blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
288
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
684 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
147 values
src_encoding
stringclasses
25 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
128
12.7k
extension
stringclasses
142 values
content
stringlengths
128
8.19k
authors
listlengths
1
1
author_id
stringlengths
1
132
ed78e6a932f361509c7b2a9d7e57906f6d9a5d0f
b0485dc3e30dc0170391e131ec00ccb335768817
/_build.py
afeb10aaecab2d7aba8fdf9720bc4faddcca2854
[]
no_license
leisvip/djc_helper
8a54483780bcb6ec3a5316a869d5652cfad393f7
9e5982047ce6db05f09db3d81e7f4df6303f21d7
refs/heads/master
2023-06-25T07:06:13.307176
2021-07-19T02:09:09
2021-07-19T02:09:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,837
py
# 编译脚本 import argparse import os import shutil import subprocess from _init_venv_and_requirements import init_venv_and_requirements from log import logger, color from util import human_readable_size, show_head_line def build(disable_douban=False): # 初始化相关路径变量 venv_path = ".venv" pyinstaller_path = os.path.join(venv_path, "Scripts", "pyinstaller") # 初始化venv和依赖 init_venv_and_requirements(".venv", disable_douban) show_head_line(f"将使用.venv环境进行编译", color("bold_yellow")) build_configs = [ ("main.py", "DNF蚊子腿小助手.exe", "utils/icons/DNF蚊子腿小助手.ico", ".", ["PyQt5"], []), ("auto_updater.py", "auto_updater.exe", "", "utils", ["PyQt5"], []), ("ark_lottery_special_version.py", "DNF蚊子腿小助手_集卡特别版.exe", "utils/icons/ark_lottery_special_version.ico", ".", ["PyQt5"], []), ("config_ui.py", "DNF蚊子腿小助手配置工具.exe", "utils/icons/config_ui.ico", ".", [], ["--noconsole"]), ] for idx, config in enumerate(build_configs): prefix = f"{idx + 1}/{len(build_configs)}" src_path, exe_name, icon_path, target_dir, exclude_modules, extra_args = config logger.info(color("bold_yellow") + f"{prefix} 开始编译 {exe_name}") cmd_build = [ pyinstaller_path, '--name', exe_name, '-F', src_path, ] if icon_path != "": cmd_build.extend(['--icon', icon_path]) for module in exclude_modules: cmd_build.extend(['--exclude-module', module]) cmd_build.extend(extra_args) logger.info(f"{prefix} 开始编译 {exe_name},命令为:{' '.join(cmd_build)}") subprocess.call(cmd_build) logger.info(f"编译结束,进行善后操作") # 复制二进制 logger.info(f"复制{exe_name}到目标目录{target_dir}") if not os.path.isdir(target_dir): os.mkdir(target_dir) target_path = os.path.join(target_dir, exe_name) shutil.copyfile(os.path.join("dist", exe_name), target_path) # 删除临时文件 logger.info("删除临时文件") for directory in ["build", "dist", "__pycache__"]: shutil.rmtree(directory, ignore_errors=True) os.remove(f"{exe_name}.spec") filesize = os.path.getsize(target_path) logger.info(color("bold_green") + f"{prefix} 编译{exe_name}结束,最终大小为{human_readable_size(filesize)}") logger.info("done") def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--disable_douban", action='store_true') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() build(args.disable_douban)
[ "fzls.zju@gmail.com" ]
fzls.zju@gmail.com
42e95b4be95d83bcba4b00923df10849d38dd895
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03393/s345995802.py
343e2097a0d4f2b25bd715fd2830e3222965ec14
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
419
py
S = input() se = set() for s in S: se.add(s) if len(S) < 26: for i in range(26): s = chr(ord('a')+i) if not s in se: print(S+s) exit() else: while len(S) > 1: se.remove(S[-1]) S = S[:-1] for i in range(ord(S[-1]), ord('z')+1): s = chr(i) if not s in se: print(S[:-1]+s) exit() print(-1)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
2cc201cf266ff314089da1d203b0b3d0cc31fdfd
1b862f34c125ce200244dd79e4fda4b5b605ce2e
/.history/images_20210218000603.py
0a459524a8dabc3b90e7a0501798a67b7e4b69cb
[]
no_license
edwino26/CoreImages
26085a49cf1cb79442ae563a88354b2fdceace87
6bf6e68cac8ab36c87b1e6ea702bfe6882b0f40e
refs/heads/master
2023-06-22T12:53:37.344895
2021-07-21T04:31:44
2021-07-21T04:31:44
309,553,247
0
4
null
2021-04-29T23:23:15
2020-11-03T02:45:07
Lasso
UTF-8
Python
false
false
2,563
py
import os clear = lambda : os.system('cls') # # %% import glob import cv2 import os.path import numpy as np import matplotlib.pyplot as plt # %% cores_per_image = 6 uvFiles = glob.glob('./Photos/*.jpg') print(uvFiles) # Picture path img = cv2.imread(uvFiles[0].replace('./Photos/','')) print(img) a = [] b = [] # %% def oneventlbuttondown(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: xy = "%d,%d" % (x, y) a.append(x) b.append(y) cv2.circle(img, (x, y), 10, (0, 0, 255), thickness=-1) # cv2.putText(img, xy, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness=1) cv2.imshow("image", img) core_length = 3 vc = [] do = int(uvFiles[0][2:6]) dn = int(uvFiles[0][7:11]) for i in range(cores_per_image): if i == 0: cv2.namedWindow("image", cv2.WINDOW_NORMAL) # cv2.resizeWindow("output", 400, 300) cv2.setMouseCallback("image", oneventlbuttondown) cv2.imshow("image", img) print( 'Click 1) left upper corner 2) right lower corner in leftmost core and 3) leftupper corner in second core') cv2.waitKey(0) y = b[0]; x = a[0]; dy = b[1] - b[0]; dx = a[1] - a[0] gap = a[2] - a[1] if i == 3: midgap = gap * 4 else: midgap = 0 if i > 0: x = x + (dx + gap) + midgap crop_img = img[y:y + dy, x:x + dx] if i == 0: vc = crop_img else: vc = cv2.vconcat([vc, crop_img]) crop_name = str(int(uvFiles[0][2:6]) + (core_length * i)) + ".jpg" path = os.path.join(os.path.relpath('Cropped', start=os.curdir), crop_name) cv2.imwrite(path, crop_img) concat_name = uvFiles[0][2:6] + "-" + uvFiles[0][7:11] + ".jpg" path = os.path.join(os.path.relpath('Cropped', start=os.curdir), concat_name) cv2.imwrite(path, vc) p = vc.shape vc_gray = cv2.cvtColor(vc, cv2.COLOR_BGR2GRAY) print(vc.shape) # Dimensions of Image print(vc_gray.shape) # It is already a numpy array print(type(vc_gray)) # print(p[:10, :10, 1 ]) img_log = np.average(vc_gray[:, 80:120], axis=1) depths = np.arange(do, dn, (dn - do) / len(img_log)) plt.figure() # plt.subplot(1, 2, 1) plt.subplot2grid((1, 10), (0, 0), colspan=3) plt.plot(img_log, depths, 'green'); plt.axis([0, 120, do, dn]); plt.gca().invert_yaxis(); plt.gca().invert_xaxis() # plt.subplot(1, 2 ,2) plt.subplot2grid((1, 10), (0, 3), colspan=7) plt.imshow(vc_gray[:, 40:120], aspect='auto', origin='upper'); plt.colorbar() p_50 = np.percentile(img_log, 50) plt.show() # %%
[ "ortega.edwin.y@gmail.com" ]
ortega.edwin.y@gmail.com
7aaf30d580238668767fc362313bb0f9006f72eb
a838d4bed14d5df5314000b41f8318c4ebe0974e
/sdk/azurestackhci/azure-mgmt-azurestackhci/azure/mgmt/azurestackhci/_configuration.py
b419fc134f8d50033f2cbf5f5c9a6e3c66cd4704
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
scbedd/azure-sdk-for-python
ee7cbd6a8725ddd4a6edfde5f40a2a589808daea
cc8bdfceb23e5ae9f78323edc2a4e66e348bb17a
refs/heads/master
2023-09-01T08:38:56.188954
2021-06-17T22:52:28
2021-06-17T22:52:28
159,568,218
2
0
MIT
2019-08-11T21:16:01
2018-11-28T21:34:49
Python
UTF-8
Python
false
false
3,264
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMHttpLoggingPolicy from ._version import VERSION if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any from azure.core.credentials import TokenCredential class AzureStackHCIClientConfiguration(Configuration): """Configuration for AzureStackHCIClient. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The ID of the target subscription. :type subscription_id: str """ def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str **kwargs # type: Any ): # type: (...) -> None if credential is None: raise ValueError("Parameter 'credential' must not be None.") if subscription_id is None: raise ValueError("Parameter 'subscription_id' must not be None.") super(AzureStackHCIClientConfiguration, self).__init__(**kwargs) self.credential = credential self.subscription_id = subscription_id self.api_version = "2020-10-01" self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default']) kwargs.setdefault('sdk_moniker', 'mgmt-azurestackhci/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy') if self.credential and not self.authentication_policy: self.authentication_policy = policies.BearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
[ "noreply@github.com" ]
scbedd.noreply@github.com
e0a1f5a316d34042d099a185a757946ab5667625
3f99756553008745dcac63da942c8afe189a0bbb
/src/common/debug.py
2c2a20b77c88f20d2287098df133eea0833a9ebc
[]
no_license
hekaistorm/DQN_wechat_jump_AI
b34e1d15486e4f6884221e68cb110f4b5f8fcaa6
2dc71f22e234bc17dd280d309103e84596754588
refs/heads/master
2020-09-06T09:05:59.478004
2018-02-04T05:28:06
2018-02-04T05:28:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,185
py
# -*- coding: utf-8 -*- """ 这儿是debug的代码,当DEBUG_SWITCH开关开启的时候,会将各种信息存在本地,方便检查故障 """ import os import sys import shutil from PIL import ImageDraw # 用来保存每一次的图片 screenshot_backup_dir = '../data/backups/' def make_debug_dir(screenshot_backup_dir): """ 创建备份文件夹 """ if not os.path.isdir(screenshot_backup_dir): os.mkdir(screenshot_backup_dir) def backup_screenshot(ts): """ 为了方便失败的时候 debug """ make_debug_dir(screenshot_backup_dir) shutil.copy('autojump.png', '{}{}.png'.format(screenshot_backup_dir, ts)) def save_debug_screenshot(ts, im, piece_x, piece_y, board_x, board_y): """ 对 debug 图片加上详细的注释 """ make_debug_dir(screenshot_backup_dir) draw = ImageDraw.Draw(im) draw.line((piece_x, piece_y) + (board_x, board_y), fill=2, width=3) draw.line((piece_x, 0, piece_x, im.size[1]), fill=(255, 0, 0)) draw.line((0, piece_y, im.size[0], piece_y), fill=(255, 0, 0)) draw.line((board_x, 0, board_x, im.size[1]), fill=(0, 0, 255)) draw.line((0, board_y, im.size[0], board_y), fill=(0, 0, 255)) draw.ellipse((piece_x - 10, piece_y - 10, piece_x + 10, piece_y + 10), fill=(255, 0, 0)) draw.ellipse((board_x - 10, board_y - 10, board_x + 10, board_y + 10), fill=(0, 0, 255)) del draw im.save('{}{}{}_d.png'.format(screenshot_backup_dir, ts, str(piece_x) + '_' + str(piece_y))) def dump_device_info(): """ 显示设备信息 """ size_str = os.popen('adb shell wm size').read() device_str = os.popen('adb shell getprop ro.product.device').read() phone_os_str = os.popen('adb shell getprop ro.build.version.release').read() density_str = os.popen('adb shell wm density').read() print("""********** Screen: {size} Density: {dpi} Device: {device} Phone OS: {phone_os} Host OS: {host_os} Python: {python} **********""".format( size=size_str.strip(), dpi=density_str.strip(), device=device_str.strip(), phone_os=phone_os_str.strip(), host_os=sys.platform, python=sys.version ))
[ "50673223@qq.com" ]
50673223@qq.com
ee4e5ba67072d17cb87c3d167e85dfec37495d32
bac37a96ead59a3c4caaac63745d5748f5060195
/第9章 异常/异常4.py
7086b6c235bbdfbd54433b2b3796687261036263
[]
no_license
pod1019/python_learning
1e7d3a9c10fc8c1b4e8ff31554d495df518fb385
a15213d33a253c3a77ab0d5de9a4f937c27693ca
refs/heads/master
2020-09-14T11:11:53.100591
2020-04-11T04:00:27
2020-04-11T04:00:27
223,112,718
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
# 多个except结构 try: a = input("请输入被除数:") b = input("请输入除数:") c = float(a)/float(b) print("两数相除的结果是:",c) except ZeroDivisionError: print("异常:除数不能为0") except TypeError: print("异常:除数和被除数都应该为数值类型") except NameError: print("异常:变量不存在") except BaseException as e: print(e) print(type(e)) finally: # 无论如果,此语句必然执行 print("kkkkkkkkk")
[ "pod1019@163.com" ]
pod1019@163.com
8336f14eb60ba8b70f687a50cfcfb4356b0cb70a
9360aeefb3605a3fe0c5e512e52ec3bc0942903f
/app.py
7527e6647e891d5f6706d20edee3162f0ce7496d
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
eliaswalyba/facebound
1ff7dc32cc4bf50d14f2e6434af2adfb14300245
92500e61b1bc50702ea339563ee8b38b55a31169
refs/heads/master
2022-07-01T17:42:02.360416
2020-05-08T15:23:03
2020-05-08T15:23:03
262,851,606
0
0
MIT
2020-05-10T18:37:03
2020-05-10T18:37:02
null
UTF-8
Python
false
false
3,484
py
import cv2, os import numpy as np import streamlit as st import matplotlib.pyplot as plt from PIL import Image, ImageEnhance @st.cache def load_image(img): im = Image.open(img) return im FACE_CASCADE_PATH = '/algos/haarcascade_frontalface_default.xml' face_cascade = cv2.CascadeClassifier(FACE_CASCADE_PATH ) # eye_cascade = cv2.CascadeClassifier('algos/haarcascade_eye.xml') # smile_cascade = cv2.CascadeClassifier('algos/haarcascade_smile.xml') def detect_faces(uploaded_image): new_img = np.array(uploaded_image.convert('RGB')) temp_img = cv2.cvtColor(new_img, 1) gray = cv2.cvtColor(temp_img, cv2.COLOR_BGR2GRAY) # Detect Face faces = face_cascade.detectMultiScale(gray, 1.1, 4) # Draw Rectangle for (x,y,w,h) in faces: cv2.rectangle(temp_img, (x,y), (x+w, y+h), (255,0,0), 2) return temp_img, faces def main(): ''' Face Detection App ''' st.title('Facebound') st.text('by Fodé Diop') options = ['Detection', 'About'] choice = st.sidebar.selectbox('Select Option', options) if choice == 'Detection': st.subheader('Face Detection') image_file = st.file_uploader('Upload Image', type=['jpg', 'png', 'jpeg']) if image_file is not None: uploaded = Image.open(image_file) # st.write(type(uploaded)) st.text('Original Image') st.image(uploaded) enhance_type = st.sidebar.radio('Enhance Type', ['Original', 'Grayscale', 'Contrast', 'Brightness', 'Blur']) if enhance_type == 'Grayscale': new_img = np.array(uploaded.convert('RGB')) temp_img = cv2.cvtColor(new_img, 1) gray = cv2.cvtColor(temp_img, cv2.COLOR_BGR2GRAY) st.image(gray) # Print on screen st.write(gray) st.write(new_img) if enhance_type == 'Contrast': contrast_rate = st.sidebar.slider('Contrtast', 0.5, 3.5) enhancer = ImageEnhance.Contrast(uploaded) img_output = enhancer.enhance(contrast_rate) st.image(img_output) if enhance_type == 'Brightness': contrast_rate = st.sidebar.slider('Brigthness', 0.5, 3.5) enhancer = ImageEnhance.Brightness(uploaded) img_output = enhancer.enhance(contrast_rate) st.image(img_output) if enhance_type == 'Blur': blur_rate = st.sidebar.slider('Blur', 0.5, 3.5) new_img = np.array(uploaded.convert('RGB')) temp_img = cv2.cvtColor(new_img, 1) blurred = cv2.GaussianBlur(temp_img, (11,11), blur_rate) st.image(blurred) # else: # st.image(uploaded) # Face Detection target = ['Face', 'Smiles', 'Eyes'] feature_choice = st.sidebar.selectbox('Find Features', target) if st.button('Detect Faces'): if feature_choice == 'Faces': st.write('Print something goda damn it!!!!') result_img, result_faces = detect_faces(uploaded) st.image(result_img) st.success(f'Found {len(result_faces)} faces.') elif choice == 'About': st.subheader('About Facebound') st.markdown("Built with Streamlit and OpenCV by [Fodé Diop](https://www.github.com/diop)") st.text("© Copyright 2020 Fodé Diop - MIT") st.success("Dakar Institute of Technology") if __name__ == '__main__': main()
[ "fodesdiop@gmail.com" ]
fodesdiop@gmail.com
fd07de3d5d3a2288f381e55246f4331593b092d8
f4b8c90c1349c8740c1805f7b6b0e15eb5db7f41
/test/test_room_space_inventory_status_item.py
832bf42dbe4715ab3e1fb79003804c3340495d2d
[]
no_license
CalPolyResDev/StarRezAPI
012fb8351159f96a81352d6c7bfa36cd2d7df13c
b184e1863c37ff4fcf7a05509ad8ea8ba825b367
refs/heads/master
2021-01-25T10:29:37.966602
2018-03-15T01:01:35
2018-03-15T01:01:35
123,355,501
2
1
null
null
null
null
UTF-8
Python
false
false
1,152
py
# coding: utf-8 """ StarRez API This is a way to connect with the StarRez API. We are not the developers of the StarRez API, we are just an organization that uses it and wanted a better way to connect to it. # noqa: E501 OpenAPI spec version: 1.0.0 Contact: resdev@calpoly.edu Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import starrez_client from starrez_client.models.room_space_inventory_status_item import RoomSpaceInventoryStatusItem # noqa: E501 from starrez_client.rest import ApiException class TestRoomSpaceInventoryStatusItem(unittest.TestCase): """RoomSpaceInventoryStatusItem unit test stubs""" def setUp(self): pass def tearDown(self): pass def testRoomSpaceInventoryStatusItem(self): """Test RoomSpaceInventoryStatusItem""" # FIXME: construct object with mandatory attributes with example values # model = starrez_client.models.room_space_inventory_status_item.RoomSpaceInventoryStatusItem() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "fedorareis@gmail.com" ]
fedorareis@gmail.com
12bc7081611f0cf4e76ac1ca7877c8802cf8993e
61673ab9a42f7151de7337608c442fa6247f13bb
/pyqtgraph/TextItem/main.py
cee6f112509d051cd992e54fb2b7de2352ab1089
[ "MIT" ]
permissive
furas/python-examples
22d101670ecd667a29376d7c7d7d86f8ec71f6cf
95cb53b664f312e0830f010c0c96be94d4a4db90
refs/heads/master
2022-08-23T23:55:08.313936
2022-08-01T14:48:33
2022-08-01T14:48:33
45,575,296
176
91
MIT
2021-02-17T23:33:37
2015-11-04T23:54:32
Python
UTF-8
Python
false
false
268
py
from PyQt5 import QtGui import pyqtgraph as pg app = QtGui.QApplication([]) x = [1,2,3,4,5] y = [0,3,1,2,0] plotWidget = pg.plot() plotWidget.plot(x, y) text = pg.TextItem("Hello World", color='f00') plotWidget.addItem(text) text.setPos(3, 2) app.exec_()
[ "furas@tlen.pl" ]
furas@tlen.pl
86c01d24c8a65bb62895d8f7fd5b4121e6227f36
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_032/ch15_2020_03_09_16_43_39_394880.py
d97f1bf48a978c5d3d9d2f3b83f3fff684be1147
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
132
py
NOME=input('Digite o seu nome:') if NOME == 'Chris': print('Todo mundo odeia o Chris') else: print('Olá, {0}'.format(NOME))
[ "you@example.com" ]
you@example.com
f05afaefedd21c8a8362d23218c7eb4c9d7ffa0f
1ffc17893d9e15fd939628bbc41c3d2633713ebd
/docs/tests/test_documentation_tutorial.py
d607bf9a8a7c3372aaf0f4fa1cdc37a04f40be05
[ "Apache-2.0" ]
permissive
xadupre/sklearn-onnx
646e8a158cdded725064964494f0f8a760630aa8
b05e4864cedbf4f2a9e6c003781d1db8b53264ac
refs/heads/master
2023-09-01T15:58:38.112315
2022-12-21T01:59:45
2022-12-21T01:59:45
382,323,831
0
2
Apache-2.0
2023-01-04T13:41:33
2021-07-02T11:22:00
Python
UTF-8
Python
false
false
3,935
py
# SPDX-License-Identifier: Apache-2.0 """ Tests examples from the documentation. """ import unittest import os import sys import importlib import subprocess def import_source(module_file_path, module_name): if not os.path.exists(module_file_path): raise FileNotFoundError(module_file_path) module_spec = importlib.util.spec_from_file_location( module_name, module_file_path) if module_spec is None: raise FileNotFoundError( "Unable to find '{}' in '{}'.".format( module_name, module_file_path)) module = importlib.util.module_from_spec(module_spec) return module_spec.loader.exec_module(module) class TestDocumentationTutorial(unittest.TestCase): def test_documentation_tutorial(self): this = os.path.abspath(os.path.dirname(__file__)) fold = os.path.normpath(os.path.join(this, '..', 'tutorial')) found = os.listdir(fold) tested = 0 for name in found: if name.startswith("plot_") and name.endswith(".py"): print("run %r" % name) try: mod = import_source(fold, os.path.splitext(name)[0]) assert mod is not None except FileNotFoundError: # try another way cmds = [sys.executable, "-u", os.path.join(fold, name)] p = subprocess.Popen( cmds, stdout=subprocess.PIPE, stderr=subprocess.PIPE) res = p.communicate() out, err = res st = err.decode('ascii', errors='ignore') if len(st) > 0 and 'Traceback' in st: if "No such file or directory: 'dot'" in st: # dot not installed, this part # is tested in onnx framework pass elif '"dot" not found in path.' in st: # dot not installed, this part # is tested in onnx framework pass elif ("cannot import name 'LightGbmModelContainer' " "from 'onnxmltools.convert.common." "_container'") in st: # onnxmltools not recent enough pass elif ('Please fix either the inputs or ' 'the model.') in st: # onnxruntime datasets changed in master branch, # still the same in released version on pypi pass elif ('Current official support for domain ai.onnx ' 'is till opset 12.') in st: # one example is using opset 13 but onnxruntime # only support up to opset 12. pass elif "'str' object has no attribute 'decode'" in st: # unstable bug in scikit-learn<0.24 pass elif ("This method should be overwritten for " "operator") in st: # raised by old version of packages # used in the documentation pass else: raise RuntimeError( "Example '{}' (cmd: {} - exec_prefix='{}') " "failed due to\n{}" "".format(name, cmds, sys.exec_prefix, st)) tested += 1 if tested == 0: raise RuntimeError("No example was tested.") if __name__ == "__main__": unittest.main()
[ "noreply@github.com" ]
xadupre.noreply@github.com
25eb28da4c15af658689383ec67271d21e30711e
2e145222a18d4509d937951f5cec4df0e26ee86f
/vas/sqlfire/AgentInstances.py
c7014e3358ef52496bfff95762d437cb06c53a4c
[ "Apache-2.0" ]
permissive
vdreamakitex/vas-python-api
7627b7e3fcf76c16b1ea8b9fb670fdb708eff083
ce7148a2044863e078e78b47abbaafc426f732ee
refs/heads/master
2021-01-18T05:13:25.459916
2012-11-05T09:58:45
2012-11-05T09:58:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,711
py
# vFabric Administration Server API # Copyright (c) 2012 VMware, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from vas.shared.Instance import Instance from vas.shared.MutableCollection import MutableCollection class AgentInstances(MutableCollection): """Used to enumerate, create, and delete agent instances :ivar `vas.shared.Security.Security` security: The resource's security """ def __init__(self, client, location): super(AgentInstances, self).__init__(client, location, 'agent-group-instances', AgentInstance) def create(self, installation, name, jvm_options=None): """Creates a new agent instance :param `vas.sqlfire.Installations.Installation` installation: The installation ot be used by the instance :param str name: The name of the instances :param list jvm_options: The JVM options that are based to the agent's JVM when it is started :rtype: :class:`vas.sqlfire.AgentInstances.AgentInstance` :return: The new agent instance """ payload = {'installation': installation._location, 'name': name} if jvm_options is not None: payload['jvm-options'] = jvm_options return self._create(payload, 'agent-group-instance') class AgentInstance(Instance): """An agent instance :ivar `vas.sqlfire.Groups.Group` group: The group that contains this instance :ivar `vas.sqlfire.Installations.Installation` installation: The installation that this instance is using :ivar list jvm_options: The JVM options that are passed to the agent's JVM when it is started :ivar `vas.sqlfire.AgentLiveConfigurations.AgentLiveConfigurations` live_configurations: The instance's live configurations :ivar str name: The instance's name :ivar list node_instances: The instance's individual node instances :ivar `vas.sqlfire.AgentPendingConfigurations.AgentPendingConfigurations` pending_configurations: The instance's pending configurations :ivar `vas.shared.Security.Security` security: The resource's security :ivar str state: Retrieves the state of the resource from the server. Will be one of: * ``STARTING`` * ``STARTED`` * ``STOPPING`` * ``STOPPED`` """ @property def jvm_options(self): return self.__jvm_options def __init__(self, client, location): super(AgentInstance, self).__init__(client, location, Group, Installation, AgentLiveConfigurations, AgentPendingConfigurations, AgentNodeInstance, 'agent-node-instance') def reload(self): """Reloads the agent instance's details from the server""" super(AgentInstance, self).reload() self.__jvm_options = self._details['jvm-options'] def update(self, installation=None, jvm_options=None): """Updates the instance :param `vas.sqlfire.Installations.Installation` installation: The installation to be used by the instance. If omitted or `None`, the configuration will not be changed :param list jvm_options: The JVM options that are passed to the agent's JVM when it is started. If omitted or `None`, the configuration will not be changed """ payload = {} if installation: payload['installation'] = installation._location if jvm_options is not None: payload['jvm-options'] = jvm_options self._client.post(self._location, payload) self.reload() def __str__(self): return "<{} name={} jvm_options={}>".format(self.__class__, self.name, self.__jvm_options) from vas.sqlfire.AgentLiveConfigurations import AgentLiveConfigurations from vas.sqlfire.AgentNodeInstances import AgentNodeInstance from vas.sqlfire.AgentPendingConfigurations import AgentPendingConfigurations from vas.sqlfire.Groups import Group from vas.sqlfire.Installations import Installation
[ "bhale@vmware.com" ]
