text
stringlengths 4
690k
|
|---|
{-# OPTIONS --cubical --no-exact-split --safe #-}
module Cubical.Data.Nat.Base where
open import Cubical.Core.Primitives
open import Agda.Builtin.Nat public
using (zero; suc; _+_; _*_)
renaming (Nat to â)
predâ : â â â
predâ zero = 0
predâ (suc n) = n
caseNat : â {â} â {A : Type â} â (a0 aS : A) â â â A
caseNat a0 aS 0 = a0
caseNat a0 aS (suc n) = aS
doubleâ : â â â
doubleâ 0 = 0
doubleâ (suc x) = suc (suc (doubleâ x))
-- doublesâ n m = 2^n * m
doublesâ : â â â â â
doublesâ 0 m = m
doublesâ (suc n) m = doublesâ n (doubleâ m)
-- iterate
iter : â {â} {A : Type â} â â â (A â A) â A â A
iter zero f z = z
iter (suc n) f z = f (iter n f z)
|
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Universe {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance
open import Tools.Embedding
-- Helper function for reducible terms of type U for specific type derivations.
univEqâ² : â {l Î A} ([U] : Î â©âš l â©U) â Î â©âš l â© A â· U / U-intr [U] â Î â©âš â° â© A
univEqâ² (noemb (Uáµ£ .â° 0<1 â¢Î)) (Uâ Aâ d typeA Aâ¡A [A]) = [A]
univEqⲠ(emb 0<1 x) (ιx [A]) = univEqⲠx [A]
-- Reducible terms of type U are reducible types.
univEq : â {l Î A} ([U] : Î â©âš l â© U) â Î â©âš l â© A â· U / [U] â Î â©âš â° â© A
univEq [U] [A] = univEqâ² (U-elim [U])
(irrelevanceTerm [U] (U-intr (U-elim [U])) [A])
-- Helper function for reducible term equality of type U for specific type derivations.
univEqEqâ² : â {l lâ² Î A B} ([U] : Î â©âš l â©U) ([A] : Î â©âš lâ² â© A)
â Î â©âš l â© A â¡ B â· U / U-intr [U]
â Î â©âš lâ² â© A â¡ B / [A]
univEqEqâ² (noemb (Uáµ£ .â° 0<1 â¢Î)) [A]
(Uââ Aâ Bâ d dâ² typeA typeB Aâ¡B [t] [u] [tâ¡u]) =
irrelevanceEq [t] [A] [tâ¡u]
univEqEqâ² (emb 0<1 x) [A] (ιx [Aâ¡B]) = univEqEqâ² x [A] [Aâ¡B]
-- Reducible term equality of type U is reducible type equality.
univEqEq : â {l lâ² Î A B} ([U] : Î â©âš l â© U) ([A] : Î â©âš lâ² â© A)
â Î â©âš l â© A â¡ B â· U / [U]
â Î â©âš lâ² â© A â¡ B / [A]
univEqEq [U] [A] [Aâ¡B] =
let [Aâ¡B]â² = irrelevanceEqTerm [U] (U-intr (U-elim [U])) [Aâ¡B]
in univEqEqâ² (U-elim [U]) [A] [Aâ¡B]â²
|
module ExtInterface.Data.Product where
-- TODO: Write to Agda team about the lack of compilability of Sigma.
-- I assumed that the builtin flag would allow to compile Σ into (,)
-- but it doesn't. That's why this microfile exists
infixr 4 âš_,_â©
infixr 2 _Ã_
data _Ã_ (A B : Set) : Set where
âš_,_â© : A â B â A Ã B
{-# COMPILE GHC _Ã_ = data (,) ((,)) #-} -- Yeah, kinda abstract
projâ : â {A B : Set} â A Ã B â A
projâ âš x , y â© = x
projâ : â {A B : Set} â A Ã B â B
projâ âš x , y â© = y
map : â {A B C D : Set}
â (A â C) â (B â D) â A Ã B â C Ã D
map f g âš x , y â© = âš f x , g y â©
mapâ : â {A B C : Set}
â (A â C) â A Ã B â C Ã B
mapâ f = map f (λ x â x)
mapâ : â {A B D : Set}
â (B â D) â A Ã B â A Ã D
mapâ g = map (λ x â x) g
|
module #16 where
{-
Show that addition of natural numbers is commutative: â(i,j:N)(i + j = j + i).
-}
open import Data.Nat
open import Relation.Binary.PropositionalEquality
open Relation.Binary.PropositionalEquality.â¡-Reasoning
l-commutâ : (n : â) â n + 0 â¡ n
l-commutâ zero = refl
l-commutâ (suc n) = cong suc (l-commutâ n)
suc-in-the-middle-with-you : â m n â m + suc n â¡ suc (m + n)
suc-in-the-middle-with-you zero n = refl
suc-in-the-middle-with-you (suc m) n = cong suc (suc-in-the-middle-with-you m n)
+-commutative : (m n : â) â m + n â¡ n + m
+-commutative zero n = sym (l-commutâ n)
+-commutative (suc m) n =
begin
(suc m) + n
â¡âš refl â©
suc (m + n)
â¡âš cong suc (+-commutative m n) â©
suc (n + m)
â¡âš sym (suc-in-the-middle-with-you n m) â©
n + (suc m)
â
|
{-# OPTIONS --without-K #-}
module function.isomorphism where
open import function.isomorphism.core public
open import function.isomorphism.properties public
open import function.isomorphism.coherent public
open import function.isomorphism.lift public
open import function.isomorphism.utils public
open import function.isomorphism.univalence public
open import function.isomorphism.remove public
|
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Library.Action where
open import Light.Level using (Level ; SetÏ)
open import Light.Library.Data.Unit as Unit using (Unit)
open import Light.Library.Data.Natural as Natural using (â)
open import Light.Variable.Sets
open import Light.Variable.Levels
open import Light.Package using (Package)
record Dependencies : SetÏ where
field ⊠unitâpackage ⊠: Package record { Unit }
field ⊠naturalâpackage ⊠: Package record { Natural }
record Library (dependencies : Dependencies) : SetÏ where
field
mainââ : Level
Action : Set aâ â Set aâ
pure : ð â Action ð
_>>=_ : Action ð â (ð â Action ð) â Action ð
_>>_ : Action ð â Action ð â Action ð
log : ð â Action Unit
Main : Set mainââ
run : Action Unit â Main
prompt : Action â
alert : ð â Action Unit
open Library ⊠... ⊠public
|
module Issue858 where
module _ (A B : Set) (recompute : .B â .{{A}} â B) where
_$_ : .(A â B) â .A â B
f $ x with .{f} | .(f x) | .{{x}}
... | y = recompute y
module _ (A B : Set) (recompute : ..B â ..{{A}} â B) where
_$'_ : ..(A â B) â ..A â B
f $' x with ..{f} | ..(f x) | ..{{x}}
... | y = recompute y
|
{-# OPTIONS --universe-polymorphism #-}
module AutoMisc where
-- prelude
postulate
Level : Set
lzero : Level
lsuc : (i : Level) â Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO lzero #-}
{-# BUILTIN LEVELSUC lsuc #-}
data _â¡_ {a} {A : Set a} (x : A) : A â Set where
refl : x â¡ x
trans : â {a} {A : Set a} â {x y z : A} â x â¡ y â y â¡ z â x â¡ z
trans refl refl = refl
sym : â {a} {A : Set a} â {x y : A} â x â¡ y â y â¡ x
sym refl = refl
cong : â {a b} {A : Set a} {B : Set b}
(f : A â B) {x y} â x â¡ y â f x â¡ f y
cong f refl = refl
data _IsRelatedTo_ {a : Level} {Carrier : Set a} (x y : Carrier) : Set a where
relTo : (xâŒy : x â¡ y) â x IsRelatedTo y
begin_ : {a : Level} {Carrier : Set a} â {x y : Carrier} â x IsRelatedTo y â x â¡ y
begin relTo xâŒy = xâŒy
_â : {a : Level} {Carrier : Set a} â (x : Carrier) â x IsRelatedTo x
_â _ = relTo refl
_â¡âš_â©_ : {a : Level} {Carrier : Set a} â (x : Carrier) {y z : Carrier} â x â¡ y â y IsRelatedTo z â x IsRelatedTo z
_ â¡âš xâŒy â© relTo yâŒz = relTo (trans xâŒy yâŒz)
data â : Set where
zero : â
suc : (n : â) â â
_+_ : â â â â â
zero + n = n
suc m + n = suc (m + n)
data ⥠: Set where
¬ : Set â Set
¬ A = A â â¥
data Î (A : Set) (F : A â Set) : Set where
fun : ((a : A) â F a) â Î A F
data Σ (A : Set) (F : A â Set) : Set where
ΣI : (a : A) â (F a) â Σ A F
data Fin : â â Set where
zero : â {n} â Fin (suc n)
suc : â {n} â Fin n â Fin (suc n)
data List (X : Set) : Set where
[] : List X
_â·_ : X â List X â List X
_++_ : {X : Set} â List X â List X â List X
[] ++ ys = ys
(x â· xs) ++ ys = x â· (xs ++ ys)
data Vec (X : Set) : â â Set where
[] : Vec X zero
_â·_ : â {n} â X â Vec X n â Vec X (suc n)
module AdditionCommutative where
lemma : â n m â (n + suc m) â¡ suc (n + m)
lemma n m = {!!}
lemma' : â n m â (n + suc m) â¡ suc (n + m)
lemma' zero m = refl
lemma' (suc n) m = cong suc (lemma' n m)
addcommut : â n m â (n + m) â¡ (m + n)
addcommut n m = {!!}
module Drink where
postulate RAA : (A : Set) â (¬ A â â¥) â A
drink : (A : Set) â (a : A)
â (Drink : A â Set) â Σ A (λ x â (Drink x) â Î A Drink)
drink A a Drink = {!!}
module VecMap where
map : {X Y : Set} â {n : â} â (X â Y) â Vec X n â Vec Y n
map f xs = {!!}
module Disproving where
p : {X : Set} â (xs ys : List X) â (xs ++ ys) â¡ (ys ++ xs)
p = {!!}
|
module UnSized.SelfRef where
open import Data.Unit.Base
open import Data.Product
open import Data.String.Base
open import Data.Sum using (_â_) renaming (injâ to inl; injâ to inr)
open import Size
--open import SimpleCell
open import SizedIO.Object
open import SizedIO.IOObject
open import SizedIO.ConsoleObject
-- open import PrimTypeHelpersSmall
open import UnSizedIO.Base hiding (main)
open import UnSizedIO.Console hiding (main)
open import NativeIO
--open import SimpleCell
-- Object Alpha
data AlphaMethod A : Set where
print : AlphaMethod A
set : A â AlphaMethod A
m1 : AlphaMethod A
m2 : AlphaMethod A
AlphaResponses : {A : Set} (c : AlphaMethod A) â Set
AlphaResponses _ = â€
alphaI : (A : Set) â Interface
Method (alphaI A) = AlphaMethod A
Result (alphaI A) m = AlphaResponses m
alphaC : (i : Size) â Set
alphaC i = ConsoleObject i (alphaI String)
--
-- Self Referential: method 'm1' calls method 'm2'
--
{-
-- {-# NON_TERMINATING #-}
alphaO : â{i} (s : String) â alphaC i
method (alphaO s) print =
exec (putStrLn s) >>
return (_ , alphaO s)
method (alphaO s) (set x) =
return (_ , alphaO x)
-- force (method (alphaO s) m1) = exec (putStrLn s) λ _ â
-- method (alphaO s) m2 >>= λ{ (_ , câ) â
-- return (_ , câ) }
method (alphaO s) m1 =
exec1 (putStrLn s) >>
method (alphaO s) m2 >>= λ{ (_ , câ) â
return (_ , câ) }
method (alphaO s) m2 =
return (_ , alphaO (s ++ "->m2"))
program : String â IOConsole â Unit
program arg =
let câ = alphaO ("startÌ\n====\n\n") in
method câ m1 >>= λ{ (_ , câ) â --- ===> m1 called, but m2 prints out text
method câ print >>= λ{ (_ , câ) â
exec1 (putStrLn "\n\n====\nend") }}
main : NativeIO Unit
main = translateIOConsole (program "")
-}
|
{-# OPTIONS --without-K #-}
module HoTT.Identity.Coproduct where
open import HoTT.Base
open import HoTT.Equivalence
open variables
private variable x y : A + B
_=+_ : {A : ð° i} {B : ð° j} (x y : A + B) â ð° (i â j)
_=+_ {j = j} (inl aâ) (inl aâ) = Lift {j} (aâ == aâ)
_=+_ (inl _) (inr _) = ð
_=+_ (inr _) (inl _) = ð
_=+_ {i} (inr bâ) (inr bâ) = Lift {i} (bâ == bâ)
=+-equiv : (x == y) â x =+ y
=+-equiv = f , qinvâisequiv (g , η , ε)
where
f : x == y â x =+ y
f {x = inl a} refl = lift refl
f {x = inr a} refl = lift refl
g : x =+ y â x == y
g {x = inl _} {inl _} (lift refl) = refl
g {x = inl _} {inr _} ()
g {x = inr _} {inl _} ()
g {x = inr _} {inr _} (lift refl) = refl
η : {x y : A + B} â g {x = x} {y} â f ~ id
η {y = inl _} refl = refl
η {y = inr _} refl = refl
ε : f {x = x} {y} â g ~ id
ε {x = inl _} {inl _} (lift refl) = refl
ε {x = inl _} {inr _} ()
ε {x = inr _} {inl _} ()
ε {x = inr _} {inr _} (lift refl) = refl
=+-elim : x == y â x =+ y
=+-elim = prâ =+-equiv
=+-intro : x =+ y â x == y
=+-intro = Iso.g (eqvâiso =+-equiv)
|
{-# OPTIONS --safe #-}
module Cubical.HITs.SequentialColimit.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat
private
variable
â : Level
record Sequence (â : Level) : Type (â-suc â) where
field
space : â â Type â
map : {n : â} â space n â space (1 + n)
open Sequence
data Limâ (X : Sequence â) : Type â where
inl : {n : â} â X .space n â Limâ X
push : {n : â}(x : X .space n) â inl x â¡ inl (X .map x)
|
open import Oscar.Prelude
open import Oscar.Class.IsPrecategory
open import Oscar.Class.Reflexivity
open import Oscar.Class.Transleftidentity
open import Oscar.Class.Transrightidentity
open import Oscar.Class.Transitivity
module Oscar.Class.IsCategory where
module _
{ð¬} {ð : à ð¬}
{ð¯} (_âŒ_ : ð â ð â à ð¯)
{â} (_âŒÌ_ : â {x y} â x ⌠y â x ⌠y â à â) (let infix 4 _âŒÌ_ ; _âŒÌ_ = _âŒÌ_)
(ε : Reflexivity.type _âŒ_)
(_âŠ_ : Transitivity.type _âŒ_)
where
record IsCategory : à ð¬ âÌ ð¯ âÌ â where
constructor â
field
⊠`IsPrecategory ⊠: IsPrecategory _âŒ_ _âŒÌ_ _âŠ_
⊠`ð£ransleftidentity ⊠: Transleftidentity.class _âŒ_ _âŒÌ_ ε _âŠ_
⊠`ð£ransrightidentity ⊠: Transrightidentity.class _âŒ_ _âŒÌ_ ε _âŠ_
|
module logic where
open import Level
open import Relation.Nullary
open import Relation.Binary hiding (_â_ )
open import Data.Empty
data One {n : Level } : Set n where
OneObj : One
data Two : Set where
i0 : Two
i1 : Two
data Bool : Set where
true : Bool
false : Bool
record _â§_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n â m) where
constructor âª_,_â«
field
proj1 : A
proj2 : B
data _âš_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n â m) where
case1 : A â A âš B
case2 : B â A âš B
_â_ : {n m : Level } â ( A : Set n ) ( B : Set m ) â Set (n â m)
_â_ A B = ( A â B ) â§ ( B â A )
contra-position : {n m : Level } {A : Set n} {B : Set m} â (A â B) â ¬ B â ¬ A
contra-position {n} {m} {A} {B} f ¬b a = ¬b ( f a )
double-neg : {n : Level } {A : Set n} â A â ¬ ¬ A
double-neg A notnot = notnot A
double-neg2 : {n : Level } {A : Set n} â ¬ ¬ ¬ A â ¬ A
double-neg2 notnot A = notnot ( double-neg A )
de-morgan : {n : Level } {A B : Set n} â A â§ B â ¬ ( (¬ A ) âš (¬ B ) )
de-morgan {n} {A} {B} and (case1 ¬A) = â¥-elim ( ¬A ( _â§_.proj1 and ))
de-morgan {n} {A} {B} and (case2 ¬B) = â¥-elim ( ¬B ( _â§_.proj2 and ))
dont-or :ã{n m : Level} {A : Set n} { B : Set m } â A âš B â ¬ A â B
dont-or {A} {B} (case1 a) ¬A = â¥-elim ( ¬A a )
dont-or {A} {B} (case2 b) ¬A = b
dont-orb :ã{n m : Level} {A : Set n} { B : Set m } â A âš B â ¬ B â A
dont-orb {A} {B} (case2 b) ¬B = â¥-elim ( ¬B b )
dont-orb {A} {B} (case1 a) ¬B = a
infixr 130 _â§_
infixr 140 _âš_
infixr 150 _â_
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Heterogeneous N-ary Relations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Nary where
------------------------------------------------------------------------
-- Concrete examples can be found in README.Nary. This file's comments
-- are more focused on the implementation details and the motivations
-- behind the design decisions.
------------------------------------------------------------------------
open import Level using (Level; _â_; Lift)
open import Data.Unit.Base
open import Data.Bool.Base using (true; false)
open import Data.Empty
open import Data.Nat.Base using (zero; suc)
open import Data.Product as Prod using (_Ã_; _,_)
open import Data.Product.Nary.NonDependent
open import Data.Sum.Base using (_â_)
open import Function using (_$_; _ââ²_)
open import Function.Nary.NonDependent
open import Relation.Nullary using (¬_; Dec; yes; no; _because_)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product using (_Ã-dec_)
import Relation.Unary as Unary
open import Relation.Binary.PropositionalEquality using (_â¡_; cong; subst)
private
variable
r : Level
R : Set r
------------------------------------------------------------------------
-- Generic type constructors
-- `Relation.Unary` provides users with a wealth of combinators to work
-- with indexed sets. We can generalise these to n-ary relations.
-- The crucial thing to notice here is that because we are explicitly
-- considering that the input function should be a `Set`-ended `Arrows`,
-- all the other parameters are inferrable. This allows us to make the
-- number arguments (`n`) implicit.
------------------------------------------------------------------------
------------------------------------------------------------------------
-- Quantifiers
-- If we already know how to quantify over one variable, we can easily
-- describe how to quantify over `n` variables by induction over said `n`.
quantâ : (â {i l} {I : Set i} â (I â Set l) â Set (i â l)) â
â n {ls} {as : Sets n ls} â
Arrows n as (Set r) â Set (r â (âš n ls))
quantâ Q zero f = f
quantâ Q (suc n) f = Q (λ x â quantâ Q n (f x))
infix 5 ââš_â© Î [_] â[_]
-- existential quantifier
ââš_â© : â {n ls r} {as : Sets n ls} â as â Set r â Set (r â (âš n ls))
ââš_â© = quantâ Unary.Satisfiable _
-- explicit universal quantifiers
Î [_] : â {n ls r} {as : Sets n ls} â as â Set r â Set (r â (âš n ls))
Î [_] = quantâ Unary.Universal _
-- implicit universal quantifiers
â[_] : â {n ls r} {as : Sets n ls} â as â Set r â Set (r â (âš n ls))
â[_] = quantâ Unary.IUniversal _
-- â-mapâ : â n. (con : Aâ â ⯠â Aâ â R) â
-- Injectiveâ n con â
-- â aââ aââ ⯠aââ aââ â
-- Dec (aââ â¡ aââ) â ⯠â Dec (aââ â¡ aââ) â
-- Dec (con aââ ⯠aââ â¡ con aââ ⯠aââ)
â-mapâ : â n {ls} {as : Sets n ls} (con : Arrows n as R) â Injectiveâ n con â
â {l r} â Arrows n (Dec <$> Equalâ n l r) (Dec (uncurryâ n con l â¡ uncurryâ n con r))
â-mapâ n con con-inj =
curryâ n λ a?s â let as? = Product-dec n a?s in
Dec.mapâ² (cong (uncurryâ n con) ââ² fromEqualâ n) con-inj as?
------------------------------------------------------------------------
-- Substitution
module _ {n r ls} {as : Sets n ls} (P : as â Set r) where
-- Substitutionâ : â n. â aââ aââ ⯠aââ aââ â
-- aââ â¡ aââ â ⯠â aââ â¡ aââ â
-- P aââ ⯠aââ â P aââ ⯠aââ
Substitutionâ : Set (r â (âš n ls))
Substitutionâ = â {l r} â Equalâ n l r â (uncurryâ n P l â uncurryâ n P r)
substâ : Substitutionâ
substâ = curryâ n (subst (uncurryâ n P) ââ² fromEqualâ n)
------------------------------------------------------------------------
-- Pointwise liftings of k-ary operators
-- Rather than having multiple ad-hoc lifting functions for various arities
-- we have a fully generic liftâ functional which lifts a k-ary operator
-- to work with k n-ary functions whose respective codomains match the domains
-- of the operator.
-- The type of liftâ is fairly unreadable. Here it is written with ellipsis:
-- liftâ : â k n. (Bâ â ⯠â Bâ â R) â
-- (Aâ â ⯠â Aâ â Bâ) â
-- â®
-- (Aâ â ⯠â Aâ â Bâ) â
-- (Aâ â ⯠â Aâ â R)
liftâ : â k n {ls rs} {as : Sets n ls} {bs : Sets k rs} â
Arrows k bs R â Arrows k (smap _ (Arrows n as) k bs) (Arrows n as R)
liftâ k n op = curryâ€â k λ fs â
curryâ€â n λ vs â
uncurryâ€â k op $
palg _ _ k (λ f â uncurryâ€â n f vs) fs where
-- The bulk of the work happens in this auxiliary definition:
palg : â f (F : â {l} â Set l â Set (f l)) n {ls} {as : Sets n ls} â
(â {l} {r : Set l} â F r â r) â Product†n (smap f F n as) â Product†n as
palg f F zero alg ps = _
palg f F (suc n) alg (p , ps) = alg p , palg f F n alg ps
-- implication
infixr 6 _â_
_â_ : â {n} {ls r s} {as : Sets n ls} â
as â Set r â as â Set s â as â Set (r â s)
_â_ = liftâ 2 _ (λ A B â A â B)
-- conjunction
infixr 7 _â©_
_â©_ : â {n} {ls r s} {as : Sets n ls} â
as â Set r â as â Set s â as â Set (r â s)
_â©_ = liftâ 2 _ _Ã_
-- disjunction
infixr 8 _âª_
_âª_ : â {n} {ls r s} {as : Sets n ls} â
as â Set r â as â Set s â as â Set (r â s)
_âª_ = liftâ 2 _ _â_
-- negation
â : â {n ls r} {as : Sets n ls} â as â Set r â as â Set r
â = liftâ 1 _ ¬_
applyâ€â : â {n ls r} {as : Sets n ls} {R : as â Set r} â
Î [ R ] â (vs : Product†n as) â uncurryâ€â n R vs
applyâ€â {zero} prf vs = prf
applyâ€â {suc n} prf (v , vs) = applyâ€â (prf v) vs
applyâ : â {n ls r} {as : Sets n ls} {R : as â Set r} â
Î [ R ] â (vs : Product n as) â uncurryâ€â n R (toProduct†n vs)
applyâ {n} prf vs = applyâ€â prf (toProduct†n vs)
iapplyâ€â : â {n ls r} {as : Sets n ls} {R : as â Set r} â
â[ R ] â {vs : Product†n as} â uncurryâ€â n R vs
iapplyâ€â {zero} prf = prf
iapplyâ€â {suc n} prf = iapplyâ€â {n} prf
iapplyâ : â {n ls r} {as : Sets n ls} {R : as â Set r} â
â[ R ] â {vs : Product n as} â uncurryâ€â n R (toProduct†n vs)
iapplyâ {n} prf = iapplyâ€â {n} prf
------------------------------------------------------------------------
-- Properties of N-ary relations
-- Decidability
Decidable : â {n ls r} {as : Sets n ls} â as â Set r â Set (r â âš n ls)
Decidable R = Î [ mapâ _ Dec R ]
-- erasure
â_â : â {n ls r} {as : Sets n ls} {R : as â Set r} â Decidable R â as â Set r
â_â {zero} R? = Lift _ (Dec.True R?)
â_â {suc n} R? a = â R? a â
-- equivalence between R and its erasure
fromWitness : â {n ls r} {as : Sets n ls} (R : as â Set r) (R? : Decidable R) â
â[ â R? â â R ]
fromWitness {zero} R R? with R?
... | yes r = λ _ â r
... | false because _ = λ ()
fromWitness {suc n} R R? = fromWitness (R _) (R? _)
toWitness : â {n ls r} {as : Sets n ls} (R : as â Set r) (R? : Decidable R) â
â[ R â â R? â ]
toWitness {zero} R R? with R?
... | true because _ = _
... | no ¬r = â¥-elim âⲠ¬r
toWitness {suc n} R R? = toWitness (R _) (R? _)
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Nullary.DecidableEq where
open import Cubical.Relation.Nullary.Properties
using (DecâStable; DiscreteâisSet) public
|
{-# OPTIONS --erased-cubical --safe #-}
module Util where
open import Cubical.Core.Everything using (_â¡_; Level; Type; Σ; _,_; fst; snd; _â_; ~_)
open import Cubical.Foundations.Prelude using (refl; sym; _â_; cong; transport; subst; funExt; transp; I; i0; i1)
--open import Cubical.Foundations.Function using (_â_)
open import Cubical.Foundations.Univalence using (ua)
open import Cubical.Foundations.Isomorphism using (iso; Iso; isoToPath; section; retract; isoToEquiv)
open import Agda.Primitive using (Level)
open import Data.Fin using (Fin; #_; toâ; inject; fromâ; fromâ<; injectâ) renaming (zero to fz; suc to fsuc)
open import Data.Bool using (Bool; true; false; if_then_else_)
open import Data.Integer using (â€; +_; -[1+_]; _-_; â£_â£; -_)
open import Data.List using (List; concat; replicate; []; _â·_; _â·Ê³_; map; _++_; reverse)
open import Data.Maybe using (Maybe; just; nothing)
open import Data.Nat using (â; zero; suc; _+_; _*_; _<áµ_; _â€áµ_; _â¡áµ_; _<?_; _â_; _âž_; _<_; sâ€s; zâ€n; _â_)
open import Data.Nat.DivMod using (_mod_)
open import Data.Nat.Properties using (â€-step; â€-trans; â€-refl)
open import Data.Product using (_Ã_; _,_)
open import Data.Vec using (Vec; _â·_; []; zip; last) renaming (concat to cat; replicate to rep; map to vmap; _â·Ê³_ to _vâ·Ê³_)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Nullary.Decidable using (False)
open import Relation.Unary using (Pred; Decidable)
infixr 9 _â_
_â_ : {â : Level}{A : Type â}{B : A â Type â}{C : (a : A) â B a â Type â}
(g : {a : A} â (b : B a) â C a b) â (f : (a : A) â B a) â (a : A) â C a (f a)
g â f = λ x â g (f x)
{-# INLINE _â_ #-}
repeat : {â : Level} {A : Type â} â (n : â) â List A â List A
repeat n = concat â replicate n
repeatV : {â : Level} {A : Type â} {k : â} â (n : â) â Vec A k â Vec A (n * k)
repeatV n = cat â rep {n = n}
-- return index of first element that satisfies predicate or last element if none do
findIndex : {a â : Level} {A : Type a} {n : â} {P : Pred A â} â Decidable P â Vec A (suc n) â Fin (suc n)
findIndex _ (x â· []) = # 0
findIndex P (x â· y â· ys) with P x
... | yes _ = # 0
... | no _ = fsuc (findIndex P (y â· ys))
-- Returns a list of all adjacent pairs in the original list.
pairs : {â : Level} {A : Type â} â List A â List (A Ã A)
pairs [] = []
pairs (x â· []) = []
pairs (x â· y â· xs) = (x , y) â· pairs (y â· xs)
-- Returns a list of all pairs in the original list.
allPairs : {â : Level} {A : Type â} â List A â List (A Ã A)
allPairs [] = []
allPairs (x â· xs) = map (x ,_) xs ++ allPairs xs
-- Returns a singleton list of the pair of the first and last element if the list has at least 2 elements,
-- or the empty list otherwise.
firstLast : {â : Level} {A : Type â} â List A â List (A Ã A)
firstLast [] = []
firstLast (x â· xs) with reverse xs
... | [] = []
... | y â· ys = (x , y) â· []
-- Returns a list of all adjacent pairs in the original list, prepended by the pair of the first and last elements.
â¯pairs : {â : Level} {A : Type â} â List A â List (A à A)
â¯pairs xs = firstLast xs ++ pairs xs
-- Returns a list of the first element paired with all later elements, in order.
firstPairs : {â : Level} {A : Type â} â List A â List (A Ã A)
firstPairs [] = []
firstPairs (x â· xs) = map (x ,_) xs
-- Basic Boolean Filter and Elem
filter : {â : Level} {A : Type â} â (A â Bool) â List A â List A
filter f [] = []
filter f (x â· xs) = if f x then x â· filter f xs else filter f xs
infix 4 _â_via_
_â_via_ : {â : Level} {A : Type â} â A â List A â (A â A â Bool) â Bool
x â [] via f = false
x â y â· ys via f = if f x y then true else x â ys via f
concatMaybe : {â : Level} {A : Type â} â List (Maybe A) â List A
concatMaybe [] = []
concatMaybe (nothing â· xs) = concatMaybe xs
concatMaybe (just x â· xs) = x â· concatMaybe xs
listMin : {â : Level} {A : Type â} â (A â â) â List A â Maybe A
listMin f [] = nothing
listMin f (x â· xs) with listMin f xs
... | nothing = just x
... | just y = if f x <áµ f y then just x else just y
fins : (k : â) â Vec (Fin k) k
fins zero = []
fins (suc k) = fz â· vmap fsuc (fins k)
fins' : (n : â) â (k : Fin n) â Vec (Fin n) (toâ k)
fins' n k = vmap inject (fins (toâ k))
finSuc : {n : â} â Fin (suc n) â Fin (suc n)
finSuc {n} m with suc (toâ m) <? suc n
... | yes x = fromâ< x
... | no _ = fz
_+N_ : {n : â} â Fin (suc n) â â â Fin (suc n)
a +N zero = a
a +N suc b = finSuc a +N b
â£-â£helper : (n : â) â â â â â â
â£-â£helper n a b with a â€áµ b
... | true = (b âž a) â ((n + a) âž b)
... | false = (a âž b) â ((n + b) âž a)
âš_â©â£_-_⣠: (n : â) â Fin n â Fin n â â
âš_â©â£_-_⣠n a b = â£-â£helper n (toâ a) (toâ b)
nâžk<n : (n k : â) â (suc n) âž (suc k) < suc n
nâžk<n zero zero = sâ€s zâ€n
nâžk<n (suc n) zero = sâ€s (nâžk<n n zero)
nâžk<n zero (suc k) = sâ€s zâ€n
nâžk<n (suc n) (suc k) = â€-trans (nâžk<n n k) (â€-step â€-refl)
opposite' : â {n} â Fin n â Fin n
opposite' {suc n} fz = fz
opposite' {suc n} (fsuc k) = fromâ< (nâžk<n n (toâ k))
-- opposite "i" = "n - i" (i.e. the additive inverse).
opposite : â {n} â Fin n â Fin n
opposite {suc n} fz = fz
opposite {suc n} (fsuc fz) = fromâ n
opposite {suc n} (fsuc (fsuc i)) = injectâ (opposite (fsuc i))
_modâ_ : (dividend : â€) (divisor : â) {â¢0 : False (divisor â 0)} â Fin divisor
((+ n) modâ d) {dâ 0} = (n mod d) {dâ 0}
(-[1+ n ] modâ d) {dâ 0} = opposite ((suc n mod d) {dâ 0})
zipWithIndex : {â : Level} {A : Type â} {k : â} â Vec A k â Vec (Fin k à A) k
zipWithIndex {k = k} = zip (fins k)
iter : {â : Level} {A : Type â} â (A â A) â â â A â List A
iter f zero x = x â· []
iter f (suc n) x = x â· iter f n (f x)
rotateLeft : {â : Level} {A : Type â} â List A â List A
rotateLeft [] = []
rotateLeft (x â· xs) = xs â·Ê³ x
rotateRight : {â : Level} {A : Type â} â List A â List A
rotateRight = reverse â rotateLeft â reverse
vrotateLeft : {â : Level} {A : Type â} {k : â} â Vec A k â Vec A k
vrotateLeft {k = zero} [] = []
vrotateLeft {k = suc k} (x â· xs) = xs vâ·Ê³ x
vrotateRight : {â : Level} {A : Type â} {k : â} â Vec A k â Vec A k
vrotateRight {k = zero} [] = []
vrotateRight {k = suc k} xs@(_ â· ys) = last xs â· ys
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Susp.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Data.Bool
open import Cubical.HITs.Join
open import Cubical.HITs.Susp.Base
open Iso
Susp-iso-joinBool : â {â} {A : Type â} â Iso (Susp A) (join A Bool)
fun Susp-iso-joinBool north = inr true
fun Susp-iso-joinBool south = inr false
fun Susp-iso-joinBool (merid a i) = (sym (push a true) â push a false) i
inv Susp-iso-joinBool (inr true ) = north
inv Susp-iso-joinBool (inr false) = south
inv Susp-iso-joinBool (inl _) = north
inv Susp-iso-joinBool (push a true i) = north
inv Susp-iso-joinBool (push a false i) = merid a i
rightInv Susp-iso-joinBool (inr true ) = refl
rightInv Susp-iso-joinBool (inr false) = refl
rightInv Susp-iso-joinBool (inl a) = sym (push a true)
rightInv Susp-iso-joinBool (push a true i) j = push a true (i âš ~ j)
rightInv Susp-iso-joinBool (push a false i) j
= hcomp (λ k â λ { (i = i0) â push a true (~ j)
; (i = i1) â push a false k
; (j = i1) â push a false (i â§ k) })
(push a true (~ i â§ ~ j))
leftInv Susp-iso-joinBool north = refl
leftInv Susp-iso-joinBool south = refl
leftInv (Susp-iso-joinBool {A = A}) (merid a i) j
= hcomp (λ k â λ { (i = i0) â transp (λ _ â Susp A) (k âš j) north
; (i = i1) â transp (λ _ â Susp A) (k âš j) (merid a k)
; (j = i1) â merid a (i â§ k) })
(transp (λ _ â Susp A) j north)
SuspâjoinBool : â {â} {A : Type â} â Susp A â join A Bool
SuspâjoinBool = isoToEquiv Susp-iso-joinBool
Suspâ¡joinBool : â {â} {A : Type â} â Susp A â¡ join A Bool
Suspâ¡joinBool = isoToPath Susp-iso-joinBool
congSuspEquiv : â {â} {A B : Type â} â A â B â Susp A â Susp B
congSuspEquiv {â} {A} {B} h = isoToEquiv isom
where isom : Iso (Susp A) (Susp B)
Iso.fun isom north = north
Iso.fun isom south = south
Iso.fun isom (merid a i) = merid (fst h a) i
Iso.inv isom north = north
Iso.inv isom south = south
Iso.inv isom (merid a i) = merid (invEq h a) i
Iso.rightInv isom north = refl
Iso.rightInv isom south = refl
Iso.rightInv isom (merid a i) j = merid (retEq h a j) i
Iso.leftInv isom north = refl
Iso.leftInv isom south = refl
Iso.leftInv isom (merid a i) j = merid (secEq h a j) i
suspToPropRec : â {â â'} {A : Type â} {B : Susp A â Type â'} (a : A)
â ((x : Susp A) â isProp (B x))
â B north
â (x : Susp A) â B x
suspToPropRec a isProp Bnorth north = Bnorth
suspToPropRec {B = B} a isProp Bnorth south = subst B (merid a) Bnorth
suspToPropRec {B = B} a isProp Bnorth (merid aâ i) =
isOfHLevelâisOfHLevelDep 1 isProp Bnorth (subst B (merid a) Bnorth) (merid aâ) i
suspToPropRec2 : â {â â'} {A : Type â} {B : Susp A â Susp A â Type â'} (a : A)
â ((x y : Susp A) â isProp (B x y))
â B north north
â (x y : Susp A) â B x y
suspToPropRec2 a isProp Bnorth =
suspToPropRec a (λ x â isOfHLevelÎ 1 λ y â isProp x y)
(suspToPropRec a (λ x â isProp north x) Bnorth)
|
{-# OPTIONS --without-K #-}
module container.m.from-nat.bisimulation where
open import level
open import sum
open import equality
open import function
open import container.core
open import container.m.coalgebra as MC hiding (IsMor ; _â_)
open import container.m.from-nat.coalgebra hiding (X)
open import hott.level
module Def {la lb lc} {C : Container la lb lc} (ð§ : Coalg C (lb â lc)) where
open Container C
open Σ ð§ renaming (projâ to X ; projâ to γ)
open MC C using (IsMor ; _â_)
-- Σ-closure of an indexed binary relation
Σâ[_] : (â {i} â X i â X i â Set (lb â lc)) â I â Set _
Σâ[ _âŒ_ ] i = Σ (X i) λ x â Σ (X i) λ xâ² â x ⌠xâ²
-- projections
module _ {_âŒ_ : â {i} â X i â X i â Set _} (i : I) where
Σâ-projâ : Σâ[ _âŒ_ ] i â X i
Σâ-projâ = projâ
Σâ-projâ : Σâ[ _âŒ_ ] i â X i
Σâ-projâ = projâ â' projâ
Σâ-projâ : (r : Σâ[ _âŒ_ ] i) â _âŒ_ (Σâ-projâ r) (Σâ-projâ r)
Σâ-projâ = projâ â' projâ
-- Definition 16 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO])
-- bisimulation definition
record Bisim (_âŒ_ : â {i} â X i â X i â Set _): Set(lb â lc â lsuc la) where
field
α : Σâ[ _âŒ_ ] ââ± F Σâ[ _âŒ_ ]
Ïâ-Mor : IsMor (_ , α) ð§ Σâ-projâ
Ïâ-Mor : IsMor (_ , α) ð§ Σâ-projâ
ð : Coalg C _
ð = _ , α
Ïâ : ð â ð§
Ïâ = _ , Ïâ-Mor
Ïâ : ð â ð§
Ïâ = _ , Ïâ-Mor
-- Lemma 17 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO])
Î : Bisim (λ {i} â _â¡_)
Î = record { α = α ; Ïâ-Mor = Ïâ-Mor ; Ïâ-Mor = Ïâ-Mor }
where α : Σâ[ _â¡_ ] ââ± F Σâ[ _â¡_ ]
α i (x , ._ , refl) = projâ (γ _ x)
, λ b â (projâ (γ _ x) b) , (_ , refl)
Ïâ-Mor : IsMor (_ , α) ð§ _
Ïâ-Mor = funextâ± helper
where helper : (i : I) â (p : Σâ[ _â¡_ ] i) â _
helper i (m , ._ , refl) = refl
Ïâ-Mor : IsMor (_ , α) ð§ _
Ïâ-Mor = funextâ± helper
where helper : (i : I) â (p : Σâ[ _â¡_ ] i) â _
helper i (m , ._ , refl) = refl
--------------------------------------------------------------------------------
-- coinduction proof principle
module _ {la lb lc} {C : Container la lb lc} where
open Container C
open MC C using (IsMor ; _â_)
private
ð : Coalg C (lb â lc)
ð = ð C
unfold : â (ð§ : Coalg C (lb â lc)) â ð§ â ð
unfold ð§ = projâ $ lim-terminal C ð§
unfold-universal = λ {â} (ð§ : Coalg C â) â projâ (lim-terminal C ð§)
open Σ ð renaming (projâ to M ; projâ to out) ; open Def ð
module _ {_âŒ_ : â {i} â M i â M i â Set (lb â lc)} (B : Bisim _âŒ_) where
-- Theorem 18 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO])
-- coinduction proof principle
cpp : â {i} {m mâ² : M i} â m ⌠mâ² â m â¡ mâ²
cpp {i} p = funext-invâ± (projâ $ apΣ Ïâ=Ïâ) i (_ , _ , p)
where open Bisim B
abstract
Ïâ=Ïâ : Ïâ â¡ Ïâ
Ïâ=Ïâ = (sym $ unfold-universal ð Ïâ) · unfold-universal ð Ïâ
-- In particular, provided that the bisimulation _âŒ_ is reflexive, we have:
module _ (âŒ-refl : â {i} {m : M i} â m ⌠m) where
cppâ² : â {i} {m mâ² : M i} â m ⌠mâ² â m â¡ mâ²
cppâ² {i} p = cpp p · sym (cpp âŒ-refl)
cppâ²-inv : â {i} {m mâ² : M i} â m â¡ mâ² â m ⌠mâ²
cppâ²-inv refl = âŒ-refl
cppâ²-id : â {i} {m : M i} â cppâ² âŒ-refl â¡ refl {x = m}
cppâ²-id = left-inverse $ cpp âŒ-refl
cppâ²-retraction : â {i} {m mâ² : M i} (p : m â¡ mâ²) â cppâ² (cppâ²-inv p) â¡ p
cppâ²-retraction refl = left-inverse $ cpp âŒ-refl
|
{-# OPTIONS --without-K #-}
module M-types.Base.Core where
open import Agda.Primitive public using (Level) renaming
(
lzero to â-zero ;
lsuc to â-suc ;
_â_ to â-max
)
variable
â ââ ââ ââ : Level
Ty : (â : Level) â Set (â-suc â)
Ty â = Set â
|
module _ where
-- Ulf's example of why removing abstract may
-- cause a proof that used to work to now fail
-- Agda mailing list, 16 May 2018
open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
module WithAbstract where
abstract
f : Nat â Nat
f zero = zero
f (suc n) = suc (f n)
lem : â n â f n â¡ n
lem zero = refl
lem (suc n) rewrite lem n = refl
thm : â m n â f (suc m) + n â¡ suc (m + n)
thm m n rewrite lem (suc m) = refl
-- Works.
thmâ² : â m n â f (suc m) + n â¡ suc (m + n)
thmâ² m n = {!!}
{- Hole 0
Goal: f (suc m) + n â¡ suc (m + n)
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
n : Nat
m : Nat
-}
module WithoutAbstract where
f : Nat â Nat
f zero = zero
f (suc n) = suc (f n)
lem : â n â f n â¡ n
lem zero = refl
lem (suc n) rewrite lem n = refl
thm : â m n â f (suc m) + n â¡ suc (m + n)
thm m n rewrite lem (suc m) = {! refl!}
-- Fails since rewrite doesn't trigger:
-- lem (suc m) : suc (f m) â¡ suc m
-- goal : suc (f m + n) â¡ suc (m + n)
-- NB: The problem is with the expansion of `f`,
-- not with the expansion of the lemma
thmâ² : â m n â f (suc m) + n â¡ suc (m + n)
thmâ² m n = {!!}
{- Holes 1 and 2
Goal: suc (f m + n) â¡ suc (m + n)
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
n : Nat
m : Nat
-}
|
postulate
A : Set
module _ where
{-# POLARITY A #-}
|
module UniDB.Subst where
open import UniDB.Subst.Core public
open import UniDB.Subst.Pair public
open import UniDB.Subst.Inst public
|
{-# OPTIONS --without-K --rewriting --allow-unsolved-metas #-}
open import HoTT renaming (pt to ptâ)
open import homotopy.DisjointlyPointedSet
open import lib.types.Nat
open import lib.types.Vec
module simplicial.Base where
-- HELPERS
combinations : â â List â -> List (List â)
combinations 0 _ = nil :: nil
combinations _ nil = nil
combinations (S n) (x :: xs) = (map (λ ys â x :: ys) (combinations (n) xs)) ++ (combinations (S n) xs)
standardSimplex : â â List â
standardSimplex O = nil
standardSimplex (S x) = (S x) :: (standardSimplex x)
-- UGLY HELPER FUNCTIONS -- TO BE REPLACED WITH STANDARD FUNCTIONS LATER ON
bfilter : {A : Typeâ} â ((a : A) â Bool) â List A â List A
bfilter f nil = nil
bfilter f (a :: l) with f a
... | inl _ = a :: (bfilter f l)
... | inr _ = bfilter f l
âin : â â List â â Bool
âin x nil = inr unit
âin x (y :: ys) with â-has-dec-eq x y
... | inl xâ = inl unit
... | inr xâ = inr unit
_lsubset_ : List â â List â â Bool
nil lsubset ys = inl unit
(x :: xs) lsubset ys with âin x ys
... | inl _ = xs lsubset ys
... | inr _ = inr unit
-- TYPES FOR SIMPLICES
-- 'Simplices' saves a collection of simplices, grouped by their dimension.
-- Note that we do not specify the dimensions of individual simplices, since
-- otherwise we could not simply save all simplices in a single vector
Simplex = List â
Simplices : â â Typeâ
Simplices dim = (Vec (List Simplex) dim)
is-closed : {dim : â} â (Simplices dim) â Typeâ
record SC (dim : â) : Typeâ where
constructor complex
field
simplices : Simplices dim
closed : is-closed simplices
simplices : {dim : â} â SC dim â Simplices dim
simplices (complex simplices _) = simplices
faces : Simplex â List Simplex
faces s = concat (map (λ l â combinations l s) (standardSimplex (â-pred (length s))))
-- removes grouping of simplices by dimension and puts all simplices in single list
compress : {dim : â} â Simplices dim â List Simplex
compress {dim} [] = nil
compress {dim} (xs â· xss) = xs ++ compress xss
bodies : {dim : â} â (SC dim) â Simplex â List Simplex
bodies (complex ss _) s = bfilter (λ o â (s lsubset o)) (compress ss)
-- inverse of compress function
unfold : {dim : â} â List Simplex â Simplices dim
unfold {dim} ss = unfold' {dim} ss (emptyss dim)
where
emptyss : (dim : â) â Simplices dim
emptyss 0 = []
emptyss (S n) = nil â· (emptyss n)
unfold' : {dim : â} â List Simplex â Simplices dim â Simplices dim
unfold' {dim} nil sc = sc
unfold' {dim} (x :: ss) sc = insert (faces x) sc
where
insert : {dim : â} â List Simplex â Simplices dim â Simplices dim
insert nil sc = sc
insert (s :: ss) sc = insertS s sc
where
insertS : {dim : â} â Simplex â Simplices dim â Simplices dim
insertS s sc = updateAt ((length s) , {!!}) (λ l â s :: l) sc
is-closed {dim} ss = All (λ s â All (λ f â f â ssc) (faces s)) ssc
where ssc = compress ss
-- takes facet description of SC and generates their face closure
SCgenerator : (dim : â) â List Simplex â SC dim
SC.simplices (SCgenerator dim ss) = unfold $ concat(concat (map(λ simplex â map (λ l â combinations l simplex) (standardSimplex (length simplex))) ss))
SC.closed (SCgenerator dim ss) = {!!}
-- EXAMPLES
sc-unit : SC 2
SC.simplices sc-unit = ((1 :: nil) :: (2 :: nil) :: nil) â· ((1 :: 2 :: nil) :: nil) â· []
SC.closed sc-unit = nil :: (nil :: (((here idp) :: ((there (here idp)) :: nil)) :: nil))
sc-circle : SC 2
SC.simplices sc-circle =
((1 :: nil) :: (2 :: nil) :: (3 :: nil) :: nil) â·
((1 :: 2 :: nil) :: (1 :: 3 :: nil) :: (2 :: 3 :: nil) :: nil) â· []
SC.closed sc-circle = nil :: (nil :: (nil :: (((here idp) :: ((there (here idp)) :: nil)) :: (((here idp) :: ((there (there (here idp))) :: nil)) :: ((there (here idp) :: (there (there (here idp)) :: nil)) :: nil)))))
-- sc-circle-equiv-cw-circle : CWSphere 1 â CWSphere 1
-- sc-circle-equiv-cw-circle = {!!}
sc-sphere : SC 3
sc-sphere = SCgenerator 3 ((1 :: 2 :: 3 :: nil) :: (1 :: 3 :: 4 :: nil) :: (2 :: 3 :: 4 :: nil) :: (1 :: 3 :: 4 :: nil) :: nil)
sc-unit-gen : SC 2
sc-unit-gen = SCgenerator 2 ((1 :: 2 :: nil) :: nil)
-- sc-unitâsc-unit-gen : sc-unit â sc-unit-gen
-- sc-unitâsc-unit-gen = ?
|
-- If we try to naively extend the Kripke structure used for NbE of STLC,
-- we find that it is sound, but not complete.
--
-- The definition of semantic objects, which represent terms in normal form,
-- is not big enough to represent neutral terms of the coproduct types.
-- The problem is visible in the definition of `reflect`.
module STLC2.Kovacs.Normalisation.SoundNotComplete where
open import STLC2.Kovacs.NormalForm public
--------------------------------------------------------------------------------
-- (TyᎺ)
infix 3 _â©_
_â©_ : ð â ð¯ â Set
Î â© âµ = Î â¢â¿á¶ âµ
Î â© A â B = â {Îâ²} â (η : Îâ² â Î) (a : Îâ² â© A)
â Îâ² â© B
Î â© A â© B = Î â© A Ã Î â© B
Π⩠⫪ = â€
Î â© â«« = â¥
Î â© A â© B = Î â© A â Î â© B
-- (ConᎺ ; â ; _,_)
infix 3 _â©â_
data _â©â_ : ð â ð â Set
where
â
: â {Î} â Î â©â â
_,_ : â {Î Î A} â (Ï : Î â©â Î) (a : Î â© A)
â Î â©â Î , A
--------------------------------------------------------------------------------
-- (TyᎺâ)
acc : â {A Î Îâ²} â Îâ² â Î â Î â© A â Îâ² â© A
acc {âµ} η M = renâ¿á¶ η M
acc {A â B} η f = λ ηⲠa â f (η â ηâ²) a
acc {A â© B} η s = acc η (projâ s) , acc η (projâ s)
acc {⫪} η s = tt
acc {⫫} η s = elim⥠s
acc {A â© B} η s = elimâ s (λ a â injâ (acc η a))
(λ b â injâ (acc η b))
-- (ConᎺâ)
-- NOTE: _â¬_ = accâ
_â¬_ : â {Î Îâ² Î} â Î â©â Î â Îâ² â Î â Îâ² â©â Î
â
⬠η = â
(Ï , a) ⬠η = Ï â¬ Î· , acc η a
--------------------------------------------------------------------------------
-- (âᎺ)
getáµ¥ : â {Î Î A} â Î â©â Î â Î â A â Î â© A
getáµ¥ (Ï , a) zero = a
getáµ¥ (Ï , a) (suc i) = getáµ¥ Ï i
-- (TmᎺ)
eval : â {Î Î A} â Î â©â Î â Π⢠A â Î â© A
eval Ï (ð i) = getáµ¥ Ï i
eval Ï (Æ M) = λ η a â eval (Ï â¬ Î· , a) M
eval Ï (M â N) = eval Ï M idâ (eval Ï N)
eval Ï (M , N) = eval Ï M , eval Ï N
eval Ï (Ïâ M) = projâ (eval Ï M)
eval Ï (Ïâ M) = projâ (eval Ï M)
eval Ï Ï = tt
eval Ï (Ï M) = elim⥠(eval Ï M)
eval Ï (ιâ M) = injâ (eval Ï M)
eval Ï (ιâ M) = injâ (eval Ï M)
eval Ï (M â Nâ ⥠Nâ) = elimâ (eval Ï M) (λ Mâ â eval (Ï , Mâ) Nâ)
(λ Mâ â eval (Ï , Mâ) Nâ)
-- mutual
-- -- (qᎺ)
-- reify : â {A Î} â Î â© A â Î â¢â¿á¶ A
-- reify {âµ} M = M
-- reify {A â B} f = Æ (reify (f (wkâ idâ) (reflect 0)))
-- reify {A â© B} s = reify (projâ s) , reify (projâ s)
-- reify {⫪} s = Ï
-- reify {⫫} s = elim⥠s
-- reify {A â© B} s = elimâ s (λ a â ιâ (reify a))
-- (λ b â ιâ (reify b))
-- -- (uᎺ)
-- reflect : â {A Î} â Î â¢â¿áµ A â Î â© A
-- reflect {âµ} M = ne M
-- reflect {A â B} M = λ η a â reflect (renâ¿áµ η M â reify a)
-- reflect {A â© B} M = reflect (Ïâ M) , reflect (Ïâ M)
-- reflect {⫪} M = tt
-- reflect {â««} M = {!!}
-- reflect {A â© B} M = {!!}
-- -- (uá¶áŽº)
-- idáµ¥ : â {Î} â Î â©â Î
-- idáµ¥ {â
} = â
-- idáµ¥ {Î , A} = idáµ¥ ⬠wkâ idâ , reflect 0
-- -- (nf)
-- nf : â {Î A} â Π⢠A â Î â¢â¿á¶ A
-- nf M = reify (eval idáµ¥ M)
--------------------------------------------------------------------------------
|
{-# OPTIONS --without-K --rewriting #-}
module Base where
{-
With the HoTT-Agda library, the following import can be used instead:
open import HoTT using
(Type; lmax; lsucc;
_==_; idp; !;
ap; apd;
Square; ids; vid-square; hid-square; SquareOver; â-ap-in; apd-square;
app=; λ=; app=-β;
transport;
â; O; S; â-reader;
_Ã_; _,_; fst; snd;
_â_; ap-â; ap-!;
PathOver; â-cst-in; apd=cst-in; ap-idf; ap-cst; square-symmetry; uncurry; ap-square;
Cube; idc; ap-cube;
is-contr) public
-}
open import Agda.Primitive public using (lzero)
renaming (Level to ULevel; lsuc to lsucc; _â_ to lmax)
Type : (i : ULevel) â Set (lsucc i)
Type i = Set i
Typeâ : Set (lsucc lzero)
Typeâ = Type lzero
infix 30 _==_
data _==_ {i} {A : Type i} (a : A) : A â Type i where
idp : a == a
PathOver : â {i j} {A : Type i} (B : A â Type j)
{x y : A} (p : x == y) (u : B x) (v : B y) â Type j
PathOver B idp u v = (u == v)
infix 30 PathOver
syntax PathOver B p u v =
u == v [ B â p ]
ap : â {i j} {A : Type i} {B : Type j} (f : A â B) {x y : A}
â (x == y â f x == f y)
ap f idp = idp
apd : â {i j} {A : Type i} {B : A â Type j} (f : (a : A) â B a) {x y : A}
â (p : x == y) â f x == f y [ B â p ]
apd f idp = idp
transport : â {i j} {A : Type i} (B : A â Type j) {x y : A} (p : x == y)
â (B x â B y)
transport B idp u = u
infixr 60 _,_
record Σ {i j} (A : Type i) (B : A â Type j) : Type (lmax i j) where
constructor _,_
field
fst : A
snd : B fst
open Σ public
_Ã_ : â {i j} (A : Type i) (B : Type j) â Type (lmax i j)
A à B = Σ A (λ _ â B)
data â : Type lzero where
O : â
S : (n : â) â â
Nat = â
{-# BUILTIN NATURAL â #-}
infixr 80 _â_
_â_ : â {i j k} {A : Type i} {B : A â Type j} {C : (a : A) â (B a â Type k)}
â (g : {a : A} â (x : B a) â (C a x)) â (f : (x : A) â B x) â (x : A) â C x (f x)
g â f = λ x â g (f x)
uncurry : â {i j k} {A : Type i} {B : A â Type j} {C : (x : A) â B x â Type k}
â (â x y â C x y) â (â s â C (fst s) (snd s))
uncurry f (x , y) = f x y
record FromNat {i} (A : Type i) : Type (lsucc i) where
field
in-range : â â Type i
read : â n â ⊠_ : in-range n ⊠â A
open FromNat âŠ...⊠public using () renaming (read to from-nat)
{-# BUILTIN FROMNAT from-nat #-}
record †: Type lzero where
instance constructor unit
Unit = â€
instance
â-reader : FromNat â
FromNat.in-range â-reader _ = â€
FromNat.read â-reader n = n
! : â {i} {A : Type i} {x y : A} â x == y â y == x
! idp = idp
data Square {i} {A : Type i} {aââ : A} : {aââ aââ aââ : A}
â aââ == aââ â aââ == aââ â aââ == aââ â aââ == aââ â Type i
where
ids : Square idp idp idp idp
hid-square : â {i} {A : Type i} {aââ aââ : A} {p : aââ == aââ}
â Square p idp idp p
hid-square {p = idp} = ids
vid-square : â {i} {A : Type i} {aââ aââ : A} {p : aââ == aââ}
â Square idp p p idp
vid-square {p = idp} = ids
ap-square : â {i j} {A : Type i} {B : Type j} (f : A â B)
{aââ aââ aââ aââ : A}
{pââ : aââ == aââ} {pââ : aââ == aââ} {pââ : aââ == aââ} {pââ : aââ == aââ}
â Square pââ pââ pââ pââ
â Square (ap f pââ) (ap f pââ) (ap f pââ) (ap f pââ)
ap-square f ids = ids
SquareOver : â {i j} {A : Type i} (B : A â Type j) {aââ aââ aââ aââ : A}
{pââ : aââ == aââ} {pââ : aââ == aââ} {pââ : aââ == aââ} {pââ : aââ == aââ}
(sq : Square pââ pââ pââ pââ)
{bââ : B aââ} {bââ : B aââ} {bââ : B aââ} {bââ : B aââ}
(qââ : bââ == bââ [ B â pââ ]) (qââ : bââ == bââ [ B â pââ ])
(qââ : bââ == bââ [ B â pââ ]) (qââ : bââ == bââ [ B â pââ ])
â Type j
SquareOver B ids = Square
apd-square : â {i j} {A : Type i} {B : A â Type j} (f : (x : A) â B x)
{aââ aââ aââ aââ : A}
{pââ : aââ == aââ} {pââ : aââ == aââ} {pââ : aââ == aââ} {pââ : aââ == aââ}
(sq : Square pââ pââ pââ pââ)
â SquareOver B sq (apd f pââ) (apd f pââ) (apd f pââ) (apd f pââ)
apd-square f ids = ids
square-symmetry : â {i} {A : Type i} {aââ aââ aââ aââ : A}
{pââ : aââ == aââ} {pââ : aââ == aââ} {pââ : aââ == aââ} {pââ : aââ == aââ}
â Square pââ pââ pââ pââ â Square pââ pââ pââ pââ
square-symmetry ids = ids
module _ {i j k} {A : Type i} {B : Type j} (C : B â Type k) (f : A â B) where
â-ap-in : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)}
â u == v [ C â f â p ]
â u == v [ C â ap f p ]
â-ap-in {p = idp} idp = idp
-- We postulate function extensionality
module _ {i j} {A : Type i} {P : A â Type j} {f g : (x : A) â P x} where
app= : (p : f == g) (x : A) â f x == g x
app= p x = ap (λ u â u x) p
postulate
λ= : (h : (x : A) â f x == g x) â f == g
app=-β : (h : (x : A) â f x == g x) (x : A) â app= (λ= h) x == h x
ap-â : â {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B â C) (f : A â B)
{x y : A} (p : x == y) â ap (g â f) p == ap g (ap f p)
ap-â f g idp = idp
ap-cst : â {i j} {A : Type i} {B : Type j} (b : B) {x y : A} (p : x == y)
â ap (λ _ â b) p == idp
ap-cst b idp = idp
ap-idf : â {i} {A : Type i} {u v : A} (p : u == v) â ap (λ x â x) p == p
ap-idf idp = idp
module _ {i j} {A : Type i} {B : Type j} (f : A â B) where
ap-! : {x y : A} (p : x == y)
â ap f (! p) == ! (ap f p)
ap-! idp = idp
module _ {i j} {A : Type i} {B : Type j} where
â-cst-in : {x y : A} {p : x == y} {u v : B}
â u == v
â u == v [ (λ _ â B) â p ]
â-cst-in {p = idp} q = q
{- Used for defining the recursor from the eliminator for 1-HIT -}
apd=cst-in : â {i j} {A : Type i} {B : Type j} {f : A â B}
{a a' : A} {p : a == a'} {q : f a == f a'}
â apd f p == â-cst-in q â ap f p == q
apd=cst-in {p = idp} x = x
data Cube {i} {A : Type i} {aâââ : A} :
{aâââ aâââ aâââ aâââ aâââ aâââ aâââ : A}
{pâââ : aâââ == aâââ} {pâââ : aâââ == aâââ}
{pâââ : aâââ == aâââ} {pâââ : aâââ == aâââ}
(sqâââ : Square pâââ pâââ pâââ pâââ) -- left
{pâââ : aâââ == aâââ} {pâââ : aâââ == aâââ}
{pâââ : aâââ == aâââ} {pâââ : aâââ == aâââ}
(sqâââ : Square pâââ pâââ pâââ pâââ) -- right
{pâââ : aâââ == aâââ} {pâââ : aâââ == aâââ}
{pâââ : aâââ == aâââ} {pâââ : aâââ == aâââ}
(sqâââ : Square pâââ pâââ pâââ pâââ) -- back
(sqâââ : Square pâââ pâââ pâââ pâââ) -- top
(sqâââ : Square pâââ pâââ pâââ pâââ) -- bottom
(sqâââ : Square pâââ pâââ pâââ pâââ) -- front
â Type i
where
idc : Cube ids ids ids ids ids ids
ap-cube : â {i j} {A : Type i} {B : Type j} (f : A â B)
{aâââ aâââ aâââ aâââ aâââ aâââ aâââ aâââ : A}
{pâââ : aâââ == aâââ} {pâââ : aâââ == aâââ}
{pâââ : aâââ == aâââ} {pâââ : aâââ == aâââ}
{sqâââ : Square pâââ pâââ pâââ pâââ} -- left
{pâââ : aâââ == aâââ} {pâââ : aâââ == aâââ}
{pâââ : aâââ == aâââ} {pâââ : aâââ == aâââ}
{sqâââ : Square pâââ pâââ pâââ pâââ} -- right
{pâââ : aâââ == aâââ} {pâââ : aâââ == aâââ}
{pâââ : aâââ == aâââ} {pâââ : aâââ == aâââ}
{sqâââ : Square pâââ pâââ pâââ pâââ} -- back
{sqâââ : Square pâââ pâââ pâââ pâââ} -- top
{sqâââ : Square pâââ pâââ pâââ pâââ} -- bottom
{sqâââ : Square pâââ pâââ pâââ pâââ} -- front
â Cube sqâââ sqâââ sqâââ sqâââ sqâââ sqâââ
â Cube (ap-square f sqâââ) (ap-square f sqâââ) (ap-square f sqâââ)
(ap-square f sqâââ) (ap-square f sqâââ) (ap-square f sqâââ)
ap-cube f idc = idc
|
module Type.Category.IntensionalFunctionsCategory.HomFunctor where
import Functional as Fn
open import Function.Proofs
open import Logic.Predicate
import Lvl
open import Relator.Equals
open import Relator.Equals.Proofs
import Relator.Equals.Proofs.Equiv
open import Structure.Category
open import Structure.Category.Dual
open import Structure.Category.Functor
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Properties
open import Syntax.Function
open import Syntax.Transitivity
open import Type.Category.IntensionalFunctionsCategory
open import Type
private variable â ââ ââ ââ : Lvl.Level
module _
{Obj : Type{ââ}}
{_â¶_ : Obj â Obj â Type{ââ}}
(C : Category(_â¶_))
where
open Category(C)
covariantHomFunctor : Obj â (intro(C) âá¶ áµâ¿á¶áµáµÊ³ typeIntensionalFnCategoryObject{ââ})
â.witness (covariantHomFunctor x) y = (x â¶ y)
Functor.map (â.proof (covariantHomFunctor _)) = (_â_)
Function.congruence (Functor.map-function (â.proof (covariantHomFunctor _))) = congruenceâ(_â_)
Functor.op-preserving (â.proof (covariantHomFunctor x)) {f = f} {g = g} =
(h ⊠(f â g) â h) ð[ _â¡_ ]-[ {!!} ] -- TODO: Requires func. ext?
