blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
220 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
257 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
995f17f49f0cc20090ed4da3fc31fdabd4c2e5df
6a61ef12621c8a917d160db62415487fe2c469f7
/aliyun-python-sdk-outboundbot/aliyunsdkoutboundbot/request/v20191226/DeleteJobGroupRequest.py
6edfb7caf350c296ba47360d1600bde52a8e0e09
[ "Apache-2.0" ]
permissive
zhangwp-cn/aliyun-openapi-python-sdk
f0b15369665a956490534c942676ed15410196f7
a560e38f97351db05d13f0588f7bdfb4292ed3ae
refs/heads/master
2022-09-08T13:31:26.842867
2020-06-04T03:23:30
2020-06-04T03:23:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,607
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkoutboundbot.endpoint import endpoint_data class DeleteJobGroupRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'OutboundBot', '2019-12-26', 'DeleteJobGroup','outboundbot') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_InstanceId(self): return self.get_query_params().get('InstanceId') def set_InstanceId(self,InstanceId): self.add_query_param('InstanceId',InstanceId) def get_JobGroupId(self): return self.get_query_params().get('JobGroupId') def set_JobGroupId(self,JobGroupId): self.add_query_param('JobGroupId',JobGroupId)
[ "sdk-team@alibabacloud.com" ]
sdk-team@alibabacloud.com
e5d45aba73ee5b13499f51e053f224648be79b3d
4905ea775218db882f23188df256ab036b182ea7
/fortytwo_test_task/migrations/auth/0001_data.py
3f22f4f6761315f074469f9ae28041965fd4b4d8
[]
no_license
pmorhun/FortyTwoTestTask
b57f4597003f45e9a59f0a934d6648229c9cbf01
b27c70593a027e62e8ea32b0527caf2c7ff71926
refs/heads/master
2020-04-03T12:39:19.750194
2016-03-09T14:25:59
2016-03-09T14:25:59
51,739,394
0
0
null
2016-02-15T07:55:31
2016-02-15T07:55:30
null
UTF-8
Python
false
false
3,869
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): user = orm['auth.user']( username="admin", is_active=True, is_superuser=True, is_staff=True, password="pbkdf2_sha256$12000$zDS0slDEfmlZ$y+G2T/PRVXqGFUubLUTAfRPkAo1mB7bts12VNqadjLE=", email="admin@admin.com") user.save() def backwards(self, orm): raise RuntimeError("Cannot reverse this migration.") models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['auth'] symmetrical = True
[ "petermorhun@gmail.com" ]
petermorhun@gmail.com
5f54f73fc5ddac26d7fa0c7409af8935051d4dd7
7c3c01c8d3a88890c17b4746279adc470dee325f
/ordersapp/models.py
225a2aa025ee0baca4f90756a80c2af82c6dd6f3
[]
no_license
Raider992/django_opt
c729eb462902b7b49a79ea87f53df2a026ff7f60
69516b57875c2eec91ea99d2ab9fe1ca6d113c74
refs/heads/master
2023-02-28T18:44:22.411815
2021-02-09T07:00:53
2021-02-09T07:00:53
329,073,703
0
0
null
2021-02-09T07:00:54
2021-01-12T18:16:36
CSS
UTF-8
Python
false
false
2,288
py
from django.db import models from django.conf import settings from django.db import models from cartapp.models import Cart from mainapp.models import Product class Order(models.Model): FORMING = 'FM' SENT_TO_PROCESS = 'STP' PROCESSED = 'PRD' PAID = 'PD' READY = 'RDY' DONE = 'DN' CANCELLED = 'CNC' ORDER_STATUSES = ( (FORMING,'формируется'), (SENT_TO_PROCESS, 'отправлен на обработку'), (PROCESSED, 'обработан'), (PAID, 'оплачен'), (READY, 'готов к выдаче'), (DONE, 'выдан'), (CANCELLED, 'отменён'), ) user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) created_at = models.DateTimeField(auto_now_add=True, verbose_name='создан') updated_at = models.DateTimeField(auto_now_add=True, verbose_name='изменён') status = models.CharField( verbose_name='статус', choices=ORDER_STATUSES, max_length=4, default=FORMING ) is_active = models.BooleanField(default=True, verbose_name='активен') class Meta: verbose_name = 'заказ' verbose_name_plural = 'заказы' ordering = ('-created_at',) def get_total_quantity(self): _items = self.orderitems.select_related() _total_quantity = sum(list(map(lambda x: x.quantity , _items))) return _total_quantity def get_total_price(self): _items = self.orderitems.select_related() _total_cost = sum(list(map(lambda x: x.quantity * x.product.price, _items))) return _total_cost def delete(self): for item in self.orderitems.select_related(): item.product.quantity += item.quantity item.product.save() self.is_active = False self.save() class OrderItem(models.Model): order = models.ForeignKey(Order, on_delete=models.CASCADE, related_name='orderitems') product = models.ForeignKey(Product, on_delete=models.CASCADE, verbose_name='продукт') quantity = models.PositiveIntegerField(default=0, verbose_name='количество') def get_product_cost(self): return self.product.price * self.quantity
[ "19stargazer92@gmail.com" ]
19stargazer92@gmail.com
8c7b6551a5d0d94ccfa765dd315c04805e05d3a0
f85834b22f47c5af0fea7ecd68beea7daaa45ff5
/scripts/machineLearning/hyperparametar_tuning.py
7df3837b34ce832384fb4c7faef95c2cac423300
[]
no_license
cocacolabai/YogaPoseDetection
ab906525b2dfc8e83eca9d9e8abf5e10044a0cda
37588c211eb6b508a6a5f75c2917397acea81694
refs/heads/main
2023-04-13T13:12:55.826543
2021-04-21T08:36:58
2021-04-21T08:36:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,082
py
from sklearn import svm from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import Matern, RBF, DotProduct, RationalQuadratic, WhiteKernel from sklearn.neural_network import MLPClassifier from sklearn.tree import DecisionTreeClassifier from scripts.helpers.data_manipulation_helpers import write_multiple_lines from scripts.helpers.sklearn_helpers import best_hyperparameters from scripts.machineLearning.ml_data_for_classification import MlDataForModelTraining all_train_data = MlDataForModelTraining( '/Users/lucapomer/Documents/bachelor/YogaPoseDetection/old_split_run_through/csv_data_files/train_data_both_with_flipped.csv') parameters_gaus = {'kernel': [1*RBF(), 1*DotProduct(), 1*Matern(length_scale=1, nu=1.5), 1*RationalQuadratic(), 1*WhiteKernel()]} parameters_tree = {'max_depth': [5, 6, 7, 8 , 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 30]} parameters_svc = {'kernel': ('linear', 'rbf', 'poly', 'sigmoid'), 'C': [0.025,0.1, 0.5, 1]} parameter_mlp = { 'hidden_layer_sizes': [(10,30,10),(20,), 100], 'activation': ['tanh', 'relu', 'identity', 'logistic'], 'solver': ['sgd', 'adam'], 'alpha': [0.0001, 0.05], 'learning_rate': ['constant','adaptive'],'max_iter': [5000, 10000] } gaus = GaussianProcessClassifier() svc = svm.SVC() mlp = MLPClassifier(max_iter=20000) tree = DecisionTreeClassifier() optimal_gauss = best_hyperparameters(parameters_gaus, gaus, all_train_data) optimal_mlp = best_hyperparameters(parameter_mlp, mlp, all_train_data) optimal_tree = best_hyperparameters(parameters_tree, tree, all_train_data) optimal_svc = best_hyperparameters(parameters_svc, svc, all_train_data) save_info = [] save_info.append(['data', 'old split both']) save_info.append(['optimal gauss', str(optimal_gauss)]) save_info.append(['optimal mlp', str(optimal_mlp)]) save_info.append(['optimal tree', str(optimal_tree)]) save_info.append(['optimal svc', str(optimal_svc)]) write_multiple_lines(save_info, '/Users/lucapomer/Documents/bachelor/YogaPoseDetection/csv_data_files/hyperparameter_tuning.csv')
[ "43848253+LucaPomer@users.noreply.github.com" ]
43848253+LucaPomer@users.noreply.github.com
c79d246f78d0b2e6d4233b6f292eca9186fe7eb2
820325f03118f4d3c541c180e7564b578795cbed
/projects/compiler/compilation_engine/ExpressionFactory.py
fa0cff31519e0354a2c618fea274248a3f4605ff
[]
no_license
brendonsoto/the-elements-of-computing-systems-projects
e8e33be50cdaab2382a43d16566863e886212a90
6cabc9ccbd34fcfc0a838d866b16b276c45fd10b
refs/heads/master
2021-04-12T03:42:05.114630
2018-07-20T16:32:15
2018-07-20T16:32:15
125,767,572
0
0
null
null
null
null
UTF-8
Python
false
false
4,358
py
from TokenIterator import TokenIterator unary_operators = '-', '~' operators = unary_operators + ('+', '-', '*', '/', '&', '|', '<', '>', '=') keywords = 'true', 'false', 'null', 'this' ''' get_expression input: a list of tokens output: a dictionary representing an expression ''' def get_expression(tokens): token_iterator = TokenIterator(tokens) # Let's assume the currenttoken is at the term term = token_iterator.getCurrentToken() expression = { 'node_type': 'expression', } # Integer constant if term.isdigit(): expression['expression_type'] = 'integer' expression['value'] = term # Keyword constant elif term in keywords: expression['expression_type'] = 'keyword' expression['value'] = term # String constant -- (str) is used to determine string constants elif '(str)' in term: expression['expression_type'] = 'string' expression['value'] = term.replace('(str) ', '') # Unary elif term in unary_operators: expression = get_unary_expression(token_iterator) # Expression in parenthesis -- i.e. (5 - 4) elif term is '(': expression_tokens = get_inner_expression(token_iterator, ')') expression['expression_type'] = 'parenthetical' expression['expressions'] = get_expression(expression_tokens) # Otherwise we either have an array accessor or a subroutine call if token_iterator.isThereNextToken(): # First get next token for reference next_token = token_iterator.getNextToken() if next_token is '[': expression_tokens = get_inner_expression(token_iterator, ']') expression['expression_type'] = 'array_accessor' expression['array'] = term expression['accessor'] = get_expression(expression_tokens) elif next_token is '(': expression_tokens = get_inner_expression(token_iterator, ')') expression['expression_type'] = 'subroutine_call' expression['name'] = term expression['expression_list'] = get_expression(expression_tokens) elif next_token is '.': expression_tokens = get_inner_expression(token_iterator, ')') expression['expression_type'] = 'subroutine_parent' expression['class'] = term expression['expression_list'] = get_expression(expression_tokens) # TODO Check this out -- see if it's viable for multiple operations elif next_token in operators: expression['operator'] = next_token expression_tokens = get_remainder_of_expression(token_iterator) expression['operated_value'] = get_expression(expression_tokens) else: raise ValueError("Expected a [/(/operator but received {0}".format(next_token)) elif not token_iterator.isThereNextToken() and not 'value' in expression.keys(): expression['term_type'] = 'varName' expression['value'] = term return expression def get_unary_expression(token_iterator): term = token_iterator.getCurrentToken() # A unary operation contains an expression, so we'll have to grab everything after the unary operator to get the sub expression expression_tokens = [] while token_iterator.currentIndex != len(token_iterator.tokens) - 1: expression_tokens.append(token_iterator.getNextToken()) return { 'node_type': 'expression', 'expression_type': 'unary', 'unary_operator': term, 'value': get_expression(expression_tokens) } def get_remainder_of_expression(token_iterator): expression_tokens = [] while token_iterator.isThereNextToken(): expression_tokens.append(token_iterator.getNextToken()) return expression_tokens def get_inner_expression(token_iterator, ending_char): starting_char = token_iterator.getCurrentToken() indentation_level = 0 expression_tokens = [] while token_iterator.isThereNextToken(): token = token_iterator.getNextToken() if token is starting_char: indentation_level += 1 if token is ending_char and indentation_level > 0: indentation_level -= 1 elif token is ending_char: break expression_tokens.append(token) return expression_tokens
[ "bsoto@nhl.com" ]
bsoto@nhl.com
d8c8d2c42a59c105d4f913aba3832a91e2e0b1dc
802521e9463d7a99e5a95210b666aea79b9856bc
/hello_world.py
90a9efa702ba0d0abc98db393068781b808de834
[]
no_license
sasha-e-k/git_intro
009b00870b12c205be6ab247473769537fa6924c
67006b4d0e78a15d83e57c5fd03c41159c8fcaf1
refs/heads/master
2023-08-15T10:13:43.302372
2021-10-13T11:42:25
2021-10-13T11:42:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
56
py
# a useful script print("hello world") # made in branch
[ "qi20129@bristol.ac.uk" ]
qi20129@bristol.ac.uk
2bbd5c8c3393d9a998515b3902ca992a554e3546
3ca7e3ec69f5b454a96fcd1b63aba601e829d4e2
/fractal_tree.py
22ee31ea21f767e8f76b9a10f546f5deb91c3944
[]
no_license
pysprings/lsystems
2a6b5c6c45355c87ef4d0833b1d8bcd3cd932c72
28396c3cdf738216266f8806c5f5652f7f25b6e7
refs/heads/master
2020-03-17T16:39:37.521017
2018-05-17T04:12:17
2018-05-17T04:12:17
133,757,659
0
0
null
null
null
null
UTF-8
Python
false
false
3,746
py
import numpy as np from math import pi, sin, cos import random as rand from pyglet.gl import * import sys AMOUNT_TO_SHRINK = rand.uniform(0.50, 0.75) # Becareful of setting this too high as it will take longer to create the tree the higher you put it. # At values higher than 15(2^15 branches) is where you will notice this and it will probably hang for quite some time. TREE_DEPTH = rand.randint(10, 13) SIN_MEMOIZED_VALUES = {} COS_MEMOIZED_VALUES = {} # Change these RGB colors to your liking to create BEAUTIFUL colored trees. BRANCH_COLOUR = (101, 67, 33, 101, 67, 33) BRANCH_LEAF_COLUR = (0, 100, 0, 0, 100, 0) def memoizedSin(degree): if degree not in SIN_MEMOIZED_VALUES: SIN_MEMOIZED_VALUES[degree] = sin(np.deg2rad(degree)) return SIN_MEMOIZED_VALUES[degree] def memoizedCos(degree): if degree not in COS_MEMOIZED_VALUES: COS_MEMOIZED_VALUES[degree] = cos(np.deg2rad(degree)) return COS_MEMOIZED_VALUES[degree] def rotateVector(vector, degree): cosAlpha = memoizedCos(degree) sinAlpha = memoizedSin(degree) return np.matmul(vector, [[cosAlpha, -sinAlpha], [sinAlpha ,cosAlpha]]) # Rotational counter-clockwise matrix class Branch: def __init__(self, begin, end, color): self.begin = np.array(begin) self.end = np.array(end) self.vertices = pyglet.graphics.vertex_list(2, ('v2f', (self.begin[0], self.begin[1], self.end[0] ,self.end[1])), ('c3B', color) ) def branch(self, degree, color): dir = self.end - self.begin dir = rotateVector(dir, degree); dir = dir * AMOUNT_TO_SHRINK newEnd = self.end + dir branch = Branch(self.end, newEnd, color) return branch def displayBranch(self): glLineWidth(2.0) self.vertices.draw(GL_LINES) class FractalTree: def __init__(self, height): self.branches = [] self.branches.append(Branch([0, -(height / height)], [0, 0], BRANCH_COLOUR)) def createTree(self): totalBranchesToVisit = int(pow(2, TREE_DEPTH - 1)) - 1 currBranchIndex = 0 while(currBranchIndex < totalBranchesToVisit): degree = rand.randrange(30, 61) self.branches.append(self.branches[currBranchIndex].branch(-degree, BRANCH_COLOUR)) self.branches.append(self.branches[currBranchIndex].branch(degree, BRANCH_COLOUR)) currBranchIndex += 1 totalBranches = len(self.branches) for branchIndex in range(currBranchIndex, totalBranches): self.branches[branchIndex].vertices.colors = BRANCH_LEAF_COLUR def displayTree(self): for branch in self.branches: branch.displayBranch() class Window(pyglet.window.Window): def __init__(self, *args, **kwargs): if(sys.version_info > (3, 0)): super().__init__(*args, **kwargs) else: super(Window, self).__init__(*args, **kwargs) self.set_minimum_size(640, 480) glClearColor(0.5, 0.5, 0.5, 1.0) glScalef(0.4, 0.4, 0.4) windowSize = self.get_size() self.tree = FractalTree(windowSize[1]) # We want the height of the window self.tree.createTree() def on_draw(self): self.clear() glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST) self.tree.displayTree() def on_resize(self, width, height): glViewport(0, 0, width, height) if __name__ == "__main__": window = Window(640, 480, "Fractal Trees Demonstration", resizable=True) pyglet.app.run()
[ "ryan.freckleton@gmail.com" ]
ryan.freckleton@gmail.com
7a6ca8b3501bb379c131dccca76387873b61b714
3ed490a74e3952dbd5d611b1166ce6e227c9b6cf
/a1d05eba1/components/settings.py
f69d317a58dbb45737e183bc8b2013371e68a122
[ "ISC" ]
permissive
dorey/a1d05eba1
771539b5c1e3c11a0d600326fe5d0241b2025f9d
eb6f66a946f3c417ab6bf9047ba9715be071967c
refs/heads/main
2023-08-07T03:54:12.576554
2020-08-25T23:36:08
2020-08-25T23:36:08
273,079,242
0
1
null
null
null
null
UTF-8
Python
false
false
1,872
py
from ..utils.kfrozendict import kfrozendict from ..utils import kassertfrozen from ..utils.kfrozendict import shallowfreeze from ..utils.yparse import yload_file from ..schema_properties import SETTINGS_PROPERTIES from .base_component import SurveyComponentWithDict _standardize_public_key = lambda pk: ''.join(pk.split('\n')) class Settings(SurveyComponentWithDict): _pubkey = None settings_renames_from_1 = yload_file('renames/from1/settings', invert=True) def load(self): SKIP_SETTINGS = ['metas', 'default_language'] save = {} for (key, val) in self.content._data_settings.items(): if key in SKIP_SETTINGS: continue if self.content.perform_renames: key = self.settings_renames_from_1.get(key, key) if key == 'style' and isinstance(val, str): if val == '': continue val = val.split(' ') keep_setting = True strip_uk_setts = self.content.strip_unknown_values if strip_uk_setts and key not in SETTINGS_PROPERTIES: keep_setting = False if keep_setting: save[key] = val self._pubkey = save.pop('public_key', None) if self._pubkey: self._pubkey = _standardize_public_key(self._pubkey) self._d = shallowfreeze(save) @kassertfrozen def to_frozen_dict(self, export_configs): out = self._d if self._pubkey: out = out.copy(public_key=self._pubkey) if export_configs.schema == '1' and self.content.initial_tx: txname = self.content.initial_tx.as_string_or_null() out = out.copy(default_language=txname) if export_configs.default_settings: out = out.copy(**export_configs.default_settings) return out
[ "dorey415@gmail.com" ]
dorey415@gmail.com
b1c06b4f2309fc8aaaf3b6ce7edbcf6c31ace1aa
e456ec1f174091a1024dd0ebd7c8f011b3399367
/Test.py
0045530c15143de17da121041d45b4836a662166
[]
no_license
Gummy27/Forritun
414e98c0020bdf71a8c2a9b3757ece19c0d01172
6a312db6e5a451fac1e6830d7e249663739f15f2
refs/heads/master
2023-02-15T03:01:00.307741
2021-01-07T11:01:37
2021-01-07T11:01:37
177,342,511
0
1
null
null
null
null
UTF-8
Python
false
false
57
py
s1 = "1" s2 = "2" print(f'Hérna kemur númerið 1: {1}')
[ "brimir27@outlook.com" ]
brimir27@outlook.com
0b4681cbbbd15b1ae82f979dfb0855a484f541fc
8e3b452b08139f25be824fae2b8b7aabb158d888
/6.00.1.x/Week3/Lecture5/lectureCode_Lec5-towers.py
13861370c38b6bf6a8bbf93b0af680633678f9d6
[]
no_license
prasannabe2004/MITx
d38a11e38a0abb73ffa37dccb363f779011155ab
1954b5fc31004c94f46fc8194b7fa773108c4493
refs/heads/master
2020-05-16T19:14:00.963550
2015-08-07T18:50:12
2015-08-07T18:50:12
25,537,861
1
0
null
null
null
null
UTF-8
Python
false
false
285
py
def printMove(fr, to): print('move from ' + str(fr) + ' to ' + str(to)) def Towers(n, fr, to, spare): if n == 1: printMove(fr, to) else: Towers(n-1, fr, spare, to) Towers(1, fr, to, spare) Towers(n-1, spare, to, fr) Towers(5, 'f','t','s')
[ "prasannabe2004@gmail.com" ]
prasannabe2004@gmail.com
570a9b0f72a1466c0ddd8b2558a7b4b206941056
025107917dd1275fd7b5570b8184e6ef8db16b27
/mhkit/tests/dolfyn/test_time.py
960f7adcad49e399d985981eb15169f249c00417
[ "BSD-3-Clause", "Python-2.0" ]
permissive
MRE-Code-Hub/MHKiT-Python
20c61dd8662c045120a9db54f91f99a3dc5b3f42
e5916004ff0413f32f9559790582c95193acdd24
refs/heads/master
2023-08-17T02:56:29.182830
2023-02-10T17:56:27
2023-02-10T17:56:27
253,630,523
0
0
BSD-3-Clause
2023-08-31T19:38:20
2020-04-06T22:31:16
Python
UTF-8
Python
false
false
1,797
py
from . import test_read_adv as trv from . import test_read_adp as trp import mhkit.dolfyn.time as time from numpy.testing import assert_equal, assert_allclose import numpy as np from datetime import datetime import unittest class time_testcase(unittest.TestCase): def test_time_conversion(self): td = trv.dat_imu.copy(deep=True) dat_sig = trp.dat_sig_i.copy(deep=True) dt = time.dt642date(td.time) dt1 = time.dt642date(td.time[0]) dt_off = time.epoch2date(time.dt642epoch(td.time), offset_hr=-7) t_str = time.epoch2date(time.dt642epoch(td.time), to_str=True) assert_equal(dt[0], datetime(2012, 6, 12, 12, 0, 2, 687283)) assert_equal(dt1, [datetime(2012, 6, 12, 12, 0, 2, 687283)]) assert_equal(dt_off[0], datetime(2012, 6, 12, 5, 0, 2, 687283)) assert_equal(t_str[0], '2012-06-12 12:00:02.687283') # Validated based on data in ad2cp.index file assert_equal(time.dt642date(dat_sig.time[0])[0], datetime(2017, 7, 24, 17, 0, 0, 63499)) # This should always be true assert_equal(time.epoch2date([0])[0], datetime(1970, 1, 1, 0, 0)) def test_datetime(self): td = trv.dat_imu.copy(deep=True) dt = time.dt642date(td.time) epoch = np.array(time.date2epoch(dt)) assert_allclose(time.dt642epoch(td.time.values), epoch, atol=1e-7) def test_datenum(self): td = trv.dat_imu.copy(deep=True) dt = time.dt642date(td.time) dn = time.date2matlab(dt) dt2 = time.matlab2date(dn) epoch = np.array(time.date2epoch(dt2)) assert_allclose(time.dt642epoch(td.time.values), epoch, atol=1e-6) assert_equal(dn[0], 735032.5000311028) if __name__ == '__main__': unittest.main()
[ "noreply@github.com" ]
MRE-Code-Hub.noreply@github.com
118d4a7d7f9daf9efaf09bc6317c9ba339801087
dd90dceb15ff3552667da8b91210f0fbcc3ee658
/src/client.py
c5dab9294d51b9937f04a1eea3e07fbb6d1da1d6
[]
no_license
faizmaricar/ibtrader
10e4e32c762cb988384682b7ac60bb9ad5c854eb
8fe3374dbc3077bb38e91fc592e590a196a8c4cd
refs/heads/main
2023-08-28T23:59:08.550329
2021-10-26T08:59:09
2021-10-26T08:59:09
417,083,922
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
from ibapi.client import EClient class Client(EClient): def __init__(self, wrapper): EClient.__init__(self, wrapper)
[ "faizmaricar@sistic.com.sg" ]
faizmaricar@sistic.com.sg
e8a046b3192b247fef53416f9af9d159ee31704b
95b2c204293341a1033284fbf376a53cf8a7a54e
/single/interpret_tree.py
74d0217b8933d7fbdb16786017f27e5eb623f18a
[]
no_license
amaswea/code
17f3ae337c18f6a73b2466d8f6b1638fa1945726
c5a0d49be7187a047847f0b69a6ed9c4c18a16fb
refs/heads/master
2021-09-14T12:34:41.657660
2018-05-14T01:13:58
2018-05-14T01:13:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,758
py
''' This is the file where you will implement your logic for interpreting a Prefab tree. The methods here work like event handlers: each method is executed by Prefab when certain events occur. interpret is called when: Prefab is given a new screenshot to interpret process_annotations is called when: (1) An annotation is added/removed (2) This layer is loaded and it has been edited after it was previously loaded ''' from Prefab import * from PrefabSingle import * MAX_SPACE_DIST = 10 MAX_ROW_DIST = 10 def interpret(interpret_data): ''' Implement this method to interpret a tree that results from the execution of Prefab. interpret_data.tree: This is a mutable object that represents the current interpretation of a screenshot. Each node has a dictionary of tags: tagvalue = tree['tagname'] tree['is_text'] = True A bounding rectangle: width = tree.width height = tree.height top = tree.top left = tree.left A list of children that are contained spatially within the node's boundary: children = tree.get_children() children.add( node ) interpret_data.runtime_storage: This is a dict where you can access your annotations. from path_utils import path. Keys to the dict are path descriptors and values are dicts that contain metadata about the corresponding tree node. path = get_path( node ) if path in runtime_storage: node['is_text'] = runtime_storage[path]['is_text'] ''' find_leaves_tag_as_text(interpret_data.tree) apply_text_corrections(interpret_data, interpret_data.tree) from tag_widget_type import recursively_tag_group_next, recursively_apply_groups recursively_tag_group_next(interpret_data.tree) recursively_apply_groups(interpret_data.tree) def find_leaves_tag_as_text(currnode): ''' Recursively walk through tree and tag leaves as text. ''' if len( currnode.get_children() ) == 0: currnode['is_text'] = True for child in currnode.get_children(): find_leaves_tag_as_text(child) def apply_text_corrections(interpret_data, currnode): ''' Walk through tree and use path descriptors to overwrite erroneous tags. ''' from path_utils import get_path #importing the method to compute path descriptors path = get_path(currnode, interpret_data.tree) #computing the path descriptor for the current node if path in interpret_data.runtime_storage: #if there is an annotation for this node and it has 'is_text' metadata #then tag the node with that data if 'is_text' in interpret_data.runtime_storage[path]: correction = interpret_data.runtime_storage[path]['is_text'] currnode['is_text'] = correction #recurse on the children of currnode for child in currnode.get_children(): apply_text_corrections(interpret_data, child)
[ "mdixon.github@gmail.com" ]
mdixon.github@gmail.com
3eca144dbdf237601709ad5381d9aff1751bd7d8
6730145fe637cc91c3bfd85f1551d6fa942de370
/Content Sharing App/node_server.py
e0c2a35e43ef217146f2569a86b814a995e8b416
[]
no_license
yasasmahima/Blockchain-Learning
c31522d5eb5b6061eb83bd596ceee1ac36d08d06
cafa2b2d58c3f22bff0b06a81e0450da5aa11cda
refs/heads/master
2021-05-22T22:47:23.089031
2020-10-02T02:03:07
2020-10-02T02:03:07
253,130,573
0
0
null
null
null
null
UTF-8
Python
false
false
10,058
py
from hashlib import sha256 import json import time from flask import Flask, request import requests class Block: def __init__(self, index, transactions, timestamp, previous_hash, nonce=0): self.index = index self.transactions = transactions self.timestamp = timestamp self.previous_hash = previous_hash self.nonce = nonce def compute_hash(self): """ A function that return the hash of the block contents. """ block_string = json.dumps(self.__dict__, sort_keys=True) return sha256(block_string.encode()).hexdigest() class Blockchain: # difficulty of our PoW algorithm difficulty = 2 def __init__(self): self.unconfirmed_transactions = [] self.chain = [] def create_genesis_block(self): """ A function to generate genesis block and appends it to the chain. The block has index 0, previous_hash as 0, and a valid hash. """ genesis_block = Block(0, [], 0, "0") genesis_block.hash = genesis_block.compute_hash() self.chain.append(genesis_block) @property def last_block(self): return self.chain[-1] def add_block(self, block, proof): """ A function that adds the block to the chain after verification. Verification includes: * Checking if the proof is valid. * The previous_hash referred in the block and the hash of latest block in the chain match. """ previous_hash = self.last_block.hash if previous_hash != block.previous_hash: return False if not Blockchain.is_valid_proof(block, proof): return False block.hash = proof self.chain.append(block) return True @staticmethod def proof_of_work(block): """ Function that tries different values of nonce to get a hash that satisfies our difficulty criteria. """ block.nonce = 0 computed_hash = block.compute_hash() while not computed_hash.startswith('0' * Blockchain.difficulty): block.nonce += 1 computed_hash = block.compute_hash() return computed_hash def add_new_transaction(self, transaction): self.unconfirmed_transactions.append(transaction) @classmethod def is_valid_proof(cls, block, block_hash): """ Check if block_hash is valid hash of block and satisfies the difficulty criteria. """ return (block_hash.startswith('0' * Blockchain.difficulty) and block_hash == block.compute_hash()) @classmethod def check_chain_validity(cls, chain): result = True previous_hash = "0" for block in chain: block_hash = block.hash # remove the hash field to recompute the hash again # using `compute_hash` method. delattr(block, "hash") if not cls.is_valid_proof(block, block_hash) or \ previous_hash != block.previous_hash: result = False break block.hash, previous_hash = block_hash, block_hash return result def mine(self): """ This function serves as an interface to add the pending transactions to the blockchain by adding them to the block and figuring out Proof Of Work. """ if not self.unconfirmed_transactions: return False last_block = self.last_block new_block = Block(index=last_block.index + 1, transactions=self.unconfirmed_transactions, timestamp=time.time(), previous_hash=last_block.hash) proof = self.proof_of_work(new_block) self.add_block(new_block, proof) self.unconfirmed_transactions = [] return True app = Flask(__name__) # the node's copy of blockchain blockchain = Blockchain() blockchain.create_genesis_block() # the address to other participating members of the network peers = set() # endpoint to submit a new transaction. This will be used by # our application to add new data (posts) to the blockchain @app.route('/new_transaction', methods=['POST']) def new_transaction(): tx_data = request.get_json() required_fields = ["author", "content"] for field in required_fields: if not tx_data.get(field): return "Invalid transaction data", 404 tx_data["timestamp"] = time.time() blockchain.add_new_transaction(tx_data) return "Success", 201 # endpoint to return the node's copy of the chain. # Our application will be using this endpoint to query # all the posts to display. @app.route('/chain', methods=['GET']) def get_chain(): chain_data = [] for block in blockchain.chain: chain_data.append(block.__dict__) return json.dumps({"length": len(chain_data), "chain": chain_data, "peers": list(peers)}) # endpoint to request the node to mine the unconfirmed # transactions (if any). We'll be using it to initiate # a command to mine from our application itself. @app.route('/mine', methods=['GET']) def mine_unconfirmed_transactions(): result = blockchain.mine() if not result: return "No transactions to mine" else: # Making sure we have the longest chain before announcing to the network chain_length = len(blockchain.chain) consensus() if chain_length == len(blockchain.chain): # announce the recently mined block to the network announce_new_block(blockchain.last_block) return "Block #{} is mined.".format(blockchain.last_block.index) # endpoint to add new peers to the network. @app.route('/register_node', methods=['POST']) def register_new_peers(): node_address = request.get_json()["node_address"] if not node_address: return "Invalid data", 400 # Add the node to the peer list peers.add(node_address) # Return the consensus blockchain to the newly registered node # so that he can sync return get_chain() @app.route('/register_with', methods=['POST']) def register_with_existing_node(): """ Internally calls the `register_node` endpoint to register current node with the node specified in the request, and sync the blockchain as well as peer data. """ node_address = request.get_json()["node_address"] if not node_address: return "Invalid data", 400 data = {"node_address": request.host_url} headers = {'Content-Type': "application/json"} # Make a request to register with remote node and obtain information response = requests.post(node_address + "/register_node", data=json.dumps(data), headers=headers) if response.status_code == 200: global blockchain global peers # update chain and the peers chain_dump = response.json()['chain'] blockchain = create_chain_from_dump(chain_dump) peers.update(response.json()['peers']) return "Registration successful", 200 else: # if something goes wrong, pass it on to the API response return response.content, response.status_code def create_chain_from_dump(chain_dump): generated_blockchain = Blockchain() generated_blockchain.create_genesis_block() for idx, block_data in enumerate(chain_dump): if idx == 0: continue # skip genesis block block = Block(block_data["index"], block_data["transactions"], block_data["timestamp"], block_data["previous_hash"], block_data["nonce"]) proof = block_data['hash'] added = generated_blockchain.add_block(block, proof) if not added: raise Exception("The chain dump is tampered!!") return generated_blockchain # endpoint to add a block mined by someone else to # the node's chain. The block is first verified by the node # and then added to the chain. @app.route('/add_block', methods=['POST']) def verify_and_add_block(): block_data = request.get_json() block = Block(block_data["index"], block_data["transactions"], block_data["timestamp"], block_data["previous_hash"], block_data["nonce"]) proof = block_data['hash'] added = blockchain.add_block(block, proof) if not added: return "The block was discarded by the node", 400 return "Block added to the chain", 201 # endpoint to query unconfirmed transactions @app.route('/pending_tx') def get_pending_tx(): return json.dumps(blockchain.unconfirmed_transactions) def consensus(): """ Our naive consnsus algorithm. If a longer valid chain is found, our chain is replaced with it. """ global blockchain longest_chain = None current_len = len(blockchain.chain) for node in peers: response = requests.get('{}chain'.format(node)) length = response.json()['length'] chain = response.json()['chain'] if length > current_len and blockchain.check_chain_validity(chain): current_len = length longest_chain = chain if longest_chain: blockchain = longest_chain return True return False def announce_new_block(block): """ A function to announce to the network once a block has been mined. Other blocks can simply verify the proof of work and add it to their respective chains. """ for peer in peers: url = "{}add_block".format(peer) headers = {'Content-Type': "application/json"} requests.post(url, data=json.dumps(block.__dict__, sort_keys=True), headers=headers) # Uncomment this line if you want to specify the port number in the code #app.run(debug=True, port=8000)
[ "yasasymahima@gmail.com" ]
yasasymahima@gmail.com
5bcf6011e0f7c74069e6d1d8c3ec7e61f97c9de6
eccb5ca401b3a737b7c88a417cd0e1fbd916b6db
/settings.py
2aa76360139244baf5934b12a0e8d562d1af3248
[]
no_license
andreychyuko/guestbook
b07c5dc066ec232d70fb6826514479423a172f76
7b322fa21e7d5d6fbd70dae0c22653ece8dbcc16
refs/heads/master
2022-12-22T22:53:46.072879
2020-09-23T16:18:15
2020-09-23T16:18:15
272,920,818
0
0
null
null
null
null
UTF-8
Python
false
false
3,478
py
import os from dotenv import load_dotenv load_dotenv() # COMMON BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) print(BASE_DIR) DEBUG = os.getenv('DEBUG') == '1' SECRET_KEY = 'td=222=rhm2r(!f#h+k6ocz&+@#o0tg1n$z$a08b#s!l3*p_89' ALLOWED_HOSTS = ['andreychuyko.ru'] # POSTGRES POSTGRES_DB = os.getenv('POSTGRES_DB') POSTGRES_USER = os.getenv('POSTGRES_USER') POSTGRES_PASSWORD = os.getenv('POSTGRES_PASSWORD') POSTGRES_HOST = os.getenv('POSTGRES_HOST') POSTGRES_PORT = os.getenv('POSTGRES_PORT') INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'news.apps.NewsConfig', 'meal' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'guestbook.urls' TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "OPTIONS": { "context_processors": [ "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", "django.template.context_processors.csrf", "django.template.context_processors.debug", "django.template.context_processors.i18n", "django.template.context_processors.media", "django.template.context_processors.media", "django.template.context_processors.static", "django.template.context_processors.request", ], "loaders": [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader"], }, "DIRS": [os.path.join(BASE_DIR, "guestbook", 'templates', )], }, ] WSGI_APPLICATION = 'guestbook.wsgi.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': POSTGRES_DB, 'USER': POSTGRES_USER, 'PASSWORD': POSTGRES_PASSWORD, 'HOST': POSTGRES_HOST, 'PORT': POSTGRES_PORT, } } print(DATABASES) # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'ru' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'guestbook/static') ] MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/'
[ "andreychyuko@gmail.com" ]
andreychyuko@gmail.com
97154d734ad322d59ad5c14a9e6ac7dc4eee02e5
90eb57f3c0eb3a39144038d144d3fab43ea09299
/flaskr/base_xss/models.py
9bb065b0dab8db733471a642f3eac82286f52dc3
[]
no_license
minight/comp6443-lecturectf-xss
2e096b190d3475d76ee1c47a4ee2aa8da0280c8c
23a30efc512baff1248353e73ed21d2674f7f5bf
refs/heads/master
2021-01-23T01:34:57.602922
2017-03-23T07:38:02
2017-03-23T07:38:02
85,920,408
2
0
null
null
null
null
UTF-8
Python
false
false
207
py
from ..main import db class Xss(db.Model): id = db.Column(db.Integer(), primary_key=True) title = db.Column(db.UnicodeText(500), index=True) content = db.Column(db.UnicodeText(500), index=True)
[ "sean.yeoh1@gmail.com" ]
sean.yeoh1@gmail.com
a8f609b70b6b1dd02c881af65a5d5389e0591310
4faeb88e4451dc5f0e7e2314a6323beb630d99f0
/src/run.py
fdc2bfb2c8c4a7d2ec77cc9e7306f738a333f802
[ "MIT" ]
permissive
Fitilbam/TC-Bot
17ee2d6ac01a29733c297a494e94e8110d4a8072
89deb4c0ba94e25bb44eff5c05eaab9125bf9254
refs/heads/master
2021-01-23T06:05:26.546654
2017-03-14T20:43:20
2017-03-14T20:43:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,414
py
