docid
stringlengths
4
9
text
stringlengths
174
10k
title
stringlengths
2
300
34436231
Immature T cells and some T cell hybridomas undergo apoptotic cell death when activated through the T cell receptor complex, a phenomenon that is probably related to antigen induced negative selection of developing T cells. This activation-induced apoptosis depends on active protein and RNA synthesis in the dying cells, although none of the genes required for this process have previously been identified. Antisense oligonucleotides corresponding to c-myc block the constitutive expression of c-Myc protein in T cell hybridomas and interfere with all aspects of activation-induced apoptosis without affecting lymphokine production in these cells. These data indicate that c-myc expression is a necessary component of activation-induced apoptosis.
Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas.
34439544
The BCL-2 (B cell CLL/Lymphoma) family is comprised of approximately twenty proteins that collaborate to either maintain cell survival or initiate apoptosis(1). Following cellular stress (e.g., DNA damage), the pro-apoptotic BCL-2 family effectors BAK (BCL-2 antagonistic killer 1) and/or BAX (BCL-2 associated X protein) become activated and compromise the integrity of the outer mitochondrial membrane (OMM), though the process referred to as mitochondrial outer membrane permeabilization (MOMP)(1). After MOMP occurs, pro-apoptotic proteins (e.g., cytochrome c) gain access to the cytoplasm, promote caspase activation, and apoptosis rapidly ensues(2). In order for BAK/BAX to induce MOMP, they require transient interactions with members of another pro-apoptotic subset of the BCL-2 family, the BCL-2 homology domain 3 (BH3)-only proteins, such as BID (BH3-interacting domain agonist)(3-6). Anti-apoptotic BCL-2 family proteins (e.g., BCL-2 related gene, long isoform, BCL-xL; myeloid cell leukemia 1, MCL-1) regulate cellular survival by tightly controlling the interactions between BAK/BAX and the BH3-only proteins capable of directly inducing BAK/BAX activation(7,8). In addition, anti-apoptotic BCL-2 protein availability is also dictated by sensitizer/de-repressor BH3-only proteins, such as BAD (BCL-2 antagonist of cell death) or PUMA (p53 upregulated modulator of apoptosis), which bind and inhibit anti-apoptotic members(7,9). As most of the anti-apoptotic BCL-2 repertoire is localized to the OMM, the cellular decision to maintain survival or induce MOMP is dictated by multiple BCL-2 family interactions at this membrane. Large unilamellar vesicles (LUVs) are a biochemical model to explore relationships between BCL-2 family interactions and membrane permeabilization(10). LUVs are comprised of defined lipids that are assembled in ratios identified in lipid composition studies from solvent extracted Xenopus mitochondria (46.5% phosphatidylcholine, 28.5% phosphatidylethanoloamine, 9% phosphatidylinositol, 9% phosphatidylserine, and 7% cardiolipin)(10). This is a convenient model system to directly explore BCL-2 family function because the protein and lipid components are completely defined and tractable, which is not always the case with primary mitochondria. While cardiolipin is not usually this high throughout the OMM, this model does faithfully mimic the OMM to promote BCL-2 family function. Furthermore, a more recent modification of the above protocol allows for kinetic analyses of protein interactions and real-time measurements of membrane permeabilization, which is based on LUVs containing a polyanionic dye (ANTS: 8-aminonaphthalene-1,3,6-trisulfonic acid) and cationic quencher (DPX: p-xylene-bis-pyridinium bromide)(11). As the LUVs permeabilize, ANTS and DPX diffuse apart, and a gain in fluorescence is detected. Here, commonly used recombinant BCL-2 family protein combinations and controls using the LUVs containing ANTS/DPX are described.
Examining BCL-2 family function with large unilamellar vesicles.
34445160
BACKGROUND & AIMS Hepatic stellate cell activation is a wound-healing response to liver injury. However, continued activation of stellate cells during chronic liver damage causes excessive matrix deposition and the formation of pathological scar tissue leading to fibrosis and ultimately cirrhosis. The importance of sustained stellate cell activation for this pathological process is well recognized, and several signalling pathways that can promote stellate cell activation have been identified, such as the TGFβ-, PDGF-, and LPS-dependent pathways. However, the mechanisms that trigger and drive the early steps in activation are not well understood. METHODS AND RESULTS We identified the Hippo pathway and its effector YAP as a key pathway that controls stellate cell activation. YAP is a transcriptional co-activator and we found that it drives the earliest changes in gene expression during stellate cell activation. Activation of stellate cells in vivo by CCl4 administration to mice or activation in vitro caused rapid activation of YAP as revealed by its nuclear translocation and by the induction of YAP target genes. YAP was also activated in stellate cells of human fibrotic livers as evidenced by its nuclear localization. Importantly, knockdown of YAP expression or pharmacological inhibition of YAP prevented hepatic stellate cell activation in vitro and pharmacological inhibition of YAP impeded fibrogenesis in mice. CONCLUSIONS YAP activation is a critical driver of hepatic stellate cell activation and inhibition of YAP presents a novel approach for the treatment of liver fibrosis.
The Hippo pathway effector YAP controls mouse hepatic stellate cell activation.
34469966
Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans.
Human Monocytes Engage an Alternative Inflammasome Pathway.
34481589
Biological agents are widely used in rheumatology, dermatology and inflammatory bowel disease. Evidence about their efficacy and safety has been strengthened for all those therapeutic indications over the last decade. Biosimilar agents are monoclonal antibodies similar to previously approved biologics. In the European Union, they have been approved for all the indications in the management of immune-mediated inflammatory diseases (IMIDs), although data only in rheumatoid arthritis and ankylosing spondylitis are currently available. Direct evidence on efficacy, safety, and immunogenicity of biosimilars is mandatory in psoriasis, psoriatic arthritis, and inflammatory bowel disease, as well as in children. Based on the current evidence in the literature, we present the joint official position of the Italian Societies of Rheumatology, Dermatology and Inflammatory Bowel Disease on the use of biosimilars in IMIDs.
The use of biosimilars in immune-mediated disease: A joint Italian Society of Rheumatology (SIR), Italian Society of Dermatology (SIDeMaST), and Italian Group of Inflammatory Bowel Disease (IG-IBD) position paper.
34498093
The dynein motor domain is composed of a tail, head, and stalk and is thought to generate a force to microtubules by swinging the tail against the head during its ATPase cycle. For this "power stroke," dynein has to coordinate the tail swing with microtubule association/dissociation at the tip of the stalk. Although a detailed picture of the former process is emerging, the latter process remains to be elucidated. By using the single-headed recombinant motor domain of Dictyostelium cytoplasmic dynein, we address the questions of how the interaction of the motor domain with a microtubule is modulated by ATPase steps, how the two mechanical cycles (the microtubule association/dissociation and tail swing) are coordinated, and which ATPase site among the multiple sites in the motor domain regulates the coordination. Based on steady-state and pre-steady-state measurements, we demonstrate that the two mechanical cycles proceed synchronously at most of the intermediate states in the ATPase cycle: the motor domain in the poststroke state binds strongly to the microtubule with a K(d) of approximately 0.2 microM, whereas most of the motor domains in the prestroke state bind weakly to the microtubule with a K(d) of >10 microM. However, our results suggest that the timings of the microtubule affinity change and tail swing are staggered at the recovery stroke step in which the tail swings from the poststroke to the prestroke position. The ATPase site in the AAA1 module of the motor domain was found to be responsible for the coordination of these two mechanical processes.
The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein.
34498325
Transfer RNAs specific for Gln, Lys, and Glu from all organisms (except Mycoplasma) and organelles have a 2-thiouridine derivative (xm(5)s(2)U) as wobble nucleoside. These tRNAs read the A- and G-ending codons in the split codon boxes His/Gln, Asn/Lys, and Asp/Glu. In eukaryotic cytoplasmic tRNAs the conserved constituent (xm(5)-) in position 5 of uridine is 5-methoxycarbonylmethyl (mcm(5)). A protein (Tuc1p) from yeast resembling the bacterial protein TtcA, which is required for the synthesis of 2-thiocytidine in position 32 of the tRNA, was shown instead to be required for the synthesis of 2-thiouridine in the wobble position (position 34). Apparently, an ancient member of the TtcA family has evolved to thiolate U34 in tRNAs of organisms from the domains Eukarya and Archaea. Deletion of the TUC1 gene together with a deletion of the ELP3 gene, which results in the lack of the mcm(5) side chain, removes all modifications from the wobble uridine derivatives of the cytoplasmic tRNAs specific for Gln, Lys, and Glu, and is lethal to the cell. Since excess of the unmodified form of these three tRNAs rescued the double mutant elp3 tuc1, the primary function of mcm(5)s(2)U34 seems to be to improve the efficiency to read the cognate codons rather than to prevent mis-sense errors. Surprisingly, overexpression of the mcm(5)s(2)U-lacking tRNA(Lys) alone was sufficient to restore viability of the double mutant.
A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast.
34537906
After anaphase onset, animal cells build an actomyosin contractile ring that constricts the plasma membrane to generate two daughter cells connected by a cytoplasmic bridge. The bridge is ultimately severed to complete cytokinesis. Myriad techniques have been used to identify proteins that participate in cytokinesis in vertebrates, insects, and nematodes. A conserved core of about 20 proteins are individually involved with cytokinesis in most animal cells. These components are found in the contractile ring, on the central spindle, within the RhoA pathway, and on vesicles that expand the membrane and sever the bridge. Cytokinesis involves additional proteins, but they, or their requirement in cytokinesis, are not conserved among animal cells.
The molecular requirements for cytokinesis.
34544514
BACKGROUND Indomethacin is used as standard therapy to close a patent ductus arteriosus (PDA) but is associated with reduced blood flow to several organs. Ibuprofen, another cyclo-oxygenase inhibitor, may be as effective as indomethacin with fewer adverse effects. OBJECTIVES To determine the effectiveness and safety of ibuprofen compared with indomethacin, other cyclo-oxygenase inhibitor, placebo or no intervention for closing a patent ductus arteriosus in preterm, low birth weight, or preterm and low birth weight infants. SEARCH METHODS We searched The Cochrane Library, MEDLINE, EMBASE, Clincialtrials.gov, Controlled-trials.com, and www.abstracts2view.com/pas in May 2014. SELECTION CRITERIA Randomised or quasi-randomised controlled trials of ibuprofen for the treatment of a PDA in newborn infants. DATA COLLECTION AND ANALYSIS Data collection and analysis conformed to the methods of the Cochrane Neonatal Review Group. MAIN RESULTS We included 33 studies enrolling 2190 infants. Two studies compared intravenous (iv) ibuprofen versus placebo (270 infants). In one study (134 infants) ibuprofen reduced the incidence of failure to close a PDA (risk ratio (RR) 0.71, 95% confidence interval (CI) 0.51 to 0.99; risk difference (RD) -0.18, 95% CI -0.35 to -0.01; number needed to treat for an additional beneficial outcome (NNTB) 6, 95% CI 3 to 100). In one study (136 infants), ibuprofen reduced the composite outcome of infant mortality, infants who dropped out, or infants who required rescue treatment (RR 0.58, 95% CI 0.38 to 0.89; RD -0.22, 95% CI -0.38 to -0.06; NNTB 5, 95% CI 3 to 17). One study (64 infants) compared oral ibuprofen with placebo and noted a significant reduction in failure to close a PDA (RR 0.26, 95% CI 0.11 to 0.62; RD -0.44, 95% CI -0.65 to -0.23; NNTB 2, 95% CI 2 to 4).Twenty-one studies (1102 infants) reported failure rates for PDA closure with ibuprofen (oral or iv) compared with indomethacin (oral or iv). There was no significant difference between the groups (typical RR 1.00, 95% CI 0.84 to 1.20; I(2) = 0%; typical RD 0.00, 95% CI -0.05 to 0.05; I(2) = 0%). The risk of developing necrotising enterocolitis (NEC) was reduced for ibuprofen (16 studies, 948 infants; typical RR 0.64, 95% CI 0.45 to 0.93; typical RD -0.05, 95% CI -0.08 to -0.01; NNTB 20, 95% CI 13 to 100; I(2) = 0% for both RR and RD). The duration of ventilatory support was reduced with ibuprofen (oral or iv) compared with iv or oral indomethacin (six studies, 471 infants; mean difference (MD) -2.4 days, 95% CI -3.7 to -1.0; I(2) = 19%).Eight studies (272 infants) reported on failure rates for PDA closure in a subgroup of the above studies comparing oral ibuprofen with indomethacin (oral or iv). There was no significant difference between the groups (typical RR 0.96, 95% CI 0.73 to 1.27; typical RD -0.01, 95% CI -0.12 to 0.09). The risk of NEC was reduced with oral ibuprofen compared with indomethacin (oral or iv) (seven studies, 249 infants; typical RR 0.41, 95% CI 0.23 to 0.73; typical RD -0.13, 95% CI -0.22 to -0.05; NNTB 8, 95% CI 5 to 20; I(2) = 0% for both RR and RD). There was a decreased risk of failure to close a PDA with oral ibuprofen compared with iv ibuprofen (four studies, 304 infants; typical RR 0.41, 95% CI 0.27 to 0.64; typical RD -0.21, 95% CI -0.31 to -0.12; NNTB 5, 95% CI 3 to 8). Transient renal insufficiency was less common in infants who received ibuprofen compared with indomethacin. High dose versus standard dose of iv ibuprofen, early versus expectant administration of iv ibuprofen, echocardiographically guided iv ibuprofen treatment vs. standard iv ibuprofen treatment and continuous infusion of ibuprofen vs. intermittent boluses of ibuprofen and long-term follow-up were studied in too few trials to draw any conclusions. AUTHORS' CONCLUSIONS Ibuprofen is as effective as indomethacin in closing a PDA and currently appears to be the drug of choice. Ibuprofen reduces the risk of NEC and transient renal insufficiency. Oro-gastric administration of ibuprofen appears as effective as iv administration. To make further recommendations, studies are needed to assess the effectiveness of high-dose versus standard-dose ibuprofen, early versus expectant administration of ibuprofen, echocardiographically guided versus standard iv ibuprofen, and continuous infusion versus intermittent boluses of ibuprofen. Studies are lacking evaluating the effect of ibuprofen on longer-term outcomes in infants with PDA.
Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants.
34559336
Three Pol X family members have been linked to nonhomologous end joining (NHEJ) in mammals. Template-independent TdT promotes diversity during NHEJ-dependent repair of V(D)J recombination intermediates, but the roles of the template-dependent polymerases mu and lambda in NHEJ remain unclear. We show here that pol mu and pol lambda are similarly recruited by NHEJ factors to fill gaps when ends have partially complementary overhangs, suggesting equivalent roles promoting accuracy in NHEJ. However, only pol mu promotes accuracy during immunoglobulin kappa recombination. This distinctive in vivo role correlates with the TdT-like ability of pol mu, but not pol lambda, to act when primer termini lack complementary bases in the template strand. However, unlike TdT, synthesis by pol mu in this context is primarily instructed by a template from another DNA molecule. This apparent gradient of template dependence is largely attributable to a small structural element that is present but different in all three polymerases.
A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining.
34582256
The object of this study was to assess the role of brown adipose tissue (BAT) and the sympathetic nervous system in the rise in heat production associated with endotoxin-induced fever. Oxygen consumption (VO2) was found to be significantly increased (28%) over a 4-h period after two doses of endotoxin (Escherichia coli lipopolysaccharide, 0.3 mg/100 g body wt) given 24 h apart. Injection of a mixed beta-adrenoceptor antagonist (propranolol) reduced VO2 by 14% in endotoxin-treated rats, whereas the selective beta 1- (atenolol) or beta 2- (ICI 118551) antagonists suppressed VO2 by 10%. These drugs did not affect VO2 in control animals. BAT thermogenic activity assessed from measurements of in vitro mitochondrial guanosine 5'-diphosphate (GDP) binding was elevated by 54% in interscapular BAT and by 171% in other BAT depots. Surgical denervation of one lobe of the interscapular depot prevented these responses. Endotoxin failed to stimulate GDP binding in rats fed protein-deficient diets. This may have been because BAT thermogenic activity was already elevated in control rats fed these diets or because endotoxin caused a marked suppression of food intake in the protein-deficient animals. The results indicate that sympathetic activation of BAT is involved in the thermogenic responses to endotoxin and that these can be modified by dietary manipulation.