(h ⊠f â (g â h)) ð[ _â¡_ ]-[]
(f â_) Fn.â (g â_) ð-end
Functor.id-preserving (â.proof (covariantHomFunctor x)) = {!!}
{-
contravariantHomFunctor : Object â (dual(C) âá¶ áµâ¿á¶áµáµÊ³ typeIntensionalFnCategoryObject{ââ})
â.witness (contravariantHomFunctor x) y = (y â¶ x)
Functor.map (â.proof (contravariantHomFunctor _)) = Fn.swap(_â_)
Function.congruence (Functor.map-function (â.proof (contravariantHomFunctor x))) xâ = {!!}
_â_.proof (Functor.op-preserving (â.proof (contravariantHomFunctor x))) {xâ} = {!!}
_â_.proof (Functor.id-preserving (â.proof (contravariantHomFunctor x))) {xâ} = {!!}
-}
|
{-# OPTIONS --without-K #-}
module Util where
open import Agda.Primitive using (Level)
open import Data.Fin using (Fin; #_) renaming (suc to fsuc)
open import Data.Bool using (Bool; true; false; if_then_else_)
open import Data.List using (List; concat; replicate; []; _â·_)
open import Data.Maybe using (Maybe; just; nothing)
open import Data.Nat using (â; suc; _*_; _<áµ_)
open import Data.Product using (_Ã_; _,_)
open import Data.Vec using (Vec; _â·_; []) renaming (concat to cat; replicate to rep)
open import Function using (_â_)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; Decidable)
repeat : {â : Level} {A : Set â} â (n : â) â List A â List A
repeat n = concat â replicate n
repeatV : {â : Level} {A : Set â} {k : â} â (n : â) â Vec A k â Vec A (n * k)
repeatV n = cat â rep {n = n}
-- return index of first element that satisfies predicate or last element if none do
findIndex : {a â : Level} {A : Set a} {n : â} {P : Pred A â} â Decidable P â Vec A (suc n) â Fin (suc n)
findIndex _ (x â· []) = # 0
findIndex P (x â· y â· ys) with P x
... | yes _ = # 0
... | no _ = fsuc (findIndex P (y â· ys))
-- Returns a list of all adjacent pairs in the original list.
pairs : {â : Level} {A : Set â} â List A â List (A Ã A)
pairs [] = []
pairs (x â· []) = []
pairs (x â· y â· xs) = (x , y) â· pairs (y â· xs)
-- Basic Boolean Filter and Elem
filter : {â : Level} {A : Set â} â (A â Bool) â List A â List A
filter f [] = []
filter f (x â· xs) = if f x then x â· filter f xs else filter f xs
infix 4 _â_via_
_â_via_ : {â : Level} {A : Set â} â A â List A â (A â A â Bool) â Bool
x â [] via f = false
x â y â· ys via f = if f x y then true else x â ys via f
concatMaybe : {â : Level} {A : Set â} â List (Maybe A) â List A
concatMaybe [] = []
concatMaybe (nothing â· xs) = concatMaybe xs
concatMaybe (just x â· xs) = x â· concatMaybe xs
listMin : {â : Level} {A : Set â} â (A â â) â List A â Maybe A
listMin f [] = nothing
listMin f (x â· xs) with listMin f xs
... | nothing = just x
... | just y = if f x <áµ f y then just x else just y
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Homomorphism proofs for negation over polynomials
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Tactic.RingSolver.Core.Polynomial.Parameters
module Tactic.RingSolver.Core.Polynomial.Homomorphism.Negation
{râ râ râ râ}
(homo : Homomorphism râ râ râ râ)
where
open import Data.Product using (_,_)
open import Data.Vec using (Vec)
open import Data.Nat using (_<â²_)
open import Data.Nat.Induction
open import Function
open Homomorphism homo
open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Lemmas homo
open import Tactic.RingSolver.Core.Polynomial.Reasoning to
open import Tactic.RingSolver.Core.Polynomial.Base from
open import Tactic.RingSolver.Core.Polynomial.Semantics homo
â-step-hom : â {n} (a : Acc _<â²_ n) â (xs : Poly n) â â Ï â ⊠â-step a xs â§ Ï â - (⊠xs â§ Ï)
â-step-hom (acc _ ) (Î x â iâ€n) Ï = -â¿homo x
â-step-hom (acc wf) (â
xs â iâ€n) Ïâ² =
let (Ï , Ïs) = drop-1 iâ€n Ïâ²
neg-zero =
begin
0#
ââš sym (zeroʳ _) â©
- 0# * 0#
ââš -â¿*-distribË¡ 0# 0# â©
- (0# * 0#)
ââš -â¿cong (zeroË¡ 0#) â©
- 0#
â
in
begin
⊠poly-map (â-step (wf _ iâ€n)) xs ââ iâ€n â§ Ïâ²
ââš ââ-hom (poly-map (â-step (wf _ iâ€n)) xs) iâ€n Ïâ² â©
â
?⊠poly-map (â-step (wf _ iâ€n)) xs â§ (Ï , Ïs)
ââš poly-mapR Ï Ïs (â-step (wf _ iâ€n)) -_ (-â¿cong) (λ x y â *-comm x (- y) âš trans â© -â¿*-distribË¡ y x âš trans â© -â¿cong (*-comm _ _)) (λ x y â sym (-â¿+-comm x y)) (flip (â-step-hom (wf _ iâ€n)) Ïs) (sym neg-zero ) xs â©
- â
⊠xs â§ (Ï , Ïs)
â
â-hom : â {n}
â (xs : Poly n)
â (Ρ : Vec Carrier n)
â ⊠â xs ⧠Ρ â - ⊠xs ⧠Ρ
â-hom = â-step-hom (<â²-wellFounded _)
|
------------------------------------------------------------------------
-- Some simple substitution combinators
------------------------------------------------------------------------
-- Given a term type which supports weakening and transformation of
-- variables to terms various substitutions are defined and various
-- lemmas proved.
open import Data.Universe.Indexed
module deBruijn.Substitution.Function.Simple
{i u e} {Uni : IndexedUniverse i u e} where
import deBruijn.Context; open deBruijn.Context Uni
open import deBruijn.Substitution.Function.Basics
open import deBruijn.Substitution.Function.Map
open import Function as F using (_$_)
open import Level using (_â_)
open import Relation.Binary.PropositionalEquality as P using (_â¡_)
open P.â¡-Reasoning
-- Simple substitutions.
record Simple {t} (T : Term-like t) : Set (i â u â e â t) where
open Term-like T
field
-- Weakens terms.
weaken : â {Î} {Ï : Type Î} â [ T â¶ T ] wÌk[ Ï ]
-- A synonym.
weaken[_] : â {Î} (Ï : Type Î) â [ T â¶ T ] wÌk[ Ï ]
weaken[_] _ = weaken
field
-- Takes variables to terms.
var : [ Var â¶âŒ T ]
-- A property relating weaken and var.
weaken-var : â {Î Ï Ï} (x : Î â Ï) â
weaken[ Ï ] · (var · x) â
-⢠var · suc[ Ï ] x
-- Weakens substitutions.
wk-subst : â {Î Î Ï} {ÏÌ : Î âšÌ Î} â Sub T ÏÌ â Sub T (ÏÌ âÌ wÌk[ Ï ])
wk-subst Ï = map weaken Ï
wk-subst[_] : â {Î Î} Ï {ÏÌ : Î âšÌ Î} â Sub T ÏÌ â Sub T (ÏÌ âÌ wÌk[ Ï ])
wk-subst[ _ ] = wk-subst
-- N-ary weakening of substitutions.
wk-subst⺠: â {Î Î} Î⺠{ÏÌ : Î âšÌ Î} â Sub T ÏÌ â Sub T (ÏÌ âÌ wÌk⺠Îâº)
wk-subst⺠ε Ï = Ï
wk-subst⺠(Î⺠⻠Ï) Ï = wk-subst (wk-subst⺠Î⺠Ï)
wk-substâ : â {Î Î} Îâ {ÏÌ : Î âšÌ Î} â Sub T ÏÌ â Sub T (ÏÌ âÌ wÌkâ Îâ)
wk-substâ ε Ï = Ï
wk-substâ (Ï â
Îâ) Ï = wk-substâ Îâ (wk-subst Ï)
-- Lifting.
infixl 10 _â_
infix 10 _â
_â_ : â {Î Î} {ÏÌ : Î âšÌ Î} â Sub T ÏÌ â â Ï â Sub T (ÏÌ âÌ Ï)
Ï â _ =
P.subst (Sub T)
(â
-âšÌ-â-â¡ $ â»Ì-cong P.refl P.refl
(P.sym $ corresponds var zero))
(wk-subst Ï â»âš var · zero)
_â : â {Î Î Ï} {ÏÌ : Î âšÌ Î} â Sub T ÏÌ â Sub T (ÏÌ âÌ Ï)
Ï â = Ï â _
-- N-ary lifting.
infixl 10 _ââº_ _ââ_
_ââº_ : â {Î Î} {ÏÌ : Î âšÌ Î} â Sub T ÏÌ â â Î⺠â Sub T (ÏÌ âÌ⺠Îâº)
Ï â⺠ε = Ï
Ï â⺠(Î⺠⻠Ï) = (Ï â⺠Îâº) â
_ââ_ : â {Î Î} {ÏÌ : Î âšÌ Î} â Sub T ÏÌ â â Îâ â Sub T (ÏÌ âÌâ Îâ)
Ï ââ ε = Ï
Ï ââ (Ï â
Îâ) = Ï â ââ Îâ
-- The identity substitution.
id[_] : â Î â Sub T iÌd[ Î ]
id[ ε ] = εâš
id[ Î â» Ï ] = id[ Î ] â
id : â {Î} â Sub T iÌd[ Î ]
id = id[ _ ]
-- N-ary weakening.
wk⺠: â {Î} (Î⺠: Ctxt⺠Î) â Sub T (wÌk⺠Îâº)
wk⺠ε = id
wk⺠(Î⺠⻠Ï) = wk-subst (wk⺠Îâº)
wkâ : â {Î} (Îâ : Ctxtâ Î) â Sub T (wÌkâ Îâ)
wkâ Îâ = wk-substâ Îâ id
-- Weakening.
wk[_] : â {Î} (Ï : Type Î) â Sub T wÌk[ Ï ]
wk[ Ï ] = wk⺠(ε â» Ï)
wk : â {Î} {Ï : Type Î} â Sub T wÌk[ Ï ]
wk = wk[ _ ]
private
-- Three possible definitions of wk coincide definitionally.
coincideâ : â {Î} {Ï : Type Î} â wk⺠(ε â» Ï) â¡ wkâ (Ï â
ε)
coincideâ = P.refl
coincideâ : â {Î} {Ï : Type Î} â wk⺠(ε â» Ï) â¡ wk-subst id
coincideâ = P.refl
-- A substitution which only replaces the first variable.
sub : â {Î Ï} (t : Π⢠Ï) â Sub T (sÌub ⊠t â§)
sub t = id â»âš t
abstract
-- Unfolding lemma for _â.
unfold-â : â {Î Î Ï} {ÏÌ : Î âšÌ Î} (Ï : Sub T ÏÌ) â
Ï â Ï â
-âš wk-subst[ Ï / Ï ] Ï â»âš[ Ï ] var · zero
unfold-â _ =
drop-subst-Sub F.id
(â
-âšÌ-â-â¡ $ â»Ì-cong P.refl P.refl (P.sym $ corresponds var zero))
-- Some congruence lemmas.
weaken-cong : â {Îâ Ïâ Ïâ} {tâ : Îâ ⢠Ïâ}
{Îâ Ïâ Ïâ} {tâ : Îâ ⢠Ïâ} â
Ïâ â
-Type Ïâ â tâ â
-⢠tâ â
weaken[ Ïâ ] · tâ â
-⢠weaken[ Ïâ ] · tâ
weaken-cong P.refl P.refl = P.refl
var-cong : â {Îâ Ïâ} {xâ : Îâ â Ïâ}
{Îâ Ïâ} {xâ : Îâ â Ïâ} â
xâ â
-â xâ â var · xâ â
-⢠var · xâ
var-cong P.refl = P.refl
wk-subst-cong : â {Îâ Îâ Ïâ} {ÏÌâ : Îâ âšÌ Îâ} {Ïâ : Sub T ÏÌâ}
{Îâ Îâ Ïâ} {ÏÌâ : Îâ âšÌ Îâ} {Ïâ : Sub T ÏÌâ} â
Ïâ â
-Type Ïâ â Ïâ â
-âš Ïâ â
wk-subst[ Ïâ ] Ïâ â
-âš wk-subst[ Ïâ ] Ïâ
wk-subst-cong {Ïâ = _ , _} {Ïâ = ._ , _} P.refl [ P.refl ] =
[ P.refl ]
abstract
wk-substâº-cong : â {Îâ Îâ Îâºâ} {ÏÌâ : Îâ âšÌ Îâ} {Ïâ : Sub T ÏÌâ}
{Îâ Îâ Îâºâ} {ÏÌâ : Îâ âšÌ Îâ} {Ïâ : Sub T ÏÌâ} â
Îâºâ â
-Ctxt⺠Îâºâ â Ïâ â
-âš Ïâ â
wk-subst⺠Îâºâ Ïâ â
-âš wk-subst⺠Îâºâ Ïâ
wk-substâº-cong {Îâºâ = ε} {Ïâ = _ , _} {Ïâ = ._ , _} P.refl [ P.refl ] =
[ P.refl ]
wk-substâº-cong {Îâºâ = Îâºâ â» Ï} P.refl Ïââ
Ïâ =
wk-subst-cong (P.refl {x = [ Ï ]})
(wk-substâº-cong (P.refl {x = [ Îâºâ ]}) Ïââ
Ïâ)
wk-substâ-cong : â {Îâ Îâ Îââ} {ÏÌâ : Îâ âšÌ Îâ} {Ïâ : Sub T ÏÌâ}
{Îâ Îâ Îââ} {ÏÌâ : Îâ âšÌ Îâ} {Ïâ : Sub T ÏÌâ} â
Îââ â
-Ctxtâ Îââ â Ïâ â
-âš Ïâ â
wk-substâ Îââ Ïâ â
-âš wk-substâ Îââ Ïâ
wk-substâ-cong {Îââ = ε} {Ïâ = _ , _} {Ïâ = ._ , _} P.refl [ P.refl ] =
[ P.refl ]
wk-substâ-cong {Îââ = Ï â
Îââ} P.refl Ïââ
Ïâ =
wk-substâ-cong (P.refl {x = [ Îââ ]}) (wk-subst-cong P.refl Ïââ
Ïâ)
â-cong : â {Îâ Îâ} {ÏÌâ : Îâ âšÌ Îâ} {Ïâ : Sub T ÏÌâ} {Ïâ}
{Îâ Îâ} {ÏÌâ : Îâ âšÌ Îâ} {Ïâ : Sub T ÏÌâ} {Ïâ} â
Ïâ â
-âš Ïâ â Ïâ â
-Type Ïâ â Ïâ â Ïâ â
-âš Ïâ â Ïâ
â-cong {Ïâ = Ïâ} {Ïâ} {Ïâ = Ïâ} {Ïâ} Ïââ
Ïâ Ïââ
Ïâ =
let lemma = /-cong Ïââ
Ïâ Ïââ
Ïâ in
Ïâ â Ïâ â
-â¶âš unfold-â Ïâ â©
wk-subst Ïâ â»âš var · zero[ Ïâ / Ïâ ] â
-â¶âš â»âš-cong Ïââ
Ïâ (wk-subst-cong lemma Ïââ
Ïâ) (var-cong (zero-cong lemma)) â©
wk-subst Ïâ â»âš var · zero[ Ïâ / Ïâ ] â
-â¶âš sym-â¶ $ unfold-â Ïâ â©
Ïâ â Ïâ â-â¶
ââº-cong : â {Îâ Îâ} {ÏÌâ : Îâ âšÌ Îâ} {Ïâ : Sub T ÏÌâ} {Îâºâ}
{Îâ Îâ} {ÏÌâ : Îâ âšÌ Îâ} {Ïâ : Sub T ÏÌâ} {Îâºâ} â
Ïâ â
-âš Ïâ â Îâºâ â
-Ctxt⺠Îâºâ â Ïâ â⺠Îâºâ â
-âš Ïâ â⺠Îâºâ
ââº-cong {Ïâ = _ , _} {Îâºâ = ε} {Ïâ = ._ , _} [ P.refl ] P.refl =
[ P.refl ]
ââº-cong {Îâºâ = Î⺠⻠Ï} Ïââ
Ïâ P.refl =
â-cong (ââº-cong Ïââ
Ïâ (P.refl {x = [ Î⺠]})) P.refl
ââ-cong : â {Îâ Îâ} {ÏÌâ : Îâ âšÌ Îâ} {Ïâ : Sub T ÏÌâ} {Îââ}
{Îâ Îâ} {ÏÌâ : Îâ âšÌ Îâ} {Ïâ : Sub T ÏÌâ} {Îââ} â
Ïâ â
-âš Ïâ â Îââ â
-Ctxtâ Îââ â Ïâ ââ Îââ â
-âš Ïâ ââ Îââ
ââ-cong {Ïâ = _ , _} {Îââ = ε} {Ïâ = ._ , _} [ P.refl ] P.refl =
[ P.refl ]
ââ-cong {Îââ = Ï â
Îâ} Ïââ
Ïâ P.refl =
ââ-cong (â-cong Ïââ
Ïâ P.refl) (P.refl {x = [ Îâ ]})
id-cong : â {Îâ Îâ} â Îâ â
-Ctxt Îâ â id[ Îâ ] â
-âš id[ Îâ ]
id-cong P.refl = [ P.refl ]
wkâº-cong : â {Îâ} {Îâºâ : Ctxt⺠Îâ} {Îâ} {Îâºâ : Ctxt⺠Îâ} â
Îâºâ â
-Ctxt⺠Îâºâ â wk⺠Îâºâ â
-âš wk⺠Îâºâ
wkâº-cong P.refl = [ P.refl ]
wkâ-cong : â {Îâ} {Îââ : Ctxtâ Îâ} {Îâ} {Îââ : Ctxtâ Îâ} â
Îââ â
-Ctxtâ Îââ â wkâ Îââ â
-âš wkâ Îââ
wkâ-cong P.refl = [ P.refl ]
wk-cong : â {Îâ} {Ïâ : Type Îâ} {Îâ} {Ïâ : Type Îâ} â
Ïâ â
-Type Ïâ â wk[ Ïâ ] â
-âš wk[ Ïâ ]
wk-cong P.refl = [ P.refl ]
sub-cong : â {Îâ Ïâ} {tâ : Îâ ⢠Ïâ} {Îâ Ïâ} {tâ : Îâ ⢠Ïâ} â
tâ â
-⢠tâ â sub tâ â
-âš sub tâ
sub-cong P.refl = [ P.refl ]
abstract
-- Some lemmas relating variables to lifting.
/â-â : â {Î Î Ï Ï} {ÏÌ : Î âšÌ Î} (x : Î â» Ï â Ï) (Ï : Sub T ÏÌ) â
x /â Ï â â
-⢠x /â (wk-subst[ Ï / Ï ] Ï â»âš var · zero)
/â-â x Ï = /â-cong (P.refl {x = [ x ]}) (unfold-â Ï)
zero-/â-â : â {Î Î} Ï {ÏÌ : Î âšÌ Î} (Ï : Sub T ÏÌ) â
zero[ Ï ] /â Ï â â
-⢠var · zero[ Ï / Ï ]
zero-/â-â Ï Ï = begin
[ zero[ Ï ] /â Ï â ] â¡âš /â-â zero[ Ï ] Ï â©
[ zero[ Ï ] /â (wk-subst Ï â»âš var · zero) ] â¡âš P.refl â©
[ var · zero ] â
suc-/â-â : â {Î Î Ï} Ï {ÏÌ : Î âšÌ Î} (x : Î â Ï) (Ï : Sub T ÏÌ) â
suc[ Ï ] x /â Ï â â
-⢠x /â wk-subst[ Ï / Ï ] Ï
suc-/â-â Ï x Ï = begin
[ suc[ Ï ] x /â Ï â ] â¡âš /â-â (suc[ Ï ] x) Ï â©
[ suc[ Ï ] x /â (wk-subst Ï â»âš var · zero) ] â¡âš P.refl â©
[ x /â wk-subst Ï ] â
-- One can weaken either before or after looking up a variable.
-- (Note that this lemma holds definitionally, unlike the
-- corresponding lemma in deBruijn.Substitution.Data.Simple.)
/â-wk-subst : â {Î Î Ï Ï} {ÏÌ : Î âšÌ Î} (x : Î â Ï) (Ï : Sub T ÏÌ) â
x /â wk-subst[ Ï ] Ï â
-⢠weaken[ Ï ] · (x /â Ï)
/â-wk-subst x Ï = P.refl
abstract
-- A corollary.
/â-wk-subst-var :
â {Î Î Ï Ï} {ÏÌ : Î âšÌ Î}
(Ï : Sub T ÏÌ) (x : Î â Ï) (y : Î â Ï / Ï) â
x /â Ï â
-⢠var · y â
x /â wk-subst[ Ï ] Ï â
-⢠var · suc[ Ï ] y
/â-wk-subst-var Ï x y hyp = begin
[ x /â wk-subst Ï ] â¡âš P.refl â©
[ weaken · (x /â Ï) ] â¡âš weaken-cong P.refl hyp â©
[ weaken · (var · y) ] â¡âš weaken-var y â©
[ var · suc y ] â
-- The identity substitution has no effect.
/-id : â {Î} (Ï : Type Î) â Ï / id â
-Type Ï
/-id Ï = P.refl
/âº-id : â {Î} (Î⺠: Ctxt⺠Î) â Î⺠/⺠id â
-Ctxt⺠Îâº
/âº-id Î⺠= begin
[ Î⺠/⺠id ] â¡âš P.refl â©
[ Î⺠/Ì⺠iÌd ] â¡âš /Ìâº-iÌd Î⺠â©
[ Î⺠] â
/â-id : â {Î} (Îâ : Ctxtâ Î) â Îâ /â id â
-Ctxtâ Îâ
/â-id Îâ = begin
[ Îâ /â id ] â¡âš P.refl â©
[ Îâ /Ìâ iÌd ] â¡âš /Ìâ-iÌd Îâ â©
[ Îâ ] â
mutual
/â-id : â {Î Ï} (x : Î â Ï) â x /â id â
-⢠var · x
/â-id {Î = ε} ()
/â-id {Î = Î â» Ï} x = begin
[ x /â id â ] â¡âš /â-â x id â©
[ x /â (wk â»âš var · zero) ] â¡âš lemma x â©
[ var · x ] â
where
lemma : â {Ï} (x : Î â» Ï â Ï) â
x /â (wk[ Ï ] â»âš var · zero) â
-⢠var · x
lemma zero = P.refl
lemma (suc x) = /â-wk x
-- Weakening a variable is equivalent to incrementing it.
/â-wk : â {Î Ï Ï} (x : Î â Ï) â
x /â wk[ Ï ] â
-⢠var · suc[ Ï ] x
/â-wk x = /â-wk-subst-var id x x (/â-id x)
-- The n-ary lifting of the identity substitution is the identity
-- substitution.
id-â⺠: â {Î} (Î⺠: Ctxt⺠Î) â id â⺠Î⺠â
-âš id[ Î ++⺠Î⺠]
id-â⺠ε = id â-â¶
id-â⺠(Î⺠⻠Ï) =
(id â⺠Îâº) â â
-â¶âš â-cong (id-â⺠Îâº) P.refl â©
id â â-â¶
id-ââ : â {Î} (Îâ : Ctxtâ Î) â id ââ Îâ â
-âš id[ Î ++â Îâ ]
id-ââ ε = id â-â¶
id-ââ (Ï â
Îâ) =
id â ââ Îâ â
-â¶âš [ P.refl ] â©
id ââ Îâ â
-â¶âš id-ââ Îâ â©
id â-â¶
-- The identity substitution has no effect even if lifted.
/â-id-â⺠: â {Î} Î⺠{Ï} (x : Î ++⺠Î⺠â Ï) â
x /â id â⺠Î⺠â
-⢠var · x
/â-id-â⺠Î⺠x = begin
[ x /â id â⺠Î⺠] â¡âš /â-cong (P.refl {x = [ x ]}) (id-â⺠Îâº) â©
[ x /â id ] â¡âš /â-id x â©
[ var · x ] â
/â-id-ââ : â {Î} Îâ {Ï} (x : Î ++â Îâ â Ï) â
x /â id ââ Îâ â
-⢠var · x
/â-id-ââ Îâ x = begin
[ x /â id ââ Îâ ] â¡âš /â-cong (P.refl {x = [ x ]}) (id-ââ Îâ) â©
[ x /â id ] â¡âš /â-id x â©
[ var · x ] â
-- If Ï is morally a renaming, then "deep application" of Ï to a
-- variable is still a variable.
/â-â⺠: â {Î Î} {ÏÌ : Î âšÌ Î}
(Ï : Sub T ÏÌ) (f : [ Var â¶ Var ] ÏÌ) â
(â {Ï} (x : Î â Ï) â x /â Ï â
-⢠var · (f · x)) â
â Î⺠{Ï} (x : Î ++⺠Î⺠â Ï) â
x /â Ï â⺠Î⺠â
-⢠var · (lift f Î⺠· x)
/â-ââº Ï f hyp ε x = hyp x
/â-ââº Ï f hyp (Î⺠⻠Ï) zero = begin
[ zero[ Ï ] /â (Ï â⺠Îâº) â ] â¡âš zero-/â-â Ï (Ï â⺠Îâº) â©
[ var · zero ] â
/â-ââº Ï f hyp (Î⺠⻠Ï) (suc x) = begin
[ suc[ Ï ] x /â (Ï â⺠Îâº) â ] â¡âš suc-/â-â Ï x (Ï â⺠Îâº) â©
[ x /â wk-subst (Ï â⺠Îâº) ] â¡âš P.refl â©
[ weaken · (x /â Ï â⺠Îâº) ] â¡âš weaken-cong P.refl (/â-ââº Ï f hyp Î⺠x) â©
[ weaken · (var · (lift f Î⺠· x)) ] â¡âš weaken-var (lift f Î⺠· x) â©
[ var · suc (lift f Î⺠· x) ] â
-- "Deep weakening" of a variable can be expressed without
-- reference to the weaken function.
/â-wk-â⺠: â {Î Ï} Î⺠{Ï} (x : Î ++⺠Î⺠â Ï) â
x /â wk[ Ï ] â⺠Î⺠â
-â¢
var · (lift weakenâ[ Ï ] Î⺠· x)
/â-wk-â⺠= /â-â⺠wk weakenâ /â-wk
/â-wk-ââº-â⺠: â {Î Ï} Î⺠Îâºâº {Ï} (x : Î ++⺠Î⺠++⺠Îâºâº â Ï) â
x /â wk[ Ï ] â⺠Î⺠â⺠Îâºâº â
-â¢
var · (lift (lift weakenâ[ Ï ] Îâº) Îâºâº · x)
/â-wk-ââº-â⺠Î⺠= /â-â⺠(wk â⺠Îâº) (lift weakenâ Îâº) (/â-wk-â⺠Îâº)
-- Two n-ary liftings can be merged into one.
ââº-âº++⺠: â {Î Î} {ÏÌ : Î âšÌ Î} (Ï : Sub T ÏÌ) Î⺠Îâºâº â
Ï â⺠(Î⺠âº++⺠Îâºâº) â
-âš Ï â⺠Î⺠â⺠Îâºâº
ââº-âº++âº Ï Î⺠ε = Ï â⺠Î⺠â-â¶
ââº-âº++âº Ï Î⺠(Îâºâº â» Ï) =
(Ï â⺠(Î⺠âº++⺠Îâºâº)) â â
-â¶âš â-cong (ââº-âº++âº Ï Î⺠Îâºâº)
(drop-subst-Type F.id (++âº-++⺠Î⺠Îâºâº)) â©
(Ï â⺠Î⺠â⺠Îâºâº) â â-â¶
ââ-â++â : â {Î Î} {ÏÌ : Î âšÌ Î} (Ï : Sub T ÏÌ) Îâ Îââ â
Ï ââ (Îâ â++â Îââ) â
-âš Ï ââ Îâ ââ Îââ
ââ-â++â Ï Îµ Îââ = Ï ââ Îââ â-â¶
ââ-â++â Ï (Ï â
Îâ) Îââ =
Ï â ââ (Îâ â++â Îââ) â
-â¶âš ââ-â++â (Ï â) Îâ Îââ â©
Ï â ââ Îâ ââ Îââ â-â¶
|
{-
This second-order equational theory was created from the following second-order syntax description:
syntax Empty | E
type
ð : 0-ary
term
abort : ð -> α
theory
(ðη) e : ð c : α |> abort(e) = c
-}
module Empty.Equality where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Families.Build
open import SOAS.ContextMaps.Inductive
open import Empty.Signature
open import Empty.Syntax
open import SOAS.Metatheory.SecondOrder.Metasubstitution E:Syn
open import SOAS.Metatheory.SecondOrder.Equality E:Syn
private
variable
α β γ Ï : ET
Î Î Î : Ctx
infix 1 _â¹_â¢_ââ_
-- Axioms of equality
data _â¹_â¢_ââ_ : â ð Î {α} â (ð â· E) α Î â (ð â· E) α Î â Set where
ðη : â
ð â â
α âÌ£ â¹ â
⢠abort ð ââ ð
open EqLogic _â¹_â¢_ââ_
open â-Reasoning
|
{-# OPTIONS --guardedness-preserving-type-constructors #-}
module Issue602 where
infixl 6 _â_
postulate
Level : Set
zero : Level
suc : Level â Level
_â_ : Level â Level â Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO zero #-}
{-# BUILTIN LEVELSUC suc #-}
{-# BUILTIN LEVELMAX _â_ #-}
infix 1000 â¯_
postulate
â : â {a} (A : Set a) â Set a
â¯_ : â {a} {A : Set a} â A â â A
â : â {a} {A : Set a} â â A â A
{-# BUILTIN INFINITY â #-}
{-# BUILTIN SHARP â¯_ #-}
{-# BUILTIN FLAT â #-}
data CoNat : Set0 where
z : CoNat
s : â CoNat â CoNat
record A : Set2 where
field
f : Set1
record B (a : â A) : Set1 where
field
f : A.f (â a)
postulate
a : A
e : CoNat â A
e z = a
e (s n) = record
{ f = B (⯠e (â n))
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Functor.Bifunctor
module Categories.Diagram.End {o â e oâ² ââ² eâ²} {C : Category o â e} {D : Category oâ² ââ² eâ²}
(F : Bifunctor (Category.op C) C D) where
private
module D = Category D
open D
open HomReasoning
open Equiv
variable
A B : Obj
f g : A â B
open import Level
open import Categories.Diagram.Wedge F
open import Categories.NaturalTransformation.Dinatural
record End : Set (levelOfTerm F) where
field
wedge : Wedge
module wedge = Wedge wedge
open wedge public
open Wedge
field
factor : (W : Wedge) â E W â wedge.E
universal : â {W : Wedge} {A} â wedge.dinatural.α A â factor W â dinatural.α W A
unique : â {W : Wedge} {g : E W â wedge.E} â (â {A} â wedge.dinatural.α A â g â dinatural.α W A) â factor W â g
η-id : factor wedge â D.id
η-id = unique identityʳ
uniqueâ² :(â {A} â wedge.dinatural.α A â f â wedge.dinatural.α A â g) â f â g
uniqueâ² {f = f} {g = g} eq = ⺠(unique {W = Wedge-â wedge f} refl) â unique (⺠eq)
|
{-# OPTIONS --without-K --safe #-}
-- A "canonical" presentation of limits in Setoid.
--
-- These limits are obviously isomorphic to those created by
-- the Completeness proof, but are far less unweildy to work with.
-- This isomorphism is witnessed by Categories.Diagram.Pullback.up-to-iso
module Categories.Category.Instance.Properties.Setoids.Limits.Canonical where
open import Level
open import Data.Product using (_,_; _Ã_; map; zip; projâ; projâ; <_,_>)
open import Function.Equality as SÎ renaming (id to â¶-id)
open import Relation.Binary.Bundles using (Setoid)
import Relation.Binary.Reasoning.Setoid as SR
open import Categories.Category.Instance.Setoids
open import Categories.Diagram.Pullback
open Setoid renaming (_â_ to [_][_â_])
--------------------------------------------------------------------------------
-- Pullbacks
record FiberProduct {o â} {X Y Z : Setoid o â} (f : X â¶ Z) (g : Y â¶ Z) : Set (o â â) where
constructor mk-Ã
field
elemâ : Carrier X
elemâ : Carrier Y
commute : [ Z ][ f âš$â© elemâ â g âš$â© elemâ ]
open FiberProduct
FP-â : â {o â} {X Y Z : Setoid o â} {f : X â¶ Z} {g : Y â¶ Z} â (fbâ fbâ : FiberProduct f g) â Set â
FP-â {X = X} {Y} p q = [ X ][ elemâ p â elemâ q ] Ã [ Y ][ elemâ p â elemâ q ]
pullback : â (o â : Level) {X Y Z : Setoid (o â â) â} â (f : X â¶ Z) â (g : Y â¶ Z) â Pullback (Setoids (o â â) â) f g
pullback _ _ {X = X} {Y = Y} {Z = Z} f g = record
{ P = record
{ Carrier = FiberProduct f g
; _â_ = FP-â
; isEquivalence = record
{ refl = X.refl , Y.refl
; sym = map X.sym Y.sym
; trans = zip X.trans Y.trans
}
}
; pâ = record { _âš$â©_ = elemâ ; cong = projâ }
; pâ = record { _âš$â©_ = elemâ ; cong = projâ }
; isPullback = record
{ commute = λ {p} {q} (eqâ , eqâ) â trans Z (cong f eqâ) (commute q)
; universal = λ {A} {hâ} {hâ} eq â record
{ _âš$â©_ = λ a â record
{ elemâ = hâ âš$â© a
; elemâ = hâ âš$â© a
; commute = eq (refl A)
}
; cong = < cong hâ , cong hâ >
}
; unique = λ eqâ eqâ xây â eqâ xây , eqâ xây
; pââuniversalâhâ = λ {_} {hâ} {_} eq â cong hâ eq
; pââuniversalâhâ = λ {_} {_} {hâ} eq â cong hâ eq
}
}
where
module X = Setoid X
module Y = Setoid Y
|
module Scratch (FunctionName : Set) where
open import Oscar.Data.Fin using (Fin; zero; suc; thick?)
open import Data.Nat using (â; suc; zero)
open import Relation.Binary.PropositionalEquality using (_â¡_; refl; congâ; cong; sym; trans)
open import Function using (_â_; flip)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Data.Product using (â; _,_; _Ã_)
open import Data.Empty using (â¥-elim)
open import Data.Vec using (Vec; []; _â·_)
data Term (n : â) : Set where
i : (x : Fin n) -> Term n
leaf : Term n
_fork_ : (s t : Term n) -> Term n
function : FunctionName â â {f} â Vec (Term n) f â Term n
Term-function-inj-FunctionName : â {fnâ fnâ} {n Nâ Nâ} {tsâ : Vec (Term n) Nâ} {tsâ : Vec (Term n) Nâ} â Term.function fnâ tsâ â¡ Term.function fnâ tsâ â fnâ â¡ fnâ
Term-function-inj-FunctionName refl = refl
Term-function-inj-VecSize : â {fnâ fnâ} {n Nâ Nâ} {tsâ : Vec (Term n) Nâ} {tsâ : Vec (Term n) Nâ} â Term.function fnâ tsâ â¡ Term.function fnâ tsâ â Nâ â¡ Nâ
Term-function-inj-VecSize refl = refl
Term-function-inj-Vector : â {fnâ fnâ} {n N} {tsâ : Vec (Term n) N} {tsâ : Vec (Term n) N} â Term.function fnâ tsâ â¡ Term.function fnâ tsâ â tsâ â¡ tsâ
Term-function-inj-Vector refl = refl
Term-fork-inj-left : â {n} {lâ râ lâ râ : Term n} â lâ fork râ â¡ lâ fork râ â lâ â¡ lâ
Term-fork-inj-left refl = refl
Term-fork-inj-right : â {n} {lâ râ lâ râ : Term n} â lâ fork râ â¡ lâ fork râ â râ â¡ râ
Term-fork-inj-right refl = refl
open import Relation.Binary.HeterogeneousEquality using (_â
_; refl)
Term-function-inj-HetVector : â {fnâ fnâ} {n Nâ Nâ} {tsâ : Vec (Term n) Nâ} {tsâ : Vec (Term n) Nâ} â Term.function fnâ tsâ â¡ Term.function fnâ tsâ â tsâ â
tsâ
Term-function-inj-HetVector refl = refl
_~>_ : (m n : â) -> Set
m ~> n = Fin m -> Term n
â¹ : â {m n} -> (r : Fin m -> Fin n) -> Fin m -> Term n
â¹ r = i â r
record Substitution (T : â â Set) : Set where
field
_â_ : â {m n} -> (f : m ~> n) -> T m -> T n
open Substitution ⊠⊠⊠public
{-# DISPLAY Substitution._â_ _ = _â_ #-}
mutual
instance SubstitutionTerm : Substitution Term
Substitution._â_ SubstitutionTerm = _ââ²_ where
_ââ²_ : â {m n} -> (f : m ~> n) -> Term m -> Term n
f ââ² i x = f x
f ââ² leaf = leaf
f ââ² (s fork t) = (f â s) fork (f â t)
f ââ² (function fn ts) = function fn (f â ts)
instance SubstitutionVecTerm : â {N} â Substitution (flip Vec N â Term )
Substitution._â_ (SubstitutionVecTerm {N}) = _ââ²_ where
_ââ²_ : â {m n} -> (f : m ~> n) -> Vec (Term m) N -> Vec (Term n) N
f ââ² [] = []
f ââ² (t â· ts) = f â t â· f â ts
_â_ : {m n : â} -> (Fin m -> Term n) -> (Fin m -> Term n) -> Set
f â g = â x -> f x â¡ g x
record SubstitutionExtensionality (T : â â Set) ⊠_ : Substitution T ⊠: Setâ where
field
âext : â {m n} {f g : Fin m -> Term n} -> f â g -> (t : T m) -> f â t â¡ g â t
open SubstitutionExtensionality ⊠⊠⊠public
mutual
instance SubstitutionExtensionalityTerm : SubstitutionExtensionality Term
SubstitutionExtensionality.âext SubstitutionExtensionalityTerm = âextâ² where
âextâ² : â {m n} {f g : Fin m -> Term n} -> f â g -> â t -> f â t â¡ g â t
âextâ² p (i x) = p x
âextâ² p leaf = refl
âextâ² p (s fork t) = congâ _fork_ (âext p s) (âext p t)
âextâ² p (function fn ts) = cong (function fn) (âext p ts)
instance SubstitutionExtensionalityVecTerm : â {N} â SubstitutionExtensionality (flip Vec N â Term)
SubstitutionExtensionality.âext (SubstitutionExtensionalityVecTerm {N}) = λ x â âextâ² x where
âextâ² : â {m n} {f g : Fin m -> Term n} -> f â g -> â {N} (t : Vec (Term m) N) -> f â t â¡ g â t
âextâ² p [] = refl
âextâ² p (t â· ts) = congâ _â·_ (âext p t) (âext p ts)
_â_ : â {l m n : â } -> (f : Fin m -> Term n) (g : Fin l -> Term m) -> Fin l -> Term n
f â g = (f â_) â g
â-cong : â {m n o} {f : m ~> n} {g} (h : _ ~> o) -> f â g -> (h â f) â (h â g)
â-cong h fâg t = cong (h â_) (fâg t)
â-sym : â {m n} {f : m ~> n} {g} -> f â g -> g â f
â-sym fâg = sym â fâg
module Sub where
record Fact1 (T : â â Set) ⊠_ : Substitution T ⊠: Set where
field
fact1 : â {n} -> (t : T n) -> i â t â¡ t
open Fact1 ⊠⊠⊠public
mutual
instance Fact1Term : Fact1 Term
Fact1.fact1 Fact1Term (i x) = refl
Fact1.fact1 Fact1Term leaf = refl
Fact1.fact1 Fact1Term (s fork t) = congâ _fork_ (fact1 s) (fact1 t)
Fact1.fact1 Fact1Term (function fn ts) = cong (function fn) (fact1 ts)
instance Fact1TermVec : â {N} â Fact1 (flip Vec N â Term)
Fact1.fact1 Fact1TermVec [] = refl
Fact1.fact1 Fact1TermVec (t â· ts) = congâ _â·_ (fact1 t) (fact1 ts)
record Fact2 (T : â â Set) ⊠_ : Substitution T ⊠: Set where
field
-- ⊠s ⊠: Substitution T
fact2 : â {l m n} -> {f : Fin m -> Term n} {g : _} (t : T l) â (f â g) â t â¡ f â (g â t)
open Fact2 ⊠⊠⊠public
mutual
instance Fact2Term : Fact2 Term
-- Fact2.s Fact2Term = SubstitutionTerm
Fact2.fact2 Fact2Term (i x) = refl
Fact2.fact2 Fact2Term leaf = refl
Fact2.fact2 Fact2Term (s fork t) = congâ _fork_ (fact2 s) (fact2 t)
Fact2.fact2 Fact2Term {f = f} {g = g} (function fn ts) = cong (function fn) (fact2 {f = f} {g = g} ts) -- fact2 ts
instance Fact2TermVec : â {N} â Fact2 (flip Vec N â Term)
-- Fact2.s Fact2TermVec = SubstitutionVecTerm
Fact2.fact2 Fact2TermVec [] = refl
Fact2.fact2 Fact2TermVec (t â· ts) = congâ _â·_ (fact2 t) (fact2 ts)
fact3 : â {l m n} (f : Fin m -> Term n) (r : Fin l -> Fin m) -> (f â (â¹ r)) â¡ (f â r)
fact3 f r = refl
âext' : â {m n o} {f : Fin m -> Term n}{g : Fin m -> Term o}{h} -> f â (h â g) -> â (t : Term _) -> f â t â¡ h â (g â t)
âext' p t = trans (âext p t) (Sub.fact2 t)
open import Data.Maybe using (Maybe; nothing; just; functor; maybeâ²)
open import Category.Monad
import Level
open RawMonad (Data.Maybe.monad {Level.zero})
record Check (T : â â Set) : Set where
field
check : â{n} (x : Fin (suc n)) (t : T (suc n)) -> Maybe (T n)
open Check ⊠⊠⊠public
_<*>_ = _â_
mutual
instance CheckTerm : Check Term
Check.check CheckTerm x (i y) = i <$> thick? x y
Check.check CheckTerm x leaf = just leaf
Check.check CheckTerm x (s fork t) = _fork_ <$> check x s â check x t
Check.check CheckTerm x (function fn ts) = ⊠(function fn) (check x ts) âŠ
instance CheckTermVec : â {N} â Check (flip Vec N â Term)
Check.check CheckTermVec x [] = just []
Check.check CheckTermVec x (t â· ts) = ⊠check x t â· check x ts âŠ
_for_ : â {n} (t' : Term n) (x : Fin (suc n)) -> Fin (suc n) -> Term n
(t' for x) y = maybeâ² i t' (thick? x y)
data AList : â -> â -> Set where
anil : â {n} -> AList n n
_asnoc_/_ : â {m n} (Ï : AList m n) (t' : Term m) (x : Fin (suc m))
-> AList (suc m) n
sub : â {m n} (Ï : AList m n) -> Fin m -> Term n
sub anil = i
sub (Ï asnoc t' / x) = sub Ï â (t' for x)
_++_ : â {l m n} (Ï : AList m n) (Ï : AList l m) -> AList l n
Ï ++ anil = Ï
Ï ++ (Ï asnoc t' / x) = (Ï ++ Ï) asnoc t' / x
++-assoc : â {l m n o} (Ï : AList l m) (Ï : AList n _) (Ï : AList o _) -> Ï ++ (Ï ++ Ï) â¡ (Ï ++ Ï) ++ Ï
++-assoc Ï Ï anil = refl
++-assoc Ï Ï (Ï asnoc t / x) = cong (λ s -> s asnoc t / x) (++-assoc Ï Ï Ï)
module SubList where
anil-id-l : â {m n} (Ï : AList m n) -> anil ++ Ï â¡ Ï
anil-id-l anil = refl
anil-id-l (Ï asnoc t' / x) = cong (λ Ï -> Ï asnoc t' / x) (anil-id-l Ï)
fact1 : â {l m n} (Ï : AList m n) (Ï : AList l m) -> sub (Ï ++ Ï) â (sub Ï â sub Ï)
fact1 Ï anil v = refl
fact1 {suc l} {m} {n} r (s asnoc t' / x) v = trans hyp-on-terms â-assoc
where
t = (t' for x) v
hyp-on-terms = âext (fact1 r s) t
â-assoc = Sub.fact2 t
_âasnoc_/_ : â {m} (a : â (AList m)) (t' : Term m) (x : Fin (suc m))
-> â (AList (suc m))
(n , Ï) âasnoc t' / x = n , Ï asnoc t' / x
flexFlex : â {m} (x y : Fin m) -> â (AList m)
flexFlex {suc m} x y with thick? x y
... | just y' = m , anil asnoc i y' / x
... | nothing = suc m , anil
flexFlex {zero} () _
flexRigid : â {m} (x : Fin m) (t : Term m) -> Maybe (â(AList m))
flexRigid {suc m} x t with check x t
... | just t' = just (m , anil asnoc t' / x)
... | nothing = nothing
flexRigid {zero} () _
-- module Scratch where
-- open import Prelude
-- open import Agda.Builtin.Size
-- open import Tactic.Nat
-- postulate
-- Domain : Set
-- record Interpretation : Set where
-- field
-- V : Nat â Domain
-- F : (arity name : Nat) â Vec Domain arity â Domain
-- P : (arity name : Nat) â Vec Domain arity â Bool
-- data Term {i : Size} : Set where
-- variable : Nat â Term
-- function : (arity name : Nat) â {j : Size< i} â Vec (Term {j}) arity â Term {i}
-- interpretTerm : Interpretation â {i : Size} â Term {i} â Domain
-- interpretTerm I (variable v) = Interpretation.V I v
-- interpretTerm I (function arity name {j} domA) = Interpretation.F I arity name (interpretTerm I <$> domA)
-- data Formula : Set where
-- atomic : (arity name : Nat) â Vec Term arity â Formula
-- logical : Formula â
-- Formula â
-- Formula
-- quantified : Nat â Formula â Formula
-- infix 40 _â_
-- _â_ : Formula â Formula â Formula
-- _â_ a b = logical a b
-- ~ : Formula â Formula
-- ~ a = logical a a
-- infix 50 _â_
-- _â_ : Formula â Formula â Formula
-- _â_ p q = ~ (~ p â q)
-- data Literal : Formula â Set where
-- Latomic : (arity name : Nat) â (terms : Vec Term arity) â Literal (atomic arity name terms)
-- logical : (arity name : Nat) â (terms : Vec Term arity) â Literal (logical (atomic arity name terms) (atomic arity name terms))
-- record Sequent : Set where
-- constructor _â¢_
-- field
-- premises : List Formula
-- conclusion : Formula
-- data _â_ {A : Set} (a : A) : List A â Set where
-- here : (as : List A) â a â (a â· as)
-- there : (x : A) (as : List A) â a â (x â· as)
-- record SimpleNDProblem (s : Sequent) : Set where
-- field
-- simpleConclusion : Literal (Sequent.conclusion s)
-- simplePremises : â p â p â Sequent.premises s â Literal p
-- record _â_/_ (I : Interpretation) (Iâ : Interpretation) (vâ : Nat) : Set where
-- field
-- lawV : (v : Nat) â (v â¡ vâ â â¥) â Interpretation.V I v â¡ Interpretation.V Iâ v
-- lawF : (arity name : Nat) â (domA : Vec Domain arity) â Interpretation.F I arity name domA â¡ Interpretation.F Iâ arity name domA
-- lawP : (arity name : Nat) â (domA : Vec Domain arity) â Interpretation.P I arity name domA â¡ Interpretation.P Iâ arity name domA
-- record Satisfaction (A : Set) : Setâ where
-- field
-- _âš_ : Interpretation â A â Set
-- postulate _âš?_ : (I : Interpretation) â (Ï : A) â Dec (I âš Ï)
-- _â_ : Interpretation â A â Set
-- I â x = I âš x â â¥
-- open Satisfaction ⊠⊠âŠ
-- instance
-- SatisfactionFormula : Satisfaction Formula
-- Satisfaction._âš_ SatisfactionFormula = _âšá޹_ where
-- _âšá޹_ : Interpretation â Formula â Set
-- _âšá޹_ Iâ (quantified vâ Ï) = (I : Interpretation) â I â Iâ / vâ â I âšá޹ Ï
-- _âšá޹_ Iâ (atomic arity name domA) = Interpretation.P Iâ arity name (interpretTerm Iâ <$> domA) â¡ true
-- _âšá޹_ Iâ (logical Ïâ Ïâ) = (Iâ âšá޹ Ïâ â â¥) à (Iâ âšá޹ Ïâ â â¥)
-- {-# DISPLAY _âšá޹_ I f = I âš f #-}
-- record Validity (A : Set) : Setâ where
-- field
-- âš_ : A â Set
-- â_ : A â Set
-- â x = âš x â â¥
-- open Validity ⊠⊠âŠ
-- instance
-- ValidityFormula : Validity Formula
-- Validity.âš_ ValidityFormula Ï = (I : Interpretation) â I âš Ï
-- instance
-- SatisfactionSequent : Satisfaction Sequent
-- Satisfaction._âš_ SatisfactionSequent I (premises ⢠conclusion) = (_ : (premise : Formula) â premise â premises â I âš premise) â I âš conclusion
-- ValiditySequent : Validity Sequent
-- Validity.âš_ ValiditySequent sequent = (I : Interpretation) â I âš sequent
-- negationElimination : (I : Interpretation) (Ï : Formula) â I âš (Ï â Ï) â (Ï â Ï) â I âš Ï
-- negationElimination I Ï (x , y) with I âš? Ï
-- negationElimination I Ï (xâ , y) | yes x = x
-- negationElimination I Ï (xâ , y) | no x = â¥-elim (xâ (x , x))
-- -- logical (logical (logical p p) q) (logical (logical p p) q)
-- conditionalization : (I : Interpretation) (p q : Formula) â I âš q â I âš ((p â· []) ⢠p â q)
-- conditionalization I p q âšq -âšp = let âšp = -âšp p (here []) in (λ { (x , ~q) â ~q âšq}) , (λ { (x , y) â y âšq})
-- modusPonens : (I : Interpretation) (p q : Formula) â I âš p â I âš ((p â p) â q) â ((p â p) â q) â I âš q
-- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) with I � q
-- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) | yes x = x
-- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) | no x = â¥-elim (~[~p&~p&~q] ((λ { (xâ , y) â y P}) , (λ xâ â x xâ)))
-- theorem1a : (s : Sequent) â SimpleNDProblem s â âš s â Either (Sequent.conclusion s â Sequent.premises s) (Σ _ λ q â q â Sequent.premises s à ~ q â Sequent.premises s)
-- theorem1a ([] ⢠atomic arity name x) record { simpleConclusion = (Latomic .arity .name .x) ; simplePremises = simplePremises } xâ = {!!}
-- theorem1a ((xâ â· premises) ⢠atomic arity name x) record { simpleConclusion = (Latomic .arity .name .x) ; simplePremises = simplePremises } xâ = {!!}
-- theorem1a (premises ⢠logical .(atomic arity name terms) .(atomic arity name terms)) record { simpleConclusion = (logical arity name terms) ; simplePremises = simplePremises } xâ = {!!}
-- theorem1a (premises ⢠quantified x conclusion) record { simpleConclusion = () ; simplePremises = simplePremises } xâ
-- theorem1b : (s : Sequent) â SimpleNDProblem s â Either (Sequent.conclusion s â Sequent.premises s) (Σ _ λ q â q â Sequent.premises s à ~ q â Sequent.premises s) â âš s
-- theorem1b s x (left xâ) I xâ = xâ (Sequent.conclusion s) xâ
-- theorem1b s x (right (xâ , xâ , y)) I xâ = let ~q = xâ (~ xâ) y in let q = xâ xâ xâ in â¥-elim (fst ~q q)
-- {-
-- p â¡ q
-- p -> q & q -> p
-- (~p v q) & (~q v p)
-- ~(p & ~q) & ~(q & ~p)
-- ~(~~p & ~q) & ~(~~q & ~p)
-- bicondit elim is just simplification
-- modus ponens
-- p , (p â (q â q)) â (p â (q â q)) --> q
-- ~(~p & q)
-- p or ~q
-- p -> q
-- ~p v q
-- ~(p & ~q)
-- ~(p & ~q) & ~(p & ~q)
-- ~(~~p & ~q) & ~(~~p & ~q)
-- (~~p & ~q) â (~~p & ~q)
-- (~p â q) â (~p â q)
-- ((p â p) â q) â ((p â p) â q)
-- -}
-- {-
-- conditionalization p -> q from q, with discharge p
-- (p â· [] ⢠q) âš (â
⢠q)
-- -}
-- --data ReasonerState : List Sequent â List Sequent â Set
-- {-
-- p <-> q
-- p -> q and q -> p
-- ~p v q and ~q or p
-- ~(p and ~q) and ~(q and ~p)
-- (p and ~q) â (q and ~p)
-- ((p â p) â q) â ((q â q) â p)
-- p -> q
-- ~p v q
-- ~(p and ~q)
-- ~(p and ~q) and ~(p and ~q)
-- ((p â p) â q) â ((p â p) â q)
-- but this is just simplification
-- p , p -> q ⢠q
-- p , ((p â p) â q) â ((p â p) â q) ⢠q
-- p , q <-- p & q
-- p <-- ~~p
-- p <-- (p â p) â (p â p)
-- -}
-- -- PorNotP : (I : Interpretation) (P : Formula) â I âš (logical (logical P (logical P P)) (logical P (logical P P)))
-- -- PorNotP I P = (λ { (x , y) â y (x , x)}) , (λ { (x , y) â y (x , x)})
-- -- IFTHEN : Formula â Formula â Formula
-- -- IFTHEN P Q = logical (logical (logical P P) Q) (logical (logical P P) Q)
-- -- EXISTS : Nat â Formula â Formula
-- -- EXISTS n Ï = (logical (quantified n (logical Ï Ï)) (quantified n (logical Ï Ï)))
-- -- F : Nat â Formula
-- -- F n = atomic 1 0 (variable n â· [])
-- -- Fa : Formula
-- -- Fa = F 0
-- -- âxFx : Formula
-- -- âxFx = EXISTS 1 (F 1)
-- -- IfFaThenExistsFa : (I : Interpretation) â I âš (IFTHEN Fa âxFx)
-- -- IfFaThenExistsFa I = (λ { (Iâ~Fa , IââxFx) â Iâ~Fa ((λ x â IââxFx ((λ xâ â fst (xâ {!!} {!!}) {!!}) , (λ xâ â {!!}))) , {!!})}) , (λ { (x , y) â {!!}})
-- -- NotPAndNotNotP : (I : Interpretation) (P : Formula) â I âš (logical P (logical P P))
-- -- NotPAndNotNotP = {!!}
-- -- -- Valid : Formula â Setâ
-- -- -- Valid Ï = (I : Interpretation) â I Satisfies Ï
-- -- -- -- data SkolemFormula {ι : Size} (α : Alphabet) : Set where
-- -- -- -- atomic : Predication α â SkolemFormula α
-- -- -- -- logical : {ι¹ : Size< ι} â SkolemFormula {ι¹} α â {ι² : Size< ι} â SkolemFormula {ι²} α â SkolemFormula {ι} α
-- -- -- -- record Alphabetâáµ¥ (α : Alphabet) : Set where
-- -- -- -- constructor αâáµ¥âš_â©
-- -- -- -- field
-- -- -- -- alphabet : Alphabet
-- -- -- -- .one-variable-is-added : (number â variables $ alphabet) â¡ suc (number â variables $ α)
-- -- -- -- .there-are-no-functions-of-maximal-arity : number (functions alphabet) zero â¡ zero
-- -- -- -- .shifted-function-matches : â {ytiraâ ytiraâ} â finToNat ytiraâ â¡ finToNat ytiraâ â number (functions alphabet) (suc ytiraâ) â¡ number (functions α) ytiraâ
-- -- -- -- open Alphabetâáµ¥
-- -- -- -- record Alphabetââ (α : Alphabet) : Set where
-- -- -- -- constructor αâââš_â©
-- -- -- -- field
-- -- -- -- alphabet : Alphabet
-- -- -- -- open Alphabetââ
-- -- -- -- {-
-- -- -- -- toSkolemFormula
-- -- -- -- âx(F x vâ vâ) â¿ F vâ vâ vâ
-- -- -- -- âx(F x vâ vâ) â¿ F (sâÍâ vâ vâ) vâ vâ
-- -- -- -- âx(F x (sâÍâ vâ vâ) vâ) â¿ F vâ (sâÍâ vâ vâ) vâ
-- -- -- -- âx(F x (sâÍâ vâ vâ) vâ) â¿ F (sâÍâ vâ vâ) (sâÍâ vâ vâ) vâ
-- -- -- -- F vâ â G vâ â¿ F vâ â G vâ
-- -- -- -- âx(F x vâ vâ) â âx(G x (sâÍâ x vâ) vâ) â¿ F vâ vâ vâ â G vâ (sâÍâ vâ vâ) vâ
-- -- -- -- âx(F x vâ vâ) â âx(G x (sâÍâ x vâ) vâ) â¿ F vâ vâ vâ â G (sâÍâ vâ) (sâÍâ (sâÍâ vâ) vâ) vâ
-- -- -- -- Ίâ = âx(G x (sâÍâ x vâ) vâ) has alphabet of 2 variables, skolem functions: 0, 0, 1
-- -- -- -- this is existential {αââ} Ίâ, where
-- -- -- -- Ίâ = G (sâÍâ vâ vâ) (sâÍâ (sâÍâ vâ vâ)) vâ
-- -- -- -- αââ = âš 2 , 0 â· 0 â· 2 â· [] â©
-- -- -- -- maybe Ίââ = âyâx(G x (sâÍâ x vâ) vâ)
-- -- -- -- and Ίââ = âzâyâx(G x (sâÍâ x z) z), finally having no free variables, but nevertheless having skolem functions! these are user-defined functions, so this notion of Alphabet is somehow wrong. we have also left out constants (i.e. user-defined skolem-functions of arity 0)
-- -- -- -- Instead, take the alphabet as defining
-- -- -- -- a stack of free variables
-- -- -- -- a matrix (triangle?) of skolem functions
-- -- -- -- Let's try to reverse Ίâ from a Skolem to a 1st-order formula. Is there a unique way to do it?
-- -- -- -- Ίâ' = âx(G (sâÍâ x vâ) (sâÍâ (sâÍâ x vâ)) vâ
-- -- -- -- Nope!