bhale@vmware.com
205101325b29051add4fec00ed7a7ca59766cd56
f1e7c31d22ee90e5e3705352170388c09b7470d4
/day2/decorator4.py
69c18443a573abae91c47ec9c78ea8ce44331c52
[]
no_license
taizilinger123/apple
d0b58eb184d4a7c5aec674e914fa67139d2419ca
285c10eedfa0863ad6d51efb9dea5c7d0ae540a6
refs/heads/master
2020-03-28T07:54:50.118668
2018-09-09T05:37:12
2018-09-09T05:37:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
499
py
import time def timer(func): #timer(test1) func=test1 def deco(*args,**kwargs): start_time=time.time() func(*args,**kwargs) #run test1() stop_time=time.time() print("the func run time is %s" %(stop_time-start_time)) return deco @timer #test1=timer(test1) def test1(): time.sleep(1) print('in the test1') @timer # test2 = timer(test2) #deco test2(name) = deco(name) def test2(name,age): print("test2:",name,age) test1() test2("alex",22)
[ "837337164@qq.com" ]
837337164@qq.com
9a7fc8e23d82ffb80c491b1e51e26e71ab025f91
ce18cf6bdb1a85a65a509597b4c0ec046b855186
/2020年12月/换酒问题.py
2aae2a3d340b6efc017fbb7a2722d70f2ee89088
[]
no_license
elssm/leetcode
e12e39faff1da5afb234be08e7d9db85fbee58f8
a38103d2d93b34bc8bcf09f87c7ea698f99c4e36
refs/heads/master
2021-06-11T06:44:44.993905
2021-04-28T06:14:23
2021-04-28T06:14:23
171,072,054
3
0
null
null
null
null
UTF-8
Python
false
false
376
py
class Solution(object): def numWaterBottles(self, numBottles, numExchange): """ :type numBottles: int :type numExchange: int :rtype: int """ res=numBottles while numBottles//numExchange: res+=numBottles//numExchange numBottles=numBottles//numExchange+numBottles%numExchange return res
[ "noreply@github.com" ]
elssm.noreply@github.com
19051aed542c9f4efa751cfbf4908783c1d3215e
dd0d2a4da64200a7bea42d23122384189b900850
/common_digit.py
64c95fda4c01ff6bdc0db9231dae66fbd66e46a4
[]
no_license
gakkistyle/comp9021
06ad00b47b7b0135013b014464b5f13530cad49d
4d0d4a2d719745528bf84ed0dfb88a43f858be7e
refs/heads/master
2022-09-24T13:10:29.609277
2020-06-06T16:54:42
2020-06-06T16:54:42
270,043,710
14
7
null
null
null
null
UTF-8
Python
false
false
770
py
def average_of_digits(digit=None): if digit == None: return -1 if len(digit) == 1: digit_set = set(str(digit[0])) sum = 0 for e in digit_set: sum += int(e) return sum/len(digit_set) common = [] word_set1 = set(str(digit[0])) word_set2 = set(str(digit[1])) for e in word_set1: if e in word_set2: common.append(e) for i in range(2,len(digit)): word_setn = set(str(digit[i])) for e in common: if e not in word_setn: common.remove(e) if common == []: return -1 sum = 0 for e in common: sum += int(e) return sum/len(common) print(average_of_digits([3136823,665537857,8363265,35652385]))
[ "1824150996@qq.com" ]
1824150996@qq.com
b5ce86e5c7206e0947b0bcb912983f891ecd0ce1
6df76f8a6fcdf444c3863e3788a2f4b2c539c22c
/django code/p109/p109/asgi.py
dbabed799f89d9fe7ba5076c4cdafffb94c9e6d1
[]
no_license
basantbhandari/DjangoProjectsAsDocs
068e4a704fade4a97e6c40353edb0a4299bd9678
594dbb560391eaf94bb6db6dc07702d127010b88
refs/heads/master
2022-12-18T22:33:23.902228
2020-09-22T13:11:01
2020-09-22T13:11:01
297,651,728
1
0
null
null
null
null
UTF-8
Python
false
false
385
py
""" ASGI config for p109 project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'p109.settings') application = get_asgi_application()
[ "36443209+basantbhandari@users.noreply.github.com" ]
36443209+basantbhandari@users.noreply.github.com
c357997cbb60325855930257b942fbd28f13b1d8
6130f811f3acfcb9f60939d8752bb035cadaf928
/examples/adspygoogle/dfp/v201311/order_service/update_orders.py
24750560181ff34e7c6f4beb06d0f96e0cb10b50
[ "Apache-2.0" ]
permissive
gsembi/googleads-python-legacy-lib
f2e3197413c23c1192b11e54bf78c087f04a2baa
9de235ffb65d014dd6ba22be50659c910eca5ae2
refs/heads/master
2021-01-23T23:38:28.076465
2014-10-14T20:38:20
2014-10-14T20:38:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,707
py
#!/usr/bin/python # # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example updates the notes of a single order specified by ID. To determine which orders exist, run get_all_orders.py.""" __author__ = 'Nicholas Chen' # Locate the client library. If module was installed via "setup.py" script, then # the following two lines are not needed. import os import sys sys.path.insert(0, os.path.join('..', '..', '..', '..', '..')) # Import appropriate classes from the client library. from adspygoogle import DfpClient from adspygoogle.common import Utils from adspygoogle.dfp import DfpUtils ORDER_ID = 'INSERT_ORDER_ID_HERE' def main(client, order_id): # Initialize appropriate service. order_service = client.GetService('OrderService', version='v201311') # Create statement object to select a single order by an ID. values = [{ 'key': 'orderId', 'value': { 'xsi_type': 'NumberValue', 'value': order_id } }] query = 'WHERE id = :orderId' statement = DfpUtils.FilterStatement(query, values) # Get orders by statement. response = order_service.GetOrdersByStatement(statement.ToStatement())[0] orders = response.get('results') if orders: # Update each local order object by changing its notes. updated_orders = [] for order in orders: # Archived orders cannot be updated. if not Utils.BoolTypeConvert(order['isArchived']): order['notes'] = 'Spoke to advertiser. All is well.' updated_orders.append(order) # Update orders remotely. orders = order_service.UpdateOrders(updated_orders) # Display results. if orders: for order in orders: print ('Order with id \'%s\', name \'%s\', advertiser id \'%s\', and ' 'notes \'%s\' was updated.' % (order['id'], order['name'], order['advertiserId'], order['notes'])) else: print 'No orders were updated.' else: print 'No orders found to update.' if __name__ == '__main__': # Initialize client object. dfp_client = DfpClient(path=os.path.join('..', '..', '..', '..', '..')) main(dfp_client, ORDER_ID)
[ "emeralddragon88@gmail.com" ]
emeralddragon88@gmail.com
ac8f9f2c4057ab0711a7c50124f020d7bd010361
5479cdac56abc115d3b52fbd31814dfd27262da7
/TaobaoSdk/Request/MarketingPromotionsGetRequest.py
5cd18fc86d83e7ffabe7feb005d71b73b4f75e98
[]
no_license
xuyaoqiang-maimiao/TaobaoOpenPythonSDK
d9d2be6a7aa27c02bea699ed5667a9a30bf483ab
c82cde732e443ecb03cfeac07843e884e5b2167c
refs/heads/master
2021-01-18T07:49:57.984245
2012-08-21T07:31:10
2012-08-21T07:31:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,100
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim: set ts=4 sts=4 sw=4 et: ## @brief 根据商品ID查询卖家使用该第三方工具对商品设置的所有优惠策略 # @author wuliang@maimiaotech.com # @date 2012-08-09 12:36:54 # @version: 0.0.0 import os import sys import time def __getCurrentPath(): return os.path.normpath(os.path.join(os.path.realpath(__file__), os.path.pardir)) __modulePath = os.path.join(__getCurrentPath(), os.path.pardir) __modulePath = os.path.normpath(__modulePath) if __modulePath not in sys.path: sys.path.insert(0, __modulePath) ## @brief <SPAN style="font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">根据商品ID查询卖家使用该第三方工具对商品设置的所有优惠策略</SPAN> # <UL> # </UL> class MarketingPromotionsGetRequest(object): def __init__(self): super(self.__class__, self).__init__() ## @brief <SPAN style="font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">获取API名称</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">str</SPAN> # </LI> # </UL> self.method = "taobao.marketing.promotions.get" ## @brief <SPAN style="font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">时间戳,如果不设置,发送请求时将使用当时的时间</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">int</SPAN> # </LI> # </UL> self.timestamp = int(time.time()) ## @brief <SPAN style="font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">需返回的优惠策略结构字段列表。可选值为Promotion中所有字段,如:promotion_id, promotion_title, item_id, status, tag_id等等</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Field List</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Required</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">required</SPAN> # </LI> # </UL> self.fields = None ## @brief <SPAN style="font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">商品数字ID。根据该ID查询商品下通过第三方工具设置的所有优惠策略</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">String</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Required</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">required</SPAN> # </LI> # </UL> self.num_iid = None ## @brief <SPAN style="font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">优惠策略状态。可选值:ACTIVE(有效),UNACTIVE(无效),若不传或者传入其他值,则默认查询全部</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">String</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Required</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">optional</SPAN> # </LI> # </UL> self.status = None ## @brief <SPAN style="font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">标签ID</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Number</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Required</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">optional</SPAN> # </LI> # </UL> self.tag_id = None
[ "liyangmin@maimiaotech.com" ]
liyangmin@maimiaotech.com
5f8dc7f6ee3faba3e195cb8bd5c54cebab04e678
6eb282bbe4d43273b9e9cc8c0fa79400888cba9e
/tests/test_routes_image.py
e98c7912a9f48cdf2e6d390350ecba8cd232dc51
[ "MIT" ]
permissive
jdelgad/memegen
d4300c707c5fee59aa2f5c5e0e8e606d699255ef
0de8e5d6bfae75843bbe0d149c7796cb044e24a7
refs/heads/master
2020-12-25T08:51:20.523408
2016-06-10T13:50:46
2016-06-10T13:50:46
60,996,119
1
0
null
2016-06-13T00:30:19
2016-06-13T00:30:19
null
UTF-8
Python
false
false
7,191
py
# pylint: disable=unused-variable,misplaced-comparison-constant,expression-not-assigned import os import pytest from expecter import expect from .conftest import load TESTS = os.path.dirname(__file__) ROOT = os.path.dirname(TESTS) IMAGES = os.path.join(ROOT, "data", "images") LATEST = os.path.join(IMAGES, "latest.jpg") def describe_get(): def describe_visible(): def with_nominal_text(client): path = os.path.join(IMAGES, 'iw', 'hello', 'world.jpg') if os.path.exists(path): os.remove(path) response = client.get("/iw/hello/world.jpg") assert 200 == response.status_code assert 'image/jpeg' == response.mimetype assert os.path.isfile(path) def with_only_1_line(client): response = client.get("/iw/hello.jpg") assert 200 == response.status_code assert 'image/jpeg' == response.mimetype @pytest.mark.xfail(os.name == 'nt', reason="Windows has a path limit") def with_lots_of_text(client): top = "-".join(["hello"] * 20) bottom = "-".join(["world"] * 20) response = client.get("/iw/" + top + "/" + bottom + ".jpg") assert 200 == response.status_code assert 'image/jpeg' == response.mimetype def describe_hidden(): def when_jpg(client): response = client.get("/_aXcJaGVsbG8vd29ybGQJ.jpg") assert 200 == response.status_code assert 'image/jpeg' == response.mimetype def describe_custom_style(): def when_provided(client): response = client.get("/sad-biden/hello.jpg?alt=scowl") assert 200 == response.status_code assert 'image/jpeg' == response.mimetype def it_redirects_to_lose_alt_when_default_style(client): response = client.get("/sad-biden/hello.jpg?alt=default") assert 302 == response.status_code assert '<a href="/sad-biden/hello.jpg">' in \ load(response, as_json=False) def it_redirects_to_lose_alt_when_unknown_style(client): response = client.get("/sad-biden/hello.jpg?alt=__unknown__") assert 302 == response.status_code assert '<a href="/sad-biden/hello.jpg">' in \ load(response, as_json=False) def it_keeps_alt_after_template_redirect(client): response = client.get("/sad-joe/hello.jpg?alt=scowl") assert 302 == response.status_code assert '<a href="/sad-biden/hello.jpg?alt=scowl">' in \ load(response, as_json=False) def it_keeps_alt_after_text_redirect(client): response = client.get("/sad-biden.jpg?alt=scowl") assert 302 == response.status_code assert '-vote.jpg?alt=scowl">' in \ load(response, as_json=False) def when_url(client): url = "http://www.gstatic.com/webp/gallery/1.jpg" response = client.get("/sad-biden/hello.jpg?alt=" + url) expect(response.status_code) == 200 expect(response.mimetype) == 'image/jpeg' def it_returns_an_error_with_non_image_urls(client): url = "http://example.com" response = client.get("/sad-biden/hello.jpg?alt=" + url) expect(response.status_code) == 415 def it_redirects_to_lose_alt_when_unknown_url(client): url = "http://example.com/not/a/real/image.jpg" response = client.get("/sad-biden/hello.jpg?alt=" + url) expect(response.status_code) == 302 expect(load(response, as_json=False)).contains( '<a href="/sad-biden/hello.jpg">') def it_redirects_to_lose_alt_when_bad_url(client): url = "http:invalid" response = client.get("/sad-biden/hello.jpg?alt=" + url) expect(response.status_code) == 302 expect(load(response, as_json=False)).contains( '<a href="/sad-biden/hello.jpg">') def describe_custom_font(): def when_provided(client): response = client.get("/iw/hello.jpg?font=impact") expect(response.status_code) == 200 expect(response.mimetype) == 'image/jpeg' def it_redirects_on_unknown_fonts(client): response = client.get("/iw/hello.jpg?font=__unknown__") expect(response.status_code) == 302 expect(load(response, as_json=False)).contains( '<a href="/iw/hello.jpg">') def describe_latest(): def when_existing(client): open(LATEST, 'w').close() # force the file to exist response = client.get("/latest.jpg") assert 200 == response.status_code assert 'image/jpeg' == response.mimetype def when_missing(client): try: os.remove(LATEST) except FileNotFoundError: pass response = client.get("/latest.jpg") assert 200 == response.status_code assert 'image/png' == response.mimetype def describe_redirects(): def when_missing_dashes(client): response = client.get("/iw/HelloThere_World/How-areYOU.jpg") assert 302 == response.status_code assert '<a href="/iw/hello-there-world/how-are-you.jpg">' in \ load(response, as_json=False) def when_no_text(client): response = client.get("/live.jpg") assert 302 == response.status_code assert '<a href="/live/_/do-it-live!.jpg">' in \ load(response, as_json=False) def when_aliased_template(client): response = client.get("/insanity-wolf/hello/world.jpg") assert 302 == response.status_code assert '<a href="/iw/hello/world.jpg">' in \ load(response, as_json=False) def when_jpeg_extension_without_text(client): response = client.get("/iw.jpeg") assert 302 == response.status_code assert '<a href="/iw.jpg">' in \ load(response, as_json=False) def when_jpeg_extension_with_text(client): response = client.get("/iw/hello/world.jpeg") assert 302 == response.status_code assert '<a href="/iw/hello/world.jpg">' in \ load(response, as_json=False) def describe_errors(): def when_unknown_template(client): response = client.get("/make/sudo/give.me.jpg") assert 200 == response.status_code assert 'image/jpeg' == response.mimetype # unit tests ensure this is a placeholder image @pytest.mark.xfail(os.name == 'nt', reason="Windows has a path limit") def when_too_much_text_for_a_filename(client): top = "hello" bottom = "-".join(["world"] * 50) response = client.get("/iw/" + top + "/" + bottom + ".jpg") assert 414 == response.status_code assert { 'message': "Filename too long." } == load(response)
[ "jacebrowning@gmail.com" ]
jacebrowning@gmail.com
b5e23c5c655c526644f144779516ce18dd7a353e
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/97/usersdata/194/54823/submittedfiles/lecker.py
f56acb6233287f3cbe81bfd2b3aa0164580158d3
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
824
py
# -*- coding: utf-8 -*- from __future__ import division def lecker(lista): cont=0 for i in range(0,len(lista)-1,1): if i==0: if lista[i]>lista[i+1]: cont=cont+1 elif i==(len(lista)-1): if lista[i]>lista[i-1]: cont=cont+1 else: if lista[i]>lista[i+1] and lista[i]>lista[i-1]: cont=cont+1 if cont==1: return True else: return False a=[] b=[] n=int(input('quantidade de elementos:')) for i in range(1,n+1,1): valor=float(input('elementos da lista 1:')) a.append(valor) for i in range(1,n+1,1): valor=float(input('elementos da lista 2:')) b.append(valor) if lecker(a): print('S') else: print('N') if lecker(b): print('S') else: print('N')
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
8aac474ed41ab941cc830699ba847bd56a96843a
7698a74a06e10dd5e1f27e6bd9f9b2a5cda1c5fb
/zzz.masterscriptsTEB_GIST/for005md.py
5c2e1af3abcf60dbbdff817943ffd3a973318e9a
[]
no_license
kingbo2008/teb_scripts_programs
ef20b24fe8982046397d3659b68f0ad70e9b6b8b
5fd9d60c28ceb5c7827f1bd94b1b8fdecf74944e
refs/heads/master
2023-02-11T00:57:59.347144
2021-01-07T17:42:11
2021-01-07T17:42:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,330
py
import sys import copy import math import matplotlib import scipy import numpy import pylab def read_MD_outfile(filename,totE, kE, pE, time, temp, pres): fileh = open(filename,'r') result_flag = False count = 0 for line in fileh: line = line.strip('\n') splitline = line.split() if "4. RESULTS" in line: result_flag = True elif "A V E R A G E S O V E R" in line: result_flag = False if (result_flag): if "NSTEP" in line: if (len(splitline)<11): continue t_time = float(splitline[5])/1000.0 # convert from ps to ns t_temp = float(splitline[8]) t_pres = float(splitline[11]) time.append(t_time) temp.append(t_temp) pres.append(t_pres) if "Etot" in line: if (len(splitline)<8): continue t_totE = float(splitline[2]) t_kE = float(splitline[5]) t_pE = float(splitline[8]) totE.append(t_totE) kE.append(t_kE) pE.append(t_pE) fileh.close() return totE, kE, pE, time, temp, pres def main(): if len(sys.argv) != 3: print "error: this program takes 2 inputs:" print " (1) filename that contains a list of md output files. If it doesn't exist do sth like this: " print " ls 5609039/*.out > tmpout.txt" print " (2) filename for png plot" print " This should be done automatically as part of 005md.checkMDrun.csh" exit() filelist = sys.argv[1] filenamepng = sys.argv[2] # read in file with a list of mdout files. print "filelist containing MD.out files: " + filelist print "Plot will be saved as: " + filenamepng filenamelist = [] fileh = open(filelist,'r') for line in fileh: tfile = line.strip("\n") splitline = tfile.split(".") if (splitline[-1] != "out"): print "Error. %s is not a .out file" % tfile exit() filenamelist.append(tfile) fileh.close() totE = [] kE = [] pE = [] time = [] temp = [] pres = [] for filename in filenamelist: print "reading info from file: " + filename totE, kE, pE, time, temp, pres = read_MD_outfile(filename,totE, kE, pE, time, temp, pres) # Plot with 5 panels; tabs [x_left,y_left,x_up,y_up]. subpanel = [ [0.2,0.1,0.3,0.2], [0.6,0.1,0.3,0.2], [0.2,0.4,0.3,0.2], [0.6,0.4,0.3,0.2], [0.2,0.7,0.3,0.2], [0.6,0.7,0.3,0.2] ] descname = ["totE", "kE", "pE", "temp", "pres"] fig = pylab.figure(figsize=(8,8)) for i,desc in enumerate([totE, kE, pE, temp, pres]): #print len(desc), len(totE), len(time) axis = fig.add_axes(subpanel[i]) #lim_min = min(math.floor(Ymin),math.floor(Xmin)) # lim_max = max(math.ceil(Ymax), math.ceil(Xmax)) im = axis.plot(time,desc,'k-') #,[0,100],[0,100],'--') axis.set_xlabel("time (ns)") axis.set_ylabel(descname[i]) #axis.set_title('file='+xyfilename) #axis.set_ylim(lim_min, lim_max) #axis.set_xlim(lim_min, lim_max) #fig.savefig('md_analysis_fig.png',dpi=600) fig.savefig(filenamepng,dpi=600) main()
[ "tbalius@gimel.cluster.ucsf.bkslab.org" ]
tbalius@gimel.cluster.ucsf.bkslab.org
7bfaaf0db70cf0354f13f8bb62ab277d818e5da2
972dff80b81c78082e9022084ef75e954b204471
/gui/system/alertmods/volume_status.py
44a265cdb00c201d6b3499a3c0ac6c890b8daed5
[]
no_license
TomHoenderdos/freenas
34bbf9957ed5904f1296af5a57eedc95e04f1074
83ae0c1805ea7e57b70f436810eca3b9cc0c9825
refs/heads/master
2021-01-17T09:29:19.668079
2014-01-28T01:58:23
2014-01-28T01:58:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,124
py
import re import subprocess from django.utils.translation import ugettext_lazy as _ from freenasUI.storage.models import Volume from freenasUI.system.alert import alertPlugins, Alert, BaseAlert class VolumeStatusAlert(BaseAlert): def on_volume_status_not_healthy(self, vol, status, message): if message: return Alert( Alert.WARN, _('The volume %(volume)s status is %(status)s:' ' %(message)s') % { 'volume': vol, 'status': status, 'message': message, } ) else: return Alert( Alert.WARN, _('The volume %(volume)s status is %(status)s') % { 'volume': vol, 'status': status, } ) def volumes_status_enabled(self): return True def on_volume_status_degraded(self, vol, status, message): self.log(self.LOG_CRIT, _('The volume %s status is DEGRADED') % vol) def run(self): if not self.volumes_status_enabled(): return for vol in Volume.objects.filter(vol_fstype__in=['ZFS', 'UFS']): if not vol.is_decrypted(): continue status = vol.status message = "" if vol.vol_fstype == 'ZFS': p1 = subprocess.Popen( ["zpool", "status", "-x", vol.vol_name], stdout=subprocess.PIPE ) stdout = p1.communicate()[0] if stdout.find("pool '%s' is healthy" % vol.vol_name) != -1: status = 'HEALTHY' else: reg1 = re.search('^\s*state: (\w+)', stdout, re.M) if reg1: status = reg1.group(1) else: # The default case doesn't print out anything helpful, # but instead coredumps ;). status = 'UNKNOWN' reg1 = re.search(r'^\s*status: (.+)\n\s*action+:', stdout, re.S | re.M) reg2 = re.search(r'^\s*action: ([^:]+)\n\s*\w+:', stdout, re.S | re.M) if reg1: msg = reg1.group(1) msg = re.sub(r'\s+', ' ', msg) message += msg if reg2: msg = reg2.group(1) msg = re.sub(r'\s+', ' ', msg) message += msg if status == 'HEALTHY': return [Alert( Alert.OK, _('The volume %s status is HEALTHY') % (vol, ) )] elif status == 'DEGRADED': return [self.on_volume_status_degraded(vol, status, message)] else: return [ self.on_volume_status_not_healthy(vol, status, message) ] alertPlugins.register(VolumeStatusAlert)
[ "wg@FreeBSD.org" ]
wg@FreeBSD.org
a6fa412a4318bdd44745d738c2d2aa91cac8f9d2
277b9292d494db49836c93693257ecab87ebeb18
/ynlu/sdk/evaluation/tests/test_entity_overlapping_ratio.py
541945abbd95063fa16157907ee1d43443903ffe
[ "MIT" ]
permissive
hsiaoyi0504/yoctol-nlu-py
90c2df421994006a49a4db7fe6f104d247201fbd
4cec8d52ba3dd7827bddde152c95e814e533c0f2
refs/heads/master
2020-03-23T23:41:40.055683
2018-04-19T08:57:42
2018-04-19T08:57:42
142,249,617
0
0
MIT
2018-07-25T05:00:05
2018-07-25T05:00:05
null
UTF-8
Python
false
false
6,265
py
