docid
stringlengths
4
9
text
stringlengths
174
10k
title
stringlengths
2
300
3883485
Replacement of mitochondria through nuclear transfer between oocytes of two different women has emerged recently as a strategy for preventing inheritance of mtDNA diseases. Although experiments in human oocytes have shown effective replacement, the consequences of small amounts of mtDNA carryover have not been studied sufficiently. Using human mitochondrial replacement stem cell lines, we show that, even though the low levels of heteroplasmy introduced into human oocytes by mitochondrial carryover during nuclear transfer often vanish, they can sometimes instead result in mtDNA genotypic drift and reversion to the original genotype. Comparison of cells with identical oocyte-derived nuclear DNA but different mtDNA shows that either mtDNA genotype is compatible with the nucleus and that drift is independent of mitochondrial function. Thus, although functional replacement of the mitochondrial genome is possible, even low levels of heteroplasmy can affect the stability of the mtDNA genotype and compromise the efficacy of mitochondrial replacement.
Genetic Drift Can Compromise Mitochondrial Replacement by Nuclear Transfer in Human Oocytes.
3893473
TAL (transcription activator-like) effectors constitute a novel class of DNA-binding proteins with predictable specificity. They are employed by Gram-negative plant-pathogenic bacteria of the genus Xanthomonas which translocate a cocktail of different effector proteins via a type III secretion system (T3SS) into plant cells where they serve as virulence determinants. Inside the plant cell, TALs localize to the nucleus, bind to target promoters, and induce expression of plant genes. DNA-binding specificity of TALs is determined by a central domain of tandem repeats. Each repeat confers recognition of one base pair (bp) in the DNA. Rearrangement of repeat modules allows design of proteins with desired DNA-binding specificities. Here, we summarize how TAL specificity is encoded, first structural data and first data on site-specific TAL nucleases.
TAL effectors are remote controls for gene activation.
3896759
Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.
Vascular heterogeneity and specialization in development and disease
3898784
Importance Although non–vitamin K antagonist oral anticoagulants (NOACs) are increasingly used to prevent thromboembolic disease, there are limited data on NOAC-related intracerebral hemorrhage (ICH). Objective To assess the association between preceding oral anticoagulant use (warfarin, NOACs, and no oral anticoagulants [OACs]) and in-hospital mortality among patients with ICH. Design, Setting, and Participants Retrospective cohort study of 141 311 patients with ICH admitted from October 2013 to December 2016 to 1662 Get With The Guidelines–Stroke hospitals. Exposures Anticoagulation therapy before ICH, defined as any use of OACs within 7 days prior to hospital arrival. Main Outcomes and Measures In-hospital mortality. Results Among 141 311 patients with ICH (mean [SD] age, 68.3 [15.3] years; 48.1% women), 15 036 (10.6%) were taking warfarin and 4918 (3.5%) were taking NOACs preceding ICH, and 39 585 (28.0%) and 5783 (4.1%) were taking concomitant single and dual antiplatelet agents, respectively. Patients with prior use of warfarin or NOACs were older and had higher prevalence of atrial fibrillation and prior stroke. Acute ICH stroke severity (measured by the National Institutes of Health Stroke Scale) was not significantly different across the 3 groups (median, 9 [interquartile range, 2-21] for warfarin, 8 [2-20] for NOACs, and 8 [2-19] for no OACs). The unadjusted in-hospital mortality rates were 32.6% for warfarin, 26.5% for NOACs, and 22.5% for no OACs. Compared with patients without prior use of OACs, the risk of in-hospital mortality was higher among patients with prior use of warfarin (adjusted risk difference [ARD], 9.0% [97.5% CI, 7.9% to 10.1%]; adjusted odds ratio [AOR], 1.62 [97.5% CI, 1.53 to 1.71]) and higher among patients with prior use of NOACs (ARD, 3.3% [97.5% CI, 1.7% to 4.8%]; AOR, 1.21 [97.5% CI, 1.11-1.32]). Compared with patients with prior use of warfarin, patients with prior use of NOACs had a lower risk of in-hospital mortality (ARD, −5.7% [97.5% CI, −7.3% to −4.2%]; AOR, 0.75 [97.5% CI, 0.69 to 0.81]). The difference in mortality between NOAC-treated patients and warfarin-treated patients was numerically greater among patients with prior use of dual antiplatelet agents (32.7% vs 47.1%; ARD, −15.0% [95.5% CI, −26.3% to −3.8%]; AOR, 0.50 [97.5% CI, 0.29 to 0.86]) than among those taking these agents without prior antiplatelet therapy (26.4% vs 31.7%; ARD, −5.0% [97.5% CI, −6.8% to −3.2%]; AOR, 0.77 [97.5% CI, 0.70 to 0.85]), although the interaction P value (.07) was not statistically significant. Conclusions and Relevance Among patients with ICH, prior use of NOACs or warfarin was associated with higher in-hospital mortality compared with no OACs. Prior use of NOACs, compared with prior use of warfarin, was associated with lower risk of in-hospital mortality.
Association of Intracerebral Hemorrhage Among Patients Taking Non–Vitamin K Antagonist vs Vitamin K Antagonist Oral Anticoagulants With In-Hospital Mortality
3899896
Several studies have reported that elevated red blood cell distribution width (RDW) was associated with the poor prognosis of different kinds of cancers. The aim of this study was to investigate the prognostic role of RDW in patients undergoing resection for nonmetastatic rectal cancer. We retrospectively reviewed a database of 625 consecutive patients who underwent curative resection for nonmetastatic rectal cancer at our institution from January 2009 to December 2014. The cutoff value of RDW was calculated by receiver-operating characteristic curve. The results demonstrated that patients in high RDW-cv group had a lower overall survival (OS) (P = .018) and disease-free survival (P = .004). We also observed that patients in high RDW-sd group were associated with significantly lower OS (P = .033), whereas the disease-free survival (DFS) was not significantly different (P = .179).In multivariate analysis, we found elevated RDW-cv was associated poor DFS (hazard ratio [HR] = 1.56, P = .010) and RDW-sd can predict a worse OS (HR = 1.70, P = .009).We confirmed that elevated RDW can be an independently prognostic factor in patients undergoing resection for nonmetastatic rectal cancer. So more intervention or surveillance might be paid to the patients with nonmetastatic rectal cancer and elevated RDW values in the future.
Elevated red blood cell distribution width contributes to poor prognosis in patients undergoing resection for nonmetastatic rectal cancer
3903084
Objective: To examine different health outcomes that are associated with specific lifestyle and genetic factors. Materials and methods: From March 2004 to April 2006, a sample of employees from three different health and academic institutions, as well as their family members, were enrolled in the study after providing informed consent. At baseline and follow-up (2010-2013), participants completed a self-administered questionnaire, a physical examination, and provided blood samples. Results: A total of 10 729 participants aged 6 to 94 years were recruited at baseline. Of these, 70% were females, and 50% were from the Mexican Social Security Institute. Nearly 42% of the adults in the sample were overweight, while 20% were obese. Conclusion: Our study can offer new insights into disease mechanisms and prevention through the analysis of risk factor information in a large sample of Mexicans.
Health workers cohort study: methods and study design.
3912660
OBJECTIVE Corin is a serine protease that converts pro-atrial natriuretic peptide (pro-ANP) to atrial natriuretic peptide (ANP), a cardiac hormone that regulates salt-water balance and blood pressure. ANP is degraded by natriuretic peptide receptor (NPR). This study was to determine if aberrant pro-ANP/corin/NPR signaling is present in maternal vascular system in preeclampsia. STUDY DESIGN Maternal venous blood was obtained from 197 pregnant women (84 normotensive, 16 complicated with chronic hypertension (CHT), 11 mild and 86 severe preeclampsia). Plasma corin and pro-ANP concentrations were measured by enzyme-linked immunosorbent assay. Maternal subcutaneous fat tissue was obtained from 12 pregnant women with cesarean section delivery (6 normotensive and 6 preeclampsia). Vascular ANP and its receptors NPR-A, NPR-B, and NPR-C expression were examined by immunostaining of paraffin embedded subcutaneous fat tissue sections. RESULTS Corin concentrations were significantly higher in mild (2.78 ± 0.67 ng/ml, p < .05) and severe (2.53 ± 0.18 ng/ml, p < .01) preeclampsia than in normotensive (1.58 ± 0.08 ng/ml) and CHT (1.55 ± 0.20 ng/ml) groups. Pro-ANP concentrations were significantly higher in CHT (1.59 ± 0.53 ng/ml, p < .05) and severe preeclampsia (1.42 ± 0.24 ng/ml, p < .01) than in normotensive (0.48 ± 0.06 ng/ml) and mild preeclampsia (0.52 ± 0.09 ng/ml) groups. ANP and NPR-B expression was undetectable in maternal vessels from normotensive and preeclamptic pregnancies, but reduced NPR-A expression and increased NPR-C expression was found in maternal vessel endothelium in preeclampsia. CONCLUSIONS ANP is a vasodilator and NPR-C is a clearance receptor for ANP. The finding of upregulation of NPR-C expression suggests that circulating ANP clearance or degradation is increased in preeclampsia. These results also suggest that pro-ANP/corin/NPR signaling is dominant in the vascular system in preeclampsia.
Aberrant pro-atrial natriuretic peptide/corin/natriuretic peptide receptor signaling is present in maternal vascular endothelium in preeclampsia.
3929361
BACKGROUND Malaria elimination requires a variety of approaches individually optimized for different transmission settings. A recent field study in an area of low seasonal transmission in South West Cambodia demonstrated dramatic reductions in malaria parasite prevalence following both mass drug administration (MDA) and high treatment coverage of symptomatic patients with artemisinin-piperaquine plus primaquine. This study employed multiple combined strategies and it was unclear what contribution each made to the reductions in malaria. METHOD AND FINDINGS A mathematical model fitted to the trial results was used to assess the effects of the various components of these interventions, design optimal elimination strategies, and explore their interactions with artemisinin resistance, which has recently been discovered in Western Cambodia. The modelling indicated that most of the initial reduction of P. falciparum malaria resulted from MDA with artemisinin-piperaquine. The subsequent continued decline and near elimination resulted mainly from high coverage with artemisinin-piperaquine treatment. Both these strategies were more effective with the addition of primaquine. MDA with artemisinin combination therapy (ACT) increased the proportion of artemisinin resistant infections, although much less than treatment of symptomatic cases with ACT, and this increase was slowed by adding primaquine. Artemisinin resistance reduced the effectiveness of interventions using ACT when the prevalence of resistance was very high. The main results were robust to assumptions about primaquine action, and immunity. CONCLUSIONS The key messages of these modelling results for policy makers were: high coverage with ACT treatment can produce a long-term reduction in malaria whereas the impact of MDA is generally only short-term; primaquine enhances the effect of ACT in eliminating malaria and reduces the increase in proportion of artemisinin resistant infections; parasite prevalence is a better surveillance measure for elimination programmes than numbers of symptomatic cases; combinations of interventions are most effective and sustained efforts are crucial for successful elimination.
Optimising Strategies for Plasmodium falciparum Malaria Elimination in Cambodia: Primaquine, Mass Drug Administration and Artemisinin Resistance
3930020
Epidermal Langerhans cells (LCs) play a key role in immune defense mechanisms and in numerous immunological disorders. In this report, we show that percutaneous infection of C57BL/6 mice with the helminth parasite Schistosoma mansoni leads to the activation of LCs but, surprisingly, to their retention in the epidermis. Moreover, using an experimental model of LC migration induced by tumor necrosis factor (TNF)-α, we show that parasites transiently impair the departure of LCs from the epidermis and their subsequent accumulation as dendritic cells in the draining lymph nodes. The inhibitory effect is mediated by soluble lipophilic factors released by the parasites and not by host-derived antiinflammatory cytokines, such as interleukin-10. We find that prostaglandin (PG)D2, but not the other major eicosanoids produced by the parasites, specifically impedes the TNF-α–triggered migration of LCs through the adenylate cyclase–coupled PGD2 receptor (DP receptor). Moreover, the potent DP receptor antagonist BW A868C restores LC migration in infected mice. Finally, in a model of contact allergen-induced LC migration, we show that activation of the DP receptor not only inhibits LC emigration but also dramatically reduces the contact hypersensitivity responses after challenge. Taken together, we propose that the inhibition of LC migration could represent an additional stratagem for the schistosomes to escape the host immune system and that PGD2 may play a key role in the control of cutaneous immune responses.