-- -- -- -- toSkolemFormula of
-- -- -- -- -}
-- -- -- -- -- toSkolemFormula (logical Ίâ Ίâ) â¿
-- -- -- -- -- let α' , Ïâ = toSkolemFormula Ίâ
-- -- -- -- -- Ίâ' = transcodeToAugmentedAlphabet Ίâ α'
-- -- -- -- -- α'' , Ïâ' = toSkolemFormula Ίâ'
-- -- -- -- -- Ïâ' = transcodeToAugmentedAlphabet Ïâ α''
-- -- -- -- {-
-- -- -- -- given Îv = #varibles α' - #variables α
-- -- -- -- for every variable v in α, v in Ί, v stays the same in Ί'
-- -- -- -- for the added variable v⺠in αâ - α, v⺠in Ί, v⺠⿠v⺠+ Îv in transcode (universal {αâ} Ί)
-- -- -- -- α'â = α' + 1 variable
-- -- -- -- -}
-- -- -- -- -- record AddVariable (A : Alphabet â Set) : Set where
-- -- -- -- -- field
-- -- -- -- -- addVariableToAlphabet : {α : Alphabet} â A α â {αâ : Alphabet} â Alphabetâáµ¥ αâ â A αâ
-- -- -- -- -- instance
-- -- -- -- -- AddVariableFirstOrderFormula : AddVariable FirstOrderFormula
-- -- -- -- -- AddVariableFirstOrderFormula = {!!}
-- -- -- -- -- #variables = number â variables
-- -- -- -- -- #functions_ofArity_ : Alphabet â Nat â Nat
-- -- -- -- -- #functions α⚠V⚠#variables ⩠, S⚠#functions ⩠⩠ofArity arity = ifⲠlessNat arity (suc #variables) then #functions (natToFin arity) else 0
-- -- -- -- -- record _â_ (α' α : Alphabet) : Set where
-- -- -- -- -- field
-- -- -- -- -- at-least-as-many-variables : #variables α' ⥠#variables α
-- -- -- -- -- at-least-as-many-functions : â {arity} â arity < #variables α â #functions α' ofArity arity ⥠#functions α ofArity arity
-- -- -- -- -- record AddAlphabet (α-top α-bottom : Alphabet) : Set where
-- -- -- -- -- field
-- -- -- -- -- alphabet : Alphabet
-- -- -- -- -- record Transcodeable (A : Alphabet â Set) : Set where
-- -- -- -- -- field
-- -- -- -- -- transcode : {α' α : Alphabet} â ⊠_ : α' â α ⊠â A α â A α'
-- -- -- -- -- open Transcodeable ⊠⊠âŠ
-- -- -- -- -- record TransferAlphabet {α' α : Alphabet} (α'âα : α' â α) (αâ : Alphabetâáµ¥ α) (Ί : FirstOrderFormula (alphabet αâ)) : Set where
-- -- -- -- -- field
-- -- -- -- -- alphabet : Alphabet
-- -- -- -- -- firstOrderFormula : FirstOrderFormula alphabet
-- -- -- -- -- instance
-- -- -- -- -- TranscodeablePredication : Transcodeable Predication
-- -- -- -- -- TranscodeablePredication = {!!}
-- -- -- -- -- TranscodeableAlphabet+Variable : Transcodeable Alphabetâáµ¥
-- -- -- -- -- TranscodeableAlphabet+Variable = {!!}
-- -- -- -- -- TranscodeableSkolemFormula : Transcodeable SkolemFormula
-- -- -- -- -- TranscodeableSkolemFormula = {!!}
-- -- -- -- -- TranscodeableFirstOrderFormula : Transcodeable FirstOrderFormula
-- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (atomic p) = atomic (transcode p)
-- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (logical Ίâ Ίâ) = logical (transcode Ίâ) (transcode Ίâ)
-- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula {α'} {α} ⊠α'âα ⊠(universal {αâ} Ί) = {!!} -- universal {_} {_} {transcode αâ} (transcode Ί)
-- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (existential Ί) = {!!}
-- -- -- -- -- --(α' α : Alphabet) (α'âα : α' â α) (αâ : Alphabet+Variable α) (Ί : FirstOrderFormula (alphabet αâ)) â Σ _ λ (α''' : Alphabet) â FirstOrderFormula α'''
-- -- -- -- -- --FirstOrderFormula (alphabet 뱉)
-- -- -- -- -- {-
-- -- -- -- -- -}
-- -- -- -- -- -- --transcodeIntoAugmentedAlphabet :
-- -- -- -- -- -- --toSkolemFormula : {α : Alphabet} â FirstOrderFormula α â Σ _ λ (α¹ : AugmentedAlphabet α) â SkolemFormula (alphabet α¹)
-- -- -- -- -- -- --record IsEquivalentFormulas {αâ : Alphabet} (Ïâ : SkolemFormula αâ) {αâ : Alphabet} (Ίâ : FirstOrderFormula αâ) : Set where
-- -- -- -- -- -- -- field
-- -- -- -- -- -- -- .atomicCase : {p : Predication αâ} â Ïâ â¡ atomic p â Ίâ â¡ atomic p
-- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- record Alphabet+Alphabet (뱉 뱉 뱉 : Alphabet) : Set where
-- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- alphabet :
-- -- -- -- -- -- -- -- âxÏâ(x) â Ïâ â¿ âx(Ïâ â Ïâ)
-- -- -- -- -- -- -- -- hasQuantifiers : FirstOrderFormula α â Bool
-- -- -- -- -- -- -- --record Skolemization {α : Alphabet} (Ï : FirstOrderFormula α) : Set where
-- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- alphabet : Alphabet
-- -- -- -- -- -- -- -- skolemization : SkolemFormula alphabet
-- -- -- -- -- -- -- record _IsAugmentationOf_ (뱉 뱉 : Alphabet) : Set where
-- -- -- -- -- -- -- record AugmentedAlphabet (α : Alphabet) : Set where
-- -- -- -- -- -- -- constructor âš_â©
-- -- -- -- -- -- -- field
-- -- -- -- -- -- -- alphabet : Alphabet
-- -- -- -- -- -- -- ..laws : alphabet ⡠α
-- -- -- -- -- -- -- open AugmentedAlphabet
-- -- -- -- -- -- -- trivialAugmentation : (α : Alphabet) â AugmentedAlphabet α
-- -- -- -- -- -- -- trivialAugmentation = {!!}
-- -- -- -- -- -- -- record DisjointRelativeUnion {α : Alphabet} (α¹ α² : AugmentedAlphabet α) : Set where
-- -- -- -- -- -- -- constructor âš_â©
-- -- -- -- -- -- -- field
-- -- -- -- -- -- -- augmentation : AugmentedAlphabet α
-- -- -- -- -- -- -- .laws : {!!}
-- -- -- -- -- -- -- open DisjointRelativeUnion
-- -- -- -- -- -- -- disjointRelativeUnion : {α : Alphabet} â (α¹ α² : AugmentedAlphabet α) â DisjointRelativeUnion α¹ α²
-- -- -- -- -- -- -- disjointRelativeUnion = {!!}
-- -- -- -- -- -- -- -- inAugmentedAlphabet : {α : Alphabet} â (α¹ : AugmentedAlphabet α) â SkolemFormula α â SkolemFormula (alphabet α¹)
-- -- -- -- -- -- -- -- inAugmentedAlphabet = {!!}
-- -- -- -- -- -- -- -- toSkolemFormula : {α : Alphabet} â FirstOrderFormula α â Σ _ λ (α¹ : AugmentedAlphabet α) â SkolemFormula (alphabet α¹)
-- -- -- -- -- -- -- -- toSkolemFormula {αâ} (atomic ð) = trivialAugmentation αâ , atomic ð
-- -- -- -- -- -- -- -- toSkolemFormula {αâ} (logical Ïâ Ïâ) with toSkolemFormula Ïâ | toSkolemFormula Ïâ
-- -- -- -- -- -- -- -- toSkolemFormula {αâ} (logical Ïâ Ïâ) | α¹ , Ίâ | α² , Ίâ = augmentation (disjointRelativeUnion α¹ α²) , logical {!inAugmentedAlphabet (augmentation (disjointRelativeUnion α¹ α²)) Ίâ!} {!Ίâ!}
-- -- -- -- -- -- -- -- toSkolemFormula {뱉} (universal x) = {!!}
-- -- -- -- -- -- -- -- toSkolemFormula {뱉} (existential x) = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula : â {alphabetâ} â QFormula alphabetâ â Σ _ λ alphabetâ â NQFormula alphabetâ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabetâ} (atomic name terms) = alphabetâ , atomic name terms
-- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabetâ} (logical formulaâ formulaâ) with toNQFormula formulaâ | toNQFormula formulaâ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- ... | alphabetâ , nqFormulaâ | alphabetâ , nqFormulaâ = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabetâ} (universal formula) = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabetâ} (existential formula) = {!!}
-- -- -- -- -- -- -- -- -- -- -- --VariableName = Fin â |v|
-- -- -- -- -- -- -- -- -- -- -- --FunctionArity = Fin â suc â size
-- -- -- -- -- -- -- -- -- -- -- --FunctionName = λ alphabet ytira â Fin (|f| alphabet ytira)
-- -- -- -- -- -- -- -- -- -- -- -- record Alphabet : Set where
-- -- -- -- -- -- -- -- -- -- -- -- constructor âš_,_â©
-- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- |v| : Nat -- number of variables
-- -- -- -- -- -- -- -- -- -- -- -- |f| : Fin (suc |v|) â Nat -- number of functions of each arity, |v| through 0
-- -- -- -- -- -- -- -- -- -- -- -- open Alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- VariableName = Fin â |v|
-- -- -- -- -- -- -- -- -- -- -- -- -- FunctionArity = Fin â suc â |v|
-- -- -- -- -- -- -- -- -- -- -- -- -- FunctionName = λ alphabet ytira â Fin (|f| alphabet ytira)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- data Term {i : Size} (alphabet : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- variable : VariableName alphabet â Term alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- function : â {arity : FunctionArity alphabet} â
-- -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionName alphabet (natToFin (|v| alphabet) - arity) â
-- -- -- -- -- -- -- -- -- -- -- -- -- -- â {j : Size< i} â Vec (Term {j} alphabet) (finToNat arity) â
-- -- -- -- -- -- -- -- -- -- -- -- -- -- Term {i} alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- PredicateArity = Nat
-- -- -- -- -- -- -- -- -- -- -- -- -- -- PredicateName = Nat
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a zeroth-order formula? (i.e. no quantifiers)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- data NQFormula {i : Size} (alphabet : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- atomic : PredicateName â â {arity} â Vec (Term alphabet) arity â NQFormula alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- logical : {j : Size< i} â NQFormula {j} alphabet â {k : Size< i} â NQFormula {k} alphabet â NQFormula {i} alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentedByVariable (alphabetâ alphabetâ : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- one-variable-is-added : |v| alphabetâ â¡ suc (|v| alphabetâ)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- function-domain-is-zero-at-new-variable : |f| alphabetâ zero â¡ 0
-- -- -- -- -- -- -- -- -- -- -- -- -- -- shifted-function-matches : â {ytiraâ ytiraâ} â finToNat ytiraâ â¡ finToNat ytiraâ â |f| alphabetâ (suc ytiraâ) â¡ |f| alphabetâ ytiraâ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentVariables (alphabetâ : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- alphabetâ : Alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentation : AugmentedByVariable alphabetâ alphabetâ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- open AugmentVariables
-- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables : (alphabet : Alphabet) â AugmentVariables alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables âš |v| , |f| â© =
-- -- -- -- -- -- -- -- -- -- -- -- -- -- record
-- -- -- -- -- -- -- -- -- -- -- -- -- -- { alphabetâ = âš suc |v| , (λ { zero â zero ; (suc ytira) â |f| ytira}) â©
-- -- -- -- -- -- -- -- -- -- -- -- -- -- ; augmentation =
-- -- -- -- -- -- -- -- -- -- -- -- -- -- record
-- -- -- -- -- -- -- -- -- -- -- -- -- -- { one-variable-is-added = refl
-- -- -- -- -- -- -- -- -- -- -- -- -- -- ; function-domain-is-zero-at-new-variable = refl
-- -- -- -- -- -- -- -- -- -- -- -- -- -- ; shifted-function-matches = cong |f| â finToNat-inj } }
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- |f|â = |f|â + 1
-- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions : Alphabet â Alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions âš |v| , |f| â© = âš |v| , (λ { zero â suc (|f| zero) ; (suc ytira) â |f| (suc ytira) }) â©
-- -- -- -- -- -- -- -- -- -- -- -- -- -- data QFormula {i : Size} (alphabet : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- atomic : PredicateName â â {arity} â Vec (Term alphabet) arity â QFormula alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- logical : {j : Size< i} â QFormula {j} alphabet â {k : Size< i} â QFormula {k} alphabet â QFormula {i} alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- universal : QFormula (alphabetâ (augmentVariables alphabet)) â QFormula alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- existential : QFormula (augmentFunctions alphabet) â QFormula alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- record Assignment (alphabet : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor âš_,_â©
-- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- ÎŒ : VariableName alphabet â Domain
-- -- -- -- -- -- -- -- -- -- -- -- -- -- ð : â {arity} â FunctionName alphabet arity â Vec Domain (finToNat arity) â Domain
-- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm : â {i alphabet} â Assignment alphabet â Term {i} alphabet â Domain
-- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm ⚠Ό , _ ⩠(variable x) = Ό x
-- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm ð@(âš ÎŒ , ð â©) (function f x) = ð f (evaluateTerm ð <$> x)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- record Interpretation (alphabet : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor âš_,_â©
-- -- -- -- -- -- -- -- -- -- -- -- -- -- open Assignment
-- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- ð : Assignment alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- ð : PredicateName â â {arity} â Vec Domain arity â Bool
-- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula : â {i alphabet} â Interpretation alphabet â NQFormula {i} alphabet â Bool
-- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula âš ð , ð â© (atomic name terms) = ð name $ evaluateTerm ð <$> terms
-- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula I (logical formulaâ formulaâ) = not (evaluateNQFormula I formulaâ) && not (evaluateNQFormula I formulaâ)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula : â {alphabetâ} â QFormula alphabetâ â Σ _ λ alphabetâ â NQFormula alphabetâ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabetâ} (atomic name terms) = alphabetâ , atomic name terms
-- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabetâ} (logical formulaâ formulaâ) with toNQFormula formulaâ | toNQFormula formulaâ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- ... | alphabetâ , nqFormulaâ | alphabetâ , nqFormulaâ = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabetâ} (universal formula) = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabetâ} (existential formula) = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- record IsADisjointUnionOfNQFormulas
-- -- -- -- -- -- -- -- -- -- -- -- -- -- {alphabetâ alphabetâ alphabetâââ : Alphabet}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- (formulaâ : NQFormula alphabetâ)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- (formulaâ : NQFormula alphabetâ)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- (formulaâââ : NQFormula alphabetâââ)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- alphabet-size : |v| alphabetâââ â¡ |v| alphabetâ + |v| alphabetâ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --|f| alphabetâââ ytira
-- -- -- -- -- -- -- -- -- -- -- -- -- -- ----record AlphabetSummed (alphabetâ alphabetâ : Alphabet)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --addAlphabets : Alphabet â Alphabet â Alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --addAlphabets âš |v|â , |f|â â© âš |v|â , |f|â â© = âš (|v|â + |v|â) , (λ x â ifâ² finToNat x â€? |v|â && finToNat x â€? |v|â then {!!} else {!!}) â©
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- sup : â {alphabetâ} â Formula alphabetâ â â {alphabetâ} â Formula alphabetâ â Σ _ λ alphabetâââ â Formula alphabetâââ à Formula alphabetâââ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- sup {âš |v|â , |a|â , |f|â â©} Ïâ {âš |v|â , |a|â , |f|â â©} Ïâ = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- pnf : â {alphabet} â Formula alphabet â Σ _ λ alphabet+ â Formulaâ alphabet+
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- pnf = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {-
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --universal (P 0) = â x â P x
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (â x â y (P x y)) âš (â x â y (P x y))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- P xâ (sâÍâ xâ) âš P xâ (sâÍâ xâ)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- extended|f| : (arity : Arity) â Vec â (suc |a|) â Vec â (++arity (max arity |a|))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- extended|f| = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- add a variable to the alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables : Alphabet â Alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- increaseTabulationAtN : â {n} â Fin n â (Fin n â Nat) â Fin n â Nat
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- increaseTabulationAtN = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {-
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentedFunctions {|a| : Arity} (arity : Arity) (|f| : Vec â (++arity |a|)) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- maxA : â
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- maxA-law : max arity |a| â¡ maxA
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ++|f| : Vec â maxA
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- f-law : increaseTabulationAt arity (indexVec |f|)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {-
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- define
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a â b â¡ False a and False b
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- now, we can define
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ¬a = a â a â¡ False a and False a
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a âš b = ¬(a â b) â¡ False (False a and False b) and False (False a and False b)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a â§ b = ¬(¬a ⚠¬b) = ¬(¬(¬a â ¬b)) = ¬a â ¬b = False (False a and False a) and False (False b and False b)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a â b = ¬a âš b = (a â a) âš b = ¬((a â a) â b) = ((a â a) â b) â ((a â a) â b)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- conversion to prenex
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- âxF â G â¿ âx(F â wk(G))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- âxF â G â¿ âx(F â wk(G))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- F â âxG â¿ âx(wk(F) â G)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- F â âxG â¿ âx(wk(F) â G)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ========================
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (a â âxB) â c â¿ âx(wk(a) â B) â c â¿ âx((wk(a) â B) â wk(c))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF : (arity : Arity) â â {|a| : Arity} â Vec â (++arity |a|) â Vec â (++arity (max arity |a|))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f|
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- with decBool (lessNat |a| arity)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | yes x with compare arity |a|
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.(suc (k + arity))} |f| | yes x | less (diff k refl) = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.arity} |f| | yes x | equal refl with lessNat arity arity
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.arity} |f| | yes x | equal refl | false = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF zero {.zero} |f| | yes true | equal refl | true = {!!} â· []
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF (suc arity) {.(suc arity)} |f| | yes true | equal refl | true = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | yes x | greater gt = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x with decBool (lessNat arity |a|)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no xâ | yes x = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no xâ | no x = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- = case arity <? |a| of λ { false â {!!} ; true â {!!} }
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- add a function of a given arity to the alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions : Arity â Alphabet â Alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions arity âš |v| , |a| , |f| â© = âš |v| , max arity |a| , augmentF arity |f| â©
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Alphabet : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data DomainSignifier : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- free : Nat â DomainSignifier
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data PartiallyAppliedFunction : Nat â Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- constant : PartiallyAppliedFunction 0
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : â {n} â PartiallyAppliedFunction 0 â PartiallyAppliedFunction (suc n)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Term = PartiallyAppliedFunction 0
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data PartialyAppliedPredicate : Nat â Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- statement : PartialyAppliedPredicate 0
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- partial : â
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Language : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Name = String
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Function : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- name : Name
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- number-of-arguments : Nat
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Vec
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Function : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Term : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : Function â
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Sentence : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- predication : Name â
-- -- -- -- {-
-- -- -- -- record Variables : Set where
-- -- -- -- constructor Vâš_â©
-- -- -- -- field
-- -- -- -- number : Nat
-- -- -- -- open Variables
-- -- -- -- record Functions (Ï
: Variables) : Set where
-- -- -- -- constructor Sâš_â©
-- -- -- -- field
-- -- -- -- number : Fin (suc (number Ï
)) â Nat
-- -- -- -- open Functions
-- -- -- -- record Alphabet : Set where
-- -- -- -- constructor αâš_,_â©
-- -- -- -- field
-- -- -- -- variables : Variables
-- -- -- -- functions : Functions variables
-- -- -- -- open Alphabet
-- -- -- -- record Variable (α : Alphabet) : Set where
-- -- -- -- constructor vâš_â©
-- -- -- -- field
-- -- -- -- name : Fin (number (variables α))
-- -- -- -- open Variable
-- -- -- -- record Function (α : Alphabet) : Set where
-- -- -- -- constructor sâš_,_â©
-- -- -- -- field
-- -- -- -- arity : Fin â suc â number â variables $ α
-- -- -- -- name : Fin $ number (functions α) arity
-- -- -- -- open Function
-- -- -- -- data Term (ðœ : Nat) : Set where
-- -- -- -- variable : Fin ðœ â Term ðœ
-- -- -- -- function : (ð : Function α) â {ιââ : Size< ιâ} â Vec (Term {ιââ} α) (finToNat (arity ð)) â
-- -- -- -- Term {ιâ} α
-- -- -- -- record Predication (alphabet : Alphabet) : Set where
-- -- -- -- constructor Pâš_,_,_â©
-- -- -- -- field
-- -- -- -- name : Nat
-- -- -- -- arity : Nat
-- -- -- -- terms : Vec (Term alphabet) arity
-- -- -- -- open Predication
-- -- -- -- -}
|
{-# OPTIONS --without-K --safe #-}
module Data.Binary.Operations.Semantics where
open import Data.Nat as â using (â; suc; zero)
open import Data.Binary.Definitions
open import Data.Binary.Operations.Unary
import Data.List as List
2* : â â â
2* x = x â.+ x
{-# INLINE 2* #-}
_â·â_ : Bit â â â â
O â·â xs = 2* xs
I â·â xs = suc (2* xs)
{-# INLINE _â·â_ #-}
âŠ_ââ§âº : ð¹âº â â
âŠ_ââ§âº = List.foldr _â·â_ 1
{-# INLINE âŠ_ââ§âº #-}
âŠ_ââ§ : ð¹ â â
⊠0áµ ââ§ = 0
⊠0< xs ââ§ = ⊠xs ââ§âº
âŠ_ââ§ : â â ð¹
⊠zero ââ§ = 0áµ
⊠suc n ââ§ = inc ⊠n ââ§
|
module Support.Nat where
open import Support
data _<_ : (n m : â) â Set where
Z<Sn : {n : â} â zero < suc n
raise< : {n m : â} (n<m : n < m) â suc n < suc m
infix 5 _>_
_>_ : (m n : â) â Set
_>_ = flip _<_
infixr 7 _+_
_+_ : (n m : â) â â
zero + m = m
suc n + m = suc (n + m)
infixr 9 _*_
_*_ : (n m : â) â â
zero * m = zero
(suc n) * m = m + n * m
+-is-nondecreasingʳ : â (n m : â) â n < suc (n + m)
+-is-nondecreasingʳ zero m = Z<Sn
+-is-nondecreasingʳ (suc y) m = raise< (+-is-nondecreasingʳ y m)
+-idË¡ : â a â 0 + a ⣠a
+-idË¡ a = â£-refl
+-idʳ : â a â a + 0 ⣠a
+-idʳ zero = â£-refl
+-idʳ (suc y) = â£-cong suc (+-idʳ y)
+-assocË¡ : â a b c â (a + b) + c ⣠a + (b + c)
+-assocË¡ zero b c = â£-refl
+-assocË¡ (suc a) b c = â£-cong suc (+-assocË¡ a b c)
+-assocʳ : â a b c â a + (b + c) ⣠(a + b) + c
+-assocʳ zero b c = â£-refl
+-assocʳ (suc a) b c = â£-cong suc (+-assocʳ a b c)
+-sucË¡ : â a b â suc a + b ⣠suc (a + b)
+-sucË¡ a b = â£-refl
+-sucʳ : â a b â a + suc b ⣠suc (a + b)
+-sucʳ zero b = â£-refl
+-sucʳ (suc y) b = â£-cong suc (+-sucʳ y b)
+-comm : â a b â a + b ⣠b + a
+-comm a zero = +-idʳ a
+-comm a (suc y) = â£-trans (â£-cong suc (+-comm a y)) (+-sucʳ a y)
*-killË¡ : â a â 0 * a ⣠0
*-killË¡ a = â£-refl
*-killʳ : â a â a * 0 ⣠0
*-killʳ zero = â£-refl
*-killʳ (suc y) = *-killʳ y
*-idË¡ : â a â 1 * a ⣠a
*-idˡ a = +-idʳ a
*-idʳ : â a â a * 1 ⣠a
*-idʳ zero = â£-refl
*-idʳ (suc y) = â£-cong suc (*-idʳ y)
*-dist-+Ë¡ : â a b c â a * (b + c) ⣠a * b + a * c
*-dist-+Ë¡ zero b c = â£-refl
*-dist-+Ë¡ (suc y) b c =
begin
(b + c) + y * (b + c)
ââš â£-cong (_+_ (b + c)) (*-dist-+Ë¡ y b c) â©
(b + c) + y * b + y * c
ââš +-assocʳ (b + c) (y * b) (y * c) â©
((b + c) + y * b) + y * c
ââš â£-cong (λ x â (x + y * b) + y * c) (+-comm b c) â©
((c + b) + y * b) + y * c
ââš â£-cong (λ x â x + y * c) (+-assocË¡ c b (y * b)) â©
(c + b + y * b) + y * c
ââš â£-cong (λ x â x + y * c) (+-comm c (b + y * b)) â©
((b + y * b) + c) + y * c
ââš +-assocË¡ (b + y * b) c (y * c) â©
(b + y * b) + c + y * c
â
where open â£-reasoning â
*-dist-+ʳ : â a b c â (a + b) * c ⣠a * c + b * c
*-dist-+ʳ zero b c = â£-refl
*-dist-+ʳ (suc y) b c = â£-trans (+-assocʳ c (y * c) (b * c)) (â£-cong (_+_ c) (*-dist-+ʳ y b c))
*-assocË¡ : â a b c â (a * b) * c ⣠a * (b * c)
*-assocË¡ zero b c = â£-refl
*-assocË¡ (suc y) b c = â£-trans (â£-cong (_+_ (b * c)) (*-assocË¡ y b c))
(*-dist-+ʳ b (y * b) c)
*-assocʳ : â a b c â (a * b) * c ⣠a * (b * c)
*-assocʳ zero b c = â£-refl
*-assocʳ (suc y) b c = â£-trans (â£-cong (_+_ (b * c)) (*-assocʳ y b c))
(*-dist-+ʳ b (y * b) c)
*-sucË¡ : â a b â (suc a) * b ⣠b + a * b
*-sucË¡ a b = â£-refl
*-sucʳ : â a b â a * (suc b) ⣠a + a * b
*-sucʳ zero b = â£-refl
*-sucʳ (suc y) b = â£-cong suc (
begin
b + y * suc b
ââš â£-cong (_+_ b) (*-sucʳ y b) â©
b + y + y * b
ââš +-assocʳ b y (y * b) â©
(b + y) + y * b
ââš â£-cong (λ x â x + y * b) (+-comm b y) â©
(y + b) + y * b
ââš +-assocË¡ y b (y * b) â©
y + b + y * b
â)
where open â£-reasoning â
*-comm : â a b â a * b ⣠b * a
*-comm a zero = *-killʳ a
*-comm a (suc y) =
begin
a * suc y
ââš *-sucʳ a y â©
a + a * y
ââš â£-cong (_+_ a) (*-comm a y) â©
a + y * a
â
where open â£-reasoning â
<-irref : â {n} â ¬ (n < n)
<-irref (raise< n<m) = <-irref n<m
<-trans : â {l m n} â (l < m) â (m < n) â (l < n)
<-trans Z<Sn (raise< n<m) = Z<Sn
<-trans (raise< n<m) (raise< n<m') = raise< (<-trans n<m n<m')
<-trans-assoc : â {a b c d} â {a<b : a < b} {b<c : b < c} {c<d : c < d} â <-trans a<b (<-trans b<c c<d) ⣠<-trans (<-trans a<b b<c) c<d
<-trans-assoc {a<b = Z<Sn} {raise< b<c} {raise< c<d} = â£-refl
<-trans-assoc {a<b = raise< a<b} {raise< b<c} {raise< c<d} = â£-cong raise< <-trans-assoc
<-unsucʳ : â {m n} â m < suc n â Either (m ⣠n) (m < n)
<-unsucʳ (Z<Sn {zero}) = inl â£-refl
<-unsucʳ (Z<Sn {suc y}) = inr Z<Sn
<-unsucʳ (raise< {n} {zero} ())
<-unsucʳ (raise< {n} {suc y} n<m) = (â£-cong suc +++ raise<) (<-unsucʳ n<m)
<-unsucË¡ : â {m n} â suc m < n â m < n
<-unsucˡ (raise< {zero} Z<Pn) = Z<Sn
<-unsucˡ (raise< {suc y} Sy<Pn) = raise< (<-unsucˡ Sy<Pn)
<-sucË¡ : â {m n} â m < n â Either (suc m ⣠n) (suc m < n)
<-sucË¡ (Z<Sn {zero}) = inl â£-refl
<-sucˡ (Z<Sn {suc y}) = inr (raise< Z<Sn)
<-sucË¡ (raise< n<m) = (â£-cong suc +++ raise<) (<-sucË¡ n<m)
<-sucʳ : â {m n} â m < n â m < suc n
<-sucʳ Z<Sn = Z<Sn
<-sucʳ (raise< Pm<Pn) = raise< (<-sucʳ Pm<Pn)
|
module _ where
A : Setâ
A = Set
|
------------------------------------------------------------------------------
-- Conat properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Conat.PropertiesI where
open import FOTC.Base
open import FOTC.Data.Conat
open import FOTC.Data.Nat
------------------------------------------------------------------------------
-- Because a greatest post-fixed point is a fixed-point, then the
-- Conat predicate is also a pre-fixed point of the functional NatF,
-- i.e.
--
-- NatF Conat †Conat (see FOTC.Data.Conat.Type).
Conat-in : â {n} â
n â¡ zero âš (â[ n' ] n â¡ succâ n' â§ Conat n') â
Conat n
Conat-in h = Conat-coind A h' h
where
A : D â Set
A n = n â¡ zero âš (â[ n' ] n â¡ succâ n' â§ Conat n')
h' : â {n} â A n â n â¡ zero âš (â[ n' ] n â¡ succâ n' â§ A n')
h' (injâ nâ¡0) = injâ nâ¡0
h' (injâ (n' , prf , Cn')) = injâ (n' , prf , Conat-out Cn')
0-Conat : Conat zero
0-Conat = Conat-coind A h refl
where
A : D â Set
A n = n â¡ zero
h : â {n} â A n â n â¡ zero âš (â[ n' ] n â¡ succâ n' â§ A n')
h An = injâ An
-- Adapted from (Sander 1992, p. 57).
â-Conat : Conat â
â-Conat = Conat-coind A h refl
where
A : D â Set
A n = n â¡ â
h : â {n} â A n â n â¡ zero âš (â[ n' ] n â¡ succâ n' â§ A n')
h An = injâ (â , trans An â-eq , refl)
NâConat : â {n} â N n â Conat n
NâConat Nn = Conat-coind N h Nn
where
h : â {m} â N m â m â¡ zero âš (â[ m' ] m â¡ succâ m' â§ N m')
h nzero = injâ refl
h (nsucc {m} Nm) = injâ (m , refl , Nm)
-- A different proof.
NâConat' : â {n} â N n â Conat n
NâConat' nzero = Conat-in (injâ refl)
NâConat' (nsucc {n} Nn) = Conat-in (injâ (n , refl , (NâConat' Nn)))
------------------------------------------------------------------------------
-- References
--
-- Sander, Herbert P. (1992). A Logic of Functional Programs with an
-- Application to Concurrency. PhD thesis. Department of Computer
-- Sciences: Chalmers University of Technology and University of
-- Gothenburg.
|
module Everything where
-- The development can almost entirely be type-checked using --safe,
-- We mark modules that use the TERMINATING pragma with (**)
-- And one module that uses --rewriting with (*).
-- These are the only modules that Agda does not accept ass --safe.
-- # First we summarize the library we use by Rouvoet et al '20, CPP.
--
-- Our work contributes various improvements to the library.
-- In particular, its generalization relations whose underlying
-- equivalence is not propositional equality.
-- But also various additions to the parts of the library
-- mentioned below.
-- Core defines what a proof-relevant ternary relation (Relâ).
import Relation.Ternary.Core
-- Structures defines type classes for ternary relations.
-- A PRSA is a commutative monoid and should implement:
-- - IsPartialMonoid <: IsPartialSemigroup
-- - IsCommutative
import Relation.Ternary.Structures
-- The overloaded syntax of separation logic comes from:
import Relation.Ternary.Structures.Syntax
-- Resource aware versions of data types that we use are defined generically
-- in Relation.Ternary.Data:
import Relation.Ternary.Data.Bigstar -- 'Star' in figure 5 of the paper
import Relation.Ternary.Data.Bigplus -- 'Plus'
import Relation.Ternary.Data.ReflexiveTransitive -- 'IStar'
-- The computational structures from the library that we use in the paper
import Relation.Ternary.Functor
import Relation.Ternary.Monad
-- # We make the following additions to the library, that we describe in the paper.
-- A generic PRSA for list separation modulo permutations.
-- It is generic in the sense that it is parameterized in a PRSA on its elements.
-- We prove that it is a PRSA, with various additional properties that are
-- crucial for the model construction in the paper.
import Relation.Ternary.Construct.Bag
import Relation.Ternary.Construct.Bag.Properties
-- A generic PRSA Exchange, that generalizes the interface composition relation.
import Relation.Ternary.Construct.Exchange
-- Its construction is generic in 2 PRSAs that obey some properties.
-- These properties are formalized as type-classes on ternary relations
import Relation.Ternary.Structures.Positive
import Relation.Ternary.Structures.Crosssplit
-- We added the writer monad construction described in the paper.
import Relation.Ternary.Monad.Writer
-- # We then formalize the typed language CF, and typed bytecode,
-- and implement the typed compilation backend.
-- The model:
-- The bag separation implements the 'disjoint' and the 'overlapping' context
-- separation from the paper, depending on how you instantiate it.
-- The instantiation is done in the JVM model construction.
-- Here we also instantiate Exchange to obtain interface composition.
import JVM.Model
-- Syntax of bytecode
import JVM.Types
import JVM.Syntax.Instructions
import JVM.Syntax.Bytecode
-- The Compiler monad
import JVM.Compiler.Monad
-- The source language
import CF.Types
import CF.Syntax -- co-contextual
import CF.Syntax.Hoisted -- co-contextual without local variable introductions
import CF.Syntax.DeBruijn -- contextual
import CF.Transform.Hoist -- hoisting local variable declarations (**)
import CF.Transform.UnCo -- contextualizing (**)
import CF.Transform.Compile.Expressions -- compiling expressions
import CF.Transform.Compile.Statements -- compiling statements
import CF.Transform.Compile.ToJVM -- typeclass for type translation
import JVM.Transform.Noooops -- bytecode optimization that removes nops
import JVM.Transform.Assemble -- bytecode translation to absolute jumps (*)
import JVM.Printer -- printer for co-contextual bytecode to Jasmin (not verified) (**)
-- Example compilations.
-- These can be run by first compiling them using `make examples`.
-- The output will be in _build/bin/
import CF.Examples.Ex1 -- (*,**)
import CF.Examples.Ex2 -- (*,**)
|
{-# OPTIONS --cubical --safe #-}
module Data.Fin.Injective where
open import Prelude
open import Data.Fin.Base
open import Data.Fin.Properties using (discreteFin)
open import Data.Nat
open import Data.Nat.Properties using (+-comm)
open import Function.Injective
private
variable n m : â
infix 4 _â¢á¶ _ _â¡á¶ _
_â¢á¶ _ _â¡á¶ _ : Fin n â Fin n â Type _
n â¢á¶ m = T (not (discreteFin n m .does))
n â¡á¶ m = T (discreteFin n m .does)
_Fâ£_ : â â â â Type
n F⣠m = Σ[ f ⊠(Fin n â Fin m) ] à â {x y} â x â¢á¶ y â f x â¢á¶ f y
shift : (x y : Fin (suc n)) â x â¢á¶ y â Fin n
shift f0 (fs y) xâ¢y = y
shift {suc _} (fs x) f0 xâ¢y = f0
shift {suc _} (fs x) (fs y) xâ¢y = fs (shift x y xâ¢y)
shift-inj : â (x y z : Fin (suc n)) xâ¢y xâ¢z â y â¢á¶ z â shift x y xâ¢y â¢á¶ shift x z xâ¢z
shift-inj f0 (fs y) (fs z) xâ¢y xâ¢z x+yâ¢x+z = x+yâ¢x+z
shift-inj {suc _} (fs x) f0 (fs z) xâ¢y xâ¢z x+yâ¢x+z = tt
shift-inj {suc _} (fs x) (fs y) f0 xâ¢y xâ¢z x+yâ¢x+z = tt
shift-inj {suc _} (fs x) (fs y) (fs z) xâ¢y xâ¢z x+yâ¢x+z = shift-inj x y z xâ¢y xâ¢z x+yâ¢x+z
shrink : suc n F⣠suc m â n F⣠m
shrink (f , inj) .fst x = shift (f f0) (f (fs x)) (inj tt)
shrink (f , inj) .snd p = shift-inj (f f0) (f (fs _)) (f (fs _)) (inj tt) (inj tt) (inj p)
¬plus-inj : â n m â ¬ (suc (n + m) F⣠m)
¬plus-inj zero zero (f , _) = f f0
¬plus-inj zero (suc m) inj = ¬plus-inj zero m (shrink inj)
¬plus-inj (suc n) m (f , p) = ¬plus-inj n m (f â fs , p)
toFin-inj : (Fin n ⣠Fin m) â n F⣠m
toFin-inj f .fst = f .fst
toFin-inj (f , inj) .snd {x} {y} xâ¢á¶ y with discreteFin x y | discreteFin (f x) (f y)
... | no ¬p | yes p = ¬p (inj _ _ p)
... | no _ | no _ = tt
nâ¢sn+m : â n m â Fin n ⢠Fin (suc (n + m))
nâ¢sn+m n m nâ¡m =
¬plus-inj m n
(toFin-inj
(subst
(_⣠Fin n)
(nâ¡m ÍŸ cong (Fin â suc) (+-comm n m))
refl-â£))
Fin-inj : Injective Fin
Fin-inj n m eq with compare n m
... | equal _ = refl
... | less n k = â¥-elim (nâ¢sn+m n k eq)
... | greater m k = â¥-elim (nâ¢sn+m m k (sym eq))
|
module _ where
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
postulate
C : Set â Set
record R (F : Nat â Set) : Set where
field
n : Nat
⊠iC ⊠: C (F n)
postulate
T : Nat â Set
instance
iCT5 : C (T 5)
module _ (n m : Nat) where
foo : n â¡ suc m â Nat â Set
foo refl p = Nat
where
bar : R T
R.n bar = 5
|
module Text.Greek.SBLGNT.Jas where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.Script
open import Text.Greek.Script.Unicode
ÎÎÎΩÎÎÎ¥ : List (Word)
ÎÎÎΩÎÎÎ¥ =
word (ጞ ⷠά ⷠκ â· Ï â· Î² ⷠο â· Ï â· []) "Jas.1.1"
ⷠword (Ξ ⷠε ⷠο ⷠῊ ⷠ[]) "Jas.1.1"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.1"
â· word (κ â· Ï
â· Ï â· Î¯ ⷠο â· Ï
â· []) "Jas.1.1"
â· word (ጞ ⷠη â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.1"
â· word (Χ â· Ï â· Î¹ â· Ï â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.1"
â· word (ÎŽ ⷠο ⷠῊ â· âλ ⷠο â· Ï â· []) "Jas.1.1"
â· word (Ï â· Î± â· á¿ â· Ï â· []) "Jas.1.1"
â· word (ÎŽ â· Ï â· ÎŽ ⷠε ⷠκ ⷠα â· []) "Jas.1.1"
â· word (Ï â· Ï
â· âλ ⷠα â· á¿ â· Ï â· []) "Jas.1.1"
â· word (Ï â· Î± â· á¿ â· Ï â· []) "Jas.1.1"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.1.1"
â· word (Ï â· á¿ â· []) "Jas.1.1"
â· word (ÎŽ ⷠι ⷠα â· Ï â· Ï â· Î¿ â· Ï â· áŸ· â· []) "Jas.1.1"
â· word (Ï â· Î± ⷠί â· Ï â· Îµ ⷠι ⷠΜ â· []) "Jas.1.1"
â· word (Πⷠ៶ â· Ï â· Î± ⷠΜ â· []) "Jas.1.2"
â· word (Ï â· Î± â· Ï â· áœ° ⷠΜ â· []) "Jas.1.2"
â· word (ጡ ⷠγ ⷠή â· Ï â· Î± â· Ï â· Îž ⷠε â· []) "Jas.1.2"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.1.2"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.1.2"
â· word (áœ
â· Ï â· Î± ⷠΜ â· []) "Jas.1.2"
â· word (Ï â· Îµ ⷠι â· Ï â· Î± â· Ï â· ÎŒ ⷠο â· á¿ â· Ï â· []) "Jas.1.2"
â· word (Ï â· Îµ â· Ï â· Î¹ â· Ï â· Î â· Ï â· Î· â· Ï â· Îµ â· []) "Jas.1.2"
â· word (Ï â· Î¿ ⷠι ⷠκ ⷠί â· âλ ⷠο ⷠι â· Ï â· []) "Jas.1.2"
â· word (γ ⷠι ⷠΜ â· Ï â· Ï â· Îº ⷠο ⷠΜ â· Ï â· Îµ â· Ï â· []) "Jas.1.3"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.1.3"
â· word (Ï â· áœž â· []) "Jas.1.3"
ⷠword (Ύ ⷠο ⷠκ ⷠί ⷠΌ ⷠι ⷠο ⷠΜ ⷠ[]) "Jas.1.3"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.1.3"
â· word (Ï â· á¿ â· Ï â· []) "Jas.1.3"
â· word (Ï â· Î¯ â· Ï â· Ï â· Îµ â· Ï â· Ï â· []) "Jas.1.3"
â· word (κ ⷠα â· Ï â· Îµ â· Ï â· Î³ ⷠά ⷠζ ⷠε â· Ï â· Î± ⷠι â· []) "Jas.1.3"
â· word (áœ â· Ï â· Î¿ â· ÎŒ ⷠο ⷠΜ ⷠή ⷠΜ â· []) "Jas.1.3"
ⷠword (ጡ ⷠ[]) "Jas.1.4"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.1.4"
â· word (áœ â· Ï â· Î¿ â· ÎŒ ⷠο ⷠΜ ⷠᜎ â· []) "Jas.1.4"
â· word (áŒ â· Ï â· Î³ ⷠο ⷠΜ â· []) "Jas.1.4"
â· word (Ï â· Î â· âλ ⷠε ⷠι ⷠο ⷠΜ â· []) "Jas.1.4"
â· word (áŒ â· Ï â· Î â· Ï â· Ï â· []) "Jas.1.4"
ⷠword (ጵ ⷠΜ ⷠα ⷠ[]) "Jas.1.4"
â· word (ጊ â· Ï â· Îµ â· []) "Jas.1.4"
â· word (Ï â· Î â· âλ ⷠε ⷠι ⷠο ⷠι â· []) "Jas.1.4"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.4"
â· word (ᜠⷠâλ â· Ï â· Îº â· âλ ⷠη â· Ï â· Î¿ ⷠι â· []) "Jas.1.4"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.1.4"
ⷠword (Ό ⷠη ⷠΎ ⷠε ⷠΜ ⷠ᜶ ⷠ[]) "Jas.1.4"
â· word (âλ ⷠε ⷠι â· Ï â· Ï â· ÎŒ ⷠε ⷠΜ ⷠο ⷠι â· []) "Jas.1.4"
ⷠword (Πⷠጰ ⷠ[]) "Jas.1.5"
â· word (ÎŽ â· Î â· []) "Jas.1.5"
â· word (Ï â· Î¹ â· Ï â· []) "Jas.1.5"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.1.5"
â· word (âλ ⷠε ⷠί â· Ï â· Îµ â· Ï â· Î± ⷠι â· []) "Jas.1.5"
â· word (Ï â· Î¿ â· Ï â· Î¯ ⷠα â· Ï â· []) "Jas.1.5"
â· word (α ⷠጰ â· Ï â· Îµ ⷠί â· Ï â· Ï â· []) "Jas.1.5"
â· word (Ï â· Î± â· Ï â· áœ° â· []) "Jas.1.5"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.1.5"
â· word (ÎŽ ⷠι â· ÎŽ â· Ï â· Îœ â· Ï â· Î¿ â· Ï â· []) "Jas.1.5"
ⷠword (Ξ ⷠε ⷠο ⷠῊ ⷠ[]) "Jas.1.5"
â· word (Ï â· áŸ¶ â· Ï â· Î¹ ⷠΜ â· []) "Jas.1.5"
â· word (áŒ â· Ï â· âλ â· á¿¶ â· Ï â· []) "Jas.1.5"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.5"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.1.5"
â· word (ᜠⷠΜ ⷠε ⷠι â· ÎŽ ⷠί ⷠζ ⷠο ⷠΜ â· Ï â· Î¿ â· Ï â· []) "Jas.1.5"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.5"
â· word (ÎŽ ⷠο ⷠΞ ⷠή â· Ï â· Îµ â· Ï â· Î± ⷠι â· []) "Jas.1.5"
â· word (α â· áœ â· Ï â· á¿· â· []) "Jas.1.5"
â· word (α ⷠጰ â· Ï â· Îµ ⷠί â· Ï â· Ï â· []) "Jas.1.6"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.1.6"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.1.6"
â· word (Ï â· Î¯ â· Ï â· Ï â· Îµ ⷠι â· []) "Jas.1.6"
ⷠword (Ό ⷠη ⷠΎ ⷠᜲ ⷠΜ ⷠ[]) "Jas.1.6"
â· word (ÎŽ ⷠι ⷠα ⷠκ â· Ï â· Î¹ ⷠΜ â· Ï â· ÎŒ ⷠε ⷠΜ ⷠο â· Ï â· []) "Jas.1.6"
ⷠword (ᜠⷠ[]) "Jas.1.6"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.1.6"
â· word (ÎŽ ⷠι ⷠα ⷠκ â· Ï â· Î¹ ⷠΜ â· Ï â· ÎŒ ⷠε ⷠΜ ⷠο â· Ï â· []) "Jas.1.6"
ⷠword (ጠⷠο ⷠι ⷠκ ⷠε ⷠΜ ⷠ[]) "Jas.1.6"
â· word (κ â· âλ â· Ï â· ÎŽ â· Ï â· Îœ ⷠι â· []) "Jas.1.6"
â· word (Ξ ⷠα â· âλ ⷠά â· Ï â· Ï â· Î· â· Ï â· []) "Jas.1.6"
ⷠword (ጠⷠΜ ⷠε ⷠΌ ⷠι ⷠζ ⷠο ⷠΌ ⷠΠⷠΜ ⷠῳ ⷠ[]) "Jas.1.6"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.6"
â· word (á¿¥ ⷠι â· Ï â· Î¹ ⷠζ ⷠο â· ÎŒ ⷠΠⷠΜ ⷠῳ â· []) "Jas.1.6"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.1.7"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.1.7"
â· word (ο ⷠጰ â· Î â· Ï â· Îž â· Ï â· []) "Jas.1.7"
ⷠword (ᜠⷠ[]) "Jas.1.7"
â· word (ጠⷠΜ ⷠΞ â· Ï â· Ï â· Ï â· Î¿ â· Ï â· []) "Jas.1.7"
â· word (ጠⷠκ ⷠε ⷠῠⷠΜ ⷠο â· Ï â· []) "Jas.1.7"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.1.7"
â· word (âλ ⷠή â· ÎŒ â· Ï â· Îµ â· Ï â· Î± ⷠί â· []) "Jas.1.7"
â· word (Ï â· Î¹ â· []) "Jas.1.7"
â· word (Ï â· Î± â· Ï â· áœ° â· []) "Jas.1.7"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.1.7"
â· word (κ â· Ï
â· Ï â· Î¯ ⷠο â· Ï
â· []) "Jas.1.7"
â· word (ጠⷠΜ ⷠᜎ â· Ï â· []) "Jas.1.8"
â· word (ÎŽ ⷠί â· Ï â· Ï
â· Ï â· Î¿ â· Ï â· []) "Jas.1.8"
â· word (ጠⷠκ ⷠα â· Ï â· Î¬ â· Ï â· Ï â· Î± â· Ï â· Î¿ â· Ï â· []) "Jas.1.8"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.1.8"
â· word (Ï â· Î¬ â· Ï â· Î± ⷠι â· Ï â· []) "Jas.1.8"
â· word (Ï â· Î± â· á¿ â· Ï â· []) "Jas.1.8"
â· word (ᜠⷠΎ ⷠο â· á¿ â· Ï â· []) "Jas.1.8"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.8"
â· word (Πⷠα â· Ï
â· Ï â· Î¬ â· Ï â· Îž â· Ï â· []) "Jas.1.9"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.1.9"
ⷠword (ᜠⷠ[]) "Jas.1.9"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· áœž â· Ï â· []) "Jas.1.9"
ⷠword (ᜠⷠ[]) "Jas.1.9"
â· word (Ï â· Î± â· Ï â· Îµ ⷠι ⷠΜ ⷠ᜞ â· Ï â· []) "Jas.1.9"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.1.9"
â· word (Ï â· á¿· â· []) "Jas.1.9"
â· word (áœ â· Ï â· Îµ ⷠι â· []) "Jas.1.9"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.9"
ⷠword (ᜠⷠ[]) "Jas.1.10"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.1.10"
â· word (Ï â· âλ ⷠο â· Ï â· Ï â· Î¹ ⷠο â· Ï â· []) "Jas.1.10"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.1.10"
â· word (Ï â· á¿ â· []) "Jas.1.10"
â· word (Ï â· Î± â· Ï â· Îµ ⷠι ⷠΜ â· Ï â· Ï â· Îµ ⷠι â· []) "Jas.1.10"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.10"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.1.10"
â· word (ᜡ â· Ï â· []) "Jas.1.10"
â· word (ጠⷠΜ ⷠΞ ⷠο â· Ï â· []) "Jas.1.10"
â· word (Ï â· Ï â· Ï â· Ï â· Î¿ â· Ï
â· []) "Jas.1.10"
â· word (Ï â· Î± â· Ï â· Îµ â· âλ ⷠε â· Ï â· Ï â· Îµ â· Ï â· Î± ⷠι â· []) "Jas.1.10"
â· word (ጠⷠΜ â· Î â· Ï â· Îµ ⷠι â· âλ ⷠε ⷠΜ â· []) "Jas.1.11"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.1.11"
ⷠword (ᜠⷠ[]) "Jas.1.11"
â· word (ጥ â· âλ ⷠι ⷠο â· Ï â· []) "Jas.1.11"
â· word (Ï â· áœº ⷠΜ â· []) "Jas.1.11"
â· word (Ï â· á¿· â· []) "Jas.1.11"
â· word (κ ⷠα â· Ï â· Ï â· Ï â· Îœ ⷠι â· []) "Jas.1.11"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.11"
â· word (ጠⷠΟ ⷠή â· Ï â· Î± ⷠΜ ⷠε ⷠΜ â· []) "Jas.1.11"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.1.11"
â· word (Ï â· Ï â· Ï â· Ï â· Î¿ ⷠΜ â· []) "Jas.1.11"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.11"
â· word (Ï â· áœž â· []) "Jas.1.11"
â· word (ጠⷠΜ ⷠΞ ⷠο â· Ï â· []) "Jas.1.11"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.11"
â· word (ጠⷠΟ â· Î â· Ï â· Îµ â· Ï â· Îµ ⷠΜ â· []) "Jas.1.11"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.11"
ⷠword (ጡ ⷠ[]) "Jas.1.11"
â· word (ε â· áœ â· Ï â· Ï â· Î â· Ï â· Îµ ⷠι ⷠα â· []) "Jas.1.11"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.1.11"
â· word (Ï â· Ï â· Î¿ â· Ï â· Ï â· Ï â· Î¿ â· Ï
â· []) "Jas.1.11"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.11"
â· word (áŒ â· Ï â· Ï â· âλ ⷠε â· Ï â· Î¿ â· []) "Jas.1.11"
â· word (ο â· áœ â· Ï â· Ï â· Ï â· []) "Jas.1.11"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.11"
ⷠword (ᜠⷠ[]) "Jas.1.11"
â· word (Ï â· âλ ⷠο â· Ï â· Ï â· Î¹ ⷠο â· Ï â· []) "Jas.1.11"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.1.11"
â· word (Ï â· Î± â· á¿ â· Ï â· []) "Jas.1.11"
â· word (Ï â· Î¿ â· Ï â· Îµ ⷠί ⷠα ⷠι â· Ï â· []) "Jas.1.11"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.11"
â· word (ÎŒ ⷠα â· Ï â· Î± ⷠΜ ⷠΞ ⷠή â· Ï â· Îµ â· Ï â· Î± ⷠι â· []) "Jas.1.11"
â· word (Πⷠα ⷠκ ⷠά â· Ï â· Î¹ ⷠο â· Ï â· []) "Jas.1.12"
â· word (ጠⷠΜ ⷠᜎ â· Ï â· []) "Jas.1.12"
â· word (áœ â· Ï â· []) "Jas.1.12"
â· word (áœ â· Ï â· Î¿ â· ÎŒ ⷠΠⷠΜ ⷠε ⷠι â· []) "Jas.1.12"
â· word (Ï â· Îµ ⷠι â· Ï â· Î± â· Ï â· ÎŒ â· Ï â· Îœ â· []) "Jas.1.12"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.1.12"
â· word (ÎŽ â· Ï â· Îº ⷠι â· ÎŒ ⷠο â· Ï â· []) "Jas.1.12"
â· word (γ ⷠε ⷠΜ â· Ï â· ÎŒ ⷠε ⷠΜ ⷠο â· Ï â· []) "Jas.1.12"
â· word (âλ ⷠή â· ÎŒ â· Ï â· Îµ â· Ï â· Î± ⷠι â· []) "Jas.1.12"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.1.12"
â· word (Ï â· Ï â· Î â· Ï â· Î± ⷠΜ ⷠο ⷠΜ â· []) "Jas.1.12"
â· word (Ï â· á¿ â· Ï â· []) "Jas.1.12"
â· word (ζ â· Ï â· á¿ â· Ï â· []) "Jas.1.12"
ⷠword (ᜠⷠΜ ⷠ[]) "Jas.1.12"
â· word (áŒ â· Ï â· Î· ⷠγ ⷠγ ⷠε ⷠί â· âλ ⷠα â· Ï â· Î¿ â· []) "Jas.1.12"
â· word (Ï â· Î¿ â· á¿ â· Ï â· []) "Jas.1.12"
â· word (ጠⷠγ ⷠα â· Ï â· á¿¶ â· Ï â· Î¹ ⷠΜ â· []) "Jas.1.12"
â· word (α â· áœ â· Ï â· Ï â· Îœ â· []) "Jas.1.12"
â· word (ÎŒ ⷠη â· ÎŽ ⷠε ⷠ᜶ â· Ï â· []) "Jas.1.13"
â· word (Ï â· Îµ ⷠι â· Ï â· Î± ⷠζ â· Ï â· ÎŒ ⷠε ⷠΜ ⷠο â· Ï â· []) "Jas.1.13"
â· word (âλ ⷠε ⷠγ â· Î â· Ï â· Ï â· []) "Jas.1.13"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.1.13"
â· word (áŒ â· Ï â· áœž â· []) "Jas.1.13"
ⷠword (Ξ ⷠε ⷠο ⷠῊ ⷠ[]) "Jas.1.13"
â· word (Ï â· Îµ ⷠι â· Ï â· Î¬ ⷠζ ⷠο â· ÎŒ ⷠα ⷠι â· []) "Jas.1.13"
ⷠword (ᜠⷠ[]) "Jas.1.13"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.1.13"
â· word (Ξ ⷠε ⷠ᜞ â· Ï â· []) "Jas.1.13"
â· word (áŒ â· Ï â· Îµ ⷠί â· Ï â· Î± â· Ï â· Ï â· Ï â· Ï â· []) "Jas.1.13"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.1.13"
ⷠword (κ ⷠα ⷠκ ⷠῶ ⷠΜ ⷠ[]) "Jas.1.13"
â· word (Ï â· Îµ ⷠι â· Ï â· Î¬ ⷠζ ⷠε ⷠι â· []) "Jas.1.13"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.1.13"
â· word (α â· áœ â· Ï â· áœž â· Ï â· []) "Jas.1.13"
ⷠword (ο ⷠᜠⷠΎ ⷠΠⷠΜ ⷠα ⷠ[]) "Jas.1.13"
â· word (ጠⷠκ ⷠα â· Ï â· Ï â· Î¿ â· Ï â· []) "Jas.1.14"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.1.14"
â· word (Ï â· Îµ ⷠι â· Ï â· Î¬ ⷠζ ⷠε â· Ï â· Î± ⷠι â· []) "Jas.1.14"
â· word (áœ â· Ï â· áœž â· []) "Jas.1.14"
â· word (Ï â· á¿ â· Ï â· []) "Jas.1.14"
â· word (ጰ â· ÎŽ ⷠί ⷠα â· Ï â· []) "Jas.1.14"
â· word (áŒ â· Ï â· Î¹ ⷠΞ â· Ï
â· ÎŒ ⷠί ⷠα â· Ï â· []) "Jas.1.14"
â· word (ጠⷠΟ ⷠε â· âλ ⷠκ â· Ï â· ÎŒ ⷠε ⷠΜ ⷠο â· Ï â· []) "Jas.1.14"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.14"
â· word (ÎŽ ⷠε â· âλ ⷠε ⷠα ⷠζ â· Ï â· ÎŒ ⷠε ⷠΜ ⷠο â· Ï â· []) "Jas.1.14"
â· word (ε ⷠጶ â· Ï â· Î± â· []) "Jas.1.15"
ⷠword (ጡ ⷠ[]) "Jas.1.15"
â· word (áŒ â· Ï â· Î¹ ⷠΞ â· Ï
ⷠΌ ⷠί ⷠα ⷠ[]) "Jas.1.15"
â· word (Ï â· Ï
â· âλ â· âλ ⷠα ⷠβ ⷠο ⷠῊ â· Ï â· Î± â· []) "Jas.1.15"
â· word (Ï â· Î¯ ⷠκ â· Ï â· Îµ ⷠι â· []) "Jas.1.15"
â· word (ጠⷠΌ ⷠα â· Ï â· Ï â· Î¯ ⷠα ⷠΜ â· []) "Jas.1.15"
ⷠword (ጡ ⷠ[]) "Jas.1.15"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.1.15"
â· word (ጠⷠΌ ⷠα â· Ï â· Ï â· Î¯ ⷠα â· []) "Jas.1.15"
â· word (áŒ â· Ï â· Î¿ â· Ï â· Îµ â· âλ ⷠε â· Ï â· Îž ⷠε â· á¿ â· Ï â· Î± â· []) "Jas.1.15"
â· word (áŒ â· Ï â· Î¿ ⷠκ â· Ï â· Îµ ⷠι â· []) "Jas.1.15"
â· word (Ξ ⷠά ⷠΜ ⷠα â· Ï â· Î¿ ⷠΜ â· []) "Jas.1.15"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.1.16"
â· word (Ï â· âλ ⷠα ⷠΜ ⷠ៶ â· Ï â· Îž ⷠε â· []) "Jas.1.16"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.1.16"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.1.16"