""" Created on May 22, 2016 This should be a simple minimalist run file. It's only responsibility should be to parse the arguments (which agent, user simulator to use) and launch a dialog simulation. Rule-agent: python run.py --agt 6 --usr 1 --max_turn 40 --episodes 150 --movie_kb_path .\deep_dialog\data\movie_kb.1k.p --run_mode 2 movie_kb: movie_kb.1k.p: 94% success rate movie_kb.v2.p: 36% success rate user goal files: first turn: user_goals_first_turn_template.v2.p all turns: user_goals_all_turns_template.p user_goals_first_turn_template.part.movie.v1.p: a subset of user goal. [Please use this one, the upper bound success rate on movie_kb.1k.json is 0.9765.] Commands: Rule: python run.py --agt 5 --usr 1 --max_turn 40 --episodes 150 --movie_kb_path .\deep_dialog\data\movie_kb.1k.p --goal_file_path .\deep_dialog\data\user_goals_first_turn_template.part.movie.v1.p --intent_err_prob 0.00 --slot_err_prob 0.00 --episodes 500 --act_level 1 --run_mode 1 Training: RL: python run.py --agt 9 --usr 1 --max_turn 40 --movie_kb_path .\deep_dialog\data\movie_kb.1k.p --dqn_hidden_size 80 --experience_replay_pool_size 1000 --episodes 500 --simulation_epoch_size 100 --write_model_dir .\deep_dialog\checkpoints\rl_agent\ --run_mode 3 --act_level 0 --slot_err_prob 0.05 --intent_err_prob 0.00 --batch_size 16 --goal_file_path .\deep_dialog\data\user_goals_first_turn_template.part.movie.v1.p --warm_start 1 --warm_start_epochs 120 Predict: RL: python run.py --agt 9 --usr 1 --max_turn 40 --movie_kb_path .\deep_dialog\data\movie_kb.1k.p --dqn_hidden_size 80 --experience_replay_pool_size 1000 --episodes 300 --simulation_epoch_size 100 --write_model_dir .\deep_dialog\checkpoints\rl_agent\ --slot_err_prob 0.00 --intent_err_prob 0.00 --batch_size 16 --goal_file_path .\deep_dialog\data\user_goals_first_turn_template.part.movie.v1.p --episodes 200 --trained_model_path .\deep_dialog\checkpoints\rl_agent\agt_9_22_30_0.37000.p --run_mode 3 @author: xiul, t-zalipt """ import argparse, json, copy, os import cPickle as pickle from deep_dialog.dialog_system import DialogManager, text_to_dict from deep_dialog.agents import AgentCmd, InformAgent, RequestAllAgent, RandomAgent, EchoAgent, RequestBasicsAgent, AgentDQN from deep_dialog.usersims import RuleSimulator from deep_dialog import dialog_config from deep_dialog.dialog_config import * from deep_dialog.nlu import nlu from deep_dialog.nlg import nlg """ Launch a dialog simulation per the command line arguments This function instantiates a user_simulator, an agent, and a dialog system. Next, it triggers the simulator to run for the specified number of episodes. """ if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--dict_path', dest='dict_path', type=str, default='./deep_dialog/data/dicts.v3.p', help='path to the .json dictionary file') parser.add_argument('--movie_kb_path', dest='movie_kb_path', type=str, default='./deep_dialog/data/movie_kb.1k.p', help='path to the movie kb .json file') parser.add_argument('--act_set', dest='act_set', type=str, default='./deep_dialog/data/dia_acts.txt', help='path to dia act set; none for loading from labeled file') parser.add_argument('--slot_set', dest='slot_set', type=str, default='./deep_dialog/data/slot_set.txt', help='path to slot set; none for loading from labeled file') parser.add_argument('--goal_file_path', dest='goal_file_path', type=str, default='./deep_dialog/data/user_goals_first_turn_template.part.movie.v1.p', help='a list of user goals') parser.add_argument('--diaact_nl_pairs', dest='diaact_nl_pairs', type=str, default='./deep_dialog/data/dia_act_nl_pairs.v6.json', help='path to the pre-defined dia_act&NL pairs') parser.add_argument('--max_turn', dest='max_turn', default=20, type=int, help='maximum length of each dialog (default=20, 0=no maximum length)') parser.add_argument('--episodes', dest='episodes', default=1, type=int, help='Total number of episodes to run (default=1)') parser.add_argument('--slot_err_prob', dest='slot_err_prob', default=0.05, type=float, help='the slot err probability') parser.add_argument('--slot_err_mode', dest='slot_err_mode', default=0, type=int, help='slot_err_mode: 0 for slot_val only; 1 for three errs') parser.add_argument('--intent_err_prob', dest='intent_err_prob', default=0.05, type=float, help='the intent err probability') parser.add_argument('--agt', dest='agt', default=0, type=int, help='Select an agent: 0 for a command line input, 1-6 for rule based agents') parser.add_argument('--usr', dest='usr', default=0, type=int, help='Select a user simulator. 0 is a Frozen user simulator.') parser.add_argument('--epsilon', dest='epsilon', type=float, default=0, help='Epsilon to determine stochasticity of epsilon-greedy agent policies') # load NLG & NLU model parser.add_argument('--nlg_model_path', dest='nlg_model_path', type=str, default='./deep_dialog/models/nlg/lstm_tanh_relu_[1468202263.38]_2_0.610.p', help='path to model file') parser.add_argument('--nlu_model_path', dest='nlu_model_path', type=str, default='./deep_dialog/models/nlu/lstm_[1468447442.91]_39_80_0.921.p', help='path to the NLU model file') parser.add_argument('--act_level', dest='act_level', type=int, default=0, help='0 for dia_act level; 1 for NL level') parser.add_argument('--run_mode', dest='run_mode', type=int, default=0, help='run_mode: 0 for default NL; 1 for dia_act; 2 for both') parser.add_argument('--auto_suggest', dest='auto_suggest', type=int, default=0, help='0 for no auto_suggest; 1 for auto_suggest') parser.add_argument('--cmd_input_mode', dest='cmd_input_mode', type=int, default=0, help='run_mode: 0 for NL; 1 for dia_act') # RL agent parameters parser.add_argument('--experience_replay_pool_size', dest='experience_replay_pool_size', type=int, default=1000, help='the size for experience replay') parser.add_argument('--dqn_hidden_size', dest='dqn_hidden_size', type=int, default=60, help='the hidden size for DQN') parser.add_argument('--batch_size', dest='batch_size', type=int, default=16, help='batch size') parser.add_argument('--gamma', dest='gamma', type=float, default=0.9, help='gamma for DQN') parser.add_argument('--predict_mode', dest='predict_mode', type=bool, default=False, help='predict model for DQN') parser.add_argument('--simulation_epoch_size', dest='simulation_epoch_size', type=int, default=50, help='the size of validation set') parser.add_argument('--warm_start', dest='warm_start', type=int, default=1, help='0: no warm start; 1: warm start for training') parser.add_argument('--warm_start_epochs', dest='warm_start_epochs', type=int, default=100, help='the number of epochs for warm start') parser.add_argument('--trained_model_path', dest='trained_model_path', type=str, default=None, help='the path for trained model') parser.add_argument('-o', '--write_model_dir', dest='write_model_dir', type=str, default='./deep_dialog/checkpoints/', help='write model to disk') parser.add_argument('--save_check_point', dest='save_check_point', type=int, default=10, help='number of epochs for saving model') parser.add_argument('--success_rate_threshold', dest='success_rate_threshold', type=float, default=0.3, help='the threshold for success rate') args = parser.parse_args() params = vars(args) print 'Dialog Parameters: ' print json.dumps(params, indent=2) max_turn = params['max_turn'] num_episodes = params['episodes'] agt = params['agt'] usr = params['usr'] dict_path = params['dict_path'] goal_file_path = params['goal_file_path'] # load the user goals from .p file goal_set = pickle.load(open(goal_file_path, 'rb')) movie_kb_path = params['movie_kb_path'] movie_kb = pickle.load(open(movie_kb_path, 'rb')) act_set = text_to_dict(params['act_set']) slot_set = text_to_dict(params['slot_set']) ################################################################################ # a movie dictionary for user simulator - slot:possible values ################################################################################ movie_dictionary = pickle.load(open(dict_path, 'rb')) dialog_config.run_mode = params['run_mode'] dialog_config.auto_suggest = params['auto_suggest'] ################################################################################ # Parameters for Agents ################################################################################ agent_params = {} agent_params['max_turn'] = max_turn agent_params['epsilon'] = params['epsilon'] agent_params['agent_run_mode'] = params['run_mode'] agent_params['agent_act_level'] = params['act_level'] agent_params['experience_replay_pool_size'] = params['experience_replay_pool_size'] agent_params['dqn_hidden_size'] = params['dqn_hidden_size'] agent_params['batch_size'] = params['batch_size'] agent_params['gamma'] = params['gamma'] agent_params['predict_mode'] = params['predict_mode'] agent_params['trained_model_path'] = params['trained_model_path'] agent_params['warm_start'] = params['warm_start'] agent_params['cmd_input_mode'] = params['cmd_input_mode'] if agt == 0: agent = AgentCmd(movie_kb, act_set, slot_set, agent_params) elif agt == 1: agent = InformAgent(movie_kb, act_set, slot_set, agent_params) elif agt == 2: agent = RequestAllAgent(movie_kb, act_set, slot_set, agent_params) elif agt == 3: agent = RandomAgent(movie_kb, act_set, slot_set, agent_params) elif agt == 4: agent = EchoAgent(movie_kb, act_set, slot_set, agent_params) elif agt == 5: agent = RequestBasicsAgent(movie_kb, act_set, slot_set, agent_params) elif agt == 9: agent = AgentDQN(movie_kb, act_set, slot_set, agent_params) ################################################################################ # Add your agent here ################################################################################ else: pass ################################################################################ # Parameters for User Simulators ################################################################################ usersim_params = {} usersim_params['max_turn'] = max_turn usersim_params['slot_err_probability'] = params['slot_err_prob'] usersim_params['slot_err_mode'] = params['slot_err_mode'] usersim_params['intent_err_probability'] = params['intent_err_prob'] usersim_params['simulator_run_mode'] = params['run_mode'] usersim_params['simulator_act_level'] = params['act_level'] if usr == 0:# real user user_sim = RealUser(movie_dictionary, act_set, slot_set, goal_set, usersim_params) elif usr == 1: user_sim = RuleSimulator(movie_dictionary, act_set, slot_set, goal_set, usersim_params) ################################################################################ # Add your user simulator here ################################################################################ else: pass ################################################################################ # load trained NLG model ################################################################################ nlg_model_path = params['nlg_model_path'] diaact_nl_pairs = params['diaact_nl_pairs'] nlg_model = nlg() nlg_model.load_nlg_model(nlg_model_path) nlg_model.load_predefine_act_nl_pairs(diaact_nl_pairs) agent.set_nlg_model(nlg_model) user_sim.set_nlg_model(nlg_model) ################################################################################ # load trained NLU model ################################################################################ nlu_model_path = params['nlu_model_path'] nlu_model = nlu() nlu_model.load_nlu_model(nlu_model_path) agent.set_nlu_model(nlu_model) user_sim.set_nlu_model(nlu_model) ################################################################################ # Dialog Manager ################################################################################ dialog_manager = DialogManager(agent, user_sim, act_set, slot_set, movie_kb) ################################################################################ # Run num_episodes Conversation Simulations ################################################################################ status = {'successes': 0, 'count': 0, 'cumulative_reward': 0} simulation_epoch_size = params['simulation_epoch_size'] batch_size = params['batch_size'] # default = 16 warm_start = params['warm_start'] warm_start_epochs = params['warm_start_epochs'] success_rate_threshold = params['success_rate_threshold'] save_check_point = params['save_check_point'] """ Best Model and Performance Records """ best_model = {} best_res = {'success_rate': 0, 'ave_reward':float('-inf'), 'ave_turns': float('inf'), 'epoch':0} best_model['model'] = copy.deepcopy(agent) best_res['success_rate'] = 0 performance_records = {} performance_records['success_rate'] = {} performance_records['ave_turns'] = {} performance_records['ave_reward'] = {} """ Save model """ def save_model(path, agt, success_rate, agent, best_epoch, cur_epoch): filename = 'agt_%s_%s_%s_%.5f.p' % (agt, best_epoch, cur_epoch, success_rate) filepath = os.path.join(path, filename) checkpoint = {} if agt == 9: checkpoint['model'] = copy.deepcopy(agent.dqn.model) checkpoint['params'] = params try: pickle.dump(checkpoint, open(filepath, "wb")) print 'saved model in %s' % (filepath, ) except Exception, e: print 'Error: Writing model fails: %s' % (filepath, ) print e """ save performance numbers """ def save_performance_records(path, agt, records): filename = 'agt_%s_performance_records.json' % (agt) filepath = os.path.join(path, filename) try: json.dump(records, open(filepath, "wb")) print 'saved model in %s' % (filepath, ) except Exception, e: print 'Error: Writing model fails: %s' % (filepath, ) print e """ Run N simulation Dialogues """ def simulation_epoch(simulation_epoch_size): successes = 0 cumulative_reward = 0 cumulative_turns = 0 res = {} for episode in xrange(simulation_epoch_size): dialog_manager.initialize_episode() episode_over = False while(not episode_over): episode_over, reward = dialog_manager.next_turn() cumulative_reward += reward if episode_over: if reward > 0: successes += 1 print ("simulation episode %s: Success" % (episode)) else: print ("simulation episode %s: Fail" % (episode)) cumulative_turns += dialog_manager.state_tracker.turn_count res['success_rate'] = float(successes)/simulation_epoch_size res['ave_reward'] = float(cumulative_reward)/simulation_epoch_size res['ave_turns'] = float(cumulative_turns)/simulation_epoch_size print ("simulation success rate %s, ave reward %s, ave turns %s" % (res['success_rate'], res['ave_reward'], res['ave_turns'])) return res """ Warm_Start Simulation (by Rule Policy) """ def warm_start_simulation(): successes = 0 cumulative_reward = 0 cumulative_turns = 0 res = {} for episode in xrange(warm_start_epochs): dialog_manager.initialize_episode() episode_over = False while(not episode_over): episode_over, reward = dialog_manager.next_turn() cumulative_reward += reward if episode_over: if reward > 0: successes += 1 print ("warm_start simulation episode %s: Success" % (episode)) else: print ("warm_start simulation episode %s: Fail" % (episode)) cumulative_turns += dialog_manager.state_tracker.turn_count if len(agent.experience_replay_pool) >= agent.experience_replay_pool_size: break agent.warm_start = 2 res['success_rate'] = float(successes)/simulation_epoch_size res['ave_reward'] = float(cumulative_reward)/simulation_epoch_size res['ave_turns'] = float(cumulative_turns)/simulation_epoch_size print ("Warm_Start %s epochs, success rate %s, ave reward %s, ave turns %s" % (episode+1, res['success_rate'], res['ave_reward'], res['ave_turns'])) print ("Current experience replay buffer size %s" % (len(agent.experience_replay_pool))) def run_episodes(count, status): successes = 0 cumulative_reward = 0 cumulative_turns = 0 if agt == 9 and params['trained_model_path'] == None and warm_start == 1: print ('warm_start starting ...') warm_start_simulation() print ('warm_start finished, start RL training ...') for episode in xrange(count): print ("Episode: %s" % (episode)) dialog_manager.initialize_episode() episode_over = False while(not episode_over): episode_over, reward = dialog_manager.next_turn() cumulative_reward += reward if episode_over: if reward > 0: print ("Successful Dialog!") successes += 1 else: print ("Failed Dialog!") cumulative_turns += dialog_manager.state_tracker.turn_count # simulation if agt == 9 and params['trained_model_path'] == None: agent.predict_mode = True simulation_res = simulation_epoch(simulation_epoch_size) performance_records['success_rate'][episode] = simulation_res['success_rate'] performance_records['ave_turns'][episode] = simulation_res['ave_turns'] performance_records['ave_reward'][episode] = simulation_res['ave_reward'] if simulation_res['success_rate'] >= best_res['success_rate']: if simulation_res['success_rate'] >= success_rate_threshold: # threshold = 0.30 agent.experience_replay_pool = [] simulation_epoch(simulation_epoch_size) if simulation_res['success_rate'] > best_res['success_rate']: best_model['model'] = copy.deepcopy(agent) best_res['success_rate'] = simulation_res['success_rate'] best_res['ave_reward'] = simulation_res['ave_reward'] best_res['ave_turns'] = simulation_res['ave_turns'] best_res['epoch'] = episode agent.clone_dqn = copy.deepcopy(agent.dqn) agent.train(batch_size, 1) agent.predict_mode = False print ("Simulation success rate %s, Ave reward %s, Ave turns %s, Best success rate %s" % (performance_records['success_rate'][episode], performance_records['ave_reward'][episode], performance_records['ave_turns'][episode], best_res['success_rate'])) if episode % save_check_point == 0 and params['trained_model_path'] == None: # save the model every 10 episodes save_model(params['write_model_dir'], agt, best_res['success_rate'], best_model['model'], best_res['epoch'], episode) save_performance_records(params['write_model_dir'], agt, performance_records) print("Progress: %s / %s, Success rate: %s / %s Avg reward: %.2f Avg turns: %.2f" % (episode+1, count, successes, episode+1, float(cumulative_reward)/(episode+1), float(cumulative_turns)/(episode+1))) print("Success rate: %s / %s Avg reward: %.2f Avg turns: %.2f" % (successes, count, float(cumulative_reward)/count, float(cumulative_turns)/count)) status['successes'] += successes status['count'] += count if agt == 9 and params['trained_model_path'] == None: save_model(params['write_model_dir'], agt, float(successes)/count, best_model['model'], best_res['epoch'], count) save_performance_records(params['write_model_dir'], agt, performance_records) run_episodes(num_episodes, status)
[ "yvchen@linux7.csie.ntu.edu.tw" ]
yvchen@linux7.csie.ntu.edu.tw
2e9e653a3ba5f6b2d39e8bc2a9b81531627f0d53
be5c86e8fe3f5836b7d2097dd5272c72b5b28f15
/binary-search/Python/0069-sqrtx(调试代码).py
34fb4dc1e8fd789b231dfc3dc042a189448bc516
[ "Apache-2.0" ]
permissive
lemonnader/LeetCode-Solution-Well-Formed
d24674898ceb5441c036016dc30afc58e4a1247a
baabdb1990fd49ab82a712e121f49c4f68b29459
refs/heads/master
2021-04-23T18:49:40.337569
2020-03-24T04:50:27
2020-03-24T04:50:27
249,972,064
1
0
Apache-2.0
2020-03-25T12:26:25
2020-03-25T12:26:24
null
UTF-8
Python
false
false
1,303
py
class Solution: def mySqrt(self, x: int) -> int: if x == 0: return 0 left = 1 right = x // 2 while left < right: # 调试代码开始:为了仔细观察区间左右端点,我们每进入一次循环,让线程休眠 1 秒 import time time.sleep(1) print('调试代码,观察区间左右端点、中位数,和进入的分支: left = {} , right = {} , '.format(left, right), end='') # 调试代码结束 # 错误代码,在分支左区间不发生收缩的情况下,中位数应该取右中位数 # mid = left + (right - left) // 2 mid = (left + right) >> 1 # 调试代码 print('mid = {} ,'.format(mid), end=' ') square = mid * mid if square > x: # 调试代码 print('进入 right = mid - 1 这个分支。') right = mid - 1 else: # 调试代码 print('进入 left = mid 这个分支。') left = mid return left if __name__ == '__main__': # 当 x = 8 的时候,代码能得出正确答案 x = 9 solution = Solution() res = solution.mySqrt(x) print(res)
[ "121088825@qq.com" ]
121088825@qq.com
06c0dbfe0bbb879d1f90f6a8109b9356f8922abb
e9e4182ab5c6fc07b9090923b85b487a8d140be4
/ilp/database/__init__.py
165a886de5ca9776041c41459074ee17ed2b732a
[]
no_license
slowpoketail/ilp
2c68cd48c560e6e8e24fa99fb125519f3d297ed8
db1681aede0c507003453c055a0427b9b9659082
refs/heads/master
2020-04-17T17:13:22.839052
2015-07-06T16:20:21
2015-07-06T16:20:21
38,626,930
0
0
null
null
null
null
UTF-8
Python
false
false
311
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Kirschwasser - a tag based file indexer # # Author: slowpoke <mail+git@slowpoke.io> # # This program is Free Software under the non-terms # of the Anti-License. Do whatever the fuck you want. from ._api import DatabaseAPI as API from ._shelvedb import ShelveDB
[ "mail+git@slowpoke.io" ]
mail+git@slowpoke.io
21e37b4f7a6e38423629ff7f88949c775997a74a
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02536/s375378291.py
93ecd40e03e6ad422973faf79ca95508b26c6569
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,207
py
import sys sys.setrecursionlimit(10 ** 9) class UnionFind(): def __init__(self, n): self.n = n self.root = [-1]*(n+1) self.rank = [0]*(n+1) def find(self, x):#親となる要素を探索 if self.root[x] < 0: return x else: self.root[x] = self.find(self.root[x])#再帰 return self.root[x] def unite(self, x, y): x = self.find(x) y = self.find(y) if x == y: return elif self.rank[x] > self.rank[y]:#深い木に連結 self.root[x] += self.root[y] self.root[y] = x#yの親をxとする else: self.root[y] += self.root[x] self.root[x] = y if self.rank[x] == self.rank[y]: self.rank[y] += 1 def issame(self, x, y):#x, yが同じ集合か判定 return self.find(x) == self.find(y) def count(self, x):#要素の個数 return (-1)*self.root[self.find(x)] n, m = map(int, input().split()) uf = UnionFind(n) for i in range(m): a, b = map(int, input().split()) uf.unite(a-1, b-1) ans = set() for i in range(n): ans.add(uf.find(i)) print(len(ans)-1)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
c1f51bda93c447b50b5b61dece51c0c3bc2b7faf
044bb913a4d1e1056b1e5f7a4c127b630de51af7
/AlexReceitas/asgi.py
d6f8ec566796de044326333fc24f33b3791e7bb2
[]
no_license
alexpb1/AlexReceitas
a5c77a52af7434afc6db5845c1715da0e9da730f
e4bf6931f5ccf75bfe8309b04c26f3fbf8497b57
refs/heads/main
2023-08-02T08:24:15.189132
2021-09-19T23:25:01
2021-09-19T23:25:01
387,615,015
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" ASGI config for AlexReceitas project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'AlexReceitas.settings') application = get_asgi_application()
[ "alexsandropb3@gmail.com" ]
alexsandropb3@gmail.com
e978d5eca5c736f3b8f826507cd71ef790771729
f6ed068e6035987d71c17d27e630af0f4b92370e
/Validacion_Surface/valSurface.py
c8f76a3671883e4bd0782c19e322c1ad889ed053
[]
no_license
LuisFelipeArteaga/Reconstruccion
b61e50cf0f8b27989f2d898967a5537409d63a5c
3ae222e5cc2f9ada476892f933c273faa3885708
refs/heads/master
2023-01-24T12:09:19.770548
2020-11-15T00:24:29
2020-11-15T00:24:29
114,788,374
2
1
null
null
null
null
UTF-8
Python
false
false
7,681
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 26 09:33:33 2019 @author: felipe """ import numpy as np #import matplotlib.pyplot as plt #import time #import nibabel as nib #import cv2 import open3d as opd import os import itertools from functools import partial from multiprocessing import Pool from sklearn.model_selection import KFold #from scipy import stats from scipy import spatial from sklearn.svm import SVR #from mpl_toolkits.mplot3d import Axes3D #from sklearn.preprocessing import StandardScaler #from sklearn.model_selection import GridSearchCV from numpy import linalg as LA from joblib import dump #from loblib import load ############################################################################## def crossval_bal(X,t,nPart): kf = KFold(n_splits=nPart,shuffle=True,random_state=123) kf.get_n_splits(X) Train_Index = [] Test_Index = [] for train_index, test_index in kf.split(t): Train_Index.append(train_index) Test_Index.append(test_index) return Train_Index,Test_Index ############################################################################### def Feature_Scaling(X,a,b): return a + ((X-np.min(X))*(b-a))/(np.max(X)-np.min(X)) ############################################################################## def svrTrain(X,t,XTest,Kernel,sig,c,e): svr = SVR(kernel = 'rbf',gamma=sig, C=c, epsilon = e) svr.fit(X,t) svr.predict(XTest) return svr, svr.predict(XTest) ############################################################################## def svrTrainP(X,t,XTest,tTest,param): sig = param[0] c = param[1] e = param[2] svr = SVR(kernel = 'rbf',gamma=sig, C=c, epsilon = e) svr.fit(X,t) t_est = svr.predict(XTest) Error = LA.norm((t_est - tTest))/LA.norm(tTest) outPutParam = [Error,sig,c,e] return outPutParam ############################################################################## def FindParamSVR(X,t,Kernel,t_data,ii): # num_Workers = 4 nP = 10 Train_Index2,Test_Index2 = crossval_bal(X,t,nP) #------------------------------------------------- #exp1 = [-9, -7, -5, -3, -1, 0, 1, 3, 5, 7, 9] exp1 = [-9, -3, -1, 0, 1, 3, 9] c = np.exp2(exp1) epsilon = [0.0,0.0005,0.01,0.05,0.1,0.2] if Kernel == 'rbf': Nsig = 10 s0 = np.median(spatial.distance.pdist(X,metric='euclidean')) sig = np.linspace(0.1*s0,s0,Nsig) else: sig = 1 Nsig = 1 #---------------------------------------------- ## Partition cList = [] gammaList = [] epsilonList = [] errorList = [] for ff in range(nP): Xtrain = X[Train_Index2[ff]] Xtest = X[Test_Index2[ff]] tTrain = t[Train_Index2[ff]] tTest = t_data[Test_Index2[ff]] #------------------------------------------------------------ param= list(itertools.product(sig,c,epsilon)) #------------------------------------------------------------- with Pool(num_Workers) as p : funcSVR = partial(svrTrainP,Xtrain,tTrain,Xtest,tTest) Output = p.map(funcSVR,param) #--------------------------------------------------------- Output = np.asarray(Output) minArg = np.argmin(Output[:,0]) print(Output[minArg,1],Output[minArg,2],Output[minArg,3]) gammaList.append(Output[minArg,1]) cList.append(Output[minArg,2]) epsilonList.append(Output[minArg,3]) errorList.append(Output[minArg,0]) filename2 = os.path.join('data_save','Error','error'+str(ii)+'_'+str(ff)+'.npy') np.save(filename2,cDic) return cList, gammaList, epsilonList, errorList ############################################################################## def get_data_myc(filename): #filename = os.path.join('Points_Clouds',name) pcd1 = opd.read_point_cloud(filename) auxPointsS = Feature_Scaling(np.asarray(pcd1.points),-1,1) for pp,ii in enumerate(auxPointsS): pcd1.points[pp] = ii pcd = opd.voxel_down_sample(pcd1, voxel_size = 0.06) #pcd=pcd1 print('Point Cloud size = ',pcd.dimension) print('compute normals ...') opd.estimate_normals(pcd, search_param = opd.KDTreeSearchParamHybrid( radius = .5, max_nn = 30)) print('end') mycCenter = np.mean(np.asarray(pcd.points[:]),axis=0) for ii,qq in enumerate(pcd.points): p1 = mycCenter - qq; p2 = np.asarray(pcd.normals)[ii,:] angle = np.arctan2(np.linalg.norm(np.cross(p1,p2)),np.dot(p1,p2)) if angle < np.pi/2 or angle < -np.pi/2: pcd.normals[ii] = -pcd.normals[ii] delta = 0.01; pointsOut = np.asarray(pcd.points) + delta*np.asarray(pcd.normals) pointsIn = np.asarray(pcd.points) - delta*np.asarray(pcd.normals) data = np.concatenate((pointsOut,np.asarray(pcd.points),pointsIn),axis = 0) labels = np.hstack((np.ones(pointsIn.shape[0],), np.zeros(pointsIn.shape[0],), -np.ones(pointsIn.shape[0],))) opd.draw_geometries([pcd]) return data,labels ############################################################################### ############################################################################### if __name__ == '__main__': #path = '/home/felipe/Desktop/Data_Heart/MM-WHS_2/Validacion_Surface/Point_cloud' nPart = 10 filename = os.path.join('Point_Cloud','bunny.ply') X,t = get_data_myc(filename) #--------------------------------------------------------- #Validation Train_Index,Test_Index = crossval_bal(X,t,nPart) print(X.shape[0]/3) #--------------------------------------------------------- #Classification initialization #-------------------------------------------------------- #main loop Kernel ='rbf' cDic = {} gammaDic = {} epsilonDic = {} errorDic = {} errorList2 = [] for ii in range(1): print('Fold ',ii+1,' of ' ,nPart) #----------------------------------------------------- #Partition Xtrain = X[Train_Index[ii]] Xtest = X[Test_Index[ii]] #Xtest = np.reshape(Xtest,(Xtest.shape[0],1)) tTrain = t[Train_Index[ii]] tTest = t[Test_Index[ii]] # y_dataR = t[Train_Index[ii]] # # cList, gammaList, epsilonList, errorList = FindParamSVR( Xtrain,tTrain,Kernel,y_dataR,ii) # #-------------------------------------------- # #Best Parametros indx = np.argmin(errorList) # cbest = cList[indx] gammabest = gammaList[indx] epsilonbest = epsilonList[indx] svr,t_est2 = svrTrain(Xtrain,tTrain,Xtest,Kernel,gammabest,cbest,epsilonbest) filename2 = os.path.join('Model','svrBunny'+str(ii+1)+'.joblib') print('SAVE ',filename2,'\n') dump(svr, filename2) Error2 = LA.norm((t_est2 - tTest))/LA.norm(tTest) errorList2.append(Error2) # # #------------------------------------------- # #save cDic[str(ii)] = cList gammaDic[str(ii)] = gammaList epsilonDic[str(ii)] = epsilonList errorDic[str(ii)] = errorList # np.save('data_save/cDicBunny.npy',cDic) np.save('data_save/gammaDicBunny.npy',gammaDic) np.save('data_save/epsilonDicBunny.npy',epsilonDic) np.save('data_save/errorDicBunny.npy',errorDic) np.save('data_save/error2DicBunny.npy',errorList2)
[ "noreply@github.com" ]
LuisFelipeArteaga.noreply@github.com
d34d5c5575b66e420737645c5c908346ca17c1d5
8b20ede3175df4fe3329ce6f5bc6c608d4066bd9
/2016-05-11-LDW-Selenium-facebook-select.py
a60a386019e78d8fa599851d4c071a200a5ca8c5
[ "MIT" ]
permissive
lukexyz/Selenium-Examples
487b048a41732eaf22b9f42397bcc325321b151f
70ec3f85a84e4657b5c275a74270d22aefe47e72
refs/heads/master
2021-01-01T05:11:06.483365
2016-05-17T10:59:07
2016-05-17T10:59:07
58,638,323
0
0
null
null
null
null
UTF-8
Python
false
false
1,043
py
from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support.select import Select import unittest import time class LoginTest(unittest.TestCase): def setUp(self): # Define driver self.driver = webdriver.Chrome() self.driver.get("https://www.facebook.com") def test_Login(self): driver = self.driver # Web element variables emailFieldID = "email" monthDropDownID = "month" # Create elements (allowing 10s to load) WebDriverWait(driver, 10).until(lambda driver: driver.find_element_by_id(emailFieldID)) monthDropDownElement = WebDriverWait(driver, 10).until(lambda driver: driver.find_element_by_id(monthDropDownID)) # Action: select month from drop down Select(monthDropDownElement).select_by_visible_text("May") # Verify the actions visually time.sleep(3) def tearDown(self): self.driver.quit() if __name__ == '__main__': unittest.main()
[ "lukedwoods@gmail.com" ]
lukedwoods@gmail.com
e1508f8201b4113f896bf0ace8208bf541a2431b
de4d88db6ea32d20020c169f734edd4b95c3092d
/aiotdlib/api/types/sponsored_message.py
d0baa01e34edffdfdd0b1242e871c3ddd8921c86
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
thiagosm/aiotdlib
5cc790a5645f7e4cc61bbd0791433ed182d69062
4528fcfca7c5c69b54a878ce6ce60e934a2dcc73
refs/heads/main
2023-08-15T05:16:28.436803
2021-10-18T20:41:27
2021-10-18T20:41:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,493
py
# =============================================================================== # # # # This file has been generated automatically!! Do not change this manually! # # # # =============================================================================== # from __future__ import annotations import typing from pydantic import Field from .internal_link_type import InternalLinkType from .message_content import MessageContent from ..base_object import BaseObject class SponsoredMessage(BaseObject): """ Describes a sponsored message :param id: Unique sponsored message identifier :type id: :class:`int` :param sponsor_chat_id: Chat identifier :type sponsor_chat_id: :class:`int` :param link: An internal link to be opened when the sponsored message is clicked; may be null. If null, the sponsor chat needs to be opened instead, defaults to None :type link: :class:`InternalLinkType`, optional :param content: Content of the message :type content: :class:`MessageContent` """ ID: str = Field("sponsoredMessage", alias="@type") id: int sponsor_chat_id: int link: typing.Optional[InternalLinkType] = None content: MessageContent @staticmethod def read(q: dict) -> SponsoredMessage: return SponsoredMessage.construct(**q)
[ "pylakey@protonmail.com" ]
pylakey@protonmail.com
1cfb6f95e2751534279008265249d4fcd99135a7
477b9d178fa0a5b60a234e845692c1b3ac42f20c
/python-basics/input-output/files-directories.py
3e6a3790d242079545837131a37e1518fd78757b
[]
no_license
DMS-online/python3-for-beginners
95c4a6036bf82f4f2991ca76ad3cdd448c9c8b6f
7721a8173187ae38792743d22c4e8565a60cb152
refs/heads/master
2023-03-16T02:02:01.378995
2020-04-17T03:20:46
2020-04-17T03:20:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
394
py
#Working with files and directories import os #Create a directory if (not os.path.isdir(os.getcwd() + "/files")) : os.mkdir("files") #Place a file in the directory with open ("files/test.txt", "w") as data: data.write("This is a test file") #Rename file os.rename("files/test.txt", "files/test2.txt") #Delete a file os.remove("files/test2.txt") #Delete a directory os.rmdir("files")
[ "leeassam@gmail.com" ]
leeassam@gmail.com
58735fe65a67b7f724a8be2f26ad1e17b44edd41
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03285/s132035467.py
cb2b23dc5e61a4328b3cff2153a67f2c568cb830
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
n=int(input()) for i in range(n): for j in range(n): if i*4+j*7==n: print('Yes') exit() print('No')
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
46653a9c57737b49f529a02867c747ffd19fc874
9b1323e7a3b14159a7de17cb76b5650c00ea3957
/train_data_resize.py
c2433805d7aade128cfa16cfbb8322315b7cc4f9
[]
no_license
amit-iiitm/ANPR
96f089c0088a07f84de4a8482e8d5753cedeefdc
3ae6bd3d313777688ee872d2603719d665106e20
refs/heads/master
2021-01-10T13:44:59.424946
2015-10-27T22:34:27
2015-10-27T22:34:27
45,073,727
2
0
null
null
null
null
UTF-8
Python
false
false
1,570
py
from multiprocessing import Pool from PIL import Image import os import os.path #p=Pool(5) def process_fpath(path): #listing=os.listdir(path) #im=Image.open(path1+path) inc=1 im=Image.open(path) im=im.convert('L') imw=im.size[0] imh=im.size[1] pix=im.load() start=0 flag=0 end=0 flag1=0 flag2=0 flag3=0 left=128 right=0 for i in range(1,imh): for j in range(1,imw): if (pix[i,j]!=255): flag=1 if (flag==1): start=i break for i in range(imh-1,-1,-1): for j in range(1,imw): if (pix[i,j]!=255): flag1=1 if (flag1==1): end=i break for i in range(1,imh): flag2=0 for j in range(1,imw): if (pix[i,j]!=255): flag2=1 if (flag2==1): left=min(left,j) break for i in range(imh-1,-1,-1): flag3=0 for j in range(1,imw): if (pix[i,j]!=255): flag3=1 if (flag3==1): right=max(right,j) break box=(left,start-10,right+5,end+10) area=im.crop(box) area.show() im.resize((28,28),Image.ANTIALIAS) #im1=im.copy() #loc=os.path.join('/home/nikhil/n/imp/btp/testimages/newimages/',inc+".jpg") #im1.save(loc) #inc=inc+1 im.show() #print start #print inc #im.save(os.path.join(path2,path), "JPEG") process_fpath('img.bmp')
[ "akumar4850@gmail.com" ]
akumar4850@gmail.com
24d5f241df7f107b548f10c64a50f3693ad6b648
bad9e83194cf042eb06e7c13f64520bbaeafa0a2
/lib/rosgraph/impl/__init__.py
6e2ea2e90c5c4f25417096a0f7076e21a3b6be99
[]
no_license
moocoder/MsgRouter
e0cddc0fde1a36184d6b4e46174e59d647a186ac
0c9305208696e2fb62fc7f4b67b6e6e4d2b3c1b4
refs/heads/master
2021-01-10T06:09:50.121985
2016-03-21T14:42:40
2016-03-21T14:42:40
53,139,897
0
0
null
null
null
null
UTF-8
Python
false
false
1,668
py
# Software License Agreement (BSD License) # # Copyright (c) 2009, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Revision $Id: __init__.py 5735 2009-08-20 21:31:27Z sfkwc $
[ "clouderow@gmail.com" ]
clouderow@gmail.com
ed63d950e87ed10e96578f8dbf94561087eac0f7
cc7349f85a1eac68729acfc0118d59a3fac56181
/applications/TransactiveEnergy-eioc/ControllerAgent/controller/controllerAgent.py
6bc8c9287b413dd545faef71eabc1bc5958fddd5
[]
no_license
YingyingTang111/GOSS-GridAPPS-D
cb5fd9e6dab39263fe1eb30c8b55bb8be1b26e6c
5a08a5592c6fc1fe83ba3e630957578c77d38aac
refs/heads/master
2021-09-10T14:19:29.766291
2018-03-27T17:01:45
2018-03-27T17:01:45
105,942,437
0
0
null
2017-10-05T21:29:34
2017-10-05T21:29:33
null
UTF-8
Python
false
false
71,996
py
import datetime import logging import sys import uuid import math import warnings import json from volttron.platform.vip.agent import Agent, Core, PubSub, compat from volttron.platform.agent import utils from volttron.platform.messaging import topics, headers as headers_mod from matplotlib import cm utils.setup_logging() _log = logging.getLogger(__name__) __version__ = '0.1' def controller_agent(config_path, **kwargs): # Obtain the agent subscription and initial values from config file config = utils.load_config(config_path) houses = config['houses'] aggregatorDetail = config['aggregator'] aggregatorInfo = config['aggregator_information'] fncs_bridgeInfo = config['fncs_bridge'] # agentSubscription = config['subscriptions'] # agentInitialVal = config['initial_value'] class controllerAgent(Agent): '''This agent is the bottom level controller that bids the price and quantity to the upper level agent, recives the clearing price, and adjusts the house set point accordingly ''' def __init__(self, **kwargs): super(controllerAgent, self).__init__(**kwargs) self.startTime = datetime.datetime.now() _log.info('Simulation starts from: {0} in controller agent {1}.'.format(str(self.startTime), config['agentid'])) houseGroupId = config['agentid'].replace('controller', '') # Initialize the instance variables self.aggregator = {'name': 'none', 'market_id': 0, 'average_price': -1, 'std_dev': -1, 'clear_price': -1, \ 'initial_price': -1, 'price_cap':9999.0, 'period': -1} # market information for aggregator agent - Market registration information # self.aggregator['name'] = self.controller[houseName]['aggregatorName'] self.aggregator['market_id'] = aggregatorInfo['market_id'] self.aggregator['market_unit'] = aggregatorInfo['aggregator_unit'] self.aggregator['initial_price'] = aggregatorInfo['initial_price'] self.aggregator['average_price'] = aggregatorInfo['average_price'] self.aggregator['std_dev'] = aggregatorInfo['std_dev'] self.aggregator['clear_price'] = aggregatorInfo['clear_price'] self.aggregator['price_cap'] = aggregatorInfo['price_cap'] self.aggregator['period'] = aggregatorInfo['period'] # self.house = {} self.controller = {} self.controller_bid = {} # self.bidded = {} self.subscriptions = {} self.allHouseBids = {} # Initialize the variables - loop through each house controlled by this controller for oneHouse in houses: houseName = oneHouse.keys() if len(houseName) != 1: raise ValueError('For each house, more than one house keys are given') else: houseName = houseName[0] houseInfo = oneHouse[houseName] agentInitialVal = houseInfo['initial_value'] agentSubscription = houseInfo['subscriptions'] self.house[houseName] = {'target': 'air_temperature', 'setpoint0':-1, 'lastsetpoint0': 0, 'hvac_load': 1, 'controlled_load_curr': 1, \ 'uncontrolled_load': 1, 'deadband': 0, 'air_temperature': -1, 'power_state': 'UNKNOWN', 'last_pState': 'UNKNOWN', 'heating_demand': 0, 'cooling_demand': 0, 'aux_state': 0, 'heat_state': 0, 'cool_state': 0, 'thermostat_state': 'UNKNOWN', 'heating_setpoint0': -1, 'cooling_setpoint0': -1, 're_override': 'NORMAL', 'UA': 0.0, 'mass_heat_coeff': 0.0, 'air_heat_capacity_cd': 0.0, 'mass_heat_capacity': 0.0, 'solar_gain': 0.0, 'heat_cool_gain': 0.0, 'outdoor_temperature': 0.0, 'mass_temperature': 0.0, 'design_cooling_capacity':0.0, 'cooling_COP': 0.0 } self.controller[houseName] = {'name': 'none','marketName': 'none', 'houseName': 'none', 'simple_mode': 'none', 'setpoint': 'none', 'lastbid_id': -1, 'lastmkt_id': -1, 'bid_id': 'none', \ 'slider_setting': -0.001, 'period': -1, 'ramp_low': 0, 'ramp_high': 0, 'range_low': 0, \ 'range_high': 0, 'dir': 0, 'direction': 0, 'use_predictive_bidding': 0, 'deadband': 0, 'last_p': 0, \ 'last_q': 0, 'setpoint0': -1, 'minT': 0, 'maxT': 0, 'bid_delay': 60, 'next_run': 0, 't1': 0, 't2': 0, 'use_override': 'OFF', 'control_mode': 'CN_RAMP', 'resolve_mode': 'DEADBAND', 'slider_setting': -0.001, 'slider_setting_heat': -0.001, 'slider_setting_cool': -0.001, 'sliding_time_delay': -1, 'heat_range_high': 3, 'heat_range_low': -5, 'heat_ramp_high': 0, 'heating_ramp_low': 0, 'cool_range_high': 5, 'cool_range_low': -3, 'cooling_ramp_high': 0, 'cooling_ramp_low': 0, 'heating_setpoint0': -1, 'cooling_setpoint0': -1, 'heating_demand': 0, 'cooling_demand': 0, 'sliding_time_delay': -1, 'thermostat_mode': 'INVALID', 'last_mode': 'INVALID', 'previous_mode': 'INVALID', 'time_off': sys.maxsize } self.controller_bid[houseName] = {'market_id': -1, 'bid_id': 'none', 'bid_price': 0.0, 'bid_quantity': 0, 'bid_accepted': 1, \ 'state': 'UNKNOWN', 'rebid': 0} # Read and assign initial values from agentInitialVal # controller information self.controller[houseName]['name'] = houseName #config['agentid'] self.controller[houseName]['ctrl_cap'] = agentInitialVal['controller_information']['ctrl_cap'] self.controller[houseName]['control_mode'] = agentInitialVal['controller_information']['control_mode'] self.controller[houseName]['aggregatorName'] = agentInitialVal['controller_information']['aggregatorName'] self.controller[houseName]['houseName'] = agentInitialVal['controller_information']['houseName'] self.controller[houseName]['bid_id'] = agentInitialVal['controller_information']['bid_id'] self.controller[houseName]['period'] = agentInitialVal['controller_information']['period'] self.controller[houseName]['ramp_low'] = agentInitialVal['controller_information']['ramp_low'] self.controller[houseName]['ramp_high'] = agentInitialVal['controller_information']['ramp_high'] self.controller[houseName]['range_low'] = agentInitialVal['controller_information']['range_low'] self.controller[houseName]['range_high'] = agentInitialVal['controller_information']['range_high'] self.controller[houseName]['setpoint0'] = agentInitialVal['controller_information']['base_setpoint'] # self.controller[houseName]['bid_delay'] = agentInitialVal['controller_information']['bid_delay'] self.controller[houseName]['use_predictive_bidding'] = agentInitialVal['controller_information']['use_predictive_bidding'] self.controller[houseName]['use_override'] = agentInitialVal['controller_information']['use_override'] self.controller[houseName]['last_setpoint'] = self.controller[houseName]['setpoint0'] # Read in pre-run hvac and Qh data self.house[houseName]['hvac_load'] = agentInitialVal['controller_information']['hvac_load'] self.house[houseName]['heat_cool_gain'] = agentInitialVal['controller_information']['heat_cool_gain'] # house information - values will be given after the first time step, thereforely here set as default zero values self.house[houseName]['air_temperature'] = 0 self.house[houseName]['power_state'] = "ON" # self.house[houseName]['hvac_load'] = 0 self.house[houseName]['target'] = "air_temperature" self.house[houseName]['deadband'] = 2 self.house[houseName]['MassInternalGainFraction'] = 0.5 self.house[houseName]['MassSolarGainFraction'] = 0.5 self.house[houseName]['Qi'] = 6819.0 self.house[houseName]['cooling_COP'] = 4.07 self.controller[houseName]['deadband'] = self.house[houseName]['deadband'] # self.house['setpoint0'] = 0 # self.house['lastsetpoint0'] = self.house['setpoint0'] ## Rearrange object based on given initial value # Assign default values if it is simple mode: if self.controller[houseName]['simple_mode'] == 'house_heat': self.controller[houseName]['setpoint'] = 'heating_setpoint' self.controller[houseName]['ramp_low'] = self.controller[houseName]['ramp_high'] = -2 self.controller[houseName]['range_low'] = -5 self.controller[houseName]['range_high'] = 0 self.controller[houseName]['dir'] = -1 elif self.controller[houseName]['simple_mode'] == 'house_cool': self.controller[houseName]['setpoint'] = 'cooling_setpoint' self.controller[houseName]['ramp_low'] = self.controller[houseName]['ramp_high'] = 2 self.controller[houseName]['range_low'] = 0 self.controller[houseName]['range_high'] = 5 self.controller[houseName]['dir'] = 1 elif self.controller[houseName]['simple_mode'] == 'house_preheat': self.controller[houseName]['setpoint'] = 'heating_setpoint' self.controller[houseName]['ramp_low'] = self.controller[houseName]['ramp_high'] = -2 self.controller[houseName]['range_low'] = -5 self.controller[houseName]['range_high'] = 3 self.controller[houseName]['dir'] = -1 elif self.controller[houseName]['simple_mode'] == 'house_precool': self.controller[houseName]['setpoint'] = 'cooling_setpoint' self.controller[houseName]['ramp_low'] = self.controller[houseName]['ramp_high'] = 2 self.controller[houseName]['range_low'] = -3 self.controller[houseName]['range_high'] = 5 self.controller[houseName]['dir'] = 1 elif self.controller[houseName]['simple_mode'] == 'waterheater': self.controller[houseName]['setpoint'] = 'tank_setpoint' self.controller[houseName]['ramp_low'] = self.controller[houseName]['ramp_high'] = -2 self.controller[houseName]['range_low'] = 0 self.controller[houseName]['range_high'] = 10 elif self.controller[houseName]['simple_mode'] == 'double_ramp': self.controller[houseName]['heating_setpoint'] = 'heating_setpoint' self.controller[houseName]['cooling_setpoint'] = 'cooling_setpoint' self.controller[houseName]['heat_ramp_low'] = self.controller[houseName]['heat_ramp_high'] = -2 self.controller[houseName]['heat_range_low'] = -1 self.controller[houseName]['heat_range_high'] = 5 self.controller[houseName]['cool_ramp_low'] = self.controller[houseName]['cool_ramp_high'] = 2 self.controller[houseName]['cool_range_low'] = 5 self.controller[houseName]['cool_range_high'] = 5 # Update controller bidding period: if self.controller[houseName]['period'] == 0.0: self.controller[houseName]['period'] = 60 # If the controller time interval is smaller than the aggregator time interval if self.aggregator['period'] > self.controller[houseName]['period']: if self.aggregator['period'] % self.controller[houseName]['period'] != 0: warnings.warn('The supply bid and demand bids do not coincide, with the given aggregator time interval\ %d s and controller time interval %d s' % (self.aggregator['period'], self.controller[houseName]['period'])) elif self.aggregator['period'] < self.controller[houseName]['period']: # It is not allowed to have larger controller time interval than the market time interval warnings.warn('The controller time interval %d s is larger than the aggregator time interval %d s' \ % (self.controller[houseName]['period'], self.aggregator['period'])) # Update bid delay: if self.controller[houseName]['bid_delay'] < 0: self.controller[houseName]['bid_delay'] = -self.controller[houseName]['bid_delay'] if self.controller[houseName]['bid_delay'] > self.controller[houseName]['period']: warnings.warn('Bid delay is greater than the controller period. Resetting bid delay to 0.') self.controller[houseName]['bid_delay'] = 0 # Check for abnormal input given if self.controller[houseName]['use_predictive_bidding'] == 1 and self.controller[houseName]['deadband'] == 0: warnings.warn('Controller deadband property not specified') # Calculate dir: if self.controller[houseName]['dir'] == 0: high_val = self.controller[houseName]['ramp_high'] * self.controller[houseName]['range_high'] low_val = self.controller[houseName]['ramp_low'] * self.controller[houseName]['range_low'] if high_val > low_val: self.controller[houseName]['dir'] = 1 elif high_val < low_val: self.controller[houseName]['dir'] = -1 elif high_val == low_val and (abs(self.controller[houseName]['ramp_high']) > 0.001 or abs(self.controller[houseName]['ramp_low']) > 0.001): self.controller[houseName]['dir'] = 0 if abs(self.controller[houseName]['ramp_high']) > 0: self.controller[houseName]['direction'] = 1 else: self.controller[houseName]['direction'] = -1 if self.controller[houseName]['ramp_low'] * self.controller[houseName]['ramp_high'] < 0: warnings.warn('controller price curve is not injective and may behave strangely') # Check double_ramp controller mode: if self.controller[houseName]['sliding_time_delay'] < 0: self.controller[houseName]['sliding_time_delay'] = 21600 # default sliding_time_delay of 6 hours else: self.controller[houseName]['sliding_time_delay'] = int(self.controller[houseName]['sliding_time_delay']) # use_override if self.controller[houseName]['use_override'] == 'ON' and self.controller[houseName]['bid_delay'] <= 0: self.controller[houseName]['bid_delay'] = 1 # Check slider_setting values if self.controller[houseName]['control_mode'] == 'CN_RAMP' or self.controller[houseName]['control_mode'] == 'CN_DOUBLE_PRICE': if self.controller[houseName]['slider_setting'] < -0.001: warnings.warn('slider_setting is negative, reseting to 0.0') self.controller[houseName]['slider_setting'] = 0.0 elif self.controller[houseName]['slider_setting'] > 1.0: warnings.warn('slider_setting is greater than 1.0, reseting to 1.0') self.controller[houseName]['slider_setting'] = 1.0 # Obtain minnn and max values - presync part in GLD if self.controller[houseName]['slider_setting'] == -0.001: minT = self.controller[houseName]['setpoint0'] + self.controller[houseName]['range_low'] maxT = self.controller[houseName]['setpoint0'] + self.controller[houseName]['range_high'] elif self.controller[houseName]['slider_setting'] > 0: minT = self.controller[houseName]['setpoint0'] + self.controller[houseName]['range_low'] * self.controller[houseName]['slider_setting'] maxT = self.controller[houseName]['setpoint0'] + self.controller[houseName]['range_high'] * self.controller[houseName]['slider_setting'] if self.controller[houseName]['range_low'] != 0: self.controller[houseName]['ramp_low'] = 2 + (1 - self.controller[houseName]['slider_setting']) else: self.controller[houseName]['ramp_low'] = 0 if self.controller[houseName]['range_high'] != 0: self.controller[houseName]['ramp_high'] = 2 + (1 - self.controller[houseName]['slider_setting']) else: self.controller[houseName]['ramp_high'] = 0 else: minT = maxT = self.controller[houseName]['setpoint0'] # Update controller parameters self.controller[houseName]['minT'] = minT; self.controller[houseName]['maxT'] = maxT; else: raise ValueError('Currently only the ramp mode controller is defined') # Intialize controller own parameters (the same for all houses) self.controller['next_run'] = self.startTime self.controller['lastmkt_id'] = -1 self.controller['bid_delay'] = agentInitialVal['controller_information']['bid_delay'] self.controller['period'] = agentInitialVal['controller_information']['period'] self.bid = True # Flag indicating whether controller has submitted the bid in this market period, withoout changes of house setpoints or power state # self.bidded[houseName] = False # Intialize the controller last time price and quantity self.controller[houseName]['last_p'] = self.aggregator['initial_price'] self.controller[houseName]['last_q'] = 0 ## Read and define subscription topics from agentSubscription self.subscriptions[houseName] = [] # Check agentSubscription house = agentSubscription['house'] if len(house) != 1: raise ValueError('The controller is defined to control more/less than one house, which is not correct') # subscription from house for key, val in house[0].items(): if self.controller[houseName]['houseName'] != key: raise ValueError('The house name written into subscriptions is not the same as in initial_value') self.subscriptions[houseName] = [] for key2, val2 in val.items(): # topic = 'fncs/output/devices/fncs_Test/' + key + '/' + key2 self.subscriptions[houseName].append(key2) # Put house property into subscriptions, rather than topic # subscription from aggregator agent aggregator = aggregatorDetail if len(aggregator) != 1: raise ValueError('The controller is defined to be controlled by more/less than one aggregator agent, which is not correct') for key, val in aggregator[0].items(): if self.controller[houseName]['aggregatorName'] != key: raise ValueError('The aggregator name written into subscriptions is not the same as in initial_value') self.subscriptions['aggregator'] = '' topic = 'aggregator/' + key + '/all' self.subscriptions['aggregator'] = topic # subscription from fncs_bridge self.subscriptions['fncs_bridge'] = [] fncs_bridge = fncs_bridgeInfo[0] for key, val in fncs_bridge.items(): topic = key + '/simulation_end' self.subscriptions['fncs_bridge'].append(topic) @Core.receiver('onsetup') def setup(self, sender, **kwargs): self._agent_id = config['agentid'] @Core.receiver('onstart') def startup(self, sender, **kwargs): # Initialize subscription function to change setpoints # Subscription to houses in GridLAB-D needs to post-process JSON format messages of all GLD objects together subscription_topic = 'fncs/output/devices/fncs_Test/fncs_output' self.vip.pubsub.subscribe(peer='pubsub', prefix=subscription_topic, callback=self.on_receive_house_message_fncs) # for oneHouse in houses: # houseName = oneHouse.keys() # if len(houseName) != 1: # raise ValueError('For each house, more than one house keys are given') # else: # houseName = houseName[0] # # Assign to subscription topics # for subscription_topic in self.subscriptions[houseName]: # _log.info('Subscribing to ' + subscription_topic) # self.vip.pubsub.subscribe(peer='pubsub', # prefix=subscription_topic, # callback=self.on_receive_house_message_fncs) # Initialize subscription function for aggregator subscription_topic = self.subscriptions['aggregator'] _log.info('Subscribing to ' + subscription_topic) self.vip.pubsub.subscribe(peer='pubsub', prefix=subscription_topic, callback=self.on_receive_aggregator_message) # Initialize subscription function to fncs_bridge: for topic in self.subscriptions['fncs_bridge']: _log.info('Subscribing to ' + topic) self.vip.pubsub.subscribe(peer='pubsub', prefix=topic, callback=self.on_receive_fncs_bridge_message_fncs) # ====================extract float from string =============================== def get_num(self,fncs_string): return float(''.join(ele for ele in fncs_string if ele.isdigit() or ele == '.')) # ====================Obtain values from house =========================== def on_receive_house_message_fncs(self, peer, sender, bus, topic, headers, message): """Subscribe to house publications and change the data accordingly """ # _log.info("Whole message", topic, message) # #The time stamp is in the headers # _log.info('Date', headers['Date']) # Recieve from GLD the property values of all configured objects, need to extract the house objects and the corresponding properties # Extract the message message = json.loads(message[0]) val = message['fncs_Test'] for oneHouse in houses: houseName = oneHouse.keys() if len(houseName) != 1: raise ValueError('For each house, more than one house keys are given') else: houseName = houseName[0] # Assign to subscription topics for subscription_property in self.subscriptions[houseName]: valTemp = val[houseName][subscription_property] if valTemp != self.house[houseName][subscription_property]: if subscription_property != 'power_state': valTemp = float(valTemp) # Record hvac load value only when non-zero if (subscription_property == 'hvac_load'): if (valTemp > 0.0): self.house[houseName][subscription_property] = valTemp else: self.house[houseName][subscription_property] = valTemp else: self.house[houseName][subscription_property] = valTemp # _log.info('Controller {0:s} recieves from house {2:s} the property {1:s} value {3:s}.'.format(config['agentid'], subscription_property, houseName, str(valTemp))) # # Find the object name who sends the message # device = topic.split("/")[-2] # # Find the property sent # topicProperty = topic.split("/")[-1] # # Update controller data for house # val = message[0] # if "air_temperature" == topicProperty: # self.house[device]['air_temperature'] = val # # _log.info('Controller {0:s} recieves from house {2:s} the current temperature {1:f}.'.format(config['agentid'], val, device)) # if "power_state" == topicProperty: # self.house[device]['power_state'] = val # # _log.info('Controller {0:s} recieves from house {2:s} the power state {1:s}.'.format(config['agentid'], val, device)) # if "hvac_load" == topicProperty: # self.house[device]['hvac_load'] = val # # _log.info('Controller {0:s} recieves from house {2:s} the hvac load amount {1:f}.'.format(config['agentid'], val, device)) # ====================Obtain values from aggregator =========================== def on_receive_aggregator_message(self, peer, sender, bus, topic, headers, message): """Subscribe to aggregator publications and change the data accordingly """ # Find the aggregator name who sends the message aggregatorName = topic.split("/")[-2] # Update controller data val = message[0] # _log.info('At time {1:s}, controller {0:s} recieves from aggregator the cleared data.'.format(self.controller['name']), self.timeSim.strftime("%Y-%m-%d %H:%M:%S")) self.aggregator['market_id'] = val['market_id'] self.aggregator['std_dev'] = val['std_dev'] self.aggregator['average_price'] = val['average_price'] self.aggregator['clear_price']= val['clear_price'] self.aggregator['price_cap'] = val['price_cap'] self.aggregator['initial_price'] = val['initial_price'] # ====================Obtain values from fncs_bridge =========================== def on_receive_fncs_bridge_message_fncs(self, peer, sender, bus, topic, headers, message): """Subscribe to fncs_bridge publications and change the data accordingly """ val = message[0] # value True # _log.info('Aggregator {0:s} recieves from fncs_bridge the simulation ends message {1:s}'.format(self.market['name'], val)) if (val == 'True'): # Dump to JSON fies and close the files # print (json.dumps(self.controller_bids_metrics), file=controller_op) # print (json.dumps(self.aggregator_cleared_metrics), file=aggregator_op) # aggregator_op.close() # controller_op.close() # End the agent self.core.stop() # ==================== Obtain Tmin value ======================================= def calcTemp1(self, monitor, deadband, powerstate): if powerstate == 'OFF': Tmin = monitor - deadband *0.5 else: Tmin = monitor + deadband *0.5 return Tmin # =================== Obtain Tmax value ======================================== def calcTemp2(self, Ua, Hm, Ca, Cm, MassInternalGainFraction, MassSolarGainFraction, Qi, Qs, Qh, Tout, monitor, Tmass, deadband, powerstate): # Qh = -3.802783436188669e+04 # Initialization Qh_estimate = 0.0 Qh_average = 0.0 Qh_count = 0.0 if Qh < 0.0: Qh_estimate = Qh if Qh_count > 0.0: Qh_average = (Qh_average * Qh_count + Qh) / (Qh_count + 1.0) Qh_count = Qh_count + 1.0 else: Qh_average = Qh Qh_count = 1.0 else: Qh_estimate = Qh_average Qa_OFF = ((1 - MassInternalGainFraction)*Qi) + ((1 - MassSolarGainFraction)*Qs) Qa_ON = Qh + ((1 - MassInternalGainFraction)*Qi) + ((1 - MassSolarGainFraction)*Qs) Qm = (MassInternalGainFraction*Qi) + (MassSolarGainFraction*Qs) A_ETP = [[0.0, 0.0],[0.0, 0.0]] B_ETP_ON = [0.0, 0.0] B_ETP_OFF = [0.0, 0.0] x = [monitor, Tmass] L = [1.0, 0.0] T = (self.controller['bid_delay'] + self.controller['period']) / 3600.0 AEI = [[0.0, 0.0], [0.0, 0.0]] LAEI = [0.0, 0.0] AET = [[0.0, 0.0], [0.0, 0.0]] eAET = [[0.0, 0.0], [0.0, 0.0]] LT = [0.0, 0.0] AEx = [0.0, 0.0] AxB_ON = [0.0, 0.0] AxB_OFF = [0.0, 0.0] LAxB = 0.0 LAIB = 0.0 Tmax = 0.0 if Ca != 0.0: A_ETP[0][0] = -1.0 * (Ua + Hm) / Ca A_ETP[0][1] = Hm / Ca B_ETP_ON[0] = (Ua * Tout / Ca) + (Qa_ON / Ca) B_ETP_OFF[0] = (Ua * Tout / Ca) + (Qa_OFF / Ca); if Cm != 0.0: A_ETP[1][0] = Hm / Cm A_ETP[1][1] = -1.0 * Hm / Cm B_ETP_ON[1] = Qm / Cm B_ETP_OFF[1] = Qm / Cm # Calculate inverse of A_ETP detA = 0.0 if(((A_ETP[0][0]*A_ETP[1][1]) - (A_ETP[0][1]*A_ETP[1][0])) != 0.0): detA = ((A_ETP[0][0]*A_ETP[1][1]) - (A_ETP[0][1]*A_ETP[1][0])) AEI[0][0] = A_ETP[1][1]/detA AEI[0][1] = -1*A_ETP[0][1]/detA AEI[1][1] = A_ETP[0][0]/detA AEI[1][0] = -1*A_ETP[1][0]/detA else: if powerstate == 'OFF': return monitor - deadband / 2.0 else: return monitor + deadband / 2.0 # Calculate exp(A_ETP*T) AET[0][0] = A_ETP[0][0]*T AET[0][1] = A_ETP[0][1]*T AET[1][0] = A_ETP[1][0]*T AET[1][1] = A_ETP[1][1]*T if (AET[0][1] == 0.0 and AET[1][0] == 0.0): #diagonal matrix eAET[0][0] = math.exp(AET[0][0]) eAET[0][1] = 0.0 eAET[1][0] = 0.0 eAET[1][1] = math.exp(AET[1][1]) elif AET[1][0] == 0.0: # upper triangular matrix if(math.fabs(AET[0][0] - AET[1][1]) <= 1e-37): #nilpotent eAET[0][0] = math.exp(AET[0][0]) eAET[0][1] = math.exp(AET[0][0]) * AET[0][1] eAET[1][0] = 0.0 eAET[1][1] = math.exp(AET[0][0]) else: eAET[0][0] = math.exp(AET[0][0]) eAET[0][1] = (AET[0][1]*(math.exp(AET[0][0]) - math.exp(AET[1][1])))/(AET[0][0] - AET[1][1]) eAET[1][0] = 0.0 eAET[1][1] = math.exp(AET[1][1]) else: discr = (AET[0][0] - AET[1][1])*(AET[0][0] - AET[1][1]) + (4.0*AET[0][1]*AET[1][0]) pre = math.exp((AET[0][0] + AET[1][1])/2.0) g = 0.0 if(math.fabs(discr) <= 1e-37): eAET[0][0] = pre*(1.0 + ((AET[0][0] - AET[1][1])/2.0)) eAET[0][1] = pre*AET[0][1] eAET[1][0] = pre*AET[1][0] eAET[1][1] = pre*(1.0 - ((AET[0][0] - AET[1][1])/2.0)) elif (discr > 1e-37): g = 0.5*math.sqrt(discr) eAET[0][0] = pre*(math.cosh(g) + ((AET[0][0] - AET[1][1])*math.sinh(g)/(2.0*g))) eAET[0][1] = pre*AET[0][1]*math.sinh(g)/g eAET[1][0] = pre*AET[1][0]*math.sinh(g)/g eAET[1][1] = pre*(math.cosh(g) - ((AET[0][0] - AET[1][1])*math.sinh(g)/(2.0*g))) else: g = 0.5*math.sqrt(math.fabs(discr)); eAET[0][0] = pre*(math.cos(g) + ((AET[0][0] - AET[1][1])*math.sin(g)/(2.0*g))) eAET[0][1] = pre*AET[0][1]*math.sin(g)/g eAET[1][0] = pre*AET[1][0]*math.sin(g)/g eAET[1][1] = pre*(math.cos(g) - ((AET[0][0] - AET[1][1])*math.sin(g)/(2.0*g))) # Calculate L*inv(A_ETP) LAEI[0] = (L[0]*AEI[0][0]) + (L[1]*AEI[1][0]) LAEI[1] = (L[0]*AEI[0][1]) + (L[1]*AEI[1][1]) # Calculate L*inv(A_ETP)expm(A_ETP*T) LT[0] = (LAEI[0]*eAET[0][0]) + (LAEI[1]*eAET[1][0]) LT[1] = (LAEI[0]*eAET[0][1]) + (LAEI[1]*eAET[1][1]) # Calculate A_ETP*x AEx[0] = (A_ETP[0][0]*x[0]) + (A_ETP[0][1]*x[1]) AEx[1] = (A_ETP[1][0]*x[0]) + (A_ETP[1][1]*x[1]) # Calculate A_ETP*x + B_ETP_ON/OFF AxB_OFF[0] = AEx[0] + B_ETP_OFF[0] AxB_OFF[1] = AEx[1] + B_ETP_OFF[1] AxB_ON[0] = AEx[0] + B_ETP_ON[0] AxB_ON[1] = AEx[1] + B_ETP_ON[1] # Calculate L*inv(A_ETP)expm(A_ETP*T)(A_ETP*x + B_ETP_ON/OFF) LAxB_ON = (LT[0]*AxB_ON[0]) + (LT[1]*AxB_ON[1]) LAxB_OFF = (LT[0]*AxB_OFF[0]) + (LT[1]*AxB_OFF[1]) # Calculate L*inv(A_ETP)*B_ETP_ON/OFF # if powerstate == 'OFF': LAIB_OFF = (LAEI[0]*B_ETP_OFF[0]) + (LAEI[1]*B_ETP_OFF[1]) # else: LAIB_ON = (LAEI[0]*B_ETP_ON[0]) + (LAEI[1]*B_ETP_ON[1]) # Calculate L*inv(A_ETP)expm(A_ETP*T)(A_ETP*x + B_ETP_ON/OFF) - L*inv(A_ETP)*B_ETP_ON/OFF +/- halfband tmpOFF = LAxB_OFF - LAIB_OFF tmpON = LAxB_ON - LAIB_ON # Calculate Tmin and Tmax seperately if powerstate == 'OFF': Tmin = min(monitor - (deadband/2.0), tmpON + (deadband/2.0))# LAxB - LAIB - (deadband/2.0) Tmax = tmpOFF - (deadband/2.0) else: Tmin = tmpON + (deadband/2.0) Tmax = max(monitor + (deadband/2.0), tmpOFF - (deadband/2.0)) Tavg = (Tmin + Tmax) / 2.0 return Tavg @Core.periodic(1) def controller_implementation(self): ''' This method comes from the sync and poostsync part of the controller source code in GLD ''' self.controller_sync() self.controller_postsync() # ====================Sync content =========================== def controller_sync(self): ''' This method comes from the sync and poostsync part of the controller source code in GLD ''' # Creat dict to store all bids to markets # allHouseBids = {} # Inputs from market object: marketId = self.aggregator['market_id'] clear_price = self.aggregator['clear_price'] avgP = self.aggregator['average_price'] stdP = self.aggregator['std_dev'] bid_delay = self.controller['bid_delay'] # Update controller t1 information self.controller['t1'] = datetime.datetime.now() # determine what we have to do in this sync step update_setpoints = False update_bid = False # ========================================= Test ========================================== # update_bid = True # ========================================= Test ========================================== if marketId != self.controller['lastmkt_id']: # print ('sync: market changed, need to update the setpoints', t1, next_run, marketId, lastmkt_id) update_setpoints = True self.controller['lastmkt_id'] = marketId elif self.controller['t1'] >= self.controller['next_run'] - datetime.timedelta(0,bid_delay) and self.bid == True: # ony allow one bid in one market cycle # print ('sync: t1 within bidding window, need to publish bid and state', t1, next_run - bid_delay) update_bid = True else: # print (' returning', next_run) return for oneHouse in houses: houseName = oneHouse.keys() if len(houseName) != 1: raise ValueError('For each house, more than one house keys are given') else: houseName = houseName[0] # # Update controller t1 information # self.controller[houseName]['t1'] = datetime.datetime.now() # Inputs from controller: ramp_low = self.controller[houseName]['ramp_low'] ramp_high = self.controller[houseName]['ramp_high'] range_low = self.controller[houseName]['range_low'] range_high = self.controller[houseName]['range_high'] deadband = self.controller[houseName]['deadband'] setpoint0 = self.controller[houseName]['setpoint0'] last_setpoint = self.controller[houseName]['last_setpoint'] minT = self.controller[houseName]['minT'] maxT = self.controller[houseName]['maxT'] # bid_delay = self.controller[houseName]['bid_delay'] direction = self.controller[houseName]['direction'] ctrl_cap = self.controller[houseName]['ctrl_cap'] # Inputs from house object: demand = self.house[houseName]['hvac_load'] monitor = self.house[houseName]['air_temperature'] powerstate = self.house[houseName]['power_state'] # variables needed for double_price bid mode Ua = self.house[houseName]['UA'] Hm = self.house[houseName]['mass_heat_coeff'] Ca = self.house[houseName]['air_heat_capacity_cd'] Cm = self.house[houseName]['mass_heat_capacity'] MassInternalGainFraction = self.house[houseName]['MassInternalGainFraction'] MassSolarGainFraction = self.house[houseName]['MassSolarGainFraction'] Qi = self.house[houseName]['Qi'] Qs = self.house[houseName]['solar_gain'] Qh = self.house[houseName]['heat_cool_gain'] Tout = self.house[houseName]['outdoor_temperature'] Tmass = self.house[houseName]['mass_temperature'] # print (" sync:", demand, power_state, monitor, last_setpoint, deadband, direction, clear_price, avgP, stdP) # # Check t1 to determine if the sync part is needed to be processed or not # if self.controller[houseName]['t1'] == self.controller[houseName]['next_run'] and marketId == lastmkt_id : # return # # if self.controller[houseName]['t1'] < self.controller[houseName]['next_run'] and marketId == lastmkt_id : # if self.controller[houseName]['t1'] <= self.controller[houseName]['next_run'] - datetime.timedelta(0,bid_delay): # if self.controller[houseName]['use_predictive_bidding'] == 1 and ((self.controller[houseName]['control_mode'] == 'CN_RAMP' and setpoint0 != last_setpoint)): # # Base set point setpoint0 is changed, and therefore sync is needed: # pass # elif self.house[houseName]['last_pState'] != powerstate: # # house power state is changed, therefore sync is needed # pass # elif self.controller[houseName]['use_override'] == 'ON' and self.controller[houseName]['t1'] >= self.controller[houseName]['next_run']- datetime.timedelta(0,bid_delay) and self.bidded[houseName] == False : # # At the exact time that controller is operating, therefore sync is needed: # self.bidded[houseName] = True # set it as true so that in the same controller period, it will not bid without the changes of house setpoint/power state # pass # else: # return # else: # return # If market get updated, then update the set point deadband_shift = 0 # Set deadband shift if user predictive bidding is true if self.controller[houseName]['use_predictive_bidding'] == 1: deadband_shift = 0.5 * deadband # controller update house setpoint if market clears if self.controller[houseName]['control_mode'] == 'CN_RAMP' or self.controller[houseName]['control_mode'] == 'CN_DOUBLE_PRICE': # If market clears, update the setpoints based on cleared market price; # Or, at the beginning of the simlation, update house setpoint based on controller settings (lastmkt_id == -1 at the begining, therefore will go through here) # if marketId != lastmkt_id: if update_setpoints == True: # Update controller last market id and bid id # self.controller[houseName]['lastmkt_id'] = marketId self.controller[houseName]['lastbid_id'] = -1 self.controller_bid[houseName]['rebid'] = 0 # Calculate shift direction shift_direction = 0 if self.controller[houseName]['control_mode'] == 'CN_RAMP' and self.controller[houseName]['use_predictive_bidding'] == 1: if (self.controller[houseName]['dir'] > 0 and clear_price < self.controller[houseName]['last_p']) or (self.controller[houseName]['dir'] < 0 and clear_price > self.controller[houseName]['last_p']): shift_direction = -1 elif (self.controller[houseName]['dir'] > 0 and clear_price >= self.controller[houseName]['last_p']) or (self.controller[houseName]['dir'] < 0 and clear_price <= self.controller[houseName]['last_p']): shift_direction = 1 else: shift_direction = 0 # Calculate updated set_temp if self.controller[houseName]['control_mode'] == 'CN_RAMP': if abs(stdP) < 0.0001: set_temp = setpoint0 elif clear_price < avgP and range_low != 0: set_temp = setpoint0 + (clear_price - avgP) * abs(range_low) / (ramp_low * stdP) + deadband_shift*shift_direction elif clear_price > avgP and range_high != 0: set_temp = setpoint0 + (clear_price - avgP) * abs(range_high) / (ramp_high * stdP) + deadband_shift*shift_direction else: set_temp = last_setpoint # setpoint0 + deadband_shift*shift_direction else: if abs(stdP) < 0.0001: set_temp = setpoint0 elif clear_price < avgP and range_low != 0: set_temp = setpoint0 + (clear_price - avgP) * abs(range_low) / (ramp_low * stdP) elif clear_price > avgP and range_high != 0: set_temp = setpoint0 + (clear_price - avgP) * abs(range_high) / (ramp_high * stdP) else: set_temp = last_setpoint #setpoint0 # override # if self.controller[houseName]['use_override'] == 'ON' and self.house[houseName]['re_override'] != 'none': # if clear_price <= self.controller[houseName]['last_p']: # self.fncs_publish['controller'][self.controller[houseName]['name']]['override_prop'] = 'ON' # else: # self.fncs_publish['controller'][self.controller[houseName]['name']]['override_prop'] = 'OFF' # Check if set_temp is out of limit if set_temp > maxT: set_temp = maxT elif set_temp < minT: set_temp = minT # Update last_setpoint if changed if last_setpoint != set_temp: self.controller[houseName]['last_setpoint'] = set_temp # Update house set point # if self.controller[houseName]['next_run'] != self.startTime: # At starting time of the simulation, setpoints also need to be updated # Publish the changed setpoints: pub_topic = 'fncs/input/' + houseName + '/cooling_setpoint' # pub_topic = 'fncs/input' + houseGroupId + '/controller_' + houseName + '/cooling_setpoint' _log.info('controller agent {0} publishes updated setpoints {1} to house controlled with topic: {2}'.format(config['agentid'], set_temp, pub_topic)) #Create timestamp now = datetime.datetime.utcnow().isoformat(' ') + 'Z' headers = { headers_mod.DATE: now } self.vip.pubsub.publish('pubsub', pub_topic, headers, set_temp) # Calculate bidding price ## ------------- ramp controller bid calculation ----------------------------------------- if self.controller[houseName]['control_mode'] == 'CN_RAMP': # Bidding price when monitored load temperature is at the min and max limit of the controller bid_price = -1 no_bid = 0 T_avg = 0.0 if self.controller[houseName]['dir'] > 0: if self.controller[houseName]['use_predictive_bidding'] == 1: if powerstate == 'OFF' and monitor > (maxT - deadband_shift): bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif powerstate != 'OFF' and monitor < (minT + deadband_shift): bid_price = 0 no_bid = 1 elif powerstate != 'OFF' and monitor > maxT: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif powerstate == 'OFF' and monitor < minT: bid_price = 0 no_bid = 1 else: if monitor > maxT: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif monitor < minT: bid_price = 0 no_bid = 1 elif self.controller[houseName]['dir'] < 0: if self.controller[houseName]['use_predictive_bidding'] == 1: if powerstate == 'OFF' and monitor < (minT + deadband_shift): bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif powerstate != 'OFF' and monitor > (maxT - deadband_shift): bid_price = 0 no_bid = 1 elif powerstate != 'OFF' and monitor < minT: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif powerstate == 'OFF' and monitor > maxT: bid_price = 0 no_bid = 1 else: if monitor < minT: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif monitor > maxT: bid_price = 0 no_bid = 1 elif self.controller[houseName]['dir'] == 0: if self.controller[houseName]['use_predictive_bidding'] == 1: if not(direction): warnings.warn('the variable direction did not get set correctly') elif ((monitor > maxT + deadband_shift) or (powerstate != 'OFF' and monitor > minT - deadband_shift)) and direction > 0: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif ((monitor < minT - deadband_shift) or (powerstate != 'OFF' and monitor < maxT + deadband_shift)) and direction < 0: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif powerstate == 'OFF' and monitor > maxT: bid_price = 0 no_bid = 1 else: if monitor < minT: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif monitor > maxT: bid_price = 0 no_bid = 1 else: bid_price = avgP # Bidding price when the monitored load temperature is within the controller temp limit if monitor > setpoint0: k_T = ramp_high T_lim = range_high elif monitor < setpoint0: k_T = ramp_low T_lim = range_low else: k_T = 0 T_lim = 0 bid_offset = 0.0001 if bid_price < 0 and monitor != setpoint0: if abs(stdP) < bid_offset: bid_price = avgP else: bid_price = avgP + (monitor - setpoint0)*(k_T * stdP) / abs(T_lim) elif monitor == setpoint0: bid_price = avgP # Update the outputs if demand > 0 and no_bid != 1: # Update bid price and quantity self.controller[houseName]['last_p'] = bid_price self.controller[houseName]['last_q'] = demand # Check market unit with controller default unit kW if (self.aggregator['market_unit']).lower() != "kW": if (self.aggregator['market_unit']).lower() == "w": self.controller[houseName]['last_q'] = self.controller[houseName]['last_q']*1000 elif (self.aggregator['market_unit']).lower() == "mw": self.controller[houseName]['last_q'] = self.controller[houseName]['last_q']/1000 # Update parameters self.controller_bid[houseName]['market_id'] = self.controller['lastmkt_id'] self.controller_bid[houseName]['bid_price'] = self.controller[houseName]['last_p'] self.controller_bid[houseName]['bid_quantity'] = self.controller[houseName]['last_q'] # Set controller_bid state self.controller_bid[houseName]['state'] = powerstate else: # Update bid price and quantity self.controller[houseName]['last_p'] = 0 self.controller[houseName]['last_q'] = 0 # Update controller_bid parameters self.controller_bid[houseName]['market_id'] = 0 self.controller_bid[houseName]['bid_price'] = 0 self.controller_bid[houseName]['bid_quantity'] = 0 ## ------------- double_price controller bid calculation ----------------------------------------- else: # Calculate the temperature used for bid # ================================================== TEST ========================================================= # monitor = 72.94548906584963 # Ua = 441.77610735085636 # Hm = 4173.792160282198 # Ca = 322.4454408 # Cm = 3042.1163728000006 # MassInternalGainFraction = 0.5 # MassSolarGainFraction = 0.5 # Qi = 6819.0 # Qs = 0.0 # Tout = 76.204 # Tmass = 72.72451992089181 # powerstate = 'OFF' # # setpoint0 = 72.04 # avgP = 65 # stdP = 16 # maxT = 77.69579380701853 # minT = 66.31803185749966 # ramp_high = 1.7248877792031796 # range_high = 5.6557938070185285 # ramp_low = 1.7232495193001907 # range_low = -5.721968142500344 # ==================================================TEST ========================================================= # ================================================== PRINT ========================================================= # if (houseName == 'house_3_7B_tm_3_B_7_Meter_95_1104' or houseName == 'house_3_15B_tm_3_B_15_Meter_87_1037'): # print('House name:', houseName) # print('House with monitor,Ua, Hm, Ca, Cm, MassInternalGainFraction, MassSolarGainFraction, Qi, Qs, Qh, Tout, monitor, Tmass, deadband, powerstate =', monitor,Ua, Hm, Ca, Cm, MassInternalGainFraction, MassSolarGainFraction, Qi, Qs, Qh, Tout, monitor, Tmass, deadband, powerstate) # print('House setpoint0, avgP, stdP, k_T, T_lim, maxT, minT, ramp_high, range_high, ramp_low, range_low:', setpoint0, avgP, stdP, k_T, T_lim, maxT, minT, ramp_high, range_high, ramp_low, range_low) # ================================================== PRINT ========================================================= # T_min = self.calcTemp1(monitor, deadband, powerstate) T_avg = self.calcTemp2(Ua, Hm, Ca, Cm, MassInternalGainFraction, MassSolarGainFraction, Qi, Qs, Qh, Tout, monitor, Tmass, deadband, powerstate) # T_avg = (T_min + T_max) / 2.0 # Based on temperature, get the bid price bid_price = -1 no_bid = 0 if self.controller[houseName]['dir'] > 0: if self.controller[houseName]['use_predictive_bidding'] == 1: if powerstate == 'OFF' and T_avg > (maxT - deadband_shift): bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif powerstate != 'OFF' and T_avg < (minT + deadband_shift): bid_price = 0 no_bid = 1 elif powerstate != 'OFF' and T_avg > maxT: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif powerstate == 'OFF' and T_avg < minT: bid_price = 0 no_bid = 1 else: if T_avg > maxT: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif T_avg < minT: bid_price = 0 no_bid = 1 elif self.controller[houseName]['dir'] < 0: if self.controller[houseName]['use_predictive_bidding'] == 1: if powerstate == 'OFF' and T_avg < (minT + deadband_shift): bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif powerstate != 'OFF' and T_avg > (maxT - deadband_shift): bid_price = 0 no_bid = 1 elif powerstate != 'OFF' and T_avg < minT: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif powerstate == 'OFF' and T_avg > maxT: bid_price = 0 no_bid = 1 else: if T_avg < minT: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif T_avg > maxT: bid_price = 0 no_bid = 1 elif self.controller[houseName]['dir'] == 0: if self.controller[houseName]['use_predictive_bidding'] == 1: if not(direction): warnings.warn('the variable direction did not get set correctly') elif ((T_avg > maxT + deadband_shift) or (powerstate != 'OFF' and T_avg > minT - deadband_shift)) and direction > 0: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif ((T_avg < minT - deadband_shift) or (powerstate != 'OFF' and T_avg < maxT + deadband_shift)) and direction < 0: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif powerstate == 'OFF' and T_avg > maxT: bid_price = 0 no_bid = 1 else: if T_avg < minT: bid_price = self.aggregator['price_cap']-1 #ctrl_cap elif T_avg > maxT: bid_price = 0 no_bid = 1 else: bid_price = avgP # Bidding price when T_avg temperature is within the controller temp limit if T_avg > setpoint0: k_T = ramp_high T_lim = range_high elif T_avg < setpoint0: k_T = ramp_low T_lim = range_low else: k_T = 0 T_lim = 0 bid_offset = 0.0001 if bid_price < 0 and T_avg != setpoint0: if abs(stdP) < bid_offset: bid_price = avgP else: bid_price = avgP + (T_avg - setpoint0)*(k_T * stdP) / abs(T_lim) elif T_avg == setpoint0: bid_price = avgP # Update the outputs (no_bid is not used) # Update bid price and quantity # Check bid quantity for each house. If it is never turn on starting from simulation, need to get it bid quantity value if demand <= 0: demand = self.house[houseName]['design_cooling_capacity']*0.001/(3.4120*4.07) # self.controller[houseName]['last_p'] = bid_price self.controller[houseName]['last_q'] = demand # Check market unit with controller default unit kW if (self.aggregator['market_unit']).lower() != "kW": if (self.aggregator['market_unit']).lower() == "w": self.controller[houseName]['last_q'] = self.controller[houseName]['last_q']*1000 elif (self.aggregator['market_unit']).lower() == "mw": self.controller[houseName]['last_q'] = self.controller[houseName]['last_q']/1000 # Update parameters self.controller_bid[houseName]['market_id'] = self.controller['lastmkt_id'] self.controller_bid[houseName]['bid_price'] = self.controller[houseName]['last_p'] self.controller_bid[houseName]['bid_quantity'] = self.controller[houseName]['last_q'] # Set controller_bid state self.controller_bid[houseName]['state'] = powerstate else: raise ValueError('Currently only the ramp mode or double_price mode controller is defined') # Update house last power state self.house[houseName]['last_pState'] = powerstate # Display the bid only when bidding quantity if not 0 if self.controller_bid[houseName]['bid_quantity'] > 0 and self.controller_bid[houseName]['bid_price'] > 0.0: _log.info('At time {0:s}, house {5:s} bids information stored with market_id {1:d}, base setpoint is {9}, monitored temperature is {7} F, average temperature for bidding is {8} F, bidding price is {2:f} $, bidding quantity is {3:f} kW, rebid is {4:d}, state is {6}'.format(self.controller['t1'].strftime("%Y-%m-%d %H:%M:%S"), self.controller_bid[houseName]['market_id'], self.controller_bid[houseName]['bid_price'], self.controller_bid[houseName]['bid_quantity'], self.controller_bid[houseName]['rebid'], self.controller[houseName]['name'], self.house[houseName]['last_pState'], monitor, T_avg, setpoint0)) # Issue a bid, if appropriate if self.controller_bid[houseName]['bid_quantity'] > 0.0 and self.controller_bid[houseName]['bid_price'] > 0.0: # Publish the changed setpoints: # Create a message for all points. all_message = {'market_id': self.controller_bid[houseName]['market_id'], 'bid_id': self.controller[houseName]['name'], 'price': self.controller_bid[houseName]['bid_price'], 'quantity': self.controller_bid[houseName]['bid_quantity'], 'bid_accepted': no_bid == 0, 'state': self.controller_bid[houseName]['state'], 'rebid': self.controller_bid[houseName]['rebid'], 'bid_name': self.controller[houseName]['name'] } # pub_topic = 'controller/controller_' + houseName + '/all' # _log.info('controller agent {0} publishes bids to aggregator with topic: {1}'.format(config['agentid'], pub_topic)) #Create timestamp # now = datetime.datetime.utcnow().isoformat(' ') + 'Z' # headers = { # headers_mod.DATE: now # } # self.vip.pubsub.publish('pubsub', pub_topic, headers, all_message) # Store the publish data temporarily here self.allHouseBids[houseName] = all_message # print(' (temp,state,load,avg,std,clear,cap,init)',self.house[houseName]['air_temperature'],self.house[houseName]['power_state'],self.house[houseName]['hvac_load'],self.market['average_price'],self.market['std_dev'],self.market['clear_price'],self.market['price_cap'],self.market['initial_price']) # print (timeSim, 'Bidding PQSrebid',self.controller_bid[houseName]['bid_price'],self.controller_bid[houseName]['bid_quantity'],self.controller_bid[houseName]['state'],self.controller_bid[houseName]['rebid']) # Set controller_bid rebid value to true after publishing self.controller_bid[houseName]['rebid'] = 1 # Publish all houses bids together if update_bid == True and len(self.allHouseBids) != 0 and self.bid == True: pub_topic = 'controller/' + config['agentid'] + '/all' # _log.info('controller agent {0} publishes bids to aggregator with message: {1}'.format(config['agentid'], str(allHouseBids))) _log.info('controller agent {0} publishes bids to aggregator'.format(config['agentid'])) #Create timestamp now = datetime.datetime.utcnow().isoformat(' ') + 'Z' headers = { headers_mod.DATE: now } self.vip.pubsub.publish('pubsub', pub_topic, headers, self.allHouseBids) self.bid = False # Set it as false until the next market cycle self.allHouseBids = {} # ====================Postsync content =========================== def controller_postsync(self): ''' This method comes from the postsync part of the controller source code in GLD ''' if self.controller['t1'] >= self.controller['next_run']: self.controller['next_run'] += datetime.timedelta(0,self.controller['period']) self.bid = True for oneHouse in houses: houseName = oneHouse.keys() if len(houseName) != 1: raise ValueError('For each house, more than one house keys are given') else: houseName = houseName[0] # Update last setpoint if setpoint0 changed # if (self.controller[houseName]['control_mode'] == 'CN_RAMP' or self.controller[houseName]['control_mode'] == 'CN_DOUBLE_PRICE') and self.controller[houseName]['last_setpoint'] != self.controller[houseName]['setpoint0']: # self.controller[houseName]['last_setpoint'] = self.controller[houseName]['setpoint0'] # Compare t1 with next_run # if self.controller[houseName]['t1'] < self.controller[houseName]['next_run'] - self.controller[houseName]['bid_delay']: # postsyncReturn = self.controller[houseName]['next_run'] - self.controller[houseName]['bid_delay'] # return postsyncReturns # # if self.controller[houseName]['t1'] - self.controller[houseName]['next_run'] < self.controller[houseName]['bid_delay']: # postsyncReturn = self.controller[houseName]['next_run'] Agent.__name__ = config['agentid'] return controllerAgent(**kwargs) def main(argv=sys.argv): '''Main method called by the eggsecutable.''' try: utils.vip_main(controller_agent) except Exception as e: print e _log.exception('unhandled exception') if __name__ == '__main__': # Entry point for script try: sys.exit(main()) except KeyboardInterrupt: pass
[ "Thomas.McDermott@pnnl.gov" ]
Thomas.McDermott@pnnl.gov
cf25d98d80195e4a85904cdae8c075d9d448de2e
e6cf76a21b532a28d5093abe0638e730453b900a
/hirednot/hired.py
ebf7a21b25e1c6110948c5f2915150e6e7af3612
[]
no_license
chinmay002/HiredorNot
0b7e326e6cbbbb53ef28c9756c674aaba73a325b
18653ec74e29084dc01f43d121f503c4dcdfdacb
refs/heads/master
2023-03-23T23:47:53.588580
2020-08-14T09:31:12
2020-08-14T09:31:12
284,063,487
0
0
null
2021-03-20T04:59:36
2020-07-31T15:04:32
HTML
UTF-8
Python
false
false
2,058
py
import pickle from flask import Flask,render_template,request import sklearn app=Flask(__name__) model = pickle.load(open('model_upd.pkl','rb')) @app.route("/") def home(): return render_template("basic.html") @app.route("/predict", methods = ["GET", "POST"]) def predict(): if request.method == "POST": #gender sex=request.form['gn'] if sex=='M': sex=1 else: sex=0 #sslc percentage sslc=float(request.form['sslcp']) #PUC percentage puc=float(request.form['pup']) #degree percentage degree=float(request.form['degp']) #enterance exam ent=float(request.form['etest']) #mba percentage mba=float(request.form['mbap']) #pucstream pucstream=request.form['pu_s'] if pucstream=='Commerce': pucstream=2 elif pucstream=='Science': pucstream=1 else: pucstream=0 #Dedree Stream degstream=request.form['deg_s'] if degstream=='Comm&Mgmt': degstream=2 elif degstream=='Sci&Tech': degstream=1 else: degstream=0 #Work Exp work_exp=request.form['w_exp'] if work_exp=='Yes': work_exp=1 else: work_exp=0 #MBA specialisation mbas=request.form['mba_s'] if mbas =='Mkt&HR': mbas=1 else: mbas=0 prediction=model.predict([[sslc,puc,degree,ent,mba,pucstream,degstream,sex,work_exp,mbas]]) output=prediction[0] #print(output) if output=='Placed': return render_template("basic.html",text="Congrats You are {}!!!!!".format(output)) else: return render_template("basic.html",text="Sorry!! you'r {} Better luck next time ".format(output)) #return render_template("basic.html")