Involvement of sympathetic nervous system and brown fat in endotoxin-induced fever in rats.
34603465
Choline is an essential nutrient and methyl donor required for epigenetic regulation. Here, we assessed the impact of gut microbial choline metabolism on bacterial fitness and host biology by engineering a microbial community that lacks a single choline-utilizing enzyme. Our results indicate that choline-utilizing bacteria compete with the host for this nutrient, significantly impacting plasma and hepatic levels of methyl-donor metabolites and recapitulating biochemical signatures of choline deficiency. Mice harboring high levels of choline-consuming bacteria showed increased susceptibility to metabolic disease in the context of a high-fat diet. Furthermore, bacterially induced reduction of methyl-donor availability influenced global DNA methylation patterns in both adult mice and their offspring and engendered behavioral alterations. Our results reveal an underappreciated effect of bacterial choline metabolism on host metabolism, epigenetics, and behavior. This work suggests that interpersonal differences in microbial metabolism should be considered when determining optimal nutrient intake requirements.
Metabolic, Epigenetic, and Transgenerational Effects of Gut Bacterial Choline Consumption.
34604584
SR proteins are well-characterized RNA binding proteins that promote exon inclusion by binding to exonic splicing enhancers (ESEs). However, it has been unclear whether regulatory rules deduced on model genes apply generally to activities of SR proteins in the cell. Here, we report global analyses of two prototypical SR proteins, SRSF1 (SF2/ASF) and SRSF2 (SC35), using splicing-sensitive arrays and CLIP-seq on mouse embryo fibroblasts (MEFs). Unexpectedly, we find that these SR proteins promote both inclusion and skipping of exons in vivo, but their binding patterns do not explain such opposite responses. Further analyses reveal that loss of one SR protein is accompanied by coordinated loss or compensatory gain in the interaction of other SR proteins at the affected exons. Therefore, specific effects on regulated splicing by one SR protein actually depend on a complex set of relationships with multiple other SR proteins in mammalian genomes.
Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing.
34615397
The human tuberculous granuloma provides the morphological basis for local immune processes central to the outcome of tuberculosis. Because of the scarcity of information in human patients, the aim of the present study was to gain insights into the functional and structural properties of infiltrated tissue. To this end, the mycobacterial load in lesions and dissemination to different tissue locations were investigated, as well as distribution, biological functions, and interactions of host immune cells. Analysis of early granuloma formation in formerly healthy lung tissue revealed a spatio-temporal sequence of cellular infiltration to sites of mycobacterial infection. A general structure of the developing granuloma was identified, comprising an inner cell layer with few CD8(+) cells surrounding the necrotic centre and an outer area of lymphocyte infiltration harbouring mycobacteria-containing antigen-presenting cells as well as CD4(+), CD8(+), and B cells in active follicle-like centres resembling secondary lymphoid organs. It is concluded that the follicular structures in the peripheral rim of granulomas serve as a morphological substrate for the orchestration of the enduring host response in pulmonary tuberculosis.
Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung.
34630025
Eosinophils are abundant in inflammatory demyelinating lesions in neuromyelitis optica (NMO). We used cell culture, ex vivo spinal cord slices, and in vivo mouse models of NMO to investigate the role of eosinophils in NMO pathogenesis and the therapeutic potential of eosinophil inhibitors. Eosinophils cultured from mouse bone marrow produced antibody-dependent cell-mediated cytotoxicity (ADCC) in cell cultures expressing aquaporin-4 in the presence of NMO autoantibody (NMO-IgG). In the presence of complement, eosinophils greatly increased cell killing by a complement-dependent cell-mediated cytotoxicity (CDCC) mechanism. NMO pathology was produced in NMO-IgG-treated spinal cord slice cultures by inclusion of eosinophils or their granule toxins. The second-generation antihistamines cetirizine and ketotifen, which have eosinophil-stabilizing actions, greatly reduced NMO-IgG/eosinophil-dependent cytotoxicity and NMO pathology. In live mice, demyelinating NMO lesions produced by continuous intracerebral injection of NMO-IgG and complement showed marked eosinophil infiltration. Lesion severity was increased in transgenic hypereosinophilic mice. Lesion severity was reduced in mice made hypoeosinophilic by anti-IL-5 antibody or by gene deletion, and in normal mice receiving cetirizine orally. Our results implicate the involvement of eosinophils in NMO pathogenesis by ADCC and CDCC mechanisms and suggest the therapeutic utility of approved eosinophil-stabilizing drugs.
Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica.
34733465
BACKGROUND Patients with cystic fibrosis have altered levels of plasma fatty acids. We previously demonstrated that arachidonic acid levels are increased and docosahexaenoic acid levels are decreased in affected tissues from cystic fibrosis-knockout mice. In this study we determined whether humans with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have a similar fatty acid defect in tissues expressing CFTR. METHODS Fatty acids from nasal- and rectal-biopsy specimens, nasal epithelial scrapings, and plasma were analyzed from 38 subjects with cystic fibrosis and compared with results in 13 obligate heterozygotes, 24 healthy controls, 11 subjects with inflammatory bowel disease, 9 subjects with upper respiratory tract infection, and 16 subjects with asthma. RESULTS The ratio of arachidonic to docosahexaenoic acid was increased in mucosal and submucosal nasal-biopsy specimens (P<0.001) and rectal-biopsy specimens (P=0.009) from subjects with cystic fibrosis and pancreatic sufficiency and subjects with cystic fibrosis and pancreatic insufficiency, as compared with values in healthy control subjects. In nasal tissue, this change reflected an increase in arachidonic acid levels and a decrease in docosahexaenoic acid levels. In cells from nasal mucosa, the ratio of arachidonic to docosahexaenoic acid was increased in subjects with cystic fibrosis (P<0.001), as compared with healthy controls, with values in obligate heterozygotes intermediate between these two groups (P<0.001). The ratio was not increased in subjects with inflammatory bowel disease. Subjects with asthma and those with upper respiratory tract infection had values intermediate between those in subjects with cystic fibrosis and those in healthy control subjects. CONCLUSIONS These data indicate that alterations in fatty acids similar to those in cystic fibrosis-knockout mice are present in CFTR-expressing tissue from subjects with cystic fibrosis.
Association of cystic fibrosis with abnormalities in fatty acid metabolism.
34735369
Recent advances in the field of intercellular adhesion highlight the importance of adherens junction association with the underlying actin cytoskeleton. In skin epithelial cells a dynamic feature of adherens junction formation involves filopodia, which physically project into the membrane of adjacent cells, catalyzing the clustering of adherens junction protein complexes at their tips. In turn, actin polymerization is stimulated at the cytoplasmic interface of these complexes. Although the mechanism remains unclear, the VASP/Mena family of proteins seems to be involved in organizing actin polymerization at these sites. In vivo, adherens junction formation appears to rely upon filopodia in processes where epithelial sheets must be physically moved closer to form stable intercellular connections, for example, in ventral closure in embryonic development or wound healing in the postnatal animal.
Actin dynamics and cell-cell adhesion in epithelia.
34747208
Mutations in the nuclear structural protein lamin A cause the premature aging syndrome Hutchinson-Gilford progeria (HGPS). Whether lamin A plays any role in normal aging is unknown. We show that the same molecular mechanism responsible for HGPS is active in healthy cells. Cell nuclei from old individuals acquire defects similar to those of HGPS patient cells, including changes in histone modifications and increased DNA damage. Age-related nuclear defects are caused by sporadic use, in healthy individuals, of the same cryptic splice site in lamin A whose constitutive activation causes HGPS. Inhibition of this splice site reverses the nuclear defects associated with aging. These observations implicate lamin A in physiological aging.
Lamin A-dependent nuclear defects in human aging.
34753204
Zmpste24 is an integral membrane metalloproteinase of the endoplasmic reticulum. Biochemical studies of tissues from Zmpste24-deficient mice (Zmpste24(-/-)) have indicated a role for Zmpste24 in the processing of CAAX-type prenylated proteins. Here, we report the pathologic consequences of Zmpste24 deficiency in mice. Zmpste24(-/-) mice gain weight slowly, appear malnourished, and exhibit progressive hair loss. The most striking pathologic phenotype is multiple spontaneous bone fractures-akin to those occurring in mouse models of osteogenesis imperfecta. Cortical and trabecular bone volumes are significantly reduced in Zmpste24(-/-) mice. Zmpste24(-/-) mice also manifested muscle weakness in the lower and upper extremities, resembling mice lacking the farnesylated CAAX protein prelamin A. Prelamin A processing was defective both in fibroblasts lacking Zmpste24 and in fibroblasts lacking the CAAX carboxyl methyltransferase Icmt but was normal in fibroblasts lacking the CAAX endoprotease Rce1. Muscle weakness in Zmpste24(-/-) mice can be reasonably ascribed to defective processing of prelamin A, but the brittle bone phenotype suggests a broader role for Zmpste24 in mammalian biology.
Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect.
34760396
The fly Musca sorbens Wiedemann (Diptera: Muscidae) apparently transmits Chlamydia trachomatis, causing human trachoma. The literature indicates that M. sorbens breeds predominantly in isolated human faeces on the soil surface, but not in covered pit latrines. We sought to identify breeding media of M. sorbens in a rural Gambian village endemic for trachoma. Test breeding media were presented for oviposition on soil-filled buckets and monitored for adult emergence. Musca sorbens emerged from human (6/9 trials), calf (3/9), cow (3/9), dog (2/9) and goat (1/9) faeces, but not from horse faeces, composting kitchen scraps or a soil control (0/9 of each). After adjusting for mass of medium, the greatest number of flies emerged from human faeces (1426 flies/kg). Median time for emergence was 9 (inter quartile range = 8-9.75) days post-oviposition. Of all flies emerging from faeces 81% were M. sorbens. Male and female flies emerging from human faeces were significantly larger than those from other media, suggesting that they would be more fecund and live longer than smaller flies from other sources. Female flies caught from children's eyes were of a similar size to those from human faeces, but significantly larger than those from other media. We consider that human faeces are the best larval medium for M. sorbens, although some breeding also occurs in animal faeces. Removal of human faeces from the environment, through the provision of basic sanitation, is likely to greatly reduce fly density, eye contact and hence trachoma transmission, but if faeces of other animals are present M. sorbens will persist.
Human and other faeces as breeding media of the trachoma vector Musca sorbens.
34818263
As time passes, the AIDS pandemic continues to spike, affecting an estimated 38.6 million people worldwide. In response, a satellite health clinic is being d esigned by two Cal Poly students to serve the Maasai people living in the Kajiado district in Southern Kenya. The Maasai have traditionally lived as pastoralists, surviving off of their cattle with which they share their water, increasing the risk for contamination. However, as the population of Kenya increases, the land the Maasai have traditionally used for grazing is shrink­ ing. For this reason, some have turned to farming to maintain their liveli­ hood. These factors have contributed to the desertification and deforestation of their region. As the lifestyle of the Maasai evolves, they rely more on maize than meat and dairy products for their nutrients. All of these changes have contributed to the evolution of the Maasai culture. We will address these changes in order to better understand the Maasai, as well as highlight pos­ sible further aid needed to support their survival.
Current Health and Environmental Status of the Maasai People in Sub-Saharan Africa
34846352
A novel mammalian adenylyl cyclase was identified by reverse transcription-polymerase chain reaction amplification using degenerate primers based on a conserved region of previously described adenylyl cyclases (Premont, R. T. (1994) Methods Enzymol. 238, 116-127). The full-length cDNA sequence obtained from mouse brain predicts a 1353-amino acid protein possessing a 12-membrane span topology, and containing two regions of high similarity with the catalytic domains of adenylyl cyclases. Comparison of this novel adenylyl cyclase with the eight previously described mammalian enzymes indicates that this type 9 adenylyl cyclase sequence is the most divergent, defining a sixth distinct subclass of mammalian adenylyl cyclases. The AC9 gene has been localized to human chromosome band 16p13.3-13.2. The 8.5-kb mRNA encoding the type 9 adenylyl cyclase is widely distributed, being readily detected in all tissues tested, and is found at very high levels in skeletal muscle and brain. AC9 mRNA is found throughout rat brain but is particularly abundant in hippocampus, cerebellum, and neocortex. An antiserum directed against the carboxyl terminus of the type 9 adenylyl cyclase detects native and expressed recombinant AC9 protein in tissue and cell membranes. Levels of the AC9 protein are highest in mouse brain membranes. Characterization of expressed recombinant AC9 reveals that the protein is a functional adenylyl cyclase that is stimulated by Mg2+, forskolin, and mutationally activated Gsalpha. AC9 activity is not affected by Ca2+/calmodulin or by G protein betagamma-subunits. Thus AC9 represents a functional G protein-regulated adenylyl cyclase found in brain and in most somatic tissues.
Identification and characterization of a widely expressed form of adenylyl cyclase.
34854444
The gene-of-the-oligodendrocyte lineage (Golli)-MBP transcription unit contains three Golli-specific exons together with eight exons of the "classical" myelin basic protein (MBP) gene, yielding alternatively spliced proteins which share amino acid sequence with MBP. Unlike MBP, a late antigen expressed only in the nervous system, Golli gene products are expressed pre- and post-natally at many sites. In this study, we determined the sequence of Golli in rat by RT-PCR and 5' RACE and showed that Golli sequences are expressed in primary lymphoid organs as early as e16.5, which could explain the anergic rat T cell response we previously observed in Golli-induced meningitis.
Expression of Golli mRNA during development in primary immune lymphoid organs of the rat
34873974
OBJECTIVE To obtain summary estimates of the accuracy of a single baseline measurement of the Elecsys Troponin T high-sensitive assay (Roche Diagnostics) for the diagnosis of acute myocardial infarction in patients presenting to the emergency department. DESIGN Systematic review and meta-analysis of diagnostic test accuracy studies. DATA SOURCES Medline, Embase, and other relevant electronic databases were searched for papers published between January 2006 and December 2013. STUDY SELECTION Studies were included if they evaluated the diagnostic accuracy of a single baseline measurement of Elecsys Troponin T high-sensitive assay for the diagnosis of acute myocardial infarction in patients presenting to the emergency department with suspected acute coronary syndrome. STUDY APPRAISAL AND DATA SYNTHESIS The first author screened all titles and abstracts identified through the searches and selected all potentially relevant papers. The screening of the full texts, the data extraction, and the methodological quality assessment, using the adapted QUADAS-2 tool, were conducted independently by two reviewers with disagreements being resolved through discussion or arbitration. If appropriate, meta-analysis was conducted using the hierarchical bivariate model. RESULTS Twenty three studies reported the performance of the evaluated assay at presentation. The results for 14 ng/L and 3-5 ng/L cut-off values were pooled separately. At 14 ng/L (20 papers), the summary sensitivity was 89.5% (95% confidence interval 86.3% to 92.1%) and the summary specificity was 77.1% (68.7% to 83.7%). At 3-5 ng/L (six papers), the summary sensitivity was 97.4% (94.9% to 98.7%) and the summary specificity was 42.4% (31.2% to 54.5%). This means that if 21 of 100 consecutive patients have the target condition (21%, the median prevalence across the studies), 2 (95% confidence interval 2 to 3) of 21 patients with acute myocardial infarction will be missed (false negatives) if 14 ng/L is used as a cut-off value and 18 (13 to 25) of 79 patients without acute myocardial infarction will test positive (false positives). If the 3-5 ng/L cut-off value is used, <1 (0 to 1) patient with acute myocardial infarction will be missed and 46 (36 to 54) patients without acute myocardial infarction will test positive. CONCLUSIONS The results indicate that a single baseline measurement of the Elecsys Troponin T high-sensitive assay could be used to rule out acute myocardial infarction if lower cut-off values such as 3 ng/L or 5 ng/L are used. However, this method should be part of a comprehensive triage strategy and may not be appropriate for patients who present less than three hours after symptom onset. Care must also be exercised because of the higher imprecision of the evaluated assay and the greater effect of lot-to-lot reagent variation at low troponin concentrations. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42013003926.
