hypertrophy, the molecular basis of the hypertrophic response inherent in human heart diseases remains largely unknown. Integrin-linked kinase (ILK) is a multifunctional protein kinase that physically links beta-integrins with the actin cytoskeleton, suggesting a potential mechanoreceptor role. \n METHODS AND RESULTS Here, we show a marked increase in ILK protein levels in hypertrophic ventricles of patients with congenital and acquired outflow tract obstruction. This increase in ILK was associated with activation of the Rho family guanine triphosphatases, Rac1 and Cdc42, and known hypertrophic signaling kinases, including extracellular signal-related kinases (ERK1/2) and p70 S6 kinase. Transgenic mice with cardiac-specific expression of a constitutively active ILK (ILK(S343D)) or wild-type ILK (ILK(WT)) exhibited a compensated ventricular hypertrophic phenotype and displayed an activation profile of guanine triphosphatases and downstream protein kinases concordant with that seen in human hypertrophy. In contrast, transgenic mice with cardiomyocyte-restricted expression of a kinase-inactive ILK (ILK(R211A)) were unable to mount a compensatory hypertrophic response to angiotensin II in vivo. \n CONCLUSIONS Taken together, these results identify ILK-regulated signaling as a broadly adaptive hypertrophic response mechanism relevant to a wide range of clinical heart disease.", "title": "Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice." }, { "docid": "44640124", "text": "SIGNIFICANCE The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. RECENT ADVANCES ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. CRITICAL ISSUES In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. FUTURE DIRECTIONS Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders.", "title": "Redox-relevant aspects of the extracellular matrix and its cellular contacts via integrins." }, { "docid": "4662264", "text": "The phosphorylation of the human estrogen receptor (ER) serine residue at position 118 is required for full activity of the ER activation function 1 (AF-1). This Ser118 is phosphorylated by mitogen-activated protein kinase (MAPK) in vitro and in cells treated with epidermal growth factor (EGF) and insulin-like growth factor (IGF) in vivo. Overexpression of MAPK kinase (MAPKK) or of the guanine nucleotide binding protein Ras, both of which activate MAPK, enhanced estrogen-induced and antiestrogen (tamoxifen)-induced transcriptional activity of wild-type ER, but not that of a mutant ER with an alanine in place of Ser118. Thus, the activity of the amino-terminal AF-1 of the ER is modulated by the phosphorylation of Ser118 through the Ras-MAPK cascade of the growth factor signaling pathways.", "title": "Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase." }, { "docid": "23863576", "text": "UNLABELLED Morphological characteristics of dendritic spines form the basis of cognitive ability. However, molecular mechanisms involved in fine-tuning of spine morphology during development are not fully understood. Moreover, it is unclear whether, and to what extent, these developmental mechanisms determine the normal adult spine morphological features. Here, we provide evidence that α2-isoform of Rac-specific GTPase-activating protein α-chimaerin (α2-chimaerin) is involved in spine morphological refinement during late postnatal period, and furthermore show that this developmental α2-chimaerin function affects adult spine morphologies. We used a series of mice with global and conditional knock-out of α-chimaerin isoforms (α1-chimaerin and α2-chimaerin). α2-Chimaerin disruption, but not α1-chimaerin disruption, in the mouse results in an increased size (and density) of spines in the hippocampus. In contrast, overexpression of α2-chimaerin in developing hippocampal neurons induces a decrease of spine size. Disruption of α2-chimaerin suppressed EphA-mediated spine morphogenesis in cultured developing hippocampal neurons. α2-Chimaerin disruption that begins during the juvenile stage results in an increased size of spines in the hippocampus. Meanwhile, spine morphologies are unaltered when α2-chimaerin is deleted only in adulthood. Consistent with these spine morphological results, disruption of α2-chimaerin beginning in the juvenile stage led to an increase in contextual fear learning in adulthood; whereas contextual learning was recently shown to be unaffected when α2-chimaerin was deleted only in adulthood. Together, these results suggest that α2-chimaerin signaling in developmental stages contributes to determination of the morphological features of adult spines and establishment of normal cognitive ability. SIGNIFICANCE STATEMENT Recent studies of neurodevelopmental disorders in humans and their animal models have led to an attractive hypothesis that spine morphogenesis during development forms the basis of adult cognition. In particular, the roles of Rac and its regulators, such as Rac-specific GTPase-activating proteins (RacGAPs) and Rac guanine nucleotide exchange factors, are a topic of focus in spine morphogenesis and cognitive ability. Using a series of mice with global and conditional knock-out (KO) of RacGAP α-chimaerin isoforms (α1-chimaerin and α2-chimaerin), we provide compelling evidence demonstrating that α2-chimaerin is involved in spine morphological refinement during late postnatal development and that this developmental α2-chimaerin function affects adult spine morphologies. Furthermore, our results clearly showed that α2-chimaerin signaling during late postnatal development contributes to normal cognitive ability in adult mice.", "title": "Developmental RacGAP α2-Chimaerin Signaling Is a Determinant of the Morphological Features of Dendritic Spines in Adulthood." }, { "docid": "2060137", "text": "Cell-to-cell adhesions are crucial in maintaining the structural and functional integrity of cardiac cells. Little is known about the mechanosensitivity and mechanotransduction of cell-to-cell interactions. Most studies of cardiac mechanotransduction and myofibrillogenesis have focused on cell-extracellular matrix (ECM)-specific interactions. This study assesses the direct role of intercellular adhesion, specifically that of N-cadherin-mediated mechanotransduction, on the morphology and internal organization of neonatal ventricular cardiac myocytes. The results show that cadherin-mediated cell attachments are capable of eliciting a cytoskeletal network response similar to that of integrin-mediated force response and transmission, affecting myofibrillar organization, myocyte shape, and cortical stiffness. Traction forces mediated by N-cadherin were shown to be comparable to those sustained by ECM. The directional changes in predicted traction forces as a function of imposed loads (gel stiffness) provide the added evidence that N-cadherin is a mechanoresponsive adhesion receptor. Strikingly, the mechanical sensitivity response (gain) in terms of the measured cell-spread area as a function of imposed load (adhesive substrate rigidity) was consistently higher for N-cadherin-coated surfaces compared with ECM protein-coated surfaces. In addition, the cytoskeletal architecture of myocytes on an N-cadherin adhesive microenvironment was characteristically different from that on an ECM environment, suggesting that the two mechanotransductive cell adhesion systems may play both independent and complementary roles in myocyte cytoskeletal spatial organization. These results indicate that cell-to-cell-mediated force perception and transmission are involved in the organization and development of cardiac structure and function.", "title": "Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing." } ]
483
H.pylori-mediated gastric cancer occurs due to the accumulation of mutations in host epithelial cells.
[ { "docid": "22703082", "text": "Infection with Helicobacter pylori (H. pylori) is a risk factor for the development of gastric cancer. Here we show that infection of gastric epithelial cells with 'cag' pathogenicity island (cagPAI)-positive H. pylori induced aberrant expression of activation-induced cytidine deaminase (AID), a member of the cytidine-deaminase family that acts as a DNA- and RNA-editing enzyme, via the IκB kinase–dependent nuclear factor-κB activation pathway. H. pylori–mediated upregulation of AID resulted in the accumulation of nucleotide alterations in the TP53 tumor suppressor gene in gastric cells in vitro. Our findings provide evidence that aberrant AID expression caused by H. pylori infection might be a mechanism of mutation accumulation in the gastric mucosa during H. pylori–associated gastric carcinogenesis.", "title": "Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium" } ]
[ { "docid": "24705390", "text": "BACKGROUND & AIMS Helicobacter pylori is an important etiologic factor in the development of gastric cancer. The aim of this study was to analyze the role of H. pylori infections in the induction of mutagenic events in gastric epithelial cells. The effect of a high-salt diet as a genotoxic risk factor was also investigated. \n METHODS Big Blue transgenic male mice (C57Bl/6) were inoculated with H. pylori (strain SS1) or Helicobacter felis (strain CS1) for 6 and 12 months. The frequency and spectrum of mutations at the stomach level were assessed. Inflammatory host response and inducible nitric oxide synthase (iNOS) expression by reverse-transcription polymerase chain reaction and immunohistochemistry analysis were also performed. \n RESULTS After 6 months, the gastric mutant frequency was 4-fold and 1.7-fold higher in mice infected with H. pylori and H. felis, respectively, than in uninfected mice. It was associated with a high frequency of transversions (AT --> CG and GC --> TA) known to result from oxidative damages. The Helicobacter-infected mice exhibited severe gastritis and a high level of iNOS messenger RNA expression. Hyperplasia developed 12 months after inoculation, and both the mutagenic effects and iNOS expression decreased in H. pylori- and H. felis-infected mice. No synergistic effects of a high-salt diet and Helicobacter infection were observed regarding the frequency of gastric mutation. \n CONCLUSIONS A direct gastric mutagenic effect due to H. pylori infection in the Big Blue transgenic mouse model has been shown 6 months after inoculation. This genotoxicity can be attributable to oxidative DNA damage involving the inflammatory host response.", "title": "Chronic Helicobacter pylori infections induce gastric mutations in mice." }, { "docid": "29367554", "text": "BACKGROUND & AIMS Although the p53 tumor suppressor has been extensively studied, many critical questions remain unanswered about the biological functions of p53 homologs, p73 and p63. Accumulating evidence suggests that both p73 and p63 play important roles in regulation of apoptosis, cell differentiation, and therapeutic drug sensitivity. \n METHODS Gastric epithelial cells were cocultured with Helicobacter pylori, and the roles of p63 and p73 proteins were assessed by luciferase reporter, real-time polymerase chain reaction, immunoblotting, and cell survival assays. Short hairpin RNA and dominant-negative mutants were used to inhibit activity of p73 and p63 isoforms. Human and murine gastric tissues were analyzed by immunohistochemistry with p73 and p63 antibodies and modified Steiner's silver method. \n RESULTS Interaction of H pylori with gastric epithelial cells leads to robust up-regulation of p73 protein in vitro and in vivo in human gastritis specimens and H pylori-infected mice. The p73 increase resulted in up-regulation of pro-apoptotic genes, NOXA, PUMA, and FAS receptor in gastric epithelial cells. Down-regulation of p73 activity suppressed cell death and Fas receptor induced by H pylori. Bacterial virulence factors within the cag pathogenicity island, c-Abl tyrosine kinase, and interaction with p63 isoforms control the activity of p73. \n CONCLUSION Our findings implicate p73 in H pylori-induced apoptosis and more generally suggest that the p53 family may play a role in the epithelial cell response to H pylori infection.", "title": "Interaction of Helicobacter pylori with gastric epithelial cells is mediated by the p53 protein family." }, { "docid": "39550665", "text": "BACKGROUND & AIMS Chronic infection with the bacterial pathogen Helicobacter pylori causes gastric disorders, ranging from chronic gastritis to gastric adenocarcinoma. Only a subset of infected persons will develop overt disease; most remains asymptomatic despite lifelong colonization. This study aims to elucidate the differential susceptibility to H pylori that is found both across and within populations. \n METHODS We have established a C57BL/6 mouse model of H pylori infection with a strain that is capable of delivering the virulence factor cytotoxin-associated gene A (CagA) into host cells through the activity of a Cag-pathogenicity island-encoded type IV secretion system. \n RESULTS Mice infected at 5-6 weeks of age with CagA(+)H pylori rapidly develop gastritis, gastric atrophy, epithelial hyperplasia, and metaplasia in a type IV secretion system-dependent manner. In contrast, mice infected during the neonatal period with the same strain are protected from preneoplastic lesions. Their protection results from the development of H pylori-specific peripheral immunologic tolerance, which requires transforming growth factor-β signaling and is mediated by long-lived, inducible regulatory T cells, and which controls the local CD4(+) T-cell responses that trigger premalignant transformation. Tolerance to H pylori develops in the neonatal period because of a biased ratio of T-regulatory to T-effector cells and is favored by prolonged low-dose exposure to antigen. \n CONCLUSIONS Using a novel CagA(+)H pylori infection model, we report here that the development of tolerance to H pylori protects from gastric cancer precursor lesions. The age at initial infection may thus account for the differential susceptibility of infected persons to H pylori-associated disease manifestations.", "title": "Tolerance rather than immunity protects from Helicobacter pylori-induced gastric preneoplasia." }, { "docid": "21414718", "text": "Trefoil factor family 1 (TFF1) is a member of the TFF-domain peptide family involved in epithelial restitution and cell motility. Recently, we screened Piezo1 as a candidate TFF1-binding protein. We aimed to confirm Piezo1 as a novel TFF1 binding protein and to assess the role of this interaction in mediating gastric cancer cell mobility. This interaction was confirmed by co-immunoprecipitation and co-localisation of TFF1 and Piezo1 in GES-1 cells. We used stable RNA interference to knockdown Piezo1 protein expression and restored the expression of TFF1 in the gastric cancer cell lines SGC-7901 and BGC-823. Cell motility was evaluated using invasion assay and migration assay in vitro. The expression levels of the integrin subunits β1, β5, α1 as well as the expression of β-catenin and E-cadherin were detected by Western blot. We demonstrate that TFF1, but not TFF2 or TFF3, bind to and co-localize with Piezo1 in the cytoplasm in vitro. TFF1 interacts with the C-terminal portion of the Piezo1 protein. Wound healing and trans-well assays demonstrated that the restored expression of TFF1 promoted cell mobility in gastric cancer cells, and this effect was attenuated by the knockdown of Piezo1. Western blots demonstrated the decreased expression of integrin β1 in Piezo1-knockdown cells. Our data demonstrate that Piezo1 is a novel TFF1 binding protein that is important for TFF1-mediated cell migration and suggest that this interaction may be a therapeutic target in the invasion and metastasis of gastric cancer.", "title": "Piezo1 Is as a Novel Trefoil Factor Family 1 Binding Protein that Promotes Gastric Cancer Cell Mobility In Vitro" }, { "docid": "4422723", "text": "For an epithelium to provide a protective barrier, it must maintain homeostatic cell numbers by matching the number of dividing cells with the number of dying cells. Although compensatory cell division can be triggered by dying cells, it is unknown how cell death might relieve overcrowding due to proliferation. When we trigger apoptosis in epithelia, dying cells are extruded to preserve a functional barrier. Extrusion occurs by cells destined to die signalling to surrounding epithelial cells to contract an actomyosin ring that squeezes the dying cell out. However, it is not clear what drives cell death during normal homeostasis. Here we show in human, canine and zebrafish cells that overcrowding due to proliferation and migration induces extrusion of live cells to control epithelial cell numbers. Extrusion of live cells occurs at sites where the highest crowding occurs in vivo and can be induced by experimentally overcrowding monolayers in vitro. Like apoptotic cell extrusion, live cell extrusion resulting from overcrowding also requires sphingosine 1-phosphate signalling and Rho-kinase-dependent myosin contraction, but is distinguished by signalling through stretch-activated channels. Moreover, disruption of a stretch-activated channel, Piezo1, in zebrafish prevents extrusion and leads to the formation of epithelial cell masses. Our findings reveal that during homeostatic turnover, growth and division of epithelial cells on a confined substratum cause overcrowding that leads to their extrusion and consequent death owing to the loss of survival factors. These results suggest that live cell extrusion could be a tumour-suppressive mechanism that prevents the accumulation of excess epithelial cells.", "title": "Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia" }, { "docid": "26488879", "text": "Helicobacter pylori persistently colonizes humans, causing gastritis, ulcers, and gastric cancer. Adherence to the gastric epithelium has been shown to enhance inflammation, yet only a few H. pylori adhesins have been paired with targets in host tissue. The alpAB locus has been reported to encode adhesins involved in adherence to human gastric tissue. We report that abrogation of H. pylori AlpA and AlpB reduces binding of H. pylori to laminin while expression of plasmid-borne alpA or alpB confers laminin-binding ability to Escherichia coli. An H. pylori strain lacking only AlpB is also deficient in laminin binding. Thus, we conclude that both AlpA and AlpB contribute to H. pylori laminin binding. Contrary to expectations, the H. pylori SS1 mutant deficient in AlpA and AlpB causes more severe inflammation than the isogenic wild-type strain in gerbils. Identification of laminin as the target of AlpA and AlpB will facilitate future investigations of host-pathogen interactions occurring during H. pylori infection.", "title": "Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils." }, { "docid": "5783785", "text": "The discovery of microRNAs (miRNAs) provides a new and powerful tool for studying the mechanism, diagnosis and treatment of human cancers. Currently, down-regulation of tumor suppressive miRNAs by CpG island hypermethylation is emerging as a common hallmark of cancer. Here, we reported that the down-regulation of miR-33b was associated with pM stage of gastric cancer (GC) patients. Ectopic expression of miR-33b in HGC-27 and MGC-803 cells inhibited cell proliferation, migration and invasion, which might be due to miR-33b targeting oncogene c-Myc. Moreover, enhanced methylation level of the CpG island upstream of miR-33b in GC patients with down-regulated miR-33b was confirmed by methylation-specific PCR (MSP) amplification. Furthermore, re-introduction of miR-33b significantly suppressed tumorigenesis of GC cells in the nude mice. In conclusion, miR-33b acts as a tumor suppressor and hypermethylation of the CpG island upstream of miR-33b is responsible for its down-regulation in gastric cancer.", "title": "DNA Methylation mediated down-regulating of MicroRNA-33b and its role in gastric cancer" }, { "docid": "22049489", "text": "The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator in H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy.", "title": "The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1." }, { "docid": "33638477", "text": "Several components of the Wnt signaling cascade have been shown to function either as tumor suppressor proteins or as oncogenes in multiple human cancers, underscoring the relevance of this pathway in oncogenesis and the need for further investigation of Wnt signaling components as potential targets for cancer therapy. Here, using expression profiling analysis as well as in vitro and in vivo functional studies, we show that the Wnt pathway component BCL9 is a novel oncogene that is aberrantly expressed in human multiple myeloma as well as colon carcinoma. We show that BCL9 enhances beta-catenin-mediated transcriptional activity regardless of the mutational status of the Wnt signaling components and increases cell proliferation, migration, invasion, and the metastatic potential of tumor cells by promoting loss of epithelial and gain of mesenchymal-like phenotype. Most importantly, BCL9 knockdown significantly increased the survival of xenograft mouse models of cancer by reducing tumor load, metastasis, and host angiogenesis through down-regulation of c-Myc, cyclin D1, CD44, and vascular endothelial growth factor expression by tumor cells. Together, these findings suggest that deregulation of BCL9 is an important contributing factor to tumor progression. The pleiotropic roles of BCL9 reported in this study underscore its value as a drug target for therapeutic intervention in several malignancies associated with aberrant Wnt signaling.", "title": "BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells." }, { "docid": "52925737", "text": "BACKGROUND Exosomes are extracellular vesicles that mediate cellular communication in health and diseases. Neutrophils could be polarized to a pro-tumor phenotype by tumor. The function of tumor-derived exosomes in neutrophil regulation remains unclear. \n METHODS We investigated the effects of gastric cancer cell-derived exosomes (GC-Ex) on the pro-tumor activation of neutrophils and elucidated the underlying mechanisms. \n RESULTS GC-Ex prolonged neutrophil survival and induced expression of inflammatory factors in neutrophils. GC-Ex-activated neutrophils, in turn, promoted gastric cancer cell migration. GC-Ex transported high mobility group box-1 (HMGB1) that activated NF-κB pathway through interaction with TLR4, resulting in an increased autophagic response in neutrophils. Blocking HMGB1/TLR4 interaction, NF-κB pathway, and autophagy reversed GC-Ex-induced neutrophil activation. Silencing HMGB1 in gastric cancer cells confirmed HMGB1 as a key factor for GC-Ex-mediated neutrophil activation. Furthermore, HMGB1 expression was upregulated in gastric cancer tissues. Increased HMGB1 expression was associated with poor prognosis in patients with gastric cancer. Finally, gastric cancer tissue-derived exosomes acted similarly as exosomes derived from gastric cancer cell lines in neutrophil activation. \n CONCLUSION We demonstrate that gastric cancer cell-derived exosomes induce autophagy and pro-tumor activation of neutrophils via HMGB1/TLR4/NF-κB signaling, which provides new insights into mechanisms for neutrophil regulation in cancer and sheds lights on the multifaceted role of exosomes in reshaping tumor microenvironment.", "title": "Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration" }, { "docid": "7465900", "text": "BACKGROUND & AIMS Helicobacter pylori-induced gastric epithelial cell (GEC) apoptosis is a complex process that includes activation of the tumor suppressor p53. p53-mediated apoptosis involves p53 activation, bax transcription, and cytochrome c release from mitochondria. Apurinic/apyrimidinic endonuclease-1 (APE-1) regulates transcriptional activity of p53, and H pylori induce APE-1 expression in human GECs. H pylori infection increases intracellular calcium ion concentration [Ca2+]i of GECs, which induces APE-1 acetylation. We investigated the effects of H pylori infection and APE-1 acetylation on GEC apoptosis. \n METHODS AGS cells (wild-type or with suppressed APE-1), KATO III cells, and cells isolated from gastric biopsy specimens were infected with H pylori. Effects were examined by immunoblotting, real-time reverse-transcription polymerase chain reaction, immunoprecipitation, immunofluorescence microscopy, chromatin immunoprecipitation, mobility shift, DNA binding, and luciferase assays. \n RESULTS H pylori infection increased [Ca2+]i and acetylation of APE-1 in GECs, but the acetylation status of APE-1 did not affect the transcriptional activity of p53. In GECs, expression of a form of APE-1 that could not be acetylated increased total and mitochondrial levels of Bax and induced release of cytochrome c and fragmentation of DNA; expression of wild-type APE-1 reduced these apoptotic events. We identified a negative calcium response element in the human bax promoter and found that poly (adenosine diphosphate-ribose) polymerase 1 recruited the acetylated APE-1/histone deacetylase-1 repressor complex to bax nCaRE. \n CONCLUSIONS H pylori-mediated acetylation of APE-1 suppresses Bax expression; this prevents p53-mediated apoptosis when H pylori infect GECs.", "title": "Acetylation of apurinic/apyrimidinic endonuclease-1 regulates Helicobacter pylori-mediated gastric epithelial cell apoptosis." }, { "docid": "11721286", "text": "BACKGROUND Streptococcus pneumoniae infection starts from colonization of the host respiratory tract where interaction with host respiratory tract epithelial cells occurs. To investigate pneumococcal genes that are involved in the early stage of interaction with host epithelial cells, transcriptional responses of an encapsulated pathogenic pneumococcal strain TIGR4 upon exposure to human lung epithelial cells A549 for 0.5 h and 1 h time periods were investigated by using TIGR (JCVI) microarray technology. Gene expression changes were validated by quantitative real-time PCR (qRT-PCR) analysis. \n FINDINGS We observed different transcriptional profiles at two incubation time periods in which most gene expressions were down-regulated at 0.5 h but up-regulated at 1 h. Many genes associated with ribonucleotide biosynthesis were down-regulated at both time points, whereas the genes associated with cell envelope, energy metabolism, transport and protein synthesis were mostly up-regulated at 1 h. Furthermore, these profiles were compared to the transcriptomes of a TIGR4-derived strain in response to human macrophages for the same time periods. We found one set of genes that exhibited similar expression changes upon exposure to both types of host cells, including cell envelope-associated bgaA (SP0648) and nanA (SP1693), and uncharacterized gene clusters such as SP1677-SP1680 and SP1688-SP1690. \n CONCLUSION These data indicate that at the early stage of interaction with host epithelial cells, a complex gene regulation and expression change occur in bacteria. Some of them might play an essential role during pathogen-host interactions and for the establishment of infection.", "title": "Streptococcus pneumoniae early response genes to human lung epithelial cells" }, { "docid": "29190724", "text": "Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field.", "title": "Gene methylation in gastric cancer." }, { "docid": "5321708", "text": "Cytokinesis is the final stage in cell division. Although integrins can regulate cytokinesis, the mechanisms involved are not fully understood. In this study, we demonstrate that integrin-regulated ERK (extracellular signal-related kinase) and RSK (p90 ribosomal S6 kinase) signaling promotes successful cytokinesis. Inhibiting the activation of ERK and RSK in CHO cells by a mutation in the integrin β1 cytoplasmic tail or with pharmacological inhibitors results in the accumulation of cells with midbodies and the formation of binucleated cells. Activation of ERK and RSK signaling by the expression of constitutively active RAF1 suppresses the mutant phenotype in a RSK-dependent manner. Constitutively active RSK2 also restores cytokinesis inhibited by the mutant integrin. Importantly, the regulatory role of the RSK pathway is not specific to CHO cells. MCF-10A human mammary epithelial cells and HPNE human pancreatic ductal epithelial cells exhibit a similar dependence on RSK for successful cytokinesis. In addition, depriving mitotic MCF10A cells of integrin-mediated adhesion by incubating them in suspension suppressed ERK and RSK activation and resulted in a failure of cytokinesis. Furthermore, inhibition of RSK or integrins within the 3D context of a developing salivary gland organ explant also leads to an accumulation of epithelial cells with midbodies, suggesting a similar defect in cytokinesis. Interestingly, neither ERK nor RSK regulates cytokinesis in human fibroblasts, suggesting cell-type specificity. Taken together, our results identify the integrin-RSK signaling axis as an important regulator of cytokinesis in epithelial cells. We propose that the proper interaction of cells with their microenvironment through integrins contributes to the maintenance of genomic stability by promoting the successful completion of cytokinesis.", "title": "Integrins promote cytokinesis through the RSK signaling axis." }, { "docid": "2494748", "text": "There are limited reports on methylation analysis of the premalignant lesions of gastric carcinoma thus far. This is despite the fact that gastric carcinoma is one of the tumors with a high frequency of CpG island hypermethylation. To determine the frequency and timing of hypermethylation during multistep gastric carcinogenesis, non-neoplastic gastric mucosa (n = 118), adenomas (n = 61), and carcinomas (n = 64) were analyzed for their p16, human Mut L homologue 1 (hMLH1), death-associated protein (DAP)-kinase, thromobospondin-1 (THBS1), and tissue inhibitor of metalloproteinase 3 (TIMP-3) methylation status using methylation-specific PCR. Three different classes of methylation behaviors were found in the five tested genes. DAP-kinase was methylated at a similar frequency in all four stages, whereas hMLH1 and p16 were methylated in cancer samples (20.3% and 42.2%, respectively) more frequently than in intestinal metaplasia (6.3% and 2.1%, respectively) or adenomas (9.8% and 11.5%, respectively). However, hMLH1 and p16 were not methylated in chronic gastritis. THBS-1 and TIMP-3 were methylated in all stages but showed a marked increase in hypermethylation frequency from chronic gastritis (10.1% and 14.5%, respectively) to intestinal metaplasia (34.7% and 36.7%, respectively; P < 0.05) and from adenomas (28.3% and 26.7%, respectively) to carcinomas (48.4% and 57.4%, respectively: P < 0.05). The hMLH1, THBS1, and TIMP-3 hypermethylation frequencies were similar in both intestinal metaplasia and adenomas, but the p16 hypermethylation frequency tended to be higher in adenomas (11.5%) than in intestinal metaplasia (2.1%; P = 0.073). The average number of methylated genes was 0.6, 1.1, 1.1, and 2.0 per five genes per sample in chronic gastritis, intestinal metaplasia, adenomas, and carcinomas, respectively. This shows a marked increase in methylated genes from non-metaplastic mucosa to intestinal metaplasia (P = 0.001) as well as from premalignant lesions to carcinomas (P = 0.002). These results suggest that CpG island hypermethylation occur early in multistep gastric carcinogenesis and tend to accumulate along the multistep carcinogenesis.", "title": "CpG island methylation in premalignant stages of gastric carcinoma." }, { "docid": "8654183", "text": "BACKGROUND AND AIMS Previous in vitro and in vivo studies have revealed an association between Helicobacter pylori infection and apoptosis in gastric epithelial cells. Although involvement of the Bcl-2 family of proteins as well as cytochrome c release has been demonstrated in H pylori induced cell death, the exact role of the mitochondria during this type of programmed cell death has not been fully elucidated. Therefore, we sought to determine whether or not Bax translocation and mitochondrial fragmentation occur on exposure of gastric epithelial cells to H pylori, resulting in cell death. \n METHODS Experiments were performed with human gastric adenocarcinoma (AGS) cells, AGS cells transfected with the HPV-E6 gene (which inactivates p53 function), AGS-neo cells (transfected with the backbone construct), mouse embryonic fibroblasts (MEFs), and p19(ARF) null (ARF(-/-)) MEFs. Cells were incubated with a cag positive H pylori strain for up to 24 hours, lysed, and cytoplasmic and mitochondrial membrane fractions were analysed by western blot for Bax translocation. \n RESULTS Bax translocation was detected in AGS, AGS-neo, and normal MEF cells after exposure to H pylori for three hours, but not in ARF(-/-) MEFs cells. Translocation of Bax after H pylori incubation was also detected in AGS-E6 cells (inactive p53 gene) but to a lesser degree than in AGS-neo cells. In parallel studies, the mitochondrial morphology of living cells infected with H pylori was assessed by confocal microscopy. Mitochondrial fragmentation was detectable after 10 hours of H pylori incubation with AGS cells and after seven hours with MEF cells. In wild-type MEFs, mitochondrial fragmentation was significantly increased in comparison with ARF null MEFs (43% v 10.4%, respectively). Furthermore, mitochondrial depolarisation and caspase-3 activity were initiated within four hours in cells incubated with H pylori, and these events were inhibited by forced expression of Bcl-2. \n CONCLUSIONS These data suggest that during H pylori induced apoptosis, Bax translocates to the mitochondria which subsequently undergo depolarisation and profound fragmentation. Functional ARF and p53 proteins may play an important role in H pylori induced mitochondrial modification.", "title": "Bax translocation and mitochondrial fragmentation induced by Helicobacter pylori." }, { "docid": "7343711", "text": "Successful cancer treatment requires understanding host immune response against tumor cells. PD-1 belongs to the CD28 superfamily of receptors that work as “checkpoints” of immune activation. PD-1 maintains immune self-tolerance to prevent autoimmunity and controls T-cell reaction during infection to prevent excessive tissue damage. Tumor cells that arise from normal tissue acquire mutations that can be targeted by lymphocytes. Accumulating lines of evidence suggest that tumor cells evade host immune attack by expressing physiological PD-1 ligands and stimulating PD-1 on the lymphocytes. Based on this idea, researchers have successfully demonstrated that systemic administration of monoclonal antibodies that inhibit the binding of PD-1 to the ligands reactivated T cells and augmented the anti-cancer immune response. In this review, I summarize the basics of T-cell biology and its regulation by PD-1 and discuss the current understanding and questions about this multifaceted molecule.", "title": "Basics of PD-1 in self-tolerance, infection, and cancer immunity" }, { "docid": "1866911", "text": "Basal-like breast cancers arising in women carrying mutations in the BRCA1 gene, encoding the tumor suppressor protein BRCA1, are thought to develop from the mammary stem cell. To explore early cellular changes that occur in BRCA1 mutation carriers, we have prospectively isolated distinct epithelial subpopulations from normal mammary tissue and preneoplastic specimens from individuals heterozygous for a BRCA1 mutation. We describe three epithelial subsets including basal stem/progenitor, luminal progenitor and mature luminal cells. Unexpectedly, we found that breast tissue from BRCA1 mutation carriers harbors an expanded luminal progenitor population that shows factor-independent growth in vitro. Moreover, gene expression profiling revealed that breast tissue heterozygous for a BRCA1 mutation and basal breast tumors were more similar to normal luminal progenitor cells than any other subset, including the stem cell–enriched population. The c-KIT tyrosine kinase receptor (encoded by KIT) emerged as a key marker of luminal progenitor cells and was more highly expressed in BRCA1-associated preneoplastic tissue and tumors. Our findings suggest that an aberrant luminal progenitor population is a target for transformation in BRCA1-associated basal tumors .", "title": "Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers" }, { "docid": "34258065", "text": "Helicobacter infection is a chronic persistent condition which is responsible for the majority of cases of gastric and duodenal ulcers, and gastric cancer. The study of the bacteria, the interaction of the bacteria with the host, and the host immune response has greatly benefited from standardization of culture techniques and animal models. The following chapters will describe the clinical aspects of infection and touch on the important techniques for optimal investigation of this infection.", "title": "Helicobacter species methods and protocols. Introduction." } ]
484
H4 G94P proteins induce chromatin assembly, which increases free histones.
[ { "docid": "14637235", "text": "Histone levels are tightly regulated to prevent harmful effects such as genomic instability and hypersensitivity to DNA-damaging agents due to the accumulation of these highly basic proteins when DNA replication slows down or stops. Although chromosomal histones are stable, excess (non-chromatin bound) histones are rapidly degraded in a Rad53 (radiation sensitive 53) kinase-dependent manner in Saccharomyces cerevisiae. Here we demonstrate that excess histones associate with Rad53 in vivo and seem to undergo modifications such as tyrosine phosphorylation and polyubiquitylation, before their proteolysis by the proteasome. We have identified the Tyr 99 residue of histone H3 as being critical for the efficient ubiquitylation and degradation of this histone. We have also identified the ubiquitin conjugating enzymes (E2) Ubc4 and Ubc5, as well as the ubiquitin ligase (E3) Tom1 (temperature dependent organization in mitotic nucleus 1), as enzymes involved in the ubiquitylation of excess histones. Regulated histone proteolysis has major implications for the maintenance of epigenetic marks on chromatin, genomic stability and the packaging of sperm DNA.", "title": "Histone levels are regulated by phosphorylation and ubiquitylation dependent proteolysis" } ]
[ { "docid": "7137057", "text": "BACKGROUND & AIMS HBV covalently closed circular DNA (cccDNA), the replicative intermediate responsible for persistent HBV infection of hepatocytes, is the template for transcription of all viral mRNAs. Nuclear cccDNA accumulates as a stable episome organized into minichromosomes by histone and nonhistone proteins. In this study we investigated, by a newly developed sensitive and specific assay, the relationship between viral replication and HBV chromatin assembly, transcription, and interaction with viral and cellular regulatory proteins. \n METHODS To achieve this aim we coupled a quantitative chromatin immunoprecipitation (ChIP) technique to an established method that allows the amplification of virion-encapsidated HBV genomes after transfection of linear HBV DNA into human hepatoma HuH7 cells. The cccDNA-ChIP technique was also applied to study HBV minichromosome transcriptional regulation in liver tissue from HBV-infected patients. \n RESULTS The use of anti-acetyl-H4/-H3 specific antibodies to immunoprecipitate transcriptionally active chromatin revealed that HBV replication is regulated by the acetylation status of the cccDNA-bound H3/H4 histones. Class I histone deacetylases inhibitors induced an evident increase of both cccDNA-bound acetylated H4 and HBV replication. Finally, histones hypoacetylation and histone deacetylase 1 recruitment onto the cccDNA in liver tissue correlated with low HBV viremia in hepatitis B patients. \n CONCLUSIONS We developed a ChIP-based assay to analyze, in vitro and ex vivo, the transcriptional regulation of HBV cccDNA minichromosome. Our results provide new insights on the regulation of HBV replication and identify the enzymatic activities that modulate the acetylation of cccDNA-bound histones as new therapeutic targets for anti-HBV drugs.", "title": "Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones." }, { "docid": "12588500", "text": "Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106.", "title": "Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly" }, { "docid": "14155726", "text": "Nuclear actin-related proteins (Arps) are subunits of several chromatin remodelers, but their molecular functions within these complexes are unclear. We report the crystal structure of the INO80 complex subunit Arp8 in its ATP-bound form. Human Arp8 has several insertions in the conserved actin fold that explain its inability to polymerize. Most remarkably, one insertion wraps over the active site cleft and appears to rigidify the domain architecture, while active site features shared with actin suggest an allosterically controlled ATPase activity. Quantitative binding studies with nucleosomes and histone complexes reveal that Arp8 and the Arp8-Arp4-actin-HSA sub-complex of INO80 strongly prefer nucleosomes and H3-H4 tetramers over H2A-H2B dimers, suggesting that Arp8 functions as a nucleosome recognition module. In contrast, Arp4 prefers free (H3-H4)(2) over nucleosomes and may serve remodelers through binding to (dis)assembly intermediates in the remodeling reaction.", "title": "Structure of Actin-related protein 8 and its contribution to nucleosome binding" }, { "docid": "19485243", "text": "The transcription factors HNF3 (FoxA) and GATA-4 are the earliest known to bind the albumin gene enhancer in liver precursor cells in embryos. To understand how they access sites in silent chromatin, we assembled nucleosome arrays containing albumin enhancer sequences and compacted them with linker histone. HNF3 and GATA-4, but not NF-1, C/EBP, and GAL4-AH, bound their sites in compacted chromatin and opened the local nucleosomal domain in the absence of ATP-dependent enzymes. The ability of HNF3 to open chromatin is mediated by a high affinity DNA binding site and by the C-terminal domain of the protein, which binds histones H3 and H4. Thus, factors that potentiate transcription in development are inherently capable of initiating chromatin opening events.", "title": "Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4." }, { "docid": "502591", "text": "E2F proteins can either activate or repress transcription. Following mitogenic stimulation, repressive E2F4-p130-histone deacetylase complexes dissociate from, while activating species (E2F1, -2, and -3) associate with, target promoters. Histones H3 and H4 simultaneously become hyperacetylated, but it remains unclear whether this is a prerequisite or a consequence of E2F binding. Here, we show that activating E2F species are required for hyperacetylation of target chromatin in human cells. Overexpression of a dominant-negative (DN) E2F1 mutant in serum-stimulated T98G cells blocked all E2F binding, H4 acetylation, and, albeit partially, H3 acetylation. Target gene activation and S-phase entry were also blocked by DN E2F1. Conversely, ectopic activation of E2F1 rapidly induced H3 and H4 acetylation, demonstrating a direct role for E2F in these events. E2F1 was previously shown to bind the histone acetyltransferases (HATs) p300/CBP and PCAF/GCN5. In our hands, ectopically expressed E2F1 also bound the unrelated HAT Tip60 and induced recruitment of five subunits of the Tip60 complex (Tip60, TRRAP, p400, Tip48, and Tip49) to target promoters in vivo. Moreover, E2F-dependent recruitment of Tip60 to chromatin occurred in late G(1) following serum stimulation. We speculate that the activities of multiple HAT complexes account for E2F-dependent acetylation, transcription, and S-phase entry.", "title": "E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1." }, { "docid": "13907427", "text": "Poly(ADP-ribosyl)ation plays a major role in DNA repair, where it regulates chromatin relaxation as one of the critical events in the repair process. However, the molecular mechanism by which poly(ADP-ribose) modulates chromatin remains poorly understood. Here we identify the poly(ADP-ribose)-regulated protein APLF as a DNA-damage-specific histone chaperone. APLF preferentially binds to the histone H3/H4 tetramer via its C-terminal acidic motif, which is homologous to the motif conserved in the histone chaperones of the NAP1L family (NAP1L motif). We further demonstrate that APLF exhibits histone chaperone activities in a manner that is dependent on its acidic domain and that the NAP1L motif is critical for the repair capacity of APLF in vivo. Finally, we identify structural analogs of APLF in lower eukaryotes with the ability to bind histones and localize to the sites of DNA-damage-induced poly(ADP-ribosyl)ation. Collectively, these findings define the involvement of histone chaperones in poly(ADP-ribose)-regulated DNA repair reactions.", "title": "DNA repair factor APLF is a histone chaperone." }, { "docid": "14338915", "text": "The mechanisms ensuring specific incorporation of CENP-A at centromeres are poorly understood. Mis16 and Mis18 are required for CENP-A localization at centromeres and form a complex that is conserved from fission yeast to human. Fission yeast sim1 mutants that alleviate kinetochore domain silencing are defective in Scm3(Sp), the ortholog of budding yeast Scm3(Sc). Scm3(Sp) depends on Mis16/18 for its centromere localization and like them is recruited to centromeres in late anaphase. Importantly, Scm3(Sp) coaffinity purifies with CENP-A(Cnp1) and associates with CENP-A(Cnp1) in vitro, yet localizes independently of intact CENP-A(Cnp1) chromatin and is differentially released from chromatin. While Scm3(Sc) has been proposed to form a unique hexameric nucleosome with CENP-A(Cse4) and histone H4 at budding yeast point centromeres, we favor a model in which Scm3(Sp) acts as a CENP-A(Cnp1) receptor/assembly factor, cooperating with Mis16 and Mis18 to receive CENP-A(Cnp1) from the Sim3 escort and mediate assembly of CENP-A(Cnp1) into subkinetochore chromatin.", "title": "Fission Yeast Scm3: A CENP-A Receptor Required for Integrity of Subkinetochore Chromatin" }, { "docid": "20781656", "text": "Some three decades have passed since the discovery of nucleosomes in 1974 and the first isolation of a histone chaperone in 1978. While various types of histone chaperones have been isolated and functionally analyzed, the elementary processes of nucleosome assembly and disassembly have been less well characterized. Recently, the tertiary structure of a hetero-trimeric complex composed of the histone chaperone CIA/ASF1 and the histone H3-H4 dimer was determined, and this complex was proposed to be an intermediate in nucleosome assembly and disassembly reactions. In addition, CIA alone was biochemically shown to dissociate the histone (H3-H4)2 tetramer into two histone H3-H4 dimers. This activity suggested that CIA regulates the semi-conservative replication of nucleosomes. Here, we provide an overview of prominent histone chaperones with the goal of elucidating the mechanisms that preserve and modify epigenetic information. We also discuss the reactions involved in nucleosome assembly and disassembly.", "title": "Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly" }, { "docid": "29877890", "text": "Recent structures of the nucleosome core particle reveal details of histone-histone and histone-DNA interactions. These structures have now set the stage for understanding chromatin assembly and dynamics during replication and transcription. Histone chaperones and chromatin remodeling complexes are important in both of these processes. The nucleosome and its protein core, the histone octamer, have twofold symmetry, which histone chaperones may use to bind core histones. Recent studies suggest that the nucleoplasmin pentamer may mediate histone storage, sperm chromatin decondensation and nucleosome assembly, by dimerizing to form a decamer. In this model, histone binding on the lateral surface of the chaperone involves stereospecific interactions and a shared twofold axis.", "title": "Histone chaperones and nucleosome assembly." }, { "docid": "175735", "text": "MOTIVATION The nucleosome is the basic repeating unit of chromatin. It contains two copies each of the four core histones H2A, H2B, H3 and H4 and about 147 bp of DNA. The residues of the histone proteins are subject to numerous post-translational modifications, such as methylation or acetylation. Chromatin immunoprecipitiation followed by sequencing (ChIP-seq) is a technique that provides genome-wide occupancy data of these modified histone proteins, and it requires appropriate computational methods. \n RESULTS We present NucHunter, an algorithm that uses the data from ChIP-seq experiments directed against many histone modifications to infer positioned nucleosomes. NucHunter annotates each of these nucleosomes with the intensities of the histone modifications. We demonstrate that these annotations can be used to infer nucleosomal states with distinct correlations to underlying genomic features and chromatin-related processes, such as transcriptional start sites, enhancers, elongation by RNA polymerase II and chromatin-mediated repression. Thus, NucHunter is a versatile tool that can be used to predict positioned nucleosomes from a panel of histone modification ChIP-seq experiments and infer distinct histone modification patterns associated to different chromatin states. AVAILABILITY The software is available at http://epigen.molgen.mpg.de/nuchunter/.", "title": "Inferring nucleosome positions with their histone mark annotation from ChIP data" }, { "docid": "1259280", "text": "The chromatin architecture of eukaryotic gene promoters is generally characterized by a nucleosome-free region (NFR) flanked by at least one H2A.Z variant nucleosome. Computational predictions of nucleosome positions based on thermodynamic properties of DNA-histone interactions have met with limited success. Here we show that the action of the essential RSC remodeling complex in S. cerevisiae helps explain the discrepancy between theory and experiment. In RSC-depleted cells, NFRs shrink such that the average positions of flanking nucleosomes move toward predicted sites. Nucleosome positioning at distinct subsets of promoters additionally requires the essential Myb family proteins Abf1 and Reb1, whose binding sites are enriched in NFRs. In contrast, H2A.Z deposition is dispensable for nucleosome positioning. By regulating H2A.Z deposition using a steroid-inducible protein splicing strategy, we show that NFR establishment is necessary for H2A.Z deposition. These studies suggest an ordered pathway for the assembly of promoter chromatin architecture.", "title": "Mechanisms that Specify Promoter Nucleosome Location and Identity" }, { "docid": "30041340", "text": "BACKGROUND Histone deimination regulates gene function and contributes to antimicrobial response, allowing the formation of neutrophil extracellular traps (NETs). Deiminated proteins are target of anti-citrullinated peptides antibodies (ACPA) in rheumatoid arthritis (RA). \n OBJECTIVE The objective of this paper is to test the hypothesis that RA sera react with deiminated histones contained in NETs. \n METHODS Neutrophils from peripheral blood were stimulated with A23187 and acid treated; NETosis was induced by phorbol myristate acetate, and NET proteins were isolated. Sera were tested by immunoblot on acid extracted proteins from neutrophils and from NETs, and by ELISA on deiminated histone H4 or H4-derived peptides. Bands reactive with RA sera were excised from gels, digested with trypsin and subjected to matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) analysis, before and after derivatisation to detect citrullinated peptides. \n RESULTS RA sera reacted with a deiminated antigen of 11 KDa from activated neutrophils, recognised also by anti-H4 and antideiminated H4 antibodies. A similar reactivity was observed with NET proteins. The antigen from neutrophils or NETs was identified as citrullinated H4 by MALDI-TOF analysis. By ELISA, RA sera bound in vitro citrullinated H4. Citrullinated H4 14-34 and 31-50 peptides detected antibodies in 67% and 63% of RA sera and in less than 5% of controls; antibody titre was correlated with anti-CCP2. \n CONCLUSIONS Citrullinated H4 from activated neutrophils and NETs is a target of antibodies in RA, and synthetic citrullinated H4-derived peptides are a new substrate for ACPA detection. As NETosis can generate antigens for ACPA, these data suggest a novel connection between innate and adaptive immunity in RA.", "title": "Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps." }, { "docid": "5966635", "text": "Activation of transcription within chromatin has been correlated with the incorporation of the essential histone variant H2A.Z into nucleosomes. H2A.Z and other histone variants may establish structurally distinct chromosomal domains; however, the molecular mechanism by which they function is largely unknown. Here we report the 2.6 Å crystal structure of a nucleosome core particle containing the histone variant H2A.Z. The overall structure is similar to that of the previously reported 2.8 Å nucleosome structure containing major histone proteins. However, distinct localized changes result in the subtle destabilization of the interaction between the (H2A.Z–H2B) dimer and the (H3–H4)2 tetramer. Moreover, H2A.Z nucleosomes have an altered surface that includes a metal ion. This altered surface may lead to changes in higher order structure, and/or could result in the association of specific nuclear proteins with H2A.Z. Finally, incorporation of H2A.Z and H2A within the same nucleosome is unlikely, due to significant changes in the interface between the two H2A.Z–H2B dimers.", "title": "Crystal structure of a nucleosome core particle containing the variant histone H2A.Z" }, { "docid": "36831892", "text": "Considerable energetic investment is devoted to altering large stretches of chromatin adjacent to DNA double strand breaks (DSBs). Immediately ensuing DSB formation, a myriad of histone modifications are elicited to create a platform for inducible and modular assembly of DNA repair protein complexes in the vicinity of the DNA lesion. This complex signaling network is critical to repair DNA damage and communicate with cellular processes that occur in cis and in trans to the genomic lesion. Failure to properly execute DNA damage inducible chromatin changes is associated with developmental abnormalities, immunodeficiency, and malignancy in humans and in genetically engineered mouse models. This review will discuss current knowledge of DNA damage responsive histone changes that occur in mammalian cells, highlighting their involvement in the maintenance of genome integrity.", "title": "Histone tails: Directing the chromatin response to DNA damage." }, { "docid": "9732010", "text": "Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE)-like sequence, M26, and a heterodimeric ATF/CREB transcription factor, Atf1.Pcr1. Chromatin remodeling occurs meiotically around M26. We examined the roles of HATs and ADCRs in chromatin remodeling around M26. Histones H3 and H4 around M26 were hyperacetylated in an M26- and Atf1-dependent manner early in meiosis. SpGcn5, the S. pombe homolog of Gcn5p, was required for the majority of histone H3 acetylation around M26 in vivo. Deletion of gcn5+ caused a significant delay in chromatin remodeling but only partial reduction of M26 meiotic recombination frequency. The snf22+ (a Swi2/Snf2-ADCR homologue) deletion and snf22+ gcn5+ double deletion abolished chromatin remodeling and significant reduction of meiotic recombination around M26. These results suggest that HATs and ADCRs cooperatively alter local chromatin structure, as in selective transcription activation, to activate meiotic recombination at M26 in a site-specific manner.", "title": "Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot." }, { "docid": "25606339", "text": "TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetic modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests that TLR3 can act as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects.", "title": "Toll-like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication." }, { "docid": "2817000", "text": "In S. cerevisiae, histone variant H2A.Z is deposited in euchromatin at the flanks of silent heterochromatin to prevent its ectopic spread. We show that H2A.Z nucleosomes are found at promoter regions of nearly all genes in euchromatin. They generally occur as two positioned nucleosomes that flank a nucleosome-free region (NFR) that contains the transcription start site. Astonishingly, enrichment at 5' ends is observed not only at actively transcribed genes but also at inactive loci. Mutagenesis of a typical promoter revealed a 22 bp segment of DNA sufficient to program formation of a NFR flanked by two H2A.Z nucleosomes. This segment contains a binding site of the Myb-related protein Reb1 and an adjacent dT:dA tract. Efficient deposition of H2A.Z is further promoted by a specific pattern of histone H3 and H4 tail acetylation and the bromodomain protein Bdf1, a component of the Swr1 remodeling complex that deposits H2A.Z.", "title": "Histone Variant H2A.Z Marks the 5′ Ends of Both Active and Inactive Genes in Euchromatin" }, { "docid": "22522432", "text": "The stable contact of ISW2 with nucleosomal DNA approximately 20 bp from the dyad was shown by DNA footprinting and photoaffinity labeling using recombinant histone octamers to require the histone H4 N-terminal tail. Efficient ISW2 remodeling also required the H4 N-terminal tail, although the lack of the H4 tail can be mostly compensated for by increasing the incubation time or concentration of ISW2. Similarly, the length of extranucleosomal DNA affected the stable contact of ISW2 with this same internal nucleosomal site, with the optimal length being 70 to 85 bp. These data indicate the histone H4 tail, in concert with a favorable length of extranucleosomal DNA, recruits and properly orients ISW2 onto the nucleosome for efficient nucleosome remodeling. One consequence of this property of ISW2 is likely its previously observed nucleosome spacing activity.", "title": "Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA." }, { "docid": "3669694", "text": "Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified positive and negative modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors.", "title": "Chromatin modifying enzymes as modulators of reprogramming" }, { "docid": "8331432", "text": "The transcription factor HNF3 and linker histones H1 and H5 possess winged-helix DNA-binding domains, yet HNF3 and other fork head-related proteins activate genes during development whereas linker histones compact DNA in chromatin and repress gene expression. We compared how the two classes of factors interact with chromatin templates and found that HNF3 binds DNA at the side of nucleosome cores, similarly to what has been reported for linker histone. A nucleosome structural binding site for HNF3 is occupied at the albumin transcriptional enhancer in active and potentially active chromatin, but not in inactive chromatin in vivo. While wild-type HNF3 protein does not compact DNA extending from the nucleosome, as does linker histone, site-directed mutants of HNF3 can compact nucleosomal DNA if they contain basic amino acids at positions previously shown to be essential for nucleosomal DNA compaction by linker histones. The results illustrate how transcription factors can possess special nucleosome-binding activities that are not predicted from studies of factor interactions with free DNA.", "title": "Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome." } ]
485
H4 G94P proteins induce degradation of free histones via Rad53-dependent mechanisms.