Role of the Parasite-Derived Prostaglandin D2 in the Inhibition of Epidermal Langerhans Cell Migration during Schistosomiasis Infection
3935126
Background In a phase 1 trial, axicabtagene ciloleucel (axi‐cel), an autologous anti‐CD19 chimeric antigen receptor (CAR) T‐cell therapy, showed efficacy in patients with refractory large B‐cell lymphoma after the failure of conventional therapy. Methods In this multicenter, phase 2 trial, we enrolled 111 patients with diffuse large B‐cell lymphoma, primary mediastinal B‐cell lymphoma, or transformed follicular lymphoma who had refractory disease despite undergoing recommended prior therapy. Patients received a target dose of 2×106 anti‐CD19 CAR T cells per kilogram of body weight after receiving a conditioning regimen of low‐dose cyclophosphamide and fludarabine. The primary end point was the rate of objective response (calculated as the combined rates of complete response and partial response). Secondary end points included overall survival, safety, and biomarker assessments. Results Among the 111 patients who were enrolled, axi‐cel was successfully manufactured for 110 (99%) and administered to 101 (91%). The objective response rate was 82%, and the complete response rate was 54%.With a median follow‐up of 15.4 months, 42% of the patients continued to have a response, with 40% continuing to have a complete response. The overall rate of survival at 18 months was 52%. The most common adverse events of grade 3 or higher during treatment were neutropenia (in 78% of the patients), anemia (in 43%), and thrombocytopenia (in 38%). Grade 3 or higher cytokine release syndrome and neurologic events occurred in 13% and 28% of the patients, respectively. Three of the patients died during treatment. Higher CAR T‐cell levels in blood were associated with response. Conclusions In this multicenter study, patients with refractory large B‐cell lymphoma who received CAR T‐cell therapy with axi‐cel had high levels of durable response, with a safety profile that included myelosuppression, the cytokine release syndrome, and neurologic events. (Funded by Kite Pharma and the Leukemia and Lymphoma Society Therapy Acceleration Program; ZUMA‐1 ClinicalTrials.gov number, NCT02348216.)
Axicabtagene Ciloleucel CAR T‐Cell Therapy in Refractory Large B‐Cell Lymphoma
3943235
During physiological or psychological stress, catecholamines produced by the sympathetic nervous system (SNS) regulate the immune system. Previous studies report that the activation of β-adrenergic receptors (βARs) mediates the actions of catecholamines and increases pro-inflammatory cytokine production in a number of different cell types. The impact of the SNS on the immune modulation of social defeat has not been examined. The following studies were designed to determine whether SNS activation during social disruption stress (SDR) influences anxiety-like behavior as well as the activation, priming, and glucocorticoid resistance of splenocytes after social stress. CD-1 mice were exposed to one, three, or six cycles of SDR and HPLC analysis of the plasma and spleen revealed an increase in catecholamines. After six cycles of SDR the open field test was used to measure behaviors characteristic of anxiety and indicated that the social defeat induced increase in anxiety-like behavior was blocked by pre-treatment with the β-adrenergic antagonist propranolol. Pre-treatment with the β-adrenergic antagonist propranolol did not significantly alter corticosterone levels indicating no difference in activation of the hypothalamic-pituitary-adrenal axis. In addition to anxiety-like behavior the SDR induced splenomegaly and increase in plasma IL-6, TNFα, and MCP-1 were each reversed by pre-treatment with propranolol. Furthermore, flow cytometric analysis of cells from propranolol pretreated mice reduced the SDR-induced increase in the percentage of CD11b(+) splenic macrophages and significantly decreased the expression of TLR2, TLR4, and CD86 on the surface of these cells. In addition, supernatants from 18h LPS-stimulated ex vivo cultures of splenocytes from propranolol-treated SDR mice contained less IL-6. Likewise propranolol pre-treatment abrogated the glucocorticoid insensitivity of CD11b(+) cells ex vivo when compared to splenocytes from SDR vehicle-treated mice. Together, this study demonstrates that the immune activation and priming effects of SDR result, in part, as a consequence of SNS activation.
Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress
3944632
CONTEXT In patients with brain metastases, it is unclear whether adding up-front whole-brain radiation therapy (WBRT) to stereotactic radiosurgery (SRS) has beneficial effects on mortality or neurologic function compared with SRS alone. OBJECTIVE To determine if WBRT combined with SRS results in improvements in survival, brain tumor control, functional preservation rate, and frequency of neurologic death. DESIGN, SETTING, AND PATIENTS Randomized controlled trial of 132 patients with 1 to 4 brain metastases, each less than 3 cm in diameter, enrolled at 11 hospitals in Japan between October 1999 and December 2003. INTERVENTIONS Patients were randomly assigned to receive WBRT plus SRS (65 patients) or SRS alone (67 patients). MAIN OUTCOME MEASURES The primary end point was overall survival; secondary end points were brain tumor recurrence, salvage brain treatment, functional preservation, toxic effects of radiation, and cause of death. RESULTS The median survival time and the 1-year actuarial survival rate were 7.5 months and 38.5% (95% confidence interval, 26.7%-50.3%) in the WBRT + SRS group and 8.0 months and 28.4% (95% confidence interval, 17.6%-39.2%) for SRS alone (P = .42). The 12-month brain tumor recurrence rate was 46.8% in the WBRT + SRS group and 76.4% for SRS alone group (P<.001). Salvage brain treatment was less frequently required in the WBRT + SRS group (n = 10) than with SRS alone (n = 29) (P<.001). Death was attributed to neurologic causes in 22.8% of patients in the WBRT + SRS group and in 19.3% of those treated with SRS alone (P = .64). There were no significant differences in systemic and neurologic functional preservation and toxic effects of radiation. CONCLUSIONS Compared with SRS alone, the use of WBRT plus SRS did not improve survival for patients with 1 to 4 brain metastases, but intracranial relapse occurred considerably more frequently in those who did not receive WBRT. Consequently, salvage treatment is frequently required when up-front WBRT is not used. TRIAL REGISTRATION umin.ac.jp/ctr Identifier: C000000412.
Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial.
3952288
Aire-expressing medullary thymic epithelial cells (mTECs) play a key role in preventing autoimmunity by expressing tissue-restricted antigens to help purge the emerging T cell receptor repertoire of self-reactive specificities. Here we demonstrate a novel role for a CD4+3− inducer cell population, previously linked to development of organized secondary lymphoid structures and maintenance of T cell memory in the functional regulation of Aire-mediated promiscuous gene expression in the thymus. CD4+3− cells are closely associated with mTECs in adult thymus, and in fetal thymus their appearance is temporally linked with the appearance of Aire+ mTECs. We show that RANKL signals from this cell promote the maturation of RANK-expressing CD80−Aire− mTEC progenitors into CD80+Aire+ mTECs, and that transplantation of RANK-deficient thymic stroma into immunodeficient hosts induces autoimmunity. Collectively, our data reveal cellular and molecular mechanisms leading to the generation of Aire+ mTECs and highlight a previously unrecognized role for CD4+3−RANKL+ inducer cells in intrathymic self-tolerance.
RANK signals from CD4+3− inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla
3960385
Proteomics can be used to characterize quality defects including pale, soft, and exudative (PSE) meat (pork and poultry), woody broiler breast meat, reddish catfish fillets, meat toughness, and beef myoglobin oxidation. PSE broiler meat was characterized by 15 proteins that differed in abundance in comparison to normal broiler breast meat, and eight proteins were differentially expressed in woody breast meat in comparison to normal breast meat. Hemoglobin was the only protein that was differentially expressed between red and normal catfish fillets. However, inducing low oxygen and/or heat stress conditions to catfish fillets did not lead to the production of red fillets. Proteomic data provided information pertaining to the protein differences that exist in meat quality defects. However, these data need to be evaluated in conjunction with information pertaining to genetics, nutrition, environment of the live animal, muscle to meat conversion, meat quality analyses and sensory attributes to understand causality, protein biomarkers, and ultimately how to prevent quality defects.
Proteomic approach to characterize biochemistry of meat quality defects.
3973445
Adenosine 5′-monophosphate–activated protein kinase (AMPK) is a pivotal regulator of metabolism at cellular and organismal levels. AMPK also suppresses inflammation. We found that pharmacological activation of AMPK rapidly inhibited the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway in various cells. In vitro kinase assays revealed that AMPK directly phosphorylated two residues (Ser515 and Ser518) within the Src homology 2 domain of JAK1. Activation of AMPK enhanced the interaction between JAK1 and 14-3-3 proteins in cultured vascular endothelial cells and fibroblasts, an effect that required the presence of Ser515 and Ser518 and was abolished in cells lacking AMPK catalytic subunits. Mutation of Ser515 and Ser518 abolished AMPK-mediated inhibition of JAK-STAT signaling stimulated by either the sIL-6Rα/IL-6 complex or the expression of a constitutively active V658F-mutant JAK1 in human fibrosarcoma cells. Clinically used AMPK activators metformin and salicylate enhanced the inhibitory phosphorylation of endogenous JAK1 and inhibited STAT3 phosphorylation in primary vascular endothelial cells. Therefore, our findings reveal a mechanism by which JAK1 function and inflammatory signaling may be suppressed in response to metabolic stress and provide a mechanistic rationale for the investigation of AMPK activators in a range of diseases associated with enhanced activation of the JAK-STAT pathway.
Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling
3981033
The cellular inhibitors of apoptosis (cIAP) 1 and 2 are amplified in about 3% of cancers and have been identified in multiple malignancies as being potential therapeutic targets as a result of their role in the evasion of apoptosis. Consequently, small-molecule IAP antagonists, such as LCL161, have entered clinical trials for their ability to induce tumor necrosis factor (TNF)-mediated apoptosis of cancer cells. However, cIAP1 and cIAP2 are recurrently homozygously deleted in multiple myeloma (MM), resulting in constitutive activation of the noncanonical nuclear factor (NF)-κB pathway. To our surprise, we observed robust in vivo anti-myeloma activity of LCL161 in a transgenic myeloma mouse model and in patients with relapsed-refractory MM, where the addition of cyclophosphamide resulted in a median progression-free-survival of 10 months. This effect was not a result of direct induction of tumor cell death, but rather of upregulation of tumor-cell-autonomous type I interferon (IFN) signaling and a strong inflammatory response that resulted in the activation of macrophages and dendritic cells, leading to phagocytosis of tumor cells. Treatment of a MM mouse model with LCL161 established long-term anti-tumor protection and induced regression in a fraction of the mice. Notably, combination of LCL161 with the immune-checkpoint inhibitor anti-PD1 was curative in all of the treated mice.
IAP antagonists induce anti-tumor immunity in multiple myeloma
3981244
Sexual health severely decreases with age. For males older than 40 years, erectile dysfunction (ED) is the most common sexual disorder. Although physical and psychological risk factors for ED have been identified, protective factors are yet to be determined. To date, no study has examined endocrine and psychosocial factors in parallel with regard to their modifying effect on the age-related increase in ED. Two hundred and seventy-one self-reporting healthy men aged between 40 and 75 years provided both psychometric data on sexual function and a set of potential psychosocial protective factors, and saliva samples for the analysis of steroid hormones and proinflammatory cytokines. Around 35% of the participants reported at least a mild form of ED. Direct associations with ED were identified for perceived general health, emotional support, relationship quality, intimacy motivation but not for steroid hormones or proinflammatory markers. Moderation analyses for the association between age and ED revealed positive effects for testosterone (T), dehydroepiandrosterone (DHEA), perceived general health, emotional support, intimacy motivation, and a negative effect for interleukin-6 (all p < .05; f2 > .17). Group differences between older men with and without ED emerged for T, DHEA, and psychometric measures such as perceived general health, emotional support, satisfaction with life, and intimacy motivation (all p < .05; d > .3). Both psychosocial and endocrine parameters moderated the association between age and sexual health. Perceived general health, emotional support, intimacy motivation, and relationship quality emerged as psychosocial protective factors against ED. Higher T and DHEA and lower interleukin-6 levels also buffered against an age-related increase in ED.
Psychobiological Protective Factors Modifying the Association Between Age and Sexual Health in Men: Findings From the Men’s Health 40+ Study
3981613
Together with recent advances in the processing and culture of human tissue, bioengineering, xenotransplantation and genome editing, Induced pluripotent stem cells (iPSCs) present a range of new opportunities for the study of human cancer. Here we discuss the main advantages and limitations of iPSC modeling, and how the method intersects with other patient-derived models of cancer, such as organoids, organs-on-chips and patient-derived xenografts (PDXs). We highlight the opportunities that iPSC models can provide beyond those offered by existing systems and animal models and present current challenges and crucial areas for future improvements toward wider adoption of this technology.
Patient-derived induced pluripotent stem cells in cancer research and precision oncology
3981729
TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.
Structural basis for sequence-specific recognition of DNA by TAL effectors.