from unittest import TestCase from ..entity_overlapping_score import ( single__entity_overlapping_score, entity_overlapping_score, ) class OverlappingScoreTestCase(TestCase): def test_single__entity_overlapping_score_different_length(self): with self.assertRaises(ValueError): single__entity_overlapping_score( utterance="12", entity_prediction=[ {"value": "1", "entity": "a"}, {"value": "2", "entity": "b"}, ], y_true=["a", "b", "c"], ) def test_single__entity_overlapping_score(self): test_cases = [ ( { "entity_prediction": [ {"entity": "1", "value": "1"}, {"entity": "2", "value": "2"}, {"entity": "3", "value": "3"}, ], "utterance": "123", "y_true": ["4", "5", "6"], "wrong_penalty_rate": 2.0, }, -1.0, ), ( { "entity_prediction": [ {"entity": "1", "value": "1"}, {"entity": "2", "value": "2"}, {"entity": "3", "value": "3"}, ], "utterance": "123", "y_true": ["4", "DONT_CARE", "6"], "wrong_penalty_rate": 2.0, }, -0.666666666667, ), ( { "entity_prediction": [ {"entity": "1", "value": "1"}, {"entity": "2", "value": "2"}, {"entity": "3", "value": "3"}, ], "utterance": "123", "y_true": ["4", "2", "6"], "wrong_penalty_rate": 2.0, }, -0.33333333333333, ), ( { "entity_prediction": [ {"entity": "1", "value": "1"}, {"entity": "2", "value": "2"}, {"entity": "3", "value": "3"}, ], "utterance": "123", "y_true": ["DONT_CARE", "DONT_CARE", "DONT_CARE"], "wrong_penalty_rate": 2.0, }, 0.0, ), ( { "entity_prediction": [ {"entity": "1", "value": "1"}, {"entity": "DONT_CARE", "value": "2"}, {"entity": "DONT_CARE", "value": "3"}, ], "utterance": "123", "y_true": ["DONT_CARE", "2", "3"], "wrong_penalty_rate": 2.0, }, 0.0, ), ( { "entity_prediction": [ {"entity": "1", "value": "1"}, {"entity": "2", "value": "2"}, {"entity": "3", "value": "3"}, ], "utterance": "123", "y_true": ["DONT_CARE", "2", "3"], "wrong_penalty_rate": 2.0, }, 0.6666666666666667, ), ( { "entity_prediction": [ {"entity": "1", "value": "1"}, {"entity": "2", "value": "2"}, {"entity": "3", "value": "3"}, ], "utterance": "123", "y_true": ["5", "2", "3"], "wrong_penalty_rate": 2.0, }, 0.3333333333333333, ), ( { "entity_prediction": [ {"entity": "DONT_CARE", "value": "1"}, {"entity": "DONT_CARE", "value": "2"}, {"entity": "DONT_CARE", "value": "3"}, ], "utterance": "123", "y_true": ["DONT_CARE", "DONT_CARE", "DONT_CARE"], "wrong_penalty_rate": 2.0, }, 1.0, ), ( { "entity_prediction": [ {"entity": "1", "value": "1"}, {"entity": "2", "value": "2"}, {"entity": "3", "value": "3"}, ], "utterance": "123", "y_true": ["1", "2", "3"], "wrong_penalty_rate": 2.0, }, 1.0, ), ] for i, test_case in enumerate(test_cases): with self.subTest(i=i): result = single__entity_overlapping_score(**test_case[0]) self.assertAlmostEqual(test_case[1], result) def test_entity_overlapping_score_different_amount(self): with self.assertRaises(ValueError): entity_overlapping_score( utterances=["123", "345"], entity_predictions=[[{"a": 1}], [{"b": 2}]], y_trues=[["a"], ["b"], ["c"]], ) def test_entity_overlapping_score(self): result = entity_overlapping_score( utterances=["123", "123"], entity_predictions=[ [ {"entity": "1", "value": "1"}, {"entity": "2", "value": "2"}, {"entity": "3", "value": "3"}, ], [ {"entity": "DONT_CARE", "value": "1"}, {"entity": "DONT_CARE", "value": "2"}, {"entity": "DONT_CARE", "value": "3"}, ], ], y_trues=[ ["5", "2", "3"], ["DONT_CARE", "DONT_CARE", "DONT_CARE"], ], ) self.assertAlmostEqual( (0.33333333333 + 1.0) / 2, result, )
[ "s916526000@gmail.com" ]
s916526000@gmail.com
7ffcb76ec73333e2ac89d9c1b17839de77716f5e
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/420/usersdata/329/87976/submittedfiles/exe11.py
715adcb70c57813e5b1796b83f844bcbc85024f3
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
244
py
# -*- coding: utf-8 -*- n = int(input("digite um numero com 8 algarismos: ")) soma = 0 while n < 10000000 and n > 9999999: resto = n % 10 n = (n - resto)/10 soma = soma + resto print ('%d' % soma) else: print("NAO SEI")
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
85872ca81454d863e57c47043a303a247a75e42d
2a8abd5d6acdc260aff3639bce35ca1e688869e9
/telestream_cloud_qc_sdk/telestream_cloud_qc/models/frame_aspect_ratio_test.py
e350d1d1f34c6e4931d4824fe21895777c5735ce
[ "MIT" ]
permissive
Telestream/telestream-cloud-python-sdk
57dd2f0422c83531e213f48d87bc0c71f58b5872
ce0ad503299661a0f622661359367173c06889fc
refs/heads/master
2021-01-18T02:17:44.258254
2020-04-09T11:36:07
2020-04-09T11:36:07
49,494,916
0
0
MIT
2018-01-22T10:07:49
2016-01-12T11:10:56
Python
UTF-8
Python
false
false
6,377
py
# coding: utf-8 """ Qc API Qc API # noqa: E501 The version of the OpenAPI document: 3.0.0 Contact: cloudsupport@telestream.net Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from telestream_cloud_qc.configuration import Configuration class FrameAspectRatioTest(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'frame_aspect_ratio_numerator': 'int', 'frame_aspect_ratio_denominator': 'int', 'reject_on_error': 'bool', 'checked': 'bool' } attribute_map = { 'frame_aspect_ratio_numerator': 'frame_aspect_ratio_numerator', 'frame_aspect_ratio_denominator': 'frame_aspect_ratio_denominator', 'reject_on_error': 'reject_on_error', 'checked': 'checked' } def __init__(self, frame_aspect_ratio_numerator=None, frame_aspect_ratio_denominator=None, reject_on_error=None, checked=None, local_vars_configuration=None): # noqa: E501 """FrameAspectRatioTest - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._frame_aspect_ratio_numerator = None self._frame_aspect_ratio_denominator = None self._reject_on_error = None self._checked = None self.discriminator = None if frame_aspect_ratio_numerator is not None: self.frame_aspect_ratio_numerator = frame_aspect_ratio_numerator if frame_aspect_ratio_denominator is not None: self.frame_aspect_ratio_denominator = frame_aspect_ratio_denominator if reject_on_error is not None: self.reject_on_error = reject_on_error if checked is not None: self.checked = checked @property def frame_aspect_ratio_numerator(self): """Gets the frame_aspect_ratio_numerator of this FrameAspectRatioTest. # noqa: E501 :return: The frame_aspect_ratio_numerator of this FrameAspectRatioTest. # noqa: E501 :rtype: int """ return self._frame_aspect_ratio_numerator @frame_aspect_ratio_numerator.setter def frame_aspect_ratio_numerator(self, frame_aspect_ratio_numerator): """Sets the frame_aspect_ratio_numerator of this FrameAspectRatioTest. :param frame_aspect_ratio_numerator: The frame_aspect_ratio_numerator of this FrameAspectRatioTest. # noqa: E501 :type: int """ self._frame_aspect_ratio_numerator = frame_aspect_ratio_numerator @property def frame_aspect_ratio_denominator(self): """Gets the frame_aspect_ratio_denominator of this FrameAspectRatioTest. # noqa: E501 :return: The frame_aspect_ratio_denominator of this FrameAspectRatioTest. # noqa: E501 :rtype: int """ return self._frame_aspect_ratio_denominator @frame_aspect_ratio_denominator.setter def frame_aspect_ratio_denominator(self, frame_aspect_ratio_denominator): """Sets the frame_aspect_ratio_denominator of this FrameAspectRatioTest. :param frame_aspect_ratio_denominator: The frame_aspect_ratio_denominator of this FrameAspectRatioTest. # noqa: E501 :type: int """ self._frame_aspect_ratio_denominator = frame_aspect_ratio_denominator @property def reject_on_error(self): """Gets the reject_on_error of this FrameAspectRatioTest. # noqa: E501 :return: The reject_on_error of this FrameAspectRatioTest. # noqa: E501 :rtype: bool """ return self._reject_on_error @reject_on_error.setter def reject_on_error(self, reject_on_error): """Sets the reject_on_error of this FrameAspectRatioTest. :param reject_on_error: The reject_on_error of this FrameAspectRatioTest. # noqa: E501 :type: bool """ self._reject_on_error = reject_on_error @property def checked(self): """Gets the checked of this FrameAspectRatioTest. # noqa: E501 :return: The checked of this FrameAspectRatioTest. # noqa: E501 :rtype: bool """ return self._checked @checked.setter def checked(self, checked): """Sets the checked of this FrameAspectRatioTest. :param checked: The checked of this FrameAspectRatioTest. # noqa: E501 :type: bool """ self._checked = checked def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, FrameAspectRatioTest): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, FrameAspectRatioTest): return True return self.to_dict() != other.to_dict()
[ "cloudsupport@telestream.net" ]
cloudsupport@telestream.net
ed7b5fcf55324e383b99dd8f860e850435b47ada
0faf534ebb6db6f32279e5bee25b968bd425ce3a
/tests/core/_while/_while.py
b6d827a12289764a394e2ef4beffb7579457bc29
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
PyHDI/veriloggen
e8647cb2d40737d84e31d6b89c5799bab9cbd583
f2b1b9567150af097eed1b5e79ba2b412854ef43
refs/heads/develop
2023-08-09T10:02:35.626403
2023-08-09T00:50:14
2023-08-09T00:50:14
37,813,184
282
60
Apache-2.0
2023-07-20T03:03:29
2015-06-21T15:05:30
Python
UTF-8
Python
false
false
1,032
py
from __future__ import absolute_import from __future__ import print_function import sys import os # the next line can be removed after installation sys.path.insert(0, os.path.dirname(os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))) from veriloggen import * def mkTest(): m = Module('test') clk = m.Reg('CLK') rst = m.Reg('RST') count = m.Reg('count', width=32) m.Initial( Systask('dumpfile', '_while.vcd'), Systask('dumpvars', 0, clk, rst, count), ) m.Initial( clk(0), Forever(clk(Not(clk), ldelay=5)) # forever #5 CLK = ~CLK; ) m.Initial( rst(0), Delay(100), rst(1), Delay(100), rst(0), Delay(1000), count(0), While(count < 1024)( count(count + 1), Event(Posedge(clk)) ), Systask('finish'), ) return m if __name__ == '__main__': test = mkTest() verilog = test.to_verilog('') print(verilog)
[ "shta.ky1018@gmail.com" ]
shta.ky1018@gmail.com
eb599ad48afd47de67a5a38758872173421836a2
f2a0c0cad8ccc82ac00c7fa9dbf06c5fec96089c
/Student_Management/main/urls.py
b6fe5fc9e31bae12859e560cff9d8544ad9433a3
[]
no_license
tushargoyal22/Django-Learning
49bb0c97f6e344dae053a3c913a74c765a9a021b
eb87ac56220d7f0e1e4741cda754547180835713
refs/heads/master
2020-12-26T18:12:07.305533
2020-04-20T06:22:14
2020-04-20T06:22:14
237,585,513
0
0
null
2020-06-06T09:08:09
2020-02-01T08:31:48
CSS
UTF-8
Python
false
false
497
py
from django.urls import path from main import views urlpatterns = [ path('',views.Index.as_view()), path('college/<int:pk>' , views.CollegeDetail.as_view(),name='college'), path('colleges/',views.CollegeList.as_view()), path('create_college/' , views.CollegeCreate.as_view()), path('update_college/<int:pk>' , views.CollegeUpdate.as_view()), path('create_student/' , views.StudentCreate.as_view()), path('delete_student/<int:pk>' , views.StudentDelete.as_view()) ]
[ "tushar22.tg.tg@gmail.com" ]
tushar22.tg.tg@gmail.com
e187641d7db47cec739bd694e61860ff1f2d4b26
a48eaa4419b87c011abdee1eebfd04b469f4417b
/.history/ghostpost/views_20200211120737.py
0c516f78e19399fa4ac83bde5fc952b2f89adef3
[]
no_license
Imraj423/ghostpost
6418d6c9561528ac8c31dd70d8aae7fac4c77cca
4edc559eb1f9ef0d11aae78e2b1dbd5c4903ddb5
refs/heads/master
2021-01-02T13:32:58.032239
2020-02-11T23:21:31
2020-02-11T23:21:31
239,644,968
0
0
null
null
null
null
UTF-8
Python
false
false
1,858
py
from django.shortcuts import render from django.contrib.auth.models import User from ghostpost.models import ghostPost from django.shortcuts import render, reverse, HttpResponseRedirect from ghostpost.forms import addPost def index(request): item = ghostPost.objects.all() return render(request, 'index.html', {'data': item}) def detail(request): item = ghostPost.objects.all() return render(request, 'detail.html', {'data': item}) def post_add(request): html = 'addpost.html' if request.method == 'POST': form = addPost(request.POST) if form.is_valid(): data = form.cleaned_data ghostPost.objects.create( message=data['message'], is_Boast=data['is_Boast'] ) return HttpResponseRedirect(reverse("index")) form = addPost() return render(request, html, {'form': form}) def like(request, id): post = ghostPost.objects.get(id=id) post.like += 1 post.save() return HttpResponseRedirect(request.META.get('HTTP_REFERER')) def dislike(request, id): post = ghostPost.objects.get(id=id) post.like -= 1 post.save() return HttpResponseRedirect(request.META.get('HTTP_REFERER')) def sorted(request): html = "index.html" data = ghostPost.objects.all().order_by( "-like") return render(request, html, {"data": data}) def sortedt(request): html = "index.html" data = ghostPost.objects.all().order_by("-time") return render(request, html, {"data": data}) def sortedb(request): html = "index.html" data = ghostPost.objects.all().order_by("-is_Boast") return render(request, html, {"data": data}) def sortedb(request): html = "index.html" data = ghostPost.objects.all().order_by("-is_Boast=False") return render(request, html, {"data": data})
[ "dahqniss@gmail.com" ]
dahqniss@gmail.com
652e8748f26f358862132b7fc9300aa65f1f05ec
3ff9821b1984417a83a75c7d186da9228e13ead9
/No_0530_Minimum Absolute Difference in BST/minimum_absolute)difference_in_BST_by_inorder_iteration.py
a7418dd3d34f9db81a543e4abdb35916f72c1593
[ "MIT" ]
permissive
brianchiang-tw/leetcode
fd4df1917daef403c48cb5a3f5834579526ad0c2
6978acfb8cb767002cb953d02be68999845425f3
refs/heads/master
2023-06-11T00:44:01.423772
2023-06-01T03:52:00
2023-06-01T03:52:00
222,939,709
41
12
null
null
null
null
UTF-8
Python
false
false
2,094
py
''' Description: Given a binary search tree with non-negative values, find the minimum absolute difference between values of any two nodes. Example: Input: 1 \ 3 / 2 Output: 1 Explanation: The minimum absolute difference is 1, which is the difference between 2 and 1 (or between 2 and 3). Note: There are at least two nodes in this BST. ''' class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def getMinimumDifference(self, root: TreeNode) -> int: traversal_queue = [(root, 'init')] min_diff, prev_node_value = float('inf'), -2**31 while traversal_queue: node, label = traversal_queue.pop() if label is not 'c': if node.right: traversal_queue.append( (node.right, 'r') ) traversal_queue.append( (node, 'c') ) if node.left: traversal_queue.append( (node.left, 'l') ) else: min_diff = min(min_diff, node.val - prev_node_value ) prev_node_value = node.val return min_diff # n : the number of nodes in binary search tree ## Time Complexity: O( n ) # # The overhead in time is the cost of in-order traversal, which is of O( n ) ## Space Complexity: O( n ) # # THe overhead in space is the storage for traversal_queue, which is of O( n ) def test_bench(): ## Test case_#1 root_1 = TreeNode(1) root_1.right = TreeNode(3) root_1.right.left = TreeNode(2) # expected output: ''' 1 ''' print( Solution().getMinimumDifference(root_1) ) ## Test case_#2 root_2 = TreeNode(5) root_2.left = TreeNode(1) root_2.right = TreeNode(10) root_2.right.left = TreeNode(8) root_2.right.right = TreeNode(13) # expected output: ''' 2 ''' print( Solution().getMinimumDifference(root_2) ) if __name__ == '__main__': test_bench()
[ "brianchiang1988@icloud.com" ]
brianchiang1988@icloud.com
35fddb176546bcdc04b5f7168fe7656d9d16c1c5
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02675/s648199301.py
b63ed0e3bb4be52116a50e76ac3fe5f3864781f1
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
# -*- coding: utf-8 -*- def main(): N = int(input()) case1 = [2, 4, 5, 7, 9] case2 = [0, 1, 6, 8] case3 = [3] num = N % 10 if num in case1: ans = 'hon' elif num in case2: ans = 'pon' elif num in case3: ans = 'bon' print(ans) if __name__ == "__main__": main()
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
96a1d7b58328b30fde41e93d4831caca9bf6fc36
9aaa39f200ee6a14d7d432ef6a3ee9795163ebed
/Algorithm/Python/146. LRU Cache.py
12ae61d680fa056cf718b935addad161d26c1efe
[]
no_license
WuLC/LeetCode
47e1c351852d86c64595a083e7818ecde4131cb3
ee79d3437cf47b26a4bca0ec798dc54d7b623453
refs/heads/master
2023-07-07T18:29:29.110931
2023-07-02T04:31:00
2023-07-02T04:31:00
54,354,616
29
16
null
null
null
null
UTF-8
Python
false
false
1,259
py
# -*- coding: utf-8 -*- # @Author: WuLC # @Date: 2016-08-04 22:39:03 # @Last modified by: WuLC # @Last Modified time: 2016-08-04 22:40:49 # @Email: liangchaowu5@gmail.com class LRUCache(object): def __init__(self, capacity): """ :type capacity: int """ self.capacity = capacity self.cache = {} self.keys = collections.deque() self.exist_keys = set() def get(self, key): """ :rtype: int """ if key in self.exist_keys: self.keys.remove(key) self.keys.append(key) return self.cache[key] return -1 def set(self, key, value): """ :type key: int :type value: int :rtype: nothing """ if key not in self.exist_keys: self.exist_keys.add(key) if len(self.keys) == self.capacity: # remove the LRU element old_key = self.keys.popleft() self.exist_keys.remove(old_key) del self.cache[old_key] else: self.keys.remove(key) self.keys.append(key) self.cache[key] = value
[ "liangchaowu5@gmail.com" ]
liangchaowu5@gmail.com
f86f346345b1e788b5612e8ac5f117bc6c0dbce1
e168a4b9e7997b5266df4c1fe2afbaf0ed031fed
/url_shortener/profiles/forms.py
470c5cd6344634922a1279b0c41660591cc5b23a
[]
no_license
AaronScruggs/urly-bird
756eba26f21c66e78ed93bf6f936b50fb927aaef
a27314afb309de42230852fc2bd35416dece46d9
refs/heads/master
2021-01-22T01:18:59.907605
2016-04-05T07:01:53
2016-04-05T07:01:53
55,178,264
0
0
null
2016-03-31T19:45:02
2016-03-31T19:45:01
null
UTF-8
Python
false
false
217
py
from django import forms from django.contrib.auth.models import User from profiles.models import Profile class ImageUpdateForm(forms.ModelForm): class Meta: model = Profile fields = ("image",)
[ "aarondscruggs@gmail.com" ]
aarondscruggs@gmail.com
a74b58b3e5974f4098f7a4932dfa112f9fedbc7e
19ddab74600f71700a6b693281d0180d5271f295
/程序员面试金典/01_04_回文排列.py
bc02963092c9dc8e4d739287a6103fd74aad53ce
[]
no_license
zhulf0804/Coding.Python
4d55a430da1a8077c81feba65c13ac654aaf094a
46ab03e23d15ebd5434ef4dd5ae99130000b00a5
refs/heads/master
2022-09-14T18:40:59.880941
2022-08-20T08:25:51
2022-08-20T08:25:51
213,113,482
3
1
null
null
null
null
UTF-8
Python
false
false
337
py
class Solution: def canPermutePalindrome(self, s: str) -> bool: d = {} for item in s: d[item] = d.get(item, 0) + 1 is_odd = False for k, v in d.items(): if v & 1 == 1: if is_odd: return False is_odd = True return True
[ "zhulf0804@gmail.com" ]
zhulf0804@gmail.com
16ae617aa0dff53873785822c7cb2db033f9590b
494e3fbbdff5cf6edb087f3103ad5f15acbc174f
/schedule/migrations/0002_auto_20180727_2329.py
d0a6847d6321e79defcf1bfbd06aa6f38fb59def
[]
no_license
TalentoUnicamp/my
1209048acdedbb916b8ae8ec80761d09f6ad7754
3d87a33cd282d97dbbbd5f62658f231456f12765
refs/heads/master
2020-03-23T21:12:58.316033
2018-08-14T06:11:36
2018-08-14T06:11:36
142,090,262
11
0
null
2018-08-17T05:13:26
2018-07-24T01:53:23
JavaScript
UTF-8
Python
false
false
1,698
py
# Generated by Django 2.0.3 on 2018-07-28 02:29 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('schedule', '0001_initial'), ] operations = [ migrations.AlterField( model_name='event', name='attended', field=models.ManyToManyField(null=True, related_name='attended_events', to='user_profile.Profile'), ), migrations.AlterField( model_name='event', name='attendees', field=models.ManyToManyField(null=True, related_name='selected_events', to='user_profile.Profile'), ), migrations.AlterField( model_name='event', name='event_type', field=models.CharField(choices=[('Meta', 'Meta'), ('Keynote', 'Keynote'), ('Workshop', 'Workshop'), ('Palestra', 'Palestra')], max_length=20), ), migrations.AlterField( model_name='event', name='max_attendees', field=models.IntegerField(blank=True, null=True), ), migrations.AlterField( model_name='event', name='speaker', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='my_events', to='user_profile.Profile'), ), migrations.AlterField( model_name='feedback', name='comments', field=models.TextField(blank=True), ), migrations.AlterField( model_name='feedback', name='rating', field=models.IntegerField(blank=True, null=True), ), ]
[ "gustavomaronato@gmail.com" ]
gustavomaronato@gmail.com
9abea3f326ea59ebd86d1c7b1d83e63ad82ffd60
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/ChenglongChen_Kaggle_HomeDepot/Kaggle_HomeDepot-master/Code/Chenglong/feature_group_distance.py
8be14bcf62e8f822d47294b1071b3b95a6516e0a
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
4,848
py
# -*- coding: utf-8 -*- """ @author: Chenglong Chen <c.chenglong@gmail.com> @brief: group relevance based distance features @note: such features are not used in final submission """ import re import string import numpy as np import pandas as pd import config from config import TRAIN_SIZE from utils import dist_utils, ngram_utils, nlp_utils from utils import logging_utils, pkl_utils, time_utils from feature_base import BaseEstimator, StandaloneFeatureWrapper, PairwiseFeatureWrapper # tune the token pattern to get a better correlation with y_train # token_pattern = r"(?u)\b\w\w+\b" # token_pattern = r"\w{1,}" # token_pattern = r"\w+" # token_pattern = r"[\w']+" token_pattern = " " # just split the text into tokens # -------------------- Group by (obs, relevance) based distance features ----------------------------------- # # Something related to Query Expansion class GroupRelevance_Ngram_Jaccard(BaseEstimator): """Single aggregation features""" def __init__(self, obs_corpus, target_corpus, id_list, dfTrain, target_field, relevance, ngram, aggregation_mode=""): super().__init__(obs_corpus, target_corpus, aggregation_mode, id_list) self.dfTrain = dfTrain[dfTrain["relevance"] != 0].copy() self.target_field = target_field self.relevance = relevance self.relevance_str = self._relevance_to_str() self.ngram = ngram self.ngram_str = ngram_utils._ngram_str_map[self.ngram] def __name__(self): if isinstance(self.aggregation_mode, str): feat_name = "Group_%sRelevance_%s_Jaccard_%s"%( self.relevance_str, self.ngram_str, string.capwords(self.aggregation_mode)) elif isinstance(self.aggregation_mode, list): feat_name = ["Group_%sRelevance_%s_Jaccard_%s"%( self.relevance_str, self.ngram_str, string.capwords(m)) for m in self.aggregation_mode] return feat_name def _relevance_to_str(self): if isinstance(self.relevance, float): return re.sub("\.", "d", str(self.relevance)) else: return str(self.relevance) def transform_one(self, obs, target, id): df = self.dfTrain[self.dfTrain["search_term"] == obs].copy() val_list = [config.MISSING_VALUE_NUMERIC] if df is not None: df = df[df["id"] != id].copy() df = df[df["relevance"] == self.relevance].copy() if df is not None and df.shape[0] > 0: target_tokens = nlp_utils._tokenize(target, token_pattern) target_ngrams = ngram_utils._ngrams(target_tokens, self.ngram) val_list = [] for x in df[self.target_field]: x_tokens = nlp_utils._tokenize(x, token_pattern) x_ngrams = ngram_utils._ngrams(x_tokens, self.ngram) val_list.append(dist_utils._jaccard_coef(x_ngrams, target_ngrams)) return val_list # -------------------------------- Main ---------------------------------- def main(): logname = "generate_feature_group_distance_%s.log"%time_utils._timestamp() logger = logging_utils._get_logger(config.LOG_DIR, logname) dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED) dfTrain = dfAll.iloc[:TRAIN_SIZE].copy() ## run python3 splitter.py first split = pkl_utils._load("%s/splits_level1.pkl"%config.SPLIT_DIR) n_iter = len(split) relevances_complete = [1, 1.25, 1.33, 1.5, 1.67, 1.75, 2, 2.25, 2.33, 2.5, 2.67, 2.75, 3] relevances = [1, 1.33, 1.67, 2, 2.33, 2.67, 3] ngrams = [1] obs_fields = ["search_term"] target_fields = ["product_title", "product_description"] aggregation_mode = ["mean", "std", "max", "min", "median"] ## for cv for i in range(n_iter): trainInd, validInd = split[i][0], split[i][1] dfTrain2 = dfTrain.iloc[trainInd].copy() sub_feature_dir = "%s/Run%d" % (config.FEAT_DIR, i+1) for target_field in target_fields: for relevance in relevances: for ngram in ngrams: param_list = [dfAll["id"], dfTrain2, target_field, relevance, ngram, aggregation_mode] pf = PairwiseFeatureWrapper(GroupRelevance_Ngram_Jaccard, dfAll, obs_fields, [target_field], param_list, sub_feature_dir, logger) pf.go() ## for all sub_feature_dir = "%s/All" % (config.FEAT_DIR) for target_field in target_fields: for relevance in relevances: for ngram in ngrams: param_list = [dfAll["id"], dfTrain, target_field, relevance, ngram, aggregation_mode] pf = PairwiseFeatureWrapper(GroupRelevance_Ngram_Jaccard, dfAll, obs_fields, [target_field], param_list, sub_feature_dir, logger) pf.go() if __name__ == "__main__": main()
[ "659338505@qq.com" ]
659338505@qq.com
4fccba1e6cf207096ecb5d43ef2b1e74b10f2d7a
e41651d8f9b5d260b800136672c70cb85c3b80ff
/Notification_System/temboo/Library/Flickr/PhotoComments/LeaveComment.py
86bbc8411b315c8fddfd9fdd48b7df1f6c43f6c9
[]
no_license
shriswissfed/GPS-tracking-system
43e667fe3d00aa8e65e86d50a4f776fcb06e8c5c
1c5e90a483386bd2e5c5f48f7c5b306cd5f17965
refs/heads/master
2020-05-23T03:06:46.484473
2018-10-03T08:50:00
2018-10-03T08:50:00
55,578,217
1
0
null
null
null
null
UTF-8
Python
false
false
4,616
py