[ { "docid": "14637235", "text": "Histone levels are tightly regulated to prevent harmful effects such as genomic instability and hypersensitivity to DNA-damaging agents due to the accumulation of these highly basic proteins when DNA replication slows down or stops. Although chromosomal histones are stable, excess (non-chromatin bound) histones are rapidly degraded in a Rad53 (radiation sensitive 53) kinase-dependent manner in Saccharomyces cerevisiae. Here we demonstrate that excess histones associate with Rad53 in vivo and seem to undergo modifications such as tyrosine phosphorylation and polyubiquitylation, before their proteolysis by the proteasome. We have identified the Tyr 99 residue of histone H3 as being critical for the efficient ubiquitylation and degradation of this histone. We have also identified the ubiquitin conjugating enzymes (E2) Ubc4 and Ubc5, as well as the ubiquitin ligase (E3) Tom1 (temperature dependent organization in mitotic nucleus 1), as enzymes involved in the ubiquitylation of excess histones. Regulated histone proteolysis has major implications for the maintenance of epigenetic marks on chromatin, genomic stability and the packaging of sperm DNA.", "title": "Histone levels are regulated by phosphorylation and ubiquitylation dependent proteolysis" } ]
[ { "docid": "13907427", "text": "Poly(ADP-ribosyl)ation plays a major role in DNA repair, where it regulates chromatin relaxation as one of the critical events in the repair process. However, the molecular mechanism by which poly(ADP-ribose) modulates chromatin remains poorly understood. Here we identify the poly(ADP-ribose)-regulated protein APLF as a DNA-damage-specific histone chaperone. APLF preferentially binds to the histone H3/H4 tetramer via its C-terminal acidic motif, which is homologous to the motif conserved in the histone chaperones of the NAP1L family (NAP1L motif). We further demonstrate that APLF exhibits histone chaperone activities in a manner that is dependent on its acidic domain and that the NAP1L motif is critical for the repair capacity of APLF in vivo. Finally, we identify structural analogs of APLF in lower eukaryotes with the ability to bind histones and localize to the sites of DNA-damage-induced poly(ADP-ribosyl)ation. Collectively, these findings define the involvement of histone chaperones in poly(ADP-ribose)-regulated DNA repair reactions.", "title": "DNA repair factor APLF is a histone chaperone." }, { "docid": "502591", "text": "E2F proteins can either activate or repress transcription. Following mitogenic stimulation, repressive E2F4-p130-histone deacetylase complexes dissociate from, while activating species (E2F1, -2, and -3) associate with, target promoters. Histones H3 and H4 simultaneously become hyperacetylated, but it remains unclear whether this is a prerequisite or a consequence of E2F binding. Here, we show that activating E2F species are required for hyperacetylation of target chromatin in human cells. Overexpression of a dominant-negative (DN) E2F1 mutant in serum-stimulated T98G cells blocked all E2F binding, H4 acetylation, and, albeit partially, H3 acetylation. Target gene activation and S-phase entry were also blocked by DN E2F1. Conversely, ectopic activation of E2F1 rapidly induced H3 and H4 acetylation, demonstrating a direct role for E2F in these events. E2F1 was previously shown to bind the histone acetyltransferases (HATs) p300/CBP and PCAF/GCN5. In our hands, ectopically expressed E2F1 also bound the unrelated HAT Tip60 and induced recruitment of five subunits of the Tip60 complex (Tip60, TRRAP, p400, Tip48, and Tip49) to target promoters in vivo. Moreover, E2F-dependent recruitment of Tip60 to chromatin occurred in late G(1) following serum stimulation. We speculate that the activities of multiple HAT complexes account for E2F-dependent acetylation, transcription, and S-phase entry.", "title": "E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1." }, { "docid": "25606339", "text": "TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetic modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests that TLR3 can act as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects.", "title": "Toll-like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication." }, { "docid": "30041340", "text": "BACKGROUND Histone deimination regulates gene function and contributes to antimicrobial response, allowing the formation of neutrophil extracellular traps (NETs). Deiminated proteins are target of anti-citrullinated peptides antibodies (ACPA) in rheumatoid arthritis (RA). \n OBJECTIVE The objective of this paper is to test the hypothesis that RA sera react with deiminated histones contained in NETs. \n METHODS Neutrophils from peripheral blood were stimulated with A23187 and acid treated; NETosis was induced by phorbol myristate acetate, and NET proteins were isolated. Sera were tested by immunoblot on acid extracted proteins from neutrophils and from NETs, and by ELISA on deiminated histone H4 or H4-derived peptides. Bands reactive with RA sera were excised from gels, digested with trypsin and subjected to matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) analysis, before and after derivatisation to detect citrullinated peptides. \n RESULTS RA sera reacted with a deiminated antigen of 11 KDa from activated neutrophils, recognised also by anti-H4 and antideiminated H4 antibodies. A similar reactivity was observed with NET proteins. The antigen from neutrophils or NETs was identified as citrullinated H4 by MALDI-TOF analysis. By ELISA, RA sera bound in vitro citrullinated H4. Citrullinated H4 14-34 and 31-50 peptides detected antibodies in 67% and 63% of RA sera and in less than 5% of controls; antibody titre was correlated with anti-CCP2. \n CONCLUSIONS Citrullinated H4 from activated neutrophils and NETs is a target of antibodies in RA, and synthetic citrullinated H4-derived peptides are a new substrate for ACPA detection. As NETosis can generate antigens for ACPA, these data suggest a novel connection between innate and adaptive immunity in RA.", "title": "Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps." }, { "docid": "7137057", "text": "BACKGROUND & AIMS HBV covalently closed circular DNA (cccDNA), the replicative intermediate responsible for persistent HBV infection of hepatocytes, is the template for transcription of all viral mRNAs. Nuclear cccDNA accumulates as a stable episome organized into minichromosomes by histone and nonhistone proteins. In this study we investigated, by a newly developed sensitive and specific assay, the relationship between viral replication and HBV chromatin assembly, transcription, and interaction with viral and cellular regulatory proteins. \n METHODS To achieve this aim we coupled a quantitative chromatin immunoprecipitation (ChIP) technique to an established method that allows the amplification of virion-encapsidated HBV genomes after transfection of linear HBV DNA into human hepatoma HuH7 cells. The cccDNA-ChIP technique was also applied to study HBV minichromosome transcriptional regulation in liver tissue from HBV-infected patients. \n RESULTS The use of anti-acetyl-H4/-H3 specific antibodies to immunoprecipitate transcriptionally active chromatin revealed that HBV replication is regulated by the acetylation status of the cccDNA-bound H3/H4 histones. Class I histone deacetylases inhibitors induced an evident increase of both cccDNA-bound acetylated H4 and HBV replication. Finally, histones hypoacetylation and histone deacetylase 1 recruitment onto the cccDNA in liver tissue correlated with low HBV viremia in hepatitis B patients. \n CONCLUSIONS We developed a ChIP-based assay to analyze, in vitro and ex vivo, the transcriptional regulation of HBV cccDNA minichromosome. Our results provide new insights on the regulation of HBV replication and identify the enzymatic activities that modulate the acetylation of cccDNA-bound histones as new therapeutic targets for anti-HBV drugs.", "title": "Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones." }, { "docid": "2817000", "text": "In S. cerevisiae, histone variant H2A.Z is deposited in euchromatin at the flanks of silent heterochromatin to prevent its ectopic spread. We show that H2A.Z nucleosomes are found at promoter regions of nearly all genes in euchromatin. They generally occur as two positioned nucleosomes that flank a nucleosome-free region (NFR) that contains the transcription start site. Astonishingly, enrichment at 5' ends is observed not only at actively transcribed genes but also at inactive loci. Mutagenesis of a typical promoter revealed a 22 bp segment of DNA sufficient to program formation of a NFR flanked by two H2A.Z nucleosomes. This segment contains a binding site of the Myb-related protein Reb1 and an adjacent dT:dA tract. Efficient deposition of H2A.Z is further promoted by a specific pattern of histone H3 and H4 tail acetylation and the bromodomain protein Bdf1, a component of the Swr1 remodeling complex that deposits H2A.Z.", "title": "Histone Variant H2A.Z Marks the 5′ Ends of Both Active and Inactive Genes in Euchromatin" }, { "docid": "20781656", "text": "Some three decades have passed since the discovery of nucleosomes in 1974 and the first isolation of a histone chaperone in 1978. While various types of histone chaperones have been isolated and functionally analyzed, the elementary processes of nucleosome assembly and disassembly have been less well characterized. Recently, the tertiary structure of a hetero-trimeric complex composed of the histone chaperone CIA/ASF1 and the histone H3-H4 dimer was determined, and this complex was proposed to be an intermediate in nucleosome assembly and disassembly reactions. In addition, CIA alone was biochemically shown to dissociate the histone (H3-H4)2 tetramer into two histone H3-H4 dimers. This activity suggested that CIA regulates the semi-conservative replication of nucleosomes. Here, we provide an overview of prominent histone chaperones with the goal of elucidating the mechanisms that preserve and modify epigenetic information. We also discuss the reactions involved in nucleosome assembly and disassembly.", "title": "Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly" }, { "docid": "14155726", "text": "Nuclear actin-related proteins (Arps) are subunits of several chromatin remodelers, but their molecular functions within these complexes are unclear. We report the crystal structure of the INO80 complex subunit Arp8 in its ATP-bound form. Human Arp8 has several insertions in the conserved actin fold that explain its inability to polymerize. Most remarkably, one insertion wraps over the active site cleft and appears to rigidify the domain architecture, while active site features shared with actin suggest an allosterically controlled ATPase activity. Quantitative binding studies with nucleosomes and histone complexes reveal that Arp8 and the Arp8-Arp4-actin-HSA sub-complex of INO80 strongly prefer nucleosomes and H3-H4 tetramers over H2A-H2B dimers, suggesting that Arp8 functions as a nucleosome recognition module. In contrast, Arp4 prefers free (H3-H4)(2) over nucleosomes and may serve remodelers through binding to (dis)assembly intermediates in the remodeling reaction.", "title": "Structure of Actin-related protein 8 and its contribution to nucleosome binding" }, { "docid": "32408470", "text": "Cigarette smoking promotes body weight reduction in humans while paradoxically also promoting insulin resistance (IR) and hyperinsulinemia. However, the mechanisms behind these effects are unclear. Here we show that nicotine, a major constituent of cigarette smoke, selectively activates AMP-activated protein kinase α2 (AMPKα2) in adipocytes, which in turn phosphorylates MAP kinase phosphatase-1 (MKP1) at serine 334, initiating its proteasome-dependent degradation. The nicotine-dependent reduction of MKP1 induces the aberrant activation of both p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, leading to increased phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307. Phosphorylation of IRS1 leads to its degradation, protein kinase B inhibition, and the loss of insulin-mediated inhibition of lipolysis. Consequently, nicotine increases lipolysis, which results in body weight reduction, but this increase also elevates the levels of circulating free fatty acids and thus causes IR in insulin-sensitive tissues. These results establish AMPKα2 as an essential mediator of nicotine-induced whole-body IR in spite of reductions in adiposity.", "title": "Activation of AMPKα2 in adipocytes is essential for nicotine-induced insulin resistance in vivo" }, { "docid": "9732010", "text": "Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE)-like sequence, M26, and a heterodimeric ATF/CREB transcription factor, Atf1.Pcr1. Chromatin remodeling occurs meiotically around M26. We examined the roles of HATs and ADCRs in chromatin remodeling around M26. Histones H3 and H4 around M26 were hyperacetylated in an M26- and Atf1-dependent manner early in meiosis. SpGcn5, the S. pombe homolog of Gcn5p, was required for the majority of histone H3 acetylation around M26 in vivo. Deletion of gcn5+ caused a significant delay in chromatin remodeling but only partial reduction of M26 meiotic recombination frequency. The snf22+ (a Swi2/Snf2-ADCR homologue) deletion and snf22+ gcn5+ double deletion abolished chromatin remodeling and significant reduction of meiotic recombination around M26. These results suggest that HATs and ADCRs cooperatively alter local chromatin structure, as in selective transcription activation, to activate meiotic recombination at M26 in a site-specific manner.", "title": "Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot." }, { "docid": "29788648", "text": "NuA4, the major H4 lysine acetyltransferase (KAT) complex in Saccharomyces cerevisiae, is recruited to promoters and stimulates transcription initiation. NuA4 subunits contain domains that bind methylated histones, suggesting that histone methylation should target NuA4 to coding sequences during transcription elongation. We show that NuA4 is cotranscriptionally recruited, dependent on its physical association with elongating polymerase II (Pol II) phosphorylated on the C-terminal domain by cyclin-dependent kinase 7/Kin28, but independently of subunits (Eaf1 and Tra1) required for NuA4 recruitment to promoters. Whereas histone methylation by Set1 and Set2 is dispensable for NuA4's interaction with Pol II and targeting to some coding regions, it stimulates NuA4-histone interaction and H4 acetylation in vivo. The NuA4 KAT, Esa1, mediates increased H4 acetylation and enhanced RSC occupancy and histone eviction in coding sequences and stimulates the rate of transcription elongation. Esa1 cooperates with the H3 KAT in SAGA, Gcn5, to enhance these functions. Our findings delineate a pathway for acetylation-mediated nucleosome remodeling and eviction in coding sequences that stimulates transcription elongation by Pol II in vivo.", "title": "NuA4 lysine acetyltransferase Esa1 is targeted to coding regions and stimulates transcription elongation with Gcn5." }, { "docid": "8002887", "text": "Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.", "title": "Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs" }, { "docid": "5966635", "text": "Activation of transcription within chromatin has been correlated with the incorporation of the essential histone variant H2A.Z into nucleosomes. H2A.Z and other histone variants may establish structurally distinct chromosomal domains; however, the molecular mechanism by which they function is largely unknown. Here we report the 2.6 Å crystal structure of a nucleosome core particle containing the histone variant H2A.Z. The overall structure is similar to that of the previously reported 2.8 Å nucleosome structure containing major histone proteins. However, distinct localized changes result in the subtle destabilization of the interaction between the (H2A.Z–H2B) dimer and the (H3–H4)2 tetramer. Moreover, H2A.Z nucleosomes have an altered surface that includes a metal ion. This altered surface may lead to changes in higher order structure, and/or could result in the association of specific nuclear proteins with H2A.Z. Finally, incorporation of H2A.Z and H2A within the same nucleosome is unlikely, due to significant changes in the interface between the two H2A.Z–H2B dimers.", "title": "Crystal structure of a nucleosome core particle containing the variant histone H2A.Z" }, { "docid": "22522432", "text": "The stable contact of ISW2 with nucleosomal DNA approximately 20 bp from the dyad was shown by DNA footprinting and photoaffinity labeling using recombinant histone octamers to require the histone H4 N-terminal tail. Efficient ISW2 remodeling also required the H4 N-terminal tail, although the lack of the H4 tail can be mostly compensated for by increasing the incubation time or concentration of ISW2. Similarly, the length of extranucleosomal DNA affected the stable contact of ISW2 with this same internal nucleosomal site, with the optimal length being 70 to 85 bp. These data indicate the histone H4 tail, in concert with a favorable length of extranucleosomal DNA, recruits and properly orients ISW2 onto the nucleosome for efficient nucleosome remodeling. One consequence of this property of ISW2 is likely its previously observed nucleosome spacing activity.", "title": "Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA." }, { "docid": "42873134", "text": "Type 1 and type 2 diabetes are characterized by progressive beta-cell failure. Apoptosis is probably the main form of beta-cell death in both forms of the disease. It has been suggested that the mechanisms leading to nutrient- and cytokine-induced beta-cell death in type 2 and type 1 diabetes, respectively, share the activation of a final common pathway involving interleukin (IL)-1beta, nuclear factor (NF)-kappaB, and Fas. We review herein the similarities and differences between the mechanisms of beta-cell death in type 1 and type 2 diabetes. In the insulitis lesion in type 1 diabetes, invading immune cells produce cytokines, such as IL-1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma. IL-1beta and/or TNF-alpha plus IFN-gamma induce beta-cell apoptosis via the activation of beta-cell gene networks under the control of the transcription factors NF-kappaB and STAT-1. NF-kappaB activation leads to production of nitric oxide (NO) and chemokines and depletion of endoplasmic reticulum (ER) calcium. The execution of beta-cell death occurs through activation of mitogen-activated protein kinases, via triggering of ER stress and by the release of mitochondrial death signals. Chronic exposure to elevated levels of glucose and free fatty acids (FFAs) causes beta-cell dysfunction and may induce beta-cell apoptosis in type 2 diabetes. Exposure to high glucose has dual effects, triggering initially \"glucose hypersensitization\" and later apoptosis, via different mechanisms. High glucose, however, does not induce or activate IL-1beta, NF-kappaB, or inducible nitric oxide synthase in rat or human beta-cells in vitro or in vivo in Psammomys obesus. FFAs may cause beta-cell apoptosis via ER stress, which is NF-kappaB and NO independent. Thus, cytokines and nutrients trigger beta-cell death by fundamentally different mechanisms, namely an NF-kappaB-dependent mechanism that culminates in caspase-3 activation for cytokines and an NF-kappaB-independent mechanism for nutrients. This argues against a unifying hypothesis for the mechanisms of beta-cell death in type 1 and type 2 diabetes and suggests that different approaches will be required to prevent beta-cell death in type 1 and type 2 diabetes.", "title": "Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities." }, { "docid": "8460275", "text": "Despite being surrounded by diverse nutrients, mammalian cells preferentially metabolize glucose and free amino acids. Recently, Ras-induced macropinocytosis of extracellular proteins was shown to reduce a transformed cell's dependence on extracellular glutamine. Here, we demonstrate that protein macropinocytosis can also serve as an essential amino acid source. Lysosomal degradation of extracellular proteins can sustain cell survival and induce activation of mTORC1 but fails to elicit significant cell accumulation. Unlike its growth-promoting activity under amino-acid-replete conditions, we discovered that mTORC1 activation suppresses proliferation when cells rely on extracellular proteins as an amino acid source. Inhibiting mTORC1 results in increased catabolism of endocytosed proteins and enhances cell proliferation during nutrient-depleted conditions in vitro and within vascularly compromised tumors in vivo. Thus, by preventing nutritional consumption of extracellular proteins, mTORC1 couples growth to availability of free amino acids. These results may have important implications for the use of mTOR inhibitors as therapeutics.", "title": "The Utilization of Extracellular Proteins as Nutrients Is Suppressed by mTORC1" }, { "docid": "19485243", "text": "The transcription factors HNF3 (FoxA) and GATA-4 are the earliest known to bind the albumin gene enhancer in liver precursor cells in embryos. To understand how they access sites in silent chromatin, we assembled nucleosome arrays containing albumin enhancer sequences and compacted them with linker histone. HNF3 and GATA-4, but not NF-1, C/EBP, and GAL4-AH, bound their sites in compacted chromatin and opened the local nucleosomal domain in the absence of ATP-dependent enzymes. The ability of HNF3 to open chromatin is mediated by a high affinity DNA binding site and by the C-terminal domain of the protein, which binds histones H3 and H4. Thus, factors that potentiate transcription in development are inherently capable of initiating chromatin opening events.", "title": "Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4." }, { "docid": "38751591", "text": "The DELLA proteins GAI, RGA, RGL1 and RGL2 in Arabidopsis are plant growth repressors, repressing diverse developmental processes. Studies have shown that gibberellin (GA) attenuates the repressive function of DELLA proteins by triggering their degradation via the proteasome pathway. However, it is not known if GA-induced protein degradation is the only pathway for regulating the bioactivity of DELLA proteins. We show here that tobacco BY2 cells represent a suitable system for studying GA signaling. RGL2 exists in a phosphorylated form in BY2 cells. RGL2 undergoes GA-induced degradation, and this process is blocked by proteasome inhibitors and serine/threonine phosphatase inhibitors; however, serine/threonine kinase inhibitors had no detectable effect, suggesting that dephosphorylation of serine/threonine is probably a prerequisite for degradation of RGL2 via the proteasome pathway. Site-directed substitution of all 17 conserved serine and threonine residues showed that six mutants (RGL2(S441D, RGL2(S542D), RGL2(T271E), RGL2(T319E), RGL2(T411E) and RGL2(T535E)) mimicking the status of constitutive phosphorylation are resistant to GA-induced degradation. This suggests that these sites are potential phosphorylation sites. A functional assay based on the expression of GA 20-oxidase revealed that RGL2(T271E) is probably a null mutant, RGL2(S441D), RGL2(S542D), RGL2(T319E) and RGL2(T411E) only retained about 4-17% of the activity of the wild type RGL2, whereas RGL2(T535E) retained about 66% of the activity of the wild type RGL2. However, expression of GA 20-oxidase in BY2 cells expressing these mutant proteins is still responsive to GA, suggesting that the stabilization of RGL2 protein is not the only pathway for regulating its bioactivity.", "title": "Identification of the conserved serine/threonine residues important for gibberellin-sensitivity of Arabidopsis RGL2 protein." }, { "docid": "175735", "text": "MOTIVATION The nucleosome is the basic repeating unit of chromatin. It contains two copies each of the four core histones H2A, H2B, H3 and H4 and about 147 bp of DNA. The residues of the histone proteins are subject to numerous post-translational modifications, such as methylation or acetylation. Chromatin immunoprecipitiation followed by sequencing (ChIP-seq) is a technique that provides genome-wide occupancy data of these modified histone proteins, and it requires appropriate computational methods. \n RESULTS We present NucHunter, an algorithm that uses the data from ChIP-seq experiments directed against many histone modifications to infer positioned nucleosomes. NucHunter annotates each of these nucleosomes with the intensities of the histone modifications. We demonstrate that these annotations can be used to infer nucleosomal states with distinct correlations to underlying genomic features and chromatin-related processes, such as transcriptional start sites, enhancers, elongation by RNA polymerase II and chromatin-mediated repression. Thus, NucHunter is a versatile tool that can be used to predict positioned nucleosomes from a panel of histone modification ChIP-seq experiments and infer distinct histone modification patterns associated to different chromatin states. AVAILABILITY The software is available at http://epigen.molgen.mpg.de/nuchunter/.", "title": "Inferring nucleosome positions with their histone mark annotation from ChIP data" } ]
486
H4 G94P proteins inhibit chromatin assembly, which decreases free histones.
[ { "docid": "14637235", "text": "Histone levels are tightly regulated to prevent harmful effects such as genomic instability and hypersensitivity to DNA-damaging agents due to the accumulation of these highly basic proteins when DNA replication slows down or stops. Although chromosomal histones are stable, excess (non-chromatin bound) histones are rapidly degraded in a Rad53 (radiation sensitive 53) kinase-dependent manner in Saccharomyces cerevisiae. Here we demonstrate that excess histones associate with Rad53 in vivo and seem to undergo modifications such as tyrosine phosphorylation and polyubiquitylation, before their proteolysis by the proteasome. We have identified the Tyr 99 residue of histone H3 as being critical for the efficient ubiquitylation and degradation of this histone. We have also identified the ubiquitin conjugating enzymes (E2) Ubc4 and Ubc5, as well as the ubiquitin ligase (E3) Tom1 (temperature dependent organization in mitotic nucleus 1), as enzymes involved in the ubiquitylation of excess histones. Regulated histone proteolysis has major implications for the maintenance of epigenetic marks on chromatin, genomic stability and the packaging of sperm DNA.", "title": "Histone levels are regulated by phosphorylation and ubiquitylation dependent proteolysis" } ]
[ { "docid": "7137057", "text": "BACKGROUND & AIMS HBV covalently closed circular DNA (cccDNA), the replicative intermediate responsible for persistent HBV infection of hepatocytes, is the template for transcription of all viral mRNAs. Nuclear cccDNA accumulates as a stable episome organized into minichromosomes by histone and nonhistone proteins. In this study we investigated, by a newly developed sensitive and specific assay, the relationship between viral replication and HBV chromatin assembly, transcription, and interaction with viral and cellular regulatory proteins. \n METHODS To achieve this aim we coupled a quantitative chromatin immunoprecipitation (ChIP) technique to an established method that allows the amplification of virion-encapsidated HBV genomes after transfection of linear HBV DNA into human hepatoma HuH7 cells. The cccDNA-ChIP technique was also applied to study HBV minichromosome transcriptional regulation in liver tissue from HBV-infected patients. \n RESULTS The use of anti-acetyl-H4/-H3 specific antibodies to immunoprecipitate transcriptionally active chromatin revealed that HBV replication is regulated by the acetylation status of the cccDNA-bound H3/H4 histones. Class I histone deacetylases inhibitors induced an evident increase of both cccDNA-bound acetylated H4 and HBV replication. Finally, histones hypoacetylation and histone deacetylase 1 recruitment onto the cccDNA in liver tissue correlated with low HBV viremia in hepatitis B patients. \n CONCLUSIONS We developed a ChIP-based assay to analyze, in vitro and ex vivo, the transcriptional regulation of HBV cccDNA minichromosome. Our results provide new insights on the regulation of HBV replication and identify the enzymatic activities that modulate the acetylation of cccDNA-bound histones as new therapeutic targets for anti-HBV drugs.", "title": "Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones." }, { "docid": "14155726", "text": "Nuclear actin-related proteins (Arps) are subunits of several chromatin remodelers, but their molecular functions within these complexes are unclear. We report the crystal structure of the INO80 complex subunit Arp8 in its ATP-bound form. Human Arp8 has several insertions in the conserved actin fold that explain its inability to polymerize. Most remarkably, one insertion wraps over the active site cleft and appears to rigidify the domain architecture, while active site features shared with actin suggest an allosterically controlled ATPase activity. Quantitative binding studies with nucleosomes and histone complexes reveal that Arp8 and the Arp8-Arp4-actin-HSA sub-complex of INO80 strongly prefer nucleosomes and H3-H4 tetramers over H2A-H2B dimers, suggesting that Arp8 functions as a nucleosome recognition module. In contrast, Arp4 prefers free (H3-H4)(2) over nucleosomes and may serve remodelers through binding to (dis)assembly intermediates in the remodeling reaction.", "title": "Structure of Actin-related protein 8 and its contribution to nucleosome binding" }, { "docid": "12588500", "text": "Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106.", "title": "Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly" }, { "docid": "19485243", "text": "The transcription factors HNF3 (FoxA) and GATA-4 are the earliest known to bind the albumin gene enhancer in liver precursor cells in embryos. To understand how they access sites in silent chromatin, we assembled nucleosome arrays containing albumin enhancer sequences and compacted them with linker histone. HNF3 and GATA-4, but not NF-1, C/EBP, and GAL4-AH, bound their sites in compacted chromatin and opened the local nucleosomal domain in the absence of ATP-dependent enzymes. The ability of HNF3 to open chromatin is mediated by a high affinity DNA binding site and by the C-terminal domain of the protein, which binds histones H3 and H4. Thus, factors that potentiate transcription in development are inherently capable of initiating chromatin opening events.", "title": "Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4." }, { "docid": "14338915", "text": "The mechanisms ensuring specific incorporation of CENP-A at centromeres are poorly understood. Mis16 and Mis18 are required for CENP-A localization at centromeres and form a complex that is conserved from fission yeast to human. Fission yeast sim1 mutants that alleviate kinetochore domain silencing are defective in Scm3(Sp), the ortholog of budding yeast Scm3(Sc). Scm3(Sp) depends on Mis16/18 for its centromere localization and like them is recruited to centromeres in late anaphase. Importantly, Scm3(Sp) coaffinity purifies with CENP-A(Cnp1) and associates with CENP-A(Cnp1) in vitro, yet localizes independently of intact CENP-A(Cnp1) chromatin and is differentially released from chromatin. While Scm3(Sc) has been proposed to form a unique hexameric nucleosome with CENP-A(Cse4) and histone H4 at budding yeast point centromeres, we favor a model in which Scm3(Sp) acts as a CENP-A(Cnp1) receptor/assembly factor, cooperating with Mis16 and Mis18 to receive CENP-A(Cnp1) from the Sim3 escort and mediate assembly of CENP-A(Cnp1) into subkinetochore chromatin.", "title": "Fission Yeast Scm3: A CENP-A Receptor Required for Integrity of Subkinetochore Chromatin" }, { "docid": "20781656", "text": "Some three decades have passed since the discovery of nucleosomes in 1974 and the first isolation of a histone chaperone in 1978. While various types of histone chaperones have been isolated and functionally analyzed, the elementary processes of nucleosome assembly and disassembly have been less well characterized. Recently, the tertiary structure of a hetero-trimeric complex composed of the histone chaperone CIA/ASF1 and the histone H3-H4 dimer was determined, and this complex was proposed to be an intermediate in nucleosome assembly and disassembly reactions. In addition, CIA alone was biochemically shown to dissociate the histone (H3-H4)2 tetramer into two histone H3-H4 dimers. This activity suggested that CIA regulates the semi-conservative replication of nucleosomes. Here, we provide an overview of prominent histone chaperones with the goal of elucidating the mechanisms that preserve and modify epigenetic information. We also discuss the reactions involved in nucleosome assembly and disassembly.", "title": "Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly" }, { "docid": "502591", "text": "E2F proteins can either activate or repress transcription. Following mitogenic stimulation, repressive E2F4-p130-histone deacetylase complexes dissociate from, while activating species (E2F1, -2, and -3) associate with, target promoters. Histones H3 and H4 simultaneously become hyperacetylated, but it remains unclear whether this is a prerequisite or a consequence of E2F binding. Here, we show that activating E2F species are required for hyperacetylation of target chromatin in human cells. Overexpression of a dominant-negative (DN) E2F1 mutant in serum-stimulated T98G cells blocked all E2F binding, H4 acetylation, and, albeit partially, H3 acetylation. Target gene activation and S-phase entry were also blocked by DN E2F1. Conversely, ectopic activation of E2F1 rapidly induced H3 and H4 acetylation, demonstrating a direct role for E2F in these events. E2F1 was previously shown to bind the histone acetyltransferases (HATs) p300/CBP and PCAF/GCN5. In our hands, ectopically expressed E2F1 also bound the unrelated HAT Tip60 and induced recruitment of five subunits of the Tip60 complex (Tip60, TRRAP, p400, Tip48, and Tip49) to target promoters in vivo. Moreover, E2F-dependent recruitment of Tip60 to chromatin occurred in late G(1) following serum stimulation. We speculate that the activities of multiple HAT complexes account for E2F-dependent acetylation, transcription, and S-phase entry.", "title": "E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1." }, { "docid": "29877890", "text": "Recent structures of the nucleosome core particle reveal details of histone-histone and histone-DNA interactions. These structures have now set the stage for understanding chromatin assembly and dynamics during replication and transcription. Histone chaperones and chromatin remodeling complexes are important in both of these processes. The nucleosome and its protein core, the histone octamer, have twofold symmetry, which histone chaperones may use to bind core histones. Recent studies suggest that the nucleoplasmin pentamer may mediate histone storage, sperm chromatin decondensation and nucleosome assembly, by dimerizing to form a decamer. In this model, histone binding on the lateral surface of the chaperone involves stereospecific interactions and a shared twofold axis.", "title": "Histone chaperones and nucleosome assembly." }, { "docid": "13907427", "text": "Poly(ADP-ribosyl)ation plays a major role in DNA repair, where it regulates chromatin relaxation as one of the critical events in the repair process. However, the molecular mechanism by which poly(ADP-ribose) modulates chromatin remains poorly understood. Here we identify the poly(ADP-ribose)-regulated protein APLF as a DNA-damage-specific histone chaperone. APLF preferentially binds to the histone H3/H4 tetramer via its C-terminal acidic motif, which is homologous to the motif conserved in the histone chaperones of the NAP1L family (NAP1L motif). We further demonstrate that APLF exhibits histone chaperone activities in a manner that is dependent on its acidic domain and that the NAP1L motif is critical for the repair capacity of APLF in vivo. Finally, we identify structural analogs of APLF in lower eukaryotes with the ability to bind histones and localize to the sites of DNA-damage-induced poly(ADP-ribosyl)ation. Collectively, these findings define the involvement of histone chaperones in poly(ADP-ribose)-regulated DNA repair reactions.", "title": "DNA repair factor APLF is a histone chaperone." }, { "docid": "175735", "text": "MOTIVATION The nucleosome is the basic repeating unit of chromatin. It contains two copies each of the four core histones H2A, H2B, H3 and H4 and about 147 bp of DNA. The residues of the histone proteins are subject to numerous post-translational modifications, such as methylation or acetylation. Chromatin immunoprecipitiation followed by sequencing (ChIP-seq) is a technique that provides genome-wide occupancy data of these modified histone proteins, and it requires appropriate computational methods. \n RESULTS We present NucHunter, an algorithm that uses the data from ChIP-seq experiments directed against many histone modifications to infer positioned nucleosomes. NucHunter annotates each of these nucleosomes with the intensities of the histone modifications. We demonstrate that these annotations can be used to infer nucleosomal states with distinct correlations to underlying genomic features and chromatin-related processes, such as transcriptional start sites, enhancers, elongation by RNA polymerase II and chromatin-mediated repression. Thus, NucHunter is a versatile tool that can be used to predict positioned nucleosomes from a panel of histone modification ChIP-seq experiments and infer distinct histone modification patterns associated to different chromatin states. AVAILABILITY The software is available at http://epigen.molgen.mpg.de/nuchunter/.", "title": "Inferring nucleosome positions with their histone mark annotation from ChIP data" }, { "docid": "5966635", "text": "Activation of transcription within chromatin has been correlated with the incorporation of the essential histone variant H2A.Z into nucleosomes. H2A.Z and other histone variants may establish structurally distinct chromosomal domains; however, the molecular mechanism by which they function is largely unknown. Here we report the 2.6 Å crystal structure of a nucleosome core particle containing the histone variant H2A.Z. The overall structure is similar to that of the previously reported 2.8 Å nucleosome structure containing major histone proteins. However, distinct localized changes result in the subtle destabilization of the interaction between the (H2A.Z–H2B) dimer and the (H3–H4)2 tetramer. Moreover, H2A.Z nucleosomes have an altered surface that includes a metal ion. This altered surface may lead to changes in higher order structure, and/or could result in the association of specific nuclear proteins with H2A.Z. Finally, incorporation of H2A.Z and H2A within the same nucleosome is unlikely, due to significant changes in the interface between the two H2A.Z–H2B dimers.", "title": "Crystal structure of a nucleosome core particle containing the variant histone H2A.Z" }, { "docid": "1259280", "text": "The chromatin architecture of eukaryotic gene promoters is generally characterized by a nucleosome-free region (NFR) flanked by at least one H2A.Z variant nucleosome. Computational predictions of nucleosome positions based on thermodynamic properties of DNA-histone interactions have met with limited success. Here we show that the action of the essential RSC remodeling complex in S. cerevisiae helps explain the discrepancy between theory and experiment. In RSC-depleted cells, NFRs shrink such that the average positions of flanking nucleosomes move toward predicted sites. Nucleosome positioning at distinct subsets of promoters additionally requires the essential Myb family proteins Abf1 and Reb1, whose binding sites are enriched in NFRs. In contrast, H2A.Z deposition is dispensable for nucleosome positioning. By regulating H2A.Z deposition using a steroid-inducible protein splicing strategy, we show that NFR establishment is necessary for H2A.Z deposition. These studies suggest an ordered pathway for the assembly of promoter chromatin architecture.", "title": "Mechanisms that Specify Promoter Nucleosome Location and Identity" }, { "docid": "30041340", "text": "BACKGROUND Histone deimination regulates gene function and contributes to antimicrobial response, allowing the formation of neutrophil extracellular traps (NETs). Deiminated proteins are target of anti-citrullinated peptides antibodies (ACPA) in rheumatoid arthritis (RA). \n OBJECTIVE The objective of this paper is to test the hypothesis that RA sera react with deiminated histones contained in NETs. \n METHODS Neutrophils from peripheral blood were stimulated with A23187 and acid treated; NETosis was induced by phorbol myristate acetate, and NET proteins were isolated. Sera were tested by immunoblot on acid extracted proteins from neutrophils and from NETs, and by ELISA on deiminated histone H4 or H4-derived peptides. Bands reactive with RA sera were excised from gels, digested with trypsin and subjected to matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) analysis, before and after derivatisation to detect citrullinated peptides. \n RESULTS RA sera reacted with a deiminated antigen of 11 KDa from activated neutrophils, recognised also by anti-H4 and antideiminated H4 antibodies. A similar reactivity was observed with NET proteins. The antigen from neutrophils or NETs was identified as citrullinated H4 by MALDI-TOF analysis. By ELISA, RA sera bound in vitro citrullinated H4. Citrullinated H4 14-34 and 31-50 peptides detected antibodies in 67% and 63% of RA sera and in less than 5% of controls; antibody titre was correlated with anti-CCP2. \n CONCLUSIONS Citrullinated H4 from activated neutrophils and NETs is a target of antibodies in RA, and synthetic citrullinated H4-derived peptides are a new substrate for ACPA detection. As NETosis can generate antigens for ACPA, these data suggest a novel connection between innate and adaptive immunity in RA.", "title": "Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps." }, { "docid": "9732010", "text": "Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE)-like sequence, M26, and a heterodimeric ATF/CREB transcription factor, Atf1.Pcr1. Chromatin remodeling occurs meiotically around M26. We examined the roles of HATs and ADCRs in chromatin remodeling around M26. Histones H3 and H4 around M26 were hyperacetylated in an M26- and Atf1-dependent manner early in meiosis. SpGcn5, the S. pombe homolog of Gcn5p, was required for the majority of histone H3 acetylation around M26 in vivo. Deletion of gcn5+ caused a significant delay in chromatin remodeling but only partial reduction of M26 meiotic recombination frequency. The snf22+ (a Swi2/Snf2-ADCR homologue) deletion and snf22+ gcn5+ double deletion abolished chromatin remodeling and significant reduction of meiotic recombination around M26. These results suggest that HATs and ADCRs cooperatively alter local chromatin structure, as in selective transcription activation, to activate meiotic recombination at M26 in a site-specific manner.", "title": "Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot." }, { "docid": "2817000", "text": "In S. cerevisiae, histone variant H2A.Z is deposited in euchromatin at the flanks of silent heterochromatin to prevent its ectopic spread. We show that H2A.Z nucleosomes are found at promoter regions of nearly all genes in euchromatin. They generally occur as two positioned nucleosomes that flank a nucleosome-free region (NFR) that contains the transcription start site. Astonishingly, enrichment at 5' ends is observed not only at actively transcribed genes but also at inactive loci. Mutagenesis of a typical promoter revealed a 22 bp segment of DNA sufficient to program formation of a NFR flanked by two H2A.Z nucleosomes. This segment contains a binding site of the Myb-related protein Reb1 and an adjacent dT:dA tract. Efficient deposition of H2A.Z is further promoted by a specific pattern of histone H3 and H4 tail acetylation and the bromodomain protein Bdf1, a component of the Swr1 remodeling complex that deposits H2A.Z.", "title": "Histone Variant H2A.Z Marks the 5′ Ends of Both Active and Inactive Genes in Euchromatin" }, { "docid": "3669694", "text": "Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified positive and negative modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors.", "title": "Chromatin modifying enzymes as modulators of reprogramming" }, { "docid": "25606339", "text": "TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetic modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests that TLR3 can act as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects.", "title": "Toll-like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication." }, { "docid": "8331432", "text": "The transcription factor HNF3 and linker histones H1 and H5 possess winged-helix DNA-binding domains, yet HNF3 and other fork head-related proteins activate genes during development whereas linker histones compact DNA in chromatin and repress gene expression. We compared how the two classes of factors interact with chromatin templates and found that HNF3 binds DNA at the side of nucleosome cores, similarly to what has been reported for linker histone. A nucleosome structural binding site for HNF3 is occupied at the albumin transcriptional enhancer in active and potentially active chromatin, but not in inactive chromatin in vivo. While wild-type HNF3 protein does not compact DNA extending from the nucleosome, as does linker histone, site-directed mutants of HNF3 can compact nucleosomal DNA if they contain basic amino acids at positions previously shown to be essential for nucleosomal DNA compaction by linker histones. The results illustrate how transcription factors can possess special nucleosome-binding activities that are not predicted from studies of factor interactions with free DNA.", "title": "Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome." }, { "docid": "15960670", "text": "The centromere is a chromatin region that serves as the spindle attachment point and directs accurate inheritance of eukaryotic chromosomes during cell divisions. However, the mechanism by which the centromere assembles and stabilizes at a specific genomic region is not clear. The de novo formation of a human/mammalian artificial chromosome (HAC/MAC) with a functional centromere assembly requires the presence of alpha-satellite DNA containing binding motifs for the centromeric CENP-B protein. We demonstrate here that de novo centromere assembly on HAC/MAC is dependent on CENP-B. In contrast, centromere formation is suppressed in cells expressing CENP-B when alpha-satellite DNA was integrated into a chromosomal site. Remarkably, on those integration sites CENP-B enhances histone H3-K9 trimethylation and DNA methylation, thereby stimulating heterochromatin formation. Thus, we propose that CENP-B plays a dual role in centromere formation, ensuring de novo formation on DNA lacking a functional centromere but preventing the formation of excess centromeres on chromosomes.", "title": "CENP-B Controls Centromere Formation Depending on the Chromatin Context" }, { "docid": "24311787", "text": "Variant histone H2AZ-containing nucleosomes are involved in the regulation of gene expression. In Saccharomyces cerevisiae, chromatin deposition of histone H2AZ is mediated by the fourteen-subunit SWR1 complex, which catalyzes ATP-dependent exchange of nucleosomal histone H2A for H2AZ. Previous work defined the role of seven SWR1 subunits (Swr1 ATPase, Swc2, Swc3, Arp6, Swc5, Yaf9, and Swc6) in maintaining complex integrity and H2AZ histone replacement activity. Here we examined the function of three additional SWR1 subunits, bromodomain containing Bdf1, actin-related protein Arp4 and Swc7, by analyzing affinity-purified mutant SWR1 complexes. We observed that depletion of Arp4 (arp4-td) substantially impaired the association of Bdf1, Yaf9, and Swc4. In contrast, loss of either Bdf1 or Swc7 had minimal effects on overall complex integrity. Furthermore, the basic H2AZ histone replacement activity of SWR1 in vitro required Arp4, but not Bdf1 or Swc7. Thus, three out of fourteen SWR1 subunits, Bdf1, Swc7, and previously noted Swc3, appear to have roles auxiliary to the basic histone replacement activity. The N-terminal region of the Swr1 ATPase subunit is necessary and sufficient to direct association of Bdf1 and Swc7, as well as Arp4, Act1, Yaf9 and Swc4. This same region contains an additional H2AZ-H2B specific binding site, distinct from the previously identified Swc2 subunit. These findings suggest that one SWR1 enzyme might be capable of binding two H2AZ-H2B dimers, and provide further insight on the hierarchy and interdependency of molecular interactions within the SWR1 complex.", "title": "N terminus of Swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complex." } ]
487
H4 G94P proteins suppress degradation of free histones via Rad53-dependent mechanisms.
[ { "docid": "14637235", "text": "Histone levels are tightly regulated to prevent harmful effects such as genomic instability and hypersensitivity to DNA-damaging agents due to the accumulation of these highly basic proteins when DNA replication slows down or stops. Although chromosomal histones are stable, excess (non-chromatin bound) histones are rapidly degraded in a Rad53 (radiation sensitive 53) kinase-dependent manner in Saccharomyces cerevisiae. Here we demonstrate that excess histones associate with Rad53 in vivo and seem to undergo modifications such as tyrosine phosphorylation and polyubiquitylation, before their proteolysis by the proteasome. We have identified the Tyr 99 residue of histone H3 as being critical for the efficient ubiquitylation and degradation of this histone. We have also identified the ubiquitin conjugating enzymes (E2) Ubc4 and Ubc5, as well as the ubiquitin ligase (E3) Tom1 (temperature dependent organization in mitotic nucleus 1), as enzymes involved in the ubiquitylation of excess histones. Regulated histone proteolysis has major implications for the maintenance of epigenetic marks on chromatin, genomic stability and the packaging of sperm DNA.", "title": "Histone levels are regulated by phosphorylation and ubiquitylation dependent proteolysis" } ]
[ { "docid": "25606339", "text": "TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetic modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests that TLR3 can act as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects.", "title": "Toll-like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication." }, { "docid": "13907427", "text": "Poly(ADP-ribosyl)ation plays a major role in DNA repair, where it regulates chromatin relaxation as one of the critical events in the repair process. However, the molecular mechanism by which poly(ADP-ribose) modulates chromatin remains poorly understood. Here we identify the poly(ADP-ribose)-regulated protein APLF as a DNA-damage-specific histone chaperone. APLF preferentially binds to the histone H3/H4 tetramer via its C-terminal acidic motif, which is homologous to the motif conserved in the histone chaperones of the NAP1L family (NAP1L motif). We further demonstrate that APLF exhibits histone chaperone activities in a manner that is dependent on its acidic domain and that the NAP1L motif is critical for the repair capacity of APLF in vivo. Finally, we identify structural analogs of APLF in lower eukaryotes with the ability to bind histones and localize to the sites of DNA-damage-induced poly(ADP-ribosyl)ation. Collectively, these findings define the involvement of histone chaperones in poly(ADP-ribose)-regulated DNA repair reactions.", "title": "DNA repair factor APLF is a histone chaperone." }, { "docid": "502591", "text": "E2F proteins can either activate or repress transcription. Following mitogenic stimulation, repressive E2F4-p130-histone deacetylase complexes dissociate from, while activating species (E2F1, -2, and -3) associate with, target promoters. Histones H3 and H4 simultaneously become hyperacetylated, but it remains unclear whether this is a prerequisite or a consequence of E2F binding. Here, we show that activating E2F species are required for hyperacetylation of target chromatin in human cells. Overexpression of a dominant-negative (DN) E2F1 mutant in serum-stimulated T98G cells blocked all E2F binding, H4 acetylation, and, albeit partially, H3 acetylation. Target gene activation and S-phase entry were also blocked by DN E2F1. Conversely, ectopic activation of E2F1 rapidly induced H3 and H4 acetylation, demonstrating a direct role for E2F in these events. E2F1 was previously shown to bind the histone acetyltransferases (HATs) p300/CBP and PCAF/GCN5. In our hands, ectopically expressed E2F1 also bound the unrelated HAT Tip60 and induced recruitment of five subunits of the Tip60 complex (Tip60, TRRAP, p400, Tip48, and Tip49) to target promoters in vivo. Moreover, E2F-dependent recruitment of Tip60 to chromatin occurred in late G(1) following serum stimulation. We speculate that the activities of multiple HAT complexes account for E2F-dependent acetylation, transcription, and S-phase entry.", "title": "E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1." }, { "docid": "30041340", "text": "BACKGROUND Histone deimination regulates gene function and contributes to antimicrobial response, allowing the formation of neutrophil extracellular traps (NETs). Deiminated proteins are target of anti-citrullinated peptides antibodies (ACPA) in rheumatoid arthritis (RA). \n OBJECTIVE The objective of this paper is to test the hypothesis that RA sera react with deiminated histones contained in NETs. \n METHODS Neutrophils from peripheral blood were stimulated with A23187 and acid treated; NETosis was induced by phorbol myristate acetate, and NET proteins were isolated. Sera were tested by immunoblot on acid extracted proteins from neutrophils and from NETs, and by ELISA on deiminated histone H4 or H4-derived peptides. Bands reactive with RA sera were excised from gels, digested with trypsin and subjected to matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) analysis, before and after derivatisation to detect citrullinated peptides. \n RESULTS RA sera reacted with a deiminated antigen of 11 KDa from activated neutrophils, recognised also by anti-H4 and antideiminated H4 antibodies. A similar reactivity was observed with NET proteins. The antigen from neutrophils or NETs was identified as citrullinated H4 by MALDI-TOF analysis. By ELISA, RA sera bound in vitro citrullinated H4. Citrullinated H4 14-34 and 31-50 peptides detected antibodies in 67% and 63% of RA sera and in less than 5% of controls; antibody titre was correlated with anti-CCP2. \n CONCLUSIONS Citrullinated H4 from activated neutrophils and NETs is a target of antibodies in RA, and synthetic citrullinated H4-derived peptides are a new substrate for ACPA detection. As NETosis can generate antigens for ACPA, these data suggest a novel connection between innate and adaptive immunity in RA.", "title": "Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps." }, { "docid": "2817000", "text": "In S. cerevisiae, histone variant H2A.Z is deposited in euchromatin at the flanks of silent heterochromatin to prevent its ectopic spread. We show that H2A.Z nucleosomes are found at promoter regions of nearly all genes in euchromatin. They generally occur as two positioned nucleosomes that flank a nucleosome-free region (NFR) that contains the transcription start site. Astonishingly, enrichment at 5' ends is observed not only at actively transcribed genes but also at inactive loci. Mutagenesis of a typical promoter revealed a 22 bp segment of DNA sufficient to program formation of a NFR flanked by two H2A.Z nucleosomes. This segment contains a binding site of the Myb-related protein Reb1 and an adjacent dT:dA tract. Efficient deposition of H2A.Z is further promoted by a specific pattern of histone H3 and H4 tail acetylation and the bromodomain protein Bdf1, a component of the Swr1 remodeling complex that deposits H2A.Z.", "title": "Histone Variant H2A.Z Marks the 5′ Ends of Both Active and Inactive Genes in Euchromatin" }, { "docid": "20781656", "text": "Some three decades have passed since the discovery of nucleosomes in 1974 and the first isolation of a histone chaperone in 1978. While various types of histone chaperones have been isolated and functionally analyzed, the elementary processes of nucleosome assembly and disassembly have been less well characterized. Recently, the tertiary structure of a hetero-trimeric complex composed of the histone chaperone CIA/ASF1 and the histone H3-H4 dimer was determined, and this complex was proposed to be an intermediate in nucleosome assembly and disassembly reactions. In addition, CIA alone was biochemically shown to dissociate the histone (H3-H4)2 tetramer into two histone H3-H4 dimers. This activity suggested that CIA regulates the semi-conservative replication of nucleosomes. Here, we provide an overview of prominent histone chaperones with the goal of elucidating the mechanisms that preserve and modify epigenetic information. We also discuss the reactions involved in nucleosome assembly and disassembly.", "title": "Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly" }, { "docid": "14155726", "text": "Nuclear actin-related proteins (Arps) are subunits of several chromatin remodelers, but their molecular functions within these complexes are unclear. We report the crystal structure of the INO80 complex subunit Arp8 in its ATP-bound form. Human Arp8 has several insertions in the conserved actin fold that explain its inability to polymerize. Most remarkably, one insertion wraps over the active site cleft and appears to rigidify the domain architecture, while active site features shared with actin suggest an allosterically controlled ATPase activity. Quantitative binding studies with nucleosomes and histone complexes reveal that Arp8 and the Arp8-Arp4-actin-HSA sub-complex of INO80 strongly prefer nucleosomes and H3-H4 tetramers over H2A-H2B dimers, suggesting that Arp8 functions as a nucleosome recognition module. In contrast, Arp4 prefers free (H3-H4)(2) over nucleosomes and may serve remodelers through binding to (dis)assembly intermediates in the remodeling reaction.", "title": "Structure of Actin-related protein 8 and its contribution to nucleosome binding" }, { "docid": "9732010", "text": "Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE)-like sequence, M26, and a heterodimeric ATF/CREB transcription factor, Atf1.Pcr1. Chromatin remodeling occurs meiotically around M26. We examined the roles of HATs and ADCRs in chromatin remodeling around M26. Histones H3 and H4 around M26 were hyperacetylated in an M26- and Atf1-dependent manner early in meiosis. SpGcn5, the S. pombe homolog of Gcn5p, was required for the majority of histone H3 acetylation around M26 in vivo. Deletion of gcn5+ caused a significant delay in chromatin remodeling but only partial reduction of M26 meiotic recombination frequency. The snf22+ (a Swi2/Snf2-ADCR homologue) deletion and snf22+ gcn5+ double deletion abolished chromatin remodeling and significant reduction of meiotic recombination around M26. These results suggest that HATs and ADCRs cooperatively alter local chromatin structure, as in selective transcription activation, to activate meiotic recombination at M26 in a site-specific manner.", "title": "Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot." }, { "docid": "4138659", "text": "Macropinocytosis is a highly conserved endocytic process by which extracellular fluid and its contents are internalized into cells through large, heterogeneous vesicles known as macropinosomes. Oncogenic Ras proteins have been shown to stimulate macropinocytosis but the functional contribution of this uptake mechanism to the transformed phenotype remains unknown. Here we show that Ras-transformed cells use macropinocytosis to transport extracellular protein into the cell. The internalized protein undergoes proteolytic degradation, yielding amino acids including glutamine that can enter central carbon metabolism. Accordingly, the dependence of Ras-transformed cells on free extracellular glutamine for growth can be suppressed by the macropinocytic uptake of protein. Consistent with macropinocytosis representing an important route of nutrient uptake in tumours, its pharmacological inhibition compromises the growth of Ras-transformed pancreatic tumour xenografts. These results identify macropinocytosis as a mechanism by which cancer cells support their unique metabolic needs and point to the possible exploitation of this process in the design of anticancer therapies.", "title": "Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells" }, { "docid": "29788648", "text": "NuA4, the major H4 lysine acetyltransferase (KAT) complex in Saccharomyces cerevisiae, is recruited to promoters and stimulates transcription initiation. NuA4 subunits contain domains that bind methylated histones, suggesting that histone methylation should target NuA4 to coding sequences during transcription elongation. We show that NuA4 is cotranscriptionally recruited, dependent on its physical association with elongating polymerase II (Pol II) phosphorylated on the C-terminal domain by cyclin-dependent kinase 7/Kin28, but independently of subunits (Eaf1 and Tra1) required for NuA4 recruitment to promoters. Whereas histone methylation by Set1 and Set2 is dispensable for NuA4's interaction with Pol II and targeting to some coding regions, it stimulates NuA4-histone interaction and H4 acetylation in vivo. The NuA4 KAT, Esa1, mediates increased H4 acetylation and enhanced RSC occupancy and histone eviction in coding sequences and stimulates the rate of transcription elongation. Esa1 cooperates with the H3 KAT in SAGA, Gcn5, to enhance these functions. Our findings delineate a pathway for acetylation-mediated nucleosome remodeling and eviction in coding sequences that stimulates transcription elongation by Pol II in vivo.", "title": "NuA4 lysine acetyltransferase Esa1 is targeted to coding regions and stimulates transcription elongation with Gcn5." }, { "docid": "8460275", "text": "Despite being surrounded by diverse nutrients, mammalian cells preferentially metabolize glucose and free amino acids. Recently, Ras-induced macropinocytosis of extracellular proteins was shown to reduce a transformed cell's dependence on extracellular glutamine. Here, we demonstrate that protein macropinocytosis can also serve as an essential amino acid source. Lysosomal degradation of extracellular proteins can sustain cell survival and induce activation of mTORC1 but fails to elicit significant cell accumulation. Unlike its growth-promoting activity under amino-acid-replete conditions, we discovered that mTORC1 activation suppresses proliferation when cells rely on extracellular proteins as an amino acid source. Inhibiting mTORC1 results in increased catabolism of endocytosed proteins and enhances cell proliferation during nutrient-depleted conditions in vitro and within vascularly compromised tumors in vivo. Thus, by preventing nutritional consumption of extracellular proteins, mTORC1 couples growth to availability of free amino acids. These results may have important implications for the use of mTOR inhibitors as therapeutics.", "title": "The Utilization of Extracellular Proteins as Nutrients Is Suppressed by mTORC1" }, { "docid": "7137057", "text": "BACKGROUND & AIMS HBV covalently closed circular DNA (cccDNA), the replicative intermediate responsible for persistent HBV infection of hepatocytes, is the template for transcription of all viral mRNAs. Nuclear cccDNA accumulates as a stable episome organized into minichromosomes by histone and nonhistone proteins. In this study we investigated, by a newly developed sensitive and specific assay, the relationship between viral replication and HBV chromatin assembly, transcription, and interaction with viral and cellular regulatory proteins. \n METHODS To achieve this aim we coupled a quantitative chromatin immunoprecipitation (ChIP) technique to an established method that allows the amplification of virion-encapsidated HBV genomes after transfection of linear HBV DNA into human hepatoma HuH7 cells. The cccDNA-ChIP technique was also applied to study HBV minichromosome transcriptional regulation in liver tissue from HBV-infected patients. \n RESULTS The use of anti-acetyl-H4/-H3 specific antibodies to immunoprecipitate transcriptionally active chromatin revealed that HBV replication is regulated by the acetylation status of the cccDNA-bound H3/H4 histones. Class I histone deacetylases inhibitors induced an evident increase of both cccDNA-bound acetylated H4 and HBV replication. Finally, histones hypoacetylation and histone deacetylase 1 recruitment onto the cccDNA in liver tissue correlated with low HBV viremia in hepatitis B patients. \n CONCLUSIONS We developed a ChIP-based assay to analyze, in vitro and ex vivo, the transcriptional regulation of HBV cccDNA minichromosome. Our results provide new insights on the regulation of HBV replication and identify the enzymatic activities that modulate the acetylation of cccDNA-bound histones as new therapeutic targets for anti-HBV drugs.", "title": "Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones." }, { "docid": "5966635", "text": "Activation of transcription within chromatin has been correlated with the incorporation of the essential histone variant H2A.Z into nucleosomes. H2A.Z and other histone variants may establish structurally distinct chromosomal domains; however, the molecular mechanism by which they function is largely unknown. Here we report the 2.6 Å crystal structure of a nucleosome core particle containing the histone variant H2A.Z. The overall structure is similar to that of the previously reported 2.8 Å nucleosome structure containing major histone proteins. However, distinct localized changes result in the subtle destabilization of the interaction between the (H2A.Z–H2B) dimer and the (H3–H4)2 tetramer. Moreover, H2A.Z nucleosomes have an altered surface that includes a metal ion. This altered surface may lead to changes in higher order structure, and/or could result in the association of specific nuclear proteins with H2A.Z. Finally, incorporation of H2A.Z and H2A within the same nucleosome is unlikely, due to significant changes in the interface between the two H2A.Z–H2B dimers.", "title": "Crystal structure of a nucleosome core particle containing the variant histone H2A.Z" }, { "docid": "22522432", "text": "The stable contact of ISW2 with nucleosomal DNA approximately 20 bp from the dyad was shown by DNA footprinting and photoaffinity labeling using recombinant histone octamers to require the histone H4 N-terminal tail. Efficient ISW2 remodeling also required the H4 N-terminal tail, although the lack of the H4 tail can be mostly compensated for by increasing the incubation time or concentration of ISW2. Similarly, the length of extranucleosomal DNA affected the stable contact of ISW2 with this same internal nucleosomal site, with the optimal length being 70 to 85 bp. These data indicate the histone H4 tail, in concert with a favorable length of extranucleosomal DNA, recruits and properly orients ISW2 onto the nucleosome for efficient nucleosome remodeling. One consequence of this property of ISW2 is likely its previously observed nucleosome spacing activity.", "title": "Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA." }, { "docid": "2316374", "text": "AIMS Vascular endothelial dysfunction and inflammation are hallmarks of atherosclerosis. Krüppel-like factor 2 (KLF2) is a key mediator of anti-inflammatory and anti-atherosclerotic properties of the endothelium. However, little is known of the molecular mechanisms for regulating KLF2 transcriptional activation. \n METHODS AND RESULTS Here, we found that histone deacetylase 5 (HDAC5) associates with KLF2 and represses KLF2 transcriptional activation. HDAC5 resided with KLF2 in the nuclei of human umbilical cord vein endothelial cells (HUVECs). Steady laminar flow attenuated the association of HDAC5 with KLF2 via stimulating HDAC5 phosphorylation-dependent nuclear export in HUVEC. We also mapped the KLF2-HDAC5-interacting domains and found that the N-terminal region of HDAC5 interacts with the C-terminal domain of KLF2. Chromatin immunoprecipitation and luciferase reporter assays showed that HDAC5 through a direct association with KLF2 suppressed KLF2 transcriptional activation. HDAC5 overexpression inhibited KLF2-dependent endothelial nitric oxide synthesis (eNOS) promoter activity in COS7 cell and gene expression in both HUVECs and bovine aortic endothelial cells (BAECs). Conversely, HDAC5 silencing enhanced KLF2 transcription and hence eNOS expression in HUVEC. Moreover, we observed that the level of eNOS protein in the thoracic aorta isolated from HDAC5 knockout mice was higher, whereas expression of pro-inflammatory vascular cell adhesion molecule 1 was lower, compared with those of HDAC5 wild-type mice. \n CONCLUSIONS We reveal a novel role of HDAC5 in modulating the KLF2 transcriptional activation and eNOS expression. These findings suggest that HDAC5, a binding partner and modulator of KLF2, could be a new therapeutic target to prevent vascular endothelial dysfunction associated with cardiovascular diseases.", "title": "Histone deacetylase 5 interacts with Krüppel-like factor 2 and inhibits its transcriptional activity in endothelium." }, { "docid": "27093166", "text": "BACKGROUND Ketamine, as an anesthetic agent, has an anti-inflammatory effect. In the present study, we investigated whether ketamine inhibits release of high mobility group box 1 (HMGB1), a late-phase cytokine of sepsis, in lipopolysaccharide (LPS)-stimulated macrophages through heme oxygenase-1 (HO-1) induction. \n METHODS Macrophages were preincubated with various concentrations of ketamine and then treated with LPS (1 μg/mL). The cell culture supernatants were collected to measure inflammatory mediators (HMGB1, nitric oxide, tumor necrosis factor-α, and interleukin 1β) by enzyme-linked immunosorbent assay. Moreover, HO-1 protein expression, the phosphorylation and degradation of IκB-α, and the nuclear translocation of nuclear factor E2-related factor 2 and nuclear factor κB (NF-κB) p65 were tested by Western blot analysis. In addition, to further identify the role of HO-1 in this process, tin protoporphyrin (SnPP), an HO-1 inhibitor, was used. \n RESULTS Ketamine treatment dose-dependently attenuated the increased levels of proinflammatory mediators (HMGB1, nitric oxide, tumor necrosis factor α, and interleukin 1β) and increased the HO-1 protein expression in LPS-activated macrophages. Furthermore, ketamine suppressed the phosphorylation and degradation of IκB-α as well as the LPS-stimulated nuclear translocation of NF-κB p65 in macrophages. In addition, the present study also demonstrated that ketamine induced HO-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 in macrophages. The effects of ketamine on LPS-induced proinflammatory cytokines production were partially reversed by the HO inhibitor tin protoporphyrin (SnPP). \n CONCLUSION Ketamine inhibits the release of HMGB1 in LPS-stimulated macrophages, and this effect is at least partly mediated by the activation of the Nrf2/HO-1 pathway and NF-κB suppression.", "title": "Ketamine reduces LPS-induced HMGB1 via activation of the Nrf2/HO-1 pathway and NF-κB suppression." }, { "docid": "32408470", "text": "Cigarette smoking promotes body weight reduction in humans while paradoxically also promoting insulin resistance (IR) and hyperinsulinemia. However, the mechanisms behind these effects are unclear. Here we show that nicotine, a major constituent of cigarette smoke, selectively activates AMP-activated protein kinase α2 (AMPKα2) in adipocytes, which in turn phosphorylates MAP kinase phosphatase-1 (MKP1) at serine 334, initiating its proteasome-dependent degradation. The nicotine-dependent reduction of MKP1 induces the aberrant activation of both p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, leading to increased phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307. Phosphorylation of IRS1 leads to its degradation, protein kinase B inhibition, and the loss of insulin-mediated inhibition of lipolysis. Consequently, nicotine increases lipolysis, which results in body weight reduction, but this increase also elevates the levels of circulating free fatty acids and thus causes IR in insulin-sensitive tissues. These results establish AMPKα2 as an essential mediator of nicotine-induced whole-body IR in spite of reductions in adiposity.", "title": "Activation of AMPKα2 in adipocytes is essential for nicotine-induced insulin resistance in vivo" }, { "docid": "19485243", "text": "The transcription factors HNF3 (FoxA) and GATA-4 are the earliest known to bind the albumin gene enhancer in liver precursor cells in embryos. To understand how they access sites in silent chromatin, we assembled nucleosome arrays containing albumin enhancer sequences and compacted them with linker histone. HNF3 and GATA-4, but not NF-1, C/EBP, and GAL4-AH, bound their sites in compacted chromatin and opened the local nucleosomal domain in the absence of ATP-dependent enzymes. The ability of HNF3 to open chromatin is mediated by a high affinity DNA binding site and by the C-terminal domain of the protein, which binds histones H3 and H4. Thus, factors that potentiate transcription in development are inherently capable of initiating chromatin opening events.", "title": "Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4." }, { "docid": "175735", "text": "MOTIVATION The nucleosome is the basic repeating unit of chromatin. It contains two copies each of the four core histones H2A, H2B, H3 and H4 and about 147 bp of DNA. The residues of the histone proteins are subject to numerous post-translational modifications, such as methylation or acetylation. Chromatin immunoprecipitiation followed by sequencing (ChIP-seq) is a technique that provides genome-wide occupancy data of these modified histone proteins, and it requires appropriate computational methods. \n RESULTS We present NucHunter, an algorithm that uses the data from ChIP-seq experiments directed against many histone modifications to infer positioned nucleosomes. NucHunter annotates each of these nucleosomes with the intensities of the histone modifications. We demonstrate that these annotations can be used to infer nucleosomal states with distinct correlations to underlying genomic features and chromatin-related processes, such as transcriptional start sites, enhancers, elongation by RNA polymerase II and chromatin-mediated repression. Thus, NucHunter is a versatile tool that can be used to predict positioned nucleosomes from a panel of histone modification ChIP-seq experiments and infer distinct histone modification patterns associated to different chromatin states. AVAILABILITY The software is available at http://epigen.molgen.mpg.de/nuchunter/.", "title": "Inferring nucleosome positions with their histone mark annotation from ChIP data" } ]
488
HAND2 methylation is a key step in early endometrial carcinogenesis.