3984231
Adverse remodeling following myocardial infarction (MI) leading to heart failure is driven by an imbalanced resolution of inflammation. The macrophage cell is an important control of post-MI inflammation, as macrophage subtypes secrete mediators to either promote inflammation and extend injury (M1 phenotype) or suppress inflammation and promote scar formation (M2 phenotype). We have previously shown that the absence of caveolin-1 (Cav1), a membrane scaffolding protein, is associated with adverse cardiac remodeling in mice, but the mechanisms responsible remain to be elucidated. We explore here the role of Cav1 in the activation of macrophages using wild type C57BL6/J (WT) and Cav1(tm1Mls/J) (Cav1(-/-)) mice. By echocardiography, cardiac function was comparable between WT and Cav1(-/-) mice at 3days post-MI. In the absence of Cav1, there were a surprisingly higher percentage of M2 macrophages (arginase-1 positive) detected in the infarcted zone. Conversely, restoring Cav1 function after MI in WT mice by adding back the Cav1 scaffolding domain reduced the M2 activation profile. Further, adoptive transfer of Cav1 null macrophages into WT mice on d3 post-MI exacerbated adverse cardiac remodeling at d14 post-MI. In vitro studies revealed that Cav1 null macrophages had a more pronounced M2 profile activation in response to IL-4 stimulation. In conclusion, Cav1 deletion promotes an array of maladaptive repair processes after MI, including increased TGF-β signaling, increased M2 macrophage infiltration and dysregulation of the M1/M2 balance. Our data also suggest that cardiac remodeling can be improved by therapeutic intervention regulating Cav1 function during the inflammatory response phase.
Caveolin-1 deletion exacerbates cardiac interstitial fibrosis by promoting M2 macrophage activation in mice after myocardial infarction.
3986403
Study of the role of hydroperoxides and lipid peroxidation in disease requires simple and sensitive methods for direct hydroperoxide measurement. We report on a technique for measuring hydroperoxide which relies upon the rapid hydroperoxide-mediated oxidation of Fe2+ under acidic conditions. Fe3+ forms a chromophore with xylenol orange which absorbs strongly at 560 nm, yielding an apparent E560 (for H2O2, butyl hydroperoxide and cumene hydroperoxide) of 4.3×104 M−1 cm−1. The assay was validated in a study of liposomal lipid peroxidation and shown to give results comparable with those obtained by an iodometric method or by measuring conjugated dienes. The assay involving thiobarbituric acid, by comparison, underestimates lipid peroxidation and does not measure hydroperoxideper se.
Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method
4020950
Exosomes are extracellular vesicles of endosomal origin which have emerged as key mediators of intercellular communication. All major cardiac cell types-including cardiomyocytes, endothelial cells, and fibroblasts-release exosomes that modulate cellular functions. Exosomes released from human cardiac progenitor cells (CPCs) are cardioprotective and improve cardiac function after myocardial infarction to an extent comparable with that achieved by their parent cells. Cardiac progenitor cell-derived exosomes are enriched in cardioprotective microRNAs, particularly miR-146a-3p. Circulating exosomes mediate remote ischaemic preconditioning. Moreover, they currently are being investigated as diagnostic markers. The discovery that cell-derived extracellular signalling organelles mediate the paracrine effects of stem cells suggests that cell-free strategies could supplant cell transplantation. This review discusses emerging roles of exosomes in cardiovascular physiology, with a focus on cardioprotective activities of CPC-derived exosomes.
Roles of exosomes in cardioprotection.
4036038
Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors.
The rate of change in declining steroid hormones: a new parameter of healthy aging in men?
4037034
Epstein-Barr virus (EBV) episomes are stably maintained in permissive proliferating cell lines due to EBV nuclear antigen 1 (EBNA-1) protein-mediated replication and segregation. Previous studies showed the ability of EBV episomes to confer long-term transgene expression and correct genetic defects in deficient cells. To achieve quantitative delivery of EBV episomes in vitro and in vivo, we developed a binary helper-dependent adenovirus (HDA)-EBV hybrid system that consists of one HDA vector for the expression of Cre recombinase and a second HDA vector that contains all of the sequences for the EBV episome flanked by loxP sites. Upon coinfection of cells, Cre expressed from the first vector recombined loxP sites on the second vector. The resulting circular EBV episomes expressed a transgene and contained the EBV-derived family of repeats, an EBNA-1 expression cassette, and 19 kb of human DNA that functions as a replication origin in mammalian cells. This HDA-EBV hybrid system transformed 40% of cultured cells. Transgene expression in proliferating cells was observed for over 20 weeks under conditions that selected for the expression of the transgene. In the absence of selection, EBV episomes were lost at a rate of 8 to 10% per cell division. Successful delivery of EBV episomes in vivo was demonstrated in the liver of transgenic mice expressing Cre from the albumin promoter. This novel gene transfer system has the potential to confer long-term episomal transgene expression and therefore to correct genetic defects with reduced vector-related toxicity and without insertional mutagenesis.
Development of a novel helper-dependent adenovirus-Epstein-Barr virus hybrid system for the stable transformation of mammalian cells.
4067274
Differential splice site pairing establishes alternative splicing patterns resulting in the generation of multiple mRNA isoforms. This process is carried out by the spliceosome, which is activated by a series of sequential structural rearrangements of its five core snRNPs. To determine when splice sites become functionally paired, we carried out a series of kinetic trap experiments using pre-mRNAs that undergo alternative 5' splice site selection or alternative exon inclusion. We show that commitment to splice site pairing in both cases occurs in the A complex, which is characterized by the ATP-dependent association of the U2 snRNP with the branch point. Interestingly, the timing of splice site pairing is independent of the intron or exon definition modes of splice site recognition. Using the ATP analog ATPgammaS, we showed that ATP hydrolysis is required for splice site pairing independent from U2 snRNP binding to the pre-mRNA. These results identify the A complex as the spliceosomal assembly step dedicated to splice site pairing and suggest that ATP hydrolysis locks splice sites into a splicing pattern after stable U2 snRNP association to the branch point.
Spliceosome assembly pathways for different types of alternative splicing converge during commitment to splice site pairing in the A complex.
4085204
The male hypermethylated (MHM) region, located near the middle of the short arm of the Z chromosome of chickens, consists of approximately 210 tandem repeats of a BamHI 2.2-kb sequence unit. Cytosines of the CpG dinucleotides of this region are extensively methylated on the two Z chromosomes in the male but much less methylated on the single Z chromosome in the female. The state of methylation of the MHM region is established after fertilization by about the 1-day embryonic stage. The MHM region is transcribed only in the female from the particular strand into heterogeneous, high molecular-mass, non-coding RNA, which is accumulated at the site of transcription, adjacent to the DMRT1 locus, in the nucleus. The transcriptional silence of the MHM region in the male is most likely caused by the CpG methylation, since treatment of the male embryonic fibroblasts with 5-azacytidine results in hypo-methylation and active transcription of this region. In ZZW triploid chickens, MHM regions are hypomethylated and transcribed on the two Z chromosomes, whereas MHM regions are hypermethylated and transcriptionally inactive on the three Z chromosomes in ZZZ triploid chickens, suggesting a possible role of the W chromosome on the state of the MHM region.
Transcripts of the MHM region on the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1 locus
4138659
Macropinocytosis is a highly conserved endocytic process by which extracellular fluid and its contents are internalized into cells through large, heterogeneous vesicles known as macropinosomes. Oncogenic Ras proteins have been shown to stimulate macropinocytosis but the functional contribution of this uptake mechanism to the transformed phenotype remains unknown. Here we show that Ras-transformed cells use macropinocytosis to transport extracellular protein into the cell. The internalized protein undergoes proteolytic degradation, yielding amino acids including glutamine that can enter central carbon metabolism. Accordingly, the dependence of Ras-transformed cells on free extracellular glutamine for growth can be suppressed by the macropinocytic uptake of protein. Consistent with macropinocytosis representing an important route of nutrient uptake in tumours, its pharmacological inhibition compromises the growth of Ras-transformed pancreatic tumour xenografts. These results identify macropinocytosis as a mechanism by which cancer cells support their unique metabolic needs and point to the possible exploitation of this process in the design of anticancer therapies.
Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells
4162857
RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II (Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice sites are protected from nuclear degradation, presumably because the local concentration of the splicing machinery is sufficiently high to ensure its association over interactions with nucleases. Furthermore, the process of transcription influences alternative splicing of newly synthesized pre-mRNAs. Because other RNA polymerases do not provide similar protection from nucleases, and their RNA products display altered splicing patterns, the link between transcription and RNA processing is RNA Pol II-specific. We propose that the connection between transcription by Pol II and pre-mRNA splicing guarantees an extended half-life and proper processing of nascent pre-mRNAs.
Linking Splicing to Pol II Transcription Stabilizes Pre-mRNAs and Influences Splicing Patterns
4164929
Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise.
The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise.
4200695
OBJECTIVE To evaluate if a specific exercise strategy, targeting the rotator cuff and scapula stabilisers, improves shoulder function and pain more than unspecific exercises in patients with subacromial impingement syndrome, thereby decreasing the need for arthroscopic subacromial decompression. DESIGN Randomised, participant and single assessor blinded, controlled study. SETTING Department of orthopaedics in a Swedish university hospital. PARTICIPANTS 102 patients with long standing (over six months) persistent subacromial impingement syndrome in whom earlier conservative treatment had failed, recruited through orthopaedic specialists. INTERVENTIONS The specific exercise strategy consisted of strengthening eccentric exercises for the rotator cuff and concentric/eccentric exercises for the scapula stabilisers in combination with manual mobilisation. The control exercise programme consisted of unspecific movement exercises for the neck and shoulder. Patients in both groups received five to six individual guided treatment sessions during 12 weeks. In between these supervised sessions the participants performed home exercises once or twice a day for 12 weeks. MAIN OUTCOME MEASURES The primary outcome was the Constant-Murley shoulder assessment score evaluating shoulder function and pain. Secondary outcomes were patients' global impression of change because of treatment and decision regarding surgery. RESULTS Most (97, 95%) participants completed the 12 week study. There was a significantly greater improvement in the Constant-Murley score in the specific exercise group than in the control exercise group (24 points (95% confidence interval 19 to 28.0) v 9 points (5 to 13); mean difference between group: 15 points (8.5 to 20.6)). Significantly more patients in the specific exercise group reported successful outcome (defined as large improvement or recovered) in the patients' global assessment of change because of treatment: 69% (35/51) v 24% (11/46); odds ratio 7.6, 3.1 to 18.9; P<0.001. A significantly lower proportion of patients in the specific exercise group subsequently chose to undergo surgery: 20% (10/51) v 63% (29/46); odds ratio 7.7, 3.1 to 19.4; P<0.001). CONCLUSION A specific exercise strategy, focusing on strengthening eccentric exercises for the rotator cuff and concentric/eccentric exercises for the scapula stabilisers, is effective in reducing pain and improving shoulder function in patients with persistent subacromial impingement syndrome. By extension, this exercise strategy reduces the need for arthroscopic subacromial decompression within the three month timeframe used in the study. TRIAL REGISTRATION Clinical trials NCT01037673.
Effect of specific exercise strategy on need for surgery in patients with subacromial impingement syndrome: randomised controlled study
4231060
The transforming gene (src) of avian sarcoma virus (ASV) and adjacent regions of the viral genome have been isolated by molecular cloning of viral DNA. Their nucleotide sequence encompasses the whole of src and the portion of the gene env that encodes gp 37, one of two glycoproteins found in the viral envelope. Src encodes a single, hydrophobic protein with structural features that conform to previous descriptions of the gene product (pp60src). It appears that a single viral protein is responsible for both the initiation and maintenance of neoplastic transformation by avian sarcoma virus. Neither src nor its product bear any obvious structural relationship to several other viral oncogenes and their encoded proteins. Src is flanked by a repeated nucleotide sequence that may facilitate frequent deletion of the gene from the viral genome.
Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product
4246523
Recognizing that the current MDR-TB regimen is suboptimal and based on low-quality evidence, the Global MDR-TB Clinical Trials Landscape Meeting was held in December, 2014 to strategize about coordination of research and development of new treatment regimens for this disease that affects millions of people worldwide every year. Sixty international experts on multidrug-resistant tuberculosis (MDR-TB) met in Washington D.C. and Cape Town, South Africa to consider key MDR-TB trial-related issues, including: standardization of definitions; clinical trial capacity building and; regimens optimized to foster compliance, avoid the emergence of resistance and have clinical relevance for special populations, including children and those co-infected with HIV. Underpinning all of this is the generation of a sufficient evidence base to facilitate regulatory approval and improved normative guidance. Participants discussed treatment combinations currently being studied in Phase 2B and Phase 3 trials as well as other promising new regimens and combinations that may be evaluated in the near future. These include regimens designed specifically to enable shorter duration and all-oral treatment as a means of maximizing treatment completion. It is hoped that clear definition of these challenges will facilitate the process of identifying solutions that accelerate progress towards effective, non-toxic treatments that can be programmatically implemented.