â· word (ጠⷠγ ⷠα â· Ï â· Î· â· Ï â· Î¿ ⷠί â· []) "Jas.1.16"
â· word (Πⷠ៶ â· Ï â· Î± â· []) "Jas.1.17"
â· word (ÎŽ â· Ï â· Ï â· Î¹ â· Ï â· []) "Jas.1.17"
ⷠword (ጠⷠγ ⷠα ⷠΞ ⷠᜎ ⷠ[]) "Jas.1.17"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.17"
â· word (Ï â· áŸ¶ ⷠΜ â· []) "Jas.1.17"
â· word (ÎŽ â· Ï â· Ï â· Î· â· ÎŒ ⷠα â· []) "Jas.1.17"
â· word (Ï â· Î â· âλ ⷠε ⷠι ⷠο ⷠΜ â· []) "Jas.1.17"
â· word (ጠⷠΜ â· Ï â· Îž ⷠΠⷠΜ â· []) "Jas.1.17"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.1.17"
â· word (κ ⷠα â· Ï â· Î± ⷠβ ⷠα ⷠῠⷠΜ ⷠο ⷠΜ â· []) "Jas.1.17"
â· word (áŒ â· Ï â· áœž â· []) "Jas.1.17"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.1.17"
â· word (Ï â· Î± â· Ï â· Ï â· áœž â· Ï â· []) "Jas.1.17"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.1.17"
â· word (Ï â· Ï â· Ï â· Ï â· Îœ â· []) "Jas.1.17"
â· word (Ï â· Î± â· Ï â· []) "Jas.1.17"
ⷠword (៧ ⷠ[]) "Jas.1.17"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.1.17"
ⷠword (ጠⷠΜ ⷠι ⷠ[]) "Jas.1.17"
â· word (Ï â· Î± â· Ï â· Î± â· âλ â· âλ ⷠα ⷠγ ⷠᜎ â· []) "Jas.1.17"
ⷠword (ጢ ⷠ[]) "Jas.1.17"
â· word (Ï â· Ï â· Î¿ â· Ï â· á¿ â· Ï â· []) "Jas.1.17"
â· word (áŒ â· Ï â· Î¿ â· Ï â· Îº ⷠί ⷠα â· Ï â· ÎŒ ⷠα â· []) "Jas.1.17"
â· word (β ⷠο â· Ï
â· âλ ⷠη ⷠΞ ⷠε ⷠ᜶ â· Ï â· []) "Jas.1.18"
â· word (áŒ â· Ï â· Îµ ⷠκ â· Ï â· Î· â· Ï â· Îµ ⷠΜ â· []) "Jas.1.18"
â· word (ጡ â· ÎŒ ⷠ៶ â· Ï â· []) "Jas.1.18"
â· word (âλ â· Ï â· Î³ ⷠῳ â· []) "Jas.1.18"
â· word (ጠⷠâλ ⷠη ⷠΞ ⷠε ⷠί ⷠα â· Ï â· []) "Jas.1.18"
â· word (ε ⷠጰ â· Ï â· []) "Jas.1.18"
â· word (Ï â· áœž â· []) "Jas.1.18"
ⷠword (ε ⷠጶ ⷠΜ ⷠα ⷠι ⷠ[]) "Jas.1.18"
â· word (ጡ â· ÎŒ ⷠ៶ â· Ï â· []) "Jas.1.18"
â· word (áŒ â· Ï â· Î± â· Ï â· Ï â· Î® ⷠΜ â· []) "Jas.1.18"
â· word (Ï â· Î¹ ⷠΜ ⷠα â· []) "Jas.1.18"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.1.18"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.18"
â· word (κ â· Ï â· Î¹ â· Ï â· ÎŒ ⷠά â· Ï â· Ï â· Îœ â· []) "Jas.1.18"
â· word (ጌ â· Ï â· Ï â· Îµ â· []) "Jas.1.19"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.1.19"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.1.19"
â· word (ጠⷠγ ⷠα â· Ï â· Î· â· Ï â· Î¿ ⷠί â· []) "Jas.1.19"
â· word (áŒ â· Ï â· Ï â· Ï â· []) "Jas.1.19"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.1.19"
â· word (Ï â· áŸ¶ â· Ï â· []) "Jas.1.19"
â· word (ጠⷠΜ ⷠΞ â· Ï â· Ï â· Ï â· Î¿ â· Ï â· []) "Jas.1.19"
â· word (Ï â· Î± â· Ï â· áœº â· Ï â· []) "Jas.1.19"
â· word (ε ⷠጰ â· Ï â· []) "Jas.1.19"
â· word (Ï â· áœž â· []) "Jas.1.19"
â· word (ጠⷠκ ⷠο ⷠῊ â· Ï â· Î± ⷠι â· []) "Jas.1.19"
â· word (β â· Ï â· Î± â· ÎŽ ⷠ᜺ â· Ï â· []) "Jas.1.19"
â· word (ε ⷠጰ â· Ï â· []) "Jas.1.19"
â· word (Ï â· áœž â· []) "Jas.1.19"
â· word (âλ ⷠα â· âλ â· á¿ â· Ï â· Î± ⷠι â· []) "Jas.1.19"
â· word (β â· Ï â· Î± â· ÎŽ ⷠ᜺ â· Ï â· []) "Jas.1.19"
â· word (ε ⷠጰ â· Ï â· []) "Jas.1.19"
â· word (áœ â· Ï â· Î³ ⷠή ⷠΜ â· []) "Jas.1.19"
â· word (áœ â· Ï â· Î³ ⷠᜎ â· []) "Jas.1.20"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.1.20"
â· word (ጠⷠΜ â· ÎŽ â· Ï â· áœž â· Ï â· []) "Jas.1.20"
â· word (ÎŽ ⷠι ⷠκ ⷠα ⷠι ⷠο â· Ï â· Ï â· Îœ ⷠη ⷠΜ â· []) "Jas.1.20"
ⷠword (Ξ ⷠε ⷠο ⷠῊ ⷠ[]) "Jas.1.20"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.1.20"
â· word (áŒ â· Ï â· Î³ ⷠά ⷠζ ⷠε â· Ï â· Î± ⷠι â· []) "Jas.1.20"
ⷠword (Ύ ⷠι ⷠ᜞ ⷠ[]) "Jas.1.21"
â· word (áŒ â· Ï â· Î¿ ⷠΞ â· Î â· ÎŒ ⷠε ⷠΜ ⷠο ⷠι â· []) "Jas.1.21"
â· word (Ï â· áŸ¶ â· Ï â· Î± ⷠΜ â· []) "Jas.1.21"
â· word (á¿¥ â· Ï
â· Ï â· Î± â· Ï â· Î¯ ⷠα ⷠΜ â· []) "Jas.1.21"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.21"
â· word (Ï â· Îµ â· Ï â· Î¹ â· Ï â· Ï â· Îµ ⷠί ⷠα ⷠΜ â· []) "Jas.1.21"
â· word (κ ⷠα ⷠκ ⷠί ⷠα â· Ï â· []) "Jas.1.21"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.1.21"
â· word (Ï â· Ï â· Î± ⷠΰ â· Ï â· Î· â· Ï â· Î¹ â· []) "Jas.1.21"
â· word (ÎŽ ⷠΠⷠΟ ⷠα â· Ï â· Îž ⷠε â· []) "Jas.1.21"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.1.21"
â· word (ጠⷠΌ â· Ï â· Ï
â· Ï â· Î¿ ⷠΜ â· []) "Jas.1.21"
â· word (âλ â· Ï â· Î³ ⷠο ⷠΜ â· []) "Jas.1.21"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.1.21"
â· word (ÎŽ â· Ï
ⷠΜ ⷠά ⷠΌ ⷠε ⷠΜ ⷠο ⷠΜ ⷠ[]) "Jas.1.21"
â· word (Ï â· á¿¶ â· Ï â· Î± ⷠι â· []) "Jas.1.21"
â· word (Ï â· áœ° â· Ï â· []) "Jas.1.21"
â· word (Ï â· Ï
â· Ï â· áœ° â· Ï â· []) "Jas.1.21"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.1.21"
â· word (Πⷠί ⷠΜ ⷠε â· Ï â· Îž ⷠε â· []) "Jas.1.22"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.1.22"
â· word (Ï â· Î¿ ⷠι ⷠη â· Ï â· Î± ⷠ᜶ â· []) "Jas.1.22"
â· word (âλ â· Ï â· Î³ ⷠο â· Ï
â· []) "Jas.1.22"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.22"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.1.22"
â· word (ጠⷠκ â· Ï â· Î¿ ⷠα â· Ï â· Î± ⷠ᜶ â· []) "Jas.1.22"
â· word (ÎŒ â· Ï â· Îœ ⷠο ⷠΜ â· []) "Jas.1.22"
â· word (Ï â· Î± â· Ï â· Î± â· âλ ⷠο ⷠγ ⷠι ⷠζ â· Ï â· ÎŒ ⷠε ⷠΜ ⷠο ⷠι â· []) "Jas.1.22"
â· word (ጠⷠα â· Ï
â· Ï â· Î¿ â· Ï â· Ï â· []) "Jas.1.22"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.1.23"
ⷠword (ε ⷠጎ ⷠ[]) "Jas.1.23"
â· word (Ï â· Î¹ â· Ï â· []) "Jas.1.23"
â· word (ጠⷠκ â· Ï â· Î¿ ⷠα â· Ï â· áœŽ â· Ï â· []) "Jas.1.23"
â· word (âλ â· Ï â· Î³ ⷠο â· Ï
â· []) "Jas.1.23"
â· word (áŒ â· Ï â· Ï â· áœ¶ ⷠΜ â· []) "Jas.1.23"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.23"
ⷠword (ο ⷠᜠⷠ[]) "Jas.1.23"
â· word (Ï â· Î¿ ⷠι ⷠη â· Ï â· Î® â· Ï â· []) "Jas.1.23"
â· word (ο â· áœ â· Ï â· Î¿ â· Ï â· []) "Jas.1.23"
ⷠword (ጠⷠο ⷠι ⷠκ ⷠε ⷠΜ ⷠ[]) "Jas.1.23"
â· word (ጠⷠΜ â· ÎŽ â· Ï â· áœ¶ â· []) "Jas.1.23"
â· word (κ ⷠα â· Ï â· Î± ⷠΜ ⷠο ⷠο ⷠῊ ⷠΜ â· Ï â· Î¹ â· []) "Jas.1.23"
â· word (Ï â· áœž â· []) "Jas.1.23"
â· word (Ï â· Ï â· Ï â· Ï â· Ï â· Ï â· Î¿ ⷠΜ â· []) "Jas.1.23"
â· word (Ï â· á¿ â· Ï â· []) "Jas.1.23"
â· word (γ ⷠε ⷠΜ â· Î â· Ï â· Îµ â· Ï â· Ï â· []) "Jas.1.23"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.23"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.1.23"
â· word (áŒ â· Ï â· Ï â· Ï â· Ï â· Ï â· á¿³ â· []) "Jas.1.23"
â· word (κ ⷠα â· Ï â· Îµ ⷠΜ â· Ï â· Î· â· Ï â· Îµ ⷠΜ â· []) "Jas.1.24"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.1.24"
â· word (ጠⷠα â· Ï
â· Ï â· áœž ⷠΜ â· []) "Jas.1.24"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.24"
â· word (áŒ â· Ï â· Îµ â· âλ ⷠή â· âλ â· Ï
ⷠΞ ⷠε ⷠΜ ⷠ[]) "Jas.1.24"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.24"
â· word (ε ⷠᜠⷠΞ â· Î â· Ï â· Ï â· []) "Jas.1.24"
â· word (áŒ â· Ï â· Îµ â· âλ ⷠά ⷠΞ ⷠε â· Ï â· Î¿ â· []) "Jas.1.24"
â· word (áœ â· Ï â· Î¿ ⷠῠⷠο â· Ï â· []) "Jas.1.24"
ⷠword (ጊ ⷠΜ ⷠ[]) "Jas.1.24"
ⷠword (ᜠⷠ[]) "Jas.1.25"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.1.25"
â· word (Ï â· Î± â· Ï â· Î± ⷠκ â· Ï â· Ï â· Î± â· Ï â· []) "Jas.1.25"
â· word (ε ⷠጰ â· Ï â· []) "Jas.1.25"
â· word (Μ â· Ï â· ÎŒ ⷠο ⷠΜ â· []) "Jas.1.25"
â· word (Ï â· Î â· âλ ⷠε ⷠι ⷠο ⷠΜ â· []) "Jas.1.25"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.1.25"
â· word (Ï â· á¿ â· Ï â· []) "Jas.1.25"
â· word (ጠⷠâλ ⷠε â· Ï
ⷠΞ ⷠε â· Ï â· Î¯ ⷠα â· Ï â· []) "Jas.1.25"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.25"
â· word (Ï â· Î± â· Ï â· Î± â· ÎŒ ⷠε ⷠί ⷠΜ ⷠα â· Ï â· []) "Jas.1.25"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.1.25"
â· word (ጠⷠκ â· Ï â· Î¿ ⷠα â· Ï â· áœŽ â· Ï â· []) "Jas.1.25"
â· word (áŒ â· Ï â· Î¹ â· âλ ⷠη â· Ï â· ÎŒ ⷠο ⷠΜ â· á¿ â· Ï â· []) "Jas.1.25"
â· word (γ ⷠε ⷠΜ â· Ï â· ÎŒ ⷠε ⷠΜ ⷠο â· Ï â· []) "Jas.1.25"
â· word (ጠⷠâλ â· âλ ⷠᜰ â· []) "Jas.1.25"
â· word (Ï â· Î¿ ⷠι ⷠη â· Ï â· áœŽ â· Ï â· []) "Jas.1.25"
â· word (áŒ â· Ï â· Î³ ⷠο â· Ï
â· []) "Jas.1.25"
â· word (ο â· áœ â· Ï â· Î¿ â· Ï â· []) "Jas.1.25"
â· word (ÎŒ ⷠα ⷠκ ⷠά â· Ï â· Î¹ ⷠο â· Ï â· []) "Jas.1.25"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.1.25"
â· word (Ï â· á¿ â· []) "Jas.1.25"
â· word (Ï â· Î¿ ⷠι ⷠή â· Ï â· Îµ ⷠι â· []) "Jas.1.25"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.25"
â· word (áŒ â· Ï â· Ï â· Î± ⷠι â· []) "Jas.1.25"
ⷠword (Πⷠጎ ⷠ[]) "Jas.1.26"
â· word (Ï â· Î¹ â· Ï â· []) "Jas.1.26"
ⷠword (Ύ ⷠο ⷠκ ⷠε ⷠῠⷠ[]) "Jas.1.26"
â· word (Ξ â· Ï â· Î· â· Ï â· Îº ⷠ᜞ â· Ï â· []) "Jas.1.26"
ⷠword (ε ⷠጶ ⷠΜ ⷠα ⷠι ⷠ[]) "Jas.1.26"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.1.26"
â· word (Ï â· Î± â· âλ ⷠι ⷠΜ ⷠα ⷠγ â· Ï â· Î³ â· á¿¶ ⷠΜ â· []) "Jas.1.26"
â· word (γ â· âλ â· á¿¶ â· Ï â· Ï â· Î± ⷠΜ â· []) "Jas.1.26"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.26"
â· word (ጠⷠâλ â· âλ ⷠᜰ â· []) "Jas.1.26"
â· word (áŒ â· Ï â· Î± â· Ï â· á¿¶ ⷠΜ â· []) "Jas.1.26"
â· word (κ ⷠα â· Ï â· ÎŽ ⷠί ⷠα ⷠΜ â· []) "Jas.1.26"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.1.26"
â· word (Ï â· Î¿ â· Ï â· Ï â· Î¿ â· Ï
â· []) "Jas.1.26"
â· word (ÎŒ ⷠά â· Ï â· Î± ⷠι ⷠο â· Ï â· []) "Jas.1.26"
ⷠword (ጡ ⷠ[]) "Jas.1.26"
â· word (Ξ â· Ï â· Î· â· Ï â· Îº ⷠε ⷠί ⷠα â· []) "Jas.1.26"
â· word (Ξ â· Ï â· Î· â· Ï â· Îº ⷠε ⷠί ⷠα â· []) "Jas.1.27"
â· word (κ ⷠα ⷠΞ ⷠα â· Ï â· áœ° â· []) "Jas.1.27"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.27"
â· word (ጠⷠΌ ⷠί ⷠα ⷠΜ â· Ï â· Î¿ â· Ï â· []) "Jas.1.27"
â· word (Ï â· Î± â· Ï â· áœ° â· []) "Jas.1.27"
â· word (Ï â· á¿· â· []) "Jas.1.27"
ⷠword (Ξ ⷠε ⷠῷ ⷠ[]) "Jas.1.27"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.27"
â· word (Ï â· Î± â· Ï â· Ï â· áœ¶ â· []) "Jas.1.27"
â· word (α â· áœ â· Ï â· Î· â· []) "Jas.1.27"
â· word (áŒ â· Ï â· Ï â· Î¯ ⷠΜ â· []) "Jas.1.27"
â· word (áŒ â· Ï â· Î¹ â· Ï â· Îº â· Î â· Ï â· Ï â· Îµ â· Ï â· Îž ⷠα ⷠι â· []) "Jas.1.27"
â· word (áœ â· Ï â· Ï â· Î± ⷠΜ ⷠο ⷠ᜺ â· Ï â· []) "Jas.1.27"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.1.27"
â· word (Ï â· Î® â· Ï â· Î± â· Ï â· []) "Jas.1.27"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.1.27"
â· word (Ï â· á¿ â· []) "Jas.1.27"
â· word (Ξ â· âλ ⷠί â· Ï â· Îµ ⷠι â· []) "Jas.1.27"
â· word (α â· áœ â· Ï â· á¿¶ ⷠΜ â· []) "Jas.1.27"
â· word (áŒ â· Ï â· Ï â· Î¹ â· âλ ⷠο ⷠΜ â· []) "Jas.1.27"
â· word (ጠⷠα â· Ï
â· Ï â· áœž ⷠΜ â· []) "Jas.1.27"
â· word (Ï â· Î· â· Ï â· Îµ ⷠῠⷠΜ â· []) "Jas.1.27"
â· word (áŒ â· Ï â· áœž â· []) "Jas.1.27"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.1.27"
â· word (κ â· Ï â· Ï â· ÎŒ ⷠο â· Ï
â· []) "Jas.1.27"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.2.1"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.2.1"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.2.1"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.2.1"
â· word (Ï â· Ï â· Î¿ â· Ï â· Ï â· Ï â· Î¿ â· âλ ⷠη â· ÎŒ â· Ï â· Î¯ ⷠα ⷠι â· Ï â· []) "Jas.2.1"
â· word (áŒ â· Ï â· Îµ â· Ï â· Îµ â· []) "Jas.2.1"
â· word (Ï â· áœŽ ⷠΜ â· []) "Jas.2.1"
â· word (Ï â· Î¯ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.1"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.2.1"
â· word (κ â· Ï
â· Ï â· Î¯ ⷠο â· Ï
â· []) "Jas.2.1"
ⷠword (ጡ ⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.2.1"
â· word (ጞ ⷠη â· Ï â· Î¿ ⷠῊ â· []) "Jas.2.1"
â· word (Χ â· Ï â· Î¹ â· Ï â· Ï â· Î¿ ⷠῊ â· []) "Jas.2.1"
â· word (Ï â· á¿ â· Ï â· []) "Jas.2.1"
â· word (ÎŽ â· Ï â· ÎŸ ⷠη â· Ï â· []) "Jas.2.1"
ⷠword (ጠⷠᜰ ⷠΜ ⷠ[]) "Jas.2.2"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.2.2"
â· word (ε ⷠጰ â· Ï â· Î â· âλ ⷠΞ â· á¿ â· []) "Jas.2.2"
â· word (ε ⷠጰ â· Ï â· []) "Jas.2.2"
â· word (Ï â· Ï
ⷠΜ ⷠα ⷠγ â· Ï â· Î³ ⷠᜎ ⷠΜ â· []) "Jas.2.2"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.2.2"
â· word (ጠⷠΜ ⷠᜎ â· Ï â· []) "Jas.2.2"
â· word (Ï â· Ï â· Ï
â· Ï â· Î¿ â· ÎŽ ⷠα ⷠκ â· Ï â· Ï â· âλ ⷠι ⷠο â· Ï â· []) "Jas.2.2"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.2.2"
â· word (áŒ â· Ï â· Îž â· á¿ â· Ï â· Î¹ â· []) "Jas.2.2"
â· word (âλ ⷠα â· ÎŒ â· Ï â· Ï â· áŸ· â· []) "Jas.2.2"
â· word (ε ⷠጰ â· Ï â· Î â· âλ ⷠΞ â· á¿ â· []) "Jas.2.2"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.2.2"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.2"
â· word (Ï â· Ï â· Ï â· Ï â· áœž â· Ï â· []) "Jas.2.2"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.2.2"
â· word (á¿¥ â· Ï
â· Ï â· Î± â· Ï â· áŸ· â· []) "Jas.2.2"
â· word (áŒ â· Ï â· Îž â· á¿ â· Ï â· Î¹ â· []) "Jas.2.2"
â· word (áŒ â· Ï â· Î¹ ⷠβ â· âλ â· Î â· Ï â· Î· â· Ï â· Îµ â· []) "Jas.2.3"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.2.3"
â· word (áŒ â· Ï â· áœ¶ â· []) "Jas.2.3"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.2.3"
â· word (Ï â· Î¿ â· Ï â· Î¿ ⷠῊ ⷠΜ â· Ï â· Î± â· []) "Jas.2.3"
â· word (Ï â· áœŽ ⷠΜ â· []) "Jas.2.3"
â· word (áŒ â· Ï â· Îž â· á¿ â· Ï â· Î± â· []) "Jas.2.3"
â· word (Ï â· áœŽ ⷠΜ â· []) "Jas.2.3"
â· word (âλ ⷠα â· ÎŒ â· Ï â· Ï â· áœ° ⷠΜ â· []) "Jas.2.3"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.3"
â· word (ε ⷠጎ â· Ï â· Î· â· Ï â· Îµ â· []) "Jas.2.3"
ⷠword (Σ ⷠ᜺ ⷠ[]) "Jas.2.3"
â· word (κ ⷠά ⷠΞ ⷠο â· Ï
â· []) "Jas.2.3"
ⷠword (ᜧ ⷠΎ ⷠε ⷠ[]) "Jas.2.3"
â· word (κ ⷠα â· âλ â· á¿¶ â· Ï â· []) "Jas.2.3"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.3"
â· word (Ï â· á¿· â· []) "Jas.2.3"
â· word (Ï â· Ï â· Ï â· Ï â· á¿· â· []) "Jas.2.3"
â· word (ε ⷠጎ â· Ï â· Î· â· Ï â· Îµ â· []) "Jas.2.3"
ⷠword (Σ ⷠ᜺ ⷠ[]) "Jas.2.3"
â· word (Ï â· Ï â· á¿ â· Îž ⷠι â· []) "Jas.2.3"
ⷠword (ጢ ⷠ[]) "Jas.2.3"
â· word (κ ⷠά ⷠΞ ⷠο â· Ï
â· []) "Jas.2.3"
ⷠword (ጠⷠκ ⷠε ⷠῠⷠ[]) "Jas.2.3"
â· word (áœ â· Ï â· áœž â· []) "Jas.2.3"
â· word (Ï â· áœž â· []) "Jas.2.3"
â· word (áœ â· Ï â· Î¿ â· Ï â· Ï â· ÎŽ ⷠι â· Ï â· Îœ â· []) "Jas.2.3"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.2.3"
ⷠword (ο ⷠᜠⷠ[]) "Jas.2.4"
â· word (ÎŽ ⷠι ⷠε ⷠκ â· Ï â· Î¯ ⷠΞ ⷠη â· Ï â· Îµ â· []) "Jas.2.4"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.2.4"
â· word (ጠⷠα â· Ï
â· Ï â· Î¿ â· á¿ â· Ï â· []) "Jas.2.4"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.4"
â· word (ጠⷠγ ⷠΠⷠΜ ⷠε â· Ï â· Îž ⷠε â· []) "Jas.2.4"
â· word (κ â· Ï â· Î¹ â· Ï â· Î± ⷠ᜶ â· []) "Jas.2.4"
â· word (ÎŽ ⷠι ⷠα â· âλ ⷠο ⷠγ ⷠι â· Ï â· ÎŒ â· á¿¶ ⷠΜ â· []) "Jas.2.4"
â· word (Ï â· Î¿ ⷠΜ ⷠη â· Ï â· á¿¶ ⷠΜ â· []) "Jas.2.4"
â· word (ጠⷠκ ⷠο â· Ï â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.2.5"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.2.5"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.2.5"
â· word (ጠⷠγ ⷠα â· Ï â· Î· â· Ï â· Î¿ ⷠί â· []) "Jas.2.5"
â· word (ο â· áœ â· Ï â· []) "Jas.2.5"
ⷠword (ᜠⷠ[]) "Jas.2.5"
â· word (Ξ ⷠε ⷠ᜞ â· Ï â· []) "Jas.2.5"
â· word (ጠⷠΟ ⷠε â· âλ ⷠΠⷠΟ ⷠα â· Ï â· Î¿ â· []) "Jas.2.5"
â· word (Ï â· Î¿ ⷠ᜺ â· Ï â· []) "Jas.2.5"
â· word (Ï â· Ï â· Ï â· Ï â· Î¿ ⷠ᜺ â· Ï â· []) "Jas.2.5"
â· word (Ï â· á¿· â· []) "Jas.2.5"
â· word (κ â· Ï â· Ï â· ÎŒ ⷠῳ â· []) "Jas.2.5"
â· word (Ï â· âλ ⷠο â· Ï
â· Ï â· Î¯ ⷠο â· Ï
â· Ï â· []) "Jas.2.5"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.2.5"
â· word (Ï â· Î¯ â· Ï â· Ï â· Îµ ⷠι â· []) "Jas.2.5"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.5"
â· word (κ â· âλ ⷠη â· Ï â· Î¿ ⷠΜ â· Ï â· ÎŒ ⷠο â· Ï
â· Ï â· []) "Jas.2.5"
â· word (Ï â· á¿ â· Ï â· []) "Jas.2.5"
â· word (β ⷠα â· Ï â· Î¹ â· âλ ⷠε ⷠί ⷠα â· Ï â· []) "Jas.2.5"
â· word (ጧ â· Ï â· []) "Jas.2.5"
â· word (áŒ â· Ï â· Î· ⷠγ ⷠγ ⷠε ⷠί â· âλ ⷠα â· Ï â· Î¿ â· []) "Jas.2.5"
â· word (Ï â· Î¿ â· á¿ â· Ï â· []) "Jas.2.5"
â· word (ጠⷠγ ⷠα â· Ï â· á¿¶ â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.5"
â· word (α â· áœ â· Ï â· Ï â· Îœ â· []) "Jas.2.5"
â· word (ᜠⷠΌ ⷠε â· á¿ â· Ï â· []) "Jas.2.6"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.2.6"
â· word (áŒ â· Ï â· Î¹ â· ÎŒ ⷠά â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.2.6"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.2.6"
â· word (Ï â· Ï â· Ï â· Ï â· Ï â· Îœ â· []) "Jas.2.6"
â· word (ο â· áœ â· Ï â· []) "Jas.2.6"
ⷠword (ο ⷠጱ ⷠ[]) "Jas.2.6"
â· word (Ï â· âλ ⷠο â· Ï â· Ï â· Î¹ ⷠο ⷠι â· []) "Jas.2.6"
â· word (κ ⷠα â· Ï â· Î± â· ÎŽ â· Ï
ⷠΜ ⷠα â· Ï â· Ï â· Îµ â· Ï â· Î¿ â· Ï
â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.6"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.2.6"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.6"
â· word (α â· áœ â· Ï â· Î¿ ⷠ᜶ â· []) "Jas.2.6"
â· word (ጠⷠâλ ⷠκ ⷠο â· Ï
â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.6"
â· word (ᜠⷠΌ ⷠ៶ â· Ï â· []) "Jas.2.6"
â· word (ε ⷠጰ â· Ï â· []) "Jas.2.6"
â· word (κ â· Ï â· Î¹ â· Ï â· Î® â· Ï â· Î¹ ⷠα â· []) "Jas.2.6"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.2.7"
â· word (α â· áœ â· Ï â· Î¿ ⷠ᜶ â· []) "Jas.2.7"
â· word (β â· âλ ⷠα â· Ï â· Ï â· Î· â· ÎŒ ⷠο ⷠῊ â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.7"
â· word (Ï â· áœž â· []) "Jas.2.7"
â· word (κ ⷠα â· âλ ⷠ᜞ ⷠΜ â· []) "Jas.2.7"
ⷠword (ᜠⷠΜ ⷠο ⷠΌ ⷠα ⷠ[]) "Jas.2.7"
â· word (Ï â· áœž â· []) "Jas.2.7"
â· word (áŒ â· Ï â· Î¹ ⷠκ â· âλ ⷠη ⷠΞ ⷠᜲ ⷠΜ â· []) "Jas.2.7"
â· word (áŒ â· Ï â· []) "Jas.2.7"
â· word (ᜠⷠΌ ⷠ៶ â· Ï â· []) "Jas.2.7"
ⷠword (Πⷠጰ ⷠ[]) "Jas.2.8"
â· word (ÎŒ ⷠΠⷠΜ â· Ï â· Î¿ ⷠι â· []) "Jas.2.8"
â· word (Μ â· Ï â· ÎŒ ⷠο ⷠΜ â· []) "Jas.2.8"
â· word (Ï â· Îµ â· âλ ⷠε â· á¿ â· Ï â· Îµ â· []) "Jas.2.8"
â· word (β ⷠα â· Ï â· Î¹ â· âλ ⷠι ⷠκ ⷠ᜞ ⷠΜ â· []) "Jas.2.8"
â· word (κ ⷠα â· Ï â· áœ° â· []) "Jas.2.8"
â· word (Ï â· áœŽ ⷠΜ â· []) "Jas.2.8"
â· word (γ â· Ï â· Î± â· Ï â· Î® ⷠΜ â· []) "Jas.2.8"
â· word (ጠⷠγ ⷠα â· Ï â· Î® â· Ï â· Îµ ⷠι â· Ï â· []) "Jas.2.8"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.2.8"
â· word (Ï â· âλ ⷠη â· Ï â· Î¯ ⷠο ⷠΜ â· []) "Jas.2.8"
â· word (Ï â· Î¿ â· Ï
â· []) "Jas.2.8"
â· word (ᜡ â· Ï â· []) "Jas.2.8"
â· word (Ï â· Îµ ⷠα â· Ï
â· Ï â· Ï â· Îœ â· []) "Jas.2.8"
â· word (κ ⷠα â· âλ â· á¿¶ â· Ï â· []) "Jas.2.8"
â· word (Ï â· Î¿ ⷠι ⷠε â· á¿ â· Ï â· Îµ â· []) "Jas.2.8"
ⷠword (ε ⷠጰ ⷠ[]) "Jas.2.9"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.2.9"
â· word (Ï â· Ï â· Î¿ â· Ï â· Ï â· Ï â· Î¿ â· âλ ⷠη â· ÎŒ â· Ï â· Ï â· Îµ â· á¿ â· Ï â· Îµ â· []) "Jas.2.9"
â· word (ጠⷠΌ ⷠα â· Ï â· Ï â· Î¯ ⷠα ⷠΜ â· []) "Jas.2.9"
â· word (áŒ â· Ï â· Î³ ⷠά ⷠζ ⷠε â· Ï â· Îž ⷠε â· []) "Jas.2.9"
â· word (ጠⷠâλ ⷠε ⷠγ â· Ï â· Ï â· ÎŒ ⷠε ⷠΜ ⷠο ⷠι â· []) "Jas.2.9"
â· word (áœ â· Ï â· áœž â· []) "Jas.2.9"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.2.9"
â· word (Μ â· Ï â· ÎŒ ⷠο â· Ï
â· []) "Jas.2.9"
â· word (ᜡ â· Ï â· []) "Jas.2.9"
â· word (Ï â· Î± â· Ï â· Î± ⷠβ ⷠά â· Ï â· Î± ⷠι â· []) "Jas.2.9"
â· word (áœ
â· Ï â· Ï â· Î¹ â· Ï â· []) "Jas.2.10"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.2.10"
â· word (áœ
â· âλ ⷠο ⷠΜ â· []) "Jas.2.10"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.2.10"
â· word (Μ â· Ï â· ÎŒ ⷠο ⷠΜ â· []) "Jas.2.10"
â· word (Ï â· Î· â· Ï â· Î® â· Ï â· á¿ â· []) "Jas.2.10"
â· word (Ï â· Ï â· Î± ⷠί â· Ï â· á¿ â· []) "Jas.2.10"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.2.10"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.2.10"
ⷠword (ጠⷠΜ ⷠί ⷠ[]) "Jas.2.10"
ⷠword (γ ⷠΠⷠγ ⷠο ⷠΜ ⷠε ⷠΜ ⷠ[]) "Jas.2.10"
â· word (Ï â· Î¬ ⷠΜ â· Ï â· Ï â· Îœ â· []) "Jas.2.10"
â· word (ጠⷠΜ ⷠο â· Ï â· Î¿ â· Ï â· []) "Jas.2.10"
ⷠword (ᜠⷠ[]) "Jas.2.11"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.2.11"
â· word (ε ⷠጰ â· Ï â· Ï â· Îœ â· []) "Jas.2.11"
ⷠword (Πⷠᜎ ⷠ[]) "Jas.2.11"
â· word (ÎŒ ⷠο ⷠι â· Ï â· Îµ â· Ï â· Ï â· á¿ â· Ï â· []) "Jas.2.11"
â· word (ε ⷠጶ â· Ï â· Îµ ⷠΜ â· []) "Jas.2.11"
ⷠword (κ ⷠα ⷠί ⷠ[]) "Jas.2.11"
ⷠword (Πⷠᜎ ⷠ[]) "Jas.2.11"
â· word (Ï â· Î¿ ⷠΜ ⷠε â· Ï â· Ï â· á¿ â· Ï â· []) "Jas.2.11"
ⷠword (ε ⷠጰ ⷠ[]) "Jas.2.11"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.2.11"
ⷠword (ο ⷠᜠⷠ[]) "Jas.2.11"
â· word (ÎŒ ⷠο ⷠι â· Ï â· Îµ â· Ï â· Îµ ⷠι â· Ï â· []) "Jas.2.11"
â· word (Ï â· Î¿ ⷠΜ ⷠε â· Ï â· Îµ ⷠι â· Ï â· []) "Jas.2.11"
â· word (ÎŽ â· Î â· []) "Jas.2.11"
â· word (γ ⷠΠⷠγ ⷠο ⷠΜ ⷠα â· Ï â· []) "Jas.2.11"
â· word (Ï â· Î± â· Ï â· Î± ⷠβ ⷠά â· Ï â· Î· â· Ï â· []) "Jas.2.11"
â· word (Μ â· Ï â· ÎŒ ⷠο â· Ï
â· []) "Jas.2.11"
â· word (ο â· áœ â· Ï â· Ï â· Ï â· []) "Jas.2.12"
â· word (âλ ⷠα â· âλ ⷠε â· á¿ â· Ï â· Îµ â· []) "Jas.2.12"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.12"
â· word (ο â· áœ â· Ï â· Ï â· Ï â· []) "Jas.2.12"
â· word (Ï â· Î¿ ⷠι ⷠε â· á¿ â· Ï â· Îµ â· []) "Jas.2.12"
â· word (ᜡ â· Ï â· []) "Jas.2.12"
ⷠword (Ύ ⷠι ⷠᜰ ⷠ[]) "Jas.2.12"
â· word (Μ â· Ï â· ÎŒ ⷠο â· Ï
â· []) "Jas.2.12"
â· word (ጠⷠâλ ⷠε â· Ï
ⷠΞ ⷠε â· Ï â· Î¯ ⷠα â· Ï â· []) "Jas.2.12"
â· word (ÎŒ â· Î â· âλ â· âλ ⷠο ⷠΜ â· Ï â· Îµ â· Ï â· []) "Jas.2.12"
â· word (κ â· Ï â· Î¯ ⷠΜ ⷠε â· Ï â· Îž ⷠα ⷠι â· []) "Jas.2.12"
ⷠword (ጡ ⷠ[]) "Jas.2.13"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.2.13"
â· word (κ â· Ï â· Î¯ â· Ï â· Î¹ â· Ï â· []) "Jas.2.13"
â· word (ጠⷠΜ â· Î â· âλ ⷠε ⷠο â· Ï â· []) "Jas.2.13"
â· word (Ï â· á¿· â· []) "Jas.2.13"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.2.13"
â· word (Ï â· Î¿ ⷠι ⷠή â· Ï â· Î± ⷠΜ â· Ï â· Î¹ â· []) "Jas.2.13"
â· word (ጠⷠâλ ⷠε ⷠο â· Ï â· []) "Jas.2.13"
â· word (κ ⷠα â· Ï â· Î± ⷠκ ⷠα â· Ï
â· Ï â· áŸ¶ â· Ï â· Î± ⷠι â· []) "Jas.2.13"
â· word (ጠⷠâλ ⷠε ⷠο â· Ï â· []) "Jas.2.13"
â· word (κ â· Ï â· Î¯ â· Ï â· Îµ â· Ï â· Ï â· []) "Jas.2.13"
ⷠword (΀ ⷠί ⷠ[]) "Jas.2.14"
â· word (áœ â· Ï â· Îµ â· âλ ⷠο â· Ï â· []) "Jas.2.14"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.2.14"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.2.14"
ⷠword (ጠⷠᜰ ⷠΜ ⷠ[]) "Jas.2.14"
â· word (Ï â· Î¯ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.14"
â· word (âλ ⷠΠⷠγ â· á¿ â· []) "Jas.2.14"
â· word (Ï â· Î¹ â· Ï â· []) "Jas.2.14"
â· word (áŒ â· Ï â· Îµ ⷠι ⷠΜ â· []) "Jas.2.14"
â· word (áŒ â· Ï â· Î³ ⷠα â· []) "Jas.2.14"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.2.14"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.2.14"
â· word (áŒ â· Ï â· á¿ â· []) "Jas.2.14"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.2.14"
â· word (ÎŽ â· Ï â· Îœ ⷠα â· Ï â· Î± ⷠι â· []) "Jas.2.14"
ⷠword (ጡ ⷠ[]) "Jas.2.14"
â· word (Ï â· Î¯ â· Ï â· Ï â· Î¹ â· Ï â· []) "Jas.2.14"
â· word (Ï â· á¿¶ â· Ï â· Î± ⷠι â· []) "Jas.2.14"
â· word (α â· áœ â· Ï â· Ï â· Îœ â· []) "Jas.2.14"
ⷠword (ጠⷠᜰ ⷠΜ ⷠ[]) "Jas.2.15"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· áœž â· Ï â· []) "Jas.2.15"
ⷠword (ጢ ⷠ[]) "Jas.2.15"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· áœŽ â· []) "Jas.2.15"
â· word (γ â· Ï
ⷠΌ ⷠΜ ⷠο ⷠ᜶ ⷠ[]) "Jas.2.15"
â· word (áœ â· Ï â· Î¬ â· Ï â· Ï â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.15"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.15"
â· word (âλ ⷠε ⷠι â· Ï â· Ï â· ÎŒ ⷠε ⷠΜ ⷠο ⷠι â· []) "Jas.2.15"
â· word (Ï â· á¿ â· Ï â· []) "Jas.2.15"
â· word (áŒ â· Ï â· Î· â· ÎŒ â· Î â· Ï â· Î¿ â· Ï
â· []) "Jas.2.15"
â· word (Ï â· Ï â· Î¿ â· Ï â· á¿ â· Ï â· []) "Jas.2.15"
â· word (ε ⷠጎ â· Ï â· á¿ â· []) "Jas.2.16"
â· word (ÎŽ â· Î â· []) "Jas.2.16"
â· word (Ï â· Î¹ â· Ï â· []) "Jas.2.16"
â· word (α â· áœ â· Ï â· Î¿ â· á¿ â· Ï â· []) "Jas.2.16"
ⷠword (ጠⷠΟ ⷠ[]) "Jas.2.16"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.2.16"
â· word (áœ â· Ï â· Î¬ ⷠγ ⷠε â· Ï â· Îµ â· []) "Jas.2.16"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.2.16"
â· word (ε ⷠጰ â· Ï â· Î® ⷠΜ â· á¿ â· []) "Jas.2.16"
â· word (Ξ ⷠε â· Ï â· ÎŒ ⷠα ⷠί ⷠΜ ⷠε â· Ï â· Îž ⷠε â· []) "Jas.2.16"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.16"
â· word (Ï â· Î¿ â· Ï â· Ï â· Î¬ ⷠζ ⷠε â· Ï â· Îž ⷠε â· []) "Jas.2.16"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.2.16"
â· word (ÎŽ â· á¿¶ â· Ï â· Îµ â· []) "Jas.2.16"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.2.16"
â· word (α â· áœ â· Ï â· Î¿ â· á¿ â· Ï â· []) "Jas.2.16"
â· word (Ï â· áœ° â· []) "Jas.2.16"
â· word (áŒ â· Ï â· Î¹ â· Ï â· Î® â· ÎŽ ⷠε ⷠι ⷠα â· []) "Jas.2.16"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.2.16"
â· word (Ï â· Ï â· ÎŒ ⷠα â· Ï â· Î¿ â· Ï â· []) "Jas.2.16"
â· word (Ï â· Î¯ â· []) "Jas.2.16"
â· word (áœ â· Ï â· Îµ â· âλ ⷠο â· Ï â· []) "Jas.2.16"
â· word (ο â· áœ â· Ï â· Ï â· Ï â· []) "Jas.2.17"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.17"
ⷠword (ጡ ⷠ[]) "Jas.2.17"
â· word (Ï â· Î¯ â· Ï â· Ï â· Î¹ â· Ï â· []) "Jas.2.17"
ⷠword (ጠⷠᜰ ⷠΜ ⷠ[]) "Jas.2.17"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.2.17"
â· word (áŒ â· Ï â· á¿ â· []) "Jas.2.17"
â· word (áŒ â· Ï â· Î³ ⷠα â· []) "Jas.2.17"
â· word (Μ ⷠε ⷠκ â· Ï â· Î¬ â· []) "Jas.2.17"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.17"
ⷠword (κ ⷠα ⷠΞ ⷠ[]) "Jas.2.17"
â· word (ጠⷠα â· Ï
â· Ï â· Î® ⷠΜ â· []) "Jas.2.17"
â· word (ጠⷠâλ â· âλ â· []) "Jas.2.18"
â· word (áŒ â· Ï â· Îµ â· á¿ â· []) "Jas.2.18"
â· word (Ï â· Î¹ â· Ï â· []) "Jas.2.18"
ⷠword (Σ ⷠ᜺ ⷠ[]) "Jas.2.18"
â· word (Ï â· Î¯ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.18"
â· word (áŒ â· Ï â· Îµ ⷠι â· Ï â· []) "Jas.2.18"
ⷠword (κ ⷠጠⷠγ ⷠᜌ ⷠ[]) "Jas.2.18"
â· word (áŒ â· Ï â· Î³ ⷠα â· []) "Jas.2.18"
â· word (áŒ â· Ï â· Ï â· []) "Jas.2.18"
â· word (ÎŽ ⷠε ⷠῠⷠΟ â· Ï â· Îœ â· []) "Jas.2.18"
ⷠword (Ό ⷠο ⷠι ⷠ[]) "Jas.2.18"
â· word (Ï â· áœŽ ⷠΜ â· []) "Jas.2.18"
â· word (Ï â· Î¯ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.18"
â· word (Ï â· Î¿ â· Ï
â· []) "Jas.2.18"
â· word (Ï â· Ï â· Ï â· áœ¶ â· Ï â· []) "Jas.2.18"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.2.18"
â· word (áŒ â· Ï â· Î³ â· Ï â· Îœ â· []) "Jas.2.18"
â· word (κ ⷠጠⷠγ â· Ï â· []) "Jas.2.18"
â· word (Ï â· Î¿ ⷠι â· []) "Jas.2.18"
â· word (ÎŽ ⷠε ⷠί ⷠΟ â· Ï â· []) "Jas.2.18"
ⷠword (ጠⷠκ ⷠ[]) "Jas.2.18"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.2.18"
â· word (áŒ â· Ï â· Î³ â· Ï â· Îœ â· []) "Jas.2.18"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.2.18"
â· word (Ï â· áœŽ ⷠΜ â· []) "Jas.2.18"
â· word (Ï â· Î¯ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.18"
â· word (Ï â· áœº â· []) "Jas.2.19"
â· word (Ï â· Î¹ â· Ï â· Ï â· Îµ â· Ï â· Îµ ⷠι â· Ï â· []) "Jas.2.19"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.2.19"
â· word (ε ⷠጷ â· Ï â· []) "Jas.2.19"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.19"
ⷠword (ᜠⷠ[]) "Jas.2.19"
â· word (Ξ ⷠε â· Ï â· Ï â· []) "Jas.2.19"
â· word (κ ⷠα â· âλ â· á¿¶ â· Ï â· []) "Jas.2.19"
â· word (Ï â· Î¿ ⷠι ⷠε â· á¿ â· Ï â· []) "Jas.2.19"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.19"
â· word (Ï â· áœ° â· []) "Jas.2.19"
â· word (ÎŽ ⷠα ⷠι â· ÎŒ â· Ï â· Îœ ⷠι ⷠα â· []) "Jas.2.19"
â· word (Ï â· Î¹ â· Ï â· Ï â· Îµ â· Ï â· Î¿ â· Ï
â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.19"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.19"
â· word (Ï â· Ï â· Î¯ â· Ï â· Ï â· Î¿ â· Ï
â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.19"
â· word (Ξ â· Î â· âλ ⷠε ⷠι â· Ï â· []) "Jas.2.20"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.2.20"
ⷠword (γ ⷠΜ ⷠῶ ⷠΜ ⷠα ⷠι ⷠ[]) "Jas.2.20"
ⷠword (ᜊ ⷠ[]) "Jas.2.20"
â· word (ጠⷠΜ ⷠΞ â· Ï â· Ï â· Ï â· Îµ â· []) "Jas.2.20"
ⷠword (κ ⷠε ⷠΜ ⷠΠⷠ[]) "Jas.2.20"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.2.20"
ⷠword (ጡ ⷠ[]) "Jas.2.20"
â· word (Ï â· Î¯ â· Ï â· Ï â· Î¹ â· Ï â· []) "Jas.2.20"
â· word (Ï â· Ï â· Ï â· áœ¶ â· Ï â· []) "Jas.2.20"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.2.20"
â· word (áŒ â· Ï â· Î³ â· Ï â· Îœ â· []) "Jas.2.20"
â· word (áŒ â· Ï â· Î³ ⷠή â· []) "Jas.2.20"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.20"
â· word (ጠⷠβ â· Ï â· Î± ⷠᜰ â· ÎŒ â· []) "Jas.2.21"
ⷠword (ᜠⷠ[]) "Jas.2.21"
â· word (Ï â· Î± â· Ï â· áœŽ â· Ï â· []) "Jas.2.21"
ⷠword (ጡ ⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.2.21"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.2.21"
ⷠword (ጠⷠΟ ⷠ[]) "Jas.2.21"
â· word (áŒ â· Ï â· Î³ â· Ï â· Îœ â· []) "Jas.2.21"
â· word (ጠⷠΎ ⷠι ⷠκ ⷠα ⷠι â· Ï â· Îž ⷠη â· []) "Jas.2.21"
â· word (ጠⷠΜ ⷠε ⷠΜ ⷠΠⷠγ ⷠκ ⷠα â· Ï â· []) "Jas.2.21"
â· word (ጞ â· Ï â· Î± ⷠᜰ ⷠκ â· []) "Jas.2.21"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.2.21"
â· word (Ï
ⷠጱ ⷠ᜞ ⷠΜ ⷠ[]) "Jas.2.21"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.2.21"
â· word (áŒ â· Ï â· áœ¶ â· []) "Jas.2.21"
â· word (Ï â· áœž â· []) "Jas.2.21"
â· word (Ξ â· Ï
â· Ï â· Î¹ ⷠα â· Ï â· Ï â· Î® â· Ï â· Î¹ ⷠο ⷠΜ â· []) "Jas.2.21"
â· word (β â· âλ â· Î â· Ï â· Îµ ⷠι â· Ï â· []) "Jas.2.22"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.2.22"
ⷠword (ጡ ⷠ[]) "Jas.2.22"
â· word (Ï â· Î¯ â· Ï â· Ï â· Î¹ â· Ï â· []) "Jas.2.22"
â· word (Ï â· Ï
ⷠΜ ⷠή â· Ï â· Î³ ⷠε ⷠι â· []) "Jas.2.22"
â· word (Ï â· Î¿ â· á¿ â· Ï â· []) "Jas.2.22"
â· word (áŒ â· Ï â· Î³ ⷠο ⷠι â· Ï â· []) "Jas.2.22"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.2.22"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.22"
ⷠword (ጠⷠκ ⷠ[]) "Jas.2.22"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.2.22"
â· word (áŒ â· Ï â· Î³ â· Ï â· Îœ â· []) "Jas.2.22"
ⷠword (ጡ ⷠ[]) "Jas.2.22"
â· word (Ï â· Î¯ â· Ï â· Ï â· Î¹ â· Ï â· []) "Jas.2.22"
â· word (áŒ â· Ï â· Îµ â· âλ ⷠε ⷠι â· Ï â· Îž ⷠη â· []) "Jas.2.22"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.23"
â· word (áŒ â· Ï â· âλ ⷠη â· Ï â· Ï â· Îž ⷠη â· []) "Jas.2.23"
ⷠword (ጡ ⷠ[]) "Jas.2.23"
â· word (γ â· Ï â· Î± â· Ï â· áœŽ â· []) "Jas.2.23"
ⷠword (ጡ ⷠ[]) "Jas.2.23"
â· word (âλ ⷠΠⷠγ ⷠο â· Ï
â· Ï â· Î± â· []) "Jas.2.23"
â· word (áŒ â· Ï â· Î¯ â· Ï â· Ï â· Îµ â· Ï
â· Ï â· Îµ ⷠΜ â· []) "Jas.2.23"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.2.23"
â· word (ጠⷠβ â· Ï â· Î± ⷠᜰ â· ÎŒ â· []) "Jas.2.23"
â· word (Ï â· á¿· â· []) "Jas.2.23"
ⷠword (Ξ ⷠε ⷠῷ ⷠ[]) "Jas.2.23"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.23"
â· word (ጠⷠâλ ⷠο ⷠγ ⷠί â· Ï â· Îž ⷠη â· []) "Jas.2.23"
â· word (α â· áœ â· Ï â· á¿· â· []) "Jas.2.23"
â· word (ε ⷠጰ â· Ï â· []) "Jas.2.23"
â· word (ÎŽ ⷠι ⷠκ ⷠα ⷠι ⷠο â· Ï â· Ï â· Îœ ⷠη ⷠΜ â· []) "Jas.2.23"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.23"
â· word (Ï â· Î¯ â· âλ ⷠο â· Ï â· []) "Jas.2.23"
ⷠword (Ξ ⷠε ⷠο ⷠῊ ⷠ[]) "Jas.2.23"
â· word (ጠⷠκ â· âλ ⷠή ⷠΞ ⷠη â· []) "Jas.2.23"
â· word (áœ â· Ï â· áŸ¶ â· Ï â· Îµ â· []) "Jas.2.24"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.2.24"
ⷠword (ጠⷠΟ ⷠ[]) "Jas.2.24"
â· word (áŒ â· Ï â· Î³ â· Ï â· Îœ â· []) "Jas.2.24"
â· word (ÎŽ ⷠι ⷠκ ⷠα ⷠι ⷠο ⷠῊ â· Ï â· Î± ⷠι â· []) "Jas.2.24"
â· word (ጠⷠΜ ⷠΞ â· Ï â· Ï â· Ï â· Î¿ â· Ï â· []) "Jas.2.24"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.24"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.2.24"
ⷠword (ጠⷠκ ⷠ[]) "Jas.2.24"
â· word (Ï â· Î¯ â· Ï â· Ï â· Îµ â· Ï â· Ï â· []) "Jas.2.24"
â· word (ÎŒ â· Ï â· Îœ ⷠο ⷠΜ â· []) "Jas.2.24"
â· word (ᜠⷠΌ ⷠο ⷠί â· Ï â· Ï â· []) "Jas.2.25"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.2.25"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.25"
ⷠword (Ῥ ⷠα ⷠᜰ ⷠβ ⷠ[]) "Jas.2.25"
ⷠword (ጡ ⷠ[]) "Jas.2.25"
â· word (Ï â· Ï â· Ï â· Îœ ⷠη â· []) "Jas.2.25"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.2.25"
ⷠword (ጠⷠΟ ⷠ[]) "Jas.2.25"
â· word (áŒ â· Ï â· Î³ â· Ï â· Îœ â· []) "Jas.2.25"
â· word (ጠⷠΎ ⷠι ⷠκ ⷠα ⷠι â· Ï â· Îž ⷠη â· []) "Jas.2.25"
â· word (áœ â· Ï â· Î¿ â· ÎŽ ⷠε ⷠΟ ⷠα â· ÎŒ ⷠΠⷠΜ ⷠη â· []) "Jas.2.25"
â· word (Ï â· Î¿ ⷠ᜺ â· Ï â· []) "Jas.2.25"
â· word (ጠⷠγ ⷠγ â· Î â· âλ ⷠο â· Ï
â· Ï â· []) "Jas.2.25"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.25"
â· word (áŒ â· Ï â· Î â· Ï â· áŸ³ â· []) "Jas.2.25"
ⷠword (ᜠⷠΎ ⷠῷ ⷠ[]) "Jas.2.25"
â· word (ጠⷠκ ⷠβ ⷠα â· âλ ⷠο ⷠῊ â· Ï â· Î± â· []) "Jas.2.25"
â· word (ᜥ â· Ï â· Ï â· Îµ â· Ï â· []) "Jas.2.26"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.2.26"
â· word (Ï â· áœž â· []) "Jas.2.26"
â· word (Ï â· á¿¶ â· ÎŒ ⷠα â· []) "Jas.2.26"
â· word (Ï â· Ï â· Ï â· áœ¶ â· Ï â· []) "Jas.2.26"
â· word (Ï â· Îœ ⷠε â· Ï â· ÎŒ ⷠα â· Ï â· Î¿ â· Ï â· []) "Jas.2.26"
â· word (Μ ⷠε ⷠκ â· Ï â· Ï â· Îœ â· []) "Jas.2.26"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.26"
â· word (ο â· áœ â· Ï â· Ï â· Ï â· []) "Jas.2.26"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.2.26"
ⷠword (ጡ ⷠ[]) "Jas.2.26"
â· word (Ï â· Î¯ â· Ï â· Ï â· Î¹ â· Ï â· []) "Jas.2.26"
â· word (Ï â· Ï â· Ï â· áœ¶ â· Ï â· []) "Jas.2.26"
â· word (áŒ â· Ï â· Î³ â· Ï â· Îœ â· []) "Jas.2.26"
â· word (Μ ⷠε ⷠκ â· Ï â· Î¬ â· []) "Jas.2.26"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.2.26"
ⷠword (Πⷠᜎ ⷠ[]) "Jas.3.1"
â· word (Ï â· Î¿ â· âλ â· âλ ⷠο ⷠ᜶ â· []) "Jas.3.1"
â· word (ÎŽ ⷠι â· ÎŽ ⷠά â· Ï â· Îº ⷠα â· âλ ⷠο ⷠι â· []) "Jas.3.1"
â· word (γ ⷠί ⷠΜ ⷠε â· Ï â· Îž ⷠε â· []) "Jas.3.1"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.3.1"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.3.1"
â· word (ε ⷠጰ â· ÎŽ â· Ï â· Ï â· Îµ â· Ï â· []) "Jas.3.1"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.3.1"
ⷠword (Ό ⷠε ⷠῠⷠζ ⷠο ⷠΜ ⷠ[]) "Jas.3.1"
â· word (κ â· Ï â· Î¯ â· ÎŒ ⷠα â· []) "Jas.3.1"
â· word (âλ ⷠη â· ÎŒ â· Ï â· Ï â· ÎŒ ⷠε ⷠΞ ⷠα â· []) "Jas.3.1"
â· word (Ï â· Î¿ â· âλ â· âλ ⷠᜰ â· []) "Jas.3.2"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.3.2"
â· word (Ï â· Ï â· Î± ⷠί ⷠο â· ÎŒ ⷠε ⷠΜ â· []) "Jas.3.2"
â· word (áŒ
â· Ï â· Î± ⷠΜ â· Ï â· Îµ â· Ï â· []) "Jas.3.2"
ⷠword (ε ⷠጎ ⷠ[]) "Jas.3.2"
â· word (Ï â· Î¹ â· Ï â· []) "Jas.3.2"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.3.2"
â· word (âλ â· Ï â· Î³ ⷠῳ â· []) "Jas.3.2"
ⷠword (ο ⷠᜠⷠ[]) "Jas.3.2"
â· word (Ï â· Ï â· Î± ⷠί ⷠε ⷠι â· []) "Jas.3.2"
â· word (ο â· áœ â· Ï â· Î¿ â· Ï â· []) "Jas.3.2"
â· word (Ï â· Î â· âλ ⷠε ⷠι ⷠο â· Ï â· []) "Jas.3.2"
â· word (ጠⷠΜ ⷠή â· Ï â· []) "Jas.3.2"
â· word (ÎŽ â· Ï
ⷠΜ ⷠα â· Ï â· áœž â· Ï â· []) "Jas.3.2"
â· word (Ï â· Î± â· âλ ⷠι ⷠΜ ⷠα ⷠγ â· Ï â· Î³ â· á¿ â· Ï â· Î± ⷠι â· []) "Jas.3.2"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.2"
â· word (áœ
â· âλ ⷠο ⷠΜ â· []) "Jas.3.2"
â· word (Ï â· áœž â· []) "Jas.3.2"
â· word (Ï â· á¿¶ â· ÎŒ ⷠα â· []) "Jas.3.2"
ⷠword (ε ⷠጰ ⷠ[]) "Jas.3.3"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.3.3"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.3.3"
â· word (ጵ â· Ï â· Ï â· Ï â· Îœ â· []) "Jas.3.3"
â· word (Ï â· Î¿ ⷠ᜺ â· Ï â· []) "Jas.3.3"
â· word (Ï â· Î± â· âλ ⷠι ⷠΜ ⷠο ⷠ᜺ â· Ï â· []) "Jas.3.3"
â· word (ε ⷠጰ â· Ï â· []) "Jas.3.3"
â· word (Ï â· áœ° â· []) "Jas.3.3"
â· word (Ï â· Ï â· Ï â· ÎŒ ⷠα â· Ï â· Î± â· []) "Jas.3.3"
â· word (β ⷠά â· âλ â· âλ ⷠο â· ÎŒ ⷠε ⷠΜ â· []) "Jas.3.3"
â· word (ε ⷠጰ â· Ï â· []) "Jas.3.3"
â· word (Ï â· áœž â· []) "Jas.3.3"
â· word (Ï â· Îµ ⷠί ⷠΞ ⷠε â· Ï â· Îž ⷠα ⷠι â· []) "Jas.3.3"
â· word (α â· áœ â· Ï â· Î¿ ⷠ᜺ â· Ï â· []) "Jas.3.3"
ⷠword (ጡ ⷠΌ ⷠῠⷠΜ ⷠ[]) "Jas.3.3"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.3"
â· word (áœ
â· âλ ⷠο ⷠΜ â· []) "Jas.3.3"
â· word (Ï â· áœž â· []) "Jas.3.3"
â· word (Ï â· á¿¶ â· ÎŒ ⷠα â· []) "Jas.3.3"
â· word (α â· áœ â· Ï â· á¿¶ ⷠΜ â· []) "Jas.3.3"
â· word (ÎŒ ⷠε â· Ï â· Î¬ ⷠγ ⷠο â· ÎŒ ⷠε ⷠΜ â· []) "Jas.3.3"
ⷠword (ጰ ⷠΎ ⷠο ⷠ᜺ ⷠ[]) "Jas.3.4"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.4"
â· word (Ï â· áœ° â· []) "Jas.3.4"
â· word (Ï â· âλ ⷠο ⷠῠⷠα â· []) "Jas.3.4"
â· word (Ï â· Î· â· âλ ⷠι ⷠκ ⷠα ⷠῊ â· Ï â· Î± â· []) "Jas.3.4"
â· word (ᜠⷠΜ â· Ï â· Î± â· []) "Jas.3.4"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.4"
â· word (áœ â· Ï â· áœž â· []) "Jas.3.4"
â· word (ጠⷠΜ â· Î â· ÎŒ â· Ï â· Îœ â· []) "Jas.3.4"
â· word (Ï â· Îº â· âλ ⷠη â· Ï â· á¿¶ ⷠΜ â· []) "Jas.3.4"
â· word (ጠⷠâλ ⷠα â· Ï
ⷠΜ â· Ï â· ÎŒ ⷠε ⷠΜ ⷠα â· []) "Jas.3.4"
â· word (ÎŒ ⷠε â· Ï â· Î¬ ⷠγ ⷠε â· Ï â· Î± ⷠι â· []) "Jas.3.4"
â· word (áœ â· Ï â· áœž â· []) "Jas.3.4"
â· word (ጠⷠâλ ⷠα â· Ï â· Î¯ â· Ï â· Ï â· Î¿ â· Ï
â· []) "Jas.3.4"
â· word (Ï â· Î· â· ÎŽ ⷠα â· âλ ⷠί ⷠο â· Ï
â· []) "Jas.3.4"
â· word (áœ
â· Ï â· Î¿ â· Ï
â· []) "Jas.3.4"
ⷠword (ጡ ⷠ[]) "Jas.3.4"
â· word (áœ â· Ï â· ÎŒ ⷠᜎ â· []) "Jas.3.4"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.3.4"
â· word (ε ⷠᜠⷠΞ â· Ï â· Îœ ⷠο ⷠΜ â· Ï â· Î¿ â· Ï â· []) "Jas.3.4"
â· word (β ⷠο â· Ï â· âλ ⷠε â· Ï â· Î± ⷠι â· []) "Jas.3.4"
â· word (ο â· áœ â· Ï â· Ï â· Ï â· []) "Jas.3.5"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.5"
ⷠword (ጡ ⷠ[]) "Jas.3.5"
â· word (γ â· âλ â· á¿¶ â· Ï â· Ï â· Î± â· []) "Jas.3.5"
â· word (ÎŒ ⷠι ⷠκ â· Ï â· áœž ⷠΜ â· []) "Jas.3.5"
â· word (ÎŒ â· Î â· âλ ⷠο â· Ï â· []) "Jas.3.5"
â· word (áŒ â· Ï â· Ï â· áœ¶ ⷠΜ â· []) "Jas.3.5"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.5"
â· word (ÎŒ ⷠε ⷠγ ⷠά â· âλ ⷠα â· []) "Jas.3.5"
â· word (α â· áœ â· Ï â· Îµ â· á¿ â· []) "Jas.3.5"
ⷠword (ጞ ⷠΎ ⷠο ⷠ᜺ ⷠ[]) "Jas.3.5"
â· word (ጡ â· âλ ⷠί ⷠκ ⷠο ⷠΜ â· []) "Jas.3.5"
â· word (Ï â· á¿Š â· Ï â· []) "Jas.3.5"
â· word (ጡ â· âλ ⷠί ⷠκ ⷠη ⷠΜ â· []) "Jas.3.5"
â· word (ᜠⷠâλ ⷠη ⷠΜ â· []) "Jas.3.5"
â· word (ጠⷠΜ ⷠά â· Ï â· Ï â· Îµ ⷠι â· []) "Jas.3.5"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.6"
ⷠword (ጡ ⷠ[]) "Jas.3.6"
â· word (γ â· âλ â· á¿¶ â· Ï â· Ï â· Î± â· []) "Jas.3.6"
â· word (Ï â· á¿Š â· Ï â· []) "Jas.3.6"
ⷠword (ᜠⷠ[]) "Jas.3.6"
â· word (κ â· Ï â· Ï â· ÎŒ ⷠο â· Ï â· []) "Jas.3.6"
â· word (Ï â· á¿ â· Ï â· []) "Jas.3.6"
â· word (ጠⷠΎ ⷠι ⷠκ ⷠί ⷠα â· Ï â· []) "Jas.3.6"
ⷠword (ጡ ⷠ[]) "Jas.3.6"
â· word (γ â· âλ â· á¿¶ â· Ï â· Ï â· Î± â· []) "Jas.3.6"
â· word (κ ⷠα ⷠΞ ⷠί â· Ï â· Ï â· Î± â· Ï â· Î± ⷠι â· []) "Jas.3.6"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.3.6"
â· word (Ï â· Î¿ â· á¿ â· Ï â· []) "Jas.3.6"
â· word (ÎŒ â· Î â· âλ ⷠε â· Ï â· Î¹ ⷠΜ â· []) "Jas.3.6"
ⷠword (ጡ ⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.3.6"
ⷠword (ጡ ⷠ[]) "Jas.3.6"
â· word (Ï â· Ï â· Î¹ â· âλ ⷠο ⷠῊ â· Ï â· Î± â· []) "Jas.3.6"
â· word (áœ
â· âλ ⷠο ⷠΜ â· []) "Jas.3.6"
â· word (Ï â· áœž â· []) "Jas.3.6"
â· word (Ï â· á¿¶ â· ÎŒ ⷠα â· []) "Jas.3.6"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.6"
â· word (Ï â· âλ ⷠο ⷠγ ⷠί ⷠζ ⷠο â· Ï
â· Ï â· Î± â· []) "Jas.3.6"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.3.6"
â· word (Ï â· Ï â· Î¿ â· Ï â· áœž ⷠΜ â· []) "Jas.3.6"
â· word (Ï â· á¿ â· Ï â· []) "Jas.3.6"
â· word (γ ⷠε ⷠΜ â· Î â· Ï â· Îµ â· Ï â· Ï â· []) "Jas.3.6"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.6"
â· word (Ï â· âλ ⷠο ⷠγ ⷠι ⷠζ ⷠο â· ÎŒ ⷠΠⷠΜ ⷠη â· []) "Jas.3.6"
â· word (áœ â· Ï â· áœž â· []) "Jas.3.6"
â· word (Ï â· á¿ â· Ï â· []) "Jas.3.6"
â· word (γ ⷠε ⷠΠⷠΜ ⷠΜ ⷠη â· Ï â· []) "Jas.3.6"
â· word (Ï â· áŸ¶ â· Ï â· Î± â· []) "Jas.3.7"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.3.7"
â· word (Ï â· Ï â· Ï â· Î¹ â· Ï â· []) "Jas.3.7"
â· word (Ξ ⷠη â· Ï â· Î¯ â· Ï â· Îœ â· []) "Jas.3.7"
â· word (Ï â· Îµ â· []) "Jas.3.7"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.7"
â· word (Ï â· Îµ â· Ï â· Îµ ⷠι ⷠΜ â· á¿¶ ⷠΜ â· []) "Jas.3.7"
â· word (áŒ â· Ï â· Ï â· Îµ â· Ï â· á¿¶ ⷠΜ â· []) "Jas.3.7"
â· word (Ï â· Îµ â· []) "Jas.3.7"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.7"
â· word (ጠⷠΜ ⷠα â· âλ ⷠί â· Ï â· Îœ â· []) "Jas.3.7"
â· word (ÎŽ ⷠα â· ÎŒ ⷠά ⷠζ ⷠε â· Ï â· Î± ⷠι â· []) "Jas.3.7"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.7"
â· word (ÎŽ ⷠε â· ÎŽ ⷠά â· ÎŒ ⷠα â· Ï â· Ï â· Î± ⷠι â· []) "Jas.3.7"
â· word (Ï â· á¿ â· []) "Jas.3.7"
â· word (Ï â· Ï â· Ï â· Îµ ⷠι â· []) "Jas.3.7"
â· word (Ï â· á¿ â· []) "Jas.3.7"
â· word (ጠⷠΜ ⷠΞ â· Ï â· Ï â· Ï â· Î¯ ⷠΜ â· á¿ â· []) "Jas.3.7"
â· word (Ï â· áœŽ ⷠΜ â· []) "Jas.3.8"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.3.8"
â· word (γ â· âλ â· á¿¶ â· Ï â· Ï â· Î± ⷠΜ â· []) "Jas.3.8"
â· word (ο ⷠᜠⷠΎ ⷠε ⷠ᜶ â· Ï â· []) "Jas.3.8"
â· word (ÎŽ ⷠα â· ÎŒ ⷠά â· Ï â· Î± ⷠι â· []) "Jas.3.8"
â· word (ÎŽ â· Ï â· Îœ ⷠα â· Ï â· Î± ⷠι â· []) "Jas.3.8"
â· word (ጠⷠΜ ⷠΞ â· Ï â· Ï â· Ï â· Ï â· Îœ â· []) "Jas.3.8"
â· word (ጠⷠκ ⷠα â· Ï â· Î¬ â· Ï â· Ï â· Î± â· Ï â· Î¿ ⷠΜ â· []) "Jas.3.8"
â· word (κ ⷠα ⷠκ â· Ï â· Îœ â· []) "Jas.3.8"
â· word (ÎŒ ⷠε â· Ï â· Ï â· áœŽ â· []) "Jas.3.8"
ⷠword (ጰ ⷠο ⷠῊ ⷠ[]) "Jas.3.8"
â· word (Ξ ⷠα ⷠΜ ⷠα â· Ï â· Î· â· Ï â· Ï â· Ï â· Î¿ â· Ï
â· []) "Jas.3.8"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.3.9"
â· word (α â· áœ â· Ï â· á¿ â· []) "Jas.3.9"
â· word (ε ⷠᜠⷠâλ ⷠο ⷠγ ⷠο ⷠῊ â· ÎŒ ⷠε ⷠΜ â· []) "Jas.3.9"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.3.9"
â· word (κ â· Ï â· Ï â· Î¹ ⷠο ⷠΜ â· []) "Jas.3.9"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.9"
â· word (Ï â· Î± â· Ï â· Î â· Ï â· Î± â· []) "Jas.3.9"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.9"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.3.9"
â· word (α â· áœ â· Ï â· á¿ â· []) "Jas.3.9"
â· word (κ ⷠα â· Ï â· Î± â· Ï â· Ï â· ÎŒ ⷠε ⷠΞ ⷠα â· []) "Jas.3.9"
â· word (Ï â· Î¿ ⷠ᜺ â· Ï â· []) "Jas.3.9"
â· word (ጠⷠΜ ⷠΞ â· Ï â· Ï â· Ï â· Î¿ â· Ï
â· Ï â· []) "Jas.3.9"
â· word (Ï â· Î¿ ⷠ᜺ â· Ï â· []) "Jas.3.9"
ⷠword (κ ⷠα ⷠΞ ⷠ[]) "Jas.3.9"
â· word (ᜠⷠΌ ⷠο ⷠί â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.3.9"
ⷠword (Ξ ⷠε ⷠο ⷠῊ ⷠ[]) "Jas.3.9"
â· word (γ ⷠε ⷠγ ⷠο ⷠΜ â· Ï â· Ï â· Î± â· Ï â· []) "Jas.3.9"
ⷠword (ጠⷠκ ⷠ[]) "Jas.3.10"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.3.10"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.3.10"
â· word (Ï â· Ï â· Ï â· ÎŒ ⷠα â· Ï â· Î¿ â· Ï â· []) "Jas.3.10"
â· word (ጠⷠΟ â· Î â· Ï â· Ï â· Îµ â· Ï â· Î± ⷠι â· []) "Jas.3.10"
â· word (ε ⷠᜠⷠâλ ⷠο ⷠγ ⷠί ⷠα â· []) "Jas.3.10"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.10"
â· word (κ ⷠα â· Ï â· Î¬ â· Ï â· Î± â· []) "Jas.3.10"
ⷠword (ο ⷠᜠⷠ[]) "Jas.3.10"
â· word (Ï â· Ï â· Î® â· []) "Jas.3.10"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.3.10"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.3.10"
â· word (Ï â· Î± ⷠῊ â· Ï â· Î± â· []) "Jas.3.10"
â· word (ο â· áœ â· Ï â· Ï â· Ï â· []) "Jas.3.10"
â· word (γ ⷠί ⷠΜ ⷠε â· Ï â· Îž ⷠα ⷠι â· []) "Jas.3.10"
â· word (ÎŒ ⷠή â· Ï â· Î¹ â· []) "Jas.3.11"
ⷠword (ጡ ⷠ[]) "Jas.3.11"
â· word (Ï â· Î· ⷠγ ⷠᜎ â· []) "Jas.3.11"
ⷠword (ጠⷠκ ⷠ[]) "Jas.3.11"
â· word (Ï â· á¿ â· Ï â· []) "Jas.3.11"
â· word (α â· áœ â· Ï â· á¿ â· Ï â· []) "Jas.3.11"
â· word (áœ â· Ï â· á¿ â· Ï â· []) "Jas.3.11"
â· word (β â· Ï â· Ï â· Îµ ⷠι â· []) "Jas.3.11"
â· word (Ï â· áœž â· []) "Jas.3.11"
â· word (γ â· âλ â· Ï
ⷠκ ⷠ᜺ ⷠ[]) "Jas.3.11"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.11"
â· word (Ï â· áœž â· []) "Jas.3.11"
â· word (Ï â· Î¹ ⷠκ â· Ï â· Ï â· Îœ â· []) "Jas.3.11"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.3.12"
â· word (ÎŽ â· Ï â· Îœ ⷠα â· Ï â· Î± ⷠι â· []) "Jas.3.12"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.3.12"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.3.12"
â· word (Ï â· Ï
ⷠκ ⷠῠⷠ[]) "Jas.3.12"
â· word (ጠⷠâλ ⷠα ⷠί ⷠα â· Ï â· []) "Jas.3.12"
â· word (Ï â· Î¿ ⷠι â· á¿ â· Ï â· Î± ⷠι â· []) "Jas.3.12"
ⷠword (ጢ ⷠ[]) "Jas.3.12"
â· word (ጠⷠΌ â· Ï â· Îµ â· âλ ⷠο â· Ï â· []) "Jas.3.12"
â· word (Ï â· á¿Š ⷠκ ⷠα â· []) "Jas.3.12"
â· word (ο â· áœ â· Ï â· Îµ â· []) "Jas.3.12"
â· word (ጠⷠâλ â· Ï
ⷠκ ⷠ᜞ ⷠΜ ⷠ[]) "Jas.3.12"
â· word (γ â· âλ â· Ï
ⷠκ ⷠ᜺ ⷠ[]) "Jas.3.12"
â· word (Ï â· Î¿ ⷠι â· á¿ â· Ï â· Î± ⷠι â· []) "Jas.3.12"
â· word (ᜠⷠΎ â· Ï â· Ï â· []) "Jas.3.12"
â· word (΀ ⷠί â· Ï â· []) "Jas.3.13"
â· word (Ï â· Î¿ â· Ï â· áœž â· Ï â· []) "Jas.3.13"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.13"
â· word (áŒ â· Ï â· Î¹ â· Ï â· Ï â· Î® â· ÎŒ â· Ï â· Îœ â· []) "Jas.3.13"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.3.13"
ⷠword (ᜠⷠΌ ⷠῠⷠΜ ⷠ[]) "Jas.3.13"
â· word (ÎŽ ⷠε ⷠι ⷠΟ ⷠά â· Ï â· Ï â· []) "Jas.3.13"
ⷠword (ጠⷠκ ⷠ[]) "Jas.3.13"
â· word (Ï â· á¿ â· Ï â· []) "Jas.3.13"
â· word (κ ⷠα â· âλ â· á¿ â· Ï â· []) "Jas.3.13"
â· word (ጠⷠΜ ⷠα â· Ï â· Ï â· Ï â· Î¿ â· Ï â· á¿ â· Ï â· []) "Jas.3.13"
â· word (Ï â· áœ° â· []) "Jas.3.13"
â· word (áŒ â· Ï â· Î³ ⷠα â· []) "Jas.3.13"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.3.13"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.3.13"
â· word (Ï â· Ï â· Î± ⷠΰ â· Ï â· Î· â· Ï â· Î¹ â· []) "Jas.3.13"
â· word (Ï â· Î¿ â· Ï â· Î¯ ⷠα â· Ï â· []) "Jas.3.13"
ⷠword (ε ⷠጰ ⷠ[]) "Jas.3.14"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.3.14"
â· word (ζ â· á¿ â· âλ ⷠο ⷠΜ â· []) "Jas.3.14"
â· word (Ï â· Î¹ ⷠκ â· Ï â· áœž ⷠΜ â· []) "Jas.3.14"
â· word (áŒ â· Ï â· Îµ â· Ï â· Îµ â· []) "Jas.3.14"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.14"
â· word (áŒ â· Ï â· Î¹ ⷠΞ ⷠε ⷠί ⷠα ⷠΜ â· []) "Jas.3.14"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.3.14"
â· word (Ï â· á¿ â· []) "Jas.3.14"
â· word (κ ⷠα â· Ï â· ÎŽ ⷠί ⷠ៳ â· []) "Jas.3.14"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.3.14"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.3.14"
â· word (κ ⷠα â· Ï â· Î± ⷠκ ⷠα â· Ï
â· Ï â· áŸ¶ â· Ï â· Îž ⷠε â· []) "Jas.3.14"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.14"
â· word (Ï â· Îµ â· Ï â· ÎŽ ⷠε â· Ï â· Îž ⷠε â· []) "Jas.3.14"
â· word (κ ⷠα â· Ï â· áœ° â· []) "Jas.3.14"
â· word (Ï â· á¿ â· Ï â· []) "Jas.3.14"
â· word (ጠⷠâλ ⷠη ⷠΞ ⷠε ⷠί ⷠα â· Ï â· []) "Jas.3.14"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.3.15"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.3.15"
â· word (α â· áœ â· Ï â· Î· â· []) "Jas.3.15"
ⷠword (ጡ ⷠ[]) "Jas.3.15"
â· word (Ï â· Î¿ â· Ï â· Î¯ ⷠα â· []) "Jas.3.15"
â· word (ጠⷠΜ â· Ï â· Îž ⷠε ⷠΜ â· []) "Jas.3.15"
â· word (κ ⷠα â· Ï â· Îµ â· Ï â· Ï â· Î¿ â· ÎŒ ⷠΠⷠΜ ⷠη â· []) "Jas.3.15"
â· word (ጠⷠâλ â· âλ ⷠᜰ â· []) "Jas.3.15"
â· word (áŒ â· Ï â· Î¯ ⷠγ ⷠε ⷠι ⷠο â· Ï â· []) "Jas.3.15"
â· word (Ï â· Ï
â· Ï â· Î¹ ⷠκ ⷠή â· []) "Jas.3.15"
â· word (ÎŽ ⷠα ⷠι â· ÎŒ ⷠο ⷠΜ ⷠι â· Ï â· ÎŽ ⷠη â· Ï â· []) "Jas.3.15"
â· word (áœ
â· Ï â· Î¿ â· Ï
â· []) "Jas.3.16"
â· word (γ ⷠᜰ â· Ï â· []) "Jas.3.16"
â· word (ζ â· á¿ â· âλ ⷠο â· Ï â· []) "Jas.3.16"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.16"
â· word (áŒ â· Ï â· Î¹ ⷠΞ ⷠε ⷠί ⷠα â· []) "Jas.3.16"
ⷠword (ጠⷠκ ⷠε ⷠῠⷠ[]) "Jas.3.16"
â· word (ጠⷠκ ⷠα â· Ï â· Î± â· Ï â· Ï â· Î± â· Ï â· Î¯ ⷠα â· []) "Jas.3.16"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.16"
â· word (Ï â· áŸ¶ ⷠΜ â· []) "Jas.3.16"
â· word (Ï â· Î± ⷠῊ â· âλ ⷠο ⷠΜ â· []) "Jas.3.16"
â· word (Ï â· Ï â· áŸ¶ ⷠγ â· ÎŒ ⷠα â· []) "Jas.3.16"
ⷠword (ጡ ⷠ[]) "Jas.3.17"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.3.17"
â· word (ጠⷠΜ â· Ï â· Îž ⷠε ⷠΜ â· []) "Jas.3.17"
â· word (Ï â· Î¿ â· Ï â· Î¯ ⷠα â· []) "Jas.3.17"
â· word (Ï â· Ï â· á¿¶ â· Ï â· Î¿ ⷠΜ â· []) "Jas.3.17"
ⷠword (Ό ⷠᜲ ⷠΜ ⷠ[]) "Jas.3.17"
ⷠword (ጠⷠγ ⷠΜ ⷠή ⷠ[]) "Jas.3.17"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.3.17"
â· word (áŒ â· Ï â· Îµ ⷠι â· Ï â· Î± â· []) "Jas.3.17"
â· word (ε ⷠጰ â· Ï â· Î· ⷠΜ ⷠι ⷠκ ⷠή â· []) "Jas.3.17"
â· word (áŒ â· Ï â· Î¹ ⷠε ⷠι ⷠκ ⷠή â· Ï â· []) "Jas.3.17"
â· word (ε â· áœ â· Ï â· Îµ ⷠι ⷠΞ ⷠή â· Ï â· []) "Jas.3.17"
â· word (ÎŒ ⷠε â· Ï â· Ï â· áœŽ â· []) "Jas.3.17"
â· word (ጠⷠâλ ⷠΠⷠο â· Ï
â· Ï â· []) "Jas.3.17"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.3.17"
â· word (κ ⷠα â· Ï â· Ï â· á¿¶ ⷠΜ â· []) "Jas.3.17"
ⷠword (ጠⷠγ ⷠα ⷠΞ ⷠῶ ⷠΜ ⷠ[]) "Jas.3.17"
â· word (ጠⷠΎ ⷠι ⷠά ⷠκ â· Ï â· Î¹ â· Ï â· Î¿ â· Ï â· []) "Jas.3.17"
â· word (ጠⷠΜ â· Ï
â· Ï â· Ï â· Îº â· Ï â· Î¹ â· Ï â· Î¿ â· Ï â· []) "Jas.3.17"
â· word (κ ⷠα â· Ï â· Ï â· áœž â· Ï â· []) "Jas.3.18"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.3.18"
â· word (ÎŽ ⷠι ⷠκ ⷠα ⷠι ⷠο â· Ï â· Ï â· Îœ ⷠη â· Ï â· []) "Jas.3.18"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.3.18"
â· word (ε ⷠጰ â· Ï â· Î® ⷠΜ â· á¿ â· []) "Jas.3.18"
â· word (Ï â· Ï â· Îµ ⷠί â· Ï â· Îµ â· Ï â· Î± ⷠι â· []) "Jas.3.18"
â· word (Ï â· Î¿ â· á¿ â· Ï â· []) "Jas.3.18"
â· word (Ï â· Î¿ ⷠι ⷠο ⷠῊ â· Ï â· Î¹ ⷠΜ â· []) "Jas.3.18"
â· word (ε ⷠጰ â· Ï â· Î® ⷠΜ ⷠη ⷠΜ â· []) "Jas.3.18"
â· word (Î â· Ï â· Îž ⷠε ⷠΜ â· []) "Jas.4.1"
â· word (Ï â· Ï â· âλ ⷠε â· ÎŒ ⷠο ⷠι â· []) "Jas.4.1"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.1"
â· word (Ï â· Ï â· Îž ⷠε ⷠΜ â· []) "Jas.4.1"
â· word (ÎŒ ⷠά â· Ï â· Î± ⷠι â· []) "Jas.4.1"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.4.1"
ⷠword (ᜠⷠΌ ⷠῠⷠΜ ⷠ[]) "Jas.4.1"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.4.1"
â· word (ጠⷠΜ â· Ï â· Îµ ⷠῊ ⷠΞ ⷠε ⷠΜ â· []) "Jas.4.1"
ⷠword (ጠⷠκ ⷠ[]) "Jas.4.1"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.4.1"
ⷠword (ጡ ⷠΎ ⷠο ⷠΜ ⷠῶ ⷠΜ ⷠ[]) "Jas.4.1"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.4.1"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.4.1"
â· word (Ï â· Ï â· Ï â· Î± â· Ï â· Îµ â· Ï