[ { "docid": "1780819", "text": "BACKGROUND Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development. \n METHODS AND FINDINGS Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression. \n CONCLUSIONS HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies. Please see later in the article for the Editors' Summary.", "title": "Role of DNA Methylation and Epigenetic Silencing of HAND2 in Endometrial Cancer Development" } ]
[ { "docid": "11359243", "text": "Altered DNA methylation occurs ubiquitously in human cancer from the earliest measurable stages. A cogent approach to understanding the mechanism and timing of altered DNA methylation is to analyze it in the context of carcinogenesis by a defined agent. Epstein-Barr virus (EBV) is a human oncogenic herpesvirus associated with lymphoma and nasopharyngeal carcinoma, but also used commonly in the laboratory to immortalize human B-cells in culture. Here we have performed whole-genome bisulfite sequencing of normal B-cells, activated B-cells, and EBV-immortalized B-cells from the same three individuals, in order to identify the impact of transformation on the methylome. Surprisingly, large-scale hypomethylated blocks comprising two-thirds of the genome were induced by EBV immortalization but not by B-cell activation per se. These regions largely corresponded to hypomethylated blocks that we have observed in human cancer, and they were associated with gene-expression hypervariability, similar to human cancer, and consistent with a model of epigenomic change promoting tumor cell heterogeneity. We also describe small-scale changes in DNA methylation near CpG islands. These results suggest that methylation disruption is an early and critical step in malignant transformation.", "title": "Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization." }, { "docid": "6121668", "text": "OBJECTIVES To investigate the expressions of survivin and Cyclooxygenase-2 (COX-2), and their possible correlations in the development of endometrial adenocarcinoma (EC). We also looked at their association with classical prognostic factors in EC. To our knowledge, this is the first time survivin expression is investigated in terms of its relation to COX-2 in the developmental pathway of EC. \n METHODS Archived tissue samples of 50 EC, 30 endometrial hyperplasia and 20 proliferative endometrium were selected and immunohistochemically analyzed for survivin and COX-2 expression. \n RESULTS Both survivin and COX-2 were overexpressed in hyperplasia and endometrial adenocarcinoma cases compared to proliferative endometrium, which was statistically significant (p=0.01, p=0.02, respectively). Among EC cases, survivin and COX-2 were strongly positive in 38 (76%) and 30 (60%) patients, respectively. Furthermore, we found survivin and COX-2 to be positively correlated, which was also statistically significant (p=0.0001, r=0.46). Neither survivin nor COX-2 expression was correlated with classical prognostic factors of endometrial carcinoma such as myometrial invasion, grade or lymph node metastasis (p>0.05). Neither COX-2 nor survivin had an impact on overall survival (p>0.05). \n CONCLUSIONS Both survivin and COX-2 are overexpressed, and they seem to be early events in the occurrence of EC. Moreover, protein products of these two genes are positively correlated. COX-2 and survivin might share a common molecular pathway or enhance each other's actions in the developmental pathway of EC. Molecular basis of such a relationship should be further investigated in endometrial carcinogenesis.", "title": "COX-2 and survivin are overexpressed and positively correlated in endometrial carcinoma." }, { "docid": "2494748", "text": "There are limited reports on methylation analysis of the premalignant lesions of gastric carcinoma thus far. This is despite the fact that gastric carcinoma is one of the tumors with a high frequency of CpG island hypermethylation. To determine the frequency and timing of hypermethylation during multistep gastric carcinogenesis, non-neoplastic gastric mucosa (n = 118), adenomas (n = 61), and carcinomas (n = 64) were analyzed for their p16, human Mut L homologue 1 (hMLH1), death-associated protein (DAP)-kinase, thromobospondin-1 (THBS1), and tissue inhibitor of metalloproteinase 3 (TIMP-3) methylation status using methylation-specific PCR. Three different classes of methylation behaviors were found in the five tested genes. DAP-kinase was methylated at a similar frequency in all four stages, whereas hMLH1 and p16 were methylated in cancer samples (20.3% and 42.2%, respectively) more frequently than in intestinal metaplasia (6.3% and 2.1%, respectively) or adenomas (9.8% and 11.5%, respectively). However, hMLH1 and p16 were not methylated in chronic gastritis. THBS-1 and TIMP-3 were methylated in all stages but showed a marked increase in hypermethylation frequency from chronic gastritis (10.1% and 14.5%, respectively) to intestinal metaplasia (34.7% and 36.7%, respectively; P < 0.05) and from adenomas (28.3% and 26.7%, respectively) to carcinomas (48.4% and 57.4%, respectively: P < 0.05). The hMLH1, THBS1, and TIMP-3 hypermethylation frequencies were similar in both intestinal metaplasia and adenomas, but the p16 hypermethylation frequency tended to be higher in adenomas (11.5%) than in intestinal metaplasia (2.1%; P = 0.073). The average number of methylated genes was 0.6, 1.1, 1.1, and 2.0 per five genes per sample in chronic gastritis, intestinal metaplasia, adenomas, and carcinomas, respectively. This shows a marked increase in methylated genes from non-metaplastic mucosa to intestinal metaplasia (P = 0.001) as well as from premalignant lesions to carcinomas (P = 0.002). These results suggest that CpG island hypermethylation occur early in multistep gastric carcinogenesis and tend to accumulate along the multistep carcinogenesis.", "title": "CpG island methylation in premalignant stages of gastric carcinoma." }, { "docid": "24249915", "text": "To gain insights into the possible role of oestrogen receptor (ER) beta in breast carcinogenesis, immunohistochemical analysis of ER beta was performed on 512 breast specimens encompassing normal (n = 138), pure ductal carcinoma in situ (n = 16), invasive cancers (n = 319), lymph node metastases (n = 31), and recurrences (n = 8). Real-time polymerase chain reaction (PCR) was used to investigate the methylation status of the ER beta gene in the ER beta negative breast cancer cell lines SkBr3 and MDA-MB-435. A gradual reduction in, but not a complete loss of, ER beta expression was observed during the transition from normal and pre-invasive lesions to invasive cancers, where ER beta was lost in 21% of cases. This was more pronounced in invasive ductal than in lobular carcinomas, a significantly higher proportion of which were ER beta-positive (74% compared with 91%, respectively, p = 0.0004). Examination of paired primary cancers with their axillary lymph node metastases showed that if ER beta was present in the primary tumour, it persisted in the metastasis. Treatment of ER beta-negative cell lines with DNA methyl transferase inhibitors restored ER beta expression, providing experimental evidence that silencing of ER beta in breast carcinomas could be due to promoter hypermethylation. These results suggest that loss of ER beta expression is one of the hallmarks of breast carcinogenesis and that it may be a reversible process involving methylation.", "title": "Reduced expression of oestrogen receptor beta in invasive breast cancer and its re-expression using DNA methyl transferase inhibitors in a cell line model." }, { "docid": "9634465", "text": "Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming.", "title": "Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression" }, { "docid": "11271123", "text": "Endometrial cancer is associated with numeric and structural chromosomal abnormalities, microsatellite instability (MSI), and alterations that activate oncogenes and inactivate tumor suppressor genes. The aim of this study was to characterize a set of endometrial cancers using multiple molecular genetic and immunohistochemical techniques. Ninety-six cases were examined for genomic alterations by MSI, MLH1 promoter hypermethylation, p53 and mismatch repair protein expression (MLH1, MSH2, MSH6, PMS2), and PTEN, PIK3CA, KRAS, and BRAF mutation analysis. At least 1 alteration was identified in 48 of 87 (55%) specimens tested for PTEN, making it the most common abnormality in this study. A PIK3CA alteration was observed in 16 (17%) specimens. Twenty-nine of 94 (31%) MSI tested tumors exhibited an MSI-H phenotype. Of the 29 MSI-H cases, 24 (83%) were positive for methylation of the MLH1 promoter region. Twenty-three (82%) of the 28 MSI-H cases with immunohistochemistry results showed loss of expression of MLH1/PMS2 (n=19), MSH2/MSH6 (n=2), or MSH6 only (n=2). Of the 19 MSI-H cases with loss of MLH1/PMS2 on immunohistochemistry, 18 were positive, and 1 was equivocal for MLH1 promoter hypermethylation. Twelve of 94 cases (13%) analyzed for KRAS mutations were found to have a mutation. No BRAF V600E mutations were indentified. This study provides a comprehensive molecular genetic analysis of commonly analyzed targets in a large cohort of endometrial cancers.", "title": "Molecular characterization of endometrial cancer: a correlative study assessing microsatellite instability, MLH1 hypermethylation, DNA mismatch repair protein expression, and PTEN, PIK3CA, KRAS, and BRAF mutation analysis." }, { "docid": "3210545", "text": "BACKGROUND Three quarter of endometrial carcinomas are treated at early stage. Still, 15 to 20% of these patients experience recurrence, with little effect from systemic therapies. Homo sapiens v-Ki-ras2 Kirsten rat sarcoma viral oncogenes homologue (KRAS) mutations have been reported to have an important role in tumorigenesis for human cancers, but there is limited knowledge regarding clinical relevance of KRAS status in endometrial carcinomas. \n METHODS We have performed a comprehensive and integrated characterisation of genome-wide expression related to KRAS mutations and copy-number alterations in primary- and metastatic endometrial carcinoma lesions in relation to clinical and histopathological data. A primary investigation set and clinical validation set was applied, consisting of 414 primary tumours and 61 metastatic lesions totally. \n RESULTS Amplification and gain of KRAS present in 3% of the primary lesions and 18% of metastatic lesions correlated significantly with poor outcome, high International Federation of Gynaecology and Obstetrics stage, non-endometrioid subtype, high grade, aneuploidy, receptor loss and high KRAS mRNA levels, also found to be associated with aggressive phenotype. In contrast, KRAS mutations were present in 14.7% of primary lesions with no increase in metastatic lesions, and did not influence outcome, but was significantly associated with endometrioid subtype, low grade and obesity. \n CONCLUSION These results support that KRAS amplification and KRAS mRNA expression, both increasing from primary to metastatic lesions, are relevant for endometrial carcinoma disease progression.", "title": "KRAS gene amplification and overexpression but not mutation associates with aggressive and metastatic endometrial cancer" }, { "docid": "32721137", "text": "Although 75% of endometrial cancers are treated at an early stage, 15% to 20% of these recur. We performed an integrated analysis of genome-wide expression and copy-number data for primary endometrial carcinomas with extensive clinical and histopathological data to detect features predictive of recurrent disease. Unsupervised analysis of the expression data distinguished 2 major clusters with strikingly different phenotypes, including significant differences in disease-free survival. To identify possible mechanisms for these differences, we performed a global genomic survey of amplifications, deletions, and loss of heterozygosity, which identified 11 significantly amplified and 13 significantly deleted regions. Amplifications of 3q26.32 harboring the oncogene PIK3CA were associated with poor prognosis and segregated with the aggressive transcriptional cluster. Moreover, samples with PIK3CA amplification carried signatures associated with in vitro activation of PI3 kinase (PI3K), a signature that was shared by aggressive tumors without PIK3CA amplification. Tumors with loss of PTEN expression or PIK3CA overexpression that did not have PIK3CA amplification also shared the PI3K activation signature, high protein expression of the PI3K pathway member STMN1, and an aggressive phenotype in test and validation datasets. However, mutations of PTEN or PIK3CA were not associated with the same expression profile or aggressive phenotype. STMN1 expression had independent prognostic value. The results affirm the utility of systematic characterization of the cancer genome in clinically annotated specimens and suggest the particular importance of the PI3K pathway in patients who have aggressive endometrial cancer.", "title": "Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation." }, { "docid": "12324049", "text": "We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.", "title": "Whole-genome fingerprint of the DNA methylome during human B cell differentiation" }, { "docid": "195352", "text": "Nutritional excess is a major forerunner of type 2 diabetes. It enhances the secretion of insulin, but attenuates insulin's metabolic actions in the liver, skeletal muscle and adipose tissue. However, conflicting evidence indicates a lack of knowledge of the timing of these events during the development of obesity and diabetes, pointing to a key gap in our understanding of metabolic disease. This Perspective reviews alternate viewpoints and recent results on the temporal and mechanistic connections between hyperinsulinemia, obesity and insulin resistance. Although much attention has addressed early steps in the insulin signaling cascade, insulin resistance in obesity seems to be largely elicited downstream of these steps. New findings also connect insulin resistance to extensive metabolic cross-talk between the liver, adipose tissue, pancreas and skeletal muscle. These and other advances over the past 5 years offer exciting opportunities and daunting challenges for the development of new therapeutic strategies for the treatment of type 2 diabetes.", "title": "Insulin action and resistance in obesity and type 2 diabetes" }, { "docid": "12622860", "text": "S-trans,trans-Farnesylthiosalicylic acid (FTS) is a novel farnesylated rigid carboxylic acid derivative. In cell-free systems, it acts as a potent competitive inhibitor (Ki = 2.6 microM) of the enzyme prenylated protein methyltransferase (PPMTase), which methylates the carboxyl-terminal S-prenylcysteine in a large number of prenylated proteins including Ras. In such systems, FTS inhibits Ras methylation but not Ras farnesylation. Inhibition of the PPMTase by FTS in homogenates or membranes of a variety of tissues and cell lines is inferred from a block in the methylation of exogenously added substrates such as N-acetyl-S-trans,trans-farnesyl-L-cysteine and of endogenous substrates including small GTP-binding proteins. FTS can also inhibit methylation of these proteins in intact cells (e.g. in Rat-1 fibroblasts, Ras-transformed Rat-1, and B16 melanoma cells). Unlike in cell-free systems, however, relatively high concentrations of FTS (50-100 microM) are required for partial blocking (10-40%) of protein methylation in the intact cells. Thus, FTS is a weak inhibitor of methylation in intact cells. Because methylation is the last step in the processing of Ras and related proteins, FTS is not likely to affect steps that precede it, e.g. protein prenylation. This may explain why the growth and gross morphology of a variety of cultured cell types (including Chinese hamster ovary, NIH3T3, Rat1, B16 melanoma, and PC12) is not affected by up to 25 microM FTS and is consistent with the observed lack of FTS-induced cytotoxicity. Nevertheless, FTS reduces the levels of Ras in cell membranes and can inhibit Ras-dependent cell growth in vitro, independently of methylation. It inhibits the growth of human Ha-ras-transformed cells (EJ cells) and reverses their transformed morphology in a dose-dependent manner (0.1-10 microM). The drug does not interfere with the growth of cells transformed by v-Raf or T-antigen but inhibits the growth of ErbB2-transformed cells and blocks the mitogenic effects of epidermal and basic fibroblast growth factors, thus implying its selectivity toward Ras growth signaling, possibly via modulation of Ras-Raf communication. Taken together, the results raise the possibility that FTS may specifically interfere with the interaction of Ras with a farnesylcysteine recognition domain in the cell membrane.(ABSTRACT TRUNCATED AT 400 WORDS)", "title": "Selective inhibition of Ras-dependent cell growth by farnesylthiosalisylic acid." }, { "docid": "4283694", "text": "Although DNA is the carrier of genetic information, it has limited chemical stability. Hydrolysis, oxidation and nonenzymatic methylation of DNA occur at significant ratesin vivo, and are counteracted by specific DNA repair processes. The spontaneous decay of DNA is likely to be a major factor in mutagenesis, carcinogenesis and ageing, and also sets limits for the recovery of DNA fragments from fossils.", "title": "Instability and decay of the primary structure of DNA" }, { "docid": "12217662", "text": "RAS and many other oncogenic proteins undergo a complex series of post-translational modifications that are initiated by the addition of an isoprenoid lipid through a process known as prenylation. Following prenylation, these proteins usually undergo endoproteolytic processing by the RCE1 protease and then carboxyl methylation by a unique methyltransferase known as isoprenylcysteine carboxyl methyltransferase (ICMT). Although inhibitors that have been designed to target the prenylation step are now in advanced-stage clinical trials, their utility and efficacy seem to be limited. Recent findings, however, indicate that the inhibition of these post-prenylation-processing steps — particularly that of ICMT-catalysed methylation — might provide a better approach to the control of cancer-cell proliferation.", "title": "Post-prenylation-processing enzymes as new targets in oncogenesis" }, { "docid": "25263942", "text": "Endometrial polyps are very common benign endometrial lesions, but their pathogenesis is poorly understood, except for a few studies indicating the possibility of benign stromal neoplasm. Although the histopathological diagnosis of endometrial polyp on a surgical specimen is straightforward, it is often difficult to differentiate endometrial polyp from endometrial hyperplasia on a biopsy or curettage specimen. Presently, there is no immunohistochemical marker helpful in this differential diagnosis. In this study, we examined p16 expression in 35 endometrial polyps and 33 cases of endometrial hyperplasia that included 16 simple hyperplasias, 14 complex atypical hyperplasias, and 3 complex hyperplasias without atypia. Stromal p16 expression differed significantly between the two groups; it was seen in 31 (89 %) endometrial polyps, but in only 1 (3 %) endometrial hyperplasia. The percentage of p16-positive stromal cells ranged from 10 to 90 % (mean, 47 %) and the positive cells tended to be distributed around glands. Six cases of endometrial hyperplasia within an endometrial polyp were also examined and all cases showed stromal p16 expression. There was no difference in glandular p16 expression between endometrial polyps 33 (94 %) and hyperplasia 27 (82 %). The p16-immunoreactivity was mostly confined to metaplastic epithelial cells in both groups. Stromal p16 expression might be a peculiar characteristic of endometrial polyp and constitute a useful marker for the diagnosis, especially in fragmented specimens from biopsy or curettage. Stromal p16 expression might be a reflection of p16-induced cellular senescence, which has been documented in several benign mesenchymal neoplasms.", "title": "Stromal p16 expression differentiates endometrial polyp from endometrial hyperplasia" }, { "docid": "42836872", "text": "This study was undertaken to analyze genetic alterations in 108 sporadic serous ovarian neoplasms to elucidate ovarian serous carcinogenesis. Our results demonstrate that K-ras mutations occur in approximately 50% of serous borderline tumors (SBTs), non-invasive micropapillary serous carcinomas (MPSCs), and invasive micropapillary serous carcinomas, which represent a morphological continuum of tumor progression. Moreover, progressive increase in the degree of allelic imbalance of chromosomes 1p, 5q, 8p, 18q, 22q, and Xp was observed comparing serous borderline tumors to noninvasive and invasive micropapillary serous carcinomas. In contrast, high-grade (conventional serous carcinoma) tumors contained wild-type K-ras in all 23 cases studied and a high frequency of allelic imbalance even in small (early) primary tumors similar to that found in advanced stage tumors. Based on these findings, we propose a dualistic model for ovarian serous carcinogenesis. One pathway involves a stepwise progression from SBT to noninvasive and then invasive MPSC. The other pathway is characterized by rapid progression from the ovarian surface epithelium or inclusion cysts to a conventional (high-grade) serous carcinoma.", "title": "Diverse tumorigenic pathways in ovarian serous carcinoma." }, { "docid": "3174305", "text": "DNA cytosine methylation is a central epigenetic modification that has essential roles in cellular processes including genome regulation, development and disease. Here we present the first genome-wide, single-base-resolution maps of methylated cytosines in a mammalian genome, from both human embryonic stem cells and fetal fibroblasts, along with comparative analysis of messenger RNA and small RNA components of the transcriptome, several histone modifications, and sites of DNA–protein interaction for several key regulatory factors. Widespread differences were identified in the composition and patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic stem cells was in a non-CG context, suggesting that embryonic stem cells may use different methylation mechanisms to affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and depletion in protein binding sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells, and was restored in induced pluripotent stem cells. We identified hundreds of differentially methylated regions proximal to genes involved in pluripotency and differentiation, and widespread reduced methylation levels in fibroblasts associated with lower transcriptional activity. These reference epigenomes provide a foundation for future studies exploring this key epigenetic modification in human disease and development.", "title": "Human DNA methylomes at base resolution show widespread epigenomic differences" }, { "docid": "16346504", "text": "BACKGROUND Growth arrest-specific 5 (GAS5) was reported to be implicated and aberrantly express in multiple cancers. However, the expression and mechanism of action of GAS5 were largely poor understood in endometrial carcinoma. \n RESULTS According to the result of real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and flow cytometry analysis, we identified that GAS5 was down-regulated in endometrial cancer cells and stimulated the apoptosis of endometrial cancer cells. To investigate the expression of GAS5, PTEN and miR-103, RT-PCR was performed. And we found that the expression of PTEN was up-regulated when endometrial cancer cells overexpressed GAS5. The prediction of bioinformatics online revealed that GAS5 could bind to miR-103, which was further found to be regulated by GAS5. Finally, we found that miR-103 mimic could decrease the mRNA and protein levels of PTEN through luciferase reporter assay and western blotting, and GAS5 plasmid may reverse this regulation effect in endometrial cancer cells. \n CONCLUSION In summary, we demonstrate that GAS5 acts as an tumor suppressor lncRNA in endometrial cancer. Through inhibiting the expression of miR-103, GAS5 significantly enhanced the expression of PTEN to promote cancer cell apoptosis, and, thus, could be an important mediator in the pathogenesis of endometrial cancer.", "title": "LncRNA-GAS5 induces PTEN expression through inhibiting miR-103 in endometrial cancer cells" }, { "docid": "4325398", "text": "Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.", "title": "Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes" }, { "docid": "20456030", "text": "Mitochondria play a pivotal role in energy metabolism, programmed cell death and oxidative stress. Mutated mitochondrial DNA in diseased cells compromises the structure of key enzyme complexes and, therefore, mitochondrial function, which leads to a myriad of health-related conditions such as cancer, neurodegenerative diseases, diabetes and aging. Early detection of mitochondrial and metabolic anomalies is an essential step towards effective diagnoses and therapeutic intervention. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) play important roles in a wide range of cellular oxidation-reduction reactions. Importantly, NADH and FAD are naturally fluorescent, which allows noninvasive imaging of metabolic activities of living cells and tissues. Furthermore, NADH and FAD autofluorescence, which can be excited using distinct wavelengths for complementary imaging methods and is sensitive to protein binding and local environment. This article highlights recent developments concerning intracellular NADH and FAD as potential biomarkers for metabolic and mitochondrial activities.", "title": "Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies." } ]
489
HIV trans-activator protein (TAT) effectively transports large and small molecules across cellular membranes into larger populations of neurons.
[ { "docid": "6625693", "text": "The use of N-type voltage-gated calcium channel (CaV2.2) blockers to treat pain is limited by many physiological side effects. Here we report that inflammatory and neuropathic hypersensitivity can be suppressed by inhibiting the binding of collapsin response mediator protein 2 (CRMP-2) to CaV2.2 and thereby reducing channel function. A peptide of CRMP-2 fused to the HIV transactivator of transcription (TAT) protein (TAT-CBD3) decreased neuropeptide release from sensory neurons and excitatory synaptic transmission in dorsal horn neurons, reduced meningeal blood flow, reduced nocifensive behavior induced by formalin injection or corneal capsaicin application and reversed neuropathic hypersensitivity produced by an antiretroviral drug. TAT-CBD3 was mildly anxiolytic without affecting memory retrieval, sensorimotor function or depression. At doses tenfold higher than that required to reduce hypersensitivity in vivo, TAT-CBD3 caused a transient episode of tail kinking and body contortion. By preventing CRMP-2–mediated enhancement of CaV2.2 function, TAT-CBD3 alleviated inflammatory and neuropathic hypersensitivity, an approach that may prove useful in managing chronic pain.", "title": "Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+ channel complex" } ]
[ { "docid": "5473074", "text": "The twin-arginine transport (Tat) system translocates folded proteins across the bacterial cytoplasmic or chloroplast thylakoid membrane of plants. The Tat system in most Gram-positive bacteria consists of two essential components, the TatA and TatC proteins. TatA is considered to be a bifunctional subunit, which can form a protein-conducting channel by self-oligomerization and can also participate in substrate recognition. However, the molecular mechanism underlying protein translocation remains elusive. Herein, we report the solution structure of the TatA(d) protein from Bacillus subtilis by NMR spectroscopy, the first structure of the Tat system at atomic resolution. TatA(d) shows an L-shaped structure formed by a transmembrane helix and an amphipathic helix, while the C-terminal tail is largely unstructured. Our results strongly support the postulated topology of TatA(d) in which the transmembrane helix is inserted into the lipid bilayer while the amphipathic helix lies at the membrane-water interface. Moreover, the structure of TatA(d) revealed the structural importance of several conserved residues at the hinge region, thus shedding new light on further elucidation of the protein transport mechanism of the Tat system.", "title": "Solution NMR structure of the TatA component of the twin-arginine protein transport system from gram-positive bacterium Bacillus subtilis." }, { "docid": "1320137", "text": "The twin-arginine translocation (Tat) protein export system is present in the cytoplasmic membranes of most bacteria and archaea and has the highly unusual property of transporting fully folded proteins. The system must therefore provide a transmembrane pathway that is large enough to allow the passage of structured macromolecular substrates of different sizes but that maintains the impermeability of the membrane to ions. In the Gram-negative bacterium Escherichia coli, this complex task can be achieved by using only three small membrane proteins: TatA, TatB and TatC. In this Review, we summarize recent advances in our understanding of how this remarkable machine operates.", "title": "The twin-arginine translocation (Tat) protein export pathway" }, { "docid": "24706198", "text": "The Tat system transports folded proteins across bacterial and thylakoid membranes. In Gram-negative organisms, a TatABC substrate-binding complex and separate TatA complex are believed to coalesce to form an active translocon, with all three subunits essential for translocation. Most Gram-positive organisms lack a tatB gene, indicating major differences in organization and possible differences in mode of action. Here, we have studied Tat complexes encoded by the tatAdCd genes of Bacillus subtilis. Expression of tatAdCd in an Escherichia coli tat null mutant results in efficient export of a large, cofactor-containing E. coli Tat substrate, TorA. We show that the tatAd gene complements E. coli mutants lacking either tatAE or tatB, indicating a bifunctional role for this subunit in B. subtilis. Second, we have identified and characterized two distinct Tat complexes that are novel in key respects: a TatAdCd complex of approximately 230 kDa that is significantly smaller than the analogous E. coli TatABC complex (approximately 370 kDa on BN gels) and a separate TatAd complex. The latter is a discrete entity of approximately 270 kDa as judged by gel filtration chromatography, very different from the highly heterogeneous E. coli TatA complex that ranges in size from approximately 50 kDa to over 600 kDa. TatA heterogeneity has been linked to the varying size of Tat substrates being translocated, but the singular nature of the B. subtilis TatAd complex suggests that discrete TatAC and TatA complexes may form a single form of translocon.", "title": "A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes." }, { "docid": "22561064", "text": "The twin-arginine translocation (Tat) system transports folded proteins across bacterial plasma membranes and the chloroplast thylakoid membrane. Here, we investigate the composition and structural organization of three different purified Tat complexes from Escherichia coli, Salmonella typhimurium and Agrobacterium tumefaciens. First, we demonstrate the functional activity of these Tat systems in vivo, since expression of the tatABC operons from S.typhimurium or A.tumefaciens in an E.coli tat null mutant strain resulted in efficient Tat-dependent export of an E.coli cofactor-containing substrate, TMAO reductase. The three isolated, affinity-tagged Tat complexes comprised TatA, TatB and TatC in each case, demonstrating a strong interaction between these three subunits. Single-particle electron microscopy studies of all three complexes revealed approximately oval-shaped, asymmetric particles with maximal dimensions up to 13 nm. A common feature is a number of stain-excluding densities surrounding more or less central pools of stain, suggesting protein-lined pores or cavities. The characteristics of size variation among the particles suggest a modular form of assembly and/or the recruitment of varying numbers of TatBC/TatA units. Despite low levels of sequence homology, the combined data indicate structural and functional conservation in the Tat systems of these three bacterial species.", "title": "Consensus structural features of purified bacterial TatABC complexes." }, { "docid": "25606339", "text": "TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetic modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests that TLR3 can act as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects.", "title": "Toll-like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication." }, { "docid": "8883846", "text": "The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses.", "title": "Antibody-Based HIV-1 Vaccines: Recent Developments and Future Directions" }, { "docid": "5867846", "text": "The question of whether retroviruses, including human immunodeficiency virus type 1 (HIV-1), interact with the cellular RNA interference machinery has been controversial. Here, we present data showing that neither HIV-1 nor human T-cell leukemia virus type 1 (HTLV-1) expresses significant levels of either small interfering RNAs or microRNAs in persistently infected T cells. We also demonstrate that the retroviral nuclear transcription factors HIV-1 Tat and HTLV-1 Tax, as well as the Tas transactivator encoded by primate foamy virus, fail to inhibit RNA interference in human cells. Moreover, the stable expression of physiological levels of HIV-1 Tat did not globally inhibit microRNA production or expression in infected human cells. Together, these data argue that HIV-1 and HTLV-1 neither induce the production of viral small interfering RNAs or microRNAs nor repress the cellular RNA interference machinery in infected cells.", "title": "Analysis of the interaction of primate retroviruses with the human RNA interference machinery." }, { "docid": "2603304", "text": "Dendritic cells (DCs) are essential antigen-presenting cells for the induction of immunity against pathogens. However, HIV-1 spread is strongly enhanced in clusters of DCs and CD4(+) T cells. Uninfected DCs capture HIV-1 and mediate viral transfer to bystander CD4(+) T cells through a process termed trans-infection. Initial studies identified the C-type lectin DC-SIGN as the HIV-1 binding factor on DCs, which interacts with the viral envelope glycoproteins. Upon DC maturation, however, DC-SIGN is down-regulated, while HIV-1 capture and trans-infection is strongly enhanced via a glycoprotein-independent capture pathway that recognizes sialyllactose-containing membrane gangliosides. Here we show that the sialic acid-binding Ig-like lectin 1 (Siglec-1, CD169), which is highly expressed on mature DCs, specifically binds HIV-1 and vesicles carrying sialyllactose. Furthermore, Siglec-1 is essential for trans-infection by mature DCs. These findings identify Siglec-1 as a key factor for HIV-1 spread via infectious DC/T-cell synapses, highlighting a novel mechanism that mediates HIV-1 dissemination in activated tissues.", "title": "Siglec-1 Is a Novel Dendritic Cell Receptor That Mediates HIV-1 Trans-Infection Through Recognition of Viral Membrane Gangliosides" }, { "docid": "22495397", "text": "The Tat protein of human immunodeficiency virus type 1 (HIV-1) plays a key role as inducer of viral gene expression. We report that Tat function can be potently inhibited in human microglial cells by the recently described nuclear receptor cofactor chicken ovalbumin upstream promoter transcription factor-interacting protein 2 (CTIP2). Overexpression of CTIP2 leads to repression of HIV-1 replication, as a result of inhibition of Tat-mediated transactivation. In contrast, the related CTIP1 was unable to affect Tat function and viral replication. Using confocal microscopy to visualize Tat subcellular distribution in the presence of the CTIPs, we found that overexpression of CTIP2, and not of CTIP1, leads to disruption of Tat nuclear localization and recruitment of Tat within CTIP2-induced nuclear ball-like structures. In addition, our studies demonstrate that CTIP2 colocalizes and associates with the heterochromatin-associated protein HP1alpha. The CTIP2 protein harbors two Tat and HP1 interaction interfaces, the 145-434 and the 717-813 domains. CTIP2 and HP1alpha associate with Tat to form a three-protein complex in which the 145-434 CTIP2 domain interacts with the N-terminal region of Tat, while the 717-813 domain binds to HP1. The importance of this Tat binding interface and of Tat subnuclear relocation was confirmed by analysis of CTIP2 deletion mutants. Our findings suggest that inhibition of HIV-1 expression by CTIP2 correlates with recruitment of Tat within CTIP2-induced structures and relocalization within inactive regions of the chromatin via formation of the Tat-CTIP2-HP1alpha complex. These data highlight a new mechanism of Tat inactivation through subnuclear relocalization that may ultimately lead to inhibition of viral pathogenesis.", "title": "Recruitment of Tat to heterochromatin protein HP1 via interaction with CTIP2 inhibits human immunodeficiency virus type 1 replication in microglial cells." }, { "docid": "12622860", "text": "S-trans,trans-Farnesylthiosalicylic acid (FTS) is a novel farnesylated rigid carboxylic acid derivative. In cell-free systems, it acts as a potent competitive inhibitor (Ki = 2.6 microM) of the enzyme prenylated protein methyltransferase (PPMTase), which methylates the carboxyl-terminal S-prenylcysteine in a large number of prenylated proteins including Ras. In such systems, FTS inhibits Ras methylation but not Ras farnesylation. Inhibition of the PPMTase by FTS in homogenates or membranes of a variety of tissues and cell lines is inferred from a block in the methylation of exogenously added substrates such as N-acetyl-S-trans,trans-farnesyl-L-cysteine and of endogenous substrates including small GTP-binding proteins. FTS can also inhibit methylation of these proteins in intact cells (e.g. in Rat-1 fibroblasts, Ras-transformed Rat-1, and B16 melanoma cells). Unlike in cell-free systems, however, relatively high concentrations of FTS (50-100 microM) are required for partial blocking (10-40%) of protein methylation in the intact cells. Thus, FTS is a weak inhibitor of methylation in intact cells. Because methylation is the last step in the processing of Ras and related proteins, FTS is not likely to affect steps that precede it, e.g. protein prenylation. This may explain why the growth and gross morphology of a variety of cultured cell types (including Chinese hamster ovary, NIH3T3, Rat1, B16 melanoma, and PC12) is not affected by up to 25 microM FTS and is consistent with the observed lack of FTS-induced cytotoxicity. Nevertheless, FTS reduces the levels of Ras in cell membranes and can inhibit Ras-dependent cell growth in vitro, independently of methylation. It inhibits the growth of human Ha-ras-transformed cells (EJ cells) and reverses their transformed morphology in a dose-dependent manner (0.1-10 microM). The drug does not interfere with the growth of cells transformed by v-Raf or T-antigen but inhibits the growth of ErbB2-transformed cells and blocks the mitogenic effects of epidermal and basic fibroblast growth factors, thus implying its selectivity toward Ras growth signaling, possibly via modulation of Ras-Raf communication. Taken together, the results raise the possibility that FTS may specifically interfere with the interaction of Ras with a farnesylcysteine recognition domain in the cell membrane.(ABSTRACT TRUNCATED AT 400 WORDS)", "title": "Selective inhibition of Ras-dependent cell growth by farnesylthiosalisylic acid." }, { "docid": "600437", "text": "VAP (VAPA and VAPB) is an evolutionarily conserved endoplasmic reticulum (ER)-anchored protein that helps generate tethers between the ER and other membranes through which lipids are exchanged across adjacent bilayers. Here, we report that by regulating PI4P levels on endosomes, VAP affects WASH-dependent actin nucleation on these organelles and the function of the retromer, a protein coat responsible for endosome-to-Golgi traffic. VAP is recruited to retromer budding sites on endosomes via an interaction with the retromer SNX2 subunit. Cells lacking VAP accumulate high levels of PI4P, actin comets, and trans-Golgi proteins on endosomes. Such defects are mimicked by downregulation of OSBP, a VAP interactor and PI4P transporter that participates in VAP-dependent ER-endosomes tethers. These results reveal a role of PI4P in retromer-/WASH-dependent budding from endosomes. Collectively, our data show how the ER can control budding dynamics and association with the cytoskeleton of another membrane by direct contacts leading to bilayer lipid modifications.", "title": "Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P" }, { "docid": "11020556", "text": "Skin dendritic cells (DCs) are thought to act as key initiators of local T cell immunity. Here we show that after skin infection with herpes simplex virus (HSV), cytotoxic T lymphocyte (CTL) activation required MHC class I-restricted presentation by nonmigratory CD8(+) DCs rather than skin-derived DCs. Despite a lack of direct presentation by migratory DCs, blocking their egress from infected skin substantially inhibited class I-restricted presentation and HSV-specific CTL responses. These results support the argument for initial transport of antigen by migrating DCs, followed by its transfer to the lymphoid-resident DCs for presentation and CTL priming. Given that relatively robust CTL responses were seen with small numbers of skin-emigrant DCs, we propose that this inter-DC antigen transfer functions to amplify presentation across a larger network of lymphoid-resident DCs for efficient T cell activation.", "title": "Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming." }, { "docid": "43390777", "text": "Macroautophagy, the process by which cytosolic components and organelles are engulfed and degraded by a double-membrane structure, could be viewed as a specialized, multistep membrane transport process. As such, it intersects with the exocytic and endocytic membrane trafficking pathways. A number of Rab GTPases which regulate secretory and endocytic membrane traffic have been shown to play either critical or accessory roles in autophagy. The biogenesis of the pre-autophagosomal isolation membrane (or phagophore) is dependent on the functionality of Rab1. A non-canonical, Atg5/Atg7-independent mode of autophagosome generation from the trans-Golgi or endosome requires Rab9. Other Rabs, such as Rab5, Rab24, Rab33, and Rab7 have all been shown to be required, or involved at various stages of autophagosomal genesis and maturation. Another small GTPase, RalB, was very recently demonstrated to induce isolation membrane formation and maturation via its engagement of the exocyst complex, a known Rab effector. We summarize here what is now known about the involvement of Rabs in autophagy, and discuss plausible mechanisms with future perspectives.", "title": "Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation" }, { "docid": "27602752", "text": "Encephalitis and dementia associated with acquired immunodeficiency syndrome (AIDS) are characterized by leukocyte infiltration into the CNS, microglia activation, aberrant chemokine expression, blood-brain barrier (BBB) disruption, and eventual loss of neurons. Little is known about whether human immunodeficiency virus 1 (HIV-1) infection of leukocytes affects their ability to transmigrate in response to chemokines and to alter BBB integrity. We now demonstrate that HIV infection of human leukocytes results in their increased transmigration across our tissue culture model of the human BBB in response to the chemokine CCL2, as well as in disruption of the BBB, as evidenced by enhanced permeability, reduction of tight junction proteins, and expression of matrix metalloproteinases (MMP)-2 and MMP-9. HIV-infected cells added to our model did not transmigrate in the absence of CCL2, nor did this condition alter BBB integrity. The chemokines CXCL10/interferon-gamma-inducible protein of 10 kDa, CCL3/macrophage inflammatory protein-1alpha, or CCL5/RANTES (regulated on activation normal T-cell expressed and secreted) did not enhance HIV-infected leukocyte transmigration or BBB permeability. The increased capacity of HIV-infected leukocytes to transmigrate in response to CCL2 correlated with their increased expression of CCR2, the chemokine receptor for CCL2. These data suggest that CCL2, but not other chemokines, plays a key role in infiltration of HIV-infected leukocytes into the CNS and the subsequent pathology characteristic of NeuroAIDS.", "title": "CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS." }, { "docid": "13914633", "text": "BACKGROUND HIV and tuberculosis (TB) services are provided free of charge in many sub-Saharan African countries, but patients still incur costs. \n METHODS Patient-exit interviews were conducted in primary health care clinics in rural South Africa with representative samples of 200 HIV-infected patients enrolled in a pre-antiretroviral treatment (pre-ART) program, 300 patients receiving antiretroviral treatment (ART), and 300 patients receiving TB treatment. For each group, we calculated health expenditures across different spending categories, time spent traveling to and using services, and how patients financed their spending. Associations between patient group and costs were assessed in multivariate regression models. \n RESULTS Total monthly health expenditures [1 USD = 7.3 South African Rand (ZAR)] were ZAR 171 [95% confidence interval (CI): 134 to 207] for pre-ART, ZAR 164 (95% CI: 141 to 187) for ART, and ZAR 122 (95% CI: 105 to 140) for TB patients (P = 0.01). Total monthly time costs (in hours) were 3.4 (95% CI: 3.3 to 3.5) for pre-ART, 5.0 (95% CI: 4.7 to 5.3) for ART, and 3.2 (95% CI: 2.9 to 3.4) for TB patients (P < 0.01). Although overall patient costs were similar across groups, pre-ART patients spent on average ZAR 29.2 more on traditional healers and ZAR 25.9 more on chemists and private doctors than ART patients, whereas ART patients spent ZAR 34.0 more than pre-ART patients on transport to clinics (P < 0.05 for all results). Thirty-one percent of pre-ART, 39% of ART, and 41% of TB patients borrowed money or sold assets to finance health care. \n CONCLUSIONS Patients receiving nominally free care for HIV/TB face large private costs, commonly leading to financial distress. Subsidized transport, fewer clinic visits, and drug pick-up points closer to home could reduce costs for ART patients, potentially improving retention and adherence. Large expenditure on alternative care among pre-ART patients suggests that transitioning patients to ART earlier, as under HIV treatment-as-prevention policies, may not substantially increase patients' financial burden.", "title": "Time and Money: The True Costs of Health Care Utilization for Patients Receiving \"Free\" HIV/Tuberculosis Care and Treatment in Rural KwaZulu-Natal." }, { "docid": "16319097", "text": "Endocytic mechanisms control the lipid and protein composition of the plasma membrane, thereby regulating how cells interact with their environments. Here, we review what is known about mammalian endocytic mechanisms, with focus on the cellular proteins that control these events. We discuss the well-studied clathrin-mediated endocytic mechanisms and dissect endocytic pathways that proceed independently of clathrin. These clathrin-independent pathways include the CLIC/GEEC endocytic pathway, arf6-dependent endocytosis, flotillin-dependent endocytosis, macropinocytosis, circular doral ruffles, phagocytosis, and trans-endocytosis. We also critically review the role of caveolae and caveolin1 in endocytosis. We highlight the roles of lipids, membrane curvature-modulating proteins, small G proteins, actin, and dynamin in endocytic pathways. We discuss the functional relevance of distinct endocytic pathways and emphasize the importance of studying these pathways to understand human disease processes.", "title": "Mechanisms of endocytosis." }, { "docid": "4701662", "text": "As phospholipids are synthesized mainly in the endoplasmic reticulum (ER) and mitochondrial inner membranes, how cells properly distribute specific phospholipids to diverse cellular membranes is a crucial problem for maintenance of organelle-specific phospholipid compositions. Although the ER-mitochondria encounter structure (ERMES) was proposed to facilitate phospholipid transfer between the ER and mitochondria, such a role of ERMES is still controversial and awaits experimental demonstration. Here we developed a novel in vitro assay system with isolated yeast membrane fractions to monitor phospholipid exchange between the ER and mitochondria. With this system, we found that phospholipid transport between the ER and mitochondria relies on membrane intactness, but not energy sources such as ATP, GTP or the membrane potential across the mitochondrial inner membrane. We further found that lack of the ERMES component impairs the phosphatidylserine transport from the ER to mitochondria, but not the phosphatidylethanolamine transport from mitochondria to the ER. This in vitro assay system thus offers a powerful tool to analyze the non-vesicular phospholipid transport between the ER and mitochondria.", "title": "A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro" }, { "docid": "10982689", "text": "Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older biokinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need for basic research on their interactions with subcellular structures. Additional considerations for assessing safety of engineered NSPs include careful selections of appropriate and relevant doses/concentrations, the likelihood of increased effects in a compromised organism, and also the benefits of possible desirable effects. An interdisciplinary team approach (e.g., toxicology, materials science, medicine, molecular biology, and bioinformatics, to name a few) is mandatory for nanotoxicology research to arrive at an appropriate risk assessment.", "title": "Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles" }, { "docid": "54562433", "text": "Mitochondrial transport is crucial for neuronal and axonal physiology. However, whether and how it impacts neuronal injury responses, such as neuronal survival and axon regeneration, remain largely unknown. In an established mouse model with robust axon regeneration, we show that Armcx1, a mammalian-specific gene encoding a mitochondria-localized protein, is upregulated after axotomy in this high regeneration condition. Armcx1 overexpression enhances mitochondrial transport in adult retinal ganglion cells (RGCs). Importantly, Armcx1 also promotes both neuronal survival and axon regeneration after injury, and these effects depend on its mitochondrial localization. Furthermore, Armcx1 knockdown undermines both neuronal survival and axon regeneration in the high regenerative capacity model, further supporting a key role of Armcx1 in regulating neuronal injury responses in the adult central nervous system (CNS). Our findings suggest that Armcx1 controls mitochondrial transport during neuronal repair.", "title": "The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration" } ]
490
HNF4A mutations are associated with macrosomia in infancy.
[ { "docid": "56893404", "text": "Background Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice.", "title": "Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene" } ]
[ { "docid": "24269361", "text": "There are two main families of polyunsaturated fatty acids (PUFAs), the n-6 and the n-3 families. It has been suggested that there is a causal relationship between n-6 PUFA intake and allergic disease, and there are biologically plausible mechanisms, involving eicosanoid mediators of the n-6 PUFA arachidonic acid, that could explain this. Fish and fish oils are sources of long-chain n-3 PUFAs and these fatty acids act to oppose the actions of n-6 PUFAs. Thus, it is considered that n-3 PUFAs will protect against atopic sensitization and against the clinical manifestations of atopy. Evidence to examine this has been acquired from epidemiologic studies investigating associations between fish intake in pregnancy, lactation, infancy, and childhood, and atopic outcomes in infants and children and from intervention studies with fish oil supplements in pregnancy, lactation, infancy, and childhood, and atopic outcomes in infants and children. All five epidemiological studies investigating the effect of maternal fish intake during pregnancy on atopic or allergic outcomes in infants/children of those pregnancies concluded protective associations. One study investigating the effects of maternal fish intake during lactation did not observe any significant associations. The evidence from epidemiological studies investigating the effects of fish intake during infancy and childhood on atopic outcomes in those infants or children is inconsistent, although the majority of the studies (nine of 14) showed a protective effect of fish intake during infancy or childhood on atopic outcomes in those infants/children. Fish oil supplementation during pregnancy and lactation or during infancy or childhood results in a higher n-3 PUFA status in the infants or children. Fish oil provision to pregnant women is associated with immunologic changes in cord blood and such changes may persist. Studies performed to date indicate that provision of fish oil during pregnancy may reduce sensitization to common food allergens and reduce prevalence and severity of atopic dermatitis in the first year of life, with a possible persistence until adolescence with a reduction in eczema, hay fever, and asthma. Fish oil provision to infants or children may be associated with immunologic changes in the blood but it is not clear if these are of clinical significance and whether they persist. Fish oil supplementation in infancy may decrease the risk of developing some manifestations of allergic disease, but this benefit may not persist as other factors come into play. It is not clear whether fish oil can be used to treat children with asthma as the two studies conducted to date give divergent results. Further studies of increased long-chain n-3 PUFA provision in during pregnancy, lactation, and infancy are needed to more clearly identify the immunologic and clinical effects in infants and children and to identify protective and therapeutic effects and their persistence.", "title": "Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review." }, { "docid": "15678772", "text": "OBJECTIVE To determine whether exposure to low doses of ionising radiation in infancy affects cognitive function in adulthood. \n DESIGN Population based cohort study. \n SETTING Sweden. \n PARTICIPANTS 3094 men who had received radiation for cutaneous haemangioma before age 18 months during 1930-59. \n MAIN OUTCOME MEASURES Radiation dose to frontal and posterior parts of the brain, and association between dose and intellectual capacity at age 18 or 19 years based on cognitive tests (learning ability, logical reasoning, spatial recognition) and high school attendance. \n RESULTS The proportion of boys who attended high school decreased with increasing doses of radiation to both the frontal and the posterior parts of the brain from about 32% among those not exposed to around 17% in those who received > 250 mGy. For the frontal dose, the multivariate odds ratio was 0.47 (95% confidence interval 0.26 to 0.85, P for trend 0.0003) and for the posterior dose it was 0.59 (0.23 to 1.47, 0.0005). A negative dose-response relation was also evident for the three cognitive tests for learning ability and logical reasoning but not for the test of spatial recognition. \n CONCLUSIONS Low doses of ionising radiation to the brain in infancy influence cognitive abilities in adulthood.", "title": "Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: Swedish population based cohort study." }, { "docid": "24521894", "text": "Wolcott-Rallison syndrome (WRS) is a rare, autosomal recessive disorder characterized by permanent neonatal or early infancy insulin-dependent diabetes. Epiphyseal dysplasia, osteoporosis and growth retardation occur at a later age. Other frequent multisystemic manifestations include hepatic and renal dysfunction, mental retardation and cardiovascular abnormalities. On the basis of two consanguineous families, we mapped WRS to a region of less than 3 cM on chromosome 2p12, with maximal evidence of linkage and homozygosity at 4 microsatellite markers within an interval of approximately 1 cM. The gene encoding the eukaryotic translation initiation factor 2-α kinase 3 (EIF2AK3) resides in this interval; thus we explored it as a candidate. We identified distinct mutations of EIF2AK3 that segregated with the disorder in each of the families. The first mutation produces a truncated protein in which the entire catalytic domain is missing. The other changes an amino acid, located in the catalytic domain of the protein, that is highly conserved among kinases from the same subfamily. Our results provide evidence for the role of EIF2AK3 in WRS. The identification of this gene may provide insight into the understanding of the more common forms of diabetes and other pathologic manifestations of WRS.", "title": "EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome" }, { "docid": "8529693", "text": "In this paper we review the associations between maternal and child undernutrition with human capital and risk of adult diseases in low-income and middle-income countries. We analysed data from five long-standing prospective cohort studies from Brazil, Guatemala, India, the Philippines, and South Africa and noted that indices of maternal and child undernutrition (maternal height, birthweight, intrauterine growth restriction, and weight, height, and body-mass index at 2 years according to the new WHO growth standards) were related to adult outcomes (height, schooling, income or assets, offspring birthweight, body-mass index, glucose concentrations, blood pressure). We undertook systematic reviews of studies from low-income and middle-income countries for these outcomes and for indicators related to blood lipids, cardiovascular disease, lung and immune function, cancers, osteoporosis, and mental illness. Undernutrition was strongly associated, both in the review of published work and in new analyses, with shorter adult height, less schooling, reduced economic productivity, and--for women--lower offspring birthweight. Associations with adult disease indicators were not so clear-cut. Increased size at birth and in childhood were positively associated with adult body-mass index and to a lesser extent with blood pressure values, but not with blood glucose concentrations. In our new analyses and in published work, lower birthweight and undernutrition in childhood were risk factors for high glucose concentrations, blood pressure, and harmful lipid profiles once adult body-mass index and height were adjusted for, suggesting that rapid postnatal weight gain--especially after infancy--is linked to these conditions. The review of published works indicates that there is insufficient information about long-term changes in immune function, blood lipids, or osteoporosis indicators. Birthweight is positively associated with lung function and with the incidence of some cancers, and undernutrition could be associated with mental illness. We noted that height-for-age at 2 years was the best predictor of human capital and that undernutrition is associated with lower human capital. We conclude that damage suffered in early life leads to permanent impairment, and might also affect future generations. Its prevention will probably bring about important health, educational, and economic benefits. Chronic diseases are especially common in undernourished children who experience rapid weight gain after infancy.", "title": "Maternal and child undernutrition: consequences for adult health and human capital" }, { "docid": "3847200", "text": "Direct induction of induced hepatocytes (iHeps) from fibroblasts holds potential as a strategy for regenerative medicine but until now has only been shown in culture settings. Here, we describe in vivo iHep formation using transcription factor induction and genetic fate tracing in mouse models of chronic liver disease. We show that ectopic expression of the transcription factors FOXA3, GATA4, HNF1A, and HNF4A from a polycistronic lentiviral vector converts mouse myofibroblasts into cells with a hepatocyte phenotype. In vivo expression of the same set of transcription factors from a p75 neurotrophin receptor peptide (p75NTRp)-tagged adenovirus enabled the generation of hepatocyte-like cells from myofibroblasts in fibrotic mouse livers and reduced liver fibrosis. We have therefore been able to convert pro-fibrogenic myofibroblasts in the liver into hepatocyte-like cells with positive functional benefits. This direct in vivo reprogramming approach may open new avenues for the treatment of chronic liver disease.", "title": "Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes In Vivo Attenuates Liver Fibrosis." }, { "docid": "35521287", "text": "The cardiorespiratory control system undergoes functional maturation after birth. Until this process is completed, the cardiorespiratory system is unstable, placing infants at risk for cardiorespiratory disturbances, especially during sleep. The profound influence of states of alertness on respiratory and cardiac control has been the focus of intense scrutiny during the last decade. The effects of rapid-eye movement (REM) sleep on various mechanisms involved in cardiorespiratory control are of particular significance during the postnatal period since newborns spend much of their time in this sleep state. In fullterm newborns, REM sleep occupies more than 50% of total sleep time, and this percentage is even greater in preterm newborns. From term to six months of age, the proportion of REM sleep decreases. Since respiratory and cardiac disturbances are known to occur selectively during REM sleep, the predominance of REM sleep may be a risk factor for abnormal sleep-related events during early infancy. Awareness of these developmental changes in sleep patterns is important for clinicians dealing with problems such as apparent life-threatening events (ALTE), sudden infant death syndrome (SIDS), and/or cardiorespiratory responses to respiratory disorders. Our current understanding of respiratory and cardiac control rests mainly on studies conducted during the first months of life. There is a paucity of data on late infancy and early childhood. The present paper will review available data on how sleep affects 1) ventilatory mechanics, in particular of the upper airways and the chest wall; ventilation and apnea; gas exchange; chemoreceptor function; and arousal responses; 2) changes in heart rate and heart rate variability, and the occurrence and mechanisms of bradycardia.", "title": "Cardiorespiratory adaptation during sleep in infants and children." }, { "docid": "3446400", "text": "Transcriptional misregulation is involved in the development of many diseases, especially neoplastic transformation. Distal regulatory elements, such as enhancers, play a major role in specifying cell-specific transcription patterns in both normal and diseased tissues, suggesting that enhancers may be prime targets for therapeutic intervention. By focusing on modulating gene regulation mediated by cell type-specific enhancers, there is hope that normal epigenetic patterning in an affected tissue could be restored with fewer side effects than observed with treatments employing relatively nonspecific inhibitors such as epigenetic drugs. New methods employing genomic nucleases and site-specific epigenetic regulators targeted to specific genomic regions, using either artificial DNA-binding proteins or RNA-DNA interactions, may allow precise genome engineering at enhancers. However, this field is still in its infancy and further refinements that increase specificity and efficiency are clearly required.", "title": "Can genome engineering be used to target cancer-associated enhancers?" }, { "docid": "27162821", "text": "Percentile curves were calculated for hemoglobin and mean corpuscular volume in children between 0.5 and 16 years of age. The curves were derived from several populations of non-indigent white children who lived near sea level. Subjects were excluded from the reference population if they had laboratory evidence of iron deficiency, thalassemia minor, and/or hemoglobinopathy. The final reference populations included 9,946 children for the derivation of the hemoglobin curves and 2,314 for the MCV curves. The percentile curves should be particularly applicable to the diagnosis and screening of iron deficiency and thalassemia minor.", "title": "Percentile curves for hemoglobin and red cell volume in infancy and childhood." }, { "docid": "9478135", "text": "Point mutations of the transcription factor AML1 are associated with leukemogenesis in acute myeloblastic leukemia (AML). Internal tandem duplications (ITDs) in the juxtamembrane domain and mutations in the second tyrosine kinase domain of the Fms-like tyrosine kinase 3 (FLT3) gene represent the most frequent genetic alterations in AML. However, such mutations per se appear to be insufficient for leukemic transformation. To evaluate whether both AML1 and FLT3 mutations contribute to leukemogenesis, we analyzed mutations of these genes in AML M0 subtype in whom AML1 mutations were predominantly observed. Of 51 patients, eight showed a mutation in the Runt domain of the AML1 gene: one heterozygous missense mutation with normal function, five heterozygous frameshift mutations and two biallelic nonsense or frameshift mutations, resulting in haploinsufficiency or complete loss of the AML1 activities. On the other hand, a total of 10 of 49 patients examined had the FLT3 mutation. We detected the FLT3 mutation in five of eight (63%) patients with AML1 mutation, whereas five of 41 (12%) without AML1 mutation showed the FLT3 mutation (P=0.0055). These observations suggest that reduced AML1 activities predispose cells to the acquisition of the activating FLT3 mutation as a secondary event leading to full transformation in AML M0.", "title": "Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype" }, { "docid": "4951831", "text": "Discovering the stress-buffering effects of social relationships has been one of the major findings in psychobiology in the last century. However, an understanding of the underlying neurobiological and psychological mechanisms of this buffering is only beginning to emerge. An important avenue of this research concerns the neurocircuitry that can regulate the activity of the hypothalamic-pituitary-adrenocortical (HPA) axis. The present review is a translational effort aimed at integrating animal models and human studies of the social regulation of the HPA axis from infancy to adulthood, specifically focusing on the process that has been named social buffering. This process has been noted across species and consists of a dampened HPA axis stress response to threat or challenge that occurs with the presence or assistance of a conspecific. We describe aspects of the relevant underlying neurobiology when enough information exists and expose major gaps in our understanding across all domains of the literatures we aimed to integrate. We provide a working conceptual model focused on the role of oxytocinergic systems and prefrontal neural networks as 2 of the putative biological mediators of this process, and propose that the role of early experiences is critical in shaping later social buffering effects. This synthesis points to both general future directions and specific experiments that need to be conducted to build a more comprehensive model of the HPA social buffering effect across the life span that incorporates multiple levels of analysis: neuroendocrine, behavioral, and social.", "title": "Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: a review of animal models and human studies across development." }, { "docid": "10692948", "text": "CONTEXT Early childhood introduction of nutritional habits aimed at atherosclerosis prevention is compatible with normal growth, but its effect on neurological development is unknown. \n OBJECTIVE To analyze how parental counseling aimed at keeping children's diets low in saturated fat and cholesterol influences neurodevelopment during the first 5 years of life. \n DESIGN Randomized controlled trial conducted between February 1990 and November 1996. \n SETTING Outpatient clinic of a university department in Turku, Finland. \n PARTICIPANTS A total of 1062 seven-month-old infants and their parents, recruited at well-baby clinics between 1990 and 1992. At age 5 years, 496 children still living in the city of Turku were available to participate in neurodevelopmental testing. \n INTERVENTION Participants were randomly assigned to receive individualized counseling aimed at limiting the child's fat intake to 30% to 35% of daily energy, with a saturated:monounsaturated:polyunsaturated fatty acid ratio of 1:1:1 and a cholesterol intake of less than 200 mg/d (n = 540) or usual health education (control group, n = 522). \n MAIN OUTCOME MEASURES Nutrient intake, serum lipid concentrations, and neurological development at 5 years, among children in the intervention vs control groups. \n RESULTS Absolute and relative intakes of fat, saturated fatty acids, and cholesterol among children in the intervention group were markedly less than the respective values of control children. Mean (SD) percentages of daily energy at age 5 years for the intervention vs control groups were as follows: for total fat, 30.6% (4.5%) vs 33.4% (4.4%) (P<. 001); and for saturated fat, 11.7% (2.3%) vs 14.5% (2.4%) (P<.001). Mean intakes of cholesterol were 164.2 mg (60.1 mg) and 192.5 mg (71. 9 mg) (P<.001) for the intervention and control groups, respectively. Serum cholesterol concentrations were continuously 3% to 5% lower in children in the intervention group than in children in the control group. At age 5 years, mean (SD) serum cholesterol concentration of the intervention group was 4.27 (0.63) mmol/L (165 [24] mg/dL) and of the control group, 4.41 (0.74) mmol/L (170 [29] mg/dL) (P =.04). Neurological development of children in the intervention group was at least as good as that of children in the control group. Relative risks for children in the intervention group to fail tests of speech and language skills, gross motor functioning plus perception, and visual motor skills were 0.95 (90% confidence interval [CI], 0.60-1.49), 0.95 (90% CI, 0.58-1.55), and 0.65 (90% CI, 0.39-1.08), respectively (P =.85,.86, and.16, respectively, vs control children). \n CONCLUSION Our data indicate that repeated child-targeted dietary counseling of parents during the first 5 years of a child's life lessens age-associated increases in children's serum cholesterol and is compatible with normal neurological development. JAMA. 2000;284:993-1000", "title": "Neurological development of 5-year-old children receiving a low-saturated fat, low-cholesterol diet since infancy: A randomized controlled trial." }, { "docid": "15319019", "text": "Background The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centre’s database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance. Methods and Findings The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centre’s database. N348I increased in prevalence from below 1% in 368 treatmentnao ¨ve individuals to 12.1% in 1,009 treatment-experienced patients (p ¼ 7.7 3 10 � 12 ). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p , 0.001), the lamivudine resistance mutations M184V/I (p , 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p , 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43–4.81). The appearance of N348I was associated with a significant increase in viral load (p , 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wildtype HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance. Conclusions", "title": "N348I in the Connection Domain of HIV-1 Reverse Transcriptase Confers Zidovudine and Nevirapine Resistance" }, { "docid": "9394119", "text": "IMPORTANCE Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. \n OBJECTIVE To identify mutation-specific cancer risks for carriers of BRCA1/2. \n DESIGN, SETTING, AND PARTICIPANTS Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19,581 carriers of BRCA1 mutations and 11,900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk. EXPOSURES Mutations of BRCA1 or BRCA2. \n MAIN OUTCOMES AND MEASURES Breast and ovarian cancer risks. \n RESULTS Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10(-6)), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1'; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% CI, 1.69-3.16; P = .00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% CI, 0.44-0.60; P = 6 × 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% CI, 0.41-0.80; P = .001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers. \n CONCLUSIONS AND RELEVANCE Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.", "title": "Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer." }, { "docid": "4312169", "text": "Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.", "title": "Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma" }, { "docid": "14782049", "text": "The cognitive deficits observed in children with cyanotic congenital heart disease suggest involvement of the developing hippocampus. Chronic postnatal hypoxia present during infancy in these children may play a role in these impairments. To understand the biochemical mechanisms of hippocampal injury in chronic hypoxia, a neurochemical profile consisting of 15 metabolite concentrations and 2 metabolite ratios in the hippocampus was evaluated in a rat model of chronic postnatal hypoxia using in vivo 1H NMR spectroscopy at 9.4 T. Chronic hypoxia was induced by continuously exposing rats (n = 23) to 10% O2 from postnatal day (P) 3 to P28. Fifteen metabolites were quantified from a volume of 9-11 microl centered on the left hippocampus on P14, P21, and P28 and were compared with normoxic controls (n = 14). The developmental trajectory of neurochemicals in chronic hypoxia was similar to that seen in normoxia. However, chronic hypoxia had an effect on the concentrations of the following neurochemicals: aspartate, creatine, phosphocreatine, GABA, glutamate, glutamine, glutathione, myoinositol, N-acetylaspartate (NAA), phosphorylethanolamine, and phosphocreatine/creatine (PCr/Cr) and glutamate/glutamine (Glu/Gln) ratios (P < 0.001 each, except glutamate, P = 0.04). The increased PCr/Cr ratio is consistent with decreased brain energy consumption. Given the well-established link between excitatory neurotransmission and brain energy metabolism, we postulate that elevated glutamate, Glu/Gln ratio, and GABA indicate suppressed excitatory neurotransmission in an energy-limited environment. Decreased NAA and phosphorylethanolamine suggest reduced neuronal integrity and phospholipid metabolism. The altered hippocampal neurochemistry during its development may underlie some of the cognitive deficits present in human infants at risk of chronic hypoxia.", "title": "In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus." }, { "docid": "13717103", "text": "INTRODUCTION Mutations in the FUS gene have been shown to be a rare cause of amyotrophic lateral sclerosis (ALS-FUS) and whilst well documented clinically and genetically there have been relatively few neuropathological studies. Recent work suggested a possible correlation between pathological features such as frequency of basophilic inclusions in neurons and rate of clinical decline, other studies have revealed a discrepancy between the upper motor neuron features detected clinically and the associated pathology. The purpose of this study was to describe the pathological features associated with more recently discovered FUS mutations and reinvestigate those with well recognised mutations in an attempt to correlate the pathology with mutation and/or clinical phenotype. The brains and spinal cords of seven cases of ALS-FUS were examined neuropathologically, including cases with the newly described p. K510E mutation and a case with both a known p. P525L mutation in the FUS gene and a truncating p. Y374X mutation in the TARDBP gene. \n RESULTS The neuropathology in all cases revealed basophilic and FUS inclusions in the cord. The density and type of inclusions varied markedly between cases, but did not allow a clear correlation with clinical progression. Only one case showed significant motor cortical pathology despite the upper motor neuron clinical features being evident in 4 patients. The case with both a FUS and TARDBP mutation revealed FUS positive inclusions but no TDP-43 pathology. Instead there were unusual p62 positive, FUS negative neuronal and glial inclusions as well as dot-like neurites. \n CONCLUSIONS The study confirms cases of ALS-FUS to be mainly a lower motor neuron disease and to have pathology that does not appear to neatly correlate with clinical features or genetics. Furthermore, the case with both a FUS and TARDBP mutation reveals an intriguing pathological profile which at least in part involves a very unusual staining pattern for the ubiquitin-binding protein p62.", "title": "ALS-FUS pathology revisited: singleton FUS mutations and an unusual case with both a FUS and TARDBP mutation" }, { "docid": "4414547", "text": "Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case–control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10−5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10−4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10−9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification.", "title": "Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer" }, { "docid": "24144677", "text": "Homozygous mutation in the ATM gene causes ataxia telangiectasia and heterozygous mutation carriers may be at increased risk of breast cancer. We studied a total of 22 ATM variants; 18 variants were analyzed in one of two large population-based studies from the U.S. and Poland, and four variants were analyzed in all 2,856 breast cancer cases and 3,344 controls from the two studies. The missense mutation Ser49Cys (c.146C>G, p. S49C), carried by approximately 2% of subjects, was more common in cases than controls in both study populations, combined odds ratio (OR) 1.69 (95% CI, 1.19-2.40; P=0.004). Another missense mutation at approximately 2% frequency, Phe858Leu (c.2572T>C, p. F858L), was associated with a significant increased risk in the U.S. study but not in Poland, and had a combined OR of 1.44 (95% CI, 0.98-2.11; P=0.06). These analyses provide the most convincing evidence thus far that missense mutations in ATM, particularly p. S49C, may be breast cancer susceptibility alleles. Because of their low frequency, even larger sample sizes are required to more firmly establish these associations.", "title": "The ATM missense mutation p.Ser49Cys (c.146C>G) and the risk of breast cancer." }, { "docid": "1866911", "text": "Basal-like breast cancers arising in women carrying mutations in the BRCA1 gene, encoding the tumor suppressor protein BRCA1, are thought to develop from the mammary stem cell. To explore early cellular changes that occur in BRCA1 mutation carriers, we have prospectively isolated distinct epithelial subpopulations from normal mammary tissue and preneoplastic specimens from individuals heterozygous for a BRCA1 mutation. We describe three epithelial subsets including basal stem/progenitor, luminal progenitor and mature luminal cells. Unexpectedly, we found that breast tissue from BRCA1 mutation carriers harbors an expanded luminal progenitor population that shows factor-independent growth in vitro. Moreover, gene expression profiling revealed that breast tissue heterozygous for a BRCA1 mutation and basal breast tumors were more similar to normal luminal progenitor cells than any other subset, including the stem cell–enriched population. The c-KIT tyrosine kinase receptor (encoded by KIT) emerged as a key marker of luminal progenitor cells and was more highly expressed in BRCA1-associated preneoplastic tissue and tumors. Our findings suggest that an aberrant luminal progenitor population is a target for transformation in BRCA1-associated basal tumors .", "title": "Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers" } ]
492
HOXB4 facilitates HSC expansion when co-cultured with HSCs.