# -*- coding: utf-8 -*- ############################################################################### # # LeaveComment # Add a comment to a specified photo on Flickr. # # Python versions 2.6, 2.7, 3.x # # Copyright 2014, Temboo Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific # language governing permissions and limitations under the License. # # ############################################################################### from temboo.core.choreography import Choreography from temboo.core.choreography import InputSet from temboo.core.choreography import ResultSet from temboo.core.choreography import ChoreographyExecution import json class LeaveComment(Choreography): def __init__(self, temboo_session): """ Create a new instance of the LeaveComment Choreo. A TembooSession object, containing a valid set of Temboo credentials, must be supplied. """ super(LeaveComment, self).__init__(temboo_session, '/Library/Flickr/PhotoComments/LeaveComment') def new_input_set(self): return LeaveCommentInputSet() def _make_result_set(self, result, path): return LeaveCommentResultSet(result, path) def _make_execution(self, session, exec_id, path): return LeaveCommentChoreographyExecution(session, exec_id, path) class LeaveCommentInputSet(InputSet): """ An InputSet with methods appropriate for specifying the inputs to the LeaveComment Choreo. The InputSet object is used to specify input parameters when executing this Choreo. """ def set_APIKey(self, value): """ Set the value of the APIKey input for this Choreo. ((required, string) The API Key provided by Flickr (AKA the OAuth Consumer Key).) """ super(LeaveCommentInputSet, self)._set_input('APIKey', value) def set_APISecret(self, value): """ Set the value of the APISecret input for this Choreo. ((required, string) The API Secret provided by Flickr (AKA the OAuth Consumer Secret).) """ super(LeaveCommentInputSet, self)._set_input('APISecret', value) def set_AccessToken(self, value): """ Set the value of the AccessToken input for this Choreo. ((required, string) The Access Token retrieved during the OAuth process.) """ super(LeaveCommentInputSet, self)._set_input('AccessToken', value) def set_AccessTokenSecret(self, value): """ Set the value of the AccessTokenSecret input for this Choreo. ((required, string) The Access Token Secret retrieved during the OAuth process.) """ super(LeaveCommentInputSet, self)._set_input('AccessTokenSecret', value) def set_CommentText(self, value): """ Set the value of the CommentText input for this Choreo. ((required, string) The text of the comment you are adding.) """ super(LeaveCommentInputSet, self)._set_input('CommentText', value) def set_PhotoID(self, value): """ Set the value of the PhotoID input for this Choreo. ((required, integer) The id of the photo to add a comment to) """ super(LeaveCommentInputSet, self)._set_input('PhotoID', value) def set_ResponseFormat(self, value): """ Set the value of the ResponseFormat input for this Choreo. ((optional, string) The format that the response should be in. Valid values are: xml and json. Defaults to json.) """ super(LeaveCommentInputSet, self)._set_input('ResponseFormat', value) class LeaveCommentResultSet(ResultSet): """ A ResultSet with methods tailored to the values returned by the LeaveComment Choreo. The ResultSet object is used to retrieve the results of a Choreo execution. """ def getJSONFromString(self, str): return json.loads(str) def get_Response(self): """ Retrieve the value for the "Response" output from this Choreo execution. ((json) The response from Flickr.) """ return self._output.get('Response', None) class LeaveCommentChoreographyExecution(ChoreographyExecution): def _make_result_set(self, response, path): return LeaveCommentResultSet(response, path)
[ "shriswissfed@gmail.com" ]
shriswissfed@gmail.com
ec358af8dcc747a31d12f7fb499c7a78bba2c640
7701773efa258510951bc7d45325b4cca26b3a7d
/from_trans_file_cloud/explore_pathlib.py
cd6ac1e600ecf9cc21bb0408817543f804917d9b
[]
no_license
Archanciel/explore
c170b2c8b5eed0c1220d5e7c2ac326228f6b2485
0576369ded0e54ce7ff9596ec4df076e69067e0c
refs/heads/master
2022-06-17T19:15:03.647074
2022-06-01T20:07:04
2022-06-01T20:07:04
105,314,051
0
1
null
null
null
null
UTF-8
Python
false
false
222
py
from pathlib import Path root = Path('D:\\Development\\Python\\trans_file_cloud\\.git') child = Path('D:\\Development\\Python\\trans_file_cloud\\.git\\hooks') other = Path('/some/other/path') print(root in child.parents)
[ "jp.schnyder@gmail.com" ]
jp.schnyder@gmail.com
ae83c59eb63599eac7d7f45ea8229a239af25040
82f993631da2871933edf83f7648deb6c59fd7e4
/w1/L3/7.py
8469a86b108877706bb07df0088f4d1eea2b7434
[]
no_license
bobur554396/PPII2021Summer
298f26ea0e74c199af7b57a5d40f65e20049ecdd
7ef38fb4ad4f606940d2ba3daaa47cbd9ca8bcd2
refs/heads/master
2023-06-26T05:42:08.523345
2021-07-24T12:40:05
2021-07-24T12:40:05
380,511,125
1
0
null
null
null
null
UTF-8
Python
false
false
200
py
# - [] Iterators and Iterbales a = [1, 2, 3, 4] # - iterable object it = iter(a) # print(next(it)) # print(next(it)) # print(next(it)) # print(next(it)) # print(next(it)) for i in it: print(i)
[ "bobur.muhsimbaev@gmail.com" ]
bobur.muhsimbaev@gmail.com
f9a25ea75f1038ebb53730647439228ea1d83873
9102c3a5fa3a5b0202d61206973d0ea167f7a4d0
/July/07-IslandPerimeter.py
a93da08ce948ac402b6597b23157a28ceea1580f
[]
no_license
Madhav-Somanath/LeetCode
8e1b39e106cec238e5a2a3acb3eb267f5c36f781
b6950f74d61db784095c71df5115ba10be936c65
refs/heads/master
2023-01-08T15:10:00.249806
2020-10-31T14:45:43
2020-10-31T14:45:43
255,654,520
0
0
null
null
null
null
UTF-8
Python
false
false
1,657
py
""" You are given a map in form of a two-dimensional integer grid where 1 represents land and 0 represents water. Grid cells are connected horizontally/vertically (not diagonally). The grid is completely surrounded by water, and there is exactly one island (i.e., one or more connected land cells). The island doesn't have "lakes" (water inside that isn't connected to the water around the island). One cell is a square with side length 1. The grid is rectangular, width and height don't exceed 100. Determine the perimeter of the island. """ # SOLUTION class Solution: def islandPerimeter(self, grid: List[List[int]]) -> int: if not grid: return 0 def sum_adjacent(i, j): adjacent = (i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1), res = 0 for x, y in adjacent: if x < 0 or y < 0 or x == len(grid) or y == len(grid[0]) or grid[x][y] == 0: res += 1 return res count = 0 for i in range(len(grid)): for j in range(len(grid[0])): if grid[i][j] == 1: count += sum_adjacent(i, j) return count ''' m, n, Perimeter = len(grid), len(grid[0]), 0 for i in range(m): for j in range(n): Perimeter += 4*grid[i][j] if i > 0: Perimeter -= grid[i][j]*grid[i-1][j] if i < m-1: Perimeter -= grid[i][j]*grid[i+1][j] if j > 0: Perimeter -= grid[i][j]*grid[i][j-1] if j < n-1: Perimeter -= grid[i][j]*grid[i][j+1] return Perimeter '''
[ "madhav.somanath@gmail.com" ]
madhav.somanath@gmail.com
a7d11fe7ad97288252922c00a7c365e7199665ed
43e900f11e2b230cdc0b2e48007d40294fefd87a
/Amazon/VideoOnsite/162.find-peak-element.py
5b3ada63691cf9fcf4b02f7261a2be18b71ec8d7
[]
no_license
DarkAlexWang/leetcode
02f2ed993688c34d3ce8f95d81b3e36a53ca002f
89142297559af20cf990a8e40975811b4be36955
refs/heads/master
2023-01-07T13:01:19.598427
2022-12-28T19:00:19
2022-12-28T19:00:19
232,729,581
3
1
null
null
null
null
UTF-8
Python
false
false
557
py
# # @lc app=leetcode id=162 lang=python3 # # [162] Find Peak Element # # @lc code=start class Solution: def findPeakElement(self, nums: List[int]) -> int: l, r = 0, len(nums) - 1 while l + 1 < r: mid = (l + r) // 2 if nums[mid] > nums[mid + 1] and nums[mid] > nums[mid - 1]: return mid if nums[mid] > nums[mid + 1]: r = mid else: l = mid if nums[l] < nums[r]: return r else: return l # @lc code=end
[ "wangzhihuan0815@gmail.com" ]
wangzhihuan0815@gmail.com
04fa896307a6d243658fb915099d337f76804cd5
86813bf514f3e0257f92207f40a68443f08ee44b
/0406 根据身高重建队列/0406 根据身高重建队列.py
989f32ac1430a2408dcaef254410bf9310c75be2
[]
no_license
Aurora-yuan/Leetcode_Python3
4ce56679b48862c87addc8cd870cdd525c9d926c
720bb530850febc2aa67a56a7a0b3a85ab37f415
refs/heads/master
2021-07-12T13:23:19.399155
2020-10-21T03:14:36
2020-10-21T03:14:36
212,998,500
4
1
null
null
null
null
UTF-8
Python
false
false
838
py
#label: 贪心算法 difficulty: medium """ 思路 1.排序:按照身高从高到低排,升高相同的按k从小到大排 2.插入:按照排序好的顺序逐个插入新数组,插入的位置按照k来插 如示例中,排序完: [[7,0], [7,1], [6,1], [5,0], [5,2],[4,4]] 插入的过程: 第一插:[[7,0]] 第二插:[[7,0], [7,1]] 第三插:[[7,0], [6,1],[7,1]] 第四插:[[5,0],[7,0], [6,1],[7,1]] ... 先插高的,后插矮的,即使后插的插到前面也不会有影像,因为矮 """ class Solution(object): def reconstructQueue(self, people): """ :type people: List[List[int]] :rtype: List[List[int]] """ people.sort(key=lambda (h, k): (-h, k)) res = [] for p in people: res.insert(p[1],p) return res
[ "noreply@github.com" ]
Aurora-yuan.noreply@github.com
963b0a84d3f5586261ec0ed22a68007f2a76aa70
0a1356b97465cc1d5c3f661f61b3b8c51fb05d46
/android_binding/.buildozer/android/platform/python-for-android/testapps/testapp/main.py
5baa420f3c203147e6abbfe8085c24a0a8778493
[ "MIT", "Python-2.0" ]
permissive
Rohan-cod/cross_platform_calc
00360f971e4da68dd36d6836c9ddbb157f6b77d5
5785a5e8150d174019b330c812e7eb012cc4dd79
refs/heads/master
2022-12-22T10:29:05.317051
2021-06-05T10:52:44
2021-06-05T10:52:44
237,465,912
2
1
MIT
2022-12-09T05:18:55
2020-01-31T16:07:31
C
UTF-8
Python
false
false
4,015
py
print('main.py was successfully called') import os print('imported os') print('this dir is', os.path.abspath(os.curdir)) print('contents of this dir', os.listdir('./')) import sys print('pythonpath is', sys.path) import kivy print('imported kivy') print('file is', kivy.__file__) from kivy.app import App from kivy.lang import Builder from kivy.properties import StringProperty from kivy.uix.popup import Popup from kivy.clock import Clock print('Imported kivy') from kivy.utils import platform print('platform is', platform) kv = ''' #:import Metrics kivy.metrics.Metrics #:import sys sys <FixedSizeButton@Button>: size_hint_y: None height: dp(60) ScrollView: GridLayout: cols: 1 size_hint_y: None height: self.minimum_height FixedSizeButton: text: 'test pyjnius' on_press: app.test_pyjnius() Image: keep_ratio: False allow_stretch: True source: 'colours.png' size_hint_y: None height: dp(100) Label: height: self.texture_size[1] size_hint_y: None font_size: 100 text_size: self.size[0], None markup: True text: '[b]Kivy[/b] on [b]SDL2[/b] on [b]Android[/b]!' halign: 'center' Label: height: self.texture_size[1] size_hint_y: None text_size: self.size[0], None markup: True text: sys.version halign: 'center' padding_y: dp(10) Widget: size_hint_y: None height: 20 Label: height: self.texture_size[1] size_hint_y: None font_size: 50 text_size: self.size[0], None markup: True text: 'dpi: {}\\ndensity: {}\\nfontscale: {}'.format(Metrics.dpi, Metrics.density, Metrics.fontscale) halign: 'center' FixedSizeButton: text: 'test ctypes' on_press: app.test_ctypes() FixedSizeButton: text: 'test numpy' on_press: app.test_numpy() Widget: size_hint_y: None height: 1000 on_touch_down: print('touched at', args[-1].pos) <ErrorPopup>: title: 'Error' size_hint: 0.75, 0.75 Label: text: root.error_text ''' class ErrorPopup(Popup): error_text = StringProperty('') def raise_error(error): print('ERROR:', error) ErrorPopup(error_text=error).open() class TestApp(App): def build(self): root = Builder.load_string(kv) Clock.schedule_interval(self.print_something, 2) # Clock.schedule_interval(self.test_pyjnius, 5) print('testing metrics') from kivy.metrics import Metrics print('dpi is', Metrics.dpi) print('density is', Metrics.density) print('fontscale is', Metrics.fontscale) return root def print_something(self, *args): print('App print tick', Clock.get_boottime()) def on_pause(self): return True def test_pyjnius(self, *args): try: from jnius import autoclass except ImportError: raise_error('Could not import pyjnius') return print('Attempting to vibrate with pyjnius') # PythonActivity = autoclass('org.renpy.android.PythonActivity') # activity = PythonActivity.mActivity PythonActivity = autoclass('org.kivy.android.PythonActivity') activity = PythonActivity.mActivity Intent = autoclass('android.content.Intent') Context = autoclass('android.content.Context') vibrator = activity.getSystemService(Context.VIBRATOR_SERVICE) vibrator.vibrate(1000) def test_ctypes(self, *args): import ctypes def test_numpy(self, *args): import numpy print(numpy.zeros(5)) print(numpy.arange(5)) print(numpy.random.random((3, 3))) TestApp().run()
[ "rohaninjmu@gmail.com" ]
rohaninjmu@gmail.com
cf7330a35aacb57aecc3cf237fab0a5660c9e136
7a550d2268bc4bc7e2fec608ffb1db4b2e5e94a0
/1101-1200/1155-Number of Dice Rolls With Target Sum/1155-Number of Dice Rolls With Target Sum.py
f54e16cb49f5483bfd0bcd1a41d19b792bf96035
[ "MIT" ]
permissive
jiadaizhao/LeetCode
be31bd0db50cc6835d9c9eff8e0175747098afc6
4ddea0a532fe7c5d053ffbd6870174ec99fc2d60
refs/heads/master
2021-11-05T04:38:47.252590
2021-10-31T09:54:53
2021-10-31T09:54:53
99,655,604
52
28
MIT
2020-10-02T12:47:47
2017-08-08T05:57:26
C++
UTF-8
Python
false
false
863
py
class Solution: def numRollsToTarget(self, d: int, f: int, target: int) -> int: dp = [[0] * (1 + target) for _ in range(1 + d)] dp[0][0] = 1 MOD = 10 ** 9 + 7 for i in range(1, 1 + d): for j in range(1, 1 + target): for k in range(1, 1 + min(f, j)): dp[i][j] = (dp[i][j] + dp[i - 1][j - k]) % MOD return dp[d][target] class Solution2: def numRollsToTarget(self, d: int, f: int, target: int) -> int: dp = [0] * (1 + target) dp[0] = 1 MOD = 10 ** 9 + 7 for i in range(1, 1 + d): temp = [0] * (1 + target) for j in range(1, 1 + target): for k in range(1, 1 + min(f, j)): temp[j] = (temp[j] + dp[j - k]) % MOD dp = temp return dp[target]
[ "jiadaizhao@gmail.com" ]
jiadaizhao@gmail.com
efc48cf55cecc69f2b9a01cbc950890c053e3a77
31bc3fdc7c2b62880f84e50893c8e3d0dfb66fa6
/libraries/numpy/python_369/python_369/numpy_118/built_in_scalars/uint_.py
31601e10986c1a268eb3ab8a0b088f9f95f7615e
[]
no_license
tpt5cu/python-tutorial
6e25cf0b346b8182ebc8a921efb25db65f16c144
5998e86165a52889faf14133b5b0d7588d637be1
refs/heads/master
2022-11-28T16:58:51.648259
2020-07-23T02:20:37
2020-07-23T02:20:37
269,521,394
0
0
null
2020-06-05T03:23:51
2020-06-05T03:23:50
null
UTF-8
Python
false
false
1,496
py
# https://numpy.org/doc/1.18/reference/arrays.scalars.html#built-in-scalar-types import numpy as np def what_is_uint(): ''' - "np.uint" and "np.uintc" are aliases for real underlying NumPy scalar types - The values of those aliases depend on the operating system - On my system, "np.uint" creates an object whose class is "numpy.uint64" - "np.uint" has the same precision as ... ? - On my system, "np.uintc" creates an object whose class is "numpy.uint32" - "np.uintc" has the same precision as ... ? - If I want some size other than those specified by the aliases, I'll have to use a class with an explicit size, e.g. np.uint8 ''' print(np.uint is np.uint64) # True print(np.uintc is np.uint32) # True # No error because 1 certainly fits within the size of a C long ary = np.array(1, dtype=np.uint) print(ary.dtype) # uint64 #print(int(10**50)) # 100000000000000000000000000000000000000000000000000 #np.array(10**50, dtype=np.uint) # OverflowError: Python int too large to convert to C long print(type(np.uint)) # <class 'type'> scalar = np.uint(10) print(type(scalar)) # <class 'numpy.uint64'> scalar = np.uint32(10) print(type(scalar)) # <class 'numpy.uint32'> scalar = np.uintc(10) print(type(scalar)) # <class 'numpy.uint32'> scalar = np.uint8(4) print(type(scalar)) # <class 'numpy.uint8'> if __name__ == '__main__': what_is_uint()
[ "uif93194@gmail.com" ]
uif93194@gmail.com
2d192a9d9291492a2911fb5ad35382030baf8fc5
fad34b6b81e93850e6f408bbc24b3070e002997d
/Python-DM-Text Mining-01.py
e4b51fba0851281217136c06054f5f0570c357bf
[]
no_license
Sandy4321/Latent-Dirichlet-Allocation-2
d60c14a3abb62e05a31aaac8c9a6d9381ec9d560
0bf6670643c7968064e375a287448b515b077473
refs/heads/master
2021-05-05T09:57:17.304046
2017-07-26T16:14:22
2017-07-26T16:14:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,149
py
############################################################################ # Created by: Prof. Valdecy Pereira, D.Sc. # UFF - Universidade Federal Fluminense (Brazil) # email: valdecy.pereira@gmail.com # Course: Data Mining # Lesson: Text Mining # Citation: # PEREIRA, V. (2017). Project: LDA - Latent Dirichlet Allocation, File: Python-DM-Text Mining-01.py, GitHub repository: # <https://github.com/Valdecy/Latent-Dirichlet-Allocation> ############################################################################ # Installing Required Libraries import numpy as np import pandas as pd from nltk.tokenize import RegexpTokenizer from random import randint # Function: lda_tm def lda_tm(document = [], K = 2, alpha = 0.12, eta = 0.01, iterations = 5000, dtm_matrix = False, dtm_bin_matrix = False, dtm_tf_matrix = False, dtm_tfidf_matrix = False, co_occurrence_matrix = False, correl_matrix = False): ################ Part 1 - Start of Function ############################# tokenizer = RegexpTokenizer(r'\w+') result_list = [] # Corpus corpus = [] for i in document: tokens = tokenizer.tokenize(i.lower()) corpus.append(tokens) # Corpus ID corpus_id = [] for i in document: tokens = tokenizer.tokenize(i.lower()) corpus_id.append(tokens) # Unique Words uniqueWords = [] for j in range(0, len(corpus)): for i in corpus[j]: if not i in uniqueWords: uniqueWords.append(i) # Corpus ID for Unique Words for j in range(0, len(corpus)): for i in range(0, len(uniqueWords)): for k in range(0, len(corpus[j])): if uniqueWords[i] == corpus[j][k]: corpus_id[j][k] = i # Topic Assignment topic_assignment = [] for i in document: tokens = tokenizer.tokenize(i.lower()) topic_assignment.append(tokens) # dtm if dtm_matrix == True or dtm_bin_matrix == True or dtm_tf_matrix == True or dtm_tfidf_matrix == True or co_occurrence_matrix == True or correl_matrix == True: dtm = np.zeros(shape = (len(corpus), len(uniqueWords))) for j in range(0, len(corpus)): for i in range(0, len(uniqueWords)): for k in range(0, len(corpus[j])): if uniqueWords[i] == corpus[j][k]: dtm[j][i] = dtm[j][i] + 1 dtm_pd = pd.DataFrame(dtm, columns = uniqueWords) if dtm_matrix == True: result_list.append(dtm_pd) # dtm_bin if dtm_bin_matrix == True or co_occurrence_matrix == True or correl_matrix == True: dtm_bin = np.zeros(shape = (len(corpus), len(uniqueWords))) for i in range(0, len(corpus)): for j in range(0, len(uniqueWords)): if dtm[i,j] > 0: dtm_bin[i,j] = 1 dtm_bin_pd = pd.DataFrame(dtm_bin, columns = uniqueWords) if dtm_bin_matrix == True: result_list.append(dtm_bin_pd) # dtm_tf if dtm_tf_matrix == True: dtm_tf = np.zeros(shape = (len(corpus), len(uniqueWords))) for i in range(0, len(corpus)): for j in range(0, len(uniqueWords)): if dtm[i,j] > 0: dtm_tf[i,j] = dtm[i,j]/dtm[i,].sum() dtm_tf_pd = pd.DataFrame(dtm_tf, columns = uniqueWords) result_list.append(dtm_tf_pd) # dtm_tfidf if dtm_tfidf_matrix == True: idf = np.zeros(shape = (1, len(uniqueWords))) for i in range(0, len(uniqueWords)): idf[0,i] = np.log10(dtm.shape[0]/(dtm[:,i]>0).sum()) dtm_tfidf = np.zeros(shape = (len(corpus), len(uniqueWords))) for i in range(0, len(corpus)): for j in range(0, len(uniqueWords)): dtm_tfidf[i,j] = dtm_tf[i,j]*idf[0,j] dtm_tfidf_pd = pd.DataFrame(dtm_tfidf, columns = uniqueWords) result_list.append(dtm_tfidf_pd) # Co-occurrence Matrix if co_occurrence_matrix == True: co_occurrence = np.dot(dtm_bin.T,dtm_bin) co_occurrence_pd = pd.DataFrame(co_occurrence, columns = uniqueWords, index = uniqueWords) result_list.append(co_occurrence_pd) # Correlation Matrix if correl_matrix == True: correl = np.zeros(shape = (len(uniqueWords), len(uniqueWords))) for i in range(0, correl.shape[0]): for j in range(i, correl.shape[1]): correl[i,j] = np.corrcoef(dtm_bin[:,i], dtm_bin[:,j])[0,1] correl_pd = pd.DataFrame(correl, columns = uniqueWords, index = uniqueWords) result_list.append(correl_pd) # LDA Initialization for i in range(0, len(topic_assignment)): for j in range(0, len(topic_assignment[i])): topic_assignment[i][j] = randint(0, K-1) cdt = np.zeros(shape = (len(topic_assignment), K)) for i in range(0, len(topic_assignment)): for j in range(0, len(topic_assignment[i])): for m in range(0, K): if topic_assignment[i][j] == m: cdt[i][m] = cdt[i][m] + 1 cwt = np.zeros(shape = (K, len(uniqueWords))) for i in range(0, len(corpus)): for j in range(0, len(uniqueWords)): for m in range(0, len(corpus[i])): if uniqueWords[j] == corpus[i][m]: for n in range(0, K): if topic_assignment[i][m] == n: cwt[n][j] = cwt[n][j] + 1 # LDA Algorithm for i in range(0, iterations + 1): for d in range(0, len(corpus)): for w in range(0, len(corpus[d])): initial_t = topic_assignment[d][w] word_num = corpus_id[d][w] cdt[d,initial_t] = cdt[d,initial_t] - 1 cwt[initial_t,word_num] = cwt[initial_t,word_num] - 1 p_z = ((cwt[:,word_num] + eta) / (np.sum((cwt), axis = 1) + len(corpus) * eta)) * ((cdt[d,] + alpha) / (sum(cdt[d,]) + K * alpha )) z = np.sum(p_z) p_z_ac = np.add.accumulate(p_z/z) u = np.random.random_sample() for m in range(0, K): if u <= p_z_ac[m]: final_t = m break topic_assignment[d][w] = final_t cdt[d,final_t] = cdt[d,final_t] + 1 cwt[final_t,word_num] = cwt[final_t,word_num] + 1 if i % 100 == 0: print('iteration:', i) theta = (cdt + alpha) for i in range(0, len(theta)): for j in range(0, K): theta[i,j] = theta[i,j]/np.sum(theta, axis = 1)[i] result_list.append(theta) phi = (cwt + eta) d_phi = np.sum(phi, axis = 1) for i in range(0, K): for j in range(0, len(phi.T)): phi[i,j] = phi[i,j]/d_phi[i] phi_pd = pd.DataFrame(phi.T, index = uniqueWords) result_list.append(phi_pd) return result_list ############### End of Function ############## ######################## Part 2 - Usage #################################### # Documents doc_1 = "data mining technique data mining first favourite technique" doc_2 = "data mining technique data mining second favourite technique" doc_3 = "data mining technique data mining third favourite technique" doc_4 = "data mining technique data mining fourth favourite technique" doc_5 = "friday play guitar" doc_6 = "saturday will play guitar" doc_7 = "sunday will play guitar" doc_8 = "monday will play guitar" doc_9 = "good good indeed can thank" # Compile Documents docs = [doc_1, doc_2, doc_3, doc_4, doc_5, doc_6, doc_7, doc_8, doc_9] # Call Function lda = lda_tm(document = docs, K = 3, alpha = 0.12, eta = 0.01, iterations = 2500, co_occurrence_matrix = True) ########################## End of Code #####################################
[ "noreply@github.com" ]
Sandy4321.noreply@github.com
3e30a6a777fc7d9632db4589647703d42784d301
9b64f0f04707a3a18968fd8f8a3ace718cd597bc
/huaweicloud-sdk-dgc/huaweicloudsdkdgc/v1/model/real_time_node_status.py
7221161869b508adcbdee1530355437f7d8e3e9e
[ "Apache-2.0" ]
permissive
jaminGH/huaweicloud-sdk-python-v3
eeecb3fb0f3396a475995df36d17095038615fba
83ee0e4543c6b74eb0898079c3d8dd1c52c3e16b
refs/heads/master
2023-06-18T11:49:13.958677
2021-07-16T07:57:47
2021-07-16T07:57:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,485
py