Diagnostic accuracy of single baseline measurement of Elecsys Troponin T high-sensitive assay for diagnosis of acute myocardial infarction in emergency department: systematic review and meta-analysis
34876410
Pericytes are defined in vivo by their location: They are embedded within the basement membrane of microvessels. They form an integral part of the microvascular wall and are believed to participate in angiogenesis, although their precise role is not clear. Pericytes derived from the retinal microvasculature have been cultured and identified by a series of phenotypic characteristics that clearly distinguishes them from other stromal cells such as smooth muscle cells. Pericytes in vitro form multicellular nodules rich in extracellular matrix. This matrix becomes mineralized in the presence of growth medium containing serum, without exogenous beta-glycerophosphate. These results indicate that pericytes represent primitive mesenchymal cells able to differentiate into an osteogenic phenotype. Pericyte differentiation also is defined by alterations in their response to transforming growth factor beta 1 and changes in the synthesis and/or deposition of various extracellular matrix proteins such as laminin, Type IV collagen, tenascin, Type X collagen osteonectin, and thrombospondin-1. Angiogenesis is associated commonly with mineralization. These data suggest that pericytes may contribute to mineralization in vivo.
Pericyte differentiation.
34905328
The TCR:CD3 complex transduces signals that are critical for optimal T cell development and adaptive immunity. In resting T cells, the CD3ε cytoplasmic tail associates with the plasma membrane via a proximal basic-rich stretch (BRS). In this study, we show that mice lacking a functional CD3ε-BRS exhibited substantial reductions in thymic cellularity and limited CD4- CD8- double-negative (DN) 3 to DN4 thymocyte transition, because of enhanced DN4 TCR signaling resulting in increased cell death and TCR downregulation in all subsequent populations. Furthermore, positive, but not negative, T cell selection was affected in mice lacking a functional CD3ε-BRS, which led to limited peripheral T cell function and substantially reduced responsiveness to influenza infection. Collectively, these results indicate that membrane association of the CD3ε signaling domain is required for optimal thymocyte development and peripheral T cell function.
Membrane association of the CD3ε signaling domain is required for optimal T cell development and function.
34935825
OBJECTIVE To evaluate the efficacy of aromatase inhibitors in ovulation induction, superovulation, and IVF. DESIGN A literature search was conducted with the key words "aromatase inhibitor," "letrozole," "anastrazole," "ovulation induction," "ovulation," and "superovulation" in MEDLINE, EMBASE, and the Cochrane Database of systematic reviews. RESULT(S) Ovulation induction with letrozole is associated with an ovulation rate of 70%-84% and a pregnancy rate of 20%-27% per cycle. In one study, ovulation and pregnancy rates with letrozole seemed to be higher than those of anastrazole. In superovulation, letrozole is associated with few developing follicles and thick endometrium. The use of letrozole for superovulation is associated with a pregnancy rate higher than with the use of clomiphene citrate (CC) (16.7% vs. 5.6%). The addition of letrozole to FSH treatment leads to a decreased FSH requirement. The pregnancy rate for treatment with letrozole and FSH was similar to that for FSH alone. CONCLUSION(S) Aromatase inhibitors are as effective as or superior to CC in ovulation induction and in superovulation. Unlike CC, they do not carry an antiestrogenic effect on the endometrium. Given the advantages of aromatase inhibitors, they can be used to replace CC as ovulation-inducing drugs. Their role in IVF remains to be determined.
A new era in ovulation induction.
34982259
The hematopoietic system is one of the first complex tissues to develop in the mammalian conceptus. Of particular interest in the field of developmental hematopoiesis is the origin of adult bone marrow hematopoietic stem cells. Tracing their origin is complicated because blood is a mobile tissue and because hematopoietic cells emerge from many embryonic sites. The origin of the adult mammalian blood system remains a topic of lively discussion and intense research. Interest is also focused on developmental signals that induce the adult hematopoietic stem cell program, as these may prove useful for generating and expanding these clinically important cell populations ex vivo. This review presents a historical overview of and the most recent data on the developmental origins of hematopoiesis.
Of lineage and legacy: the development of mammalian hematopoietic stem cells
35004872
Asbestos has been described as a physical carcinogen in that its carcinogenic effects appear to be related primarily to fiber dimensions. It has been hypothesized that long asbestos fibers may interfere with chromosome distribution during cell division, causing genomic changes that lead to cell transformation and neoplastic progression. Using high-resolution time-lapse light microscopy and serial-section electron microscopy, we have followed individual crocidolite asbestos fibers through the later stages of cell division in LLC-MK2 epithelial cells, and have detailed for the first time their effect on cytokinesis. We found that long fibers (15-55 microgram), trapped by the cleavage furrow, sterically blocked cytokinesis, sometimes resulting in the formation of a binucleated cell. The ends of blocking fibers were usually found within invaginations of the newly formed nuclei. Nuclear envelope-fiber attachment was evident when a chromatin strand ran with the fiber into the intercellular bridge. Such strands may break, causing chromosome structural rearrangements. Our data are the first to show that individual crocidolite fibers can cause genomic changes by sterically blocking cytokinesis and that fiber length and affinity for the nuclear envelope are important factors. Such genomic changes may be among the initial events leading to asbestos-induced cancers.
Long crocidolite asbestos fibers cause polyploidy by sterically blocking cytokinesis.
35008773
In vertebrates, the development of the nervous system is triggered by signals from a powerful 'organizing' region of the early embryo during gastrulation. This phenomenon--neural induction--was originally discovered and given conceptual definition by experimental embryologists working with amphibian embryos. Work on the molecular circuitry underlying neural induction, also in the same model system, demonstrated that elimination of ongoing transforming growth factor-β (TGFβ) signaling in the ectoderm is the hallmark of anterior neural-fate acquisition. This observation is the basis of the 'default' model of neural induction. Endogenous neural inducers are secreted proteins that act to inhibit TGFβ ligands in the dorsal ectoderm. In the ventral ectoderm, where the signaling ligands escape the inhibitors, a non-neural fate is induced. Inhibition of the TGFβ pathway has now been demonstrated to be sufficient to directly induce neural fate in mammalian embryos as well as pluripotent mouse and human embryonic stem cells. Hence the molecular process that delineates neural from non-neural ectoderm is conserved across a broad range of organisms in the evolutionary tree. The availability of embryonic stem cells from mouse, primates, and humans will facilitate further understanding of the role of signaling pathways and their downstream mediators in neural induction in vertebrate embryos.
Neural induction and early patterning in vertebrates.
35022568
Recent years have seen the emergence of a 'global mental health' agenda, focused on providing evidence-based interventions for mental illnesses in low- and middle-income countries. Anthropologists and cultural psychiatrists have engaged in vigorous debates about the appropriateness of this agenda. In this article, we reflect on these debates, drawing on ethnographic fieldwork on the management of substance use disorders in China, Russia, and the United States. We argue that the logic of 'treatment gaps,' which guides much research and intervention under the rubric of global mental health, partially obscures the complex assemblages of institutions, therapeutics, knowledges, and actors framing and managing addiction (as well as other mental health issues) in any particular setting.
What's in the 'treatment gap'? Ethnographic perspectives on addiction and global mental health from China, Russia, and the United States.
35062452
Krüppel-like factors 3 and 8 (KLF3 and KLF8) are highly related transcriptional regulators that bind to similar sequences of DNA. We have previously shown that in erythroid cells there is a regulatory hierarchy within the KLF family, whereby KLF1 drives the expression of both the Klf3 and Klf8 genes and KLF3 in turn represses Klf8 expression. While the erythroid roles of KLF1 and KLF3 have been explored, the contribution of KLF8 to this regulatory network has been unknown. To investigate this, we have generated a mouse model with disrupted KLF8 expression. While these mice are viable, albeit with a reduced life span, mice lacking both KLF3 and KLF8 die at around embryonic day 14.5 (E14.5), indicative of a genetic interaction between these two factors. In the fetal liver, Klf3 Klf8 double mutant embryos exhibit greater dysregulation of gene expression than either of the two single mutants. In particular, we observe derepression of embryonic, but not adult, globin expression. Taken together, these results suggest that KLF3 and KLF8 have overlapping roles in vivo and participate in the silencing of embryonic globin expression during development.
Generation of mice deficient in both KLF3/BKLF and KLF8 reveals a genetic interaction and a role for these factors in embryonic globin gene silencing.
35079452
The ability of Mycobacterium tuberculosis to enter host macrophages, and reside in a phagosome, which does not mature into a phagolysosome, is central to the spread of tuberculosis and the associated pandemic involving billions of people worldwide. Tuberculosis can be viewed as a disease with a significant intracellular trafficking and organellar biogenesis component. Current understanding of the block in M. tuberculosis phagosome maturation also sheds light on fundamental aspects of phagolysosome biogenesis. The maturation block involves interference with the recruitment and function of rabs, rab effectors (phosphatidylinositol 3-kinases and tethering molecules such as EEA1), SNAREs (Syntaxin 6 and cellubrevin) and Ca2+/calmodulin signaling. M. tuberculosis analogs of mammalian phosphatidylinositols interfere with these systems and associated processes.
Mycobacterium tuberculosis phagosome maturation arrest: selective targeting of PI3P-dependent membrane trafficking.
35085326
A previously unknown protein, designated SvpA (surface virulence-associated protein) and implicated in the virulence of the intracellular pathogen Listeria monocytogenes, was identified. This 64 kDa protein, encoded by svpA, is both secreted in culture supernatants and surface-exposed, as shown by immunogold labelling of whole bacteria with an anti-SvpA antibody. Analysis of the peptide sequence revealed that SvpA contains a leader peptide, a predicted C-terminal transmembrane region and a positively charged tail resembling that of the surface protein ActA, suggesting that SvpA might partially reassociate with the bacterial surface by its C-terminal membrane anchor. An allelic mutant was constructed by disrupting svpA in the wild-type strain LO28. The virulence of this mutant was strongly attenuated in the mouse, with a 2 log decrease in the LD50 and restricted bacterial growth in organs as compared to the wild-type strain. This reduced virulence was not related either to a loss of adherence or to a lower expression of known virulence factors, which remained unaffected in the svpA mutant. It was caused by a restriction of intracellular growth of mutant bacteria. By following the intracellular behaviour of bacteria within bone-marrow-derived macrophages by confocal and electron microscopy studies, it was found that most svpA mutant bacteria remained confined within phagosomes, in contrast to wild-type bacteria which rapidly escaped to the cytoplasm. The regulation of svpA was independent of PrfA, the transcriptional activator of virulence genes in L. monocytogenes. In fact, SvpA was down-regulated by MecA, ClpC and ClpP, which are highly homologous to proteins of Bacillus subtilis forming a regulatory complex controlling the competence state of this saprophyte. The results indicate that: (i) SvpA is a novel factor involved in the virulence of L. monocytogenes, promoting bacterial escape from phagosomes of macrophages; (ii) SvpA is, at least partially, associated with the surface of bacteria; and (iii) SvpA is PrfA-independent and controlled by a MecA-dependent regulatory network.
SvpA, a novel surface virulence-associated protein required for intracellular survival of Listeria monocytogenes.
35087728
Highly active antiretroviral therapy (HAART) has radically changed the course of HIV disease, producing substantial reductions in both HIV-related morbidity and mortality. However, the complexity of the typical daily HAART regimen is substantial, and high levels of adherence are essential for complete and long-term viral suppression and the avoidance of drug resistance. The complexity of HAART has made the assessment of medication adherence of paramount importance. Even though various methods are in use, each measures only a subset of adherence behaviors, and each measure has limited predictive validity. Given the individual and public health concerns associated with adherence to HAART, there is a need for the continued development and validation of measures of medication adherence.
Measuring adherence to highly active antiretroviral therapy: implications for research and practice.
35100235
Mark-recapture data collected using mist nets over a 10-yr period in Trinidad were used to estimate adult survival rates for 17 species of forest passerines. Trinidadian survival rates (mean 65%, range 45%-85%) were significantly higher than published estimates for European (mean survival 52%, range 32%-71%) and North American (mean survival 53%, range 29%-63%) passerines of similar body size (equivalent to 45% higher mean life expectancy in Trinidad). These findings were confirmed after controlling for phylogeny using a method of independent contrasts. Transient and/or young birds were an important feature of the Trinidad data, and studies that fail to allow for the presence of such birds risk underestimating adult survival. This study lends support to the hypothesis that avian survival rates are higher in the humid tropics, although the magnitude of the difference may be smaller than previously suggested.
Survival rates of tropical and temperate passerines: a Trinidadian perspective.
35149431
Two synthetic peripheral nerve myelin P0 protein peptides, an immunodominant (amino acids 180-199) and a cryptic (amino acids 56-71) one, induced an acute or chronic course of experimental autoimmune neuritis (EAN) in Lewis rats, when given at low dose (50-100 microg/rat) or high dose (250 microg/rat), respectively. Corresponding to the different clinical course, pathological changes and immune responses were found: (1) Onset of clinical signs of P0 peptide 56-71 (P0 56-71) induced EAN was 1-3 days later than in P0 peptide 180-199 (P0 180-199) induced EAN at all immunizing doses, whereas the peak of the disease occurred at a similar time point post immunization (p.i.), i.e. at days 14-16 p.i. in P0 56-71 induced EAN and at day 16 p.i. in P0 180-199 induced EAN. (2) Intramolecular epitope spreading as assessed by delayed type hypersensitivity response occurred in P0 56-71 induced EAN at both low and high antigen doses and in P0 180-199 induced EAN at high antigen dose (250 microg/rat) only. (3) P0 180-199 stimulated higher levels of interferon-gamma production in P0 180-199 induced EAN than in P0 56-71 induced EAN and vice versa. (4) Histopathologic evaluation revealed a similar grade of mononuclear cell infiltration in the sciatic nerves of both types of EAN, but more severe demyelination was found in P0 180-199 induced EAN compared to P0 56-71 induced EAN. The results support the hypothesis that high dose autoantigen immunization induces extensive determinant spreading and chronic course of autoimmune diseases.
P0 glycoprotein peptides 56–71 and 180–199 dose-dependently induce acute and chronic experimental autoimmune neuritis in Lewis rats associated with epitope spreading
35186640
There is considerable variation in opinion about the importance of drug interactions between the combined oral contraceptive pill (COCP) and broad-spectrum antibiotics. Clinical practice varies widely, especially between doctors in Europe and those in the US. Rifampicin and griseofulvin induce hepatic enzymes and do appear to have a genuine interaction with the COCP, leading to reduced efficacy. The situation with the broad-spectrum antibiotics is less clear. There are relatively few prospective studies of the pharmacokinetics of concurrent COCP and antibiotic use and few, if any, demonstrate a convincing basis for any reduced contraceptive efficacy. There is evidence, however, that variable contraceptive steroid handling could make some women, at some times, more susceptible to COCP failure. Given the serious consequences of unwanted pregnancy, the cautious approach of using additional or alternative contraception during short courses of broad-spectrum antibiotics and the initial weeks of long-term antibiotic administration may be justified to safeguard the few unidentifiable women who may be at risk. Conflicting opinion and advice is potentially confusing to both professionals and patients, and instructions for additional precautions during and after concurrent COCP and antibiotic use are complicated. Many women are ignorant of, or confused about, the circumstances that can cause OC to fail. Health professionals who prescribe the COCP must continue to strive to educate women about the mode of action and about the times when there is the greatest danger of failure. Professionals who feel that concurrent antibiotic use represents a real threat to contraceptive efficacy of the COCP should be prepared to present the advice for additional contraceptive precautions in a simple and consistent way, backed up with written information and reinforced at regular intervals.
Interaction between broad-spectrum antibiotics and the combined oral contraceptive pill. A literature review.