[ { "docid": "19583924", "text": "Successful ex vivo expansion of hematopoietic stem cells (HSCs) would greatly benefit the treatment of disease and the understanding of crucial questions of stem cell biology. Here we show, using microarray studies, that the HSC-supportive mouse fetal liver CD3+ cells specifically express the proteins angiopoietin-like 2 (Angptl2) and angiopoietin-like 3 (Angptl3). We observed a 24- or 30-fold net expansion of long-term HSCs by reconstitution analysis when we cultured highly enriched HSCs for 10 days in the presence of Angptl2 or Angptl3 together with saturating levels of other growth factors. The coiled-coil domain of Angptl2 was capable of stimulating expansion of HSCs. Furthermore, angiopoietin-like 5, angiopoietin-like 7 and microfibril-associated glycoprotein 4 also supported expansion of HSCs in culture.", "title": "Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells" } ]
[ { "docid": "92499", "text": "Hematopoietic stem cells (HSCs) develop during embryogenesis in a complex process that involves multiple anatomical sites. Once HSC precursors have been specified from mesoderm, they have to mature into functional HSCs and undergo self-renewing divisions to generate a pool of HSCs. During this process, developing HSCs migrate through various embryonic niches, which provide signals for their establishment and the conservation of their self-renewal ability. These processes have to be recapitulated to generate HSCs from embryonic stem cells. Elucidating the interactions between developing HSCs and their niches should facilitate the generation and expansion of HSCs in vitro to exploit their clinical potential.", "title": "The journey of developing hematopoietic stem cells." }, { "docid": "18374364", "text": "A rare set of hematopoietic stem cells (HSC) must undergo a massive expansion to produce mature blood cells. The phenotypic isolation of HSC from mice offers the opportunity to determine directly their proliferation kinetics. We analyzed the proliferation and cell cycle kinetics of long-term self-renewing HSC (LT-HSC) in normal adult mice. At any one time, approximately 5% of LT-HSC were in S/G2/M phases of the cell cycle and another 20% were in G1 phase. BrdUrd incorporation was used to determine the rate at which different cohorts of HSC entered the cell cycle over time. About 50% of LT-HSC incorporated BrdUrd by 6 days and >90% incorporated BrdUrd by 30 days. By 6 months, 99% of LT-HSC had incorporated BrdUrd. We calculated that approximately 8% of LT-HSC asynchronously entered the cell cycle per day. Nested reverse transcription-PCR analysis revealed cyclin D2 expression in a high proportion of LT-HSC. Although approximately 75% of LT-HSC are quiescent in G0 at any one time, all HSC are recruited into cycle regularly such that 99% of LT-HSC divide on average every 57 days.", "title": "In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells." }, { "docid": "9911547", "text": "The physiologic roles of angiopoietin-like proteins (Angptls) in the hematopoietic system remain unknown. Here we show that hematopoietic stem cells (HSCs) in Angptl3-null mice are decreased in number and quiescence. HSCs transplanted into Angptl3-null recipient mice exhibited impaired repopulation. Bone marrow sinusoidal endothelial cells express high levels of Angptl3 and are adjacent to HSCs. Importantly, bone marrow stromal cells or endothelium deficient in Angptl3 have a significantly decreased ability to support the expansion of repopulating HSCs. Angptl3 represses the expression of the transcription factor Ikaros, whose unregulated overexpression diminishes the repopulation activity of HSCs. Angptl3, as an extrinsic factor, thus supports the stemness of HSCs in the bone marrow niche.", "title": "Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche." }, { "docid": "4381486", "text": "Stem cells are proposed to segregate chromosomes asymmetrically during self-renewing divisions so that older (‘immortal’) DNA strands are retained in daughter stem cells whereas newly synthesized strands segregate to differentiating cells. Stem cells are also proposed to retain DNA labels, such as 5-bromo-2-deoxyuridine (BrdU), either because they segregate chromosomes asymmetrically or because they divide slowly. However, the purity of stem cells among BrdU-label-retaining cells has not been documented in any tissue, and the ‘immortal strand hypothesis’ has not been tested in a system with definitive stem cell markers. Here we tested these hypotheses in haematopoietic stem cells (HSCs), which can be highly purified using well characterized markers. We administered BrdU to newborn mice, mice treated with cyclophosphamide and granulocyte colony-stimulating factor, and normal adult mice for 4 to 10 days, followed by 70 days without BrdU. In each case, less than 6% of HSCs retained BrdU and less than 0.5% of all BrdU-retaining haematopoietic cells were HSCs, revealing that BrdU has poor specificity and poor sensitivity as an HSC marker. Sequential administration of 5-chloro-2-deoxyuridine and 5-iodo-2-deoxyuridine indicated that all HSCs segregate their chromosomes randomly. Division of individual HSCs in culture revealed no asymmetric segregation of the label. Thus, HSCs cannot be identified on the basis of BrdU-label retention and do not retain older DNA strands during division, indicating that these are not general properties of stem cells.", "title": "Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU" }, { "docid": "14550841", "text": "Hematopoietic stem cells (HSCs) in adult marrow are believed to be derived from fetal liver precursors. To study cell kinetics involved in long-term hematopoiesis, we studied single-sorted candidate HSCs from fetal liver that were cultured in the presence of a mixture of stimulatory cytokines. After 8–10 d, the number of cells in primary cultures varied from 10,000 cells. Single cells in slow growing colonies were recloned upon reaching a 100–200 cell stage. Strikingly, the number of cells in subclones varied widely again. These results are indicative of asymmetric divisions in primitive hematopoietic cells in which proliferative potential and cell cycle properties are unevenly distributed among daughter cells. The continuous generation of functional heterogeneity among the clonal progeny of HSCs is in support of intrinsic control of stem cell fate and provides a model for the long-term maintenance of hematopoiesis in vitro and in vivo.", "title": "Asymmetric Cell Divisions Sustain Long-Term Hematopoiesis from Single-sorted Human Fetal Liver Cells " }, { "docid": "11900630", "text": "Objective. Chemotherapeutic agents function by inducing apoptosis and their effectiveness depends on the balance of pro- and anti-apoptotic proteins in cells. Due to the complicated interactions of the many proteins involved, it has been difficult to determine in tumors whether overexpression of single genes is prognostic for increased resistance. Therefore, we studied the influence of bcl-2 overexpression on resistance to chemotherapeutics in a transgenic mouse system. This allowed us to study a wide variety of cells, including important but rare populations such as hematopoietic stem cells (HSC).Methods. H2K-bcl-2 transgenic and wild-type (WT) mice were treated with several agents(5-fluoruracil, cyclophosphamide, and busulfan) to determine the contribution of increased amounts of bcl-2 to the response to these chemotherapeutics in vivo. Populations were enumerated using flow cytometry. HSC were studied by FACS purification and long-term reconstitution assays in vivo and resistance was confirmed by short-term proliferation assays with different amounts of chemotherapeutics in vitro. Results. bcl-2 overexpression alone protects many cell types, though protection levels differ between populations and agents. However, even sensitive populations return to pretreatment levels faster in transgenic mice. bcl-2 overexpression also prevents the dramatic changes in HSC following 5-FU treatment (downregulation of c-kit, upregulation of Lin, less efficient long-term reconstitution). In vitro studies directly demonstrate increased resistance of bcl-2 overexpressing HSC to chemotherapeutic agents. Conclusions. Increased expression of bcl-2 in HSC and their progeny endows these cells with broad resistance to chemotherapeutic agents. The ability to (differentially) regulate sensitivity to apoptosis of bystander and tumor cells is clinically important.", "title": "Hematopoietic stem cells and other hematopoietic cells show broad resistance to chemotherapeutic agents in vivo when overexpressing bcl-2." }, { "docid": "17271462", "text": "The quiescent state is thought to be an indispensable property for the maintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with their particular microenvironments, known as the stem cell niches, is critical for adult hematopoiesis in the bone marrow (BM). Here, we demonstrate that HSCs expressing the receptor tyrosine kinase Tie2 are quiescent and antiapoptotic, and comprise a side-population (SP) of HSCs, which adhere to osteoblasts (OBs) in the BM niche. The interaction of Tie2 with its ligand Angiopoietin-1 (Ang-1) induced cobblestone formation of HSCs in vitro and maintained in vivo long-term repopulating activity of HSCs. Furthermore, Ang-1 enhanced the ability of HSCs to become quiescent and induced adhesion to bone, resulting in protection of the HSC compartment from myelosuppressive stress. These data suggest that the Tie2/Ang-1 signaling pathway plays a critical role in the maintenance of HSCs in a quiescent state in the BM niche.", "title": "Tie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche" }, { "docid": "32170702", "text": "Maintenance of hematopoietic stem cells (HSCs) depends on interaction with their niche. Here we show that the long-term (LT)-HSCs expressing the thrombopoietin (THPO) receptor, MPL, are a quiescent population in adult bone marrow (BM) and are closely associated with THPO-producing osteoblastic cells. THPO/MPL signaling upregulated beta1-integrin and cyclin-dependent kinase inhibitors in HSCs. Furthermore, inhibition and stimulation of THPO/MPL pathway by treatments with anti-MPL neutralizing antibody, AMM2, and with THPO showed reciprocal regulation of quiescence of LT-HSC. AMM2 treatment reduced the number of quiescent LT-HSCs and allowed exogenous HSC engraftment without irradiation. By contrast, exogenous THPO transiently increased quiescent HSC population and subsequently induced HSC proliferation in vivo. Altogether, these observations suggest that THPO/MPL signaling plays a critical role of LT-HSC regulation in the osteoblastic niche.", "title": "Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche." }, { "docid": "3701541", "text": "Hepatic stellate cells (HSCs) play critical roles in liver fibrosis and hepatocellular carcinoma (HCC). Vitamin D receptor (VDR) activation in HSCs inhibits liver inflammation and fibrosis. We found that p62/SQSTM1, a protein upregulated in liver parenchymal cells but downregulated in HCC-associated HSCs, negatively controls HSC activation. Total body or HSC-specific p62 ablation potentiates HSCs and enhances inflammation, fibrosis, and HCC progression. p62 directly interacts with VDR and RXR promoting their heterodimerization, which is critical for VDR:RXR target gene recruitment. Loss of p62 in HSCs impairs the repression of fibrosis and inflammation by VDR agonists. This demonstrates that p62 is a negative regulator of liver inflammation and fibrosis through its ability to promote VDR signaling in HSCs, whose activation supports HCC.", "title": "p62/SQSTM1 by Binding to Vitamin D Receptor Inhibits Hepatic Stellate Cell Activity, Fibrosis, and Liver Cancer." }, { "docid": "4366738", "text": "Although haematopoietic stem cells (HSCs) are commonly assumed to reside within a specialized microenvironment, or niche, most published experimental manipulations of the HSC niche have affected the function of diverse restricted progenitors. This raises the fundamental question of whether HSCs and restricted progenitors reside within distinct, specialized niches or whether they share a common niche. Here we assess the physiological sources of the chemokine CXCL12 for HSC and restricted progenitor maintenance. Cxcl12(DsRed) knock-in mice (DsRed-Express2 recombined into the Cxcl12 locus) showed that Cxcl12 was primarily expressed by perivascular stromal cells and, at lower levels, by endothelial cells, osteoblasts and some haematopoietic cells. Conditional deletion of Cxcl12 from haematopoietic cells or nestin-cre-expressing cells had little or no effect on HSCs or restricted progenitors. Deletion of Cxcl12 from endothelial cells depleted HSCs but not myeloerythroid or lymphoid progenitors. Deletion of Cxcl12 from perivascular stromal cells depleted HSCs and certain restricted progenitors and mobilized these cells into circulation. Deletion of Cxcl12 from osteoblasts depleted certain early lymphoid progenitors but not HSCs or myeloerythroid progenitors, and did not mobilize these cells into circulation. Different stem and progenitor cells thus reside in distinct cellular niches in bone marrow: HSCs occupy a perivascular niche and early lymphoid progenitors occupy an endosteal niche.", "title": "Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches" }, { "docid": "13116880", "text": "The mammalian blood system, containing more than 10 distinct mature cell types, stands on one specific cell type, hematopoietic stem cell (HSC). Within the system, only HSCs possess the ability of both multipotency and self-renewal. Multipotency is the ability to differentiate into all functional blood cells. Self-renewal is the ability to give rise to HSC itself without differentiation. Since mature blood cells (MBCs) are predominantly short-lived, HSCs continuously provide more differentiated progenitors while properly maintaining the HSC pool size throughout life by precisely balancing self-renewal and differentiation. Thus, understanding the mechanisms of self-renewal and differentiation of HSC has been a central issue. In this review, we focus on the hierarchical structure of the hematopoietic system, the current understanding of microenvironment and molecular cues regulating self-renewal and differentiation of adult HSCs, and the currently emerging systems approaches to understand HSC biology.", "title": "Hematopoietic stem cell: self-renewal versus differentiation." }, { "docid": "10165258", "text": "Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin(-)Sca1(+)c-Kit(hi)CD150(+)CD48(-)) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well documented that GATA-3 is expressed in HSCs, a role for GATA-3 in any prethymic progenitor cell has not been established. In the present study, we show that Gata3-null mutant mice generate fewer LT-HSCs and that fewer Gata3-null LT-HSCs are in cycle. Furthermore, Gata3 mutant hematopoietic progenitor cells fail to be recruited into an increased cycling state after 5-fluorouracil-induced myelosuppression. Therefore, GATA-3 is required for the maintenance of a normal number of LT-HSCs and for their entry into the cell cycle.", "title": "GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry." }, { "docid": "13980338", "text": "Heterogeneity within the self-renewal durability of adult hematopoietic stem cells (HSCs) challenges our understanding of the molecular framework underlying HSC function. Gene expression studies have been hampered by the presence of multiple HSC subtypes and contaminating non-HSCs in bulk HSC populations. To gain deeper insight into the gene expression program of murine HSCs, we combined single-cell functional assays with flow cytometric index sorting and single-cell gene expression assays. Through bioinformatic integration of these datasets, we designed an unbiased sorting strategy that separates non-HSCs away from HSCs, and single-cell transplantation experiments using the enriched population were combined with RNA-seq data to identify key molecules that associate with long-term durable self-renewal, producing a single-cell molecular dataset that is linked to functional stem cell activity. Finally, we demonstrated the broader applicability of this approach for linking key molecules with defined cellular functions in another stem cell system.", "title": "Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations" }, { "docid": "10015292", "text": "Highly regenerative tissues such as blood must possess effective DNA damage responses (DDR) that balance long-term regeneration with protection from leukemogenesis. Hematopoietic stem cells (HSCs) sustain life-long blood production, yet their response to DNA damage remains largely unexplored. We report that human HSCs exhibit delayed DNA double-strand break rejoining, persistent gammaH2AX foci, and enhanced p53- and ASPP1-dependent apoptosis after gamma-radiation compared to progenitors. p53 inactivation or Bcl-2 overexpression reduced radiation-induced apoptosis and preserved in vivo repopulating HSC function. Despite similar protection from irradiation-induced apoptosis, only Bcl-2-overexpressing HSCs showed higher self-renewal capacity, establishing that intact p53 positively regulates self-renewal independently from apoptosis. The reduced self-renewal of HSCs with inactivated p53 was associated with increased spontaneous gammaH2AX foci in secondary transplants of HSCs. Our data reveal distinct physiological roles of p53 that together ensure optimal HSC function: apoptosis regulation and prevention of gammaH2AX foci accumulation upon HSC self-renewal.", "title": "A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal." }, { "docid": "12130067", "text": "Formation of the hematopoietic stem cell (HSC) niche in bone marrow (BM) is tightly associated with endochondral ossification, but little is known about the mechanisms involved. We used the oc/oc mouse, a mouse model with impaired endochondral ossification caused by a loss of osteoclast (OCL) activity, to investigate the role of osteoblasts (OBLs) and OCLs in the HSC niche formation. The absence of OCL activity resulted in a defective HSC niche associated with an increased proportion of mesenchymal progenitors but reduced osteoblastic differentiation, leading to impaired HSC homing to the BM. Restoration of OCL activity reversed the defect in HSC niche formation. Our data demonstrate that OBLs are required for establishing HSC niches and that osteoblastic development is induced by OCLs. These findings broaden our knowledge of the HSC niche formation, which is critical for understanding normal and pathological hematopoiesis.", "title": "Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow" }, { "docid": "4380004", "text": "The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin+ MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent ‘mesenspheres’ that can self-renew and expand in serial transplantations. Nestin+ MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or β3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin+ cells and favours their osteoblastic differentiation, in vivo nestin+ cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin+ MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin+ cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.", "title": "Mesenchymal and haematopoietic stem cells form a unique bone marrow niche" }, { "docid": "2701077", "text": "Most adult stem cells, including hematopoietic stem cells (HSCs), are maintained in a quiescent or resting state in vivo. Quiescence is widely considered to be an essential protective mechanism for stem cells that minimizes endogenous stress caused by cellular respiration and DNA replication. We demonstrate that HSC quiescence can also have detrimental effects. We found that HSCs have unique cell-intrinsic mechanisms ensuring their survival in response to ionizing irradiation (IR), which include enhanced prosurvival gene expression and strong activation of p53-mediated DNA damage response. We show that quiescent and proliferating HSCs are equally radioprotected but use different types of DNA repair mechanisms. We describe how nonhomologous end joining (NHEJ)-mediated DNA repair in quiescent HSCs is associated with acquisition of genomic rearrangements, which can persist in vivo and contribute to hematopoietic abnormalities. Our results demonstrate that quiescence is a double-edged sword that renders HSCs intrinsically vulnerable to mutagenesis following DNA damage.", "title": "Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis." }, { "docid": "22973574", "text": "Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11b(high) monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80(bright) macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia--cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.", "title": "A lineage of myeloid cells independent of Myb and hematopoietic stem cells." }, { "docid": "243694", "text": "The ontogeny of haematopoietic stem cells (HSCs) during embryonic development is still highly debated, especially their possible lineage relationship to vascular endothelial cells. The first anatomical site from which cells with long-term HSC potential have been isolated is the aorta-gonad-mesonephros (AGM), more specifically the vicinity of the dorsal aortic floor. But although some authors have presented evidence that HSCs may arise directly from the aortic floor into the dorsal aortic lumen, others support the notion that HSCs first emerge within the underlying mesenchyme. Here we show by non-invasive, high-resolution imaging of live zebrafish embryos, that HSCs emerge directly from the aortic floor, through a stereotyped process that does not involve cell division but a strong bending then egress of single endothelial cells from the aortic ventral wall into the sub-aortic space, and their concomitant transformation into haematopoietic cells. The process is polarized not only in the dorso-ventral but also in the rostro-caudal versus medio-lateral direction, and depends on Runx1 expression: in Runx1-deficient embryos, the exit events are initially similar, but much rarer, and abort into violent death of the exiting cell. These results demonstrate that the aortic floor is haemogenic and that HSCs emerge from it into the sub-aortic space, not by asymmetric cell division but through a new type of cell behaviour, which we call an endothelial haematopoietic transition.", "title": "Blood stem cells emerge from aortic endothelium by a novel type of cell transition" } ]
493
HOXB4 is a highly expressed component of cellular secretome from fetal liver cell populations.
[ { "docid": "19583924", "text": "Successful ex vivo expansion of hematopoietic stem cells (HSCs) would greatly benefit the treatment of disease and the understanding of crucial questions of stem cell biology. Here we show, using microarray studies, that the HSC-supportive mouse fetal liver CD3+ cells specifically express the proteins angiopoietin-like 2 (Angptl2) and angiopoietin-like 3 (Angptl3). We observed a 24- or 30-fold net expansion of long-term HSCs by reconstitution analysis when we cultured highly enriched HSCs for 10 days in the presence of Angptl2 or Angptl3 together with saturating levels of other growth factors. The coiled-coil domain of Angptl2 was capable of stimulating expansion of HSCs. Furthermore, angiopoietin-like 5, angiopoietin-like 7 and microfibril-associated glycoprotein 4 also supported expansion of HSCs in culture.", "title": "Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells" } ]
[ { "docid": "515489", "text": "UNLABELLED Many protein-coding oncofetal genes are highly expressed in murine and human fetal liver and silenced in adult liver. The protein products of these hepatic oncofetal genes have been used as clinical markers for the recurrence of hepatocellular carcinoma (HCC) and as therapeutic targets for HCC. Herein we examined the expression profiles of long noncoding RNAs (lncRNAs) found in fetal and adult liver in mice. Many fetal hepatic lncRNAs were identified; one of these, lncRNA-mPvt1, is an oncofetal RNA that was found to promote cell proliferation, cell cycling, and the expression of stem cell-like properties of murine cells. Interestingly, we found that human lncRNA-hPVT1 was up-regulated in HCC tissues and that patients with higher lncRNA-hPVT1 expression had a poor clinical prognosis. The protumorigenic effects of lncRNA-hPVT1 on cell proliferation, cell cycling, and stem cell-like properties of HCC cells were confirmed both in vitro and in vivo by gain-of-function and loss-of-function experiments. Moreover, mRNA expression profile data showed that lncRNA-hPVT1 up-regulated a series of cell cycle genes in SMMC-7721 cells. By RNA pulldown and mass spectrum experiments, we identified NOP2 as an RNA-binding protein that binds to lncRNA-hPVT1. We confirmed that lncRNA-hPVT1 up-regulated NOP2 by enhancing the stability of NOP2 proteins and that lncRNA-hPVT1 function depends on the presence of NOP2. \n CONCLUSION Our study demonstrates that the expression of many lncRNAs is up-regulated in early liver development and that the fetal liver can be used to search for new diagnostic markers for HCC. LncRNA-hPVT1 promotes cell proliferation, cell cycling, and the acquisition of stem cell-like properties in HCC cells by stabilizing NOP2 protein. Regulation of the lncRNA-hPVT1/NOP2 pathway may have beneficial effects on the treatment of HCC.", "title": "Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2." }, { "docid": "25419778", "text": "Cellular senescence is a fundamental mechanism by which cells remain metabolically active yet cease dividing and undergo distinct phenotypic alterations, including upregulation of p16Ink4a , profound secretome changes, telomere shortening, and decondensation of pericentromeric satellite DNA. Because senescent cells accumulate in multiple tissues with aging, these cells and the dysfunctional factors they secrete, termed the senescence-associated secretory phenotype (SASP), are increasingly recognized as promising therapeutic targets to prevent age-related degenerative pathologies, including osteoporosis. However, the cell type(s) within the bone microenvironment that undergoes senescence with aging in vivo has remained poorly understood, largely because previous studies have focused on senescence in cultured cells. Thus in young (age 6 months) and old (age 24 months) mice, we measured senescence and SASP markers in vivo in highly enriched cell populations, all rapidly isolated from bone/marrow without in vitro culture. In both females and males, p16Ink4a expression by real-time quantitative polymerase chain reaction (rt-qPCR) was significantly higher with aging in B cells, T cells, myeloid cells, osteoblast progenitors, osteoblasts, and osteocytes. Further, in vivo quantification of senescence-associated distension of satellites (SADS), ie, large-scale unraveling of pericentromeric satellite DNA, revealed significantly more senescent osteocytes in old compared with young bone cortices (11% versus 2%, p < 0.001). In addition, primary osteocytes from old mice had sixfold more (p < 0.001) telomere dysfunction-induced foci (TIFs) than osteocytes from young mice. Corresponding with the age-associated accumulation of senescent osteocytes was significantly higher expression of multiple SASP markers in osteocytes from old versus young mice, several of which also showed dramatic age-associated upregulation in myeloid cells. These data show that with aging, a subset of cells of various lineages within the bone microenvironment become senescent, although senescent myeloid cells and senescent osteocytes predominantly develop the SASP. Given the critical roles of osteocytes in orchestrating bone remodeling, our findings suggest that senescent osteocytes and their SASP may contribute to age-related bone loss. © 2016 American Society for Bone and Mineral Research.", "title": "Identification of Senescent Cells in the Bone Microenvironment." }, { "docid": "25830701", "text": "The cytokine erythropoietin (Epo) promotes erythropoietic progenitor cell proliferation and is required for erythropoietic differentiation. We have found that the Epo gene is a direct transcriptional target gene of retinoic acid signaling during early erythropoiesis (prior to embryonic day E12.5) in the fetal liver. Mouse embryos lacking the retinoic acid receptor gene RXR alpha have a morphological and histological phenotype that is comparable with embryos in which the Epo gene itself has been mutated, and flow cytometric analysis indicates that RXR alpha-deficient embryos are deficient in erythroid differentiation. Epo mRNA levels are reduced substantially in the fetal livers of RXR alpha(-/-) embryos at E10.25 and E11.25, and genetic analysis shows that the RXR alpha and Epo genes are coupled in the same pathway. We furthermore show that the Epo gene is retinoic acid inducible in embryos, and that the Epo gene enhancer contains a DR2 sequence that represents a retinoic acid receptor-binding site and a retinoic acid receptor transcriptional response element. However, unlike Epo-deficient embryos that die from anemia, the erythropoietic deficiency in RXR alpha(-/-) embryos is transient; Epo mRNA is expressed at normal levels by E12.5, and erythropoiesis and liver morphology are normal by E14.5. We show that HNF4, like RXR alpha a member of the nuclear receptor family, is abundantly expressed in fetal liver hepatocytes, and is competitive with retinoic acid receptors for occupancy of the Epo gene enhancer DR2 element. We propose that Epo expression is regulated during the E9.5--E11.5 phase of fetal liver erythropoiesis by RXR alpha and retinoic acid, and that expression then becomes dominated by HNF4 activity from E11.5 onward. This transition may be responsible for switching regulation of Epo expression from retinoic acid control to hypoxic control, as is found throughout the remainder of life.", "title": "A developmental transition in definitive erythropoiesis: erythropoietin expression is sequentially regulated by retinoic acid receptors and HNF4." }, { "docid": "6718824", "text": "Suboptimal developmental environments program offspring to lifelong metabolic problems. The aim of this study was to determine the impact of protein restriction in pregnancy on maternal liver lipid metabolism at 19 days of gestation (dG) and its effect on fetal brain development. Control (C) and restricted (R) mothers were fed with isocaloric diets containing 20 and 10% of casein. At 19 dG, maternal blood and livers and fetal livers and brains were collected. Serum insulin and leptin levels were determinate in mothers. Maternal and fetal liver lipid and fetal brain lipid quantification were performed. Maternal liver and fetal brain fatty acids were quantified by gas chromatography. In mothers, liver desaturase and elongase mRNAs were measured by RT-PCR. Maternal body and liver weights were similar in both groups. However, fat body composition, including liver lipids, was lower in R mothers. A higher fasting insulin at 19 dG in the R group was observed (C = 0.2 +/- 0.04 vs. R = 0.9 +/- 0.16 ng/ml, P < 0.01) and was inversely related to early growth retardation. Serum leptin in R mothers was significantly higher than that observed in C rats (C = 5 +/- 0.1 vs. R = 7 +/- 0.7 ng/ml, P < 0.05). In addition, protein restriction significantly reduced gene expression in maternal liver of desaturases and elongases and the concentration of arachidonic (AA) and docosahexanoic (DHA) acids. In fetus from R mothers, a low body weight (C = 3 +/- 0.3 vs. R = 2 +/- 0.1 g, P < 0.05), as well as liver and brain lipids, including the content of DHA in the brain, was reduced. This study showed that protein restriction during pregnancy may negatively impact normal fetal brain development by changes in maternal lipid metabolism.", "title": "Protein restriction during pregnancy affects maternal liver lipid metabolism and fetal brain lipid composition in the rat." }, { "docid": "25994317", "text": "CACCC boxes are among the critical sequences present in regulatory elements of genes expressed in erythroid cells, as well as in selected other cell types. While an erythroid cell-specific CACCC-box-binding protein, EKLF, has been shown to be required in vivo for proper expression of the adult beta-globin gene, it is dispensable for the regulation of several other globin and nonglobin erythroid cell-expressed genes. In the work described here, we searched for additional CACCC-box transcription factors that might be active in murine erythroid cells. We identified a major gel shift activity (termed BKLF), present in yolk sac and fetal liver erythroid cells, that could be distinguished from EKLF by specific antisera. Through relaxed-stringency hybridization, we obtained the cDNA encoding BKLF, a highly basic, novel zinc finger protein that is related to EKLF and other Krüppel-like members in its DNA-binding domain but unrelated elsewhere. BKLF, which is widely but not ubiquitously expressed in cell lines, is highly expressed in the midbrain region of embryonic mice and appears to correspond to the gel shift activity TEF-2, a transcriptional activator implicated in regulation of the simian virus 40 enhancer and other CACCC-box-containing regulatory elements. Because BKLF binds with high affinity and preferentially over Sp1 to many CACCC sequences of erythroid cell expressed genes, it is likely to participate in the control of many genes whose expression appears independent of the action of EKLF.", "title": "Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells." }, { "docid": "37699461", "text": "Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.", "title": "Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells." }, { "docid": "14550841", "text": "Hematopoietic stem cells (HSCs) in adult marrow are believed to be derived from fetal liver precursors. To study cell kinetics involved in long-term hematopoiesis, we studied single-sorted candidate HSCs from fetal liver that were cultured in the presence of a mixture of stimulatory cytokines. After 8–10 d, the number of cells in primary cultures varied from 10,000 cells. Single cells in slow growing colonies were recloned upon reaching a 100–200 cell stage. Strikingly, the number of cells in subclones varied widely again. These results are indicative of asymmetric divisions in primitive hematopoietic cells in which proliferative potential and cell cycle properties are unevenly distributed among daughter cells. The continuous generation of functional heterogeneity among the clonal progeny of HSCs is in support of intrinsic control of stem cell fate and provides a model for the long-term maintenance of hematopoiesis in vitro and in vivo.", "title": "Asymmetric Cell Divisions Sustain Long-Term Hematopoiesis from Single-sorted Human Fetal Liver Cells " }, { "docid": "15928989", "text": "Successful pregnancy requires coordination of an array of signals and factors from multiple tissues. One such element, liver receptor homolog-1 (Lrh-1), is an orphan nuclear receptor that regulates metabolism and hormone synthesis. It is strongly expressed in granulosa cells of ovarian follicles and in the corpus luteum of rodents and humans. Germline ablation of Nr5a2 (also called Lrh-1), the gene coding for Lrh-1, in mice is embryonically lethal at gastrulation. Depletion of Lrh-1 in the ovarian follicle shows that it regulates genes required for both steroid synthesis and ovulation. To study the effects of Lrh-1 on mouse gestation, we genetically disrupted its expression in the corpus luteum, resulting in luteal insufficiency. Hormone replacement permitted embryo implantation but was followed by gestational failure with impaired endometrial decidualization, compromised placental formation, fetal growth retardation and fetal death. Lrh-1 is also expressed in the mouse and human endometrium, and in a primary culture of human endometrial stromal cells, reduction of NR5A2 transcript abundance by RNA interference abrogated decidualization. These findings show that Lrh-1 is necessary for maintenance of the corpus luteum, for promotion of decidualization and for formation of the placenta. It therefore has multiple, indispensible roles in establishing and sustaining pregnancy.", "title": "Liver receptor homolog-1 is essential for pregnancy" }, { "docid": "22973574", "text": "Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11b(high) monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80(bright) macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia--cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.", "title": "A lineage of myeloid cells independent of Myb and hematopoietic stem cells." }, { "docid": "25148216", "text": "Several members of the Kruppel-like factor (KLF) family of transcription factors play important roles in differentiation, survival, and trafficking of blood and immune cell types. We demonstrate in this study that hematopoietic cells from KLF4(-/-) fetal livers (FL) contained normal numbers of functional hematopoietic progenitor cells, were radioprotective, and performed as well as KLF4(+/+) cells in competitive repopulation assays. However, hematopoietic \"KLF4(-/-) chimeras\" generated by transplantation of KLF4(-/-) fetal livers cells into lethally irradiated wild-type mice completely lacked circulating inflammatory (CD115(+)Gr1(+)) monocytes, and had reduced numbers of resident (CD115(+)Gr1(-)) monocytes. Although the numbers and function of peritoneal macrophages were normal in KLF4(-/-) chimeras, bone marrow monocytic cells from KLF4(-/-) chimeras expressed lower levels of key trafficking molecules and were more apoptotic. Thus, our in vivo loss-of-function studies demonstrate that KLF4, previously shown to mediate proinflammatory signaling in human macrophages in vitro, is essential for differentiation of mouse inflammatory monocytes, and is involved in the differentiation of resident monocytes. In addition, inducible expression of KLF4 in the HL60 human acute myeloid leukemia cell line stimulated monocytic differentiation and enhanced 12-O-tetradecanoylphorbol 13-acetate induced macrophage differentiation, but blocked all-trans-retinoic acid induced granulocytic differentiation of HL60 cells. The inflammation-selective effects of loss-of-KLF4 and the gain-of-KLF4-induced monocytic differentiation in HL60 cells identify KLF4 as a key regulator of monocytic differentiation and a potential target for translational immune modulation.", "title": "Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo." }, { "docid": "3952288", "text": "Aire-expressing medullary thymic epithelial cells (mTECs) play a key role in preventing autoimmunity by expressing tissue-restricted antigens to help purge the emerging T cell receptor repertoire of self-reactive specificities. Here we demonstrate a novel role for a CD4+3− inducer cell population, previously linked to development of organized secondary lymphoid structures and maintenance of T cell memory in the functional regulation of Aire-mediated promiscuous gene expression in the thymus. CD4+3− cells are closely associated with mTECs in adult thymus, and in fetal thymus their appearance is temporally linked with the appearance of Aire+ mTECs. We show that RANKL signals from this cell promote the maturation of RANK-expressing CD80−Aire− mTEC progenitors into CD80+Aire+ mTECs, and that transplantation of RANK-deficient thymic stroma into immunodeficient hosts induces autoimmunity. Collectively, our data reveal cellular and molecular mechanisms leading to the generation of Aire+ mTECs and highlight a previously unrecognized role for CD4+3−RANKL+ inducer cells in intrathymic self-tolerance.", "title": "RANK signals from CD4+3− inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla" }, { "docid": "35062452", "text": "Krüppel-like factors 3 and 8 (KLF3 and KLF8) are highly related transcriptional regulators that bind to similar sequences of DNA. We have previously shown that in erythroid cells there is a regulatory hierarchy within the KLF family, whereby KLF1 drives the expression of both the Klf3 and Klf8 genes and KLF3 in turn represses Klf8 expression. While the erythroid roles of KLF1 and KLF3 have been explored, the contribution of KLF8 to this regulatory network has been unknown. To investigate this, we have generated a mouse model with disrupted KLF8 expression. While these mice are viable, albeit with a reduced life span, mice lacking both KLF3 and KLF8 die at around embryonic day 14.5 (E14.5), indicative of a genetic interaction between these two factors. In the fetal liver, Klf3 Klf8 double mutant embryos exhibit greater dysregulation of gene expression than either of the two single mutants. In particular, we observe derepression of embryonic, but not adult, globin expression. Taken together, these results suggest that KLF3 and KLF8 have overlapping roles in vivo and participate in the silencing of embryonic globin expression during development.", "title": "Generation of mice deficient in both KLF3/BKLF and KLF8 reveals a genetic interaction and a role for these factors in embryonic globin gene silencing." }, { "docid": "16627684", "text": "Stem cells persist throughout life in diverse tissues by undergoing self-renewing divisions. Self-renewal capacity declines with age, partly because of increasing expression of the tumor suppressor p16(Ink4a). We discovered that the Hmga2 transcriptional regulator is highly expressed in fetal neural stem cells but that expression declines with age. This decrease is partly caused by the increasing expression of let-7b microRNA, which is known to target HMGA2. Hmga2-deficient mice show reduced stem cell numbers and self-renewal throughout the central and peripheral nervous systems of fetal and young-adult mice but not old-adult mice. Furthermore, p16(Ink4a) and p19(Arf) expression were increased in Hmga2-deficient fetal and young-adult stem cells, and deletion of p16(Ink4a) and/or p19(Arf) partially restored self-renewal capacity. let-7b overexpression reduced Hmga2 and increased p16(Ink4a)/p19(Arf) expression. Hmga2 thus promotes fetal and young-adult stem cell self-renewal by decreasing p16(Ink4a)/p19(Arf) expression. Changes in let-7 and Hmga2 expression during aging contribute to the decline in neural stem cell function.", "title": "Hmga2 Promotes Neural Stem Cell Self-Renewal in Young but Not Old Mice by Reducing p16Ink4a and p19Arf Expression" }, { "docid": "3756384", "text": "BACKGROUND & AIMS Hepatocytes in which the hepatitis B virus (HBV) is replicating exhibit loss of the chromatin modifying polycomb repressive complex 2 (PRC2), resulting in re-expression of specific, cellular PRC2-repressed genes. Epithelial cell adhesion molecule (EpCAM) is a PRC2-repressed gene, normally expressed in hepatic progenitors, but re-expressed in hepatic cancer stem cells (hCSCs). Herein, we investigated the functional significance of EpCAM re-expression in HBV-mediated hepatocarcinogenesis. \n METHODS Employing molecular approaches (transfections, fluorescence-activated cell sorting, immunoblotting, qRT-PCR), we investigated the role of EpCAM-regulated intramembrane proteolysis (RIP) in HBV replicating cells in vitro, and in liver tumors from HBV X/c-myc mice and chronically HBV infected patients. \n RESULTS EpCAM undergoes RIP in HBV replicating cells, activating canonical Wnt signaling. Transfection of Wnt-responsive plasmid expressing green fluorescent protein (GFP) identified a GFP + population of HBV replicating cells. These GFP+/Wnt+ cells exhibited cisplatin- and sorafenib-resistant growth resembling hCSCs, and increased expression of pluripotency genes NANOG, OCT4, SOX2, and hCSC markers BAMBI, CD44 and CD133. These genes are referred as EpCAM RIP and Wnt-induced hCSC-like gene signature. Interestingly, this gene signature is also overexpressed in liver tumors of X/c-myc bitransgenic mice. Clinically, a group of HBV-associated hepatocellular carcinomas was identified, exhibiting elevated expression of the hCSC-like gene signature and associated with reduced overall survival post-surgical resection. \n CONCLUSIONS The hCSC-like gene signature offers promise as prognostic tool for classifying subtypes of HBV-induced HCCs. Since EpCAM RIP and Wnt signaling drive expression of this hCSC-like signature, inhibition of these pathways can be explored as therapeutic strategy for this subtype of HBV-associated HCCs. LAY SUMMARY In this study, we provide evidence for a molecular mechanism by which chronic infection by the hepatitis B virus results in the development of poor prognosis liver cancer. Based on this mechanism our results suggest possible therapeutic interventions.", "title": "EpCAM-regulated intramembrane proteolysis induces a cancer stem cell-like gene signature in hepatitis B virus-infected hepatocytes." }, { "docid": "17119869", "text": "The pancreas emerges independently from dorsal and ventral domains of embryonic gut endoderm. Gene inactivation experiments in mice have identified factors required for dorsal pancreas development, but factors that initiate the ventral pancreas have remained elusive. In this study, we investigated the hypothesis that the emergence of the ventral pancreas is related to the emergence of the liver. We find that the liver and ventral pancreas are specified at the same time and in the same general domain of cells. Using embryo tissue explantation experiments, we find that the default fate of the ventral foregut endoderm is to activate the pancreas gene program. FGF signalling from the cardiac mesoderm diverts this endoderm to express genes for liver instead of those for pancreas. No evidence was found to indicate that the cell type choice for pancreas or liver involves a selection for growth or viability. Cardiac mesoderm or FGF induces the local expression of sonic hedgehog, which in turn is inhibitory to pancreas but not to liver. The bipotential precursor cell population for pancreas and liver in embryonic development and its fate selection by FGF has features that appear to be recapitulated in the adult pancreas and are reflected in the evolution of these organs.", "title": "A bipotential precursor population for pancreas and liver within the embryonic endoderm." }, { "docid": "7399084", "text": "T cell homeostasis is crucial for a functional immune system, as the accumulation of T cells resulting from lack of regulatory T cells or an inability to shut down immune responses can lead to inflammation and autoimmune pathology. Here we show that Blimp-1, a transcriptional repressor that is a 'master regulator' of terminal B cell differentiation, was expressed in a subset of antigen-experienced CD4+ and CD8+ T cells. Mice reconstituted with fetal liver stem cells expressing a mutant Blimp-1 lacking the DNA-binding domain developed a lethal multiorgan inflammatory disease caused by an accumulation of effector and memory T cells. These data identify Blimp-1 as an essential regulator of T cell homeostasis and suggest that Blimp-1 regulates both B cell and T cell differentiation.", "title": "Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance" }, { "docid": "38025907", "text": "Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent chronic liver disease for which no approved therapies are available. Despite intensive research, the cellular mechanisms that mediate NAFLD pathogenesis and progression are poorly understood. Although obesity, diabetes, insulin resistance, and related metabolic syndrome, all consequences of a Western diet lifestyle, are well-recognized risk factors for NAFLD development, dysregulated bile acid metabolism is emerging as a novel mechanism contributing to NAFLD pathogenesis. Notably, NAFLD patients exhibit a deficiency in fibroblast growth factor 19 (FGF19), an endocrine hormone in the gut-liver axis that controls de novo bile acid synthesis, lipogenesis, and energy homeostasis. Using a mouse model that reproduces the clinical progression of human NAFLD, including the development of simple steatosis, nonalcoholic steatohepatitis (NASH), and advanced \"burnt-out\" NASH with hepatocellular carcinoma, we demonstrate that FGF19 as well as an engineered nontumorigenic FGF19 analogue, M70, ameliorate bile acid toxicity and lipotoxicity to restore liver health. Mass spectrometry-based lipidomics analysis of livers from mice treated with FGF19 or M70 revealed significant reductions in the levels of toxic lipid species (i.e., diacylglycerols, ceramides and free cholesterol) and an increase in levels of unoxidized cardiolipins, an important component of the inner mitochondrial membrane. Furthermore, treatment with FGF19 or M70 rapidly and profoundly reduced levels of liver enzymes, resolved the histologic features of NASH, and enhanced insulin sensitivity, energy homeostasis, and lipid metabolism. Whereas FGF19 induced hepatocellular carcinoma formation following prolonged exposure in these mice, animals expressing M70 showed no evidence of liver tumorigenesis in this model. Conclusion: We have engineered an FGF19 hormone that is capable of regulating multiple pathways to deliver antisteatotic, anti-inflammatory, and antifibrotic activities and that represents a potentially promising therapeutic for patients with NASH. (Hepatology Communications 2017;1:1024-1042).", "title": "Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice" }, { "docid": "1866911", "text": "Basal-like breast cancers arising in women carrying mutations in the BRCA1 gene, encoding the tumor suppressor protein BRCA1, are thought to develop from the mammary stem cell. To explore early cellular changes that occur in BRCA1 mutation carriers, we have prospectively isolated distinct epithelial subpopulations from normal mammary tissue and preneoplastic specimens from individuals heterozygous for a BRCA1 mutation. We describe three epithelial subsets including basal stem/progenitor, luminal progenitor and mature luminal cells. Unexpectedly, we found that breast tissue from BRCA1 mutation carriers harbors an expanded luminal progenitor population that shows factor-independent growth in vitro. Moreover, gene expression profiling revealed that breast tissue heterozygous for a BRCA1 mutation and basal breast tumors were more similar to normal luminal progenitor cells than any other subset, including the stem cell–enriched population. The c-KIT tyrosine kinase receptor (encoded by KIT) emerged as a key marker of luminal progenitor cells and was more highly expressed in BRCA1-associated preneoplastic tissue and tumors. Our findings suggest that an aberrant luminal progenitor population is a target for transformation in BRCA1-associated basal tumors .", "title": "Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers" }, { "docid": "39506601", "text": "KLF1 (formerly known as EKLF) regulates the development of erythroid cells from bi-potent progenitor cells via the transcriptional activation of a diverse set of genes. Mice lacking Klf1 die in utero prior to E15 from severe anemia due to the inadequate expression of genes controlling hemoglobin production, cell membrane and cytoskeletal integrity, and the cell cycle. We have recently described the full repertoire of KLF1 binding sites in vivo by performing KLF1 ChIP-seq in primary erythroid tissue (E14.5 fetal liver). Here we describe the KLF1-dependent erythroid transcriptome by comparing mRNA-seq from Klf1(+/+) and Klf1(-/-) erythroid tissue. This has revealed novel target genes not previously obtainable by traditional microarray technology, and provided novel insights into the function of KLF1 as a transcriptional activator. We define a cis-regulatory module bound by KLF1, GATA1, TAL1, and EP300 that coordinates a core set of erythroid genes. We also describe a novel set of erythroid-specific promoters that drive high-level expression of otherwise ubiquitously expressed genes in erythroid cells. Our study has identified two novel lncRNAs that are dynamically expressed during erythroid differentiation, and discovered a role for KLF1 in directing apoptotic gene expression to drive the terminal stages of erythroid maturation.", "title": "Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq." } ]
494
HSCT-T dosage may not be diagnostic if the onset of symptoms occurs less than 3 hours before AMI.