# coding: utf-8 import re import six class RealTimeNodeStatus: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'name': 'str', 'status': 'str', 'log_path': 'str', 'node_type': 'str' } attribute_map = { 'name': 'name', 'status': 'status', 'log_path': 'logPath', 'node_type': 'nodeType' } def __init__(self, name=None, status=None, log_path=None, node_type=None): """RealTimeNodeStatus - a model defined in huaweicloud sdk""" self._name = None self._status = None self._log_path = None self._node_type = None self.discriminator = None if name is not None: self.name = name if status is not None: self.status = status if log_path is not None: self.log_path = log_path if node_type is not None: self.node_type = node_type @property def name(self): """Gets the name of this RealTimeNodeStatus. :return: The name of this RealTimeNodeStatus. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this RealTimeNodeStatus. :param name: The name of this RealTimeNodeStatus. :type: str """ self._name = name @property def status(self): """Gets the status of this RealTimeNodeStatus. :return: The status of this RealTimeNodeStatus. :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this RealTimeNodeStatus. :param status: The status of this RealTimeNodeStatus. :type: str """ self._status = status @property def log_path(self): """Gets the log_path of this RealTimeNodeStatus. :return: The log_path of this RealTimeNodeStatus. :rtype: str """ return self._log_path @log_path.setter def log_path(self, log_path): """Sets the log_path of this RealTimeNodeStatus. :param log_path: The log_path of this RealTimeNodeStatus. :type: str """ self._log_path = log_path @property def node_type(self): """Gets the node_type of this RealTimeNodeStatus. :return: The node_type of this RealTimeNodeStatus. :rtype: str """ return self._node_type @node_type.setter def node_type(self, node_type): """Sets the node_type of this RealTimeNodeStatus. :param node_type: The node_type of this RealTimeNodeStatus. :type: str """ self._node_type = node_type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): import simplejson as json return json.dumps(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RealTimeNodeStatus): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "hwcloudsdk@huawei.com" ]
hwcloudsdk@huawei.com
e5cc439e0b34ca33b3d001bd387a2a4479ab0b82
5f332fd35e0071b6c33727b1ec7b22efefd4182a
/lib/sconstool/util/finder_.py
84618a3615bf73a74897f7ec62a7cd00982180de
[ "MIT" ]
permissive
ptomulik/scons-tool-util
ec4bc3f6971feda4fa918632b0f0431faf96779b
daab1c7db087feb988a721bf10e6b5c29c0e02b2
refs/heads/master
2021-08-07T12:20:17.485348
2020-04-15T18:48:28
2020-04-15T18:48:28
153,349,258
1
0
null
2020-04-15T18:49:16
2018-10-16T20:23:55
Python
UTF-8
Python
false
false
5,721
py
# -*- coding: utf-8 -*- """Provides the :class:`.ToolFinder` class. """ from . import misc_ import os __all__ = ('ToolFinder',) class ToolFinder(object): """Callable object which searches for executables. A single ToolFinder instance searches for a single file (program), for example a compiler executable or script interpreter. The constructor accepts several options, for each option there is corresponding @property (read-only) with the same name. :Example: Typical use in a tool module .. code-block:: python from sconstool.util import ToolFinder foo = ToolFinder('foo') def generate(env): env.SetDefault(FOO=foo(env)) # ... def exists(env): return env.get('FOO', foo(env)) """ __slots__ = ('_tool', '_kw') _ctor_kwargs = ('name', 'path', 'pathext', 'reject', 'priority_path', 'fallback_path', 'strip_path', 'strip_priority_path', 'strip_fallback_path') def __init__(self, tool, **kw): """ :param str tool: symbolic name of the tool, :keyword str,list name: base name of the file (program name) being searched for, may be a list of alternative program names, :keyword str,list path: search path to be used instead of the standard SCons PATH, :keyword str,list pathext: a list of file extensions to be considered as executable, :keyword list reject: a list of paths to be rejected, :keyword str,list priority_path: extra search path to be searched prior to :attr:`.path`, :keyword str,list fallback_path: extra search path to be searched after :attr:`.path`, :keyword bool strip_path: if ``True`` (default), the leading path, if it's in :attr:`path` list, will be stripped from the returned file path, :keyword bool strip_priority_path: if ``True``, the leading path, if it's in **priority_path** list, will be stripped from the returned file path; :keyword bool strip_fallback_path: if ``True``, the leading path, if it's in **fallback_path** list, will be stripped from the returned file path. """ self._tool = str(tool) misc_.check_kwargs('ToolFinder()', kw, self._ctor_kwargs) self._kw = kw @property def tool(self): """Tool name, that was passed in to the c-tor as an argument. :rtype: str """ return self._tool def __call__(self, env): """Performs the actual search. :param env: a SCons environment; provides construction variables and the ``env.WhereIs()`` method to the :class:`.ToolFinder`. :return: depending on options chosen at object creation, a name or a path to the executable file found. If the program can't be found, ``None`` is returned. :rtype: str """ return self._search(env) def _whereis(self, env, prog, where): path = getattr(self, where) if path and not isinstance(path, str): # this trick enables variable substitution in list entries path = os.path.pathsep.join(path) return env.WhereIs(prog, path, self.pathext, self.reject) def _adjust_result(self, env, result, where): prog = env.subst(result[0]) strip = getattr(self, 'strip_%s' % where) if os.path.isabs(prog) or strip: return prog return result[1] def _search_in(self, env, where): progs = self.name if isinstance(progs, str): progs = [progs] for prog in progs: found = self._whereis(env, prog, where) if found: return self._adjust_result(env, (prog, found), where) return None def _search(self, env): for where in ('priority_path', 'path', 'fallback_path'): found = self._search_in(env, where) if found: return found return None @classmethod def _add_getter(cls, attr, default=None, **kw): if isinstance(default, property): default = default.fget kw['defaultattr'] = default.__name__ doc = """\ The value of **%(attr)s** keyword argument passed in to the constructor at object creation, or ``self.%(defaultattr)s`` if the argument was omitted. :rtype: %(rtype)s """ else: doc = """\ The value of **%(attr)s** keyword argument passed in to the constructor at object creation, or ``%(default)r`` if the argument was omitted. :rtype: %(rtype)s """ kw = dict({'doc': doc}, **kw) misc_.add_ro_dict_property(cls, '_kw', attr, default, **kw) TF = ToolFinder TF._add_getter('name', TF.tool, rtype='str') TF._add_getter('path', rtype='str,list') TF._add_getter('priority_path', [], rtype='str,list') TF._add_getter('fallback_path', [], rtype='str,list') TF._add_getter('pathext', rtype='str,list') TF._add_getter('reject', [], rtype='list') TF._add_getter('strip_path', True, rtype='bool') TF._add_getter('strip_priority_path', False, rtype='bool') TF._add_getter('strip_fallback_path', False, rtype='bool') del TF # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set ft=python et ts=4 sw=4:
[ "ptomulik@meil.pw.edu.pl" ]
ptomulik@meil.pw.edu.pl
f6325cdee89668b585f012a30c7130e6022150fc
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/clouddirectory_write_f/schema_delete.py
58f82c7195d72611e6c1e62d27b86b09d9f7b063
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
866
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html if __name__ == '__main__': """ apply-schema : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/clouddirectory/apply-schema.html create-schema : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/clouddirectory/create-schema.html publish-schema : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/clouddirectory/publish-schema.html update-schema : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/clouddirectory/update-schema.html """ write_parameter("clouddirectory", "delete-schema")
[ "hcseo77@gmail.com" ]
hcseo77@gmail.com
7fb7c4d5f15747a600819c85ad9266779fdb129c
a676d918b568964d475a3ea25c79d446b1783abf
/Chap0/project/ex16.py
cbb9237d4682e1be0fb5529a2f836c5ce46caa04
[]
no_license
AIHackerTest/SailingChen10_Py101-004
35d76d32e6a21c487ce8d48f974532fb38a05051
3c95e04f7d54529e897beec7652e089514ee6dd5
refs/heads/master
2021-05-15T00:32:35.407998
2017-09-12T08:31:02
2017-09-12T08:31:02
103,240,423
0
0
null
null
null
null
UTF-8
Python
false
false
731
py
# coding = utf-8 from sys import argv script, filename = argv print ("We're going to erase %r." % filename) print ("If you don't want that, hit CTRL-C (^C).") print ("If you do want that, hit RETURN.") input("yes or no: ") print ("Opening the file...") target = open(filename, 'w') print ("Truncating the file. Goodbye!") target.truncate() print ("Now I'm going to ask you for three lines.") line1 = input("line 1: ") line2 = input("line 2: ") line3 = input("line 3: ") print ("I'm going to write these to the file.") target.write(line1) target.write("\n") target.write(line2) target.write("\n") target.write(line3) target.write("\n") print ("And finally,we close it.") target.close()
[ "xiaowan5219@gmail.com" ]
xiaowan5219@gmail.com
9b5b03a445f19ee80e1454f2b69ec50d24fc9858
febeffe6ab6aaa33e3a92e2dbbd75783a4e32606
/ssseg/cfgs/annnet/cfgs_voc_resnet101os8.py
c5a99a673dced76b76fc8e87509c725ef4b0e15f
[ "MIT" ]
permissive
Junjun2016/sssegmentation
7bbc5d53abee1e0cc88d5e989e4cff5760ffcd09
bf7281b369e8d7fc2f8986caaeec3ec38a30c313
refs/heads/main
2023-02-04T22:09:13.921774
2020-12-23T06:28:56
2020-12-23T06:28:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,208
py
'''define the config file for voc and resnet101os8''' from .base_cfg import * # modify dataset config DATASET_CFG = DATASET_CFG.copy() DATASET_CFG['train'].update( { 'type': 'voc', 'set': 'trainaug', 'rootdir': '/data/VOCdevkit/VOC2012', } ) DATASET_CFG['test'].update( { 'type': 'voc', 'rootdir': '/data/VOCdevkit/VOC2012', } ) # modify dataloader config DATALOADER_CFG = DATALOADER_CFG.copy() # modify optimizer config OPTIMIZER_CFG = OPTIMIZER_CFG.copy() OPTIMIZER_CFG.update( { 'max_epochs': 60, } ) # modify losses config LOSSES_CFG = LOSSES_CFG.copy() # modify model config MODEL_CFG = MODEL_CFG.copy() MODEL_CFG.update( { 'num_classes': 21, } ) # modify common config COMMON_CFG = COMMON_CFG.copy() COMMON_CFG['train'].update( { 'backupdir': 'annnet_resnet101os8_voc_train', 'logfilepath': 'annnet_resnet101os8_voc_train/train.log', } ) COMMON_CFG['test'].update( { 'backupdir': 'annnet_resnet101os8_voc_test', 'logfilepath': 'annnet_resnet101os8_voc_test/test.log', 'resultsavepath': 'annnet_resnet101os8_voc_test/annnet_resnet101os8_voc_results.pkl' } )
[ "1159254961@qq.com" ]
1159254961@qq.com
8002b8bd33ebd7c6508328204e0bcaba4abfe848
c527df31f9daf06c36e8025b372d137ad9c1c4c7
/django/call_app/admin.py
e2561d3e10d41c1a4aa4e22c0d7feb735b07ee77
[]
no_license
Katerina964/callback
8dc7d5d230d095ec32ce1d69c4648f4564e99f87
741fa58779413845ccc4e478ccc2b952c6d000a0
refs/heads/master
2023-03-30T17:55:08.611493
2021-04-13T08:53:30
2021-04-13T08:53:30
295,951,947
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
from django.contrib import admin from .models import Crmaccount, Call, Customer admin.site.register(Crmaccount) admin.site.register(Call) admin.site.register(Customer)
[ "katrin.balakina@gmail.com" ]
katrin.balakina@gmail.com
c98f149bd94f32fc457a90250420211834c8d90c
a3d2620bbf25002c7b182600c2e40f8f06555e91
/django_time/lab13/order/migrations/0007_remove_product_product_views.py
c68818c51d3abadc681f55d7596f477885ffcfe3
[]
no_license
alejo8591/backend-lab
782736a82933f705f825a1194369bfe13e86c0ec
4a02a9552083a7c877e91b0f8b81e37a8650cf54
refs/heads/master
2016-09-03T03:53:43.878240
2015-11-26T06:35:38
2015-11-26T06:35:38
3,911,349
0
0
null
null
null
null
UTF-8
Python
false
false
361
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('order', '0006_product_product_views'), ] operations = [ migrations.RemoveField( model_name='product', name='product_views', ), ]
[ "alejo8591@gmail.com" ]
alejo8591@gmail.com
01994540ff9ece71215b866941314e6004992e91
0c6100dc16291986fab157ed0437f9203f306f1b
/1101- 1200/1124.py
d5f6e0e4c103af58a54d2712db288e17c2355229
[]
no_license
Matuiss2/URI-ONLINE
4c93c139960a55f7cc719d0a3dcd6c6c716d3924
6cb20f0cb2a6d750d58b826e97c39c11bf8161d9
refs/heads/master
2021-09-17T09:47:16.209402
2018-06-30T08:00:14
2018-06-30T08:00:14
110,856,303
13
1
null
null
null
null
UTF-8
Python
false
false
1,008
py
def f(l1, l2, r1, r2): # Processo dx = l1 - r1 - r2 dy = l2 - r1 - r2 if dx < 0 or dy < 0: return False # Se a soma dos raios for maior que um dos lados retorna falso, elimina vários casos return dx * dx + dy * dy >= (r1 + r2) * (r1 + r2) and min(l1, l2) >= 2 * max(r1, r2) # Valor bool, se couber volta True se não couber volta False def main(): while True: # Entrada data = input().split() # recebe o valor e separa l1 = int(data[0]) l2 = int(data[1]) r1 = int(data[2]) r2 = int(data[3]) if not (l1 + l2 + r1 + r2) > 0: # Se todos os valores forem 0, o programa fecha(seguindo as instruções) break # Saída if f(l1, l2, r1, r2): # Chama e retorna o valor da função anterior, se for True entra aqui e imprime S print("S") else: # Se for False entra aqui print("N") return 0 main() # Chama e retorna o valor da função main
[ "noreply@github.com" ]
Matuiss2.noreply@github.com
bb02514e4e44722f691e3de8784fab89c79f2dd0
c116a7ab1fb1ec460f526cf8cefe0abd9eac1584
/py/lib/utils/metrics.py
589ada85cb53607b1ba8cb38042382b3b9c77d89
[ "Apache-2.0" ]
permissive
ckunlun/LightWeightCNN
99a60b41d27a05bae6ad6ba7d2d537010f47726e
b3bed250520971c80bbc170958ff7f5b698be7cc
refs/heads/master
2022-10-09T02:24:54.620610
2020-06-08T08:34:25
2020-06-08T08:34:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,734
py
# -*- coding: utf-8 -*- """ @date: 2020/4/27 下午8:25 @file: metrics.py @author: zj @description: """ import torch from thop import profile from torchvision.models import AlexNet from models.squeeze_net import SqueezeNet from models.squeeze_net_bypass import SqueezeNetBypass def compute_num_flops(model): input = torch.randn(1, 3, 224, 224) macs, params = profile(model, inputs=(input,), verbose=False) # print(macs, params) GFlops = macs * 2.0 / pow(10, 9) params_size = params * 4.0 / 1024 / 1024 return GFlops, params_size def topk_accuracy(output, target, topk=(1,)): """ 计算前K个。N表示样本数,C表示类别数 :param output: 大小为[N, C],每行表示该样本计算得到的C个类别概率 :param target: 大小为[N],每行表示指定类别 :param topk: tuple,计算前top-k的accuracy :return: list """ assert len(output.shape) == 2 and output.shape[0] == target.shape[0] maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, largest=True, sorted=True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': for name in ['alexnet', 'squeezenet', 'squeezenet-bypass']: if name == 'alexnet': model = AlexNet() elif name == 'squeezenet': model = SqueezeNet() else: model = SqueezeNetBypass() gflops, params_size = compute_num_flops(model) print('{}: {:.3f} GFlops - {:.3f} MB'.format(name, gflops, params_size))
[ "505169307@qq.com" ]
505169307@qq.com
55bc765f2a5614073dcc33b1956bac232d9e27db
db52e7d3bcc78b60c8c7939bc95f07cab503b3d7
/GUI for NMT/runnmtui.py
bb81a21cd0de211568f7108da7ff99f4b1fb6ab0
[ "BSD-3-Clause" ]
permissive
krzwolk/GroundHog
e2d495254f5794fdbc5a0de51cf49c76e51fdc6a
3d3e6ec9b30f3ae22bda28914c637c10050a472b
refs/heads/master
2020-12-24T18:55:18.983124
2016-02-09T17:20:05
2016-02-09T17:20:05
51,382,746
0
0
null
2016-02-09T17:09:35
2016-02-09T17:09:35
null
UTF-8
Python
false
false
210
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Description: """ from __future__ import division from __future__ import absolute_import from __future__ import print_function from nmtui import main main()
[ "krzysztof@wolk.pl" ]
krzysztof@wolk.pl
256a7ddfba37eb808339ceb2846b338beba828fe
30e8e9365725fbdd7b0ee6660595eb8fa97b4a16
/Semi-Supervised Learning_GAN/code.py
a17a4879c9e6758d1716dbf6fe64f475233c9117
[]
no_license
moileehyeji/Discussion
edf0945c75a45998b13f4a4fa214587ed9bc5a75
d502f45edadb178f14a21201707a6b1651932499
refs/heads/main
2023-05-06T15:15:00.567930
2021-06-04T05:59:20
2021-06-04T05:59:20
373,735,724
0
0
null
null
null
null
UTF-8
Python
false
false
8,125
py
# https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/sgan/sgan.py import argparse import os import numpy as np import math import torchvision.transforms as transforms from torchvision.utils import save_image from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch os.makedirs("images", exist_ok=True) parser = argparse.ArgumentParser() parser.add_argument("--n_epochs", type=int, default=5, help="number of epochs of training") parser.add_argument("--batch_size", type=int, default=64, help="size of the batches") parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient") parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation") parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space") parser.add_argument("--num_classes", type=int, default=10, help="number of classes for dataset") parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension") parser.add_argument("--channels", type=int, default=1, help="number of image channels") parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling") opt = parser.parse_args() print(opt) cuda = True if torch.cuda.is_available() else False def weights_init_normal(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm") != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.label_emb = nn.Embedding(opt.num_classes, opt.latent_dim) self.init_size = opt.img_size // 4 # Initial size before upsampling self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2)) self.conv_blocks = nn.Sequential( nn.BatchNorm2d(128), nn.Upsample(scale_factor=2), nn.Conv2d(128, 128, 3, stride=1, padding=1), nn.BatchNorm2d(128, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(128, 64, 3, stride=1, padding=1), nn.BatchNorm2d(64, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, opt.channels, 3, stride=1, padding=1), nn.Tanh(), ) def forward(self, noise): out = self.l1(noise) out = out.view(out.shape[0], 128, self.init_size, self.init_size) img = self.conv_blocks(out) return img class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() def discriminator_block(in_filters, out_filters, bn=True): """Returns layers of each discriminator block""" block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)] if bn: block.append(nn.BatchNorm2d(out_filters, 0.8)) return block self.conv_blocks = nn.Sequential( *discriminator_block(opt.channels, 16, bn=False), *discriminator_block(16, 32), *discriminator_block(32, 64), *discriminator_block(64, 128), ) # The height and width of downsampled image ds_size = opt.img_size // 2 ** 4 # Output layers self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid()) self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.num_classes + 1), nn.Softmax()) def forward(self, img): out = self.conv_blocks(img) out = out.view(out.shape[0], -1) validity = self.adv_layer(out) label = self.aux_layer(out) return validity, label # Loss functions adversarial_loss = torch.nn.BCELoss() auxiliary_loss = torch.nn.CrossEntropyLoss() # Initialize generator and discriminator generator = Generator() discriminator = Discriminator() if cuda: generator.cuda() discriminator.cuda() adversarial_loss.cuda() auxiliary_loss.cuda() # Initialize weights generator.apply(weights_init_normal) discriminator.apply(weights_init_normal) # Configure data loader # os.makedirs("../../data/mnist", exist_ok=True) dataloader = torch.utils.data.DataLoader( datasets.MNIST( "../../data/mnist", train=True, download=True, transform=transforms.Compose( [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])] ), ), batch_size=opt.batch_size, shuffle=True, ) # Optimizers optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor # ---------- # Training # ---------- for epoch in range(opt.n_epochs): for i, (imgs, labels) in enumerate(dataloader): batch_size = imgs.shape[0] # Adversarial ground truths valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False) fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False) fake_aux_gt = Variable(LongTensor(batch_size).fill_(opt.num_classes), requires_grad=False) # Configure input real_imgs = Variable(imgs.type(FloatTensor)) labels = Variable(labels.type(LongTensor)) # ----------------- # Train Generator # ----------------- optimizer_G.zero_grad() # Sample noise and labels as generator input z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim)))) # Generate a batch of images gen_imgs = generator(z) # Loss measures generator's ability to fool the discriminator validity, _ = discriminator(gen_imgs) g_loss = adversarial_loss(validity, valid) g_loss.backward() optimizer_G.step() # --------------------- # Train Discriminator # --------------------- optimizer_D.zero_grad() # Loss for real images real_pred, real_aux = discriminator(real_imgs) d_real_loss = (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels)) / 2 # Loss for fake images fake_pred, fake_aux = discriminator(gen_imgs.detach()) d_fake_loss = (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, fake_aux_gt)) / 2 # Total discriminator loss d_loss = (d_real_loss + d_fake_loss) / 2 # Calculate discriminator accuracy pred = np.concatenate([real_aux.data.cpu().numpy(), fake_aux.data.cpu().numpy()], axis=0) gt = np.concatenate([labels.data.cpu().numpy(), fake_aux_gt.data.cpu().numpy()], axis=0) d_acc = np.mean(np.argmax(pred, axis=1) == gt) d_loss.backward() optimizer_D.step() print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]" % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), 100 * d_acc, g_loss.item()) ) batches_done = epoch * len(dataloader) + i if batches_done % opt.sample_interval == 0: save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)
[ "noreply@github.com" ]
moileehyeji.noreply@github.com
a74b092a468de49c8bc506b98a8a0ff2bf39b929
2ce18a0d8e106065b57136927e3e73b4fa82f8fa
/list-comprehension/changing-generators.py
29c62ce4f684f20d09f39b639c0d5fa5b0a8ddf9
[]
no_license
ColinFendrick/python-data-science-toolbox
3eac02f3e65cf7e63f7c297f06a35ee7cbe92216
83a3d4614ef825302f1881b5b9a59e65db583a00
refs/heads/master
2021-01-02T19:06:18.395930
2020-02-17T17:07:44
2020-02-17T17:07:44
239,757,083
0
0
null
null
null
null
UTF-8
Python
false
false
151
py
lannister = ['cersei', 'jaime', 'tywin', 'tyrion', 'joffrey'] lengths = (len(person) for person in lannister) for value in lengths: print(value)
[ "colin.fendrick@gmail.com" ]
colin.fendrick@gmail.com
5b96b98122a2782bb9492808fa86015dbce11b7a
8b5d68c9398186cae64dbcc5b293d62d69e1921d
/src/python/knowledge_base/readers/structured_data_reader.py
7036de83e51c53d32b65ca69040eabecd3cc8e46
[ "Apache-2.0" ]
permissive
reynoldsm88/Hume
ec99df21e9b9651ec3cacfb8655a510ba567abc9
79a4ae3b116fbf7c9428e75a651753833e5bc137
refs/heads/master
2020-07-24T21:28:39.709145
2019-07-10T15:43:24
2019-07-10T15:43:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
295
py
import json class StructuredDataReader: def __init__(self): pass def read(self, kb, structured_kb_file): print "StructuredDataReader READ" with open(structured_kb_file) as f: structured_kb = json.load(f) kb.structured_kb = structured_kb
[ "hqiu@bbn.com" ]
hqiu@bbn.com
1a329ea8b2e8fde9c9df6ee1fd947b58d49244a3
f42affa951cd292e42fa47b4f4c5bfdab5c21eeb
/paddle.py
5a3c751610cf1e19d060b380d81001011fc1d8fc
[]
no_license
thepixelboy/pong-game
27e5432c9ee0080d2db3f2909591a0d2ef8d35c5
d79fea5f8fd85dc06b906375587514a317d32bae
refs/heads/main
2023-05-06T22:22:03.107087
2021-05-30T12:11:50
2021-05-30T12:11:50
372,206,257
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
from turtle import Turtle DEFAULT_MOVE = 20 class Paddle(Turtle): def __init__(self, position): super().__init__() self.position = position self.create_paddle() def create_paddle(self): self.shape("square") self.color("white") self.penup() self.shapesize(stretch_wid=5, stretch_len=1) self.goto(self.position) def go_up(self): new_y_position = self.ycor() + DEFAULT_MOVE self.goto(self.xcor(), new_y_position) def go_down(self): new_y_position = self.ycor() - DEFAULT_MOVE self.goto(self.xcor(), new_y_position)
[ "34570952+thepixelboy@users.noreply.github.com" ]
34570952+thepixelboy@users.noreply.github.com
d029186d44f62f98b226e4323b39b616d5f990a0
fb97ccbd6aa0933f991c429c0e30081ce0f1fd90
/Python/_interview_cake/9_valid_bst.py
596335f493c2f0de60817cd5c0c1ec068d7cae43
[]
no_license
01-Jacky/PracticeProblems
a6c9b1dabc794ca52624870e48dcb84b1b69af67
5714fdb2d8a89a68d68d07f7ffd3f6bcff5b2ccf
refs/heads/master
2022-03-23T12:24:13.834902
2019-12-31T08:11:19
2019-12-31T08:11:19
81,617,066
0
0
null
null
null
null
UTF-8
Python
false
false
1,111
py