[ "noreply@github.com" ]
chinmay002.noreply@github.com
5d7a0f8526dc63f238a3f6f2206db5b31e8b70c5
e999e5618ca462ddcbc41baae4edec91fc92ab87
/HNews.py
f370b9a173bdca77b5ade0636235f545812172ff
[]
no_license
maadpeal/DC_Hnews
0b8758168b3103724cb4620439d29bc14930b577
48cb5d5d5b7ac2140e679ed21258ab982d32336a
refs/heads/master
2020-07-29T23:49:35.664557
2019-09-21T15:15:19
2019-09-21T15:15:19
210,006,453
0
0
null
null
null
null
UTF-8
Python
false
false
2,042
py
from csv import reader import datetime as dt opened_file = open('hacker_news.csv') read_file = reader(opened_file) hn = list(read_file) ask_posts = [] show_posts = [] other_posts = [] #In this step we're going to separated the publications for row in hn: title = row[1].lower() if title.startswith('ask hn'): ask_posts.append(row) elif title.startswith('show hn'): show_posts.append(row) else: other_posts.append(row) # here we add the comments by each publication def totalComments(lista, indice): total_comments = 0 for row in lista: num_comments = int(row[indice]) total_comments += num_comments return total_comments total = totalComments(ask_posts, 4) avg_ask_comments = total / len(ask_posts) print(avg_ask_comments) total_show = totalComments(show_posts, 4) avg_show_comments = total_show / len(show_posts) print(avg_show_comments) result_list = [] for row in ask_posts: created_at = row[6] num_comments = int(row[4]) result_list.append([created_at, num_comments]) counts_by_hour = {} comments_by_hour = {} for row in result_list: date, time = row[0].split() #print(time) #here is the hour #print(date) #8/28/2016 date = dt.datetime.strptime(date, '%m/%d/%Y') if time not in counts_by_hour: counts_by_hour[time] = 1 comments_by_hour[time] = row[1] else: counts_by_hour[time] += 1 comments_by_hour[time] += row[1] avg_by_hour = [] for row in counts_by_hour: avg_by_hour.append([row, comments_by_hour[row] / counts_by_hour[row]]) swap_avg_by_hour = [] for element in avg_by_hour: swap_avg_by_hour.append([element[1], element[0]]) sorted_swap = swap_avg_by_hour.sort(reverse = True) #print(swap_avg_by_hour) sorted_swap = swap_avg_by_hour print(sorted_swap[:3]) for lista in sorted_swap: date = dt.datetime.strptime(lista[1], '%H:%M') date = dt.datetime.strftime(date, '%H:%M') string = "{} {:.2f} average comments per post".format(date, lista[0]) print(string)
[ "matuteaa@globalhitss.com" ]
matuteaa@globalhitss.com
7c58225e0298f0eb97d46880cdce6e151cba4249
3fe710bc9480a938255520fc565a2b0364064df7
/test/client.py
08fc96c58bc29fbe41f34b4034658886048ae154
[]
no_license
jakearmendariz/loadbalancer
7c4b6ad4cdcd995a5ca7b42c9ceeb99df0b485a8
5cc4e62a2afb5c14459df3482aad0e1af90fb473
refs/heads/master
2022-12-01T05:51:47.836249
2020-08-07T22:30:11
2020-08-07T22:30:11
271,505,536
2
0
null
null
null
null
UTF-8
Python
false
false
1,036
py
#Load Balancer timer import time, os, threading, sys def single_run(): tm = time.time() command = "curl localhost:1234/httpserver > out" result = os.system(command) if result == 0: return time.time() - tm else: return -1 file = open("results."+sys.argv[1], "w+") def closed_loop(): count = 0 while count < 400/int(sys.argv[1]): tm = single_run() count += 1 if tm != -1: file.write(str(tm) + "\n") else: file.write(str(-1)+"\n") time.sleep(.25) time.sleep(.2) concurrency = int(sys.argv[1]) tm = time.time() thread_array = [] for i in range(concurrency): thread_array.append(threading.Thread(target=closed_loop)) thread_array[i].start() for i in range(concurrency): thread_array[i].join() print("TOTAL TIME", round(time.time() - tm, 3)) file.close() #return round(time.time() - tm, 3) # 2 2.71s user 4.36s system 14% cpu 47.554 total # 10 3.13s user 5.63s system 48% cpu 17.905 total
[ "jakearmendariz99@gmail.com" ]
jakearmendariz99@gmail.com
cc22eb65548658c38744428507dca2a687dfba3f
c8dd7d899d0fe203b9bf29ccc3e979b853285fc0
/myGUI.py
77a7ee1c40c1913b619a5714d6bd566569ebd5f3
[]
no_license
HankSeametrics/AutoDocumentation
988e79df2d9ca923d4196d88e0889eb882b4dbd1
b51803391c1a44f9ca4c98aca57d77f869c16510
refs/heads/master
2020-06-20T09:36:14.359120
2019-07-17T01:49:11
2019-07-17T01:49:11
197,079,725
0
0
null
null
null
null
UTF-8
Python
false
false
2,863
py
#---------------------------------------------------------------------- # Bench Issue Documentation Generator GUI ''' author: Henry Beck ''' # date: 07/16/2019 # email: hbeck@seametrics.com #---------------------------------------------------------------------- #---------------------------------------------------------------------- # Revision Log # # Rev Date Author Description #---------------------------------------------------------------------- ''' 1 2019/07/16 HTB (1) Initial Release ''' #---------------------------------------------------------------------- # MODULES #---------------------------------------------------------------------- import wx class FrontPanel(wx.Frame): def __init__(self, parent, title): super(FrontPanel, self).__init__(parent, title = title,size = (350,250)) panel = wx.Panel(self) vbox = wx.BoxSizer(wx.VERTICAL) hbox1 = wx.BoxSizer(wx.HORIZONTAL) l1 = wx.StaticText(panel, -1, "Text Field") hbox1.Add(l1, 1, wx.EXPAND|wx.ALIGN_LEFT|wx.ALL,5) self.t1 = wx.TextCtrl(panel) hbox1.Add(self.t1,1,wx.EXPAND|wx.ALIGN_LEFT|wx.ALL,5) self.t1.Bind(wx.EVT_TEXT,self.OnKeyTyped) vbox.Add(hbox1) hbox2 = wx.BoxSizer(wx.HORIZONTAL) l2 = wx.StaticText(panel, -1, "password field") hbox2.Add(l2, 1, wx.ALIGN_LEFT|wx.ALL,5) self.t2 = wx.TextCtrl(panel,style = wx.TE_PASSWORD) self.t2.SetMaxLength(5) hbox2.Add(self.t2,1,wx.EXPAND|wx.ALIGN_LEFT|wx.ALL,5) vbox.Add(hbox2) self.t2.Bind(wx.EVT_TEXT_MAXLEN,self.OnMaxLen) hbox3 = wx.BoxSizer(wx.HORIZONTAL) l3 = wx.StaticText(panel, -1, "Multiline Text") hbox3.Add(l3,1, wx.EXPAND|wx.ALIGN_LEFT|wx.ALL,5) self.t3 = wx.TextCtrl(panel,size = (200,100),style = wx.TE_MULTILINE) hbox3.Add(self.t3,1,wx.EXPAND|wx.ALIGN_LEFT|wx.ALL,5) vbox.Add(hbox3) self.t3.Bind(wx.EVT_TEXT_ENTER,self.OnEnterPressed) hbox4 = wx.BoxSizer(wx.HORIZONTAL) l4 = wx.StaticText(panel, -1, "Read only text") hbox4.Add(l4, 1, wx.EXPAND|wx.ALIGN_LEFT|wx.ALL,5) self.t4 = wx.TextCtrl(panel, value = "ReadOnlyText",style = wx.TE_READONLY|wx.TE_CENTER) hbox4.Add(self.t4,1,wx.EXPAND|wx.ALIGN_LEFT|wx.ALL,5) vbox.Add(hbox4) panel.SetSizer(vbox) self.Centre() self.Show() self.Fit() def OnKeyTyped(self, event): print event.GetString() def OnEnterPressed(self,event): print "Enter pressed" def OnMaxLen(self,event): print "Maximum length reached" if __name__ == '__main__': app = wx.App() frm = FrontPanel(None, 'TextCtrl demo') frm.Show() app.MainLoop()
[ "hbeck@seametrics.com" ]
hbeck@seametrics.com
4ad8afc10d1dee60125ddd7a1ab867ca80fbc3ec
e9d37df3750fac7a39bcb4a5ce6e5e22f9487998
/1295FindNumbersEven.py
01b1f1838923587e4fd5f2bc76e80d14fa6c2f76
[ "MIT" ]
permissive
vkaushik189/ltcode_solutions
cf985d2b2f47406f2a0cc108f9e127dba2ce9da7
035a74ee51d636989aa183e16c6ebb81dfccf74c
refs/heads/master
2021-07-03T12:50:32.470448
2020-08-05T02:44:22
2020-08-05T02:44:22
132,412,974
0
0
MIT
2020-07-23T03:02:15
2018-05-07T05:48:32
Python
UTF-8
Python
false
false
196
py
class Solution: def findNumbers(self, nums: List[int]) -> int: count = 0 for num in nums: if len(str(num)) % 2 == 0: count += 1 return count
[ "noreply@github.com" ]
vkaushik189.noreply@github.com
ac26164832c46775f5a84e39ca503cf215374a68
98e4f7d2d7e7813d4029acdab76d08161eeac240
/tests/utils/test_requirements_utils.py
f7162a97b20d3185af1c91ee93a27ee014a8082c
[ "Apache-2.0" ]
permissive
dmatrix/mlflow
dd013c1bb9dd8cacd163024e42cec37b821ca3ae
c2aeec21298fa05006a7a0030651d27ad578fae7
refs/heads/master
2021-08-29T09:41:36.776475
2021-08-17T02:06:47
2021-08-17T02:06:47
144,213,366
2
1
Apache-2.0
2018-08-09T23:30:59
2018-08-09T23:30:59
null
UTF-8
Python
false
false
9,122
py
import os import sys import importlib from unittest import mock import importlib_metadata import pytest import mlflow from mlflow.utils.requirements_utils import ( _is_comment, _is_empty, _is_requirements_file, _strip_inline_comment, _join_continued_lines, _parse_requirements, _prune_packages, _strip_local_version_label, _get_installed_version, _get_pinned_requirement, _module_to_packages, _infer_requirements, ) def test_is_comment(): assert _is_comment("# comment") assert _is_comment("#") assert _is_comment("### comment ###") assert not _is_comment("comment") assert not _is_comment("") def test_is_empty(): assert _is_empty("") assert not _is_empty(" ") assert not _is_empty("a") def test_is_requirements_file(): assert _is_requirements_file("-r req.txt") assert _is_requirements_file("-r req.txt") assert _is_requirements_file("--requirement req.txt") assert _is_requirements_file("--requirement req.txt") assert not _is_requirements_file("req") def test_strip_inline_comment(): assert _strip_inline_comment("aaa # comment") == "aaa" assert _strip_inline_comment("aaa # comment") == "aaa" assert _strip_inline_comment("aaa # comment") == "aaa" assert _strip_inline_comment("aaa # com1 # com2") == "aaa" # Ensure a URI fragment is not stripped assert ( _strip_inline_comment("git+https://git/repo.git#subdirectory=subdir") == "git+https://git/repo.git#subdirectory=subdir" ) def test_join_continued_lines(): assert list(_join_continued_lines(["a"])) == ["a"] assert list(_join_continued_lines(["a\\", "b"])) == ["ab"] assert list(_join_continued_lines(["a\\", "b\\", "c"])) == ["abc"] assert list(_join_continued_lines(["a\\", " b"])) == ["a b"] assert list(_join_continued_lines(["a\\", " b\\", " c"])) == ["a b c"] assert list(_join_continued_lines(["a\\", "\\", "b"])) == ["ab"] assert list(_join_continued_lines(["a\\", "b", "c\\", "d"])) == ["ab", "cd"] assert list(_join_continued_lines(["a\\", "", "b"])) == ["a", "b"] assert list(_join_continued_lines(["a\\"])) == ["a"] assert list(_join_continued_lines(["\\", "a"])) == ["a"] def test_parse_requirements(request, tmpdir): """ Ensures `_parse_requirements` returns the same result as `pip._internal.req.parse_requirements` """ from pip._internal.req import parse_requirements as pip_parse_requirements from pip._internal.network.session import PipSession root_req_src = """ # No version specifier noverspec no-ver-spec # Version specifiers verspec<1.0 ver-spec == 2.0 # Environment marker env-marker; python_version < "3.8" inline-comm # Inline comment inlinecomm # Inline comment # Git URIs git+https://github.com/git/uri git+https://github.com/sub/dir#subdirectory=subdir # Requirements files -r {relative_req} --requirement {absolute_req} # Constraints files -c {relative_con} --constraint {absolute_con} # Line continuation line-cont\ ==\ 1.0 # Line continuation with spaces line-cont-space \ == \ 1.0 # Line continuation with a blank line line-cont-blank\ # Line continuation at EOF line-cont-eof\ """.strip() try: os.chdir(tmpdir) root_req = tmpdir.join("requirements.txt") # Requirements files rel_req = tmpdir.join("relative_req.txt") abs_req = tmpdir.join("absolute_req.txt") # Constraints files rel_con = tmpdir.join("relative_con.txt") abs_con = tmpdir.join("absolute_con.txt") # pip's requirements parser collapses an absolute requirements file path: # https://github.com/pypa/pip/issues/10121 # As a workaround, use a relative path on Windows. absolute_req = abs_req.basename if os.name == "nt" else abs_req.strpath absolute_con = abs_con.basename if os.name == "nt" else abs_con.strpath root_req.write( root_req_src.format( relative_req=rel_req.basename, absolute_req=absolute_req, relative_con=rel_con.basename, absolute_con=absolute_con, ) ) rel_req.write("rel-req-xxx\nrel-req-yyy") abs_req.write("abs-req-zzz") rel_con.write("rel-con-xxx\nrel-con-yyy") abs_con.write("abs-con-zzz") expected_cons = [ "rel-con-xxx", "rel-con-yyy", "abs-con-zzz", ] expected_reqs = [ "noverspec", "no-ver-spec", "verspec<1.0", "ver-spec == 2.0", 'env-marker; python_version < "3.8"', "inline-comm", "inlinecomm", "git+https://github.com/git/uri", "git+https://github.com/sub/dir#subdirectory=subdir", "rel-req-xxx", "rel-req-yyy", "abs-req-zzz", "line-cont==1.0", "line-cont-space == 1.0", "line-cont-blank", "line-cont-eof", ] parsed_reqs = list(_parse_requirements(root_req.basename, is_constraint=False)) pip_reqs = list(pip_parse_requirements(root_req.basename, session=PipSession())) # Requirements assert [r.req_str for r in parsed_reqs if not r.is_constraint] == expected_reqs assert [r.requirement for r in pip_reqs if not r.constraint] == expected_reqs # Constraints assert [r.req_str for r in parsed_reqs if r.is_constraint] == expected_cons assert [r.requirement for r in pip_reqs if r.constraint] == expected_cons finally: os.chdir(request.config.invocation_dir) def test_prune_packages(): assert _prune_packages(["mlflow"]) == {"mlflow"} assert _prune_packages(["mlflow", "packaging"]) == {"mlflow"} assert _prune_packages(["mlflow", "scikit-learn"]) == {"mlflow", "scikit-learn"} def test_capture_imported_modules(): from mlflow.utils._capture_modules import _CaptureImportedModules with _CaptureImportedModules() as cap: # pylint: disable=unused-import,unused-variable import math __import__("pandas") importlib.import_module("numpy") assert "math" in cap.imported_modules assert "pandas" in cap.imported_modules assert "numpy" in cap.imported_modules def test_strip_local_version_label(): assert _strip_local_version_label("1.2.3") == "1.2.3" assert _strip_local_version_label("1.2.3+ab") == "1.2.3" assert _strip_local_version_label("1.2.3rc0+ab") == "1.2.3rc0" assert _strip_local_version_label("1.2.3.dev0+ab") == "1.2.3.dev0" assert _strip_local_version_label("1.2.3.post0+ab") == "1.2.3.post0" assert _strip_local_version_label("invalid") == "invalid" def test_get_installed_version(tmpdir): import numpy as np import pandas as pd import sklearn assert _get_installed_version("mlflow") == mlflow.__version__ assert _get_installed_version("numpy") == np.__version__ assert _get_installed_version("pandas") == pd.__version__ assert _get_installed_version("scikit-learn", module="sklearn") == sklearn.__version__ not_found_package = tmpdir.join("not_found.py") not_found_package.write("__version__ = '1.2.3'") sys.path.insert(0, tmpdir.strpath) with pytest.raises(importlib_metadata.PackageNotFoundError): importlib_metadata.version("not_found") assert _get_installed_version("not_found") == "1.2.3" def test_get_pinned_requirement(tmpdir): assert _get_pinned_requirement("mlflow") == f"mlflow=={mlflow.__version__}" assert _get_pinned_requirement("mlflow", version="1.2.3") == "mlflow==1.2.3" not_found_package = tmpdir.join("not_found.py") not_found_package.write("__version__ = '1.2.3'") sys.path.insert(0, tmpdir.strpath) with pytest.raises(importlib_metadata.PackageNotFoundError): importlib_metadata.version("not_found") assert _get_pinned_requirement("not_found") == "not_found==1.2.3" def test_get_pinned_requirement_local_version_label(tmpdir): package = tmpdir.join("my_package.py") lvl = "abc.def.ghi" # Local version label package.write(f"__version__ = '1.2.3+{lvl}'") sys.path.insert(0, tmpdir.strpath) with mock.patch("mlflow.utils.requirements_utils._logger.warning") as mock_warning: req = _get_pinned_requirement("my_package") mock_warning.assert_called_once() (first_pos_arg,) = mock_warning.call_args[0] assert first_pos_arg.startswith( f"Found my_package version (1.2.3+{lvl}) contains a local version label (+{lvl})." ) assert req == "my_package==1.2.3" def test_infer_requirements_excludes_mlflow(): with mock.patch( "mlflow.utils.requirements_utils._capture_imported_modules", return_value=["mlflow", "pytest"], ): mlflow_package = "mlflow-skinny" if "MLFLOW_SKINNY" in os.environ else "mlflow" assert mlflow_package in _module_to_packages("mlflow") assert _infer_requirements("path/to/model", "sklearn") == [f"pytest=={pytest.__version__}"]
[ "noreply@github.com" ]
dmatrix.noreply@github.com
4e2d2adc4f5b779288b87fd7bdab986597cd7602
f4a9d5937d2dde264a61a53e6b5c79f25bd12c28
/a1.py
ed7ea5edb284de92a14914a12a6e2422fe517b34
[]
no_license
iloveinter/test
a48b2e88454aa541968303fac86be43eefc21e5c
3fda1f53112b5acd21c9226e13e0a65e826b4af3
refs/heads/master
2020-06-25T11:47:12.339544
2019-07-29T03:28:40
2019-07-29T03:28:40
199,299,980
0
0
null
null
null
null
UTF-8
Python
false
false
42
py
x = 4 y = 7 for i in [5,6] z = x + i
[ "zhanghouyu@vip.126.com" ]
zhanghouyu@vip.126.com
0ef410590b36a0a2e7c27fb05736d468f2304c6f
fe90fafd4068434e02fe7914c9c075d15bfacab3
/app/adminServer/adminServer/wsgi.py
3d19d4b4c350d91ca76da8e93ad020c9e945bbe1
[]
no_license
3d1th3/SSMainServer
a79d248cc3d6646fdc0d16a46e41681366e6327f
a4d73448a9f08f3a93897eac8547ef887d157319
refs/heads/master
2023-06-04T11:15:27.403988
2021-06-03T16:42:04
2021-06-03T16:42:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for adminServer project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'adminServer.settings') application = get_wsgi_application()
[ "cachecuas1@gmail.com" ]
cachecuas1@gmail.com
8cb517e17f1399beeb39c3f9372acbde15424e42
51c8fd9ad4549bab9af4b607cb876310ee6050f0
/hidden_node.py
96a5bcd43c5737fa8c7f5519266898ceee80384b
[]
no_license
JacobPimental/trolleybot
81669dba4e0fbad002e490e1734b069d5036ff8f
c77e3365073bd83ea48d02d685f2ccb4fdeea5c6
refs/heads/master
2021-01-23T01:01:26.066505
2017-04-19T18:16:22
2017-04-19T18:16:22
85,862,383
1
0
null
2017-03-31T21:34:30
2017-03-22T18:27:02
Python
UTF-8
Python
false
false
672
py
class HiddenNode: synapses = [] act_func = None data = 0.0 act_data = 0.0 def __init__(self, synapses, act_func): self.act_func = act_func self.synapses = synapses def retrieve_data(self, data): self.data += data self.act_data = self.act_func( self.data ) def pass_through(self): for s in self.synapses: s.pass_data( self.act_data ) def __repr__(self): return "Hidden Node:\n\tData: " + str(self.act_data) + "\n\tSynapses " + str(self.synapses) def updateSynapses(self, delta): for s in range( len( delta ) ): self.synapses[s].weight += delta[s]
[ "jacob16682@gmail.com" ]
jacob16682@gmail.com
4a8fb408dfd1ca0f114e51d0ba49e0064d154c51
3e17a2cb4757143806efc2bbcfb66a7221a103a6
/algoritmo.py
26e1fdf78df4f82cb289bd981ff988c48a5de519
[]
no_license
ibioesc/Algoritmos
3387aab670a8fb243e2b78ebbcfa2be152079363
5b3de0b7fd4c63ca2bf9043bd012a767eeb33a04
refs/heads/master
2023-06-07T02:49:36.909005
2021-06-26T16:26:34
2021-06-26T16:26:34
380,533,843
0
0
null
null
null
null
UTF-8
Python
false
false
450
py
def canBeSplited(vec): try: lis = vec left = sum(lis[:len(lis)//2]) right = sum(lis[len(lis)//2:]) if len(lis) == 0 and left == right: return print(0) elif left == right: return print(1) else: return print(-1) except (TypeError, NameError): print('¡No es un tipo de datos correcto!') vect = [1,3,3,8,4,3,2,3,3] canBeSplited(vect)
[ "ibiotec30@gmail.com" ]
ibiotec30@gmail.com
c0f6fee505ed37fe55dbc1ab1c29ce732cbbde75
8596de9a476244adde04e775096835b1b24c15a4
/rrc/migrations/0002_rrc_user.py
7553cbb24477481bc4a810e057322d112e988510
[]
no_license
freeznet2012/mini
10cc3e4ccec08835aaebf15788332e571f9b7683
ee89b9e05d5d14d8661be40c8624964e907e85cb
refs/heads/master
2021-01-23T06:01:13.196614
2017-04-06T15:27:25
2017-04-06T15:27:25
86,328,139
0
0
null
null
null
null
UTF-8
Python
false
false
637
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-03-01 20:25 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('rrc', '0001_initial'), ] operations = [ migrations.AddField( model_name='rrc', name='user', field=models.OneToOneField(default='', on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
[ "praveenbenny007@gmail.com" ]
praveenbenny007@gmail.com
2ee682a7aeb5da3c8da1a515f601d0cfcd6425e1
85d3c54d7de44e06ffc00c3c891e4651765316e4
/DataInfo.py
3f857ae8e36f7171d0b0e350d9c58c903716b48a
[]
no_license
fernando801/DataScienceCourse
c7bfd00250c4da5532d9c120f680cd9920a679b3
fe8eabe7351b94e40a4653db758f07276f5f4be6
refs/heads/main
2023-05-15T09:40:19.826443
2021-06-02T02:08:43
2021-06-02T02:08:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,024
py
def getstatfunction(name,df): if name == 'Name': return lambda column:column elif name == 'Mean': return lambda column:df[column].mean() elif name == 'Median': return lambda column:df[column].median() elif name == 'Range': return lambda column:df[column].max()-df[column].min() elif name == 'Variance': return lambda column:df[column].var() elif name == 'Std. Dev': return lambda column:df[column].std() def printRow(name,columnformat,df,columns): stat = getstatfunction(name,df) print("{:20s} ".format(name), end="") for i in columns: print(columnformat.format(stat(i)), end="") print('') def getDataInfo(df,columns): printRow('Name',"{:>20s} ",df,columns) printRow('Mean',"{:20.4f} ",df,columns) printRow('Median',"{:20.4f} ",df,columns) printRow('Range',"{:20.4f} ",df,columns) printRow('Variance',"{:20.4f} ",df,columns) printRow('Std. Dev',"{:20.4f} ",df,columns)
[ "resendizbautista801@gmail.com" ]
resendizbautista801@gmail.com
7c6459642e6c2d0c2421f04964632102c8d273d6
bf3b3bcf36b13ea0b2ebc3f8dfd5ceaa1fbd6ad4
/Split_rename-employee-pdfs/split_rename-employee-pdfs.py
4c583f300737c3cca922ca611e895a0d01610d1b
[]
no_license
dankaygit/random-stuff
2fb9ead376e9ea61abd015c2cb57053260ff39ca
f24c8bd86a560f49e9f1a325610131a6ab860e6c
refs/heads/main
2023-06-02T16:11:07.120908
2021-06-24T12:19:55
2021-06-24T12:19:55
379,861,117
0
0
null
null
null
null
UTF-8
Python
false
false
3,736
py
#!/usr/bin/env python import os from PyPDF2 import PdfFileWriter, PdfFileReader # Does this script run with user input or not? # If yes, set to True. interactive = False #Info about the PDF we need to edit ## Get all pdfs from the "source" directory and put the file names in a list called input_files input_files = [file for file in os.listdir("source") if file.endswith(".pdf")] ## Delete the ".pdf" extension for every file name so we can now extract the available info from each file name files = [file.strip(".pdf") for file in input_files] ## Split up the name by separating everything before and after each "_". This returns a list of split up strings for each initial string. ## Here it's important that we already have an idea of what our input will look like. In our sample files we have the format FileName_Year_Month_IDN.pdf. Assuming this to be our input, we can extract year and month from our files. files = [file.split("_") for file in files] # Either get the employee names interactively (through user input) or extract them from some saved file called employees.txt (since there is just quick and dirty, we assume a txt file with one employee name per line, no tabs or ws.) It's important that the employee names come up in the same order as they are in the input pdf files. employees = [] sep = "_" ## Extract all names from the file and clean up line breaks if not interactive: with open("source/employees.txt", "r") as file: lines = file.readlines() lines = [line.strip("\n") for line in lines] employees = lines ## Clean up empty lines, so we don't have "employees" which have no name due to empty lines in the file. employees = [employee for employee in employees if employee not in ["\n", "", " "]] else: print("Please input in one line all employees in the order as they appear in the the input document, separated by a " + sep + " \nFor example: Bob" + sep + "Alice" + sep + "Brian" + sep + "Dora" + sep + "Charlie \n") print("Please input all employees as described above: ") employees = input() employees = employees.split(sep) print(employees) ## Here we start the splitting process. ## We take each input file from input_files and create subdirectories in a new "output" based on the file name for input_file in input_files: fileName = input_file.strip(".pdf") output_dir = os.getcwd() + "/output/" + fileName + "/" if fileName in os.listdir("output"): raise Exception ("It seems like " + fileName + " has already been split. To avoid inadvertent data loss, please either remove the input pdf file from the source folder or the " + fileName + " subfolder from the output folder and run the script again.") os.makedirs(output_dir) fileName = fileName.split("_") #Date (we now from line 17-19, where to find year and month in the fileName list of Strings) year = fileName[1] month = fileName[2] # Now stitch the name of the new (split) pdf files together, with the employee names extracted from the employee.txt file output_names = [year + sep + month + sep + employee for employee in employees] #Splitting the PDF and writing new files. inputPdf = PdfFileReader("source/" + input_file, "rb") if inputPdf.getNumPages() != len(employees): raise Exception("Check that number of pages in input pdf equals number of employees") else: for i in range(len(output_names)): output = PdfFileWriter() output.addPage(inputPdf.getPage(i)) with open(output_dir + "/" + output_names[i] + ".pdf", "wb") as outputStream: output.write(outputStream) outputStream.close()
[ "dankaygit@gmail.com" ]
dankaygit@gmail.com
af66f3e9667cc2d7a9aca8543be26bbdbeffb849
af9c0aafa10b7901533de0b32177ab80b4782d3f
/notes/code/youtube/comments_one_video.py
0ae8f2715bd2cd2765d7e2162e6561247db18f41
[ "MIT" ]
permissive
Akramz/msds692
d1d33298b7599950e95838c0fc9ddbd47a98ed5b
42f4c2a0dc7569152bac2439e9b6385f2f101f7b
refs/heads/master
2023-01-25T00:44:11.197544
2020-12-05T22:05:14
2020-12-05T22:05:14
319,362,758
1
0
MIT
2020-12-07T15:31:12
2020-12-07T15:31:11
null
UTF-8
Python
false
false
708
py
import sys from googleapiclient.discovery import build DEVELOPER_KEY = sys.argv[1] YOUTUBE_API_SERVICE_NAME = "youtube" YOUTUBE_API_VERSION = "v3" video_id = "gU_gYzwTbYQ" # bonkers the cat # code from https://developers.google.com/youtube/v3/docs/comments/list youtube = build(YOUTUBE_API_SERVICE_NAME, YOUTUBE_API_VERSION, developerKey=DEVELOPER_KEY) results = youtube.commentThreads().list( part="snippet", videoId=video_id, textFormat="plainText" ).execute() for item in results["items"]: comment = item["snippet"]["topLevelComment"] author = comment["snippet"]["authorDisplayName"] text = comment["snippet"]["textDisplay"] print("Comment by %s: %s" % (author, text))
[ "parrt@cs.usfca.edu" ]
parrt@cs.usfca.edu
5efe2bfb891bf6d1fce5182ffa9a94977080f203
16241fa0befde2fb5baf09b81399a070df4024d2
/GridWorld/trainer.py
dae4adf1f1b29de21a6910c8690cd636aa7c2466
[]
no_license
LorenzoPinto04/RL-Transport
e5365143186e0197ddba6f5551ea4f9fa69d8d54
465a230b74eaacb5967829bbd6f5b7cbf0b135e0
refs/heads/master
2021-04-23T04:16:51.512977
2020-04-20T08:55:12
2020-04-20T08:55:12
249,896,887
0
0
null
null
null
null
UTF-8
Python
false
false
14,083
py
from functions import * import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import os os.environ["CUDA_VISIBLE_DEVICES"]="3" import random import gym import numpy as np from collections import deque from keras.models import Model, load_model from keras.layers import Input, Dense, Lambda, Add, Conv2D, Flatten from keras.optimizers import Adam, RMSprop from keras import backend as K import cv2 from matplotlib import pyplot as plt import pylab from pylab import rcParams rcParams['figure.figsize'] = 20, 10 from environment import GridWorld def OurModel(input_shape, action_space, dueling): X_input = Input(input_shape) X = X_input #X = Conv2D(64, 5, strides=(3, 3),padding="valid", input_shape=input_shape, activation="relu", data_format="channels_first")(X) X = Conv2D(32, 8, strides=(4, 4),padding="valid", input_shape=input_shape, activation="relu", data_format="channels_first")(X) X = Conv2D(64, 4, strides=(2, 2),padding="valid", activation="relu", data_format="channels_first")(X) X = Conv2D(64, 3, strides=(1, 1),padding="valid", activation="relu", data_format="channels_first")(X) X = Flatten()(X) # 'Dense' is the basic form of a neural network layer X = Dense(512, activation="relu", kernel_initializer='he_uniform')(X) X = Dense(256, activation="relu", kernel_initializer='he_uniform')(X) X = Dense(64, activation="relu", kernel_initializer='he_uniform')(X) if dueling: state_value = Dense(1, kernel_initializer='he_uniform')(X) state_value = Lambda(lambda s: K.expand_dims(s[:, 0], -1), output_shape=(action_space,))(state_value) action_advantage = Dense(action_space, kernel_initializer='he_uniform')(X) action_advantage = Lambda(lambda a: a[:, :] - K.mean(a[:, :], keepdims=True), output_shape=(action_space,))(action_advantage) X = Add()([state_value, action_advantage]) else: # Output Layer with # of actions: 2 nodes (left, right) X = Dense(action_space, activation="linear", kernel_initializer='he_uniform')(X) model = Model(inputs = X_input, outputs = X) #model.compile(loss="mean_squared_error", optimizer=RMSprop(lr=0.00025, rho=0.95, epsilon=0.01), metrics=["accuracy"]) model.compile(optimizer=Adam(lr=0.00025), loss='mean_squared_error') #model.compile(optimizer=Adam(lr=0.00005), loss='mean_squared_error') model.summary() return model class DQNAgent: def __init__(self, env_name, env): self.env_name = env_name self.env = env self.action_size = 8 self.EPISODES = 1000000 # Instantiate memory memory_size = 25000 self.MEMORY = Memory(memory_size) self.memory = deque(maxlen=memory_size) self.gamma = 0.99 # discount rate # EXPLORATION HYPERPARAMETERS for epsilon and epsilon greedy strategy self.epsilon = 1.0 # exploration probability at start self.epsilon_min = 0.02 # minimum exploration probability self.epsilon_decay = 0.00002 # exponential decay rate for exploration prob self.batch_size = 32 # defining model parameters self.ddqn = False # use doudle deep q network self.dueling = False # use dealing netowrk self.epsilon_greedy = False # use epsilon greedy strategy self.USE_PER = False # use priority experienced replay self.Save_Path = 'models' if not os.path.exists(self.Save_Path): os.makedirs(self.Save_Path) self.scores, self.episodes, self.average = [], [], [] self.Model_name = os.path.join(self.Save_Path, self.env_name+"_CNN.h5") self.ROWS = 50 self.COLS = 80 self.REM_STEP = 4 self.update_model_steps = 1000 self.state_size = (self.REM_STEP, self.ROWS, self.COLS) self.image_memory = np.zeros(self.state_size) # create main model and target model self.model = OurModel(input_shape=self.state_size, action_space = self.action_size, dueling = self.dueling) self.target_model = OurModel(input_shape=self.state_size, action_space = self.action_size, dueling = self.dueling) # after some time interval update the target model to be same with model def update_target_model(self, game_steps): if game_steps % self.update_model_steps == 0: self.target_model.set_weights(self.model.get_weights()) return def remember(self, state, action, reward, next_state, done): experience = state, action, reward, next_state, done if self.USE_PER: self.MEMORY.store(experience) else: self.memory.append((experience)) def act(self, state, decay_step): # EPSILON GREEDY STRATEGY if self.epsilon_greedy: # Here we'll use an improved version of our epsilon greedy strategy for Q-learning explore_probability = self.epsilon_min + (self.epsilon - self.epsilon_min) * np.exp(-self.epsilon_decay * decay_step) # OLD EPSILON STRATEGY else: if self.epsilon > self.epsilon_min: self.epsilon *= (1-self.epsilon_decay) explore_probability = self.epsilon if explore_probability > np.random.rand(): # Make a random action (exploration) return random.randrange(self.action_size), explore_probability else: # Get action from Q-network (exploitation) # Estimate the Qs values state # Take the biggest Q value (= the best action) return np.argmax(self.model.predict(state)), explore_probability def replay(self): if self.USE_PER: # Sample minibatch from the PER memory tree_idx, minibatch = self.MEMORY.sample(self.batch_size) else: if len(self.memory) > self.batch_size: # Randomly sample minibatch from the deque memory minibatch = random.sample(self.memory, self.batch_size) else: return state = np.zeros((self.batch_size, *self.state_size), dtype=np.float32) action = np.zeros(self.batch_size, dtype=np.int32) reward = np.zeros(self.batch_size, dtype=np.float32) next_state = np.zeros((self.batch_size, *self.state_size), dtype=np.float32) done = np.zeros(self.batch_size, dtype=np.uint8) # do this before prediction # for speedup, this could be done on the tensor level # but easier to understand using a loop for i in range(len(minibatch)): state[i], action[i], reward[i], next_state[i], done[i] = minibatch[i] # do batch prediction to save speed # predict Q-values for starting state using the main network target = self.model.predict(state) target_old = np.array(target) # predict best action in ending state using the main network target_next = self.model.predict(next_state) # predict Q-values for ending state using the target network target_val = self.target_model.predict(next_state) for i in range(len(minibatch)): # correction on the Q value for the action used if done[i]: target[i][action[i]] = reward[i] else: # the key point of Double DQN # selection of action is from model # update is from target model if self.ddqn: # Double - DQN # current Q Network selects the action # a'_max = argmax_a' Q(s', a') a = np.argmax(target_next[i]) # target Q Network evaluates the action # Q_max = Q_target(s', a'_max) target[i][action[i]] = reward[i] + self.gamma * target_val[i][a] else: # Standard - DQN # DQN chooses the max Q value among next actions # selection and evaluation of action is on the target Q Network # Q_max = max_a' Q_target(s', a') # when using target model in simple DQN rules, we get better performance target[i][action[i]] = reward[i] + self.gamma * np.amax(target_val[i]) if self.USE_PER: indices = np.arange(self.batch_size, dtype=np.int32) absolute_errors = np.abs(target_old[indices, action]-target[indices, action]) # Update priority self.MEMORY.batch_update(tree_idx, absolute_errors) # Train the Neural Network with batches self.model.fit(state, target, batch_size=self.batch_size, verbose=0) def load(self, name): self.model.load_weights(name, by_name=False) def save(self, name): model = self.model model.save_weights(name) pylab.figure(figsize=(18, 9)) plt.figure(figsize=(18,9)) def PlotModel(self, score, episode): self.scores.append(score) self.episodes.append(episode) self.average.append(sum(self.scores[-50:]) / len(self.scores[-50:])) pylab.plot(self.episodes, self.scores, 'b') pylab.plot(self.episodes, self.average, 'r') pylab.ylabel('Score', fontsize=18) pylab.xlabel('Games', fontsize=18) dqn = 'DQN_' dueling = '' greedy = '' PER = '' if self.ddqn: dqn = '_DDQN' if self.dueling: dueling = '_Dueling' if self.epsilon_greedy: greedy = '_Greedy' if self.USE_PER: PER = '_PER' try: if not os.path.exists('training_images'): os.makedirs('training_images') pylab.savefig('training_images/'+self.env_name+dqn+dueling+greedy+PER+"_CNN.png") except OSError as e: pass # no need to worry about model, when doing a lot of experiments self.Model_name = os.path.join(self.Save_Path, self.env_name+dqn+dueling+greedy+PER+"_CNN.h5") return self.average[-1] def imshow(self, image, rem_step=0): cv2.imshow("cartpole"+str(rem_step), image[rem_step,...]) if cv2.waitKey(25) & 0xFF == ord("q"): cv2.destroyAllWindows() return def GetImage(self, frame): # push our data by 1 frame, similar as deq() function work self.image_memory = np.roll(self.image_memory, 1, axis = 0) # inserting new frame to free space self.image_memory[0,:,:] = frame # show image frame #self.imshow(self.image_memory,0) #self.imshow(self.image_memory,1) #self.imshow(self.image_memory,2) #self.imshow(self.image_memory,3) return np.expand_dims(self.image_memory, axis=0) def reset(self): frame = self.env.reset() for i in range(self.REM_STEP): state = self.GetImage(frame) return state def step(self,action): info = None state, reward, total_reward, next_state, done = self.env.step(action) next_state = self.GetImage(next_state) return next_state, reward, done, info def run(self): decay_step = 0 max_average = -100000.0 for e in range(self.EPISODES): state = self.reset() done = False score = 0 SAVING = '' while not done: decay_step += 1 action, explore_probability = self.act(state, decay_step) next_state, reward, done, _ = self.step(action) ''' if reward != 0.0: print('States -------------------------------------------------------------------------') plt.imshow(state[0][0]) plt.show() plt.imshow(state[0][1]) plt.show() plt.imshow(state[0][2]) plt.show() plt.imshow(state[0][3]) plt.show() print('Action:', action) print('Reward:', reward) ''' self.remember(state, action, reward, next_state, done) state = next_state score += reward if done: # every episode, plot the result average = self.PlotModel(score, e) # saving best models if average >= max_average: max_average = average self.save(self.Model_name) SAVING = "SAVING" else: SAVING = "" print("episode: {}/{}, score: {}, e: {:.2f}, average: {:.2f} {}".format(e, self.EPISODES, score, explore_probability, average, SAVING)) # update target model self.update_target_model(decay_step) # train model self.replay() # close environemnt when finish training #self.env.close() def test(self, Model_name): import time self.load(Model_name) for e in range(self.EPISODES): state = self.reset() done = False score = 0 while not done: time.sleep(.01) action = np.argmax(self.model.predict(state)) state, reward, total_reward, next_state, done = self.env.step(action) state = self.GetImage(next_state) score += reward if done: print("episode: {}/{}, score: {}".format(e, self.EPISODES, score)) break #self.env.close() debug_mode = False show_graph_every = False means = False env = GridWorld(show_graph_every, debug_mode, means) if __name__ == "__main__": env_name = 'GridWorld' agent = DQNAgent(env_name, env) agent.run() #agent.test('models/GridWorldDQN__CNN.h5')
[ "lorenzo-pinto@hotmail.it" ]
lorenzo-pinto@hotmail.it
cba3377a4bbbe906d3d124243bae0ea0f4854a4b
ad3b71aca0cc0b897b8d0bee6e5f4189553754ca
/src/ralph/scan/facts.py
6080abec40aa74e6f9208d995080ee400d886961
[ "Apache-2.0" ]
permissive
quamilek/ralph
4c43e3168f469045f18114f10779ee63d8ac784d
bf7231ea096924332b874718b33cd1f43f9c783b
refs/heads/master
2021-05-23T07:57:34.864521
2014-05-27T08:51:32
2014-05-27T08:51:32
5,523,714
0
0
null
null
null
null
UTF-8
Python
false
false
19,267
py