ⷠο â· ÎŒ ⷠΠⷠΜ â· Ï â· Îœ â· []) "Jas.4.1"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.4.1"
â· word (Ï â· Î¿ â· á¿ â· Ï â· []) "Jas.4.1"
â· word (ÎŒ â· Î â· âλ ⷠε â· Ï â· Î¹ ⷠΜ â· []) "Jas.4.1"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.4.1"
â· word (áŒ â· Ï â· Î¹ ⷠΞ â· Ï
â· ÎŒ ⷠε â· á¿ â· Ï â· Îµ â· []) "Jas.4.2"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.2"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.4.2"
â· word (áŒ â· Ï â· Îµ â· Ï â· Îµ â· []) "Jas.4.2"
â· word (Ï â· Î¿ ⷠΜ ⷠε â· Ï â· Îµ â· Ï â· Îµ â· []) "Jas.4.2"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.2"
â· word (ζ ⷠη â· âλ ⷠο ⷠῊ â· Ï â· Îµ â· []) "Jas.4.2"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.2"
ⷠword (ο ⷠᜠⷠ[]) "Jas.4.2"
â· word (ÎŽ â· Ï â· Îœ ⷠα â· Ï â· Îž ⷠε â· []) "Jas.4.2"
â· word (áŒ â· Ï â· Î¹ â· Ï â· Ï
â· Ï â· Îµ ⷠῠⷠΜ â· []) "Jas.4.2"
â· word (ÎŒ ⷠά â· Ï â· Îµ â· Ï â· Îž ⷠε â· []) "Jas.4.2"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.2"
â· word (Ï â· Î¿ â· âλ ⷠε â· ÎŒ ⷠε â· á¿ â· Ï â· Îµ â· []) "Jas.4.2"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.4.2"
â· word (áŒ â· Ï â· Îµ â· Ï â· Îµ â· []) "Jas.4.2"
ⷠword (Ύ ⷠι ⷠᜰ ⷠ[]) "Jas.4.2"
â· word (Ï â· áœž â· []) "Jas.4.2"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.4.2"
â· word (α ⷠጰ â· Ï â· Îµ â· á¿ â· Ï â· Îž ⷠα ⷠι â· []) "Jas.4.2"
â· word (ᜠⷠΌ ⷠ៶ â· Ï â· []) "Jas.4.2"
â· word (α ⷠጰ â· Ï â· Îµ â· á¿ â· Ï â· Îµ â· []) "Jas.4.3"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.3"
ⷠword (ο ⷠᜠⷠ[]) "Jas.4.3"
â· word (âλ ⷠα â· ÎŒ ⷠβ ⷠά ⷠΜ ⷠε â· Ï â· Îµ â· []) "Jas.4.3"
â· word (ÎŽ ⷠι â· Ï â· Ï â· Î¹ â· []) "Jas.4.3"
â· word (κ ⷠα ⷠκ â· á¿¶ â· Ï â· []) "Jas.4.3"
â· word (α ⷠጰ â· Ï â· Îµ â· á¿ â· Ï â· Îž ⷠε â· []) "Jas.4.3"
ⷠword (ጵ ⷠΜ ⷠα ⷠ[]) "Jas.4.3"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.4.3"
â· word (Ï â· Î± â· á¿ â· Ï â· []) "Jas.4.3"
â· word (ጡ â· ÎŽ ⷠο ⷠΜ ⷠα â· á¿ â· Ï â· []) "Jas.4.3"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.4.3"
â· word (ÎŽ ⷠα â· Ï â· Î± ⷠΜ ⷠή â· Ï â· Î· â· Ï â· Îµ â· []) "Jas.4.3"
â· word (ÎŒ ⷠο ⷠι â· Ï â· Î± â· âλ ⷠί â· ÎŽ ⷠε â· Ï â· []) "Jas.4.4"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.4.4"
â· word (ο ⷠጎ â· ÎŽ ⷠα â· Ï â· Îµ â· []) "Jas.4.4"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.4.4"
ⷠword (ጡ ⷠ[]) "Jas.4.4"
â· word (Ï â· Î¹ â· âλ ⷠί ⷠα â· []) "Jas.4.4"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.4.4"
â· word (κ â· Ï â· Ï â· ÎŒ ⷠο â· Ï
â· []) "Jas.4.4"
â· word (áŒ â· Ï â· Îž â· Ï â· Î± â· []) "Jas.4.4"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.4.4"
ⷠword (Ξ ⷠε ⷠο ⷠῊ ⷠ[]) "Jas.4.4"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.4.4"
â· word (áœ â· Ï â· []) "Jas.4.4"
ⷠword (ጠⷠᜰ ⷠΜ ⷠ[]) "Jas.4.4"
ⷠword (ο ⷠᜠⷠΜ ⷠ[]) "Jas.4.4"
â· word (β ⷠο â· Ï
â· âλ ⷠη ⷠΞ â· á¿ â· []) "Jas.4.4"
â· word (Ï â· Î¯ â· âλ ⷠο â· Ï â· []) "Jas.4.4"
ⷠword (ε ⷠጶ ⷠΜ ⷠα ⷠι ⷠ[]) "Jas.4.4"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.4.4"
â· word (κ â· Ï â· Ï â· ÎŒ ⷠο â· Ï
â· []) "Jas.4.4"
â· word (áŒ â· Ï â· Îž â· Ï â· áœž â· Ï â· []) "Jas.4.4"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.4.4"
ⷠword (Ξ ⷠε ⷠο ⷠῊ ⷠ[]) "Jas.4.4"
â· word (κ ⷠα ⷠΞ ⷠί â· Ï â· Ï â· Î± â· Ï â· Î± ⷠι â· []) "Jas.4.4"
ⷠword (ጢ ⷠ[]) "Jas.4.5"
â· word (ÎŽ ⷠο ⷠκ ⷠε â· á¿ â· Ï â· Îµ â· []) "Jas.4.5"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.4.5"
â· word (κ ⷠε ⷠΜ â· á¿¶ â· Ï â· []) "Jas.4.5"
ⷠword (ጡ ⷠ[]) "Jas.4.5"
â· word (γ â· Ï â· Î± â· Ï â· áœŽ â· []) "Jas.4.5"
â· word (âλ ⷠΠⷠγ ⷠε ⷠι â· []) "Jas.4.5"
â· word (Î â· Ï â· áœž â· Ï â· []) "Jas.4.5"
â· word (Ï â· Îž â· Ï â· Îœ ⷠο ⷠΜ â· []) "Jas.4.5"
â· word (áŒ â· Ï â· Î¹ â· Ï â· Î¿ ⷠΞ ⷠε â· á¿ â· []) "Jas.4.5"
â· word (Ï â· áœž â· []) "Jas.4.5"
â· word (Ï â· Îœ ⷠε ⷠῊ â· ÎŒ ⷠα â· []) "Jas.4.5"
ⷠword (ᜠⷠ[]) "Jas.4.5"
â· word (κ ⷠα â· Ï â· á¿Ž ⷠκ ⷠι â· Ï â· Îµ ⷠΜ â· []) "Jas.4.5"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.4.5"
ⷠword (ጡ ⷠΌ ⷠῠⷠΜ ⷠ[]) "Jas.4.5"
ⷠword (Ό ⷠε ⷠί ⷠζ ⷠο ⷠΜ ⷠα ⷠ[]) "Jas.4.6"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.4.6"
â· word (ÎŽ ⷠί â· ÎŽ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.4.6"
â· word (Ï â· Î¬ â· Ï â· Î¹ ⷠΜ â· []) "Jas.4.6"
ⷠword (Ύ ⷠι ⷠ᜞ ⷠ[]) "Jas.4.6"
â· word (âλ ⷠΠⷠγ ⷠε ⷠι â· []) "Jas.4.6"
ⷠword (ᜠⷠ[]) "Jas.4.6"
â· word (Ξ ⷠε ⷠ᜞ â· Ï â· []) "Jas.4.6"
â· word (áœ â· Ï â· Îµ â· Ï â· Î· â· Ï â· Î¬ ⷠΜ ⷠο ⷠι â· Ï â· []) "Jas.4.6"
â· word (ጠⷠΜ â· Ï â· Î¹ â· Ï â· Î¬ â· Ï â· Ï â· Îµ â· Ï â· Î± ⷠι â· []) "Jas.4.6"
â· word (Ï â· Î± â· Ï â· Îµ ⷠι ⷠΜ ⷠο â· á¿ â· Ï â· []) "Jas.4.6"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.4.6"
â· word (ÎŽ ⷠί â· ÎŽ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.4.6"
â· word (Ï â· Î¬ â· Ï â· Î¹ ⷠΜ â· []) "Jas.4.6"
â· word (áœ â· Ï â· Î¿ â· Ï â· Î¬ ⷠγ ⷠη â· Ï â· Îµ â· []) "Jas.4.7"
ⷠword (ο ⷠᜠⷠΜ ⷠ[]) "Jas.4.7"
â· word (Ï â· á¿· â· []) "Jas.4.7"
ⷠword (Ξ ⷠε ⷠῷ ⷠ[]) "Jas.4.7"
â· word (ጠⷠΜ â· Ï â· Î¯ â· Ï â· Ï â· Î· â· Ï â· Îµ â· []) "Jas.4.7"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.4.7"
â· word (Ï â· á¿· â· []) "Jas.4.7"
â· word (ÎŽ ⷠι ⷠα ⷠβ â· Ï â· âλ ⷠῳ â· []) "Jas.4.7"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.7"
â· word (Ï â· Îµ â· Ï â· ÎŸ ⷠε â· Ï â· Î± ⷠι â· []) "Jas.4.7"
â· word (áŒ â· Ï â· []) "Jas.4.7"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.4.7"
â· word (ጠⷠγ ⷠγ ⷠί â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.4.8"
â· word (Ï â· á¿· â· []) "Jas.4.8"
ⷠword (Ξ ⷠε ⷠῷ ⷠ[]) "Jas.4.8"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.8"
ⷠword (ጠⷠγ ⷠγ ⷠι ⷠε ⷠῠⷠ[]) "Jas.4.8"
ⷠword (ᜠⷠΌ ⷠῠⷠΜ ⷠ[]) "Jas.4.8"
â· word (κ ⷠα ⷠΞ ⷠα â· Ï â· Î¯ â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.4.8"
â· word (Ï â· Îµ â· á¿ â· Ï â· Î± â· Ï â· []) "Jas.4.8"
â· word (ጠⷠΌ ⷠα â· Ï â· Ï â· Ï â· âλ ⷠο ⷠί â· []) "Jas.4.8"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.8"
â· word (ጠⷠγ ⷠΜ ⷠί â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.4.8"
â· word (κ ⷠα â· Ï â· ÎŽ ⷠί ⷠα â· Ï â· []) "Jas.4.8"
â· word (ÎŽ ⷠί â· Ï â· Ï
â· Ï â· Î¿ ⷠι â· []) "Jas.4.8"
â· word (Ï â· Î± â· âλ ⷠα ⷠι â· Ï â· Ï â· Ï â· Î® â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.4.9"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.9"
â· word (Ï â· Îµ ⷠΜ ⷠΞ ⷠή â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.4.9"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.9"
â· word (κ â· âλ ⷠα â· Ï â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.4.9"
ⷠword (ᜠⷠ[]) "Jas.4.9"
â· word (γ â· Î â· âλ â· Ï â· Ï â· []) "Jas.4.9"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.4.9"
â· word (ε ⷠጰ â· Ï â· []) "Jas.4.9"
â· word (Ï â· Î â· Îœ ⷠΞ ⷠο â· Ï â· []) "Jas.4.9"
â· word (ÎŒ ⷠε â· Ï â· Î± â· Ï â· Ï â· Î± â· Ï â· Î® â· Ï â· Ï â· []) "Jas.4.9"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.9"
ⷠword (ጡ ⷠ[]) "Jas.4.9"
â· word (Ï â· Î± â· Ï â· áœ° â· []) "Jas.4.9"
â· word (ε ⷠጰ â· Ï â· []) "Jas.4.9"
â· word (κ ⷠα â· Ï â· Î® â· Ï â· Îµ ⷠι ⷠα ⷠΜ â· []) "Jas.4.9"
â· word (Ï â· Î± â· Ï â· Îµ ⷠι ⷠΜ â· Ï â· Îž ⷠη â· Ï â· Îµ â· []) "Jas.4.10"
â· word (ጠⷠΜ â· Ï â· Ï â· Î¹ ⷠο ⷠΜ â· []) "Jas.4.10"
â· word (κ â· Ï
â· Ï â· Î¯ ⷠο â· Ï
â· []) "Jas.4.10"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.10"
â· word (áœ â· Ï â· Ï â· Ï â· Îµ ⷠι â· []) "Jas.4.10"
â· word (ᜠⷠΌ ⷠ៶ â· Ï â· []) "Jas.4.10"
ⷠword (Πⷠᜎ ⷠ[]) "Jas.4.11"
â· word (κ ⷠα â· Ï â· Î± â· âλ ⷠα â· âλ ⷠε â· á¿ â· Ï â· Îµ â· []) "Jas.4.11"
â· word (ጠⷠâλ â· âλ ⷠή â· âλ â· Ï â· Îœ â· []) "Jas.4.11"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.4.11"
ⷠword (ᜠⷠ[]) "Jas.4.11"
â· word (κ ⷠα â· Ï â· Î± â· âλ ⷠα â· âλ â· á¿¶ ⷠΜ â· []) "Jas.4.11"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠῊ â· []) "Jas.4.11"
ⷠword (ጢ ⷠ[]) "Jas.4.11"
â· word (κ â· Ï â· Î¯ ⷠΜ â· Ï â· Îœ â· []) "Jas.4.11"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.4.11"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· áœž ⷠΜ â· []) "Jas.4.11"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.4.11"
â· word (κ ⷠα â· Ï â· Î± â· âλ ⷠα â· âλ ⷠε â· á¿ â· []) "Jas.4.11"
â· word (Μ â· Ï â· ÎŒ ⷠο â· Ï
â· []) "Jas.4.11"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.11"
â· word (κ â· Ï â· Î¯ ⷠΜ ⷠε ⷠι â· []) "Jas.4.11"
â· word (Μ â· Ï â· ÎŒ ⷠο ⷠΜ â· []) "Jas.4.11"
ⷠword (ε ⷠጰ ⷠ[]) "Jas.4.11"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.4.11"
â· word (Μ â· Ï â· ÎŒ ⷠο ⷠΜ â· []) "Jas.4.11"
â· word (κ â· Ï â· Î¯ ⷠΜ ⷠε ⷠι â· Ï â· []) "Jas.4.11"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.4.11"
ⷠword (ε ⷠጶ ⷠ[]) "Jas.4.11"
â· word (Ï â· Î¿ ⷠι ⷠη â· Ï â· áœŽ â· Ï â· []) "Jas.4.11"
â· word (Μ â· Ï â· ÎŒ ⷠο â· Ï
â· []) "Jas.4.11"
â· word (ጠⷠâλ â· âλ ⷠᜰ â· []) "Jas.4.11"
â· word (κ â· Ï â· Î¹ â· Ï â· Î® â· Ï â· []) "Jas.4.11"
â· word (ε ⷠጷ â· Ï â· []) "Jas.4.12"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.4.12"
â· word (Μ ⷠο â· ÎŒ ⷠο ⷠΞ â· Î â· Ï â· Î· â· Ï â· []) "Jas.4.12"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.12"
â· word (κ â· Ï â· Î¹ â· Ï â· Î® â· Ï â· []) "Jas.4.12"
ⷠword (ᜠⷠ[]) "Jas.4.12"
â· word (ÎŽ â· Ï
ⷠΜ ⷠά â· ÎŒ ⷠε ⷠΜ ⷠο â· Ï â· []) "Jas.4.12"
â· word (Ï â· á¿¶ â· Ï â· Î± ⷠι â· []) "Jas.4.12"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.12"
â· word (áŒ â· Ï â· Î¿ â· âλ â· Î â· Ï â· Î± ⷠι â· []) "Jas.4.12"
â· word (Ï â· áœº â· []) "Jas.4.12"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.4.12"
â· word (Ï â· Î¯ â· Ï â· []) "Jas.4.12"
ⷠword (ε ⷠጶ ⷠ[]) "Jas.4.12"
ⷠword (ᜠⷠ[]) "Jas.4.12"
â· word (κ â· Ï â· Î¯ ⷠΜ â· Ï â· Îœ â· []) "Jas.4.12"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.4.12"
â· word (Ï â· âλ ⷠη â· Ï â· Î¯ ⷠο ⷠΜ â· []) "Jas.4.12"
ⷠword (ጠⷠγ ⷠε ⷠ[]) "Jas.4.13"
ⷠword (Μ ⷠῊ ⷠΜ ⷠ[]) "Jas.4.13"
ⷠword (ο ⷠጱ ⷠ[]) "Jas.4.13"
â· word (âλ ⷠΠⷠγ ⷠο ⷠΜ â· Ï â· Îµ â· Ï â· []) "Jas.4.13"
â· word (Σ ⷠή â· ÎŒ ⷠε â· Ï â· Î¿ ⷠΜ â· []) "Jas.4.13"
ⷠword (ጢ ⷠ[]) "Jas.4.13"
â· word (α â· áœ â· Ï â· Î¹ ⷠο ⷠΜ â· []) "Jas.4.13"
â· word (Ï â· Î¿ â· Ï â· Îµ â· Ï
â· Ï â· Ï â· ÎŒ ⷠε ⷠΞ ⷠα â· []) "Jas.4.13"
â· word (ε ⷠጰ â· Ï â· []) "Jas.4.13"
â· word (Ï â· Î® ⷠΜ â· ÎŽ ⷠε â· []) "Jas.4.13"
â· word (Ï â· áœŽ ⷠΜ â· []) "Jas.4.13"
â· word (Ï â· Ï â· âλ ⷠι ⷠΜ â· []) "Jas.4.13"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.13"
â· word (Ï â· Î¿ ⷠι ⷠή â· Ï â· Î¿ â· ÎŒ ⷠε ⷠΜ â· []) "Jas.4.13"
ⷠword (ጠⷠκ ⷠε ⷠῠⷠ[]) "Jas.4.13"
â· word (ጠⷠΜ ⷠι ⷠα â· Ï
â· Ï â· áœž ⷠΜ â· []) "Jas.4.13"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.13"
â· word (ጠⷠΌ â· Ï â· Î¿ â· Ï â· Îµ â· Ï
â· Ï â· Ï â· ÎŒ ⷠε ⷠΞ ⷠα â· []) "Jas.4.13"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.13"
â· word (κ ⷠε â· Ï â· ÎŽ ⷠή â· Ï â· Î¿ â· ÎŒ ⷠε ⷠΜ â· []) "Jas.4.13"
â· word (ο ⷠጵ â· Ï â· Î¹ ⷠΜ ⷠε â· Ï â· []) "Jas.4.14"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.4.14"
â· word (áŒ â· Ï â· Î¯ â· Ï â· Ï â· Î± â· Ï â· Îž ⷠε â· []) "Jas.4.14"
â· word (Ï â· áœž â· []) "Jas.4.14"
â· word (Ï â· á¿ â· Ï â· []) "Jas.4.14"
â· word (α â· áœ â· Ï â· Î¹ ⷠο ⷠΜ â· []) "Jas.4.14"
â· word (Ï â· Î¿ ⷠί ⷠα â· []) "Jas.4.14"
ⷠword (ጡ ⷠ[]) "Jas.4.14"
â· word (ζ â· Ï â· áœŽ â· []) "Jas.4.14"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.4.14"
â· word (áŒ â· Ï â· ÎŒ ⷠ᜶ â· Ï â· []) "Jas.4.14"
â· word (γ ⷠά â· Ï â· []) "Jas.4.14"
â· word (áŒ â· Ï â· Ï â· Îµ â· []) "Jas.4.14"
ⷠword (ጡ ⷠ[]) "Jas.4.14"
â· word (Ï â· Ï â· áœž â· Ï â· []) "Jas.4.14"
â· word (ᜠⷠâλ ⷠί ⷠγ ⷠο ⷠΜ â· []) "Jas.4.14"
â· word (Ï â· Î± ⷠι ⷠΜ ⷠο â· ÎŒ ⷠΠⷠΜ ⷠη â· []) "Jas.4.14"
â· word (áŒ â· Ï â· Îµ ⷠι â· Ï â· Î± â· []) "Jas.4.14"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.14"
â· word (áŒ â· Ï â· Î± ⷠΜ ⷠι ⷠζ ⷠο â· ÎŒ ⷠΠⷠΜ ⷠη â· []) "Jas.4.14"
â· word (ጠⷠΜ â· Ï â· áœ¶ â· []) "Jas.4.15"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.4.15"
â· word (âλ ⷠΠⷠγ ⷠε ⷠι ⷠΜ â· []) "Jas.4.15"
â· word (ᜠⷠΌ ⷠ៶ â· Ï â· []) "Jas.4.15"
ⷠword (ጠⷠᜰ ⷠΜ ⷠ[]) "Jas.4.15"
ⷠword (ᜠⷠ[]) "Jas.4.15"
â· word (κ â· Ï â· Ï â· Î¹ ⷠο â· Ï â· []) "Jas.4.15"
â· word (Ξ ⷠε â· âλ ⷠή â· Ï â· á¿ â· []) "Jas.4.15"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.15"
â· word (ζ ⷠή â· Ï â· Î¿ â· ÎŒ ⷠε ⷠΜ â· []) "Jas.4.15"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.15"
â· word (Ï â· Î¿ ⷠι ⷠή â· Ï â· Î¿ â· ÎŒ ⷠε ⷠΜ â· []) "Jas.4.15"
â· word (Ï â· Î¿ ⷠῊ â· Ï â· Î¿ â· []) "Jas.4.15"
ⷠword (ጢ ⷠ[]) "Jas.4.15"
ⷠword (ጠⷠκ ⷠε ⷠῠⷠΜ ⷠο ⷠ[]) "Jas.4.15"
ⷠword (Μ ⷠῊ ⷠΜ ⷠ[]) "Jas.4.16"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.4.16"
â· word (κ ⷠα â· Ï
â· Ï â· áŸ¶ â· Ï â· Îž ⷠε â· []) "Jas.4.16"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.4.16"
â· word (Ï â· Î± â· á¿ â· Ï â· []) "Jas.4.16"
â· word (ጠⷠâλ ⷠα ⷠζ ⷠο ⷠΜ ⷠε ⷠί ⷠα ⷠι â· Ï â· []) "Jas.4.16"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.4.16"
â· word (Ï â· áŸ¶ â· Ï â· Î± â· []) "Jas.4.16"
â· word (κ ⷠα â· Ï â· Ï â· Î· â· Ï â· Î¹ â· Ï â· []) "Jas.4.16"
â· word (Ï â· Î¿ ⷠι ⷠα â· Ï â· Ï â· Î· â· []) "Jas.4.16"
â· word (Ï â· Î¿ ⷠΜ ⷠη â· Ï â· Î¬ â· []) "Jas.4.16"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.4.16"
â· word (ε ⷠጰ â· ÎŽ â· Ï â· Ï â· Î¹ â· []) "Jas.4.17"
ⷠword (ο ⷠᜠⷠΜ ⷠ[]) "Jas.4.17"
â· word (κ ⷠα â· âλ ⷠ᜞ ⷠΜ â· []) "Jas.4.17"
â· word (Ï â· Î¿ ⷠι ⷠε ⷠῠⷠΜ â· []) "Jas.4.17"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.4.17"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.4.17"
â· word (Ï â· Î¿ ⷠι ⷠο ⷠῊ ⷠΜ â· Ï â· Î¹ â· []) "Jas.4.17"
â· word (ጠⷠΌ ⷠα â· Ï â· Ï â· Î¯ ⷠα â· []) "Jas.4.17"
â· word (α â· áœ â· Ï â· á¿· â· []) "Jas.4.17"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.4.17"
ⷠword (ጠⷠγ ⷠε ⷠ[]) "Jas.5.1"
ⷠword (Μ ⷠῊ ⷠΜ ⷠ[]) "Jas.5.1"
ⷠword (ο ⷠጱ ⷠ[]) "Jas.5.1"
â· word (Ï â· âλ ⷠο â· Ï â· Ï â· Î¹ ⷠο ⷠι â· []) "Jas.5.1"
â· word (κ â· âλ ⷠα â· Ï â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.5.1"
â· word (ᜠⷠâλ ⷠο â· âλ â· Ï â· Î¶ ⷠο ⷠΜ â· Ï â· Îµ â· Ï â· []) "Jas.5.1"
â· word (áŒ â· Ï â· áœ¶ â· []) "Jas.5.1"
â· word (Ï â· Î± â· á¿ â· Ï â· []) "Jas.5.1"
â· word (Ï â· Î± â· âλ ⷠα ⷠι â· Ï â· Ï â· Ï â· Î¯ ⷠα ⷠι â· Ï â· []) "Jas.5.1"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.5.1"
â· word (Ï â· Î± â· á¿ â· Ï â· []) "Jas.5.1"
â· word (áŒ â· Ï â· Îµ â· Ï â· Ï â· Î¿ â· ÎŒ ⷠΠⷠΜ ⷠα ⷠι â· Ï â· []) "Jas.5.1"
ⷠword (ᜠⷠ[]) "Jas.5.2"
â· word (Ï â· âλ ⷠο ⷠῊ â· Ï â· Î¿ â· Ï â· []) "Jas.5.2"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.5.2"
â· word (Ï â· Î â· Ï â· Î· â· Ï â· Îµ ⷠΜ â· []) "Jas.5.2"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.2"
â· word (Ï â· áœ° â· []) "Jas.5.2"
â· word (ጱ â· ÎŒ ⷠά â· Ï â· Î¹ ⷠα â· []) "Jas.5.2"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.5.2"
â· word (Ï â· Î· â· Ï â· Ï â· Î² â· Ï â· Ï â· Ï â· Î± â· []) "Jas.5.2"
ⷠword (γ ⷠΠⷠγ ⷠο ⷠΜ ⷠε ⷠΜ ⷠ[]) "Jas.5.2"
ⷠword (ᜠⷠ[]) "Jas.5.3"
â· word (Ï â· Ï â· Ï
â· Ï â· áœž â· Ï â· []) "Jas.5.3"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.5.3"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.3"
ⷠword (ᜠⷠ[]) "Jas.5.3"
â· word (áŒ â· Ï â· Î³ â· Ï
â· Ï â· Î¿ â· Ï â· []) "Jas.5.3"
â· word (κ ⷠα â· Ï â· Î¯ â· Ï â· Ï â· Î± ⷠι â· []) "Jas.5.3"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.3"
ⷠword (ᜠⷠ[]) "Jas.5.3"
â· word (ጰ ⷠ᜞ â· Ï â· []) "Jas.5.3"
â· word (α â· áœ â· Ï â· á¿¶ ⷠΜ â· []) "Jas.5.3"
â· word (ε ⷠጰ â· Ï â· []) "Jas.5.3"
â· word (ÎŒ ⷠα â· Ï â· Ï â· Ï â· Ï â· Î¹ ⷠο ⷠΜ â· []) "Jas.5.3"
ⷠword (ᜠⷠΌ ⷠῠⷠΜ ⷠ[]) "Jas.5.3"
â· word (áŒ â· Ï â· Ï â· Î± ⷠι â· []) "Jas.5.3"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.3"
â· word (Ï â· Î¬ ⷠγ ⷠε â· Ï â· Î± ⷠι â· []) "Jas.5.3"
â· word (Ï â· áœ° â· Ï â· []) "Jas.5.3"
â· word (Ï â· Î¬ â· Ï â· Îº ⷠα â· Ï â· []) "Jas.5.3"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.5.3"
â· word (ᜡ â· Ï â· []) "Jas.5.3"
â· word (Ï â· á¿Š â· Ï â· []) "Jas.5.3"
â· word (ጠⷠΞ ⷠη â· Ï â· Î± â· Ï
â· Ï â· Î¯ â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.5.3"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.5.3"
â· word (áŒ â· Ï â· Ï â· Î¬ â· Ï â· Î± ⷠι â· Ï â· []) "Jas.5.3"
â· word (ጡ â· ÎŒ â· Î â· Ï â· Î± ⷠι â· Ï â· []) "Jas.5.3"
ⷠword (ጰ ⷠΎ ⷠο ⷠ᜺ ⷠ[]) "Jas.5.4"
ⷠword (ᜠⷠ[]) "Jas.5.4"
â· word (ÎŒ ⷠι â· Ï â· Îž ⷠ᜞ â· Ï â· []) "Jas.5.4"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.5.4"
â· word (áŒ â· Ï â· Î³ ⷠα â· Ï â· á¿¶ ⷠΜ â· []) "Jas.5.4"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.5.4"
â· word (ጠⷠΌ ⷠη â· Ï â· Î¬ ⷠΜ â· Ï â· Ï â· Îœ â· []) "Jas.5.4"
â· word (Ï â· áœ° â· Ï â· []) "Jas.5.4"
â· word (Ï â· Ï â· Ï â· Î± â· Ï â· []) "Jas.5.4"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.5.4"
ⷠword (ᜠⷠ[]) "Jas.5.4"
â· word (áŒ â· Ï â· Ï
â· Ï â· Ï â· Îµ â· Ï â· Î· â· ÎŒ ⷠΠⷠΜ ⷠο â· Ï â· []) "Jas.5.4"
â· word (áŒ â· Ï â· []) "Jas.5.4"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.5.4"
â· word (κ â· Ï â· Î¬ ⷠζ ⷠε ⷠι â· []) "Jas.5.4"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.4"
ⷠword (α ⷠጱ ⷠ[]) "Jas.5.4"
ⷠword (β ⷠο ⷠα ⷠ᜶ ⷠ[]) "Jas.5.4"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.5.4"
â· word (Ξ ⷠε â· Ï â· Î¹ â· Ï â· Î¬ ⷠΜ â· Ï â· Ï â· Îœ â· []) "Jas.5.4"
â· word (ε ⷠጰ â· Ï â· []) "Jas.5.4"
â· word (Ï â· áœ° â· []) "Jas.5.4"
â· word (ᜊ â· Ï â· Î± â· []) "Jas.5.4"
â· word (Î â· Ï
â· Ï â· Î¯ ⷠο â· Ï
â· []) "Jas.5.4"
ⷠword (Σ ⷠα ⷠβ ⷠα ⷠᜌ ⷠΞ ⷠ[]) "Jas.5.4"
â· word (ε ⷠጰ â· Ï â· Îµ â· âλ ⷠη â· âλ â· Ï â· Îž ⷠα â· Ï â· Î¹ ⷠΜ â· []) "Jas.5.4"
â· word (áŒ â· Ï â· Ï â· Ï
â· Ï â· Î® â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.5.5"
â· word (áŒ â· Ï â· áœ¶ â· []) "Jas.5.5"
â· word (Ï â· á¿ â· Ï â· []) "Jas.5.5"
â· word (γ â· á¿ â· Ï â· []) "Jas.5.5"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.5"
â· word (áŒ â· Ï â· Ï â· Î± â· Ï â· Î± â· âλ ⷠή â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.5.5"
â· word (ጠⷠΞ â· Ï â· Î â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.5.5"
â· word (Ï â· áœ° â· Ï â· []) "Jas.5.5"
â· word (κ ⷠα â· Ï â· ÎŽ ⷠί ⷠα â· Ï â· []) "Jas.5.5"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.5.5"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.5.5"
â· word (ጡ â· ÎŒ â· Î â· Ï â· áŸ³ â· []) "Jas.5.5"
â· word (Ï â· Ï â· Î± ⷠγ â· á¿ â· Ï â· []) "Jas.5.5"
â· word (κ ⷠα â· Ï â· Îµ â· ÎŽ ⷠι ⷠκ ⷠά â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.5.6"
â· word (áŒ â· Ï â· Î¿ ⷠΜ ⷠε â· Ï â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.5.6"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.5.6"
ⷠword (Ύ ⷠί ⷠκ ⷠα ⷠι ⷠο ⷠΜ ⷠ[]) "Jas.5.6"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.5.6"
â· word (ጠⷠΜ â· Ï â· Î¹ â· Ï â· Î¬ â· Ï â· Ï â· Îµ â· Ï â· Î± ⷠι â· []) "Jas.5.6"
ⷠword (ᜠⷠΌ ⷠῠⷠΜ ⷠ[]) "Jas.5.6"
â· word (Πⷠα ⷠκ â· Ï â· Î¿ ⷠΞ â· Ï
â· ÎŒ ⷠή â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.5.7"
ⷠword (ο ⷠᜠⷠΜ ⷠ[]) "Jas.5.7"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.5.7"
â· word (áŒ â· Ï â· Ï â· []) "Jas.5.7"
â· word (Ï â· á¿ â· Ï â· []) "Jas.5.7"
â· word (Ï â· Î± â· Ï â· Î¿ â· Ï
â· Ï â· Î¯ ⷠα â· Ï â· []) "Jas.5.7"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.5.7"
â· word (κ â· Ï
â· Ï â· Î¯ ⷠο â· Ï
â· []) "Jas.5.7"
ⷠword (ጰ ⷠΎ ⷠο ⷠ᜺ ⷠ[]) "Jas.5.7"
ⷠword (ᜠⷠ[]) "Jas.5.7"
â· word (γ ⷠε â· Ï â· Ï â· Î³ ⷠ᜞ â· Ï â· []) "Jas.5.7"
â· word (ጠⷠκ â· ÎŽ â· Î â· Ï â· Îµ â· Ï â· Î± ⷠι â· []) "Jas.5.7"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.5.7"
â· word (Ï â· Î¯ â· ÎŒ ⷠι ⷠο ⷠΜ â· []) "Jas.5.7"
â· word (κ ⷠα â· Ï â· Ï â· áœž ⷠΜ â· []) "Jas.5.7"
â· word (Ï â· á¿ â· Ï â· []) "Jas.5.7"
â· word (γ â· á¿ â· Ï â· []) "Jas.5.7"
â· word (ÎŒ ⷠα ⷠκ â· Ï â· Î¿ ⷠΞ â· Ï
ⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.5.7"
â· word (áŒ â· Ï â· []) "Jas.5.7"
â· word (α â· áœ â· Ï â· á¿· â· []) "Jas.5.7"
â· word (áŒ â· Ï â· Ï â· []) "Jas.5.7"
â· word (âλ ⷠά ⷠβ â· á¿ â· []) "Jas.5.7"
â· word (Ï â· Ï â· Ï â· Ï â· ÎŒ ⷠο ⷠΜ â· []) "Jas.5.7"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.7"
â· word (áœ â· Ï â· Î¹ â· ÎŒ ⷠο ⷠΜ â· []) "Jas.5.7"
â· word (ÎŒ ⷠα ⷠκ â· Ï â· Î¿ ⷠΞ â· Ï
â· ÎŒ ⷠή â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.5.8"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.8"
â· word (ᜠⷠΌ ⷠε â· á¿ â· Ï â· []) "Jas.5.8"
â· word (Ï â· Ï â· Î· â· Ï â· Î¯ ⷠΟ ⷠα â· Ï â· Îµ â· []) "Jas.5.8"
â· word (Ï â· áœ° â· Ï â· []) "Jas.5.8"
â· word (κ ⷠα â· Ï â· ÎŽ ⷠί ⷠα â· Ï â· []) "Jas.5.8"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.5.8"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.5.8"
ⷠword (ጡ ⷠ[]) "Jas.5.8"
â· word (Ï â· Î± â· Ï â· Î¿ â· Ï
â· Ï â· Î¯ ⷠα â· []) "Jas.5.8"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.5.8"
â· word (κ â· Ï
â· Ï â· Î¯ ⷠο â· Ï
â· []) "Jas.5.8"
ⷠword (ጀ ⷠγ ⷠγ ⷠι ⷠκ ⷠε ⷠΜ ⷠ[]) "Jas.5.8"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.5.9"
â· word (Ï â· Ï â· Îµ ⷠΜ ⷠά ⷠζ ⷠε â· Ï â· Îµ â· []) "Jas.5.9"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.5.9"
â· word (κ ⷠα â· Ï â· []) "Jas.5.9"
â· word (ጠⷠâλ â· âλ ⷠή â· âλ â· Ï â· Îœ â· []) "Jas.5.9"
ⷠword (ጵ ⷠΜ ⷠα ⷠ[]) "Jas.5.9"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.5.9"
â· word (κ â· Ï â· Î¹ ⷠΞ â· á¿ â· Ï â· Îµ â· []) "Jas.5.9"
ⷠword (ጰ ⷠΎ ⷠο ⷠ᜺ ⷠ[]) "Jas.5.9"
ⷠword (ᜠⷠ[]) "Jas.5.9"
â· word (κ â· Ï â· Î¹ â· Ï â· áœŽ â· Ï â· []) "Jas.5.9"
â· word (Ï â· Ï â· áœž â· []) "Jas.5.9"
â· word (Ï â· á¿¶ ⷠΜ â· []) "Jas.5.9"
â· word (Ξ â· Ï
â· Ï â· á¿¶ ⷠΜ â· []) "Jas.5.9"
â· word (áŒ â· Ï â· Ï â· Î· ⷠκ ⷠε ⷠΜ â· []) "Jas.5.9"
â· word (áœ â· Ï â· Ï â· ÎŽ ⷠε ⷠι ⷠγ â· ÎŒ ⷠα â· []) "Jas.5.10"
â· word (âλ ⷠά ⷠβ ⷠε â· Ï â· Îµ â· []) "Jas.5.10"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.5.10"
â· word (Ï â· á¿ â· Ï â· []) "Jas.5.10"
â· word (κ ⷠα ⷠκ ⷠο â· Ï â· Î± ⷠΞ ⷠί ⷠα â· Ï â· []) "Jas.5.10"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.10"
â· word (Ï â· á¿ â· Ï â· []) "Jas.5.10"
â· word (ÎŒ ⷠα ⷠκ â· Ï â· Î¿ ⷠΞ â· Ï
â· ÎŒ ⷠί ⷠα â· Ï â· []) "Jas.5.10"
â· word (Ï â· Î¿ ⷠ᜺ â· Ï â· []) "Jas.5.10"
â· word (Ï â· Ï â· Î¿ â· Ï â· Î® â· Ï â· Î± â· Ï â· []) "Jas.5.10"
ⷠword (ο ⷠጳ ⷠ[]) "Jas.5.10"
â· word (ጠⷠâλ ⷠά â· âλ ⷠη â· Ï â· Î± ⷠΜ â· []) "Jas.5.10"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.5.10"
â· word (Ï â· á¿· â· []) "Jas.5.10"
â· word (ᜠⷠΜ â· Ï â· ÎŒ ⷠα â· Ï â· Î¹ â· []) "Jas.5.10"
â· word (κ â· Ï
â· Ï â· Î¯ ⷠο â· Ï
â· []) "Jas.5.10"
ⷠword (ጰ ⷠΎ ⷠο ⷠ᜺ ⷠ[]) "Jas.5.11"
â· word (ÎŒ ⷠα ⷠκ ⷠα â· Ï â· Î¯ ⷠζ ⷠο â· ÎŒ ⷠε ⷠΜ â· []) "Jas.5.11"
â· word (Ï â· Î¿ ⷠ᜺ â· Ï â· []) "Jas.5.11"
â· word (áœ â· Ï â· Î¿ â· ÎŒ ⷠε ⷠί ⷠΜ ⷠα ⷠΜ â· Ï â· Î± â· Ï â· []) "Jas.5.11"
â· word (Ï â· áœŽ ⷠΜ â· []) "Jas.5.11"
â· word (áœ â· Ï â· Î¿ â· ÎŒ ⷠο ⷠΜ ⷠᜎ ⷠΜ â· []) "Jas.5.11"
ⷠword (ጞ ⷠᜌ ⷠβ ⷠ[]) "Jas.5.11"
â· word (ጠⷠκ ⷠο â· Ï â· Ï â· Î± â· Ï â· Îµ â· []) "Jas.5.11"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.11"
â· word (Ï â· áœž â· []) "Jas.5.11"
â· word (Ï â· Î â· âλ ⷠο â· Ï â· []) "Jas.5.11"
â· word (κ â· Ï
â· Ï â· Î¯ ⷠο â· Ï
â· []) "Jas.5.11"
â· word (ε ⷠጎ â· ÎŽ ⷠε â· Ï â· Îµ â· []) "Jas.5.11"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.5.11"
â· word (Ï â· Î¿ â· âλ â· Ï â· Ï â· Ï â· âλ ⷠα ⷠγ â· Ï â· Îœ â· Ï â· Ï â· []) "Jas.5.11"
â· word (áŒ â· Ï â· Ï â· Î¹ ⷠΜ â· []) "Jas.5.11"
ⷠword (ᜠⷠ[]) "Jas.5.11"
â· word (κ â· Ï â· Ï â· Î¹ ⷠο â· Ï â· []) "Jas.5.11"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.11"
â· word (ο ⷠጰ ⷠκ â· Ï â· Î¯ â· Ï â· ÎŒ â· Ï â· Îœ â· []) "Jas.5.11"
â· word (Î â· Ï â· áœž â· []) "Jas.5.12"
â· word (Ï â· Î¬ ⷠΜ â· Ï â· Ï â· Îœ â· []) "Jas.5.12"
â· word (ÎŽ â· Î â· []) "Jas.5.12"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.5.12"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.5.12"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.5.12"
â· word (ᜠⷠΌ ⷠΜ â· Ï â· Îµ â· Ï â· Îµ â· []) "Jas.5.12"
â· word (ÎŒ ⷠή â· Ï â· Îµ â· []) "Jas.5.12"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.5.12"
â· word (ο â· áœ â· Ï â· Î± ⷠΜ ⷠ᜞ ⷠΜ â· []) "Jas.5.12"
â· word (ÎŒ ⷠή â· Ï â· Îµ â· []) "Jas.5.12"
â· word (Ï â· áœŽ ⷠΜ â· []) "Jas.5.12"
ⷠword (γ ⷠῠⷠΜ ⷠ[]) "Jas.5.12"
â· word (ÎŒ ⷠή â· Ï â· Îµ â· []) "Jas.5.12"
â· word (ጠⷠâλ â· âλ ⷠο ⷠΜ â· []) "Jas.5.12"
â· word (Ï â· Î¹ ⷠΜ ⷠᜰ â· []) "Jas.5.12"
â· word (áœ
â· Ï â· Îº ⷠο ⷠΜ â· []) "Jas.5.12"
â· word (ጀ â· Ï â· Ï â· []) "Jas.5.12"
ⷠword (Ύ ⷠᜲ ⷠ[]) "Jas.5.12"
ⷠword (ᜠⷠΌ ⷠῶ ⷠΜ ⷠ[]) "Jas.5.12"
â· word (Ï â· áœž â· []) "Jas.5.12"
ⷠword (Πⷠα ⷠ᜶ ⷠ[]) "Jas.5.12"
ⷠword (Μ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.12"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.12"
â· word (Ï â· áœž â· []) "Jas.5.12"
ⷠword (Πⷠᜠⷠ[]) "Jas.5.12"
ⷠword (ο ⷠᜠⷠ[]) "Jas.5.12"
ⷠword (ጵ ⷠΜ ⷠα ⷠ[]) "Jas.5.12"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.5.12"
â· word (áœ â· Ï â· áœž â· []) "Jas.5.12"
â· word (κ â· Ï â· Î¯ â· Ï â· Î¹ ⷠΜ â· []) "Jas.5.12"
â· word (Ï â· Î â· Ï â· Î· â· Ï â· Îµ â· []) "Jas.5.12"
â· word (Πⷠα ⷠκ ⷠο â· Ï â· Î± ⷠΞ ⷠε â· á¿ â· []) "Jas.5.13"
â· word (Ï â· Î¹ â· Ï â· []) "Jas.5.13"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.5.13"
ⷠword (ᜠⷠΌ ⷠῠⷠΜ ⷠ[]) "Jas.5.13"
â· word (Ï â· Ï â· Î¿ â· Ï â· Îµ â· Ï
â· Ï â· Î â· Ï â· Îž â· Ï â· []) "Jas.5.13"
â· word (ε ⷠᜠⷠΞ â· Ï
ⷠΌ ⷠε ⷠῠⷠ[]) "Jas.5.13"
â· word (Ï â· Î¹ â· Ï â· []) "Jas.5.13"
â· word (Ï â· Î± â· âλ â· âλ â· Î â· Ï â· Ï â· []) "Jas.5.13"
â· word (áŒ â· Ï â· Îž ⷠε ⷠΜ ⷠε â· á¿ â· []) "Jas.5.14"
â· word (Ï â· Î¹ â· Ï â· []) "Jas.5.14"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.5.14"
ⷠword (ᜠⷠΌ ⷠῠⷠΜ ⷠ[]) "Jas.5.14"
â· word (Ï â· Ï â· Î¿ â· Ï â· Îº ⷠα â· âλ ⷠε â· Ï â· Î¬ â· Ï â· Îž â· Ï â· []) "Jas.5.14"
â· word (Ï â· Î¿ ⷠ᜺ â· Ï â· []) "Jas.5.14"
â· word (Ï â· Ï â· Îµ â· Ï â· Î² â· Ï
â· Ï â· Î â· Ï â· Î¿ â· Ï
â· Ï â· []) "Jas.5.14"
â· word (Ï â· á¿ â· Ï â· []) "Jas.5.14"
â· word (ጠⷠκ ⷠκ â· âλ ⷠη â· Ï â· Î¯ ⷠα â· Ï â· []) "Jas.5.14"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.14"
â· word (Ï â· Ï â· Î¿ â· Ï â· Îµ â· Ï
ⷠΟ ⷠά â· Ï â· Îž â· Ï â· Ï â· Î± ⷠΜ â· []) "Jas.5.14"
â· word (áŒ â· Ï â· []) "Jas.5.14"
â· word (α â· áœ â· Ï â· áœž ⷠΜ â· []) "Jas.5.14"
â· word (ጠⷠâλ ⷠε ⷠί â· Ï â· Î± ⷠΜ â· Ï â· Îµ â· Ï â· []) "Jas.5.14"
â· word (α â· áœ â· Ï â· áœž ⷠΜ â· []) "Jas.5.14"
â· word (ጠⷠâλ ⷠα ⷠί ⷠῳ â· []) "Jas.5.14"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.5.14"
â· word (Ï â· á¿· â· []) "Jas.5.14"
â· word (ᜠⷠΜ â· Ï â· ÎŒ ⷠα â· Ï â· Î¹ â· []) "Jas.5.14"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.5.14"
â· word (κ â· Ï
â· Ï â· Î¯ ⷠο â· Ï
â· []) "Jas.5.14"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.15"
ⷠword (ጡ ⷠ[]) "Jas.5.15"
â· word (ε â· áœ â· Ï â· áœŽ â· []) "Jas.5.15"
â· word (Ï â· á¿ â· Ï â· []) "Jas.5.15"
â· word (Ï â· Î¯ â· Ï â· Ï â· Îµ â· Ï â· Ï â· []) "Jas.5.15"
â· word (Ï â· Ï â· Ï â· Îµ ⷠι â· []) "Jas.5.15"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.5.15"
â· word (κ ⷠά â· ÎŒ ⷠΜ ⷠο ⷠΜ â· Ï â· Î± â· []) "Jas.5.15"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.15"
â· word (ጠⷠγ ⷠε â· Ï â· Îµ â· á¿ â· []) "Jas.5.15"
â· word (α â· áœ â· Ï â· áœž ⷠΜ â· []) "Jas.5.15"
ⷠword (ᜠⷠ[]) "Jas.5.15"
â· word (κ â· Ï â· Ï â· Î¹ ⷠο â· Ï â· []) "Jas.5.15"
ⷠword (κ ⷠጠⷠΜ ⷠ[]) "Jas.5.15"
â· word (ጠⷠΌ ⷠα â· Ï â· Ï â· Î¯ ⷠα â· Ï â· []) "Jas.5.15"
ⷠword (០ⷠ[]) "Jas.5.15"
â· word (Ï â· Îµ â· Ï â· Î¿ ⷠι ⷠη ⷠκ â· Ï â· Ï â· []) "Jas.5.15"
â· word (áŒ â· Ï â· Îµ ⷠΞ ⷠή â· Ï â· Îµ â· Ï â· Î± ⷠι â· []) "Jas.5.15"
â· word (α â· áœ â· Ï â· á¿· â· []) "Jas.5.15"
â· word (ጠⷠΟ ⷠο â· ÎŒ ⷠο â· âλ ⷠο ⷠγ ⷠε â· á¿ â· Ï â· Îž ⷠε â· []) "Jas.5.16"
ⷠword (ο ⷠᜠⷠΜ ⷠ[]) "Jas.5.16"
â· word (ጠⷠâλ â· âλ ⷠή â· âλ ⷠο ⷠι â· Ï â· []) "Jas.5.16"
â· word (Ï â· áœ° â· Ï â· []) "Jas.5.16"
â· word (ጠⷠΌ ⷠα â· Ï â· Ï â· Î¯ ⷠα â· Ï â· []) "Jas.5.16"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.16"
â· word (ε â· áœ â· Ï â· Îµ â· Ï â· Îž ⷠε â· []) "Jas.5.16"
â· word (áœ â· Ï â· áœ² â· Ï â· []) "Jas.5.16"
â· word (ጠⷠâλ â· âλ ⷠή â· âλ â· Ï â· Îœ â· []) "Jas.5.16"
â· word (áœ
â· Ï â· Ï â· Ï â· []) "Jas.5.16"
â· word (ጰ ⷠα ⷠΞ â· á¿ â· Ï â· Îµ â· []) "Jas.5.16"
â· word (Ï â· Î¿ â· âλ ⷠ᜺ â· []) "Jas.5.16"
â· word (ጰ â· Ï â· Ï â· Ï â· Îµ ⷠι â· []) "Jas.5.16"
â· word (ÎŽ ⷠΠⷠη â· Ï â· Î¹ â· Ï â· []) "Jas.5.16"
â· word (ÎŽ ⷠι ⷠκ ⷠα ⷠί ⷠο â· Ï
â· []) "Jas.5.16"
â· word (ጠⷠΜ ⷠε â· Ï â· Î³ ⷠο â· Ï
ⷠΌ ⷠΠⷠΜ ⷠη ⷠ[]) "Jas.5.16"
â· word (ጚ â· âλ ⷠί ⷠα â· Ï â· []) "Jas.5.17"
â· word (ጠⷠΜ ⷠΞ â· Ï â· Ï â· Ï â· Î¿ â· Ï â· []) "Jas.5.17"
ⷠword (ጊ ⷠΜ ⷠ[]) "Jas.5.17"
â· word (ᜠⷠΌ ⷠο ⷠι ⷠο â· Ï â· Î± ⷠΞ ⷠᜎ â· Ï â· []) "Jas.5.17"
ⷠword (ጡ ⷠΌ ⷠῠⷠΜ ⷠ[]) "Jas.5.17"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.17"
â· word (Ï â· Ï â· Î¿ â· Ï â· Îµ â· Ï
â· Ï â· á¿ â· []) "Jas.5.17"
â· word (Ï â· Ï â· Î¿ â· Ï â· Î· â· Ï â· ÎŸ ⷠα â· Ï â· Î¿ â· []) "Jas.5.17"
â· word (Ï â· Î¿ ⷠῊ â· []) "Jas.5.17"
ⷠword (Ό ⷠᜎ ⷠ[]) "Jas.5.17"
â· word (β â· Ï â· Î â· ÎŸ ⷠα ⷠι â· []) "Jas.5.17"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.17"
ⷠword (ο ⷠᜠⷠκ ⷠ[]) "Jas.5.17"
â· word (ጠⷠβ â· Ï â· Îµ ⷠΟ ⷠε ⷠΜ â· []) "Jas.5.17"
â· word (áŒ â· Ï â· áœ¶ â· []) "Jas.5.17"
â· word (Ï â· á¿ â· Ï â· []) "Jas.5.17"
â· word (γ â· á¿ â· Ï â· []) "Jas.5.17"
â· word (ጠⷠΜ ⷠι ⷠα â· Ï
â· Ï â· Î¿ ⷠ᜺ â· Ï â· []) "Jas.5.17"
â· word (Ï â· Ï â· Îµ â· á¿ â· Ï â· []) "Jas.5.17"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.17"
â· word (ÎŒ ⷠῠⷠΜ ⷠα â· Ï â· []) "Jas.5.17"
ⷠword (ጠⷠΟ ⷠ[]) "Jas.5.17"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.18"
â· word (Ï â· Î¬ â· âλ ⷠι ⷠΜ â· []) "Jas.5.18"
â· word (Ï â· Ï â· Î¿ â· Ï â· Î· â· Ï â· ÎŸ ⷠα â· Ï â· Î¿ â· []) "Jas.5.18"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.18"
ⷠword (ᜠⷠ[]) "Jas.5.18"
â· word (ο â· áœ â· Ï â· Î± ⷠΜ ⷠ᜞ â· Ï â· []) "Jas.5.18"
â· word (ᜠⷠε â· Ï â· áœž ⷠΜ â· []) "Jas.5.18"
â· word (ጠⷠΎ â· Ï â· Îº ⷠε ⷠΜ â· []) "Jas.5.18"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.18"
ⷠword (ጡ ⷠ[]) "Jas.5.18"
ⷠword (γ ⷠῠⷠ[]) "Jas.5.18"
â· word (ጠⷠβ â· âλ ⷠά â· Ï â· Ï â· Î· â· Ï â· Îµ ⷠΜ â· []) "Jas.5.18"
â· word (Ï â· áœž ⷠΜ â· []) "Jas.5.18"
â· word (κ ⷠα â· Ï â· Ï â· áœž ⷠΜ â· []) "Jas.5.18"
â· word (α â· áœ â· Ï â· á¿ â· Ï â· []) "Jas.5.18"
â· word (ጠⷠΎ ⷠε â· âλ â· Ï â· Î¿ ⷠί â· []) "Jas.5.19"
â· word (ÎŒ ⷠο â· Ï
â· []) "Jas.5.19"
ⷠword (ጠⷠά ⷠΜ ⷠ[]) "Jas.5.19"
â· word (Ï â· Î¹ â· Ï â· []) "Jas.5.19"
ⷠword (ጠⷠΜ ⷠ[]) "Jas.5.19"
ⷠword (ᜠⷠΌ ⷠῠⷠΜ ⷠ[]) "Jas.5.19"
â· word (Ï â· âλ ⷠα ⷠΜ ⷠη ⷠΞ â· á¿ â· []) "Jas.5.19"
â· word (áŒ â· Ï â· áœž â· []) "Jas.5.19"
â· word (Ï â· á¿ â· Ï â· []) "Jas.5.19"
â· word (ጠⷠâλ ⷠη ⷠΞ ⷠε ⷠί ⷠα â· Ï â· []) "Jas.5.19"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.19"
â· word (áŒ â· Ï â· Î¹ â· Ï â· Ï â· Ï â· Î â· Ï â· á¿ â· []) "Jas.5.19"
â· word (Ï â· Î¹ â· Ï â· []) "Jas.5.19"
â· word (α â· áœ â· Ï â· Ï â· Îœ â· []) "Jas.5.19"
â· word (γ ⷠι ⷠΜ â· Ï â· Ï â· Îº â· Î â· Ï â· Ï â· []) "Jas.5.20"
â· word (áœ
â· Ï â· Î¹ â· []) "Jas.5.20"
ⷠword (ᜠⷠ[]) "Jas.5.20"
â· word (áŒ â· Ï â· Î¹ â· Ï â· Ï â· Ï â· Î â· Ï â· Î± â· Ï â· []) "Jas.5.20"
â· word (ጠⷠΌ ⷠα â· Ï â· Ï â· Ï â· âλ ⷠ᜞ ⷠΜ â· []) "Jas.5.20"
ⷠword (ጠⷠκ ⷠ[]) "Jas.5.20"
â· word (Ï â· âλ ⷠά ⷠΜ ⷠη â· Ï â· []) "Jas.5.20"
ⷠword (ᜠⷠΎ ⷠο ⷠῊ ⷠ[]) "Jas.5.20"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.5.20"
â· word (Ï â· Ï â· Ï â· Îµ ⷠι â· []) "Jas.5.20"
â· word (Ï â· Ï
â· Ï â· áœŽ ⷠΜ â· []) "Jas.5.20"
â· word (α â· áœ â· Ï â· Î¿ ⷠῊ â· []) "Jas.5.20"
ⷠword (ጠⷠκ ⷠ[]) "Jas.5.20"
â· word (Ξ ⷠα ⷠΜ ⷠά â· Ï â· Î¿ â· Ï
â· []) "Jas.5.20"
ⷠword (κ ⷠα ⷠ᜶ ⷠ[]) "Jas.5.20"
â· word (κ ⷠα â· âλ â· Ï â· Ï â· Îµ ⷠι â· []) "Jas.5.20"
â· word (Ï â· âλ ⷠῠⷠΞ ⷠο â· Ï â· []) "Jas.5.20"
â· word (ጠⷠΌ ⷠα â· Ï â· Ï â· Î¹ â· á¿¶ ⷠΜ â· []) "Jas.5.20"
â· []
|
module Logic.Equivalence where
import Logic.Relations
open Logic.Relations
record Equivalence (A : Set) : Set1 where
field
_==_ : Rel A
refl : Reflexive _==_
sym : Symmetric _==_
trans : Transitive _==_
|
{-# OPTIONS --cubical --no-import-sorts #-}
module MorePropAlgebra where
open import MorePropAlgebra.Definitions public
open import MorePropAlgebra.Structures public
open import MorePropAlgebra.Bundles public
open import MorePropAlgebra.Consequences public
|
module _ where
primitive
primGlue : _
|
open import Relation.Binary using (Preorder)
open import Relation.Binary.PropositionalEquality
module Category.Monad.Monotone {â}(pre : Preorder â â â) where
open Preorder pre renaming (Carrier to I; _âŒ_ to _â€_; refl to â€-refl)
open import Function
open import Level
open import Relation.Unary
open import Relation.Unary.Monotone pre
open import Relation.Unary.Monotone.Prefix
open import Relation.Unary.PredicateTransformer using (Pt)
open import Category.Monad.Predicate
open import Data.List
open import Data.Product
open import Data.List.All
record RawMPMonad (M : Pt I â) : Set (suc â) where
infixl 1 _â¥=_
field
return : â {P} â P â M P
_â¥=_ : â {P Q} â M P â ((P â M Q) â M Q)
-- we get the predicate-monad bind for free
_>>=_ : â {P Q} â M P â (λ i â (P â M Q) â M Q i)
c >>= f = c â¥= λ iâ€j pj â f pj
-- which is only useful because we also get monadic strength for free:
infixl 10 _^_
_^_ : â {P Q : Pred I â}⊠m : Monotone Q ⊠â M P â (Q â M (P â© Q))
c ^ qi = c â¥= λ {j} xâ€j pj â return (pj , wk xâ€j qi)
ts : â {P : Pred I â} Q ⊠m : Monotone Q ⊠â M P â (Q â M (P â© Q))
ts _ c qi = c ^ qi
mapM : â {P Q} â M P â ((P â Q) â M Q)
mapM m f = m â¥= (λ w p â return (f w p))
sequenceMâ² : â {A : Set â}{P : A â Pred I â}{as} ⊠mp : â {a} â Monotone (P a) ⊠{i k} â i †k â
All (λ a â ââ¥[ M (P a) ] i) as â M (λ j â All (λ a â P a j) as) k
sequenceMâ² _ [] = return []
sequenceMⲠ{P}⊠mp ⊠le (x ⷠxs) = do
px , le â x le ^ le
pxs , px â sequenceMâ² le xs ^ px
return (px â· pxs)
sequenceM : â {A : Set â}{P : A â Pred I â}{as} ⊠mp : â {a} â Monotone (P a) ⊠{i} â
All (λ a â ââ¥[ M (P a) ] i) as â M (λ j â All (λ a â P a j) as) i
sequenceM = sequenceMâ² â€-refl
pmonad : RawPMonad {â = â} M
pmonad = record
{ return? = return
; _=<?_ = λ f px â px >>= f }
|
module my-bool-test where
open import bool
open import eq
open import level
~~tt : ~ ~ tt â¡ tt
~~tt = refl
~~ff : ~ ~ ff â¡ ff
~~ff = refl
{-
~~-elim : â (b : ð¹) â ~ ~ b â¡ b
~~-elim tt = refl
~~-elim ff = refl
-}
~~-elim2 : â (b : ð¹) â ~ ~ b â¡ b
~~-elim2 tt = ~~tt
~~-elim2 ff = ~~ff
~~tt' : ~ ~ tt â¡ tt
~~tt' = refl{lzero}{ð¹}{tt}
~~ff' : ~ ~ ff â¡ ff
~~ff' = refl{lzero}{ð¹}{ff}
~~-elim : â (b : ð¹) â ~ ~ b â¡ b
~~-elim tt = refl
~~-elim ff = refl
||â¡ffâ : â {b1 b2} â b1 || b2 â¡ ff â b1 â¡ ff
||â¡ffâ {ff} _ = refl{lzero}{ð¹}{ff}
||â¡ffâ {tt} ()
||â¡ffâ : â {b1 b2} â b1 || b2 â¡ ff â ff â¡ b1
||â¡ffâ {ff} _ = refl{lzero}{ð¹}{ff}
||â¡ffâ {tt} p = sym p
||-congâ : â {b1 b1' b2} â b1 â¡ b1' â b1 || b2 â¡ b1' || b2
||-congâ{b1}{.b1}{b2} refl = refl
||-congâ : â {b1 b2 b2'} â b2 â¡ b2' â b1 || b2 â¡ b1 || b2'
||-congâ p rewrite p = refl
ite-same : â{â}{A : Set â} â
â(b : ð¹) (x : A) â
(if b then x else x) â¡ x
ite-same tt x = refl
ite-same ff x = refl
ð¹-contra : ff â¡ tt â â {P : Set} â P
ð¹-contra ()
p : ff && ff â¡ ~ tt
p = refl
|
module PatternSynonymAmbiguousParse where
data X : Set where
if_then_else_ : X -> X -> X -> X
if_then_ : X -> X -> X
x : X
pattern bad x = if x then if x then x else x
|
------------------------------------------------------------------------
-- Laws related to D
------------------------------------------------------------------------
module TotalParserCombinators.Laws.Derivative where
open import Algebra
open import Codata.Musical.Notation
open import Data.List
import Data.List.Categorical as List
import Data.List.Relation.Binary.BagAndSetEquality as BSEq
open import Data.Maybe using (Maybe); open Data.Maybe.Maybe
open import Function using (_â_; _$_)
private
module BagMonoid {k} {A : Set} =
CommutativeMonoid (BSEq.commutativeMonoid k A)
open import TotalParserCombinators.Derivative
open import TotalParserCombinators.Congruence as Eq
hiding (return; fail)
import TotalParserCombinators.Laws.AdditiveMonoid as AdditiveMonoid
open import TotalParserCombinators.Lib
open import TotalParserCombinators.Parser
-- Unfolding lemma for D applied to returnâ.
D-returnâ : â {Tok R t} (xs : List R) â
D t (returnâ xs) â
P fail {Tok = Tok}
D-returnâ [] = fail â
D-returnâ {t = t} (x â· xs) =
fail ⣠D t (returnâ xs) â
âš AdditiveMonoid.left-identity (D t (returnâ xs)) â©
D t (returnâ xs) â
âš D-returnâ xs â©
fail â
mutual
-- Unfolding lemma for D applied to _â_.
D-â : â {Tok Râ Râ fs xs t}
(pâ : ââš xs â©Parser Tok (Râ â Râ) (flatten fs))
(pâ : ââš fs â©Parser Tok Râ (flatten xs)) â
D t (pâ â pâ) â
P
D t (â? pâ) â â? pâ ⣠returnâ (flatten fs) â D t (â? pâ)
D-â {fs = nothing} {xs = just _} {t = t} pâ pâ =
D t pâ â â pâ â
âš sym $ AdditiveMonoid.right-identity (D t pâ â â pâ) â©
D t pâ â â pâ ⣠fail â
âš (D t pâ â â pâ â) ⣠sym (left-zero-â (D t (â pâ))) â©
D t pâ â â pâ ⣠fail â D t (â pâ) â
D-â {fs = nothing} {xs = nothing} {t = t} pâ pâ =
D t (pâ â pâ) â
âš [ â - â - â - â ] D t (â pâ) â â (â pâ â) â©
D t (â pâ) â â pâ â
âš sym $ AdditiveMonoid.right-identity (D t (â pâ) â â pâ) â©
D t (â pâ) â â pâ ⣠fail â
âš (D t (â pâ) â â pâ â) ⣠sym (left-zero-â (D t (â pâ))) â©
D t (â pâ) â â pâ ⣠fail â D t (â pâ) â
D-â {fs = just _} {xs = just _} {t = t} pâ pâ =
D t (pâ â pâ) â
D-â {fs = just fs} {xs = nothing} {t = t} pâ pâ =
D t (pâ â pâ) â
âš [ â - â - â - â ] D t (â pâ) â â (pâ â) â£
(returnâ fs â D t pâ â) â©
D t (â pâ) â pâ ⣠returnâ fs â D t pâ â
-- fail is a left zero of â.
left-zero-â : â {Tok Râ Râ xs} (p : Parser Tok Râ xs) â
fail â p â
P fail {R = Râ}
left-zero-â {xs = xs} p =
BagMonoid.reflexive (List.Applicative.left-zero xs) ⷠλ t â ⯠(
D t (fail â p) â
âš D-â fail p â©
fail â p ⣠fail â D t p â
âš left-zero-â p ⣠left-zero-â (D t p) â©
fail ⣠fail â
âš AdditiveMonoid.right-identity fail â©
fail â)
-- fail is a right zero of â.
right-zero-â : â {Tok Râ Râ fs} (p : Parser Tok (Râ â Râ) fs) â
p â fail â
P fail
right-zero-â {fs = fs} p =
BagMonoid.reflexive (List.Applicative.right-zero fs) ⷠλ t â ⯠(
D t (p â fail) â
âš D-â p fail â©
D t p â fail ⣠returnâ fs â fail â
âš right-zero-â (D t p) ⣠right-zero-â (returnâ fs) â©
fail ⣠fail â
âš AdditiveMonoid.left-identity fail â©
fail â)
-- A simplified instance of D-â.
D-return-â : â {Tok Râ Râ xs t}
(f : Râ â Râ) (p : Parser Tok Râ xs) â
D t (return f â p) â
P return f â D t p
D-return-â {t = t} f p =
D t (return f â p) â
âš D-â (return f) p â©
fail â p ⣠returnâ [ f ] â D t p â
âš left-zero-â p â£
[ â - â - â - â ] AdditiveMonoid.right-identity (return f) â (D t p â) â©
fail ⣠return f â D t p â
âš AdditiveMonoid.left-identity (return f â D t p) â©
return f â D t p â
mutual
-- Unfolding lemma for D applied to _>>=_.
D->>= : â {Tok Râ Râ xs t} {f : Maybe (Râ â List Râ)}
(pâ : ââš f â©Parser Tok Râ (flatten xs))
(pâ : (x : Râ) â ââš xs â©Parser Tok Râ (apply f x)) â
D t (pâ >>= pâ) â
P
D t (â? pâ) >>= (â? â pâ) â£
returnâ (flatten xs) >>= (λ x â D t (â? (pâ x)))
D->>= {xs = nothing} {t = t} {f = just _} pâ pâ =
D t pâ >>= (â â pâ) â
âš sym $ AdditiveMonoid.right-identity (D t pâ >>= (â â pâ)) â©
D t pâ >>= (â â pâ) ⣠fail â
âš (D t pâ >>= (â â pâ) â) â£
sym (left-zero->>= (λ x â D t (â (pâ x)))) â©
D t pâ >>= (â â pâ) ⣠fail >>= (λ x â D t (â (pâ x))) â
D->>= {xs = just xs} {t = t} {f = just _} pâ pâ =
D t pâ >>= pâ ⣠returnâ xs >>= (λ x â D t (pâ x)) â
D->>= {xs = nothing} {t = t} {f = nothing} pâ pâ =
D t (pâ >>= pâ) â
âš [ â - â - â - â ] _ â >>= (λ _ â _ â) â©
D t (â pâ) >>= (â â pâ) â
âš sym $ AdditiveMonoid.right-identity (D t (â pâ) >>= (â â pâ)) â©
D t (â pâ) >>= (â â pâ) ⣠fail â
âš (D t (â pâ) >>= (â â pâ) â) â£
sym (left-zero->>= (λ x â D t (â (pâ x)))) â©
D t (â pâ) >>= (â â pâ) ⣠fail >>= (λ x â D t (â (pâ x))) â
D->>= {xs = just xs} {t = t} {f = nothing} pâ pâ =
D t (pâ >>= pâ) â
âš [ â - â - â - â ] _ â >>= (λ _ â _ â) ⣠(_ â) â©
D t (â pâ) >>= pâ ⣠returnâ xs >>= (λ x â D t (pâ x)) â
-- fail is a left zero of _>>=_.
left-zero->>= : â {Tok Râ Râ} {f : Râ â List Râ}
(p : (x : Râ) â Parser Tok Râ (f x)) â
fail >>= p â
P fail
left-zero->>= {f = f} p =
BagMonoid.reflexive (List.MonadProperties.left-zero f) ⷠλ t â ⯠(
D t (fail >>= p) â
âš D->>= {t = t} fail p â©
fail >>= p ⣠fail >>= (λ x â D t (p x)) â
âš left-zero->>= p ⣠left-zero->>= (λ x â D t (p x)) â©
fail ⣠fail â
âš AdditiveMonoid.right-identity fail â©
fail â)
-- fail is a right zero of _>>=_.
right-zero->>= : â {Tok Râ Râ} {xs : List Râ}
(p : Parser Tok Râ xs) â
p >>= (λ _ â fail) â
P fail {Tok = Tok} {R = Râ}
right-zero->>= {xs = xs} p =
BagMonoid.reflexive (List.MonadProperties.right-zero xs) ⷠλ t â ⯠(
D t (p >>= λ _ â fail) â
âš D->>= p (λ _ â fail) â©
D t p >>= (λ _ â fail) ⣠returnâ xs >>= (λ _ â fail) â
âš right-zero->>= (D t p) ⣠right-zero->>= (returnâ xs) â©
fail ⣠fail â
âš AdditiveMonoid.left-identity fail â©
fail â)
|
------------------------------------------------------------------------------
-- Properties of streams of total natural numbers
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.Nat.Stream.PropertiesI where
open import FOT.FOTC.Data.Nat.Stream.Type
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
postulate
zeros : D
zeros-eq : zeros â¡ zero â· zeros
zeros-StreamN : StreamN zeros
zeros-StreamN = StreamN-coind A h refl
where
A : D â Set
A xs = xs â¡ zeros
h : â {ns} â A ns â â[ n' ] â[ ns' ] N n' â§ A ns' â§ ns â¡ n' â· ns'
h Ans = zero , zeros , nzero , refl , (trans Ans zeros-eq)
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
{-# OPTIONS --allow-unsolved-metas #-}
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Base.PKCS
open import LibraBFT.Base.Types
open import LibraBFT.Abstract.Types -- TODO-2: remove this, see comment below
open import LibraBFT.Yasm.AvailableEpochs using (AvailableEpochs) renaming (lookup'' to EC-lookup)
import LibraBFT.Yasm.AvailableEpochs as AE
open import LibraBFT.Yasm.Base
-- This module defines a model of a distributed system, parameterized by
-- SystemParameters, which establishes various application-dependent types,
-- handlers, etc. The model supports a set of peers executing handlers in
-- response to messages received; these handlers can update the peer's
-- local state and/or send additional messages. The model also enables
-- "cheat" steps, which can send arbitrary messages, except that they are
-- constrained to prevent a cheat step from introducing a new signature for
-- an "honest" public key. The module also contains some structures for
-- proving properties of executions of the modeled system.
module LibraBFT.Yasm.System (parms : SystemParameters) where
open SystemParameters parms
-- TODO-2: The System model currently depends on a specific EpochConfig
-- type, which is imported from LibraBFT-specific types. However, the
-- system model should be entirely application-independent. Therefore, we
-- should factor EpochConfig out of Yasm, and have the SystemParameters
-- include an EpochConfig type and a way to query whether a given peer is
-- a member of the represented epoch, and if so, with what associated PK.
open EpochConfig
PeerId : Set -- TODO-2: When we factor EpochConfig out of here (see
-- comment above), PeerId will be a parameter to
-- SystemParameters; for now, it's NodeId to make it
-- compatible with everything else.
PeerId = NodeId
SenderMsgPair : Set
SenderMsgPair = PeerId à Msg
SentMessages : Set
SentMessages = List SenderMsgPair
-- The model supports sending messages that contain some fields that are
-- /not/ covered by the message's signature. Therefore, given a message
-- with a verifiable signature, it is possible for a propositionally
-- different message that verifies against the same signature to have been
-- sent before, which is captured by the following definition.
record MsgWithSigâ (pk : PK)(sig : Signature)(pool : SentMessages) : Set where
constructor mkMsgWithSigâ
field
msgWhole : Msg
msgPart : Part
msgâ : msgPart âMsg msgWhole
msgSender : PeerId
msgâpool : (msgSender , msgWhole) â pool
msgSigned : WithVerSig pk msgPart
msgSameSig : ver-signature msgSigned â¡ sig
open MsgWithSigâ public
postulate -- TODO-1: prove it
MsgWithSigâ? : â {pk} {sig} {pool} â Dec (MsgWithSigâ pk sig pool)
MsgWithSigâ-++ʳ : â{pk sig pool ms} â MsgWithSigâ pk sig pool â MsgWithSigâ pk sig (ms ++ pool)
MsgWithSigâ-++ʳ {ms = pre} msig = record
{ msgWhole = msgWhole msig
; msgPart = msgPart msig
; msgâ = msgâ msig
; msgâpool = Any-++ʳ pre (msgâpool msig)
; msgSigned = msgSigned msig
; msgSameSig = msgSameSig msig
}
MsgWithSigâ-++Ë¡ : â{pk sig pool ms} â MsgWithSigâ pk sig ms â MsgWithSigâ pk sig (ms ++ pool)
MsgWithSigâ-++Ë¡ {ms = pre} msig = record
{ msgWhole = msgWhole msig
; msgPart = msgPart msig
; msgâ = msgâ msig
; msgâpool = Any-++Ë¡ (msgâpool msig)
; msgSigned = msgSigned msig
; msgSameSig = msgSameSig msig
}
MsgWithSigâ-transp : â{pk sig pool pool'}
â (mws : MsgWithSigâ pk sig pool)
â (msgSender mws , msgWhole mws) â pool'
â MsgWithSigâ pk sig pool'
MsgWithSigâ-transp msig âpool' = record
{ msgWhole = msgWhole msig
; msgPart = msgPart msig
; msgâ = msgâ msig
; msgâpool = âpool'
; msgSigned = msgSigned msig
; msgSameSig = msgSameSig msig
}
-- * Forbidding the Forging of Signatures
--
-- Whenever our reasoning must involve digital signatures, it is standard
-- to talk about EUF-CMA resistant signature schemes. Informally, this captures
-- signatures schemes that cannot be compromised by certain adversaries.
-- Formally, it means that for any probabilistic-polynomial-time adversary ð,
-- and some security parameter k:
--
-- Pr[ EUF-CMA(k) ] †ε(k) for ε a negigible function.
--
-- EUF-CMA is defined as:
--
-- EUF-CMA(k): | O(m):
-- L â â
| Ï â Sign(sk , m)
-- (pk, sk) â Gen(k) | L â L ⪠{ m }
-- (m , Ï) â ðᎌ(pk) | return Ï
-- return (Verify(pk, m, Ï) â§ m â L) |
--
-- This says that ð cannot create a message that has /not yet been signed/ and
-- forge a signature for it. The list 'L' keeps track of the messages that ð
-- asked to be signed by the oracle.
--
-- Because the probability of the adversary to win the EUF-CMA(k) game
-- approaches 0 as k increases; it is reasonable to assume that winning
-- the game is /impossible/ for realistic security parameters.
--
-- EUF-CMA security is incorporated into our model by constraining messages
-- sent by a cheat step to ensure that for every verifiably signed part of
-- such a message, if there is a signature on the part, then it is either for
-- a dishonest public key (in which cases it's secret key may have been leaked),
-- or a message has been sent with the same signature before (in which case the
-- signature is simply being "replayed" from a previous message).
--
-- Dishonest (or "cheat") messages are those that are not the result of
-- a /handle/ or /init/ call, but rather are the result of a /cheat/ step.
--
-- A part of a cheat message can contain a verifiable signature only if it
-- is for a dishonest public key, or a message with the same signature has
-- been sent before (a cheater can "reuse" an honest signature sent
-- before; it just can't produce a new one). Note that this constraint
-- precludes a peer sending a message that contains a new verifiable
-- signature for an honest PK, even if the PK is the peer's own PK for
-- some epoch (implying that the peer possesses the associated secret
-- key). In other words, a peer that is honest for a given epoch (by
-- virtue of being a member of that epoch and being assigned an honest PK
-- for the epoch), cannot send a message for that epoch using a cheat
-- step.