[ { "docid": "34873974", "text": "OBJECTIVE To obtain summary estimates of the accuracy of a single baseline measurement of the Elecsys Troponin T high-sensitive assay (Roche Diagnostics) for the diagnosis of acute myocardial infarction in patients presenting to the emergency department. \n DESIGN Systematic review and meta-analysis of diagnostic test accuracy studies. \n DATA SOURCES Medline, Embase, and other relevant electronic databases were searched for papers published between January 2006 and December 2013. STUDY SELECTION Studies were included if they evaluated the diagnostic accuracy of a single baseline measurement of Elecsys Troponin T high-sensitive assay for the diagnosis of acute myocardial infarction in patients presenting to the emergency department with suspected acute coronary syndrome. STUDY APPRAISAL AND DATA SYNTHESIS The first author screened all titles and abstracts identified through the searches and selected all potentially relevant papers. The screening of the full texts, the data extraction, and the methodological quality assessment, using the adapted QUADAS-2 tool, were conducted independently by two reviewers with disagreements being resolved through discussion or arbitration. If appropriate, meta-analysis was conducted using the hierarchical bivariate model. \n RESULTS Twenty three studies reported the performance of the evaluated assay at presentation. The results for 14 ng/L and 3-5 ng/L cut-off values were pooled separately. At 14 ng/L (20 papers), the summary sensitivity was 89.5% (95% confidence interval 86.3% to 92.1%) and the summary specificity was 77.1% (68.7% to 83.7%). At 3-5 ng/L (six papers), the summary sensitivity was 97.4% (94.9% to 98.7%) and the summary specificity was 42.4% (31.2% to 54.5%). This means that if 21 of 100 consecutive patients have the target condition (21%, the median prevalence across the studies), 2 (95% confidence interval 2 to 3) of 21 patients with acute myocardial infarction will be missed (false negatives) if 14 ng/L is used as a cut-off value and 18 (13 to 25) of 79 patients without acute myocardial infarction will test positive (false positives). If the 3-5 ng/L cut-off value is used, <1 (0 to 1) patient with acute myocardial infarction will be missed and 46 (36 to 54) patients without acute myocardial infarction will test positive. \n CONCLUSIONS The results indicate that a single baseline measurement of the Elecsys Troponin T high-sensitive assay could be used to rule out acute myocardial infarction if lower cut-off values such as 3 ng/L or 5 ng/L are used. However, this method should be part of a comprehensive triage strategy and may not be appropriate for patients who present less than three hours after symptom onset. Care must also be exercised because of the higher imprecision of the evaluated assay and the greater effect of lot-to-lot reagent variation at low troponin concentrations. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42013003926.", "title": "Diagnostic accuracy of single baseline measurement of Elecsys Troponin T high-sensitive assay for diagnosis of acute myocardial infarction in emergency department: systematic review and meta-analysis" } ]
[ { "docid": "13223957", "text": "OBJECTIVE The cardinal indication for surgical treatment of gallstones is pain attacks. However, following cholecystectomy, 20% of patients remain symptomatic. It is unclear to what extent post-cholecystectomy symptoms can be ascribed to persistence of preoperative symptoms or to new pathology. The pain and digestive pattern in gallstone patients has not been defined in a recent setting with ultrasonography as the diagnostic method. The aim of this study was to characterize a pain pattern that is typical for gallstone disease and to describe the extent of associated dyspepsia. MATERIAL AND METHODS A total of 220 patients with symptomatic gallstone disease including complicated disease (acute cholecystitis and common bile duct stones) were interviewed using detailed questionnaires to disclose pain patterns and symptoms of indigestion. \n RESULTS All patients had pain in the right upper quadrant (RUQ) including the upper midline epigastrium. The pain was localized to the right subcostal area in 20% and to the upper epigastrium in 14%, and in the rest (66%) it was more evenly distributed. An area of maximal pain could be defined in 90%. Maximal pain was located under the costal arch in 51% of patients and in the epigastrium in 41%, but in 3% behind the sternum and in 5% in the back. The pain was referred to the back in 63% of the patients. The mean visual analogue scale (VAS) score was very high: 90 mm on a 0-100 scale. A pattern of incipient or low-grade warning pain with a subsequent relatively steady state until subsiding in the same fashion was present in 90% of the patients. An urge to walk around was experienced by 71%. Pain attacks usually occurred in the late evening or at night (77%), with 85% of the attacks lasting for more than one hour and almost never less than half an hour. Sixty-six percent of the patients were intolerant to at least one kind of food, but only 48% to fatty foods. Symptoms of functional indigestion (gastroesophageal reflux, dyspepsia or irritable bowel symptoms) were seen in the vast majority in association with attacks. \n CONCLUSIONS Gallstone-associated pain follows a certain pattern in the majority of patients. The pain is located in a defined area with a point of maximum intensity, is usually referred, and occurs mainly at night with duration of more than one hour. The majority of patients experience functional indigestion, mainly of the reflux type or dyspepsia.", "title": "Pain attacks in non-complicated and complicated gallstone disease have a characteristic pattern and are accompanied by dyspepsia in most patients: the results of a prospective study." }, { "docid": "17897801", "text": "BACKGROUND Abciximab plus aspirin improves the TIMI 3 flow rate of the infarct-related artery in patients treated with either percutaneous coronary intervention or thrombolysis. The present study investigated whether the reperfusion efficacy of abciximab relates to modifications of clot architecture in patients admitted for acute myocardial infarction (AMI). \n METHODS AND RESULTS A total of 23 AMI patients in the Abciximab before Direct angioplasty and stenting in Myocardial Infarction Regarding Acute and Long term follow-up (ADMIRAL) trial received, in a double-blind fashion, either abciximab (n=13) or placebo (n=10) before primary stenting. Viscoelastic (G' in dyne/cm(2)) and morphological (mean platelet aggregate surface area [SAG] in micrometer(2)) indexes of ex vivo platelet-rich clots (PRC) were assessed in a double-blind fashion before and after the bolus administration of abciximab or placebo. G' and SAG reflect the mechanical and morphological impact of activated platelets on the PRC fibrin network, respectively. Abciximab administration reduced G' by 63% (P=0.0001) and SAG by 65% (P=0.0007), and no effect was seen in the placebo group. These abciximab-related changes increased fibrin exposure as a consequence of the platelet-aggregate surface reduction and may have improved endogenous fibrinolysis. These effects were identified in all patients, independent of previous heparin administration. \n CONCLUSIONS Abciximab dramatically reduces platelet aggregate size and increases the fibrin accessibility of ex vivo PRC in AMI patients. These modifications could participate in the better coronary artery patency observed with abciximab.", "title": "Effects of Abciximab on the architecture of platelet-rich clots in patients with acute myocardial infarction undergoing primary coronary intervention." }, { "docid": "27910499", "text": "Delayed T cell recovery and restricted T cell receptor (TCR) diversity after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are associated with increased risks of infection and cancer relapse. Technical challenges have limited faithful measurement of TCR diversity after allo-HSCT. Here we combined 5' rapid amplification of complementary DNA ends PCR with deep sequencing to quantify TCR diversity in 28 recipients of allo-HSCT using a single oligonucleotide pair. Analysis of duplicate blood samples confirmed that we accurately determined the frequency of individual TCRs. After 6 months, cord blood-graft recipients approximated the TCR diversity of healthy individuals, whereas recipients of T cell-depleted peripheral-blood stem cell grafts had 28-fold and 14-fold lower CD4(+) and CD8(+) T cell diversities, respectively. After 12 months, these deficiencies had improved for the CD4(+) but not the CD8(+) T cell compartment. Overall, this method provides unprecedented views of T cell repertoire recovery after allo-HSCT and may identify patients at high risk of infection or relapse.", "title": "Quantitative assessment of T-cell repertoire recovery after hematopoietic stem cell transplantation" }, { "docid": "8698208", "text": "Rett syndrome (RTT) is an inherited neurodevelopmental disorder of females that occurs once in 10,000–15,000 births. Affected females develop normally for 6–18 months, but then lose voluntary movements, including speech and hand skills. Most RTT patients are heterozygous for mutations in the X-linked gene MECP2 (refs. 3–12), encoding a protein that binds to methylated sites in genomic DNA and facilitates gene silencing. Previous work with Mecp2-null embryonic stem cells indicated that MeCP2 is essential for mouse embryogenesis. Here we generate mice lacking Mecp2 using Cre-loxP technology. Both Mecp2-null mice and mice in which Mecp2 was deleted in brain showed severe neurological symptoms at approximately six weeks of age. Compensation for absence of MeCP2 in other tissues by MeCP1 (refs. 19,20) was not apparent in genetic or biochemical tests. After several months, heterozygous female mice also showed behavioral symptoms. The overlapping delay before symptom onset in humans and mice, despite their profoundly different rates of development, raises the possibility that stability of brain function, not brain development per se, is compromised by the absence of MeCP2.", "title": "A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome" }, { "docid": "8524891", "text": "OBJECTIVE White matter hyperintensities (WMHs) are areas of increased signal on T2-weighted magnetic resonance imaging (MRI) scans that most commonly reflect small vessel cerebrovascular disease. Increased WMH volume is associated with risk and progression of Alzheimer's disease (AD). These observations are typically interpreted as evidence that vascular abnormalities play an additive, independent role contributing to symptom presentation, but not core features of AD. We examined the severity and distribution of WMH in presymptomatic PSEN1, PSEN2, and APP mutation carriers to determine the extent to which WMH manifest in individuals genetically determined to develop AD. \n METHODS The study comprised participants (n = 299; age = 39.03 ± 10.13) from the Dominantly Inherited Alzheimer Network, including 184 (61.5%) with a mutation that results in AD and 115 (38.5%) first-degree relatives who were noncarrier controls. We calculated the estimated years from expected symptom onset (EYO) by subtracting the affected parent's symptom onset age from the participant's age. Baseline MRI data were analyzed for total and regional WMH. Mixed-effects piece-wise linear regression was used to examine WMH differences between carriers and noncarriers with respect to EYO. \n RESULTS Mutation carriers had greater total WMH volumes, which appeared to increase approximately 6 years before expected symptom onset. Effects were most prominent for the parietal and occipital lobe, which showed divergent effects as early as 22 years before estimated onset. \n INTERPRETATION Autosomal-dominant AD is associated with increased WMH well before expected symptom onset. The findings suggest the possibility that WMHs are a core feature of AD, a potential therapeutic target, and a factor that should be integrated into pathogenic models of the disease. Ann Neurol 2016;79:929-939.", "title": "White matter hyperintensities are a core feature of Alzheimer's disease: Evidence from the dominantly inherited Alzheimer network." }, { "docid": "10374686", "text": "Although 65% of people with cancer want to die at home, only about 30% are successful in doing so.1,2 A government committed to choice for patients must improve this figure.3 Developing palliative care services in primary care is essential for realising the expectations of dying people. Such services could also offer important opportunities for extending supportive humane care at an earlier stage, and to people not only with cancer but with chronic obstructive pulmonary disease, motor neurone disease, and cardiac failure, for example, who also often have palliative care needs. Primary care professionals have the potential and ability to provide end of life care for most patients, given adequate training, resources, and, when needed, specialist advice.4,5 They share common values with palliative care specialists—holistic, patient centred care, delivered in the context of families and friends.6 However, until recently, apart from Macmillan general practitioners and nurse facilitators, few comprehensive workforce initiatives have been undertaken in primary care that focus on end of life care. Many cancer patients and their carers experience existential distress long before they die.7 Recognising and alleviating such suffering is important, but it often goes unrecognised or is overlooked by services focusing on the terminal phase of illnesses. Primary care teams may know patients over long periods of time. They can readily identify patients from cancer and chronic disease registers who might benefit from an early palliative care approach. Such patients could be identified by clinicians asking one simple question of themselves: “Would I be surprised if my patient were to die in the next 12 months?”8 By identifying such patients proactively we could deliver, simultaneously, active treatment and patient centred supportive care, through a team with whom many patients have a valued long term relationship. Palliative care services need to be extended to patients with non-malignant conditions who have comparable concerns to and in some cases even greater unmet needs than cancer patients.9 Progress by palliative medicine specialists is hampered by issues such as uncertainty about the most effective models of care, lack of non-cancer expertise, and concerns about pressure on specialist services. General practitioners and community nurses can lead the way in providing a palliative care approach for patients with terminal organ failure illness. The first step in such an approach is for the goals of care to be discussed and agreed. Management plans are adjusted accordingly. Effective control of symptoms and maintaining quality of life are prioritised. In the light of these important opportunities it is regrettable that the new general medical services contract has not prioritised palliative care. By day, other developments to achieve the quality indicators are taking precedence. By night and at weekends, the new unscheduled care services (which are responsible for providing care for 75% of the hours in the week) are even less well configured than previous out of hours provision to facilitate dying at home. Such services specialise in dealing with acute emergencies and, as such, often struggle to meet the medical, nursing, and social care needs of dying people and their families. These changes will greatly affect care for dying people and may increase the number of hospital admissions. However, one important initiative is gaining momentum within primary care. The Gold Standards Framework is a resource for organising proactive palliative care in the community and is supported by funding from the Cancer Services Collaborative, Macmillan Cancer Relief, and the National Lottery.10 The framework provides a detailed guide to providing holistic, patient centred care and thereby facilitates effective care in the community. Other recently initiated mechanisms for developing primary palliative care include the training of general practitioners with a special interest in palliative care and the new end of life initiative in England to improve palliative care provision by generalists and to share examples of good practice. To support such developments it is essential that primary palliative care is supported by an adequate academic base.11 This is admittedly a challenging arena in which to undertake research, but progress has been made in recent years in developing conceptual models and research architectures for studying end of life issues. Now we need to build on this work to ensure that the understanding and insights gleaned can be translated into effective interventions. Every person with a progressive illness has a right to palliative care.12 Patients desire a reassuring professional presence in the face of death. General practitioners and community nurses are trusted by patients and are in a position to provide effective, equitable, and accessible palliative care. This will happen only if they have adequate time and resources and work in a system that encourages such care. Patients who receive holistic support in the community may be less likely to require expensive admission to hospital and often futile treatments at the end of their lives.", "title": "Developing primary palliative care." }, { "docid": "23203102", "text": "BACKGROUND The occurrence of transfusion transmissions of variant Creutzfeldt-Jakob disease (CJD) cases has reawakened attention to the possible similar risk posed by other forms of CJD. STUDY DESIGN AND METHODS CJD with a definite or probable diagnosis (sporadic CJD, n = 741; genetic CJD, n = 175) and no-CJD patients with definite alternative diagnosis (n = 482) with available blood transfusion history were included in the study. The risk of exposure to blood transfusion occurring more than 10 years before disease onset and for some possible confounding factors was evaluated by calculating crude odds ratios (ORs). Variables with significant ORs in univariate analyses were included in multivariate logistic regression analyses. \n RESULTS In the univariate model, blood transfusion occurring more than 10 years before clinical onset is 4.1-fold more frequent in sporadic CJD than in other neurologic disorders. This significance is lost when the 10-year lag time was not considered. Multivariate analyses show that the risk of developing sporadic CJD after transfusion increases (OR, 5.05) after adjusting for possible confounding factors. Analysis conducted on patients with genetic CJD did not reveal any significant risk factor associated with transfusion. \n CONCLUSION This is the first case-control study showing a significant risk of transfusion occurring more than 10 years before clinical onset in sporadic CJD patients. It remains questionable whether the significance of these data is biologically plausible or the consequence of biases in the design of the study, but they counterbalance previous epidemiologic negative reports that might have overestimated the assessment of blood safety in sporadic CJD.", "title": "Transmission of sporadic Creutzfeldt-Jakob disease by blood transfusion: risk factor or possible biases." }, { "docid": "52874170", "text": "CONTEXT Diagnostic lumbar punctures (LPs), commonly used to rule out meningitis, are associated with adverse events. \n OBJECTIVE To systematically review the evidence about diagnostic LP techniques that may decrease the risk of adverse events and the evidence about test accuracy of cerebrospinal fluid (CSF) analysis in adult patients with suspected bacterial meningitis. \n DATA SOURCES We searched the Cochrane Library, MEDLINE (using Ovid and PubMed) from 1966 to January 2006 and EMBASE from 1980 to January 2006 without language restrictions to identify relevant studies and identified others from the bibliographies of retrieved articles. STUDY SELECTION We included randomized trials of patients aged 18 years or older undergoing interventions to facilitate a successful diagnostic LP or to potentially reduce adverse events. Studies assessing the accuracy of biochemical analysis of the CSF for possible bacterial meningitis were also identified. \n DATA EXTRACTION Two investigators independently appraised study quality and extracted relevant data. For studies of the LP technique, data on the intervention and the outcome were extracted. For studies of the laboratory diagnosis of bacterial meningitis, data on the reference standard and test accuracy were extracted. \n DATA SYNTHESIS We found 15 randomized trials. A random-effects model was used for quantitative synthesis. Five studies of 587 patients compared atraumatic needles with standard needles and found a nonsignificant decrease in the odds of headache with an atraumatic needle (absolute risk reduction [ARR], 12.3%; 95% confidence interval [CI], -1.72% to 26.2%). Reinsertion of the stylet before needle removal decreased the risk of headache (ARR, 11.3%; 95% CI, 6.50%-16.2%). The combined results from 4 studies of 717 patients showed a nonsignificant decrease in headache in patients who were mobilized after LP (ARR, 2.9%; 95% CI, -3.4 to 9.3%). Four studies on the accuracy of biochemical analysis of CSF in patients with suspected meningitis met inclusion criteria. A CSF-blood glucose ratio of 0.4 or less (likelihood ratio [LR], 18; 95% CI, 12-27]), CSF white blood cell count of 500/muL or higher (LR, 15; 95% CI, 10-22), and CSF lactate level of 31.53 mg/dL or more (> or =3.5 mmol/L; LR, 21; 95% CI, 14-32) accurately diagnosed bacterial meningitis. \n CONCLUSIONS These data suggest that small-gauge, atraumatic needles may decrease the risk of headache after diagnostic LP. Reinsertion of the stylet before needle removal should occur and patients do not require bed rest after the procedure. Future research should focus on evaluating interventions to optimize the success of a diagnostic LP and to enhance training in procedural skills.", "title": "How do I perform a lumbar puncture and analyze the results to diagnose bacterial meningitis?" }, { "docid": "34054472", "text": "BACKGROUND Accumulating evidence has indicated that corin plays critical roles in regulating salt-water balance, blood pressure and cardiac function by activating natriuretic peptides. The present case-control study was designed to evaluate the association of serum soluble corin with acute myocardial infarction (AMI). \n METHODS We enrolled 856 consecutive AMI patients and 856 control subjects and explored the possible relation between serum corin levels and AMI risk using logistic regression model. \n RESULTS Patients with AMI had higher BMI, were less physically active, and were more likely to have histories of hypertension, diabetes, hyperlipidemia and smoking compared with the controls. Serum levels of corin were remarkably reduced in AMI patients (825±263pg/ml) compared with those in healthy controls (1246±425pg/ml). Odds ratios of ST elevation (STEMI) and non-ST elevation myocardial infarction (NSTEMI) were significantly decreased with the increasing levels of serum corin in both men and women (P for trend, <0.001) after adjustment for body mass index, hypertension, diabetes, hyperlipidemia, smoking, and physical activity. \n CONCLUSIONS Our study demonstrates that serum levels of corin are significantly decreased in AMI patients, and it is inversely associated with the incidences of STEMI and NSTEMI in both men and women.", "title": "Association between serum corin levels and risk of acute myocardial infarction." }, { "docid": "12232678", "text": "Recent reports have suggested that birds lack a mechanism of wholesale dosage compensation for the Z sex chromosome. This discovery was rather unexpected, as all other animals investigated with chromosomal mechanisms of sex determination have some method to counteract the effects of gene dosage of the dominant sex chromosome in males and females. Despite the lack of a global mechanism of avian dosage compensation, the pattern of gene expression difference between males and females varies a great deal for individual Z-linked genes. This suggests that some genes may be individually dosage compensated, and that some less-than-global pattern of dosage compensation, such as local or temporal, exists on the avian Z chromosome. We used global gene expression profiling in males and females for both somatic and gonadal tissue at several time points in the life cycle of the chicken to assess the pattern of sex-biased gene expression on the Z chromosome. Average fold-change between males and females varied somewhat among tissue time-point combinations, with embryonic brain samples having the smallest gene dosage effects, and adult gonadal tissue having the largest degree of male bias. Overall, there were no neighborhoods of overall dosage compensation along the Z. Taken together, this suggests that dosage compensation is regulated on the Z chromosome entirely on a gene-by-gene level, and can vary during the life cycle and by tissue type. This regulation may be an indication of how critical a given gene's functionality is, as the expression level for essential genes will be tightly regulated in order to avoid perturbing important pathways and networks with differential expression levels in males and females.", "title": "All dosage compensation is local: Gene-by-gene regulation of sex-biased expression on the chicken Z chromosome" }, { "docid": "3056682", "text": "Unstable angina is a critical phase of coronary heart disease with widely variable symptoms and prognosis. A decade ago, a classification of unstable angina based on clinical symptoms was introduced. This system was then validated by prospective clinical studies to correlate with the prognosis and was linked to angiographic and histological findings. It has been used to categorize patients in many large clinical trials. In recent years, the pathophysiological roles of platelet activation and inflammation in unstable angina have been elucidated. Subsequently, improved markers of myocardial injury, acute-phase proteins, and hemostatic markers that may be associated with clinical outcomes have been identified. Particularly, cardiac-specific troponin T and troponin I have been shown to represent the best predictors of early risk in patients with angina at rest. Accordingly, it is suggested that the original classification be extended by subclassifying one large group of unstable angina patients, ie, those with angina at rest within the past 48 hours (class IIIB), into troponin-positive (T(pos)) and troponin-negative (T(neg)) patients. The 30-days risk for death and myocardial infarction is considered to be up to 20% in class IIIB-T(pos) but <2% in class IIIB-T(neg) patients. Initial results suggest that troponins may function as surrogate markers for thrombus formation and can effectively guide therapy with glycoprotein IIb/IIIa antagonists or low-molecular-weight heparins. These observations provide additional impetus for adding the measurement of these markers to the clinical classification and represent a novel concept of treating these high-risk patients.", "title": "A classification of unstable angina revisited." }, { "docid": "5152028", "text": "BACKGROUND Homocysteine is a risk factor for coronary artery disease (CAD), although a causal relation remains to be proven. The importance of determining direct causality rests in the fact that plasma homocysteine can be safely and inexpensively reduced by 25% with folic acid. This reduction is maximally achieved by doses of 0.4 mg/d. High-dose folic acid (5 mg/d) improves endothelial function in CAD, although the mechanism is controversial. It has been proposed that improvement occurs through reduction in total (tHcy) or free (non-protein bound) homocysteine (fHcy). We investigated the effects of folic acid on endothelial function before a change in homocysteine in patients with CAD. \n METHODS AND RESULTS A randomized, placebo-controlled study of folic acid (5 mg/d) for 6 weeks was undertaken in 33 patients. Endothelial function, assessed by flow-mediated dilatation (FMD), was measured before, at 2 and 4 hours after the first dose of folic acid, and after 6 weeks of treatment. Plasma folate increased markedly by 1 hour (200 compared with 25.8 nmol/L; P<0.001). FMD improved at 2 hours (83 compared with 47 microm; P<0.001) and was largely complete by 4 hours (101 compared with 51 microm; P<0.001). tHcy did not significantly differ acutely (4-hour tHcy, 9.56 compared with 9.79 micromol/L; P=NS). fHcy did not differ at 3 hours but was slightly reduced at 4 hours (1.55 compared with 1.78 micromol/L; P=0.02). FMD improvement did not correlate with reductions in either fHcy or tHcy at any time. \n CONCLUSIONS These data suggest that folic acid improves endothelial function in CAD acutely by a mechanism largely independent of homocysteine.", "title": "Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering." }, { "docid": "10883736", "text": "CONTEXT The mechanisms that drive progression from fatty liver to steatohepatitis and cirrhosis are unknown. In animal models, obese mice with fatty livers are vulnerable to liver adenosine triphosphate (ATP) depletion and necrosis, suggesting that altered hepatic energy homeostasis may be involved. \n OBJECTIVE To determine if patients with fatty liver disease exhibit impaired recovery from hepatic ATP depletion. \n DESIGN Laboratory analysis of liver ATP stores monitored by nuclear magnetic resonance spectroscopy before and after transient hepatic ATP depletion was induced by fructose injection. The study was conducted between July 15 and August 30, 1998. \n SETTING University hospital. \n PATIENTS Eight consecutive adults with biopsy-proven nonalcoholic steatohepatitis and 7 healthy age- and sex-matched controls. \n MAIN OUTCOME MEASURE Level of ATP 1 hour after fructose infusion in patients vs controls. \n RESULTS In patients, serum aminotransferase levels were increased (P = .02 vs controls); albumin and bilirubin values were normal and clinical evidence of portal hypertension was absent in both groups. However, 2 patients had moderate fibrosis and 1 had cirrhosis on liver biopsy. Mean serum glucose, cholesterol, and triglyceride levels were similar between groups but patients weighed significantly more than controls (P = .02). Liver ATP levels were similar in the 2 groups before fructose infusion and decreased similarly in both after fructose infusion (P = .01 vs initial ATP levels). However, controls replenished their hepatic ATP stores during the 1-hour follow-up period (P<.02 vs minimum ATP) but patients did not. Hence, patients' hepatic ATP levels were lower than those of controls at the end of the study (P = .04). Body mass index (BMI) correlated inversely with ATP recovery, even in controls (R = -0.768; P = .07). Although BMI was greater in patients than controls (P = .02) and correlated strongly with fatty liver and serum aminotransferase elevations, neither of the latter 2 parameters nor the histologic severity of fibrosis strongly predicted hepatic ATP recovery. \n CONCLUSIONS These data suggest that recovery from hepatic ATP depletion becomes progressively less efficient as body mass increases in healthy controls and is severely impaired in patients with obesity-related nonalcoholic steatohepatitis.", "title": "Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study." }, { "docid": "10128893", "text": "Allogeneic hematopoietic stem cell transplantation (HSCT) in thalassemia remains a challenge. We reported a single-centre case-control study of a large cohort of 516 children and adult patients treated with HSCT or blood transfusion support and iron chelation therapy; 258 patients (median age 12, range 1-45) underwent sibling (67%) or unrelated (33%) HSCT; 97 patients were adults (age ≥ 16 years). The median follow-up after HSCT was 11 years (range 1-30). The conditioning regimen was busulfan (80.6%) or treosulfan-based (19.4%). A cohort of 258 age-sex matched conventionally treated (CT) patients was randomly selected. In transplanted patients the 30-year overall survival (OS) and thalassemia-free survival (TFS) were 82.6 ± 2.7% and 77.8 ± 2.9%, compared to the OS of 85.3 ± 2.7% in CT patients (P = NS); The incidence of grade II-IV acute and chronic graft versus host disease (GvHD) was 23.6% and 12.9% respectively. The probability of rejection was 6.9%. Transplant-related mortality (TRM) (13.8%) was similar to the probability of dying of cardiovascular events in CT patients (12.2%). High-risk Pesaro score (class 3) was associated with lower OS (OR = 1.99, 95% C.I.=1.31-3.03) and TFS (OR = 1.54, 95% C.I.=1.12-2.12). In adult patients, the 23-years OS and TFS after HSCT were 70 ± 5% and 67.3 ± 5%, compared to 71.2 ± 5% of OS in CT (P = NS). Finally, treosulfan was associated with lower risk of acute GvHD (P = .004; OR = 0.28, 95% C.I.=0.12-0.67). In conclusion, the 30-year survival rate of ex-thalassemia patients after HSCT was similar to that expected in CT thalassemia patients, with the vast majority of HSCT survivors cured from thalassemia.", "title": "Long-term survival of beta thalassemia major patients treated with hematopoietic stem cell transplantation compared with survival with conventional treatment." }, { "docid": "26652147", "text": "CONTEXT Ghrelin is an orexigenic hormone that can increase body weight. Its circulating levels increase before meals and are suppressed after food ingestion. Understanding the effects of specific types of ingested macronutrients on ghrelin regulation could facilitate the design of weight-reducing diets. \n OBJECTIVE We sought to understand how ingestion of carbohydrates, proteins, or lipids affect acyl (bioactive) and total ghrelin levels among human subjects, hypothesizing that lipids might suppress ghrelin levels less effectively than do either carbohydrates or proteins. \n DESIGN This was a randomized, within-subjects cross-over study. \n SETTING The study was conducted at a University Clinical Research Center. \n PARTICIPANTS There were 16 healthy human subjects included in the study. \n INTERVENTIONS Isocaloric, isovolemic beverages composed primarily of carbohydrates, proteins, or lipids were provided. \n MAIN OUTCOME MEASURES The magnitude of postprandial suppression of total and acyl ghrelin levels (measured with a novel acyl-selective, two-site ELISA) was determined. \n RESULTS All beverages suppressed plasma acyl and total ghrelin levels. A significant effect of macronutrient class on decremental area under the curve for both acyl and total ghrelin was observed; the rank order for magnitude of suppression was protein more than carbohydrate more than lipid. Total ghrelin nadir levels were significantly lower after both carbohydrate and protein, compared with lipid beverages. In the first 3 postprandial hours, the rank order for acyl and total ghrelin suppression was carbohydrate more than protein more than lipid. In the subsequent 3 h, there was a marked rebound above preprandial values of acyl and total ghrelin after carbohydrate ingestion alone. \n CONCLUSIONS These findings suggest possible mechanisms contributing to the effects of high-protein/low-carbohydrate diets to promote weight loss, and high-fat diets to promote weight gain.", "title": "Acyl and total ghrelin are suppressed strongly by ingested proteins, weakly by lipids, and biphasically by carbohydrates." }, { "docid": "14682243", "text": "BACKGROUND Results of the few cohort studies from countries with low incomes or middle incomes suggest a lower incidence of dementia than in high-income countries. We assessed incidence of dementia according to criteria from the 10/66 Dementia Research Group and Diagnostic and Statistical Manual of Mental Disorders (DSM) IV, the effect of dementia at baseline on mortality, and the independent effects of age, sex, socioeconomic position, and indicators of cognitive reserve. \n METHODS We did a population-based cohort study of all people aged 65 years and older living in urban sites in Cuba, the Dominican Republic, and Venezuela, and rural and urban sites in Peru, Mexico, and China, with ascertainment of incident 10/66 and DSM-IV dementia 3-5 years after cohort inception. We used questionnaires to obtain information about age in years, sex, educational level, literacy, occupational attainment, and number of household assets. We obtained information about mortality from all sites. For participants who had died, we interviewed a friend or relative to ascertain the likelihood that they had dementia before death. \n FINDINGS 12,887 participants were interviewed at baseline. 11,718 were free of dementia, of whom 8137 (69%) were reinterviewed, contributing 34,718 person-years of follow-up. Incidence for 10/66 dementia varied between 18·2 and 30·4 per 1000 person-years, and were 1·4-2·7 times higher than were those for DSM-IV dementia (9·9-15·7 per 1000 person-years). Mortality hazards were 1·56-5·69 times higher in individuals with dementia at baseline than in those who were dementia-free. Informant reports suggested a high incidence of dementia before death; overall incidence might be 4-19% higher if these data were included. 10/66 dementia incidence was independently associated with increased age (HR 1·67; 95% CI 1·56-1·79), female sex (0·72; 0·61-0·84), and low education (0·89; 0·81-0·97), but not with occupational attainment (1·04; 0·95-1·13). \n INTERPRETATION Our results provide supportive evidence for the cognitive reserve hypothesis, showing that in middle-income countries as in high-income countries, education, literacy, verbal fluency, and motor sequencing confer substantial protection against the onset of dementia. \n FUNDING Wellcome Trust Health Consequences of Population Change Programme, WHO, US Alzheimer's Association, FONACIT/ CDCH/ UCV.", "title": "Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve: a 10/66 Dementia Research Group population-based cohort study" }, { "docid": "9745001", "text": "OBJECTIVE To investigate the long term effect of radioactive iodine on thyroid function and size in patients with non-toxic multinodular goitre. \n DESIGN Consecutive patients with multinodular non-toxic goitre selected for radioactive iodine treatment and followed for a minimum of 12 months (median 48 months) after an intended dose of 3.7 MBq/g thyroid tissue corrected to a 100% uptake of iodine-131 in 24 hours. \n PATIENTS 69 patients with a growing multinodular non-toxic goitre causing local compression symptoms or cosmetic inconveniences. The treatment was chosen because of a high operative risk, previous thyroidectomy, or refusal to be operated on. \n MAIN OUTCOME MEASUREMENTS Standard thyroid function variables and ultrasonically determined thyroid volume before treatment as well as 1, 2, 3, 6, and 12 months after treatment and then once a year. \n RESULTS 56 patients were treated with a single dose of 131I, 12 with two doses, and one with four doses. In 45 patients treated with one dose and remaining euthyroid the median thyroid volume was reduced from 73 (interquartile range 50-106) ml to 29 (23-48) ml at 24 months in the 39 patients in whom this was measured during follow up. The median reduction was 40 (22-48) ml (60% reduction, p < 0.0001), half of which occurred within three months. Patients treated with two doses as well as those developing hypothyroidism and hyperthyroidism had a significant reduction in thyroid volume. Eleven patients developed hypothyroidism (cumulative five year risk 22%, 95% confidence interval 4.8% to 38.4%). Side effects were few: three cases of hyperthyroidism and two cases of radiation thyroiditis. Only one patient was dissatisfied with the result; she was referred for operation six months after treatment. \n CONCLUSIONS A substantial reduction in thyroid volume accompanied by a low incidence of hypothyroidism and few side effects makes the use of radioactive iodine an attractive alternative to surgery in selected cases of non-toxic multinodular goitre.", "title": "Radioiodine treatment of multinodular non-toxic goitre." }, { "docid": "6112053", "text": "Background: Selective serotonin reuptake inhibitors (SSRI) are widely used in medical practice. They have been associated with a broad range of symptoms, whose clinical meaning has not been fully appreciated. Methods: The PRISMA guidelines were followed to conduct a systematic review of the literature. Titles, abstracts, and topics were searched using the following terms: ‘withdrawal symptoms' OR ‘withdrawal syndrome' OR ‘discontinuation syndrome' OR ‘discontinuation symptoms', AND ‘SSRI' OR ‘serotonin' OR ‘antidepressant' OR ‘paroxetine' OR ‘fluoxetine' OR ‘sertraline' OR ‘fluvoxamine' OR ‘citalopram' OR ‘escitalopram'. The electronic research literature databases included CINAHL, the Cochrane Library, PubMed and Web-of-Science from inception of each database to July 2014. Results: There were 15 randomized controlled studies, 4 open trials, 4 retrospective investigations, and 38 case reports. The prevalence of the syndrome was variable, and its estimation was hindered by a lack of case identification in many studies. Symptoms typically occur within a few days from drug discontinuation and last a few weeks, also with gradual tapering. However, many variations are possible, including late onset and/or longer persistence of disturbances. Symptoms may be easily misidentified as signs of impending relapse. Conclusions: Clinicians need to add SSRI to the list of drugs potentially inducing withdrawal symptoms upon discontinuation, together with benzodiazepines, barbiturates, and other psychotropic drugs. The term ‘discontinuation syndrome' that is currently used minimizes the potential vulnerabilities induced by SSRI and should be replaced by ‘withdrawal syndrome'.", "title": "Withdrawal Symptoms after Selective Serotonin Reuptake Inhibitor Discontinuation: A Systematic Review" }, { "docid": "9160947", "text": "Interleukin 7 (IL-7) stimulates the proliferation of B cell progenitors, thymocytes, and mature T cells through an interaction with a high affinity receptor (IL-7R) belonging to the hematopoietin receptor superfamily. We have further addressed the role of IL-7 and its receptor during B and T cell development by generating mice genetically deficient in IL-7R. Mutant mice display a profound reduction in thymic and peripheral lymphoid cellularity. Analyses of lymphoid progenitor populations in IL-7R-deficient mice define precisely those developmental stages affected by the mutation and reveal a critical role for IL-7R during early lymphoid development. Significantly, these studies indicate that the phase of thymocyte expansion occurring before the onset of T cell receptor gene rearrangement is critically dependent upon, and mediated by the high affinity receptor for IL-7.", "title": "Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice" } ]
495
Having a main partner improves HIV outcomes.
[ { "docid": "17077004", "text": "OBJECTIVES To explore the association between a stable partnership and clinical outcome in HIV infected patients receiving highly active antiretroviral therapy (HAART). \n DESIGN Prospective cohort study of adults with HIV (Swiss HIV cohort study). \n SETTING Seven outpatient clinics throughout Switzerland. \n PARTICIPANTS The 3736 patients in the cohort who started HAART before 2002 (median age 36 years, 29% female, median follow up 3.6 years). \n MAIN OUTCOME MEASURES Time to AIDS or death (primary endpoint), death alone, increases in CD4 cell count of at least 50 and 100 above baseline, optimal viral suppression (a viral load below 400 copies/ml), and viral rebound. \n RESULTS During follow up 2985 (80%) participants reported a stable partnership on at least one occasion. When starting HAART, 52% (545/1042) of participants reported a stable partnership; after five years of follow up 46% (190/412) of participants reported a stable partnership. In an analysis stratified by previous antiretroviral therapy and clinical stage when starting HAART (US Centers for Disease Control and Prevention group A, B, or C), the adjusted hazard ratio for progression to AIDS or death was 0.79 (95% confidence interval 0.63 to 0.98) for participants with a stable partnership compared with those without. Adjusted hazards ratios for other endpoints were 0.59 (0.44 to 0.79) for progression to death, 1.15 (1.06 to 1.24) for an increase in CD4 cells of 100 counts/microl or more, and 1.06 (0.98 to 1.14) for optimal viral suppression. \n CONCLUSIONS A stable partnership is associated with a slower rate of progression to AIDS or death in HIV infected patients receiving HAART.", "title": "Stable partnership and progression to AIDS or death in HIV infected patients receiving highly active antiretroviral therapy: Swiss HIV cohort study." } ]
[ { "docid": "5835149", "text": "OBJECTIVE To determine the prevalence and risk factors for hepatitis C virus (HCV) infection in a cohort of homosexually active men, with particular reference to assessing sexual transmission. \n DESIGN Prevalence based on cross-sectional testing for HCV (c100 protein) antibody in a cohort using sera stored between 1984 and 1989, and assessment of risk factors using a case-control analysis based on questionnaire data from HCV positive and negative subjects. \n SUBJECTS/SETTING 1038 homosexually active men who were participating in a prospective study established to identify risk factors for AIDS. They had been recruited through private and public primary care and sexually transmissible disease (STD) services in central Sydney. \n MAIN OUTCOME MEASURES Prevalence of HCV antibody and its association with human immunodeficiency virus type 1 (HIV-1) infection and other STDs, number of sexual partners, sexual practices and recreational drug use. \n RESULTS Overall, 7.6% of subjects tested were seropositive for HCV antibody. In univariate analysis, HCV infection was significantly associated with injecting drug use (IDU) (OR = 8.18, p < 0.0001) and HIV infection (OR = 3.14, p < 0.0001) and with self reported history of syphilis (OR = 1.88, p = 0.016), anogenital herpes (OR = 1.93, p = 0.017), gonorrhoea (OR = 2.43, p = 0.009) and hepatitis B (OR = 1.92, p = 0.010). In case control analysis, similar sexual behaviours (partner numbers and practices) were reported by HCV positive and HCV negative subjects except that HCV negative subjects more frequently reported engaging than HCV positive subject in unprotected receptive anal intercourse without ejaculation (OR = 0.61, p = 0.034), unprotected insertive (OR = 0.59, p = 0.039) and receptive (OR = 0.56, p = 0.016) oro-anal intercourse (rimming) and insertive fisting (OR = 0.48, p = 0.034). In multiple logistic regression analyses, only HIV-1 infection (OR = 3.18, p < 0.0001) and IDU in the previous six months (OR = 7.24, p < 0.0001) remained significantly associated with the presence of HCV antibody. \n CONCLUSIONS IDU was the major behavioural risk factor for HCV infection. If sexual or another from of transmission did occur, it may have been facilitated by concurrent HIV-1 infection.", "title": "Hepatitis C virus infection in a large cohort of homosexually active men: independent associations with HIV-1 infection and injecting drug use but not sexual behaviour." }, { "docid": "5548081", "text": "CONTEXT Some studies have inferred that an epidemic of Kaposi sarcoma-associated herpesvirus (KSHV) infection in homosexual men in the United States occurred concurrently with that of human immunodeficiency virus (HIV), but there have been no direct measurements of KSHV prevalence at the beginning of the HIV epidemic. \n OBJECTIVES To determine the prevalence of KSHV infection in homosexual men in San Francisco, Calif, at the beginning of the HIV epidemic in 1978 and 1979 and to examine changes in prevalence of KSHV at time points from 1978 through 1996 in light of changes in sexual behavior. \n DESIGN, SETTING, AND PARTICIPANTS Analysis of a clinic-based sample (n = 398) derived from the San Francisco City Clinic Cohort (ages 18-66 years) (n = 2666 for analyses herein) and from population-based samples from the San Francisco Men's Health Study (MHS) (ages 25-54 years) (n = 825 and 252) and the San Francisco Young Men's Health Study (YMHS) (ages 18-29 years) (n = 428-976, and 557); behavioral studies were longitudinal and KSHV prevalence studies were cross-sectional. \n MAIN OUTCOME MEASURES Antibodies against KSHV and HIV; sexual behaviors. \n RESULTS The prevalence of KSHV infection in 1978 and 1979 was 26.5% of 235 (a random sample) overall (weighted for HIV infection) vs 6.9% (128/1842) for HIV in the San Francisco City Clinic Cohort sample. The prevalence of KSHV infection remained essentially unchanged between an MHS sample of 252 in 1984 and 1985 (29.6%) and a YMHS sample of 557 in 1995 and 1996 (26.4%), while HIV prevalence dropped from 49.5% of 825 in 1984 and 1985 (MHS) to 17.6% of 428 in 1992 and 1993 (YMHS). The proportion of men practicing unprotected receptive anal intercourse with 1 or more partners declined from 54% to 11% during the 1984 through 1993 period (MHS) with similar though slightly higher values in the YMHS in 1992 and 1993; whereas for unprotected oral intercourse it ranged between 60% and 90% in the 1984 through 1996 period (MHS and YMHS). \n CONCLUSIONS Infection with KSHV was already highly prevalent in homosexual men when the HIV epidemic began in San Francisco, and its prevalence has been maintained at a nearly constant level. Any declines in the incidence of Kaposi sarcoma do not appear to be caused by a decline in KSHV transmission.", "title": "Prevalence of Kaposi sarcoma-associated herpesvirus infection in homosexual men at beginning of and during the HIV epidemic." }, { "docid": "22227889", "text": "This study examines factors associated with caregiver burden in 82 HIV-positive (HIV+) and 162 HIV-negative (HIV-) partners of men with AIDS. We expected HIV+ caregivers to report more burden than HIV- caregivers because of the toll of their disease on their resources. HIV+ caregivers did report more burden and, compared with the HIV- caregivers, they were more religious or spiritual, had less income, and coped by using more positive reappraisal and cognitive escape-avoidance and by seeking social support. Comparisons of HIV+ caregivers with 61 HIV+ partners of healthy men indicated that most differences between HIV+ and HIV- caregivers were associated with HIV seropositivity rather than caregiving. However, of the variables associated with HIV seropositivity, only religiosity or spirituality contributed independently to burden in HIV+ caregivers, suggesting a relatively weak link between HIV seropositivity and caregiver burden. The model explained 62% of the variance in burden in HIV+ caregivers and 36% of the variance in HIV- caregivers.", "title": "Caregiver burden in HIV-positive and HIV-negative partners of men with AIDS." }, { "docid": "21479231", "text": "RATIONALE The outcome of fully intermittent thrice-weekly antituberculosis treatment of various durations in HIV-associated tuberculosis is unclear. \n OBJECTIVES To compare the efficacy of an intermittent 6-month regimen (Reg6M: 2EHRZ(3)/4HR(3) [ethambutol, 1,200 mg; isoniazid, 600 mg; rifampicin, 450 or 600 mg depending on body weight <60 or > or =60 kg; and pyrazinamide, 1,500 mg for 2 mo; followed by 4 mo of isoniazid and rifampicin at the same doses]) versus a 9-month regimen (Reg9M: 2EHRZ(3)/7HR(3)) in HIV/tuberculosis (TB). \n METHODS HIV-infected patients with newly diagnosed pulmonary or extrapulmonary TB were randomly assigned to Reg6M (n = 167) or Reg9M (n = 160) and monitored by determination of clinical, immunological, and bacteriological parameters for 36 months. Primary outcomes included favorable responses at the end of treatment and recurrences during follow-up, whereas the secondary outcome was death. Intent-to-treat and on-treatment analyses were performed. All patients were antiretroviral treatment-naive during treatment. \n MEASUREMENTS AND MAIN RESULTS Of the patients, 70% had culture-positive pulmonary TB; the median viral load was 155,000 copies/ml and the CD4(+) cell count was 160 cells/mm(3). Favorable response to antituberculosis treatment was similar by intent to treat (Reg6M, 83% and Reg9M, 76%; P = not significant). Bacteriological recurrences occurred significantly more often in Reg6M than in Reg9M (15 vs. 7%; P < 0.05) although overall recurrences were not significantly different (Reg6M, 19% vs. Reg9M, 13%). By 36 months, 36% of patients undergoing Reg6M and 35% undergoing Reg9M had died, with no significant difference between regimens. All 19 patients who failed treatment developed acquired rifamycin resistance (ARR), the main risk factor being baseline isoniazid resistance. \n CONCLUSIONS Among antiretroviral treatment-naive HIV-infected patients with TB, a 9-month regimen resulted in a similar outcome at the end of treatment but a significantly lower bacteriological recurrence rate compared with a 6-month thrice-weekly regimen. ARR was high with these intermittent regimens and neither mortality nor ARR was altered by lengthening TB treatment. Clinical Trials Registry Information: ID# NCT00376012 registered at www.clinicaltrials.gov.", "title": "Efficacy of a 6-month versus 9-month intermittent treatment regimen in HIV-infected patients with tuberculosis: a randomized clinical trial." }, { "docid": "8883846", "text": "The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses.", "title": "Antibody-Based HIV-1 Vaccines: Recent Developments and Future Directions" }, { "docid": "5850219", "text": "BACKGROUND Population-based estimates of prevalence, risk distribution, and intervention uptake inform delivery of control programmes for sexually transmitted infections (STIs). We undertook the third National Survey of Sexual Attitudes and Lifestyles (Natsal-3) after implementation of national sexual health strategies, and describe the epidemiology of four STIs in Britain (England, Scotland, and Wales) and the uptake of interventions. \n METHODS Between Sept 6, 2010 and Aug 31, 2012 , we did a probability sample survey of 15,162 women and men aged 16-74 years in Britain. Participants were interviewed with computer-assisted face-to-face and self-completion questionnaires. Urine from a sample of participants aged 16-44 years who reported at least one sexual partner over the lifetime was tested for the presence of Chlamydia trachomatis, type-specific human papillomavirus (HPV), Neisseria gonorrhoeae, and HIV antibody. We describe age-specific and sex-specific prevalences of infection and intervention uptake, in relation to demographic and behavioural factors, and explore changes since Natsal-1 (1990-91) and Natsal-2 (1999-2001). \n FINDINGS Of 8047 eligible participants invited to provide a urine sample, 4828 (60%) agreed. We excluded 278 samples, leaving 4550 (94%) participants with STI test results. Chlamydia prevalence was 1·5% (95% CI 1·1-2·0) in women and 1·1% (0·7-1·6) in men. Prevalences in individuals aged 16-24 years were 3·1% (2·2-4·3) in women and 2·3% (1·5-3·4) in men. Area-level deprivation and higher numbers of partners, especially without use of condoms, were risk factors. However, 60·4% (45·5-73·7) of chlamydia in women and 43·3% (25·9-62·5) in men was in individuals who had had one partner in the past year. Among sexually active 16-24-year-olds, 54·2% (51·4-56·9) of women and 34·6% (31·8-37·4) of men reported testing for chlamydia in the past year, with testing higher in those with more partners. High-risk HPV was detected in 15·9% (14·4-17·5) of women, similar to in Natsal-2. Coverage of HPV catch-up vaccination was 61·5% (58·2-64·7). Prevalence of HPV types 16 and 18 in women aged 18-20 years was lower in Natsal-3 than Natsal-2 (5·8% [3·9-8·6] vs 11·3% [6·8-18·2]; age-adjusted odds ratio 0·44 [0·21-0·94]). Gonorrhoea (<0·1% prevalence in women and men) and HIV (0·1% prevalence in women and 0·2% in men) were uncommon and restricted to participants with recognised high-risk factors. Since Natsal-2, substantial increases were noted in attendance at sexual health clinics (from 6·7% to 21·4% in women and from 7·7% to 19·6% in men) and HIV testing (from 8·7% to 27·6% in women and from 9·2% to 16·9% in men) in the past 5 years. \n INTERPRETATION STIs were distributed heterogeneously, requiring general and infection-specific interventions. Increases in testing and attendance at sexual health clinics, especially in people at highest risk, are encouraging. However, STIs persist both in individuals accessing and those not accessing services. Our findings provide empirical evidence to inform future sexual health interventions and services. \n FUNDING Grants from the UK Medical Research Council and the Wellcome Trust, with support from the Economic and Social Research Council and the Department of Health.", "title": "Prevalence, risk factors, and uptake of interventions for sexually transmitted infections in Britain: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal)" }, { "docid": "3413083", "text": "BACKGROUND Following widespread rollout of chlamydia testing to non-specialist and community settings in the UK, many individuals receive a chlamydia test without being offered comprehensive STI and HIV testing. We assess sexual behaviour among testers in different settings with a view to understanding their need for other STI diagnostic services. \n METHODS A probability sample survey of the British population undertaken 2010-2012 (the third National Survey of Sexual Attitudes and Lifestyles). We analysed weighted data on chlamydia testing (past year), including location of most recent test, and diagnoses (past 5 years) from individuals aged 16-44 years reporting at least one sexual partner in the past year (4992 women, 3406 men). \n RESULTS Of the 26.8% (95% CI 25.4% to 28.2%) of women and 16.7% (15.5% to 18.1%) of men reporting a chlamydia test in the past year, 28.4% of women and 41.2% of men had tested in genitourinary medicine (GUM), 41.1% and 20.7% of women and men respectively tested in general practice (GP) and the remainder tested in other non-GUM settings. Women tested outside GUM were more likely to be older, in a relationship and to live in rural areas. Individuals tested outside GUM reported fewer risk behaviours; nevertheless, 11.0% (8.6% to 14.1%) of women and 6.8% (3.9% to 11.6%) of men tested in GP and 13.2% (10.2% to 16.8%) and 9.6% (6.5% to 13.8%) of women and men tested in other non-GUM settings reported 'unsafe sex', defined as two or more partners and no condom use with any partner in the past year. Individuals treated for chlamydia outside GUM in the past 5 years were less likely to report an HIV test in that time frame (women: 54.5% (42.7% to 65.7%) vs 74.1% (65.9% to 80.9%) in GUM; men: 23.9% (12.7% to 40.5%) vs 65.8% (56.2% to 74.3%)). \n CONCLUSIONS Most chlamydia testing occurred in non-GUM settings, among populations reporting fewer risk behaviours. However, there is a need to provide pathways to comprehensive STI care to the sizeable minority at higher risk.", "title": "Patterns of chlamydia testing in different settings and implications for wider STI diagnosis and care: a probability sample survey of the British population" }, { "docid": "21216726", "text": "Little is known about the epidemiology of human herpesvirus 8 (HHV-8) infections among women. A cross-sectional study was conducted of HHV-8 infection among human immunodeficiency virus (HIV)-infected and high-risk HIV-uninfected women. Serological tests with noninduced (latent) and induced (lytic) HHV-8 antigens were used to detect infection among 2483 participants of a multisite cohort. Reactivity to latent antigen was present in 4.1% and to induced antigens in 12.0% of women. Seven of 8 women who reported Kaposi's sarcoma had HHV-8 antibodies. Among HIV-positive women, HHV-8 infection was associated with use of crack, cocaine, or heroin (76% vs. 65%; P<.001), past syphilis (29% vs. 20%; P<.001), an injection drug-using male sex partner (61% vs. 53%; P=.014), black race (P=.010), and enrollment site (P=.015). In multivariate analysis, HIV infection, older age, past syphilis, black race, and enrollment site were independently associated with HHV-8 infection. In this cohort of North American women, HHV-8 infection was associated with HIV infection, drug use, and risky sexual behavior.", "title": "Human herpesvirus 8 infection and Kaposi's sarcoma among human immunodeficiency virus-infected and -uninfected women." }, { "docid": "22414304", "text": "There is little information about treatment outcome in patients with smear-negative pulmonary tuberculosis (PTB) or extrapulmonary tuberculosis (EPTB) treated under routine programme conditions in subsaharan Africa. A prospective study was carried out to determine treatment outcome in an unselected cohort of TB patients admitted to Zomba General Hospital, Malawi. Eight hundred and twenty-seven adult TB patients (451 men and 376 women) were registered between 1 July and 31 December 1995. Standardized treatment outcomes of treatment completion, death, default, and transfer to another district were assessed in relation to type of TB, human immunodeficiency virus (HIV) serostatus, age and gender. Two hundred and fifty-four patients (31%) died by the end of treatment, half of the deaths occurring in the first month. Death rates were 19% among 386 patients with smear-positive PTB, 46% among 211 patients with smear-negative PTB, and 37% among 230 patients with EPTB; 77% of the patients were HIV seropositive. Among new patients, HIV-positive patients had higher death rates than HIV-negative patients (hazard ratio [HR] 2.5; 95% confidence interval [95% CI] 1.6-3.8). Smear-negative patients had the highest death rates (HR 3.9; 95% CI 2.7-5.5 compared to smear-positive patients), followed by EPTB patients (HR 2.6, 95% CI 1.8-3.7 compared to smear-positive patients). Death rates increased with age but were similar in men and women. Adult patients in Malawi with smear-negative PTB and EPTB have low treatment completion and high death rates, related to high levels of HIV infection. National TB control programmes in areas of high HIV prevalence should no longer ignore treatment outcomes in patients with smear-negative PTB or EPTB.", "title": "Treatment outcome of an unselected cohort of tuberculosis patients in relation to human immunodeficiency virus serostatus in Zomba Hospital, Malawi." }, { "docid": "6936141", "text": "The HIV-1 protein Nef enhances viral pathogenicity and accelerates disease progression in vivo. Nef potentiates T cell activation by an unknown mechanism, probably by optimizing the intracellular environment for HIV replication. Using a new T cell reporter system, we have found that Nef more than doubles the number of cells expressing the transcription factors NF-kappaB and NFAT after TCR stimulation. This Nef-induced priming of TCR signaling pathways occurred independently of calcium signaling and involved a very proximal step before protein kinase C activation. Engagement of the TCR by MHC-bound Ag triggers the formation of the immunological synapse by recruiting detergent-resistant membrane microdomains, termed lipid rafts. Approximately 5-10% of the total cellular pool of Nef is localized within lipid rafts. Using confocal and real-time microscopy, we found that Nef in lipid rafts was recruited into the immunological synapse within minutes after Ab engagement of the TCR/CD3 and CD28 receptors. This recruitment was dependent on the N-terminal domain of Nef encompassing its myristoylation. Nef did not increase the number of cell surface lipid rafts or immunological synapses. Recently, studies have shown a specific interaction of Nef with an active subpopulation of p21-activated kinase-2 found only in the lipid rafts. Thus, the corecruitment of Nef and key cellular partners (e.g., activated p21-activated kinase-2) into the immunological synapse may underlie the increased frequency of cells expressing transcriptionally active forms of NF-kappaB and NFAT and the resultant changes in T cell activation.", "title": "Nef is physically recruited into the immunological synapse and potentiates T cell activation early after TCR engagement." }, { "docid": "45461275", "text": "BACKGROUND PEPFAR, national governments, and other stakeholders are investing unprecedented resources to provide HIV treatment in developing countries. This study reports empirical data on costs and cost trends in a large sample of HIV treatment sites. \n DESIGN In 2006-2007, we conducted cost analyses at 43 PEPFAR-supported outpatient clinics providing free comprehensive HIV treatment in Botswana, Ethiopia, Nigeria, Uganda, and Vietnam. \n METHODS We collected data on HIV treatment costs over consecutive 6-month periods starting from scale-up of dedicated HIV treatment services at each site. The study included all patients receiving HIV treatment and care at study sites [62,512 antiretroviral therapy (ART) and 44,394 pre-ART patients]. Outcomes were costs per patient and total program costs, subdivided by major cost categories. \n RESULTS Median annual economic costs were US$ 202 (2009 USD) for pre-ART patients and US$ 880 for ART patients. Excluding antiretrovirals, per patient ART costs were US$ 298. Care for newly initiated ART patients cost 15-20% more than for established patients. Per patient costs dropped rapidly as sites matured, with per patient ART costs dropping 46.8% between first and second 6-month periods after the beginning of scale-up, and an additional 29.5% the following year. PEPFAR provided 79.4% of funding for service delivery, and national governments provided 15.2%. \n CONCLUSION Treatment costs vary widely between sites, and high early costs drop rapidly as sites mature. Treatment costs vary between countries and respond to changes in antiretroviral regimen costs and the package of services. Whereas cost reductions may allow near-term program growth, programs need to weigh the trade-off between improving services for current patients and expanding coverage to new patients.", "title": "The cost of providing comprehensive HIV treatment in PEPFAR-supported programs." }, { "docid": "20188586", "text": "BACKGROUND Real-time adherence monitoring is now possible through medication storage devices equipped with cellular technology. We assessed the effect of triggered cell phone reminders and counseling using objective adherence data on antiretroviral therapy (ART) adherence among Chinese HIV-infected patients. \n METHODS We provided ART patients in Nanning, China, with a medication device (Wisepill) to monitor their ART adherence electronically. After 3 months, we randomized subjects within optimal (≥95%) and suboptimal (<95%) adherence strata to intervention vs. control arms. In months 4-9, intervention subjects received individualized reminders triggered by late dose taking (no device opening by 30 minutes past dose time) and counseling using device-generated data. Controls received no reminders or data-informed counseling. We compared postintervention proportions achieving optimal adherence, mean adherence, and clinical outcomes. \n RESULTS Of 120 subjects enrolled, 116 (96.7%) completed the trial. Preintervention optimal adherence was similar in intervention vs. control arms (63.5% vs. 58.9%, respectively; P = 0.60). In the last intervention month, 87.3% vs. 51.8% achieved optimal adherence [risk ratio (RR): 1.7, 95% confidence interval (CI): 1.3 to 2.2] and mean adherence was 96.2% vs. 89.1% (P = 0.003). Among preintervention suboptimal adherers, 78.3% vs. 33.3% (RR: 2.4, CI: 1.2 to 4.5) achieved optimal adherence and mean adherence was 93.3% vs. 84.7% (P = 0.039). Proportions were 92.5% and 62.9% among optimal adherers, respectively (RR: 1.5, CI: 1.1 to 1.9) and mean adherence was 97.8% vs. 91.7% (P = 0.028). Postintervention clinical outcomes were not significant. \n CONCLUSIONS Real-time reminders significantly improved ART adherence in this population. This approach seems promising for managing HIV and other chronic diseases and warrants further investigation and adaptation in other settings.", "title": "Improving Adherence to Antiretroviral Therapy With Triggered Real-time Text Message Reminders: The China Adherence Through Technology Study." }, { "docid": "34139429", "text": "CONTEXT Although beta-blockers improve symptoms and survival in adults with heart failure, little is known about these medications in children and adolescents. \n OBJECTIVE To prospectively evaluate the effects of carvedilol in children and adolescents with symptomatic systemic ventricular systolic dysfunction. \n DESIGN, SETTING, AND PARTICIPANTS A multicenter, randomized, double-blind, placebo-controlled study of 161 children and adolescents with symptomatic systolic heart failure from 26 US centers. In addition to treatment with conventional heart failure medications, patients were assigned to receive placebo or carvedilol. Enrollment began in June 2000 and the last dose was given in May 2005 (each patient received medication for 8 months). \n INTERVENTIONS Patients were randomized in a 1:1:1 ratio to twice-daily dosing with placebo, low-dose carvedilol (0.2 mg/kg per dose if weight <62.5 kg or 12.5 mg per dose if weight > or =62.5 kg), or high-dose carvedilol (0.4 mg/kg per dose if weight <62.5 kg or 25 mg per dose if weight > or =62.5 kg) and were stratified according to whether each patient's systemic ventricle was a left ventricle or not. \n MAIN OUTCOME MEASURES The primary outcome was a composite measure of heart failure outcomes in patients receiving carvedilol (low- and high-dose combined) vs placebo. Secondary efficacy variables included individual components of this composite, echocardiographic measures, and plasma b-type natriuretic peptide levels. \n RESULTS There was no statistically significant difference between groups for the composite end point based on the percentage of patients who improved, worsened, or were unchanged. Among 54 patients assigned to placebo, 30 improved (56%), 16 worsened (30%), and 8 were unchanged (15%); among 103 patients assigned to carvedilol, 58 improved (56%), 25 worsened (24%), and 20 were unchanged (19%). The rates of worsening were lower than expected. The odds ratio for worsened outcome for patients in the combined carvedilol group vs the placebo group was 0.79 (95% CI, 0.36-1.59; P = .47). A prespecified subgroup analysis noted significant interaction between treatment and ventricular morphology (P = .02), indicating a possible differential effect of treatment between patients with a systemic left ventricle (beneficial trend) and those whose systemic ventricle was not a left ventricle (nonbeneficial trend). \n CONCLUSIONS These preliminary results suggest that carvedilol does not significantly improve clinical heart failure outcomes in children and adolescents with symptomatic systolic heart failure. However, given the lower than expected event rates, the trial may have been underpowered. There may be a differential effect of carvedilol in children and adolescents based on ventricular morphology. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00052026.", "title": "Carvedilol for children and adolescents with heart failure: a randomized controlled trial." }, { "docid": "44629665", "text": "Multiple health priorities, limited human resources and logistical capacities, as well as expensive vaccines with limited funds available increase the need for evidence-based decision making in immunization programs. The aim of the Supporting Independent Immunization and Vaccine Advisory Committees (SIVAC) Initiative is to support countries in the establishment or strengthening of National Immunization Technical Advisory Groups (NITAGs) that provide recommendations on immunization policies and programs (e.g., vaccination schedules, improvements of routine immunization coverage, new vaccine introduction, etc.). SIVAC, a program funded by the Bill & Melinda Gates Foundation, is based on a country-driven, step-by-step process that ensures its support is tailored to country needs and emphasizes NITAG sustainability. SIVAC supports countries by reinforcing the capacities of the NITAG scientific and technical secretariat and by providing specific support activities established in consultation with the country and other international partners. Additionally, SIVAC and partners have built an electronic platform, the NITAG Resource Center, that provides information, tools, and briefings to NITAGs and the immunization community.", "title": "The Supporting Independent Immunization and Vaccine Advisory Committees (SIVAC) initiative: a country-driven, multi-partner program to support evidence-based decision making." }, { "docid": "1642727", "text": "CONTEXT Many observational studies have shown that physical activity reduces the risk of cognitive decline; however, evidence from randomized trials is lacking. \n OBJECTIVE To determine whether physical activity reduces the rate of cognitive decline among older adults at risk. \n DESIGN AND SETTING Randomized controlled trial of a 24-week physical activity intervention conducted between 2004 and 2007 in metropolitan Perth, Western Australia. Assessors of cognitive function were blinded to group membership. \n PARTICIPANTS We recruited volunteers who reported memory problems but did not meet criteria for dementia. Three hundred eleven individuals aged 50 years or older were screened for eligibility, 89 were not eligible, and 52 refused to participate. A total of 170 participants were randomized and 138 participants completed the 18-month assessment. \n INTERVENTION Participants were randomly allocated to an education and usual care group or to a 24-week home-based program of physical activity. \n MAIN OUTCOME MEASURE Change in Alzheimer Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores (possible range, 0-70) over 18 months. \n RESULTS In an intent-to-treat analysis, participants in the intervention group improved 0.26 points (95% confidence interval, -0.89 to 0.54) and those in the usual care group deteriorated 1.04 points (95% confidence interval, 0.32 to 1.82) on the ADAS-Cog at the end of the intervention. The absolute difference of the outcome measure between the intervention and control groups was -1.3 points (95% confidence interval,-2.38 to -0.22) at the end of the intervention. At 18 months, participants in the intervention group improved 0.73 points (95% confidence interval, -1.27 to 0.03) on the ADAS-Cog, and those in the usual care group improved 0.04 points (95% confidence interval, -0.46 to 0.88). Word list delayed recall and Clinical Dementia Rating sum of boxes improved modestly as well, whereas word list total immediate recall, digit symbol coding, verbal fluency, Beck depression score, and Medical Outcomes 36-Item Short-Form physical and mental component summaries did not change significantly. \n CONCLUSIONS In this study of adults with subjective memory impairment, a 6-month program of physical activity provided a modest improvement in cognition over an 18-month follow-up period. \n TRIAL REGISTRATION anzctr.org.au Identifier: ACTRN12605000136606.", "title": "Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial." }, { "docid": "3662510", "text": "OBJECTIVE To estimate the lost investment of domestically educated doctors migrating from sub-Saharan African countries to Australia, Canada, the United Kingdom, and the United States. \n DESIGN Human capital cost analysis using publicly accessible data. \n SETTINGS Sub-Saharan African countries. \n PARTICIPANTS Nine sub-Saharan African countries with an HIV prevalence of 5% or greater or with more than one million people with HIV/AIDS and with at least one medical school (Ethiopia, Kenya, Malawi, Nigeria, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe), and data available on the number of doctors practising in destination countries. \n MAIN OUTCOME MEASURES The financial cost of educating a doctor (through primary, secondary, and medical school), assuming that migration occurred after graduation, using current country specific interest rates for savings converted to US dollars; cost according to the number of source country doctors currently working in the destination countries; and savings to destination countries of receiving trained doctors. \n RESULTS In the nine source countries the estimated government subsidised cost of a doctor's education ranged from $21,000 (£13,000; €15,000) in Uganda to $58,700 in South Africa. The overall estimated loss of returns from investment for all doctors currently working in the destination countries was $2.17bn (95% confidence interval 2.13bn to 2.21bn), with costs for each country ranging from $2.16m (1.55m to 2.78m) for Malawi to $1.41bn (1.38bn to 1.44bn) for South Africa. The ratio of the estimated compounded lost investment over gross domestic product showed that Zimbabwe and South Africa had the largest losses. The benefit to destination countries of recruiting trained doctors was largest for the United Kingdom ($2.7bn) and United States ($846m). \n CONCLUSIONS Among sub-Saharan African countries most affected by HIV/AIDS, lost investment from the emigration of doctors is considerable. Destination countries should consider investing in measurable training for source countries and strengthening of their health systems.", "title": "The financial cost of doctors emigrating from sub-Saharan Africa: human capital analysis" }, { "docid": "13899137", "text": "BACKGROUND Many mathematical models have investigated the impact of expanding access to antiretroviral therapy (ART) on new HIV infections. Comparing results and conclusions across models is challenging because models have addressed slightly different questions and have reported different outcome metrics. This study compares the predictions of several mathematical models simulating the same ART intervention programmes to determine the extent to which models agree about the epidemiological impact of expanded ART. \n METHODS AND FINDINGS Twelve independent mathematical models evaluated a set of standardised ART intervention scenarios in South Africa and reported a common set of outputs. Intervention scenarios systematically varied the CD4 count threshold for treatment eligibility, access to treatment, and programme retention. For a scenario in which 80% of HIV-infected individuals start treatment on average 1 y after their CD4 count drops below 350 cells/µl and 85% remain on treatment after 3 y, the models projected that HIV incidence would be 35% to 54% lower 8 y after the introduction of ART, compared to a counterfactual scenario in which there is no ART. More variation existed in the estimated long-term (38 y) reductions in incidence. The impact of optimistic interventions including immediate ART initiation varied widely across models, maintaining substantial uncertainty about the theoretical prospect for elimination of HIV from the population using ART alone over the next four decades. The number of person-years of ART per infection averted over 8 y ranged between 5.8 and 18.7. Considering the actual scale-up of ART in South Africa, seven models estimated that current HIV incidence is 17% to 32% lower than it would have been in the absence of ART. Differences between model assumptions about CD4 decline and HIV transmissibility over the course of infection explained only a modest amount of the variation in model results. \n CONCLUSIONS Mathematical models evaluating the impact of ART vary substantially in structure, complexity, and parameter choices, but all suggest that ART, at high levels of access and with high adherence, has the potential to substantially reduce new HIV infections. There was broad agreement regarding the short-term epidemiologic impact of ambitious treatment scale-up, but more variation in longer term projections and in the efficiency with which treatment can reduce new infections. Differences between model predictions could not be explained by differences in model structure or parameterization that were hypothesized to affect intervention impact.", "title": "HIV Treatment as Prevention: Systematic Comparison of Mathematical Models of the Potential Impact of Antiretroviral Therapy on HIV Incidence in South Africa" }, { "docid": "17973630", "text": "IMPORTANCE Sleep disturbances are most prevalent among older adults and often go untreated. Treatment options for sleep disturbances remain limited, and there is a need for community-accessible programs that can improve sleep. \n OBJECTIVE To determine the efficacy of a mind-body medicine intervention, called mindfulness meditation, to promote sleep quality in older adults with moderate sleep disturbances. \n DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial with 2 parallel groups conducted from January 1 to December 31, 2012, at a medical research center among an older adult sample (mean [SD] age, 66.3 [7.4] years) with moderate sleep disturbances (Pittsburgh Sleep Quality Index [PSQI] >5). \n INTERVENTIONS A standardized mindful awareness practices (MAPs) intervention (n = 24) or a sleep hygiene education (SHE) intervention (n = 25) was randomized to participants, who received a 6-week intervention (2 hours per week) with assigned homework. \n MAIN OUTCOMES AND MEASURES The study was powered to detect between-group differences in moderate sleep disturbance measured via the PSQI at postintervention. Secondary outcomes pertained to sleep-related daytime impairment and included validated measures of insomnia symptoms, depression, anxiety, stress, and fatigue, as well as inflammatory signaling via nuclear factor (NF)-κB. RESULTS Using an intent-to-treat analysis, participants in the MAPs group showed significant improvement relative to those in the SHE group on the PSQI. With the MAPs intervention, the mean (SD) PSQIs were 10.2 (1.7) at baseline and 7.4 (1.9) at postintervention. With the SHE intervention, the mean (SD) PSQIs were 10.2 (1.8) at baseline and 9.1 (2.0) at postintervention. The between-group mean difference was 1.8 (95% CI, 0.6-2.9), with an effect size of 0.89. The MAPs group showed significant improvement relative to the SHE group on secondary health outcomes of insomnia symptoms, depression symptoms, fatigue interference, and fatigue severity (P < .05 for all). Between-group differences were not observed for anxiety, stress, or NF-κB, although NF-κB concentrations significantly declined over time in both groups (P < .05). \n CONCLUSIONS AND RELEVANCE The use of a community-accessible MAPs intervention resulted in improvements in sleep quality at immediate postintervention, which was superior to a highly structured SHE intervention. Formalized mindfulness-based interventions have clinical importance by possibly serving to remediate sleep problems among older adults in the short term, and this effect appears to carry over into reducing sleep-related daytime impairment that has implications for quality of life. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01534338.", "title": "Mindfulness meditation and improvement in sleep quality and daytime impairment among older adults with sleep disturbances: a randomized clinical trial." }, { "docid": "1387104", "text": "CONTEXT Venous thrombosis is a common complication in patients with cancer, leading to additional morbidity and compromising quality of life. \n OBJECTIVE To identify individuals with cancer with an increased thrombotic risk, evaluating different tumor sites, the presence of distant metastases, and carrier status of prothrombotic mutations. \n DESIGN, SETTING, AND PATIENTS A large population-based, case-control (Multiple Environmental and Genetic Assessment [MEGA] of risk factors for venous thrombosis) study of 3220 consecutive patients aged 18 to 70 years, with a first deep venous thrombosis of the leg or pulmonary embolism, between March 1, 1999, and May 31, 2002, at 6 anticoagulation clinics in the Netherlands, and separate 2131 control participants (partners of the patients) reported via a questionnaire on acquired risk factors for venous thrombosis. Three months after discontinuation of the anticoagulant therapy, all patients and controls were interviewed, a blood sample was taken, and DNA was isolated to ascertain the factor V Leiden and prothrombin 20210A mutations. \n MAIN OUTCOME MEASURE Risk of venous thrombosis. \n RESULTS The overall risk of venous thrombosis was increased 7-fold in patients with a malignancy (odds ratio [OR], 6.7; 95% confidence interval [CI], 5.2-8.6) vs persons without malignancy. Patients with hematological malignancies had the highest risk of venous thrombosis, adjusted for age and sex (adjusted OR, 28.0; 95% CI, 4.0-199.7), followed by lung cancer and gastrointestinal cancer. The risk of venous thrombosis was highest in the first few months after the diagnosis of malignancy (adjusted OR, 53.5; 95% CI, 8.6-334.3). Patients with cancer with distant metastases had a higher risk vs patients without distant metastases (adjusted OR, 19.8; 95% CI, 2.6-149.1). Carriers of the factor V Leiden mutation who also had cancer had a 12-fold increased risk vs individuals without cancer and factor V Leiden (adjusted OR, 12.1; 95% CI, 1.6-88.1). Similar results were indirectly calculated for the prothrombin 20210A mutation in patients with cancer. \n CONCLUSIONS Patients with cancer have a highly increased risk of venous thrombosis especially in the first few months after diagnosis and in the presence of distant metastases. Carriers of the factor V Leiden and prothrombin 20210A mutations appear to have an even higher risk.", "title": "Malignancies, prothrombotic mutations, and the risk of venous thrombosis." } ]
498
Having a main partner worsens HIV outcomes.