""" Validate a BST 1) Max of left sub tree must be < than root value Min of right sub tree must be > than root value """ def is_bst(root, min=float('-inf'), max=float('inf')): if root is None: return True return min < root.value < max and \ is_bst(root.left, min, root.value) and \ is_bst(root.right, root.value, max) def is_binary_search_tree(root): node_and_bounds_stack = [(root, -float('inf'), float('inf'))] # depth-first traversal while len(node_and_bounds_stack): node, lower_bound, upper_bound = node_and_bounds_stack.pop() if (node.value <= lower_bound) or (node.value >= upper_bound): return False if node.left: # this node must be less than the current node node_and_bounds_stack.append((node.left, lower_bound, node.value)) if node.right: # this node must be greater than the current node node_and_bounds_stack.append((node.right, node.value, upper_bound)) # if none of the nodes were invalid, return true (at this point we have checked all nodes) return True
[ "hklee310@gmail.com" ]
hklee310@gmail.com
7a460d9abfd96d7fe1447f44197a372f74d342bc
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_overcompensating.py
2a2eb667f086df830e2666df3c95521102fec4ca
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
from xai.brain.wordbase.verbs._overcompensate import _OVERCOMPENSATE #calss header class _OVERCOMPENSATING(_OVERCOMPENSATE, ): def __init__(self,): _OVERCOMPENSATE.__init__(self) self.name = "OVERCOMPENSATING" self.specie = 'verbs' self.basic = "overcompensate" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
d99d576a058ef5956106984d6bfadfa650d180fb
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03167/s367868270.py
31abb3c30c5fcaa1420f7b86a38e2c7adaa479cf
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
541
py
from collections import deque h,w=map(int,input().split()) maze=[[i for i in input()] for _ in range(h)] que=deque([[0,0]]) visited=[[0 for _ in range(w)] for _ in range(h)] visited[0][0]=1 while que: n=que.popleft() x,y=n[0],n[1] if n==(h-1,w-1): break for i, j in [(1,0), (0,1)]: if (x+i >=w) or (y+j >=h) or maze[y+j][x+i] == '#': continue if visited[y+j][x+i] == 0: que.append([x+i,y+j]) visited[y+j][x+i] += visited[y][x] print(visited[h-1][w-1]%(10**9+7))
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
81fe7eadd2418caa75ad8188bf1b5777398c7eb8
24f664aa2344d4f5d5e7b048ac4e85231715c4c8
/datasets/github/scrape_repos/indexer.py
dd7a16e3b4940538eab982c9b84e8157e3e56d50
[]
no_license
speycode/clfuzz
79320655e879d1e0a06a481e8ec2e293c7c10db7
f2a96cf84a7971f70cb982c07b84207db407b3eb
refs/heads/master
2020-12-05T13:44:55.486419
2020-01-03T14:14:03
2020-01-03T14:15:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,203
py
# Copyright 2018, 2019 Chris Cummins <chrisc.101@gmail.com>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Index ContentFiles from cloned GitHub repos.""" import multiprocessing import os import pathlib import random from datasets.github.scrape_repos import github_repo from datasets.github.scrape_repos.preprocessors import preprocessors from datasets.github.scrape_repos.proto import scrape_repos_pb2 from labm8.py import app from labm8.py import humanize from labm8.py import pbutil FLAGS = app.FLAGS app.DEFINE_integer( "indexer_processes", os.cpu_count(), "The number of indexer processes to run." ) app.DEFINE_string("clone_list", None, "The path to a LanguageCloneList file.") def ImportFromLanguage( language: scrape_repos_pb2.LanguageToClone, pool: multiprocessing.Pool ) -> None: """Import contentfiles from a language specification. Args: language: The language to import. pool: A multiprocessing pool. Raises: ValueError: If importer field not set. """ if not language.importer: raise ValueError("LanguageToClone.importer field not set") app.Log(1, "Enumerating all repos ...") all_repos = [ github_repo.GitHubRepo(pathlib.Path(language.destination_directory / f)) for f in pathlib.Path(language.destination_directory).iterdir() if f.name.endswith(".pbtxt") ] app.Log(1, "Pruning indexed repos ...") num_repos = len(all_repos) repos_to_import = [repo for repo in all_repos if not repo.IsIndexed()] num_todo = len(repos_to_import) num_pruned = num_repos - num_todo random.shuffle(repos_to_import) app.Log( 1, "Importing %s of %s %s repos ...", humanize.Commas(num_todo), humanize.Commas(num_repos), language.language.capitalize(), ) for i, repo in enumerate(repos_to_import): repo.Index( list(language.importer), pool, github_repo.IndexProgress(num_pruned + i, num_repos), ) def main(argv): """Main entry point.""" if len(argv) > 1: raise app.UsageError("Unknown arguments '{}'".format(", ".join(argv[1:]))) clone_list_path = pathlib.Path(FLAGS.clone_list or "") if not clone_list_path.is_file(): raise app.UsageError("--clone_list is not a file.") clone_list = pbutil.FromFile( clone_list_path, scrape_repos_pb2.LanguageCloneList() ) # Error early if the config contains invalid preprocessors. for language in clone_list.language: for importer in language.importer: [preprocessors.GetPreprocessorFunction(p) for p in importer.preprocessor] pool = multiprocessing.Pool(FLAGS.indexer_processes) for language in clone_list.language: ImportFromLanguage(language, pool) if __name__ == "__main__": app.RunWithArgs(main)
[ "chrisc.101@gmail.com" ]
chrisc.101@gmail.com
ab575baf490fda95031b2f5688a47b4869525d35
7d172bc83bc61768a09cc97746715b8ec0e13ced
/odoo/migrations/0006_auto_20170628_0402.py
09a34635f361cf04be7b163f3380f627c20f235a
[]
no_license
shivam1111/jjuice
a3bcd7ee0ae6647056bdc62ff000ce6e6af27594
6a2669795ed4bb4495fda7869eeb221ed6535582
refs/heads/master
2020-04-12T05:01:27.981792
2018-11-08T13:00:49
2018-11-08T13:00:49
81,114,622
2
0
null
null
null
null
UTF-8
Python
false
false
406
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2017-06-28 04:02 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('odoo', '0005_auto_20170618_1356'), ] operations = [ migrations.AlterModelTable( name='promotioncodes', table='promotion_codes', ), ]
[ "shivam1111@gmail.com" ]
shivam1111@gmail.com
ace37ff10fc593ff551992e0b65900a9501b6d8a
e53c7d270e26bd0fac9dedadff9b4a4ff99110ec
/posts/views.py
7d49db83c9a42fea1d31c85f873eff532ba7c0cb
[]
no_license
kydzoster/django-message_board
34b33c0c240bd1dbb21bb0500db791411cca8cc6
df8f038fc94b02e9ec9c51b8aab8307e1bc75848
refs/heads/master
2022-08-01T09:54:13.686456
2020-05-27T14:17:34
2020-05-27T14:17:34
267,337,171
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
from django.shortcuts import render # Create your views here. from django.views.generic import ListView from .models import Post class HomePageView(ListView): model = Post template_name = 'home.html' context_object_name = 'all_posts_list'
[ "kydzoster@gmail.com" ]
kydzoster@gmail.com
d0ae70451d70c0b7ffb35207c06faf07fc9c01d9
5801d65a93670ee89fc92fc59c3948765f8c028f
/loan_management/loan_management/doctype/customer_expenses/customer_expenses.py
7c1e3f0b7e1fa4eb980bd78431ed0448b4f6de7a
[ "MIT" ]
permissive
staumoepeau/customer_loan
a9205476aa4646ba08f8531c27ecd43a21165f12
bb9f42160bc1e17085f000b15810892337dd0465
refs/heads/master
2021-01-22T04:23:16.804892
2018-11-27T21:09:28
2018-11-27T21:09:28
92,459,369
0
2
null
null
null
null
UTF-8
Python
false
false
269
py
# -*- coding: utf-8 -*- # Copyright (c) 2018, Sione Taumoepeau and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class CustomerExpenses(Document): pass
[ "root@localhost.localdomain" ]
root@localhost.localdomain
57800186771cb6665475f9ebaa02f58d2a3cb52f
a570561df345c055a8763aefb63a153ed2a4d002
/django/paper_tracker/papers/urls.py
9a3fbdfcd3d4f5104ea9f1c501953d1a8478b644
[ "MIT" ]
permissive
kmod/paper_tracker
7b089613172788360d5401434e58a31740062577
43dc10286e8ea3d38b888403091d18549a8106d6
refs/heads/master
2020-12-24T12:34:32.130210
2016-11-29T22:52:36
2016-11-29T22:52:36
72,976,695
0
0
null
null
null
null
UTF-8
Python
false
false
715
py
from django.conf.urls import url from . import views urlpatterns = [ url(r'^papers$', views.papers_index, name='papers_index'), url(r'^$', views.collections_index, name='collections_index'), url(r'^collection/(?P<collection_id>[0-9]+)/$', views.collection, name='collection'), url(r'^paper/new$', views.paper_new, name='paper_new'), # url(r'^paper/(?P<paper_id>[0-9]+)$', views.paper, name='paper'), url(r'^paper/(?P<paper_id>[0-9]+)/find_pdf$', views.paper_findpdf, name='paper_findpdf'), url(r'^paper/(?P<paper_id>[0-9]+)/delete$', views.paper_delete, name='paper_delete'), url(r'^collection/(?P<collection_id>[0-9]+)/edit/(?P<paper_id>[0-9]+)$', views.cpaper, name='cpaper'), ]
[ "kevmod@gmail.com" ]
kevmod@gmail.com
c2a5bcff0bcc1420d7abd3fe87de544b2d01d220
5a7a3447d434a458a7bb63f2aa11b64c284d5492
/thread-ing/thread-test.py
837138ed0f016cd25779cf75bbc034ccf39bbfbd
[]
no_license
woshimayi/mypython
35792e12036a7a05f12d3ef7006637b2b03f0e2e
7f1eb38e8585bf6d2f21d3ad0f64dace61425875
refs/heads/master
2023-09-01T08:59:12.301836
2023-08-30T05:30:54
2023-08-30T05:30:54
130,017,052
4
0
null
2018-12-02T16:18:14
2018-04-18T06:50:36
HTML
UTF-8
Python
false
false
1,130
py
#!/usr/bin/env python # encoding: utf-8 ''' @author: woshimayi @license: (C) Copyright 2015-2049, Node Supply Chain Manager Corporation Limited. @contact: xxxxxxxx@qq.com @software: garner @file: thread-test.py @time: 2020/8/6 17:12 @desc: ''' import threading import time exitFlag = 0 class myThread (threading.Thread): def __init__(self, threadID, name, counter): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.counter = counter def run(self): print ("开始线程:" + self.name) print_time(self.name, self.counter, 5) print ("退出线程:" + self.name) def print_time(threadName, delay, counter): while counter: print(exitFlag) if exitFlag: threadName.exit() time.sleep(delay) print ("%s: %s" % (threadName, time.ctime(time.time()))) counter -= 1 # 创建新线程 thread1 = myThread(1, "Thread-1", 1) thread2 = myThread(2, "Thread-2", 2) # 开启新线程 thread1.start() thread2.start() thread1.join() thread2.join()
[ "woshidamayi@Gmail.com" ]
woshidamayi@Gmail.com
26a8e7dd07b21f480488e1f4a850785dfd0f4f0d
f98c174d9011ed29cd8d304f0e4d7042b00d0233
/automaton/lib/autoplatform.py
40fe96107a47a44e1797c0eae35c56deb42b1d0e
[ "MIT" ]
permissive
nemec/Automaton
10755e544a2004b31b55bf213c516001955a89f1
eea2f89dc10031fba45c80eb63053480dfc3543f
refs/heads/master
2020-12-24T15:04:49.102660
2016-01-04T20:23:35
2016-01-04T20:23:35
703,746
7
1
null
null
null
null
UTF-8
Python
false
false
2,318
py
import platform as pl import os # pylint: disable-msg=C0103 # This module deals with platform-specific paths # Set the platform we are currently running on if pl.system().lower().startswith('windows'): platform = 'windows' elif pl.system().lower().startswith('darwin'): platform = 'mac' else: platform = 'linux' def get_dir_hierarchy(): """An ordered hierarchy of directories to use.""" return (personaldir(), systemdir(), localdir()) def personaldir(): """ The personal directory for settings storage. The settings location in the "home" directory for a user. """ if platform == 'windows': return os.path.join(os.environ['APPDATA'], 'automaton') else: return os.path.expanduser('~/.automaton/') def systemdir(): """ The system directory for settings storage. Usually the default "/etc" directory. """ if platform == 'windows': return os.path.join(os.environ['ProgramFiles'], 'automaton') else: return "/etc/automaton/" def localdir(): """ The local directory for settings storage. Located in the same place as the rest of the Automaton modules. Method for getting dir taken from wxPython project """ root = __file__ if os.path.islink(root): root = os.path.realpath(root) directory = os.path.dirname(os.path.abspath(root)) return os.path.normpath(os.path.join(directory, "../settings/")) def get_existing_file(filename, strict=False): """ Searches through the directory hierarchy for a file/path named "filename" If 'strict' is false, it returns a path where the file can be placed if there is no existing file. If 'strict' is true, returns None there is no existing file. """ path = None # First check to see if the queue file exists anywhere for d in get_dir_hierarchy(): if os.path.exists(d): filepath = os.path.join(d, filename) if os.access(filepath, os.W_OK): path = filepath break # Now try to create a queue file in one of the dirs if path is None and not strict: for directory in get_dir_hierarchy(): if not os.path.exists(directory): try: os.mkdir(directory) except IOError: pass filepath = os.path.join(directory, filename) if os.access(directory, os.W_OK): path = filepath break return path
[ "djnemec@gmail.com" ]
djnemec@gmail.com
afb78213b6b7a098c79cada1633fcf560bcdde47
f156f2d94c1334b60afaab93fedb25da937af7a5
/world/models.py
90bbe5d05af7a6b3c2c4eb9441a8121432a07ae1
[]
no_license
zeroam/geodjango
74e0484263b23a024f453ec5c7fa68da3a2ccbc5
b56a79ac22a126f11bbf6addbc734b6714f516cb
refs/heads/master
2020-04-19T09:32:28.141513
2019-01-29T07:58:18
2019-01-29T07:58:18
168,114,108
0
0
null
null
null
null
UTF-8
Python
false
false
894
py
from django.contrib.gis.db import models class WorldBorder(models.Model): # Regular Django fields corresponding to the attributes in the world borders shapefile. name = models.CharField(max_length=50) area = models.IntegerField() pop2005 = models.IntegerField('Polulation 2005') fips = models.CharField('FIPS Code', max_length=2) iso2 = models.CharField('2 Digit ISO', max_length=2) iso3 = models.CharField('3 Digit ISO', max_length=3) un = models.IntegerField('United Nation Code') region = models.IntegerField('Region Code') subregion = models.IntegerField('Sub-Region Code') lon = models.FloatField() lat = models.FloatField() # GeoDjango-specific: a geometry field (MultiPolygonField) mpoly = models.MultiPolygonField() # Returns the string represenation of the modle. def __str__(self): return self.name
[ "imdff0803@gmail.com" ]
imdff0803@gmail.com
d70057826d20d1c2123c88d7b0b4fc2374b67a16
49536aafb22a77a6caf249c7fadef46d63d24dfe
/tensorflow/tensorflow/python/kernel_tests/matrix_solve_op_test.py
46c0c0de944b57256fb9fa5f616169edea2a8e3b
[ "Apache-2.0" ]
permissive
wangzhi01/deeplearning-1
4e5ad93f0d9ecd302b74352f80fe1fa6ae70bf0d
46ab82253d956953b8aa98e97ceb6cd290e82288
refs/heads/master
2020-05-28T03:14:55.687567
2018-09-12T16:52:09
2018-09-12T16:52:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,173
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.math_ops.matrix_solve.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class MatrixSolveOpTest(test.TestCase): def _verifySolve(self, x, y, batch_dims=None): for np_type in [np.float32, np.float64, np.complex64, np.complex128]: if np_type == np.float32 or np_type == np.complex64: tol = 1e-5 else: tol = 1e-12 for adjoint in False, True: if np_type is [np.float32, np.float64]: a = x.real().astype(np_type) b = y.real().astype(np_type) else: a = x.astype(np_type) b = y.astype(np_type) a_np = np.conj(np.transpose(a)) if adjoint else a if batch_dims is not None: a = np.tile(a, batch_dims + [1, 1]) a_np = np.tile(a_np, batch_dims + [1, 1]) b = np.tile(b, batch_dims + [1, 1]) np_ans = np.linalg.solve(a_np, b) for use_placeholder in False, True: with self.test_session(use_gpu=True) as sess: if use_placeholder: a_ph = array_ops.placeholder(dtypes.as_dtype(np_type)) b_ph = array_ops.placeholder(dtypes.as_dtype(np_type)) tf_ans = linalg_ops.matrix_solve(a_ph, b_ph, adjoint=adjoint) out = sess.run(tf_ans, {a_ph: a, b_ph: b}) else: tf_ans = linalg_ops.matrix_solve(a, b, adjoint=adjoint) out = tf_ans.eval() self.assertEqual(tf_ans.get_shape(), out.shape) self.assertEqual(np_ans.shape, out.shape) self.assertAllClose(np_ans, out, atol=tol, rtol=tol) def _generateMatrix(self, m, n): matrix = (np.random.normal(-5, 5, m * n).astype(np.complex128).reshape([m, n])) matrix.imag = (np.random.normal(-5, 5, m * n).astype(np.complex128).reshape( [m, n])) return matrix def testSolve(self): for n in 1, 2, 4, 9: matrix = self._generateMatrix(n, n) for nrhs in 1, 2, n: rhs = self._generateMatrix(n, nrhs) self._verifySolve(matrix, rhs) def testSolveBatch(self): for n in 2, 5: matrix = self._generateMatrix(n, n) for nrhs in 1, n: rhs = self._generateMatrix(n, nrhs) for batch_dims in [[2], [2, 2], [7, 4]]: self._verifySolve(matrix, rhs, batch_dims=batch_dims) def testNonSquareMatrix(self): # When the solve of a non-square matrix is attempted we should return # an error with self.test_session(use_gpu=True): with self.assertRaises(ValueError): matrix = constant_op.constant([[1., 2., 3.], [3., 4., 5.]]) linalg_ops.matrix_solve(matrix, matrix) def testWrongDimensions(self): # The matrix and right-hand sides should have the same number of rows. with self.test_session(use_gpu=True): matrix = constant_op.constant([[1., 0.], [0., 1.]]) rhs = constant_op.constant([[1., 0.]]) with self.assertRaises(ValueError): linalg_ops.matrix_solve(matrix, rhs) def testNotInvertible(self): # The input should be invertible. with self.test_session(use_gpu=True): with self.assertRaisesOpError("Input matrix is not invertible."): # All rows of the matrix below add to zero matrix = constant_op.constant([[1., 0., -1.], [-1., 1., 0.], [0., -1., 1.]]) linalg_ops.matrix_solve(matrix, matrix).eval() def testConcurrent(self): with self.test_session(use_gpu=True) as sess: all_ops = [] for adjoint_ in False, True: lhs1 = random_ops.random_normal([3, 3], seed=42) lhs2 = random_ops.random_normal([3, 3], seed=42) rhs1 = random_ops.random_normal([3, 3], seed=42) rhs2 = random_ops.random_normal([3, 3], seed=42) s1 = linalg_ops.matrix_solve(lhs1, rhs1, adjoint=adjoint_) s2 = linalg_ops.matrix_solve(lhs2, rhs2, adjoint=adjoint_) all_ops += [s1, s2] val = sess.run(all_ops) self.assertAllEqual(val[0], val[1]) self.assertAllEqual(val[2], val[3]) class MatrixSolveBenchmark(test.Benchmark): matrix_shapes = [ (4, 4), (10, 10), (16, 16), (101, 101), (256, 256), (1001, 1001), (1024, 1024), (2048, 2048), (513, 4, 4), (513, 16, 16), (513, 256, 256), ] def _GenerateTestData(self, matrix_shape, num_rhs): batch_shape = matrix_shape[:-2] matrix_shape = matrix_shape[-2:] assert matrix_shape[0] == matrix_shape[1] n = matrix_shape[0] matrix = (np.ones(matrix_shape).astype(np.float32) / (2.0 * n) + np.diag(np.ones(n).astype(np.float32))) rhs = np.ones([n, num_rhs]).astype(np.float32) matrix = variables.Variable( np.tile(matrix, batch_shape + (1, 1)), trainable=False) rhs = variables.Variable( np.tile(rhs, batch_shape + (1, 1)), trainable=False) return matrix, rhs def benchmarkMatrixSolveOp(self): run_gpu_test = test.is_gpu_available(True) for adjoint in False, True: for matrix_shape in self.matrix_shapes: for num_rhs in 1, 2, matrix_shape[-1]: with ops.Graph().as_default(), \ session.Session() as sess, \ ops.device("/cpu:0"): matrix, rhs = self._GenerateTestData(matrix_shape, num_rhs) x = linalg_ops.matrix_solve(matrix, rhs, adjoint=adjoint) variables.global_variables_initializer().run() self.run_op_benchmark( sess, control_flow_ops.group(x), min_iters=25, store_memory_usage=False, name=("matrix_solve_cpu_shape_{matrix_shape}_num_rhs_{num_rhs}_" "adjoint_{adjoint}").format( matrix_shape=matrix_shape, num_rhs=num_rhs, adjoint=adjoint)) if run_gpu_test: with ops.Graph().as_default(), \ session.Session() as sess, \ ops.device("/gpu:0"): matrix, rhs = self._GenerateTestData(matrix_shape, num_rhs) x = linalg_ops.matrix_solve(matrix, rhs, adjoint=adjoint) variables.global_variables_initializer().run() self.run_op_benchmark( sess, control_flow_ops.group(x), min_iters=25, store_memory_usage=False, name=("matrix_solve_gpu_shape_{matrix_shape}_num_rhs_" "{num_rhs}_adjoint_{adjoint}").format( matrix_shape=matrix_shape, num_rhs=num_rhs, adjoint=adjoint)) if __name__ == "__main__": test.main()
[ "hanshuobest@163.com" ]
hanshuobest@163.com
284a051b4199ebc1e0859e2bc7ce26faacac59c5
b7a97c2919807983cd418d9262a1246fff9d95a1
/apps/feeder/models/order.py
77d0d82a6596d396f812baa2efc04c2fd78f327f
[]
no_license
PUYUP/kirimsaran
da2f439c70979ab88ef2e62e3b2a73c2278ce077
250dddddc3d22429c26eed6bfeaf054666f0c110
refs/heads/main
2023-08-04T10:11:23.016982
2021-09-29T00:59:11
2021-09-29T00:59:11
397,851,918
0
0
null
null
null
null
UTF-8
Python
false
false
4,508
py
from django.core.validators import RegexValidator from django.db import models, transaction from django.conf import settings from django.apps import apps from django.utils.translation import ugettext_lazy as _ from .abstract import AbstractCommonField from ..utils import save_random_identifier class AbstractOrder(AbstractCommonField): user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='orders' ) broadcast = models.ForeignKey( 'feeder.Broadcast', on_delete=models.SET_NULL, related_name='orders', null=True, blank=True ) fragment = models.ForeignKey( 'feeder.Fragment', on_delete=models.SET_NULL, related_name='orders', null=True, blank=True ) identifier = models.CharField( max_length=7, editable=False, validators=[ RegexValidator( regex='^[a-zA-Z0-9]*$', message=_("Can only contain the letters a-Z and 0-9."), code='invalid_identifier' ), ] ) class Meta: abstract = True app_label = 'feeder' ordering = ['-create_at'] def __str__(self) -> str: return self.broadcast.label @transaction.atomic def save(self, *args, **kwargs): # Generate random identifier if not self.pk and not self.identifier: # We pass the model instance that is being saved self.identifier = save_random_identifier(self) return super().save(*args, **kwargs) @transaction.atomic def insert_meta(self, meta_dict): OrderMeta = apps.get_registered_model('feeder', 'OrderMeta') bulk_meta = [] for meta in meta_dict: o = OrderMeta(order=self, **meta) bulk_meta.append(o) if len(meta_dict) > 0: try: OrderMeta.objects.bulk_create( bulk_meta, ignore_conflicts=False ) except Exception as e: print(e) @transaction.atomic def insert_order_item(self, item_dict): OrderItem = apps.get_registered_model('feeder', 'OrderItem') bulk_item = [] for item in item_dict: target = item.get('target', None) if target: o = OrderItem(order=self, target=target) bulk_item.append(o) if len(bulk_item) > 0: try: OrderItem.objects.bulk_create( bulk_item, ignore_conflicts=False ) except Exception as e: print(e) class AbstractOrderMeta(AbstractCommonField): order = models.ForeignKey( 'feeder.Order', on_delete=models.CASCADE, related_name='metas' ) meta_key = models.CharField(max_length=255) meta_value = models.TextField() class Meta: abstract = True app_label = 'feeder' ordering = ['-create_at'] def __str__(self) -> str: return self.meta_key class OrderItemManager(models.Manager): @transaction.atomic def bulk_create(self, objs, **kwargs): for obj in objs: target = getattr(obj, 'target', None) if target: setattr(obj, 'price', target.price) setattr(obj, 'method', target.method) setattr(obj, 'value', target.value) return super().bulk_create(objs, **kwargs) class AbstractOrderItem(AbstractCommonField): order = models.ForeignKey( 'feeder.Order', on_delete=models.CASCADE, related_name='items' ) target = models.ForeignKey( 'feeder.Target', on_delete=models.SET_NULL, related_name='items', null=True, blank=True ) price = models.IntegerField(default=0) method = models.CharField(max_length=255) value = models.CharField(max_length=255) objects = OrderItemManager() class Meta: abstract = True app_label = 'feeder' ordering = ['-create_at'] def __str__(self) -> str: return str(self.price) @transaction.atomic def save(self, *args, **kwargs): if not self.pk: self.price = self.target.price self.method = self.target.method self.value = self.target.value return super().save(*args, **kwargs)
[ "hellopuyup@gmail.com" ]
hellopuyup@gmail.com
9cbf73b313ceadb9a84a8983a41d3478ed5d80c4
bd4144e919786b4aded4345a2a69ed79e0922946
/1월 3주차/공통조상.py
2f554303324d304c1362d167d0514050064e797d
[]
no_license
2020-ASW/kwoneyng-Park
670ee027a77c1559f808a51aaf58f27ab3bb85b9
3ef556889bbf3f2762c01fdfd10b59869d5e912f
refs/heads/master
2023-05-14T16:14:04.227511
2021-06-11T08:00:37
2021-06-11T08:00:37
321,286,504
0
0
null
null
null
null
UTF-8
Python
false
false