Issues in design and interpretation of MDR-TB clinical trials: report of the first Global MDR-TB Clinical Trials Landscape Meeting
4254064
DEFINITIVE erythropoiesis in birds originates from stem cells that emerge in the splanchnopleural mesoderm near the embryonic aorta1–4. The yolk sac is still generally held to be the unique provider of haematopoietic stem cells during mammalian ontogeny5, although there may be an alternative intraembryonic source of stem cells in the mouse fetus6,7. Here we search for a possible non-yolk-sac source of stem cells by grafting intraembryonic splanchnopleura from 10- to 18-somite mouse embryos into adult immunodeficient SCID mice. We find significant amounts of donor-derived serum IgM, normal numbers of IgM-secreting plasma cells, and the Bla (IgMa brightB220dullCD5+) cell subset to be fully reconstituted by donor progenitors 3 to 6 months after engraftment. The haematogenic capacity revealed in our experiments is present in a previously unrecognized site, the earliest described in the embryo, 12 hours before fetal liver colonization.
Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors
4256553
Pluripotential cells are present in a mouse embryo until at least an early post-implantation stage, as shown by their ability to take part hi the formation of chimaeric animals1 and to form teratocarcinomas2. Until now it has not been possible to establish progressively growing cultures of these cells in vitro, and cell lines have only been obtained after teratocarcinoma formation in vivo. We report here the establishment in tissue culture of pluripotent cell lines which have been isolated directly from in vitro cultures of mouse blastocysts. These cells are able to differentiate either in vitro or after innoculation into a mouse as a tumour in vivo. They have a normal karyotype.
Establishment in culture of pluripotential cells from mouse embryos
4270992
INTERACTIONS between major histocompatibility complex (MHC) molecules and the CD4 or CDS coreceptors have a major role in intrathymic T-cell selection1. On mature T cells, each of these two glycoproteins is associated with a class-specific bias in MHC molecule recognition by the T-cell receptor. CD4+ T cells respond to antigen in association with MHC class II molecules and CD8+ T cells respond to antigen in association with MHC class I molecules. Physical interaction between the CD4/MHC class II molecules and CD8/MHC class I molecules has been demonstrated by cell adhesion assay2–5, and a binding site for CDS on class I has been identified6,7. Here we demonstrate that a region of the MHC class IIβ-chain β2 domain, structurally analogous to the CDS-binding loop in the MHC class I α3 domain, is critical for function with both mouse and human CD4.
MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8
4283694
Although DNA is the carrier of genetic information, it has limited chemical stability. Hydrolysis, oxidation and nonenzymatic methylation of DNA occur at significant ratesin vivo, and are counteracted by specific DNA repair processes. The spontaneous decay of DNA is likely to be a major factor in mutagenesis, carcinogenesis and ageing, and also sets limits for the recovery of DNA fragments from fossils.
Instability and decay of the primary structure of DNA
4300851
A major goal of biology is to provide a quantitative description of cellular behaviour. This task, however, has been hampered by the difficulty in measuring protein abundances and their variation. Here we present a strategy that pairs high-throughput flow cytometry and a library of GFP-tagged yeast strains to monitor rapidly and precisely protein levels at single-cell resolution. Bulk protein abundance measurements of >2,500 proteins in rich and minimal media provide a detailed view of the cellular response to these conditions, and capture many changes not observed by DNA microarray analyses. Our single-cell data argue that noise in protein expression is dominated by the stochastic production/destruction of messenger RNAs. Beyond this global trend, there are dramatic protein-specific differences in noise that are strongly correlated with a protein's mode of transcription and its function. For example, proteins that respond to environmental changes are noisy whereas those involved in protein synthesis are quiet. Thus, these studies reveal a remarkable structure to biological noise and suggest that protein noise levels have been selected to reflect the costs and potential benefits of this variation.
Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise
4303075
Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. This raised the question of whether transcription factors could directly induce other defined somatic cell fates, and not only an undifferentiated state. We hypothesized that combinatorial expression of neural-lineage-specific transcription factors could directly convert fibroblasts into neurons. Starting from a pool of nineteen candidate genes, we identified a combination of only three factors, Ascl1, Brn2 (also called Pou3f2) and Myt1l, that suffice to rapidly and efficiently convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro. These induced neuronal (iN) cells express multiple neuron-specific proteins, generate action potentials and form functional synapses. Generation of iN cells from non-neural lineages could have important implications for studies of neural development, neurological disease modelling and regenerative medicine.
Direct conversion of fibroblasts to functional neurons by defined factors
4303939
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and the leading cause of chronic liver disease in the Western world. Twenty per cent of NAFLD individuals develop chronic hepatic inflammation (non-alcoholic steatohepatitis, NASH) associated with cirrhosis, portal hypertension and hepatocellular carcinoma, yet the causes of progression from NAFLD to NASH remain obscure. Here, we show that the NLRP6 and NLRP3 inflammasomes and the effector protein IL-18 negatively regulate NAFLD/NASH progression, as well as multiple aspects of metabolic syndrome via modulation of the gut microbiota. Different mouse models reveal that inflammasome-deficiency-associated changes in the configuration of the gut microbiota are associated with exacerbated hepatic steatosis and inflammation through influx of TLR4 and TLR9 agonists into the portal circulation, leading to enhanced hepatic tumour-necrosis factor (TNF)-α expression that drives NASH progression. Furthermore, co-housing of inflammasome-deficient mice with wild-type mice results in exacerbation of hepatic steatosis and obesity. Thus, altered interactions between the gut microbiota and the host, produced by defective NLRP3 and NLRP6 inflammasome sensing, may govern the rate of progression of multiple metabolic syndrome-associated abnormalities, highlighting the central role of the microbiota in the pathogenesis of heretofore seemingly unrelated systemic auto-inflammatory and metabolic disorders.
Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
4305576
Chromatin allows the eukaryotic cell to package its DNA efficiently. To understand how chromatin structure is controlled across the Saccharomyces cerevisiae genome, we have investigated the role of the ATP-dependent chromatin remodelling complex Isw2 in positioning nucleosomes. We find that Isw2 functions adjacent to promoter regions where it repositions nucleosomes at the interface between genic and intergenic sequences. Nucleosome repositioning by Isw2 is directional and results in increased nucleosome occupancy of the intergenic region. Loss of Isw2 activity leads to inappropriate transcription, resulting in the generation of both coding and noncoding transcripts. Here we show that Isw2 repositions nucleosomes to enforce directionality on transcription by preventing transcription initiation from cryptic sites. Our analyses reveal how chromatin is organized on a global scale and advance our understanding of how transcription is regulated.
Chromatin remodelling at promoters suppresses antisense transcription
4306711
Human mitochondrial ribosomes are specialized in the synthesis of 13 proteins, which are fundamental components of the oxidative phosphorylation system. The pathway of mitoribosome biogenesis, the compartmentalization of the process, and factors involved remain largely unknown. Here, we have identified the DEAD-box protein DDX28 as an RNA granule component essential for the biogenesis of the mitoribosome large subunit (mt-LSU). DDX28 interacts with the 16S rRNA and the mt-LSU. RNAi-mediated DDX28 silencing in HEK293T cells does not affect mitochondrial mRNA stability or 16S rRNA processing or modification. However, it leads to reduced levels of 16S rRNA and mt-LSU proteins, impaired mt-LSU assembly, deeply attenuated mitochondrial protein synthesis, and consequent failure to assemble oxidative phosphorylation complexes. Our findings identify DDX28 as essential during the early stages of mitoribosome mt-LSU biogenesis, a process that takes place mainly near the mitochondrial nucleoids, in the compartment defined by the RNA granules.
The Human Mitochondrial DEAD-Box Protein DDX28 Resides in RNA Granules and Functions in Mitoribosome Assembly.
4311206
Pancreatic insulin-producing beta-cells have a long lifespan, such that in healthy conditions they replicate little during a lifetime. Nevertheless, they show increased self-duplication after increased metabolic demand or after injury (that is, beta-cell loss). It is not known whether adult mammals can differentiate (regenerate) new beta-cells after extreme, total beta-cell loss, as in diabetes. This would indicate differentiation from precursors or another heterologous (non-beta-cell) source. Here we show beta-cell regeneration in a transgenic model of diphtheria-toxin-induced acute selective near-total beta-cell ablation. If given insulin, the mice survived and showed beta-cell mass augmentation with time. Lineage-tracing to label the glucagon-producing alpha-cells before beta-cell ablation tracked large fractions of regenerated beta-cells as deriving from alpha-cells, revealing a previously disregarded degree of pancreatic cell plasticity. Such inter-endocrine spontaneous adult cell conversion could be harnessed towards methods of producing beta-cells for diabetes therapies, either in differentiation settings in vitro or in induced regeneration.
Conversion of Adult Pancreatic α-cells to β-cells After Extreme β-cell Loss
4312169
Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.
Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma
4313478
Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.
Translational control of intron splicing in eukaryotes
4319174
All homeotherms use thermogenesis to maintain their core body temperature, ensuring that cellular functions and physiological processes can continue in cold environments. In the prevailing model of thermogenesis, when the hypothalamus senses cold temperatures it triggers sympathetic discharge, resulting in the release of noradrenaline in brown adipose tissue and white adipose tissue. Acting via the β(3)-adrenergic receptors, noradrenaline induces lipolysis in white adipocytes, whereas it stimulates the expression of thermogenic genes, such as PPAR-γ coactivator 1a (Ppargc1a), uncoupling protein 1 (Ucp1) and acyl-CoA synthetase long-chain family member 1 (Acsl1), in brown adipocytes. However, the precise nature of all the cell types involved in this efferent loop is not well established. Here we report in mice an unexpected requirement for the interleukin-4 (IL-4)-stimulated program of alternative macrophage activation in adaptive thermogenesis. Exposure to cold temperature rapidly promoted alternative activation of adipose tissue macrophages, which secrete catecholamines to induce thermogenic gene expression in brown adipose tissue and lipolysis in white adipose tissue. Absence of alternatively activated macrophages impaired metabolic adaptations to cold, whereas administration of IL-4 increased thermogenic gene expression, fatty acid mobilization and energy expenditure, all in a macrophage-dependent manner. Thus, we have discovered a role for alternatively activated macrophages in the orchestration of an important mammalian stress response, the response to cold.
Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis
4319844
Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer.
Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes.
4320111
The expression of clock genes in vertebrates is widespread and not restricted to classical clock structures. The expression of the Clock gene in zebrafish shows a strong circadian oscillation in many tissues in vivo and in culture, showing that endogenous oscillators exist in peripheral organs. A defining feature of circadian clocks is that they can be set or entrained to local time, usually by the environmental light-dark cycle. An important question is whether peripheral oscillators are entrained to local time by signals from central pacemakers such as the eyes or are themselves directly light-responsive. Here we show that the peripheral organ clocks of zebrafish are set by light-dark cycles in culture. We also show that a zebrafish-derived cell line contains a circadian oscillator, which is also directly light entrained.
Light acts directly on organs and cells in culture to set the vertebrate circadian clock.
4320424
The KRAS oncogene product is considered a major target in anticancer drug discovery. However, direct interference with KRAS signalling has not yet led to clinically useful drugs. Correct localization and signalling by farnesylated KRAS is regulated by the prenyl-binding protein PDEδ, which sustains the spatial organization of KRAS by facilitating its diffusion in the cytoplasm. Here we report that interfering with binding of mammalian PDEδ to KRAS by means of small molecules provides a novel opportunity to suppress oncogenic RAS signalling by altering its localization to endomembranes. Biochemical screening and subsequent structure-based hit optimization yielded inhibitors of the KRAS–PDEδ interaction that selectively bind to the prenyl-binding pocket of PDEδ with nanomolar affinity, inhibit oncogenic RAS signalling and suppress in vitro and in vivo proliferation of human pancreatic ductal adenocarcinoma cells that are dependent on oncogenic KRAS. Our findings may inspire novel drug discovery efforts aimed at the development of drugs targeting oncogenic RAS.
Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling
4321295
Cooperation among individuals is necessary for evolutionary transitions to higher levels of biological organization. In such transitions, groups of individuals at one level (such as single cells) cooperate to form selective units at a higher level (such as multicellular organisms). Though the evolution of cooperation is difficult to observe directly in higher eukaryotes, microorganisms do offer such an opportunity. Here we report the evolution of novel cooperative behaviour in experimental lineages of the bacterium Myxococcus xanthus. Wild-type strains of M. xanthus exhibit socially dependent swarming across soft surfaces by a mechanism known as ‘S-motility’ that requires the presence of extracellular type IV pili. In lineages of M. xanthus unable to make pili, a new mechanistic basis for cooperative swarming evolved. Evolved swarming is mediated, at least in part, by enhanced production of an extracellular fibril matrix that binds cells—and their evolutionary interests—together. Though costly to individuals, fibril production greatly enhanced population expansion in groups of interconnected cells. These results show that fundamental transitions to primitive cooperation can readily occur in bacteria.