CheatPartConstraint : SentMessages â Part â Set
CheatPartConstraint pool m = â{pk} â (ver : WithVerSig pk m)
â Meta-Dishonest-PK pk
â MsgWithSigâ pk (ver-signature ver) pool
-- The only constraints on messages sent by cheat steps are that:
-- * the sender is not an honest member in the epoch of any part of the message
-- * the signature on any part of the message satisfies CheatCanSign, meaning
-- that it is not a new signature for an honest public key
CheatMsgConstraint : SentMessages â Msg â Set
CheatMsgConstraint pool m = â{part} â part âMsg m â CheatPartConstraint pool part
-- * The System State
--
-- A system consists in a partial map from PeerId to PeerState, a pool
-- of sent messages and a number of available epochs.
record SystemState (e : â) : Setâ where
field
peerStates : Map PeerId PeerState
msgPool : SentMessages -- All messages ever sent
availEpochs : AvailableEpochs e
open SystemState public
initialState : SystemState 0
initialState = record
{ peerStates = Map-empty
; msgPool = []
; availEpochs = []
}
-- Convenience function for appending an epoch to the system state
pushEpoch : â{e} â EpochConfigFor e â SystemState e â SystemState (suc e)
pushEpoch ð st = record
{ peerStates = peerStates st
; msgPool = msgPool st
; availEpochs = AE.append ð (availEpochs st)
}
-- * Small Step Semantics
--
-- The small step semantics are divided into three datatypes:
--
-- i) StepPeerState executes a step through init or handle
-- ii) StepPeer executes a step through StepPeerState or cheat
-- iii) Step transitions the system state by a StepPeer or by
-- bringing a new epoch into existence
-- The pre and post states of Honest peers are related iff
data StepPeerState {e}(pid : PeerId)(ðs : AvailableEpochs e)(pool : SentMessages)
: Maybe PeerState â PeerState â List Msg â Set where
-- The peer receives an "initialization package"; for now, this consists
-- of the actual EpochConfig for the epoch being initialized. Later, we
-- may move to a more general scheme, enabled by assuming a function
-- 'render : InitPackage -> EpochConfig'.
step-init : â{ms s' out}(ix : Fin e)
â (s' , out) â¡ init pid (AE.lookup' ðs ix) ms
â StepPeerState pid ðs pool ms s' out
-- The peer processes a message in the pool
step-msg : â{m ms s s' out}
â m â pool
â ms â¡ just s â (s' , out) â¡ handle pid (projâ m) s
â StepPeerState pid ðs pool ms s' out
-- The pre-state of the suplied PeerId is related to the post-state and list of output messages iff:
data StepPeer {e}(pre : SystemState e) : PeerId â Maybe PeerState â List Msg â Set where
-- it can be obtained by a handle or init call.
step-honest : â{pid st outs}
â StepPeerState pid (availEpochs pre) (msgPool pre) (Map-lookup pid (peerStates pre)) st outs
â StepPeer pre pid (just st) outs
-- or the peer decides to cheat. CheatMsgConstraint ensures it cannot
-- forge signatures by honest peers. Cheat steps do not modify peer
-- state: these are maintained exclusively by the implementation
-- handlers.
step-cheat : â{pid}
â (fm : SentMessages â Maybe PeerState â Msg)
â let m = fm (msgPool pre) (Map-lookup pid (peerStates pre))
in CheatMsgConstraint (msgPool pre) m
â StepPeer pre pid (Map-lookup pid (peerStates pre)) (m â· [])
isCheat : â {e pre pid ms outs} â StepPeer {e} pre pid ms outs â Set
isCheat (step-honest _) = â¥
isCheat (step-cheat _ _) = Unit
-- Computes the post-sysstate for a given step-peer.
StepPeer-post : â{e pid st' outs}{pre : SystemState e}
â StepPeer pre pid st' outs â SystemState e
StepPeer-post {e} {pid} {st'} {outs} {pre} _ = record pre
{ peerStates = Map-set pid st' (peerStates pre)
; msgPool = List-map (pid ,_) outs ++ msgPool pre
}
data Step : â{e e'} â SystemState e â SystemState e' â Setâ where
step-epoch : â{e}{pre : SystemState e}
â (ð : EpochConfigFor e)
-- TODO-3: Eventually, we'll condition this step to only be
-- valid when peers on the previous epoch have agreed that ð
-- is the new one. â âEnoughValidCommitMsgsFor pre ð
â Step pre (pushEpoch ð pre)
step-peer : â{e pid st' outs}{pre : SystemState e}
â (pstep : StepPeer pre pid st' outs)
â Step pre (StepPeer-post pstep)
postulate -- TODO-1: prove it
msgs-stable : â {e e'} {pre : SystemState e} {post : SystemState e'} {m}
â (theStep : Step pre post)
â m â msgPool pre
â m â msgPool post
postulate -- not used yet, but some proofs could probably be cleaned up using this,
-- e.g., prevVoteRndâ€-pred-step in Impl.VotesOnce
sendMessages-target : â {m : SenderMsgPair} {sm : SentMessages} {ml : List SenderMsgPair}
â ¬ (m â sm)
â m â (ml ++ sm)
â m â ml
step-epoch-does-not-send : â {e} (pre : SystemState e) (ð : EpochConfigFor e)
â msgPool (pushEpoch ð pre) â¡ msgPool pre
step-epoch-does-not-send _ _ = refl
-- * Reflexive-Transitive Closure
data Step* : â{e e'} â SystemState e â SystemState e' â Setâ where
step-0 : â{e}{pre : SystemState e}
â Step* pre pre
step-s : â{e e' e''}{fst : SystemState e}{pre : SystemState e'}{post : SystemState e''}
â Step* fst pre
â Step pre post
â Step* fst post
ReachableSystemState : â{e} â SystemState e â Setâ
ReachableSystemState = Step* initialState
Step*-mono : â{e e'}{st : SystemState e}{st' : SystemState e'}
â Step* st st' â e †e'
Step*-mono step-0 = â€-refl
Step*-mono (step-s tr (step-peer _)) = Step*-mono tr
Step*-mono (step-s tr (step-epoch _)) = â€-step (Step*-mono tr)
MsgWithSigâ-Step* : â{e e' sig pk}{st : SystemState e}{st' : SystemState e'}
â Step* st st'
â MsgWithSigâ pk sig (msgPool st)
â MsgWithSigâ pk sig (msgPool st')
MsgWithSigâ-Step* step-0 msig = msig
MsgWithSigâ-Step* (step-s tr (step-epoch _)) msig
= MsgWithSigâ-Step* tr msig
MsgWithSigâ-Step* (step-s tr (step-peer ps)) msig
= MsgWithSigâ-++ʳ (MsgWithSigâ-Step* tr msig)
MsgWithSigâ-Step*-part : â{e e' sig pk}{st : SystemState e}{st' : SystemState e'}
â (tr : Step* st st')
â (msig : MsgWithSigâ pk sig (msgPool st))
â msgPart msig â¡ msgPart (MsgWithSigâ-Step* tr msig)
MsgWithSigâ-Step*-part step-0 msig = refl
MsgWithSigâ-Step*-part (step-s tr (step-epoch _)) msig
= MsgWithSigâ-Step*-part tr msig
MsgWithSigâ-Step*-part (step-s tr (step-peer ps)) msig
= MsgWithSigâ-Step*-part tr msig
------------------------------------------
-- Type synonym to express a relation over system states;
SystemStateRel : (â{e e'} â SystemState e â SystemState e' â Setâ) â Setâ
SystemStateRel P = â{e e'}{st : SystemState e}{st' : SystemState e'} â P st st' â Setâ
-- Just like Data.List.Any maps a predicate over elements to a predicate over lists,
-- Any-step maps a relation over steps to a relation over steps in a trace.
data Any-Step (P : SystemStateRel Step) : SystemStateRel Step* where
step-here : â{e e' e''}{fst : SystemState e}{pre : SystemState e'}{post : SystemState e''}
â (cont : Step* fst pre)
â {this : Step pre post}(prf : P this)
â Any-Step P (step-s cont this)
step-there : â{e e' e''}{fst : SystemState e}{pre : SystemState e'}{post : SystemState e''}
â {cont : Step* fst pre}
â {this : Step pre post}
â (prf : Any-Step P cont)
â Any-Step P (step-s cont this)
Any-Step-elim
: â{eâ eâ}{stâ : SystemState eâ}{stâ : SystemState eâ}{P : SystemStateRel Step}{Q : Setâ}
â {r : Step* stâ stâ}
â (PâQ : â{d d'}{s : SystemState d}{s' : SystemState d'}{st : Step s s'}
â P st â Step* s' stâ â Q)
â Any-Step P r â Q
Any-Step-elim PâQ (step-here cont prf)
= PâQ prf step-0
Any-Step-elim PâQ (step-there {this = this} f)
= Any-Step-elim (λ p s â PâQ p (step-s s this)) f
------------------------------------------
module _ (P : â{e} â SystemState e â Set) where
Step*-Step-fold : (â{e}{st : SystemState e}
â ReachableSystemState st
â (ð : EpochConfigFor e)
â P st
â P (pushEpoch ð st))
â (â{e pid st' outs}{st : SystemState e}
â ReachableSystemState st
â (pstep : StepPeer st pid st' outs)
â P st
â P (StepPeer-post pstep))
â P initialState
â â{e}{st : SystemState e}
â (tr : ReachableSystemState st) â P st
Step*-Step-fold fe fs pâ step-0 = pâ
Step*-Step-fold fe fs pâ (step-s tr (step-epoch ð)) = fe tr ð (Step*-Step-fold fe fs pâ tr)
Step*-Step-fold fe fs pâ (step-s tr (step-peer p)) = fs tr p (Step*-Step-fold fe fs pâ tr)
|
module lists where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_â¡_; refl; sym; trans; cong)
open Eq.â¡-Reasoning
open import Data.Bool using (Bool; true; false; T; _â§_; _âš_; not)
open import Data.Nat using (â; zero; suc; _+_; _*_; _âž_; _â€_; sâ€s; zâ€n)
open import Data.Nat.Properties using
(+-assoc; +-identityˡ; +-identityʳ; *-assoc; *-identityˡ; *-identityʳ)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Data.Product using (_Ã_; â; â-syntax) renaming (_,_ to âš_,_â©)
open import Function using (_â_)
open import Level using (Level)
-- open import plfa.part1.Isomorphism using (_â_; _â_)
-- åå (isomorphism)
infix 0 _â_
record _â_ (A B : Set) : Set where
field
to : A â B
from : B â A
fromâto : â (x : A) â from (to x) â¡ x
toâfrom : â (y : B) â to (from y) â¡ y
-- open _â_
-- åå€ (equivalence)
record _â_ (A B : Set) : Set where
field
to : A â B
from : B â A
-- Lists
-- ãªã¹ã
infixr 5 _â·_
data List (A : Set) : Set where
[] : List A
_â·_ : A â List A â List A
_ : List â
_ = 0 â· 1 â· 2 â· []
data Listâ² : Set â Set where
[]â² : â {A : Set} â Listâ² A
_â·â²_ : â {A : Set} â A â Listâ² A â Listâ² A
_ : List â
_ = _â·_ {â} 0 (_â·_ {â} 1 (_â·_ {â} 2 ([] {â})))
-- List syntax
-- ãªã¹ãã®äŸ¿å©èšæ³
pattern [_] z = z â· []
pattern [_,_] y z = y â· z â· []
pattern [_,_,_] x y z = x â· y â· z â· []
pattern [_,_,_,_] w x y z = w â· x â· y â· z â· []
pattern [_,_,_,_,_] v w x y z = v â· w â· x â· y â· z â· []
pattern [_,_,_,_,_,_] u v w x y z = u â· v â· w â· x â· y â· z â· []
-- Append
-- ãªã¹ãã®çµå
infixr 5 _++_
_++_ : â {A : Set} â List A â List A â List A
[] ++ ys = ys
(x â· xs) ++ ys = x â· (xs ++ ys)
_ : [ 0 , 1 , 2 ] ++ [ 3 , 4 ] â¡ [ 0 , 1 , 2 , 3 , 4 ]
_ =
begin
0 â· 1 â· 2 â· [] ++ 3 â· 4 â· []
â¡âšâ©
0 â· (1 â· 2 â· [] ++ 3 â· 4 â· [])
â¡âšâ©
0 â· 1 â· (2 â· [] ++ 3 â· 4 â· [])
â¡âšâ©
0 â· 1 â· 2 â· ([] ++ 3 â· 4 â· [])
â¡âšâ©
0 â· 1 â· 2 â· 3 â· 4 â· []
â
-- Reasoning about append
-- ãªã¹ãã®çµåæ³å
++-assoc : â {A : Set} (xs ys zs : List A)
â (xs ++ ys) ++ zs â¡ xs ++ (ys ++ zs)
++-assoc [] ys zs =
begin
([] ++ ys) ++ zs
â¡âšâ©
ys ++ zs
â¡âšâ©
[] ++ (ys ++ zs)
â
++-assoc (x â· xs) ys zs =
begin
(x â· xs ++ ys) ++ zs
â¡âšâ©
x â· (xs ++ ys) ++ zs
â¡âšâ©
x â· ((xs ++ ys) ++ zs)
â¡âš cong (x â·_) (++-assoc xs ys zs) â©
x â· (xs ++ (ys ++ zs))
â¡âšâ©
x â· xs ++ (ys ++ zs)
â
-- 空ã®ãªã¹ããå·Šåäœå
ã§ããããšã®èšŒæ
++-identityË¡ : â {A : Set} (xs : List A) â [] ++ xs â¡ xs
++-identityˡ xs =
begin
[] ++ xs
â¡âšâ©
xs
â
-- 空ã®ãªã¹ããå³åäœå
ã§ããããšã®èšŒæ
++-identityʳ : â {A : Set} (xs : List A) â xs ++ [] â¡ xs
++-identityʳ [] =
begin
[] ++ []
â¡âšâ©
[]
â
++-identityʳ (x ⷠxs) =
begin
(x â· xs) ++ []
â¡âšâ©
x â· (xs ++ [])
â¡âš cong (x â·_) (++-identityʳ xs) â©
x â· xs
â
-- Length
-- ãªã¹ãé·ãè¿ã颿°
length : â {A : Set} â List A â â
length [] = zero
length (x â· xs) = suc (length xs)
_ : length [ 0 , 1 , 2 ] â¡ 3
_ =
begin
length (0 â· 1 â· 2 â· [])
â¡âšâ©
suc (length (1 â· 2 â· []))
â¡âšâ©
suc (suc (length (2 â· [])))
â¡âšâ©
suc (suc (suc (length {â} [])))
â¡âšâ©
suc (suc (suc zero))
â
-- Reasoning about length
-- lengthã®åé
æ§ã®èšŒæ
length-++ : â {A : Set} (xs ys : List A)
â length (xs ++ ys) â¡ length xs + length ys
length-++ {A} [] ys =
begin
length ([] ++ ys)
â¡âšâ©
length ys
â¡âšâ©
length {A} [] + length ys
â
length-++ (x â· xs) ys =
begin
length ((x â· xs) ++ ys)
â¡âšâ©
suc (length (xs ++ ys))
â¡âš cong suc (length-++ xs ys) â©
suc (length xs + length ys)
â¡âšâ©
length (x â· xs) + length ys
â
-- Reverse
-- éé ã®ãªã¹ããè¿ã颿°
reverse : â {A : Set} â List A â List A
reverse [] = []
reverse (x â· xs) = reverse xs ++ [ x ]
_ : reverse [ 0 , 1 , 2 ] â¡ [ 2 , 1 , 0 ]
_ =
begin
reverse (0 â· 1 â· 2 â· [])
â¡âšâ©
reverse (1 â· 2 â· []) ++ [ 0 ]
â¡âšâ©
(reverse (2 â· []) ++ [ 1 ]) ++ [ 0 ]
â¡âšâ©
((reverse [] ++ [ 2 ]) ++ [ 1 ]) ++ [ 0 ]
â¡âšâ©
(([] ++ [ 2 ]) ++ [ 1 ]) ++ [ 0 ]
â¡âšâ©
(([] ++ 2 â· []) ++ 1 â· []) ++ 0 â· []
â¡âšâ©
(2 â· [] ++ 1 â· []) ++ 0 â· []
â¡âšâ©
2 â· ([] ++ 1 â· []) ++ 0 â· []
â¡âšâ©
(2 â· 1 â· []) ++ 0 â· []
â¡âšâ©
2 â· (1 â· [] ++ 0 â· [])
â¡âšâ©
2 â· 1 â· ([] ++ 0 â· [])
â¡âšâ©
2 â· 1 â· 0 â· []
â¡âšâ©
[ 2 , 1 , 0 ]
â
-- Faster reverse
shunt : â {A : Set} â List A â List A â List A
shunt [] ys = ys
shunt (x â· xs) ys = shunt xs (x â· ys)
shunt-reverse : â {A : Set} (xs ys : List A)
â shunt xs ys â¡ reverse xs ++ ys
shunt-reverse [] ys =
begin
shunt [] ys
â¡âšâ©
ys
â¡âšâ©
reverse [] ++ ys
â
shunt-reverse (x â· xs) ys =
begin
shunt (x â· xs) ys
â¡âšâ©
shunt xs (x â· ys)
â¡âš shunt-reverse xs (x â· ys) â©
reverse xs ++ (x â· ys)
â¡âšâ©
reverse xs ++ ([ x ] ++ ys)
â¡âš sym (++-assoc (reverse xs) [ x ] ys) â©
(reverse xs ++ [ x ]) ++ ys
â¡âšâ©
reverse (x â· xs) ++ ys
â
reverseâ² : â {A : Set} â List A â List A
reverseâ² xs = shunt xs []
reverses : â {A : Set} (xs : List A)
â reverseâ² xs â¡ reverse xs
reverses xs =
begin
reverseâ² xs
â¡âšâ©
shunt xs []
â¡âš shunt-reverse xs [] â©
reverse xs ++ []
â¡âš ++-identityʳ (reverse xs) â©
reverse xs
â
_ : reverseâ² [ 0 , 1 , 2 ] â¡ [ 2 , 1 , 0 ]
_ =
begin
reverseâ² (0 â· 1 â· 2 â· [])
â¡âšâ©
shunt (0 â· 1 â· 2 â· []) []
â¡âšâ©
shunt (1 â· 2 â· []) (0 â· [])
â¡âšâ©
shunt (2 â· []) (1 â· 0 â· [])
â¡âšâ©
shunt [] (2 â· 1 â· 0 â· [])
â¡âšâ©
2 â· 1 â· 0 â· []
â
-- Map
map : â {A B : Set} â (A â B) â List A â List B
map f [] = []
map f (x â· xs) = f x â· map f xs
_ : map suc [ 0 , 1 , 2 ] â¡ [ 1 , 2 , 3 ]
_ =
begin
map suc (0 â· 1 â· 2 â· [])
â¡âšâ©
suc 0 â· map suc (1 â· 2 â· [])
â¡âšâ©
suc 0 â· suc 1 â· map suc (2 â· [])
â¡âšâ©
suc 0 â· suc 1 â· suc 2 â· map suc []
â¡âšâ©
suc 0 â· suc 1 â· suc 2 â· []
â¡âšâ©
1 â· 2 â· 3 â· []
â
sucs : List â â List â
sucs = map suc
_ : sucs [ 0 , 1 , 2 ] â¡ [ 1 , 2 , 3 ]
_ =
begin
sucs [ 0 , 1 , 2 ]
â¡âšâ©
map suc [ 0 , 1 , 2 ]
â¡âšâ©
[ 1 , 2 , 3 ]
â
-- å³ç³ã¿èŸŒã¿
foldr : â {A B : Set} â (A â B â B) â B â List A â B
foldr _â_ e [] = e
foldr _â_ e (x â· xs) = x â foldr _â_ e xs
_ : foldr _+_ 0 [ 1 , 2 , 3 , 4 ] â¡ 10
_ =
begin
foldr _+_ 0 (1 â· 2 â· 3 â· 4 â· [])
â¡âšâ©
1 + foldr _+_ 0 (2 â· 3 â· 4 â· [])
â¡âšâ©
1 + (2 + foldr _+_ 0 (3 â· 4 â· []))
â¡âšâ©
1 + (2 + (3 + foldr _+_ 0 (4 â· [])))
â¡âšâ©
1 + (2 + (3 + (4 + foldr _+_ 0 [])))
â¡âšâ©
1 + (2 + (3 + (4 + 0)))
â
-- ãªã¹ãã®èŠçŽ ã®å
sum : List â â â
sum = foldr _+_ 0
_ : sum [ 1 , 2 , 3 , 4 ] â¡ 10
_ =
begin
sum [ 1 , 2 , 3 , 4 ]
â¡âšâ©
foldr _+_ 0 [ 1 , 2 , 3 , 4 ]
â¡âšâ©
10
â
-- Monoids
record IsMonoid {A : Set} (_â_ : A â A â A) (e : A) : Set where
field
assoc : â (x y z : A) â (x â y) â z â¡ x â (y â z)
identityË¡ : â (x : A) â e â x â¡ x
identityʳ : â (x : A) â x â e â¡ x
open IsMonoid
+-monoid : IsMonoid _+_ 0
+-monoid =
record
{ assoc = +-assoc
; identityˡ = +-identityˡ
; identityʳ = +-identityʳ
}
*-monoid : IsMonoid _*_ 1
*-monoid =
record
{ assoc = *-assoc
; identityˡ = *-identityˡ
; identityʳ = *-identityʳ
}
++-monoid : â {A : Set} â IsMonoid {List A} _++_ []
++-monoid =
record
{ assoc = ++-assoc
; identityˡ = ++-identityˡ
; identityʳ = ++-identityʳ
}
foldr-monoid : â {A : Set} (_â_ : A â A â A) (e : A) â IsMonoid _â_ e â
â (xs : List A) (y : A) â foldr _â_ y xs â¡ foldr _â_ e xs â y
foldr-monoid _â_ e â-monoid [] y =
begin
foldr _â_ y []
â¡âšâ©
y
â¡âš sym (identityË¡ â-monoid y) â©
(e â y)
â¡âšâ©
foldr _â_ e [] â y
â
foldr-monoid _â_ e â-monoid (x â· xs) y =
begin
foldr _â_ y (x â· xs)
â¡âšâ©
x â (foldr _â_ y xs)
â¡âš cong (x â_) (foldr-monoid _â_ e â-monoid xs y) â©
x â (foldr _â_ e xs â y)
â¡âš sym (assoc â-monoid x (foldr _â_ e xs) y) â©
(x â foldr _â_ e xs) â y
â¡âšâ©
foldr _â_ e (x â· xs) â y
â
postulate
foldr-++ : â {A : Set} (_â_ : A â A â A) (e : A) (xs ys : List A) â
foldr _â_ e (xs ++ ys) â¡ foldr _â_ (foldr _â_ e ys) xs
foldr-monoid-++ : â {A : Set} (_â_ : A â A â A) (e : A) â IsMonoid _â_ e â
â (xs ys : List A) â foldr _â_ e (xs ++ ys) â¡ foldr _â_ e xs â foldr _â_ e ys
foldr-monoid-++ _â_ e monoid-â xs ys =
begin
foldr _â_ e (xs ++ ys)
â¡âš foldr-++ _â_ e xs ys â©
foldr _â_ (foldr _â_ e ys) xs
â¡âš foldr-monoid _â_ e monoid-â xs (foldr _â_ e ys) â©
foldr _â_ e xs â foldr _â_ e ys
â
-- All
data All {A : Set} (P : A â Set) : List A â Set where
[] : All P []
_â·_ : â {x : A} {xs : List A} â P x â All P xs â All P (x â· xs)
_ : All (_†2) [ 0 , 1 , 2 ]
_ = zâ€n â· sâ€s zâ€n â· sâ€s (sâ€s zâ€n) â· []
-- Any
data Any {A : Set} (P : A â Set) : List A â Set where
here : â {x : A} {xs : List A} â P x â Any P (x â· xs)
there : â {x : A} {xs : List A} â Any P xs â Any P (x â· xs)
infix 4 _â_ _â_
_â_ : â {A : Set} (x : A) (xs : List A) â Set
x â xs = Any (x â¡_) xs
_â_ : â {A : Set} (x : A) (xs : List A) â Set
x â xs = ¬ (x â xs)
_ : 0 â [ 0 , 1 , 0 , 2 ]
_ = here refl
_ : 0 â [ 0 , 1 , 0 , 2 ]
_ = there (there (here refl))
not-in : 3 â [ 0 , 1 , 0 , 2 ]
not-in (here ())
not-in (there (here ()))
not-in (there (there (here ())))
not-in (there (there (there (here ()))))
not-in (there (there (there (there ()))))
-- All and append
All-++-â : â {A : Set} {P : A â Set} (xs ys : List A) â
All P (xs ++ ys) â (All P xs à All P ys)
All-++-â xs ys =
record
{ to = to xs ys
; from = from xs ys
}
where
to : â {A : Set} {P : A â Set} (xs ys : List A) â
All P (xs ++ ys) â (All P xs à All P ys)
to [] ys Pys = âš [] , Pys â©
to (x â· xs) ys (Px â· Pxs++ys) with to xs ys Pxs++ys
... | âš Pxs , Pys â© = âš Px â· Pxs , Pys â©
from : â { A : Set} {P : A â Set} (xs ys : List A) â
All P xs à All P ys â All P (xs ++ ys)
from [] ys âš [] , Pys â© = Pys
from (x â· xs) ys âš Px â· Pxs , Pys â© = Px â· from xs ys âš Pxs , Pys â©
-- Decidability of All
all : â {A : Set} â (A â Bool) â List A â Bool
all p = foldr _â§_ true â map p
Decidable : â {A : Set} â (A â Set) â Set
Decidable {A} P = â (x : A) â Dec (P x)
All? : â {A : Set} {P : A â Set} â Decidable P â Decidable (All P)
All? P? [] = yes []
All? P? (x â· xs) with P? x | All? P? xs
... | yes Px | yes Pxs = yes (Px â· Pxs)
... | no ¬Px | _ = no λ{ (Px â· Pxs) â ¬Px Px }
... | _ | no ¬Pxs = no λ{ (Px â· Pxs) â ¬Pxs Pxs }
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Monoidal.IntConstruction where
open import Level
open import Data.Fin
open import Data.Product
open import Categories.Category
open import Categories.Product
open import Categories.Monoidal
open import Categories.Functor hiding (id; _â_; identityʳ; assoc)
open import Categories.Monoidal.Braided
open import Categories.Monoidal.Helpers
open import Categories.Monoidal.Braided.Helpers
open import Categories.Monoidal.Symmetric
open import Categories.NaturalIsomorphism
open import Categories.NaturalTransformation hiding (id)
open import Categories.Monoidal.Traced
------------------------------------------------------------------------------
record Polarized {o o' : Level} (A : Set o) (B : Set o') : Set (o â o') where
constructor ±
field
pos : A
neg : B
IntC : â {o â e}
{C : Category o â e} {M : Monoidal C} {B : Braided M} {S : Symmetric B} â
(T : Traced S) â Category o â e
IntC {o} {â} {e} {C} {M} {B} {S} T = record {
Obj = Polarized C.Obj C.Obj
; _â_ = λ { (± A+ A-) (± B+ B-) â C [ F.ââ (A+ , B-) , F.ââ (B+ , A-) ]}
; _â¡_ = C._â¡_
; _â_ = λ { {(± A+ A-)} {(± B+ B-)} {(± C+ C-)} g f â
T.trace { B- } {F.ââ (A+ , C-)} {F.ââ (C+ , A-)}
(ηassocâ (ternary C C+ A- B-) C.â
F.ââ (C.id , ηbraid (binary C B- A-)) C.â
ηassocâ (ternary C C+ B- A-) C.â
F.ââ (g , C.id) C.â
ηassocâ (ternary C B+ C- A-) C.â
F.ââ (C.id , ηbraid (binary C A- C-)) C.â
ηassocâ (ternary C B+ A- C-) C.â
F.ââ (f , C.id) C.â
ηassocâ (ternary C A+ B- C-) C.â
F.ââ (C.id , ηbraid (binary C C- B-)) C.â
ηassocâ (ternary C A+ C- B-))}
; id = F.ââ (C.id , C.id)
; assoc = λ { {(± A+ A-)} {(± B+ B-)} {(± C+ C-)} {(± D+ D-)} {f} {g} {h} â
{!!} }
; identityË¡ = λ { {(± A+ A-)} {(± B+ B-)} {f} â
(begin
{!!}
ââš {!!} â©
f â) }
; identityʳ = λ { {(± A+ A-)} {(± B+ B-)} {f} â
{!!} }
; equiv = C.equiv
; â-resp-â¡ = λ { {(± A+ A-)} {(± B+ B-)} {(± C+ C-)} {f} {h} {g} {i} fâ¡h gâ¡i â
{!!} }
}
where
module C = Category C
open C.HomReasoning
module M = Monoidal M renaming (id to ð)
module F = Functor M.â renaming (Fâ to ââ; Fâ to ââ)
module B = Braided B
module S = Symmetric S
module T = Traced T
module NIassoc = NaturalIsomorphism M.assoc
open NaturalTransformation NIassoc.FâG renaming (η to ηassocâ)
open NaturalTransformation NIassoc.FâG renaming (η to ηassocâ)
module NIbraid = NaturalIsomorphism B.braid
open NaturalTransformation NIbraid.FâG renaming (η to ηbraid)
IntConstruction : â {o â e}
{C : Category o â e} {M : Monoidal C} {B : Braided M} {S : Symmetric B} â
(T : Traced S) â
Σ[ IntC â Category o â e ]
Σ[ MIntC â Monoidal IntC ]
Σ[ BIntC â Braided MIntC ]
Σ[ SIntC â Symmetric BIntC ]
Traced SIntC
IntConstruction = {!!}
|
module Reright where
open import Prelude
open import Tactic.Reflection.Reright
open import Agda.Builtin.Reflection -- for better pretty-printing of error messages
-- 'reright' presents the user with changed context variabes, to mimic that done by 'rewrite'.
simple-reright-testâ : (A B : Set) (F : Set â Set) â F A â A â¡ B â B â A
simple-reright-testâ A B F FA Aâ¡B b = reright Aâ¡B $ λ (FB : F B) â b
-- the target of the reright (in this case xâ¡yâ) is excluded from the changed context variables
simple-reright-testâ : {a : Level} {A : Set a} {x y : A} (xâ¡yâ : x â¡ y) (xâ¡yâ : x â¡ y) â y â¡ x
simple-reright-testâ {y = y} xâ¡yâ xâ¡yâ = reright xâ¡yâ λ (xâ¡yâ' : y â¡ y) â refl
-- the visibility of context variables remains the same in their changed state
simple-reright-testâ : {a : Level} {A : Set a} {x y : A} (xâ¡yâ : x â¡ y) (xâ¡yâ : x â¡ y) {xâ¡yâ : x â¡ y} â y â¡ x
simple-reright-testâ {y = y} xâ¡yâ xâ¡yâ {xâ¡yâ} = reright xâ¡yâ λ (xâ¡yâ' : y â¡ y) {xâ¡yâ' : y â¡ y} â refl
-- for some reason, when the first changed variable is hidden, it's impossible to bring it into scope
{- FAILS - results in unsolved metas
problematic-visibility : {a : Level} {A : Set a} {x y : A} (xâ¡yâ : x â¡ y) {xâ¡yâ : x â¡ y} â y â¡ x
problematic-visibility {y = y} xâ¡yâ {xâ¡yâ} = reright xâ¡yâ λ {xâ¡yâ' : y â¡ y} â refl
-}
module Testâ where
postulate
Setâ¡Set : Set â¡ Set
Aâ : Set
Aâ : Aâ â Set
Aâ : (aâ : Aâ) â Aâ aâ â Set
Aâ : (aâ : Aâ) â (aâ : Aâ aâ) â Aâ aâ aâ â Set
Bâ : Set
Bâ : Bâ â Set
Bâ : (bâ : Bâ) â Bâ bâ â Set
Bâ : (bâ : Bâ) â (bâ : Bâ bâ) â Bâ bâ bâ â Set
Aââ¡Bâ : Aâ â¡ Bâ
F : Set â Set
C : (α : Level) (β : Level) â Set α â Set β
ðšâ¹ : Aâ
ðšâ² : Aâ
ðšâ¹â¡ðšâ² : ðšâ¹ â¡ ðšâ²
ðšâðšâ²â : (aâðšâ² : Aâ ðšâ²) â Aâ ðšâ² aâðšâ²
ð©â : Bâ
Kâ : Aâ â Set
testâ : (bâ¹ bâ² : Bâ) (bâ¹â¡bâ² : bâ¹ â¡ bâ²) â Set
testâ bâ¹ bâ² bâ¹â¡bâ² with bâ¹â¡bâ²
testâ bâ¹ bâ² bâ¹â¡bâ² | bâ¹â¡bâ²-with = let bâ¹â¡bâ²-let = bâ¹â¡bâ²-with in reright bâ¹â¡bâ²-let {!!}
testâ : â (aâ : Aâ) â aâ â¡ aâ
testâ aâ = id (reright Aââ¡Bâ {!!})
testâ : Aâ â Bâ
testâ aâ = reright Aââ¡Bâ (λ bâ â ð©â)
testâ : Aâ â Bâ
testâ aâ = reright Setâ¡Set (reright Aââ¡Bâ (λ bâ â ð©â))
testâ : Aâ â Bâ
testâ aâ = reright Setâ¡Set (reright Aââ¡Bâ (λ bâ â reright Aââ¡Bâ {!!}))
testâ
: Aâ â Bâ
testâ
aâ = reright Setâ¡Set ð©â
testâ : Aâ â Bâ
testâ aâ = reright Setâ¡Set $ reright Aââ¡Bâ $ {!!}
testâ : â {α : Level}
(aâ : Aâ)
{β : Level}
(X Y : Set (α â β))
â X â¡ Y
â Y â¡ X
testâ {α} aâ {β} X Y Xâ¡Y = id (reright Xâ¡Y {!!})
testâ : (aâðšâ¹ : Aâ ðšâ¹) â Aâ ðšâ¹ aâðšâ¹
testâ aâðšâ¹ = reright ðšâ¹â¡ðšâ² (λ aâðšâ² â {!!})
testâ : (aâ¹ : Aâ) (aâ² : Aâ) (aâ¹â¡aâ²-1 : aâ¹ â¡ aâ²) (aâaâ¹ : Aâ aâ¹) (X : Set) (Y : Set) (aâ¹â¡aâ²-2 : aâ¹ â¡ aâ²) â F (Aâ aâ¹ aâaâ¹) â F (Aâ aâ¹) â¡ Aâ aâ¹ aâaâ¹
testâ aâ¹ aâ² aâ¹â¡aâ²-1 aâaâ¹ X Y aâ¹â¡aâ²-2 = reright aâ¹â¡aâ²-1 {!!}
module _ (Aââ : (aâ : Aâ) (aâaâ : Aâ aâ) â Aâ aâ aâaâ) where
testââ : (aâ : Aâ) (aâaâ¹ : Aâ aâ) (aâaâ² : Aâ aâ) (aâaâ¹â¡aâaâ² : aâaâ¹ â¡ aâaâ²) â Aâ aâ aâaâ¹
testââ aâ aâaâ¹ aâaâ² aâaâ¹â¡aâaâ² = reright aâaâ¹â¡aâaâ² {!!}
testââ : (aâ¹ : Aâ) (aâ² : Aâ) (FAâaâ¹â¡FAâaâ² : F (Aâ aâ¹) â¡ F (Aâ aâ²)) â F (Aâ aâ¹) â F (Aâ aâ¹) â¡ F (F (Aâ aâ¹))
testââ aâ¹ aâ² FAâaâ¹â¡FAâaâ² = reright FAâaâ¹â¡FAâaâ² {!!}
testââ : (aâ¹ : Aâ) (aâ² : Aâ) (FAâaâ¹â¡FAâaâ² : F (Aâ aâ¹) â¡ F (Aâ aâ²)) â F (Aâ aâ¹) â F (Aâ aâ¹) â¡ F (F (Aâ aâ¹))
testââ aâ¹ aâ² FAâaâ¹â¡FAâaâ² FAâaâ¹ = reright FAâaâ¹â¡FAâaâ² {!!}
testââ : (β : Level)
(aâ¹ : Aâ)
(Ï : Level)
(aâ² : Aâ)
(CAâaâ¹â¡CAâaâ² : C lzero (β â Ï) (Aâ aâ¹) â¡ C lzero (β â Ï) (Aâ aâ²)) â
C lzero (β â Ï) (Aâ aâ¹)
â Nat â Σ _ λ γ â C lzero (β â Ï) (Aâ aâ¹) â¡ C γ (β â Ï) (C lzero γ (Aâ aâ¹))
testââ β aâ¹ Ï aâ² CAâaâ¹â¡CAâaâ² CAâaâ¹ = reright CAâaâ¹â¡CAâaâ² {!!}
testââ : (aâ : Aâ) (FFAâaââ¡FAâaâ : F (F (Aâ aâ)) â¡ F (Aâ aâ)) â F (F (F (F (Aâ aâ))))
testââ aâ FFAâaââ¡FAâaâ = reright FFAâaââ¡FAâaâ (reright FFAâaââ¡FAâaâ (reright FFAâaââ¡FAâaâ {!!}))
testââ
: (aâ : Aâ) (FAâaââ¡FFAâaâ : F (Aâ aâ) â¡ F (F (Aâ aâ))) â F (F (Aâ aâ))
testââ
aâ FAâaââ¡FFAâaâ = reright FAâaââ¡FFAâaâ (reright FAâaââ¡FFAâaâ {!!})
testââ : (l : Aâ â Level â Level)
(β : Level)
(aâ² : Aâ)
(aâ¹ : Aâ)
(CAâaâ¹â¡CAâaâ² : C lzero (l aâ¹ β) (Aâ aâ¹) â¡ C lzero (l aâ¹ β) (Aâ aâ²))
â C lzero (l aâ¹ β) (Aâ aâ¹)
â Σ _ λ γ â C lzero (l aâ¹ β) (Aâ aâ¹) â¡ C γ (l aâ¹ β) (C lzero γ (Aâ aâ¹))
testââ l β aâ² aâ¹ CAâaâ¹â¡CAâaâ² CAâaâ¹ = reright CAâaâ¹â¡CAâaâ² {!!}
testââ : (aâ¹ : Aâ)
(aâ² : Aâ)
(Kâaâ¹ : Kâ aâ¹)
(aâ¹â¡aâ² : aâ¹ â¡ aâ²)
â Set
testââ aâ¹ aâ² Kâaâ¹ aâ¹â¡aâ² = reright aâ¹â¡aâ² {!!}
testââ : (aâ¹ : Aâ)
(aâ² : Aâ)
(kâaâ¹ : Kâ aâ¹)
(FKâaâ¹ : F (Kâ aâ¹))
(Kâaâ¹â¡Kâaâ² : Kâ aâ¹ â¡ Kâ aâ²)
â F (F (Kâ aâ¹)) â¡ F (Kâ aâ²)
testââ aâ¹ aâ² kâaâ¹ FKâaâ¹ Kâaâ¹â¡Kâaâ² = reright Kâaâ¹â¡Kâaâ² {!!}
testââ : â {aâ¹ : Aâ}
{aâ² : Aâ}
{aâaâ²-1 aâaâ²-2 aâaâ²-3 : Aâ aâ²}
{aâaâ²-2=aâaâ²-3 : Aâ aâ² aâaâ²-2 â¡ Aâ aâ² aâaâ²-3}
(R : â (aâ²' : Aâ) â Aâ aâ² aâaâ²-1 â¡ Aâ aâ² aâaâ²-2)
(X : Aâ aâ² aâaâ²-2 â¡ Aâ aâ² aâaâ²-3)
{ignore : Set}
â Aâ aâ² aâaâ²-1 â¡ Aâ aâ² aâaâ²-3
testââ {aâ¹} {aâ²} {aâaâ²-1} {aâaâ²-2} {aâaâ²-3} {aâaâ²-2=aâaâ²-3} R X = reright (R aâ¹) {!!}
{- FAILS (correctly, though perhaps without the most comprehensible of error messages)
testââ' : (fâ : Aâ) (fâ : Aâ) (Aâfââ¡Aâfâ : Aâ fâ â¡ Aâ fâ) (gâ : Aâ fâ) â Aâ fâ gâ
testââ' fâ fâ Aâfââ¡Aâfâ gâ rewrite Aâfââ¡Aâfâ = {!!}
testââ : (fâ : Aâ) (fâ : Aâ) (Aâfââ¡Aâfâ : Aâ fâ â¡ Aâ fâ) (gâ : Aâ fâ) â Aâ fâ gâ
testââ fâ fâ Aâfââ¡Aâfâ gâ = reright Aâfââ¡Aâfâ {!!}
-}
testââ : â {a b : Level} {A : Set a} {x y : A} (xâ¡y : x â¡ y) â Set
testââ xâ¡y = reright xâ¡y {!!}
testââ : â {a b : Level} {A : Set a} {x y : A} (B : Set b) (xâ¡y : x â¡ y) â Set
testââ B xâ¡y = reright xâ¡y {!!}
testââ : â {a : Level} {A : Set a} {B : Set} {x : B} {y : B} (xâ¡y : x â¡ y) â Set
testââ xâ¡y = reright xâ¡y {!!}
module _ (l : Level) where
postulate P : Set
testââ : (p : P)
(A : Set)
(x y : A)
(xâ¡y : x â¡ y)
â Set
testââ _ _ _ _ xâ¡y = reright xâ¡y ?
module Testâ where
record Map
{K : Set}
(V : K â Set)
(Carrier : Nat â Set) {{isDecEquivalence/K : Eq K}} {{isDecEquivalence/V : (k : K) â Eq (V k)}} : Setâ where
field
â
: Carrier 0
_â_ : â {s} â K â Carrier s â Set
â
-is-empty : â {ð} {â
: Carrier 0} â ð â â
_â_ : â {s} â K â Carrier s â Set
_â_ k m = ¬ k â m
field
get : â {k : K} {s} {m : Carrier s} â k â m â V k
put : â {kâ : K} (vâ : V kâ) {sâ} {mâ : Carrier sâ} â kâ â mâ â Σ _ λ (mâ : Carrier (suc sâ)) â Σ _ λ (kââmâ : kâ â mâ) â get kââmâ â¡ vâ
postulate
A : Set
V : A â Set
V = λ _ â Nat
postulate
M : Nat â Set
isDecEquivalence/A : Eq A
isDecEquivalence/V : (a : A) â Eq (V a)
postulate
m : Map V M {{isDecEquivalence/A}} {{isDecEquivalence/V}}
open Map m
testâ : (v : Nat) (k : A)
â (kâputkvâ
: k â (fst $ put {kâ = k} v {mâ = â
} â
-is-empty))
â Set
testâ v k kâputkvâ
= let p = (put {kâ = k} v {mâ = â
} â
-is-empty) in let r = sym (snd $ snd p) in reright r {!!}
{- expected.out
?0 : bâ² â¡ bâ² â Set
?1 : (b : Bâ) â b â¡ b
?2 : Bâ â Bâ
?3 : Bâ â Bâ
?4 : Y â¡ Y
?5 : Aâ ðšâ² aâðšâ²
?6 : (aâ : Aâ aâ²) â aâ² â¡ aâ² â F (Aâ aâ² aâ) â F (Aâ aâ²) â¡ Aâ aâ² aâ
?7 : Aâ aâ aâaâ²
?8 : F (Aâ aâ²) â F (Aâ aâ²) â¡ F (F (Aâ aâ²))
?9 : F (Aâ aâ²) â F (Aâ aâ²) â¡ F (F (Aâ aâ²))
?10 : C lzero (Ï â β) (Aâ aâ²) â
Nat â
Σ Level
(λ γ â C lzero (Ï â β) (Aâ aâ²) â¡ C γ (Ï â β) (C lzero γ (Aâ aâ¹)))
?11 : F (Aâ aâ)
?12 : F (F (F (F (Aâ aâ))))
?13 : C lzero (l aâ¹ β) (Aâ aâ²) â
Σ Level
(λ γ â
C lzero (l aâ¹ β) (Aâ aâ²) â¡ C γ (l aâ¹ β) (C lzero γ (Aâ aâ¹)))
?14 : Kâ aâ² â Set
?15 : Kâ aâ² â F (Kâ aâ²) â F (F (Kâ aâ²)) â¡ F (Kâ aâ²)
?16 : (Aâ â Aâ aâ² aâaâ²-2 â¡ Aâ aâ² aâaâ²-2) â
Aâ aâ² aâaâ²-2 â¡ Aâ aâ² aâaâ²-3
?17 : Set
?18 : Set
?19 : Set
?20 : Set
?21 : (k â fst (put (get (fst (snd (put v â
-is-empty)))) â
-is-empty) â
â¥) â
Set
-}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lists made up entirely of unique elements (setoid equality)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Rel; Setoid)
module Data.List.Relation.Unary.Unique.Setoid {a â} (S : Setoid a â) where
open Setoid S renaming (Carrier to A)
open import Data.List.Base
import Data.List.Relation.Unary.AllPairs as AllPairsM
open import Level using (_â_)
open import Relation.Unary using (Pred)
open import Relation.Nullary using (¬_)
------------------------------------------------------------------------
-- Definition
private
Distinct : Rel A â
Distinct x y = ¬ (x â y)
open import Data.List.Relation.Unary.AllPairs.Core Distinct
renaming (AllPairs to Unique)
public
open import Data.List.Relation.Unary.AllPairs {R = Distinct}
using (head; tail)
public
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Equality over lists using propositional equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Data.List.Relation.Binary.Equality.Propositional {a} {A : Set a} where
open import Data.List
import Data.List.Relation.Binary.Equality.Setoid as SetoidEquality
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Publically re-export everything from setoid equality
open SetoidEquality (setoid A) public
------------------------------------------------------------------------
-- â is propositional
âââ¡ : _â_ â _â¡_
âââ¡ [] = refl
âââ¡ (refl â· xsâys) = cong (_ â·_) (âââ¡ xsâys)
â¡ââ : _â¡_ â _â_
â¡ââ refl = â-refl
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Unary.Any.Properties directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.BagAndSetEquality where
open import Data.List.Relation.Binary.BagAndSetEquality public
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.RibbonCover
module experimental.CoverClassification2 {i} (X : Ptd i)
(A-conn : is-connected 0 (deâ X)) where
private
A = deâ X
a = pt X
open Cover
open import homotopy.CoverClassification X A-conn
{-
Universality of the covering generated by the fundamental group itself.
-}
-- FIXME What's the established terminology for this?
canonical-gset : Gset (ÏS 0 X) i
canonical-gset = record
{ El = a =â a
; El-level = Trunc-level
; gset-struct = record
{ act = _ââ_
; unit-r = ââ-unit-r
; assoc = ââ-assoc
}
}
-- FIXME What's the established terminology for this?
canonical-cover : Cover A i
canonical-cover = gset-to-cover canonical-gset
{-
private
module CanonicalIsUniversal where
open covering canonical-covering
open gset canonical-gset
centerâ² : â a â Σ A fiber
centerâ² a = (a , trace {gs = act} reflâ reflâ)
center : Ï âš1â© (Σ A fiber)
center = proj centerâ²
private
-- An ugly lemma for this development only
trans-fiberâ¡cst-proj-Σ-eq : â {i} (P : Set i) (Q : P â Set i)
(a : P) (c : Σ P Q) {bâ bâ} (p : bâ â¡ bâ) (q : a â¡ Ïâ c)
(r : transport Q q bâ â¡ Ïâ c)
â transport (λ r â (a , r) â¡â c) p (proj $ Σ-eq q r)
â¡ proj (Σ-eq q (ap (transport Q q) (! p) â r))
trans-fiberâ¡cst-proj-Σ-eq P Q a c refl q r = refl
abstract
path-trace-fiber : â {aâ} y (p : a â¡ aâ)
â transport fiber (! p â ! y) (trace (proj y) (proj p))
â¡ trace reflâ reflâ
path-trace-fiber y refl =
transport fiber (! y) (trace (proj y) reflâ)
â¡âš trans-trace act (! y) (proj y) reflâ â©
trace (proj y) (proj $ ! y)
â¡âš paste reflâ (proj y) (proj $ ! y) â©
trace reflâ (proj $ y â ! y)
â¡âš ap (trace reflâ ⯠proj) $ opposite-right-inverse y â©â
trace reflâ reflâ
â
path-trace : â {aâ} y p â (aâ , trace {act = act} y p) â¡â centerâ²
path-trace {aâ} =
Ïâ-extend ⊠λ y â Î -is-set λ p â Ïâ-is-set ((aâ , trace y p) â¡ centerâ²) âŠ
(λ y â Ïâ-extend ⊠λ p â Ïâ-is-set ((aâ , trace (proj y) p) â¡ centerâ²) âŠ
(λ p â proj $ Σ-eq (! p â ! y) (path-trace-fiber y p)))
abstract
path-pasteâ² : â {aâ} y loop p
â transport (λ r â (aâ , r) â¡â centerâ²) (paste (proj y) (proj loop) (proj p))
(path-trace (proj $ y â loop) (proj p))
â¡ path-trace (proj y) (proj $ loop â p)
path-pasteâ² y loop refl =
transport (λ r â (a , r) â¡â centerâ²) (paste (proj y) (proj loop) reflâ)
(proj $ Σ-eq (! (y â loop)) (path-trace-fiber (y â loop) refl))
â¡âš trans-fiberâ¡cst-proj-Σ-eq A fiber a centerâ²
(paste (proj y) (proj loop) reflâ)
(! (y â loop)) (path-trace-fiber (y â loop) refl) â©
proj (Σ-eq (! (y â loop)) _)
â¡âš ap proj $
ap2 (λ p q â Σ-eq p q)
(! (y â loop)
â¡âš opposite-concat y loop â©
! loop â ! y
â¡âš ap (λ x â ! x â ! y) $ ! $ refl-right-unit loop â©â
! (loop â refl) â ! y
â)
(prop-has-all-paths (ribbon-is-set a _ _) _ _) â©â
proj (Σ-eq (! (loop â refl) â ! y) (path-trace-fiber y (loop â refl)))
â
abstract
path-paste : â {aâ} y loop p
â transport (λ r â (aâ , r) â¡â centerâ²) (paste y loop p)
(path-trace (y ââ loop) p)
â¡ path-trace y (loop ââ p)
path-paste {aâ} =
Ïâ-extend ⊠λ y â Î -is-set λ loop â Î -is-set λ p â â¡-is-set $ Ïâ-is-set _ âŠ
(λ y â Ïâ-extend ⊠λ loop â Î -is-set λ p â â¡-is-set $ Ïâ-is-set _ âŠ
(λ loop â Ïâ-extend ⊠λ p â â¡-is-set $ Ïâ-is-set _ âŠ
(λ p â path-pasteâ² y loop p)))
pathâ² : (y : Σ A fiber) â proj {n = âš1â©} y â¡ center
pathâ² y = Ï-path-equiv-path-Ï-S {n = âš0â©} â
ribbon-rec {act = act} (Ïâ y)
(λ r â (Ïâ y , r) â¡â centerâ²)
⊠λ r â Ïâ-is-set ((Ïâ y , r) â¡ centerâ²) âŠ
path-trace
path-paste
(Ïâ y)
path : (y : Ï âš1â© (Σ A fiber)) â y â¡ center
path = Ï-extend {n = âš1â©} ⊠λ _ â â¡-is-truncated âš1â© $ Ï-is-truncated âš1â© _ ⊠pathâ²
canonical-covering-is-universal : is-universal canonical-covering
canonical-covering-is-universal = Universality.center , Universality.path
-- The other direction: If a covering is universal, then the fiber
-- is equivalent to the fundamental group.
module _ (cov : covering) (cov-is-universal : is-universal cov) where
open covering cov
open action (coveringâaction cov)
-- We need a point!
module GiveMeAPoint (center : fiber a) where
-- Goal: fiber a <-> fundamental group
fiber-aâfg : fiber a â a â¡â a
fiber-aâfg y = apâ Ïâ $ connected-has-all-Ï-paths
cov-is-universal (a , center) (a , y)
fgâfiber-a : a â¡â a â fiber a
fgâfiber-a = tracing cov center
fgâfiber-aâfg : â p â fiber-aâfg (fgâfiber-a p) â¡ p
fgâfiber-aâfg = Ïâ-extend ⊠λ _ â â¡-is-set $ Ïâ-is-set _ ⊠λ p â
apâ Ïâ (connected-has-all-Ï-paths
cov-is-universal (a , center) (a , transport fiber p center))
â¡âš ap (apâ Ïâ)
$ ! $ Ïâ (connected-has-connected-paths cov-is-universal _ _)
(proj $ Σ-eq p refl) â©
apâ Ïâ (proj $ Σ-eq p refl)
â¡âš ap proj $ base-path-Σ-eq p refl â©â
proj p
â
fiber-aâfgâfiber-a : â y â fgâfiber-a (fiber-aâfg y) â¡ y
fiber-aâfgâfiber-a y = Ïâ-extend
⊠λ p â â¡-is-set {x = tracing cov center (apâ Ïâ p)} {y = y}
$ fiber-is-set a âŠ
(λ p â
transport fiber (base-path p) center
â¡âš trans-base-path p â©â
y
â)
(connected-has-all-Ï-paths cov-is-universal (a , center) (a , y))
fiber-aâfg : fiber a â (a â¡â a)
fiber-aâfg = fiber-aâfg , iso-is-eq _ fgâfiber-a
fgâfiber-aâfg fiber-aâfgâfiber-a
-- This is the best we can obtain, because there is no continuous
-- choice of the center.
[center] : [ fiber a ]
[center] = Ï-extend-nondep
⊠prop-is-gpd []-is-prop âŠ
(λ y â []-extend-nondep
⊠[]-is-prop âŠ
(proj ⯠λ p â transport fiber p (Ïâ y))
(connected-has-all-Ï-paths Aâ-is-conn (Ïâ y) a))
(Ïâ cov-is-universal)
-- [ isomorphism between the fiber and the fundamental group ]
-- This is the best we can obtain, because there is no continuous
-- choice of the center.
[fiber-aâfg] : [ fiber a â (a â¡â a) ]
[fiber-aâfg] = []-extend-nondep ⊠[]-is-prop âŠ
(proj ⯠GiveMeAPoint.fiber-aâfg) [center]
-}
|
-- Andreas, 2015-02-07
postulate
X Y : Set
fix : (X â X) â X
g : Y â X â X
y : Y
P : X â Set
yes : (f : X â X) â P (f (fix f))
test : P (g y (fix (g y)))
test with g y
test | f = yes f
-- should be able to abstract (g y) twice
-- and succeed
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Functor
module Categories.Diagram.Limit.Properties
{o â e} {oâ² ââ² eâ²} {C : Category o â e} {J : Category oâ² ââ² eâ²} where
open import Categories.Diagram.Cone.Properties
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _â_; module â)
open import Categories.Morphism.Reasoning C
open import Categories.Morphism C
import Categories.Category.Construction.Cones as Con
import Categories.Diagram.Limit as Lim
private
module J = Category J
module C = Category C
open C
variable
X Y Z : Obj
f g h : X â Y
open HomReasoning
-- natural isomorphisms respects limits
module _ {F G : Functor J C} (FâG : F â G) where
private
module F = Functor F
module G = Functor G
module LF = Lim F
module LG = Lim G
open NaturalIsomorphism FâG
â-resp-lim : LF.Limit â LG.Limit
â-resp-lim L = record
{ terminal = record
{ †= record
{ apex = record
{ Ï = λ j â â.η j â proj j
; commute = λ {X Y} f â begin
G.Fâ f â â.η X â proj X ââš pullË¡ (â.sym-commute f) â©
(â.η Y â F.Fâ f) â proj X ââš pullʳ (limit-commute f) â©
â.η Y â proj Y â
}
}
; â€-is-terminal = record
{ ! = λ {A} â record
{ arr = rep (nat-map-Cone FâG A)
; commute = λ {j} â assoc â ⺠(switch-tofromË¡ (record { iso = iso j }) (⺠commute))
}
; !-unique = λ {K} f â
let module f = Con.Coneâ G f
in terminal.!-unique record
{ arr = f.arr
; commute = λ {j} â switch-fromtoË¡ (record { iso = iso j }) (sym-assoc â f.commute)
}
}
}
}
where open LF.Limit L
ââConeâ : â (Lf : LF.Limit) (Lg : LG.Limit) â Con.Cones G [ LG.Limit.limit (â-resp-lim Lf) , LG.Limit.limit Lg ]
ââConeâ Lf Lg = rep-cone (LG.Limit.limit (â-resp-lim Lf))
where open LG.Limit Lg
ââlimâ
: â {F G : Functor J C} (FâG : F â G) (Lf : Lim.Limit F) (Lg : Lim.Limit G) â Lim.Limit.apex Lf â
Lim.Limit.apex Lg
ââlimâ
{F = F} {G} FâG Lf Lg = record
{ from = arr (ââConeâ FâG Lf Lg)
; to = arr (ââConeâ (â.sym FâG) Lg Lf)
; iso = record
{ isoË¡ = Lf.terminal.â€-id record
{ commute = λ {j} â begin
Lf.proj j â arr (ââConeâ (â.sym FâG) Lg Lf) â arr (ââConeâ FâG Lf Lg) ââš pullË¡ (â-commute (ââConeâ (â.sym FâG) Lg Lf)) â©
(â.η j â Lg.proj j) â arr (ââConeâ FâG Lf Lg) ââš pullʳ (â-commute (ââConeâ FâG Lf Lg)) â©
â.η j â â.η j â Lf.proj j ââš cancelË¡ (iso.isoË¡ j) â©
Lf.proj j â
}
; isoʳ = Lg.terminal.â€-id record
{ commute = λ {j} â begin
Lg.proj j â arr (ââConeâ FâG Lf Lg) â arr (ââConeâ (â.sym FâG) Lg Lf) ââš pullË¡ (â-commute (ââConeâ FâG Lf Lg)) â©
(â.η j â Lf.proj j) â arr (ââConeâ (â.sym FâG) Lg Lf) ââš pullʳ (â-commute (ââConeâ (â.sym FâG) Lg Lf)) â©
â.η j â â.η j â Lg.proj j ââš cancelË¡ (iso.isoʳ j) â©
Lg.proj j â
}
}
}
where open Con.Coneâ renaming (commute to â-commute)
module Lf = Lim.Limit Lf
module Lg = Lim.Limit Lg
open NaturalIsomorphism FâG
|
open import lib
open import sum
module grammar (form : Set)(_eq_ : form â form â ð¹)(drop-form : (x y : form) â x â¡ y â x eq y â¡ tt)(rise-form : (x y : form) â x eq y â¡ tt â x â¡ y) where
infix 7 _â_
data production : Set where
_â_ : form â ð (form â char) â production
record grammar {numprods : â} : Set where
constructor _,_
field
start : form
prods : ð production numprods
open grammar
splice : â â ð (form â char) â form â ð (form â char) â ð (form â char)
splice x [] _ _ = []
splice 0 ((injâ s) :: ss) s' ss' with s eq s'
... | tt = ss' ++ ss
... | ff = (injâ s) :: ss
splice 0 (x :: ss) s' ss' = x :: ss
splice (suc n) (s :: ss) s' ss' = s :: splice n ss s' ss'
ðinjâ : â{â â'}{B : Set â}{A : Set â'} â ð A â ð (B â A)
ðinjâ (x :: xs) = (injâ x) :: ðinjâ xs
ðinjâ [] = []
ðinjâ : â{â â'}{B : Set â}{A : Set â'} â ð A â ð (A â B)
ðinjâ (x :: xs) = (injâ x) :: ðinjâ xs
ðinjâ [] = []
data derivation{numprods : â} {g : grammar{numprods}} : ð (form â char) â ð char â Set where
end : {ss : ð char} â derivation (ðinjâ ss) ss
step : â {ss1 ss1' : ð (form â char)}{ss2 : ð char}{s : form}{ss : ð (form â char)} â
(m n : â) â (p : n < numprods â¡ tt) â
nthð n p (prods g) â¡ (s â ss) â
m < length ss1 â¡ tt â
splice m ss1 s ss â¡ ss1' â
derivation {g = g} ss1' ss2 â
derivation ss1 ss2
splice-concat : â{l1 l2 target final : ð (form â char)}{n : â}{slice : form} â splice n l1 slice target â¡ final â splice (n + (length l2)) (l2 ++ l1) slice target â¡ l2 ++ final
splice-concat{l2 = []}{n = n} pr rewrite +0 n = pr
splice-concat{l1}{x :: xs}{n = n} pr rewrite +suc n (length xs) | splice-concat{l1}{l2 = xs} pr = refl
_=formâchar_ : (x y : form â char) â ð¹
_=formâchar_ = =â _eq_ _=char_
formâchar-drop : (x y : form â char) â x â¡ y â x =formâchar y â¡ tt
formâchar-drop = â¡â-to-= _eq_ _=char_ drop-form â¡char-to-=
formâchar-rise : (x y : form â char) â x =formâchar y â¡ tt â x â¡ y
formâchar-rise = =â-to-â¡ _eq_ _=char_ rise-form =char-to-â¡
splice-concat2 : â{l1 l2 target final : ð (form â char)}{n : â}{slice : form} â splice n l1 slice target â¡ final â n < length l1 â¡ tt â splice n (l1 ++ l2) slice target â¡ final ++ l2
splice-concat2{[]}{n = n} pr1 pr2 rewrite <-0 n = ð¹-contra pr2
splice-concat2{injâ x :: xs}{l2}{target}{n = 0}{slice} pr1 pr2 with x eq slice
...| tt rewrite (sym pr1) | ++[] target | ++-assoc target xs l2 = refl
...| ff rewrite (sym pr1) = refl
splice-concat2{injâ x :: xs}{l2}{target}{n = 0}{slice} pr1 pr2 rewrite (sym pr1) = refl
splice-concat2{x :: xs}{l2}{target}{[]}{suc n} pr1 pr2 with pr1
...| ()
splice-concat2{x :: xs}{l2}{target}{f :: fs}{suc n}{slice} pr1 pr2 with =ð-from-â¡ _=formâchar_ formâchar-drop pr1
...| s1 rewrite splice-concat2{xs}{l2}{target}{fs}{n}{slice} (â¡ð-from-={l1 = splice n xs slice target}{fs} _=formâchar_ formâchar-rise (&&-snd{x =formâchar f} s1)) pr2 | formâchar-rise x f (&&-fst{x =formâchar f} s1) = refl
length+ : â{â}{A : Set â}(l1 l2 : ð A) â length (l1 ++ l2) â¡ length l1 + length l2
length+ [] l2 = refl
length+ (x :: xs) l2 rewrite length+ xs l2 = refl
<-h1 : â{x y a : â} â x < y â¡ tt â x + a < y + a â¡ tt
<-h1{x}{y}{0} p rewrite +0 x | +0 y = p
<-h1{x}{y}{suc n} p rewrite +suc y n | +suc x n = <-h1{x}{y}{n} p
<-h2 : â{a x y : â} â a < x â¡ tt â a < x + y â¡ tt
<-h2{a}{x}{0} p rewrite +0 x = p
<-h2{a}{x}{suc y} p rewrite +suc x y with <-h2{a}{x}{y} p | <-suc (x + y)
...| pr1 | pr2 = <-trans{a}{x + y}{suc (x + y)} pr1 pr2
lengthðinjâ : â{â â'}{A : Set â}{B : Set â'} â (l : ð A) â length (ðinjâ{B = B} l) â¡ length l
lengthðinjâ{B = B} (x :: xs) rewrite lengthðinjâ{B = B} xs = refl
lengthðinjâ [] = refl
ðinjâ++ : â{â â'}{A : Set â}{B : Set â'} â (l1 l2 : ð A) â ðinjâ{B = B} (l1 ++ l2) â¡ ðinjâ l1 ++ ðinjâ l2
ðinjâ++ [] l2 = refl
ðinjâ++{B = B} (x :: xs) l2 rewrite ðinjâ++{B = B} xs l2 = refl
infixr 10 _deriv++_
_deriv++_ : {l2 l4 : ð char}{l1 l3 : ð (form â char)}{n : â}{gr : grammar{n}} â derivation{g = gr} l1 l2 â derivation{g = gr} l3 l4 â derivation{g = gr} (l1 ++ l3) (l2 ++ l4)
_deriv++_{l2}{l4} end end rewrite sym (ðinjâ++{B = form} l2 l4) = end
_deriv++_{l2}{l4}{l1}{l3} f (step{ss1' = ss1'}{s = s}{ss} a b pr1 pr2 pr3 pr4 next) with <-h1{a}{length l3}{length l1} pr3
...| pr5 rewrite +comm (length l3) (length l1) | (sym (length+ l1 l3)) = step{ss1 = l1 ++ l3}{l1 ++ ss1'}{l2 ++ l4} (a + (length l1)) b pr1 pr2 pr5 (splice-concat{l3}{l1} pr4) (_deriv++_ f next)
_deriv++_{l2}{l4}{l1} (step{ss1' = ss1'}{s = s}{ss} a b pr1 pr2 pr3 pr4 next) end with <-h2{a}{length l1}{length (ðinjâ{B = form} l4)} pr3
...| pr5 rewrite sym (length+ l1 (ðinjâ l4)) = step{ss1 = l1 ++ ðinjâ l4}{ss1' ++ ðinjâ l4}{l2 ++ l4} a b pr1 pr2 pr5 (splice-concat2{l1}{ðinjâ l4} pr4 pr3) (_deriv++_ next end)
|
module Issue203 where
open import Common.Level
-- shouldn't work
data Bad {a b} (A : Set a) : Set b where
[_] : (x : A) â Bad A
|
module Eq.KleeneTheory where
open import Prelude
open import T
open import Eq.Defs
open import Eq.LogicalTheory
open import Eq.KleeneTheoryEarly public
-- Harper says that Kleene equality is "evidently reflexive",
-- but this requires/implies termination!
-- We pick it directly from the consistency and reflexivity of
-- logical equivalence.
-- We could also prove it using halting, which we could prove from
-- either our HT result or from reflexivity of logical equivalence.