[ { "docid": "17077004", "text": "OBJECTIVES To explore the association between a stable partnership and clinical outcome in HIV infected patients receiving highly active antiretroviral therapy (HAART). \n DESIGN Prospective cohort study of adults with HIV (Swiss HIV cohort study). \n SETTING Seven outpatient clinics throughout Switzerland. \n PARTICIPANTS The 3736 patients in the cohort who started HAART before 2002 (median age 36 years, 29% female, median follow up 3.6 years). \n MAIN OUTCOME MEASURES Time to AIDS or death (primary endpoint), death alone, increases in CD4 cell count of at least 50 and 100 above baseline, optimal viral suppression (a viral load below 400 copies/ml), and viral rebound. \n RESULTS During follow up 2985 (80%) participants reported a stable partnership on at least one occasion. When starting HAART, 52% (545/1042) of participants reported a stable partnership; after five years of follow up 46% (190/412) of participants reported a stable partnership. In an analysis stratified by previous antiretroviral therapy and clinical stage when starting HAART (US Centers for Disease Control and Prevention group A, B, or C), the adjusted hazard ratio for progression to AIDS or death was 0.79 (95% confidence interval 0.63 to 0.98) for participants with a stable partnership compared with those without. Adjusted hazards ratios for other endpoints were 0.59 (0.44 to 0.79) for progression to death, 1.15 (1.06 to 1.24) for an increase in CD4 cells of 100 counts/microl or more, and 1.06 (0.98 to 1.14) for optimal viral suppression. \n CONCLUSIONS A stable partnership is associated with a slower rate of progression to AIDS or death in HIV infected patients receiving HAART.", "title": "Stable partnership and progression to AIDS or death in HIV infected patients receiving highly active antiretroviral therapy: Swiss HIV cohort study." } ]
[ { "docid": "5835149", "text": "OBJECTIVE To determine the prevalence and risk factors for hepatitis C virus (HCV) infection in a cohort of homosexually active men, with particular reference to assessing sexual transmission. \n DESIGN Prevalence based on cross-sectional testing for HCV (c100 protein) antibody in a cohort using sera stored between 1984 and 1989, and assessment of risk factors using a case-control analysis based on questionnaire data from HCV positive and negative subjects. \n SUBJECTS/SETTING 1038 homosexually active men who were participating in a prospective study established to identify risk factors for AIDS. They had been recruited through private and public primary care and sexually transmissible disease (STD) services in central Sydney. \n MAIN OUTCOME MEASURES Prevalence of HCV antibody and its association with human immunodeficiency virus type 1 (HIV-1) infection and other STDs, number of sexual partners, sexual practices and recreational drug use. \n RESULTS Overall, 7.6% of subjects tested were seropositive for HCV antibody. In univariate analysis, HCV infection was significantly associated with injecting drug use (IDU) (OR = 8.18, p < 0.0001) and HIV infection (OR = 3.14, p < 0.0001) and with self reported history of syphilis (OR = 1.88, p = 0.016), anogenital herpes (OR = 1.93, p = 0.017), gonorrhoea (OR = 2.43, p = 0.009) and hepatitis B (OR = 1.92, p = 0.010). In case control analysis, similar sexual behaviours (partner numbers and practices) were reported by HCV positive and HCV negative subjects except that HCV negative subjects more frequently reported engaging than HCV positive subject in unprotected receptive anal intercourse without ejaculation (OR = 0.61, p = 0.034), unprotected insertive (OR = 0.59, p = 0.039) and receptive (OR = 0.56, p = 0.016) oro-anal intercourse (rimming) and insertive fisting (OR = 0.48, p = 0.034). In multiple logistic regression analyses, only HIV-1 infection (OR = 3.18, p < 0.0001) and IDU in the previous six months (OR = 7.24, p < 0.0001) remained significantly associated with the presence of HCV antibody. \n CONCLUSIONS IDU was the major behavioural risk factor for HCV infection. If sexual or another from of transmission did occur, it may have been facilitated by concurrent HIV-1 infection.", "title": "Hepatitis C virus infection in a large cohort of homosexually active men: independent associations with HIV-1 infection and injecting drug use but not sexual behaviour." }, { "docid": "5548081", "text": "CONTEXT Some studies have inferred that an epidemic of Kaposi sarcoma-associated herpesvirus (KSHV) infection in homosexual men in the United States occurred concurrently with that of human immunodeficiency virus (HIV), but there have been no direct measurements of KSHV prevalence at the beginning of the HIV epidemic. \n OBJECTIVES To determine the prevalence of KSHV infection in homosexual men in San Francisco, Calif, at the beginning of the HIV epidemic in 1978 and 1979 and to examine changes in prevalence of KSHV at time points from 1978 through 1996 in light of changes in sexual behavior. \n DESIGN, SETTING, AND PARTICIPANTS Analysis of a clinic-based sample (n = 398) derived from the San Francisco City Clinic Cohort (ages 18-66 years) (n = 2666 for analyses herein) and from population-based samples from the San Francisco Men's Health Study (MHS) (ages 25-54 years) (n = 825 and 252) and the San Francisco Young Men's Health Study (YMHS) (ages 18-29 years) (n = 428-976, and 557); behavioral studies were longitudinal and KSHV prevalence studies were cross-sectional. \n MAIN OUTCOME MEASURES Antibodies against KSHV and HIV; sexual behaviors. \n RESULTS The prevalence of KSHV infection in 1978 and 1979 was 26.5% of 235 (a random sample) overall (weighted for HIV infection) vs 6.9% (128/1842) for HIV in the San Francisco City Clinic Cohort sample. The prevalence of KSHV infection remained essentially unchanged between an MHS sample of 252 in 1984 and 1985 (29.6%) and a YMHS sample of 557 in 1995 and 1996 (26.4%), while HIV prevalence dropped from 49.5% of 825 in 1984 and 1985 (MHS) to 17.6% of 428 in 1992 and 1993 (YMHS). The proportion of men practicing unprotected receptive anal intercourse with 1 or more partners declined from 54% to 11% during the 1984 through 1993 period (MHS) with similar though slightly higher values in the YMHS in 1992 and 1993; whereas for unprotected oral intercourse it ranged between 60% and 90% in the 1984 through 1996 period (MHS and YMHS). \n CONCLUSIONS Infection with KSHV was already highly prevalent in homosexual men when the HIV epidemic began in San Francisco, and its prevalence has been maintained at a nearly constant level. Any declines in the incidence of Kaposi sarcoma do not appear to be caused by a decline in KSHV transmission.", "title": "Prevalence of Kaposi sarcoma-associated herpesvirus infection in homosexual men at beginning of and during the HIV epidemic." }, { "docid": "34139429", "text": "CONTEXT Although beta-blockers improve symptoms and survival in adults with heart failure, little is known about these medications in children and adolescents. \n OBJECTIVE To prospectively evaluate the effects of carvedilol in children and adolescents with symptomatic systemic ventricular systolic dysfunction. \n DESIGN, SETTING, AND PARTICIPANTS A multicenter, randomized, double-blind, placebo-controlled study of 161 children and adolescents with symptomatic systolic heart failure from 26 US centers. In addition to treatment with conventional heart failure medications, patients were assigned to receive placebo or carvedilol. Enrollment began in June 2000 and the last dose was given in May 2005 (each patient received medication for 8 months). \n INTERVENTIONS Patients were randomized in a 1:1:1 ratio to twice-daily dosing with placebo, low-dose carvedilol (0.2 mg/kg per dose if weight <62.5 kg or 12.5 mg per dose if weight > or =62.5 kg), or high-dose carvedilol (0.4 mg/kg per dose if weight <62.5 kg or 25 mg per dose if weight > or =62.5 kg) and were stratified according to whether each patient's systemic ventricle was a left ventricle or not. \n MAIN OUTCOME MEASURES The primary outcome was a composite measure of heart failure outcomes in patients receiving carvedilol (low- and high-dose combined) vs placebo. Secondary efficacy variables included individual components of this composite, echocardiographic measures, and plasma b-type natriuretic peptide levels. \n RESULTS There was no statistically significant difference between groups for the composite end point based on the percentage of patients who improved, worsened, or were unchanged. Among 54 patients assigned to placebo, 30 improved (56%), 16 worsened (30%), and 8 were unchanged (15%); among 103 patients assigned to carvedilol, 58 improved (56%), 25 worsened (24%), and 20 were unchanged (19%). The rates of worsening were lower than expected. The odds ratio for worsened outcome for patients in the combined carvedilol group vs the placebo group was 0.79 (95% CI, 0.36-1.59; P = .47). A prespecified subgroup analysis noted significant interaction between treatment and ventricular morphology (P = .02), indicating a possible differential effect of treatment between patients with a systemic left ventricle (beneficial trend) and those whose systemic ventricle was not a left ventricle (nonbeneficial trend). \n CONCLUSIONS These preliminary results suggest that carvedilol does not significantly improve clinical heart failure outcomes in children and adolescents with symptomatic systolic heart failure. However, given the lower than expected event rates, the trial may have been underpowered. There may be a differential effect of carvedilol in children and adolescents based on ventricular morphology. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00052026.", "title": "Carvedilol for children and adolescents with heart failure: a randomized controlled trial." }, { "docid": "22227889", "text": "This study examines factors associated with caregiver burden in 82 HIV-positive (HIV+) and 162 HIV-negative (HIV-) partners of men with AIDS. We expected HIV+ caregivers to report more burden than HIV- caregivers because of the toll of their disease on their resources. HIV+ caregivers did report more burden and, compared with the HIV- caregivers, they were more religious or spiritual, had less income, and coped by using more positive reappraisal and cognitive escape-avoidance and by seeking social support. Comparisons of HIV+ caregivers with 61 HIV+ partners of healthy men indicated that most differences between HIV+ and HIV- caregivers were associated with HIV seropositivity rather than caregiving. However, of the variables associated with HIV seropositivity, only religiosity or spirituality contributed independently to burden in HIV+ caregivers, suggesting a relatively weak link between HIV seropositivity and caregiver burden. The model explained 62% of the variance in burden in HIV+ caregivers and 36% of the variance in HIV- caregivers.", "title": "Caregiver burden in HIV-positive and HIV-negative partners of men with AIDS." }, { "docid": "21479231", "text": "RATIONALE The outcome of fully intermittent thrice-weekly antituberculosis treatment of various durations in HIV-associated tuberculosis is unclear. \n OBJECTIVES To compare the efficacy of an intermittent 6-month regimen (Reg6M: 2EHRZ(3)/4HR(3) [ethambutol, 1,200 mg; isoniazid, 600 mg; rifampicin, 450 or 600 mg depending on body weight <60 or > or =60 kg; and pyrazinamide, 1,500 mg for 2 mo; followed by 4 mo of isoniazid and rifampicin at the same doses]) versus a 9-month regimen (Reg9M: 2EHRZ(3)/7HR(3)) in HIV/tuberculosis (TB). \n METHODS HIV-infected patients with newly diagnosed pulmonary or extrapulmonary TB were randomly assigned to Reg6M (n = 167) or Reg9M (n = 160) and monitored by determination of clinical, immunological, and bacteriological parameters for 36 months. Primary outcomes included favorable responses at the end of treatment and recurrences during follow-up, whereas the secondary outcome was death. Intent-to-treat and on-treatment analyses were performed. All patients were antiretroviral treatment-naive during treatment. \n MEASUREMENTS AND MAIN RESULTS Of the patients, 70% had culture-positive pulmonary TB; the median viral load was 155,000 copies/ml and the CD4(+) cell count was 160 cells/mm(3). Favorable response to antituberculosis treatment was similar by intent to treat (Reg6M, 83% and Reg9M, 76%; P = not significant). Bacteriological recurrences occurred significantly more often in Reg6M than in Reg9M (15 vs. 7%; P < 0.05) although overall recurrences were not significantly different (Reg6M, 19% vs. Reg9M, 13%). By 36 months, 36% of patients undergoing Reg6M and 35% undergoing Reg9M had died, with no significant difference between regimens. All 19 patients who failed treatment developed acquired rifamycin resistance (ARR), the main risk factor being baseline isoniazid resistance. \n CONCLUSIONS Among antiretroviral treatment-naive HIV-infected patients with TB, a 9-month regimen resulted in a similar outcome at the end of treatment but a significantly lower bacteriological recurrence rate compared with a 6-month thrice-weekly regimen. ARR was high with these intermittent regimens and neither mortality nor ARR was altered by lengthening TB treatment. Clinical Trials Registry Information: ID# NCT00376012 registered at www.clinicaltrials.gov.", "title": "Efficacy of a 6-month versus 9-month intermittent treatment regimen in HIV-infected patients with tuberculosis: a randomized clinical trial." }, { "docid": "13906581", "text": "Background Extensive debate exists in the healthcare community over whether outcomes of medical care at teaching hospitals and other healthcare units are better or worse than those at the respective nonteaching ones. Thus, our goal was to systematically evaluate the evidence pertaining to this question. Methods and Findings We reviewed all studies that compared teaching versus nonteaching healthcare structures for mortality or any other patient outcome, regardless of health condition. Studies were retrieved from PubMed, contact with experts, and literature cross-referencing. Data were extracted on setting, patients, data sources, author affiliations, definition of compared groups, types of diagnoses considered, adjusting covariates, and estimates of effect for mortality and for each other outcome. Overall, 132 eligible studies were identified, including 93 on mortality and 61 on other eligible outcomes (22 addressed both). Synthesis of the available adjusted estimates on mortality yielded a summary relative risk of 0.96 (95% confidence interval [CI], 0.93–1.00) for teaching versus nonteaching healthcare structures and 1.04 (95% CI, 0.99–1.10) for minor teaching versus nonteaching ones. There was considerable heterogeneity between studies (I2 = 72% for the main analysis). Results were similar in studies using clinical and those using administrative databases. No differences were seen in the 14 studies fully adjusting for volume/experience, severity, and comorbidity (relative risk 1.01). Smaller studies did not differ in their results from larger studies. Differences were seen for some diagnoses (e.g., significantly better survival for breast cancer and cerebrovascular accidents in teaching hospitals and significantly better survival from cholecystectomy in nonteaching hospitals), but these were small in magnitude. Other outcomes were diverse, but typically teaching healthcare structures did not do better than nonteaching ones. Conclusions The available data are limited by their nonrandomized design, but overall they do not suggest that a healthcare facility's teaching status on its own markedly improves or worsens patient outcomes. Differences for specific diseases cannot be excluded, but are likely to be small.", "title": "Patient Outcomes with Teaching Versus Nonteaching Healthcare: A Systematic Review" }, { "docid": "31562330", "text": "BACKGROUND The increased caloric requirements of HIV-positive individuals, undesirable side effects of treatment that may be worsened by malnutrition (but alleviated by nutritional support), and associated declines in adherence and possible increased drug resistance are all justifications for developing better interventions to strengthen the nutrition security of individuals receiving antiretroviral treatment. \n OBJECTIVE To highlight key benefits and challenges relating to interventions aimed at strengthening the nutrition security of people living with HIV who are receiving antiretroviral treatment. \n METHODS Qualitative research was undertaken on a short-term nutrition intervention linked to the provision of free antiretroviral treatment for people living with HIV in western Kenya in late 2005 and early 2006. \n RESULTS Patients enrolled in the food program while on treatment regimens self-reported greater adherence to their medication, fewer side effects, and a greater ability to satisfy increased appetite. Most clients self-reported weight gain, recovery of physical strength, and the resumption of labor activities while enrolled in dual (food supplementation and treatment) programs. Such improvements were seen to catalyze increased support from family and community. \n CONCLUSIONS These findings provide further empirical support to calls for a more holistic and comprehensive response to the coexistence of AIDS epidemics with chronic nutrition insecurity. Future work is needed to clarify ways of bridging the gap between short-term nutritional support to individuals and longer-term livelihood security programming for communities affected by AIDS. Such interdisciplinary research will need to be matched by intersectoral action on the part of the agriculture and health sectors in such environments.", "title": "Integrating nutrition security with treatment of people living with HIV: lessons from Kenya." }, { "docid": "5850219", "text": "BACKGROUND Population-based estimates of prevalence, risk distribution, and intervention uptake inform delivery of control programmes for sexually transmitted infections (STIs). We undertook the third National Survey of Sexual Attitudes and Lifestyles (Natsal-3) after implementation of national sexual health strategies, and describe the epidemiology of four STIs in Britain (England, Scotland, and Wales) and the uptake of interventions. \n METHODS Between Sept 6, 2010 and Aug 31, 2012 , we did a probability sample survey of 15,162 women and men aged 16-74 years in Britain. Participants were interviewed with computer-assisted face-to-face and self-completion questionnaires. Urine from a sample of participants aged 16-44 years who reported at least one sexual partner over the lifetime was tested for the presence of Chlamydia trachomatis, type-specific human papillomavirus (HPV), Neisseria gonorrhoeae, and HIV antibody. We describe age-specific and sex-specific prevalences of infection and intervention uptake, in relation to demographic and behavioural factors, and explore changes since Natsal-1 (1990-91) and Natsal-2 (1999-2001). \n FINDINGS Of 8047 eligible participants invited to provide a urine sample, 4828 (60%) agreed. We excluded 278 samples, leaving 4550 (94%) participants with STI test results. Chlamydia prevalence was 1·5% (95% CI 1·1-2·0) in women and 1·1% (0·7-1·6) in men. Prevalences in individuals aged 16-24 years were 3·1% (2·2-4·3) in women and 2·3% (1·5-3·4) in men. Area-level deprivation and higher numbers of partners, especially without use of condoms, were risk factors. However, 60·4% (45·5-73·7) of chlamydia in women and 43·3% (25·9-62·5) in men was in individuals who had had one partner in the past year. Among sexually active 16-24-year-olds, 54·2% (51·4-56·9) of women and 34·6% (31·8-37·4) of men reported testing for chlamydia in the past year, with testing higher in those with more partners. High-risk HPV was detected in 15·9% (14·4-17·5) of women, similar to in Natsal-2. Coverage of HPV catch-up vaccination was 61·5% (58·2-64·7). Prevalence of HPV types 16 and 18 in women aged 18-20 years was lower in Natsal-3 than Natsal-2 (5·8% [3·9-8·6] vs 11·3% [6·8-18·2]; age-adjusted odds ratio 0·44 [0·21-0·94]). Gonorrhoea (<0·1% prevalence in women and men) and HIV (0·1% prevalence in women and 0·2% in men) were uncommon and restricted to participants with recognised high-risk factors. Since Natsal-2, substantial increases were noted in attendance at sexual health clinics (from 6·7% to 21·4% in women and from 7·7% to 19·6% in men) and HIV testing (from 8·7% to 27·6% in women and from 9·2% to 16·9% in men) in the past 5 years. \n INTERPRETATION STIs were distributed heterogeneously, requiring general and infection-specific interventions. Increases in testing and attendance at sexual health clinics, especially in people at highest risk, are encouraging. However, STIs persist both in individuals accessing and those not accessing services. Our findings provide empirical evidence to inform future sexual health interventions and services. \n FUNDING Grants from the UK Medical Research Council and the Wellcome Trust, with support from the Economic and Social Research Council and the Department of Health.", "title": "Prevalence, risk factors, and uptake of interventions for sexually transmitted infections in Britain: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal)" }, { "docid": "3413083", "text": "BACKGROUND Following widespread rollout of chlamydia testing to non-specialist and community settings in the UK, many individuals receive a chlamydia test without being offered comprehensive STI and HIV testing. We assess sexual behaviour among testers in different settings with a view to understanding their need for other STI diagnostic services. \n METHODS A probability sample survey of the British population undertaken 2010-2012 (the third National Survey of Sexual Attitudes and Lifestyles). We analysed weighted data on chlamydia testing (past year), including location of most recent test, and diagnoses (past 5 years) from individuals aged 16-44 years reporting at least one sexual partner in the past year (4992 women, 3406 men). \n RESULTS Of the 26.8% (95% CI 25.4% to 28.2%) of women and 16.7% (15.5% to 18.1%) of men reporting a chlamydia test in the past year, 28.4% of women and 41.2% of men had tested in genitourinary medicine (GUM), 41.1% and 20.7% of women and men respectively tested in general practice (GP) and the remainder tested in other non-GUM settings. Women tested outside GUM were more likely to be older, in a relationship and to live in rural areas. Individuals tested outside GUM reported fewer risk behaviours; nevertheless, 11.0% (8.6% to 14.1%) of women and 6.8% (3.9% to 11.6%) of men tested in GP and 13.2% (10.2% to 16.8%) and 9.6% (6.5% to 13.8%) of women and men tested in other non-GUM settings reported 'unsafe sex', defined as two or more partners and no condom use with any partner in the past year. Individuals treated for chlamydia outside GUM in the past 5 years were less likely to report an HIV test in that time frame (women: 54.5% (42.7% to 65.7%) vs 74.1% (65.9% to 80.9%) in GUM; men: 23.9% (12.7% to 40.5%) vs 65.8% (56.2% to 74.3%)). \n CONCLUSIONS Most chlamydia testing occurred in non-GUM settings, among populations reporting fewer risk behaviours. However, there is a need to provide pathways to comprehensive STI care to the sizeable minority at higher risk.", "title": "Patterns of chlamydia testing in different settings and implications for wider STI diagnosis and care: a probability sample survey of the British population" }, { "docid": "21216726", "text": "Little is known about the epidemiology of human herpesvirus 8 (HHV-8) infections among women. A cross-sectional study was conducted of HHV-8 infection among human immunodeficiency virus (HIV)-infected and high-risk HIV-uninfected women. Serological tests with noninduced (latent) and induced (lytic) HHV-8 antigens were used to detect infection among 2483 participants of a multisite cohort. Reactivity to latent antigen was present in 4.1% and to induced antigens in 12.0% of women. Seven of 8 women who reported Kaposi's sarcoma had HHV-8 antibodies. Among HIV-positive women, HHV-8 infection was associated with use of crack, cocaine, or heroin (76% vs. 65%; P<.001), past syphilis (29% vs. 20%; P<.001), an injection drug-using male sex partner (61% vs. 53%; P=.014), black race (P=.010), and enrollment site (P=.015). In multivariate analysis, HIV infection, older age, past syphilis, black race, and enrollment site were independently associated with HHV-8 infection. In this cohort of North American women, HHV-8 infection was associated with HIV infection, drug use, and risky sexual behavior.", "title": "Human herpesvirus 8 infection and Kaposi's sarcoma among human immunodeficiency virus-infected and -uninfected women." }, { "docid": "22414304", "text": "There is little information about treatment outcome in patients with smear-negative pulmonary tuberculosis (PTB) or extrapulmonary tuberculosis (EPTB) treated under routine programme conditions in subsaharan Africa. A prospective study was carried out to determine treatment outcome in an unselected cohort of TB patients admitted to Zomba General Hospital, Malawi. Eight hundred and twenty-seven adult TB patients (451 men and 376 women) were registered between 1 July and 31 December 1995. Standardized treatment outcomes of treatment completion, death, default, and transfer to another district were assessed in relation to type of TB, human immunodeficiency virus (HIV) serostatus, age and gender. Two hundred and fifty-four patients (31%) died by the end of treatment, half of the deaths occurring in the first month. Death rates were 19% among 386 patients with smear-positive PTB, 46% among 211 patients with smear-negative PTB, and 37% among 230 patients with EPTB; 77% of the patients were HIV seropositive. Among new patients, HIV-positive patients had higher death rates than HIV-negative patients (hazard ratio [HR] 2.5; 95% confidence interval [95% CI] 1.6-3.8). Smear-negative patients had the highest death rates (HR 3.9; 95% CI 2.7-5.5 compared to smear-positive patients), followed by EPTB patients (HR 2.6, 95% CI 1.8-3.7 compared to smear-positive patients). Death rates increased with age but were similar in men and women. Adult patients in Malawi with smear-negative PTB and EPTB have low treatment completion and high death rates, related to high levels of HIV infection. National TB control programmes in areas of high HIV prevalence should no longer ignore treatment outcomes in patients with smear-negative PTB or EPTB.", "title": "Treatment outcome of an unselected cohort of tuberculosis patients in relation to human immunodeficiency virus serostatus in Zomba Hospital, Malawi." }, { "docid": "6936141", "text": "The HIV-1 protein Nef enhances viral pathogenicity and accelerates disease progression in vivo. Nef potentiates T cell activation by an unknown mechanism, probably by optimizing the intracellular environment for HIV replication. Using a new T cell reporter system, we have found that Nef more than doubles the number of cells expressing the transcription factors NF-kappaB and NFAT after TCR stimulation. This Nef-induced priming of TCR signaling pathways occurred independently of calcium signaling and involved a very proximal step before protein kinase C activation. Engagement of the TCR by MHC-bound Ag triggers the formation of the immunological synapse by recruiting detergent-resistant membrane microdomains, termed lipid rafts. Approximately 5-10% of the total cellular pool of Nef is localized within lipid rafts. Using confocal and real-time microscopy, we found that Nef in lipid rafts was recruited into the immunological synapse within minutes after Ab engagement of the TCR/CD3 and CD28 receptors. This recruitment was dependent on the N-terminal domain of Nef encompassing its myristoylation. Nef did not increase the number of cell surface lipid rafts or immunological synapses. Recently, studies have shown a specific interaction of Nef with an active subpopulation of p21-activated kinase-2 found only in the lipid rafts. Thus, the corecruitment of Nef and key cellular partners (e.g., activated p21-activated kinase-2) into the immunological synapse may underlie the increased frequency of cells expressing transcriptionally active forms of NF-kappaB and NFAT and the resultant changes in T cell activation.", "title": "Nef is physically recruited into the immunological synapse and potentiates T cell activation early after TCR engagement." }, { "docid": "3662510", "text": "OBJECTIVE To estimate the lost investment of domestically educated doctors migrating from sub-Saharan African countries to Australia, Canada, the United Kingdom, and the United States. \n DESIGN Human capital cost analysis using publicly accessible data. \n SETTINGS Sub-Saharan African countries. \n PARTICIPANTS Nine sub-Saharan African countries with an HIV prevalence of 5% or greater or with more than one million people with HIV/AIDS and with at least one medical school (Ethiopia, Kenya, Malawi, Nigeria, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe), and data available on the number of doctors practising in destination countries. \n MAIN OUTCOME MEASURES The financial cost of educating a doctor (through primary, secondary, and medical school), assuming that migration occurred after graduation, using current country specific interest rates for savings converted to US dollars; cost according to the number of source country doctors currently working in the destination countries; and savings to destination countries of receiving trained doctors. \n RESULTS In the nine source countries the estimated government subsidised cost of a doctor's education ranged from $21,000 (£13,000; €15,000) in Uganda to $58,700 in South Africa. The overall estimated loss of returns from investment for all doctors currently working in the destination countries was $2.17bn (95% confidence interval 2.13bn to 2.21bn), with costs for each country ranging from $2.16m (1.55m to 2.78m) for Malawi to $1.41bn (1.38bn to 1.44bn) for South Africa. The ratio of the estimated compounded lost investment over gross domestic product showed that Zimbabwe and South Africa had the largest losses. The benefit to destination countries of recruiting trained doctors was largest for the United Kingdom ($2.7bn) and United States ($846m). \n CONCLUSIONS Among sub-Saharan African countries most affected by HIV/AIDS, lost investment from the emigration of doctors is considerable. Destination countries should consider investing in measurable training for source countries and strengthening of their health systems.", "title": "The financial cost of doctors emigrating from sub-Saharan Africa: human capital analysis" }, { "docid": "8883846", "text": "The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses.", "title": "Antibody-Based HIV-1 Vaccines: Recent Developments and Future Directions" }, { "docid": "13899137", "text": "BACKGROUND Many mathematical models have investigated the impact of expanding access to antiretroviral therapy (ART) on new HIV infections. Comparing results and conclusions across models is challenging because models have addressed slightly different questions and have reported different outcome metrics. This study compares the predictions of several mathematical models simulating the same ART intervention programmes to determine the extent to which models agree about the epidemiological impact of expanded ART. \n METHODS AND FINDINGS Twelve independent mathematical models evaluated a set of standardised ART intervention scenarios in South Africa and reported a common set of outputs. Intervention scenarios systematically varied the CD4 count threshold for treatment eligibility, access to treatment, and programme retention. For a scenario in which 80% of HIV-infected individuals start treatment on average 1 y after their CD4 count drops below 350 cells/µl and 85% remain on treatment after 3 y, the models projected that HIV incidence would be 35% to 54% lower 8 y after the introduction of ART, compared to a counterfactual scenario in which there is no ART. More variation existed in the estimated long-term (38 y) reductions in incidence. The impact of optimistic interventions including immediate ART initiation varied widely across models, maintaining substantial uncertainty about the theoretical prospect for elimination of HIV from the population using ART alone over the next four decades. The number of person-years of ART per infection averted over 8 y ranged between 5.8 and 18.7. Considering the actual scale-up of ART in South Africa, seven models estimated that current HIV incidence is 17% to 32% lower than it would have been in the absence of ART. Differences between model assumptions about CD4 decline and HIV transmissibility over the course of infection explained only a modest amount of the variation in model results. \n CONCLUSIONS Mathematical models evaluating the impact of ART vary substantially in structure, complexity, and parameter choices, but all suggest that ART, at high levels of access and with high adherence, has the potential to substantially reduce new HIV infections. There was broad agreement regarding the short-term epidemiologic impact of ambitious treatment scale-up, but more variation in longer term projections and in the efficiency with which treatment can reduce new infections. Differences between model predictions could not be explained by differences in model structure or parameterization that were hypothesized to affect intervention impact.", "title": "HIV Treatment as Prevention: Systematic Comparison of Mathematical Models of the Potential Impact of Antiretroviral Therapy on HIV Incidence in South Africa" }, { "docid": "1387104", "text": "CONTEXT Venous thrombosis is a common complication in patients with cancer, leading to additional morbidity and compromising quality of life. \n OBJECTIVE To identify individuals with cancer with an increased thrombotic risk, evaluating different tumor sites, the presence of distant metastases, and carrier status of prothrombotic mutations. \n DESIGN, SETTING, AND PATIENTS A large population-based, case-control (Multiple Environmental and Genetic Assessment [MEGA] of risk factors for venous thrombosis) study of 3220 consecutive patients aged 18 to 70 years, with a first deep venous thrombosis of the leg or pulmonary embolism, between March 1, 1999, and May 31, 2002, at 6 anticoagulation clinics in the Netherlands, and separate 2131 control participants (partners of the patients) reported via a questionnaire on acquired risk factors for venous thrombosis. Three months after discontinuation of the anticoagulant therapy, all patients and controls were interviewed, a blood sample was taken, and DNA was isolated to ascertain the factor V Leiden and prothrombin 20210A mutations. \n MAIN OUTCOME MEASURE Risk of venous thrombosis. \n RESULTS The overall risk of venous thrombosis was increased 7-fold in patients with a malignancy (odds ratio [OR], 6.7; 95% confidence interval [CI], 5.2-8.6) vs persons without malignancy. Patients with hematological malignancies had the highest risk of venous thrombosis, adjusted for age and sex (adjusted OR, 28.0; 95% CI, 4.0-199.7), followed by lung cancer and gastrointestinal cancer. The risk of venous thrombosis was highest in the first few months after the diagnosis of malignancy (adjusted OR, 53.5; 95% CI, 8.6-334.3). Patients with cancer with distant metastases had a higher risk vs patients without distant metastases (adjusted OR, 19.8; 95% CI, 2.6-149.1). Carriers of the factor V Leiden mutation who also had cancer had a 12-fold increased risk vs individuals without cancer and factor V Leiden (adjusted OR, 12.1; 95% CI, 1.6-88.1). Similar results were indirectly calculated for the prothrombin 20210A mutation in patients with cancer. \n CONCLUSIONS Patients with cancer have a highly increased risk of venous thrombosis especially in the first few months after diagnosis and in the presence of distant metastases. Carriers of the factor V Leiden and prothrombin 20210A mutations appear to have an even higher risk.", "title": "Malignancies, prothrombotic mutations, and the risk of venous thrombosis." }, { "docid": "14290854", "text": "OBJECTIVE To describe variation in antibiotic prescribing for acute cough in contrasting European settings and the impact on recovery. \n DESIGN Cross sectional observational study with clinicians from 14 primary care research networks in 13 European countries who recorded symptoms on presentation and management. Patients followed up for 28 days with patient diaries. \n SETTING Primary care. \n PARTICIPANTS Adults with a new or worsening cough or clinical presentation suggestive of lower respiratory tract infection. \n MAIN OUTCOME MEASURES Prescribing of antibiotics by clinicians and total symptom severity scores over time. \n RESULTS 3402 patients were recruited (clinicians completed a case report form for 99% (3368) of participants and 80% (2714) returned a symptom diary). Mean symptom severity scores at presentation ranged from 19 (scale range 0 to 100) in networks based in Spain and Italy to 38 in the network based in Sweden. Antibiotic prescribing by networks ranged from 20% to nearly 90% (53% overall), with wide variation in classes of antibiotics prescribed. Amoxicillin was overall the most common antibiotic prescribed, but this ranged from 3% of antibiotics prescribed in the Norwegian network to 83% in the English network. While fluoroquinolones were not prescribed at all in three networks, they were prescribed for 18% in the Milan network. After adjustment for clinical presentation and demographics, considerable differences remained in antibiotic prescribing, ranging from Norway (odds ratio 0.18, 95% confidence interval 0.11 to 0.30) to Slovakia (11.2, 6.20 to 20.27) compared with the overall mean (proportion prescribed: 0.53). The rate of recovery was similar for patients who were and were not prescribed antibiotics (coefficient -0.01, P<0.01) once clinical presentation was taken into account. \n CONCLUSIONS Variation in clinical presentation does not explain the considerable variation in antibiotic prescribing for acute cough in Europe. Variation in antibiotic prescribing is not associated with clinically important differences in recovery. \n TRIAL REGISTRATION Clinicaltrials.gov NCT00353951.", "title": "Variation in antibiotic prescribing and its impact on recovery in patients with acute cough in primary care: prospective study in 13 countries." }, { "docid": "14806256", "text": "CONTEXT Use of antiretroviral drugs, including protease inhibitors, for treatment of human immunodeficiency virus (HIV) infection has been anecdotally associated with hepatotoxicity, particularly in persons coinfected with hepatitis C or B virus. \n OBJECTIVES To ascertain if incidence of severe hepatotoxicity during antiretroviral therapy is similar for all antiretroviral drug combinations, and to define the role of chronic viral hepatitis in its development. \n DESIGN Prospective cohort study. \n SETTING University-based urban HIV clinic. \n PATIENTS A total of 298 patients who were prescribed new antiretroviral therapies between January 1996 and January 1998, 211 (71%) of whom received protease inhibitors as part of combination therapy (median follow-up, 182 days) and 87 (29%) of whom received dual nucleoside analog regimens (median follow-up, 167 days). Chronic hepatitis C and B virus infection was present in 154 (52%) and 8 (2.7%) patients, respectively. \n MAIN OUTCOME MEASURE Severe hepatotoxicity, defined as a grade 3 or 4 change in levels of serum alanine aminotransferase and aspartate aminotransferase, evaluated before and during therapy. \n RESULTS Severe hepatotoxicity was observed in 31 (10.4%) of 298 patients (95% confidence interval [CI], 7.2%-14.4%). Ritonavir use was associated with a higher incidence of toxicity (30%; 95% CI, 17.9% -44.6%). However, no significant difference was detected in hepatotoxicity incidence in other treatment groups, ie, nucleoside analogs (5.7%; 95% CI, 1.2%-12.9%), nelfinavir (5.9%; 95% CI, 1.2%-16.2%), saquinavir (5.9%; 95% CI, 0.15%-28.7%), and indinavir(6.8%; 95% CI, 3.0%-13.1 %). Although chronicviral hepatitis was associated with an increased risk of severe hepatotoxicity among patients prescribed nonritonavir regimens (relative risk, 3.7; 95% CI, 1.0-11.8), most patients with chronic hepatitis C or B virus infection (88%) did not experience significant toxic effects. Rate of severe toxicity with use of any protease inhibitor in patients with hepatitis C infection was 12.2% (13/107; 95% CI, 6.6%-19.9%). In multivariate logistic regression, only ritonavir (adjusted odds ratio [AOR], 8.6; 95% CI, 3.0-24.6) and a CD4 cell count increase of more than 0.05 x 10(9)/L (AOR, 3.6; 95% CI, 1.0-12.9) were associated with severe hepatotoxicity. No irreversible outcomes were seen in patients with severe hepatotoxicity. \n CONCLUSIONS Our data indicate that use of ritonavir may increase risk of severe hepatotoxicity. Although hepatotoxicity may be more common in persons with chronic viral hepatitis, these data do not support withholding protease inhibitor therapy from persons coinfected with hepatitis B or C virus.", "title": "Hepatotoxicity associated with antiretroviral therapy in adults infected with human immunodeficiency virus and the role of hepatitis C or B virus infection." }, { "docid": "23304931", "text": "PURPOSE Diffuse large B-cell lymphoma (DLBCL) represents a clinically heterogeneous disease. Models based on immunohistochemistry predict clinical outcome. These include subdivision into germinal center (GC) versus non-GC subtypes; proliferation index (measured by expression of Ki-67), and expression of BCL-2, FOXP1, or B-lymphocyte-induced maturation protein (Blimp-1)/PRDM1. We sought to determine whether immunohistochemical analyses of biopsies from patients with DLBCL having HIV infection are similarly relevant for prognosis. \n PATIENTS AND METHODS We examined 81 DLBCLs from patients with AIDS in AMC010 (cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP] v CHOP-rituximab) and AMC034 (etoposide, doxorubicin, vincristine, prednisone, and dose-adjusted cyclophosphamide plus rituximab concurrent v sequential) clinical trials and compared the immunophenotype with survival data, Epstein-Barr virus (EBV) positivity, and CD4 counts. \n RESULTS The GC and non-GC subtypes of DLBCL did not differ significantly with respect to overall survival or CD4 count at cancer presentation. EBV could be found in both subtypes of DLBCL, although less frequently in the GC subtype, and did not affect survival. Expression of FOXP1, Blimp-1/PRDM1, or BCL-2 was not correlated with the outcome in patients with AIDS-related DLBCL. \n CONCLUSION These data indicate that with current treatment strategies for lymphoma and control of HIV infection, commonly used immunohistochemical markers may not be clinically relevant in HIV-infected patients with DLBCL. The only predictive immunohistochemical marker was found to be Ki-67, where a higher proliferation index was associated with better survival, suggesting a better response to therapy in patients whose tumors had higher proliferation rates.", "title": "Immunophenotypic analysis of AIDS-related diffuse large B-cell lymphoma and clinical implications in patients from AIDS malignancies consortium clinical trials 010 and 034" } ]
499
HbA1c consistently overestimates glycemic control in black individuals with Sickle cell trait (SCT).
[ { "docid": "26064662", "text": "Importance Hemoglobin A1c (HbA1c) reflects past glucose concentrations, but this relationship may differ between those with sickle cell trait (SCT) and those without it. Objective To evaluate the association between SCT and HbA1c for given levels of fasting or 2-hour glucose levels among African Americans. Design, Setting, and Participants Retrospective cohort study using data collected from 7938 participants in 2 community-based cohorts, the Coronary Artery Risk Development in Young Adults (CARDIA) study and the Jackson Heart Study (JHS). From the CARDIA study, 2637 patients contributed a maximum of 2 visits (2005-2011); from the JHS, 5301 participants contributed a maximum of 3 visits (2000-2013). All visits were scheduled at approximately 5-year intervals. Participants without SCT data, those without any concurrent HbA1c and glucose measurements, and those with hemoglobin variants HbSS, HbCC, or HbAC were excluded. Analysis of the primary outcome was conducted using generalized estimating equations (GEE) to examine the association of SCT with HbA1c levels, controlling for fasting or 2-hour glucose measures. Exposures Presence of SCT. Main Outcomes and Measures Hemoglobin A1c stratified by the presence or absence of SCT was the primary outcome measure. Results The analytic sample included 4620 participants (mean age, 52.3 [SD, 11.8] years; 2835 women [61.3%]; 367 [7.9%] with SCT) with 9062 concurrent measures of fasting glucose and HbA1c levels. In unadjusted GEE analyses, for a given fasting glucose, HbA1c values were statistically significantly lower in those with (5.72%) vs those without (6.01%) SCT (mean HbA1c difference, −0.29%; 95% CI, −0.35% to −0.23%). Findings were similar in models adjusted for key risk factors and in analyses using 2001 concurrent measures of 2-hour glucose and HbA1c concentration for those with SCT (mean, 5.35%) vs those without SCT (mean, 5.65%) for a mean HbA1c difference of −0.30% (95% CI, −0.39% to −0.21%). The HbA1c difference by SCT was greater at higher fasting (P = .02 for interaction) and 2-hour (P = .03) glucose concentrations. The prevalence of prediabetes and diabetes was statistically significantly lower among participants with SCT when defined using HbA1c values (29.2% vs 48.6% for prediabetes and 3.8% vs 7.3% for diabetes in 572 observations from participants with SCT and 6877 observations from participants without SCT; P<.001 for both comparisons). Conclusions and Relevance Among African Americans from 2 large, well-established cohorts, participants with SCT had lower levels of HbA1c at any given concentration of fasting or 2-hour glucose compared with participants without SCT. These findings suggest that HbA1c may systematically underestimate past glycemia in black patients with SCT and may require further evaluation.", "title": "Association of Sickle Cell Trait With Hemoglobin A1c in African Americans" } ]
[ { "docid": "12662435", "text": "Abstract | Populations of African descent are at the forefront of the worldwide epidemic of type 2 diabetes mellitus (T2DM). The burden of T2DM is amplified by diagnosis after preventable complications of the disease have occurred. Earlier detection would result in a reduction in undiagnosed T2DM, more accurate statistics, more informed resource allocation and better health. An underappreciated factor contributing to undiagnosed T2DM in populations of African descent is that screening tests for hyperglycaemia, specifically, fasting plasma glucose and HbA1c, perform sub‐optimally in these populations. To offset this problem, combining tests or adding glycated albumin (a nonfasting marker of glycaemia), might be the way forward. However, differences in diet, exercise, BMI, environment, gene‐environment interactions and the prevalence of sickle cell trait mean that neither diagnostic tests nor interventions will be uniformly effective in individuals of African, Caribbean or African‐American descent. Among these three populations of African descent, intensive lifestyle interventions have been reported in only the African‐American population, in which they have been found to provide effective primary prevention of T2DM but not secondary prevention. Owing to a lack of health literacy and poor glycaemic control in Africa and the Caribbean, customized lifestyle interventions might achieve both secondary and primary prevention. Overall, diagnosis and prevention of T2DM requires innovative strategies that are sensitive to the diversity that exists within populations of African descent.", "title": "Reversing the tide — diagnosis and prevention of T2DM in populations of African descent" }, { "docid": "23206239", "text": "The efficient diagnosis and accurate monitoring of diabetic patients are cornerstones for reducing the risk of diabetic complications. The current diagnostic and prognostic strategies in diabetes are mainly based on two tests, plasma (or capillary) glucose and glycated hemoglobin (HbA1c). Nevertheless, these measures are not foolproof, and their clinical usefulness is biased by a number of clinical and analytical factors. The introduction of other indices of glucose homeostasis in clinical practice such as fructosamine and glycated albumin (GA) may be regarded as an attractive alternative, especially in patients in whom the measurement of HbA1c may be biased or even unreliable. These include patients with rapid changes of glucose homeostasis and larger glycemic excursions, and patients with red blood cell disorders and renal disease. According to available evidence, the overall diagnostic efficiency of GA seems superior to that of fructosamine throughout a broad range of clinical settings. The current method for measuring GA is also better standardized and less vulnerable to preanalytical variables than those used for assessing fructosamine. Additional advantages of GA over HbA1c are represented by lower reagent cost and being able to automate the GA analysis on many conventional laboratory instruments. Although further studies are needed to definitely establish that GA can complement or even replace conventional measures of glycemic control such as HbA1c, GA may help the clinical management of patients with diabetes in whom HbA1c values might be unreliable.", "title": "Advantages and pitfalls of fructosamine and glycated albumin in the diagnosis and treatment of diabetes." }, { "docid": "30983338", "text": "AIMS/HYPOTHESIS We assessed the association between congenital malformations and maternal hyperglycemia in pregnant women with pregestational (type 1 or type 2) diabetes and investigated if the rate of congenital malformations was similar in women with near-normal glycemic control compared to the background population. We also assessed the association between congenital malformations and maternal hyperglycemia in pregnant women with pregestational diabetes with special focus on women with near-normal HbA1c in early pregnancy. MATERIALS AND METHODS This is a literature review based on an electronic literature search of the databases PubMed, Cochrane, Embase and Web of Science conducted in July 2017 using the search terms diabetes, pregnancy, HbA1c or glycemic control and congenital anomaly or congenital anomaly. We included original papers in English published after 1997 with data on congenital malformations and HbA1c in at least 250 women with pregestational diabetes. \n RESULTS Nine papers with in total 6225 women with type 1 diabetes and 2334 women with type 2 diabetes were included. The prevalence of congenital malformations was 6.4% in women with type 1 diabetes and 4.3% in women with type 2 diabetes and for the combined group of women with pregestational diabetes, the relative risk compared to the background population was 3.2. In women with HbA1c < 53 mmol/mol (7.0%) in early pregnancy or HbA1c 53-64 mmol/mol (7.0-8.0%) the prevalence of congenital malformations was 4.3 and 3.7%, respectively, with a relative risk of 2.2 and 1.9, respectively. \n CONCLUSIONS In pregnant women with pregestational diabetes the prevalence of congenital abnormalities was threefold higher in women with pregestational diabetes compared to the background population. However, HbA1c below 53 mmol/mol (7.0%) in early pregnancy was also associated with a two times increased risk of congenital malformations compared to the background population.", "title": "The prevalence of congenital malformations is still higher in pregnant women with pregestational diabetes despite near-normal HbA1c: a literature review." }, { "docid": "3654468", "text": "Importance Glucagon-like peptide-1 (GLP-1) receptor agonists are effective therapies for the treatment of type 2 diabetes and are all currently available as an injection. Objectives To compare the effects of oral semaglutide with placebo (primary) and open-label subcutaneous semaglutide (secondary) on glycemic control in patients with type 2 diabetes. Design, Setting, and Patients Phase 2, randomized, parallel-group, dosage-finding, 26-week trial with 5-week follow-up at 100 sites (hospital clinics, general practices, and clinical research centers) in 14 countries conducted between December 2013 and December 2014. Of 1106 participants assessed, 632 with type 2 diabetes and insufficient glycemic control using diet and exercise alone or a stable dose of metformin were randomized. Randomization was stratified by metformin use. Interventions Once-daily oral semaglutide of 2.5 mg (n = 70), 5 mg (n = 70), 10 mg (n = 70), 20 mg (n = 70), 40-mg 4-week dose escalation (standard escalation; n = 71), 40-mg 8-week dose escalation (slow escalation; n = 70), 40-mg 2-week dose escalation (fast escalation, n = 70), oral placebo (n = 71; double-blind) or once-weekly subcutaneous semaglutide of 1.0 mg (n = 70) for 26 weeks. Main Outcomes and Measures The primary end point was change in hemoglobing A1c (HbA1c) from baseline to week 26. Secondary end points included change from baseline in body weight and adverse events. Results Baseline characteristics were comparable across treatment groups. Of the 632 randomized patients (mean age, 57.1 years [SD, 10.6]; men, 395 (62.7%); diabetes duration, 6.3 years [SD, 5.2]; body weight, 92.3 kg [SD, 16.8]; BMI, 31.7 [SD, 4.3]), 583 (92%) completed the trial. Mean change in HbA1c level from baseline to week 26 decreased with oral semaglutide (dosage-dependent range, −0.7% to −1.9%) and subcutaneous semaglutide (−1.9%) and placebo (−0.3%); oral semaglutide reductions were significant vs placebo (dosage-dependent estimated treatment difference [ETD] range for oral semaglutide vs placebo, –0.4% to –1.6%; P = .01 for 2.5 mg, <.001 for all other dosages). Reductions in body weight were greater with oral semaglutide (dosage-dependent range, −2.1 kg to −6.9 kg) and subcutaneous semaglutide (−6.4 kg) vs placebo (−1.2 kg), and significant for oral semaglutide dosages of 10 mg or more vs placebo (dosage-dependent ETD range, –0.9 to –5.7 kg; P < .001). Adverse events were reported by 63% to 86% (371 of 490 patients) in the oral semaglutide groups, 81% (56 of 69 patients) in the subcutaneous semaglutide group, and 68% (48 of 71 patients) in the placebo group; mild to moderate gastrointestinal events were most common. Conclusions and Relevance Among patients with type 2 diabetes, oral semaglutide resulted in better glycemic control than placebo over 26 weeks. These findings support phase 3 studies to assess longer-term and clinical outcomes, as well as safety. Trial Registration clinicaltrials.gov Identifier: NCT01923181", "title": "Effect of Oral Semaglutide Compared With Placebo and Subcutaneous Semaglutide on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Clinical Trial" }, { "docid": "1538080", "text": "CONTEXT Fructosamine is a glycemic biomarker which may be useful for indication and control of diabetes respectively. \n OBJECTIVE The objective of the study was to evaluate fructosamine as an indicator of hyperglycaemia and glucose control in subjects with diabetes. \n DESIGN, SETTING & PATIENTS From the AMORIS cohort, subjects with serum glucose, fructosamine and HbA1c from the same examination were studied cross-sectionally and longitudinally (n = 10,987; 5,590 overnight-fasting). The guidelines of the American Diabetes Association were followed for classification of prediabetes and diabetes. Separate analyses were performed in patients with a newly detected or a known diagnosis of type 1 or type 2 diabetes respectively. \n RESULTS All three biomarkers were strongly correlated. With regard to the association between fructosamine and HbA1c Pearson linear correlation coefficients in the range of 0.67-0.75 were observed in fasting and non-fasting subjects with type 1 or type 2 diabetes. Analyses of glucose control in fasting patients with type 2 diabetes having all three biomarkers measured at three separate occasions within on average 290 days of the index examination showed similar trends over time for glucose, fructosamine and HbA1c. Discrimination of subjects with and without diabetes across the range of fructosamine levels was good (area under curve (AUC) 0.91-0.95) and a fructosamine level of 2.5 mmol/L classified subjects to diabetes with a sensitivity of 61% and a specificity of 97%. \n CONCLUSIONS Fructosamine is closely associated with HbA1c and glucose respectively and may be a useful biomarker of hyperglycaemia and glucose control in clinical and epidemiological studies.", "title": "Fructosamine Is a Useful Indicator of Hyperglycaemia and Glucose Control in Clinical and Epidemiological Studies – Cross-Sectional and Longitudinal Experience from the AMORIS Cohort" }, { "docid": "7098463", "text": "CONTEXT Observational studies suggest that surgically induced loss of weight may be effective therapy for type 2 diabetes. \n OBJECTIVE To determine if surgically induced weight loss results in better glycemic control and less need for diabetes medications than conventional approaches to weight loss and diabetes control. \n DESIGN, SETTING, AND PARTICIPANTS Unblinded randomized controlled trial conducted from December 2002 through December 2006 at the University Obesity Research Center in Australia, with general community recruitment to established treatment programs. Participants were 60 obese patients (BMI >30 and <40) with recently diagnosed (<2 years) type 2 diabetes. \n INTERVENTIONS Conventional diabetes therapy with a focus on weight loss by lifestyle change vs laparoscopic adjustable gastric banding with conventional diabetes care. \n MAIN OUTCOME MEASURES Remission of type 2 diabetes (fasting glucose level <126 mg/dL [7.0 mmol/L] and glycated hemoglobin [HbA1c] value <6.2% while taking no glycemic therapy). Secondary measures included weight and components of the metabolic syndrome. Analysis was by intention-to-treat. \n RESULTS Of the 60 patients enrolled, 55 (92%) completed the 2-year follow-up. Remission of type 2 diabetes was achieved by 22 (73%) in the surgical group and 4 (13%) in the conventional-therapy group. Relative risk of remission for the surgical group was 5.5 (95% confidence interval, 2.2-14.0). Surgical and conventional-therapy groups lost a mean (SD) of 20.7% (8.6%) and 1.7% (5.2%) of weight, respectively, at 2 years (P < .001). Remission of type 2 diabetes was related to weight loss (R2 = 0.46, P < .001) and lower baseline HbA1c levels (combined R2 = 0.52, P < .001). There were no serious complications in either group. \n CONCLUSIONS Participants randomized to surgical therapy were more likely to achieve remission of type 2 diabetes through greater weight loss. These results need to be confirmed in a larger, more diverse population and have long-term efficacy assessed. \n TRIAL REGISTRATION actr.org Identifier: ACTRN012605000159651.", "title": "Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial." }, { "docid": "1711571", "text": "PURPOSE Patients with type 2 diabetes mellitus (T2DM) have an increased fracture risk despite having higher areal bone mineral density (aBMD). This study aimed to clarify the association between glycemic and insulin resistance status and bone microarchitecture, and whether pentosidine and bone turnover markers play any roles in the association. \n METHODS A total of 2012 community-dwelling men aged ≥65years completed baseline measurements of spine aBMD, fasting plasma glucose (FPG) and serum insulin, hemoglobin A1c (HbA1c), osteocalcin, type I procollagen N-terminal propeptide, type I collagen C-terminal crosslinking telopeptide, tartrate-resistant acid phosphatase isoenzyme 5b, pentosidine, height and weight and an interview regarding past disease history. Homeostasis model assessment-insulin resistance (HOMA-IR) was also calculated. T2DM was defined as physician-diagnosed middle age or elderly-onset diabetes mellitus, or according to biochemical test results. To evaluate bone microarchitecture, trabecular bone score (TBS) was calculated at the same vertebrae as those used for aBMD measurement. \n RESULTS After excluding participants who had a disease history and/or were taking medications affecting bone metabolism, 1683 men (age, 72.9±5.2years) were analyzed. Men with T2DM had significantly higher aBMD compared to those without T2DM. There was no significant difference in TBS. However, FPG, HbA1c and HOMA-IR levels were significantly inversely correlated with TBS after adjusting for age, BMI and aBMD. Multivariate linear regression analyses revealed that glycemic indices (FPG and HbA1c) were significantly associated with increased aBMD and decreased TBS, and that HOMA-IR was associated only with TBS. These associations did not change after further adjusting for bone turnover makers and pentosidine levels. \n CONCLUSIONS Hyperglycemia and elevated insulin-resistance were associated with low TBS independently of bone turnover and pentosidine levels.", "title": "Hyperglycemia is associated with increased bone mineral density and decreased trabecular bone score in elderly Japanese men: The Fujiwara-kyo osteoporosis risk in men (FORMEN) study." }, { "docid": "4449524", "text": "The concentration of hemoglobin in blacks was found to be 0.5 to 1.0 g/dl lower than that of income-matched whites in several large surveys. This difference could be a racial characteristic of blacks, or it might be due to a higher frequency of genetic traits such as thalassemia minor and hemoglobinopathies, or to environmental factors such as iron deficiency. To help in making this distinction, we analyzed the data from multiphasic examinations (1973 to 1975) on 1718 white, 741 black, and 315 Oriental healthy, nonindigent children between 5 and 14 years of age. In the entire population, the median hemoglobin concentration averaged 0.5 g/dl lower in blacks than in whites of both sexes (t test, P less than 0.001). The differences still averaged 0.5 g/dl (P less than 0.001) after exclusion of all those with abnormal hemoglobin by electrophoresis (Hgb S and C) and those whose mean corpuscular volume was more than 5% below the normal mean for age (to exclude iron deficiency or thalassemia minor). The data strengthen the impression that blacks normally have a concentration of hemoglobin averaging about 0.5 g/dl less than in whites. If this is the case, about 10% of normal blacks will be mistakenly designated anemic, if the same norms are applied.", "title": "Hemoglobin concentration in white, black, and Oriental children: is there a need for separate criteria in screening for anemia?" }, { "docid": "12280462", "text": "Bile acids are recognized as metabolic modulators. The present study was aimed at evaluating the effects of a potent Asbt inhibitor (264W94), which blocks intestinal absorption of bile acids, on glucose homeostasis in Zucker Diabetic Fatty (ZDF) rats. Oral administration of 264W94 for two wk increased fecal bile acid concentrations and elevated non-fasting plasma total Glp-1. Treatment of 264W94 significantly decreased HbA1c and glucose, and prevented the drop of insulin levels typical of ZDF rats in a dose-dependent manner. An oral glucose tolerance test revealed up to two-fold increase in plasma total Glp-1 and three-fold increase in insulin in 264W94 treated ZDF rats at doses sufficient to achieve glycemic control. Tissue mRNA analysis indicated a decrease in farnesoid X receptor (Fxr) activation in small intestines and the liver but co-administration of a Fxr agonist (GW4064) did not attenuate 264W94 induced glucose lowering effects. In summary, our results demonstrate that inhibition of Asbt increases bile acids in the distal intestine, promotes Glp-1 release and may offer a new therapeutic strategy for type 2 diabetes mellitus.", "title": "Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes." }, { "docid": "11344428", "text": "Leukemia in donor cells (donor cell leukemia; DCL) has been reported as a rare but severe complication of allogeneic stem cell transplantation (SCT). However, the incidence, potential pathogenetic factors, therapeutic options and outcome of patients suffering from DCL and the leukemia risk of their donors are not well defined. A questionnaire survey was carried out within European Blood and Marrow Transplantation Group (EBMT) centers. Ninety-one EBMT centers participated in this survey, covering 10489 allogeneic SCT between 12/1982 and 09/2003. Fourteen cases of DCL, most with a myeloid phenotype (7 cases of acute myeloid leukemia, 3 each of acute lymphocytic leukemia and 1 case of chronic myeloid leukemia) were identified. Demonstration of donor cell origin included molecular analysis of chimerism in most cases. DCL type and cytogenetic alterations were independent from the original disease. The median time between transplantation and diagnosis of DCL was 17 months (4-164). No type of conditioning, donor, graft manipulation, graft-versus-host disease prophylaxis or subsequent complications were identified as risk factors for DCL. Chemotherapy induced remissions in DCL and 2 of 5 patients remain alive in remission after a second transplant. None of the stem cell donors developed hematologic malignancies (median follow-up period of 9 years; range 6-30 years). DCL is an extremely rare complication of allogeneic SCT in which treatment attempts with chemotherapy and a second SCT are justified. Donors are not at an increased risk of developing hematologic malignancies.", "title": "Development of leukemia in donor cells after allogeneic stem cell transplantation--a survey of the European Group for Blood and Marrow Transplantation (EBMT)." }, { "docid": "15155862", "text": "Cardiovascular disease (CVD) is the leading cause of death worldwide. Recent genome-wide association (GWA) studies have pinpointed many loci associated with CVD risk factors in adults. It is unclear, however, if these loci predict trait levels at all ages, if they are associated with how a trait develops over time, or if they could be used to screen individuals who are pre-symptomatic to provide the opportunity for preventive measures before disease onset. We completed a genome-wide association study on participants in the longitudinal Bogalusa Heart Study (BHS) and have characterized the association between genetic factors and the development of CVD risk factors from childhood to adulthood. We report 7 genome-wide significant associations involving CVD risk factors, two of which have been previously reported. Top regions were tested for replication in the Young Finns Study (YF) and two associations strongly replicated: rs247616 in CETP with HDL levels (combined P = 9.7 x 10(-24)), and rs445925 at APOE with LDL levels (combined P = 8.7 x 10(-19)). We show that SNPs previously identified in adult cross-sectional studies tend to show age-independent effects in the BHS with effect sizes consistent with previous reports. Previously identified variants were associated with adult trait levels above and beyond those seen in childhood; however, variants with time-dependent effects were also promising predictors. This is the first GWA study to evaluate the role of common genetic variants in the development of CVD risk factors in children as they advance through adulthood and highlights the utility of using longitudinal studies to identify genetic predictors of adult traits in children.", "title": "Longitudinal Genome-Wide Association of Cardiovascular Disease Risk Factors in the Bogalusa Heart Study" }, { "docid": "14717500", "text": "Genome-wide association studies (GWAS) have now identified at least 2,000 common variants that appear associated with common diseases or related traits (http://www.genome.gov/gwastudies), hundreds of which have been convincingly replicated. It is generally thought that the associated markers reflect the effect of a nearby common (minor allele frequency >0.05) causal site, which is associated with the marker, leading to extensive resequencing efforts to find causal sites. We propose as an alternative explanation that variants much less common than the associated one may create \"synthetic associations\" by occurring, stochastically, more often in association with one of the alleles at the common site versus the other allele. Although synthetic associations are an obvious theoretical possibility, they have never been systematically explored as a possible explanation for GWAS findings. Here, we use simple computer simulations to show the conditions under which such synthetic associations will arise and how they may be recognized. We show that they are not only possible, but inevitable, and that under simple but reasonable genetic models, they are likely to account for or contribute to many of the recently identified signals reported in genome-wide association studies. We also illustrate the behavior of synthetic associations in real datasets by showing that rare causal mutations responsible for both hearing loss and sickle cell anemia create genome-wide significant synthetic associations, in the latter case extending over a 2.5-Mb interval encompassing scores of \"blocks\" of associated variants. In conclusion, uncommon or rare genetic variants can easily create synthetic associations that are credited to common variants, and this possibility requires careful consideration in the interpretation and follow up of GWAS signals.", "title": "Rare Variants Create Synthetic Genome-Wide Associations" }, { "docid": "21003930", "text": "BACKGROUND Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults. \n METHODS In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO2) concentrations were measured. \n FINDINGS Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO2, PM10, PM2.5, and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96-3·95; p<0·1), sputum (3·15, 1·39-7·13; p<0·05), shortness of breath (1·86, 0·97-3·57; p<0·1), and wheeze (4·00, 1·52-10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV1] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV1 and FVC, and an increase in R5-20 were associated with an increase in during-walk exposure to NO2, ultrafine particles and PM2.5, and an increase in PWV and augmentation index with NO2 and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles. \n INTERPRETATION Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects. \n FUNDING British Heart Foundation.", "title": "Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study" }, { "docid": "76463821", "text": "Preconception care (PCC) and strict periconceptional glycemic control are both used to minimize the risk of congenital birth defects in offspring of women with type 1 or type 2 diabetes mellitus (DM). These malformations are ascribed in large measure to poor periconceptional control. This study evaluated PCC by a meta-analysis of published studies of PCC in women with DM, published from 1970 to 2000. Two reviewers independently abstracted the data, and the rate and relative risk (RR) of major and minor malformations were pooled from eligible studies using a random effects model. Early first-trimester values of glycosylated hemoglobin were recorded. Eight retrospective and eight prospective cohort studies were included; they were carried out in Europe, the United Kingdom, the United States, and Israel. Most participants had type 1 DM, but three studies included women with type 2 DM. Women given PCC tended to be about 2 years older on average than the others. Methods of PCC were quite variable, although most centers provided some maternal education about the pregnancy risks associated with poor glycemic control. In seven studies reporting early gestational glycosylated hemoglobin values, mean levels were consistently lower in PCC patients. Among 2104 offspring, the pooled rate for major and minor anomalies was 2.4% in the PCC group and 7.7% in non-PCC recipients, for a pooled RR of 0.32. Among 2651 offspring, major malformations were less prevalent in the PCC group (2.1 vs. 6.5%; pooled RR = 0.36). Comparable results were obtained when only prospective studies were analyzed and in studies where the infant examiners were unaware of the mothers' PCC status. The lowest risk of major anomalies was in a study that administered folic acid periconceptionally to its PCC recipients; the RR was 0.11. This meta-analysis, which included both retrospective and prospective studies, demonstrates an association of PCC with a significantly lower risk of congenital anomalies in the offspring of women with established DM. The lowered risk was accompanied by significantly lower glycosylated hemoglobin values in the first trimester in recipients of PCC.", "title": "Preconception Care and the Risk of Congenital Anomalies in the Offspring of Women With Diabetes Mellitus: A Meta-Analysis" }, { "docid": "23783727", "text": "AIMS patients with diabetes mellitus (DM) have high platelet reactivity and are at increased risk of ischaemic events and bleeding post-acute coronary syndromes (ACS). In the PLATelet inhibition and patient Outcomes (PLATO) trial, ticagrelor reduced the primary composite endpoint of cardiovascular death, myocardial infarction, or stroke, but with similar rates of major bleeding compared with clopidogrel. We aimed to investigate the outcome with ticagrelor vs. clopidogrel in patients with DM or poor glycaemic control. \n METHODS AND RESULTS we analysed patients with pre-existing DM (n = 4662), including 1036 patients on insulin, those without DM (n = 13 951), and subgroups based on admission levels of haemoglobin A1c (HbA1c; n = 15 150). In patients with DM, the reduction in the primary composite endpoint (HR: 0.88, 95% CI: 0.76-1.03), all-cause mortality (HR: 0.82, 95% CI: 0.66-1.01), and stent thrombosis (HR: 0.65, 95% CI: 0.36-1.17) with no increase in major bleeding (HR: 0.95, 95% CI: 0.81-1.12) with ticagrelor was consistent with the overall cohort and without significant diabetes status-by-treatment interactions. There was no heterogeneity between patients with or without ongoing insulin treatment. ticagrelor reduced the primary endpoint, all-cause mortality, and stent thrombosis in patients with HbA1c above the median (HR: 0.80, 95% CI: 0.70-0.91; HR: 0.78, 95% CI: 0.65-0.93; and HR: 0.62, 95% CI: 0.39-1.00, respectively) with similar bleeding rates (HR: 0.98, 95% CI: 0.86-1.12). \n CONCLUSION ticagrelor, when compared with clopidogrel, reduced ischaemic events in ACS patients irrespective of diabetic status and glycaemic control, without an increase in major bleeding events.", "title": "Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial" }, { "docid": "26058927", "text": "Thiazolidinediones (TZDs) improve glycemic control and insulin sensitivity in patients with type 2 diabetes mellitus (T2DM). There is growing evidence from in vivo and in vitro studies that TZDs improve pancreatic beta-cell function. The aim of this study was to determine whether TZD-induced improvement in glycemic control is associated with improved beta-cell function. We studied 11 normal glucose-tolerant and 53 T2DM subjects [age 53+/-2 yr; BMI 29.4+/-0.8 kg/m2; fasting plasma glucose (FPG) 10.3+/-0.4 mM; Hb A1c 8.2+/-0.3%]. Diabetic patients were randomized to receive placebo or TZD for 4 mo. Subjects received 1) 2-h OGTT with determination of plasma glucose, insulin, and C-peptide concentrations and 2) two-step euglycemic insulin (40 and 160 mU.m-2.min-1) clamp with [3-(3)H]glucose. T2DM patients were then randomized to receive 4 mo of treatment with pioglitazone (45 mg/day), rosiglitazone (8 mg/day), or placebo. Pioglitazone and rosiglitazone similarly improved FPG, mean plasma glucose during OGTT, Hb A1c, and insulin-mediated total body glucose disposal (Rd) and decreased mean plasma FFA during OGTT (all P<0.01, ANOVA). The insulin secretion/insulin resistance (disposition) index [DeltaISR(AUC)/Deltaglucose(AUC)/IR] was significantly improved in all TZD-treated groups: +1.8+/-0.7 (PIO+drug-naïve diabetics), +0.7+/-0.3 (PIO+sulfonylurea-treated diabetics), and 0.7+/-0.2 (ROSI+sulfonylurea-withdrawn diabetics) vs. -0.2+/-0.3 in the two placebo groups (P<0.01, all TZDs vs. placebo, ANOVA). Improved insulin secretion correlated positively with increased body weight, fat mass, and Rd and inversely with decreased plasma glucose and FFA during the OGTT. In T2DM patients, TZD treatment leads to improved beta-cell function, which correlates strongly with improved glycemic control.", "title": "Thiazolidinediones improve beta-cell function in type 2 diabetic patients." }, { "docid": "14711483", "text": "CONTEXT Vaso-occlusion is central to the painful crises and acute and chronic organ damage in sickle cell disease. Abnormal nitric oxide-dependent regulation of vascular tone, adhesion, platelet activation, and inflammation contributes to the pathophysiology of vaso-occlusion. Nitric oxide may have promise as a mechanism-of-disease-based therapy for treatment of vaso-occlusion. \n OBJECTIVE To explore the efficacy and safety of inhaled nitric oxide (INO) for treatment of vaso-occlusive crisis in pediatric patients. \n DESIGN Prospective, double-blind, placebo-controlled, randomized clinical trial with enrollment between September 1999 and October 2001. \n SETTING Urban, tertiary care children's hospital in the United States. \n PARTICIPANTS Twenty patients aged 10 to 21 years with sickle cell disease and severe acute vaso-occlusive crisis. \n INTERVENTION Patients were randomly assigned to receive INO (80 ppm with 21% final concentration of inspired oxygen; n = 10), or placebo (21% inspired oxygen; n = 10) for 4 hours. \n MAIN OUTCOME MEASURES Change in pain at 4 hours of inhalation compared with preinhalation pain, measured on a 10-cm visual analog scale (VAS); secondary outcome measures were pain over 6 hours, parenteral narcotic use over 24 hours, duration of hospitalization, blood pressure, oxygen saturation, and methemoglobin concentration. \n RESULTS Preinhalation VAS pain scores were similar in the INO and placebo groups (P =.80). The decrease in VAS pain scores at 4 hours was 2.0 cm in the INO group and 1.2 cm in the placebo group (P =.37). Repeated-measures analysis of variance for hourly pain scores showed a 1-cm/h greater reduction in the INO group than the placebo group (P =.02). Morphine use over 6 hours was significantly less in the INO group (mean cumulative use, 0.29 vs 0.44 mg/kg; P =.03) but was not different over 4 hours (0.26 vs 0.32 mg/kg; P =.21) or 24 hours (0.63 vs 0.91 mg/kg; P =.15). Duration of hospitalization was 78 and 100 hours in the INO and placebo groups, respectively (P =.19). No INO toxicity was observed. \n CONCLUSIONS Results of this exploratory study suggest that INO may be beneficial for acute vaso-occlusive crisis. These preliminary results warrant further investigation.", "title": "Preliminary assessment of inhaled nitric oxide for acute vaso-occlusive crisis in pediatric patients with sickle cell disease." }, { "docid": "2485101", "text": "The recent success of genome-wide association studies (GWAS) is now followed by the challenge to determine how the reported susceptibility variants mediate complex traits and diseases. Expression quantitative trait loci (eQTLs) have been implicated in disease associations through overlaps between eQTLs and GWAS signals. However, the abundance of eQTLs and the strong correlation structure (LD) in the genome make it likely that some of these overlaps are coincidental and not driven by the same functional variants. In the present study, we propose an empirical methodology, which we call Regulatory Trait Concordance (RTC) that accounts for local LD structure and integrates eQTLs and GWAS results in order to reveal the subset of association signals that are due to cis eQTLs. We simulate genomic regions of various LD patterns with both a single or two causal variants and show that our score outperforms SNP correlation metrics, be they statistical (r(2)) or historical (D'). Following the observation of a significant abundance of regulatory signals among currently published GWAS loci, we apply our method with the goal to prioritize relevant genes for each of the respective complex traits. We detect several potential disease-causing regulatory effects, with a strong enrichment for immunity-related conditions, consistent with the nature of the cell line tested (LCLs). Furthermore, we present an extension of the method in trans, where interrogating the whole genome for downstream effects of the disease variant can be informative regarding its unknown primary biological effect. We conclude that integrating cellular phenotype associations with organismal complex traits will facilitate the biological interpretation of the genetic effects on these traits.", "title": "Candidate Causal Regulatory Effects by Integration of Expression QTLs with Complex Trait Genetic Associations" }, { "docid": "198133135", "text": "AIMS Trabecular bone score (TBS) is a surrogate indicator of bone microarchitecture. The presenent study sought to examine the association between type 2 diabetes (T2D) and trabecular bone score (TBS) in adult Vietnamese men and women. \n METHODS The study was part of the Vietnam Osteoporosis Study, in which 2702 women and 1398 men aged ≥30 yrs were recruited from the general community in Ho Chi Minh City. HbA1c levels were measured by the ADAMS™ A1c HA-8160 (Arkray, Kyoto, Japan), and classified into 3 groups: normal if HbA1c <5.7%; pre-diabetes (5.7 to 6.4%); and diabetes (>6.4%). TBS was evaluated by iNsight Software, version 2.1 (Medimaps, Merignac, France) on lumbar spine BMD scan (Hologic Horizon). Differences in TBS between diabetic status were analyzed by the multivariable regression model with adjustment for age and body mass index. \n RESULTS The prevalence of pre-diabetes and diabetes in men and women was 30.2% and 8.3%, respectively. In women, TBS was lower in pre-diabetes (-0.02; P<0.001) and diabetes (-0.02; P<0.001) compared with normal individuals. In men, there was no statistically significant difference in TBS between diabetic status. Moreover, TBS was significantly inversely correlated with HbA1c levels in women (P = 0.01), but not in men (P = 0.89). \n CONCLUSION Women, but not men, with type 2 diabetes and pre-diabetes have lower TBS than individuals without diabetes. These data suggest that diabetes and prediabetes are associated with deterioration of bone microarchitecture.", "title": "Association between pre-diabetes, type 2 diabetes and trabecular bone score: The Vietnam Osteoporosis Study." } ]
500
Headaches are correlated with cognitive impairment.