Evolution of novel cooperative swarming in the bacterium Myxococcus xanthus
4321947
Glucagon is a 29-amino acid pancreatic hormone which counteracts the blood glucose-lowering action of insulin by stimulating hepatic glycogenolysis and gluconeogenesis1. The structure of the hamster pancreatic glucagon precursor has recently been determined from the sequence of a cloned cDNA2. Hamster preproglucagon is a 180-amino acid protein which contains five functional regions; a signal or pre-peptide, an NH2-terminal peptide (also called glicentin-related pancreatic peptide, GRPP), glucagon, and two carboxy-terminal glucagon-like peptides (GLP-1 and GLP-2). The sequences of two non-allelic anglerfish pancreatic glucagon precursors3–5 have also been determined and their organization is similar but not identical to the hamster protein; they lack the polypeptide segment corresponding to hamster GLP-2. The presence of three regions possessing internal homology, that is, glucagon, GLP-1 and GLP-2, within proglucagon, and the absence of GLP-2 in the anglerfish precursors suggests that the structure of the preproglucagon gene might provide insight into the evolution of this polyprotein. We have isolated and sequenced the human preproglucagon gene and report here that the organization of the human precursor deduced from this sequence is identical to the hamster protein. The gene contains at least three intervening sequences which divide the protein-coding portion of the gene into four regions corresponding to the signal peptide and part of the NH2-terminal peptide, the remainder of the NH2-terminal peptide and glucagon, GLP-1, and GLP-2. The data suggest that triplication and subsequent sequence divergence of an exon encoding glucagon or a glucagon-like peptide produced this polyprotein precursor.
Exon duplication and divergence in the human preproglucagon gene
4323425
BCL-2 was isolated from the t(14;18) chromosomal breakpoint in follicular B-cell lymphoma1–3. Bcl-2 has the unique oncogenic role of extending cell survival by inhibiting a variety of apoptotic deaths4–13. An emerging family of Bcl-2 -related proteins share two highly conserved regions14–20 referred to here as Bcl-2 homology 1 and 2 (BH1 and BH2) domains (Fig. 1). This includes Bax which heterodimerizes with Bcl-2 and when overexpressed counteracts Bcl-214. We report here that site-specific mutagenesis of Bcl-2 establishes the two domains as novel dimerization motifs. Substitu-tion of Gly 145 in BHl domain or Trp 188 in BH2 domain completely abrogated Bcl-2's death-repressor activity in inter-leukin-3 deprivation, γ-irradiation and glucocorticoid-induced apoptosis. Mutations that affected Bcl-2's function also disrupted its heterodimerization with Bax, yet still permitted Bcl-2 homo-dimerization. These results establish a functional role for the BH1 and BH2 domains and suggest Bcl-2 exerts its action through heterodimerization with Bax.
BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax
4323449
More than forty per cent of the mammalian genome is derived from retroelements, of which about one-quarter are endogenous retroviruses (ERVs). Some are still active, notably in mice the highly polymorphic early transposon (ETn)/MusD and intracisternal A-type particles (IAP). ERVs are transcriptionally silenced during early embryogenesis by histone and DNA methylation (and reviewed in ref. 7), although the initiators of this process, which is essential to protect genome integrity, remain largely unknown. KAP1 (KRAB-associated protein 1, also known as tripartite motif-containing protein 28, TRIM28) represses genes by recruiting the histone methyltransferase SETDB1, heterochromatin protein 1 (HP1) and the NuRD histone deacetylase complex, but few of its physiological targets are known. Two lines of evidence suggest that KAP1-mediated repression could contribute to the control of ERVs: first, KAP1 can trigger permanent gene silencing during early embryogenesis, and second, a KAP1 complex silences the retrovirus murine leukaemia virus in embryonic cells. Consistent with this hypothesis, here we show that KAP1 deletion leads to a marked upregulation of a range of ERVs, in particular IAP elements, in mouse embryonic stem (ES) cells and in early embryos. We further demonstrate that KAP1 acts synergistically with DNA methylation to silence IAP elements, and that it is enriched at the 5′ untranslated region (5′UTR) of IAP genomes, where KAP1 deletion leads to the loss of histone 3 lysine 9 trimethylation (H3K9me3), a hallmark of KAP1-mediated repression. Correspondingly, IAP 5′UTR sequences can impose in cis KAP1-dependent repression on a heterologous promoter in ES cells. Our results establish that KAP1 controls endogenous retroelements during early embryonic development.
KAP1 controls endogenous retroviruses in embryonic stem cells
4324278
The rapamycin-sensitive TOR signalling pathway in Saccharomyces cerevisiae activates a cell-growth program in response to nutrients such as nitrogen and carbon. The TOR1 and TOR2 kinases (TOR) control cytoplasmic protein synthesis and degradation through the conserved TAP42 protein. Upon phosphorylation by TOR, TAP42 binds and possibly inhibits type 2A and type-2A-related phosphatases; however, the mechanism by which TOR controls nuclear events such as global repression of starvation-specific transcription is unknown. Here we show that TOR prevents transcription of genes expressed upon nitrogen limitation by promoting the association of the GATA transcription factor GLN3 with the cytoplasmic protein URE2. The binding of GLN3 to URE2 requires TOR-dependent phosphorylation of GLN3. Phosphorylation and cytoplasmic retention of GLN3 are also dependent on the TOR effector TAP42, and are antagonized by the type-2A-related phosphatase SIT4. TOR inhibits expression of carbon-source-regulated genes by stimulating the binding of the transcriptional activators MSN2 and MSN4 to the cytoplasmic 14-3-3 protein BMH2. Thus, the TOR signalling pathway broadly controls nutrient metabolism by sequestering several transcription factors in the cytoplasm.
The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors.
4325137
Murine embryonic stem (ES) cells are pluripotent cell lines established directly from the early embryo1,2 which can contribute differentiated progeny to all adult tissues, including the germ-cell lineage3, after re-incorporation into the normal embryo. They provide both a cellular vector for the generation of transgenic animals4 and a useful system for the identification of polypeptide factors controlling differentiation processes in early development5. In particular, medium conditioned by Buffalo rat liver cells contains a polypeptide factor, ES cell differentiation inhibitory activity (DIA), which specifically suppresses the spontaneous differentiation of ES cells in vitro, thereby permitting their growth as homogeneous stem cell populations in the absence of heterologous feeder cells6. ES cell pluripotentiality, including the ability to give rise to functional gametes, is preserved after prolonged culture in Buffalo rat liver media as a source of DIA7. Here, we report that purified DIA is related in structure and function to the recently identified haemopoetic regulatory factors human interleukin for DA cells8,9 and leukaemia inhibitory factor10. DIA and human interleukin DA/leukaemia inhibitory factor have thus been identified as related multifunctional regulatory factors with distinct biological activities in both early embryonic and haemopoetic stem cell systems.
Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides
4325398
Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.
Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes
4326318
The decline of tissue regenerative potential is a hallmark of ageing and may be due to age-related changes in tissue-specific stem cells. A decline in skeletal muscle stem cell (satellite cell) activity due to a loss of Notch signalling results in impaired regeneration of aged muscle. The decline in hepatic progenitor cell proliferation owing to the formation of a complex involving cEBP-α and the chromatin remodelling factor brahma (Brm) inhibits the regenerative capacity of aged liver. To examine the influence of systemic factors on aged progenitor cells from these tissues, we established parabiotic pairings (that is, a shared circulatory system) between young and old mice (heterochronic parabioses), exposing old mice to factors present in young serum. Notably, heterochronic parabiosis restored the activation of Notch signalling as well as the proliferation and regenerative capacity of aged satellite cells. The exposure of satellite cells from old mice to young serum enhanced the expression of the Notch ligand (Delta), increased Notch activation, and enhanced proliferation in vitro. Furthermore, heterochronic parabiosis increased aged hepatocyte proliferation and restored the cEBP-α complex to levels seen in young animals. These results suggest that the age-related decline of progenitor cell activity can be modulated by systemic factors that change with age.
Rejuvenation of aged progenitor cells by exposure to a young systemic environment
4335423
Despite decades of research, the identity of the cells generating the first haematopoietic cells in mammalian embryos is unknown. Indeed, whether blood cells arise from mesodermal cells, mesenchymal progenitors, bipotent endothelial–haematopoietic precursors or haemogenic endothelial cells remains controversial. Proximity of endothelial and blood cells at sites of embryonic haematopoiesis, as well as their similar gene expression, led to the hypothesis of the endothelium generating blood. However, owing to lacking technology it has been impossible to observe blood cell emergence continuously at the single-cell level, and the postulated existence of haemogenic endothelial cells remains disputed. Here, using new imaging and cell-tracking methods, we show that embryonic endothelial cells can be haemogenic. By continuous long-term single-cell observation of mouse mesodermal cells generating endothelial cell and blood colonies, it was possible to detect haemogenic endothelial cells giving rise to blood cells. Living endothelial and haematopoietic cells were identified by simultaneous detection of morphology and multiple molecular and functional markers. Detachment of nascent blood cells from endothelium is not directly linked to asymmetric cell division, and haemogenic endothelial cells are specified from cells already expressing endothelial markers. These results improve our understanding of the developmental origin of mammalian blood and the potential generation of haematopoietic stem cells from embryonic stem cells.
Continuous single-cell imaging of blood generation from haemogenic endothelium
4335599
The recent availability in culture of embryo-derived pluripotential cells which exhibit both a normal karyotype and a high differentiative ability1–3 has encouraged us to assess the potential of these cells to form functional germ cells following their incorporation into chimaeric mice. We report here the results of blastocyst injection studies using three independently isolated XY embryo-derived cell lines (EK.CP1, EK.CC1.1 and EKCC1.2) which produce a very high proportion (>50%) of live-born animals that are overtly chimaeric. Seven chimaeric male mice, derived from these three lines, have, so far, proved to be functional germ-line chimaeras.
Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines
4336849
CHLOROQUINE is thought to act against falciparum malaria by accumulating in the acid vesicles of the parasite and interfering with their function1–4. Parasites resistant to chloroquine expel the drug rapidly in an unaltered form, thereby reducing levels of accumulation in the vesicles5. The discovery that verapamil partially reverses chloroquine resistance in vitro 6 led to the proposal that efflux may involve an ATP-driven P-glycoprotein pump similar to that in mammalian multidrug-resistant (mdr) tumor cell lines. Indeed, Plasmodium falciparum contains at least two mdr-like genes7,8, one of which has been suggested to confer the chloroquine resistant (CQR) phenotype7,9,10. To determine if either of these genes is linked to chloroquine resistance, we performed a genetic cross between CQR and chloroquine-susceptible (CQS) clones of P. falciparum. Examination of 16 independent recombinant progeny indicated that the rapid efflux phenotype is controlled by a single gene or a closely linked group of genes. But, there was no linkage between the rapid efflux, CQR phenotype and either of the mdr-like P. falciparum genes or amplification of those genes. These data indicate that the genetic locus governing chloroquine efflux and resistance is independent of the known mdr-like genes.
Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross
4340358
The cellular and molecular mechanisms that enable us to sense cold are not well understood. Insights into this process have come from the use of pharmacological agents, such as menthol, that elicit a cooling sensation. Here we have characterized and cloned a menthol receptor from trigeminal sensory neurons that is also activated by thermal stimuli in the cool to cold range. This cold- and menthol-sensitive receptor, CMR1, is a member of the TRP family of excitatory ion channels, and we propose that it functions as a transducer of cold stimuli in the somatosensory system. These findings, together with our previous identification of the heat-sensitive channels VR1 and VRL-1, demonstrate that TRP channels detect temperatures over a wide range and are the principal sensors of thermal stimuli in the mammalian peripheral nervous system.
Identification of a cold receptor reveals a general role for TRP channels in thermosensation
4340509
Pattern formation of biological structures involves organizing different types of cells into a spatial configuration. In this study, we investigate the physical basis of biological patterning of the Drosophila retina in vivo. We demonstrate that E- and N-cadherins mediate apical adhesion between retina epithelial cells. Differential expression of N-cadherin within a sub-group of retinal cells (cone cells) causes them to form an overall shape that minimizes their surface contact with surrounding cells. The cells within this group, in both normal and experimentally manipulated conditions, pack together in the same way as soap bubbles do. The shaping of the cone cell group and packing of its components precisely imitate the physical tendency for surfaces to be minimized. Thus, simple patterned expression of N-cadherin results in a complex spatial pattern of cells owing to cellular surface mechanics.
Surface mechanics mediate pattern formation in the developing retina
4343437
Drosophila neuroblasts and epithelial cells in the procephalic neurogenic region divide perpendicular to the surface, and segregate the proteins Numb and Prospero into the basal daughter cell. We demonstrate here that orientation of the mitotic spindle and correct localization of Numb and Prospero in these cells require the inscuteable gene. Moreover, ectopic expression of inscuteable in other epithelial cells leads to spindle reorientation. The Inscuteable protein localizes to the apical cell cortex before mitosis, suggesting that Inscuteable functions in establishing polarity for asymmetric cell division.