-- This is a bit simpler.
kleene-refl : Reflexive KleeneEq
kleene-refl {e} = ological-consistent (ological-refl e)
-- For kicks, we'll prove halting for closed nats.
nats-halt : (n : TNat) â THalts n
nats-halt n with kleene-refl {n}
... | kleeneq _ val E1 _ = halts E1 val
kleene-is-equivalence : IsEquivalence KleeneEq
kleene-is-equivalence = record { refl_ = kleene-refl
; sym_ = kleene-sym
; trans_ = kleene-trans }
|
{-# OPTIONS --without-K --safe #-}
module Dodo.Binary.Irreflexive where
-- Stdlib imports
open import Level using (Level)
open import Relation.Binary using (Rel; Irreflexive)
-- Local imports
open import Dodo.Binary.Equality
module _ {a ââ ââ ââ : Level} {A : Set a}
{â : Rel A ââ} {P : Rel A ââ} {Q : Rel A ââ} where
irreflexive-ââ : Irreflexive â Q â P ââ Q â Irreflexive â P
irreflexive-ââ irreflexiveQ PâQ xây Pxy = irreflexiveQ xây (ââ-apply PâQ Pxy)
|
-- Andreas, 2017-01-20, issue #1817 is fixed
open import Agda.Builtin.Size
open import Agda.Builtin.Nat renaming (Nat to â)
-- Function
_$_ : â{a b}{A : Set a}{B : Set b} â(A â B) â A â B
f $ x = f x
case_of_ : â{a b}{A : Set a}{B : Set b} â A â (A â B) â B
case x of f = f x
-- Size
data SizeLt (i : Size) : Set where
size : (j : Size< i) â SizeLt i
getSize : â{i} â SizeLt i â Size
getSize (size j) = j
-- List
data List (A : Set) : Set where
[] : List A
_â·_ : (x : A) (xs : List A) â List A
for : â{A B} (xs : List A) (f : A â B) â List B
for [] f = []
for (x â· xs) f = f x â· for xs f
-- BT
data Var : (n : â) â Set where
vz : â{n} â Var (suc n)
vs : â{n} â (x : Var n) â Var (suc n)
mutual
record BT (i : Size) (n : â) : Set where
inductive; constructor Î
field nabs : â
var : Var (nabs + n)
args : List (BT' i (nabs + n))
record BT' (i : Size) (n : â) : Set where
coinductive; constructor delay
field force : â{j : SizeLt i} â BT (getSize j) n
open BT'
-- Renaming
data Ope : (n m : â) â Set where
id : â{n} â Ope n n
weak : â{n m} (Ï : Ope n m) â Ope (1 + n) m
lift : â{n m} (Ï : Ope n m) â Ope (1 + n) (1 + m)
lifts : â k {n m} (Ï : Ope n m) â Ope (k + n) (k + m)
lifts 0 Ï = Ï
lifts (suc k) Ï = lift (lifts k Ï)
renVar : â{n m} (Ï : Ope n m) (x : Var m) â Var n
renVar id x = x
renVar (weak Ï) x = vs (renVar Ï x)
renVar (lift Ï) vz = vz
renVar (lift Ï) (vs x) = vs (renVar Ï x)
ren : â{i n m} (Ï : Ope n m) (t : BT i m) â BT i n
ren {i} Ïâ (Î n x ts) = Î n (renVar Ï x) $ for ts \ t â delay
\{ {size j} â ren {j} Ï $ force t {size j} }
where Ï = lifts n Ïâ
|
{-
This second-order equational theory was created from the following second-order syntax description:
syntax CTLC | ÎC
type
N : 0-ary
_â£_ : 2-ary | r30
¬_ : 1-ary | r30
term
app : α ⣠β α -> β | _$_ l20
lam : α.β -> α ⣠β | Æ_ r10
throw : α ¬ α -> β
callcc : ¬ α.α -> α
theory
(ÆÎ²) b : α.β a : α |> app (lam(x.b[x]), a) = b[a]
(ÆÎ·) f : α ⣠β |> lam (x. app(f, x)) = f
-}
module CTLC.Equality where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Families.Build
open import SOAS.ContextMaps.Inductive
open import CTLC.Signature
open import CTLC.Syntax
open import SOAS.Metatheory.SecondOrder.Metasubstitution ÎC:Syn
open import SOAS.Metatheory.SecondOrder.Equality ÎC:Syn
private
variable
α β γ Ï : ÎCT
Î Î Î : Ctx
infix 1 _â¹_â¢_ââ_
-- Axioms of equality
data _â¹_â¢_ââ_ : â ð Î {α} â (ð â· ÎC) α Î â (ð â· ÎC) α Î â Set where
ÆÎ² : â
α ⩠β â â
α âÌ£ â¹ â
⢠(Æ ðâš xâ â©) $ ð ââ ðâš ð â©
ÆÎ· : â
α ⣠β âÌ£ â¹ â
â¢ Æ (ð $ xâ) ââ ð
open EqLogic _â¹_â¢_ââ_
open â-Reasoning
|
{-# OPTIONS --cubical-compatible #-}
postulate
A : Set
B : A â Set
-- fine
record Râ : Set where
field
@0 x : A
@0 y : B x
-- bad
record R : Set where
field
@0 x : A
y : B x
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.NaturalTransformation.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism renaming (iso to iIso)
open import Cubical.Data.Sigma
open import Cubical.Categories.Category
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Functor.Properties
open import Cubical.Categories.Commutativity
open import Cubical.Categories.Morphism renaming (isIso to isIsoC)
private
variable
âC âC' âD âD' : Level
module _ {C : Precategory âC âC'} {D : Precategory âD âD'} where
-- syntax for sequencing in category D
infixl 15 _âᎰ_
private
_âᎰ_ : â {x y z} (f : D [ x , y ]) (g : D [ y , z ]) â D [ x , z ]
f âᎰ g = f ââš D â© g
open Precategory
open Functor
-- type aliases because it gets tedious typing it out all the time
N-ob-Type : (F G : Functor C D) â Type _
N-ob-Type F G = (x : C .ob) â D [(F .F-ob x) , (G .F-ob x)]
N-hom-Type : (F G : Functor C D) â N-ob-Type F G â Type _
N-hom-Type F G Ï = {x y : C .ob} (f : C [ x , y ]) â (F .F-hom f) âᎰ (Ï y) â¡ (Ï x) âᎰ (G .F-hom f)
record NatTrans (F G : Functor C D) : Type (â-max (â-max âC âC') âD') where
constructor natTrans
field
-- components of the natural transformation
N-ob : N-ob-Type F G
-- naturality condition
N-hom : N-hom-Type F G N-ob
record NatIso (F G : Functor C D): Type (â-max (â-max âC âC') (â-max âD âD')) where
field
trans : NatTrans F G
open NatTrans trans
field
nIso : â (x : C .ob) â isIsoC {C = D} (N-ob x)
open isIsoC
-- the three other commuting squares
sqRL : â {x y : C .ob} {f : C [ x , y ]}
â F ⪠f â« â¡ (N-ob x) âᎰ G ⪠f â« âᎰ (nIso y) .inv
sqRL {x} {y} {f} = invMoveR (isIsoâareInv (nIso y)) (N-hom f)
sqLL : â {x y : C .ob} {f : C [ x , y ]}
â G ⪠f â« âᎰ (nIso y) .inv â¡ (nIso x) .inv âᎰ F ⪠f â«
sqLL {x} {y} {f} = invMoveL (isIsoâareInv (nIso x)) (sym sqRL')
where
sqRL' : F ⪠f â« â¡ (N-ob x) âᎰ ( G ⪠f â« âᎰ (nIso y) .inv )
sqRL' = sqRL â (D .âAssoc _ _ _)
sqLR : â {x y : C .ob} {f : C [ x , y ]}
â G ⪠f â« â¡ (nIso x) .inv âᎰ F ⪠f â« âᎰ (N-ob y)
sqLR {x} {y} {f} = invMoveR (symAreInv (isIsoâareInv (nIso y))) sqLL
open NatTrans
open NatIso
infix 10 NatTrans
syntax NatTrans F G = F â G
infix 9 NatIso
syntax NatIso F G = F â
á¶ G -- c superscript to indicate that this is in the context of categories
-- component of a natural transformation
infix 30 _âŠ_â§
_âŠ_â§ : â {F G : Functor C D} â (F â G) â (x : C .ob) â D [(F .F-ob x) , (G .F-ob x)]
_âŠ_â§ = N-ob
idTrans : (F : Functor C D) â NatTrans F F
idTrans F .N-ob x = D .id (F .F-ob x)
idTrans F .N-hom f =
(F .F-hom f) âᎰ (idTrans F .N-ob _)
â¡âš D .âIdR _ â©
F .F-hom f
â¡âš sym (D .âIdL _) â©
(D .id (F .F-ob _)) âᎰ (F .F-hom f)
â
syntax idTrans F = 1[ F ]
-- vertical sequencing
seqTrans : {F G H : Functor C D} (α : NatTrans F G) (β : NatTrans G H) â NatTrans F H
seqTrans α β .N-ob x = (α .N-ob x) âᎰ (β .N-ob x)
seqTrans {F} {G} {H} α β .N-hom f =
(F .F-hom f) âᎰ ((α .N-ob _) âᎰ (β .N-ob _))
â¡âš sym (D .âAssoc _ _ _) â©
((F .F-hom f) âᎰ (α .N-ob _)) âᎰ (β .N-ob _)
â¡[ i ]âš (α .N-hom f i) âᎰ (β .N-ob _) â©
((α .N-ob _) âᎰ (G .F-hom f)) âᎰ (β .N-ob _)
â¡âš D .âAssoc _ _ _ â©
(α .N-ob _) âᎰ ((G .F-hom f) âᎰ (β .N-ob _))
â¡[ i ]âš (α .N-ob _) âᎰ (β .N-hom f i) â©
(α .N-ob _) âᎰ ((β .N-ob _) âᎰ (H .F-hom f))
â¡âš sym (D .âAssoc _ _ _) â©
((α .N-ob _) âᎰ (β .N-ob _)) âᎰ (H .F-hom f)
â
compTrans : {F G H : Functor C D} (β : NatTrans G H) (α : NatTrans F G) â NatTrans F H
compTrans β α = seqTrans α β
infixl 8 seqTrans
syntax seqTrans α β = α âᵠβ
-- vertically sequence natural transformations whose
-- common functor is not definitional equal
seqTransP : {F G G' H : Functor C D} (p : G â¡ G')
â (α : NatTrans F G) (β : NatTrans G' H)
â NatTrans F H
seqTransP {F} {G} {G'} {H} p α β .N-ob x
-- sequence morphisms with non-judgementally equal (co)domain
= seqP {C = D} {p = Gxâ¡G'x} (α ⊠x â§) (β ⊠x â§)
where
Gxâ¡G'x : â {x} â G â
x â â¡ G' â
x â
Gxâ¡G'x {x} i = F-ob (p i) x
seqTransP {F} {G} {G'} {H} p α β .N-hom {x = x} {y} f
-- compose the two commuting squares
-- 1. α's commuting square
-- 2. β's commuting square, but extended to G since β is only G' â¡> H
= compSq {C = D} (α .N-hom f) βSq
where
-- functor equality implies equality of actions on objects and morphisms
Gxâ¡G'x : G â
x â â¡ G' â
x â
Gxâ¡G'x i = F-ob (p i) x
Gyâ¡G'y : G â
y â â¡ G' â
y â
Gyâ¡G'y i = F-ob (p i) y
Gfâ¡G'f : PathP (λ i â D [ Gxâ¡G'x i , Gyâ¡G'y i ]) (G ⪠f â«) (G' ⪠f â«)
Gfâ¡G'f i = p i ⪠f â«
-- components of β extended out to Gx and Gy respectively
βx' = subst (λ a â D [ a , H â
x â ]) (sym Gxâ¡G'x) (β ⊠x â§)
βy' = subst (λ a â D [ a , H â
y â ]) (sym Gyâ¡G'y) (β ⊠y â§)
-- extensions are equal to originals
βy'â¡Î²y : PathP (λ i â D [ Gyâ¡G'y i , H â
y â ]) βy' (β ⊠y â§)
βy'â¡Î²y = symP (toPathP {A = λ i â D [ Gyâ¡G'y (~ i) , H â
y â ]} refl)
βxâ¡Î²x' : PathP (λ i â D [ Gxâ¡G'x (~ i) , H â
x â ]) (β ⊠x â§) βx'
βxâ¡Î²x' = toPathP refl
-- left wall of square
left : PathP (λ i â D [ Gxâ¡G'x i , H â
y â ]) (G ⪠f â« ââš D ⩠βy') (G' ⪠f â« ââš D ⩠β ⊠y â§)
left i = Gfâ¡G'f i ââš D ⩠βy'â¡Î²y i
-- right wall of square
right : PathP (λ i â D [ Gxâ¡G'x (~ i) , H â
y â ]) (β ⊠x â§ ââš D â© H ⪠f â«) (βx' ââš D â© H ⪠f â«)
right i = βxâ¡Î²x' i ââš D â© refl {x = H ⪠f â«} i
-- putting it all together
βSq : G ⪠f â« ââš D ⩠βy' ⡠βx' ââš D â© H ⪠f â«
βSq i = comp (λ k â D [ Gxâ¡G'x (~ k) , H â
y â ])
(λ j â λ { (i = i0) â left (~ j)
; (i = i1) â right j })
(β .N-hom f i)
module _ ⊠isCatD : isCategory D ⊠{F G : Functor C D} {α β : NatTrans F G} where
open Precategory
open Functor
open NatTrans
makeNatTransPath : α .N-ob ⡠β .N-ob â α ⡠β
makeNatTransPath p i .N-ob = p i
makeNatTransPath p i .N-hom f = rem i
where
rem : PathP (λ i â (F .F-hom f) âᎰ (p i _) â¡ (p i _) âᎰ (G .F-hom f)) (α .N-hom f) (β .N-hom f)
rem = toPathP (isCatD .isSetHom _ _ _ _)
module _ ⊠isCatD : isCategory D ⊠{F F' G G' : Functor C D}
{α : NatTrans F G}
{β : NatTrans F' G'} where
open Precategory
open Functor
open NatTrans
makeNatTransPathP : â (p : F â¡ F') (q : G â¡ G')
â PathP (λ i â (x : C .ob) â D [ (p i) .F-ob x , (q i) .F-ob x ]) (α .N-ob) (β .N-ob)
â PathP (λ i â NatTrans (p i) (q i)) α β
makeNatTransPathP p q P i .N-ob = P i
makeNatTransPathP p q P i .N-hom f = rem i
where
rem : PathP (λ i â ((p i) .F-hom f) âᎰ (P i _) â¡ (P i _) âᎰ ((q i) .F-hom f)) (α .N-hom f) (β .N-hom f)
rem = toPathP (isCatD .isSetHom _ _ _ _)
private
variable
âA âA' âB âB' : Level
module _ {B : Precategory âB âB'} {C : Precategory âC âC'} {D : Precategory âD âD'} where
open NatTrans
-- whiskering
-- αF
_âË¡_ : â {G H : Functor C D} (α : NatTrans G H) â (F : Functor B C)
â NatTrans (G âF F) (H âF F)
(_âË¡_ {G} {H} α F) .N-ob x = α ⊠F â
x â â§
(_âË¡_ {G} {H} α F) .N-hom f = (α .N-hom) _
-- Kβ
_âʳ_ : â (K : Functor C D) â {G H : Functor B C} (β : NatTrans G H)
â NatTrans (K âF G) (K âF H)
(_âʳ_ K {G} {H} β) .N-ob x = K ⪠β ⊠x â§ â«
(_âʳ_ K {G} {H} β) .N-hom f = preserveCommF {C = C} {D = D} {K} (β .N-hom f)
|
{-# OPTIONS --copatterns --sized-types #-}
open import Common.Size
module Issue1038 (A : Set) where
record S (i : Size) : Set where
field
force : â (j : Size< i) â A
head : â i â S i â (j : Size< i) â A
head i s j = S.force s _
-- Problem was:
-- Cannot solve size constraints
-- (â _9 A i s j) =< (_i_8 A i s j) : Size
-- (_i_8 A i s j) =< i : Size
-- when checking the definition of head
-- Works now.
|
{-# OPTIONS --without-K --safe #-}
module Data.Binary.Conversion.Fast where
-- This module provides a conversion function from
-- nats which uses built-in functions.
-- It is dramatically faster than the normal conversion
-- even at smaller numbers.
open import Data.Binary.Definition
open import Data.Nat.DivMod
open import Data.Nat.Base
open import Data.Bool
âŠ_ââ§âš_â© : â â â â ð¹
⊠suc n ââ§âš suc w â© =
if even n
then 1ᵠ⊠n ÷ 2 ââ§âš w â©
else 2ᵠ⊠n ÷ 2 ââ§âš w â©
⊠zero ââ§âš _ â© = 0áµ
⊠suc _ ââ§âš zero â© = 0áµ -- will not happen
-- We build the output by repeatedly halving the input,
-- but we also pass in the number to reduce as we go so that
-- we satisfy the termination checker.
âŠ_ââ§ : â â ð¹
⊠n ââ§ = ⊠n ââ§âš n â©
{-# INLINE âŠ_ââ§ #-}
-- Without the added argument to the recursor, the function does not
-- pass the termination checker:
-- {-# TERMINATING #-}
-- âŠ_ââ§â³ : â â ð¹
-- ⊠zero ââ§â³ = 0áµ
-- ⊠suc n ââ§â³ =
-- if rem n 2 â.â¡áŽ® 0
-- then 1ᵠ⊠n ÷ 2 ââ§â³
-- else 2ᵠ⊠n ÷ 2 ââ§â³
-- The "principled" version (which uses well-founded recursion) is
-- incredibly slow. (and the following doesn't even compute, because of
-- cubical)
-- open import Data.Nat.WellFounded
-- âŠ_ââ§âŽ : â â ð¹
-- ⊠n ââ§âŽ = go n (â€-wellFounded n)
-- where
-- go : â n â Acc _<_ n â ð¹
-- go zero wf = 0áµ
-- go (suc n) (acc wf) =
-- if rem n 2 â.â¡áŽ® 0
-- then 1áµ go (n ÷ 2) (wf (n ÷ 2) (sâ€s (div2†n)))
-- else 2áµ go (n ÷ 2) (wf (n ÷ 2) (sâ€s (div2†n)))
|
module Isos.NatLike where
open import Isos.Isomorphism
open import Nats
open import Data.Product
open import Equality
open import Data.Unit
------------------------------------------------------------------------
-- internal stuffs
private
module WithList where
open import Lists
listââ : List †â â
listââ [] = zero
listââ (tt â· a) = suc (listââ a)
ââlist : â â List â€
ââlist zero = []
ââlist (suc a) = tt â· ââlist a
proofListL : â n â listââ (ââlist n) â¡ n
proofListL zero = refl
proofListL (suc n) rewrite proofListL n = refl
proofListR : â n â ââlist (listââ n) â¡ n
proofListR [] = refl
proofListR (tt â· l) rewrite proofListR l = refl
module WithVec where
open import Vecs
vecâââ² : â {n} â Vec †n â â
vecâââ² {n} [] = n
vecâââ² {n} (tt â· a) = n
vecââ : â {n} â Vec †n â â (λ m â n â¡ m)
vecââ [] = zero , refl
vecââ (tt â· a) with vecââ a
... | m , refl = suc m , refl
ââvec : â {n} â â (λ m â n â¡ m) â Vec †n
ââvec (zero , refl) = []
ââvec ((suc a) , refl) = tt â· ââvec (a , refl)
proofVecL : â {n} (m : â (λ m â n â¡ m)) â vecââ (ââvec m) â¡ m
proofVecL (zero , refl) = refl
proofVecL (suc a , refl) rewrite proofVecL (a , refl) = refl
-- how to prove?
-- proofVecR : â n â ââvec (vecââ n) â¡ n
------------------------------------------------------------------------
-- public aliases
iso-nat-list : â â List â€
iso-nat-list = â§-intro ââlist listââ
iso-nat-vec : â {n} â â (λ m â n â¡ m) â Vec †n
iso-nat-vec = â§-intro ââvec vecââ
|
open import Signature
import Program
module Rewrite (Σ : Sig) (V : Set) (P : Program.Program Σ V) where
open import Terms Σ
open import Program Σ V
open import Data.Empty renaming (⥠to â
)
open import Data.Unit
open import Data.Product as Prod renaming (Σ to ⚿)
open import Data.Sum as Sum
open import Data.Fin
open import Relation.Nullary
open import Relation.Unary
open import Relation.Binary.PropositionalEquality using (_â¡_; refl; subst)
data _â¿_ (t : T V) : T V â Set where
rew-step : (cl : dom P) (i : dom (getb P cl)) {Ï : Subst V V} â
matches (geth P cl) t Ï â -- (mgm t (geth P cl) Ï) â
t â¿ app Ï (get (getb P cl) i)
Val : Pred (T V) _
Val t = (cl : dom P) (i : dom (getb P cl)) {Ï : Subst V V} â
¬ (matches (geth P cl) t Ï)
no-rewrite-on-vals : (t : T V) â Val t â (s : T V) â ¬ (t â¿ s)
no-rewrite-on-vals t p ._ (rew-step cl i q) = p cl i q
data _â_ (t : T V) : T V â Set where
val : Val t â t â t
step : (r s : T V) â r â s â t â¿ r â t â s
{- Strongly normalising terms wrt to P are either in normal form, i.e. values,
or for every clause that matches, every rewrite step must be SN.
This is an adaption of the usual (constructive) definition.
-}
data SN (t : T V) : Set where
val-sn : Val t â SN t
steps-sn : (cl : dom P) (i : dom (getb P cl)) {Ï : Subst V V} â
(matches t (geth P cl) Ï) â
SN (app Ï (get (getb P cl) i)) â
SN t
-- | Determines whether a term t is derivable from an axiom, i.e., whether
-- there is a clause " â p" such that p matches t.
Axiom : Pred (T V) _
Axiom t = ââ λ cl Ï â (mgm t (geth P cl) Ï) à (domEmpty (getb P cl))
-- | An inductively valid term is derivable in finitely many steps from
-- axioms.
data Valid (t : T V) : Set where
val-sn : Axiom t â Valid t
steps-sn : (cl : dom P) (i : dom (getb P cl)) {Ï : Subst V V} â
(matches t (geth P cl) Ï) â
Valid (app Ï (get (getb P cl) i)) â
Valid t
{-
⥠: {X : Set} â X â â€
⥠= injâ tt
record Rew-Branch (F : T V â Set) (t : T V) : Set where
constructor prf-branch
field
clause : dom P
matcher : Subst V V
isMgm : mgm t (geth P clause) matcher
next : (i : dom (getb P clause)) â
F (app matcher (get (getb P clause) i))
-- | Set of rewrite trees starting in t that use the rules given in P.
-- If the tree is â¥, then t cannot be rewritten by any of the rules of P.
data Rew (t : T V) : Set where
in-prf : Rew-Branch Rew t â †â Rew t
-- | Just as Rew, only that we also allow infinite rewriting sequences.
record Rewâ (t : T V) : Set where
coinductive
field out-prf : Rew-Branch Rewâ t â â€
open Rewâ
out-prfâ»Â¹ : â{t} â Rew-Branch Rewâ t â †â Rewâ t
out-prf (out-prfâ»Â¹ b) = b
-- | Finite rewriting trees are included in the set of the possibly infinite
-- ones.
Ï-prf : â{t} â Rew t â Rewâ t
Ï-prf (in-prf (injâ (prf-branch c m isMgm next))) =
out-prfâ»Â¹ (injâ (prf-branch c m isMgm (λ i â Ï-prf (next i))))
Ï-prf (in-prf (injâ tt)) = out-prfâ»Â¹ â¥
Rew-Step : (F : {s : T V} â Rewâ s â Set) â {t : T V} (R : Rewâ t) â Set
Rew-Step F R with out-prf R
Rew-Step F R | injâ (prf-branch clause matcher isMgm next) = {!!}
Rew-Step F R | injâ tt = â
data Path {t : T V} (R : Rewâ t) : Set where
root : Path R
step : {!!} â Path R
-}
|
module Loc (K : Set) where
open import Basics
open import Pr
open import Nom
data Loc : Set where
EL : Loc
_*_ : Loc -> K -> Loc
infixl 50 _*_
data _!_ : Loc -> K -> Set where
top : {L : Loc}{S : K} -> (L * S) ! S
pop : {L : Loc}{S T : K} -> L ! S -> (L * T) ! S
_<*_ : K -> Loc -> Loc
S <* EL = EL * S
S <* (L * T) = (S <* L) * T
max : {S : K}(L : Loc) -> (S <* L) ! S
max EL = top
max (L * T) = pop (max L)
_<_ : (S : K){L : Loc}{T : K} -> L ! T -> (S <* L) ! T
S < top = top
S < pop x = pop (S < x)
data MaxV (S : K)(L : Loc) : {T : K} -> (S <* L) ! T -> Set where
isMax : MaxV S L (max L)
isLow : {T : K}(x : L ! T) -> MaxV S L (S < x)
maxV : (S : K)(L : Loc){T : K}(x : (S <* L) ! T) -> MaxV S L x
maxV S EL top = isMax
maxV S EL (pop ())
maxV S (L * T) top = isLow top
maxV S (L * T) (pop x) with maxV S L x
maxV S (L * T) (pop .(max L)) | isMax = isMax
maxV S (L * T) (pop .(S < x)) | isLow x = isLow (pop x)
_bar_ : (L : Loc){S : K} -> L ! S -> Loc
EL bar ()
(L * S) bar top = L
(L * S) bar (pop v) = (L bar v) * S
infixl 50 _bar_
_thin_ : {L : Loc}{S T : K}(x : L ! S) -> (L bar x) ! T -> L ! T
top thin y = pop y
(pop x) thin top = top
(pop x) thin (pop y) = pop (x thin y)
data VarQV {L : Loc}{S : K}(x : L ! S) : {T : K} -> (L ! T) -> Set where
vSame : VarQV x x
vDiff : {T : K}(y : (L bar x) ! T) -> VarQV x (x thin y)
varQV : {L : Loc}{S T : K}(x : L ! S)(y : L ! T) -> VarQV x y
varQV top top = vSame
varQV top (pop y) = vDiff y
varQV (pop x) top = vDiff top
varQV (pop x) (pop y) with varQV x y
varQV (pop x) (pop .x) | vSame = vSame
varQV (pop x) (pop .(x thin y)) | vDiff y = vDiff (pop y)
|
{-# OPTIONS --cubical #-}
module cubical where
open import Cubical.Core.Primitives
--- Sharp of a type: you can raise any term of type A to the sharp to get a term of type sharp-A
data â¯_ {â : Level} (A : Type â) : Type â where
_â⯠: A â ⯠A
-- do we need a duplicate of sharp-on-Types for crisp types?
-- data â¯c_ {@â â : Level} (@â A : Type â) : Type â where
-- _ââ¯c : A â â¯c A
-- having something crisply in sharp-A gets you something in a
-- the constructor is also the computation rule
_â⯠: {@â â : Level} {@â A : Type â} (@â x : ⯠A) â A
(x ââ¯) â⯠= x
lower-then-upper : {@â â : Level} {@â A : Type â} (@â x : ⯠A) â (x ââ¯) â⯠⡠x
lower-then-upper x = λ i â x
--- I is the interval pre-type
--- i0 : I
--- i1 : I
|
module Data.Nat.Properties where
import Prelude
import Logic.Base
import Logic.Relations
import Logic.Equivalence
import Logic.Operations as Operations
import Logic.Identity
import Logic.ChainReasoning
import Data.Nat
import Data.Bool
open Prelude
open Data.Nat
open Logic.Base
open Logic.Relations
open Logic.Identity
open Data.Bool
module Proofs where
module Ops = Operations.MonoEq {Nat} Equiv
open Ops
module Chain = Logic.ChainReasoning.Poly.Homogenous _â¡_ (\x -> refl) (\x y z -> trans)
open Chain
+zero : (n : Nat) -> n + zero â¡ n
+zero zero = refl
+zero (suc n) = cong suc (+zero n)
+suc : (n m : Nat) -> n + suc m â¡ suc (n + m)
+suc zero m = refl
+suc (suc n) m = cong suc (+suc n m)
+commute : Commutative _+_
+commute x zero = +zero x
+commute x (suc y) = trans (+suc x y) (cong suc (+commute x y))
+assoc : Associative _+_
+assoc zero y z = refl
+assoc (suc x) y z = cong suc (+assoc x y z)
*zero : (n : Nat) -> n * zero â¡ zero
*zero zero = refl
*zero (suc n) = *zero n
*suc : (x y : Nat) -> x * suc y â¡ x + x * y
*suc zero y = refl
*suc (suc x) y =
chain> suc x * suc y
=== suc (y + x * suc y) by refl
=== suc (x + (y + x * y)) by cong suc
( chain> y + x * suc y
=== y + (x + x * y) by cong (_+_ y) (*suc x y)
=== (y + x) + x * y by +assoc y x (x * y)
=== (x + y) + x * y by cong (flip _+_ (x * y)) (+commute y x)
=== x + (y + x * y) by sym (+assoc x y (x * y))
)
=== suc x + suc x * y by refl
*commute : (x y : Nat) -> x * y â¡ y * x
*commute x zero = *zero x
*commute x (suc y) = trans (*suc x y) (cong (_+_ x) (*commute x y))
one* : (x : Nat) -> 1 * x â¡ x
one* x = +zero x
*one : (x : Nat) -> x * 1 â¡ x
*one x = trans (*commute x 1) (one* x)
*distrOver+L : (x y z : Nat) -> x * (y + z) â¡ x * y + x * z
*distrOver+L zero y z = refl
*distrOver+L (suc x) y z =
chain> suc x * (y + z)
=== (y + z) + x * (y + z) by refl
=== (y + z) + (x * y + x * z) by cong (_+_ (y + z)) ih
=== ((y + z) + x * y) + x * z by +assoc (y + z) (x * y) (x * z)
=== (y + (z + x * y)) + x * z by cong (flip _+_ (x * z)) (sym (+assoc y z (x * y)))
=== (y + (x * y + z)) + x * z by cong (\w -> (y + w) + x * z) (+commute z (x * y))
=== ((y + x * y) + z) + x * z by cong (flip _+_ (x * z)) (+assoc y (x * y) z)
=== (y + x * y) + (z + x * z) by sym (+assoc (y + x * y) z (x * z))
=== suc x * y + suc x * z by refl
where
ih = *distrOver+L x y z
*distrOver+R : (x y z : Nat) -> (x + y) * z â¡ x * z + y * z
*distrOver+R zero y z = refl
*distrOver+R (suc x) y z =
chain> (suc x + y) * z
=== z + (x + y) * z by refl
=== z + (x * z + y * z) by cong (_+_ z) (*distrOver+R x y z)
=== (z + x * z) + y * z by +assoc z (x * z) (y * z)
=== suc x * z + y * z by refl
*assoc : Associative _*_
*assoc zero y z = refl
*assoc (suc x) y z =
chain> suc x * (y * z)
=== y * z + x * (y * z) by refl
=== y * z + (x * y) * z by cong (_+_ (y * z)) ih
=== (y + x * y) * z by sym (*distrOver+R y (x * y) z)
=== (suc x * y) * z by refl
where
ih = *assoc x y z
â€refl : (n : Nat) -> IsTrue (n †n)
â€refl zero = tt
â€refl (suc n) = â€refl n
<implies†: (n m : Nat) -> IsTrue (n < m) -> IsTrue (n †m)
<implies†zero m h = tt
<implies†(suc n) zero ()
<implies†(suc n) (suc m) h = <implies†n m h
n-mâ€n : (n m : Nat) -> IsTrue (n - m †n)
n-mâ€n zero m = tt
n-mâ€n (suc n) zero = â€refl n
n-mâ€n (suc n) (suc m) = <implies†(n - m) (suc n) (n-mâ€n n m)
-- mod†: (n m : Nat) -> IsTrue (mod n (suc m) †m)
-- mod†zero m = tt
-- mod†(suc n) m = mod†(n - m) m
open Proofs public
|
module Structure.Category.NaturalTransformation.NaturalTransformations where
open import Functional using () renaming (id to idá¶ â¿)
open import Functional.Dependent using () renaming (_â_ to _âá¶ â¿_)
open import Logic
open import Logic.Predicate
import Lvl
open import Structure.Category
open import Structure.Category.Functor
open import Structure.Category.NaturalTransformation
open import Structure.Categorical.Properties
open import Structure.Operator
open import Structure.Relator.Equivalence
open import Structure.Setoid
open import Syntax.Transitivity
open import Type
open CategoryObject
private variable âââ ââáµ£ âââ ââáµ£ âââ ââáµ£ : Lvl.Level
module Raw
(catâ : CategoryObject{âââ}{âââ}{âââ})
(catáµ£ : CategoryObject{ââáµ£}{ââáµ£}{ââáµ£})
where
private variable F Fâ Fâ Fâ : Object(catâ) â Object(catáµ£)
private instance _ = category catâ
private instance _ = category catáµ£
open Category.ArrowNotation ⊠⊠âŠ
open Category ⊠⊠⊠hiding (identity)
idᎺᵠ: (x : Object(catâ)) â (F(x) â¶ F(x))
idᎺᵠ_ = id
_âᎺáµ_ : ((x : Object(catâ)) â (Fâ(x) â¶ Fâ(x))) â ((x : Object(catâ)) â (Fâ(x) â¶ Fâ(x))) â ((x : Object(catâ)) â (Fâ(x) â¶ Fâ(x)))
(compâ âᎺᵠcompâ)(x) = compâ(x) â compâ(x)
module _
{catâ : CategoryObject{âââ}{âââ}{âââ}}
{catáµ£ : CategoryObject{ââáµ£}{ââáµ£}{ââáµ£}}
where
private instance _ = category catâ
private instance _ = category catáµ£
open Category ⊠⊠⊠hiding (identity)
open Functor ⊠⊠âŠ
private open module Equiváµ£ {x}{y} = Equivalence (Equiv-equivalence ⊠morphism-equiv(catáµ£){x}{y} âŠ) using ()
module _ where
open Raw(catâ)(catáµ£)
module _ {functor@([â]-intro F) : catâ âá¶ áµâ¿á¶áµáµÊ³ catáµ£} where
identity : NaturalTransformation(functor)(functor)(idᎺáµ)
NaturalTransformation.natural identity {x} {y} {f} =
id â map f ð-[ Morphism.identityâ(_)(id) ⊠identityâ ⊠]
map f ð-[ Morphism.identityáµ£(_)(id) ⊠identityáµ£ ⊠]-sym
map f â id ð-end
module _ {functorâ@([â]-intro Fâ) functorâ@([â]-intro Fâ) functorâ@([â]-intro Fâ) : catâ âá¶ áµâ¿á¶áµáµÊ³ catáµ£} where
composition : â{compâ compâ} â NaturalTransformation(functorâ)(functorâ)(compâ) â NaturalTransformation(functorâ)(functorâ)(compâ) â NaturalTransformation(functorâ)(functorâ)(compâ âᎺᵠcompâ)
NaturalTransformation.natural (composition {compâ} {compâ} natâ natâ) {x} {y} {f} =
(compâ(y) â compâ(y)) â map f ð-[ Morphism.associativity(_) ⊠associativity ⊠]
compâ(y) â (compâ(y) â map f) ð-[ congruenceâáµ£(_â_)(compâ(y)) (NaturalTransformation.natural natâ) ]
compâ(y) â (map f â compâ(x)) ð-[ Morphism.associativity(_) ⊠associativity ⊠]-sym
(compâ(y) â map f) â compâ(x) ð-[ congruenceââ(_â_)(compâ(x)) (NaturalTransformation.natural natâ) ]
(map f â compâ(x)) â compâ(x) ð-[ Morphism.associativity(_) ⊠associativity ⊠]
map f â (compâ(x) â compâ(x)) ð-end
module Wrapped where
private variable F Fâ Fâ Fâ : catâ âá¶ áµâ¿á¶áµáµÊ³ catáµ£
idᎺᵠ: (F âᎺᵠF)
idᎺᵠ= [â]-intro (Raw.idᎺáµ(catâ)(catáµ£)) ⊠identity âŠ
_âᎺáµ_ : (Fâ âᎺᵠFâ) â (Fâ âᎺᵠFâ) â (Fâ âᎺᵠFâ)
_âᎺáµ_ ([â]-intro F ⊠F-proof âŠ) ([â]-intro G ⊠G-proof âŠ) = [â]-intro (Raw._âᎺáµ_ (catâ)(catáµ£) F G) ⊠composition F-proof G-proof âŠ
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of disjoint lists (setoid equality)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Disjoint.Setoid.Properties where
open import Data.List.Base
open import Data.List.Relation.Binary.Disjoint.Setoid
import Data.List.Relation.Unary.Any as Any
open import Data.List.Relation.Unary.All as All
open import Data.List.Relation.Unary.All.Properties using (¬AnyâAll¬)
open import Data.List.Relation.Unary.Any.Properties using (++â»)
open import Data.Product using (_,_)
open import Data.Sum.Base using (injâ; injâ)
open import Relation.Binary
open import Relation.Nullary using (¬_)
------------------------------------------------------------------------
-- Relational properties
------------------------------------------------------------------------
module _ {c â} (S : Setoid c â) where
sym : Symmetric (Disjoint S)
sym xs#ys (vâys , vâxs) = xs#ys (vâxs , vâys)
------------------------------------------------------------------------
-- Relationship with other predicates
------------------------------------------------------------------------
module _ {c â} (S : Setoid c â) where
open Setoid S
DisjointâAllAll : â {xs ys} â Disjoint S xs ys â
All (λ x â All (λ y â ¬ x â y) ys) xs
DisjointâAllAll xs#ys = All.map (¬AnyâAll¬ _)
(All.tabulate (λ vâxs vâys â xs#ys (Any.map reflexive vâxs , vâys)))
------------------------------------------------------------------------
-- Introduction (âº) and elimination (â») rules for list operations
------------------------------------------------------------------------
-- concat
module _ {c â} (S : Setoid c â) where
concatâºÊ³ : â {vs xss} â All (Disjoint S vs) xss â Disjoint S vs (concat xss)
concatâºÊ³ {xss = xs â· xss} (vs#xs â· vs#xss) (vâvs , vâxs++concatxss)
with ++â» xs vâxs++concatxss
... | injâ vâxs = vs#xs (vâvs , vâxs)
... | injâ vâxss = concatâºÊ³ vs#xss (vâvs , vâxss)
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.EilenbergMacLane
open import homotopy.EilenbergMacLaneFunctor
open import groups.ToOmega
open import cohomology.Theory
open import cohomology.SpectrumModel
module cohomology.EMModel where
module _ {i} (G : AbGroup i) where
open EMExplicit G using (âEM; EM-level; EM-conn; spectrum)
EM-E : (n : â€) â Ptd i
EM-E (pos m) = âEM m
EM-E (negsucc m) = âLift âUnit
EM-spectrum : (n : â€) â âΩ (EM-E (succ n)) ââ EM-E n
EM-spectrum (pos n) = spectrum n
EM-spectrum (negsucc O) = â-to-ââ {X = âΩ (EM-E 0)}
(equiv (λ _ â _) (λ _ â idp)
(λ _ â idp) (prop-has-all-paths {{has-level-apply (EM-level 0) _ _}} _))
idp
EM-spectrum (negsucc (S n)) = â-to-ââ {X = âΩ (EM-E (negsucc n))}
(equiv (λ _ â _) (λ _ â idp)
(λ _ â idp) (prop-has-all-paths {{=-preserves-level âšâ©}} _))
idp
EM-Cohomology : CohomologyTheory i
EM-Cohomology = spectrum-cohomology EM-E EM-spectrum
open CohomologyTheory EM-Cohomology
EM-dimension : {n : â€} â n â 0 â is-trivialᎳ (C n (âLift âSâ°))
EM-dimension {pos O} neq = â¥-rec (neq idp)
EM-dimension {pos (S n)} _ =
contr-is-trivialᎳ (C (pos (S n)) (âLift âSâ°))
{{connected-at-level-is-contr
{{âšâ©}}
{{Trunc-preserves-conn $
equiv-preserves-conn
(preââ-equiv âlower-equiv âe âBoolâ-equiv-idf _ â»Â¹)
{{path-conn (connected-â€T (âšâ©-monotone-†(â€-ap-S (O†n)))
)}}}}}}
EM-dimension {negsucc O} _ =
contr-is-trivialᎳ (C (negsucc O) (âLift âSâ°))
{{Trunc-preserves-level 0 (Σ-level (Î -level λ _ â
inhab-prop-is-contr idp {{has-level-apply (EM-level 0) _ _}})
(λ x â has-level-apply (has-level-apply (EM-level 0) _ _) _ _))}}
EM-dimension {negsucc (S n)} _ =
contr-is-trivialᎳ (C (negsucc (S n)) (âLift âSâ°))
{{Trunc-preserves-level 0 (Σ-level (Î -level λ _ â
=-preserves-level âšâ©) λ _ â =-preserves-level (=-preserves-level âšâ©))}}
EM-Ordinary : OrdinaryTheory i
EM-Ordinary = ordinary-theory EM-Cohomology EM-dimension
module _ {i} (G : AbGroup i) (H : AbGroup i) (Ï : G âᎬᎳ H) where
EM-E-fmap : â (n : â€) â EM-E G n ââ EM-E H n
EM-E-fmap (pos m) = âEM-fmap G H Ï m
EM-E-fmap (negsucc m) = âidf _
open SpectrumModelMap (EM-E G) (EM-spectrum G) (EM-E H) (EM-spectrum H) EM-E-fmap
public renaming (C-coeff-fmap to EM-C-coeff-fmap;
CEl-coeff-fmap to EM-CEl-coeff-fmap;
âCEl-coeff-fmap to EM-âCEl-coeff-fmap)
module _ {i} (G : AbGroup i) where
private
EM-E-fmap-idhom : â (n : â€)
â EM-E-fmap G G (idhom (AbGroup.grp G)) n == âidf _
EM-E-fmap-idhom (pos n) = âEM-fmap-idhom G n
EM-E-fmap-idhom (negsucc n) = idp
private
module M = SpectrumModelMap (EM-E G) (EM-spectrum G) (EM-E G) (EM-spectrum G)
EM-C-coeff-fmap-idhom : (n : â€) (X : Ptd i)
â EM-C-coeff-fmap G G (idhom (AbGroup.grp G)) n X == idhom _
EM-C-coeff-fmap-idhom n X =
ap (λ map â M.C-coeff-fmap map n X) (λ= EM-E-fmap-idhom) â
C-coeff-fmap-idf (EM-E G) (EM-spectrum G) n X
module _ {i} (G : AbGroup i) (H : AbGroup i) (K : AbGroup i)
(Ï : H âᎬᎳ K) (Ï : G âᎬᎳ H) where
private
EM-E-fmap-â : â (n : â€)
â EM-E-fmap G K (Ï âᎳ Ï) n == EM-E-fmap H K Ï n ââ EM-E-fmap G H Ï n
EM-E-fmap-â (pos n) = âEM-fmap-â G H K Ï Ï n
EM-E-fmap-â (negsucc n) = idp
private
module M = SpectrumModelMap (EM-E G) (EM-spectrum G) (EM-E K) (EM-spectrum K)
EM-C-coeff-fmap-â : (n : â€) (X : Ptd i)
â EM-C-coeff-fmap G K (Ï âᎳ Ï) n X ==
EM-C-coeff-fmap H K Ï n X âᎳ
EM-C-coeff-fmap G H Ï n X
EM-C-coeff-fmap-â n X =
ap (λ map â M.C-coeff-fmap map n X) (λ= EM-E-fmap-â) â
C-coeff-fmap-â (EM-E G) (EM-spectrum G)
(EM-E H) (EM-spectrum H)
(EM-E K) (EM-spectrum K)
(EM-E-fmap H K Ï)
(EM-E-fmap G H Ï)
n X
module _ {i} (G : AbGroup i) where
open CohomologyTheory (spectrum-cohomology (EM-E G) (EM-spectrum G))
open EMExplicit
open import homotopy.SuspensionLoopSpaceInverse
private
module G = AbGroup G
âΩ-fmap-EM-E-fmap-inv-hom : â (n : â€) â âΩ-fmap (EM-E-fmap G G (inv-hom G) n) == âΩ-!
âΩ-fmap-EM-E-fmap-inv-hom (negsucc n) =
contr-center $ =-preserves-level $
ââ-level (âΩ (âLift âUnit)) (âΩ (âLift âUnit)) $
=-preserves-level $ Lift-level $ Unit-level
âΩ-fmap-EM-E-fmap-inv-hom (pos O) =
prop-path
(ââ-level (âΩ (âEM G 0)) (âΩ (âEM G 0)) $
has-level-apply (EM-level G 0) (pt (âEM G 0)) (pt (âEM G 0)))
_ _
âΩ-fmap-EM-E-fmap-inv-hom (pos 1) = =ââ-out $
âΩ-fmap (âTrunc-fmap (âEMâ-fmap (inv-hom G))) ââidf
=âââš 0 & 0 & !ââ $ â<â-inv-l-=ââ (âΩ-âTrunc-comm 0 (âEMâ G.grp)) â©
â<â (âΩ-âTrunc-comm 0 (âEMâ G.grp)) âââ
ââ> (âΩ-âTrunc-comm 0 (âEMâ G.grp)) âââ
âΩ-fmap (âTrunc-fmap (âEMâ-fmap (inv-hom G))) ââidf
=âââš 1 & 2 & ââ>-âΩ-âTrunc-comm-natural-=ââ 0 (âEMâ-fmap (inv-hom G)) â©
â<â (âΩ-âTrunc-comm 0 (âEMâ G.grp)) âââ
âTrunc-fmap (âΩ-fmap (âEMâ-fmap (inv-hom G))) âââ
ââ> (âΩ-âTrunc-comm 0 (âEMâ G.grp)) ââidf
=ââââš 1 & 1 & ap âTrunc-fmap $ âΩ-fmap-âEMâ-neg G â©
â<â (âΩ-âTrunc-comm 0 (âEMâ G.grp)) âââ
âTrunc-fmap âΩ-! âââ
ââ> (âΩ-âTrunc-comm 0 (âEMâ G.grp)) ââidf
=âââš 1 & 2 & =ââ-in
{gs = ââ> (âΩ-âTrunc-comm 0 (âEMâ G.grp)) âââ âΩ-! ââidf} $
! $ âλ=' â>-=â-equiv-pres-! idp â©
â<â (âΩ-âTrunc-comm 0 (âEMâ G.grp)) âââ
ââ> (âΩ-âTrunc-comm 0 (âEMâ G.grp)) âââ
âΩ-! ââidf
=âââš 0 & 2 & â<â-inv-l-=ââ (âΩ-âTrunc-comm 0 (âEMâ G.grp)) â©
âΩ-! ââidf âââ
âΩ-fmap-EM-E-fmap-inv-hom (pos (S (S k))) = =ââ-out $
âΩ-fmap (âEM-fmap G G (inv-hom G) (S (S k))) ââidf
=ââââš ap âΩ-fmap (âEM-neg=âTrunc-fmap-âSusp-flip G k) â©
âΩ-fmap (âTrunc-fmap (âSusp-flip (âSusp^ k (âEMâ G.grp)))) ââidf
=âââš 0 & 0 & !ââ $
â<â-inv-l-=ââ (âΩ-âTrunc-comm âš S k â© (âSusp^ (S k) (âEMâ G.grp))) â©
â<â (âΩ-âTrunc-comm âš S k â© (âSusp^ (S k) (âEMâ G.grp))) âââ
ââ> (âΩ-âTrunc-comm âš S k â© (âSusp^ (S k) (âEMâ G.grp))) âââ
âΩ-fmap (âTrunc-fmap (âSusp-flip (âSusp^ k (âEMâ G.grp)))) ââidf
=âââš 1 & 2 & ââ>-âΩ-âTrunc-comm-natural-=ââ âš S k â©
(âSusp-flip (âSusp^ k (âEMâ G.grp))) â©
â<â (âΩ-âTrunc-comm âš S k â© (âSusp^ (S k) (âEMâ G.grp))) âââ
âTrunc-fmap (âΩ-fmap (âSusp-flip (âSusp^ k (âEMâ G.grp)))) âââ
ââ> (âΩ-âTrunc-comm âš S k â© (âSusp^ (S k) (âEMâ G.grp))) ââidf
=ââââš 1 & 1 & ! $ âΩ-!-âSusp-flip
(âSusp^ k (âEMâ G.grp))
âš S k â©
(Spectrum.Trunc-fmap-Ïloop-is-equiv G k) â©
â<â (âΩ-âTrunc-comm âš S k â© (âSusp^ (S k) (âEMâ G.grp))) âââ
âTrunc-fmap âΩ-! âââ
ââ> (âΩ-âTrunc-comm âš S k â© (âSusp^ (S k) (âEMâ G.grp))) ââidf
=âââš 1 & 2 & =ââ-in
{gs = ââ> (âΩ-âTrunc-comm âš S k â© (âSusp^ (S k) (âEMâ G.grp))) âââ
âΩ-! ââidf} $
! $ âλ=' â>-=â-equiv-pres-! idp â©
â<â (âΩ-âTrunc-comm âš S k â© (âSusp^ (S k) (âEMâ G.grp))) âââ
ââ> (âΩ-âTrunc-comm âš S k â© (âSusp^ (S k) (âEMâ G.grp))) âââ
âΩ-! ââidf
=âââš 0 & 2 & â<â-inv-l-=ââ (âΩ-âTrunc-comm âš S k â© (âSusp^ (S k) (âEMâ G.grp))) â©
âΩ-! ââidf âââ
EM-C-coeff-fmap-inv-hom : â (n : â€) (X : Ptd i)
â EM-C-coeff-fmap G G (inv-hom G) n X ==
inv-hom (C-abgroup n X)
EM-C-coeff-fmap-inv-hom n X =
group-hom= $ λ= $ Trunc-elim $ λ h â ap [_]â $
ap (_ââ h) (âΩ-fmap-EM-E-fmap-inv-hom (succ n)) â
âλ=' (λ _ â idp) (â-unit-r (ap ! (snd h)))
|
module BTree.Complete.Base.Properties {A : Set} where
open import BTree {A}
open import BTree.Complete.Base {A}
open import BTree.Equality {A}
open import BTree.Equality.Properties {A}
lemma-â-â : {l l' r' : BTree} â l â l' â l' â r' â l â r'
lemma-â-â (ând x x' âlf âlf âlf) (âlf .x') = âlf x
lemma-â-â (ând {r = r} x x' lâr lâl' l'âr') (ând .x' x'' r' l'' l'âr'') = ând x x'' r l'' (lemma-â-â lâl' l'âr'')
lemma-â-â : {l r r' : BTree} â l â r â r â r' â l â r'
lemma-â-â (âlf x) âlf = âlf x
lemma-â-â (ând {r' = r'} x x' r l' lâr') (ând {l' = l''} .x' x'' l'âr' l'âl'' l''âr'') = ând x x'' r l'' (lemma-â-â lâr' (transâ (symmâ l'âr') (transâ l'âl'' l''âr'')))
|
module plfa-exercises.Practice5 where
open import Data.Nat using (â; zero; suc)
open import Data.String using (String; _â_)
open import Relation.Binary.PropositionalEquality using (_â¡_; _â¢_; refl; cong)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import plfa.part1.Isomorphism using (_â²_)
Id : Set
Id = String
infix 5 Æ_â_ ÎŒ_â_
infixl 7 _·_
infix 8 `suc_
infix 9 `_
data Term : Set where
`_ : Id â Term
Æ_â_ : Id â Term â Term
_·_ : Term â Term â Term
`zero : Term
`suc_ : Term â Term
case_[zeroâ_|suc_â_] : Term â Term â Id â Term â Term
ÎŒ_â_ : Id â Term â Term
--Æ "x" â `suc `zero
one = `suc `zero
two = `suc one
plus : Term
plus = ÎŒ "+" â Æ "m" â Æ "n" â
case ` "m"
[zeroâ ` "n"
|suc "m" â `suc (` "+" · ` "m" · ` "n") ]
--plus · two · two
twoá¶ : Term
twoá¶ = Æ "s" â Æ "z" â ` "s" · (` "s" · ` "z")
plusá¶ : Term
plusá¶ = Æ "m" â Æ "n" â Æ "s" â Æ "z" â
` "m" · ` "s" · (` "n" · ` "s" · ` "z")
sucá¶ : Term
sucá¶ = Æ "n" â `suc (` "n")
----- Little detour into the same definitions but working in Agda
--plus c one two
--(λ m n s z â m s (n s z)) (λ s z â s z) (λ s z â s (s z)) suc zero
Nat : Setâ
Nat = â {A : Set} â (A â A) â A â A
--my_two : â {A : Set} â (A â A) â A â A
my_two : Nat
my_two = (λ s z â s (s z))
--my_four : â {A : Set} â (A â A) â A â A
my_four : Nat
my_four = (λ s z â s (s (s (s z))))
--(λ m n s z â m s (n s z)) my_two my_four
--my_add : â {A : Set} â ((A â A) â A â A) â ((A â A) â A â A) â (A â A) â A â A
my_add : Nat â Nat â Nat
my_add = (λ m n s z â m s (n s z))
--my_add = (λ m n s â (m s) â (n s))
-- my_add my_two my_four ⡠λ s z â s (s (s (s (s (s z)))))
six : â
six = my_add my_two my_four suc zero
--six = 6
--my_mul : â {A : Set} â ((A â A) â A â A) â ((A â A) â A â A) â (A â A) â A â A
my_mul : Nat â Nat â Nat
my_mul = (λ m n s z â m (n s) z)
--my_mul = (λ m n s â m (n s))
--my_mul my_two my_four ⡠λ s z â s (s (s (s (s (s (s (s z)))))))
eight_true : my_mul my_two my_four suc zero â¡ 8
eight_true = refl
----- End of detour
-- Exercises
mult : Term
mult = ÎŒ "*" â Æ "m" â Æ "n" â
case ` "m"
[zeroâ `zero
|suc "m" â plus · (` "*" · ` "m" · ` "n") · ` "n" ]
multá¶ : Term
multá¶ = Æ "m" â Æ "n" â Æ "s" â Æ "z" â
` "m" · (` "n" · ` "s") · ` "z"
--- End Exercises
data Value : Term â Set where
V-Æ : â {x N} â Value (Æ x â N)
V-zero : Value `zero
V-suc : â {V} â Value V â Value (`suc V)
-- Notice that this only works if we are working with _closed_ terms.
-- Open terms require more care
infix 9 _[_:=_]
-- Wrote them partly by myself
_[_:=_] : Term â Id â Term â Term
(` x) [ x' := V ] with x â x'
... | yes _ = V
... | no _ = ` x
(Æ x â M) [ x' := V ] with x â x'
... | yes _ = Æ x â M
... | no _ = Æ x â (M [ x' := V ])
(M · N) [ x := V ] = (M [ x := V ]) · (N [ x := V ])
`zero [ _ := _ ] = `zero
(`suc M) [ x := V ] = `suc (M [ x := V ])
(case n [zeroâ M |suc n' â N ]) [ x := V ] with x â n'
... | yes _ = case (n [ x := V ]) [zeroâ (M [ x := V ]) |suc n' â N ]
... | no _ = case (n [ x := V ]) [zeroâ (M [ x := V ]) |suc n' â (N [ x := V ]) ]
(ÎŒ f â M) [ x := V ] with f â x
... | yes _ = ÎŒ f â M
... | no _ = ÎŒ f â (M [ x := V ])
-- (Æ "y" â ` "x" · (Æ "x" â ` "x")) [ "x" := `zero ]
infix 4 _ââ_
data _ââ_ : Term â Term â Set where
Ο-·â : â {L Lâ² M}
â L ââ Lâ²
-----------------
â L · M ââ LⲠ· M
Ο-·â : â {V M Mâ²}
â Value V
â M ââ Mâ²
-----------------
â V · M ââ V · Mâ²
β-Æ : â {x N V}
â Value V
------------------------------
â (Æ x â N) · V ââ N [ x := V ]
Ο-suc : â {M Mâ²}
â M ââ Mâ²
------------------
â `suc M ââ `suc Mâ²
Ο-case : â {x L Lâ² M N}
â L ââ Lâ²
-----------------------------------------------------------------
â case L [zeroâ M |suc x â N ] ââ case Lâ² [zeroâ M |suc x â N ]
β-zero : â {x M N}
----------------------------------------
â case `zero [zeroâ M |suc x â N ] ââ M
β-suc : â {x V M N}
â Value V
---------------------------------------------------
â case `suc V [zeroâ M |suc x â N ] ââ N [ x := V ]
β-ÎŒ : â {x M}
------------------------------
â ÎŒ x â M ââ M [ x := ÎŒ x â M ]
_ : (Æ "x" â `suc (`suc (` "x"))) · (`suc `zero) ââ `suc (`suc (`suc `zero))
_ = β-Æ (V-suc V-zero)
_ : (Æ "x" â ` "x") · (Æ "x" â ` "x") ââ (Æ "x" â ` "x")
_ = β-Æ V-Æ
_ : (Æ "x" â ` "x") · (Æ "x" â ` "x") · (Æ "x" â ` "x") ââ (Æ "x" â ` "x") · (Æ "x" â ` "x")
_ = Ο-·â (β-Æ V-Æ)
_ : twoᶠ· sucᶠ· `zero ââ (Æ "z" â sucᶠ· (sucᶠ· ` "z")) · `zero
_ = Ο-·â (β-Æ V-Æ)
--- Detour
t : â {A B : Set} â A â B â A
t = λ x y â x -- true
f : â {A B : Set} â A â B â B
f = λ x y â y -- false
--is0 : â {A : Set} â ((A â A â A â A) â (A â A â A) â A â A â A) â A â A â A
--is0 {A} = λ n â n (λ x â f {A}) (t {A})
--is0 : â {A B : Set} â ((A â A â A â A) â (A â A â A) â A â A â A) â (A â A) â A â A
--is0 {A} {B} = λ n â n (λ x â f {A} {B}) (t {A} {B})
-- is0 {â} (λ s z â z) -- returns true
-- is0 (λ s z â s z) -- returns false
--- End detour
infix 2 _ââ _
infix 1 begin_
infixr 2 _âââš_â©_ _âââšâ©_
infix 3 _â
data _ââ _ : Term â Term â Set where
_â : â M
---------
â M ââ M
_âââš_â©_ : â L {M N}
â L ââ M
â M ââ N
---------
â L ââ N
begin_ : â {M N}
â M ââ N
------
â M ââ N
begin Mââ N = Mââ N
_âââšâ©_ : â L {N}
â L ââ N
---------
â L ââ N
_âââšâ©_ l lââ n = lââ n
trans : â {L M N}
â L ââ M
â M ââ N
â L ââ N
trans (m â) mââ n = mââ n
trans (l âââš lââo â© oââ m) mââ n = l âââš lââo â© (trans oââ m mââ n)
_ : (Æ "x" â ` "x") · (Æ "x" â ` "x") · (Æ "x" â ` "x") · (Æ "x" â ` "x") ââ (Æ "x" â ` "x")
_ =
begin
(Æ "x" â ` "x") · (Æ "x" â ` "x") · (Æ "x" â ` "x") · (Æ "x" â ` "x") ââ⚠Ο-·â (Ο-·â (β-Æ V-Æ)) â©
(Æ "x" â ` "x") · (Æ "x" â ` "x") · (Æ "x" â ` "x") ââ⚠Ο-·â (β-Æ V-Æ) â©
(Æ "x" â ` "x") · (Æ "x" â ` "x") ââ⚠β-Æ V-Æ â©
Æ "x" â ` "x"
â
data _ââ â²_ : Term â Term â Set where
stepâ² : â {M N}
â M ââ N
-------
â M ââ â² N
reflâ² : â {M}
-------
â M ââ â² M
transâ² : â {L M N}
â L ââ â² M
â M ââ â² N
-------
â L ââ â² N
â â²ââ â² : â t t' â (t ââ t') â² (t ââ â² t')
â â²ââ â² t t' = record {
to = to
; from = from
; fromâto = fromâto
}
where
to : â {t t'} â t ââ t' â t ââ â² t'
to (m â) = reflâ² {m}
to (l âââš lââm â© mââ n) = transâ² {l} (stepâ² lââm) (to mââ n)
from : â {t t'} â t ââ â² t' â t ââ t'
from (stepâ² {m} {n} mâân) = m âââš mâân â© n â
from (reflâ² {m}) = m â
from (transâ² {l} {m} {n} lââ â²m mââ â²n) =
trans (from lââ â²m) (from mââ â²n)
fromâto : â {l n} (x : l ââ n) â from (to x) â¡ x
fromâto (n â) = refl
fromâto (l âââš lââm â© mââ n) = cong (l âââš lââm â©_) (fromâto mââ n)
--toâfrom : â {l n} (x : l ââ â² n) â to (from x) â¡ x
--toâfrom (stepâ² {m} {n} mâân) = ?
---- here lies the problem:
---- to (from (stepâ² mâân)) â¡ stepâ² mâân
---- is converted into:
---- transâ² (stepâ² mâân) reflâ² â¡ stepâ² mâân
---- which cannot be true :/, both are constructors, both
---- create the same type. Lesson, always make sure your data
---- definitions make unique elements
--toâfrom = ?
_ : twoᶠ· sucᶠ· `zero ââ `suc `suc `zero
_ = begin
twoᶠ· sucᶠ· `zero âââšâ© -- def
(Æ "s" â Æ "z" â ` "s" · (` "s" · ` "z")) · sucᶠ· `zero ââ⚠Ο-·â (β-Æ V-Æ) â©
(Æ "z" â sucᶠ· (sucᶠ· ` "z")) · `zero ââ⚠β-Æ V-zero â©
sucᶠ· (sucᶠ· `zero) âââšâ©
(Æ "n" â `suc (` "n")) · ((Æ "n" â `suc (` "n")) · `zero) ââ⚠Ο-·â V-Æ (β-Æ V-zero) â©
(Æ "n" â `suc (` "n")) · `suc `zero ââ⚠β-Æ (V-suc V-zero) â©
`suc `suc `zero â
oneá¶ : Term
oneá¶ = Æ "s" â Æ "z" â ` "s" · ` "z"
_ : plusᶠ· oneᶠ· oneᶠ· sucᶠ· `zero ââ `suc `suc `zero
_ = begin
plusᶠ· oneᶠ· oneᶠ· sucᶠ· `zero âââšâ©
plusᶠ· oneᶠ· oneᶠ· sucᶠ· `zero âââšâ©
(Æ "m" â Æ "n" â Æ "s" â Æ "z" â
` "m" · ` "s" · (` "n" · ` "s" · ` "z")) · oneᶠ· oneᶠ· sucᶠ· `zero ââ⚠Ο-·â (Ο-·â (Ο-·â (β-Æ V-Æ))) â©
(Æ "n" â Æ "s" â Æ "z" â
oneᶠ· ` "s" · (` "n" · ` "s" · ` "z")) · oneᶠ· sucᶠ· `zero ââ⚠Ο-·â (Ο-·â (β-Æ V-Æ)) â©
(Æ "s" â Æ "z" â oneᶠ· ` "s" · (oneᶠ· ` "s" · ` "z")) · sucᶠ· `zero ââ⚠Ο-·â (β-Æ V-Æ) â©
(Æ "z" â oneᶠ· sucᶠ· (oneᶠ· sucᶠ· ` "z")) · `zero ââ⚠β-Æ V-zero â©
oneᶠ· sucᶠ· (oneᶠ· sucᶠ· `zero) âââšâ©
(Æ "s" â Æ "z" â ` "s" · ` "z") · sucᶠ· (oneᶠ· sucᶠ· `zero) ââ⚠Ο-·â (β-Æ V-Æ) â©
(Æ "z" â sucᶠ· ` "z") · (oneᶠ· sucᶠ· `zero) ââ⚠Ο-·â V-Æ (Ο-·â (β-Æ V-Æ)) â©
(Æ "z" â sucᶠ· ` "z") · ((Æ "z" â sucᶠ· ` "z") · `zero) ââ⚠Ο-·â V-Æ (β-Æ V-zero) â©
(Æ "z" â sucᶠ· ` "z") · (sucᶠ· `zero) ââ⚠Ο-·â V-Æ (β-Æ V-zero) â©
(Æ "z" â sucᶠ· ` "z") · (`suc `zero) ââ⚠β-Æ (V-suc V-zero) â©
sucᶠ· (`suc `zero) ââ⚠β-Æ (V-suc V-zero) â©
`suc `suc `zero â
|
module Ag13 where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_â¡_; refl)
open Eq.â¡-Reasoning
open import Data.Nat using (â; zero; suc)
open import Data.Product using (_Ã_) renaming (_,_ to âš_,_â©)
open import Data.Sum using (_â_; injâ; injâ)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using ()
renaming (contradiction to ¬¬-intro)
open import Data.Unit using (â€; tt)
open import Data.Empty using (â¥; â¥-elim)
open import Ag09 using (_â_)
data Bool : Set where
true : Bool
false : Bool
T : Bool â Set
T true = â€
T false = â¥
Tââ¡ : â (b : Bool) â T b â b â¡ true
Tââ¡ true tt = refl
Tââ¡ false ()
â¡âT : â {b : Bool} â b â¡ true â T b
â¡âT refl = tt
data Dec (A : Set) : Set where
yes : A â Dec A
no : ¬ A â Dec A
infix 4 _â€_
data _â€_ : â â â â Set where
zâ€n : â {n : â}
--------
â zero †n
sâ€s : â {m n : â}
â m †n
-------------
â suc m †suc n
¬sâ€z : â {m : â} â ¬ (suc m †zero)
¬sâ€z ()
¬sâ€s : â {m n : â} â ¬ (m †n) â ¬ (suc m †suc n)
¬sâ€s ¬mâ€n (sâ€s mâ€n) = ¬mâ€n mâ€n
_â€?_ : â (m n : â) â Dec (m †n)
zero â€? n = yes zâ€n
suc m â€? zero = no ¬sâ€z
suc m � suc n with m � n
... | yes mâ€n = yes (sâ€s mâ€n)
... | no ¬mâ€n = no (¬sâ€s ¬mâ€n)
|
{-# OPTIONS --safe #-}
useful-lemma : â {a} {A : Set a} â A
useful-lemma = useful-lemma
|
{-# OPTIONS --without-K --copatterns --sized-types #-}
open import lib.Basics
open import lib.PathGroupoid
open import lib.types.Paths
open import lib.Funext
open import Size
{-
-- | Coinductive delay type. This is the functor ΜÏÌ : Set â Set arising
-- as the fixed point of ÏÌ(H) = Ï â âšId, Hâ©, where Ï : Set à Set â Set
-- with Ï(X, Y) = X.
record D (S : Set) : Set where
coinductive
field
force : S
open D
-- | Action of D on morphisms
Dâ : â {X Y} â (X â Y) â D X â D Y
force (Dâ f x) = f (force x)
-- | D lifted to dependent functions
âDâ : â {A} â (B : A â Set) â ((x : A) â B x) â (y : D A) â D (B (force y))
force (âDâ B f y) = f (force y)
D-intro : â {H : Set â Set} â (â {X} â H X â X) â (â {X} â H X â D X)
force (D-intro f x) = f x
D-intro2 : â {X S : Set} â (X â S) â X â D S
force (D-intro2 f x) = f x
postulate
-- | We'll need coinduction to prove such equalities in the future, or prove
-- it from univalence.
D-coind : â {S} {x y : D S} â force x == force y â x == y
D-coind2 : â {S} {x y : D S} â D (force x == force y) â x == y
D-coind2 p = D-coind (force p
-}
module _ where
private
mutual
data #D (A : Set) (P : Set) : Set where
#p : #D-aux A P â (Unit â Unit) â #D A P
data #D-aux (A : Set) (P : Set) : Set where
#now : A â #D-aux A P
#later : P â #D-aux A P
D : Set â Set â Set
D A X = #D A X
now : â {A X} â A â D A X
now a = #p (#now a) _
later : â {A X} â X â D A X
later x = #p (#later x) _
Dâ : â {A Pâ Pâ} â (Pâ â Pâ) â (D A Pâ â D A Pâ)
Dâ f (#p (#now a) _) = now a
Dâ f (#p (#later x) _) = later (f x)
record P {i : Size} (A : Set) : Set where
coinductive
field
#force : â {j : Size< i} â D A (P {j} A)
open P
force : â {A} â P A â D A (P A)
force x = #force x
P-intro : â {A X : Set} â (X â D A X) â (X â P A)
P-intro {A} {X} f = P-intro'
where
P-intro' : â {i} â X â P {i} A
#force (P-intro' x) {j} = Dâ (P-intro' {j}) (f x)
postulate -- HIT
weak~ : â{A X : Set} â (force* : X â D A X) â
(x : X) â (later x == force* x)
-- | Extra module for recursion using sized types.
-- This is convenient, as we can use the functor D in the definition, which
-- in turn simplifies proofs.
module DRec {A B : Set} {P' Y : Set}
(now* : A â D B Y)
(later* : P A â D B Y)
(force* : Y â D B Y)
(weak~* : (x : P A) â (later* x == force x))
where
f : D A P' â D B Y
f = f-aux phantom where
f-aux : Phantom weak~* â D A P' â D B Y
f-aux phantom (#p (#now a) _) = now* a
f-aux phantom (#p (#later x) _) = later* x
postulate -- HIT
weak~-β : (x : P') â ap f (weak~ force* x) == weak~* x
{-
module PElim {A X} {S : D A X â Set}
(now* : (a : A) â S (now a))
(later* : (x : X) â S (later x))
(force*â : (x : X) â D A X)
(force*â : (x : X) â S (force*â x))
(weak~* : (x : X) â -- (x_rec : S
(later* x == (force*â x) [ S â (weak~ force*â x) ]))
where
f : (x : D A X) â S x
f = f-aux phantom
where
f-aux : Phantom weak~* â (x : D A X) â S x
f-aux phantom (#p (#now a) _) = now* a
f-aux phantom (#p (#later x) _) = later* x
-}
-- postulate -- HIT
-- weak~-β : (x : X) â apd f (weak~ force*â x) == weak~* x
{-
weak~-βâ : (x : âP A) â
apd f (weak~ x) == weak~* x (âDâ S f x)
-- transport (weak~* x) g-is-Dâf (âDâ S f x)
weak~-βâ = ?
-}
open DRec public renaming (f to D-rec)
{-
open PElim public
renaming (f to P-elim; g to âP-elim; f-homomorphism to P-elim-hom;
weak~-β to elim-weak~-β)
-}
module Bla where
⥠: â {A} â P A
⥠= P-intro later unit
-- | Copairing of morphisms
[_,_] : â {i j k} {A : Type i} {B : Type j} {C : Type k}
(l : A â C) (r : B â C) â (x : Coprod A B) â C
[ f , g ] x = match x withl f withr g
id-D : â {A} â D A (P A) â D A (P A)
id-D {A} = D-rec now later force (weak~ force)
--(idf A) (idf (P A)) (λ x â force x) (weak~ (λ x â force x))
Dâ-force : â {A Pâ Pâ} â (force* : Pâ â D A Pâ) â (f : Pâ â Pâ) â (x : Pâ)
â later (f x) == Dâ f (force* x)
Dâ-force force* f x =
later (f x)
=âš idp â©
Dâ f (later x)
=âš weak~ force* x |in-ctx (Dâ f) â©
Dâ f (force* x)
â
-- | Direct definition of bind
bind : â {A B} â (A â P B) â (P A â P B)
bind {A} {B} f x = P-intro {X = P A â P B} [ u , v ] (inl x)
where
elim-A : A â D B (P A â P B)
elim-A a =
D-rec now
(later â inr)
(Dâ inr â force)
(Dâ-force force inr)
(force (f a))
u : P A â D B (P A â P B)
u x = D-rec
elim-A
(later â inl)
(later â inl) -- this should be force ...