35231675
CLIP-170 is a "cytoplasmic linker protein" implicated in endosome-microtubule interactions and in control of microtubule dynamics. CLIP-170 localizes dynamically to growing microtubule plus ends, colocalizing with the dynein activator dynactin and the APC-binding protein EB1. This shared "plus-end tracking" behavior suggests that CLIP-170 might interact with dynactin and/or EB1. We have used site-specific mutagenesis of CLIP-170 and a transfection/colocalization assay to address this question in mammalian tissue culture cells. Our results indicate that CLIP-170 interacts, directly or indirectly, with both dynactin and EB1. We find that the CLIP-170/dynactin interaction is mediated by the second metal binding motif of the CLIP-170 tail. In contrast, the CLIP-170/EB1 interaction requires neither metal binding motif. In addition, our experiments suggest that the CLIP-170/dynactin interaction occurs via the shoulder/sidearm subcomplex of dynactin and can occur in the cytosol (i.e., it does not require microtubule binding). These results have implications for the targeting of both dynactin and EB1 to microtubule plus ends. Our data suggest that the CLIP-170/dynactin interaction can target dynactin complex to microtubule plus ends, although dynactin likely also targets MT plus ends directly via the microtubule binding motif of the p150(Glued) subunit. We find that CLIP-170 mutants alter p150(Glued) localization without affecting EB1, indicating that EB1 can target microtubule plus ends independently of dynactin.
CLIP-170 interacts with dynactin complex and the APC-binding protein EB1 by different mechanisms.
35256900
The mechanism of B cell–antigen encounter in lymphoid tissues is incompletely understood. It is also unclear how immune complexes are transported to follicular dendritic cells. Here, using real-time two-photon microscopy we noted rapid delivery of immune complexes through the lymph to macrophages in the lymph node subcapsular sinus. B cells captured immune complexes by a complement receptor–dependent mechanism from macrophage processes that penetrated the follicle and transported the complexes to follicular dendritic cells. Furthermore, cognate B cells captured antigen-containing immune complexes from macrophage processes and migrated to the T zone. Our findings identify macrophages lining the subcapsular sinus as an important site of B cell encounter with immune complexes and show that intrafollicular B cell migration facilitates the transport of immune complexes as well as encounters with cognate antigen.
Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells
35271381
Aerobic exercise training induces an increase in coronary blood flow capacity that is associated with altered control of coronary vascular resistance and, therefore, coronary blood flow. The relative importance of metabolic, myogenic, endothelium-mediated, and neurohumoral control systems varies throughout the coronary arterial tree, and these control systems contribute in parallel to regulating coronary vascular resistance to differing degrees at each level in the coronary arterial tree. In addition to this nonuniformity of the relative importance of vascular control systems in the coronary arterial tree, it appears that exercise training-induced adaptations are also distributed spatially, in a nonuniform manner throughout the coronary tree. As a result, it is necessary to examine training-induced adaptations throughout the coronary arterial tree. Adaptations in endothelium-mediated control play a role in training-induced changes in control of coronary vascular resistance, and there is evidence that the effects of training may be different in large coronary arteries than in the microcirculation. Also, there is evidence that the mode, frequency, and intensity of exercise training bouts and duration of training may influence the adaptive changes in endothelial function. Exercise training has also been shown to induce changes in responses of coronary vascular smooth muscle to vasoactive agents and alterations in the cellular-molecular control of intracellular Ca2+ in coronary vascular smooth muscle of conduit coronary arteries and to enhance myogenic reactivity of coronary resistance arteries. Exercise training also appears to have different effects on vascular smooth muscle in large coronary arteries than in the microcirculation. For example, adenosine sensitivity is increased in conduit coronary arteries and large resistance arteries after training but is not altered in small coronary resistance arteries of trained animals. Although much remains to be studied, evidence clearly indicates that chronic exercise alters the phenotype of coronary endothelial and vascular smooth muscle cells and that plasticity of these cells plays a role in adaptation of the cardiovascular system in exercise training.
Exercise training-induced adaptations in the coronary circulation.
35301079
BACKGROUND In uveal melanoma (UM) with metastatic disease limited to the liver, the effect of an intrahepatic treatment on survival is unknown. We investigated prospectively the efficacy and toxicity of hepatic intra-arterial (HIA) versus systemic (IV) fotemustine in patients with liver metastases from UM. PATIENTS AND METHODS Patients were randomly assigned to receive either IV or HIA fotemustine at 100 mg/m(2) on days 1, 8, 15 (and 22 in HIA arm only) as induction, and after a 5-week rest period every 3 weeks as maintenance. Primary end point was overall survival (OS). Response rate (RR), progression-free survival (PFS) and safety were secondary end points. RESULTS Accrual was stopped after randomization of 171 patients based on the results of a futility OS analysis. A total of 155 patients died and 16 were still alive [median follow-up 1.6 years (range 0.25-6 years)]. HIA did not improve OS (median 14.6 months) when compared with the IV arm (median 13.8 months), hazard ratio (HR) 1.09; 95% confidence interval (CI) 0.79-1.50, log-rank P = 0.59. However, there was a significant benefit on PFS for HIA compared with IV with a median of 4.5 versus 3.5 months, respectively (HR 0.62; 95% CI 0.45-0.84, log-rank P = 0.002). The 1-year PFS rate was 24% in the HIA arm versus 8% in the IV arm. An improved RR was seen in the HIA (10.5%) compared with IV treatment (2.4%). In the IV arm, the most frequent grade ≥3 toxicity was thrombocytopenia (42.1%) and neutropenia (62.6%), compared with 21.2% and 28.7% in the HIA arm. The main grade ≥3 toxicity related to HIA was catheter complications (12%) and liver toxicity (4.5%) apart from two toxic deaths. CONCLUSION HIA treatment with fotemustine did not translate into an improved OS compared with IV treatment, despite better RR and PFS. Intrahepatic treatment should still be considered as experimental. EUDRACT NUMBER AND CLINICALTRIALSGOV IDENTIFIER 2004-002245-12 and NCT00110123.
Hepatic intra-arterial versus intravenous fotemustine in patients with liver metastases from uveal melanoma (EORTC 18021): a multicentric randomized trial.
35314705
BACKGROUND Cerebellar glioblastoma multiforme (cGBM) is rare, and although there is a general belief that these tumors have a worse prognosis than supratentorial GBM (sGBM), few studies have been published to support this belief. OBJECTIVE To investigate the effect of cerebellar location on survival through a case-control design comparing overall survival time of cGBM and sGBM patients. METHODS The Surveillance, Epidemiology, and End Results (SEER) registry was used to identify 132 patients with cGBM (1973-2008). Each cGBM patient was matched with an sGBM patient from among 20,848 sGBM patients on the basis of age, extent of resection, decade of diagnosis, and radiation therapy using propensity score matching. RESULTS Within the cGBM, 37% were older than 65 years of age, 62% were men, and 87% were white. Most patients underwent surgery and radiation (74%), whereas only 26% underwent surgical resection only. The median survival time for the cGBM and sGBM matched cohort was 8 months; however, the survival distributions differed (log-rank P = .04). Survival time for cGBM vs sGBM at 2 years was 21.5% vs 8.0%, and 12.7% vs 5.3% at 3 years. Multivariate analysis of survival among cGBM patients showed that younger age (P < .0001) and having radiation therapy (P < .0001) were significantly associated with reduced hazard of mortality. Among all patients, multivariate analysis showed that tumor location (P = .03), age (P < .0001), tumor size (P = .009), radiation (P < .0001), and resection (P < .0001) were associated with survival time in the unmatched cohort. CONCLUSION Median survival time for cGBM and sGBM patients was 8 months, but cGBM patients had a survival time advantage as the study progressed. These findings suggest that cGBM patients should be treated as aggressively as sGBM patients with surgical resection and radiation therapy.
Comparison of survival between cerebellar and supratentorial glioblastoma patients: surveillance, epidemiology, and end results (SEER) analysis.
35321950
During a certain period of the course of infection in white mice inoculated intraperitoneally with the pure culture of a proteolysing strain of Candida albicans, Staphylococcus aureus and C. albicans both, were isolated simultaneously from the peritoneal abscesses, especially those adhering to the stomach, duodenum, pancreas and the upper part of small intestine. This concommitant occurrence of the two pathogens was further corroborated by histopathological examination which revealed large number of staphylococci present in the close neighbourhood of Candida cells, usually in the center of the granulomata caused by the fungus. In view of the facts that the proteolytic end-products of C. albicans can offer a good substratum for the growth of S. aureus and the latter may be isolated from the intestinal tract of apparently healthy mice, possibly as a constituent of the transient microflora, the co-existence of these two important aetiologic agents of endogenous infections as encountered during this study appears to be of great clinical interest. Furthermore, these observations also demonstrate the importance of controlling the bacterial flora of mice for pure mycological studies.
Staphylococcus aureus and Candida albicans infection (animal experiments).
35329820
Emerging evidences have shown that common genetic polymorphisms in microRNAs may be associated with the development of hepatocellular carcinoma (HCC); but individually published studies and previous meta-analyses revealed inconclusive results. The aims of this review and meta-analysis are to assess whether common single-nucleotide polymorphisms (SNPs) in the genes encoding the microRNAs are associated with susceptibility to HCC development and clinicopathologic characteristics of hepatitis B virus (HBV) related HCC. A computerized search was performed in PubMed, Embase, Web of Science and China BioMedicine (CBM) databases to identify relevant articles published before January 1st 2013. Ten case-control studies were assessed with a total of 3437 cases and 3437 healthy controls. Three common functional SNPs in miRNA-encoding genes were found, including miR-146a G>C (rs2910164), miR-196a-2 C>T (rs11614913) and miR-499 T>C (rs3746444). This meta-analysis revealed that the miR-146a C variant was associated with a decrease in HCC risk, especially among Asian and male populations; while the miR-196a-2 T variant was associated with susceptibility to HCC among Caucasian populations. However, we failed to find any significant correlations between the miR-499 C polymorphism and HCC risks. When further stratification on HBV status was conducted, a similar trend of association between the three SNPs and the HBV-related HCC risks was observed, but these results were not statistically significant due to small sample sizes. The current meta-analysis demonstrates that SNPs contained in the genes encoding miR-146a and miR-196a-2 may play a major role in genetic susceptibility to HCC.
Three common functional polymorphisms in microRNA encoding genes in the susceptibility to hepatocellular carcinoma: a systematic review and meta-analysis.
35345807
Sirtuins are an evolutionarily conserved family of NAD(+)-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD(+) concentration through the combined action of NAD(+) biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD(+) precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD(+) salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD(+) concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD(+). The INAM-induced increase in NAD(+) was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD(+) salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD(+). We also provide evidence suggesting that INAM influences the expression of multiple NAD(+) biosynthesis and salvage pathways to promote homeostasis during stationary phase.
Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration.
35395662
The virally encoded chemokine receptors US28 from human cytomegalovirus and ORF74 from human herpesvirus 8 are both constitutively active. We show that both receptors constitutively activate the transcription factors nuclear factor of activated T cells (NFAT) and cAMP response element binding protein (CREB) and that both pathways are modulated by their respective endogenous receptor ligands. By addition of specific pathway modulators against the G protein subunit Galphai, phospholipase C, protein kinase C, calcineurin, p38 MAP kinase, and MEK1, we find that the constitutive and ligand-dependent inductions are mediated by multiple yet similar pathways in both receptors. The NFAT and CREB transcription factors and their upstream activators are known inducers of host and virally encoded genes. We propose that the activity of these virally encoded chemokine receptors coordinates host and potentially viral gene expression similarly. As ORF74 is a known inducer of neoplasia, these findings may have important implications for cytomegalovirus-associated pathogenicity.
Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74.
35443524
Cancer stem cells (CSCs) are a subpopulation of tumor cells that selectively possess tumor initiation and self-renewal capacity and the ability to give rise to bulk populations of nontumorigenic cancer cell progeny through differentiation. As we discuss here, they have been prospectively identified in several human malignancies, and their relative abundance in clinical cancer specimens has been correlated with malignant disease progression in human patients. Furthermore, recent findings suggest that clinical cancer progression driven by CSCs may contribute to the failure of existing therapies to consistently eradicate malignant tumors. Therefore, CSC-directed therapeutic approaches might represent translationally relevant strategies to improve clinical cancer therapy, in particular for those malignancies that are currently refractory to conventional anticancer agents directed predominantly at tumor bulk populations.
The therapeutic promise of the cancer stem cell concept.
35448676
3'-Ends of almost all eukaryotic mRNAs are generated by endonucleolytic cleavage and addition of a poly(A) tail. In mammalian cells, the reaction depends on the sequence AAUAAA upstream of the cleavage site, a degenerate GU-rich sequence element downstream of the cleavage site and stimulatory sequences upstream of AAUAAA. Six factors have been identified that carry out the two reactions. With a single exception, they have been purified to homogeneity and cDNAs for 11 subunits have been cloned. Some of the cooperative RNA-protein and protein-protein interactions within the processing complex have been analyzed, but many details, including the identity of the endonuclease, remain unknown. Several examples of regulated polyadenylation are being analyzed at the molecular level. In the yeast Saccharomyces cerevisiae, sequences directing cleavage and polyadenylation are more degenerate than in metazoans, and a downstream element has not been identified. The list of processing factors may be complete now with approximately a dozen polypeptides, but their functions in the reaction are largely unknown. 3'-Processing is known to be coupled to transcription. This connection is thought to involve interactions of processing factors with the mRNA cap as well as with RNA polymerase II.
3'-End processing of pre-mRNA in eukaryotes.
35467590
We have identified a novel transcription unit of 105 kilobases (called the Golli-mbp gene) that encompasses the mouse myelin basic protein (MBP) gene. Three unique exons within this gene are alternatively spliced into MBP exons and introns to produce a family of MBP gene-related mRNAs that are under individual developmental regulation. These mRNAs are temporally expressed within cells of the oligodendrocyte lineage at progressive stages of differentiation. Thus, the MBP gene is a part of a more complex gene structure, the products of which may play a role in oligodendrocyte differentiation prior to myelination. One Golli-mbp mRNA that encodes a protein antigenically related to MBP is also expressed in the spleen and other non-neural tissues.
Structure and developmental regulation of Golli-mbp, a 105-kilobase gene that encompasses the myelin basic protein gene and is expressed in cells in the oligodendrocyte lineage in the brain.
35495268
BACKGROUND Weight loss is recommended for overweight or obese patients with type 2 diabetes on the basis of short-term studies, but long-term effects on cardiovascular disease remain unknown. We examined whether an intensive lifestyle intervention for weight loss would decrease cardiovascular morbidity and mortality among such patients. METHODS In 16 study centers in the United States, we randomly assigned 5145 overweight or obese patients with type 2 diabetes to participate in an intensive lifestyle intervention that promoted weight loss through decreased caloric intake and increased physical activity (intervention group) or to receive diabetes support and education (control group). The primary outcome was a composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for angina during a maximum follow-up of 13.5 years. RESULTS The trial was stopped early on the basis of a futility analysis when the median follow-up was 9.6 years. Weight loss was greater in the intervention group than in the control group throughout the study (8.6% vs. 0.7% at 1 year; 6.0% vs. 3.5% at study end). The intensive lifestyle intervention also produced greater reductions in glycated hemoglobin and greater initial improvements in fitness and all cardiovascular risk factors, except for low-density-lipoprotein cholesterol levels. The primary outcome occurred in 403 patients in the intervention group and in 418 in the control group (1.83 and 1.92 events per 100 person-years, respectively; hazard ratio in the intervention group, 0.95; 95% confidence interval, 0.83 to 1.09; P=0.51). CONCLUSIONS An intensive lifestyle intervention focusing on weight loss did not reduce the rate of cardiovascular events in overweight or obese adults with type 2 diabetes. (Funded by the National Institutes of Health and others; Look AHEAD ClinicalTrials.gov number, NCT00017953.).
Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes.