[ { "docid": "17930286", "text": "OBJECTIVE To evaluate the association of overall and specific headaches with volume of white matter hyperintensities, brain infarcts, and cognition. \n DESIGN Population based, cross sectional study. \n SETTING Epidemiology of Vascular Ageing study, Nantes, France. \n PARTICIPANTS 780 participants (mean age 69, 58.5% women) with detailed headache assessment. \n MAIN OUTCOME MEASURES Brain scans were evaluated for volume of white matter hyperintensities (by fully automated imaging processing) and for classification of infarcts (by visual reading with a standardised assessment grid). Cognitive function was assessed by a battery of tests including the mini-mental state examination. \n RESULTS 163 (20.9%) participants reported a history of severe headache and 116 had migraine, of whom 17 (14.7%) reported aura symptoms. An association was found between any history of severe headache and increasing volume of white matter hyperintensities. The adjusted odds ratio of being in the highest third for total volume of white matter hyperintensities was 2.0 (95% confidence interval 1.3 to 3.1, P for trend 0.002) for participants with any history of severe headache when compared with participants without severe headache being in the lowest third. The association pattern was similar for all headache types. Migraine with aura was the only headache type strongly associated with volume of deep white matter hyperintensities (highest third odds ratio 12.4, 1.6 to 99.4, P for trend 0.005) and with brain infarcts (3.4, 1.2 to 9.3). The location of infarcts was predominantly outside the cerebellum and brain stem. Evidence was lacking for cognitive impairment for any headache type with or without brain lesions. \n CONCLUSIONS In this population based study, any history of severe headache was associated with an increased volume of white matter hyperintensities. Migraine with aura was the only headache type associated with brain infarcts. Evidence that headache of any type by itself or in combination with brain lesions was associated with cognitive impairment was lacking.", "title": "Headache, migraine, and structural brain lesions and function: population based Epidemiology of Vascular Ageing-MRI study" } ]
[ { "docid": "24865781", "text": "Forty-one recurrent tension headache sufferers were randomly assigned to either cognitive-behavioral therapy (administered in a primarily home-based treatment protocol) or to amitriptyline therapy (with dosage individualized at 25, 50, or 75 mg/day). Cognitive-behavioral therapy and amitriptyline each yielded clinically significant improvements in headache activity, both when improvement was assessed with patient daily recordings (56% and 27% reduction in headache index, respectively), and when improvement was assessed with neurologist ratings of clinical improvement (94% and 69% of patients rated at least moderately improved, respectively). In instances where differences in treatment effectiveness were observed (headache index, somatic complaints, perceptions of control of headache activity), cognitive-behavioral therapy yielded somewhat more positive outcomes than did amitriptyline. Neither treatment, however, eliminated headache problems.", "title": "A comparison of pharmacological (amitriptyline HCL) and nonpharmacological (cognitive-behavioral) therapies for chronic tension headaches." }, { "docid": "6191684", "text": "CONTEXT Chronic tension-type headaches are characterized by near-daily headaches and often are difficult to manage in primary practice. Behavioral and pharmacological therapies each appear modestly effective, but data are lacking on their separate and combined effects. \n OBJECTIVE To evaluate the clinical efficacy of behavioral and pharmacological therapies, singly and combined, for chronic tension-type headaches. \n DESIGN AND SETTING Randomized placebo-controlled trial conducted from August 1995 to January 1998 at 2 outpatient sites in Ohio. \n PARTICIPANTS Two hundred three adults (mean age, 37 years; 76% women) with diagnosis of chronic tension-type headaches (mean, 26 headache d/mo). \n INTERVENTIONS Participants were randomly assigned to receive tricyclic antidepressant (amitriptyline hydrochloride, up to 100 mg/d, or nortriptyline hydrochloride, up to 75 mg/d) medication (n = 53), placebo (n = 48), stress management (eg, relaxation, cognitive coping) therapy (3 sessions and 2 telephone contacts) plus placebo (n = 49), or stress management therapy plus antidepressant medication (n = 53). \n MAIN OUTCOME MEASURES Monthly headache index scores calculated as the mean of pain ratings (0-10 scale) recorded by participants in a daily diary 4 times per day; number of days per month with at least moderate pain (pain rating >/=5), analgesic medication use, and Headache Disability Inventory scores, compared by intervention group. \n RESULTS Tricyclic antidepressant medication and stress management therapy each produced larger reductions in headache activity, analgesic medication use, and headache-related disability than placebo, but antidepressant medication yielded more rapid improvements in headache activity. Combined therapy was more likely to produce clinically significant (>/=50%) reductions in headache index scores (64% of participants) than antidepressant medication (38% of participants; P =.006), stress management therapy (35%; P =.003), or placebo (29%; P =.001). On other measures the combined therapy and its 2 component therapies produced similar outcomes. \n CONCLUSIONS Our results indicate that antidepressant medication and stress management therapy are each modestly effective in treating chronic tension-type headaches. Combined therapy may improve outcome relative to monotherapy.", "title": "Management of chronic tension-type headache with tricyclic antidepressant medication, stress management therapy, and their combination: a randomized controlled trial." }, { "docid": "21274919", "text": "OBJECTIVE Chronic physical comorbidity is common in dementia. However, there is an absence of evidence to support good practice guidelines for attention to these problems. We aimed to study the extent of this comorbidity and its impact on cognitive function and disability in population-based studies in low and middle income countries, where chronic diseases and impairments are likely to be both common and undertreated. \n METHODS A multicentre cross-sectional survey of all over 65 year old residents (n = 15 022) in 11 catchment areas in China, India, Cuba, Dominican Republic, Venezuela, Mexico and Peru. We estimated the prevalence of pain, incontinence, hearing and visual impairments, mobility impairment and undernutrition according to the presence of dementia and its severity, and, among those with dementia, the independent contribution of these impairments to cognitive function and disability, adjusting for age, gender, education and dementia severity. \n RESULTS Incontinence, hearing impairment, mobility impairment and undernutrition were consistently linearly associated with the presence of dementia and its severity across regions. Among people with dementia, incontinence, hearing impairment and mobility impairment were independently associated with disability in all regions while the contributions of pain, visual impairment and undernutrition were inconsistent. Only hearing impairment made a notable independent contribution to cognitive impairment. \n CONCLUSIONS There is an urgent need for clinical trials of the feasibility, efficacy and cost-effectiveness of regular physical health checks and remediation of identified pathologies, given the considerable comorbidity identified in our population based studies, and the strong evidence for independent impact upon functioning.", "title": "The association between common physical impairments and dementia in low and middle income countries, and, among people with dementia, their association with cognitive function and disability. A 10/66 Dementia Research Group population-based study." }, { "docid": "24285403", "text": "OBJECTIVES To determine whether the ankle brachial index (ABI, a marker of generalized atherosclerosis) is associated with cognitive impairment after 10 years in older people. \n DESIGN Cohort study (Edinburgh Artery Study). \n SETTING Eleven general practices in Edinburgh, Scotland. \n PARTICIPANTS Seven hundred seventeen men and women aged 55 to 74 from the general population, followed for 10 years. \n MEASUREMENTS ABI measured at baseline and major cognitive functions (including premorbid function using the National Adult Reading Test, NART) tested after 10 years. \n RESULTS After adjustment for age and sex, a low ABI was associated with lower scoring (bottom tertile vs top tertile) on Raven's Matrices (odds ratio (OR)=1.6, 95% confidence interval (CI) =1.0-2.6), Verbal Fluency (OR =1.8, 95% CI =1.1-3.0), and Digit Symbol Test (OR =2.3, 95% CI =1.3-4.2), suggesting that the ABI is predictive of poorer performance in nonverbal reasoning, verbal fluency, and information processing speed. The association between ABI and the Digit Symbol Test remained significant after further adjustment for premorbid cognitive function (tested using the NART), suggesting that the ABI is also predictive of decline in information processing speed (from premorbid ability to that measured here in older age). \n CONCLUSION The ABI may be useful in identifying older individuals at higher risk of cognitive impairment. In the future, preventive measures developed to target individuals with a low ABI should consider measures to reduce vascular-related cognitive decline as well as cardiovascular events, in an effort to reduce the incidence and consequences of subsequent cognitive impairment and dementia.", "title": "Ankle brachial index as a predictor of cognitive impairment in the general population: ten-year follow-up of the Edinburgh Artery Study." }, { "docid": "12667988", "text": "Twenty-seven migraine headache patients were divided into three equal groups which received thermal biofeedback, frontalis EMG biofeedback, or relaxation training. Training was given under \"massed\" practice conditions (nine sessions per week) and consisted of 18 training sessions and six test-generalisation sessions. While improvements in headaches were observed in all groups, the best improvements took place in the thermal biofeedback group, which had almost complete elimination of migraine attacks by the end of training, and maintained that performance as long as six months after training. Examination of the patterns of skin temperature and EMG changes in the three groups over the course of training also points to a relationship between skin temperature control and reduction in migraine headache symptomatology, and suggests that this relationship is worthy of further investigation.", "title": "Biofeedback and relaxation in the treatment of migraine headaches: comparative effectiveness and physiological correlates." }, { "docid": "20471181", "text": "Despite widespread use of antiretroviral therapies to control replication of the human immunodeficiency virus (HIV), dysfunctions of cognition that are collectively termed HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of those infected by the virus. Currently there is not a biomarker that can identify HIV-infected people who are at risk for the development of HAND. Previous studies have identified particular sphingolipid species that are dysregulated in HAND, but the neurocognitive correlates of these biochemical findings are not currently understood. To address this question, we compared cerebrospinal fluid (CSF) levels of sphingomyelin, ceramide, and sterol species with performance on standard neurological tests designed to assess the function of multiple cognitive and motor domains in HIV-infected subjects. We found that sphingomyelin:ceramide ratios for acyl chain lengths of C16∶0, C18∶0, C22∶0, and C24∶0 were associated with worse performance on several indices of memory. The most striking finding was for the acyl chain of C18∶0 that consistently associatedwith performance onmultiple tests of memory. These findings suggest that the sphingomyelin:ceramide ratio for C18∶0 may be a reasonable surrogate marker for memory dysfunction in HIV-infected subjects.", "title": "Disturbance in cerebral spinal fluid sphingolipid content is associated with memory impairment in subjects infected with the human immunodeficiency virus" }, { "docid": "7997337", "text": "There is mounting evidence showing that the structural and molecular organization of synaptic connections is affected both in human patients and in animal models of neurological and psychiatric diseases. As a consequence of these experimental observations, it has been introduced the concept of synapsopathies, a notion describing brain disorders of synaptic function and plasticity. A close correlation between neurological diseases and synaptic abnormalities is especially relevant for those syndromes including also mental retardation in their symptomatology, such as Rett syndrome (RS). RS (MIM312750) is an X-linked dominant neurological disorder that is caused in the majority of cases by mutations in methyl-CpG-binding protein 2 (MeCP2). This review will focus on the current knowledge of the synaptic alterations produced by mutations of the gene MeCP2 in mouse models of RS and will highlight prospects experimental therapies currently in use. Different experimental approaches have revealed that RS could be the consequence of an impairment in the homeostasis of synaptic transmission in specific brain regions. Indeed, several forms of experience-induced neuronal plasticity are impaired in the absence of MeCP2. Based on the results presented in this review, it is reasonable to propose that understanding how the brain is affected by diseases such as RS is at reach. This effort will bring us closer to identify the neurobiological bases of human cognition.", "title": "Synaptic Determinants of Rett Syndrome" }, { "docid": "7239105", "text": "Remarkable advances have been made in recent years towards therapeutics for cognitive impairment in individuals with Down syndrome (DS) by using mouse models. In this review, we briefly describe the phenotypes of mouse models that represent outcome targets for drug testing, the behavioral tests used to assess impairments in cognition and the known mechanisms of action of several drugs that are being used in preclinical studies or are likely to be tested in clinical trials. Overlaps in the distribution of targets and in the pathways that are affected by these diverse drugs in the trisomic brain suggest new avenues for DS research and drug development.", "title": "The use of mouse models to understand and improve cognitive deficits in Down syndrome" }, { "docid": "10893238", "text": "BACKGROUND Frail and dependent older people in resource-poor settings are poorly served by health systems that lack outreach capacity. The COPE (Caring for Older PEople) multidimensional assessment tool is designed to help community health workers (CHWs) identify clinically significant impairments and deliver evidence-based interventions METHODS Older people (n = 150) identified by CHWs as frail or dependent, were assessed at home by the CHW using the structured COPE assessment tool, generating information on impairments in nutrition, mobility, vision, hearing, continence, cognition, mood and behaviour. The older people were reassessed by local physicians who reached a clinical judgment regarding the presence or absence of the same impairments based upon clinical examination guided by the EASY-Care assessment tool. \n RESULTS The COPE tool was considered easy to administer, and gave CHWs a sense of empowerment to understand and act upon the needs of older people. Agreement between COPE assessment by CHW and clinician assessors was modest (ranged from 45.8 to 91.3 %) for most impairments. However, the prevalence of impairments was generally higher according to clinicians, particularly for visual impairment (98.7 vs 45.8 %), cognitive impairment (78.4 vs. 38.2 %) and depression (82.0 vs. 59.9 %). Most cases identified by WHO-COPE were clinician confirmed (positive predictive values - 72.2 to 98.5 %), and levels of disability and needs for care among those identified by COPE were higher than those additionally identified by the clinician alone. \n CONCLUSIONS The COPE is a feasible tool for the identification of specific impairments in frail dependent older people in the community. Those identified are likely to be confirmed as having clinically relevant problems by clinicians working in the same service, and the COPE may be particularly effective at targeting attention upon those with the most substantial unmet needs.", "title": "Identifying common impairments in frail and dependent older people: validation of the COPE assessment for non-specialised health workers in low resource primary health care settings" }, { "docid": "5137019", "text": "HIV-1 replication within macrophages of the CNS often results in cognitive and motor impairment, which is known as HIV-associated dementia (HAD) in its most severe form. IFN-beta suppresses viral replication within these cells during early CNS infection, but the effect is transient. HIV-1 eventually overcomes this protective innate immune response to resume replication through an unknown mechanism, initiating the progression toward HAD. In this article, we show that Suppressor of Cytokine Signaling (SOCS)3, a molecular inhibitor of IFN signaling, may allow HIV-1 to evade innate immunity within the CNS. We found that SOCS3 is elevated in an in vivo SIV/macaque model of HAD and that the pattern of expression correlates with recurrence of viral replication and onset of CNS disease. In vitro, the HIV-1 regulatory protein transactivator of transcription induces SOCS3 in human and murine macrophages in a NF-kappaB-dependent manner. SOCS3 expression attenuates the response of macrophages to IFN-beta at proximal levels of pathway activation and downstream antiviral gene expression and consequently overcomes the inhibitory effect of IFN-beta on HIV-1 replication. These studies indicate that SOCS3 expression, induced by stimuli present in the HIV-1-infected brain, such as transactivator of transcription, inhibits antiviral IFN-beta signaling to enhance HIV-1 replication in macrophages. This consequence of SOCS3 expression in vitro, supported by a correlation with increased viral load and onset of CNS disease in vivo, suggests that SOCS3 may allow HIV-1 to evade the protective innate immune response within the CNS, allowing the recurrence of viral replication and, ultimately, promoting progression toward HAD.", "title": "Suppressor of cytokine signaling 3 inhibits antiviral IFN-beta signaling to enhance HIV-1 replication in macrophages." }, { "docid": "7965928", "text": "IMPORTANCE Concussion and subconcussive impacts have been associated with short-term disrupted cognitive performance in collegiate athletes, but there are limited data on their long-term neuroanatomic and cognitive consequences. \n OBJECTIVE To assess the relationships of concussion history and years of football experience with hippocampal volume and cognitive performance in collegiate football athletes. \n DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study conducted between June 2011 and August 2013 at a US psychiatric research institute specializing in neuroimaging among collegiate football players with a history of clinician-diagnosed concussion (n = 25), collegiate football players without a history of concussion (n = 25), and non-football-playing, age-, sex-, and education-matched healthy controls (n = 25). EXPOSURES History of clinician-diagnosed concussion and years of football experience. \n MAIN OUTCOMES AND MEASURES High-resolution anatomical magnetic resonance imaging was used to quantify brain volumes. Baseline scores on a computerized concussion-related cognitive battery were used for cognitive assessment in athletes. \n RESULTS Players with and without a history of concussion had smaller hippocampal volumes relative to healthy control participants (with concussion: t48 = 7.58; P < .001; mean difference, 1788 μL; 95% CI, 1317-2258 μL; without concussion: t48 = 4.35; P < .001, mean difference, 1027 μL; 95% CI, 556-1498 μL). Players with a history of concussion had smaller hippocampal volumes than players without concussion (t48 = 3.15; P < .001; mean difference, 761 μL; 95% CI, 280-1242 μL). In both athlete groups, there was a statistically significant inverse relationship between left hippocampal volume and number of years of football played (t46 = -3.62; P < .001; coefficient = -43.54; 95% CI, -67.66 to -19.41). Behavioral testing demonstrated no differences between athletes with and without a concussion history on 5 cognitive measures but did show an inverse correlation between years of playing football and reaction time (ρ42 = -0.43; 95% CI, -0.46 to -0.40; P = .005). \n CONCLUSIONS AND RELEVANCE Among a group of collegiate football athletes, there was a significant inverse relationship of concussion and years of football played with hippocampal volume. Years of football experience also correlated with slower reaction time. Further research is needed to determine the temporal relationships of these findings.", "title": "Relationship of collegiate football experience and concussion with hippocampal volume and cognitive outcomes." }, { "docid": "3202143", "text": "Of all the age-related declines, memory loss is one of the most devastating. While conditions that increase longevity have been identified, the effects of these longevity-promoting factors on learning and memory are unknown. Here we show that the C. elegans Insulin/IGF-1 receptor mutant daf-2 improves memory performance early in adulthood and maintains learning ability better with age but, surprisingly, demonstrates no extension in long-term memory with age. By contrast, eat-2 mutants, a model of Dietary Restriction (DR), exhibit impaired long-term memory in young adulthood but maintain this level of memory longer with age. We find that crh-1, the C. elegans homolog of the CREB transcription factor, is required for long-term associative memory, but not for learning or short-term memory. The expression of crh-1 declines with age and differs in the longevity mutants, and CREB expression and activity correlate with memory performance. Our results suggest that specific longevity treatments have acute and long-term effects on cognitive functions that decline with age through their regulation of rate-limiting genes required for learning and memory.", "title": "Insulin Signaling and Dietary Restriction Differentially Influence the Decline of Learning and Memory with Age" }, { "docid": "24510595", "text": "PURPOSE Patients with daily or near-daily headaches are commonly seen in neurology practices and in headache subspecialty centers, but there is little information on the prevalence of this condition in the general population. We present the first US-based study describing the prevalence and characteristics of frequent headache in the general population. \n METHODS In Baltimore County, Maryland, 13 343 individuals 18 to 65 years of age were selected by random-digit dialing and interviewed by telephone about their headaches. Subjects reporting 180 or more headaches per year were classified as having frequent headache. Three mutually exclusive subtypes of frequent headache were identified: frequent headache with migrainous features, chronic tension-type headache, and unclassified frequent headache. \n RESULTS The overall prevalence of frequent headache was 4.1% (5.0% female, 2.8% male; 1.8:1 female to male ratio). Frequent headache was 33% more common in Caucasians (4.4%) than in African Americans (3.3%). In both males and females, prevalence was highest in the lowest educational category. Among frequent headache sufferers, more than half (52% female, 56% male) met criteria for chronic tension-type headache, almost one third (33% female, 25% male) met criteria for frequent headache with migrainous features, and the remainder (15% female, 19% male) were unclassified. Overall, 30% of female and 25% of male frequent headache sufferers met International Headache Society (IHS) criteria for migraine (with or without aura). \n CONCLUSIONS Frequent headache is common in the general population and is more prevalent in Caucasians and in those with less than a high school education. Chronic tension-type headache is more common than frequent headache with migrainous features, though the latter is more disabling. Although more common in females than males, the female preponderance of frequent headache is less marked than in migraine. The sex ratio varies by frequent headache subtype.", "title": "Prevalence of frequent headache in a population sample." }, { "docid": "14079881", "text": "OBJECTIVE To determine whether perceived age correlates with survival and important age related phenotypes. \n DESIGN Follow-up study, with survival of twins determined up to January 2008, by which time 675 (37%) had died. \n SETTING Population based twin cohort in Denmark. \n PARTICIPANTS 20 nurses, 10 young men, and 11 older women (assessors); 1826 twins aged >or=70. \n MAIN OUTCOME MEASURES Assessors: perceived age of twins from photographs. Twins: physical and cognitive tests and molecular biomarker of ageing (leucocyte telomere length). \n RESULTS For all three groups of assessors, perceived age was significantly associated with survival, even after adjustment for chronological age, sex, and rearing environment. Perceived age was still significantly associated with survival after further adjustment for physical and cognitive functioning. The likelihood that the older looking twin of the pair died first increased with increasing discordance in perceived age within the twin pair-that is, the bigger the difference in perceived age within the pair, the more likely that the older looking twin died first. Twin analyses suggested that common genetic factors influence both perceived age and survival. Perceived age, controlled for chronological age and sex, also correlated significantly with physical and cognitive functioning as well as with leucocyte telomere length. \n CONCLUSION Perceived age-which is widely used by clinicians as a general indication of a patient's health-is a robust biomarker of ageing that predicts survival among those aged >or=70 and correlates with important functional and molecular ageing phenotypes.", "title": "Perceived age as clinically useful biomarker of ageing: cohort study." }, { "docid": "14606752", "text": "OBJECTIVE To evaluate the efficacy and relative adverse effects of tricyclic antidepressants in the treatment of migraine, tension-type, and mixed headaches. \n DESIGN Meta-analysis. \n DATA SOURCES Medline, Embase, the Cochrane Trials Registry, and PsycLIT. Studies reviewed Randomised trials of adults receiving tricyclics as only treatment for a minimum of four weeks. \n DATA EXTRACTION Frequency of headaches (number of headache attacks for migraine and number of days with headache for tension-type headaches), intensity of headache, and headache index. \n RESULTS 37 studies met the inclusion criteria. Tricyclics significantly reduced the number of days with tension-type headache and number of headache attacks from migraine than placebo (average standardised mean difference -1.29, 95% confidence interval -2.18 to -0.39 and -0.70, -0.93 to -0.48) but not compared with selective serotonin reuptake inhibitors (-0.80, -2.63 to 0.02 and -0.20, -0.60 to 0.19). The effect of tricyclics increased with longer duration of treatment (β=-0.11, 95% confidence interval -0.63 to -0.15; P<0.0005). Tricyclics were also more likely to reduce the intensity of headaches by at least 50% than either placebo (tension-type: relative risk 1.41, 95% confidence interval 1.02 to 1.89; migraine: 1.80, 1.24 to 2.62) or selective serotonin reuptake inhibitors (1.73, 1.34 to 2.22 and 1.72, 1.15 to 2.55). Tricyclics were more likely to cause adverse effects than placebo (1.53, 95% confidence interval 1.11 to 2.12) and selective serotonin reuptake inhibitors (2.22, 1.52 to 3.32), including dry mouth (P<0.0005 for both), drowsiness (P<0.0005 for both), and weight gain (P<0.001 for both), but did not increase dropout rates (placebo: 1.22, 0.83 to 1.80, selective serotonin reuptake inhibitors: 1.16, 0.81 to 2.97). \n CONCLUSIONS Tricyclic antidepressants are effective in preventing migraine and tension-type headaches and are more effective than selective serotonin reuptake inhibitors, although with greater adverse effects. The effectiveness of tricyclics seems to increase over time.", "title": "Tricyclic antidepressants and headaches: systematic review and meta-analysis" }, { "docid": "44830890", "text": "OBJECTIVE To investigate the frequency of depressive and anxiety disorders in patients with chronic daily headache. \n BACKGROUND There is a lack of data in the literature on the extent of psychiatric comorbidity in patients with different subtypes of chronic daily headache. \n METHODS We recruited consecutive patients with chronic daily headache seen in a headache clinic from November 1998 to December 1999. The subtypes of chronic daily headache were classified according to the criteria proposed by Silberstein et al. A psychiatrist evaluated the patients according to the structured Mini-International Neuropsychiatric Interview to assess the comorbidity of depressive and anxiety disorders. \n RESULTS Two hundred sixty-one patients with chronic daily headache were recruited. The mean age was 46 years, and 80% were women. Transformed migraine was diagnosed in 152 patients (58%) and chronic tension-type headache in 92 patients (35%). Seventy-eight percent of patients with transformed migraine had psychiatric comorbidity, including major depression (57%), dysthymia (11%), panic disorder (30%), and generalized anxiety disorder (8%). Sixty-four percent of patients with chronic tension-type headache had psychiatric diagnoses, including major depression (51%), dysthymia (8%), panic disorder (22%), and generalized anxiety disorder (1%). The frequency of anxiety disorders was significantly higher in patients with transformed migraine after controlling for age and sex (P =.02). Both depressive and anxiety disorders were significantly more frequent in women. \n CONCLUSION Psychiatric comorbidity, especially major depression and panic disorders, was highly prevalent in patients with chronic daily headache seen in a headache clinic. These results demonstrate that women and patients with transformed migraine are at higher risk of psychiatric comorbidity.", "title": "Comorbidity of depressive and anxiety disorders in chronic daily headache and its subtypes." }, { "docid": "22995579", "text": "The tricyclic antidepressant, amitriptyline, is an effective drug for the treatment of chronic tension-type headache and for other chronic pain syndromes, but it is also effective in the prophylaxis of an episodic type of headache such as migraine. However, its efficacy in episodic tension-type headache has not yet been clarified. We compared the efficacy of amitriptyline (25 mg/day) in 82 nondepressed patients with either chronic or episodic tension-type headache in an open-label study. Amitriptyline significantly reduced (P < 0.05) frequency and duration of headache as well as analgesic consumption in chronic, but not in episodic, tension-type headache. Further placebo-controlled trials, possibly with higher doses of amitriptyline, might confirm if the different pattern of response to amitriptyline can be explained in terms of different involvement of central nociception and of peripheral myofascial factors in the chronic and in the episodic forms of tension-type headache.", "title": "Amitriptyline is effective in chronic but not in episodic tension-type headache: pathogenetic implications." }, { "docid": "23865182", "text": "Amitriptyline is the medication of first choice in the treatment of chronic tension-type headache. In 197 patients with chronic tension-type headache (87M and 110F with a mean age of 38 +/- 13 (18-68)) efficacy and tolerability of 60-90 mg amitriptylinoxide (AO) were compared with 50-75 mg amitriptyline (AM) and placebo (PL) in a double-blind, parallel-group trial consisting of a four weeks' baseline phase and 12 weeks of treatment. The primary study endpoint was a reduction of at least 50% of the product of headache duration and frequency and a reduction of at least 50% in headache intensity. Statistics used were Fisher's exact test and analysis of variance. No significant difference emerged between AO, AM and PL with respect to the primary study endpoint. Treatment response occurred in 30.3% of the AO, 22.4% of the AM and 21.9% of the PL group. A reduction in headache duration and frequency of at least 50% was found in 39.4% on AO, in 25.4% on AM and in 26.6% on PL (PAO-PL = .1384, PAM-PL = 1.000, PAO-AM = .0973). A reduction in headache intensity of at least 50% was found in 31.8% on AO, in 26.9% on AM and in 26.6% on PL (PAO-PL = .5657, PAM-PL = 1.000, PAO-AM = .5715). Trend analysis with respect to a significant reduction of headache intensity (p < 0.05) and the product of headache duration and frequency revealed a superior effect of AO.(ABSTRACT TRUNCATED AT 250 WORDS)", "title": "Efficacy and tolerability of amitriptylinoxide in the treatment of chronic tension-type headache: a multi-centre controlled study." }, { "docid": "1642727", "text": "CONTEXT Many observational studies have shown that physical activity reduces the risk of cognitive decline; however, evidence from randomized trials is lacking. \n OBJECTIVE To determine whether physical activity reduces the rate of cognitive decline among older adults at risk. \n DESIGN AND SETTING Randomized controlled trial of a 24-week physical activity intervention conducted between 2004 and 2007 in metropolitan Perth, Western Australia. Assessors of cognitive function were blinded to group membership. \n PARTICIPANTS We recruited volunteers who reported memory problems but did not meet criteria for dementia. Three hundred eleven individuals aged 50 years or older were screened for eligibility, 89 were not eligible, and 52 refused to participate. A total of 170 participants were randomized and 138 participants completed the 18-month assessment. \n INTERVENTION Participants were randomly allocated to an education and usual care group or to a 24-week home-based program of physical activity. \n MAIN OUTCOME MEASURE Change in Alzheimer Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores (possible range, 0-70) over 18 months. \n RESULTS In an intent-to-treat analysis, participants in the intervention group improved 0.26 points (95% confidence interval, -0.89 to 0.54) and those in the usual care group deteriorated 1.04 points (95% confidence interval, 0.32 to 1.82) on the ADAS-Cog at the end of the intervention. The absolute difference of the outcome measure between the intervention and control groups was -1.3 points (95% confidence interval,-2.38 to -0.22) at the end of the intervention. At 18 months, participants in the intervention group improved 0.73 points (95% confidence interval, -1.27 to 0.03) on the ADAS-Cog, and those in the usual care group improved 0.04 points (95% confidence interval, -0.46 to 0.88). Word list delayed recall and Clinical Dementia Rating sum of boxes improved modestly as well, whereas word list total immediate recall, digit symbol coding, verbal fluency, Beck depression score, and Medical Outcomes 36-Item Short-Form physical and mental component summaries did not change significantly. \n CONCLUSIONS In this study of adults with subjective memory impairment, a 6-month program of physical activity provided a modest improvement in cognition over an 18-month follow-up period. \n TRIAL REGISTRATION anzctr.org.au Identifier: ACTRN12605000136606.", "title": "Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial." } ]
504
Healthy volunteers exhibit rapid and transient increase of cellular ATP after being bolus-injected with fructose.
[ { "docid": "10883736", "text": "CONTEXT The mechanisms that drive progression from fatty liver to steatohepatitis and cirrhosis are unknown. In animal models, obese mice with fatty livers are vulnerable to liver adenosine triphosphate (ATP) depletion and necrosis, suggesting that altered hepatic energy homeostasis may be involved. \n OBJECTIVE To determine if patients with fatty liver disease exhibit impaired recovery from hepatic ATP depletion. \n DESIGN Laboratory analysis of liver ATP stores monitored by nuclear magnetic resonance spectroscopy before and after transient hepatic ATP depletion was induced by fructose injection. The study was conducted between July 15 and August 30, 1998. \n SETTING University hospital. \n PATIENTS Eight consecutive adults with biopsy-proven nonalcoholic steatohepatitis and 7 healthy age- and sex-matched controls. \n MAIN OUTCOME MEASURE Level of ATP 1 hour after fructose infusion in patients vs controls. \n RESULTS In patients, serum aminotransferase levels were increased (P = .02 vs controls); albumin and bilirubin values were normal and clinical evidence of portal hypertension was absent in both groups. However, 2 patients had moderate fibrosis and 1 had cirrhosis on liver biopsy. Mean serum glucose, cholesterol, and triglyceride levels were similar between groups but patients weighed significantly more than controls (P = .02). Liver ATP levels were similar in the 2 groups before fructose infusion and decreased similarly in both after fructose infusion (P = .01 vs initial ATP levels). However, controls replenished their hepatic ATP stores during the 1-hour follow-up period (P<.02 vs minimum ATP) but patients did not. Hence, patients' hepatic ATP levels were lower than those of controls at the end of the study (P = .04). Body mass index (BMI) correlated inversely with ATP recovery, even in controls (R = -0.768; P = .07). Although BMI was greater in patients than controls (P = .02) and correlated strongly with fatty liver and serum aminotransferase elevations, neither of the latter 2 parameters nor the histologic severity of fibrosis strongly predicted hepatic ATP recovery. \n CONCLUSIONS These data suggest that recovery from hepatic ATP depletion becomes progressively less efficient as body mass increases in healthy controls and is severely impaired in patients with obesity-related nonalcoholic steatohepatitis.", "title": "Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study." } ]
[ { "docid": "38401028", "text": "1. The changes in the metabolite content in freeze-clamped livers of fed rats occurring on perfusion with 10mm-d-fructose have been examined. 2. The most striking effects of fructose were an accumulation of fructose 1-phosphate, as already known, up to 8.7mumol/g of liver within 10min, a loss of total adenine nucleotides (up to 35% after 40min) with a decrease in the ATP content to 23% within 10min, a sevenfold rise in the concentration of IMP to 1.1mumol/g and an eightfold rise of alpha-glycerophosphate to 1.1mumol/g. 3. There was a transient decrease in P(i) from 4.2 to 1.7mumol/g. Within 40min the P(i) content recovered to the normal value, probably because of an uptake of P(i) from the perfusion medium. 4. The degradation of the adenine nucleotides beyond the stage of AMP can be accounted for by the decrease of ATP and P(i). As ATP inhibits 5-nucleotidase, and as P(i) inhibits AMP deaminase any AMP arising in the tissue is liable to undergo dephosphorylation or deamination under the conditions occurring after fructose loading. 5. The content of lactate increased to 4.3mumol/g at 80min; pyruvate also increased and the [lactate]/[pyruvate] ratio remained within physiological limits. 6. The concentration of free fructose within the liver remained much below that in the perfusion medium, indicating that the rate of penetration of fructose into the tissue was lower than the rate of utilization. 7. The fission of fructose 1-phosphate by liver aldolase is inhibited by several phosphorylated intermediates, especially by IMP. This inhibition is competitive with a K(i) of 0.1mm. 8. The maximal rates of the enzymes synthesizing and splitting fructose 1-phosphate are about equal. The accumulation of fructose 1-phosphate on fructose loading is due to the inhibition of the fission of fructose 1-phosphate by the IMP arising from the degradation of the adenine nucleotides.", "title": "The cause of hepatic accumulation of fructose 1-phosphate on fructose loading." }, { "docid": "27550580", "text": "OBJECTIVES The aim of this study was to determine the accuracy of the contrast \"bolus only\" T1 mapping cardiac magnetic resonance (CMR) technique for measuring myocardial extracellular volume fraction (ECV). \n BACKGROUND Myocardial ECV can be measured with T1 mapping before and after contrast agent if the contrast agent distribution between blood/myocardium is at equilibrium. Equilibrium distribution can be achieved with a primed contrast infusion (equilibrium contrast-CMR [EQ-CMR]) or might be approximated by the dynamic equilibration achieved by delayed post-bolus measurement. This bolus only approach is highly attractive, but currently limited data support its use. We compared the bolus only technique with 2 independent standards: collagen volume fraction (CVF) from myocardial biopsy in aortic stenosis (AS); and the infusion technique in 5 representative conditions. \n METHODS One hundred forty-seven subjects were studied: healthy volunteers (n = 50); hypertrophic cardiomyopathy (n = 25); severe AS (n = 22); amyloid (n = 20); and chronic myocardial infarction (n = 30). Bolus only (at 15 min) and infusion ECV measurements were performed and compared. In 18 subjects with severe AS the results were compared with histological CVF. \n RESULTS The ECV by both techniques correlated with histological CVF (n = 18, r² = 0.69, p < 0.01 vs. r² = 0.71, p < 0.01, p = 0.42 for comparison). Across health and disease, there was strong correlation between the techniques (r² = 0.97). However, in diseases of high ECV (amyloid, hypertrophic cardiomyopathy late gadolinium enhancement, and infarction), Bland-Altman analysis indicates the bolus only technique has a consistent and increasing offset, giving a higher value for ECVs above 0.4 (mean difference ± limit of agreement for ECV <0.4 = -0.004 ± 0.037 vs. ECV >0.4 = 0.040 ± 0.075, p < 0.001). \n CONCLUSIONS Bolus only, T1 mapping-derived ECV measurement is sufficient for ECV measurement across a range of cardiac diseases, and this approach is histologically validated in AS. However, when ECV is >0.4, the bolus only technique consistently measures ECV higher compared with infusion.", "title": "T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique." }, { "docid": "53211308", "text": "BACKGROUND microRNAs (miRNAs) stably exist in circulating blood and are encapsulated in extracellular vesicles such as exosomes. The aims of this study were to identify which exosomal miRNAs are highly produced from epithelial ovarian cancer (EOC) cells, to analyze whether serum miRNA can be used to discriminate patients with EOC from healthy volunteers, and to investigate the functional role of exosomal miRNAs in ovarian cancer progression. \n METHODS Exosomes were collected from the culture media of serous ovarian cancer cell lines, namely TYK-nu and HeyA8 cells. An exosomal miRNA microarray revealed that several miRNAs including miR-99a-5p were specifically elevated in EOC-derived exosomes. Expression levels of serum miR-99a-5p in 62 patients with EOC, 26 patients with benign ovarian tumors, and 20 healthy volunteers were determined by miRNA quantitative reverse transcription-polymerase chain reaction. To investigate the role of exosomal miR-99a-5p in peritoneal dissemination, neighboring human peritoneal mesothelial cells (HPMCs) were treated with EOC-derived exosomes and then expression levels of miR-99a-5p were examined. Furthermore, mimics of miR-99a-5p were transfected into HPMCs and the effect of miR-99a-5p on cancer invasion was analyzed using a 3D culture model. Proteomic analysis with the tandem mass tag method was performed on HPMCs transfected with miR-99a-5p and then potential target genes of miR-99a-5p were examined. \n RESULTS The serum miR-99a-5p levels were significantly increased in patients with EOC, compared with those in benign tumor patients and healthy volunteers (1.7-fold and 2.8-fold, respectively). A receiver operating characteristic curve analysis showed with a cut-off of 1.41 showed sensitivity and specificity of 0.85 and 0.75, respectively, for detecting EOC (area under the curve = 0.88). Serum miR-99a-5p expression levels were significantly decreased after EOC surgeries (1.8 to 1.3, p = 0.002), indicating that miR-99a-5p reflects tumor burden. Treatment with EOC-derived exosomes significantly increased miR-99a-5p expression in HPMCs. HPMCs transfected with miR-99a-5p promoted ovarian cancer invasion and exhibited increased expression levels of fibronectin and vitronectin. \n CONCLUSIONS Serum miR-99a-5p is significantly elevated in ovarian cancer patients. Exosomal miR-99a-5p from EOC cells promotes cell invasion by affecting HPMCs through fibronectin and vitronectin upregulation and may serve as a target for inhibiting ovarian cancer progression.", "title": "Exosomal miR-99a-5p is elevated in sera of ovarian cancer patients and promotes cancer cell invasion by increasing fibronectin and vitronectin expression in neighboring peritoneal mesothelial cells" }, { "docid": "21003930", "text": "BACKGROUND Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults. \n METHODS In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO2) concentrations were measured. \n FINDINGS Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO2, PM10, PM2.5, and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96-3·95; p<0·1), sputum (3·15, 1·39-7·13; p<0·05), shortness of breath (1·86, 0·97-3·57; p<0·1), and wheeze (4·00, 1·52-10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV1] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV1 and FVC, and an increase in R5-20 were associated with an increase in during-walk exposure to NO2, ultrafine particles and PM2.5, and an increase in PWV and augmentation index with NO2 and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles. \n INTERPRETATION Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects. \n FUNDING British Heart Foundation.", "title": "Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study" }, { "docid": "2842550", "text": "BACKGROUND Platelet deposition and aggregation are central to the pathogenesis of ischemic complications of acute coronary syndromes (ACS). Pharmacodynamic effects of the platelet glycoprotein IIb/IIIa antagonist eptifibatide have been delineated in healthy subjects but not in patients with ACS. We assessed effects of eptifibatide on ex vivo platelet aggregation in patients enrolled in the Platelet glycoprotein IIb/IIIa in Unstable angina: Receptor Suppression Using Integrilin (eptifibatide) Therapy (PURSUIT) trial of ACS. \n METHODS AND RESULTS Patients were randomly assigned to an intravenous bolus (180 microgram/kg) and 72-hour infusion of eptifibatide (2.0 microgram/kg per minute, n=48) or placebo (n=50). We assessed correlations of plasma eptifibatide levels with receptor occupancy and inhibition of ex vivo platelet aggregation at 5 minutes and 1, 4, 24, 48, and 72 hours during treatment and 4 and 8 hours after termination of infusion. Blood was collected in buffered citrate and D-phenylalanyl-L-prolyl-L-arginine chloromethylketone anticoagulants. Although eptifibatide produced profound, prolonged inhibition of platelet aggregation during therapy, aggregation appeared to recover partially by 4 hours after the bolus. The aggregation response was greater with thrombin receptor agonist peptide versus ADP stimulation; inhibition of platelet aggregation was greater in blood samples anticoagulated with citrate versus D-phenylalanyl-L-prolyl-L-arginine chloromethylketone (PPACK). Plasma eptifibatide levels correlated significantly with receptor occupancy but not with inhibition of platelet aggregation. \n CONCLUSIONS A bolus and infusion of eptifibatide inhibits platelet aggregation profoundly in patients with ACS and is followed by brief, partial recovery. These results enhance our understanding of the relation between pharmacodynamic and clinical effects of eptifibatide in such patients and may have important implications for its use in percutaneous interventions.", "title": "Pharmacodynamics and pharmacokinetics of eptifibatide in patients with acute coronary syndromes: prospective analysis from PURSUIT." }, { "docid": "35766603", "text": "PURPOSE To determine the toxicity and the therapeutic efficacy of the combination of the recombinant tumor necrosis factor alpha (rTNF alpha), recombinant interferon gamma (rIFN-gamma), and melphalan, we designed a protocol using isolation limb perfusion (ILP) with hyperthermia for in-transit metastases of melanoma and recurrent sarcoma. The triple combination was chosen because of the reported synergistic antitumor effect of rTNF alpha with IFN-gamma and of rTNF alpha with alkylating agents. \n PATIENTS AND METHODS Twenty-three patients received a total of 25 ILPs with the triple combination. There were 19 females and four males with either multiple progressive in-transit melanoma metastases of the extremities (stage IIIa or IIIab; 19 patients) or recurrent soft tissue sarcoma (five). The rTNF alpha was injected as a bolus in the arterial line, and total dose ranged between 2 and 4 mg, under hyperthermic conditions (40 degrees C to 40.5 degrees C) for 90 minutes. The rIFN-gamma was given subcutaneously (SC) on days -2 and -1 and in the perfusate, with rTNF alpha at the dose of 0.2 mg. Melphalan (Alkeran; Burroughs Wellcome Co, London, England) was administered in the perfusate at 40 micrograms/mL. RESULTS Toxicity observed during three ILPs in a pilot study with rTNF alpha included only two severe toxicities: one severe hypotension with tachycardia and transient oliguria and one moderate hypotension for 4 hours followed by severe kidney failure with complete recovery on day 29. In all 18 ILPs performed in the triple combination protocol, the patients received continuous infusion dopamine at 3 micrograms/kg/min from the start of ILP and for 72 hours and showed only mild hypotension and transient chills and temperature. Regional toxicity attributable to rTNF alpha was minimal. There have been 11 cases with hematologic toxicity consisting of neutropenia (one grade 4 and one grade 3) and neutropenia with thrombocytopenia (one grade 4 and three grade 2). Twelve patients had been previously treated with melphalan in ILP (11) or with cisplatin (one). The 23 patients are assessable: there have been 21 complete responses (CRs; range, 4 to 29 months; 89%), two partial responses (PRs; range, 2 to 3 months), and no failures. Overall disease-free survival and survival have been 70% and 76%, respectively, at 12 months. In all cases, softening of the nodules was obvious within 3 days after ILP and time to definite response ranged between day 5 and 30. \n CONCLUSION This preliminary analysis of a phase II study suggests that high-dose rTNF alpha can be administered with acceptable toxicity by ILP with dopamine and hyperhydration. Tumor responses can be evidenced in melanoma and sarcoma. Furthermore, combination of rTNF alpha, rIFN-gamma, and melphalan seems to achieve high efficacy with minimal toxicity, even after failure of prior therapy with melphalan alone.", "title": "High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma." }, { "docid": "11868606", "text": "Cystic Fibrosis (CF) is an inherited pleiotropic disease that results from abnormalities in the gene codes of a chloride channel. The lungs of CF patients are chronically infected by several pathogens but bacteraemia have rarely been reported in this pathology. Besides that, circulating monocytes in CF patients exhibit a patent Endotoxin Tolerance (ET) state since they show a significant reduction of the inflammatory response to bacterial stimulus. Despite a previous description of this phenomenon, the direct cause of ET in CF patients remains unknown. In this study we have researched the possible role of microbial/endotoxin translocation from a localized infection to the bloodstream as a potential cause of ET induction in CF patients. Plasma analysis of fourteen CF patients revealed high levels of LPS compared to healthy volunteers and patients who suffer from Chronic Obstructive Pulmonary Disease. Experiments in vitro showed that endotoxin concentrations found in plasma of CF patients were enough to induce an ET phenotype in monocytes from healthy controls. In agreement with clinical data, we failed to detect bacterial DNA in CF plasma. Our results suggest that soluble endotoxin present in bloodstream of CF patients causes endotoxin tolerance in their circulating monocytes.", "title": "Translocated LPS Might Cause Endotoxin Tolerance in Circulating Monocytes of Cystic Fibrosis Patients" }, { "docid": "12903921", "text": "It has been proved that oxidative stress increases when leukemia is accompanied by depression. This fact may indicate the role of oxidative stress in the development of depression in cancer patients. The aim of this study was to determine whether the acute myeloid leukemia of Brown Norway rats, which is accompanied by oxidative stress, evoked behavioral and receptor changes resembling alterations characteristic of rat models of depression. The rats were divided into two groups: leukemic rats and healthy control. Leukemia was induced through intraperitoneal injection of 10(7) promyelocytic leukemia cells to the Brown Norway rats. Depression-like behavior was evaluated in the forced swim test at 30 or 34 days after leukemic cells injection. The rats were killed after the evaluation and the spleen, brain cortex and hippocampus were excised. The red-ox state was assessed in homogenates of tissues by measuring total glutathione (GSH) content, the ferric ion reducing ability of plasma (FRAP) level, expression of heme oxygenase-1 (HO-1), biliverdin reductase (BvR) and ferritin mRNA, superoxide dismutase (SOD) activity, as well as malondialdehyde (MDA) concentration. Radioligand binding assay was used to assess of the effect of leukemia on cortical receptors. Leukemic cells were identified using RM-124 antibody by FACS Calibur flow cytometry. Leukemia influenced locomotory activity as well as forced swim test behavior in a 34-day series of experiments. Signs of oxidative stress in leukemic rats were observed in each examined stage of leukemia development. The FRAP values and glutathione contents, were significantly lowered whereas HO-1 mRNA expression, and malonodialdehyde concentrations were significantly increased in the spleen and brain structures of leukemic rats in comparison with the healthy controls. A significant increase in the potency of glycine to displace [(3)H]L-689,560 from the strychnine-insensitive glycine site of the N-methyl-D-aspartic (NMDA) receptors receptor complex in cortical homogenates of the leukemic rats in 30- and 34-day experimental series was observed in comparison with the control. Upregulation of 5-HT(2A) receptors was observed in rat cortex after 30 days of leukemia development but not in 34-days series compared with the control. It is concluded that disturbances in antioxidant system in brain cortex were accompanied by an activation of glycine sites of the NMDA receptor complex, regardless of stage of leukemia development, which are characteristic of model of depression. Findings of our study demonstrate the link between glutamatergic activity, oxidative stress and leukemia.", "title": "Evaluation of oxidative status and depression-like responses in Brown Norway rats with acute myeloid leukemia" }, { "docid": "3083927", "text": "We propose a model wherein chronic stress results in glucocorticoid receptor resistance (GCR) that, in turn, results in failure to down-regulate inflammatory response. Here we test the model in two viral-challenge studies. In study 1, we assessed stressful life events, GCR, and control variables including baseline antibody to the challenge virus, age, body mass index (BMI), season, race, sex, education, and virus type in 276 healthy adult volunteers. The volunteers were subsequently quarantined, exposed to one of two rhinoviruses, and followed for 5 d with nasal washes for viral isolation and assessment of signs/symptoms of a common cold. In study 2, we assessed the same control variables and GCR in 79 subjects who were subsequently exposed to a rhinovirus and monitored at baseline and for 5 d after viral challenge for the production of local (in nasal secretions) proinflammatory cytokines (IL-1β, TNF-α, and IL-6). Study 1: After covarying the control variables, those with recent exposure to a long-term threatening stressful experience demonstrated GCR; and those with GCR were at higher risk of subsequently developing a cold. Study 2: With the same controls used in study 1, greater GCR predicted the production of more local proinflammatory cytokines among infected subjects. These data provide support for a model suggesting that prolonged stressors result in GCR, which, in turn, interferes with appropriate regulation of inflammation. Because inflammation plays an important role in the onset and progression of a wide range of diseases, this model may have broad implications for understanding the role of stress in health.", "title": "Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk." }, { "docid": "23036207", "text": "Telomere extension has been proposed as a means to improve cell culture and tissue engineering and to treat disease. However, telomere extension by nonviral, nonintegrating methods remains inefficient. Here we report that delivery of modified mRNA encoding TERT to human fibroblasts and myoblasts increases telomerase activity transiently (24-48 h) and rapidly extends telomeres, after which telomeres resume shortening. Three successive transfections over a 4 d period extended telomeres up to 0.9 kb in a cell type-specific manner in fibroblasts and myoblasts and conferred an additional 28 ± 1.5 and 3.4 ± 0.4 population doublings (PDs), respectively. Proliferative capacity increased in a dose-dependent manner. The second and third transfections had less effect on proliferative capacity than the first, revealing a refractory period. However, the refractory period was transient as a later fourth transfection increased fibroblast proliferative capacity by an additional 15.2 ± 1.1 PDs, similar to the first transfection. Overall, these treatments led to an increase in absolute cell number of more than 10(12)-fold. Notably, unlike immortalized cells, all treated cell populations eventually stopped increasing in number and expressed senescence markers to the same extent as untreated cells. This rapid method of extending telomeres and increasing cell proliferative capacity without risk of insertional mutagenesis should have broad utility in disease modeling, drug screening, and regenerative medicine.", "title": "Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells." }, { "docid": "6157371", "text": "Actin and its key regulatory component, cofilin, are found together in large rod-shaped assemblies in neurons subjected to energy stress. Such inclusions are also enriched in Alzheimer's disease brain, and appear in transgenic models of neurodegeneration. Neuronal insults, such as energy loss and/or oxidative stress, result in rapid dephosphorylation of the cellular cofilin pool prior to its assembly into rod-shaped inclusions. Although these events implicate a role for phosphatases in cofilin rod formation, a mechanism linking energy stress, phosphocofilin turnover, and subsequent rod assembly has been elusive. We demonstrate the ATP-sensitive interaction of the cofilin phosphatase chronophin (CIN) with the chaperone hsp90 to form a biosensor that mediates cofilin/actin rod formation. Our results suggest a model whereby attenuated interactions between CIN and hsp90 during ATP depletion enhance CIN-dependent cofilin dephosphorylation and consequent rod assembly, thereby providing a mechanism for the formation of pathological actin/cofilin aggregates during neurodegenerative energy flux.", "title": "Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation." }, { "docid": "37562370", "text": "OBJECTIVE The infrapatellar fat pad (IPFP) has been identified as a source of anterior knee pain. Fibrosis and marked inflammatory infiltrate in the IPFP of patients with arthritis of the knee and reduction in pain post knee replacement in patients following resection of the IPFP have been observed. We have investigated changes in the IPFP of rats undergoing the monoiodoacetate (MIA) model of degenerative joint disease, a model that exhibits some histopathological similarities to osteoarthritis (OA). \n METHODS Rats were injected intra-articularly with MIA and the development of weight bearing asymmetry was followed for 21 days as compared to vehicle-injected animals. In addition, IPFPs were removed from both ipsilateral and contralateral joints. Both inflammatory infiltrate and histopathological changes were analysed. \n RESULTS MIA injection caused marked weight bearing asymmetry. Ipsilateral IPFP wet weights were significantly increased on days 1 and 3 in MIA-treated animals. MIA treatment also resulted in significant increases in IPFP total white blood cells and monocytes on days 1, 3, and 7 and neutrophils on days 1 and 3. This was supported by histopathological findings at early time points which progressed to adipocyte necrosis, IPFP fibrosis, patellar cartilage and subchondral bone necrosis with synovial hyperplasia at later timepoints. \n CONCLUSIONS The current study clearly demonstrated that marked inflammatory changes in the IPFP occur during the early stage of the MIA model of OA which may contribute to the pain observed at this early stage. The role of the IPFP in later stages of the model needs to be further explored.", "title": "Cellular and histopathological changes in the infrapatellar fat pad in the monoiodoacetate model of osteoarthritis pain." }, { "docid": "6108481", "text": "It has been shown by several investigators that adipocyte number is stable in mature human beings and several species of rodents. Although the number of new cells appearing in the adipose depot can be measured histometrically and by Coulter counting of osmium-fixed cells, such methods do not distinguish between \"lipid filling\" of preexistent adipocytes and synthesis of new adipocytes. The experiments reported here using in vivo injection of [(3)H]thymidine show that synthesis of new adipocytes in the Sprague-Dawley rat continues after birth and ceases before sexual maturity. Furthermore, during the second and third postnatal weeks, a \"bed\" of preadipocytes is synthesized. Preadipocytes may take as long as 30 days to appear as mature adipocytes.", "title": "Postnatal development of adipocyte cellularity in the normal rat." }, { "docid": "21053753", "text": "The Constant-Murley shoulder assessment score has proven to be a valuable diagnostic instrument. Thus, in the literature it has been mentioned that the clinical accuracy of this score varies especially when comparing patients in larger, inhomogeneous patient groups. The \"relative Constant score\" (CS(rel)) tries to minimize these problems by using reference parameters out of healthy age and gender related control groups. The authors of this study tried to show that it is even more accurate to use the functional performance of the uninjured collateral shoulder of the same individual as reference, introducing the \"individual relative Constant score\" (CS(indiv)). The CS(indiv) and the CS(rel) were compared for 125 consecutive patients with shoulder disorders, and a group of 125 healthy volunteers as a control group. In a non-parametric comparison of the reciever operating characteristics the CS(indiv) shows the higher ability to discriminate between patients and healthy volunteers (p=0.004). This indicates that the individual relative Constant score gives a more accurate view about the functional result for shoulder disorders. It is expected to be more reliable for larger and incoherent patient populations, because specific interindividual differences, regarding the patient's age, gender and constitution are eliminated as well as other individual physiological parameters.", "title": "Modification of the Constant-Murley shoulder score-introduction of the individual relative Constant score Individual shoulder assessment." }, { "docid": "39390206", "text": "OBJECTIVE To measure in vivo, using diffusion tensor magnetic resonance imaging (DT-MRI) the extent of pathological damage of normal appearing brain tissue (NABT) from patients with migraine. \n METHODS Dual echo and DT-MRI scans of the brain were acquired from 34 patients with migraine and 17 sex and age matched healthy volunteers. Mean diffusivity (MD) and fractional anisotropy (FA) histograms of the NABT were obtained from all subjects and the histograms' peak heights and average NABT MD and FA measured. When present, average MD and FA values of T2 visible lesions were also measured. \n RESULTS In comparison with healthy volunteers, patients with migraine had lower MD histogram peak height (p=0.02) of the NABT. No differences were found in FA histogram derived metrics between migraine patients and healthy subjects. No difference was found for any MD and FA histogram derived metrics between migraine patients with and without brain MRI lesions, and between patients with and without aura. \n CONCLUSIONS This study shows that, although brain damage may extend beyond T2 weighted abnormalities in patients with migraine, the severity of these \"occult\" changes is mild compared with that found in other diseases associated with white matter abnormality.", "title": "A diffusion tensor magnetic resonance imaging study of brain tissue from patients with migraine." }, { "docid": "3840043", "text": "Cell types more advanced in development than embryonic stem cells, such as EpiSCs, fail to contribute to chimeras when injected into pre-implantation-stage blastocysts, apparently because the injected cells undergo apoptosis. Here we show that transient promotion of cell survival through expression of the anti-apoptotic gene BCL2 enables EpiSCs and Sox17+ endoderm progenitors to integrate into blastocysts and contribute to chimeric embryos. Upon injection into blastocyst, BCL2-expressing EpiSCs contributed to all bodily tissues in chimeric animals while Sox17+ endoderm progenitors specifically contributed in a region-specific fashion to endodermal tissues. In addition, BCL2 expression enabled rat EpiSCs to contribute to mouse embryonic chimeras, thereby forming interspecies chimeras that could survive to adulthood. Our system therefore provides a method to overcome cellular compatibility issues that typically restrict chimera formation. Application of this type of approach could broaden the use of embryonic chimeras, including region-specific chimeras, for basic developmental biology research and regenerative medicine.", "title": "Inhibition of Apoptosis Overcomes Stage-Related Compatibility Barriers to Chimera Formation in Mouse Embryos." }, { "docid": "37969403", "text": "New recombinant strains of attenuated Salmonella typhi used as live oral vaccines elicit potent immune responses. This study examined the patterns of cytokine production and proliferation to specific S. typhi antigens in subjects orally immunized with attenuated S. typhi vaccines CVD 906, CVD 908, and CVD 908 expressing the circumsporozoite protein of Plasmodium falciparum. After immunization, sensitized lymphocytes were found in subjects' blood that exhibited significantly increased proliferative responses and interferon-gamma production to purified S. typhi flagella when compared with preimmunization levels. Significant negative correlations were observed between interleukin-4 production and both interferon-gamma production and proliferation to S. typhi flagella. These results demonstrate that oral immunization with attenuated S. typhi strains alone or with those carrying a foreign gene elicits strong systemic cell-mediated immunity to purified S. typhi antigens, including the production of cytokines compatible with T1-type responses.", "title": "Cytokine production patterns and lymphoproliferative responses in volunteers orally immunized with attenuated vaccine strains of Salmonella typhi." }, { "docid": "17973161", "text": "Uncoupling protein 1 (UCP1) is highly expressed in brown adipose tissue, where it generates heat by uncoupling electron transport from ATP production. UCP1 is also found outside classical brown adipose tissue depots, in adipocytes that are termed 'brite' (brown-in-white) or 'beige'. In humans, the presence of brite or beige (brite/beige) adipocytes is correlated with a lean, metabolically healthy phenotype, but whether a causal relationship exists is not clear. Here we report that human brite/beige adipocyte progenitors proliferate in response to pro-angiogenic factors, in association with expanding capillary networks. Adipocytes formed from these progenitors transform in response to adenylate cyclase activation from being UCP1 negative to being UCP1 positive, which is a defining feature of the beige/brite phenotype, while displaying uncoupled respiration. When implanted into normal chow-fed, or into high-fat diet (HFD)-fed, glucose-intolerant NOD-scid IL2rg(null) (NSG) mice, brite/beige adipocytes activated in vitro enhance systemic glucose tolerance. These adipocytes express neuroendocrine and secreted factors, including the pro-protein convertase PCSK1, which is strongly associated with human obesity. Pro-angiogenic conditions therefore drive the proliferation of human beige/brite adipocyte progenitors, and activated beige/brite adipocytes can affect systemic glucose homeostasis, potentially through a neuroendocrine mechanism.", "title": "Human ‘brite / beige’ adipocytes develop from capillary networks and their implantation improves metabolic homeostasis in mice" }, { "docid": "28845338", "text": "One of the primary limitations of many psychiatric medications is weight gain, the mechanism of which remains to be fully elucidated. We conducted a 2-week double-blind placebo-controlled study on weight gain with olanzapine, which is frequently but unpredictably associated with this side effect, to address the possible mechanisms of weight gain independent of changes in the psychiatric condition for which it is prescribed. Healthy male volunteers were randomly assigned to olanzapine (5 mg/day for 7 days, then 10 mg/day for 7 days) or a matching placebo. Of the 24 participants, 19 completed the study (olanzapine, n=13; placebo, n=6). Body weight, glucose, triglyceride, total cholesterol, lipid, leptin, insulin, and aldosterone levels, resting metabolic rate, body composition, physical activity, and 24-h dietary intake were assessed. A significant increase in weight as well as triglyceride, insulin, and leptin levels were found in the olanzapine group as a whole. In participants receiving olanzapine who actually gained weight (n=8), lean but not fat mass increased, as did insulin, fasting glucose, total cholesterol, low-density lipoprotein, and non-high-density lipoprotein levels, whereas aldosterone levels decreased. There were no significant metabolic or endocrine changes in participants receiving placebo or in those receiving olanzapine who did not gain weight. Early metabolic changes appear to be independent of accumulation of fat.", "title": "Increased lean body mass as an early indicator of olanzapine-induced weight gain in healthy men." } ]
505
Helicobacter pylori-induced aberrant NF-kB-dependent expression of activation-induced cytidine deaminase contributes to the mutagenesis of host DNA.