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import hashlib import re from lck.django.common.models import MACAddressField from ralph.discovery.hardware import normalize_wwn from ralph.discovery.models import ( DISK_PRODUCT_BLACKLIST, DISK_VENDOR_BLACKLIST, DeviceType, MAC_PREFIX_BLACKLIST, SERIAL_BLACKLIST, ) from ralph.discovery.models_component import cores_from_model from ralph.scan.lshw import parse_lshw, handle_lshw_storage from ralph.scan.lshw import Error as LshwError from ralph.util import network, uncompress_base64_data, units SMBIOS_BANNER = 'ID SIZE TYPE' DENSE_SPEED_REGEX = re.compile(r'(\d+)\s*([GgHhKkMmZz]+)') _3WARE_GENERAL_REGEX = re.compile(r'tw_([^_]+_[^_]+)_([^_]+)') SMARTCTL_REGEX = re.compile(r'smartctl_([^_]+)__(.+)') HPACU_GENERAL_REGEX = re.compile(r'hpacu_([^_]+)__(.+)') HPACU_LOGICAL_PHYSICAL_REGEX = re.compile(r'([^_]+)__(.+)') MEGARAID_REGEX = re.compile(r'megacli_([^_]+)_([^_]+)__(.+)') INQUIRY_REGEXES = ( re.compile(r'^(?P<vendor>OCZ)-(?P<sn>[a-zA-Z0-9]{16})OCZ-(?P<product>\S+)\s+.*$'), re.compile(r'^(?P<vendor>(FUJITSU|TOSHIBA))\s+(?P<product>[a-zA-Z0-9]+)\s+(?P<sn>[a-zA-Z0-9]{16})$'), re.compile(r'^(?P<vendor>SEAGATE)\s+(?P<product>ST[^G]+G)(?P<sn>[a-zA-Z0-9]+)$'), re.compile(r'^(?P<vendor>SEAGATE)\s+(?P<product>ST[0-9]+SS)\s+(?P<sn>[a-zA-Z0-9]+)$'), re.compile(r'^(?P<sn>[a-zA-Z0-9]{18})\s+(?P<vendor>INTEL)\s+(?P<product>[a-zA-Z0-9]+)\s+.*$'), re.compile(r'^(?P<vendor>IBM)-(?P<product>[a-zA-Z0-9]+)\s+(?P<sn>[a-zA-Z0-9]+)$'), re.compile(r'^(?P<vendor>HP)\s+(?P<product>[a-zA-Z0-9]{11})\s+(?P<sn>[a-zA-Z0-9]{12})$'), re.compile(r'^(?P<vendor>HITACHI)\s+(?P<product>[a-zA-Z0-9]{15})(?P<sn>[a-zA-Z0-9]{15})$'), re.compile(r'^(?P<vendor>HITACHI)\s+(?P<product>[a-zA-Z0-9]{15})\s+(?P<sn>[a-zA-Z0-9]{12})$'), re.compile(r'^(?P<sn>[a-zA-Z0-9]{15})\s+(?P<vendor>Samsung)\s+(?P<product>[a-zA-Z0-9\s]+)\s+.*$'), ) SEPARATE_VERSION = re.compile('[~|+|\-]') def handle_facts(facts, is_virtual=False): results = {} if is_virtual: results['model_name'] = " ".join( (facts['manufacturer'], facts['virtual']), ) results['type'] = DeviceType.virtual_server.raw mac_address = handle_default_mac_address(facts) if mac_address: results['mac_addresses'] = [mac_address] sn = "".join( ( "VIRT0_", mac_address, '_', hashlib.md5( facts.get( 'sshdsakey', facts.get('sshrsakey', '#'), ), ).hexdigest()[:8], ), ) else: sn = facts.get('serialnumber') if sn in SERIAL_BLACKLIST: sn = None prod_name = facts.get('productname') manufacturer = facts.get('manufacturer') if prod_name: if manufacturer and manufacturer in prod_name: model_name = prod_name else: model_name = "{} {}".format(manufacturer, prod_name) results['model_name'] = model_name if DeviceType.blade_server.matches(model_name): model_type = DeviceType.blade_server else: model_type = DeviceType.rack_server results['type'] = model_type.raw if sn: results['serial_number'] = sn mac_addresses = handle_facts_mac_addresses(facts) if mac_addresses: if 'mac_addresses' in results: results['mac_addresses'].extend(mac_addresses) else: results['mac_addresses'] = mac_addresses if 'smbios' in facts: processors, memory = handle_facts_smbios(facts['smbios'], is_virtual) if processors: results['processors'] = processors if memory: results['memory'] = memory disks = handle_facts_disks(facts) if disks: results['disks'] = disks return results def handle_default_mac_address(facts): for suffix in ('', '_eth0', '_igb0', '_bnx0', '_bge0', '_nfo0', '_nge0'): mac = facts.get('macaddress{}'.format(suffix)) if mac: try: result = MACAddressField.normalize(mac) except ValueError: continue if result[:6] in MAC_PREFIX_BLACKLIST: continue return result def handle_facts_mac_addresses(facts): mac_addresses = set() for interface in facts['interfaces'].split(','): mac_address = facts.get('macaddress_{}'.format(interface)) if not mac_address: continue mac_addresses.add(mac_address) return list(mac_addresses) def handle_facts_ip_addresses(facts): ip_addresses = set() for interface in facts['interfaces'].split(','): try: ip = network.validate_ip(facts['ipaddress_{}'.format(interface)]) ip_addresses.add(ip) except (ValueError, KeyError): pass return list(ip_addresses) def handle_facts_smbios(fact_smbios, is_virtual): raw_smbios = uncompress_base64_data(fact_smbios) smbios = _parse_smbios(raw_smbios) detected_memory = [] for memory_chip in smbios.get('MEMDEVICE', ()): try: size, size_units = memory_chip.get('Size', '').split(' ', 1) size = int(size) size /= units.size_divisor[size_units] size = int(size) except ValueError: continue # empty slot for split_key in ('BANK', 'Slot '): try: bank = memory_chip.get('Bank Locator').split(split_key)[1] bank = int(bank) + 1 break except (IndexError, ValueError): bank = None # unknown bank if bank is None: continue detected_memory.append({ 'label': "{}{} {}".format( 'Virtual ' if is_virtual else '', memory_chip.get( 'Device Locator', memory_chip.get('Location Tag', 'DIMM'), ), memory_chip.get('Part Number', ''), ), 'size': size, }) detected_cpus = [] for cpu in smbios.get('PROCESSOR', ()): m = DENSE_SPEED_REGEX.match(cpu.get('Maximum Speed', '')) if not m: continue if 'enabled' not in cpu.get('Processor Status', ''): continue speed = int(m.group(1)) speed_units = m.group(2) speed /= units.speed_divisor[speed_units] speed = int(speed) label = cpu['Location Tag'] family = cpu['Family'] if '(other)' in family: family = cpu['Manufacturer'] index_parts = [] for cpu_part in cpu['Location Tag'].replace('CPU', '').split(): try: index_parts.append(int(cpu_part.strip())) except ValueError: continue index = reduce(lambda x, y: x * y, index_parts) model_name = " ".join(cpu.get('Version', family).split()) detected_cpus.append({ 'model_name': model_name, 'speed': speed, 'cores': max(1, cores_from_model(model_name)), 'family': family, 'label': label, 'index': index, }) return detected_cpus, detected_memory def _parse_smbios(raw_smbios): if not raw_smbios.startswith(SMBIOS_BANNER): raise ValueError("Incompatible SMBIOS answer.") smb = {} current = None for line in raw_smbios.split('\n'): if line == SMBIOS_BANNER: if current: ctype = current['__TYPE__'] del current['__TYPE__'] smb.setdefault(ctype, []).append(current) current = None elif current is None: for token in line.split(): if token.startswith('SMB_TYPE_'): current = {'__TYPE__': token[9:]} break else: if ':' in line: key, value = line.split(':', 1) current[key.strip()] = value.strip() else: current.setdefault('capabilities', []).append(line) return smb def handle_facts_disks(facts): disks = {} _cur_key = None for k, v in facts.iteritems(): if not k.startswith('disk_'): continue k = k[5:] if k.endswith('_product'): _cur_key = 'product' k = k[:-8] elif k.endswith('_revision'): _cur_key = 'revision' k = k[:-9] elif k.endswith('_size'): _cur_key = 'size' k = k[:-5] elif k.endswith('_vendor'): _cur_key = 'vendor' k = k[:-7] elif k.endswith('_serial'): _cur_key = 'serial' k = k[:-7] else: continue disks.setdefault(k, {})[_cur_key] = v.strip() detected_disks = [] for mount_point, disk in disks.iteritems(): try: if 'size' not in disk or not int(disk['size']): continue except ValueError: continue if disk['vendor'].lower() in DISK_VENDOR_BLACKLIST: continue if disk['product'].lower() in DISK_PRODUCT_BLACKLIST: continue sn = disk.get('serial', '').strip() detected_disk = { 'size': int(int(disk['size']) / 1024 / 1024), 'label': '{} {} {}'.format( disk['vendor'].strip(), disk['product'].strip(), disk['revision'].strip(), ), 'mount_point': mount_point, 'family': disk['vendor'].strip(), } if sn: detected_disk['serial_number'] = sn detected_disks.append(detected_disk) return detected_disks def handle_facts_wwn(facts): disk_shares = [] for key, wwn in facts.iteritems(): if not key.startswith('wwn_mpath'): continue path = key.replace('wwn_', '') disk_shares.append({ 'serial_number': normalize_wwn(wwn), 'volume': '/dev/mapper/%s' % path, }) return disk_shares def handle_facts_3ware_disks(facts): disks = {} for k, value in facts.iteritems(): m = _3WARE_GENERAL_REGEX.match(k) if not m: continue key = m.group(2) physical_disk = m.group(1) disks.setdefault(physical_disk, {})[key] = value.strip() detected_disks = [] for disk_handle, disk in disks.iteritems(): if not disk.get('serial'): continue size_value, size_unit, _ = disk['capacity'].split(None, 2) size = int(float(size_value) / units.size_divisor[size_unit]) detected_disk = { 'serial_number': disk['serial'], 'size': size, 'label': disk['model'], } detected_disks.append(detected_disk) return detected_disks def handle_facts_smartctl(facts): disks = {} for k, value in facts.iteritems(): m = SMARTCTL_REGEX.match(k) if not m: continue disk = m.group(1) property = m.group(2) disks.setdefault(disk, {})[property] = value.strip() detected_disks = [] for disk_handle, disk in disks.iteritems(): if not disk.get('serial_number') or disk.get('device_type') != 'disk': continue if { 'user_capacity', 'vendor', 'product', 'transport_protocol', } - set(disk.keys()): # not all required keys present continue if disk['vendor'].lower() in DISK_VENDOR_BLACKLIST: continue if disk['product'].lower() in DISK_PRODUCT_BLACKLIST: continue size_value, size_unit, rest = disk['user_capacity'].split(' ', 2) size_value = size_value.replace(',', '') label_meta = [' '.join(disk['vendor'].split()), disk['product']] if 'transport_protocol' in disk: label_meta.append(disk['transport_protocol']) detected_disks.append({ 'serial_number': disk['serial_number'], 'size': int(int(size_value) / units.size_divisor[size_unit]), 'label': ' '.join(label_meta), }) return detected_disks def handle_facts_hpacu(facts): disks = {} for k, value in facts.iteritems(): m = HPACU_GENERAL_REGEX.match(k) if not m: continue n = HPACU_LOGICAL_PHYSICAL_REGEX.match(m.group(2)) physical_disk = n.group(1) if n else None property = n.group(2) if n else m.group(2) if not physical_disk: continue disks.setdefault(physical_disk, {})[property] = value.strip() detected_disks = [] for disk_handle, disk in disks.iteritems(): if not disk.get('serial_number'): continue size_value, size_unit = disk['size'].split() detected_disks.append({ 'serial_number': disk['serial_number'], 'label': '{} {}'.format( ' '.join(disk['model'].split()), disk['interface_type'], ), 'size': int(float(size_value) / units.size_divisor[size_unit]), }) return detected_disks def _handle_inquiry_data(raw, controller, disk): for regex in INQUIRY_REGEXES: m = regex.match(raw) if m: return m.group('vendor'), m.group('product'), m.group('sn') raise ValueError( "Incompatible inquiry_data for disk {}/{}: {}".format( controller, disk, raw, ) ) def handle_facts_megaraid(facts): disks = {} for k, value in facts.iteritems(): m = MEGARAID_REGEX.match(k) if not m: continue controller = m.group(1) disk = m.group(2) property = m.group(3) disks.setdefault((controller, disk), {})[property] = value.strip() detected_disks = [] for (controller_handle, disk_handle), disk in disks.iteritems(): inquiry_data = disk.get('inquiry_data', '') if inquiry_data: disk['vendor'], disk['product'], disk['serial_number'] = \ _handle_inquiry_data( inquiry_data, controller_handle, disk_handle, ) if not disk.get('serial_number') or disk.get('media_type') not in ( 'Hard Disk Device', 'Solid State Device', ): continue if { 'coerced_size', 'vendor', 'product', 'pd_type', } - set(disk.keys()): # not all required keys present continue if disk['vendor'].lower() in DISK_VENDOR_BLACKLIST: continue if disk['product'].lower() in DISK_PRODUCT_BLACKLIST: continue size_value, size_unit, rest = disk['coerced_size'].split(' ', 2) size_value = size_value.replace(',', '') label_meta = [' '.join(disk['vendor'].split()), disk['product']] if 'pd_type' in disk: label_meta.append(disk['pd_type']) detected_disks.append({ 'serial_number': disk['serial_number'], 'label': ' '.join(label_meta), 'size': int(float(size_value) / units.size_divisor[size_unit]), }) return detected_disks def _get_storage_size_from_facts(facts): disk_size = 0 smartctl_size = 0 reg = re.compile(r'^[0-9][0-9,]*') for k, v in facts.iteritems(): if k.startswith('smartctl_') and k.endswith('_user_capacity'): match = reg.match(v.strip()) if match: try: size = int(match.group(0).replace(',', '')) except ValueError: pass else: size = int(size / 1024 / 1024) smartctl_size += size if k.startswith('disk_') and k.endswith('_size'): try: size = int(int(v.strip()) / 1024 / 1024) except ValueError: pass else: disk_size += size return smartctl_size if smartctl_size else disk_size def handle_facts_os(facts, is_virtual=False): result = {} try: os_name = "%s %s" % ( facts['operatingsystem'], facts['operatingsystemrelease'], ) family = facts['kernel'] except KeyError: return result os_version = facts.get('kernelrelease', '') result['system_label'] = '%s%s' % ( os_name, ' %s' % os_version if os_version else '', ) result['system_family'] = family memory_size = None try: memory_size, unit = re.split('\s+', facts['memorysize'].lower()) if unit == 'tb': memory_size = int(float(memory_size) * 1024 * 1024) elif unit == 'gb': memory_size = int(float(memory_size) * 1024) elif unit == 'mb' or unit == 'mib': memory_size = int(float(memory_size)) except (KeyError, ValueError): pass if memory_size: result['system_memory'] = memory_size cores_key = ('physical' if not is_virtual else '') + 'processorcount' try: cores_count = int(facts.get(cores_key)) except TypeError: pass else: result['system_cores_count'] = cores_count storage_size = _get_storage_size_from_facts(facts) if not storage_size: lshw = facts.get('lshw', None) if lshw: try: lshw = uncompress_base64_data(lshw) except TypeError: pass else: try: lshw = parse_lshw(lshw) except LshwError: pass else: storages = handle_lshw_storage(lshw) storage_size = 0 for storage in storages: storage_size += storage['size'] if storage_size: result['system_storage'] = storage_size return result def _parse_packages(facts): data = uncompress_base64_data(facts) if data: packages = data.strip().split(',') for package in packages: try: name, version = package.split(None, 1) except ValueError: continue yield { 'name': name, 'version': version, } def handle_facts_packages(facts): packages = [] packages_list = _parse_packages(facts.get('packages')) if not packages_list: return packages for package in packages_list: version = filter( None, SEPARATE_VERSION.split(package['version'], 1) )[0] package_name = '{} - {}'.format(package['name'], version) packages.append({ 'label': package['name'], 'version': version, 'path': package_name, 'model_name': package_name, }) return packages
[ "andrew.jankowski@gmail.com" ]
andrew.jankowski@gmail.com
1b14e0893000f94e90a7478eb66d700400cb0141
7882860350c714e6c08368288dab721288b8d9db
/1일차/if(8번문제).py
9db67865be7d0871db81bafb600eeaa1d088a3f2
[]
no_license
park-seonju/Algorithm
682fca984813a54b92a3f2ab174e4f05a95921a8
30e5bcb756e9388693624e8880e57bc92bfda969
refs/heads/master
2023-08-11T18:23:49.644259
2021-09-27T10:07:49
2021-09-27T10:07:49
388,741,922
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
result=[] for i in range(100,301): a=int(i/100) # int로 해야함 b=int(i/10) if(a % 2 == 0 and b % 2 == 0 and i % 2 == 0): result.append(str(i)) print(",".join(result))
[ "cucu9823@naver.com" ]
cucu9823@naver.com
e4af460962dfe88532b86a2b00a0a1b9f6e8c649
db5f301e1d2ee17ffd8ba009606eb82f4729b112
/bot.py
be86223c6e466f349a3433ad194a33cbfa85d87a
[]
no_license
RomanSarnov/Bot
5c96fc66e42ac44b37c870fbe5a6498fe04efcac
11a278af325dde75142590418a169e391a4457cf
refs/heads/master
2022-12-08T17:25:35.320742
2020-02-19T19:06:19
2020-02-19T19:06:19
240,790,736
0
0
null
2022-12-08T07:04:34
2020-02-15T21:32:24
Python
UTF-8
Python
false
false
10,304
py
import telebot from telebot import types import os import psycopg2 from psycopg2.extras import DictCursor DATABASE_URL = os.environ['DATABASE_URL'] con = psycopg2.connect(DATABASE_URL, sslmode='require', cursor_factory=DictCursor) cur = con.cursor() cur.execute("""CREATE TABLE address( Id SERIAL PRIMARY KEY, title VARCHAR(60), latitude REAL, longitude REAL, img VARCHAR(150), users INTEGER)""" ) start,title,location,location_text,photo,stop,vivod= range(7) from collections import defaultdict user_state = defaultdict(lambda :start) text_state = defaultdict(lambda :start) data = {'users':{}} # con = pymysql.connect('localhost', 'root', # 'roman', 'bot',cursorclass=pymysql.cursors.DictCursor) token = '1065495049:AAEcREziu5RwO94qtk46kb-kgeaKWA2LrJ4' bot = telebot.TeleBot(token) @bot.message_handler(commands=['start'],content_types=['text'],func = lambda message:get_state(message) == start) def handler_message(message): bot.send_message(message.chat.id,'Начнем! Выберите одну из комманд.') @bot.message_handler(commands=['add'],content_types=['text'],func = lambda message:get_state(message) == start) def handler_message(message): data['users'][str(message.chat.id)] = {} update_state(message, title) bot.send_message(message.chat.id,'Укажите название места.') bot.send_message(message.chat.id, 'Напишите в любой момент "Отмена", если хотите отменить добавление.') @bot.message_handler(content_types=['text','photo','location'],func = lambda message:get_state(message) == title) def handler_pribav(message): if message.photo or message.location: bot.send_message(message.chat.id, 'Я вас не понимаю. Укажите название места.') else: if 'отмена' in message.text.lower(): update_state(message, start) bot.send_message(message.chat.id, 'Добавление отменено.') else: data['users'][str(message.chat.id)]['title'] = message.text bot.send_message(message.chat.id,'Укажите адрес (Геопозиция).') update_state(message, location) @bot.message_handler(content_types=['location'],func = lambda message:get_state(message) == location) def handler_location(message): data['users'][str(message.chat.id)]['longitude'] = message.location.longitude data['users'][str(message.chat.id)]['latitude'] = message.location.latitude bot.send_message(message.chat.id,'Хотите прикрепить фотографию?') update_state(message,location_text) @bot.message_handler(content_types=['text','photo'],func = lambda message:get_state(message) == location) def handler_location(message): if message.photo: bot.send_message(message.chat.id, 'Я вас не понимаю. Укажите адрес (Геопозиция).') else: if 'отмена' in message.text.lower(): update_state(message, start) bot.send_message(message.chat.id, 'Добавление отменено.') else: bot.send_message(message.chat.id, 'Я вас не понимаю. Укажите адрес (Геопозиция).') @bot.message_handler(content_types=['text','photo','location'],func = lambda message:get_state(message) == location_text) def handler_consent(message): if message.photo or message.location: bot.send_message(message.chat.id, 'Я вас не понимаю. Хотите прикрепить фотографию?') else: if 'отмена' == message.text.lower(): update_state(message, start) bot.send_message(message.chat.id, 'Добавление отменено.') else: if 'да' in message.text.lower(): bot.send_message(message.chat.id,'Прикрепите фотографию.') update_state(message, photo) elif 'нет' in message.text.lower() or 'не' in message.text.lower(): cur = con.cursor() cur.execute("INSERT INTO address(title,latitude,longitude,users) VALUES ('%s','%s','%s','%s')"%(data['users'][str(message.chat.id)]['title'],data['users'][str(message.chat.id)]['latitude'],data['users'][str(message.chat.id)]['longitude'],int(message.chat.id))) bot.send_message(message.chat.id, 'Место сохранено!') update_state(message, start) else: bot.send_message(message.chat.id, 'Я вас не понимаю. Хотите прикрепить фотографию?') @bot.message_handler(content_types=['photo'],func = lambda message:get_state(message) == photo) def handler_consent(message): data['users'][str(message.chat.id)]['img']=message.photo[0].file_id bot.send_message(message.chat.id, 'Место сохранено!') cur = con.cursor() cur.execute("INSERT INTO address(title,latitude,longitude,img,users) VALUES ('%s','%s','%s','%s','%s')"%(data['users'][str(message.chat.id)]['title'],data['users'][str(message.chat.id)]['latitude'],data['users'][str(message.chat.id)]['longitude'],data['users'][str(message.chat.id)]['img'],int(message.chat.id))) update_state(message, start) @bot.message_handler(content_types=['text','location'],func = lambda message:get_state(message) == photo) def handler_consent(message): if message.location: bot.send_message(message.chat.id,text='Я вас не понимаю. Прикрепите фотографию.') else: if 'отмена' in message.text.lower(): update_state(message, start) bot.send_message(message.chat.id, 'Добавление отменено.') else: bot.send_message(message.chat.id, 'Я вас не понимаю. Прикрепите фотографию.') @bot.message_handler(commands=['list'],content_types=['text'],func = lambda message:get_state(message) == start) def handler_list(message): cur = con.cursor() cur.execute('SELECT title, latitude, longitude, img from address where users = %s LIMIT 10'%(message.chat.id)) re = cur.fetchall() if re: for index,elem in enumerate(re): name = elem['title'] lat = elem['latitude'] lon = elem['longitude'] img = elem['img'] if img: bot.send_message(message.chat.id,text=f'{str(index+1)}. {name}') bot.send_location(message.chat.id,latitude=lat,longitude=lon) bot.send_photo(message.chat.id,photo=img) else: bot.send_message(message.chat.id, text=f'{str(index + 1)}. {name}') bot.send_location(message.chat.id, latitude=lat, longitude=lon) else: bot.send_message(message.chat.id, text="У вас нет сохранённых мест.") @bot.message_handler(commands=['reset'],content_types=['text'],func = lambda message:get_state(message) == start) def handler_list(message): cur = con.cursor() cur.execute('SELECT title, latitude, longitude, img from address where users = %s'%(message.chat.id)) re = cur.fetchall() if re: bot.send_message(message.chat.id, text='Удалить сохранённые места?') update_text(message,stop) else: bot.send_message(message.chat.id, text="У вас нет сохранённых мест.") @bot.message_handler(content_types=['text'],func = lambda message:get_text_state(message) == stop) def handler_reset_sogl(message): if 'да' in message.text.lower(): bot.send_message(message.chat.id, text='Места удалены.') update_text(message, start) cur = con.cursor() cur.execute('DELETE FROM address WHERE users = %s;' % (message.chat.id)) elif 'нет' in message.text.lower(): bot.send_message(message.chat.id, text='Удаление отменено.') update_text(message, start) else: bot.send_message(message.chat.id, text='Я вас не понимаю. Удалить сохранённые места?') @bot.message_handler(commands=['search'],content_types=['text'],func = lambda message:get_state(message) == start) def handler_message(message): bot.send_message(message.chat.id, 'Введите название места.') update_text(message,vivod) @bot.message_handler(content_types=['text'],func = lambda message:get_text_state(message) == vivod) def handler_message(message): cur = con.cursor() cur.execute( f"select * FROM address WHERE title = '{message.text}' and users = {message.chat.id};") re = cur.fetchall() if re: for index, elem in enumerate(re): name = elem['title'] lat = elem['latitude'] lon = elem['longitude'] img = elem['img'] update_text(message, start) if img: bot.send_message(message.chat.id, text=f'{str(index + 1)}. {name}') bot.send_location(message.chat.id, latitude=lat, longitude=lon) bot.send_photo(message.chat.id, photo=img) else: bot.send_message(message.chat.id, text=f'{str(index + 1)}. {name}') bot.send_location(message.chat.id, latitude=lat, longitude=lon) else: update_text(message, start) bot.send_message(message.chat.id, text="У вас нет сохранённых мест с данным названием.") @bot.message_handler(content_types=['text','photo','location'],func = lambda message:get_state(message) == start) def handler_message(message): bot.send_message(message.chat.id,'Я вас не понимаю. Выберите одну из комманд.') def get_text_state(message): return text_state[message.chat.id] def get_state(message): return user_state[message.chat.id] def update_text(message,state): text_state[message.chat.id] = state def update_state(message,state): user_state[message.chat.id] = state bot.polling(none_stop=True)
[ "rsarnov@mail.ru" ]
rsarnov@mail.ru
358d9bc1ccaf0bf357a55881ad1d1e04df66e992
721f95317a4ca3837ee509de60b346d37fbd5b9d
/towhee/tests/engine/test_engine.py
bee06ea75ace7691684abb1bf3d8675db163bbc9
[ "Apache-2.0" ]
permissive
yanliang567/towhee
5dbb3c544823f5aafc7b56b4a2c03e5364bfd346
b3d39dd11793244e655112b10bc15950c215d64a
refs/heads/main
2023-09-01T02:35:13.953830
2021-10-13T12:34:27
2021-10-13T12:34:27
411,902,421
0
0
Apache-2.0
2021-09-30T02:55:21
2021-09-30T02:55:21
null
UTF-8
Python
false
false
4,358
py
# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from towhee.dag.graph_repr import GraphRepr from towhee.dag.variable_repr import VariableRepr from towhee.dag.dataframe_repr import DataFrameRepr import unittest from towhee.engine.engine import Engine, EngineConfig from towhee.tests import CACHE_PATH from towhee.engine.pipeline import Pipeline from towhee.dataframe import DataFrame, Variable from towhee.tests.test_util import SIMPLE_PIPELINE_YAML from towhee.dag import OperatorRepr class TestEngine(unittest.TestCase): """ combine tests of engine/scheduler/task-executor/task """ def setUp(self): conf = EngineConfig() conf.cache_path = CACHE_PATH conf.sched_interval_ms = 20 engine = Engine() if not engine.is_alive(): engine.start() def test_engine(self): start_op_repr = OperatorRepr( name='_start_op', function='internal', init_args={}, inputs=[ {'name': 'num', 'df': 'op_test_in', 'col': 0} ], outputs=[{'df': 'op_test_in'}], iter_info={'type': 'map'} ) add_op_repr = OperatorRepr( name='mock_operators/add_operator', function='mock_operators/add_operator', init_args={'factor': 2}, inputs=[ {'name': 'num', 'df': 'op_test_in', 'col': 0} ], outputs=[{'df': 'op_test_out'}], iter_info={'type': 'map'} ) end_op_repr = OperatorRepr( name='_end_op', function='internal', init_args={}, inputs=[ {'name': 'sum', 'df': 'op_test_out', 'col': 0} ], outputs=[{'df': 'op_test_out'}], iter_info={'type': 'map'} ) df_in_repr = DataFrameRepr( name='op_test_in', columns=[VariableRepr('num', 'int')] ) df_out_repr = DataFrameRepr( name='op_test_out', columns=[VariableRepr('sum', 'int')] ) op_reprs = { start_op_repr.name: start_op_repr, add_op_repr.name: add_op_repr, end_op_repr.name: end_op_repr } df_reprs = { df_in_repr.name: df_in_repr, df_out_repr.name: df_out_repr } graph_repr = GraphRepr('add', op_reprs, df_reprs) df_in = DataFrame( 'op_test_in', {'sum': {'index': 0, 'type': 'int'}}) df_in.put((Variable('int', 1), )) df_in.seal() self._pipeline = Pipeline(graph_repr) engine = Engine() engine.add_pipeline(self._pipeline) result = self._pipeline(df_in) _, ret = result.get(0, 1) self.assertEqual(ret[0][0].value, 3) df_in = DataFrame( 'op_test_in', {'sum': {'index': 0, 'type': 'int'}}) df_in.put((Variable('int', 3), )) df_in.seal() result = self._pipeline(df_in) _, ret = result.get(0, 1) self.assertEqual(ret[0][0].value, 5) def test_simple_pipeline(self): with open(SIMPLE_PIPELINE_YAML, 'r', encoding='utf-8') as f: p = Pipeline(f.read()) engine = Engine() engine.add_pipeline(p) df_in = DataFrame( 'inputs', {'sum': {'index': 0, 'type': 'int'}}) df_in.put((Variable('int', 3), )) df_in.seal() result = p(df_in) _, ret = result.get(0, 1) self.assertEqual(ret[0][0].value, 6) df_in = DataFrame( 'inputs', {'sum': {'index': 0, 'type': 'int'}}) df_in.put((Variable('int', 7), )) df_in.seal() result = p(df_in) _, ret = result.get(0, 1) self.assertEqual(ret[0][0].value, 10)
[ "noreply@github.com" ]
yanliang567.noreply@github.com
fcdf112105ed9d68ed566939f6c55ea04625c5e8
7f8188f35d0d4f80b6e37b5d2108010348996f16
/news/api/models.py
8df397659a510f852dc99b377bdc3e3669d82e5a
[]
no_license
Denarzan/DevelopsToday-test
83c8f76907344a93c21ebddce2898a0ae5f8839d
2a9f1c9c1af05c82e11d10cd30b510d6ac7569d4
refs/heads/main
2023-03-09T05:07:55.139352
2021-03-02T22:17:10
2021-03-02T22:17:10
343,865,689
0
0
null
null
null
null
UTF-8
Python
false
false
909
py
from django.db import models class Post(models.Model): """Model for creating posts.""" title = models.CharField(max_length=255) link = models.CharField(max_length=255, unique=True) creation_date = models.DateTimeField(editable=False, auto_now=True) amount_of_upvotes = models.IntegerField(editable=False, default=0) author_name = models.CharField(max_length=128) def add_vote(self): """Function to increase the current number of votes by 1.""" self.amount_of_upvotes += 1 self.save(force_update=True) class Meta: ordering = ["creation_date"] class Comment(models.Model): """Model for creating comments of posts.""" post = models.ForeignKey(Post, on_delete=models.CASCADE) author_name = models.CharField(max_length=128) content = models.TextField() creation_date = models.DateTimeField(editable=False, auto_now=True)
[ "dakhnonazar@gmail.com" ]
dakhnonazar@gmail.com
76283425866e43198277a6f4f43dcc74ae590214
e1009433697344f0ce6ec953f086be698fa4e6c4
/parsmodel.py
10d1dbeb9a2e033a4397f7c7bf345fec03e56af2
[]
no_license
bladas/online-store
7e848bad1137cf7886cec6bf7563867e5f8f5e36
6fd68e0d1318b796b05a94fa5547d5e87a2b0172
refs/heads/master
2023-05-02T07:11:55.614313
2020-01-06T14:20:19
2020-01-06T14:20:19
216,340,778
0
0
null
2023-04-21T20:38:49
2019-10-20T10:00:46
Python
UTF-8
Python
false
false
2,339
py
import json from home.models import Category, UnderCategory, Product def create(json, Category, UnderCategory, Product): with open('citrus.json', 'r') as json_file: data = json.load(json_file) for elem in data: print(elem.get('name')) print(elem.get('category')) print(elem.get('undercategory')) print(elem.get('price')) # new_category = Category.objects.create(title=elem.get('category')) # new_uc = UnderCategory.objects.create(title=elem.get('undercategory'), category=new_category) # new_product = Product.objects.create(name=elem.get('name'), ucategory=new_uc) # new_category.save() # new_uc.save() # new_product = Product.objects.create(name=elem.get('name'), ucategory=new_uc) try: category = Category.objects.get(title=elem.get('category')) try: ucategory = UnderCategory.objects.get(title=elem.get('undercategory'), category=category) new_product = Product.objects.create(name=elem.get('name'), ucategory=ucategory, price=elem.get('price')) new_product.save() except: new_uc = UnderCategory.objects.create(title=elem.get('undercategory'), category=new_category) new_uc.save() new_product = Product.objects.create(name=elem.get('name'), ucategory=new_uc, price=elem.get('price')) new_product.save() except: new_category = Category.objects.create(title=elem.get('category')) new_category.save() try: print(UnderCategory.objects.get(title=elem.get('undercategory'), category=new_category)) except: new_uc = UnderCategory.objects.create(title=elem.get('undercategory'), category=new_category) new_uc.save() new_product = Product.objects.create(name=elem.get('name'), ucategory=new_uc,price=elem.get('price')) new_product.save() # print(create()) create(json, Category, UnderCategory, Product)
[ "dashkevich_v@ukr.net" ]
dashkevich_v@ukr.net
56d37d047190975695cb0168c225c11656be6066
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/routing_transformer/routing_tf_api.py
ddc35172d2adda48e5cb8cb0ef32aaa4146d4629
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
7,727
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pdb import tensorflow.compat.v1 as tf tf.disable_v2_behavior() tf.get_logger().setLevel('ERROR') from tensor2tensor import models from tensor2tensor import problems from tensor2tensor.utils import trainer_lib from tensor2tensor.utils import hparams_lib from tensor2tensor.utils import registry from tensor2tensor.utils import metrics from tensor2tensor.data_generators import text_encoder from tensor2tensor.data_generators import problem from routing_transformer.problems import pg19 from tensorflow.compat.v1 import estimator as tf_estimator from tqdm import tqdm from routing_transformer.sparse_transformer import SparseTransformer import numpy as np import random from scipy.special import log_softmax VOCAB_PATH = "/mnt/nfs/work1/miyyer/simengsun/in-book-retrieval/RT-data/vocab.pg19_length8k.32768.subwords" HPARAMS_PATH = "/mnt/nfs/work1/miyyer/simengsun/in-book-retrieval/RT-models/rt-checkpoint/hparams.json" CKPT_PATH = "/mnt/nfs/work1/miyyer/simengsun/in-book-retrieval/RT-models/rt-checkpoint/ckpt-3530000" MAX_SEQUENCE_LENGTH = 8192 class SparseTransformerWrapper(object): def __init__(self, max_seq_length=None): # Load hyperparameters self.max_seq_length = max_seq_length or MAX_SEQUENCE_LENGTH # Needed since RT uses blocks of size 256 assert self.max_seq_length % 256 == 0 hparams = hparams_lib.create_hparams_from_json(HPARAMS_PATH) hparams.use_tpu = False hparams = zero_dropout(hparams) # Build TF1 graph of model sptf_model = SparseTransformer(hparams, tf_estimator.ModeKeys.EVAL) self.input_nodes = { "targets": tf.placeholder(tf.int32, [None, self.max_seq_length]) } self.output_nodes = sptf_model.body(self.input_nodes) # Map the checkpoint variables to the graph init_from_checkpoint(CKPT_PATH, variable_prefix="sparse_transformer/body") # create a session object, and actually initialize the graph self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.encoder = text_encoder.SubwordTextEncoder(VOCAB_PATH) def forward(self, sentences, encode_sentences=True, relevant_subsequences=None): encoded_sents = [] encoded_seqs_no_pad = [] if encode_sentences: for sent in sentences: encoded = [] for line in sent.split("\n"): new_tokens = self.encoder.encode(line.strip()) if len(encoded) + len(new_tokens) >= self.max_seq_length: break encoded.extend(new_tokens) encoded.append(text_encoder.EOS_ID) encoded_seqs_no_pad.append(encoded) # pad shorter sequences to the full length encoded = encoded + [text_encoder.PAD_ID for _ in range(self.max_seq_length - len(encoded))] assert len(encoded) == self.max_seq_length encoded_sents.append(encoded) else: # assume sentences are encoded, pad/truncate them for sent in sentences: sent = sent[:self.max_seq_length] encoded_seqs_no_pad.append(sent) sent = sent + [text_encoder.PAD_ID for _ in range(self.max_seq_length - len(sent))] encoded_sents.append(sent) feed_dict = { self.input_nodes["targets"]: np.array(encoded_sents) } outputs = self.sess.run(self.output_nodes, feed_dict=feed_dict) return_outputs = { "logits": np.squeeze(outputs[0], axis=(2, 3)), "loss": outputs[1]["training"], "encoded_seqs_no_pad": encoded_seqs_no_pad } if relevant_subsequences is not None: for i, rss in enumerate(relevant_subsequences): encoded_subseq = self.encoder.encode(rss) positions = find_sub_list(encoded_subseq, encoded_sents[i]) misaligned_prefix_length = 0 while positions is None: misaligned_prefix_length += 1 encoded_subseq = encoded_subseq[1:] positions = find_sub_list(encoded_subseq, encoded_sents[i]) start, end = positions[-1] relevant_logits = return_outputs["logits"][i][start:end] log_probs = log_softmax(relevant_logits, axis=1) gold_log_probs = [lp[index] for index, lp in zip(encoded_subseq, log_probs)] return_outputs["subseq_log_loss"] = -1 * np.mean(gold_log_probs) return_outputs["misaligned_prefix_length"] = misaligned_prefix_length return return_outputs def close(self): self.sess.close() def find_sub_list(sl, l): """Find sub-string, so as to be able to compute ppl of a sub-string.""" sll=len(sl) matches = [] for ind in (i for i,e in enumerate(l) if e == sl[0]): if l[ind:ind + sll] == sl: matches.append( (ind, ind + sll) ) if matches: return matches def zero_dropout(hparams): hparams.input_dropout = 0.0 hparams.dropout = 0.0 hparams.relu_dropout = 0.0 hparams.attention_dropout = 0.0 hparams.layer_prepostprocess_dropout = 0.0 return hparams def log_variables(name, var_names): tf.logging.info("%s (%d total): %s", name, len(var_names), random.sample(var_names, min(len(var_names), 5))) def init_from_checkpoint(checkpoint_path, checkpoint_prefix=None, variable_prefix=None, target_variables=None): """Initializes all of the variables using `init_checkpoint.""" tf.logging.info("Loading variables from %s", checkpoint_path) checkpoint_variables = { name: name for name, _ in tf.train.list_variables(checkpoint_path) if "Adafactor" not in name } if target_variables is None: target_variables = tf.trainable_variables() target_variables = {var.name.split(":")[0]: var for var in target_variables} if checkpoint_prefix is not None: checkpoint_variables = { checkpoint_prefix + "/" + name: varname for name, varname in checkpoint_variables.items() } if variable_prefix is not None: target_variables = { variable_prefix + "/" + name: var for name, var in target_variables.items() } checkpoint_var_names = set(checkpoint_variables.keys()) target_var_names = set(target_variables.keys()) intersected_var_names = target_var_names & checkpoint_var_names assignment_map = { checkpoint_variables[name]: target_variables[name] for name in intersected_var_names } tf.train.init_from_checkpoint(checkpoint_path, assignment_map) log_variables("Loaded variables", intersected_var_names) log_variables("Uninitialized variables", target_var_names - checkpoint_var_names) log_variables("Unused variables", checkpoint_var_names - target_var_names)
[ "copybara-worker@google.com" ]
copybara-worker@google.com
62ad7ab2952d9267e0c46642ae083f48150e7885
56ff291cbddacda6cac8e1041df4159a9f715813
/base/admin.py
1fb73fe70a5975410c11a5fd0d7edaafee4076fd
[]
no_license
roopak1997/YT_API
4bb761841dde930ed63df58016cfa28946c9ed78
0bf226b27b79978340908e897e9596f867aef1dc
refs/heads/master
2023-05-06T11:33:55.613972
2021-05-29T14:45:17
2021-05-29T14:45:17
371,979,152
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
from django.contrib import admin from base.models import Video, Thumbnail from django.contrib import admin admin.site.register(Video) admin.site.register(Thumbnail)
[ "roopaksrinivasan@gmail.com" ]
roopaksrinivasan@gmail.com
8365348c8c8d72df578af246b3fea656a5feed86
727f1bc2205c88577b419cf0036c029b8c6f7766
/out-bin/py/google/fhir/labels/bundle_to_label.runfiles/com_google_fhir/external/pypi__apache_beam_2_9_0/apache_beam/runners/direct/bundle_factory.py
032aadc4fe49359d4995e2916d7a25262bdded85
[ "Apache-2.0" ]
permissive
rasalt/fhir
55cf78feed3596a3101b86f9e9bbf6652c6ed4ad
d49883cc4d4986e11ca66058d5a327691e6e048a
refs/heads/master
2020-04-13T00:16:54.050913
2019-01-15T14:22:15
2019-01-15T14:22:15
160,260,223
0
0
Apache-2.0
2018-12-03T22:07:01
2018-12-03T22:07:01
null
UTF-8
Python
false
false
154
py
/home/rkharwar/.cache/bazel/_bazel_rkharwar/c4bcd65252c8f8250f091ba96375f9a5/external/pypi__apache_beam_2_9_0/apache_beam/runners/direct/bundle_factory.py
[ "ruchika.kharwar@gmail.com" ]
ruchika.kharwar@gmail.com
bfd1c49315015eb94a929c27688e920b79adaa3e
2c2a9948ad2885f85576e9fc852515d43ed7054c
/backend/music/migrations/0002_auto_20210714_0213.py
c40873543f9e5e67180f4cd14d69f7b4db644f4b
[]
no_license
Park-JE/NoraeChuchun
fcee711465e80c5109bb0022a106622f978c6ff4
3d1ffcafa872454fb8af1457ec7cf8ad8fc5a135
refs/heads/main
2023-06-29T20:15:51.044111
2021-08-03T16:04:30
2021-08-03T16:04:30
376,422,286
3
4
null
null
null
null
UTF-8
Python
false
false
771
py
# Generated by Django 3.2.4 on 2021-07-14 02:13 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('music', '0001_initial'), ] operations = [ migrations.AddField( model_name='userplaylist', name='desc', field=models.CharField(blank=True, max_length=64, null=True, verbose_name='설명'), ), migrations.AlterField( model_name='playlist', name='listid', field=models.IntegerField(verbose_name='플레이리스트id'), ), migrations.AlterField( model_name='playlist', name='song', field=models.IntegerField(verbose_name='노래번호'), ), ]
[ "jieun.fs@gmail.com" ]
jieun.fs@gmail.com
8a82ec6cc56d3bbe1891aaccaffd1ec003e7f305
f9cb33c458429ba9b3c4b5956d65d2bac4d0d5e3
/python/lab13.5 pre final finish/Majority Element.py
5d0efcea9ca56978ab7699a652f1965cbc15caad
[]
no_license
BIRDDYTTP/elabProgrammingConcept
4d49c8f9715cc59edf9dbc4d9a2760be96cd5470
64b1bd96ef11d090c089430e712f3063decac0dd
refs/heads/master
2020-03-27T00:04:05.858680
2018-12-05T18:42:53
2018-12-05T18:42:53
145,590,772
0
0
null
null
null
null
UTF-8
Python
false
false
554
py
num = int(input()) lsA = [] for x in range(num): st = str(input()) lsA.append(st) checkls = [] for x in lsA: if ord(x) in checkls: pass else: checkls.append(ord(x)) countchc = [] char = [] for x in checkls: count = lsA.count(chr(x)) countchc.append(count) char.append(chr(x)) printls = [] count = 0 while count <= len(countchc)-1: if countchc[count] >= (num//2)+1: printls.append(char[count]) count += 1 if len(printls) == 0: print(len(printls)) else: for x in printls: print(x)
[ "thitipong.ha@ku.th" ]
thitipong.ha@ku.th
921e1b272e52e944ebf83d4db20d7640c81d2453
0fb68fce93c7fefdef491eb3da5a2a147b35dba8
/simulacoes/cenario4.py
8236c82da133380195678eecb3416748123c7f03
[]
no_license
mandoju/trabalhoAD
187a7f2c23e17ad0c1c2660b21fdd6b34be20ddb
a720dc3f95e5aac4d19ba119fe6ae3e6a4bbef1f
refs/heads/master
2020-03-27T00:20:31.317138
2015-08-24T23:30:59
2015-08-24T23:30:59
39,862,671
0
1
null
null
null
null
ISO-8859-1
Python
false
false
3,202
py
# -*- coding: latin-1 -*- __author__ = 'Rodrigo' import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import spline def simula4(): #parametros numero_ciclos= 1 tempo_simulacao = 1000000 u=[]#lista para plotar valor=[]#lista para plotar ##TODO: melhores nomes para as variáveis for w in range(1,20): u_servidor = round(0.5*(w+1), 2)#lambda do problema media=0 for q in range(numero_ciclos): lambda_entrada = 0.01 ##lambda fixo fila = 0 i = 0 j = 0 servidor = 0 tempo_proximo = 0 entrada = 0 ##tempo até a próxima entrada tempo_proximo = 0 ##tempo até terminar a execução no servidor ##variáveis para calcular a média tempo = 0 esperanca = 0 fim = 0 print(q) while (1): if(tempo == tempo_simulacao): esperanca = esperanca / tempo #print('a número médio de pessoas no sistema é: ' + str(esperanca)) media= media + esperanca/numero_ciclos break while(entrada == 0): entrada = int(np.random.exponential(1/lambda_entrada)) ##Gera uma nova entrada exponencial fila+= 1 i += 1 entrada -= 1 ## while nescessário caso caia em um tempo = 0 novamente resto = 0 while(tempo_proximo == 0 and fila > 0): servidor = 1 fila -= 1 aleatorio = np.random.random_sample() if(aleatorio > 0.1): fila +=1 exponencial = np.random.exponential(1/u_servidor) tempo_proximo = int(exponencial) resto += exponencial - tempo_proximo if(resto > 1): tempo_proximo += 1 j += 1 if(fila == 0 and tempo_proximo == 0): servidor = 0 else: tempo_proximo -= 1 ##coisas inuteis para parar quando já tudo processado ##nunca será executável pois para depois da ultima remessa da entrada esperanca += fila + servidor ##soma o número de clientes no sistema tempo += 1 ##adiciona mais um no tempo ##executando a função main print("Media das medias: ", media) u.append(u_servidor) valor.append(media) plt.figure(figsize=(8, 6), dpi=100) x_smooth = np.linspace(min(u), max(u), 10000) y_smooth = spline (u, valor, x_smooth) plt.plot(x_smooth,y_smooth,'-b', label="Curva Amortizada") plt.plot(u, valor, 'bo', label="Pontos Da Curva") #plt.plot(lamb, valor2, '-ro', label="Curva Teste") plt.axis([0, 1.1*(max(u)), 0, 1.2*(max(valor))]) plt.suptitle('Cenário-3', fontsize=20) plt.xlabel('Lambda', fontsize=15) plt.ylabel('Média', fontsize=15) plt.legend(loc=1, prop={'size':10}) plt.show()
[ "jorgezin@gmail.com" ]
jorgezin@gmail.com
dbb1f628f7a710240e42d0872d1f4720c17b1f93
31f090ee6707817164a2514993e92882e2220670
/app.py
3a68958515690552cacba7d24d13795bc27f094c
[]
no_license
Nandan26/Internship
0397589c099822ded1c8c3ce6d460640020f82db
a416c0fb3995428554d40e8f4c71554eeeb42d47
refs/heads/main
2023-06-17T11:55:23.736400
2021-07-07T11:42:52
2021-07-07T11:42:52
383,768,347
0
0
null
null
null
null
UTF-8
Python
false
false
2,398
py