35520219
Unilateral injection of kainic acid (KA) into the dorsal hippocampus of adult mice induces spontaneous recurrent partial seizures and replicates histopathological changes observed in human mesial temporal lobe epilepsy (MTLE) (Bouilleret V et al., Neuroscience 1999; 89:717-729). Alterations in pre- and postsynaptic components of GABAergic neurotransmission were investigated immunohistochemically at different time points (1-120 days) in this mouse model of MTLE. Markers of GABAergic interneurons (parvalbumin, calbindin-D28k, and calretinin), the type-1 GABA transporter (GAT1), and major GABA(A)-receptor subunits expressed in the hippocampal formation were analyzed. Acutely, KA injection produced a profound loss of hilar cells but only limited damage to CA1 and CA3 pyramidal cells. In addition, parvalbumin and calbindin-D28k staining of interneurons disappeared irreversibly in CA1 and dentate gyrus (DG), whereas calretinin staining was spared. The prominent GABA(A)-receptor alpha1 subunit staining of interneurons also disappeared after KA treatment, suggesting acute degeneration of these cells. Likewise, GAT1 immunoreactivity revealed degenerating terminals at 24 h post-KA in CA1 and DC and subsided almost completely thereafter. Loss of CA1 and, to a lesser extent, CA3 neurons became evident at 7-15 days post-KA. It was more accentuated after 1 month, accompanied by a corresponding reduction of GABA(A)-receptor staining. In contrast, DC granule cells were markedly enlarged and dispersed in the molecular layer and exhibited a prominent increase in GABA(A)-receptor subunit staining. After 4 months, the dorsal CA1 area was lost almost entirely, CA3 was reduced, and the DG represented most of the remaining dorsal hippocampal formation. No significant morphological alterations were detected contralaterally. These results suggest that loss of hilar cells and GABAergic neurons contributes to epileptogenesis in this model of MTLE. In contrast, long-term degeneration of pyramidal cells and granule cell dispersion may reflect distinct responses to recurrent seizures. Finally, GABA(A)-receptor upregulation in the DG may represent a compensatory response persisting for several months in epileptic mice.
Early loss of interneurons and delayed subunit-specific changes in GABA(A)-receptor expression in a mouse model of mesial temporal lobe epilepsy.
35521287
The cardiorespiratory control system undergoes functional maturation after birth. Until this process is completed, the cardiorespiratory system is unstable, placing infants at risk for cardiorespiratory disturbances, especially during sleep. The profound influence of states of alertness on respiratory and cardiac control has been the focus of intense scrutiny during the last decade. The effects of rapid-eye movement (REM) sleep on various mechanisms involved in cardiorespiratory control are of particular significance during the postnatal period since newborns spend much of their time in this sleep state. In fullterm newborns, REM sleep occupies more than 50% of total sleep time, and this percentage is even greater in preterm newborns. From term to six months of age, the proportion of REM sleep decreases. Since respiratory and cardiac disturbances are known to occur selectively during REM sleep, the predominance of REM sleep may be a risk factor for abnormal sleep-related events during early infancy. Awareness of these developmental changes in sleep patterns is important for clinicians dealing with problems such as apparent life-threatening events (ALTE), sudden infant death syndrome (SIDS), and/or cardiorespiratory responses to respiratory disorders. Our current understanding of respiratory and cardiac control rests mainly on studies conducted during the first months of life. There is a paucity of data on late infancy and early childhood. The present paper will review available data on how sleep affects 1) ventilatory mechanics, in particular of the upper airways and the chest wall; ventilation and apnea; gas exchange; chemoreceptor function; and arousal responses; 2) changes in heart rate and heart rate variability, and the occurrence and mechanisms of bradycardia.
Cardiorespiratory adaptation during sleep in infants and children.
35531883
Nearly all members of the inwardly rectifying potassium (Kir) channel family share a cytoplasmic domain structure that serves as an unusual AP-1 clathrin adaptor-dependent Golgi export signal in one Kir channel, Kir2.1 (KCNJ2), raising the question whether Kir channels share a common Golgi export mechanism. Here we explore this idea, focusing on two structurally and functionally divergent Kir family members, Kir2.3 (KCNJ4) and Kir4.1/5.1 (KCNJ10/16), which have ∼50% amino identity. We found that Golgi export of both channels is blocked upon siRNA-mediated knockdown of the AP-1 γ subunit, as predicted for the common AP-1-dependent trafficking process. A comprehensive mutagenic analysis, guided by homology mapping in atomic resolution models of Kir2.1, Kir2.3, and Kir4.1/5.1, identified a common structure that serves as a recognition site for AP-1 binding and governs Golgi export. Larger than realized from previous studies with Kir2.1, the signal is created by a patch of residues distributed at the confluence of cytoplasmic N and C termini. The signal involves a stretch of hydrophobic residues from the C-terminal region that form a hydrophobic cleft, an adjacent cluster of basic residues within the N terminus, and a potential network of salt bridges that join the N- and C-terminal poles together. Because patch formation and AP-1 binding are dependent on proper folding of the cytoplasmic domains, the signal provides a common quality control mechanism at the Golgi for Kir channels. These findings identify a new proteostatic mechanism that couples protein folding of channels to forward trafficking in the secretory pathway.
A Common Signal Patch Drives AP-1 Protein-dependent Golgi Export of Inwardly Rectifying Potassium Channels.
35534019
Thrombohaemorrhagic complications are major clinical problems in the classical chronic Ph-negative myeloproliferative disorders (CMPDs), polycytaemia vera (PV), essential thrombocythaemia (ET) and idiopathic myelofibrosis (IMF), contributing significantly to morbidity and mortality. Pathophysiologically these disorders are characterized by clonal myeloproliferation, myeloaccumulation and a propensity to develop myelofibrosis and neoangiogenesis in both the bone marrow and spleen. Based upon in vitro and in vivo studies of the effects of statins (antithrombotic, antiproliferative, proapoptotic and antiangiogenic), this review focuses on the translation of these effects into potential clinical benefits of statin therapy in patients with CMPDs.
Statins in the treatment of polycythaemia vera and allied disorders: an antithrombotic and cytoreductive potential?
35543846
Cellular senescence is considered a major tumour-suppressor mechanism in mammals, and many oncogenic insults, such as the activation of the ras proto-oncogene, trigger initiation of the senescence programme. Although it was shown that activation of the senescence programme involves the up-regulation of cell-cycle regulators such as the inhibitors of cyclin-dependent kinases p16INK4A and p21CIP-1, the mechanisms underlying the senescence response remain to be resolved. In the case of stress-induced premature senescence, reactive oxygen species are considered important intermediates contributing to the phenotype. Moreover, distinct alterations of the cellular carbohydrate metabolism are known to contribute to oncogenic transformation, as is best documented for the phenomenon of aerobic glycolysis. These findings suggest that metabolic alterations are involved in tumourigenesis and tumour suppression; however, little is known about the metabolic pathways that contribute to these processes. Using the human fibroblast model of in vitro senescence, we analysed age-dependent changes in the cellular carbohydrate metabolism. Here we show that senescent fibroblasts enter into a metabolic imbalance, associated with a strong reduction in the levels of ribonucleotide triphosphates, including ATP, which are required for nucleotide biosynthesis and hence proliferation. ATP depletion in senescent fibroblasts is due to dysregulation of glycolytic enzymes, and finally leads to a drastic increase in cellular AMP, which is shown here to induce premature senescence. These results suggest that metabolic regulation plays an important role during cellular senescence and hence tumour suppression.
Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence.
35612665
Using expression cloning, we have identified an H2-M3-restricted epitope of the intracellular bacterial pathogen Listeria monocytogenes. Picomolar concentrations of an amino-terminal N-formylated hexapeptide, fMIGWII, targeted cells for lysis by CD8+ cytotoxic T cells, while the nonformylated peptide was approximately 100-fold less active. The sequence of the 185 aa protein source of this epitope predicts a transmembrane protein that retains its N terminus and assumes an N(out)-C(in) topology. This membrane orientation offers an explanation for the protection of the epitope from deformylases present in the bacterial cell and suggests an explanation for the ability of phagocytes to present H2-M3-restricted bacterial epitopes via a vacuolar TAP-independent mechanism.
Identification of an H2-M3-restricted Listeria epitope: implications for antigen presentation by M3.
35621259
CONTEXT Cross-sectional epidemiological studies have found that patients with type 2 diabetes mellitus (T2DM) have a higher incidence of certain fragility fractures despite normal or elevated bone mineral density (BMD). OBJECTIVE In this study, high-resolution peripheral quantitative computed tomography was applied to characterize cortical and trabecular microarchitecture and biomechanics in the peripheral skeleton of female patients with T2DM. DESIGN AND SETTING A cross-sectional study was conducted in patients with T2DM recruited from a diabetic outpatient clinic. PARTICIPANTS Elderly female patients (age, 62.9 ± 7.7 yr) with a history of T2DM (n = 19) and age- and height-matched controls (n = 19) were recruited. OUTCOME MEASURES Subjects were imaged using high-resolution peripheral quantitative computed tomography at the distal radius and tibia. Quantitative measures of volumetric (BMD), cross-sectional geometry, trabecular and cortical microarchitecture were calculated. Additionally, compressive mechanical properties were determined by micro-finite element analysis. RESULTS Compared to the controls, the T2DM cohort had 10% higher trabecular volumetric BMD (P < 0.05) adjacent to the cortex and higher trabecular thickness in the tibia (13.8%; P < 0.05). Cortical porosity differences alone were consistent with impaired bone strength and were significant in the radius (>+50%; P < 0.05), whereas pore volume approached significance in the tibia (+118%; P = 0.1). CONCLUSION The results of this pilot investigation provide a potential explanation for the inability of standard BMD measures to explain the elevated fracture incidence in patients with T2DM. The findings suggest that T2DM may be associated with impaired resistance to bending loads due to inefficient redistribution of bone mass, characterized by loss of intracortical bone offset by an elevation in trabecular bone density.
High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus.
35651106
Efficient T cell activation requires both TCR signals and costimulatory signals. CD28 is one of the molecules that provide costimulatory signals for T cells. We used mice deficient in CD28 expression (CD28-/- mice) to analyze the role of CD28 in the immune response against the intracellular bacterium Salmonella typhimurium, the causative agent of murine typhoid fever. CD28-/- mice were highly susceptible to infection with wild-type S. typhimurium and even failed to control infection with attenuated aroA- S. typhimurium. More detailed analysis revealed that CD28-/- animals did not mount a T-dependent Ab response and were highly impaired in the production of IFN-gamma. Thus, CD28 cosignaling is crucial for immunity against S. typhimurium. To our knowledge, this is the first report describing an essential role for CD28 in protective immunity against an intracellular microbial pathogen.
Critical role of CD28 in protective immunity against Salmonella typhimurium.
35660758
Phorbol 12-myristate 13-acetate (PMA) uncaps a small number of the fast-growing (barbed) ends of actin filaments, thereby eliciting slow actin assembly and extension of filopodia in human blood platelets. These reactions, which also occur in response to immunologic perturbation of the integrin glycoprotein (GP) IIb-IIIa, are sensitive to the phosphoinositide 3-kinase inhibitor wortmannin. Platelets deficient in GPIIb-IIIa integrins or with GPIIb-IIIa function inhibited by calcium chelation or the peptide RGDS have diminished PMA responsiveness. The effects of PMA contrast with thrombin receptor stimulation by >/=5 microM thrombin receptor-activating peptide (TRAP), which causes rapid and massive wortmannin-insensitive actin assembly and lamellar and filopodial extension. However, we show here that wortmannin can inhibit filopod formation if the thrombin receptor is ligated using suboptimal doses (<1 microM) of TRAP. Phosphatidylinositol 3,4-bisphosphate inhibits actin filament severing and capping by human gelsolin in vitro. The findings implicate D3 polyphosphoinositides and integrin signaling in PMA-mediated platelet stimulation and implicate D3 containing phosphoinositides generated in response to protein kinase C activation and GPIIb-IIIa signaling as late-acting intermediates leading to filopodial actin assembly.
D3 phosphoinositides and outside-in integrin signaling by glycoprotein IIb-IIIa mediate platelet actin assembly and filopodial extension induced by phorbol 12-myristate 13-acetate.
35684881
Tumor-derived p53 mutants can transcriptionally activate a number of promoters of genes involved in cellular proliferation. For this transactivation, mutant p53 does not use the wild-type p53 DNA-binding site, suggesting a mechanism of transactivation that is independent of direct DNA binding. Here we describe our analysis of the domain requirements for mutant p53 to transactivate promoters of the human epidermal growth factor receptor (EGFR), human multiple drug resistance 1 (MDR-1) and human proliferating cell nuclear antigen (PCNA) genes. We also report the identification of a structural domain required for the `gain of function' property of mutant p53-281G. `Gain of function' is measured as the tumorigenicity (in nude mice) of 10(3) murine cells expressing mutant p53 constitutively. We have generated internal deletion mutants of p53-281G deleting conserved domains I, II, III, IV and V, individually. We have also generated one deletion mutant eliminating amino acids 100 through 300 that removes four of the five conserved domains (II–V); another mutant, p53-281G del 393-327, deletes the oligomerization and nonsequence-specific nucleic acid-binding domains of p53. For the EGFR and MDR-1 promoters, all these mutants have significantly lower transactivation ability than intact p53-281G. These deletion mutants, however, significantly activated the pCNA promoter, suggesting that the mechanism of transactivation of the PCNA promoter is different from that of the EGFR and MDR-1 promoters. When expressed constitutively in 10(3) cells, p53-281G del 393-327 was found to be defective in inducing tumor formation in nude mice although intact p53-281G was very efficient. Thus, our results suggest that structural domains near the C-terminus are needed for `gain of function'.
`Gain of function' phenotype of tumor-derived mutant p53 requires the oligomerization/nonsequence-specific nucleic acid-binding domain
35711485
Banana streak disease is caused by several distinct badnavirus species, one of which is Banana streak Obino l'Ewai virus. Banana streak Obino l'Ewai virus has severely hindered international banana (Musa spp.) breeding programmes, as new hybrids are frequently infected with this virus, curtailing any further exploitation. This infection is thought to arise from viral DNA integrated in the nuclear genome of Musa balbisiana (B genome), one of the wild species contributing to many of the banana cultivars currently grown. In order to determine whether the DNA of other badnavirus species is integrated in the Musa genome, PCR-amplified DNA fragments from Musa acuminata, M. balbisiana and Musa schizocarpa, as well as cultivars 'Obino l'Ewai' and 'Klue Tiparot', were cloned. In total, 103 clones were sequenced and all had similarity to open reading frame III in the badnavirus genome, although there was remarkable variation, with 36 distinct sequences being recognized with less than 85 % nucleotide identity to each other. There was no commonality in the sequences amplified from M. acuminata and M. balbisiana, suggesting that integration occurred following the separation of these species. Analysis of rates of non-synonymous and synonymous substitution suggested that the integrated sequences evolved under a high degree of selective constraint as might be expected for a living badnavirus, and that each distinct sequence resulted from an independent integration event.
Banana contains a diverse array of endogenous badnaviruses.
35714909
OBJECTIVE In 1989 the St. Vincent declaration set a five-year target for approximating outcomes of pregnancies in women with diabetes to those of the background population. We investigated and quantified the risk of adverse pregnancy outcomes in pregnant women with type 1 diabetes (T1DM) to evaluate if the goals of the 1989 St. Vincent Declaration have been obtained concerning foetal and neonatal complications. METHODS Twelve population-based studies published within the last 10 years with in total 14,099 women with T1DM and 4,035,373 women from the background population were identified. The prevalence of four foetal and neonatal complications was compared. RESULTS In women with T1DM versus the background population, congenital malformations occurred in 5.0% (2.2-9.0) (weighted mean and range) versus 2.1% (1.5-2.9), relative risk (RR) = 2.4, perinatal mortality in 2.7% (2.0-6.6) versus 0.72% (0.48-0.9), RR = 3.7, preterm delivery in 25.2% (13.0-41.7) versus 6.0% (4.7-7.1), RR = 4.2 and delivery of large for gestational infants in 54.2% (45.1-62.5) versus 10.0%, RR = 4.5. Early pregnancy HbA1c was positively associated with adverse pregnancy outcomes. CONCLUSION The risk of adverse pregnancy outcomes was two to five times increased in women with T1DM compared with the general population. The goals of the St. Vincent declaration have not been achieved.