[ { "docid": "22703082", "text": "Infection with Helicobacter pylori (H. pylori) is a risk factor for the development of gastric cancer. Here we show that infection of gastric epithelial cells with 'cag' pathogenicity island (cagPAI)-positive H. pylori induced aberrant expression of activation-induced cytidine deaminase (AID), a member of the cytidine-deaminase family that acts as a DNA- and RNA-editing enzyme, via the IκB kinase–dependent nuclear factor-κB activation pathway. H. pylori–mediated upregulation of AID resulted in the accumulation of nucleotide alterations in the TP53 tumor suppressor gene in gastric cells in vitro. Our findings provide evidence that aberrant AID expression caused by H. pylori infection might be a mechanism of mutation accumulation in the gastric mucosa during H. pylori–associated gastric carcinogenesis.", "title": "Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium" } ]
[ { "docid": "2638387", "text": "High mutation frequency during reverse transcription has a principal role in the genetic variation of primate lentiviral populations. It is the main driving force for the generation of drug resistance and the escape from immune surveillance. G to A hypermutation is one of the characteristics of primate lentiviruses, as well as other retroviruses, during replication in vivo and in cell culture. The molecular mechanisms of this process, however, remain to be clarified. Here, we demonstrate that CEM15 (also known as apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G; APOBEC3G), an endogenous inhibitor of human immunodeficiency virus type 1 (HIV-1) replication, is a cytidine deaminase and is able to induce G to A hypermutation in newly synthesized viral DNA. This effect can be counteracted by the HIV-1 virion infectivity factor (Vif). It seems that this viral DNA mutator is a viral defence mechanism in host cells that may induce either lethal hypermutation or instability of the incoming nascent viral reverse transcripts, which could account for the Vif-defective phenotype. Importantly, the accumulation of CEM15-mediated non-lethal hypermutation in the replicating viral genome could potently contribute to the genetic variation of primate lentiviral populations.", "title": "The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA" }, { "docid": "24705390", "text": "BACKGROUND & AIMS Helicobacter pylori is an important etiologic factor in the development of gastric cancer. The aim of this study was to analyze the role of H. pylori infections in the induction of mutagenic events in gastric epithelial cells. The effect of a high-salt diet as a genotoxic risk factor was also investigated. \n METHODS Big Blue transgenic male mice (C57Bl/6) were inoculated with H. pylori (strain SS1) or Helicobacter felis (strain CS1) for 6 and 12 months. The frequency and spectrum of mutations at the stomach level were assessed. Inflammatory host response and inducible nitric oxide synthase (iNOS) expression by reverse-transcription polymerase chain reaction and immunohistochemistry analysis were also performed. \n RESULTS After 6 months, the gastric mutant frequency was 4-fold and 1.7-fold higher in mice infected with H. pylori and H. felis, respectively, than in uninfected mice. It was associated with a high frequency of transversions (AT --> CG and GC --> TA) known to result from oxidative damages. The Helicobacter-infected mice exhibited severe gastritis and a high level of iNOS messenger RNA expression. Hyperplasia developed 12 months after inoculation, and both the mutagenic effects and iNOS expression decreased in H. pylori- and H. felis-infected mice. No synergistic effects of a high-salt diet and Helicobacter infection were observed regarding the frequency of gastric mutation. \n CONCLUSIONS A direct gastric mutagenic effect due to H. pylori infection in the Big Blue transgenic mouse model has been shown 6 months after inoculation. This genotoxicity can be attributable to oxidative DNA damage involving the inflammatory host response.", "title": "Chronic Helicobacter pylori infections induce gastric mutations in mice." }, { "docid": "7465900", "text": "BACKGROUND & AIMS Helicobacter pylori-induced gastric epithelial cell (GEC) apoptosis is a complex process that includes activation of the tumor suppressor p53. p53-mediated apoptosis involves p53 activation, bax transcription, and cytochrome c release from mitochondria. Apurinic/apyrimidinic endonuclease-1 (APE-1) regulates transcriptional activity of p53, and H pylori induce APE-1 expression in human GECs. H pylori infection increases intracellular calcium ion concentration [Ca2+]i of GECs, which induces APE-1 acetylation. We investigated the effects of H pylori infection and APE-1 acetylation on GEC apoptosis. \n METHODS AGS cells (wild-type or with suppressed APE-1), KATO III cells, and cells isolated from gastric biopsy specimens were infected with H pylori. Effects were examined by immunoblotting, real-time reverse-transcription polymerase chain reaction, immunoprecipitation, immunofluorescence microscopy, chromatin immunoprecipitation, mobility shift, DNA binding, and luciferase assays. \n RESULTS H pylori infection increased [Ca2+]i and acetylation of APE-1 in GECs, but the acetylation status of APE-1 did not affect the transcriptional activity of p53. In GECs, expression of a form of APE-1 that could not be acetylated increased total and mitochondrial levels of Bax and induced release of cytochrome c and fragmentation of DNA; expression of wild-type APE-1 reduced these apoptotic events. We identified a negative calcium response element in the human bax promoter and found that poly (adenosine diphosphate-ribose) polymerase 1 recruited the acetylated APE-1/histone deacetylase-1 repressor complex to bax nCaRE. \n CONCLUSIONS H pylori-mediated acetylation of APE-1 suppresses Bax expression; this prevents p53-mediated apoptosis when H pylori infect GECs.", "title": "Acetylation of apurinic/apyrimidinic endonuclease-1 regulates Helicobacter pylori-mediated gastric epithelial cell apoptosis." }, { "docid": "39550665", "text": "BACKGROUND & AIMS Chronic infection with the bacterial pathogen Helicobacter pylori causes gastric disorders, ranging from chronic gastritis to gastric adenocarcinoma. Only a subset of infected persons will develop overt disease; most remains asymptomatic despite lifelong colonization. This study aims to elucidate the differential susceptibility to H pylori that is found both across and within populations. \n METHODS We have established a C57BL/6 mouse model of H pylori infection with a strain that is capable of delivering the virulence factor cytotoxin-associated gene A (CagA) into host cells through the activity of a Cag-pathogenicity island-encoded type IV secretion system. \n RESULTS Mice infected at 5-6 weeks of age with CagA(+)H pylori rapidly develop gastritis, gastric atrophy, epithelial hyperplasia, and metaplasia in a type IV secretion system-dependent manner. In contrast, mice infected during the neonatal period with the same strain are protected from preneoplastic lesions. Their protection results from the development of H pylori-specific peripheral immunologic tolerance, which requires transforming growth factor-β signaling and is mediated by long-lived, inducible regulatory T cells, and which controls the local CD4(+) T-cell responses that trigger premalignant transformation. Tolerance to H pylori develops in the neonatal period because of a biased ratio of T-regulatory to T-effector cells and is favored by prolonged low-dose exposure to antigen. \n CONCLUSIONS Using a novel CagA(+)H pylori infection model, we report here that the development of tolerance to H pylori protects from gastric cancer precursor lesions. The age at initial infection may thus account for the differential susceptibility of infected persons to H pylori-associated disease manifestations.", "title": "Tolerance rather than immunity protects from Helicobacter pylori-induced gastric preneoplasia." }, { "docid": "26488879", "text": "Helicobacter pylori persistently colonizes humans, causing gastritis, ulcers, and gastric cancer. Adherence to the gastric epithelium has been shown to enhance inflammation, yet only a few H. pylori adhesins have been paired with targets in host tissue. The alpAB locus has been reported to encode adhesins involved in adherence to human gastric tissue. We report that abrogation of H. pylori AlpA and AlpB reduces binding of H. pylori to laminin while expression of plasmid-borne alpA or alpB confers laminin-binding ability to Escherichia coli. An H. pylori strain lacking only AlpB is also deficient in laminin binding. Thus, we conclude that both AlpA and AlpB contribute to H. pylori laminin binding. Contrary to expectations, the H. pylori SS1 mutant deficient in AlpA and AlpB causes more severe inflammation than the isogenic wild-type strain in gerbils. Identification of laminin as the target of AlpA and AlpB will facilitate future investigations of host-pathogen interactions occurring during H. pylori infection.", "title": "Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils." }, { "docid": "20330519", "text": "Helicobacter pylori infection causes gastric pathology such as ulcer and carcinoma. Because H. pylori is auxotrophic for cholesterol, we have explored the assimilation of cholesterol by H. pylori in infection. Here we show that H. pylori follows a cholesterol gradient and extracts the lipid from plasma membranes of epithelial cells for subsequent glucosylation. Excessive cholesterol promotes phagocytosis of H. pylori by antigen-presenting cells, such as macrophages and dendritic cells, and enhances antigen-specific T cell responses. A cholesterol-rich diet during bacterial challenge leads to T cell–dependent reduction of the H. pylori burden in the stomach. Intrinsic α-glucosylation of cholesterol abrogates phagocytosis of H. pylori and subsequent T cell activation. We identify the gene hp0421 as encoding the enzyme cholesterol-α-glucosyltransferase responsible for cholesterol glucosylation. Generation of knockout mutants lacking hp0421 corroborates the importance of cholesteryl glucosides for escaping phagocytosis, T cell activation and bacterial clearance in vivo. Thus, we propose a mechanism regulating the host–pathogen interaction whereby glucosylation of a lipid tips the scales towards immune evasion or response.", "title": "Cholesterol glucosylation promotes immune evasion by Helicobacter pylori" }, { "docid": "8654183", "text": "BACKGROUND AND AIMS Previous in vitro and in vivo studies have revealed an association between Helicobacter pylori infection and apoptosis in gastric epithelial cells. Although involvement of the Bcl-2 family of proteins as well as cytochrome c release has been demonstrated in H pylori induced cell death, the exact role of the mitochondria during this type of programmed cell death has not been fully elucidated. Therefore, we sought to determine whether or not Bax translocation and mitochondrial fragmentation occur on exposure of gastric epithelial cells to H pylori, resulting in cell death. \n METHODS Experiments were performed with human gastric adenocarcinoma (AGS) cells, AGS cells transfected with the HPV-E6 gene (which inactivates p53 function), AGS-neo cells (transfected with the backbone construct), mouse embryonic fibroblasts (MEFs), and p19(ARF) null (ARF(-/-)) MEFs. Cells were incubated with a cag positive H pylori strain for up to 24 hours, lysed, and cytoplasmic and mitochondrial membrane fractions were analysed by western blot for Bax translocation. \n RESULTS Bax translocation was detected in AGS, AGS-neo, and normal MEF cells after exposure to H pylori for three hours, but not in ARF(-/-) MEFs cells. Translocation of Bax after H pylori incubation was also detected in AGS-E6 cells (inactive p53 gene) but to a lesser degree than in AGS-neo cells. In parallel studies, the mitochondrial morphology of living cells infected with H pylori was assessed by confocal microscopy. Mitochondrial fragmentation was detectable after 10 hours of H pylori incubation with AGS cells and after seven hours with MEF cells. In wild-type MEFs, mitochondrial fragmentation was significantly increased in comparison with ARF null MEFs (43% v 10.4%, respectively). Furthermore, mitochondrial depolarisation and caspase-3 activity were initiated within four hours in cells incubated with H pylori, and these events were inhibited by forced expression of Bcl-2. \n CONCLUSIONS These data suggest that during H pylori induced apoptosis, Bax translocates to the mitochondria which subsequently undergo depolarisation and profound fragmentation. Functional ARF and p53 proteins may play an important role in H pylori induced mitochondrial modification.", "title": "Bax translocation and mitochondrial fragmentation induced by Helicobacter pylori." }, { "docid": "2099400", "text": "Helicobacter pylori induces motogenic and cytoskeletal responses in gastric epithelial cells. We demonstrate that these responses can be induced via independent signaling pathways that often occur in parallel. The cag pathogenicity island appears to be nonessential for induction of motility, whereas the elongation phenotype depends on translocation and phosphorylation of CagA.", "title": "Helicobacter pylori induces AGS cell motility and elongation via independent signaling pathways." }, { "docid": "27396415", "text": "OBJECTIVE To establish high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria BIB. \n METHODS Based on the results of shake flask fermentation, the process was magnified into volume of a 50 L fermenter to optimize and verify the factors affecting the yield of the target protein, such as the fermentation medium, working seed inoculation amount, inducer concentration, induction starting time, induction duration, inducer adding mode and feeding strategy. \n RESULTS After activated in modified TB medium at 37°C for 8 h, the BIB working seed was inoculated at 5% (v/v) and was induced for expression for another 11 h by the final concentration of 5 mmol/L lactose. In growth phase, glucose at rate of 80 ml/h was used as carbon source, and in induction phase, glycerol at rate of 40 ml/h was used as carbon source; ammonia water was added dropwise to control pH at about 7.0, and revolution speed is adjusted to control the dissolved oxygen at above 30%; ultimately the output of bacterial body was 70 g/L and protein expression amount was about 32%. \n CONCLUSION After high cell density cultivation of the recombinant engineering bacteria, expression and yield of the target protein rBIB significantly increased.", "title": "A study of high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria." }, { "docid": "29367554", "text": "BACKGROUND & AIMS Although the p53 tumor suppressor has been extensively studied, many critical questions remain unanswered about the biological functions of p53 homologs, p73 and p63. Accumulating evidence suggests that both p73 and p63 play important roles in regulation of apoptosis, cell differentiation, and therapeutic drug sensitivity. \n METHODS Gastric epithelial cells were cocultured with Helicobacter pylori, and the roles of p63 and p73 proteins were assessed by luciferase reporter, real-time polymerase chain reaction, immunoblotting, and cell survival assays. Short hairpin RNA and dominant-negative mutants were used to inhibit activity of p73 and p63 isoforms. Human and murine gastric tissues were analyzed by immunohistochemistry with p73 and p63 antibodies and modified Steiner's silver method. \n RESULTS Interaction of H pylori with gastric epithelial cells leads to robust up-regulation of p73 protein in vitro and in vivo in human gastritis specimens and H pylori-infected mice. The p73 increase resulted in up-regulation of pro-apoptotic genes, NOXA, PUMA, and FAS receptor in gastric epithelial cells. Down-regulation of p73 activity suppressed cell death and Fas receptor induced by H pylori. Bacterial virulence factors within the cag pathogenicity island, c-Abl tyrosine kinase, and interaction with p63 isoforms control the activity of p73. \n CONCLUSION Our findings implicate p73 in H pylori-induced apoptosis and more generally suggest that the p53 family may play a role in the epithelial cell response to H pylori infection.", "title": "Interaction of Helicobacter pylori with gastric epithelial cells is mediated by the p53 protein family." }, { "docid": "13965483", "text": "Epitope vaccine based on the enzyme urease of Helicobacter pylori is a promising option for prophylactic and therapeutic vaccination against H. pylori infection. In our previous study, the epitope vaccine CTB-UA, which was composed of the mucosal adjuvant cholera toxin B subunit (CTB) and an epitope (UreA183–203) from the H. pylori urease A subunit (UreA) was constructed. This particular vaccine was shown to have good immunogenicity and immunoreactivity and could induce specific neutralizing antibodies, which exhibited effectively inhibitory effects on the enzymatic activity of H. pylori urease. In this study, the prophylactic and therapeutic efficacy of the epitope vaccine CTB-UA was evaluated in a BALB/c mice model. The experimental results indicated that oral prophylactic or therapeutic immunization with CTB-UA significantly decreased H. pylori colonization compared with oral immunization with PBS. The results also revealed that the protection was correlated with antigen-specific IgG, IgA, and mucosal secretory IgA antibody responses. CTB-UA may be a promising vaccine candidate for the control of H. pylori infection.", "title": "Prophylactic and therapeutic efficacy of the epitope vaccine CTB-UA against Helicobacter pylori infection in a BALB/c mice model" }, { "docid": "17464771", "text": "Carriage of Helicobacter pylori strains producing more active (s1/i1) forms of VacA is strongly associated with gastric adenocarcinoma. To our knowledge, we are the first to determine effects of different polymorphic forms of VacA on inflammation and metaplasia in the mouse stomach. Bacteria producing the less active s2/i2 form of VacA colonized mice more efficiently than mutants null for VacA or producing more active forms of it, providing the first evidence of a positive role for the minimally active s2/i2 toxin. Strains producing more active toxin forms induced more severe and extensive metaplasia and inflammation in the mouse stomach than strains producing weakly active (s2/i2) toxin. We also examined the association in humans, controlling for cagPAI status. In human gastric biopsy specimens, the vacA i1 allele was strongly associated with precancerous intestinal metaplasia, with almost complete absence of intestinal metaplasia in subjects infected with i2-type strains, even in a vacA s1, cagA(+) background.", "title": "A Role for the Vacuolating Cytotoxin, VacA, in Colonization and Helicobacter pylori–Induced Metaplasia in the Stomach" }, { "docid": "1887056", "text": "OBJECTIVE The authors sought to determine innate immune system activation following psychosocial stress in patients with major depression and increased early life stress. \n METHOD Plasma interleukin (IL)-6, lymphocyte subsets, and DNA binding of nuclear factor (NF)-kB in peripheral blood mononuclear cells were compared in medically healthy male subjects with current major depression and increased early life stress (N=14) versus nondepressed male comparison subjects (N=14) before and after completion of the Trier Social Stress Test. \n RESULTS Trier Social Stress Test-induced increases in IL-6 and NF-kappaB DNA-binding were greater in major depression patients with increased early life stress and independently correlated with depression severity, but not early life stress. Natural killer (NK) cell percentages also increased following stress. However, there were no differences between groups and no correlation between NK cell percentage and stress-induced NF-kappaB DNA-binding or IL-6. \n CONCLUSIONS Male major depression patients with increased early life stress exhibit enhanced inflammatory responsiveness to psychosocial stress, providing preliminary indication of a link between major depression, early life stress and adverse health outcomes in diseases associated with inflammation.", "title": "Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress." }, { "docid": "2837758", "text": "Epitope vaccine is a promising option for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. In this study, we constructed a multi-epitope vaccine with five epitopes and mucosal adjuvant E. coli heat-labile enterotoxin B subunit (LTB) named HUepi-LTB and evaluated its therapeutic effect against H. pylori infection in BALB/c mice model. HUepi-LTB containing three Th epitopes from UreB and two B cell epitopes from UreB and HpaA was constructed and expressed in E. coli. Oral therapeutic immunization with HUepi-LTB significantly decreased H. pylori colonization compared with oral immunization with PBS, and the protection was correlated with antigen-specific CD4+ T cells and IgG and mucosal IgA antibody responses. This multi-epitope vaccine may be a promising vaccine candidate that may help to control H. pylori infection.", "title": "Therapeutic efficacy of a multi-epitope vaccine against Helicobacter pylori infection in BALB/c mice model." }, { "docid": "6493422", "text": "Precise control of myeloid cell activation is required for optimal host defense. However, this activation process must be under exquisite control to prevent uncontrolled inflammation. Herein, we identify the Kruppel-like transcription factor 2 (KLF2) as a potent regulator of myeloid cell activation in vivo. Exposure of myeloid cells to hypoxia and/or bacterial products reduced KLF2 expression while inducing hypoxia inducible factor-1α (HIF-1α), findings that were recapitulated in human septic patients. Myeloid KLF2 was found to be a potent inhibitor of nuclear factor-kappaB (NF-κB)-dependent HIF-1α transcription and, consequently, a critical determinant of outcome in models of polymicrobial infection and endotoxemia. Collectively, these observations identify KLF2 as a tonic repressor of myeloid cell activation in vivo and an essential regulator of the innate immune system.", "title": "The myeloid transcription factor KLF2 regulates the host response to polymicrobial infection and endotoxic shock." }, { "docid": "6690087", "text": "We addressed the regulatory function of mammalian target of rapamycin (mTOR) in the mechanism of thrombin-induced ICAM-1 gene expression in endothelial cells. Pretreatment of HUVECs with rapamycin, an inhibitor of mTOR, augmented thrombin-induced ICAM-1 expression. Inhibition of mTOR by this approach promoted whereas over-expression of mTOR inhibited thrombin-induced transcriptional activity of NF-kappaB, an essential regulator of ICAM-1 transcription. Analysis of the NF-kappaB signaling pathway revealed that inhibition of mTOR potentiated IkappaB kinase activation resulting in a rapid and persistent phosphorylation of IkappaBalpha on Ser32 and Ser36, a requirement for IkappaBalpha degradation. Consistent with these data, we observed a more efficient and stable nuclear localization of RelA/p65 and, subsequently, the DNA binding activity of NF-kappaB by thrombin following mTOR inhibition. These data define a novel role of mTOR in down-regulating thrombin-induced ICAM-1 expression in endothelial cells by controlling a delayed and transient activation of NF-kappaB.", "title": "Inhibition of mammalian target of rapamycin potentiates thrombin-induced intercellular adhesion molecule-1 expression by accelerating and stabilizing NF-kappa B activation in endothelial cells." }, { "docid": "16546131", "text": "Hydroxyurea is a potent teratogen; free radical scavengers or antioxidants reduce its teratogenicity. Activator Protein-1 (AP-1) and NF-kappaB are redox-sensitive transcription factors with important roles in normal development and the stress response. This study was designed to determine if exposure to teratogenic doses of hydroxyurea induces oxidative stress and alters gene expression by activating these transcription factors. Pregnant mice were treated with saline or hydroxyurea (400, 500, or 600 mg/kg) on gestation day 9 (GD 9) and killed either on GD 9, 0.5, 3, or 6 h after treatment, to assess oxidative stress and transcription factor activities, or on GD 18, to assess fetal development. Exposure to 400 mg/kg hydroxyurea did not affect the progeny, whereas exposure to 500 or 600 mg/kg resulted in dose-dependent increases in fetal resorptions and malformations, including curly tails, abnormal limbs (oligodactyly, hemimelia, and amelia), and short ribs. Hydroxyurea did not induce oxidative stress, as assessed by the ratio of oxidized to reduced glutathione, nor did it alter NF-kappaB DNA binding activity in the GD 9 conceptus. In contrast, exposure to hydroxyurea at any dose increased AP-1 DNA binding activity in embryos and yolk sacs 0.5 or 3 h after treatment. Hydroxyurea-induced c-Fos heterodimer activity in the embryo peaked 3-4-fold above control at 3 h and remained elevated by 6 h; in contrast, the activity of c-Jun dimers was not altered by drug exposure. A dramatic and region-specific increase in c-Fos immunoreactivity was found in hydroxyurea-treated embryos. The induction of AP-1 DNA binding activity by hydroxyurea represents an early, sensitive marker of the embryonic response to insult.", "title": "Activator protein-1 (AP-1) DNA binding activity is induced by hydroxyurea in organogenesis stage mouse embryos" }, { "docid": "2052720", "text": "OBJECTIVE To investigate the association between gastric cancer and prior infection with Helicobacter pylori. \n DESIGN Case-control comparison of prevalence of IgG antibodies to H pylori in blood samples collected prospectively, before diagnosis of gastric cancer in the cases. Presence of H pylori antibody (greater than 10 micrograms IgG/ml) determined by enzyme linked immunosorbent assay (ELISA). SUBJECTS 29 men with a subsequent diagnosis of gastric cancer and 116 aged matched controls selected from over 22,000 middle aged men participating in two ongoing cohort studies (the British United Provident Association study and the Caerphilly collaborative heart disease study), who had provided blood samples during 1975-1982. \n RESULTS 20 of the 29 cases (69%) and 54 of the 116 controls (47%) were positive for H pylori specific antibody. The median specific IgG concentration was significantly higher in the cases than controls (90 micrograms/ml v 3.6 micrograms/ml, p less than 0.01). The estimated odds ratio for the risk of gastric cancer in those with a history of infection with H pylori was 2.77 (95% confidence interval 1.04 to 7.97, 2p = 0.039). \n CONCLUSIONS H pylori infection may be an important cause of gastric cancer; between 35% and 55% of all cases may be associated with such an infection.", "title": "Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation." }, { "docid": "4387784", "text": "Half the world's population is chronically infected with Helicobacter pylori, causing gastritis, gastric ulcers and an increased incidence of gastric adenocarcinoma. Its proton-gated inner-membrane urea channel, HpUreI, is essential for survival in the acidic environment of the stomach. The channel is closed at neutral pH and opens at acidic pH to allow the rapid access of urea to cytoplasmic urease. Urease produces NH(3) and CO(2), neutralizing entering protons and thus buffering the periplasm to a pH of roughly 6.1 even in gastric juice at a pH below 2.0. Here we report the structure of HpUreI, revealing six protomers assembled in a hexameric ring surrounding a central bilayer plug of ordered lipids. Each protomer encloses a channel formed by a twisted bundle of six transmembrane helices. The bundle defines a previously unobserved fold comprising a two-helix hairpin motif repeated three times around the central axis of the channel, without the inverted repeat of mammalian-type urea transporters. Both the channel and the protomer interface contain residues conserved in the AmiS/UreI superfamily, suggesting the preservation of channel architecture and oligomeric state in this superfamily. Predominantly aromatic or aliphatic side chains line the entire channel and define two consecutive constriction sites in the middle of the channel. Mutation of Trp 153 in the cytoplasmic constriction site to Ala or Phe decreases the selectivity for urea in comparison with thiourea, suggesting that solute interaction with Trp 153 contributes specificity. The previously unobserved hexameric channel structure described here provides a new model for the permeation of urea and other small amide solutes in prokaryotes and archaea.", "title": "Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori" } ]
506
Helminths interfere with immune system control of coinfections by microbial pathogens 16.
[ { "docid": "7433668", "text": "Tuberculosis and helminthic infections coexist in many parts of the world, yet the impact of helminth-elicited Th2 responses on the ability of the host to control Mycobacterium tuberculosis (Mtb) infection has not been fully explored. We show that mice infected with the intestinal helminth Nippostrongylus brasiliensis (Nb) exhibit a transitory impairment of resistance to airborne Mtb infection. Furthermore, a second dose of Nb infection substantially increases the bacterial burden in the lungs of co-infected mice. Interestingly, the Th2 response in the co-infected animals did not impair the onset and development of the protective Mtb-specific Th1 cellular immune responses. However, the helminth-induced Th2 environment resulted in the accumulation of alternatively activated macrophages (AAMs) in the lung. Co-infected mice lacking interleukin (IL) 4Rα exhibited improved ability to control Mtb infection, which was accompanied by significantly reduced accumulation of AAMs. Moreover, IL-4Rα(-/-) mice adoptively transferred with wild-type macrophages had a significantly higher Mtb load in their lungs compared with those that received IL-4Rα(-/-) macrophages, suggesting a direct contribution for the IL-4R pathway to the heightened susceptibility of co-infected animals. The Th2 response can thus enhance the intracellular persistence of Mtb, in part by mediating the alternative activation of macrophages via the IL-4Rα signaling pathway.", "title": "Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway" } ]
[ { "docid": "45401535", "text": "Despite advances in medical device fabrication and antimicrobial treatment therapies, fungal-bacterial polymicrobial peritonitis remains a serious complication for surgery patients, those on peritoneal dialysis, and the critically ill. Using a murine model of peritonitis, we have demonstrated that monomicrobial infection with Candida albicans or Staphylococcus aureus is nonlethal. However, coinfection with these same doses leads to a 40% mortality rate and increased microbial burden in the spleen and kidney by day 1 postinfection. Using a multiplex enzyme-linked immunosorbent assay, we have also identified a unique subset of innate proinflammatory cytokines (interleukin-6, granulocyte colony-stimulating factor, keratinocyte chemoattractant, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α) that are significantly increased during polymicrobial versus monomicrobial peritonitis, leading to increased inflammatory infiltrate into the peritoneum and target organs. Treatment of coinfected mice with the cyclooxygenase (COX) inhibitor indomethacin reduces the infectious burden, proinflammatory cytokine production, and inflammatory infiltrate while simultaneously preventing any mortality. Further experiments demonstrated that the immunomodulatory eicosanoid prostaglandin E2 (PGE2) is synergistically increased during coinfection compared to monomicrobial infection; indomethacin treatment also decreased elevated PGE2 levels. Furthermore, addition of exogenous PGE2 into the peritoneal cavity during infection overrode the protection provided by indomethacin and restored the increased mortality and microbial burden. Importantly, these studies highlight the ability of fungal-bacterial coinfection to modulate innate inflammatory events with devastating consequences to the host.", "title": "Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity." }, { "docid": "14853989", "text": "Autoantibodies to DNA and histones (chromatin) are the defining antigen specificity in systemic lupus erythematosus (SLE) and related musculoskeletal disorders but the mechanisms responsible for their induction remain mysterious. That situation rapidly changed once neutrophil extracellular chromatin traps (NETs) were discovered and observed to play a conserved role in innate immune responses to a broad variety of microbial pathogens. At the center of an infectious process, neutrophils exert various antimicrobial defenses, including the release of nuclear chromatin into the extracellular space. The externalized NETs, a complex meshwork of nuclear chromatin and antimicrobial proteins, serve to immobilize and degrade microbial pathogens. Here, we critically evaluate the evidence supporting NETs versus apoptotic bodies as a source for nuclear antigens in autoimmunity. We also discuss the possibility that NET chromatin forms an essential component of immune deposits in the pathogenesis of glomerulonephritis in SLE and other autoimmune immune complex diseases.", "title": "Neutrophil extracellular chromatin traps connect innate immune response to autoimmunity" }, { "docid": "23117928", "text": "Infection of Sulfolobus islandicus REY15A with mixtures of different Sulfolobus viruses, including STSV2, did not induce spacer acquisition by the host CRISPR immune system. However, coinfection with the tailed fusiform viruses SMV1 and STSV2 generated hyperactive spacer acquisition in both CRISPR loci, exclusively from STSV2, with the resultant loss of STSV2 but not SMV1. SMV1 was shown to activate adaptation while itself being resistant to CRISPR-mediated adaptation and DNA interference. Exceptionally, a single clone S-1 isolated from an SMV1 + STSV2-infected culture, that carried STSV2-specific spacers and had lost STSV2 but not SMV1, acquired spacers from SMV1. This effect was also reproducible on reinfecting wild-type host cells with a variant SMV1 isolated from the S-1 culture. The SMV1 variant lacked a virion protein ORF114 that was shown to bind DNA. This study also provided evidence for: (i) limits on the maximum sizes of CRISPR loci; (ii) spacer uptake strongly retarding growth of infected cultures; (iii) protospacer selection being essentially random and non-directional, and (iv) the reversible uptake of spacers from STSV2 and SMV1. A hypothesis is presented to explain the interactive conflicts between SMV1 and the host CRISPR immune system.", "title": "Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus." }, { "docid": "23801039", "text": "Despite many years of study, relatively little is known about the effector mechanisms that operate against intestine-dwelling nematodes. Most of the current understanding comes from studies of laboratory model systems in rodents. It is clear that when an intestinal helminth infection takes place the immune system generates a strong Th2-mediated response, which regulates a variety of responses characteristic of helminth infections such as eosinophilia, intestinal mastocytosis and elevated IgE production. The ability to modulate the host's immune response in vivo with cytokine-specific monoclonal antibodies and recombinant cytokines, together with the use of animals with disruption of key genes involved in the immune response, have provided powerful tools with which to dissect the potential effector mechanisms operating. In the absence of a T-cell compartment the host is unable to expel the parasite. If a Th1-dominated response is generated, protective immunity is almost universally compromised. Thus, it it would appear that some aspect of a Th2-mediated response controls effector mechanisms. Although it is clear that for some infections the mast cell appears to be involved in protection, probably through the generation of a non-specific inflammatory response, how these cells become activated remains unclear. Data from infections in transgenic animals suggest that activation is not through the high-affinity receptor for IgE. Such studies also call into doubt the importance of conventional interactions between effector leucocytes and antibody. There is little evidence to support a protective role for eosinophilia in any system. New data also imply that, although interleukin 4 (IL-4) is generally important (and can exert effects independent of an adaptive immune response), it is not always sufficient to mediate protection; other Th2 cytokines (e.g. IL-13) may warrant closer investigation. It is apparent that a number of potential Th2-controlled effector mechanisms (some of which may be particularly important at mucosal surfaces) remain to be explored. Overall, it is likely that worm expulsion is the result of a combination of multiple mechanisms, some of which are more critical to some species of parasite than to others.", "title": "Th2-mediated host protective immunity to intestinal nematode infections." }, { "docid": "40323148", "text": "While inflammatory phagocytosis of microbial pathogens and non-inflammatory phagocytosis of apoptotic cells have each been studied extensively, the consequences of innate immune recognition of host cells undergoing apoptosis as a direct result of infection are unclear. In this situation, the innate immune system is confronted with mixed signals, those from apoptotic cells and those from the infecting pathogen. Nuclear receptor activation has been implicated downstream of apoptotic cell recognition while Toll-like receptors are the prototypical inflammatory receptors engaged during infection. When the two signals combine, a new set of events takes place beginning with transrepression of a subset of inflammatory-response genes and ending with the induction of a T helper-17 adaptive immune response. This response is best suited for clearing the infecting pathogen and repairing the damage that occurred to the host tissue during infection.", "title": "Infection and apoptosis as a combined inflammatory trigger." }, { "docid": "17023584", "text": "The incidence of sepsis is increasing over time, along with an increased risk of dying from the condition. Sepsis care costs billions annually in the United States. Death from sepsis is understood to be a complex process, driven by a lack of normal immune homeostatic functions and excessive production of proinflammatory cytokines, which leads to multi-organ failure. The Toll-like receptor (TLR) family, one of whose members was initially discovered in Drosophila, performs an important role in the recognition of microbial pathogens. These pattern recognition receptors (PRRs), upon sensing invading microorganisms, activate intracellular signal transduction pathways. NOD signaling is also involved in the recognition of bacteria and acts synergistically with the TLR family in initiating an efficient immune response for the eradication of invading microbial pathogens. TLRs and NOD1/NOD2 respond to different pathogen-associated molecular patterns (PAMPs). Modulation of both TLR and NOD signaling is an area of research that has prompted much excitement and debate as a therapeutic strategy in the management of sepsis. Molecules targeting TLR and NOD signaling pathways exist but regrettably thus far none have proven efficacy from clinical trials.", "title": "Current knowledge and future directions of TLR and NOD signaling in sepsis" }, { "docid": "21439293", "text": "Pattern recognition by the innate immune system enables the detection of microorganisms, but how the level of microbial threat is evaluated — a process that is crucial for eliciting measured antimicrobial responses with minimal inflammatory tissue damage — is less well understood. New evidence has shown that features of microbial viability can be detected by the immune system and thereby induce robust responses that are not warranted for dead microorganisms. Here, we propose five immune checkpoints that, as defined here, collectively determine the gravity of microbial encounters.", "title": "Beyond pattern recognition: five immune checkpoints for scaling the microbial threat" }, { "docid": "35651106", "text": "Efficient T cell activation requires both TCR signals and costimulatory signals. CD28 is one of the molecules that provide costimulatory signals for T cells. We used mice deficient in CD28 expression (CD28-/- mice) to analyze the role of CD28 in the immune response against the intracellular bacterium Salmonella typhimurium, the causative agent of murine typhoid fever. CD28-/- mice were highly susceptible to infection with wild-type S. typhimurium and even failed to control infection with attenuated aroA- S. typhimurium. More detailed analysis revealed that CD28-/- animals did not mount a T-dependent Ab response and were highly impaired in the production of IFN-gamma. Thus, CD28 cosignaling is crucial for immunity against S. typhimurium. To our knowledge, this is the first report describing an essential role for CD28 in protective immunity against an intracellular microbial pathogen.", "title": "Critical role of CD28 in protective immunity against Salmonella typhimurium." }, { "docid": "18025240", "text": "OBJECTIVE To summarise the effects of anthelmintic drug treatment on growth and cognitive performance in children. \n DATA SOURCES Electronic databases: Cochrane Infectious Diseases Group controlled trial register, Cochrane controlled trials register, Embase, and Medline. Citations of all identified trials. Contact with the World Health Organization and field researchers. REVIEW METHODS Systematic review of randomised controlled trials in children aged 1-16 that compared anthelmintic treatment with placebo or no treatment. Assessment of validity and data abstraction conducted independently by two reviewers. \n MAIN OUTCOME MEASURES Growth and cognitive performance. \n RESULTS Thirty randomised controlled trials in more than 15 000 children were identified. Effects on mean weight were unremarkable, and heterogeneity was evident in the results. There were some positive effects on mean weight change in the trials reporting this outcome: after a single dose (any anthelmintic) the pooled estimates were 0.24 kg (95% confidence interval 0.15 kg to 0. 32 kg; fixed effects model assumed) and 0.38 kg (0.01 kg to 0.77 kg; random effects model assumed). Results from trials of multiple doses showed mean weight change in up to one year of follow up of 0.10 kg (0.04 kg to 0.17 kg; fixed effects) or 0.15 kg (0.00 to 0.30; random effects). At more than one year of follow up, mean weight change was 0.12 kg (-0.02 kg to 0.26 kg; fixed effects) and 0.43 (-0.61 to 1. 47; random effects). Results from studies of cognitive performance were inconclusive. \n CONCLUSIONS There is some limited evidence that routine treatment of children in areas where helminths are common has effects on weight gain, but this is not consistent between trials. There is insufficient evidence as to whether this intervention improves cognitive performance.", "title": "Effects of treatment for intestinal helminth infection on growth and cognitive performance in children: systematic review of randomised trials." }, { "docid": "4544916", "text": "To efficiently counteract pathogens, plants rely on a complex set of immune responses that are tightly regulated to allow the timely activation, appropriate duration and adequate amplitude of defense programs. The coordination of the plant immune response is known to require the activity of the ubiquitin/proteasome system, which controls the stability of proteins in eukaryotes. Here, we demonstrate that the N-end rule pathway, a subset of the ubiquitin/proteasome system, regulates the defense against a wide range of bacterial and fungal pathogens in the model plant Arabidopsis thaliana. We show that this pathway positively regulates the biosynthesis of plant-defense metabolites such as glucosinolates, as well as the biosynthesis and response to the phytohormone jasmonic acid, which plays a key role in plant immunity. Our results also suggest that the arginylation branch of the N-end rule pathway regulates the timing and amplitude of the defense program against the model pathogen Pseudomonas syringae AvrRpm1.", "title": "The N-end rule pathway regulates pathogen responses in plants." }, { "docid": "25878014", "text": "The hygiene hypothesis is thought to be a significant contributor to the growing incidence of inflammatory bowel disease (IBD) around the world, although the evidence for specific factors that underlie the hygiene hypothesis in IBD is unclear. We aimed to systematically review the literature to determine which hygiene-related factors are associated with the development of IBD. Publications identified from a broad based MEDLINE and Current Contents search between 1966 and 2007 on key terms relevant to the 'hygiene hypothesis' and IBD including H pylori exposure, helminths, cold chain hypothesis, measles infection and vaccination, antibiotic use, breastfeeding, family size, sibship, urban upbringing, day care attendance and domestic hygiene were reviewed. The literature suggests that the hygiene hypothesis and its association with decreased microbial exposure in childhood probably plays an important role in the development of IBD, although the strength of the supporting data for each of the factors varies considerably. The most promising factors that may potentially be associated with development of IBD include H pylori exposure, helminths, breastfeeding and sibship. However, the vast majority of studies in this area are plagued by serious methodological shortcomings, particularly the reliance on retrospective recall of information making it difficult to truly ascertain the importance of a 'hygiene hypothesis' in IBD. The 'hygiene hypothesis' in IBD is an important area of research that may give clues to the aetiology of this disease. Directions for future research are recommended.", "title": "Hygiene hypothesis in inflammatory bowel disease: a critical review of the literature." }, { "docid": "3930020", "text": "Epidermal Langerhans cells (LCs) play a key role in immune defense mechanisms and in numerous immunological disorders. In this report, we show that percutaneous infection of C57BL/6 mice with the helminth parasite Schistosoma mansoni leads to the activation of LCs but, surprisingly, to their retention in the epidermis. Moreover, using an experimental model of LC migration induced by tumor necrosis factor (TNF)-α, we show that parasites transiently impair the departure of LCs from the epidermis and their subsequent accumulation as dendritic cells in the draining lymph nodes. The inhibitory effect is mediated by soluble lipophilic factors released by the parasites and not by host-derived antiinflammatory cytokines, such as interleukin-10. We find that prostaglandin (PG)D2, but not the other major eicosanoids produced by the parasites, specifically impedes the TNF-α–triggered migration of LCs through the adenylate cyclase–coupled PGD2 receptor (DP receptor). Moreover, the potent DP receptor antagonist BW A868C restores LC migration in infected mice. Finally, in a model of contact allergen-induced LC migration, we show that activation of the DP receptor not only inhibits LC emigration but also dramatically reduces the contact hypersensitivity responses after challenge. Taken together, we propose that the inhibition of LC migration could represent an additional stratagem for the schistosomes to escape the host immune system and that PGD2 may play a key role in the control of cutaneous immune responses.", "title": "Role of the Parasite-Derived Prostaglandin D2 in the Inhibition of Epidermal Langerhans Cell Migration during Schistosomiasis Infection" }, { "docid": "4427060", "text": "Crohn's disease and ulcerative colitis, the two main types of chronic inflammatory bowel disease, are multifactorial conditions of unknown aetiology. A susceptibility locus for Crohn's disease has been mapped to chromosome 16. Here we have used a positional-cloning strategy, based on linkage analysis followed by linkage disequilibrium mapping, to identify three independent associations for Crohn's disease: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators that is expressed in monocytes. These NOD2 variants alter the structure of either the leucine-rich repeat domain of the protein or the adjacent region. NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens. These observations suggest that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn's disease that can now be further investigated.", "title": "Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease." }, { "docid": "2604063", "text": "The intestinal microbiota has become a relevant aspect of human health. Microbial colonization runs in parallel with immune system maturation and plays a role in intestinal physiology and regulation. Increasing evidence on early microbial contact suggest that human intestinal microbiota is seeded before birth. Maternal microbiota forms the first microbial inoculum, and from birth, the microbial diversity increases and converges toward an adult-like microbiota by the end of the first 3-5 years of life. Perinatal factors such as mode of delivery, diet, genetics, and intestinal mucin glycosylation all contribute to influence microbial colonization. Once established, the composition of the gut microbiota is relatively stable throughout adult life, but can be altered as a result of bacterial infections, antibiotic treatment, lifestyle, surgical, and a long-term change in diet. Shifts in this complex microbial system have been reported to increase the risk of disease. Therefore, an adequate establishment of microbiota and its maintenance throughout life would reduce the risk of disease in early and late life. This review discusses recent studies on the early colonization and factors influencing this process which impact on health.", "title": "The composition of the gut microbiota throughout life, with an emphasis on early life" }, { "docid": "42693833", "text": "Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively. Diversified and selected IgAs contributed to maintenance of diversified and balanced microbiota, which in turn facilitated the expansion of Foxp3(+) T cells, induction of GCs, and IgA responses in the gut through a symbiotic regulatory loop. Thus, the adaptive immune system, through cellular and molecular components that are required for immune tolerance and through the diversification as well as selection of antibody repertoire, mediates host-microbial symbiosis by controlling the richness and balance of bacterial communities required for homeostasis.", "title": "Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis." }, { "docid": "21909315", "text": "The discovery of RNA interference and cellular microRNAs (miRNAs) has not only affected how biological research is conducted but also revealed an entirely new level of post-transcriptional gene regulation. Here, I discuss the potential functions of the virally encoded miRNAs recently identified in several pathogenic human viruses and propose that cellular miRNAs may have had a substantial effect on viral evolution and may continue to influence the in vivo tissue tropism of viruses. Our increasing knowledge of the role and importance of virally encoded miRNAs will probably offer new insights into how viruses that establish latent infections, such as herpesviruses, avoid elimination by the host innate or adaptive immune system. Research into viral miRNA function might also suggest new approaches for treating some virally induced diseases.", "title": "Viruses and microRNAs" }, { "docid": "19005293", "text": "Inflammation induced by recognition of pathogen-associated molecular patterns markedly affects subsequent adaptive responses. We asked whether the adaptive immune system can also affect the character and magnitude of innate inflammatory responses. We found that the response of memory, but not naive, CD4+ T cells enhances production of multiple innate inflammatory cytokines and chemokines (IICs) in the lung and that, during influenza infection, this leads to early control of virus. Memory CD4+ T cell–induced IICs and viral control require cognate antigen recognition and are optimal when memory cells are either T helper type 1 (TH1) or TH17 polarized but are independent of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production and do not require activation of conserved pathogen recognition pathways. This represents a previously undescribed mechanism by which memory CD4+ T cells induce an early innate response that enhances immune protection against pathogens.", "title": "Memory CD4+ T cells induce innate responses independently of pathogen" }, { "docid": "11336632", "text": "Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.", "title": "CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA" }, { "docid": "7717468", "text": "Microbial survival in a host is usually dependent on the ability of a pathogen to undergo changes that promote escape from host defense mechanisms. The human-pathogenic fungus Cryptococcus neoformans undergoes phenotypic switching in vivo that promotes persistence in tissue. By microarray and real-time PCR analyses, the allergen 1 gene (ALL1) was found to be downregulated in the hypervirulent mucoid switch variant, both during logarithmic growth and during intracellular growth in macrophages. The ALL1 gene encodes a small cytoplasmic protein that is involved in capsule formation. Growth of an all1Delta gene deletion mutant was normal. Similar to cells of the mucoid switch variant, all1Delta cells produced a larger polysaccharide capsule than cells of the smooth parent and the complemented strain produced, and the enlarged capsule inhibited macrophage phagocytosis. The mutant exhibited a modest defect in capsule induction compared to all of the other variants. In animal models the phenotype of the all1Delta mutant mimicked the hypervirulent phenotype of the mucoid switch variant, which is characterized by decreased host survival and elevated intracranial pressure. Decreased survival is likely the result of both an ineffective cell-mediated immune response and impaired phagocytosis by macrophages. Consequently, we concluded that, unlike loss of most virulence-associated genes, where loss of gene function results in attenuated virulence, loss of the ALL1 gene enhances virulence by altering the host-pathogen interaction and thereby impairing clearance. Our data identified the first cryptococcal gene associated with elevated intracranial pressure and support the hypothesis that an environmental opportunistic pathogen has modified its virulence in vivo by epigenetic downregulation of gene function.", "title": "Loss of allergen 1 confers a hypervirulent phenotype that resembles mucoid switch variants of Cryptococcus neoformans." } ]