from flask import Flask, request, render_template import sklearn import joblib import pandas as pd import numpy as np import statsmodels.api as sm from flask_cors import cross_origin,CORS #for enable cross platform communication app = Flask(__name__) #for Next day prediction scaler= joblib.load('scaler.pkl') model1 = joblib.load('Model1.pkl') #for next minute prediction scaler2= joblib.load('scaler2.pkl') model2=joblib.load(open('Model2.pkl','rb')) #just another way of doing it #CORS(app) @app.route("/") @cross_origin() def home(): return render_template("index.html") @app.route("/predict", methods = ["GET", "POST"]) @cross_origin() def predict(): if request.method == "POST": # Open Price op = float(request.form["Open_price"]) # High Price hp = float(request.form["High_price"]) # Low Price lp = float(request.form["Low_price"]) adj = float(request.form["Adj_Close"]) vm = float(request.form["Volume"]) # Date Date = request.form["Date_Time"] Day = int(pd.to_datetime(Date,format="%Y-%m-%d").day) Year = int(pd.to_datetime(Date,format="%Y-%m-%d").year) Month = int(pd.to_datetime(Date,format="%Y-%m-%d").month) DayofWeek = int(pd.to_datetime(Date,format="%Y-%m-%d").dayofweek) # Previous day Open Price pop = float(request.form["popen"]) # Previous day close Price pcp = float(request.form["pclose"]) scaled=scaler.transform([[op,hp,lp,adj,vm,op-pcp,op-pop,Day,Year,Month,DayofWeek]]) prediction=model1.predict(scaled) if prediction[0]==1: output2= "Up" else: output2= "Down" scaled=scaler2.transform([[op,hp,lp]]) dataset = pd.DataFrame({'const' : 1,'op': scaled[:, 0], 'hp': scaled[:, 1], 'lp': scaled[:, 2]}) pred=model2.predict(dataset) if pred[0] > 0.5: output= "Up" else: output= "Down" return render_template('index.html',prediction_text="Your Stock will go {} next minute Your Stock will go {} next day".format(output,output2)) return render_template("index.html") if __name__ == "__main__": app.run(debug=True)
[ "noreply@github.com" ]
Nandan26.noreply@github.com
7e00da9fc16b52f90cc97d91dacdb51b2ecbfb55
90c07b483649784e202c67d66e19fad82e7f68de
/test/fixture/vl53l0x-long-output.py
2669a93463cf15ef98065bdab3525ea745259f14
[]
no_license
mlenkeit/balcony-server
67142a3b6113c43a27f93a8e7c392f5498969a3c
7e20d9139e92512ea5982a0815a8e4bbf7603eaa
refs/heads/master
2021-01-02T22:59:22.143355
2017-08-13T13:35:23
2017-08-13T13:35:23
99,431,810
0
0
null
null
null
null
UTF-8
Python
false
false
563
py
print """Creating tof... Start ranging... VL53L0X Start Ranging Object 0 Address 0x29 VL53L0X_GetDeviceInfo: Device Name : VL53L0X ES1 or later Device Type : VL53L0X Device ID : VL53L0CAV0DH/1$5 ProductRevisionMajor : 1 ProductRevisionMinor : 1 VL53L0X_LONG_RANGE_MODE API Status: 0 : No Error Timing 33 ms 743 mm, 74 cm, 1 755 mm, 75 cm, 2 711 mm, 71 cm, 3 758 mm, 75 cm, 4 729 mm, 72 cm, 5 690 mm, 69 cm, 6 735 mm, 73 cm, 7 742 mm, 74 cm, 8 634 mm, 63 cm, 9 722 mm, 72 cm, 10 Call of VL53L0X_StopMeasurement Wait Stop to be competed API Status: 0 : No Error"""
[ "maximilian.lenkeit@sap.com" ]
maximilian.lenkeit@sap.com
f951e1cff4773f3d7bbafa8a8da8f51e39292a6b
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/cyzbSvpfSzDjGi4TB_6.py
3dc41e9ce3d55a84ccef17f3ab0f837b05e5f6c6
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
74
py
def harmonic(n): return round(sum([1/x for x in range(1, n+1)] ), 3 )
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
cb05b353fe6c3caabc51970a0c30c56d9c656422
8ac6d0a2c9008b40809cd82acb5b2aa7ebb02c32
/mne_nirs/tests/test_examples.py
e22ac7b3291636b1749997d0df71984250b20367
[]
no_license
seapsy/mne-nirs
da75e4d9d5f2392d056f4df9d11f9e636e4cb8de
a229f8e8f93d950f5b3791575f73b5c949651127
refs/heads/master
2023-01-29T01:15:48.542632
2020-12-09T06:26:19
2020-12-09T06:26:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,220
py
# Authors: Robert Luke <mail@robertluke.net> # # License: BSD (3-clause) # This script runs each of the example scripts. It acts as a system test. import os import pytest def examples_path(): if not os.path.isdir("BIDS-NIRS-Tapping"): os.system("git clone --depth 1 " "https://github.com/rob-luke/BIDS-NIRS-Tapping.git") if os.path.isdir("examples"): path = "examples/" else: path = "../examples/" return path def run_script_and_check(test_file_path): import matplotlib as mpl mpl.use("Agg") # Useful when testing locally as not to block progress return exec(open(test_file_path).read(), locals(), locals()) @pytest.mark.parametrize('fname', (["plot_10_hrf_simulation.py", "plot_11_hrf_measured.py", "plot_12_group_glm.py", "plot_19_snirf.py", "plot_20_enhance.py", "plot_30_frequency.py", "plot_99_bad.py"])) def test_examples(fname): test_file_path = examples_path() + fname run_script_and_check(test_file_path)
[ "noreply@github.com" ]
seapsy.noreply@github.com
ec3322af4a258e119685102a357e04305f55bd12
faf7110bbfb970ae9a66d2e52a1be2fcd73a7a0c
/settings.py
95b1f2a77ecf4f07b305b0136e71164299a163d7
[]
no_license
willsouza04/Radar
45f79a7d57250e77491fbfaa323cce5a059bc9eb
114b5383edf07355301c7103919ae536c4f038f1
refs/heads/master
2020-12-20T14:19:09.680784
2020-01-25T00:14:56
2020-01-25T00:14:56
236,105,080
0
0
null
null
null
null
UTF-8
Python
false
false
644
py
class Settings(): def __init__(self, screenSize): # Configurações da tela self.screen_width = screenSize[0] self.screen_height = screenSize[1] self.bg_color = (100, 100, 100) # Configurações do retangulo self.rect_color = (150, 150, 150) self.rect_width = 300 self.rect_height = 200 # Configurações da fonte self.font_color = (20, 20, 20) # Configurações da ovelha self.sheep_speed = 0.5 # Configurações do menu self.font_color_buttons = (200, 200, 200) self.font_color_buttons_featured = (150, 150, 150)
[ "willsouza04@gmail.com" ]
willsouza04@gmail.com
452c423ba680971cc37cb2c6c4d90ab016e7bf81
38958483cc2dbeb35497b8d091e32e42c9c90f07
/day17/app.py
853de8840b5a54f54ae1cd99f35ede495af05370
[]
no_license
jonthornton/adventofcode2020
3fb7204dd224b81884ea2217dd7beb1c3eb30349
ba8f67cfebb04b4441ca79e7efe25f0287eb02b9
refs/heads/master
2023-02-17T18:32:36.820428
2021-01-19T03:47:28
2021-01-19T03:47:28
326,104,480
0
0
null
null
null
null
UTF-8
Python
false
false
4,113
py
# coding: utf-8 """ :copyright: (c) 2020 by Jon Thornton. """ def main(): input = [] with open('input.txt', 'r') as file: input = [line.strip() for line in file] s = Solution() # print(s.part1(input)) print(s.part2(input)) class Solution: def part1(self, input): active_blocks = set() x = 0 y = 0 z = 0 for y, line in enumerate(input): for x, block in enumerate(line): if block == '#': active_blocks.add((x, y, z)) for i in range(6): # print(active_blocks) active_blocks = self.do_cycle(active_blocks) return len(active_blocks) def part2(self, input): active_blocks = set() x = 0 y = 0 z = 0 w = 0 for y, line in enumerate(input): for x, block in enumerate(line): if block == '#': active_blocks.add((x, y, z, w)) for i in range(6): # print(active_blocks) active_blocks = self.do_cycle_4d(active_blocks) return len(active_blocks) def do_cycle_4d(self, active_blocks): new_active = set() for block in active_blocks: if self.should_be_active_block_4d(block, active_blocks): new_active.add(block) neighbors = self.get_neighbors_4d(block) for n in neighbors: if self.should_be_active_block_4d(n, active_blocks): new_active.add(n) return new_active def do_cycle(self, active_blocks): new_active = set() for block in active_blocks: if self.should_be_active_block(block, active_blocks): new_active.add(block) neighbors = self.get_neighbors(block) for n in neighbors: if self.should_be_active_block(n, active_blocks): new_active.add(n) return new_active def should_be_active_block(self, block, active_blocks): is_active = block in active_blocks active_neighbors = self.get_active_neighbors(block, active_blocks) if is_active and 2 <= len(active_neighbors) <= 3: return True elif not is_active and len(active_neighbors) == 3: return True return False def should_be_active_block_4d(self, block, active_blocks): is_active = block in active_blocks active_neighbors = self.get_active_neighbors_4d(block, active_blocks) if is_active and 2 <= len(active_neighbors) <= 3: return True elif not is_active and len(active_neighbors) == 3: return True return False def get_active_neighbors(self, block, active_blocks): neighbors = self.get_neighbors(block) collector = [] for n in neighbors: if n in active_blocks: collector.append(n) return collector def get_active_neighbors_4d(self, block, active_blocks): neighbors = self.get_neighbors_4d(block) collector = [] for n in neighbors: if n in active_blocks: collector.append(n) return collector def get_neighbors(self, block): collector = [] for x in range(-1, 2): for y in range(-1, 2): for z in range(-1, 2): if x == 0 and y == 0 and z == 0: continue collector.append((block[0] + x, block[1] + y, block[2] + z)) return collector def get_neighbors_4d(self, block): collector = [] for x in range(-1, 2): for y in range(-1, 2): for z in range(-1, 2): for w in range(-1, 2): if x == 0 and y == 0 and z == 0 and w == 0: continue collector.append((block[0] + x, block[1] + y, block[2] + z, block[3] + w)) return collector if __name__ == '__main__': main()
[ "thornton.jon@gmail.com" ]
thornton.jon@gmail.com
874ca0ff5a45005438735f04ecf861ffa29707b7
36b012177eba594326ce29c5d9e2808b1c075775
/venv/lib/python3.6/copy.py
cc7a3f7877ea349643e3e6a9df840c5ac5a7a5dd
[]
no_license
JoshCrusader/ResidencySystem
0000125c5ccb4ee5dea1394fcd197614bb5a631a
98a120b3ff8dec447d4d0df032aa5eb188b19e99
refs/heads/master
2020-12-03T03:37:21.334321
2017-07-08T13:57:01
2017-07-08T13:57:01
95,750,651
0
0
null
null
null
null
UTF-8
Python
false
false
55
py
/Users/drjeoffreycruzada/anaconda/lib/python3.6/copy.py
[ "joshua_cruzada@dlsu.edu.ph" ]
joshua_cruzada@dlsu.edu.ph
cfeccc1e4f8c10c38e839b7a51e2a6fa60edb50d
2464974c859fcae1c665c4220f98906ccd06b89f
/kjo/wsgi.py
83689a7bf379ff75845c2d3e2b0a91be173e0674
[]
no_license
wlsdh85/django_practice
91562675f7ed57e3ebfe0ef4eff28e711fa03248
761d24dfc3bd53167957c932a4aeebb3740ab262
refs/heads/master
2023-01-11T00:03:30.020750
2020-11-10T11:39:20
2020-11-10T11:39:20
311,635,062
0
0
null
null
null
null
UTF-8
Python
false
false
383
py
""" WSGI config for kjo project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'kjo.settings') application = get_wsgi_application()
[ "wlsdh85@gmail.com" ]
wlsdh85@gmail.com
9435de26e438527194333e88e18880da7357c9db
d637a0a76e65c5498ab41a01e423ab4a69ff0e5c
/src/RL/ex.py
94fb6ca867df2df5b5d60b65547019d34b57bad2
[]
no_license
webclinic017/DART_Crawling
1d8ae692ecdd8ac95cf5334c7ed0bb23375c4a54
6937f48cab218dd6a2ec27338d37aca88ba368b4
refs/heads/master
2022-11-30T14:16:50.865420
2020-08-11T03:25:00
2020-08-11T03:25:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
845
py
# import gym # env = gym.make('CartPole-v0') # env.reset() # for _ in range(1000): # env.render() # env.step(env.action_space.sample()) # take a random action # env.close() import gym env = gym.make('CartPole-v0') for i_epoisode in range(20): observation = env.reset() for t in range(100): env.render() print(observation) action = env.action_space.sample() observation, reward, done, info = env.step(action) if done: print("Episode finised after {}timesteps".format(t+1)) break env.close() # import gym # env = gym.make('CartPole-v0') # print(env.action_space) # print(env.observation_space) # from gym import spaces # space = spaces.Discrete(2) # x = space.sample() # # 가정 함수 assert # assert space.contains(x) # assert space.n == 2, '크기가 다름'
[ "wnstjd117@naver.com" ]
wnstjd117@naver.com
77d38137276897f4d2a3390e678b2c33e68f0437
a8425bd731abfaa2c7bc797ce1b4d00aa8b46fa2
/anytree/node/anynode.py
82c5b0a7e1c956192ff369fb7eb9c0410dfdcdd7
[ "Apache-2.0" ]
permissive
nline/anytree
45103dea6b4ce397711a33bb873b3478fc48cd20
73492fb96d77a6973f3c48489064a12452646965
refs/heads/master
2023-02-14T03:42:42.853455
2021-01-04T20:41:06
2021-01-04T20:41:06
287,288,337
0
0
Apache-2.0
2020-08-13T13:30:56
2020-08-13T13:30:55
null
UTF-8
Python
false
false
3,469
py
# -*- coding: utf-8 -*- from .nodemixin import NodeMixin from .util import _repr class AnyNode(NodeMixin, object): def __init__(self, parent=None, children=None, **kwargs): u""" A generic tree node with any `kwargs`. Keyword Args: parent: Reference to parent node. children: Iterable with child nodes. *: Any other given attribute is just stored as object attribute. Other than :any:`Node` this class has no default idenifier. It is up to the user to use other attributes for identification. The `parent` attribute refers the parent node: >>> from anytree import AnyNode, RenderTree >>> root = AnyNode(id="root") >>> s0 = AnyNode(id="sub0", parent=root) >>> s0b = AnyNode(id="sub0B", parent=s0, foo=4, bar=109) >>> s0a = AnyNode(id="sub0A", parent=s0) >>> s1 = AnyNode(id="sub1", parent=root) >>> s1a = AnyNode(id="sub1A", parent=s1) >>> s1b = AnyNode(id="sub1B", parent=s1, bar=8) >>> s1c = AnyNode(id="sub1C", parent=s1) >>> s1ca = AnyNode(id="sub1Ca", parent=s1c) >>> root AnyNode(id='root') >>> s0 AnyNode(id='sub0') >>> print(RenderTree(root)) AnyNode(id='root') ├── AnyNode(id='sub0') │ ├── AnyNode(bar=109, foo=4, id='sub0B') │ └── AnyNode(id='sub0A') └── AnyNode(id='sub1') ├── AnyNode(id='sub1A') ├── AnyNode(bar=8, id='sub1B') └── AnyNode(id='sub1C') └── AnyNode(id='sub1Ca') The same tree can be constructed by using the `children` attribute: >>> root = AnyNode(id="root", children=[ ... AnyNode(id="sub0", children=[ ... AnyNode(id="sub0B", foo=4, bar=109), ... AnyNode(id="sub0A"), ... ]), ... AnyNode(id="sub1", children=[ ... AnyNode(id="sub1A"), ... AnyNode(id="sub1B", bar=8), ... AnyNode(id="sub1C", children=[ ... AnyNode(id="sub1Ca"), ... ]), ... ]), ... ]) >>> print(RenderTree(root)) AnyNode(id='root') ├── AnyNode(id='sub0') │ ├── AnyNode(bar=109, foo=4, id='sub0B') │ └── AnyNode(id='sub0A') └── AnyNode(id='sub1') ├── AnyNode(id='sub1A') ├── AnyNode(bar=8, id='sub1B') └── AnyNode(id='sub1C') └── AnyNode(id='sub1Ca') Node attributes can be added, modified and deleted the pythonic way: >>> root.new = 'a new attribute' >>> s0b.bar = 110 # modified >>> del s1b.bar >>> print(RenderTree(root)) AnyNode(id='root', new='a new attribute') ├── AnyNode(id='sub0') │ ├── AnyNode(bar=109, foo=4, id='sub0B') │ └── AnyNode(id='sub0A') └── AnyNode(id='sub1') ├── AnyNode(id='sub1A') ├── AnyNode(bar=8, id='sub1B') └── AnyNode(id='sub1C') └── AnyNode(id='sub1Ca') """ self.__dict__.update(kwargs) self.parent = parent if children: self.children = children def __repr__(self): return _repr(self)
[ "c0fec0de@gmail.com" ]
c0fec0de@gmail.com
494e0d4136694286e0c11714a7c34d8c62b349d7
07c62636b2e88d235200cf3bf2d7948d5ab9f288
/old archives/ip-cam/wan/remote-opencv-streaming-live-video-master/client.py
89a7654af909dab40d88d299ec237e67ec1f6287
[ "MIT" ]
permissive
Whiron/Realtime-object-detection
a52bf3703e7c1525a69de1ef3b3aa6ff2f16f54d
ac5cf1ceec3dafb094685edec6ae9c6999a1df79
refs/heads/master
2020-12-15T06:17:24.615617
2020-01-20T04:24:12
2020-01-20T04:24:12
235,018,043
0
0
null
null
null
null
UTF-8
Python
false
false
584
py
import cv2 import numpy as np import socket import sys import pickle import struct #from io import StringIO import io import json import base64 cap=cv2.VideoCapture(0) clientsocket=socket.socket(socket.AF_INET,socket.SOCK_STREAM) clientsocket.connect(('localhost',8089)) while(cap.isOpened()): ret,frame=cap.read() memfile = io.BytesIO() np.save(memfile, frame) memfile.seek(0) data = json.dumps(memfile.read().decode('latin-1')) #print(data) clientsocket.sendall(struct.pack('L', len(data))+data) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release()
[ "sarthak.thakkar16@gmail.com" ]
sarthak.thakkar16@gmail.com
d7cc9563938c88b61d3a40cd101d1af903cb8f89
a06337aeb77809e8f39ebf56b4ec2c2dfcd87ede
/apostrofo.py
4645161ca7ae9690d39516f61ded5bda40092676
[]
no_license
jessicameira/python
ee43b85043559d6fda8e10d4cb1928cc0f6cac10
9504c49fca7555318b0660beb086b8d43f23c2a4
refs/heads/master
2020-07-05T09:35:21.295091
2019-08-20T13:23:28
2019-08-20T13:23:28
202,610,625
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
message = "One of the Python's strenght is the diversity" print(message)
[ "noreply@github.com" ]
jessicameira.noreply@github.com
8cecebde482ccbac8c83a02a31aae64cf3aa2af3
640608dc02fcfa9334be5abaa7146d8134df489a
/7. Reverse Integer.py
30b2b882229e31633995f5535deb2da3e0fce011
[]
no_license
lingqinx/leedcode
698835d925eeaa4fea84086fcf8413dd28b90ef1
b3ba70ed100cd5207f7649266d48cf30a9f600e5
refs/heads/master
2021-07-02T13:29:40.114567
2019-04-04T07:14:24
2019-04-04T07:14:24
106,343,420
1
0
null
null
null
null
UTF-8
Python
false
false
341
py
class Solution(object): def reverse(self, x): """ :type x: int :rtype: int """ oper = 0 if x > 0: oper = 1 reverse=int(str(x)[::-1]) if x < 0: oper = -1 reverse = int(str(x)[1::-1]) reverse = int(`oper*x`[::-1])
[ "noreply@github.com" ]
lingqinx.noreply@github.com
d01c60729dde3704ca76f6163bb970a349a73025
2ee66e6485f0c68adb6367b3697c4a3cb32c9b7e
/tests/test_mpi.py
b945048d2f32120065d20655192115c3e52a001e
[ "MIT" ]
permissive
yuriyi/devito
8836f741b360946ce2b439b88b78bf267279e90b
d0a29b3ad3653c20f88b35c2780471cef107b7a2
refs/heads/master
2020-04-01T05:49:17.221770
2018-10-13T18:34:46
2018-10-13T18:34:46
152,920,977
0
0
MIT
2018-10-13T22:52:12
2018-10-13T22:52:12
null
UTF-8
Python
false
false
38,484
py
import numpy as np import pytest from conftest import skipif_yask from devito import (Grid, Constant, Function, TimeFunction, SparseFunction, SparseTimeFunction, Dimension, ConditionalDimension, SubDimension, Eq, Inc, Operator) from devito.ir.iet import Call, Conditional, FindNodes from devito.mpi import MPI, copy, sendrecv, update_halo from devito.parameters import configuration from devito.types import LEFT, RIGHT @skipif_yask class TestPythonMPI(object): @pytest.mark.parallel(nprocs=[2, 4]) def test_partitioning(self): grid = Grid(shape=(15, 15)) f = Function(name='f', grid=grid) distributor = grid.distributor expected = { # nprocs -> [(rank0 shape), (rank1 shape), ...] 2: [(15, 8), (15, 7)], 4: [(8, 8), (8, 7), (7, 8), (7, 7)] } assert f.shape == expected[distributor.nprocs][distributor.myrank] @pytest.mark.parallel(nprocs=[2, 4]) def test_partitioning_fewer_dims(self): """Test domain decomposition for Functions defined over a strict subset of grid-decomposed dimensions.""" size_x, size_y = 16, 16 grid = Grid(shape=(size_x, size_y)) x, y = grid.dimensions # A function with fewer dimensions that in `grid` f = Function(name='f', grid=grid, dimensions=(y,), shape=(size_y,)) distributor = grid.distributor expected = { # nprocs -> [(rank0 shape), (rank1 shape), ...] 2: [(8,), (8,)], 4: [(8,), (8,), (8,), (8,)] } assert f.shape == expected[distributor.nprocs][distributor.myrank] @pytest.mark.parallel(nprocs=9) def test_neighborhood_2d(self): grid = Grid(shape=(3, 3)) x, y = grid.dimensions distributor = grid.distributor # Rank map: # ---------------y # | 0 | 1 | 2 | # ------------- # | 3 | 4 | 5 | # ------------- # | 6 | 7 | 8 | # ------------- # | # x expected = { 0: {x: {LEFT: MPI.PROC_NULL, RIGHT: 3}, y: {LEFT: MPI.PROC_NULL, RIGHT: 1}}, 1: {x: {LEFT: MPI.PROC_NULL, RIGHT: 4}, y: {LEFT: 0, RIGHT: 2}}, 2: {x: {LEFT: MPI.PROC_NULL, RIGHT: 5}, y: {LEFT: 1, RIGHT: MPI.PROC_NULL}}, 3: {x: {LEFT: 0, RIGHT: 6}, y: {LEFT: MPI.PROC_NULL, RIGHT: 4}}, 4: {x: {LEFT: 1, RIGHT: 7}, y: {LEFT: 3, RIGHT: 5}}, 5: {x: {LEFT: 2, RIGHT: 8}, y: {LEFT: 4, RIGHT: MPI.PROC_NULL}}, 6: {x: {LEFT: 3, RIGHT: MPI.PROC_NULL}, y: {LEFT: MPI.PROC_NULL, RIGHT: 7}}, 7: {x: {LEFT: 4, RIGHT: MPI.PROC_NULL}, y: {LEFT: 6, RIGHT: 8}}, 8: {x: {LEFT: 5, RIGHT: MPI.PROC_NULL}, y: {LEFT: 7, RIGHT: MPI.PROC_NULL}}, } assert expected[distributor.myrank] == distributor.neighbours @pytest.mark.parallel(nprocs=2) def test_halo_exchange_bilateral(self): """ Test halo exchange between two processes organised in a 1x2 cartesian grid. The initial ``data_with_halo`` looks like: rank0 rank1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 2 2 2 2 0 0 1 1 1 1 0 0 2 2 2 2 0 0 1 1 1 1 0 0 2 2 2 2 0 0 1 1 1 1 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 After the halo exchange, the following is expected and tested for: rank0 rank1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 1 2 2 2 2 0 0 1 1 1 1 2 1 2 2 2 2 0 0 1 1 1 1 2 1 2 2 2 2 0 0 1 1 1 1 2 1 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 """ grid = Grid(shape=(12, 12)) f = Function(name='f', grid=grid) distributor = grid.distributor f.data[:] = distributor.myrank + 1 # Now trigger a halo exchange... f.data_with_halo # noqa if distributor.myrank == 0: assert np.all(f.data_ro_with_halo[1:-1, -1] == 2.) assert np.all(f.data_ro_with_halo[:, 0] == 0.) else: assert np.all(f.data_ro_with_halo[1:-1, 0] == 1.) assert np.all(f.data_ro_with_halo[:, -1] == 0.) assert np.all(f.data_ro_with_halo[0] == 0.) assert np.all(f.data_ro_with_halo[-1] == 0.) @pytest.mark.parallel(nprocs=2) def test_halo_exchange_bilateral_asymmetric(self): """ Test halo exchange between two processes organised in a 1x2 cartesian grid. In this test, the size of left and right halo regions are different. The initial ``data_with_halo`` looks like: rank0 rank1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 2 2 2 2 0 0 0 1 1 1 1 0 0 0 2 2 2 2 0 0 0 1 1 1 1 0 0 0 2 2 2 2 0 0 0 1 1 1 1 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 After the halo exchange, the following is expected and tested for: rank0 rank1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 1 1 2 2 2 2 0 0 0 1 1 1 1 2 1 1 2 2 2 2 0 0 0 1 1 1 1 2 1 1 2 2 2 2 0 0 0 1 1 1 1 2 1 1 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 """ grid = Grid(shape=(12, 12)) f = Function(name='f', grid=grid, space_order=(1, 2, 1)) distributor = grid.distributor f.data[:] = distributor.myrank + 1 # Now trigger a halo exchange... f.data_with_halo # noqa if distributor.myrank == 0: assert np.all(f.data_ro_with_halo[2:-1, -1] == 2.) assert np.all(f.data_ro_with_halo[:, 0:2] == 0.) else: assert np.all(f.data_ro_with_halo[2:-1, 0:2] == 1.) assert np.all(f.data_ro_with_halo[:, -1] == 0.) assert np.all(f.data_ro_with_halo[0:2] == 0.) assert np.all(f.data_ro_with_halo[-1] == 0.) @pytest.mark.parallel(nprocs=4) def test_halo_exchange_quadrilateral(self): """ Test halo exchange between four processes organised in a 2x2 cartesian grid. The initial ``data_with_halo`` looks like: rank0 rank1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 2 2 2 2 0 0 1 1 1 1 0 0 2 2 2 2 0 0 1 1 1 1 0 0 2 2 2 2 0 0 1 1 1 1 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 rank2 rank3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 4 4 4 4 0 0 3 3 3 3 0 0 4 4 4 4 0 0 3 3 3 3 0 0 4 4 4 4 0 0 3 3 3 3 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 After the halo exchange, the following is expected and tested for: rank0 rank1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 1 2 2 2 2 0 0 1 1 1 1 2 1 2 2 2 2 0 0 1 1 1 1 2 1 2 2 2 2 0 0 1 1 1 1 2 1 2 2 2 2 0 0 3 3 3 3 4 3 4 4 4 4 0 rank2 rank3 0 1 1 1 1 2 1 2 2 2 2 0 0 3 3 3 3 4 3 4 4 4 4 0 0 3 3 3 3 4 3 4 4 4 4 0 0 3 3 3 3 4 3 4 4 4 4 0 0 3 3 3 3 4 3 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 """ grid = Grid(shape=(12, 12)) f = Function(name='f', grid=grid) distributor = grid.distributor f.data[:] = distributor.myrank + 1 # Now trigger a halo exchange... f.data_with_halo # noqa if distributor.myrank == 0: assert np.all(f.data_ro_with_halo[0] == 0.) assert np.all(f.data_ro_with_halo[:, 0] == 0.) assert np.all(f.data_ro_with_halo[1:-1, -1] == 2.) assert np.all(f.data_ro_with_halo[-1, 1:-1] == 3.) assert f.data_ro_with_halo[-1, -1] == 4. elif distributor.myrank == 1: assert np.all(f.data_ro_with_halo[0] == 0.) assert np.all(f.data_ro_with_halo[:, -1] == 0.) assert np.all(f.data_ro_with_halo[1:-1, 0] == 1.) assert np.all(f.data_ro_with_halo[-1, 1:-1] == 4.) assert f.data_ro_with_halo[-1, 0] == 3. elif distributor.myrank == 2: assert np.all(f.data_ro_with_halo[-1] == 0.) assert np.all(f.data_ro_with_halo[:, 0] == 0.) assert np.all(f.data_ro_with_halo[1:-1, -1] == 4.) assert np.all(f.data_ro_with_halo[0, 1:-1] == 1.) assert f.data_ro_with_halo[0, -1] == 2. else: assert np.all(f.data_ro_with_halo[-1] == 0.) assert np.all(f.data_ro_with_halo[:, -1] == 0.) assert np.all(f.data_ro_with_halo[1:-1, 0] == 3.) assert np.all(f.data_ro_with_halo[0, 1:-1] == 2.) assert f.data_ro_with_halo[0, 0] == 1. @skipif_yask @pytest.mark.parallel(nprocs=[2, 4]) def test_ctypes_neighbours(self): grid = Grid(shape=(4, 4)) distributor = grid.distributor PN = MPI.PROC_NULL attrs = ['xleft', 'xright', 'yleft', 'yright'] expected = { # nprocs -> [(rank0 xleft xright ...), (rank1 xleft ...), ...] 2: [(PN, PN, PN, 1), (PN, PN, 0, PN)], 4: [(PN, 2, PN, 1), (PN, 3, 0, PN), (0, PN, PN, 3), (1, PN, 2, PN)] } mapper = dict(zip(attrs, expected[distributor.nprocs][distributor.myrank])) _, _, obj = distributor._C_neighbours assert all(getattr(obj.value._obj, k) == v for k, v in mapper.items()) @skipif_yask class TestCodeGeneration(object): def test_iet_copy(self): grid = Grid(shape=(4, 4)) t = grid.stepping_dim f = TimeFunction(name='f', grid=grid) iet = copy(f, [t]) assert str(iet.parameters) == """\ (buf(buf_x, buf_y), buf_x_size, buf_y_size, dat(dat_time, dat_x, dat_y),\ dat_time_size, dat_x_size, dat_y_size, otime, ox, oy)""" assert """\ for (int x = 0; x <= buf_x_size - 1; x += 1) { for (int y = 0; y <= buf_y_size - 1; y += 1) { buf[x][y] = dat[otime][x + ox][y + oy]; } }""" in str(iet) def test_iet_sendrecv(self): grid = Grid(shape=(4, 4)) t = grid.stepping_dim f = TimeFunction(name='f', grid=grid) iet = sendrecv(f, [t]) assert str(iet.parameters) == """\ (dat(dat_time, dat_x, dat_y), dat_time_size, dat_x_size, dat_y_size,\ buf_x_size, buf_y_size, ogtime, ogx, ogy, ostime, osx, osy, fromrank, torank, comm)""" assert str(iet.body[0]) == """\ float (*restrict dat)[dat_x_size][dat_y_size] __attribute__((aligned(64))) =\ (float (*)[dat_x_size][dat_y_size]) dat_vec; float bufs[buf_x_size][buf_y_size] __attribute__((aligned(64))); MPI_Request rrecv; float bufg[buf_x_size][buf_y_size] __attribute__((aligned(64))); MPI_Request rsend; MPI_Status srecv; MPI_Irecv((float*)bufs,buf_x_size*buf_y_size,MPI_FLOAT,fromrank,13,comm,&rrecv); gather_f((float*)bufg,buf_x_size,buf_y_size,(float*)dat,dat_time_size,dat_x_size,\ dat_y_size,ogtime,ogx,ogy); MPI_Isend((float*)bufg,buf_x_size*buf_y_size,MPI_FLOAT,torank,13,comm,&rsend); MPI_Wait(&rsend,MPI_STATUS_IGNORE); MPI_Wait(&rrecv,&srecv); if (fromrank != MPI_PROC_NULL) { scatter_f((float*)bufs,buf_x_size,buf_y_size,(float*)dat,dat_time_size,dat_x_size,\ dat_y_size,ostime,osx,osy); }""" @pytest.mark.parallel(nprocs=1) def test_iet_update_halo(self): grid = Grid(shape=(4, 4)) t = grid.stepping_dim f = TimeFunction(name='f', grid=grid) iet = update_halo(f, [t]) assert str(iet.parameters) == """\ (f(t, x, y), mxl, mxr, myl, myr, comm, nb, otime, t_size, x_size, y_size)""" assert """\ MPI_Comm *comm = (MPI_Comm*) _comm; struct neighbours *nb = (struct neighbours*) _nb; if (mxl) { sendrecv(f_vec,t_size,x_size + 1 + 1,y_size + 1 + 1,1,y_size + 1 + 1,\ otime,1,0,otime,x_size + 1,0,nb->xright,nb->xleft,comm); } if (mxr) { sendrecv(f_vec,t_size,x_size + 1 + 1,y_size + 1 + 1,1,y_size + 1 + 1,\ otime,x_size,0,otime,0,0,nb->xleft,nb->xright,comm); } if (myl) { sendrecv(f_vec,t_size,x_size + 1 + 1,y_size + 1 + 1,x_size + 1 + 1,1,\ otime,0,1,otime,0,y_size + 1,nb->yright,nb->yleft,comm); } if (myr) { sendrecv(f_vec,t_size,x_size + 1 + 1,y_size + 1 + 1,x_size + 1 + 1,1,\ otime,0,y_size,otime,0,0,nb->yleft,nb->yright,comm); }""" @skipif_yask class TestSparseFunction(object): @pytest.mark.parallel(nprocs=4) @pytest.mark.parametrize('coords,expected', [ ([(1., 1.), (1., 3.), (3., 1.), (3., 3.)], (0, 1, 2, 3)), ]) def test_ownership(self, coords, expected): """Given a sparse point ``p`` with known coordinates, this test checks that the MPI rank owning ``p`` is retrieved correctly.""" grid = Grid(shape=(4, 4), extent=(4.0, 4.0)) sf = SparseFunction(name='sf', grid=grid, npoint=4, coordinates=coords) assert len(sf.gridpoints) == len(expected) assert all(sf._is_owned(i) == (j == grid.distributor.myrank) for i, j in zip(sf.gridpoints, expected)) @pytest.mark.parallel(nprocs=4) def test_scatter_gather(self): """ Test scattering and gathering of sparse data from and to a single MPI rank. The initial data distribution looks like: rank0 rank1 rank2 rank3 [0, 1, 2, 3] [] [] [] Logically (i.e., given point coordinates and domain decomposition), 0 belongs to rank0, 1 belongs to rank1, etc. Thus, after scattering, the data distribution is expected to be: rank0 rank1 rank2 rank3 [0] [1] [2] [3] Then, locally on each rank, some trivial computation is performed, and we obtain: rank0 rank1 rank2 rank3 [0] [2] [4] [6] Finally, we gather the data values and we get: rank0 rank1 rank2 rank3 [0, 2, 4, 6] [] [] [] """ grid = Grid(shape=(4, 4), extent=(4.0, 4.0)) # Initialization if grid.distributor.myrank == 0: coords = [(1., 1.), (1., 3.), (3., 1.), (3., 3.)] else: coords = [] sf = SparseFunction(name='sf', grid=grid, npoint=len(coords), coordinates=coords) sf.data[:] = list(range(len(coords))) # Scatter data = sf._dist_scatter()[sf] assert len(data) == 1 assert data[0] == grid.distributor.myrank # Do some local computation data = data*2 # Gather sf._dist_gather(data) if grid.distributor.myrank == 0: assert np.all(sf.data == [0, 2, 4, 6]) else: assert not sf.data @skipif_yask class TestOperatorSimple(object): @pytest.mark.parallel(nprocs=[2, 4, 8, 16, 32]) def test_trivial_eq_1d(self): grid = Grid(shape=(32,)) x = grid.dimensions[0] t = grid.stepping_dim f = TimeFunction(name='f', grid=grid) f.data_with_halo[:] = 1. op = Operator(Eq(f.forward, f[t, x-1] + f[t, x+1] + 1)) op.apply(time=1) assert np.all(f.data_ro_domain[1] == 3.) if f.grid.distributor.myrank == 0: assert f.data_ro_domain[0, 0] == 5. assert np.all(f.data_ro_domain[0, 1:] == 7.) elif f.grid.distributor.myrank == f.grid.distributor.nprocs - 1: assert f.data_ro_domain[0, -1] == 5. assert np.all(f.data_ro_domain[0, :-1] == 7.) else: assert np.all(f.data_ro_domain[0] == 7.) @pytest.mark.parallel(nprocs=2) def test_trivial_eq_1d_save(self): grid = Grid(shape=(32,)) x = grid.dimensions[0] time = grid.time_dim f = TimeFunction(name='f', grid=grid, save=5) f.data_with_halo[:] = 1. op = Operator(Eq(f.forward, f[time, x-1] + f[time, x+1] + 1)) op.apply() time_M = op._prepare_arguments()['time_M'] assert np.all(f.data_ro_domain[1] == 3.) glb_pos_map = f.grid.distributor.glb_pos_map if LEFT in glb_pos_map[x]: assert np.all(f.data_ro_domain[-1, time_M:] == 31.) else: assert np.all(f.data_ro_domain[-1, :-time_M] == 31.) @pytest.mark.parallel(nprocs=4) def test_trivial_eq_2d(self): grid = Grid(shape=(8, 8,)) x, y = grid.dimensions t = grid.stepping_dim f = TimeFunction(name='f', grid=grid, space_order=1) f.data_with_halo[:] = 1. eqn = Eq(f.forward, f[t, x-1, y] + f[t, x+1, y] + f[t, x, y-1] + f[t, x, y+1]) op = Operator(eqn) op.apply(time=1) # Expected computed values corner, side, interior = 10., 13., 16. glb_pos_map = f.grid.distributor.glb_pos_map assert np.all(f.data_ro_interior[0] == interior) if LEFT in glb_pos_map[x] and LEFT in glb_pos_map[y]: assert f.data_ro_domain[0, 0, 0] == corner assert np.all(f.data_ro_domain[0, 1:, :1] == side) assert np.all(f.data_ro_domain[0, :1, 1:] == side) elif LEFT in glb_pos_map[x] and RIGHT in glb_pos_map[y]: assert f.data_ro_domain[0, 0, -1] == corner assert np.all(f.data_ro_domain[0, :1, :-1] == side) assert np.all(f.data_ro_domain[0, 1:, -1:] == side) elif RIGHT in glb_pos_map[x] and LEFT in glb_pos_map[y]: assert f.data_ro_domain[0, -1, 0] == corner assert np.all(f.data_ro_domain[0, -1:, 1:] == side) assert np.all(f.data_ro_domain[0, :-1, :1] == side) else: assert f.data_ro_domain[0, -1, -1] == corner assert np.all(f.data_ro_domain[0, :-1, -1:] == side) assert np.all(f.data_ro_domain[0, -1:, :-1] == side) @pytest.mark.parallel(nprocs=4) def test_multiple_eqs_funcs(self): grid = Grid(shape=(12,)) x = grid.dimensions[0] t = grid.stepping_dim f = TimeFunction(name='f', grid=grid) f.data_with_halo[:] = 0. g = TimeFunction(name='g', grid=grid) g.data_with_halo[:] = 0. op = Operator([Eq(f.forward, f[t, x+1] + g[t, x-1] + 1), Eq(g.forward, f[t, x-1] + g[t, x+1] + 1)]) op.apply(time=1) assert np.all(f.data_ro_domain[1] == 1.) if f.grid.distributor.myrank == 0: assert f.data_ro_domain[0, 0] == 2. assert np.all(f.data_ro_domain[0, 1:] == 3.) elif f.grid.distributor.myrank == f.grid.distributor.nprocs - 1: assert f.data_ro_domain[0, -1] == 2. assert np.all(f.data_ro_domain[0, :-1] == 3.) else: assert np.all(f.data_ro_domain[0] == 3.) # Also check that there are no redundant halo exchanges. Here, only # two are expected before the `x` Iteration, one for `f` and one for `g` calls = FindNodes(Call).visit(op) assert len(calls) == 2 def test_nostencil_implies_nohaloupdate(self): grid = Grid(shape=(12,)) f = TimeFunction(name='f', grid=grid) g = Function(name='g', grid=grid) op = Operator([Eq(f.forward, f + 1.), Eq(g, f + 1.)]) calls = FindNodes(Call).visit(op) assert len(calls) == 0 @pytest.mark.parallel(nprocs=1) def test_stencil_nowrite_implies_haloupdate(self): grid = Grid(shape=(12,)) x = grid.dimensions[0] t = grid.stepping_dim f = TimeFunction(name='f', grid=grid) g = Function(name='g', grid=grid) op = Operator(Eq(g, f[t, x-1] + f[t, x+1] + 1.)) calls = FindNodes(Call).visit(op) assert len(calls) == 1 @pytest.mark.parallel(nprocs=1) def test_avoid_redundant_haloupdate(self): grid = Grid(shape=(12,)) x = grid.dimensions[0] t = grid.stepping_dim i = Dimension(name='i') j = Dimension(name='j') f = TimeFunction(name='f', grid=grid) g = Function(name='g', grid=grid) op = Operator([Eq(f.forward, f[t, x-1] + f[t, x+1] + 1.), Inc(f[t+1, i], 1.), # no halo update as it's an Inc Eq(g, f[t, j] + 1)]) # access `f` at `t`, not `t+1`! calls = FindNodes(Call).visit(op) assert len(calls) == 1 @pytest.mark.parallel(nprocs=2) def test_redo_haloupdate_due_to_antidep(self): grid = Grid(shape=(12,)) x = grid.dimensions[0] t = grid.stepping_dim f = TimeFunction(name='f', grid=grid) g = TimeFunction(name='g', grid=grid) op = Operator([Eq(f.forward, f[t, x-1] + f[t, x+1] + 1.), Eq(g.forward, f[t+1, x-1] + f[t+1, x+1] + g)]) op.apply(time=0) calls = FindNodes(Call).visit(op) assert len(calls) == 2 assert np.all(f.data_ro_domain[1] == 1.) glb_pos_map = f.grid.distributor.glb_pos_map if LEFT in glb_pos_map[x]: assert np.all(g.data_ro_domain[1, 1:] == 2.) else: assert np.all(g.data_ro_domain[1, :-1] == 2.) def test_haloupdate_not_requried(self): grid = Grid(shape=(4, 4)) u = TimeFunction(name='u', grid=grid, space_order=4, time_order=2, save=None) v = TimeFunction(name='v', grid=grid, space_order=0, time_order=0, save=5) g = Function(name='g', grid=grid, space_order=0) i = Function(name='i', grid=grid, space_order=0) shift = Constant(name='shift', dtype=np.int32) step = Eq(u.forward, u - u.backward + 1) g_inc = Inc(g, u * v.subs(grid.time_dim, grid.time_dim - shift)) i_inc = Inc(i, (v*v).subs(grid.time_dim, grid.time_dim - shift)) op = Operator([step, g_inc, i_inc]) # No stencil in the expressions, so no halo update required! calls = FindNodes(Call).visit(op) assert len(calls) == 0 @skipif_yask class TestOperatorAdvanced(object): @pytest.mark.parallel(nprocs=[4]) def test_injection_wodup(self): """ Test injection operator when the sparse points don't need to be replicated ("wodup" -> w/o duplication) over multiple MPI ranks. """ grid = Grid(shape=(4, 4), extent=(3.0, 3.0)) f = Function(name='f', grid=grid, space_order=0) f.data[:] = 0. if grid.distributor.myrank == 0: coords = [(0.5, 0.5), (0.5, 2.5), (2.5, 0.5), (2.5, 2.5)] else: coords = [] sf = SparseFunction(name='sf', grid=grid, npoint=len(coords), coordinates=coords) sf.data[:] = 4. # This is the situation at this point # O is a grid point # * is a sparse point # # O --- O --- O --- O # | * | | * | # O --- O --- O --- O # | | | | # O --- O --- O --- O # | * | | * | # O --- O --- O --- O op = Operator(sf.inject(field=f, expr=sf + 1)) op.apply() assert np.all(f.data == 1.25) @pytest.mark.parallel(nprocs=4) def test_injection_wodup_wtime(self): """ Just like ``test_injection_wodup``, but using a SparseTimeFunction instead of a SparseFunction. Hence, the data scattering/gathering now has to correctly pack/unpack multidimensional arrays. """ grid = Grid(shape=(4, 4), extent=(3.0, 3.0)) save = 3 f = TimeFunction(name='f', grid=grid, save=save, space_order=0) f.data[:] = 0. if grid.distributor.myrank == 0: coords = [(0.5, 0.5), (0.5, 2.5), (2.5, 0.5), (2.5, 2.5)] else: coords = [] sf = SparseTimeFunction(name='sf', grid=grid, nt=save, npoint=len(coords), coordinates=coords) sf.data[0, :] = 4. sf.data[1, :] = 8. sf.data[2, :] = 12. op = Operator(sf.inject(field=f, expr=sf + 1)) op.apply() assert np.all(f.data[0] == 1.25) assert np.all(f.data[1] == 2.25) assert np.all(f.data[2] == 3.25) @pytest.mark.parallel(nprocs=[4]) def test_injection_dup(self): """ Test injection operator when the sparse points are replicated over multiple MPI ranks. """ grid = Grid(shape=(4, 4), extent=(3.0, 3.0)) x, y = grid.dimensions f = Function(name='f', grid=grid) f.data[:] = 0. if grid.distributor.myrank == 0: coords = [(0.5, 0.5), (1.5, 2.5), (1.5, 1.5), (2.5, 1.5)] else: coords = [] sf = SparseFunction(name='sf', grid=grid, npoint=len(coords), coordinates=coords) sf.data[:] = 4. # Global view (left) and local view (right, after domain decomposition) # O is a grid point # x is a halo point # A, B, C, D are sparse points # Rank0 Rank1 # O --- O --- O --- O O --- O --- x x --- O --- O # | A | | | | A | | | | | # O --- O --- O --- O O --- O --- x x --- O --- O # | | C | B | --> | | C | | C | B | # O --- O --- O --- O x --- x --- x x --- x --- x # | | D | | Rank2 Rank3 # O --- O --- O --- O x --- x --- x x --- x --- x # | | C | | C | B | # O --- O --- x x --- O --- O # | | D | | D | | # O --- O --- x x --- O --- O # # Expected `f.data` (global view) # # 1.25 --- 1.25 --- 0.00 --- 0.00 # | | | | # 1.25 --- 2.50 --- 2.50 --- 1.25 # | | | | # 0.00 --- 2.50 --- 3.75 --- 1.25 # | | | | # 0.00 --- 1.25 --- 1.25 --- 0.00 op = Operator(sf.inject(field=f, expr=sf + 1)) op.apply() glb_pos_map = grid.distributor.glb_pos_map if LEFT in glb_pos_map[x] and LEFT in glb_pos_map[y]: # rank0 assert np.all(f.data_ro_domain == [[1.25, 1.25], [1.25, 2.5]]) elif LEFT in glb_pos_map[x] and RIGHT in glb_pos_map[y]: # rank1 assert np.all(f.data_ro_domain == [[0., 0.], [2.5, 1.25]]) elif RIGHT in glb_pos_map[x] and LEFT in glb_pos_map[y]: assert np.all(f.data_ro_domain == [[0., 2.5], [0., 1.25]]) elif RIGHT in glb_pos_map[x] and RIGHT in glb_pos_map[y]: assert np.all(f.data_ro_domain == [[3.75, 1.25], [1.25, 0.]]) @pytest.mark.parallel(nprocs=[4]) def test_interpolation_wodup(self): grid = Grid(shape=(4, 4), extent=(3.0, 3.0)) f = Function(name='f', grid=grid, space_order=0) f.data[:] = 4. if grid.distributor.myrank == 0: coords = [(0.5, 0.5), (0.5, 2.5), (2.5, 0.5), (2.5, 2.5)] else: coords = [] sf = SparseFunction(name='sf', grid=grid, npoint=len(coords), coordinates=coords) sf.data[:] = 0. # This is the situation at this point # O is a grid point # * is a sparse point # # O --- O --- O --- O # | * | | * | # O --- O --- O --- O # | | | | # O --- O --- O --- O # | * | | * | # O --- O --- O --- O op = Operator(sf.interpolate(expr=f)) op.apply() assert np.all(sf.data == 4.) @pytest.mark.parallel(nprocs=[4]) def test_interpolation_dup(self): """ Test interpolation operator when the sparse points are replicated over multiple MPI ranks. """ grid = Grid(shape=(4, 4), extent=(3.0, 3.0)) x, y = grid.dimensions # Init Function+data f = Function(name='f', grid=grid) glb_pos_map = grid.distributor.glb_pos_map if LEFT in glb_pos_map[x]: f.data[:] = [[1., 1.], [2., 2.]] else: f.data[:] = [[3., 3.], [4., 4.]] if grid.distributor.myrank == 0: coords = [(0.5, 0.5), (1.5, 2.5), (1.5, 1.5), (2.5, 1.5)] else: coords = [] sf = SparseFunction(name='sf', grid=grid, npoint=len(coords), coordinates=coords) sf.data[:] = 0. # Global view (left) and local view (right, after domain decomposition) # O is a grid point # x is a halo point # A, B, C, D are sparse points # Rank0 Rank1 # O --- O --- O --- O O --- O --- x x --- O --- O # | A | | | | A | | | | | # O --- O --- O --- O O --- O --- x x --- O --- O # | | C | B | --> | | C | | C | B | # O --- O --- O --- O x --- x --- x x --- x --- x # | | D | | Rank2 Rank3 # O --- O --- O --- O x --- x --- x x --- x --- x # | | C | | C | B | # O --- O --- x x --- O --- O # | | D | | D | | # O --- O --- x x --- O --- O # # The initial `f.data` is (global view) # # 1. --- 1. --- 1. --- 1. # | | | | # 2. --- 2. --- 2. --- 2. # | | | | # 3. --- 3. --- 3. --- 3. # | | | | # 4. --- 4. --- 4. --- 4. # # Expected `sf.data` (global view) # # 1.5 --- 2.5 --- 2.5 --- 3.5 op = Operator(sf.interpolate(expr=f)) op.apply() if grid.distributor.myrank == 0: assert np.all(sf.data == [1.5, 2.5, 2.5, 3.5]) else: assert sf.data.size == 0 @pytest.mark.parallel(nprocs=2) def test_subsampling(self): grid = Grid(shape=(40,)) x = grid.dimensions[0] t = grid.stepping_dim time = grid.time_dim nt = 9 f = TimeFunction(name='f', grid=grid) f.data_with_halo[:] = 1. # Setup subsampled function factor = 4 nsamples = (nt+factor-1)//factor times = ConditionalDimension('t_sub', parent=time, factor=factor) fsave = TimeFunction(name='fsave', grid=grid, save=nsamples, time_dim=times) eqns = [Eq(f.forward, f[t, x-1] + f[t, x+1]), Eq(fsave, f)] op = Operator(eqns) op.apply(time=nt-1) assert np.all(f.data_ro_domain[0] == fsave.data_ro_domain[nsamples-1]) glb_pos_map = f.grid.distributor.glb_pos_map if LEFT in glb_pos_map[x]: assert np.all(fsave.data_ro_domain[nsamples-1, nt-1:] == 256.) else: assert np.all(fsave.data_ro_domain[nsamples-1, :-(nt-1)] == 256.) # Also check there are no redundant halo exchanges calls = FindNodes(Call).visit(op) assert len(calls) == 1 # In particular, there is no need for a halo exchange within the conditional conditional = FindNodes(Conditional).visit(op) assert len(conditional) == 1 assert len(FindNodes(Call).visit(conditional[0])) == 0 @pytest.mark.parallel(nprocs=2) def test_arguments_subrange(self): """ Test op.apply when a subrange is specified for a distributed dimension. """ grid = Grid(shape=(16,)) x = grid.dimensions[0] f = TimeFunction(name='f', grid=grid) op = Operator(Eq(f.forward, f + 1.)) op.apply(time=0, x_m=4, x_M=11) glb_pos_map = f.grid.distributor.glb_pos_map if LEFT in glb_pos_map[x]: assert np.all(f.data_ro_domain[1, :4] == 0.) assert np.all(f.data_ro_domain[1, 4:] == 1.) else: assert np.all(f.data_ro_domain[1, :-4] == 1.) assert np.all(f.data_ro_domain[1, -4:] == 0.) @pytest.mark.parallel(nprocs=2) def test_bcs_basic(self): """ Test MPI in presence of boundary condition loops. Here, no halo exchange is expected (as there is no stencil in the computed expression) but we check that: * the left BC loop is computed by the leftmost rank only * the right BC loop is computed by the rightmost rank only """ grid = Grid(shape=(20,)) x = grid.dimensions[0] t = grid.stepping_dim thickness = 4 u = TimeFunction(name='u', grid=grid, time_order=1) xleft = SubDimension.left(name='xleft', parent=x, thickness=thickness) xi = SubDimension.middle(name='xi', parent=x, thickness_left=thickness, thickness_right=thickness) xright = SubDimension.right(name='xright', parent=x, thickness=thickness) t_in_centre = Eq(u[t+1, xi], 1) leftbc = Eq(u[t+1, xleft], u[t+1, xleft+1] + 1) rightbc = Eq(u[t+1, xright], u[t+1, xright-1] + 1) op = Operator([t_in_centre, leftbc, rightbc]) op.apply(time_m=1, time_M=1) glb_pos_map = u.grid.distributor.glb_pos_map if LEFT in glb_pos_map[x]: assert np.all(u.data_ro_domain[0, thickness:] == 1.) assert np.all(u.data_ro_domain[0, :thickness] == range(thickness+1, 1, -1)) else: assert np.all(u.data_ro_domain[0, :-thickness] == 1.) assert np.all(u.data_ro_domain[0, -thickness:] == range(2, thickness+2)) @pytest.mark.parallel(nprocs=9) def test_nontrivial_operator(self): """ Test MPI in a non-trivial scenario: :: * 9 processes logically organised in a 3x3 cartesian grid (as opposed to most tests in this module, which only use 2 or 4 processed); * star-like stencil expression; * non-trivial Higdon-like BCs; * simultaneous presence of TimeFunction(grid), Function(grid), and Function(dimensions) """ size_x, size_y = 9, 9 tkn = 2 # Grid and Dimensions grid = Grid(shape=(size_x, size_y,)) x, y = grid.dimensions t = grid.stepping_dim # SubDimensions to implement BCs xl, yl = [SubDimension.left('%sl' % d.name, d, tkn) for d in [x, y]] xi, yi = [SubDimension.middle('%si' % d.name, d, tkn, tkn) for d in [x, y]] xr, yr = [SubDimension.right('%sr' % d.name, d, tkn) for d in [x, y]] # Functions u = TimeFunction(name='f', grid=grid) m = Function(name='m', grid=grid) c = Function(name='c', grid=grid, dimensions=(x,), shape=(size_x,)) # Data initialization u.data_with_halo[:] = 0. m.data_with_halo[:] = 1. c.data_with_halo[:] = 0. # Equations c_init = Eq(c, 1.) eqn = Eq(u[t+1, xi, yi], u[t, xi, yi] + m[xi, yi] + c[xi] + 1.) bc_left = Eq(u[t+1, xl, yi], u[t+1, xl+1, yi] + 1.) bc_right = Eq(u[t+1, xr, yi], u[t+1, xr-1, yi] + 1.) bc_top = Eq(u[t+1, xi, yl], u[t+1, xi, yl+1] + 1.) bc_bottom = Eq(u[t+1, xi, yr], u[t+1, xi, yr-1] + 1.) op = Operator([c_init, eqn, bc_left, bc_right, bc_top, bc_bottom]) op.apply(time=0) # Expected (global view): # 0 0 5 5 5 5 5 0 0 # 0 0 4 4 4 4 4 0 0 # 5 4 3 3 3 3 3 4 5 # 5 4 3 3 3 3 3 4 5 # 5 4 3 3 3 3 3 4 5 # 5 4 3 3 3 3 3 4 5 # 0 0 4 4 4 4 4 0 0 # 0 0 5 5 5 5 5 0 0 assert np.all(u.data_ro_domain[0] == 0) # The write occures at t=1 glb_pos_map = u.grid.distributor.glb_pos_map # Check cornes if LEFT in glb_pos_map[x] and LEFT in glb_pos_map[y]: assert np.all(u.data_ro_domain[1] == [[0, 0, 5], [0, 0, 4], [5, 4, 3]]) elif LEFT in glb_pos_map[x] and RIGHT in glb_pos_map[y]: assert np.all(u.data_ro_domain[1] == [[5, 0, 0], [4, 0, 0], [3, 4, 5]]) elif RIGHT in glb_pos_map[x] and LEFT in glb_pos_map[y]: assert np.all(u.data_ro_domain[1] == [[5, 4, 3], [0, 0, 4], [0, 0, 5]]) elif RIGHT in glb_pos_map[x] and RIGHT in glb_pos_map[y]: assert np.all(u.data_ro_domain[1] == [[3, 4, 5], [4, 0, 0], [5, 0, 0]]) # Check sides if not glb_pos_map[x] and LEFT in glb_pos_map[y]: assert np.all(u.data_ro_domain[1] == [[5, 4, 3], [5, 4, 3], [5, 4, 3]]) elif not glb_pos_map[x] and RIGHT in glb_pos_map[y]: assert np.all(u.data_ro_domain[1] == [[3, 4, 5], [3, 4, 5], [3, 4, 5]]) elif LEFT in glb_pos_map[x] and not glb_pos_map[y]: assert np.all(u.data_ro_domain[1] == [[5, 5, 5], [4, 4, 4], [3, 3, 3]]) elif RIGHT in glb_pos_map[x] and not glb_pos_map[y]: assert np.all(u.data_ro_domain[1] == [[3, 3, 3], [4, 4, 4], [5, 5, 5]]) # Check center if not glb_pos_map[x] and not glb_pos_map[y]: assert np.all(u.data_ro_domain[1] == 3) class TestIsotropicAcoustic(object): """ Test the acoustic wave model with MPI. """ # TODO: Cannot mark the following test as `xfail` since this marker # doesn't cope well with the `parallel` mark. Leaving it commented out # for the time being... # @pytest.mark.parametrize('shape, kernel, space_order, nbpml', [ # # 1 tests with varying time and space orders # ((60, ), 'OT2', 4, 10), # ]) # @pytest.mark.parallel(nprocs=2) # def test_adjoint_F(self, shape, kernel, space_order, nbpml): # from test_adjoint import TestAdjoint # TestAdjoint().test_adjoint_F('layers', shape, kernel, space_order, nbpml) pass if __name__ == "__main__": configuration['mpi'] = True TestOperatorAdvanced().test_interpolation_dup()
[ "f.luporini12@imperial.ac.uk" ]
f.luporini12@imperial.ac.uk
f766a764745a6648551a3f64259734cd74a93643
e347f2ca9b3623031e3825a86ed5f99f543f201c
/foodtasker/foodtaskerapp/social_auth_pipeline.py
e07da3eab1f4ff05ea3c302d7e0bdda879c6a116
[]
no_license
miachenberkeley/FoodDeliverySwift
4262c6a009cd2da89647ed019cf3490f05187bde
fb535112af0289f2962bdee22abd0a50bade35a6
refs/heads/master
2021-01-22T07:47:12.872641
2017-02-20T16:56:10
2017-02-20T16:56:10
81,844,368
0
1
null
null
null
null
UTF-8
Python
false
false
597
py
from foodtaskerapp.models import Customer, Driver def create_user_by_type(backend, user, request, response, *args, **kwargs): request = backend.strategy.request_data() if backend.name == 'facebook': avatar = 'https://graph.facebook.com/%s/picture?type=large' % response['id'] else: avatar = '' if request['user_type'] == "driver" and not Driver.objects.filter(user_id=user.id): Driver.objects.create(user_id=user.id, avatar = avatar) elif not Customer.objects.filter(user_id=user.id): Customer.objects.create(user_id=user.id, avatar = avatar)
[ "70664914@qq.com" ]
70664914@qq.com
6ecd7aef7feeaf0c0a1b5b863f5a9956e43c4838
99094cc79bdbb69bb24516e473f17b385847cb3a
/58.Length of Last Word/Solution.py
6a986db084927025fd5e816d63158989ce2edd7a
[]
no_license
simonxu14/LeetCode_Simon
7d389bbfafd3906876a3f796195bb14db3a1aeb3
13f4595374f30b482c4da76e466037516ca3a420
refs/heads/master
2020-04-06T03:33:25.846686
2016-09-10T00:23:11
2016-09-10T00:23:11
40,810,940
1
0
null
null
null
null
UTF-8
Python
false
false
248
py
__author__ = 'Simon' class Solution(object): def lengthOfLastWord(self, s): """ :type s: str :rtype: int """ li = s.split() if li: return len(li[-1]) else: return 0
[ "simonxu14@gmail.com" ]
simonxu14@gmail.com
6c495150425895f7bf1ff1899d6791c5c2caf44a
bdf3183327bf2baed43f4ce0d9151d9285d3d707
/new_database3.py
e33865b5425044ff46dcf75338ba4bbced5690ad
[]
no_license
SanketBhave/BE-Project
757e00f33ae7d80ea9a199eafac1711ce7589ab1
f79abca3bf0c364b305c741e1c392b95b87ff82b
refs/heads/master
2021-07-13T21:02:59.371882
2018-02-01T08:00:59
2018-02-01T08:00:59
95,019,015
0
0
null
null
null
null
UTF-8
Python
false
false
4,261
py
import cv2,math from skimage import feature from scipy import ndimage,signal from pre import preprocess import numpy as np from numpy import linalg as la from pymongo import MongoClient from itertools import izip #import numpy as np #import cv2 import skimage from skimage import filter client=MongoClient('localhost',27017) db=client.mband collection=db.features_mband np.set_printoptions(threshold='nan') def mband(img,g): h90=[0.022033327573,0.015381522616,-0.088169084245,0.051120949834,0.574161374258,0.717567366340,0.247558418377,-0.076963057605,-0.048477254777] h91=[0.048477254777,0.019991451948,-0.304530024033,0.165478923930,0.308884916012,-0.214155508410 ,-0.074865474330,0.028685132531,0.022033327573] h92=[0.031294135831,0.013248398005,-0.311552292833,0.497594326648,-0.235117092484,-0.020594576659,0.015375249485,0.009751852004,0] h0=np.asarray(h90) #low pass h1=np.asarray(h91) #band pass h2=np.asarray(h92) #high pass img=preprocess(img) img=np.asarray(img) [m,n]=img.shape[:2] ft11 = [[0] * img[1,:].ravel() for j in range(n)] ft11=np.asarray(ft11) ft12 = [[0] * img[1,:].ravel() for j in range(n)] ft12=np.asarray(ft12) ft13 = [[0] * img[1,:].ravel() for j in range(n)] ft13=np.asarray(ft13) for i in range(0,m): ft11[i,:]=ndimage.convolve(img[i,:].ravel(),h0,mode='wrap') ft12[i,:]=ndimage.convolve(img[i,:].ravel(),h1,mode='wrap') ft13[i,:]=ndimage.convolve(img[i,:].ravel(),h2,mode='wrap') ftd1=signal.decimate(ft11.T,3) ftd2=signal.decimate(ft12.T,3) ftd3=signal.decimate(ft13.T,3) [m,n]=ftd1.shape[:2] ft1 = [[0] * ftd1[1,:] for j in range(m)] ft1=np.asarray(ft1) ft2 = [[0] * ftd1[1,:] for j in range(m)] ft2=np.asarray(ft2) ft3 = [[0] * ftd1[1,:] for j in range(m)] ft3=np.asarray(ft3) ft4 = [[0] * ftd1[1,:] for j in range(m)] ft4=np.asarray(ft4) ft5 = [[0] * ftd1[1,:] for j in range(m)] ft5=np.asarray(ft5) ft6 = [[0] * ftd1[1,:] for j in range(m)] ft6=np.asarray(ft6) ft7 = [[0] * ftd1[1,:] for j in range(m)] ft7=np.asarray(ft7) ft8 = [[0] * ftd1[1,:] for j in range(m)] ft8=np.asarray(ft8) ft9 = [[0] * ftd1[1,:] for j in range(m)] ft9=np.asarray(ft9) for i in range(0,m): ft1[i,:]=ndimage.convolve(ftd1[i,:],h0,mode='wrap') ft2[i,:]=ndimage.convolve(ftd1[i,:],h1,mode='wrap') ft3[i,:]=ndimage.convolve(ftd1[i,:],h2,mode='wrap') ft4[i,:]=ndimage.convolve(ftd2[i,:],h0,mode='wrap') ft5[i,:]=ndimage.convolve(ftd2[i,:],h1,mode='wrap') ft6[i,:]=ndimage.convolve(ftd2[i,:],h2,mode='wrap') ft7[i,:]=ndimage.convolve(ftd3[i,:],h0,mode='wrap') ft8[i,:]=ndimage.convolve(ftd3[i,:],h1,mode='wrap') ft9[i,:]=ndimage.convolve(ftd3[i,:],h2,mode='wrap') fm1=signal.decimate(ft1.T,3) fm2=signal.decimate(ft2.T,3) fm3=signal.decimate(ft3.T,3) fm4=signal.decimate(ft4.T,3) fm5=signal.decimate(ft5.T,3) fm6=signal.decimate(ft6.T,3) fm7=signal.decimate(ft7.T,3) fm8=signal.decimate(ft8.T,3) fm9=signal.decimate(ft9.T,3) #print fm2 #print fm1 #[m,n]=fm1.shape[:2] #print m,n #a = [[0] * fm1[1,:] for j in range(m)] #a=np.asarray(a) '''for j in range(90000): a.append(j)''' '''print fm1.shape fm1=np.append(fm1,fm1) fm1=np.append(fm1,fm2) fm1=np.append(fm1,fm3) fm1=np.append(fm1,fm4) fm1=np.append(fm1,fm5) fm1=np.append(fm1,fm6) fm1=np.append(fm1,fm7) fm1=np.append(fm1,fm8) fm1=np.append(fm1,fm9) print fm1 print fm1.shape[:2] ''' U, s1, V = np.linalg.svd(fm1, full_matrices=True) #print s1 U1, s2, V3= np.linalg.svd(fm2, full_matrices=True) #print s2 U1, s3, V3= np.linalg.svd(fm3, full_matrices=True) U1, s4, V3= np.linalg.svd(fm4, full_matrices=True) U1, s5, V3= np.linalg.svd(fm5, full_matrices=True) U1, s6, V3= np.linalg.svd(fm6, full_matrices=True) U1, s7, V3= np.linalg.svd(fm7, full_matrices=True) U1, s8, V3= np.linalg.svd(fm8, full_matrices=True) U1, s9, V3= np.linalg.svd(fm9, full_matrices=True) s1=np.concatenate((s1,s2,s3,s4,s5,s6,s7,s8,s9)) #print s1 #print s1.shape #print len(s1) collection.insert({"ID":g,"descriptor":s1.tolist()}) i=191 g=548 while(i<500): j=str(i) #k=g+1 img=cv2.imread("/home/ubuntu/Downloads/UCIDPNG/"+j+".png",0) #var="/home/ubuntu/coil-20/obj3__"+j+".png" #print var mband(img,g) print g,i i=i+1 g=g+1
[ "noreply@github.com" ]
SanketBhave.noreply@github.com
e072a7a9583e09391630a836cd7ad19fcc54c685
b597f3767f5027e26f0f83d83c9756ac7c001e97
/train_multimodal_model.py
4b4eb9c2ce5d3bdeb80f5c478d45285c654c47d4
[]
no_license
sandropezzelle/mtl-amodal
9d1d878e4b36b8f8ec8f81af37bda19e50dde884
7b505070924c2d6eae86f979f2f70a78eb926a06
refs/heads/master
2020-03-17T20:45:53.094196
2018-07-10T17:42:56
2018-07-10T17:42:56
133,927,523
0
0
null
null
null
null
UTF-8
Python
false
false
5,139
py
import argparse import os import pickle import numpy as np import utils full_images = {} ratios = {} r_dict = {} data_path = '' def read_ind_files(path): """ reads the indices of the images for a given file """ fin = open(path, 'r') links = [] for line in fin: links.append(data_path + line.strip()) return links def read_indices(repository_path): """ it goes through train/test/validation files """ path = repository_path + '/code/data_split/' tr = path + 'train_ids.txt' v = path + 'valid_ids.txt' t = path + 'test_ids.txt' tr_links = read_ind_files(tr) v_links = read_ind_files(v) t_links = read_ind_files(t) return tr_links, v_links, t_links def read_images(links, size): """ for a given list of paths, it reads the image, prepares it for input and it calculates the target value """ dim = 203 inp = np.zeros((size, dim, dim, 3)) m_out = np.zeros((size, 3)) q_out = np.zeros((size, 9)) r_out = np.zeros((size, 17)) count = 0 for link in links[:size]: res_img = utils.load_image(link, dim) inp[count] = res_img cat = link.strip().split('/')[-2][-2:] for i in range(9): q_out[count][i] = ratios[cat][str(i)] r_out[count][r_dict[cat]] = 1.0 if cat[1] == 'Y' or cat[0] == 'X': if cat[1] == 'Y': ratio_val = 0.0 else: ratio_val = 1.0 else: ratio_val = float(cat[0]) / (float(cat[1]) + float(cat[0])) if ratio_val < 0.5: m_out[count][0] = 1.0 if ratio_val == 0.5: m_out[count][1] = 1.0 if ratio_val > 0.5: m_out[count][2] = 1.0 count += 1 if count % 100 == 0: print(count) return inp, m_out, q_out, r_out def create_ratio_dict(ratios): count = 0 r = sorted(ratios.keys()) print(r) for i in range(len(r)): r_dict[r[i]] = count count += 1 if __name__ == '__main__': embeddings_filename = "/mnt/povobackup/clic/sandro.pezzelle/corpus-and-vectors/GoogleNews-vectors-negative300.txt" parser = argparse.ArgumentParser() parser.add_argument("--lang_dataset_path", type=str, default="lang_dataset/") parser.add_argument("--vision_dataset_path", type=str, default="vision_dataset/") parser.add_argument("--embeddings_filename", type=str, default=embeddings_filename) parser.add_argument("--num_epochs", type=int, default=100) parser.add_argument("--batch_size", type=int, default=32) args = parser.parse_args() # Load language data index_filename = os.path.join(args.preprocessed_dataset_path, "index.pkl") print("Loading filename: {}".format(index_filename)) with open(index_filename, mode="rb") as in_file: index = pickle.load(in_file) token2id = index["token2id"] id2token = index["id2token"] train_filename = os.path.join(args.preprocessed_dataset_path, "train.pkl") print("Loading filename: {}".format(train_filename)) with open(os.path.join(args.preprocessed_dataset_path, "train.pkl"), mode="rb") as in_file: train = pickle.load(in_file) dataset_tr = train["dataset_tr"] tr_m_out = train["tr_m_out"] tr_q_out = train["tr_q_out"] tr_r_out = train["tr_r_out"] test_filename = os.path.join(args.preprocessed_dataset_path, "test.pkl") print("Loading filename: {}".format(test_filename)) with open(os.path.join(args.preprocessed_dataset_path, "test.pkl"), mode="rb") as in_file: test = pickle.load(in_file) dataset_t = test["dataset_t"] t_m_out = test["t_m_out"] t_q_out = test["t_q_out"] t_r_out = test["t_r_out"] valid_filename = os.path.join(args.preprocessed_dataset_path, "valid.pkl") print("Loading filename: {}".format(valid_filename)) with open(os.path.join(args.preprocessed_dataset_path, "valid.pkl"), mode="rb") as in_file: valid = pickle.load(in_file) dataset_v = valid["dataset_v"] v_m_out = valid["v_m_out"] v_q_out = valid["v_q_out"] v_r_out = valid["v_r_out"] print("Loading filename: {}".format(args.embeddings_filename)) embeddings_index = {} with open(args.embeddings_filename) as in_file: for line in in_file: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs embedding_matrix = np.zeros((len(token2id) + 1, 300)) for word, i in token2id.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector # Load visual data tr_inds, v_inds, t_inds = read_indices(args.vision_dataset_path) ratios = utils.read_qprobs(args.vision_dataset_path) tr_size = 11900 v_size = 1700 create_ratio_dict(ratios) tr_inp, tr_m_out, tr_q_out, tr_r_out = read_images(tr_inds, tr_size) v_inp, v_m_out, v_q_out, v_r_out = read_images(v_inds, v_size)
[ "claudio.greco@unitn.it" ]
claudio.greco@unitn.it
56f0bbe6de6c31d891e2dfb2024dcb94c61d0693
c50eb81b57f3dac7c0273d1781e4ce5ba9c41584
/petBookApi/petBook/urls.py
81eb4935208c3a84ba07f577ac99f51978181a3f
[]
no_license
rsbabcock/pet-book
474b7c6ffb27a2765cbda359b796e089ccc78f45
ccd548f119fcad93ee85415dddcd3b6c9f1d94d9
refs/heads/master
2020-03-27T08:57:34.884012
2018-10-13T19:06:47
2018-10-13T19:06:47
146,301,896
0
1
null
null
null
null
UTF-8
Python
false
false
3,239
py
"""petBook URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf.urls import url, include from rest_framework import routers from rest_framework.authtoken.views import obtain_auth_token from django.conf import settings from django.conf.urls.static import static from petBookApi.views import * from petBookApi.views import PetImageViewSet from petBookApi.serializers import * router = routers.DefaultRouter() router.register(r'users', owner_view.UserViewSet), router.register(r'owners', owner_view.OwnerViewSet), router.register(r'pet-types', pet_type_view.PetTypeViewSet), router.register(r'breeds', breed_view.BreedViewSet), router.register(r'pets', pet_view.PetViewSet), router.register(r'pet-image', PetImageViewSet, base_name='pet-image'), router.register(r'get-pet-image',get_pet_image_view.GetImageViewSet), router.register(r'commands', command_view.CommandViewSet), router.register(r'notes', note_view.NoteViewSet), router.register(r'follow', follow_view.FollowViewSet), router.register(r'allergies', allergy_view.AllergyViewSet), router.register(r'followed-pets', FollowedViewSet, base_name='followed-pets'), router.register(r'user-pets', UserPetList, base_name='user-pets'), router.register(r'get-owner', GetOwnerList, base_name='get-owner'), router.register(r'user-allergies',UserAllergyViewSet, base_name='user-allergies'), router.register(r'user-commands',UserCommandViewSet, base_name='user-commands'), router.register(r'pet-allergies', pet_allergies_view.PetAllergiesViewSet), router.register(r'pet-commands', pet_commands_view.PetCommandViewSet), router.register(r'pet-notes', pet_note_view.PetNoteViewSet), router.register(r'create-pet', CreatePetViewSet, base_name='create-pet'), router.register(r'create-allergy', CreateAllergyViewSet, base_name='create-allergy'), router.register(r'create-pet-allergy', CreatePetAllergyViewSet, base_name='create-pet-allergy'), router.register(r'create-command', CreateCommandViewSet, base_name='create-command'), router.register(r'create-pet-command', CreatePetCommandViewSet, base_name='create-pet-command'), router.register(r'create-follow', CreateFollowViewSet, base_name='create-follow'), router.register(r'edit-note', EditNoteViewSet, base_name='edit-note'), urlpatterns = [ path('admin/', admin.site.urls), url(r'^', include(router.urls)), url(r'^register/', register_view.register_user), url(r'^api-token-auth/', obtain_auth_token), url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')) ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "rachael.s.babcock@gmail.com" ]
rachael.s.babcock@gmail.com
f4269fd9d2329fc2e30627a2658cf2964f61b129
a45e3ce2690db6e059721c496acf52dd7728fd0c
/main.py
4000f042dffbc043bf40e36f5e344752c8ae9466
[]
no_license
Kaminari84/GCloud-ReflectionSlackBot
e08ae860737450b70bb87bd63c767e26915affd4
b694b3f57d793c60a5cb8daee0f40a5babc3d01f
refs/heads/master
2022-12-09T22:50:50.905166
2017-07-21T03:04:39
2017-07-21T03:04:39
97,900,123
0
0
null
2022-12-07T23:58:09
2017-07-21T03:02:58
Python
UTF-8
Python
false
false
4,471
py
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #SQL - https://cloud.google.com/sql/docs/mysql/connect-admin-ip#configure-instance-mysql #Options for cinnecting - https://cloud.google.com/sql/docs/mysql/external-connection-methods #SQL connection - https://cloud.google.com/sql/docs/mysql/connect-admin-ip # [START app] import datetime import logging import os import socket import time import json from slackclient import SlackClient from flask import Flask, request from flask_sqlalchemy import SQLAlchemy import sqlalchemy logging.basicConfig(level=logging.INFO) # starterbot's ID as an environment variable BOT_ID = os.environ.get("BOT_ID") SLACK_BOT_TOKEN = os.environ.get('SLACK_BOT_TOKEN') # constants AT_BOT = "<@" + BOT_ID + ">" EXAMPLE_COMMAND = "do" # instantiate Slack & Twilio clients slack_client = SlackClient(os.environ.get('SLACK_BOT_TOKEN')) app = Flask(__name__) def is_ipv6(addr): """Checks if a given address is an IPv6 address.""" try: socket.inet_pton(socket.AF_INET6, addr) return True except socket.error: return False # Environment variables are defined in app.yaml. app.config['SQLALCHEMY_DATABASE_URI'] = os.environ['SQLALCHEMY_DATABASE_URI'] app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) class Visit(db.Model): id = db.Column(db.Integer, primary_key=True) timestamp = db.Column(db.DateTime()) user_ip = db.Column(db.String(46)) def __init__(self, timestamp, user_ip): self.timestamp = timestamp self.user_ip = user_ip @app.route('/') def hello(): """Return a friendly HTTP greeting.""" logging.info("Hello world being called!") user_ip = request.remote_addr logging.info("Got user ip:" + user_ip) # Keep only the first two octets of the IP address. if is_ipv6(user_ip): user_ip = ':'.join(user_ip.split(':')[:2]) else: user_ip = '.'.join(user_ip.split('.')[:2]) visit = Visit( user_ip=user_ip, timestamp=datetime.datetime.utcnow() ) db.session.add(visit) db.session.commit() visits = Visit.query.order_by(sqlalchemy.desc(Visit.timestamp)).limit(10) results = [ 'Time: {} Addr: {}'.format(x.timestamp, x.user_ip) for x in visits] output = 'Last 10 visits:\n{}'.format('\n'.join(results)) return 'Hello World Rafal test with new me: ' + BOT_ID + '<br />'+output, 200, {'Content-Type': 'text/plain; charset=utf-8'} @app.errorhandler(500) def server_error(e): logging.exception('An error occurred during a request.') return """ An internal error occurred: <pre>{}</pre> See logs for full stacktrace. """.format(e), 500 if __name__ == '__main__': # This is used when running locally. Gunicorn is used to run the # application on Google App Engine. See entrypoint in app.yaml. app.run(host='127.0.0.1', port=8080, debug=True) #logging.warning("Starting the slack bot stuff") #logging.info("BOT_ID: " + BOT_ID) #logging.info("SLACK_BOT_TOKEN: " + SLACK_BOT_TOKEN) #READ_WEBSOCKET_DELAY = 1 # 1 second delay between reading from firehose #if slack_client.rtm_connect(): # logging.warning("StarterBot connected and running!") # while True: # raw_cmd = slack_client.rtm_read() # if raw_cmd and len(raw_cmd) > 0: # n = 0 # for msg in raw_cmd: # n = n+1 # if 'type' in msg: # logging.info( "Msg n: " + str(n) + str(msg['type']) ) # # logging.info("[",n,"] Command type:") # #command, channel = parse_slack_output(raw_cmd) # #if command and channel: # # handle_command(command, channel) # time.sleep(READ_WEBSOCKET_DELAY) #else: # logging.warning("Connection failed. Invalid Slack token or bot ID?") # [END app]
[ "kocielnik@HW0972.local" ]
kocielnik@HW0972.local
5b23cf8b083f27bfba637e09ee48d567a1020f20
c54a41e62946758c60e175c2ee70a0a3a15823d4
/test2.py
0a222fcb6da5f299189e3aba07d73d40a5765e14
[]
no_license
NienkeUijlen/Oefenen
d226327e22071c1c855dbebcd97a8613c88b13ab
3bae72f9032d3f5271b02c244fbe0efbdcebb21a
refs/heads/master
2021-01-23T13:56:47.056881
2015-05-18T19:12:00
2015-05-18T19:12:00
34,312,685
0
0
null
null
null
null
UTF-8
Python
false
false
1,123
py
eerste_rij=list(input()) tweede_rij=list(input()) derde_rij=list(input()) a=int(eerste_rij[0]) b=int(eerste_rij[1]) c=int(eerste_rij[2]) d=int(tweede_rij[0]) e=int(tweede_rij[1]) f=int(tweede_rij[2]) g=int(derde_rij[0]) h=int(derde_rij[1]) i=int(derde_rij[2]) if a==b==c: if a==1: print("Player 1 wins") elif a==2: print("Player 2 wins") elif d==e==f: if d==1: print("Player 1 wins") elif d==2: print("Player 2 wins") elif g==h==i: if g==1: print("Player 1 wins") elif g==2: print("Player 2 wins") elif a==d==g: if a==1: print("Player 1 wins") elif a==2: print("Player 2 wins") elif b==e==h: if b==1: print("Player 1 wins") elif b==2: print("Player 2 wins") elif c==f==i: if c==1: print("Player 1 wins") elif c==2: print("Player 2 wins") elif a==e==i: if a==1: print("Player 1 wins") elif a==2: print("Player 2 wins") elif c==e==g: if c==1: print("Player 1 wins") elif c==2: print("Player 2 wins") else: print("No winner")
[ "n.m.uijlen@students.uu.nl" ]
n.m.uijlen@students.uu.nl
8a9097cb3320d30e788a574515548ffd3d9a74c7
5894528e86efcc243febb3e37d1f6322fe0c7baa
/CodeJam2018/PracticeSession/numberGuesses/testing_tool.py
aeb3e13131420c80ea480a45a00bf68bc0575f61
[ "MIT" ]
permissive
paolodelia99/google-code-jam-challenges
d758bf5da05e72165698d140ab37495d7c92a292
98945ab6c21a78225674bfae0ac3574cb20967c3
refs/heads/master
2022-04-28T20:16:33.451203
2020-04-21T12:32:12
2020-04-21T12:32:12
246,570,041
0
0
null
null
null
null
UTF-8
Python
false
false
6,613
py
""" Python script for local testing (compatible with both Python 2 and Python 3) Disclaimer: this is a way to test your solutions, but it is NOT the real judging system. The judging system behavior might be different. """ from __future__ import print_function import subprocess import sys USAGE_MSG = """ Usage: Linux and Mac users: From your terminal, run python testing_tool.py command_to_run_your_script_or_executable Note that command_to_run_your_script_or_executable is read as a list of arguments, so you should NOT wrap it with quotation marks. Examples: C++, after compilation: python testing_tool.py ./my_binary Python: python testing_tool.py python my_code.py Java, after compilation: python testing_tool.py java my_main_class_name See https://code.google.com/codejam/resources/faq#languages for how we compile and run your solution in the language of your choice. Windows users: Follow the instructions for Linux and Mac users if you are familiar with terminal tools on Windows. Otherwise, please be advised that this script might not work with Python 2 (it works with Python 3). In addition, if you cannot pass arguments to Python, you will need to modify the "cmd = sys.argv[1:]" line below. """ # Hard-coded list for numbers to guess. We encourage you to modify this list, # as well as A, B, N below as you wish, for more thorough testing. CORRECT_GUESS_LIST = [15,25,12,9,7,1,30] A = 0 B = 30 N = 10 assert (A < min(CORRECT_GUESS_LIST)) and (max(CORRECT_GUESS_LIST) <= B) NUM_TEST_CASES = len(CORRECT_GUESS_LIST) # You can set PRINT_INTERACTION_HISTORY to True to print out the interaction # history between your code and the judge. PRINT_INTERACTION_HISTORY = False """Helper functions""" def JudgePrint(p, s): # Print the judge output to your code's input stream. Log this interaction # to console (stdout) if PRINT_INTERACTION_HISTORY is True. print(s, file=p.stdin) p.stdin.flush() if PRINT_INTERACTION_HISTORY: print("Judge prints:", s) def PrintSubprocessResults(p): # Print the return code and stderr output for your code. print("Your code finishes with exit status {}.".format(p.returncode)) code_stderr_output = p.stderr.read() if code_stderr_output: print("The stderr output of your code is:") sys.stdout.write(code_stderr_output) else: print("Your code doesn't have stderr output.") def WaitForSubprocess(p): # Wait for your code to finish and print the stderr output of your code for # debugging purposes. if p.poll() is None: print("Waiting for your code to finish...") p.wait() PrintSubprocessResults(p) def CheckSubprocessExit(p, case_id): # Exit if your code finishes in the middle of a test case. if p.poll() is not None: print("Your code exited early, in the middle of Case #{}.".format(case_id)) PrintSubprocessResults(p) sys.exit(-1) def WrongAnswerExit(p, case_id, error_msg): print("Case #{} failed: {}".format(case_id, error_msg)) try: JudgePrint(p, "WRONG_ANSWER") except IOError: print("Failed to print WRONG_ANSWER because your code finished already.") WaitForSubprocess(p) sys.exit(-1) """Main function begins""" # Retrieve the command to run your code from the arguments. # If you cannot pass arguments to Python when running this testing tool, please # replace sys.argv[1:] with the command list to run your code. # e.g. C++ users: cmd = ["./my_binary"] # Python users: cmd = [sys.executable, "my_code.py"] # Java users: cmd = ["java", "my_main_class_name"] cmd = sys.argv[1:] assert cmd, "There should be at least one argument." + USAGE_MSG if (cmd[0] == "-h") or (cmd[0] == "-help") or (cmd[0] == "--h") or ( cmd[0] == "--help"): print(USAGE_MSG) sys.exit(0) # Run your code in a separate process. You can debug your code by printing to # stderr inside your code, or adding print statements in this testing tool. # Note that your stderr output will be printed by this testing tool only after # your code finishes, e.g. if your code hangs, you wouldn't get your stderr # output. try: p = subprocess.Popen( cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=1, universal_newlines=True) except Exception as e: print("Failed to start running your code. Error:") print(e) sys.exit(-1) JudgePrint(p, NUM_TEST_CASES) print(f'numer of test cases {NUM_TEST_CASES}') for i in range(NUM_TEST_CASES): if PRINT_INTERACTION_HISTORY: print("Test Case #{}:".format(i + 1)) JudgePrint(p, "{} {}".format(A, B)) # the range (A, B] JudgePrint(p, N) # number of tries, N p.stdin.flush() answer = CORRECT_GUESS_LIST[i] test_case_passed = False for _ in range(N): # Detect whether the your code has finished running. CheckSubprocessExit(p, i + 1) user_input = None try: user_input = p.stdout.readline() q = int(user_input) except: # Note that your code might finish after the first CheckSubprocessExit # check above but before the readline(), so we will need to again check # whether your code has finished. CheckSubprocessExit(p, i + 1) exit_msg = "" if user_input == "": exit_msg = ("Read an empty string for the guess. This might happen " "because your code exited early, or printed an extra " "newline character.") elif user_input is None: exit_msg = ( "Unable to read the guess. This might happen because your " "code exited early, printed an extra new line character, or did " "not print the output correctly.") else: exit_msg = ("Failed to read the guess. Expected an integer ending with " "one new line character. Read \"{}\" (quotes added to " "isolate your output) instead.").format(user_input) WrongAnswerExit(p, i + 1, exit_msg) if PRINT_INTERACTION_HISTORY: print("Judge reads:", q) if (q <= A) or (q > B): WrongAnswerExit(p, i + 1, "Your guess, {}, is out of range!".format(q)) if q == answer: JudgePrint(p, "CORRECT") test_case_passed = True break elif q < answer: JudgePrint(p, "TOO_SMALL") else: JudgePrint(p, "TOO_BIG") if not test_case_passed: WrongAnswerExit(p, i + 1, "Too many queries.") extra_output = p.stdout.readline() WaitForSubprocess(p) if extra_output == "": print("Congratulations! All test cases passed :)") else: print("Wrong Answer because of extra output:") sys.stdout.write(extra_output) sys.exit(-1)
[ "paolo.delia99@gmail.com" ]
paolo.delia99@gmail.com
ff44601100038aba800c66cb8d18e73458d7b4df
bdf86d69efc1c5b21950c316ddd078ad8a2f2ec0
/venv/Lib/site-packages/twisted/application/runner/_runner.py
66f1f11ee0f27fe0b61e6dfa8b9fee0befdaa03b
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
DuaNoDo/PythonProject
543e153553c58e7174031b910fd6451399afcc81
2c5c8aa89dda4dec2ff4ca7171189788bf8b5f2c
refs/heads/master
2020-05-07T22:22:29.878944
2019-06-14T07:44:35
2019-06-14T07:44:35
180,941,166
1
1
null
2019-06-04T06:27:29
2019-04-12T06:05:42
Python
UTF-8
Python
false
false
5,763
py
# -*- test-case-name: twisted.application.runner.test.test_runner -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Twisted application runner. """ from os import kill from signal import SIGTERM from sys import stderr from attr import attrib, attrs, Factory from twisted.logger import ( globalLogBeginner, textFileLogObserver, FilteringLogObserver, LogLevelFilterPredicate, LogLevel, Logger, ) from ._exit import exit, ExitStatus from ._pidfile import nonePIDFile, AlreadyRunningError, InvalidPIDFileError @attrs(frozen=True) class Runner(object): """ Twisted application runner. @cvar _log: The logger attached to this class. @type _log: L{Logger} @ivar _reactor: The reactor to start and run the application in. @type _reactor: L{IReactorCore} @ivar _pidFile: The file to store the running process ID in. @type _pidFile: L{IPIDFile} @ivar _kill: Whether this runner should kill an existing running instance of the application. @type _kill: L{bool} @ivar _defaultLogLevel: The default log level to start the logging system with. @type _defaultLogLevel: L{constantly.NamedConstant} from L{LogLevel} @ivar _logFile: A file stream to write logging output to. @type _logFile: writable file-like object @ivar _fileLogObserverFactory: A factory for the file log observer to use when starting the logging system. @type _pidFile: callable that takes a single writable file-like object argument and returns a L{twisted.logger.FileLogObserver} @ivar _whenRunning: Hook to call after the reactor is running; this is where the application code that relies on the reactor gets called. @type _whenRunning: callable that takes the keyword arguments specified by C{whenRunningArguments} @ivar _whenRunningArguments: Keyword arguments to pass to C{whenRunning} when it is called. @type _whenRunningArguments: L{dict} @ivar _reactorExited: Hook to call after the reactor exits. @type _reactorExited: callable that takes the keyword arguments specified by C{reactorExitedArguments} @ivar _reactorExitedArguments: Keyword arguments to pass to C{reactorExited} when it is called. @type _reactorExitedArguments: L{dict} """ _log = Logger() _reactor = attrib() _pidFile = attrib(default=nonePIDFile) _kill = attrib(default=False) _defaultLogLevel = attrib(default=LogLevel.info) _logFile = attrib(default=stderr) _fileLogObserverFactory = attrib(default=textFileLogObserver) _whenRunning = attrib(default=lambda **_: None) _whenRunningArguments = attrib(default=Factory(dict)) _reactorExited = attrib(default=lambda **_: None) _reactorExitedArguments = attrib(default=Factory(dict)) def run(self): """ Run this command. """ pidFile = self._pidFile self.killIfRequested() try: with pidFile: self.startLogging() self.startReactor() self.reactorExited() except AlreadyRunningError: exit(ExitStatus.EX_CONFIG, "Already running.") return # When testing, patched exit doesn't exit def killIfRequested(self): """ If C{self._kill} is true, attempt to kill a running instance of the application. """ pidFile = self._pidFile if self._kill: if pidFile is nonePIDFile: exit(ExitStatus.EX_USAGE, "No PID file specified.") return # When testing, patched exit doesn't exit try: pid = pidFile.read() except EnvironmentError: exit(ExitStatus.EX_IOERR, "Unable to read PID file.") return # When testing, patched exit doesn't exit except InvalidPIDFileError: exit(ExitStatus.EX_DATAERR, "Invalid PID file.") return # When testing, patched exit doesn't exit self.startLogging() self._log.info("Terminating process: {pid}", pid=pid) kill(pid, SIGTERM) exit(ExitStatus.EX_OK) return # When testing, patched exit doesn't exit def startLogging(self): """ Start the L{twisted.logger} logging system. """ logFile = self._logFile fileLogObserverFactory = self._fileLogObserverFactory fileLogObserver = fileLogObserverFactory(logFile) logLevelPredicate = LogLevelFilterPredicate( defaultLogLevel=self._defaultLogLevel ) filteringObserver = FilteringLogObserver( fileLogObserver, [logLevelPredicate] ) globalLogBeginner.beginLoggingTo([filteringObserver]) def startReactor(self): """ Register C{self._whenRunning} with the reactor so that it is called once the reactor is running, then start the reactor. """ self._reactor.callWhenRunning(self.whenRunning) self._log.info("Starting reactor...") self._reactor.run() def whenRunning(self): """ Call C{self._whenRunning} with C{self._whenRunningArguments}. @note: This method is called after the reactor starts running. """ self._whenRunning(**self._whenRunningArguments) def reactorExited(self): """ Call C{self._reactorExited} with C{self._reactorExitedArguments}. @note: This method is called after the reactor exits. """ self._reactorExited(**self._reactorExitedArguments)
[ "teadone@naver.com" ]
teadone@naver.com
b281ebdf28c8bde7e6a4084edef77face71533da
bf97e5177e2a23292cf06750c52df5d008efb1c8
/videos_monitor/run.py
08330379e6fe4186e9c442aa39ea6396c982726d
[]
no_license
blingmoon/monitor
da962ba8a63f05c7dfd0f30486e9f3e5a46f4664
7ddf198ace064525cf1276836b74321f4facbb01
refs/heads/master
2020-12-14T23:25:01.514898
2020-01-24T14:16:15
2020-01-24T14:16:15
234,908,046
0
0
null
null
null
null
UTF-8
Python
false
false
821
py
# -*- coding:utf-8 -*- # @Time : 2020/1/19 11:05 # @Author : zhouliang02 # @description : import os import time from videos_producer.main import OpenCVProducer from videos_transponder.main import ServerTransponder def main(): product = OpenCVProducer("/tmp", 10) # transponder = ServerTransponder() server_ip = os.environ.get("server_ip", "127.0.0.1") server_base_dir = os.environ.get("server_base_dir", "/tmp/") server_account = os.environ.get("server_account", "root") for photo_path in product.run(): if not photo_path: continue dir_path = time.strftime("%Y-%m-%d/%H", time.localtime(time.time())) ServerTransponder(server_ip, server_account, f"{server_base_dir}{dir_path}").push_file(photo_path) if __name__ == "__main__": main() pass
[ "zhouliang02@qianxin.com" ]
zhouliang02@qianxin.com
9de3288ac7c9aef6e29ff490754ebd5512e2a0ce
093e828b4e72b53cf7d5ac9217d8fd7172f3e4cc
/Framework/Evaluator.py
bbaaa1867f58dcbd901551ee38ac13574ac05a90
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
uboni/Project-B-Movie-Recommender-System
0a19d45040c8a032bb601ef85e5c67807f7f8d8e
77390637a71b112651fcf92b767e27ca0d3ee8c7
refs/heads/master
2020-09-22T05:28:55.830719
2019-12-05T17:00:01
2019-12-05T17:00:01
225,067,194
0
0
null
null
null
null
UTF-8
Python
false
false
3,832
py
''' Author: Uday Date:29-NOV-2019 License: Free. Please modify it if needed ''' from EvaluationData import EvaluationData from EvaluatedAlgorithm import EvaluatedAlgorithm class Evaluator: algorithms = [] def __init__(self, dataset, rankings): ed = EvaluationData(dataset, rankings) self.dataset = ed def AddAlgorithm(self, algorithm, name): alg = EvaluatedAlgorithm(algorithm, name) self.algorithms.append(alg) def Evaluate(self, doTopN): results = {} for algorithm in self.algorithms: print("Evaluating ", algorithm.GetName(), "...") results[algorithm.GetName()] = algorithm.Evaluate(self.dataset, doTopN) # Print results print("\n") if (doTopN): print("{:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10}".format( "Algorithm", "RMSE", "MAE", "HR", "cHR", "ARHR", "Coverage", "Diversity", "Novelty")) for (name, metrics) in results.items(): print("{:<10} {:<10.4f} {:<10.4f} {:<10.4f} {:<10.4f} {:<10.4f} {:<10.4f} {:<10.4f} {:<10.4f}".format( name, metrics["RMSE"], metrics["MAE"], metrics["HR"], metrics["cHR"], metrics["ARHR"], metrics["Coverage"], metrics["Diversity"], metrics["Novelty"])) else: print("{:<10} {:<10} {:<10}".format("Algorithm", "RMSE", "MAE")) for (name, metrics) in results.items(): print("{:<10} {:<10.4f} {:<10.4f}".format(name, metrics["RMSE"], metrics["MAE"])) print("\nLegend:\n") print("RMSE: Root Mean Squared Error. Lower values mean better accuracy.") print("MAE: Mean Absolute Error. Lower values mean better accuracy.") if (doTopN): print("HR: Hit Rate; how often we are able to recommend a left-out rating. Higher is better.") print("cHR: Cumulative Hit Rate; hit rate, confined to ratings above a certain threshold. Higher is better.") print("ARHR: Average Reciprocal Hit Rank - Hit rate that takes the ranking into account. Higher is better." ) print("Coverage: Ratio of users for whom recommendations above a certain threshold exist. Higher is better.") print("Diversity: 1-S, where S is the average similarity score between every possible pair of recommendations") print(" for a given user. Higher means more diverse.") print("Novelty: Average popularity rank of recommended items. Higher means more novel.") def SampleTopNRecs(self, ml, testSubject=85, k=10): for algo in self.algorithms: print("\nUsing recommender ", algo.GetName()) print("\nBuilding recommendation model...") trainSet = self.dataset.GetFullTrainSet() algo.GetAlgorithm().fit(trainSet) print("Computing recommendations...") testSet = self.dataset.GetAntiTestSetForUser(testSubject) predictions = algo.GetAlgorithm().test(testSet) recommendations = [] print ("\nWe recommend:") for userID, movieID, actualRating, estimatedRating, _ in predictions: intMovieID = int(movieID) recommendations.append((intMovieID, estimatedRating)) recommendations.sort(key=lambda x: x[1], reverse=True) for ratings in recommendations[:10]: print(ml.getMovieName(ratings[0]), ratings[1])