Pregnancy in women with type 1 diabetes: have the goals of St. Vincent declaration been met concerning foetal and neonatal complications?
35724562
In adult patients with CKD, hypertension is linked to the development of left ventricular hypertrophy, but whether this association exists in children with CKD has not been determined conclusively. To assess the relationship between BP and left ventricular hypertrophy, we prospectively analyzed data from the Chronic Kidney Disease in Children cohort. In total, 478 subjects were enrolled, and 435, 321, and 142 subjects remained enrolled at years 1, 3, and 5, respectively. Echocardiograms were obtained 1 year after study entry and then every 2 years; BP was measured annually. A linear mixed model was used to assess the effect of BP on left ventricular mass index, which was measured at three different visits, and a mixed logistic model was used to assess left ventricular hypertrophy. These models were part of a joint longitudinal and survival model to adjust for informative dropout. Predictors of left ventricular mass index included systolic BP, anemia, and use of antihypertensive medications other than angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. Predictors of left ventricular hypertrophy included systolic BP, female sex, anemia, and use of other antihypertensive medications. Over 4 years, the adjusted prevalence of left ventricular hypertrophy decreased from 15.3% to 12.6% in a systolic BP model and from 15.1% to 12.6% in a diastolic BP model. These results indicate that a decline in BP may predict a decline in left ventricular hypertrophy in children with CKD and suggest additional factors that warrant additional investigation as predictors of left ventricular hypertrophy in these patients.
BP control and left ventricular hypertrophy regression in children with CKD.
35747505
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a messenger that regulates calcium release from intracellular acidic stores. Although several channels, including two-pore channels (TPC), ryanodine receptor (RYR) and mucolipin (TRP-ML1) have been implicated in NAADP regulation of calcium signaling, the NAADP receptor has not been identified. In this study, the photoaffinity probe, [32P]-5-azido-NAADP ([32P]-5-N3-NAADP), was used to study NAADP binding proteins in extracts from NAADP responsive Jurkat T-lymphocytes. [32P]-5-N3-NAADP photolabeling of Jurkat S100 cytosolic fractions resulted in the labeling of at least ten distinct proteins. Several of these S100 proteins, including a doublet at 22/23 kDa and small protein at 15 kDa displayed selectivity for NAADP as the labeling was protected by inclusion of unlabeled NAADP, whereas the structurally similar NADP required much higher concentrations for protection. Interestingly, the labeling of several S100 proteins (60, 45, 33 and 28 kDa) was stimulated by low concentrations of unlabeled NAADP, but not by NADP. The effect of NAADP on the labeling of the 60 kDa protein was biphasic, peaking at 100 nM with a five-fold increase and displaying no change at 1 µM NAADP. Several proteins were also photolabeled when the P100 membrane fraction from Jurkat cells was examined. Similar to the results with S100, a 22/23 kDa doublet and a 15 kDa protein appeared to be selectively labeled. NAADP did not increase the labeling of any P100 proteins as it did in the S100 fraction. The photolabeled S100 and P100 proteins were successfully resolved by two-dimensional gel electrophoresis. [32P]-5-N3-NAADP photolabeling and two-dimensional electrophoresis should represent a suitable strategy in which to identify and characterize NAADP binding proteins.
Nicotinic Acid Adenine Dinucleotide 2'-Phosphate (NAADP) Binding Proteins in T-Lymphocytes.
35760786
The ARV1-encoded protein mediates sterol transport from the endoplasmic reticulum (ER) to the plasma membrane. Yeast ARV1 mutants accumulate multiple lipids in the ER and are sensitive to pharmacological modulators of both sterol and sphingolipid metabolism. Using fluorescent and electron microscopy, we demonstrate sterol accumulation, subcellular membrane expansion, elevated lipid droplet formation, and vacuolar fragmentation in ARV1 mutants. Motif-based regression analysis of ARV1 deletion transcription profiles indicates activation of Hac1p, an integral component of the unfolded protein response (UPR). Accordingly, we show constitutive splicing of HAC1 transcripts, induction of a UPR reporter, and elevated expression of UPR targets in ARV1 mutants. IRE1, encoding the unfolded protein sensor in the ER lumen, exhibits a lethal genetic interaction with ARV1, indicating a viability requirement for the UPR in cells lacking ARV1. Surprisingly, ARV1 mutants expressing a variant of Ire1p defective in sensing unfolded proteins are viable. Moreover, these strains also exhibit constitutive HAC1 splicing that interacts with DTT-mediated perturbation of protein folding. These data suggest that a component of UPR induction in arv1Δ strains is distinct from protein misfolding. Decreased ARV1 expression in murine macrophages also results in UPR induction, particularly up-regulation of activating transcription factor-4, CHOP (C/EBP homologous protein), and apoptosis. Cholesterol loading or inhibition of cholesterol esterification further elevated CHOP expression in ARV1 knockdown cells. Thus, loss or down-regulation of ARV1 disturbs membrane and lipid homeostasis, resulting in a disruption of ER integrity, one consequence of which is induction of the UPR.
Loss of subcellular lipid transport due to ARV1 deficiency disrupts organelle homeostasis and activates the unfolded protein response.
35764259
Cytokines play a critical role in modulating the innate and adaptive immune systems. Here, we have identified from the human genomic sequence a family of three cytokines, designated interleukin 28A (IL-28A), IL-28B and IL-29, that are distantly related to type I interferons (IFNs) and the IL-10 family. We found that like type I IFNs, IL-28 and IL-29 were induced by viral infection and showed antiviral activity. However, IL-28 and IL-29 interacted with a heterodimeric class II cytokine receptor that consisted of IL-10 receptor β (IL-10Rβ) and an orphan class II receptor chain, designated IL-28Rα. This newly described cytokine family may serve as an alternative to type I IFNs in providing immunity to viral infection.
IL-28, IL-29 and their class II cytokine receptor IL-28R
35766603
PURPOSE To determine the toxicity and the therapeutic efficacy of the combination of the recombinant tumor necrosis factor alpha (rTNF alpha), recombinant interferon gamma (rIFN-gamma), and melphalan, we designed a protocol using isolation limb perfusion (ILP) with hyperthermia for in-transit metastases of melanoma and recurrent sarcoma. The triple combination was chosen because of the reported synergistic antitumor effect of rTNF alpha with IFN-gamma and of rTNF alpha with alkylating agents. PATIENTS AND METHODS Twenty-three patients received a total of 25 ILPs with the triple combination. There were 19 females and four males with either multiple progressive in-transit melanoma metastases of the extremities (stage IIIa or IIIab; 19 patients) or recurrent soft tissue sarcoma (five). The rTNF alpha was injected as a bolus in the arterial line, and total dose ranged between 2 and 4 mg, under hyperthermic conditions (40 degrees C to 40.5 degrees C) for 90 minutes. The rIFN-gamma was given subcutaneously (SC) on days -2 and -1 and in the perfusate, with rTNF alpha at the dose of 0.2 mg. Melphalan (Alkeran; Burroughs Wellcome Co, London, England) was administered in the perfusate at 40 micrograms/mL. RESULTS Toxicity observed during three ILPs in a pilot study with rTNF alpha included only two severe toxicities: one severe hypotension with tachycardia and transient oliguria and one moderate hypotension for 4 hours followed by severe kidney failure with complete recovery on day 29. In all 18 ILPs performed in the triple combination protocol, the patients received continuous infusion dopamine at 3 micrograms/kg/min from the start of ILP and for 72 hours and showed only mild hypotension and transient chills and temperature. Regional toxicity attributable to rTNF alpha was minimal. There have been 11 cases with hematologic toxicity consisting of neutropenia (one grade 4 and one grade 3) and neutropenia with thrombocytopenia (one grade 4 and three grade 2). Twelve patients had been previously treated with melphalan in ILP (11) or with cisplatin (one). The 23 patients are assessable: there have been 21 complete responses (CRs; range, 4 to 29 months; 89%), two partial responses (PRs; range, 2 to 3 months), and no failures. Overall disease-free survival and survival have been 70% and 76%, respectively, at 12 months. In all cases, softening of the nodules was obvious within 3 days after ILP and time to definite response ranged between day 5 and 30. CONCLUSION This preliminary analysis of a phase II study suggests that high-dose rTNF alpha can be administered with acceptable toxicity by ILP with dopamine and hyperhydration. Tumor responses can be evidenced in melanoma and sarcoma. Furthermore, combination of rTNF alpha, rIFN-gamma, and melphalan seems to achieve high efficacy with minimal toxicity, even after failure of prior therapy with melphalan alone.
High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma.
35768199
Methanosphaera stadtmaniae is a non-motile, Gram-positive spherical-shaped organism that obtains energy for growth by using hydrogen to reduce methanol to methane. It does not produce methane from hydrogen and carbon dioxide, formate, acetate or methylamines and cannot grow with hydrogen and carbon monoxide, nitrate, fumarate, sulfate or choline. Its pH optimum is 6.5 to 6.9 and its temperature optimum is 36° to 40° C. It is not inhibited by bile salts, inhibitors of the synthesis of folic acid coenzymes, cephalothin or clindamycin but is inhibited by metronidazole, bacitracin, monensin, lasalocid, or bromoethanesulfonate. It requires acetate, carbon dioxide, isoleucine, ammonium, and thiamin for growth and biotin is stimulatory. It does not contain cytochromes and the mol % G+C of its DNA is 25.8. The composition of its cell wall and 16 S rRNA and its immunological fingerprint are consistent with characterization of the organism as a member of a new genus of the family Methanobacteriaceae. The habitat of the type strain is the human large intestine.
Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen
35777860
Induced pluripotent stem (iPS) cells derived from disease patients are an invaluable resource for biomedical research and may provide a source for replacement therapies. In this study, we have generated iPS cells from Asian patients with chronic degenerative diseases of the nervous system, including spinal muscular atrophy (SMA), Parkinson disease (PD) and amyotrophic lateral sclerosis (ALS) by transduction with four factors (KLF4, SOX2, OCT4 and c-MYC). All of the iPS cells showed pluripotency similar to that of human embryonic stem cells (hESCs) and were able to differentiate into various somatic cell types in vitro and in vivo. Furthermore, the iPS cells also can be committed to differentiate into neural cells, the cell type that is affected in chronic degenerative diseases. Therefore, the patient-specific iPS cells we generated offer a cellular model in which to investigate disease mechanisms, discover and test novel drugs and develop new therapies for chronic neurodegenerative diseases.
Generation of induced pluripotent stem cells from Asian patients with chronic neurodegenerative diseases.
35811036
Embryonic-like stem cell (ELSC), expressing part of surface markers of human embryonic stem cells, may be a better candidate for cell therapy of degenerative muscular disease than mesenchymal stem cell (MSC). We isolated ELSC and MSC from bone marrow, respectively, and compared their differences in the characteristics and the capacity of myogenic differentiation. Results showed that ELSC could be isolated successfully from 3 adult bone marrow samples by using serum-free medium with 10ng/ml basic fibroblast growth factor (bFGF). At the same cell density, MSC could also be isolated from the same samples by using DMEM/F12 medium containing 10% new cattle serum. However, ELSC appeared as small, morphologically slenderer, upregulated expression of SSEA-4 and ultramicroscopically more immature than MSC derived from the same samples. Immunofluorescent staining and RT-PCR analysis showed ELSC weakly expressed Oct-4, Nanog-3 and Sox-2. Moreover, ELSC and MSC could be induced into long, multinucleated fibers expressing myogenin and myosin heavy chain (MHC) in myogenic differentiation medium, but by day 10, proportion of multinucleated fibers positive for MHC was respectively 25.0%+/-6.9% and 13.8%+/-7.6% in ELSC and MSC culture. These data suggest that bone marrow derived ELSC represent an ideal candidate for cell therapy of degenerative muscular disease.
Embryonic-like stem cell derived from adult bone marrow: immature morphology, cell surface markers, ultramicrostructure and differentiation into multinucleated fibers in vitro.
35828148
Apocynin has been reported to require dimerization by myeloperoxidase (MPO) to inhibit leukocyte NADPH oxidase. (-)-Epicatechin, a dietary flavan-3-ol, has been identified as a 'prodrug' of apocynin-like metabolites that inhibit endothelial NADPH oxidase activity and elevate the cellular level of nitric oxide. Since (-)-epicatechin has tentatively been identified as substrate of MPO, we studied the one-electron oxidation of (-)-epicatechin by MPO. By using multi-mixing stopped-flow technique, we demonstrate that (-)-epicatechin is one of the most efficient electron donors for heme peroxidases investigated so far. Second order rate constants for the (-)-epicatechin-mediated conversion of MPO-compound I to compound II and compound II to resting enzyme were estimated to be 1.9 x 10(7) and 4.5 x 10(6) M(-1)s(-1), respectively (pH 7, 25 degrees C). The data indicate that (-)-epicatechin is capable of undergoing fast MPO-mediated one-electron oxidation.
Kinetic evidence for rapid oxidation of (-)-epicatechin by human myeloperoxidase.
35861290
Substitute Teacher Despite the relative ease of genome manipulation in S. cerevisiae, researchers are always looking to learn still more convenient and rapid methods for substituting yeast promoters. Replacing a gene's native promoter with a heterolo-gous promoter of choice allows regulated expression and simplifies the task of discerning functional relevance. Although a host of clever chromosomal insertion strategies have been described over the years, the advent of the S. cerevisiae Genome Deletion Project provides an incredible resource for a further streamlined workflow. The strategy, explained by Liko et al. on p. 728 is appealingly simple. The genome deletion project resulted in a collection of strains in which a single ORF is replaced with a kanamycin resistance module. Although the purpose of the collection is to have a comprehensive resource of essentially all possible knockouts, the authors point out that for almost any given yeast promoter of interest there will be a strain in which the ORF imm...
Using the yeast gene deletion collection to customize gene expression.
35884026
Phosphorylation of AMPA receptors is a major mechanism for the regulation of receptor function and underlies several forms of synaptic plasticity in the CNS. Although serine and threonine phosphorylation of AMPA receptors has been well studied, the potential role of tyrosine phosphorylation of AMPA receptors has not been investigated. Here, we show that the GluR2 subunit of AMPA receptors is tyrosine phosphorylated in vitro and in vivo by Src family tyrosine kinases on tyrosine 876 near its C terminus. In addition, GluR agonist treatment of cultured cortical neurons increased phosphorylation of tyrosine 876. The association with GluR2-interacting molecules GRIP1/2 was decreased by tyrosine phosphorylation of GluR2, whereas PICK1 interaction was not influenced. Moreover, mutation of tyrosine 876 eliminated AMPA- and NMDA-induced internalization of the GluR2 subunit. These data indicate that tyrosine phosphorylation of tyrosine 876 on the GluR2 C terminus by Src family tyrosine kinases is important for the regulation of AMPA receptor function and may be important for synaptic plasticity.
Tyrosine phosphorylation and regulation of the AMPA receptor by SRC family tyrosine kinases.