1,294
py
from math import log2 def makeTree(cur, parent): depth[cur] = depth[parent] + 1 # 자식노드 차수가 부모노드 + 1 dp[cur][0] = parent for i in range(1,mxL): upper = dp[cur][i-1] #1 2^n if upper == 0: break dp[cur][i] = dp[upper][i-1] # dp[13][2] = dp[6][1] for child in narr[cur]: cnt[cur] += makeTree(child, cur) return cnt[cur] def find(a,b): if depth[a] == depth[b]: # start for i in range(mxL): if dp[a][i] == dp[b][i]: if i == 0: return dp[a][0] return find(dp[a][i-1], dp[b][i-1]) if depth[a] < depth[b]: a,b = b,a for i in range(mxL): if depth[b] > depth[dp[a][i]]: return find(dp[a][i-1],b) for T in range(1,int(input())+1): v,e,st,ed = map(int,input().split()) data = list(map(int,input().split())) narr = [[] for _ in range(v+1)] mxL = int(log2(v))+1 # 최대 점프하는 수 for i in range(e): narr[data[i*2]].append(data[i*2+1]) depth = [0]*(v+1) depth[0] = -1 dp = [[0]*mxL for _ in range(v+1)] # dp[node][jump한 수 (2^n)] cnt = [1]*(v+1) makeTree(1,0) ans = find(st,ed) rs = cnt[ans] print(ans, rs)
[ "nan308@naver.com" ]
nan308@naver.com
96f31bfeb86c80ba89858cec03aa42169c5c1f39
9f98ed0db445cd69e22eea9e6cfefa929111fe7f
/setup.py
8afab05cdee21e2c40619e9211f70e7c7243323a
[]
no_license
zhuyoucai168/talospider
670c34fc75e709814c1dd9f9f72e0a21e07dee47
da4f0bdc6f6046c306be5c36d9016b74794823b0
refs/heads/master
2020-08-29T05:39:57.661905
2019-02-22T06:55:48
2019-02-22T06:55:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
470
py
#!/usr/bin/env python from setuptools import find_packages, setup setup( name='talospider', version='0.0.6', author='Howie Hu', description="A simple,lightweight scraping micro-framework", author_email='xiaozizayang@gmail.com', install_requires=['lxml', 'requests', 'cchardet', 'cssselect'], url="https://github.com/howie6879/talospider/blob/master/README.md", packages=find_packages(), package_data={'talospider': ['utils/*.txt']})
[ "xiaozizayang@gmail.com" ]
xiaozizayang@gmail.com
0121af025b75095b667e0d0416853d7206c880a4
ac83d1ddb84ecc904c73bdf779f458bd77efc98c
/src/programy/config/brain/binaries.py
730ef746b85832414db26d3fdd3828a61fc3a8a2
[ "MIT" ]
permissive
secrecy27/chatbot
77829f32a15e17563f038663aebebdb71e52c5a7
e65a753cf665a4d6d97b57703431cba5331e4f0b
refs/heads/master
2022-07-24T08:39:57.788009
2020-07-16T03:55:21
2020-07-16T03:55:21
130,678,143
4
4
NOASSERTION
2022-07-06T19:49:14
2018-04-23T10:12:01
Python
UTF-8
Python
false
false
2,747
py
""" Copyright (c) 2016-2018 Keith Sterling http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programy.utils.logging.ylogger import YLogger from programy.config.section import BaseSectionConfigurationData class BrainBinariesConfiguration(BaseSectionConfigurationData): def __init__(self): BaseSectionConfigurationData.__init__(self, "binaries") self._save_binary = False self._load_binary = False self._binary_filename = None self._load_aiml_on_binary_fail = False @property def save_binary(self): return self._save_binary @property def load_binary(self): return self._load_binary @property def binary_filename(self): return self._binary_filename @property def load_aiml_on_binary_fail(self): return self._load_aiml_on_binary_fail def load_config_section(self, configuration_file, configuration, bot_root): binaries = configuration_file.get_section("binaries", configuration) if binaries is not None: self._save_binary = configuration_file.get_option(binaries, "save_binary", missing_value=None) self._load_binary = configuration_file.get_option(binaries, "load_binary", missing_value=None) binary_filename = configuration_file.get_option(binaries, "binary_filename", missing_value=None) if binary_filename is not None: self._binary_filename = self.sub_bot_root(binary_filename, bot_root) self._load_aiml_on_binary_fail = configuration_file.get_option(binaries, "load_aiml_on_binary_fail", missing_value=None) else: YLogger.warning(self, "'binaries' section missing from bot config, using to defaults")
[ "secrecy418@naver.com" ]
secrecy418@naver.com
582e6d7977304ec94ff5e09011134c56548fddee
8644a2174c3cb7ccfe211a5e49edffbcc3a74a46
/HackerrankSolutions/ProblemSolving/DataStructures/LinkedList/Easy/insert_node_doubly_ll.py
30a3ceddc485daee86a8b335eec39479fd28e2eb
[]
no_license
bhavya2403/Learning-Python
9e7cc9dee21172321fb217cae27c8072357f71ce
3898211b357fbab320010a82a4811b68611d0422
refs/heads/main
2023-03-24T03:19:49.989965
2021-03-22T20:11:04
2021-03-22T20:11:04
315,962,811
0
0
null
null
null
null
UTF-8
Python
false
false
1,170
py
class DoublyLinkedListNode: def __init__(self, node_data): self.data = node_data self.next = None self.prev = None class DoublyLinkedList: def __init__(self): self.head = None self.tail = None def insert_node(self, node_data): node = DoublyLinkedListNode(node_data) if not self.head: self.head = node else: self.tail.next = node node.prev = self.tail self.tail = node def sortedInsert(head, data): node = DoublyLinkedListNode(data) if data < head.data: node.next = head head.prev = node node.prev = None head = node return head curr = head while curr: if curr.next is None: curr.next = node node.prev = curr node.next = None break if curr.data < data < curr.next.data or curr.data ==data: node.next = curr.next node.prev = curr curr.next = node curr.next.prev = node break curr = curr.next return head
[ "noreply@github.com" ]
bhavya2403.noreply@github.com
3c40d89ebe58b12e75def3e0190a55e9fe582789
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/contrib/cv/semantic_segmentation/MMseg-swin/configs/ann/ann_r50-d8_512x512_20k_voc12aug.py
84eaca27405633ca786ead28b974db2f7f527e5c
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
3,652
py
# -*- coding: utf-8 -*- # BSD 3-Clause License # # Copyright (c) 2017 # All rights reserved. # Copyright 2022 Huawei Technologies Co., Ltd # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ========================================================================== # -*- coding: utf-8 -*- # BSD 3-Clause License # # Copyright (c) 2017 # All rights reserved. # Copyright 2022 Huawei Technologies Co., Ltd # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ========================================================================== _base_ = [ '../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py' ] model = dict( decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
[ "wangjiangben@huawei.com" ]
wangjiangben@huawei.com
c3b5005a2b16bf465392034a5dd8560026528ce1
9318b1885946f639f1446431abc6ec4fa33fc9ac
/Cisco_python/module_4/act-3.py
4a247a9c4472018c19b3a620743bb178d2405f56
[]
no_license
mcewenar/PYTHON_INFO_I_BASIC
1d365bcd3d0186c8955e3cde2605831717d0a412
e5c3278969b420e7ce03bf7903cf57e63865aaca
refs/heads/master
2023-06-04T02:26:42.124304
2021-06-22T02:48:08
2021-06-22T02:48:08
326,510,259
0
0
null
null
null
null
UTF-8
Python
false
false
1,371
py
#Tu tarea es escribir y probar una función que toma tres argumentos (un año, un mes y un día del mes) #y devuelve el día correspondiente del año, o devuelve None si cualquiera de los argumentos no es válido. #Debes utilizar las funciones previamente escritas y probadas. Agrega algunos casos de prueba al código. #Esta prueba es solo el comienzo. def isYearLeap(year): if year % 4 == 0 and (year %100 != 0 or year % 400 == 0): return True else: return False def daysInMonth(year, month): if month <= 0 or month > 12 or year < 1582: return None else: if month in [1,3,5,7,8,10,12]: return 31 elif month == 2: if isYearLeap(year): return 29 else: return 28 else: return 30 def dayOfYear(year, month, day): days = 0 for m in range(1, month): md = daysInMonth(year,m) if md == None: return None days += md md = daysInMonth(year, month) if md == None or month == None: return None elif day >= 1 and day <= md: return days + day else: return None while True: try: x=int(input("Ingrese un año: ")) y=int(input("Ingrese el mes: ")) z=int(input("Ingrese el día: ")) print(dayOfYear(x, y, z)) except ValueError: print("No se permite ingresar datos alfanuméricos")
[ "dmcewena@hotmail.com" ]
dmcewena@hotmail.com
a9ffbf6927f011eca02197d776c8cdf231525322
42ff36f4c6c967d2f39bf75c1f24c8b5911a8491
/whileloop.py
b570fd612b80873ea6da85ac6f2859b7c5ebf077
[]
no_license
cal1log/python
0d47b688e619d0cdd464267225f76fff7d3101a4
c8196c40e5505d4e83301ada97dd384611660778
refs/heads/main
2023-06-29T13:11:31.869976
2021-07-27T22:36:04
2021-07-27T22:36:04
366,841,686
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
#!/usr/bin/env python3 i = 1 ''' incremental while loop ''' while i <= 5: print('hello calilog') i += 1 print() i = 5 ''' decremental while loop ''' while i >= 1: print('hello calilog') i -= 1
[ "orlago250183@gmail.com" ]
orlago250183@gmail.com
16bec49a939949dec19469329515808a53e2b58d
ddd35c693194aefb9c009fe6b88c52de7fa7c444
/Live 10.1.18/_NKFW2/ResettingMixerComponent.py
c2477c605980a00da5595cf0a5b14ce75043c10b
[]
no_license
notelba/midi-remote-scripts
819372d9c22573877c7912091bd8359fdd42585d
e3ec6846470eed7da8a4d4f78562ed49dc00727b
refs/heads/main
2022-07-30T00:18:33.296376
2020-10-04T00:00:12
2020-10-04T00:00:12
301,003,961
0
0
null
null
null
null
UTF-8
Python
false
false
3,013
py
# uncompyle6 version 3.7.4 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.8.5 (default, Aug 12 2020, 00:00:00) # [GCC 10.2.1 20200723 (Red Hat 10.2.1-1)] # Embedded file name: C:\ProgramData\Ableton\Live 9.7 Suite\Resources\MIDI Remote Scripts\_NKFW2\ResettingMixerComponent.py # Compiled at: 2017-10-14 18:54:45 from itertools import izip_longest from _Framework.CompoundComponent import CompoundComponent from _Framework.SubjectSlot import subject_slot from ResettingChannelStripComponent import ResettingChannelStripComponent from Utils import right_justify_track_components justify_function = right_justify_track_components class ResettingMixerComponent(CompoundComponent): """ ResettingMixerComponent works with a SlaveManager to control a group of ResettingChannelStripComponents. """ def __init__(self, slave_manager, num_tracks=8, right_just_returns=True, name='Resetting_Mixer_Control', *a, **k): super(ResettingMixerComponent, self).__init__(name=name, *a, **k) self._right_justify_returns = bool(right_just_returns) self._channel_strips = [] for _ in xrange(num_tracks): strip = self.register_component(ResettingChannelStripComponent()) self._channel_strips.append(strip) self._reassign_tracks.subject = slave_manager self._reassign_tracks(slave_manager.track_offset) def set_reset_volume_buttons(self, buttons): """ Sets the buttons to use for resetting volume. """ for strip, button in izip_longest(self._channel_strips, buttons or []): strip.set_reset_volume_button(button) def set_reset_pan_buttons(self, buttons): """ Sets the buttons to use for resetting pan. """ for strip, button in izip_longest(self._channel_strips, buttons or []): strip.set_reset_pan_button(button) def set_reset_send_a_buttons(self, buttons): """ Sets the buttons to use for resetting send A. """ for strip, button in izip_longest(self._channel_strips, buttons or []): strip.set_reset_send_a_button(button) def set_reset_send_b_buttons(self, buttons): """ Sets the buttons to use for resetting send B. """ for strip, button in izip_longest(self._channel_strips, buttons or []): strip.set_reset_send_b_button(button) @subject_slot('track_offset') def _reassign_tracks(self, offset): tracks = self._reassign_tracks.subject.tracks_to_use if self._right_justify_returns: justify_function(self.song(), tracks, offset, self._channel_strips) else: for index, comp in enumerate(self._channel_strips): track_offset = offset + index if track_offset in xrange(len(tracks)): comp.set_track(tracks[track_offset]) else: comp.set_track(None) return # okay decompiling /home/deniz/data/projects/midiremote/Live 10.1.18/_NKFW2/ResettingMixerComponent.pyc
[ "notelba@example.com" ]
notelba@example.com
c306ee028f03366c34bdca2afb22d77a7303c459
a6f70134a9bfdcc630e67a6d05c174d35496ada3
/Sum of Inverse of Numbers^n.py
bb4e17b7740256803b5bc189aaea48aee10de4d2
[]
no_license
nauman-sakharkar/Python-2.x
9c0e9d9e5968631e44ab595175ddcbe0a1b615ad
31df433481d75c7b76a40b2fc372fa6fefbb779f
refs/heads/master
2022-10-08T17:20:46.387977
2020-06-10T07:36:03
2020-06-10T07:36:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
147
py
n=int(input("Enter the Number Of Times = ")) q=int(input("Enter The Number = ")) sum=0 for i in range(1,n+1): sum=sum+((1/q)**i) print("",sum)
[ "50130960+nauman-sakharkar@users.noreply.github.com" ]
50130960+nauman-sakharkar@users.noreply.github.com
4ea666bc8e896fbcd40fb73d27e4e967147c0a7b
3e85618c79a1a934fec543e1327e772ca081a5b9
/N1226.py
f9cf0945dd8c9496a8325051fcd4c4ce8e6bba04
[]
no_license
ghdus4185/SWEXPERT
72d79aa4a668452327a676a644b952bab191c79b
4dc74ad74df7837450de4ce55526dac7760ce738
refs/heads/master
2020-07-16T18:31:22.153239
2019-12-20T04:18:30
2019-12-20T04:18:30
205,843,190
0
0
null
null
null
null
UTF-8
Python
false
false
1,138
py
import sys sys.stdin = open('input.txt', 'r') def find(x,y): global di, dj, maze, possible, check stack = [] stack.append([x,y]) while stack: n = stack.pop() for k in range(4): ni = n[0] + di[k] nj = n[1] + dj[k] # 범위 안에 있는지 if 0 <= ni < 16 and 0 <= nj < 16: if maze[ni][nj] == 3: possible = 1 return possible if maze[ni][nj] == 0: stack.append([ni, nj]) maze[n[0]][n[1]] = 1 return possible di = [-1, 1, 0, 0] dj = [0, 0, -1, 1] for tc in range(1, 11): t = int(input()) maze = [list(map(int, ' '.join(input()).split())) for _ in range(16)] # 시작점 찾기 res = 0 for i in range(16): for j in range(16): if maze[i][j] == 2: res = 1 break if res == 1: break check = [[0]*16 for _ in range(16)] possible = 0 find(i, j) if possible == 1: print('#{} 1'.format(t)) else: print('#{} 0'.format(t))
[ "ckdghdus@naver.com" ]
ckdghdus@naver.com
7ede643951e1f15dbbd488aee63423bae39dbced
33db9e6d0a73f2353747a4c9d3223d55a38730a8
/apps/first_app/models.py
9c9e3168c45565effb1144ef8f0ded356a58890e
[]
no_license
philmccormick23/Likes-and-Books
94d778df265fe9b1645f783c83358617ca6fe0c0
0a9b18ceb7ce33a72334900e7f9f62b10d87a796
refs/heads/master
2020-04-02T15:14:46.314382
2018-10-24T19:46:10
2018-10-24T19:46:10
154,559,822
0
0
null
null
null
null
UTF-8
Python
false
false
753
py
from __future__ import unicode_literals from django.db import models # Create your models here. class User(models.Model): first_name = models.CharField(max_length=200) last_name = models.CharField(max_length=200) email = models.EmailField() created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Books(models.Model): name = models.CharField(max_length=255) desc = models.CharField(max_length=255) upload = models.ForeignKey(User, null=True,related_name="codingdojo", on_delete=models.PROTECT) users = models.ManyToMfanyField(User, related_name="likes") created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True)
[ "phillipmccormick@Phillips-MacBook-Pro.local" ]
phillipmccormick@Phillips-MacBook-Pro.local
0c21269cec3d106c781ee734f3a60a7415c78889
1792509a9accac11c837e2a18dcb3d34f1d7e30e
/client/category.py
edfa52d0b3eb42271cc8d9e90fe84f84bc763d38
[]
no_license
kafura-kafiri/herb
2d3166b94e5fdacd106d6c4bc21d09f6c9cf568e
48329a0059e2843c72ad2d85e7bb31379f0042e5
refs/heads/master
2020-04-09T09:35:03.720161
2018-12-17T11:02:25
2018-12-17T11:02:25
160,238,902
0
0
null
null
null
null
UTF-8
Python
false
false
478
py
import requests url = 'http://localhost:5000/categories/' headers = {'content-type': 'application/json'} _categories = [ { 'ancestors': ['a', 'b', 'c'], 'title': 'd' }, { 'ancestors': ['x', 'y'], 'title': 'z' } ] def fill(): requests.post(url + '*') print() print('categories >>') for category in _categories: response = requests.post(url + '+', data={'json': str(category)}) print(response.content)
[ "kafura.kafiri@gmail.com" ]
kafura.kafiri@gmail.com
28cb89506c201fba276f34362a75f76ce01ffe95
f6d2385cd8eb896e17c5e72ac75abe6a0ba28659
/greffe1/essais.py
9f4aebeaa116aa85140e83a9274bb4de511e3b61
[]
no_license
pastrouveedespeudo/greffegreffe
fba94c9169c3d021714eabf1a45812ca762cfe9d
8ebe4d555246aed26e705671014a260a23148a6a
refs/heads/master
2020-06-12T14:50:17.590418
2019-07-04T14:01:25
2019-07-04T14:01:25
194,335,511
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
from fonction import function from fonction import ecrire from fonction import lecture from fonction import ecrire2 page = 'https://fr.yahoo.com/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAMdlxFFv1CpIEQ0VuhLMZl4pjm_0Ur2KGpLoKBkg4lBqmzqdwLxulK-E29QEXf815EL1VsURfRYB-M3USUSs2fFR6tT63nGaOfQyk5mY4V9AltWx-EzQiluy32sS5KxDY0lQRsL6YmEXNMq4qWdOpBoyt2T6KtkfK9Bce2Dt8ViB' page = function(page) page = ecrire(page) page_affichage = lecture() ececrire2(page_affichage)
[ "noreply@github.com" ]
pastrouveedespeudo.noreply@github.com
79258c9426d558486274c453e5f1e7bd0cbb4a0a
52b5773617a1b972a905de4d692540d26ff74926
/.history/validPalindrome_20200803230103.py
15299f1055653cb18098fa47a7ef7af4c4238410
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
402
py
import re def palindrome(str): if len(str) == 0: return True actualStr = str.lower() str = str.lower() cleanStr = re.sub(r"[,.;:@#?!&$]+",' ',str) print('cleanStr',cleanStr) str = str.split(" ") str.reverse() newArr = [] print(actualStr) for i in str: newArr.append(i[::-1]) print(newArr) palindrome("A man, a plan, a canal: Panama")
[ "mary.jereh@gmail.com" ]
mary.jereh@gmail.com
ca7095ab3d8c8f9a438a75a24c6495f62b664b90
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_geologies.py
84e56d430f9355cad6a66d3b9a709b593d67b684
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
247
py
from xai.brain.wordbase.nouns._geology import _GEOLOGY #calss header class _GEOLOGIES(_GEOLOGY, ): def __init__(self,): _GEOLOGY.__init__(self) self.name = "GEOLOGIES" self.specie = 'nouns' self.basic = "geology" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
84eef6cc65ec245e27db562aaabcc91b480142bb
bd72c02af0bbd8e3fc0d0b131e3fb9a2aaa93e75
/Hash Table/logger_rate_limiter.py
2d6dcba5dcff6b6585ced12fe6631fc0e2af2b74
[]
no_license
harvi7/Leetcode-Problems-Python
d3a5e8898aceb11abc4cae12e1da50061c1d352c
73adc00f6853e821592c68f5dddf0a823cce5d87
refs/heads/master
2023-05-11T09:03:03.181590
2023-04-29T22:03:41
2023-04-29T22:03:41
222,657,838
1
0
null
null
null
null
UTF-8
Python
false
false
636
py
class Logger: def __init__(self): """ Initialize your data structure here. """ self._msg_dict = {} def shouldPrintMessage(self, timestamp: int, message: str) -> bool: """ Returns true if the message should be printed in the given timestamp, otherwise returns false. If this method returns false, the message will not be printed. The timestamp is in seconds granularity. """ if not message in self._msg_dict or 10 <= timestamp - self._msg_dict[message]: self._msg_dict[message] = timestamp return True return False
[ "iamharshvirani7@gmail.com" ]
iamharshvirani7@gmail.com
377e0a1762965418f5d2a4d4871feeed710a71e8
565f95f207f49d987bdc372cd80942be95451731
/python/misc/hlgrep
d76c0a07ff98af04d294df10bef1e8a2e4b4256a
[]
no_license
dustin/snippets
76724c2131546bddd35a80da16921a44a49e2262
5be535890f9e71e298fec601d55c469c542ea330
refs/heads/master
2023-08-18T22:01:39.546961
2022-12-29T07:39:40
2022-12-29T07:39:40
18,840
18
4
null
2013-01-06T08:10:39
2008-05-22T07:58:19
C
UTF-8
Python
false
false
306
#!/usr/bin/env python import sys import posix import re smso=posix.popen("tput smso").read() rmso=posix.popen("tput rmso").read() expression=re.compile("(" + sys.argv[1] + ")") l=sys.stdin.readline() while l != '': s=expression.sub(smso + '\\1' + rmso, l) sys.stdout.write(s) l=sys.stdin.readline()
[ "dustin@spy.net" ]
dustin@spy.net
a35928309c1fa5bf69a6928dedc88f21e8e1bf73
d05a59feee839a4af352b7ed2fd6cf10a288a3cb
/examples/chartsheet.py
3edbd9dbfe920d08f7d3e6d4ecf08d471cba16e0
[ "BSD-2-Clause-Views" ]
permissive
elessarelfstone/XlsxWriter
0d958afd593643f990373bd4d8a32bafc0966534
bb7b7881c7a93c89d6eaac25f12dda08d58d3046
refs/heads/master
2020-09-24T06:17:20.840848
2019-11-24T23:43:01
2019-11-24T23:43:01
225,685,272
1
0
NOASSERTION
2019-12-03T18:09:06
2019-12-03T18:09:05
null
UTF-8
Python
false
false
1,774
py
####################################################################### # # An example of creating an Excel chart in a chartsheet with Python # and XlsxWriter. # # Copyright 2013-2019, John McNamara, jmcnamara@cpan.org # import xlsxwriter workbook = xlsxwriter.Workbook('chartsheet.xlsx') # Add a worksheet to hold the data. worksheet = workbook.add_worksheet() # Add a chartsheet. A worksheet that only holds a chart. chartsheet = workbook.add_chartsheet() # Add a format for the headings. bold = workbook.add_format({'bold': 1}) # Add the worksheet data that the charts will refer to. headings = ['Number', 'Batch 1', 'Batch 2'] data = [ [2, 3, 4, 5, 6, 7], [10, 40, 50, 20, 10, 50], [30, 60, 70, 50, 40, 30], ] worksheet.write_row('A1', headings, bold) worksheet.write_column('A2', data[0]) worksheet.write_column('B2', data[1]) worksheet.write_column('C2', data[2]) # Create a new bar chart. chart1 = workbook.add_chart({'type': 'bar'}) # Configure the first series. chart1.add_series({ 'name': '=Sheet1!$B$1', 'categories': '=Sheet1!$A$2:$A$7', 'values': '=Sheet1!$B$2:$B$7', }) # Configure a second series. Note use of alternative syntax to define ranges. chart1.add_series({ 'name': ['Sheet1', 0, 2], 'categories': ['Sheet1', 1, 0, 6, 0], 'values': ['Sheet1', 1, 2, 6, 2], }) # Add a chart title and some axis labels. chart1.set_title ({'name': 'Results of sample analysis'}) chart1.set_x_axis({'name': 'Test number'}) chart1.set_y_axis({'name': 'Sample length (mm)'}) # Set an Excel chart style. chart1.set_style(11) # Add the chart to the chartsheet. chartsheet.set_chart(chart1) # Display the chartsheet as the active sheet when the workbook is opened. chartsheet.activate(); workbook.close()
[ "jmcnamara@cpan.org" ]
jmcnamara@cpan.org
f485b1fe84144a2e6e02f8c6db683e8241399c64
831fe3255ab2dd7abb9fc79a21756012d57cb863
/projects/nerf/nerf/raymarcher.py
3be73d32299a15739202136510193efb2809c1ef
[ "BSD-3-Clause", "CC-BY-4.0" ]
permissive
ksengin/pytorch3d
3e84365ed2499c11ef5a443c4ab28bda85e71f7e
1fffa20541c9fa3248e02473bee294724922d989
refs/heads/master
2021-05-16T21:24:36.150263
2021-03-19T07:07:23
2021-03-19T07:07:23
250,474,512
0
0
NOASSERTION
2020-03-27T08:00:17
2020-03-27T08:00:17
null
UTF-8
Python
false
false
2,796
py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import torch from pytorch3d.renderer import EmissionAbsorptionRaymarcher from pytorch3d.renderer.implicit.raymarching import ( _check_density_bounds, _check_raymarcher_inputs, _shifted_cumprod, ) class EmissionAbsorptionNeRFRaymarcher(EmissionAbsorptionRaymarcher): """ This is essentially the `pytorch3d.renderer.EmissionAbsorptionRaymarcher` which additionally returns the rendering weights. It also skips returning the computation of the alpha-mask which is, in case of NeRF, equal to 1 everywhere. The weights are later used in the NeRF pipeline to carry out the importance ray-sampling for the fine rendering pass. For more details about the EmissionAbsorptionRaymarcher please refer to the documentation of `pytorch3d.renderer.EmissionAbsorptionRaymarcher`. """ def forward( self, rays_densities: torch.Tensor, rays_features: torch.Tensor, eps: float = 1e-10, **kwargs, ) -> torch.Tensor: """ Args: rays_densities: Per-ray density values represented with a tensor of shape `(..., n_points_per_ray, 1)` whose values range in [0, 1]. rays_features: Per-ray feature values represented with a tensor of shape `(..., n_points_per_ray, feature_dim)`. eps: A lower bound added to `rays_densities` before computing the absorbtion function (cumprod of `1-rays_densities` along each ray). This prevents the cumprod to yield exact 0 which would inhibit any gradient-based learning. Returns: features: A tensor of shape `(..., feature_dim)` containing the rendered features for each ray. weights: A tensor of shape `(..., n_points_per_ray)` containing the ray-specific emission-absorbtion distribution. Each ray distribution `(..., :)` is a valid probability distribution, i.e. it contains non-negative values that integrate to 1, such that `weights.sum(dim=-1)==1).all()` yields `True`. """ _check_raymarcher_inputs( rays_densities, rays_features, None, z_can_be_none=True, features_can_be_none=False, density_1d=True, ) _check_density_bounds(rays_densities) rays_densities = rays_densities[..., 0] absorption = _shifted_cumprod( (1.0 + eps) - rays_densities, shift=self.surface_thickness ) weights = rays_densities * absorption features = (weights[..., None] * rays_features).sum(dim=-2) return features, weights