[ "noreply@github.com" ]
uboni.noreply@github.com
2f6c2bce524bc945e8b1906c4fd08726bca5888c
41dc19883789f45b6086399a1ae23995f53b4b2c
/BayesMadeSimple/distribution.py
dea353cbb2da5a315f6990d03872b1985e04638a
[ "MIT" ]
permissive
sunny2309/scipy_conf_notebooks
f86179ddcd67168b709c755cc01862ed7c9ab2bd
30a85d5137db95e01461ad21519bc1bdf294044b
refs/heads/master
2022-10-28T17:27:42.717171
2021-01-25T02:24:05
2021-01-25T02:24:05
221,385,814
2
0
MIT
2022-10-20T02:55:20
2019-11-13T06:12:07
Jupyter Notebook
UTF-8
Python
false
false
16,338
py
""" Pmf: Represents a Probability Mass Function (PMF). Cdf: Represents a Cumulative Distribution Function (CDF). Copyright 2019 Allen B. Downey MIT License: https://opensource.org/licenses/MIT """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy.interpolate import interp1d def underride(d, **options): """Add key-value pairs to d only if key is not in d. d: dictionary options: keyword args to add to d returns: modified d """ for key, val in options.items(): d.setdefault(key, val) return d class Pmf(pd.Series): """Represents a probability Mass Function (PMF).""" def __init__(self, *args, **kwargs): """Initialize a Pmf. Note: this cleans up a weird Series behavior, which is that Series() and Series([]) yield different results. See: https://github.com/pandas-dev/pandas/issues/16737 """ if args: super().__init__(*args, **kwargs) else: underride(kwargs, dtype=np.float64) super().__init__([], **kwargs) def copy(self, **kwargs): """Make a copy. returns: new Pmf """ return Pmf(self, **kwargs) def __getitem__(self, qs): """Look up qs and return ps.""" try: return super().__getitem__(qs) except (KeyError, ValueError, IndexError): return 0 @property def qs(self): """Get the quantities. returns: NumPy array """ return self.index.values @property def ps(self): """Get the probabilities. returns: NumPy array """ return self.values def _repr_html_(self): """Returns an HTML representation of the series. Mostly used for Jupyter notebooks. """ df = pd.DataFrame(dict(probs=self)) return df._repr_html_() def normalize(self): """Make the probabilities add up to 1 (modifies self). returns: normalizing constant """ total = self.sum() self /= total return total def mean(self): """Computes expected value. returns: float """ #TODO: error if not normalized return np.sum(self.ps * self.qs) def median(self): """Median (50th percentile). returns: float """ return self.quantile(0.5) def quantile(self, ps): """Quantiles. Computes the inverse CDF of ps, that is, the values that correspond to the given probabilities. returns: float """ return self.make_cdf().quantile(ps) def var(self): """Variance of a PMF. returns: float """ m = self.mean() d = self.qs - m return np.sum(d**2 * self.ps) def std(self): """Standard deviation of a PMF. returns: float """ return np.sqrt(self.var()) def sample(self, *args, **kwargs): """Makes a random sample. args: same as ps.Series.sample options: same as ps.Series.sample returns: Series """ # TODO: finish this underride(kwargs, weights=self.ps) return self.index.sample(*args, **kwargs) def choice(self, *args, **kwargs): """Makes a random sample. Uses the probabilities as weights unless `p` is provided. args: same as np.random.choice options: same as np.random.choice returns: NumPy array """ underride(kwargs, p=self.ps) return np.random.choice(self.qs, *args, **kwargs) def bar(self, **options): """Makes a bar plot. options: same as plt.bar """ underride(options, label=self.name) plt.bar(self.qs, self.ps, **options) def __add__(self, x): """Computes the Pmf of the sum of values drawn from self and x. x: another Pmf or a scalar returns: new Pmf """ if isinstance(x, Pmf): return pmf_add(self, x) else: return Pmf(self.ps, index=self.qs + x) __radd__ = __add__ def __sub__(self, x): """Computes the Pmf of the diff of values drawn from self and other. x: another Pmf returns: new Pmf """ if isinstance(x, Pmf): return pmf_sub(self, x) else: return Pmf(self.ps, index=self.qs - x) # TODO: implement rsub # __rsub__ = __sub__ # TODO: mul, div, truediv, divmod? def make_joint(self, other, **options): """Make joint distribution :param self: :param other: :param options: passed to Pmf constructor :return: new Pmf """ qs = pd.MultiIndex.from_product([self.qs, other.qs]) ps = np.multiply.outer(self.ps, other.ps).flatten() return Pmf(ps, index=qs, **options) def marginal(self, i, name=None): """Gets the marginal distribution of the indicated variable. i: index of the variable we want name: string Returns: Pmf """ # TODO: rewrite this using multiindex operations pmf = Pmf(name=name) for vs, p in self.items(): pmf[vs[i]] += p return pmf def conditional(self, i, j, val, name=None): """Gets the conditional distribution of the indicated variable. Distribution of vs[i], conditioned on vs[j] = val. i: index of the variable we want j: which variable is conditioned on val: the value the jth variable has to have name: string Returns: Pmf """ # TODO: rewrite this using multiindex operations pmf = Pmf(name=name) for vs, p in self.items(): if vs[j] == val: pmf[vs[i]] += p pmf.normalize() return pmf def update(self, likelihood, data): """Bayesian update. likelihood: function that takes (data, hypo) and returns likelihood of data under hypo data: whatever format like_func understands returns: normalizing constant """ for hypo in self.qs: self[hypo] *= likelihood(data, hypo) return self.normalize() def max_prob(self): """Value with the highest probability. returns: the value with the highest probability """ return self.idxmax() def make_cdf(self, normalize=True): """Make a Cdf from the Pmf. It can be good to normalize the cdf even if the Pmf was normalized, to guarantee that the last element of `ps` is 1. returns: Cdf """ cdf = Cdf(self.cumsum()) if normalize: cdf.normalize() return cdf def quantile(self, ps): """Quantities corresponding to given probabilities. ps: sequence of probabilities return: sequence of quantities """ cdf = self.sort_index().cumsum() interp = interp1d(cdf.values, cdf.index, kind='next', copy=False, assume_sorted=True, bounds_error=False, fill_value=(self.qs[0], np.nan)) return interp(ps) def credible_interval(self, p): """Credible interval containing the given probability. p: float 0-1 returns: array of two quantities """ tail = (1-p) / 2 ps = [tail, 1-tail] return self.quantile(ps) @staticmethod def from_seq(seq, normalize=True, sort=True, **options): """Make a PMF from a sequence of values. seq: any kind of sequence normalize: whether to normalize the Pmf, default True sort: whether to sort the Pmf by values, default True options: passed to the pd.Series constructor returns: Pmf object """ series = pd.Series(seq).value_counts(sort=False) options['copy'] = False pmf = Pmf(series, **options) if sort: pmf.sort_index(inplace=True) if normalize: pmf.normalize() return pmf # Comparison operators def gt(self, x): """Probability that a sample from this Pmf > x. x: number returns: float probability """ if isinstance(x, Pmf): return pmf_gt(self, x) else: return self[self.qs > x].sum() __gt__ = gt def lt(self, x): """Probability that a sample from this Pmf < x. x: number returns: float probability """ if isinstance(x, Pmf): return pmf_lt(self, x) else: return self[self.qs < x].sum() __lt__ = lt def ge(self, x): """Probability that a sample from this Pmf >= x. x: number returns: float probability """ if isinstance(x, Pmf): return pmf_ge(self, x) else: return self[self.qs >= x].sum() __ge__ = ge def le(self, x): """Probability that a sample from this Pmf <= x. x: number returns: float probability """ if isinstance(x, Pmf): return pmf_le(self, x) else: return self[self.qs <= x].sum() __le__ = le def eq(self, x): """Probability that a sample from this Pmf == x. x: number returns: float probability """ if isinstance(x, Pmf): return pmf_eq(self, x) else: return self[self.qs == x].sum() __eq__ = eq def ne(self, x): """Probability that a sample from this Pmf != x. x: number returns: float probability """ if isinstance(x, Pmf): return pmf_ne(self, x) else: return self[self.qs != x].sum() __ne__ = ne def pmf_conv(pmf1, pmf2, ufunc): """Convolve two PMFs. pmf1: pmf2: ufunc: elementwise function for arrays returns: new Pmf """ qs = ufunc(pmf1.qs, pmf2.qs).flatten() ps = np.multiply.outer(pmf1.ps, pmf2.ps).flatten() series = pd.Series(ps).groupby(qs).sum() return Pmf(series) def pmf_add(pmf1, pmf2): """Distribution of the sum. pmf1: pmf2: returns: new Pmf """ return pmf_conv(pmf1, pmf2, np.add.outer) def pmf_sub(pmf1, pmf2): """Distribution of the difference. pmf1: pmf2: returns: new Pmf """ return pmf_conv(pmf1, pmf2, np.subtract.outer) def pmf_outer(pmf1, pmf2, ufunc): """Computes the outer product of two PMFs. pmf1: pmf2: ufunc: function to apply to the qs returns: NumPy array """ qs = ufunc.outer(pmf1.qs, pmf2.qs) ps = np.multiply.outer(pmf1.ps, pmf2.ps) return qs * ps def pmf_gt(pmf1, pmf2): """Probability that a value from pmf1 is greater than a value from pmf2. pmf1: Pmf object pmf2: Pmf object returns: float probability """ outer = pmf_outer(pmf1, pmf2, np.greater) return outer.sum() def pmf_lt(pmf1, pmf2): """Probability that a value from pmf1 is less than a value from pmf2. pmf1: Pmf object pmf2: Pmf object returns: float probability """ outer = pmf_outer(pmf1, pmf2, np.less) return outer.sum() def pmf_ge(pmf1, pmf2): """Probability that a value from pmf1 is >= than a value from pmf2. pmf1: Pmf object pmf2: Pmf object returns: float probability """ outer = pmf_outer(pmf1, pmf2, np.greater_equal) return outer.sum() def pmf_le(pmf1, pmf2): """Probability that a value from pmf1 is <= than a value from pmf2. pmf1: Pmf object pmf2: Pmf object returns: float probability """ outer = pmf_outer(pmf1, pmf2, np.less_equal) return outer.sum() def pmf_eq(pmf1, pmf2): """Probability that a value from pmf1 equals a value from pmf2. pmf1: Pmf object pmf2: Pmf object returns: float probability """ outer = pmf_outer(pmf1, pmf2, np.equal) return outer.sum() def pmf_ne(pmf1, pmf2): """Probability that a value from pmf1 is <= than a value from pmf2. pmf1: Pmf object pmf2: Pmf object returns: float probability """ outer = pmf_outer(pmf1, pmf2, np.not_equal) return outer.sum() class Cdf(pd.Series): """Represents a Cumulative Distribution Function (CDF).""" def __init__(self, *args, **kwargs): """Initialize a Cdf. Note: this cleans up a weird Series behavior, which is that Series() and Series([]) yield different results. See: https://github.com/pandas-dev/pandas/issues/16737 """ if args: super().__init__(*args, **kwargs) else: underride(kwargs, dtype=np.float64) super().__init__([], **kwargs) def copy(self, **kwargs): """Make a copy. returns: new Cdf """ return Cdf(self, **kwargs) @property def forward(self): interp = interp1d(self.qs, self.ps, kind='previous', copy=False, assume_sorted=True, bounds_error=False, fill_value=(0,1)) return interp @property def inverse(self): interp = interp1d(self.ps, self.qs, kind='next', copy=False, assume_sorted=True, bounds_error=False, fill_value=(self.qs[0], np.nan)) return interp # calling a Cdf like a function does forward lookup __call__ = forward # quantile is the same as an inverse lookup quantile = inverse @staticmethod def from_seq(seq, normalize=True, sort=True, **options): """Make a CDF from a sequence of values. seq: any kind of sequence normalize: whether to normalize the Cdf, default True sort: whether to sort the Cdf by values, default True options: passed to the pd.Series constructor returns: CDF object """ pmf = Pmf.from_seq(seq, normalize=False, sort=sort, **options) return pmf.make_cdf(normalize=normalize) @property def qs(self): """Get the quantities. returns: NumPy array """ return self.index.values @property def ps(self): """Get the probabilities. returns: NumPy array """ return self.values def _repr_html_(self): """Returns an HTML representation of the series. Mostly used for Jupyter notebooks. """ df = pd.DataFrame(dict(probs=self)) return df._repr_html_() def normalize(self): """Make the probabilities add up to 1 (modifies self). returns: normalizing constant """ total = self.ps[-1] self /= total return total def make_pmf(self, normalize=False): """Make a Pmf from the Cdf. returns: Cdf """ ps = self.ps diff = np.ediff1d(ps, to_begin=ps[0]) pmf = Pmf(pd.Series(diff, index=self.index.copy())) if normalize: pmf.normalize() return pmf def choice(self, *args, **kwargs): """Makes a random sample. Uses the probabilities as weights unless `p` is provided. args: same as np.random.choice options: same as np.random.choice returns: NumPy array """ # TODO: Make this more efficient by implementing the inverse CDF method. pmf = self.make_pmf() return pmf.choice(*args, *kwargs) def mean(self): """Expected value. returns: float """ return self.make_pmf().mean() def var(self): """Variance. returns: float """ return self.make_pmf().var() def std(self): """Standard deviation. returns: float """ return self.make_pmf().std() def median(self): """Median (50th percentile). returns: float """ return self.quantile(0.5)
[ "sunny.2309@yahoo.in" ]
sunny.2309@yahoo.in
279bc30399e52b6a4f952a964584f2866955791d
da4cdfab90215fb8c9b7e873740161b8f8e865d4
/course4/week3/tracks.py
7928da2ad0e972fafef83e138f10d640c0d4a083
[]
no_license
cauequeiroz/py4e
98d7ca53af099b1ee50af2ce094810641c9411a7
9e3d487d1031c621d66ac7bdfd38ac419b098293
refs/heads/master
2022-12-06T08:41:14.013133
2020-08-26T21:46:07
2020-08-26T21:46:07
275,848,700
0
0
null
null
null
null
UTF-8
Python
false
false
2,964
py
# This application will read an iTunes export file in XML and produce a properly normalized database import xml.etree.ElementTree as ET import sqlite3 # Parse xml # -------------------------------------------------------- def get_item_content(items, label): found = False for item in items: if item.text == label: found = True elif found: return item.text def get_content(file): tracks_xml = ET.parse(file).findall('dict/dict/dict') tracks = list() for track in tracks_xml: name = get_item_content(track, 'Name') artist = get_item_content(track, 'Artist') album = get_item_content(track, 'Album') genre = get_item_content(track, 'Genre') if artist is None or album is None or genre is None: continue track = dict() track['name'] = name track['artist'] = artist track['album'] = album track['genre'] = genre tracks.append(track) return tracks # Database # -------------------------------------------------------- connection = sqlite3.connect('tracks.sqlite') database = connection.cursor() database.executescript(''' DROP TABLE IF EXISTS Artist; DROP TABLE IF EXISTS Genre; DROP TABLE IF EXISTS Album; DROP TABLE IF EXISTS Track; CREATE TABLE Artist ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE, name TEXT UNIQUE ); CREATE TABLE Genre ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE, name TEXT UNIQUE ); CREATE TABLE Album ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE, artist_id INTEGER, title TEXT UNIQUE ); CREATE TABLE Track ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE, title TEXT UNIQUE, album_id INTEGER, genre_id INTEGER ); ''') # Start application # -------------------------------------------------------- tracks = get_content('Library.xml') for track in tracks: # Handle artist database.execute('INSERT OR IGNORE INTO Artist (name) VALUES (?)', (track.get('artist'),)) database.execute('SELECT id FROM Artist WHERE name=?', (track.get('artist'),)) artist_id = database.fetchone()[0] # Handle genre database.execute('INSERT OR IGNORE INTO Genre (name) VALUES (?)', (track.get('genre'),)) database.execute('SELECT id FROM Genre WHERE name=?', (track.get('genre'),)) genre_id = database.fetchone()[0] # Handle album database.execute('INSERT OR IGNORE INTO Album (title, artist_id) VALUES (?, ?)', (track.get('album'), artist_id)) database.execute('SELECT * FROM Album WHERE title=?', (track.get('album'),)) album_id = database.fetchone()[0] # Handle track database.execute('INSERT OR REPLACE INTO Track (title, album_id, genre_id) VALUES (?, ?, ?)', (track.get('name'), album_id, genre_id)) connection.commit() connection.close()
[ "cauenqueiroz@gmail.com" ]
cauenqueiroz@gmail.com
56058f10629781f94c27d67b43249ebd00812591
0d43b36da35dc97239e665dedfa6f5dd6812986e
/tfpipe/modules/bedtools/__init__.py
c60c4c4ab0ceaa0f31437e800c9ba459936f9445
[]
no_license
PaulCotney/tfpipe
39be244b46a531fbac3a41cf606e957dde6e02e7
88008c80c48ccf91527311c7f7ac801c4b0dd0c3
refs/heads/master
2021-01-22T09:48:54.127534
2018-08-22T13:48:31
2018-08-22T13:48:31
63,611,894
0
0
null
2017-05-15T16:22:14
2016-07-18T14:54:04
Python
UTF-8
Python
false
false
87
py
""" """ from format_conversion import BamToBed, BedToBam, Intersect, SortBed, MergeBed
[ "eklundke@gmail.com" ]
eklundke@gmail.com
81b8109d9545af784d646f5b27b16704a9b99af5
41d2730917ef44323e9d534cc6df8dab0c32788a
/2-Computer-control-terminal/Raspi端/Main_raspi_client.py
322db3faa14b3148228ab781cb2578d85fbe61ba
[ "Apache-2.0" ]
permissive
thinker-niu/Home-management-platform-and-home-robot
cc73f498291a720c6f55ed3405bf7b835244989c
597349e261bfb8e37ef7da5a698ca2dd4696aed9
refs/heads/master
2023-03-19T12:45:29.962477
2020-09-03T23:53:20
2020-09-03T23:53:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
912
py
#!/usr/bin/python3.7 # coding=utf-8 #客户端与上一个没有任何改变 from socket import * import threading import time import robot_contro_main #串口控制 address="192.168.43.10" #8266的服务器的ip地址 #address="127.0.0.1" #8266的服务器的ip地址 port=6424 #8266的服务器的端口号 buffsize=1024 #接收数据的缓存大小 s=socket(AF_INET, SOCK_STREAM) s.connect((address,port)) def fun(): while True: recvdata=s.recv(buffsize).decode('utf-8') print("\n接收的数据是:"+recvdata) robot_contro_main.Driver_Set_Engine(recvdata) t = threading.Thread(target=fun) # t为新创建的线程,专门用来接收从服务器发送过来的数据 t.start() while True: senddata=input('\n想要发送的数据:') if senddata=='exit': break s.send(senddata.encode()) s.close()
[ "noreply@github.com" ]
thinker-niu.noreply@github.com
af7f3350737682e5f14e67fac76f11d84afe65b1
edd8ad3dcb6ee9b019c999b712f8ee0c468e2b81
/Python 300/08. Iteration Statement/144.py
641f2af3cf169953aeb4921da394052b49442b99
[]
no_license
narinn-star/Python
575cba200de35b9edf3832c4e41ccce657075751
14eba211cd3a9e9708a30073ba5b31d21d39eeef
refs/heads/master
2023-05-25T22:57:26.079294
2021-06-07T15:29:39
2021-06-07T15:29:39
331,647,462
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
#for문 _ animals lists = ['dog', 'cat','parrot'] for i in lists: print(i, len(i))
[ "skfls2618@naver.com" ]
skfls2618@naver.com
3c8c81ebadd2490de3c9f2eb1caef7b1dbd64274
2bce81a0d3203ebbf0a94a6d67007d3bdf5ba10e
/10.py
f9f39d62fd56630cfd4683409c12ff5f4e4296bf
[]
no_license
kayeoni/Project_Euler
362698277730a1ea844ef490de7e0fd79646acf3
3d53c4b313c04bc53d5a8e0684b40438e824f266
refs/heads/master
2021-09-08T02:07:03.137199
2018-03-05T22:21:53
2018-03-05T22:21:53
115,199,853
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
import math def check_prime(n): i = 2 if n == i: return 1 while i < int(math.sqrt(n)) + 1: if n % i == 0: return 0 i += 1 return 1 def sum_of_primes(n): list = [] if n < 2: return 0 if n == 2: return 2 if n > 2: list.append(2) i = 3 while i <= n: if check_prime(i) == 1: list.append(i) i += 2 return sum(list) print(sum_of_primes(2000000))
[ "kayeoni.kim@gmail.com" ]
kayeoni.kim@gmail.com
914957a9aa07da94a8697e03eb3e85c6fee20dd2
ecf22cd4f463327c85be6e763f550f933104815f
/orders/forms.py
66cefd55be1b4139b23c2d55e7f3d98cd671b505
[]
no_license
solairedev/gomel-agro-complect
d0205f4381baf083a9bf94791e64193208ca0387
a77a3f9db4bb88f810e1c7a73859019407b1292e
refs/heads/master
2022-01-31T06:29:55.831333
2019-05-20T09:01:13
2019-05-20T09:01:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
486
py
from django.forms import ModelForm, Textarea, TextInput from .models import Order class OrderForm(ModelForm): class Meta: model = Order fields = ['name','phone','note'] widgets = { 'name':TextInput(attrs={'class':'input'}), 'phone':TextInput(attrs={'class':'input js-phone-mask', 'pattern':'.{19}'}), 'note':Textarea(attrs={'class':'textarea','rows':'1','placeholder':'Необязательное поле'}) }
[ "victor374288@mail.ru" ]
victor374288@mail.ru
d1ac6305dbd6d50b835b3c72c2b048137df5ea1f
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/81/usersdata/212/47049/submittedfiles/dec2bin.py
6411c5dd71bf68dde30b00d10c31f9fc65086a43
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
# -*- coding: utf-8 -*- p=int(input('digite o valor do menor número:')) q=int(input('digite o valor do maior número:')) n=1%10 print(n)
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
0fb14a61732e67d06cdc1613b86e38564700f4d4
24aec917953728338a7f1804d96d0ac6288a1250
/linesheet-related1.py
74d7bb8013547044060379d0b45a49f77fd6841e
[]
no_license
jingggo/python_excel_research
d82b3b222fc6852a1f0288aa2971a15617eeb16a
89b7ccc22e06c6f592c9d42d95e485b01cce65b4
refs/heads/master
2021-09-02T15:08:32.904735
2018-01-03T10:46:49
2018-01-03T10:46:49
115,507,587
0
0
null
null
null
null
UTF-8
Python
false
false
7,766
py
from xlrd import open_workbook from xlwt import Workbook def getTemplateUploadLinesheet(): book = open_workbook(r'E:\RFScripts\linesheet_upload_data_ef\Linesheet upload use case-ef.xlsx') sheet = book.sheet_by_name('EF-DATA') return sheet.row_values(3) def getExistingLineSheet(nrows,xrow,xcol=1): book = open_workbook(r'E:\RFScripts\linesheet_upload_data_ck\Linesheet upload use case.xlsx') sheet0 = book.sheet_by_index(0) rlist = [] for row in range(nrows): rlist.append(sheet0.row_values(xrow+row, xcol, 9)) # sheet1 = book.sheet_by_index(1) # print sheet0.row_slice(4, 1, 7) # print sheet0.row_values(4, 1, 7) # print sheet0.row_types(4, 1, 7) return (rlist) def getUploadLineSheet(nrows,xrow,xcol=1): book = open_workbook(r'E:\RFScripts\linesheet_upload_data_ck\Linesheet upload use case.xlsx') sheet0 = book.sheet_by_index(0) rlist = [] for row in range(nrows): rlist.append(sheet0.row_values(xrow+row, xcol, 9)) return (rlist) def createExcel(): book = Workbook() sheet1 = book.add_sheet('EF-DATA', cell_overwrite_ok=True) scenario_indexs = [2,11,23,31,43,55,67,75,87,99,114,126,135,145,154,169,184,200,215,230,246,254,266,278,286,298,310,322,330,338,350,359,368,380,388,396,408,417,426,434,444,452,462,472,480,492,500,512,520,528,538,546,556] existing_counts =[2,1, 1, 3, 4, 1, 1, 3, 4, 4, 4, 2, 2, 1, 6, 6, 6, 6, 6, 6, 1, 3, 4, 1, 3, 4, 3, 1, 1, 3, 2, 2, 3, 1, 1, 3, 2, 2, 1, 2, 1, 2, 2, 1, 3, 1, 3, 1, 1, 2, 1, 2, 2] upload_counts =[1,5, 1, 3, 2, 5, 1, 3, 2, 5, 2, 1, 2, 2, 3, 3, 4, 3, 3, 4, 1, 3, 2, 1, 3, 2, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 2, 1, 3, 1, 3, 1, 1, 2, 1, 2, 2] scenario_names = getScenario(0) row_index = 0 for index,existing_count,upload_count,scenario_name in zip(scenario_indexs,existing_counts,upload_counts,scenario_names): existing_values, upload_values = getExpectedLinesheets(index+2,existing_count,upload_count)#(4,2,1) # print(existing_values, upload_values) row_index = writeLineToSheet(sheet1,row_index,existing_values,upload_values,scenario_name) row_index += 2 # print(row_index) # break book.save(r'E:\RFScripts\linesheet_upload_data_ef\test4.xls') def writeLineToSheet(sheet1, row_index, existing_values,upload_values,scenario_name): xrow = row_index sheet1.write(xrow, 0, scenario_name) xrow += 1 sheet1.write(xrow, 0, 'Existing Record :') xrow += 1 template_linesheet_title = getTemplateUploadLinesheet() [sheet1.write(xrow, ic, value) for ic, value in enumerate(template_linesheet_title)] xrow += 1 for irow in range(len(existing_values)): row_values = existing_values[irow] for xcol, value in enumerate(row_values): sheet1.write(irow + xrow, xcol, value) xrow += len(existing_values) sheet1.write(xrow, 0, 'Upload File :') xrow += 1 [sheet1.write(xrow, ic, value) for ic, value in enumerate(template_linesheet_title)] xrow += 1 '''upload linesheet''' for iurow in range(len(upload_values)): row_upload_values = upload_values[iurow] for xcol, value in enumerate(row_upload_values): sheet1.write(iurow + xrow, xcol, value) xrow += len(upload_values) sheet1.write(xrow, 0, 'Expected Result:') xrow += 1 sheet1.write(xrow, 0, 'Actual Result:') return xrow def writeLineSheet(existing_values, upload_values): book = Workbook() sheet1 = book.add_sheet('EF-DATA', cell_overwrite_ok=True) xrow=0 sheet1.write(xrow, 0, 'Scenario 1 : New Style') xrow += 1 sheet1.write(xrow, 0, 'Existing Record :') xrow += 1 template_linesheet_title = getTemplateUploadLinesheet() [sheet1.write(xrow, ic, value) for ic, value in enumerate(template_linesheet_title)] xrow += 1 for irow in range(len(existing_values)): row_values = existing_values[irow] for xcol, value in enumerate(row_values): sheet1.write(irow+xrow,xcol,value) xrow += len(existing_values) sheet1.write(xrow, 0, 'Upload File :') xrow += 1 [sheet1.write(xrow, ic, value) for ic, value in enumerate(template_linesheet_title)] xrow += 1 '''upload linesheet''' for iurow in range(len(upload_values)): row_values = existing_values[iurow] for xcol, value in enumerate(row_values): sheet1.write(iurow+xrow, xcol, value) xrow += len(upload_values) sheet1.write(xrow, 0, 'Expected Result:') xrow += 1 sheet1.write(xrow, 0, 'Actual Result:') # sheet1.write(0,0,'A1') # sheet1.write(0,1,'B1') # row1 = sheet1.row(1) # row1.write(0,'A2') # row1.write(1,'B2') book.save(r'E:\RFScripts\linesheet_upload_data_ef\test.xls') return xrow def addToRealLinesheet(linesheet): tempLinesheet=['','','','','','AUTOTEST','','','','','','143.0','288.0','','','','','EILEENFISHER','WOMENSWEAR','MISSY','AUTOTESTSTORY','','AAH - SLEEK TENCEL','','W - SWEATERS','','','','SWEATERS','M7 (XXS-XXL)','FALL','2018','0.0','0.0','','','','','','DOMESTIC','67.76','','','','','','','','','','','','','','M','','','','','','','','','','','','','F','','0.0','0.0','','','','','','','0','','0.0','0','','M4','ANDARI FASHION, INC.','UNITED STATES','',''] '''Corporate,style,upc,color code,color des, size code,size desc''' if not linesheet[0] == '': tempLinesheet.pop(17) tempLinesheet.insert(17,'EILEENFISHER') if not linesheet[1] == '': tempLinesheet.pop(0) tempLinesheet.insert(0, 'EF'+linesheet[1]) if not linesheet[2] == '': tempLinesheet.pop(1) tempLinesheet.insert(1, linesheet[2]) if not linesheet[3] == '': tempLinesheet.pop(6) tempLinesheet.insert(6, linesheet[3]) if not linesheet[4] == '': tempLinesheet.pop(7) tempLinesheet.insert(7, linesheet[4]) if not linesheet[5] == '': tempLinesheet.pop(8) tempLinesheet.insert(8, linesheet[5]) if not linesheet[6] == '': tempLinesheet.pop(9) tempLinesheet.insert(9, linesheet[6]) if not linesheet[7] == '': if linesheet[7]=='A/M': linesheet[7]='M' tempLinesheet.pop(54) tempLinesheet.insert(54, linesheet[7]) return tempLinesheet def getExpectedLinesheets(existing_row_index, existing_nrows, upload_nrows): src_existing_linesheets = getExistingLineSheet(existing_nrows,existing_row_index)#2 rows for existing, the row_index is 4 src_upload_linesheets = getUploadLineSheet(upload_nrows,existing_row_index+existing_nrows+2) # print(src_existing_linesheets) # print(src_upload_linesheets) existing_real_linesheet = [] for src_existing_linesheet in src_existing_linesheets: existing_real_linesheet.append(addToRealLinesheet(src_existing_linesheet)) upload_real_linesheet = [] for src_upload_linesheet in src_upload_linesheets: upload_real_linesheet.append(addToRealLinesheet(src_upload_linesheet)) return existing_real_linesheet, upload_real_linesheet def getScenario(sheet_index): scenario_indexs = [1, 10, 22, 30, 42, 54, 66, 74, 86, 98, 113, 125, 134, 144, 153, 168, 183, 199, 214, 229, 245, 253, 265, 277, 285, 297, 309, 321, 329, 337, 349, 358, 367, 379, 387, 395, 407, 416, 425, 433, 443, 451, 461, 471, 479, 491, 499, 511, 519, 527, 537, 545, 555] book = open_workbook(r'E:\RFScripts\linesheet_upload_data_ck\Linesheet upload use case.xlsx') sheet = book.sheet_by_index(sheet_index) scenario_names=[] for scenario_index in scenario_indexs: scenario_names.append(sheet.cell(scenario_index,1).value) # print scenario_names return scenario_names createExcel()
[ "jyang@7thonline.cn" ]
jyang@7thonline.cn
46451d297fa736664316b7c35106ff642cada2ff
cbb7f79a50b05e2ab670ae19bbd1c3b8dead437d
/dict_ordem.py
d24ab507f66b1828b5ff9371ba46aa626fa734e0
[]
no_license
lfbessegato/Python_Avancado
3b680d65fe543bd915b5798a85be1f7dadfad4c4
bb73b99d64f92693a6fe71748f2c24aaabe7d4e1
refs/heads/master
2022-09-07T20:28:07.037656
2020-05-29T20:24:07
2020-05-29T20:24:07
265,316,529
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
from collections import OrderedDict # Ordered -> Mantém a Ordem d = OrderedDict() d['python'] = 10 d['java'] = 5 d['php'] = 6 d['C'] = 10 for key in d: print(key, d[key])
[ "lfrbessegato@gmail.com" ]
lfrbessegato@gmail.com
c5a55686d52aef4a636fcd08c7d52bca631af994
8c3ba133fa34cf2f936ba9176459690008e9e1fb
/imagepy/menus/Window/widgets_plgs.py
4a05938af587349c3a114d2efe75198b21d28d8b
[ "BSD-2-Clause" ]
permissive
qixinbo/imagepy
fcd272b231b3f49fafd51425f46e826a73841c1f
a2722443dfddf2b0b81b44512427b8a273a7424c
refs/heads/master
2023-03-16T15:58:57.330418
2022-09-03T13:35:46
2022-09-03T13:35:46
519,933,892
0
0
BSD-4-Clause
2022-08-01T02:02:26
2022-08-01T02:02:25
null
UTF-8
Python
false
false
532
py
from sciapp.action import Free class Widgets(Free): """ImageKiller: derived from sciapp.action.Free""" title = 'Widgets' asyn = False def run(self, para = None): self.app.switch_widget() class ToolBar(Free): title = 'Toolbar' asyn = False def run(self, para = None): self.app.switch_toolbar() class TableWindow(Free): """ImageKiller: derived from sciapp.action.Free""" title = 'Tables Window' asyn = False #process def run(self, para = None): self.app.switch_table() plgs = [Widgets, ToolBar, TableWindow]
[ "imagepy@sina.com" ]
imagepy@sina.com
aaf729ced0606b16165d02d0f6b98067609e987f
44e25862aec1577d09e4a0695b1367be6c847ff2
/POTD/nim.py
de7b4ecc08d4bd1518f0baf98052c94bec18ee0e
[]
no_license
imabbas/RandomProjects
8cefcaf907e1f3c30a9e1cc74af8db4015fcdd4d
c039cc471792465c5018c307e1526ce5c3fbe8c1
refs/heads/master
2021-06-10T18:32:50.042149
2017-02-07T00:58:21
2017-02-07T00:58:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,611
py
print('The Game of Nim') print("") marbles = int(input('Number of marbles are in the pile: ')) start = input('Who will start? (p or c): ') if start == 'p': turn = True else: turn = False x = 10 new_pile = (2**x - 1) computer_intake = 0 computer_marbles = 0 while marbles > 1: print('The pile has ' + str(marbles) + ' marbles in it.') while turn == True: max_marbles = int(marbles) // 2 player_marbles = 0 player_intake = 0 while player_intake < 1 or player_intake > max_marbles: player_intake = int(input('How many marbles do you want to take?' + '(1-'+ str(max_marbles) + '):')) if player_intake >= 1 and player_intake <= max_marbles: player_marbles = player_marbles + player_intake marbles = marbles - player_marbles print('The pile has ' + str(marbles) + ' marbles in it.') turn = False while turn == False: final_intake = 0 max_marbles = int(marbles) // 2 computer_intake = max_marbles while not turn: for computer_intake in range(max_marbles, 0, -1): for x in range(10,0,-1): if marbles - computer_intake == ((2**x)-1): final_intake = final_intake + computer_intake if computer_intake > marbles//2: computer_intake = 1 print('The computer takes ' + str(final_intake) + ' marbles.') marbles = marbles - final_intake turn = True
[ "Aadil Abbas" ]
Aadil Abbas
f6fa771d57a3a10af786708c35aa3393e0e40935
9c2ca939f29b861afec382cd17a462775a3974d0
/run_worker.py
fcec489b5ac3ac725751dac7c59693090a0cba6f
[ "BSD-2-Clause" ]
permissive
merrlyne/gchatautorespond
1e2009823e16289ea2cea709cfee5cd2a3e97459
a7f8d7b715ca9851a65588a268ce39addb906b6d
refs/heads/master
2020-03-20T12:49:18.882038
2018-03-29T18:38:58
2018-03-29T18:38:58
137,441,551
0
1
null
2018-06-15T04:38:49
2018-06-15T04:38:49
null
UTF-8
Python
false
false
1,564
py
from gevent import monkey monkey.patch_all() import django django.setup() import logging from threading import Thread from django.conf import settings from gevent.wsgi import WSGIServer from raven.contrib.flask import Sentry from gchatautorespond.lib.chatworker.worker import Worker, app from gchatautorespond.lib.chatworker.bot import ContextFilter if __name__ == '__main__': worker = Worker() # Loading takes some time; don't block the api while it goes on. thread = Thread(target=worker.load) thread.start() app.config['worker'] = worker app.config['LOGGER_NAME'] = 'gchatautorespond.worker' app.config.update({'SENTRY_' + k.upper(): v for (k, v) in settings.RAVEN_CONFIG.items() if k != 'dsn'}) # Add the ContextFilter to all stream handlers. # It can't be attached to the loggers since that wouldn't handle subloggers, # nor can it be attached to null/sentry handlers, since it'd produce output twice. handlers = set() for logger_name in settings.LOGGING['loggers']: logger = logging.getLogger(logger_name) for handler in logger.handlers: if isinstance(handler, logging.StreamHandler): handlers.add(handler) for handler in handlers: handler.addFilter(ContextFilter) if 'dsn' in settings.RAVEN_CONFIG: sentry = Sentry(app, dsn=settings.RAVEN_CONFIG['dsn'], logging=True, level=logging.ERROR) server = WSGIServer(('127.0.0.1', settings.WORKER_PORT), app) server.serve_forever()
[ "simon@simonmweber.com" ]
simon@simonmweber.com
1a54be7da36fd5d56bab35a6d45b2e9556fe935c
eee29769171e339ed19eaf35feb1eb3a9774db27
/hangman_game.py
db8a13ddd9031ae2fe10000d5f0425e11cb99a0f
[]
no_license
ben-j-ellis/Basic-Hangman-Game
582978bd9b8bba2cb05e1cdce7ac86f13ba863c2
ccfa3ab9484b30063809b23467cc262aa3b37f40
refs/heads/master
2021-05-05T20:43:18.603186
2017-12-26T23:19:31
2017-12-26T23:19:31
115,461,094
0
0
null
null
null
null
UTF-8
Python
false
false
21
py
# Basic-Hangman-Game
[ "benjakobellis@gmail.com" ]
benjakobellis@gmail.com
d6de9164815f572baff60854d18af972b0bd9a28
313eb1f49406ccfa179b0df4493c82b439f11593
/lazypt/lazypt.py
7e0e93c9ef246f4f14e501571bb723e958fbe417
[ "MIT" ]
permissive
AndyCyberSec/lazypt
72ecfad18530a62682ca35ffcf8e7e88dbf4ba18
22a67275eaee9ecedd193463546199aa977670d8
refs/heads/master
2020-05-19T01:56:27.412358
2019-05-16T10:28:45
2019-05-16T10:28:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,024
py
import pyperclip import yaml from .pathmanager import path_finder class RevShell(object): def __init__(self, lang, host, port): self._lang = lang self._host = host self._port = port self._msg = '\n[+] Reverse shell code copied to the clipboard!' self._data = RevShell.get_data(RevShell, 'yaml/revshell.yaml') def get_code(self): for d in self._data: for k, v in d.items(): if self._lang == k: return d[self._lang]['code'] return "[-] --lang not found in YAML file." def _format_code(self): code = self.get_code().replace('{ip}', self._host) code = code.replace('{port}', self._port) # code = self.get_code().format(self._host, self._port) pyperclip.copy(code) print(code) return self._msg def get_data(self, dbfile): script_path = path_finder() with open(script_path + dbfile) as f: return yaml.safe_load(f) def get_langs(self, dbfile): data = RevShell.get_data(RevShell, dbfile) langs = [] for d in data: for k, v in d.items(): langs.append(k) return langs def __str__(self): return self._format_code() class ShellFile(object): def __init__(self, lang, filename): self._lang = lang self._filename = filename self._data = RevShell.get_data(RevShell, 'yaml/shellfile.yaml') self._make = self._make_file() def _get_code(self): for d in self._data: for k, v in d.items(): if self._lang == k: return d[self._lang]['code'] return "[-] --lang not found in YAML file." def _make_file(self): filename = self._filename + '.' + self._lang try: f = open(filename, 'w+') shell = self._get_code() f.write(shell) f.close() return '[+] File %s created' % filename except FileNotFoundError as identifier: return str(identifier) def __str__(self): return self._make class OpenSSL(object): def __init__(self, action): self.action = action self.data = RevShell.get_data(RevShell, 'yaml/openssl.yaml') self._msg = '\n[+] Openssl code copied to the clipboard!' def get_data(self, node): for d in self.data: for k,v in d.items(): if k == self.action: pyperclip.copy(v[node]) return self._msg # return v[node] def get_all_info(self): infos = [] temp = {} i = 1 for d in self.data: temp['ossl' + str(i)] = d['ossl' + str(i)]['info'] infos.append(temp) temp = {} i += 1 return infos
[ "noreply@github.com" ]
AndyCyberSec.noreply@github.com
b2a8e001c69a95a4fb2a947d732d78d6d7d8c012
632b94beca62f7c8af5ae1d1e8e095a352600429
/build/ros_controllers/ros_controllers/position_controllers/catkin_generated/pkg.installspace.context.pc.py
4ddc4e67bff606fc70fdb62976ffda91a4cd6eb2
[]
no_license
Haoran-Zhao/US_UR3
d9eb17a7eceed75bc623be4f4db417a38f5a9f8d
a0c25e1daf613bb45dbd08075e3185cb9cd03657
refs/heads/master
2020-08-31T07:02:45.403001
2020-05-27T16:58:52
2020-05-27T16:58:52
218,629,020
0
0
null
null
null
null
UTF-8
Python
false
false
507
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "${prefix}/include".split(';') if "${prefix}/include" != "" else [] PROJECT_CATKIN_DEPENDS = "controller_interface;forward_command_controller".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lposition_controllers".split(';') if "-lposition_controllers" != "" else [] PROJECT_NAME = "position_controllers" PROJECT_SPACE_DIR = "/home/haoran/US_UR3/install" PROJECT_VERSION = "0.13.6"
[ "zhaohaorandl@gmail.com" ]
zhaohaorandl@gmail.com
2fea31c0cd40ed40aa5a152c571bd75391e2bf24
b47f2e3f3298388b1bcab3213bef42682985135e
/experiments/heat-3d/tmp_files/6909.py
efaecf45f0b280f386864f84a69acd803b7e70e3
[ "BSD-2-Clause" ]
permissive
LoopTilingBenchmark/benchmark
29cc9f845d323431e3d40e878cbfc6d1aad1f260
52a3d2e70216552a498fd91de02a2fa9cb62122c
refs/heads/master
2020-09-25T09:45:31.299046
2019-12-04T23:25:06
2019-12-04T23:25:06
225,975,074
0
0
null
null
null
null
UTF-8
Python
false
false
375
py
from chill import * source('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/polybench/polybench-code/stencils/heat-3d/kernel.c') destination('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/experiments/heat-3d/tmp_files/6909.c') procedure('kernel_heat_3d') loop(0) tile(0,2,8,2) tile(0,4,64,3) tile(0,6,128,4) tile(1,2,8,2) tile(1,4,64,3) tile(1,6,128,4)
[ "nashenruoyang@163.com" ]
nashenruoyang@163.com
a0d2ede9601c5ec0eb93ff63f0ad1a094d8f91dc
72d67e03705bd3ca88bacfe171b1553592270b9a
/profiles_project/profiles_api/migrations/0001_initial.py
88bd8264a6c93dd2ccb1fd60fcf585a3d01c2615
[ "MIT" ]
permissive
sandeepchandra/profiles-rest-api
1d9af2eff5377cf6374a82c0409b2ede40cd0bde
001e23575e7a51ef3fde32422b21c23646f3579c
refs/heads/main
2023-01-13T23:33:25.507957
2020-11-26T17:24:58
2020-11-26T17:24:58
315,902,308
0
0
null
null
null
null
UTF-8
Python
false
false
1,706
py
# Generated by Django 2.2 on 2020-11-25 17:36 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('email', models.EmailField(max_length=255, unique=True)), ('name', models.CharField(max_length=255)), ('is_active', models.BooleanField(default=True)), ('is_staff', models.BooleanField(default=False)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'abstract': False, }, ), ]
[ "sandeepchandragiri17@gmail.com" ]
sandeepchandragiri17@gmail.com
df1314d77dfbe8fe0729d21b38bed7fc34f2f51c
81a909f3220f1346c431a96cac6b7e8f2d9b8b6c
/BackEnd/directory/migrations/0001_initial.py
255d1e0d7001f0658d108e7e998b5d615c794140
[]
no_license
avikalsagar/Web-Dev-for-an-NGO
0a8da7e7a424a4a93b8a28d3911ea6c4ddd232d1
0549285ff77dfc966ac8fa66250e03fa5407c35b
refs/heads/main
2023-07-03T08:00:09.731334
2021-08-09T06:40:02
2021-08-09T06:40:02
394,522,116
1
0
null
null
null
null
UTF-8
Python
false
false
1,146
py
# Generated by Django 3.1.2 on 2020-11-30 17:52 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Registration', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('location', models.CharField(default='Mangalore', max_length=50)), ('category', models.CharField(choices=[('NGO', 'NGO'), ('Old Age Home', 'Old Age Home'), ('Orphanage', 'Orphanage'), ('Social Initiative', 'Social Initiative')], default='NGO', max_length=30)), ('description', models.TextField(default='Description', max_length=200)), ('donation_required', models.BooleanField(default=False)), ('amt_needed', models.DecimalField(decimal_places=2, default=0.0, max_digits=7)), ('amt_raised', models.DecimalField(decimal_places=2, default=0.0, max_digits=7)), ], ), ]
[ "adithya.kannan19@gmail.com" ]
adithya.kannan19@gmail.com