35962023
Recent studies suggest a close relationship between cell metabolism and apoptosis. We have evaluated changes in lipid metabolism on permeabilized hepatocytes treated with truncated Bid (tBid) in the presence of caspase inhibitors and exogenous cytochrome c. The measurement of β-oxidation flux by labeled palmitate demonstrates that tBid inhibits β-oxidation, thereby resulting in the accumulation of palmitoyl-coenzyme A (CoA) and depletion of acetyl-carnitine and acylcarnitines, which is pathognomonic for inhibition of carnitine palmitoyltransferase-1 (CPT-1). We also show that tBid decreases CPT-1 activity by a mechanism independent of both malonyl-CoA, the key inhibitory molecule of CPT-1, and Bak and/or Bax, but dependent on cardiolipin decrease. Overexpression of Bcl-2, which is able to interact with CPT-1, counteracts the effects exerted by tBid on β-oxidation. The unexpected role of tBid in the regulation of lipid β-oxidation suggests a model in which tBid-induced metabolic decline leads to the accumulation of toxic lipid metabolites such as palmitoyl-CoA, which might become participants in the apoptotic pathway.
tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1
35987381
Hyperactivation of T cells, particularly of CD8(+) T cells, is a hallmark of chronic HIV 1 (HIV-1) infection. Little is known about the antigenic specificities and the mechanisms by which HIV-1 causes activation of CD8(+) T cells during chronic infection. We report that CD8(+) T cells were activated during in vivo HIV-1 replication irrespective of their Ag specificity. Cytokines present during untreated HIV-1 infection, most prominently IL-15, triggered proliferation and expression of activation markers in CD8(+) T cells, but not CD4(+) T cells, in the absence of TCR stimulation. Moreover, LPS or HIV-1-activated dendritic cells (DCs) stimulated CD8(+) T cells in an IL-15-dependent but Ag-independent manner, and IL-15 expression was highly increased in DCs isolated from viremic HIV-1 patients, suggesting that CD8(+) T cells are activated by inflammatory cytokines in untreated HIV-1 patients independent of Ag specificity. This finding contrasts with CD4(+) T cells whose in vivo activation seems biased toward specificities for persistent Ags. These observations explain the higher abundance of activated CD8(+) T cells compared with CD4(+) T cells in untreated HIV-1 infection.
CD8+ T cells are activated in an antigen-independent manner in HIV-infected individuals.
35993767
Fibroblasts are rich in the surrounding microenvironment of hepatocellular carcinoma (HCC) because most HCCs occur in fibrotic or cirrhotic livers. However, the role of cancer-associated fibroblasts (CAFs) in HCC metastasis remains obscure. Here, we reported that CAFs promote the migration and invasion of HCC cells in vitro and facilitate the HCC metastasis to the bone, brain and lung in NOD/SCID mice. The RayBio human chemokine antibody array revealed that CAFs secret higher levels of CCL2, CCL5, CCL7 and CXCL16 than peri-tumor fibroblasts. CCL2 and CCL5 increase the migration but not the invasion of HCC cells, while CCL7 and CXCL16 promote both migration and invasion of HCC cells. Moreover, CCL2 and CCL5 stimulate the activation of the hedgehog (Hh) pathway, while CCL7 and CXCL16 enhance the activity of the transforming growth factor-β (TGF-β) pathway in HCC cells. The neutralizing antibodies of chemokines notably attenuate the effect of CAFs on HCC metastasis and compromised the activation of Hh and TGF-β pathways in HCC cells. In summary, CAF-secreted CCL2, CCL5, CCL7 and CXCL16 promote HCC metastasis through the coordinate activation of Hh and TGF-β pathways in HCC cells.
Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways.
36003142
OBJECTIVE Mortality rates in the year following new antipsychotic medication starts for neuropsychiatric symptoms of dementia were compared with rates after starts of other psychiatric medications. METHOD The retrospective, cohort study used national data from the Department of Veterans Affairs (fiscal years 2001-2005) on patients older than 65 years who began outpatient treatment with psychiatric medication following a dementia diagnosis (N=10,615). Twelve-month mortality rates were compared in patients taking antipsychotics and those taking other psychiatric medications. The authors controlled for confounding by using multivariate models and propensity-scoring methods. Secondary analyses included a no-medication group and examination of mortality causes. RESULTS All groups taking antipsychotics had significantly higher mortality rates (22.6%-29.1%) than patients taking nonantipsychotic medications (14.6%). Adjusted mortality risks for atypicals and for combined atypical and conventional antipsychotics were similar to those for conventional antipsychotics. The mortality risk was significantly lower for nonantipsychotic medications than conventional antipsychotics. Except for anticonvulsants, the adjusted risks for all individual classes of nonantipsychotics were significantly lower than the risk for antipsychotics. Mortality risks did not change over 12 months. The proportions of patients taking antipsychotics who died from cerebrovascular, cardiovascular, or infectious causes were not higher than rates for those taking nonantipsychotic psychiatric medications. CONCLUSIONS Antipsychotic medications taken by patients with dementia were associated with higher mortality rates than were most other medications used for neuropsychiatric symptoms. The association between mortality and antipsychotics is not well understood and may be due to a direct medication effect or the pathophysiology underlying neuropsychiatric symptoms that prompt antipsychotic use.
Mortality risk in patients with dementia treated with antipsychotics versus other psychiatric medications.
36025357
This review is the introduction to a special issue concerning, glutathione (GSH), the most abundant low molecular weight thiol compound synthesized in cells. GSH plays critical roles in protecting cells from oxidative damage and the toxicity of xenobiotic electrophiles, and maintaining redox homeostasis. Here, the functions and GSH and the sources of oxidants and electrophiles, the elimination of oxidants by reduction and electrophiles by conjugation with GSH are briefly described. Methods of assessing GSH status in the cells are also described. GSH synthesis and its regulation are addressed along with therapeutic approaches for manipulating GSH content that have been proposed. The purpose here is to provide a brief overview of some of the important aspects of glutathione metabolism as part of this special issue that will provide a more comprehensive review of the state of knowledge regarding this essential molecule.
Glutathione: overview of its protective roles, measurement, and biosynthesis.
36033696
OBJECTIVE The purpose of this project was to educate inpatients with psychotic disorders, many of whom were taking second-generation antipsychotics, about lifestyle changes they can make to combat weight gain. METHOD All inpatients on a Veterans Affairs acute inpatient schizophrenia treatment unit were invited to a 30-minute, didactic presentation given by a medical student and a psychology student under the supervision of the primary investigator. The topics covered included the health benefits of maintaining an ideal body weight by selecting foods according to the USDA Food Pyramid, determining adequate food portions, choosing healthy meals outside the home, and beginning and adhering to an exercise program. Subjects completed a 13-item quiz concerning their knowledge of food and nutrition before and after the presentation to determine its efficacy in teaching patients the material. RESULTS Fifty patients completed both the pre- and post-presentation tests. The mean percentage of correct answers on the pre-test was 85.6%, which rose to 89.3% on the post-test. This difference of 3.7% was statistically significant (t = 2.43, df = 49, p < 0.02), and the mean percent of improvement was 6.1%. CONCLUSIONS This study demonstrates that psychotic individuals are able to benefit from educational presentations about nutrition and a healthy lifestyle. A statistically significant improvement in test scores suggests that subjects gained an understanding of basic concepts related to food choices and fitness.
A wellness class for inpatients with psychotic disorders.
36066871
The centromere is essential for the inheritance of genetic information on eukaryotic chromosomes. Epigenetic regulation of centromere identity has been implicated in genome stability, karyotype evolution, and speciation. However, little is known regarding the manner in which centromere dysfunction affects the chromosomal architectures. Here we show that in the fission yeast Schizosaccharomyces pombe, the conditional deletion of the centromere produces survivors that carry either a neocentromere-acquired chromosome at the subtelomeric region or an acentric chromosome rescued by intertelomere fusion with either of the remaining chromosomes. The ratio of neocentromere formation to telomere fusion is considerably decreased by the inactivation of genes involved in RNA interference-dependent heterochromatin formation. By affecting the modes of chromosomal reorganization, the genomic distribution of heterochromatin may influence the fate of karyotype evolution.
Heterochromatin integrity affects chromosome reorganization after centromere dysfunction.
36082224
Several human hereditary neurological and neurodegenerative disease genes are associated with the expansion of CTG repeats. Here we show that the frequency of genetic expansions or deletions in Escherichia coli depends on the direction of replication. Large expansions occur predominantly when the CTGs are in the leading strand template rather than the lagging strand. However, deletions are more prominant when the CTGs are in the opposite orientation. Most deletions generated products of defined size classes. Strand slippage coupled with non–classical DMA structures may account for these observations and relate to expansion–deletion mechanisms in eukaryotic chromosomes for disease genes.
Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli
36089763
Neutrophils phagocytose and kill microbes upon phagolysosomal fusion. Recently we found that activated neutrophils form extracellular fibres that consist of granule proteins and chromatin. These neutrophil extracellular traps (NETs) degrade virulence factors and kill Gram positive and negative bacteria. Here we show for the first time that Candida albicans, a eukaryotic pathogen, induces NET-formation and is susceptible to NET-mediated killing. C. albicans is the predominant aetiologic agent of fungal infections in humans, particularly in immunocompromised hosts. One major virulence trait of C. albicans is its ability to reversibly switch from singular budding cells to filamentous hyphae. We demonstrate that NETs kill both yeast-form and hyphal cells, and that granule components mediate fungal killing. Taken together our data indicate that neutrophils trap and kill ascomycetous yeasts by forming NETs.
Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms.
36111909
Dendrite shape is considered a defining component of neuronal function. Yet, the mechanisms specifying diverse dendritic morphologies, and the extent to which their function depends on these morphologies, remain unclear. Here, we demonstrate a requirement for the microtubule-severing protein katanin p60-like 1 (Kat-60L1) in regulating the elaborate dendrite morphology and nocifensive functions of Drosophila larval class IV dendritic arborization neurons. Kat-60L1 mutants exhibit diminished responsiveness to noxious mechanical and thermal stimuli. Class IV dendrite branch number and length are also reduced, supporting a correspondence between neuronal function and the full extent of the dendritic arbor. These arborization defects occur particularly in late larval development, and live imaging reveals that Kat-60L1 is required for dynamic, filopodia-like nascent branches to stabilize during this stage. Mutant dendrites exhibit fewer EB1-GFP-labeled microtubules, suggesting that Kat-60L1 increases polymerizing microtubules to establish terminal branch stability and full arbor complexity. Although loss of the related microtubule-severing protein Spastin also reduces the class IV dendrite arbor, microtubule polymerization within dendrites is unaffected. Conversely, Spastin overexpression destroys stable microtubules within these neurons, while Kat-60L1 has no effect. Kat-60L1 thus sculpts the class IV dendritic arbor through microtubule regulatory mechanisms distinct from Spastin. Our data support differential roles of microtubule-severing proteins in regulating neuronal morphology and function, and provide evidence that dendritic arbor development is the product of multiple pathways functioning at distinct developmental stages.
Katanin p60-like1 promotes microtubule growth and terminal dendrite stability in the larval class IV sensory neurons of Drosophila.
36124058
This paper provides an update to the 1998 WHO/UNICEF report on complementary feeding. New research findings are generally consistent with the guidelines in that report, but the adoption of new energy and micronutrient requirements for infants and young children will result in lower recommendations regarding minimum meal frequency and energy density of complementary foods, and will alter the list of "problem nutrients. " Without fortification, the densities of iron, zinc, and vitamin B6 in complementary foods are often inadequate, and the intake of other nutrients may also be low in some populations. Strategies for obtaining the needed amounts of problem nutrients, as well as optimizing breastmilk intake when other foods are added to the diet, are discussed. The impact of complementary feeding interventions on child growth has been variable, which calls attention to the need for more comprehensive programs. A six-step approach to planning, implementing, and evaluating such programs is recommended.
Update on technical issues concerning complementary feeding of young children in developing countries and implications for intervention programs.
36178047
The same 15 male Wistar rats at the ages of 2.5, 6, 10, 14, 18, and 22 months were successively randomly mated with 2.5-month-old females. In a separate experiment, 15 male Wistar rats at the age of 2.5 months and 15 at the age of 23 months were simultaneously randomly mated with 2.5-month-old females. Offspring were evaluated in regard to the mean number per litter, sex ratio, frequency of gross external malformations, growth pattern, and mortality in the first 13 weeks of life and reproductive capacity at 13 weeks of age. They were also evaluated for spontaneous activity and emotionality with an open field test and for learning capacity with an avoidance conditioning test, both carried out between 10 and 13 weeks of age. Only learning capacity of the offspring, expressed in percentage of success for male or female, decreased consistently and significantly as the father's age increased. But females did not seem to be affected in the same way as males. The genetic implications are briefly discussed.
Decrease of learning capacity in offspring with increasing paternal age in the rat.
36180468
Proteolytic processing of the beta-amyloid precursor proteins (APP) is required for release of the beta/A4 protein and its deposition into the amyloid plaques characteristic of aging and Alzheimer's disease. We have examined the involvement of acidic intracellular compartments in APP processing in cultured human cells. The use of acidotropic agents and inhibitors to a specific class of lysosomal protease, coupled with metabolic labeling and immunoprecipitation, revealed that APP is degraded within an acidic compartment to produce at least 12 COOH-terminal fragments. Nine likely contain the entire beta/A4 domain and, therefore, are potentially amyloidogenic. Treatment with E64 or Z-Phe-Ala-CHN2 irreversibly blocked activities of the lysosomal cysteine proteases cathepsins B and L but did not inhibit the lysosomal aspartic protease cathepsin D and did not alter the production of potentially amyloidogenic fragments. Instead, the inhibitors prevented further degradation of the fragments. Thus, large numbers of potentially amyloidogenic fragments of APP are routinely generated in an acidic compartment by noncysteine proteases and then are eliminated within lysosomes by cysteine proteases. Immunoblot and immunohistochemical analyses confirmed that chronic cysteine protease inhibition leads to accumulation of potentially amyloidogenic APP fragments in lysosomes. The results provide further support for the hypothesis that an acidic compartment may be involved in amyloid formation and begin to define the proteolytic events that may be important for amyloidogenesis.
Processing of the beta-amyloid precursor. Multiple proteases generate and degrade potentially amyloidogenic fragments.
36202354
Both to address unmet medical needs and to improve industry competitiveness, regulators in both the United States and the European Union have taken bold steps to translate academic research from the university lab to the patient. A pharmaceutical public-private partnership (PPPP), which is a legally binding contract between a private pharmaceutical enterprise and a public research university (or a private university doing research funded with public funds), can be a significant tool to ensure a more efficient payoff in the highly regulated world of pharmaceuticals. In particular, a properly framed binding contract, coupled with respect for positive social norms, can move the parties away from an inefficient prisoners’ dilemma Nash Equilibrium to the Pareto Optimal Frontier. When coupled with appropriate attention to the difficult task of coordinating the actions of interdependent actors, a PPPP arrangement can enhance the likelihood of successful commercialization by flipping the parties’ incentives as compared with more traditional contracts. Because PPPPs are less common in Europe than in the United States, a key purpose of this article is to provide an annotated roadmap that universities, private firms, and EU policy makers can use to create efficient PPPPs to enhance for-profit innovation in the pharmaceutical industry in Europe. A secondary purpose is to suggest amendments to the U.S. laws governing the patenting of government-funded technology to prevent undue burdens on the sharing of certain upstream medical discoveries and research tools. Our analysis is not only comparative; it also combines, we believe for the first time, a game theory and law and management approach to for-profit PPPPs.
Pharmaceutical Public-Private Partnerships in the United States and Europe: Moving from the Bench to the Bedside
36211049
This paper examines the effect of one form of chronic stress--household crowding--on psychological well-being, as measured by multiple inverse indicators of psychological well-being. We rely on data from a large (n = 2017) random sample of households in Bangkok, Thailand, a context that has a higher level and broader range of crowding than typically found in the United States. Objective household crowding is found to be detrimental to psychological well-being, controlling for a number of background characteristics. The effect of objective crowding is mediated by subjective crowding, which has strong, consistent and direct detrimental effects on well-being. There is no evidence of a gender effect. Extended family households are not uncommon in Bangkok, but the effects of objective and subjective crowding are similar in both two- and three-generation households, as well as in one- and multiple-couple households. The argument that subjective crowding is an effect, rather than a cause, of psychological well-being is examined and rejected. The findings suggest that crowding, as a chronic source of stress, constitutes a major threat to psychological well-being. Although the empirical analyses are based on data from one city, we frame the issue of household crowding in a historical and theoretical context in order to suggest in which cultural settings household crowding is most likely to have detrimental effects on psychological well-being.
Chronic stress and psychological well-being: evidence from Thailand on household crowding.