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
ada1ac04d0162f1f086d1ebfc1bb718c67f74aee
2a34a824e1a2d3bac7b99edcf19926a477a157a0
/src/cr/vision/core/colors.py
2865015e52642389b5b3c74caf559bef6dda8111
[ "Apache-2.0" ]
permissive
carnotresearch/cr-vision
a7cb07157dbf470ed3fe560ef85d6e5194c660ae
317fbf70c558e8f9563c3d0ba3bebbc5f84af622
refs/heads/master
2023-04-10T22:34:34.833043
2021-04-25T13:32:14
2021-04-25T13:32:14
142,256,002
2
0
null
null
null
null
UTF-8
Python
false
false
4,002
py
''' List of common colors in b g r format ''' ALICEBLUE = (255, 248, 240) ANTIQUEWHITE = (215, 235, 250) AQUA = (255, 255, 0) AQUAMARINE = (212, 255, 127) AZURE = (255, 255, 240) BEIGE = (220, 245, 245) BISQUE = (196, 228, 255) BLACK = (0, 0, 0) BLANCHEDALMOND = (205, 235, 255) BLUE = (255, 0, 0) BLUEVIOLET = (226, 43, 138) BROWN = (42, 42, 165) BURLYWOOD = (135, 184, 222) CADETBLUE = (160, 158, 95) CHARTREUSE = (0, 255, 127) CHOCOLATE = (30, 105, 210) CORAL = (80, 127, 255) CORNFLOWERBLUE = (237, 149, 100) CORNSILK = (220, 248, 255) CRIMSON = (60, 20, 220) CYAN = (255, 255, 0) DARKBLUE = (139, 0, 0) DARKCYAN = (139, 139, 0) DARKGOLDENROD = (11, 134, 184) DARKGRAY = (169, 169, 169) DARKGREEN = (0, 100, 0) DARKGREY = (169, 169, 169) DARKKHAKI = (107, 183, 189) DARKMAGENTA = (139, 0, 139) DARKOLIVEGREEN = (47, 107, 85) DARKORANGE = (0, 140, 255) DARKORCHID = (204, 50, 153) DARKRED = (0, 0, 139) DARKSALMON = (122, 150, 233) DARKSEAGREEN = (143, 188, 143) DARKSLATEBLUE = (139, 61, 72) DARKSLATEGRAY = (79, 79, 47) DARKSLATEGREY = (79, 79, 47) DARKTURQUOISE = (209, 206, 0) DARKVIOLET = (211, 0, 148) DEEPPINK = (147, 20, 255) DEEPSKYBLUE = (255, 191, 0) DIMGRAY = (105, 105, 105) DIMGREY = (105, 105, 105) DODGERBLUE = (255, 144, 30) FIREBRICK = (34, 34, 178) FLORALWHITE = (240, 250, 255) FORESTGREEN = (34, 139, 34) FUCHSIA = (255, 0, 255) GAINSBORO = (220, 220, 220) GHOSTWHITE = (255, 248, 248) GOLD = (0, 215, 255) GOLDENROD = (32, 165, 218) GRAY = (128, 128, 128) GREEN = (0, 128, 0) GREENYELLOW = (47, 255, 173) GREY = (128, 128, 128) HONEYDEW = (240, 255, 240) HOTPINK = (180, 105, 255) INDIANRED = (92, 92, 205) INDIGO = (130, 0, 75) IVORY = (240, 255, 255) KHAKI = (140, 230, 240) LAVENDER = (250, 230, 230) LAVENDERBLUSH = (245, 240, 255) LAWNGREEN = (0, 252, 124) LEMONCHIFFON = (205, 250, 255) LIGHTBLUE = (230, 216, 173) LIGHTCORAL = (128, 128, 240) LIGHTCYAN = (255, 255, 224) LIGHTGOLDENRODYELLOW = (210, 250, 250) LIGHTGRAY = (211, 211, 211) LIGHTGREEN = (144, 238, 144) LIGHTGREY = (211, 211, 211) LIGHTPINK = (193, 182, 255) LIGHTSALMON = (122, 160, 255) LIGHTSEAGREEN = (170, 178, 32) LIGHTSKYBLUE = (250, 206, 135) LIGHTSLATEGRAY = (153, 136, 119) LIGHTSLATEGREY = (153, 136, 119) LIGHTSTEELBLUE = (222, 196, 176) LIGHTYELLOW = (224, 255, 255) LIME = (0, 255, 0) LIMEGREEN = (50, 205, 50) LINEN = (230, 240, 250) MAGENTA = (255, 0, 255) MAROON = (0, 0, 128) MEDIUMAQUAMARINE = (170, 205, 102) MEDIUMBLUE = (205, 0, 0) MEDIUMORCHID = (211, 85, 186) MEDIUMPURPLE = (219, 112, 147) MEDIUMSEAGREEN = (113, 179, 60) MEDIUMSLATEBLUE = (238, 104, 123) MEDIUMSPRINGGREEN = (154, 250, 0) MEDIUMTURQUOISE = (204, 209, 72) MEDIUMVIOLETRED = (133, 21, 199) MIDNIGHTBLUE = (112, 25, 25) MINTCREAM = (250, 255, 245) MISTYROSE = (225, 228, 255) MOCCASIN = (181, 228, 255) NAVAJOWHITE = (173, 222, 255) NAVY = (128, 0, 0) OLDLACE = (230, 245, 253) OLIVE = (0, 128, 128) OLIVEDRAB = (35, 142, 107) ORANGE = (0, 165, 255) ORANGERED = (0, 69, 255) ORCHID = (214, 112, 218) PALEGOLDENROD = (170, 232, 238) PALEGREEN = (152, 251, 152) PALETURQUOISE = (238, 238, 175) PALEVIOLETRED = (147, 112, 219) PAPAYAWHIP = (213, 239, 255) PEACHPUFF = (185, 218, 255) PERU = (63, 133, 205) PINK = (203, 192, 255) PLUM = (221, 160, 221) POWDERBLUE = (230, 224, 176) PURPLE = (128, 0, 128) RED = (0, 0, 255) ROSYBROWN = (143, 143, 188) ROYALBLUE = (225, 105, 65) SADDLEBROWN = (19, 69, 139) SALMON = (114, 128, 250) SANDYBROWN = (96, 164, 244) SEAGREEN = (87, 139, 46) SEASHELL = (238, 245, 255) SIENNA = (45, 82, 160) SILVER = (192, 192, 192) SKYBLUE = (235, 206, 135) SLATEBLUE = (205, 90, 106) SLATEGRAY = (144, 128, 112) SLATEGREY = (144, 128, 112) SNOW = (250, 250, 255) SPRINGGREEN = (127, 255, 0) STEELBLUE = (180, 130, 70) TAN = (140, 180, 210) TEAL = (128, 128, 0) THISTLE = (216, 191, 216) TOMATO = (71, 99, 255) TURQUOISE = (208, 224, 64) VIOLET = (238, 130, 238) WHEAT = (179, 222, 245) WHITE = (255, 255, 255) WHITESMOKE = (245, 245, 245) YELLOW = (0, 255, 255) YELLOWGREEN = (50, 205, 154)
[ "shailesh@indigits.com" ]
shailesh@indigits.com
2915daa920a718772f982608d13e1abbe0e0de8f
96e76bcb634e0e48bcf3ae352eb235ed9bc32b36
/app/migrations/0020_news_date_and_time.py
abf6be4f45c0a5659dc925a56654a48eab0b5a70
[]
no_license
Ectroverse/EctroverseDjango
cef8a8a2149271c0995f1b60676f636e5dfc23ec
a3dad97b4e7a89694248c21df75ebdcc37e975f0
refs/heads/master
2023-04-18T21:12:20.062646
2021-04-28T11:06:01
2021-04-28T11:06:01
291,338,914
1
3
null
2021-01-23T14:32:21
2020-08-29T19:50:33
Python
UTF-8
Python
false
false
409
py
# Generated by Django 3.1 on 2021-01-24 16:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0019_auto_20210124_1638'), ] operations = [ migrations.AddField( model_name='news', name='date_and_time', field=models.DateTimeField(blank=True, default=None, null=True), ), ]
[ "vsavko@gmail.com" ]
vsavko@gmail.com
6c58b0de7a6aaa29da887706c57a87152a52622a
7208db50a22368c335e7d7d8b37a3fedb09c60e5
/cairis/gui/ResponsesDialog.py
462cb9196456757bb3e23ec2869fb3380d5121b9
[ "Apache-2.0" ]
permissive
nebloc/cairis
41c7f20af56c46bddcb3927dc4aa410f6477e6ed
1277a148a270d5471b59fc238aa6590bc1d3044e
refs/heads/master
2020-03-24T03:51:11.908096
2018-07-27T16:07:36
2018-07-27T16:07:36
142,434,768
0
0
Apache-2.0
2018-07-26T11:58:24
2018-07-26T11:58:24
null
UTF-8
Python
false
false
4,350
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import wx from cairis.core.armid import * import cairis.core.Risk from ResponseDialog import ResponseDialog from DialogClassParameters import DialogClassParameters from ResponseDialogParameters import ResponseDialogParameters from AcceptEnvironmentPanel import AcceptEnvironmentPanel from TransferEnvironmentPanel import TransferEnvironmentPanel from MitigateEnvironmentPanel import MitigateEnvironmentPanel from DimensionBaseDialog import DimensionBaseDialog from cairis.core.ARM import * __author__ = 'Shamal Faily' class ResponsesDialog(DimensionBaseDialog): def __init__(self,parent): DimensionBaseDialog.__init__(self,parent,RESPONSES_ID,'Responses',(800,300),'response.png') self.theMainWindow = parent idList = [RESPONSES_LISTRESPONSES_ID,RESPONSES_BUTTONADD_ID,RESPONSES_BUTTONDELETE_ID] columnList = ['Name','Type'] self.buildControls(idList,columnList,self.dbProxy.getResponses,'response') listCtrl = self.FindWindowById(RESPONSES_LISTRESPONSES_ID) listCtrl.SetColumnWidth(0,300) def addObjectRow(self,mitListCtrl,listRow,response): mitListCtrl.InsertStringItem(listRow,response.name()) mitListCtrl.SetStringItem(listRow,1,response.__class__.__name__) def onAdd(self,evt): try: riskDict = self.dbProxy.getDimensionNames('risk') if (len(riskDict) == 0): dlg = wx.MessageDialog(self,'Cannot mitigate for non-existing risks','Add response',wx.OK) dlg.ShowModal() dlg.Destroy() return responseTypes = ['Accept','Transfer','Mitigate'] from DimensionNameDialog import DimensionNameDialog rtDlg = DimensionNameDialog(self,'response',responseTypes,'Select',(300,200)) if (rtDlg.ShowModal() == DIMNAME_BUTTONACTION_ID): responseType = rtDlg.dimensionName() responsePanel = MitigateEnvironmentPanel if (responseType == 'Accept'): responsePanel = AcceptEnvironmentPanel elif (responseType == 'Transfer'): responsePanel = TransferEnvironmentPanel addParameters = ResponseDialogParameters(RESPONSE_ID,'Add response',ResponseDialog,RESPONSE_BUTTONCOMMIT_ID,self.dbProxy.addResponse,True,responsePanel,responseType) self.addObject(addParameters) rtDlg.Destroy() except ARMException,errorText: dlg = wx.MessageDialog(self,str(errorText),'Add response',wx.OK | wx.ICON_ERROR) dlg.ShowModal() dlg.Destroy() return def onUpdate(self,evt): try: selectedObjt = self.objts[self.selectedLabel] responseType = selectedObjt.responseType() responsePanel = MitigateEnvironmentPanel if (responseType == 'Accept'): responsePanel = AcceptEnvironmentPanel elif (responseType == 'Transfer'): responsePanel = TransferEnvironmentPanel updateParameters = ResponseDialogParameters(RESPONSE_ID,'Edit response',ResponseDialog,RESPONSE_BUTTONCOMMIT_ID,self.dbProxy.updateResponse,False,responsePanel,responseType) self.updateObject(selectedObjt,updateParameters) except ARMException,errorText: dlg = wx.MessageDialog(self,str(errorText),'Edit response',wx.OK | wx.ICON_ERROR) dlg.ShowModal() dlg.Destroy def onDelete(self,evt): try: self.dbProxy.associateGrid(self.theMainWindow.FindWindowById(ID_REQGRID)) self.deleteObject('No response','Delete response',self.dbProxy.deleteResponse) except ARMException,errorText: dlg = wx.MessageDialog(self,str(errorText),'Delete response',wx.OK | wx.ICON_ERROR) dlg.ShowModal() dlg.Destroy()
[ "shamal.faily@googlemail.com" ]
shamal.faily@googlemail.com
3d9cb190898bb0de72ad98aa055083f485cc3c08
f07392633118f7f6aff0a5a9b2a5c9eaab1a0299
/Examples/packaging/Capitalize/capitalize/capital_mod.py
2b4d8147fce933a404c366dee5112a3e807866e5
[]
no_license
UWPCE-PythonCert/Py300
afc4abca736cfea031292db6bed996465f37604f
7f93d20ae66ba9a56c4dcc0c1fdafcf79db15349
refs/heads/master
2020-05-26T13:43:38.098926
2018-03-05T07:11:48
2018-03-05T07:11:48
85,002,542
4
7
null
null
null
null
UTF-8
Python
false
false
1,092
py
#!/usr/bin/env python """ A really simple module, just to demonstrate packaging """ def capitalize_line(instr): """ capitalizes the input string :param instr: the string to capitalize it should be a single line. :type instr: string :returns: a capitalized version of instr """ return " ".join( word.capitalize() for word in instr.split() ) def capitalize(infilename, outfilename): """ reads the contents of infilename, and writes it to outfilename, but with every word capitalized note: very primitive -- it will mess some files up! this is called by the capitalize script :param infilename: The file name you want to process :type infilename: string :param outfilename: the name of the new file that will be created :type outfilename: string :returns: None :raises: IOError if infilename doesn't exist. """ infile = open(infilename, 'U') outfile = open(outfilename, 'w') for line in infile: outfile.write(capitalize_line(line)) outfile.write("\n") return None
[ "PythonCHB@gmail.com" ]
PythonCHB@gmail.com
6dce8ab5aa0b8bd0c0ee86d7753accc09fc9c3a9
8fa8ded3772dd7a124c1bbb91fc109ed2b63574b
/mycelium/apps/groups/migrations/0024_auto__add_field_grouprule_account__add_field_group_account.py
6efb4463b3442d5bbdba8fed2d4d0f47a61bb622
[]
no_license
skoczen/mycelium
3642b0f5e5ea03d609a3e499c7ad68092101dce0
da0f169163f4dc93e2dc2b0d934abf4f18c18af0
refs/heads/master
2020-04-10T09:21:46.893254
2014-05-20T02:27:06
2014-05-20T02:27:06
2,114,887
0
0
null
null
null
null
UTF-8
Python
false
false
6,761
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): depends_on = ( ("accounts", "0004_create_old_data_account"), ) def forwards(self, orm): # Adding field 'GroupRule.account' db.add_column('groups_grouprule', 'account', self.gf('django.db.models.fields.related.ForeignKey')(default=1, to=orm['accounts.Account']), keep_default=False) # Adding field 'Group.account' db.add_column('groups_group', 'account', self.gf('django.db.models.fields.related.ForeignKey')(default=1, to=orm['accounts.Account']), keep_default=False) def backwards(self, orm): # Deleting field 'GroupRule.account' db.delete_column('groups_grouprule', 'account_id') # Deleting field 'Group.account' db.delete_column('groups_group', 'account_id') models = { 'accounts.account': { 'Meta': {'ordering': "('name',)", 'object_name': 'Account'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'plan': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['accounts.Plan']"}), 'subdomain': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255', 'db_index': 'True'}) }, 'accounts.plan': { 'Meta': {'ordering': "('name',)", 'object_name': 'Plan'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'groups.group': { 'Meta': {'ordering': "('name',)", 'object_name': 'Group'}, 'account': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['accounts.Account']"}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'qi_simple_searchable_search_field': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'rules_boolean': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'groups.grouprule': { 'Meta': {'ordering': "('group', 'id')", 'object_name': 'GroupRule'}, 'account': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['accounts.Account']"}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['groups.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'left_side': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['rules.LeftSide']", 'null': 'True', 'blank': 'True'}), 'modified_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'operator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['rules.Operator']", 'null': 'True', 'blank': 'True'}), 'right_side_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['rules.RightSideType']", 'null': 'True', 'blank': 'True'}), 'right_side_value': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}) }, 'rules.leftside': { 'Meta': {'ordering': "('order',)", 'object_name': 'LeftSide'}, 'account': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['accounts.Account']"}), 'add_closing_paren': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'allowed_operators': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['rules.Operator']", 'symmetrical': 'False'}), 'allowed_right_side_types': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['rules.RightSideType']", 'symmetrical': 'False'}), 'choices': ('picklefield.fields.PickledObjectField', [], {'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'display_name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '100'}), 'query_string_partial': ('django.db.models.fields.TextField', [], {}) }, 'rules.operator': { 'Meta': {'ordering': "('order',)", 'object_name': 'Operator'}, 'account': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['accounts.Account']"}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'display_name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '100'}), 'query_string_partial': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'use_filter': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'rules.rightsidetype': { 'Meta': {'object_name': 'RightSideType'}, 'account': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['accounts.Account']"}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) } } complete_apps = ['groups']
[ "steven@quantumimagery.com" ]
steven@quantumimagery.com
133eb8ff9bdd88c775a362eb91c937e712aea0bb
c50e7eb190802d7849c0d0cea02fb4d2f0021777
/src/workloads/setup.py
4eb445f63f094bb7c215e4c40b08e0266e1db3d9
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
Azure/azure-cli-extensions
c1615b19930bba7166c282918f166cd40ff6609c
b8c2cf97e991adf0c0a207d810316b8f4686dc29
refs/heads/main
2023-08-24T12:40:15.528432
2023-08-24T09:17:25
2023-08-24T09:17:25
106,580,024
336
1,226
MIT
2023-09-14T10:48:57
2017-10-11T16:27:31
Python
UTF-8
Python
false
false
1,704
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # # Code generated by aaz-dev-tools # -------------------------------------------------------------------------------------------- from codecs import open from setuptools import setup, find_packages # HISTORY.rst entry. VERSION = '0.1.0a1' # The full list of classifiers is available at # https://pypi.python.org/pypi?%3Aaction=list_classifiers CLASSIFIERS = [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'License :: OSI Approved :: MIT License', ] DEPENDENCIES = [] with open('README.md', 'r', encoding='utf-8') as f: README = f.read() with open('HISTORY.rst', 'r', encoding='utf-8') as f: HISTORY = f.read() setup( name='workloads', version=VERSION, description='Microsoft Azure Command-Line Tools Workloads Extension.', long_description=README + '\n\n' + HISTORY, license='MIT', author='Microsoft Corporation', author_email='azpycli@microsoft.com', url='https://github.com/Azure/azure-cli-extensions/tree/main/src/workloads', classifiers=CLASSIFIERS, packages=find_packages(exclude=["tests"]), package_data={'azext_workloads': ['azext_metadata.json']}, install_requires=DEPENDENCIES )
[ "noreply@github.com" ]
Azure.noreply@github.com
0b7dfd99cdf13d9ecafbc21d8fc4f34870cc081b
e1d6de1fb5ce02907df8fa4d4e17e61d98e8727d
/crawlers/urllib2s/urllib2_posts.py
e58f5ccf7fb07608478bd5d3e0cbb37eff0ded44
[]
no_license
neuroph12/nlpy
3f3d1a8653a832d6230cb565428ee0c77ef7451d
095976d144dacf07414bf7ee42b811eaa67326c1
refs/heads/master
2020-09-16T08:24:37.381353
2016-09-10T19:24:05
2016-09-10T19:24:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
import urllib import urllib2 url = 'http://www.douban.com/accounts/login' values = {'form_email': '', 'form_password': ''} data = urllib.urlencode(values) req = urllib2.Request(url, data) resp = urllib2.urlopen(req) html = resp.read() print(html)
[ "anderscui@gmail.com" ]
anderscui@gmail.com
66259f17ed43af8cc07fab9f59f2c6e11087508a
e84f8bcf2ea91ac12f9850a6f487b8b6bff09235
/pyfr/backends/cuda/types.py
0cc8c1b194cd8f1297244c06bf5c39a0ec500c80
[ "CC-BY-4.0", "BSD-3-Clause" ]
permissive
Aerojspark/PyFR
2bdbbf8a1a0770dc6cf48100dc5f895eb8ab8110
b59e67f3aa475f7e67953130a45f264f90e2bb92
refs/heads/master
2021-01-14T08:51:48.893378
2014-09-01T15:02:28
2014-09-01T15:02:28
24,884,060
0
1
null
null
null
null
UTF-8
Python
false
false
5,726
py
# -*- coding: utf-8 -*- import collections import itertools as it import numpy as np import pycuda.driver as cuda import pyfr.backends.base as base class CUDAMatrixBase(base.MatrixBase): def onalloc(self, basedata, offset): self.basedata = int(basedata) self.data = self.basedata + offset self.offset = offset # Process any initial value if self._initval is not None: self._set(self._initval) # Remove del self._initval def _get(self): # Allocate an empty buffer buf = np.empty(self.datashape, dtype=self.dtype) # Copy cuda.memcpy_dtoh(buf, self.data) # Slice to give the expected I/O shape return buf[...,:self.ioshape[-1]] def _set(self, ary): # Allocate a new buffer with suitable padding and assign buf = np.zeros(self.datashape, dtype=self.dtype) buf[...,:self.ioshape[-1]] = ary # Copy cuda.memcpy_htod(self.data, buf) @property def _as_parameter_(self): return self.data def __long__(self): return self.data class CUDAMatrix(CUDAMatrixBase, base.Matrix): def __init__(self, backend, ioshape, initval, extent, tags): super(CUDAMatrix, self).__init__(backend, backend.fpdtype, ioshape, initval, extent, tags) class CUDAMatrixRSlice(base.MatrixRSlice): @property def _as_parameter_(self): return self.parent.basedata + self.offset def __long__(self): return self.parent.basedata + self.offset class CUDAMatrixBank(base.MatrixBank): def __long__(self): return self._curr_mat.data class CUDAConstMatrix(CUDAMatrixBase, base.ConstMatrix): def __init__(self, backend, initval, extent, tags): ioshape = initval.shape super(CUDAConstMatrix, self).__init__(backend, backend.fpdtype, ioshape, initval, extent, tags) class CUDAView(base.View): def __init__(self, backend, matmap, rcmap, stridemap, vshape, tags): super(CUDAView, self).__init__(backend, matmap, rcmap, stridemap, vshape, tags) self.mapping = CUDAMatrixBase(backend, np.int32, (1, self.n), self.mapping, None, tags) if self.nvcol > 1: self.cstrides = CUDAMatrixBase(backend, np.int32, (1, self.n), self.cstrides, None, tags) if self.nvrow > 1: self.rstrides = CUDAMatrixBase(backend, np.int32, (1, self.n), self.rstrides, None, tags) class CUDAMPIMatrix(CUDAMatrix, base.MPIMatrix): def __init__(self, backend, ioshape, initval, extent, tags): # Call the standard matrix constructor super(CUDAMPIMatrix, self).__init__(backend, ioshape, initval, extent, tags) # Allocate a page-locked buffer on the host for MPI to send/recv from self.hdata = cuda.pagelocked_empty((self.nrow, self.ncol), self.dtype, 'C') class CUDAMPIView(base.MPIView): pass class CUDAQueue(base.Queue): def __init__(self, backend): super(CUDAQueue, self).__init__(backend) # Last kernel we executed self._last = None # CUDA stream and MPI request list self._stream_comp = cuda.Stream() self._stream_copy = cuda.Stream() self._mpireqs = [] # Items waiting to be executed self._items = collections.deque() def __lshift__(self, items): self._items.extend(items) def __mod__(self, items): self.run() self << items self.run() def __nonzero__(self): return bool(self._items) def _exec_item(self, item, rtargs): if item.ktype == 'compute': item.run(self._stream_comp, self._stream_copy, *rtargs) elif item.ktype == 'mpi': item.run(self._mpireqs, *rtargs) else: raise ValueError('Non compute/MPI kernel in queue') self._last = item def _exec_next(self): item, rtargs = self._items.popleft() # If we are at a sequence point then wait for current items if self._at_sequence_point(item): self._wait() # Execute the item self._exec_item(item, rtargs) def _exec_nowait(self): while self._items and not self._at_sequence_point(self._items[0][0]): self._exec_item(*self._items.popleft()) def _wait(self): last = self._last if last and last.ktype == 'compute': self._stream_comp.synchronize() self._stream_copy.synchronize() elif last and last.ktype == 'mpi': from mpi4py import MPI MPI.Prequest.Waitall(self._mpireqs) self._mpireqs = [] self._last = None def _at_sequence_point(self, item): return self._last and self._last.ktype != item.ktype def run(self): while self._items: self._exec_next() self._wait() @staticmethod def runall(queues): # First run any items which will not result in an implicit wait for q in queues: q._exec_nowait() # So long as there are items remaining in the queues while any(queues): # Execute a (potentially) blocking item from each queue for q in it.ifilter(None, queues): q._exec_next() q._exec_nowait() # Wait for all tasks to complete for q in queues: q._wait()
[ "freddie@witherden.org" ]
freddie@witherden.org
91f594c0d623009fa6d5f267254ce89dd81b5e16
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02846/s097636759.py
3a28136572804ebc45464a64aaca2efeebe9c309
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,115
py
import sys sys.setrecursionlimit(10**9) INF=10**18 def input(): return sys.stdin.readline().rstrip() def main(): def nibutan(ok,ng): while abs(ok-ng) > 1: mid = (ok + ng) // 2 if solve(mid,2): ok = mid else: ng = mid return ok def solve(mid,n): dif=(d_0+d_1)*(mid-1) c=0 if dif*(dif+d_0) == 0: c+=1 elif dif*(dif+d_0) < 0: c+=1 if (dif+d_0)*(dif+d_0+d_1) < 0: c+=1 if c==n: return True else: return False T=list(map(int,input().split())) A=list(map(int,input().split())) B=list(map(int,input().split())) d_0=T[0]*(A[0]-B[0]) d_1=T[1]*(A[1]-B[1]) if d_0==-d_1: print('infinity') elif d_0*(d_0+d_1)<0: if (d_0*2+d_1)*(d_0*2+d_1*2)<0: n=nibutan(2,10**40) ans=n*2-1 ans+=solve(n+1,1) print(ans) else: print(1) else: print(0) if __name__ == '__main__': main()
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com