Role of inscuteable in orienting asymmetric cell divisions in Drosophila
4343811
A genetic interference phenomenon in the nematode Caenorhabditis elegans has been described in which expression of an individual gene can be specifically reduced by microinjecting a corresponding fragment of double-stranded (ds) RNA. One striking feature of this process is a spreading effect: interference in a broad region of the animal is observed following the injection of dsRNA into the extracellular body cavity. Here we show that C. elegans can respond in a gene-specific manner to dsRNA encountered in the environment. C. elegans normally feed on bacteria, ingesting and grinding them in the pharynx and subsequently absorbing bacterial contents in the gut. We find that Escherichia coli bacteria expressing dsRNAs can confer specific interference effects on the nematode larvae that feed on them.
Specific interference by ingested dsRNA.
4345315
Missense mutations in the CIAS1 gene cause three autoinflammatory disorders: familial cold autoinflammatory syndrome, Muckle–Wells syndrome and neonatal-onset multiple-system inflammatory disease. Cryopyrin (also called Nalp3), the product of CIAS1, is a member of the NOD-LRR protein family that has been linked to the activation of intracellular host defence signalling pathways. Cryopyrin forms a multi-protein complex termed ‘the inflammasome’, which contains the apoptosis-associated speck-like protein (ASC) and caspase-1, and promotes caspase-1 activation and processing of pro-interleukin (IL)-1β (ref. 4). Here we show the effect of cryopyrin deficiency on inflammasome function and immune responses. Cryopyrin and ASC are essential for caspase-1 activation and IL-1β and IL-18 production in response to bacterial RNA and the imidazoquinoline compounds R837 and R848. In contrast, secretion of tumour-necrosis factor-α and IL-6, as well as activation of NF-κB and mitogen-activated protein kinases (MAPKs) were unaffected by cryopyrin deficiency. Furthermore, we show that Toll-like receptors and cryopyrin control the secretion of IL-1β and IL-18 through different intracellular pathways. These results reveal a critical role for cryopyrin in host defence through bacterial RNA-mediated activation of caspase-1, and provide insights regarding the pathogenesis of autoinflammatory syndromes.
Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3
4345605
Schizophrenia is a complex disorder that interferes with the function of several brain systems required for cognition and normal social behaviour. Although the most notable clinical aspects of the disease only become apparent during late adolescence or early adulthood, many lines of evidence suggest that schizophrenia is a neurodevelopmental disorder with a strong genetic component. Several independent studies have identified neuregulin 1 (NRG1) and its receptor ERBB4 as important risk genes for schizophrenia, although their precise role in the disease process remains unknown. Here we show that Nrg1 and ErbB4 signalling controls the development of inhibitory circuitries in the mammalian cerebral cortex by cell-autonomously regulating the connectivity of specific GABA (γ-aminobutyric acid)-containing interneurons. In contrast to the prevalent view, which supports a role for these genes in the formation and function of excitatory synapses between pyramidal cells, we found that ErbB4 expression in the mouse neocortex and hippocampus is largely confined to certain classes of interneurons. In particular, ErbB4 is expressed by many parvalbumin-expressing chandelier and basket cells, where it localizes to axon terminals and postsynaptic densities receiving glutamatergic input. Gain- and loss-of-function experiments, both in vitro and in vivo, demonstrate that ErbB4 cell-autonomously promotes the formation of axo-axonic inhibitory synapses over pyramidal cells, and that this function is probably mediated by Nrg1. In addition, ErbB4 expression in GABA-containing interneurons regulates the formation of excitatory synapses onto the dendrites of these cells. By contrast, ErbB4 is dispensable for excitatory transmission between pyramidal neurons. Altogether, our results indicate that Nrg1 and ErbB4 signalling is required for the wiring of GABA-mediated circuits in the postnatal cortex, providing a new perspective to the involvement of these genes in the aetiology of schizophrenia.
Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling
4345757
Obesity is now so common within the world's population that it is beginning to replace undernutrition and infectious diseases as the most significant contributor to ill health. In particular, obesity is associated with diabetes mellitus, coronary heart disease, certain forms of cancer, and sleep-breathing disorders. Obesity is defined by a body-mass index (weight divided by square of the height) of 30 kg m(-2) or greater, but this does not take into account the morbidity and mortality associated with more modest degrees of overweight, nor the detrimental effect of intra-abdominal fat. The global epidemic of obesity results from a combination of genetic susceptibility, increased availability of high-energy foods and decreased requirement for physical activity in modern society. Obesity should no longer be regarded simply as a cosmetic problem affecting certain individuals, but an epidemic that threatens global well being.
Obesity as a medical problem.
4346436
Unlike most synthetic materials, biological materials often stiffen as they are deformed. This nonlinear elastic response, critical for the physiological function of some tissues, has been documented since at least the 19th century, but the molecular structure and the design principles responsible for it are unknown. Current models for this response require geometrically complex ordered structures unique to each material. In this Article we show that a much simpler molecular theory accounts for strain stiffening in a wide range of molecularly distinct biopolymer gels formed from purified cytoskeletal and extracellular proteins. This theory shows that systems of semi-flexible chains such as filamentous proteins arranged in an open crosslinked meshwork invariably stiffen at low strains without the need for a specific architecture or multiple elements with different intrinsic stiffnesses.
Nonlinear Elasticity in Biological Gels
4346731
The development and maintenance of an epithelium requires finely balanced rates of growth and cell death. However, the mechanical and biochemical mechanisms that ensure proper feedback control of tissue growth, which when deregulated contribute to tumorigenesis, are poorly understood. Here we use the fly notum as a model system to identify a novel process of crowding-induced cell delamination that balances growth to ensure the development of well-ordered cell packing. In crowded regions of the tissue, a proportion of cells undergo a serial loss of cell–cell junctions and a progressive loss of apical area, before being squeezed out by their neighbours. This path of delamination is recapitulated by a simple computational model of epithelial mechanics, in which stochastic cell loss relieves overcrowding as the system tends towards equilibrium. We show that this process of delamination is mechanistically distinct from apoptosis-mediated cell extrusion and precedes the first signs of cell death. Overall, this analysis reveals a simple mechanism that buffers epithelia against variations in growth. Because live-cell delamination constitutes a mechanistic link between epithelial hyperplasia and cell invasion, this is likely to have important implications for our understanding of the early stages of cancer development.
Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding
4347374
Viral replication usually requires that innate intracellular lines of defence be overcome, a task usually accomplished by specialized viral gene products. The virion infectivity factor (Vif) protein of human immunodeficiency virus (HIV) is required during the late stages of viral production to counter the antiviral activity of APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; also known as CEM15), a protein expressed notably in human T lymphocytes. When produced in the presence of APOBEC3G, vif-defective virus is non-infectious. APOBEC3G is closely related to APOBEC1, the central component of an RNA-editing complex that deaminates a cytosine residue in apoB messenger RNA. APOBEC family members also have potent DNA mutator activity through dC deamination; however, whether the editing potential of APOBEC3G has any relevance to HIV inhibition is unknown. Here, we demonstrate that it does, as APOBEC3G exerts its antiviral effect during reverse transcription to trigger G-to-A hypermutation in the nascent retroviral DNA. We also find that APOBEC3G can act on a broad range of retroviruses in addition to HIV, suggesting that hypermutation by editing is a general innate defence mechanism against this important group of pathogens.
Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts
4350400
Dynamically polarized membrane proteins define different cell boundaries and have an important role in intercellular communication—a vital feature of multicellular development. Efflux carriers for the signalling molecule auxin from the PIN family are landmarks of cell polarity in plants and have a crucial involvement in auxin distribution-dependent development including embryo patterning, organogenesis and tropisms. Polar PIN localization determines the direction of intercellular auxin flow, yet the mechanisms generating PIN polarity remain unclear. Here we identify an endocytosis-dependent mechanism of PIN polarity generation and analyse its developmental implications. Real-time PIN tracking showed that after synthesis, PINs are initially delivered to the plasma membrane in a non-polar manner and their polarity is established by subsequent endocytic recycling. Interference with PIN endocytosis either by auxin or by manipulation of the Arabidopsis Rab5 GTPase pathway prevents PIN polarization. Failure of PIN polarization transiently alters asymmetric auxin distribution during embryogenesis and increases the local auxin response in apical embryo regions. This results in ectopic expression of auxin pathway-associated root-forming master regulators in embryonic leaves and promotes homeotic transformation of leaves to roots. Our results indicate a two-step mechanism for the generation of PIN polar localization and the essential role of endocytosis in this process. It also highlights the link between endocytosis-dependent polarity of individual cells and auxin distribution-dependent cell fate establishment for multicellular patterning.
Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions
4353857
The extreme obesity of the obese (ob/ob) mouse is attributable to mutations in the gene encoding leptin, an adipocyte-specific secreted protein which has profound effects on appetite and energy expenditure. We know of no equivalent evidence regarding leptin's role in the control of fat mass in humans. We have examined two severely obese children who are members of the same highly consanguineous pedigree. Their serum leptin levels were very low despite their markedly elevated fat mass and, in both, a homozygous frame-shift mutation involving the deletion of a single guanine nucleotide in codon 133 of the gene for leptin was found. The severe obesity found in these congenitally leptin-deficient subjects provides the first genetic evidence that leptin is an important regulator of energy balance in humans.
Congenital leptin deficiency is associated with severe early-onset obesity in humans.
4361990
PROGRESSIVE cerebral deposition of the amyloid β-peptide is an early and invariant feature of Alzheimer's disease. The β-peptide is released by proteolytic cleavages from the β-amyloid precursor protein (βAPP)1, a membrane-spanning glycoprotein expressed in most mammalian cells. Normal secretion of βAPP involves a cleavage in the β-peptide region2-3, releasing the soluble extramembranous portion4,5 and retaining a 10K C-terminal fragment in the membrane6. Because this secretory pathway precludes β-amyloid formation, we searched for an alternative proteolytic processing pathway that can generate β-peptide-bearing fragments from full-length β APP. Incubation of living human endothelial cells with a βAPP antibody revealed reinternalization of mature βAPP from the cell surface and its targeting to endosomes/lysosomes. After cell-surface biotinylation, full-length biotinylated βAPP was recovered inside the cells. Purification of lysosomes directly demonstrated the presence of mature βAPP and an extensive array of β-peptide-containing proteolytic products. Our results define a second processing pathway for βAPP and suggest that it may be responsible for generating amyloid-bearing fragments in Alzheimer's disease.
Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments
4362729
Cell growth, an increase in mass and size, is a highly regulated cellular event. The Akt/mTOR (mammalian target of rapamycin) signalling pathway has a central role in the control of protein synthesis and thus the growth of cells, tissues and organisms. A striking example of a physiological context requiring rapid cell growth is tissue repair in response to injury. Here we show that keratin 17, an intermediate filament protein rapidly induced in wounded stratified epithelia, regulates cell growth through binding to the adaptor protein 14-3-3σ. Mouse skin keratinocytes lacking keratin 17 (ref. 4) show depressed protein translation and are of smaller size, correlating with decreased Akt/mTOR signalling activity. Other signalling kinases have normal activity, pointing to the specificity of this defect. Two amino acid residues located in the amino-terminal head domain of keratin 17 are required for the serum-dependent relocalization of 14-3-3σ from the nucleus to the cytoplasm, and for the concomitant stimulation of mTOR activity and cell growth. These findings reveal a new and unexpected role for the intermediate filament cytoskeleton in influencing cell growth and size by regulating protein synthesis.
A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth
4363526
The three-dimensional structure of an HNF-3/fork head DNA-recognition motif complexed with DNA has been determined by X-ray crystallography at 2.5 Å resolution. This α/β protein binds B-DNA as a monomer, through interactions with the DNA backbone and through both direct and water-mediated major and minor groove base contacts, inducing a 13° bend. The transcription factor fold is very similar to the structure of histone H5. In its amino-terminal half, three α-helices adopt a compact structure that presents the third helix to the major groove. The remainder of the protein includes a twisted, antiparallel β-structure and random coil that interacts with the minor groove.
Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5
4364884
Chromosomal instability (CIN) is a hallmark of many tumours and correlates with the presence of extra centrosomes. However, a direct mechanistic link between extra centrosomes and CIN has not been established. It has been proposed that extra centrosomes generate CIN by promoting multipolar anaphase, a highly abnormal division that produces three or more aneuploid daughter cells. Here we use long-term live-cell imaging to demonstrate that cells with multiple centrosomes rarely undergo multipolar cell divisions, and the progeny of these divisions are typically inviable. Thus, multipolar divisions cannot explain observed rates of CIN. In contrast, we observe that CIN cells with extra centrosomes routinely undergo bipolar cell divisions, but display a significantly increased frequency of lagging chromosomes during anaphase. To define the mechanism underlying this mitotic defect, we generated cells that differ only in their centrosome number. We demonstrate that extra centrosomes alone are sufficient to promote chromosome missegregation during bipolar cell division. These segregation errors are a consequence of cells passing through a transient 'multipolar spindle intermediate' in which merotelic kinetochore-microtubule attachment errors accumulate before centrosome clustering and anaphase. These findings provide a direct mechanistic link between extra centrosomes and CIN, two common characteristics of solid tumours. We propose that this mechanism may be a common underlying cause of CIN in human cancer.
A Mechanism Linking Extra Centrosomes to Chromosomal Instability
4366738
Although haematopoietic stem cells (HSCs) are commonly assumed to reside within a specialized microenvironment, or niche, most published experimental manipulations of the HSC niche have affected the function of diverse restricted progenitors. This raises the fundamental question of whether HSCs and restricted progenitors reside within distinct, specialized niches or whether they share a common niche. Here we assess the physiological sources of the chemokine CXCL12 for HSC and restricted progenitor maintenance. Cxcl12(DsRed) knock-in mice (DsRed-Express2 recombined into the Cxcl12 locus) showed that Cxcl12 was primarily expressed by perivascular stromal cells and, at lower levels, by endothelial cells, osteoblasts and some haematopoietic cells. Conditional deletion of Cxcl12 from haematopoietic cells or nestin-cre-expressing cells had little or no effect on HSCs or restricted progenitors. Deletion of Cxcl12 from endothelial cells depleted HSCs but not myeloerythroid or lymphoid progenitors. Deletion of Cxcl12 from perivascular stromal cells depleted HSCs and certain restricted progenitors and mobilized these cells into circulation. Deletion of Cxcl12 from osteoblasts depleted certain early lymphoid progenitors but not HSCs or myeloerythroid progenitors, and did not mobilize these cells into circulation. Different stem and progenitor cells thus reside in distinct cellular niches in bone marrow: HSCs occupy a perivascular niche and early lymphoid progenitors occupy an endosteal niche.
Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
4373433
Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.
Broad neutralization coverage of HIV by multiple highly potent antibodies
4373445
The GTPases Rac1, RhoA and Cdc42 act together to control cytoskeleton dynamics. Recent biosensor studies have shown that all three GTPases are activated at the front of migrating cells, and biochemical evidence suggests that they may regulate one another: Cdc42 can activate Rac1 (ref. 8), and Rac1 and RhoA are mutually inhibitory. However, their spatiotemporal coordination, at the seconds and single-micrometre dimensions typical of individual protrusion events, remains unknown. Here we examine GTPase coordination in mouse embryonic fibroblasts both through simultaneous visualization of two GTPase biosensors and using a 'computational multiplexing' approach capable of defining the relationships between multiple protein activities visualized in separate experiments. We found that RhoA is activated at the cell edge synchronous with edge advancement, whereas Cdc42 and Rac1 are activated 2 micro-m behind the edge with a delay of 40 s. This indicates that Rac1 and RhoA operate antagonistically through spatial separation and precise timing, and that RhoA has a role in the initial events of protrusion, whereas Rac1 and Cdc42 activate pathways implicated in reinforcement and stabilization of newly expanded protrusions.
Coordination of Rho GTPase activities during cell protrusion
4378885
Understanding the genetic mechanisms underlying natural variation in gene expression is a central goal of both medical and evolutionary genetics, and studies of expression quantitative trait loci (eQTLs) have become an important tool for achieving this goal. Although all eQTL studies so far have assayed messenger RNA levels using expression microarrays, recent advances in RNA sequencing enable the analysis of transcript variation at unprecedented resolution. We sequenced RNA from 69 lymphoblastoid cell lines derived from unrelated Nigerian individuals that have been extensively genotyped by the International HapMap Project. By pooling data from all individuals, we generated a map of the transcriptional landscape of these cells, identifying extensive use of unannotated untranslated regions and more than 100 new putative protein-coding exons. Using the genotypes from the HapMap project, we identified more than a thousand genes at which genetic variation influences overall expression levels or splicing. We demonstrate that eQTLs near genes generally act by a mechanism involving allele-specific expression, and that variation that influences the inclusion of an exon is enriched within and near the consensus splice sites. Our results illustrate the power of high-throughput sequencing for the joint analysis of variation in transcription, splicing and allele-specific expression across individuals.
Understanding mechanisms underlying human gene expression variation with RNA sequencing
4380004
The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin+ MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent ‘mesenspheres’ that can self-renew and expand in serial transplantations. Nestin+ MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or β3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin+ cells and favours their osteoblastic differentiation, in vivo nestin+ cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin+ MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin+ cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
4380287
Immune homeostasis in tissues is achieved through a delicate balance between pathogenic T-cell responses directed at tissue-specific antigens and the ability of the tissue to inhibit these responses. The mechanisms by which tissues and the immune system communicate to establish and maintain immune homeostasis are currently unknown. Clinical evidence suggests that chronic or repeated exposure to self antigen within tissues leads to an attenuation of pathological autoimmune responses, possibly as a means to mitigate inflammatory damage and preserve function. Many human organ-specific autoimmune diseases are characterized by the initial presentation of the disease being the most severe, with subsequent flares being of lesser severity and duration. In fact, these diseases often spontaneously resolve, despite persistent tissue autoantigen expression. In the practice of antigen-specific immunotherapy, allergens or self antigens are repeatedly injected in the skin, with a diminution of the inflammatory response occurring after each successive exposure. Although these findings indicate that tissues acquire the ability to attenuate autoimmune reactions upon repeated responses to antigens, the mechanism by which this occurs is unknown. Here we show that upon expression of self antigen in a peripheral tissue, thymus-derived regulatory T cells (Treg cells) become activated, proliferate and differentiate into more potent suppressors, which mediate resolution of organ-specific autoimmunity in mice. After resolution of the inflammatory response, activated Treg cells are maintained in the target tissue and are primed to attenuate subsequent autoimmune reactions when antigen is re-expressed. Thus, Treg cells function to confer ‘regulatory memory’ to the target tissue. These findings provide a framework for understanding how Treg cells respond when exposed to self antigen in peripheral tissues and offer mechanistic insight into how tissues regulate autoimmunity.
Response to self antigen imprints regulatory memory in tissues
4380451
Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.
Reprogramming of human somatic cells to pluripotency with defined factors
4381486
Stem cells are proposed to segregate chromosomes asymmetrically during self-renewing divisions so that older (‘immortal’) DNA strands are retained in daughter stem cells whereas newly synthesized strands segregate to differentiating cells. Stem cells are also proposed to retain DNA labels, such as 5-bromo-2-deoxyuridine (BrdU), either because they segregate chromosomes asymmetrically or because they divide slowly. However, the purity of stem cells among BrdU-label-retaining cells has not been documented in any tissue, and the ‘immortal strand hypothesis’ has not been tested in a system with definitive stem cell markers. Here we tested these hypotheses in haematopoietic stem cells (HSCs), which can be highly purified using well characterized markers. We administered BrdU to newborn mice, mice treated with cyclophosphamide and granulocyte colony-stimulating factor, and normal adult mice for 4 to 10 days, followed by 70 days without BrdU. In each case, less than 6% of HSCs retained BrdU and less than 0.5% of all BrdU-retaining haematopoietic cells were HSCs, revealing that BrdU has poor specificity and poor sensitivity as an HSC marker. Sequential administration of 5-chloro-2-deoxyuridine and 5-iodo-2-deoxyuridine indicated that all HSCs segregate their chromosomes randomly. Division of individual HSCs in culture revealed no asymmetric segregation of the label. Thus, HSCs cannot be identified on the basis of BrdU-label retention and do not retain older DNA strands during division, indicating that these are not general properties of stem cells.
Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU
4385779
Circadian (∼24 hour) clocks are fundamentally important for coordinated physiology in organisms as diverse as cyanobacteria and humans. All current models of the molecular circadian clockwork in eukaryotic cells are based on transcription-translation feedback loops. Non-transcriptional mechanisms in the clockwork have been difficult to study in mammalian systems. We circumvented these problems by developing novel assays using human red blood cells, which have no nucleus (or DNA) and therefore cannot perform transcription. Our results show that transcription is not required for circadian oscillations in humans, and that non-transcriptional events seem to be sufficient to sustain cellular circadian rhythms. Using red blood cells, we found that peroxiredoxins, highly conserved antioxidant proteins, undergo ∼24-hour redox cycles, which persist for many days under constant conditions (that is, in the absence of external cues). Moreover, these rhythms are entrainable (that is, tunable by environmental stimuli) and temperature-compensated, both key features of circadian rhythms. We anticipate that our findings will facilitate more sophisticated cellular clock models, highlighting the interdependency of transcriptional and non-transcriptional oscillations in potentially all eukaryotic cells.
Circadian Clocks in Human Red Blood Cells
4387484
The Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) is a gamma-2 herpesvirus that is implicated in the pathogenesis of Kaposi's sarcoma and of primary effusion B-cell lymphomas (PELs). KSHV infects malignant and progenitor cells of Kaposi's sarcoma and PEL, it encodes putative oncogenes and genes that may cause Kaposi's sarcoma pathogenesis by stimulating angiogenesis. The G-protein-coupled receptor encoded by an open reading frame (ORF 74) of KSHV is expressed in Kaposi's sarcoma lesions and in PEL and stimulates signalling pathways linked to cell proliferation in a constitutive (agonist-independent) way. Here we show that signalling by this KSHV G-protein-coupled receptor leads to cell transformation and tumorigenicity, and induces a switch to an angiogenic phenotype mediated by vascular endothelial growth factor, an angiogenesis and Kaposi's-spindle-cell growth factor. We find that this receptor can activate two protein kinases, JNK/SAPK and p38MAPK, by triggering signalling cascades like those induced by inflammatory cytokines that are angiogenesis activators and mitogens for Kaposi's sarcoma cells and B cells. We conclude that the KSHV G-protein-coupled receptor is a viral oncogene that can exploit cell signalling pathways to induce transformation and angiogenesis in KSHV-mediated oncogenesis.
G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator.
4387494
PURPOSE Acute myeloid leukemia (AML) is a heterogeneous disease with poor outcomes. Despite increased evidence shows that dysregulation of histone modification contributes to AML, specific drugs targeting key histone modulators are not applied in the clinical treatment of AML. Here, we investigated whether targeting KDM6B, the demethylase of tri-methylated histone H3 lysine 27 (H3K27me3), has a therapeutic potential for AML. METHODS A KDM6B-specific inhibitor, GSK-J4, was applied to treat the primary cells from AML patients and AML cell lines in vitro and in vivo. RNA-sequencing was performed to reveal the underlying mechanisms of inhibiting KDM6B for the treatment of AML. RESULTS Here we observed that the mRNA expression of KDM6B was up-regulated in AML and positively correlated with poor survival. Treatment with GSK-J4 increased the global level of H3K27me3 and reduced the proliferation and colony-forming ability of primary AML cells and AML cell lines. GSK-J4 treatment significantly induced cell apoptosis and cell-cycle arrest in Kasumi-1 cells, and displayed a synergistic effect with cytosine arabinoside. Notably, injection of GSK-J4 attenuated the disease progression in a human AML xenograft mouse model in vivo. Treatment with GSK-J4 predominantly resulted in down-regulation of DNA replication and cell-cycle-related pathways, as well as abrogated the expression of critical cancer-promoting HOX genes. ChIP-qPCR validated an increased enrichment of H3K27me3 in the transcription start sites of these HOX genes. CONCLUSIONS In summary, our findings suggest that targeting KDM6B with GSK-J4 has a therapeutic potential for the treatment of AML.
Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia
4387784
Half the world's population is chronically infected with Helicobacter pylori, causing gastritis, gastric ulcers and an increased incidence of gastric adenocarcinoma. Its proton-gated inner-membrane urea channel, HpUreI, is essential for survival in the acidic environment of the stomach. The channel is closed at neutral pH and opens at acidic pH to allow the rapid access of urea to cytoplasmic urease. Urease produces NH(3) and CO(2), neutralizing entering protons and thus buffering the periplasm to a pH of roughly 6.1 even in gastric juice at a pH below 2.0. Here we report the structure of HpUreI, revealing six protomers assembled in a hexameric ring surrounding a central bilayer plug of ordered lipids. Each protomer encloses a channel formed by a twisted bundle of six transmembrane helices. The bundle defines a previously unobserved fold comprising a two-helix hairpin motif repeated three times around the central axis of the channel, without the inverted repeat of mammalian-type urea transporters. Both the channel and the protomer interface contain residues conserved in the AmiS/UreI superfamily, suggesting the preservation of channel architecture and oligomeric state in this superfamily. Predominantly aromatic or aliphatic side chains line the entire channel and define two consecutive constriction sites in the middle of the channel. Mutation of Trp 153 in the cytoplasmic constriction site to Ala or Phe decreases the selectivity for urea in comparison with thiourea, suggesting that solute interaction with Trp 153 contributes specificity. The previously unobserved hexameric channel structure described here provides a new model for the permeation of urea and other small amide solutes in prokaryotes and archaea.
Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori
4388082
In a Drosophila follicle the oocyte always occupies a posterior position among a group of sixteen germline cells. Although the importance of this cell arrangement for the subsequent formation of the anterior-posterior axis of the embryo is well documented, the molecular mechanism responsible for the posterior localization of the oocyte was unknown. Here we show that the homophilic adhesion molecule DE-cadherin mediates oocyte positioning. During follicle biogenesis, DE-cadherin is expressed in germline (including oocyte) and surrounding follicle cells, with the highest concentration of DE-cadherin being found at the interface between oocyte and posterior follicle cells. Mosaic analysis shows that DE-cadherin is required in both germline and follicle cells for correct oocyte localization, indicating that germline-soma interactions may be involved in this process. By analysing the behaviour of the oocyte in follicles with a chimaeric follicular epithelium, we find that the position of the oocyte is determined by the position of DE-cadherin-expressing follicle cells, to which the oocyte attaches itself selectively. Among the DE-cadherin positive follicle cells, the oocyte preferentially contacts those cells that express higher levels of DE-cadherin. On the basis of these data, we propose that in wild-type follicles the oocyte competes successfully with its sister germline cells for contact to the posterior follicle cells, a sorting process driven by different concentrations of DE-cadherin. This is, to our knowledge, the first in vivo example of a cell-sorting process that depends on differential adhesion mediated by a cadherin.
Drosophila oocyte localization is mediated by differential cadherin-based adhesion.
4388470
In the mammalian model of sex determination, embryos are considered to be sexually indifferent until the transient action of a sex-determining gene initiates gonadal differentiation. Although this model is thought to apply to all vertebrates, this has yet to be established. Here we have examined three lateral gynandromorph chickens (a rare, naturally occurring phenomenon in which one side of the animal appears male and the other female) to investigate the sex-determining mechanism in birds. These studies demonstrated that gynandromorph birds are genuine male:female chimaeras, and indicated that male and female avian somatic cells may have an inherent sex identity. To test this hypothesis, we transplanted presumptive mesoderm between embryos of reciprocal sexes to generate embryos containing male:female chimaeric gonads. In contrast to the outcome for mammalian mixed-sex chimaeras, in chicken mixed-sex chimaeras the donor cells were excluded from the functional structures of the host gonad. In an example where female tissue was transplanted into a male host, donor cells contributing to the developing testis retained a female identity and expressed a marker of female function. Our study demonstrates that avian somatic cells possess an inherent sex identity and that, in birds, sexual differentiation is substantively cell autonomous.
Somatic sex identity is cell-autonomous in the chicken
4389252
Cytotoxic T lymphocytes (CTLs) destroy virally infected and tumorigenic cells by releasing the contents of specialized secretory lysosomes—termed ‘lytic granules’—at the immunological synapse formed between the CTL and the target. On contact with the target cell, the microtubule organizing centre of the CTL polarizes towards the target and granules move along microtubules in a minus-end direction towards the polarized microtubule organizing centre. However, the final steps of secretion have remained unclear. Here we show that CTLs do not require actin or plus-end microtubule motors for secretion, but instead the centrosome moves to and contacts the plasma membrane at the central supramolecular activation cluster of the immunological synapse. Actin and IQGAP1 are cleared away from the synapse, and granules are delivered directly to the plasma membrane. These data show that CTLs use a previously unreported mechanism for delivering secretory granules to the immunological synapse, with granule secretion controlled by centrosome delivery to the plasma membrane.
Centrosome polarization delivers secretory granules to the immunological synapse
4389394
The p53 tumour suppressor is a short-lived protein that is maintained at low levels in normal cells by Mdm2-mediated ubiquitination and subsequent proteolysis. Stabilization of p53 is crucial for its tumour suppressor function. However, the precise mechanism by which ubiquitinated p53 levels are regulated in vivo is not completely understood. By mass spectrometry of affinity-purified p53-associated factors, we have identified herpesvirus-associated ubiquitin-specific protease (HAUSP) as a novel p53-interacting protein. HAUSP strongly stabilizes p53 even in the presence of excess Mdm2, and also induces p53-dependent cell growth repression and apoptosis. Significantly, HAUSP has an intrinsic enzymatic activity that specifically deubiquitinates p53 both in vitro and in vivo. In contrast, expression of a catalytically inactive point mutant of HAUSP in cells increases the levels of p53 ubiquitination and destabilizes p53. These findings reveal an important mechanism by which p53 can be stabilized by direct deubiquitination and also imply that HAUSP might function as a tumour suppressor in vivo through the stabilization of p53.
Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization
4391121
Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients’ leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vγ1+ γδ T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or γδ T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-γ (IFN-γ), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vγ4+ γδ and Foxp3+ αβ T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.
Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease
4391685
The architecture and adhesiveness of a cell microenvironment is a critical factor for the regulation of spindle orientation in vivo. Using a combination of theory and experiments, we have investigated spindle orientation in HeLa (human) cells. Here we show that spindle orientation can be understood as the result of the action of cortical force generators, which interact with spindle microtubules and are activated by cortical cues. We develop a simple physical description of this spindle mechanics, which allows us to calculate angular profiles of the torque acting on the spindle, as well as the angular distribution of spindle orientations. Our model accounts for the preferred spindle orientation and the shape of the full angular distribution of spindle orientations observed in a large variety of different cellular microenvironment geometries. It also correctly describes asymmetric spindle orientations, which are observed for certain distributions of cortical cues. We conclude that, on the basis of a few simple assumptions, we can provide a quantitative description of the spindle orientation of adherent cells.
Experimental and theoretical study of mitotic spindle orientation
4391817
Genome sequencing has uncovered a new mutational phenomenon in cancer and congenital disorders called chromothripsis. Chromothripsis is characterized by extensive genomic rearrangements and an oscillating pattern of DNA copy number levels, all curiously restricted to one or a few chromosomes. The mechanism for chromothripsis is unknown, but we previously proposed that it could occur through the physical isolation of chromosomes in aberrant nuclear structures called micronuclei. Here, using a combination of live cell imaging and single-cell genome sequencing, we demonstrate that micronucleus formation can indeed generate a spectrum of genomic rearrangements, some of which recapitulate all known features of chromothripsis. These events are restricted to the mis-segregated chromosome and occur within one cell division. We demonstrate that the mechanism for chromothripsis can involve the fragmentation and subsequent reassembly of a single chromatid from a micronucleus. Collectively, these experiments establish a new mutational process of which chromothripsis is one extreme outcome.
CHROMOTHRIPSIS FROM DNA DAMAGE IN MICRONUCLEI
4392608
Methylation of cytosines is an essential epigenetic modification in mammalian genomes, yet the rules that govern methylation patterns remain largely elusive. To gain insights into this process, we generated base-pair-resolution mouse methylomes in stem cells and neuronal progenitors. Advanced quantitative analysis identified low-methylated regions (LMRs) with an average methylation of 30%. These represent CpG-poor distal regulatory regions as evidenced by location, DNase I hypersensitivity, presence of enhancer chromatin marks and enhancer activity in reporter assays. LMRs are occupied by DNA-binding factors and their binding is necessary and sufficient to create LMRs. A comparison of neuronal and stem-cell methylomes confirms this dependency, as cell-type-specific LMRs are occupied by cell-type-specific transcription factors. This study provides methylome references for the mouse and shows that DNA-binding factors locally influence DNA methylation, enabling the identification of active regulatory regions.
DNA-binding factors shape the mouse methylome at distal regulatory regions
4393153
RNA polymerase (Pol) II catalyses DNA-dependent RNA synthesis during gene transcription. There is, however, evidence that Pol II also possesses RNA-dependent RNA polymerase (RdRP) activity. Pol II can use a homopolymeric RNA template, can extend RNA by several nucleotides in the absence of DNA, and has been implicated in the replication of the RNA genomes of hepatitis delta virus (HDV) and plant viroids. Here we show the intrinsic RdRP activity of Pol II with only pure polymerase, an RNA template–product scaffold and nucleoside triphosphates (NTPs). Crystallography reveals the template–product duplex in the site occupied by the DNA–RNA hybrid during transcription. RdRP activity resides at the active site used during transcription, but it is slower and less processive than DNA-dependent activity. RdRP activity is also obtained with part of the HDV antigenome. The complex of transcription factor IIS (TFIIS) with Pol II can cleave one HDV strand, create a reactive stem-loop in the hybrid site, and extend the new RNA 3′ end. Short RNA stem-loops with a 5′ extension suffice for activity, but their growth to a critical length apparently impairs processivity. The RdRP activity of Pol II provides a missing link in molecular evolution, because it suggests that Pol II evolved from an ancient replicase that duplicated RNA genomes.
Molecular basis of RNA-dependent RNA polymerase II activity
4394525
Nociceptor sensory neurons are specialized to detect potentially damaging stimuli, protecting the organism by initiating the sensation of pain and eliciting defensive behaviours. Bacterial infections produce pain by unknown molecular mechanisms, although they are presumed to be secondary to immune activation. Here we demonstrate that bacteria directly activate nociceptors, and that the immune response mediated through TLR2, MyD88, T cells, B cells, and neutrophils and monocytes is not necessary for Staphylococcus aureus-induced pain in mice. Mechanical and thermal hyperalgesia in mice is correlated with live bacterial load rather than tissue swelling or immune activation. Bacteria induce calcium flux and action potentials in nociceptor neurons, in part via bacterial N-formylated peptides and the pore-forming toxin α-haemolysin, through distinct mechanisms. Specific ablation of Nav1.8-lineage neurons, which include nociceptors, abrogated pain during bacterial infection, but concurrently increased local immune infiltration and lymphadenopathy of the draining lymph node. Thus, bacterial pathogens produce pain by directly activating sensory neurons that modulate inflammation, an unsuspected role for the nervous system in host-pathogen interactions.
Bacteria activate sensory neurons that modulate pain and inflammation
4394817
In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles.
E2F1-3 Switch from Activators in Progenitor Cells to Repressors in Differentiating Cells
4396105
Somatic mutations in the small GTPase K-Ras are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Efforts to target this oncogene directly have faced difficulties owing to its picomolar affinity for GTP/GDP and the absence of known allosteric regulatory sites. Oncogenic mutations result in functional activation of Ras family proteins by impairing GTP hydrolysis. With diminished regulation by GTPase activity, the nucleotide state of Ras becomes more dependent on relative nucleotide affinity and concentration. This gives GTP an advantage over GDP and increases the proportion of active GTP-bound Ras. Here we report the development of small molecules that irreversibly bind to a common oncogenic mutant, K-Ras(G12C). These compounds rely on the mutant cysteine for binding and therefore do not affect the wild-type protein. Crystallographic studies reveal the formation of a new pocket that is not apparent in previous structures of Ras, beneath the effector binding switch-II region. Binding of these inhibitors to K-Ras(G12C) disrupts both switch-I and switch-II, subverting the native nucleotide preference to favour GDP over GTP and impairing binding to Raf. Our data provide structure-based validation of a new allosteric regulatory site on Ras that is targetable in a mutant-specific manner.
K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions
4398832
The most conspicuous event in the cell cycle is the alignment of chromosomes in metaphase. Chromosome alignment fosters faithful segregation through the formation of bi-oriented attachments of kinetochores to spindle microtubules. Notably, numerous kinetochore-microtubule (k-MT) attachment errors are present in early mitosis (prometaphase), and the persistence of those errors is the leading cause of chromosome mis-segregation in aneuploid human tumour cells that continually mis-segregate whole chromosomes and display chromosomal instability. How robust error correction is achieved in prometaphase to ensure error-free mitosis remains unknown. Here we show that k-MT attachments in prometaphase cells are considerably less stable than in metaphase cells. The switch to more stable k-MT attachments in metaphase requires the proteasome-dependent destruction of cyclin A in prometaphase. Persistent cyclin A expression prevents k-MT stabilization even in cells with aligned chromosomes. By contrast, k-MTs are prematurely stabilized in cyclin-A-deficient cells. Consequently, cells lacking cyclin A display higher rates of chromosome mis-segregation. Thus, the stability of k-MT attachments increases decisively in a coordinated fashion among all chromosomes as cells transit from prometaphase to metaphase. Cyclin A creates a cellular environment that promotes microtubule detachment from kinetochores in prometaphase to ensure efficient error correction and faithful chromosome segregation.
Cyclin A Regulates Kinetochore-Microtubules to Promote Faithful Chromosome Segregation