36212758
CONTEXT Gene expression profiling may be useful in examining differences underlying age- and sex-specific outcomes in non-small cell lung cancer (NSCLC). OBJECTIVE To describe clinically relevant differences in the underlying biology of NSCLC based on patient age and sex. DESIGN, SETTING, AND PATIENTS Retrospective analysis of 787 patients with predominantly early stage NSCLC performed at Duke University, Durham, North Carolina, from July 2008 to June 2009. Lung tumor samples with corresponding microarray and clinical data were used. All patients were divided into subgroups based on age (< 70 vs > or = 70 years old) or sex. Gene expression signatures representing oncogenic pathway activation and tumor biology/microenvironment status were applied to these samples to obtain patterns of activation/deregulation. MAIN OUTCOME MEASURES Patterns of oncogenic and molecular signaling pathway activation that are reproducible and correlate with 5-year recurrence-free patient survival. RESULTS Low- and high-risk patient clusters/cohorts were identified with the longest and shortest 5-year recurrence-free survival, respectively, within the age and sex NSCLC subgroups. These cohorts of NSCLC demonstrate similar patterns of pathway activation. In patients younger than 70 years, high-risk patients, with the shortest recurrence-free survival, demonstrated increased activation of the Src (25% vs 6%; P<.001) and tumor necrosis factor (76% vs 42%; P<.001) pathways compared with low-risk patients. High-risk patients aged 70 years or older demonstrated increased activation of the wound healing (40% vs 24%; P = .02) and invasiveness (64% vs 20%; P<.001) pathways compared with low-risk patients. In women, high-risk patients demonstrated increased activation of the invasiveness (99% vs 2%; P<.001) and STAT3 (72% vs 35%; P<.001) pathways while high-risk men demonstrated increased activation of the STAT3 (87% vs 18%; P<.001), tumor necrosis factor (90% vs 46%; P<.001), EGFR (13% vs 2%; P = .003), and wound healing (50% vs 22%; P<.001) pathways. Multivariate analyses confirmed the independent clinical relevance of the pathway-based subphenotypes in women (hazard ratio [HR], 2.02; 95% confidence interval [CI], 1.34-3.03; P<.001) and patients younger than 70 years (HR, 1.83; 95% CI, 1.24-2.71; P = .003). All observations were reproducible in split sample analyses. CONCLUSIONS Among a cohort of patients with NSCLC, subgroups defined by oncogenic pathway activation profiles were associated with recurrence-free survival. These findings require validation in independent patient data sets.
Age- and sex-specific genomic profiles in non-small cell lung cancer.
36216395
BACKGROUND & AIMS The therapeutic application of regulatory T cells (Tregs) for the treatment of inflammatory diseases is limited by the scarcity of antigen-specific Tregs. A preferred approach to endow effector T cells (Teff) with a desired specificity uses chimeric immune receptors with antibody-type specificity. Accordingly, employing such chimeric immune receptors to redirect Tregs to sites of inflammation may be a useful therapeutic approach to alleviate a broad scope of diseases in which an uncontrolled inflammatory response plays a major role. METHODS To enable application of the approach in clinical setting, which requires the genetic modification of the patient's own Tregs, we describe here a novel protocol that allows the efficient retroviral transduction and 2,4,6-trinitrophenol-specific expansion of murine naturally occurring regulatory T cells (nTregs), with a 2,4,6-trinitrophenol-specific tripartite chimeric receptor. RESULTS Transduced Tregs maintained their Foxp3 level, could undergo repeated expansion upon ex vivo encounter with their cognate antigen in a major histocompatibility complex-independent, costimulation-independent, and contact-dependent manner and specifically suppressed Teff cells. Adoptive transfer of small numbers of the transduced nTregs was associated with antigen-specific, dose-dependent amelioration of trinitrobenzenesulphonic acid colitis. CONCLUSIONS This study demonstrates that nTregs can be efficiently transduced to express functional, antigen-specific chimeric receptors that enable the specific suppression of effector T cells both in vitro and in vivo. This approach may enable future cell-based therapeutic application in inflammatory bowel disease, as well as other inflammatory disorders.
Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor.
36233757
In vivo assembly of the Klebsiella aerogenes urease nickel metallocenter requires the presence of UreD, UreF, and UreG accessory proteins and is further facilitated by UreE. Prior studies had shown that urease apoprotein exists in an uncomplexed form as well as in a series of UreD-urease (I.-S. Park, M.B. Carr, and R.P. Hausinger, Proc. Natl. Acad. Sci. USA 91:3233-3237, 1994) and UreD-UreF-UreG-urease (I.-S. Park and R.P. Hausinger, J. Bacteriol. 177:1947-1951, 1995) apoprotein complexes. This study demonstrates the existence of a distinct series of complexes consisting of UreD, UreF, and urease apoprotein. These novel complexes exhibited activation properties that were distinct from urease and UreD-urease apoprotein complexes. Unlike the previously described species, the UreD-UreF-urease apoprotein complexes were resistant to inactivation by NiCl2. The bicarbonate concentration dependence for UreD-UreF-urease apoenzyme activation was significantly decreased compared with that of the urease and UreD-urease apoproteins. Western blot (immunoblot) analyses with polyclonal anti-urease and anti-UreD antibodies indicated that UreD is masked in the UreD-UreF-urease complexes, presumably by UreF. We propose that the binding of UreF modulates the UreD-urease apoprotein activation properties by excluding nickel ions from binding to the active site until after formation of the carbamylated lysine metallocenter ligand.
Purification and activation properties of UreD-UreF-urease apoprotein complexes.
36242796
The cytokines IL-4, IL-13, and IL-5 are markers for the Th2 subset of effector T cells and are often expressed together. These cytokine genes are organized within 140 kb of orthologous DNA in both mouse and human. Using IL-4-expressing CD4+ T cell clones derived from F1 mice, we identified allelic polymorphisms for each of these cytokines and assessed the parental identity of the cytokine mRNAs. Both monoallelic and biallelic expression occurred for each gene and for an additional gene, IL-3, that lies with GM-CSF over 450 kb telomeric on the same chromosome. When coexpressed in T cell clones, IL-4 was expressed from the same allele as IL-13 or IL-5 in 81% of instances. In contrast, there was only 52% concordance of these three cytokines at the allelic level among clones that expressed IL-3. Independent expression of the cytokine alleles occurs commonly in T cells, but the clustered locus encompassing IL-4, IL-13, and IL-5 is subject to coordinate regulation.
Coordinate regulation of the IL-4, IL-13, and IL-5 cytokine cluster in Th2 clones revealed by allelic expression patterns.
36271512
INTRODUCTION • • CELLULAR AND MOLECULAR REQUIREMENTS FOR T-CELL ACTIVATION . The T-Cell Antigen Receptor Complex . . . .. . . . ..... . . . . . . . . . . . . . . . . ...... . . . T-Cell Activation by Antibodies and Leetins . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Other Cell Surface Structures (Accessory Molecules) Involved in Antigen Recognition and Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimal Requirements/or T-Cell Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CONSEQUE�CES o�, T-CELL AC::IV A TION ; . ExpressIOn of ActIVatIOn Anllgens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanisms of Signal Transmission via the TCR Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Mode of Control of Gene Expression during T-Cell Activation . . . . . . . . . . . . . . . . . . . . . . . . . . The Mechanism of Action of IL-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acquisition of Cytolytic Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . ANALOGIES WITH IMMATURE T CELLS .
T-cell activation.
36288526
OBJECTIVE The effects of hydroxyethyl starch on bleeding after cardiopulmonary bypass were determined. METHODS A meta-analysis was performed of postoperative blood loss in randomized clinical trials of hydroxyethyl starch versus albumin for fluid management in adult cardiopulmonary bypass surgery. Impacts of hydroxyethyl starch molecular weight and molar substitution were assessed. Randomized trials directly comparing different hydroxyethyl starch solutions were also included. RESULTS Eighteen trials with 970 total patients were included. Compared with albumin, hydroxyethyl starch increased postoperative blood loss by 33.3% of a pooled SD (95% confidence interval, 18.2%-48.3%; P < .001). Risk of reoperation for bleeding was more than doubled by hydroxyethyl starch (relative risk, 2.24; 95% confidence interval, 1.14-4.40; P = .020). Hydroxyethyl starch increased transfusion of red blood cells by 28.4% of a pooled SD (95% confidence interval, 12.2%-44.6%; P < .001), of fresh-frozen plasma by 30.6% (95% confidence interval, 8.0%-53.1%; P = .008), and of platelets by 29.8% (95% confidence interval, 3.4%-56.2%; P = .027). None of these effects differed significantly between hydroxyethyl starch 450/0.7 and 200/0.5. Insufficient data were available for hydroxyethyl starch 130/0.4 versus albumin; however, no significant differences were detected in head-to-head comparisons of hydroxyethyl starch 130/0.4 with 200/0.5. Albumin improved hemodynamics. There were no differences in fluid balance, ventilator time, intensive care unit stay, or mortality. CONCLUSIONS Hydroxyethyl starch increased blood loss, reoperation for bleeding, and blood product transfusion after cardiopulmonary bypass. There was no evidence that these risks could be mitigated by lower molecular weight and substitution.
Effect of hydroxyethyl starch on bleeding after cardiopulmonary bypass: a meta-analysis of randomized trials.
36310858
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival rates and frequently carries oncogenic KRAS mutation. However, KRAS has thus far not been a viable therapeutic target. We found that the abundance of YAP mRNA, which encodes Yes-associated protein (YAP), a protein regulated by the Hippo pathway during tissue development and homeostasis, was increased in human PDAC tissue compared with that in normal pancreatic epithelia. In genetically engineered KrasG12D and KrasG12D:Trp53R172H mouse models, pancreas-specific deletion of Yap halted the progression of early neoplastic lesions to PDAC without affecting normal pancreatic development and endocrine function. Although Yap was dispensable for acinar to ductal metaplasia (ADM), an initial step in the progression to PDAC, Yap was critically required for the proliferation of mutant Kras or Kras:Trp53 neoplastic pancreatic ductal cells in culture and for their growth and progression to invasive PDAC in mice. Yap functioned as a critical transcriptional switch downstream of the oncogenic KRAS–mitogen-activated protein kinase (MAPK) pathway, promoting the expression of genes encoding secretory factors that cumulatively sustained neoplastic proliferation, a tumorigenic stromal response in the tumor microenvironment, and PDAC progression in Kras and Kras:Trp53 mutant pancreas tissue. Together, our findings identified Yap as a critical oncogenic KRAS effector and a promising therapeutic target for PDAC and possibly other types of KRAS-mutant cancers.
Downstream of Mutant KRAS, the Transcription Regulator YAP Is Essential for Neoplastic Progression to Pancreatic Ductal Adenocarcinoma
36345185
Rho family proteins are known to regulate actin organization in fibroblasts, but their functions in cells of haematopoietic origin have not been studied in detail. Bac1.2F5 cells are a colony-stimulating factor-1 (CSF-1)-dependent murine macrophage cell line; CSF-1 stimulates their proliferation and motility, and acts as a chemoattractant. CSF-1 rapidly induced actin reorganization in Bac1 cells: it stimulated the formation of filopodia, lamellipodia and membrane ruffles at the plasma membrane, as well as the appearance of fine actin cables within the cell interior. Microinjection of constitutively activated (V12)Rac1 stimulated lamellipodium formation and membrane ruffling. The dominant inhibitory Rac mutant, N17Rac1, inhibited CSF-1-induced lamellipodium formation, and also induced cell rounding. V12Cdc42 induced the formation of long filopodia, while the dominant inhibitory mutant N17Cdc42 prevented CSF-1-induced formation of filopodia but not lamellipodia. V14RhoA stimulated actin cable assembly and cell contraction, while the Rho inhibitor, C3 transferase, induced the loss of actin cables. Bac1 cells had cell-to-substratum adhesion sites containing beta1 integrin, pp125FAK, paxillin, vinculin, and tyrosine phosphorylated proteins. These 'focal complexes' were present in growing and CSF-1-starved cells, but were disassembled in cells injected with N17Cdc42 or N17Rac1. Interestingly, beta1 integrin did not disperse until long after focal phosphotyrosine and vinculin staining had disappeared. We conclude that in Bac1 macrophages Cdc42, Rac and Rho regulate the formation of distinct actin filament-based structures, and that Cdc42 and Rac are also required for the assembly of adhesion sites to the extracellular matrix.
Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages.
36345578
Neutrophils have been implicated as harmful cells in a variety of inappropriate inflammatory conditions where they injure the host, leading to the death of the neutrophils and their subsequent phagocytosis by monocytes and macrophages. Here we show that in a fully repairing sterile thermal hepatic injury, neutrophils also penetrate the injury site and perform the critical tasks of dismantling injured vessels and creating channels for new vascular regrowth. Upon completion of these tasks, they neither die at the injury site nor are phagocytosed. Instead, many of these neutrophils reenter the vasculature and have a preprogrammed journey that entails a sojourn in the lungs to up-regulate CXCR4 (C-X-C motif chemokine receptor 4) before entering the bone marrow, where they undergo apoptosis.
Visualizing the function and fate of neutrophils in sterile injury and repair
36355784
OBJECTIVE To describe the efficacy of the Finnish mass screening program for cervical squamous carcinoma and adenocarcinoma, as reflected by changes of incidence and mortality rate. METHODS Cervical cancer incidence and mortality data were obtained from the Finnish Cancer Registry. Data were available from the year 1953, when the registry was established. The nationwide mass screening program in Finland was started in the mid-1960s. A centralized organization administers this program. Women age 30-60 years are notified for screening every 5 years. RESULTS The mean incidence of cervical carcinoma in the early 1960s was 15.4 per 10(5) woman-years. In 1991, it was only 2.7 per 10(5) woman-years. The mortality rate has decreased in the same proportion since the mass screening program. In the early 1960s, the mortality was 6.6 and in 1991 1.4 per 10(5) woman-years. However, the decrease of the incidence is seen almost exclusively in squamous cell carcinomas. The mortality caused by adenocarcinoma has decreased in screened birth cohorts, but the incidence rate has remained the same. CONCLUSIONS The Finnish mass screening program has been effective and its continuation is of utmost importance. In the future more attention should be given to glandular cell atypias in cervical smears. Thus, it might be possible to decrease the incidence of cervical adenocarcinoma.
The effect of mass screening on incidence and mortality of squamous and adenocarcinoma of cervix uteri.
36357627
Serotonin (5-HT) plays a pivotal role in the regulation of the brain-pituitary-adrenal axis. In particular, 5-HT has been shown to control the activity of hypothalamic CRF neurons and pituitary corticotrope cells through activation of 5-HT1A and (or) 5-HT(2A/2C) receptor subtypes. 5-HT, acting through 5-HT2 receptors, can also trigger the renin-angiotensin system by stimulating renin secretion and consequently can enhance aldosterone production. At the adrenal level, 5-HT produced locally stimulates the secretory activity of adrenocortical cells through a paracrine mode of communication. The presence of 5-HT in the adrenal gland has been demonstrated immunohistochemically and biochemically in various species. In the frog, rat, and pig adrenal gland, 5-HT is synthesized by chromaffin cells, while in the mouse adrenal cortex, 5-HT is contained in nerve fibers. In man, 5-HT is present in perivascular mast cells. In vivo and in vitro studies have shown that 5-HT stimulates corticosteroid secretion in various species (including human). The type of receptor involved in the mechanism of action of 5-HT differs between the various species. In frogs and humans, the stimulatory effect of 5-HT on adrenocortical cells is mediated through a 5-HT4 receptor subtype positively coupled to adenylyl cyclase and calcium influx. In the rat, the effect of 5-HT on aldosterone secretion is mediated via activation of 5-HT7 receptors. Clinical studies indicate that 5-HT4 receptor agonists stimulate aldosterone secretion in healthy volunteers and in patients with corticotropic insufficiency and primary hyperaldosteronism. Local serotonergic control of corticosteroid production may be involved in the physiological control of the activity of the adrenal cortex as well as in the pathophysiology of cortisol and aldosterone disorders.
Role of 5-HT in the regulation of the brain-pituitary-adrenal axis: effects of 5-HT on adrenocortical cells.