(λ _ â idp)
(force x)
v : P B â D B (P A â P B)
v = Dâ inr â force
{-
-- | Copairing of morphisms
[_,_] : â {i j k} {A : Type i} {B : Type j} {C : Type k}
(l : A â C) (r : B â C) â (x : Coprod A B) â C
[ f , g ] x = match x withl f withr g
-- | Inverse of [now, later] Ã la Lambek,
-- given by extending id + D ([now, later]) : A â D(A â âP A) â A â âP A.
out : â {A} â P A â A â âP A
out {A} = P-rec inl force (λ _ â idp)
-- (inr â Dâ [ now , later ]) resp-weak~
where
resp-weak~ : (x : D (A â âP A)) â
(inr â Dâ [ now , later ]) x == force x
resp-weak~ x =
(inr â Dâ [ now , later ]) x
=âš {!!} â©
inr (Dâ [ now , later ] x)
=âš {!!} â©
force x
â
â¥' : â {A} â âP A
⥠: â {A} â P A
⥠= later (D-intro (λ _ â {!!}) unit)
force â¥' = {!!} -- â¥
-- | Action of P on morphisms
Pâ : â {A B} â (A â B) â (P A â P B)
Pâ f = P-rec (now â f) later weak~
-- | Unit for the monad
η : â {A} â A â P A
η = now
-- | Monad multiplication
ÎŒ : â {A} â P (P A) â P A
Ό {A} = P-rec (idf (P A)) later weak~
-- | Direct definition of bind
bind : â {A B} â (A â P B) â (P A â P B)
bind {A} {B} f = P-rec f later weak~
η-natural : â {A B} â (f : A â B) â
η â f == Pâ f â η
η-natural f = λ=-nondep (λ x â idp)
where
n open FunextNonDep
ÎŒ-natural : â {A B} â (f : A â B) â
ÎŒ â Pâ (Pâ f) == Pâ f â ÎŒ
Ό-natural {A} f = λ=-nondep q
where
open FunextNonDep
T : P (P A) â Set
T x = ÎŒ ( Pâ (Pâ f) x) == Pâ f (ÎŒ x)
=-later : (x : âP (P A)) â D (T (force x)) â T (later x)
=-later x p = transport T (! (weak~ x)) (force p)
r : (x : âP (P A)) â (p : D (T (force x))) â
(=-later x p) == (force p) [ T â (weak~ x) ]
r x p = trans-â T (weak~ x) (force p)
q : (x : P (P A)) â ÎŒ ( Pâ (Pâ f) x) == Pâ f (ÎŒ x)
q = P-elim {S = λ x â ÎŒ ( Pâ (Pâ f) x) == Pâ f (ÎŒ x)}
(λ a â idp) =-later r
-- | Termination predicate on P A
data _â_ {A} (x : P A) : A â Set where
nowâ : (a : A) â now a == x â x â a
laterâ : (a : A) â (u : âP A) â (later u == x) â (force u) â a â x â a
mutual
-- | Weak bisimilarity proofs
data ~proof {A} (x y : P A) : Set where
terminating : (a : A) â x â a â y â a â ~proof x y
-- A bit awkward, but otherwise we cannot pattern matching on ~proof
step : (u v : âP A) â (later u == x) â (later v == y) â force u ~ force v â
~proof x y
-- | Weak bisimilarity for P A
record _~_ {A} (x y : P A) : Set where
coinductive
field
out~ : ~proof x y
open _~_
terminateâ=now : â{A} â (a : A) â (x : P A) â x â a â now a == x
terminateâ=now a x (nowâ .a na=x) = na=x
terminateâ=now a x (laterâ .a u lu=x fuâa) =
now a
=âš terminateâ=now a (force u) fuâa â©
force u
=âš ! (weak~ u) â©
later u
=âš lu=x â©
x
â
lemma : â{A} â (a : A) â (x y : P A) â x â a â y â a â x == y
lemma a x y xâa yâa =
x
=âš ! (terminateâ=now a x xâa) â©
now a
=âš terminateâ=now a y yâa â©
y
â
inr-inj : â {i} {A B : Set i} â
(x y : B) â Path {i} {A â B} (inr x) (inr y) â x == y
inr-inj x .x idp = idp
later-inj : â {A} â (u v : âP A) â later u == later v â u == v
later-inj u v p = inr-inj u v lem
where
lem : inr u == inr v
lem = transport (λ z â inr u == P-out z) {later u} {later v} p idp
-- | Weak bisimilarity implies equality for P A
~â= : â{A} â (x y : P A) â x ~ y â x == y
~â= {A} x y = P-elim {S = λ x' â x' ~ y â x' == y} now-= later-= weak~-= x
where
now-= : (a : A) â now a ~ y â now a == y
now-= a p = lem (out~ p)
where
lem : ~proof (now a) y â now a == y
lem (terminating b (nowâ .b nb=na) yâb) =
now a
=âš ! nb=na â©
now b
=âš terminateâ=now b y yâb â©
y
â
lem (terminating b (laterâ .b u () now_aâb) yâb)
lem (step u v () xâ xâ)
later-= : (u : âP A) â
D (force u ~ y â force u == y) â later u ~ y â later u == y
later-= u p later_u~y = lem (out~ later_u~y)
where
lem : ~proof (later u) y â later u == y
lem (terminating a later_uâa yâa) = lemma a (later u) y later_uâa yâa
lem (step u' v later_u'=later_u later_v=y force_u'~force_v) =
later u
=âš weak~ u â©
force u
=âš force p force_u~y â©
y â
where
force_u'=force_u : force u' == force u
force_u'=force_u =
force u'
=âš later-inj u' u later_u'=later_u |in-ctx force â©
force u
â
y=force_v : y == force v
y=force_v =
y
=âš ! later_v=y â©
later v
=âš weak~ v â©
force v
â
force_u~y : force u ~ y
force_u~y = transport
(λ z â z ~ y)
force_u'=force_u
(transport! (λ z â force u' ~ z) y=force_v force_u'~force_v)
weak~-= : (u : âP A) (p : D (force u ~ y â force u == y)) â
(later-= u p)
== (force p) [ (λ x' â x' ~ y â x' == y) â (weak~ u) ]
weak~-= u p = {!!}
-}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Group where
open import Cubical.Algebra.Group.Base public
open import Cubical.Algebra.Group.Properties public
open import Cubical.Algebra.Group.Morphism public
open import Cubical.Algebra.Group.MorphismProperties public
open import Cubical.Algebra.Group.Algebra public
open import Cubical.Algebra.Group.Action public
-- open import Cubical.Algebra.Group.Higher public
-- open import Cubical.Algebra.Group.EilenbergMacLane1 public
open import Cubical.Algebra.Group.Semidirect public
open import Cubical.Algebra.Group.Notation public
|
{-# OPTIONS --without-K #-}
module Sigma {a b} {A : Set a} {B : A â Set b} where
open import Equivalence
open import Types
-- Projections for the positive sigma.
Ïââ² : (p : ΣⲠA B) â A
Ïââ² p = split (λ _ â A) (λ a _ â a) p
Ïââ² : (p : ΣⲠA B) â B (Ïââ² p)
Ïââ² p = split (λ p â B (Ïââ² p)) (λ _ b â b) p
-- Induction principle for the negative sigma.
splitâ² : â {p} (P : Σ A B â Set p)
(f : (a : A) (b : B a) â P (a , b)) â â z â P z
splitâ² P f p = f (Ïâ p) (Ïâ p)
ΣâΣⲠ: Σ A B â ΣⲠA B
ΣâΣⲠp = Ïâ p , Ïâ p
Σâ²âΣ : ΣⲠA B â Σ A B
Σâ²âΣ = split _ _,_
ΣâΣⲠ: Σ A B â ΣⲠA B
ΣâΣâ²
= ΣâΣâ²
, (Σâ²âΣ , split
(λ p â ΣâΣⲠ(Σâ²âΣ p) â¡ p)
(λ _ _ â refl))
, (Σâ²âΣ , λ _ â refl)
|
{-# OPTIONS --cubical #-}
module Multidimensional.Data.NNat.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Unit
open import Cubical.Data.Nat
open import Cubical.Data.Prod
open import Cubical.Data.Bool
open import Cubical.Relation.Nullary
open import Multidimensional.Data.Extra.Nat
open import Multidimensional.Data.Dir
open import Multidimensional.Data.DirNum
data N (r : â) : Typeâ where
bn : DirNum r â N r
xr : DirNum r â N r â N r
-- should define induction principle for N r
-- we have 2⿠"unary" constructors, analogous to BNat with 2¹ (b0 and b1)
-- rename n to r
-- this likely introduces inefficiencies compared
-- to BinNat, with the max? check etc.
sucN : â {n} â N n â N n
sucN {zero} (bn tt) = xr tt (bn tt)
sucN {zero} (xr tt x) = xr tt (sucN x)
sucN {suc n} (bn (â , ds)) = (bn (â , ds))
sucN {suc n} (bn (â , ds)) with max? ds
... | no _ = (bn (â , next ds))
... | yes _ = xr (zero-n (suc n)) (bn (one-n (suc n)))
sucN {suc n} (xr d x) with max? d
... | no _ = xr (next d) x
... | yes _ = xr (zero-n (suc n)) (sucN x)
sucnN : {r : â} â (n : â) â (N r â N r)
sucnN n = iter n sucN
doubleN : (r : â) â N r â N r
doubleN zero (bn tt) = bn tt
doubleN zero (xr d x) = sucN (sucN (doubleN zero x))
doubleN (suc r) (bn x) with zero-n? x
... | yes _ = bn x
-- bad:
... | no _ = caseBool (bn (doubleDirNum (suc r) x)) (xr (zero-n (suc r)) (bn x)) (doubleable-n? x)
-- ... | no _ | doubleable = {!bn (doubleDirNum x)!}
-- ... | no _ | notdoubleable = xr (zero-n (suc r)) (bn x)
doubleN (suc r) (xr x xâ) = sucN (sucN (doubleN (suc r) xâ))
doublesN : (r : â) â â â N r â N r
doublesN r zero m = m
doublesN r (suc n) m = doublesN r n (doubleN r m)
Nââ : (r : â) (x : N r) â â
Nââ zero (bn tt) = zero
Nââ zero (xr tt x) = suc (Nââ zero x)
Nââ (suc r) (bn x) = DirNumââ x
Nââ (suc r) (xr d x) = sucn (DirNumââ d) (doublesâ (suc r) (Nââ (suc r) x))
ââN : (r : â) â (n : â) â N r
ââN r zero = bn (zero-n r)
ââN zero (suc n) = xr tt (ââN zero n)
ââN (suc r) (suc n) = sucN (ââN (suc r) n)
|
{-# OPTIONS --safe #-}
module Cubical.Homotopy.HSpace where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.HLevels
open import Cubical.HITs.S1
open import Cubical.HITs.Sn
record HSpace {â : Level} (A : Pointed â) : Type â where
constructor HSp
field
ÎŒ : typ A â typ A â typ A
ÎŒâ : (x : typ A) â ÎŒ (pt A) x â¡ x
Όᵣ : (x : typ A) â ÎŒ x (pt A) â¡ x
ÎŒâáµ£ : ÎŒâ (pt A) ⡠Όᵣ (pt A)
record AssocHSpace {â : Level} {A : Pointed â} (e : HSpace A) : Type â where
constructor AssocHSp
field
Ό-assoc : (x y z : _)
â HSpace.ÎŒ e (HSpace.ÎŒ e x y) z â¡ HSpace.ÎŒ e x (HSpace.ÎŒ e y z)
Ό-assoc-filler : (y z : typ A)
â PathP (λ i â HSpace.ÎŒ e (HSpace.ÎŒâ e y i) z
â¡ HSpace.ÎŒâ e (HSpace.ÎŒ e y z) i)
(Ό-assoc (pt A) y z)
refl
-- Instances
open HSpace
open AssocHSpace
-- S¹
S1-HSpace : HSpace (Sââ 1)
Ό S1-HSpace = _·_
ÎŒâ S1-HSpace x = refl
Όᵣ S1-HSpace base = refl
Όᵣ S1-HSpace (loop i) = refl
ÎŒâáµ£ S1-HSpace x = refl
S1-AssocHSpace : AssocHSpace S1-HSpace
Ό-assoc S1-AssocHSpace base _ _ = refl
Ό-assoc S1-AssocHSpace (loop i) x y j = h x y j i
where
h : (x y : Sâ 1) â cong (_· y) (rotLoop x) â¡ rotLoop (x · y)
h = wedgeconFun _ _ (λ _ _ â isOfHLevelPath 2 (isGroupoidS¹ _ _) _ _)
(λ x â refl)
(λ { base â refl ; (loop i) â refl})
refl
Ό-assoc-filler S1-AssocHSpace _ _ = refl
|
module Prelude.Equality.Unsafe where
open import Prelude.Equality
open import Prelude.Empty
open import Prelude.Erased
open import Agda.Builtin.TrustMe
-- unsafeEqual {x = x} {y = y} evaluates to refl if x and y are
-- definitionally equal.
unsafeEqual : â {a} {A : Set a} {x y : A} â x â¡ y
unsafeEqual = primTrustMe
{-# DISPLAY primTrustMe = [erased] #-}
-- Used in decidable equality for primitive types (String, Char and Float)
unsafeNotEqual : â {a} {A : Set a} {x y : A} â ¬ (x â¡ y)
unsafeNotEqual _ = erase-⥠trustme
where postulate trustme : â¥
-- Erase an equality proof. Throws away the actual proof
-- and replaces it by unsafeEqual.
eraseEquality : â {a} {A : Set a} {x y : A} â x â¡ y â x â¡ y
eraseEquality _ = unsafeEqual
unsafeCoerce : â {a} {A : Set a} {B : Set a} â A â B
unsafeCoerce {A = A} {B} x with unsafeEqual {x = A} {y = B}
unsafeCoerce x | refl = x
|
{-# OPTIONS --without-K --safe #-}
module Definition.Conversion.Lift where
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Weakening
open import Definition.Typed.Properties
open import Definition.Typed.EqRelInstance
open import Definition.Conversion
open import Definition.Conversion.Whnf
open import Definition.Conversion.Soundness
open import Definition.Conversion.Weakening
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Fundamental.Reducibility
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Reduction
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Lifting of algorithmic equality of types from WHNF to generic types.
liftConv : â {A B Î}
â Π⢠A [convâ] B
â Π⢠A [convâ] B
liftConv A<>B =
let â¢A , â¢B = syntacticEq (soundnessConvâ A<>B)
whnfA , whnfB = whnfConvâ A<>B
in [â] _ _ (id â¢A) (id â¢B) whnfA whnfB A<>B
-- Lifting of algorithmic equality of terms from WHNF to generic terms.
liftConvTerm : â {t u A Î}
â Π⢠t [convâ] u â· A
â Π⢠t [convâ] u â· A
liftConvTerm t<>u =
let â¢A , â¢t , â¢u = syntacticEqTerm (soundnessConvâTerm t<>u)
whnfA , whnfT , whnfU = whnfConvâTerm t<>u
in [â]â _ _ _ (id â¢A) (id â¢t) (id â¢u) whnfA whnfT whnfU t<>u
mutual
-- Helper function for lifting from neutrals to generic terms in WHNF.
lift~toConvââ² : â {t u A Aâ² Î l}
â Î â©âš l â© Aâ²
â Π⢠Aâ² â* A
â Π⢠t ~ u â A
â Π⢠t [convâ] u â· A
lift~toConvââ² (UᵣⲠ.â° 0<1 â¢Î) D ([~] A Dâ whnfB k~l)
rewrite PE.sym (whnfRed* D Uâ) =
let _ , â¢t , â¢u = syntacticEqTerm (conv (soundness~â k~l) (subset* Dâ))
in univ â¢t â¢u (ne ([~] A Dâ Uâ k~l))
lift~toConvââ² (âáµ£ D) Dâ ([~] A Dâ whnfB k~l)
rewrite PE.sym (whrDet* (red D , ââ) (Dâ , whnfB)) =
â-ins ([~] A Dâ ââ k~l)
lift~toConvââ² (Emptyáµ£ D) Dâ ([~] A Dâ whnfB k~l)
rewrite PE.sym (whrDet* (red D , Emptyâ) (Dâ , whnfB)) =
Empty-ins ([~] A Dâ Emptyâ k~l)
lift~toConvââ² (Unitáµ£ D) Dâ ([~] A Dâ whnfB k~l)
rewrite PE.sym (whrDet* (red D , Unitâ) (Dâ , whnfB)) =
Unit-ins ([~] A Dâ Unitâ k~l)
lift~toConvââ² (neâ² K D neK Kâ¡K) Dâ ([~] A Dâ whnfB k~l)
rewrite PE.sym (whrDet* (red D , ne neK) (Dâ , whnfB)) =
let _ , â¢t , â¢u = syntacticEqTerm (soundness~â k~l)
Aâ¡K = subset* Dâ
in ne-ins (conv â¢t Aâ¡K) (conv â¢u Aâ¡K) neK ([~] A Dâ (ne neK) k~l)
lift~toConvââ² (ΠᵣⲠF G D â¢F â¢G Aâ¡A [F] [G] G-ext) Dâ ([~] A Dâ whnfB k~l)
rewrite PE.sym (whrDet* (red D , Î â) (Dâ , whnfB)) =
let â¢Î FG , â¢t , â¢u = syntacticEqTerm (soundness~â ([~] A Dâ Î â k~l))
â¢F , â¢G = syntacticÎ â¢Î FG
neT , neU = ne~â k~l
â¢Î = wf â¢F
var0 = neuTerm ([F] (step id) (â¢Î â â¢F)) (var 0) (var (â¢Î â â¢F) here)
(refl (var (â¢Î â â¢F) here))
0â¡0 = lift~toConvââ² ([F] (step id) (â¢Î â â¢F)) (var-refl (var (â¢Î â â¢F) here) PE.refl)
kâ0â¡lâ0 = lift~toConvââ² ([G] (step id) (â¢Î â â¢F) var0)
(app-cong (wk~â (step id) (â¢Î â â¢F) ([~] A Dâ Î â k~l))
0â¡0)
in η-eq â¢t â¢u (ne neT) (ne neU)
(PE.subst (λ x â _ ⢠_ [convâ] _ â· x)
(wkSingleSubstId _)
kâ0â¡lâ0)
lift~toConvââ² (ΣᵣⲠF G D â¢F â¢G Σâ¡Î£ [F] [G] G-ext) Dâ ([~] Aâ³ Dâ whnfA t~u)
rewrite PE.sym (whrDet* (red D , Σâ) (Dâ , whnfA)) {- Σ F â¹ G â¡ A -} =
let neT , neU = ne~â t~u
t~uâ = [~] Aâ³ Dâ Σâ t~u
â¢Î£FG , â¢t , â¢u = syntacticEqTerm (soundness~â t~uâ)
â¢F , â¢G = syntacticΣ â¢Î£FG
â¢Î = wf â¢F
wkId = wk-id F
wkLiftId = PE.cong (λ x â x [ fst _ ]) (wk-lift-id G)
wk[F] = [F] id â¢Î
wkâ¢fst = PE.subst (λ x â _ ⢠_ â· x) (PE.sym wkId) (fstⱌ â¢F â¢G â¢t)
wkfstâ¡ = PE.subst (λ x â _ ⢠_ â¡ _ â· x) (PE.sym wkId) (fst-cong â¢F â¢G (refl â¢t))
wk[fst] = neuTerm wk[F] (fstâ neT) wkâ¢fst wkfstâ¡
wk[Gfst] = [G] id â¢Î wk[fst]
wkfst~ = PE.subst (λ x â _ ⢠_ ~ _ â x) (PE.sym wkId) (fst-cong t~uâ)
wksnd~ = PE.subst (λ x â _ ⢠_ ~ _ â x) (PE.sym wkLiftId) (snd-cong t~uâ)
in Σ-η â¢t â¢u (ne neT) (ne neU)
(PE.subst (λ x â _ ⢠_ [convâ] _ â· x) wkId
(lift~toConvââ² wk[F] wkfst~))
(PE.subst (λ x â _ ⢠_ [convâ] _ â· x) wkLiftId
(lift~toConvââ² wk[Gfst] wksnd~))
lift~toConvââ² (emb 0<1 [A]) D t~u = lift~toConvââ² [A] D t~u
-- Helper function for lifting from neutrals to generic terms.
lift~toConvââ² : â {t u A Î l}
â Î â©âš l â© A
â Π⢠t ~ u â A
â Π⢠t [convâ] u â· A
lift~toConvââ² [A] t~u =
let B , whnfB , D = whNormâ² [A]
t~uâ = [~] _ (red D) whnfB t~u
neT , neU = ne~â t~u
_ , â¢t , â¢u = syntacticEqTerm (soundness~â t~uâ)
in [â]â _ _ _ (red D) (id â¢t) (id â¢u) whnfB
(ne neT) (ne neU) (lift~toConvââ² [A] (red D) t~uâ)
-- Lifting of algorithmic equality of terms from neutrals to generic terms in WHNF.
lift~toConvâ : â {t u A Î}
â Π⢠t ~ u â A
â Π⢠t [convâ] u â· A
lift~toConvâ ([~] Aâ D whnfB k~l) =
lift~toConvââ² (reducible (projâ (syntacticRed D))) D ([~] Aâ D whnfB k~l)
-- Lifting of algorithmic equality of terms from neutrals to generic terms.
lift~toConvâ : â {t u A Î}
â Π⢠t ~ u â A
â Π⢠t [convâ] u â· A
lift~toConvâ t~u =
lift~toConvââ² (reducible (projâ (syntacticEqTerm (soundness~â t~u)))) t~u
|
{-# OPTIONS --without-K #-}
open import Types
open import Functions
module Paths where
-- Identity type
infix 4 _â¡_ -- \equiv
data _â¡_ {i} {A : Set i} (a : A) : A â Set i where
refl : a â¡ a
_==_ = _â¡_
_â¢_ : â {i} {A : Set i} â (A â A â Set i)
x ⢠y = ¬ (x ⡠y)
-- -- This should not be provable
-- K : {A : Set} â (x : A) â (p : x â¡ x) â p â¡ refl x
-- K .x (refl x) = refl
-- Composition and opposite of paths
infixr 8 _â_ -- \o
_â_ : â {i} {A : Set i} {x y z : A} â (x â¡ y â y â¡ z â x â¡ z)
refl â q = q
-- Composition with the opposite definitional behaviour
_â'_ : â {i} {A : Set i} {x y z : A} â (x â¡ y â y â¡ z â x â¡ z)
q â' refl = q
! : â {i} {A : Set i} {x y : A} â (x â¡ y â y â¡ x)
! refl = refl
-- Equational reasoning combinator
infix 2 _â
infixr 2 _â¡âš_â©_
_â¡âš_â©_ : â {i} {A : Set i} (x : A) {y z : A} â x â¡ y â y â¡ z â x â¡ z
_ â¡âš p1 â© p2 = p1 â p2
_â : â {i} {A : Set i} (x : A) â x â¡ x
_â _ = refl
-- Obsolete, for retrocompatibility only
infixr 2 _â¡âš_â©â_
_â¡âš_â©â_ : â {i} {A : Set i} (x : A) {y z : A} â x â¡ y â y â¡ z â x â¡ z
_â¡âš_â©â_ = _â¡âš_â©_
-- Transport and ap
ap : â {i j} {A : Set i} {B : Set j} (f : A â B) {x y : A}
â (x â¡ y â f x â¡ f y)
ap f refl = refl
-- Make equational reasoning much more readable
syntax ap f p = p |in-ctx f
transport : â {i j} {A : Set i} (P : A â Set j) {x y : A}
â (x â¡ y â P x â P y)
transport P refl t = t
apd : â {i j} {A : Set i} {P : A â Set j} (f : (a : A) â P a) {x y : A}
â (p : x â¡ y) â transport P p (f x) â¡ f y
apd f refl = refl
apd! : â {i j} {A : Set i} {P : A â Set j} (f : (a : A) â P a) {x y : A}
â (p : x â¡ y) â f x â¡ transport P (! p) (f y)
apd! f refl = refl
-- Paths in Sigma types
module _ {i j} {A : Set i} {P : A â Set j} where
ap2 : â {k} {Q : Set k} (f : (a : A) â P a â Q)
{x y : A} (p : x â¡ y) {u : P x} {v : P y}
(q : transport P p u â¡ v) â f x u â¡ f y v
ap2 f refl refl = refl
Σ-eq : {x y : A} (p : x ⡠y) {u : P x} {v : P y}
(q : transport P p u â¡ v) â (x , u) â¡ (y , v)
Σ-eq = ap2 _,_
-- Same as [Σ-eq] but with only one argument
total-Σ-eq : {xu yv : Σ A P}
(q : Σ (Ïâ xu â¡ Ïâ yv) (λ p â transport P p (Ïâ xu) â¡ (Ïâ yv)))
â xu â¡ yv
total-Σ-eq (p , q) = Σ-eq p q
base-path : {x y : Σ A P} (p : x â¡ y) â Ïâ x â¡ Ïâ y
base-path = ap Ïâ
trans-base-path : {x y : Σ A P} (p : x ⡠y)
â transport P (base-path p) (Ïâ x) â¡ Ïâ y
trans-base-path {_} {._} refl = refl
fiber-path : {x y : Σ A P} (p : x ⡠y)
â transport P (base-path p) (Ïâ x) â¡ Ïâ y
fiber-path {x} {.x} refl = refl
abstract
base-path-Σ-eq : {x y : A} (p : x ⡠y) {u : P x} {v : P y}
(q : transport P p u â¡ v) â base-path (Σ-eq p q) â¡ p
base-path-Σ-eq refl refl = refl
fiber-path-Σ-eq : {x y : A} (p : x ⡠y) {u : P x} {v : P y}
(q : transport P p u â¡ v)
â transport (λ t â transport P t u â¡ v) (base-path-Σ-eq p q)
(fiber-path (Σ-eq p q))
â¡ q
fiber-path-Σ-eq refl refl = refl
Σ-eq-base-path-fiber-path : {x y : Σ A P} (p : x ⡠y)
â Σ-eq (base-path p) (fiber-path p) â¡ p
Σ-eq-base-path-fiber-path {x} {.x} refl = refl
-- Some of the â-groupoid structure
module _ {i} {A : Set i} where
concat-assoc : {x y z t : A} (p : x â¡ y) (q : y â¡ z) (r : z â¡ t)
â (p â q) â r â¡ p â (q â r)
concat-assoc refl _ _ = refl
-- [refl-left-unit] for _â_ and [refl-right-unit] for _â'_ are definitional
refl-right-unit : {x y : A} (q : x â¡ y) â q â refl â¡ q
refl-right-unit refl = refl
refl-left-unit : {x y : A} (q : x â¡ y) â refl â' q â¡ q
refl-left-unit refl = refl
opposite-left-inverse : {x y : A} (p : x â¡ y) â (! p) â p â¡ refl
opposite-left-inverse refl = refl
opposite-right-inverse : {x y : A} (p : x â¡ y) â p â (! p) â¡ refl
opposite-right-inverse refl = refl
-- This is useless in the presence of ap & equation reasioning combinators
whisker-left : {x y z : A} (p : x â¡ y) {q r : y â¡ z}
â (q â¡ r â p â q â¡ p â r)
whisker-left p refl = refl
-- This is useless in the presence of ap & equation reasioning combinators
whisker-right : {x y z : A} (p : y â¡ z) {q r : x â¡ y}
â (q â¡ r â q â p â¡ r â p)
whisker-right p refl = refl
anti-whisker-right : {x y z : A} (p : y â¡ z) {q r : x â¡ y}
â (q â p â¡ r â p â q â¡ r)
anti-whisker-right refl {q} {r} h =
! (refl-right-unit q) â (h â refl-right-unit r)
anti-whisker-left : {x y z : A} (p : x â¡ y) {q r : y â¡ z}
â (p â q â¡ p â r â q â¡ r)
anti-whisker-left refl h = h
-- [opposite-concat âŠ] gives a result of the form [opposite (concat âŠ) â¡ âŠ],
-- and so on
opposite-concat : {x y z : A} (p : x â¡ y) (q : y â¡ z) â ! (p â q) â¡ ! q â ! p
opposite-concat refl q = ! (refl-right-unit (! q))
concat-opposite : {x y z : A} (q : y â¡ z) (p : x â¡ y) â ! q â ! p â¡ ! (p â q)
concat-opposite q refl = refl-right-unit (! q)
opposite-opposite : {x y : A} (p : x â¡ y) â ! (! p) â¡ p
opposite-opposite refl = refl
-- Reduction rules for transport
module _ {i} {A : Set i} where
-- This first part is about transporting something in a known fibration. In
-- the names, [x] represents the variable of the fibration, [a] is a constant
-- term, [A] is a constant type, and [f] and [g] are constant functions.
trans-idâ¡cst : {a b c : A} (p : b â¡ c) (q : b â¡ a)
â transport (λ x â x â¡ a) p q â¡ (! p) â q
trans-idâ¡cst refl q = refl
trans-cstâ¡id : {a b c : A} (p : b â¡ c) (q : a â¡ b)
â transport (λ x â a â¡ x) p q â¡ q â p
trans-cstâ¡id refl q = ! (refl-right-unit q)
trans-appâ¡app : â {j} {B : Set j} (f g : A â B) {x y : A} (p : x â¡ y)
(q : f x â¡ g x)
â transport (λ x â f x â¡ g x) p q â¡ ! (ap f p) â (q â ap g p)
trans-appâ¡app f g refl q = ! (refl-right-unit q)
trans-move-appâ¡app : â {j} {B : Set j} (f g : A â B) {x y : A} (p : x â¡ y)
(q : f x â¡ g x) {r : f y â¡ g y}
â (q â ap g p â¡ ap f p â r â transport (λ x â f x â¡ g x) p q â¡ r)
trans-move-appâ¡app f g refl q h = ! (refl-right-unit q) â h
trans-cstâ¡app : â {j} {B : Set j} (a : B) (f : A â B) {x y : A} (p : x â¡ y)
(q : a â¡ f x)
â transport (λ x â a â¡ f x) p q â¡ q â ap f p
trans-cstâ¡app a f refl q = ! (refl-right-unit q)
trans-appâ¡cst : â {j} {B : Set j} (f : A â B) (a : B) {x y : A} (p : x â¡ y)
(q : f x â¡ a)
â transport (λ x â f x â¡ a) p q â¡ ! (ap f p) â q
trans-appâ¡cst f a refl q = refl
trans-idâ¡app : (f : A â A) {x y : A} (p : x â¡ y) (q : x â¡ f x)
â transport (λ x â x â¡ f x) p q â¡ ! p â (q â ap f p)
trans-idâ¡app f refl q = ! (refl-right-unit q)
trans-appâ¡id : (f : A â A) {x y : A} (p : x â¡ y) (q : f x â¡ x)
â transport (λ x â f x â¡ x) p q â¡ ! (ap f p) â (q â p)
trans-appâ¡id f refl q = ! (refl-right-unit q)
trans-idâ¡id : {x y : A} (p : x â¡ y) (q : x â¡ x)
â transport (λ x â x â¡ x) p q â¡ ! p â (q â p)
trans-idâ¡id refl q = ! (refl-right-unit _)
trans-cst : â {j} {B : Set j} {x y : A} (p : x â¡ y) (q : B)
â transport (λ _ â B) p q â¡ q
trans-cst refl q = refl
trans-Î 2 : â {j k} (B : Set j) (P : (x : A) (y : B) â Set k)
{b c : A} (p : b â¡ c) (q : (y : B) â P b y) (a : B)
â transport (λ x â ((y : B) â P x y)) p q a
â¡ transport (λ u â P u a) p (q a)
trans-Î 2 B P refl q a = refl
trans-Î 2-dep : â {j k} (B : A â Set j) (P : (x : A) (y : B x) â Set k)
{aâ aâ : A} (p : aâ â¡ aâ) (q : (y : B aâ) â P aâ y) (b : B aâ)
â transport (λ x â ((y : B x) â P x y)) p q b
⡠transport (uncurry P) (! (Σ-eq (! p) $ refl)) (q (transport B (! p) b))
trans-Î 2-dep B P refl q b = refl
trans-â-trans : â {j k} (B : A â Set j) (P : A â Set k)
{b c : A} (p : b â¡ c) (q : B b â P b) (a : B b)
â transport (λ x â B x â P x) p q (transport B p a)
â¡ transport P p (q a)
trans-â-trans B P refl q a = refl
trans-â : â {j k} (B : A â Set j) (P : A â Set k)
{b c : A} (p : b â¡ c) (q : B b â P b) (a : B c)
â transport (λ x â B x â P x) p q a
â¡ transport P p (q $ transport B (! p) a)
trans-â B P refl q a = refl
-- This second part is about transporting something along a known path
trans-diag : â {j} (P : A â A â Set j) {x y : A} (p : x â¡ y) (q : P x x)
â transport (λ x â P x x) p q â¡ transport (λ z â P z y) p (transport (P x) p q)
trans-diag P refl q = refl
trans-concat : â {j} (P : A â Set j) {x y z : A} (p : y â¡ z) (q : x â¡ y)
(u : P x)
â transport P (q â p) u â¡ transport P p (transport P q u)
trans-concat P p refl u = refl
compose-trans : â {j} (P : A â Set j) {x y z : A} (p : y â¡ z) (q : x â¡ y)
(u : P x)
â transport P p (transport P q u) â¡ transport P (q â p) u
compose-trans P p refl u = refl
trans-ap : â {j k} {B : Set j} (P : B â Set k) (f : A â B)
{x y : A} (p : x â¡ y) (u : P (f x))
â transport P (ap f p) u â¡ transport (P ⯠f) p u
trans-ap P f refl u = refl
-- Unreadable, should be removed
trans-totalpath : â {j k} (P : A â Set j) (Q : Σ A P â Set k) {x y : Σ A P}
(p : Ïâ x â¡ Ïâ y) (q : transport P p (Ïâ x) â¡ Ïâ y)
(f : (t : P (Ïâ x)) â Q (Ïâ x , t))
â transport Q (Σ-eq p q) (f (Ïâ x)) â¡
transport (λ x' â Q (Ïâ y , x')) q
(transport (λ x' â (t : P x') â Q (x' , t)) p f
(transport P p (Ïâ x)))
trans-totalpath P Q {(xâ , xâ)} {(yâ , yâ)} p q f =
trans-totalpath' P Q {xâ} {yâ} {xâ} {yâ} p q f where
trans-totalpath' : â {j k} (P : A â Set j) (Q : Σ A P â Set k) {xâ yâ : A}
{xâ : P xâ} {yâ : P yâ}
(p : xâ â¡ yâ) (q : transport P p (xâ) â¡ yâ) (f : (t : P xâ) â Q (xâ , t))
â transport Q (Σ-eq p q) (f xâ) â¡
transport (λ x' â Q (yâ , x')) q
(transport (λ x' â (t : P x') â Q (x' , t)) p f
(transport P p xâ))
trans-totalpath' P Q refl refl f = refl
-- This third part is about various other convenient properties
trans-trans-opposite : â {j} (P : A â Set j) {x y : A} (p : x â¡ y) (u : P y)
â transport P p (transport P (! p) u) â¡ u
trans-trans-opposite P refl u = refl
trans-opposite-trans : â {j} (P : A â Set j) {x y : A} (p : x â¡ y) (u : P x)
â transport P (! p) (transport P p u) â¡ u
trans-opposite-trans P refl u = refl
ap-dep-trivial : â {j} {B : Set j} (f : A â B) {x y : A} (p : x â¡ y)
â ap f p â¡ ! (trans-cst p (f x)) â apd f p
ap-dep-trivial f refl = refl
homotopy-naturality : â {j} {B : Set j} (f g : A â B)
(p : (x : A) â f x â¡ g x) {x y : A} (q : x â¡ y)
â ap f q â p y â¡ p x â ap g q
homotopy-naturality f g p refl = ! (refl-right-unit _)
homotopy-naturality-toid : (f : A -> A) (p : (x : A) â f x â¡ x)
{x y : A} (q : x â¡ y) â ap f q â p y â¡ p x â q
homotopy-naturality-toid f p refl = ! (refl-right-unit _)
homotopy-naturality-fromid : (g : A -> A) (p : (x : A) â x â¡ g x)
{x y : A} (q : x â¡ y) â q â p y â¡ p x â ap g q
homotopy-naturality-fromid g p refl = ! (refl-right-unit _)
opposite-ap : â {j} {B : Set j} (f : A â B) {x y : A} (p : x â¡ y)
â ! (ap f p) â¡ ap f (! p)
opposite-ap f refl = refl
ap-opposite : â {j} {B : Set j} (f : A â B) {x y : A} (p : x â¡ y)
â ap f (! p) â¡ ! (ap f p)
ap-opposite f refl = refl
concat-ap : â {j} {B : Set j} (f : A â B) {x y z : A} (p : x â¡ y) (q : y â¡ z)
â ap f p â ap f q â¡ ap f (p â q)
concat-ap f refl _ = refl
ap-concat : â {j} {B : Set j} (f : A â B) {x y z : A} (p : x â¡ y) (q : y â¡ z)
â ap f (p â q) â¡ ap f p â ap f q
ap-concat f refl _ = refl
compose-ap : â {j k} {B : Set j} {C : Set k} (g : B â C) (f : A â B)
{x y : A} (p : x â¡ y) â ap g (ap f p) â¡ ap (g ⯠f) p
compose-ap f g refl = refl
ap-compose : â {j k} {B : Set j} {C : Set k} (g : B â C) (f : A â B)
{x y : A} (p : x â¡ y) â ap (g ⯠f) p â¡ ap g (ap f p)
ap-compose f g refl = refl
ap-cst : â {j} {B : Set j} (b : B) {x y : A} (p : x â¡ y)
â ap (cst b) p â¡ refl
ap-cst b refl = refl
ap-id : {u v : A} (p : u â¡ v) â ap (id A) p â¡ p
ap-id refl = refl
app-trans : â {j k} (B : A â Set j) (C : A â Set k) (f : â x â B x â C x)
{x y} (p : x â¡ y) (a : B x)
â f y (transport B p a) â¡ transport C p (f x a)
app-trans B C f refl a = refl
-- Move functions
-- These functions are used when the goal is to show that path is a
-- concatenation of two other paths, and that you want to prove it by moving a
-- path to the other side
--
-- The first [left/right] is the side (with respect to â¡) where will be the
-- path after moving (âafterâ means âafter replacing the conclusion of the
-- proposition by its premisseâ), and the second [left/right] is the side
-- (with respect to â) where the path is (and will still be)
-- If you want to prove something of the form [p â¡ q â r] by moving [q] or [r]
-- to the left, use the functions move-left-on-left and move-left-on-right
-- If you want to prove something of the form [p â q â¡ r] by moving [p] or [q]
-- to the right, use the functions move-right-on-left and move-right-on-right
-- Add a [0] after [move] if the big path is constant, a [1] if the other
-- small path is constant and then a [!] if the path you will move is an
-- opposite.
--
-- Iâm not sure all of these functions are useful, but it canât hurt to have
-- them.
move-left-on-left : {x y z : A} (p : x â¡ z) (q : x â¡ y) (r : y â¡ z)
â ((! q) â p â¡ r â p â¡ q â r)
move-left-on-left p refl r h = h
move-left-on-right : {x y z : A} (p : x â¡ z) (q : x â¡ y) (r : y â¡ z)
â (p â (! r) â¡ q â p â¡ q â r)
move-left-on-right p q refl h = ! (refl-right-unit p)
â (h â ! (refl-right-unit q))
move-right-on-left : {x y z : A} (p : x â¡ y) (q : y â¡ z) (r : x â¡ z)
â (q â¡ (! p) â r â p â q â¡ r)
move-right-on-left refl q r h = h
move-right-on-right : {x y z : A} (p : x â¡ y) (q : y â¡ z) (r : x â¡ z)
â (p â¡ r â (! q) â p â q â¡ r)
move-right-on-right p refl r h = refl-right-unit p
â (h â refl-right-unit r)
move!-left-on-left : {x y z : A} (p : x â¡ z) (q : y â¡ x) (r : y â¡ z)
â (q â p â¡ r â p â¡ (! q) â r)
move!-left-on-left p refl r h = h
move!-left-on-right : {x y z : A} (p : x â¡ z) (q : x â¡ y) (r : z â¡ y)
â (p â r â¡ q â p â¡ q â (! r))
move!-left-on-right p q refl h = ! (refl-right-unit p)
â (h â ! (refl-right-unit q))
move!-right-on-left : {x y z : A} (p : y â¡ x) (q : y â¡ z) (r : x â¡ z)
â (q â¡ p â r â (! p) â q â¡ r)
move!-right-on-left refl q r h = h
move!-right-on-right : {x y z : A} (p : x â¡ y) (q : z â¡ y) (r : x â¡ z)
â (p â¡ r â q â p â (! q) â¡ r)
move!-right-on-right p refl r h = refl-right-unit p
â (h â refl-right-unit r)
move0-left-on-left : {x y : A} (q : x â¡ y) (r : y â¡ x)
â (! q â¡ r â refl â¡ q â r)
move0-left-on-left refl r h = h
move0-left-on-right : {x y : A} (q : x â¡ y) (r : y â¡ x)
â (! r â¡ q â refl â¡ q â r)
move0-left-on-right q refl h = h â ! (refl-right-unit q)
move0-right-on-left : {x y : A} (p : x â¡ y) (q : y â¡ x)
â (q â¡ ! p â p â q â¡ refl)
move0-right-on-left refl q h = h
move0-right-on-right : {x y : A} (p : x â¡ y) (q : y â¡ x)
â (p â¡ ! q â p â q â¡ refl)
move0-right-on-right p refl h = refl-right-unit p â h
move0!-left-on-left : {x y : A} (q : y â¡ x) (r : y â¡ x)
â (q â¡ r â refl â¡ (! q) â r)
move0!-left-on-left refl r h = h
move0!-left-on-right : {x y : A} (q : x â¡ y) (r : x â¡ y)
â (r â¡ q â refl â¡ q â (! r))
move0!-left-on-right q refl h = h â ! (refl-right-unit q)
move0!-right-on-left : {x y : A} (p : y â¡ x) (q : y â¡ x)
â (q â¡ p â (! p) â q â¡ refl)
move0!-right-on-left refl q h = h
move0!-right-on-right : {x y : A} (p : x â¡ y) (q : x â¡ y)
â (p â¡ q â p â (! q) â¡ refl)
move0!-right-on-right p refl h = refl-right-unit p â h
move1-left-on-left : {x y : A} (p : x â¡ y) (q : x â¡ y)
â ((! q) â p â¡ refl â p â¡ q)
move1-left-on-left p refl h = h
move1-left-on-right : {x y : A} (p : x â¡ y) (r : x â¡ y)
â (p â (! r) â¡ refl â p â¡ r)
move1-left-on-right p refl h = ! (refl-right-unit p) â h
move1-right-on-left : {x y : A} (p : x â¡ y) (r : x â¡ y)
â (refl â¡ (! p) â r â p â¡ r)
move1-right-on-left refl r h = h
move1-right-on-right : {x y : A} (q : x â¡ y) (r : x â¡ y)
â (refl â¡ r â (! q) â q â¡ r)
move1-right-on-right refl r h = h â refl-right-unit r
move1!-left-on-left : {x y : A} (p : x â¡ y) (q : y â¡ x)
â (q â p â¡ refl â p â¡ ! q)
move1!-left-on-left p refl h = h
move1!-left-on-right : {x y : A} (p : x â¡ y) (r : y â¡ x)
â (p â r â¡ refl â p â¡ ! r)
move1!-left-on-right p refl h = ! (refl-right-unit p) â h
move1!-right-on-left : {x y : A} (p : y â¡ x) (r : x â¡ y)
â (refl â¡ p â r â ! p â¡ r)
move1!-right-on-left refl r h = h
move1!-right-on-right : {x y : A} (q : y â¡ x) (r : x â¡ y)
â (refl â¡ r â q â ! q â¡ r)
move1!-right-on-right refl r h = h â refl-right-unit r
move-transp-left : â {j} (P : A â Set j) {x y : A} (u : P y) (p : x â¡ y)
(v : P x)
â transport P (! p) u â¡ v â u â¡ transport P p v
move-transp-left P _ refl _ p = p
move-transp-right : â {j} (P : A â Set j) {x y : A} (p : y â¡ x) (u : P y)
(v : P x)
â u â¡ transport P (! p) v â transport P p u â¡ v
move-transp-right P refl _ _ p = p
move!-transp-left : â {j} (P : A â Set j) {x y : A} (u : P y) (p : y â¡ x)
(v : P x)
â transport P p u â¡ v â u â¡ transport P (! p) v
move!-transp-left P _ refl _ p = p
move!-transp-right : â {j} (P : A â Set j) {x y : A} (p : x â¡ y) (u : P y)
(v : P x)
â u â¡ transport P p v â transport P (! p) u â¡ v
move!-transp-right P refl _ _ p = p
|
-- Andreas, 2016-10-09, issue #2223
-- The level constraint solver needs to combine constraints
-- from different contexts and modules.
-- The parameter refinement broke this test case.
-- {-# OPTIONS -v tc.with.top:25 #-}
-- {-# OPTIONS -v tc.conv.nat:40 #-}
-- {-# OPTIONS -v tc.constr.add:45 #-}
open import Common.Level
module _ (a â : Level) where
mutual
X : Level
X = _
data D : Set (lsuc a) where
c : Set X â D -- X <= a
test : Setâ
test with (lsuc â) -- failed
... | _ = Set
-- test = Set -- works
where
data C : Set (lsuc X) where
c : Set a â C -- a <= X
-- Should solve all metas.
|
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Data.Nat.Order where
open import Prelude
open import Data.Nat.Properties
open import Relation.Binary
<-trans : Transitive _<_
<-trans {zero} {suc y} {suc z} x<y y<z = tt
<-trans {suc x} {suc y} {suc z} x<y y<z = <-trans {x} {y} {z} x<y y<z
<-asym : Asymmetric _<_
<-asym {suc x} {suc y} x<y y<x = <-asym {x} {y} x<y y<x
<-irrefl : Irreflexive _<_
<-irrefl {suc x} = <-irrefl {x = x}
<-conn : Connected _<_
<-conn {zero} {zero} xâ®y yâ®x = refl
<-conn {zero} {suc y} xâ®y yâ®x = â¥-elim (xâ®y tt)
<-conn {suc x} {zero} xâ®y yâ®x = â¥-elim (yâ®x tt)
<-conn {suc x} {suc y} xâ®y yâ®x = cong suc (<-conn xâ®y yâ®x)
â€-antisym : Antisymmetric _â€_
â€-antisym {zero} {zero} xâ€y yâ€x = refl
â€-antisym {suc x} {suc y} xâ€y yâ€x = cong suc (â€-antisym xâ€y yâ€x)
â-â°â> : â x y â ¬ (x †y) â y < x
â-â°â> x y xâ°y with y <Ꭾ x
... | false = xâ°y tt
... | true = tt
â-â®â⥠: â x y â ¬ (x < y) â y †x
â-â®â⥠x y xâ®y with x <Ꭾ y
... | false = tt
... | true = xâ®y tt
totalOrder : TotalOrder â âzero âzero
totalOrder .TotalOrder.strictPartialOrder .StrictPartialOrder.strictPreorder .StrictPreorder._<_ = _<_
totalOrder .TotalOrder.strictPartialOrder .StrictPartialOrder.strictPreorder .StrictPreorder.trans {x} {y} {z} = <-trans {x} {y} {z}
totalOrder .TotalOrder.strictPartialOrder .StrictPartialOrder.strictPreorder .StrictPreorder.irrefl {x} = <-irrefl {x = x}
totalOrder .TotalOrder.strictPartialOrder .StrictPartialOrder.conn = <-conn
totalOrder .TotalOrder.partialOrder .PartialOrder.preorder .Preorder._â€_ = _â€_
totalOrder .TotalOrder.partialOrder .PartialOrder.preorder .Preorder.refl {x} = â€-refl x
totalOrder .TotalOrder.partialOrder .PartialOrder.preorder .Preorder.trans {x} {y} {z} = â€-trans x y z
totalOrder .TotalOrder.partialOrder .PartialOrder.antisym = â€-antisym
totalOrder .TotalOrder._<?_ x y = T? (x <Ꭾ y)
totalOrder .TotalOrder.â°â> {x} {y} = â-â°â> x y
totalOrder .TotalOrder.â®â⥠{x} {y} = â-â®â⥠x y
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block
import LibraBFT.Impl.Consensus.ConsensusTypes.BlockData as BlockData
import LibraBFT.Impl.Types.BlockInfo as BlockInfo
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
open import Util.Encode as Encode
open import Util.Prelude
module LibraBFT.Impl.Consensus.Liveness.ProposalGenerator where
ensureHighestQuorumCertM : Round â LBFT (Either ErrLog QuorumCert)
generateNilBlockM : Round â LBFT (Either ErrLog Block)
generateNilBlockM round =
ensureHighestQuorumCertM round â?â (ok â Block.newNil round)
generateProposalM : Instant â Round â LBFT (Either ErrLog BlockData)
generateProposalM _now round = do
lrg â use (lProposalGenerator â pgLastRoundGenerated)
ifD lrg <?â round
then (do
lProposalGenerator â pgLastRoundGenerated â= round
ensureHighestQuorumCertM round â?â λ hqc -> do
payload â ifD BlockInfo.hasReconfiguration (hqc ^â qcCertifiedBlock)
-- IMPL-DIFF : create a fake TX
then pure (Encode.encode 0) -- (Payload [])
else pure (Encode.encode 0) -- use pgTxnManager <*> use (rmEpochState â esEpoch) <*> pure round
use (lRoundManager â pgAuthor) >>= λ where
nothing â bail fakeErr -- ErrL (here ["lRoundManager.pgAuthor", "Nothing"])
(just author) â
ok (BlockData.newProposal payload author round {-pure blockTimestamp <*>-} hqc))
else bail fakeErr
-- where
-- here t = "ProposalGenerator" â· "generateProposal" â· t
ensureHighestQuorumCertM round = do
hqc â use (lBlockStore â bsHighestQuorumCert)
ifDâ (hqc ^â qcCertifiedBlock â biRound) â¥?â round â
bail fakeErr {- ErrL (here [ "given round is lower than hqc round"
, show (hqc^.qcCertifiedBlock.biRound) ]) -}
â hqc ^â qcEndsEpoch â
bail fakeErr {-ErrEpochEndedNoProposals (here ["further proposals not allowed"])-}
â otherwiseâ
ok hqc
-- where
-- here t = "ProposalGenerator":"ensureHighestQuorumCertM":lsR round:t
|
open import Relation.Binary.Core
module BubbleSort.Everything {A : Set}
(_â€_ : A â A â Set)
(tot†: Total _â€_)
(trans†: Transitive _â€_) where
open import BubbleSort.Correctness.Order _â€_ tot†transâ€
open import BubbleSort.Correctness.Permutation _â€_ totâ€
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Equivalence.Strong where
-- Strong equivalence of categories. Same as ordinary equivalence in Cat.
-- May not include everything we'd like to think of as equivalences, namely
-- the full, faithful functors that are essentially surjective on objects.
open import Level
open import Relation.Binary using (IsEquivalence; module IsEquivalence)
open import Function using () renaming (_â_ to _â_)
open import Categories.Category
open import Categories.Functor hiding (equiv)
open import Categories.NaturalIsomorphism as NI hiding (equiv)
open import Categories.NaturalTransformation as NT hiding (id; equiv)
open import Categories.Morphisms using (Iso; module Iso)
record WeakInverse {o â e oâ² ââ² eâ²} {C : Category o â e} {D : Category oâ² ââ² eâ²} (F : Functor C D) (G : Functor D C) : Set (o â â â e â oâ² â ââ² â eâ²) where
field
FâGâ
id : NaturalIsomorphism (F â G) id
GâFâ
id : NaturalIsomorphism (G â F) id
FâGâid = NaturalIsomorphism.FâG FâGâ
id
idâFâG = NaturalIsomorphism.FâG FâGâ
id
GâFâid = NaturalIsomorphism.FâG GâFâ
id
idâGâF = NaturalIsomorphism.FâG GâFâ
id
.FâG-iso : _
FâG-iso = NaturalIsomorphism.iso FâGâ
id
.FâG-isoË¡ : _
FâG-isoË¡ = λ x â Iso.isoË¡ {C = D} (FâG-iso x)
.FâG-isoʳ : _
FâG-isoʳ = λ x â Iso.isoʳ {C = D} (FâG-iso x)
.GâF-iso : _
GâF-iso = NaturalIsomorphism.iso GâFâ
id
.GâF-isoË¡ : _
GâF-isoË¡ = λ x â Iso.isoË¡ {C = C} (GâF-iso x)
.GâF-isoʳ : _
GâF-isoʳ = λ x â Iso.isoʳ {C = C} (GâF-iso x)
record StrongEquivalence {o â e oâ² ââ² eâ²} (C : Category o â e) (D : Category oâ² ââ² eâ²) : Set (o â â â e â oâ² â ââ² â eâ²) where
field
F : Functor C D
G : Functor D C
weak-inverse : WeakInverse F G
open WeakInverse weak-inverse public
module Equiv where
refl : â {o â e} {C : Category o â e} â StrongEquivalence C C
refl = record
{ F = id
; G = id
; weak-inverse = record
{ FâGâ
id = IsEquivalence.refl NI.equiv
; GâFâ
id = IsEquivalence.refl NI.equiv
}
}
sym : â {o â e oâ² ââ² eâ²} {C : Category o â e} {D : Category oâ² ââ² eâ²} â StrongEquivalence C D â StrongEquivalence D C
sym Inv = record
{ F = Inv.G
; G = Inv.F
; weak-inverse = record
{ FâGâ
id = Inv.GâFâ
id
; GâFâ
id = Inv.FâGâ
id
}
}
where
module Inv = StrongEquivalence Inv
trans : â {oâ ââ eâ oâ ââ eâ oâ ââ eâ} {Câ : Category oâ ââ eâ} {Câ : Category oâ ââ eâ} {Câ : Category oâ ââ eâ} â StrongEquivalence Câ Câ â StrongEquivalence Câ Câ â StrongEquivalence Câ Câ
trans {Câ = Câ} {Câ} {Câ} A B = record
{ F = B.F â A.F
; G = A.G â B.G
; weak-inverse = record
{ FâGâ
id = IsEquivalence.trans NI.equiv ((B.F âË¡ A.FâGâ
id) âʳ B.G) B.FâGâ
id
; GâFâ
id = IsEquivalence.trans NI.equiv ((A.G âË¡ B.GâFâ
id) âʳ A.F) A.GâFâ
id
}
}
where
module A = StrongEquivalence A
module B = StrongEquivalence B
equiv : â {o â e} â IsEquivalence (StrongEquivalence {o} {â} {e})
equiv = record { refl = Equiv.refl; sym = Equiv.sym; trans = Equiv.trans }
|
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.S1 where
open import Cubical.HITs.S1.Base public
-- open import Cubical.HITs.S1.Properties public
|
module Sets.IterativeSet.Relator.Proofs where
import Lvl
open import Data
open import Data.Boolean
open import Data.Boolean.Proofs
open import Data.Boolean.Stmt
open import Data.Boolean.Stmt.Proofs
open import Data.Either as Either using (_â_)
open import Data.Tuple as Tuple using ()
open import Functional
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Numeral.Natural
open import Relator.Equals using () renaming (_â¡_ to Id ; [â¡]-intro to intro)
open import Sets.IterativeSet.Relator
open import Sets.IterativeSet
open import Structure.Setoid using (Equiv)
open import Structure.Function.Domain
open import Structure.Function
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Structure.Relator
open import Syntax.Function
open import Syntax.Transitivity
open import Type
open import Type.Dependent
module _ where
private variable {â ââ ââ} : Lvl.Level
open Iset
instance
[â¡][â]-sub : (_â¡_) ââ (_â_ {ââ}{ââ})
[â¡][â]-sub = intro [â§]-elimáµ£
instance
[â¡][â]-sub : (_â¡_) ââ (_â_ {ââ}{ââ})
[â¡][â]-sub = intro [â§]-elimâ
[â¡]-reflexivity-raw : â{A : Iset{â}} â (A â¡ A)
[â]-reflexivity-raw : â{A : Iset{â}} â (A â A)
[â]-reflexivity-raw : â{A : Iset{â}} â (A â A)
[â¡]-reflexivity-raw {A = A} = [â§]-intro [â]-reflexivity-raw [â]-reflexivity-raw
[â]-reflexivity-raw {A = set elem} = intro id (\{i} â [â¡]-reflexivity-raw {A = elem(i)})
[â]-reflexivity-raw = [â]-reflexivity-raw
[â¡]-symmetry-raw : â{A B : Iset{â}} â (A â¡ B) â (B â¡ A)
[â¡]-symmetry-raw {A = A}{B = B} ([â§]-intro l r) = [â§]-intro r l
[â¡]-transitivity-raw : â{A B C : Iset{â}} â (A â¡ B) â (B â¡ C) â (A â¡ C)
[â]-transitivity-raw : â{A B C : Iset{â}} â (A â B) â (B â C) â (A â C)
[â]-transitivity-raw : â{A B C : Iset{â}} â (A â B) â (B â C) â (A â C)
Tuple.left ([â¡]-transitivity-raw {A = A}{B = B}{C = C} ab bc) = [â]-transitivity-raw(Tuple.left ab) (Tuple.left bc)
Tuple.right ([â¡]-transitivity-raw {A = A}{B = B}{C = C} ab bc) = [â]-transitivity-raw(Tuple.right ab) (Tuple.right bc)
_â_.map ([â]-transitivity-raw {A = A} {B = B} {C = C} ab bc) = _â_.map bc â _â_.map ab
_â_.proof ([â]-transitivity-raw {A = set elemA} {B = set elemB} {C = set elemC} ab bc) {ia} = [â¡]-transitivity-raw {A = elemA(ia)}{B = elemB (_â_.map ab ia)} {C = elemC((_â_.map bc)((_â_.map ab)(ia)))} (_â_.proof ab {ia}) (_â_.proof bc)
[â]-transitivity-raw {A = A} {B = B} {C = C} ab bc = [â]-transitivity-raw {A = C}{B = B}{C = A} bc ab
instance
[â¡]-reflexivity : Reflexivity(_â¡_ {â})
[â¡]-reflexivity = intro [â¡]-reflexivity-raw
instance
[â]-reflexivity : Reflexivity(_â_ {â})
[â]-reflexivity = intro [â]-reflexivity-raw
instance
[â]-reflexivity : Reflexivity(_â_ {â})
[â]-reflexivity = intro [â]-reflexivity-raw
instance
[â¡]-symmetry : Symmetry(_â¡_ {â})
[â¡]-symmetry = intro [â¡]-symmetry-raw
instance
[â]-antisymmetry : Antisymmetry(_â_ {â})(_â¡_)
[â]-antisymmetry = intro (swap [â§]-intro)
instance
[â]-antisymmetry : Antisymmetry(_â_ {â})(_â¡_)
[â]-antisymmetry = intro [â§]-intro
instance
[â¡]-transitivity : Transitivity(_â¡_ {â})
[â¡]-transitivity = intro [â¡]-transitivity-raw
instance
[â]-transitivity : Transitivity(_â_ {â})
[â]-transitivity = intro [â]-transitivity-raw
instance
[â]-transitivity : Transitivity(_â_ {â})
[â]-transitivity = intro [â]-transitivity-raw
instance
[â¡]-equivalence : Equivalence(_â¡_ {â})
[â¡]-equivalence = intro
instance
Iset-equiv : Equiv(Iset{â})
Equiv._â¡_ Iset-equiv = _â¡_
Equiv.equivalence Iset-equiv = [â¡]-equivalence
Iset-induction : â{P : Iset{ââ} â Stmt{ââ}} ⊠_ : UnaryRelator(P) ⊠â (â{A : Iset{ââ}} â (â{a} â (a â A) â P(a)) â P(A)) â (â{A : Iset{ââ}} â P(A))
Iset-induction {P = P} p = Iset-index-induction (\{A} pp â p{A} (\{a} aA â substituteââ(P) ([â]-proof aA) (pp{[â]-witness aA})))
[â]-of-elem : â{A : Iset{â}}{ia : Index(A)} â (elem(A)(ia) â A)
â.witness ([â]-of-elem {ia = ia}) = ia
â.proof [â]-of-elem = [â¡]-reflexivity-raw
Iset-intro-self-equality : â{A : Iset{â}} â (set{Index = Index(A)}(elem(A)) â¡ A)
_â_.map (Tuple.left Iset-intro-self-equality) = id
_â_.map (Tuple.right Iset-intro-self-equality) = id
_â_.proof (Tuple.left Iset-intro-self-equality) = [â¡]-reflexivity-raw
_â_.proof (Tuple.right Iset-intro-self-equality) = [â¡]-reflexivity-raw
[â]-with-elem : â{x y : Iset{â}} â (xy : x â y) â â{ix} â (elem x ix â¡ elem y (_â_.map xy ix))
[â]-with-elem xy {ix} = _â_.proof xy {ix}
[â]-membership : â{A : Iset{â}}{B : Iset{â}} â (â{x : Iset{â}} â (x â A) â (x â B)) â (A â B)
[â]-membership {A = A}{B = B} = [â]-intro l r where
l : (â{x} â (x â A) â (x â B)) â (A â B)
â.witness (l AB {x} xa) = _â_.map AB (â.witness xa)
â.proof (l AB {x} xa) = [â¡]-transitivity-raw (â.proof xa) (_â_.proof AB)
r : (â{x} â (x â A) â (x â B)) â (A â B)
_â_.map (r proof) ia = [â]-witness (proof{x = elem(A)(ia)} ([â]-of-elem {A = A}))
_â_.proof (r proof) {ia} = [â]-proof (proof([â]-of-elem {A = A}))
[â]-membership : â{A : Iset{â}}{B : Iset{â}} â (â{x : Iset{â}} â (x â A) â (x â B)) â (A â B)
[â]-membership {A = A}{B = B} = [â]-membership {A = B}{B = A}
[â¡]-membership : â{A : Iset{â}}{B : Iset{â}} â (â{x : Iset{â}} â (x â A) â (x â B)) â (A â¡ B)
Tuple.left (Tuple.left ([â¡]-membership {A = A} {B = B}) ab) = [â]-to-[â] [â]-membership (Tuple.left ab)
Tuple.right (Tuple.left ([â¡]-membership {A = A} {B = B}) ab) = [â]-to-[â] [â]-membership (Tuple.right ab)
Tuple.left (Tuple.right ([â¡]-membership {A = A} {B = B}) xaxb) = [â]-to-[â] [â]-membership ([â]-to-[â] xaxb)
Tuple.right (Tuple.right ([â¡]-membership {A = A} {B = B}) xaxb) = [â]-to-[â] [â]-membership ([â]-to-[â] xaxb)
[â]â-unaryRelation-raw : â{Aâ Aâ B : Iset{â}} â (Aâ â¡ Aâ) â (Aâ â B) â (Aâ â B)
â.witness ([â]â-unaryRelation-raw pa ([â]-intro i ⊠p âŠ)) = i
â.proof ([â]â-unaryRelation-raw pa ([â]-intro i ⊠p âŠ)) = [â¡]-transitivity-raw ([â¡]-symmetry-raw pa) p
[â]-binaryRelation-raw : â{Aâ Aâ Bâ Bâ : Iset{â}} â (Aâ â¡ Aâ) â (Bâ â¡ Bâ) â ((Aâ â Bâ) â (Aâ â Bâ))
[â]-binaryRelation-raw {Bâ = Bâ} pa pb = [â]â-unaryRelation-raw {B = Bâ} pa â [â]-to-[â] [â]-membership (subâ(_â¡_)(_â_) pb)
instance
[â]-binaryRelation : BinaryRelator(_â_ {â})
[â]-binaryRelation = intro [â]-binaryRelation-raw
instance
[â]-binaryRelator : BinaryRelator(_â_ {â}{â})
BinaryRelator.substitution [â]-binaryRelator p1 p2 ps = subâ(_â¡_)(_â_) p1 ð ps ð subâ(_â¡_)(_â_) p2
|
module Pi-Calculus where
-- Local modules ---------------------------------------------------------------
open import Common
using (Id)
-- Ï-process definition --------------------------------------------------------
data Ï-process : Set where
recv_from_â_ : Id â Id â Ï-process â Ï-process -- Receive
send_to_â_ : Id â Id â Ï-process â Ï-process -- Send
_||_ : Ï-process â Ï-process â Ï-process -- Composition
Μ_â_ : Id â Ï-process â Ï-process -- Restriction
!_ : Ï-process â Ï-process -- Repetition
Zero : Ï-process -- Inactivity
|
------------------------------------------------------------------------
-- Properties of combinatorial functions on integers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --exact-split #-}
module Math.Combinatorics.IntegerFunction.Properties where
open import Data.Nat as â hiding (_*_; _+_; _â€_; _<_)
import Data.Nat.Properties as ââ
open import Data.Integer as â€
import Data.Integer.Properties as â€â
open import Relation.Binary.PropositionalEquality
open import Function.Base
import Math.Combinatorics.Function as âF
import Math.Combinatorics.Function.Properties as âFâ
open import Math.Combinatorics.IntegerFunction
import Math.Combinatorics.IntegerFunction.Properties.Lemma as Lemma
------------------------------------------------------------------------
-- Properties of [-1]^_
[-1]^[1+n]â¡-1*[-1]^n : â n â [-1]^ (â.suc n) â¡ -1†* [-1]^ n
[-1]^[1+n]â¡-1*[-1]^n zero = refl
[-1]^[1+n]â¡-1*[-1]^n (â.suc zero) = refl
[-1]^[1+n]â¡-1*[-1]^n (â.suc (â.suc n)) = [-1]^[1+n]â¡-1*[-1]^n n
[-1]^[m+n]â¡[-1]^m*[-1]^n : â m n â [-1]^ (m â.+ n) â¡ [-1]^ m * [-1]^ n
[-1]^[m+n]â¡[-1]^m*[-1]^n zero n = sym $ â€â.*-identityË¡ $ [-1]^ n
[-1]^[m+n]â¡[-1]^m*[-1]^n (â.suc zero) n = [-1]^[1+n]â¡-1*[-1]^n n
[-1]^[m+n]â¡[-1]^m*[-1]^n (â.suc (â.suc m)) n = [-1]^[m+n]â¡[-1]^m*[-1]^n m n
-- TODO: [-1]^nâ¡-1âš[-1]^nâ¡1
[-1]^[2*n]â¡1 : â n â [-1]^ (2 â.* n) â¡ + 1
[-1]^[2*n]â¡1 zero = refl
[-1]^[2*n]â¡1 (â.suc n) = begin-equality
[-1]^ (2 â.* â.suc n) â¡âš cong ([-1]^_) $ ââ.*-distribË¡-+ 2 1 n â©
[-1]^ (2 â.+ 2 â.* n) â¡âšâ©
[-1]^ (2 â.* n) â¡âš [-1]^[2*n]â¡1 n â©
+ 1 â
where open â€â.â€-Reasoning
[-1]^[1+2*n]â¡-1 : â n â [-1]^ (1 â.+ 2 â.* n) â¡ -1â€
[-1]^[1+2*n]â¡-1 n = begin-equality
[-1]^ (1 â.+ 2 â.* n) â¡âš [-1]^[1+n]â¡-1*[-1]^n (2 â.* n) â©
-1†* [-1]^ (2 â.* n) â¡âš cong (-1†*_) $ [-1]^[2*n]â¡1 n â©
-1†* + 1 â
where open â€â.â€-Reasoning
------------------------------------------------------------------------
-- Properties of permutation
P[n,0]â¡1 : â n â P n 0 â¡ (+ 1)
P[n,0]â¡1 (+ n) = refl
P[n,0]â¡1 (-[1+ n ]) = refl
P[n,1]â¡n : â n â P n 1 â¡ n
P[n,1]â¡n (+ n) = cong (+_) $ âFâ.P[n,1]â¡n n
P[n,1]â¡n (-[1+ n ]) = begin-equality
-1†* + âF.Poch (â.suc n) 1
â¡âš cong (λ v â -1†* + v) $ âFâ.Poch[n,1]â¡n (â.suc n) â©
-1†* (+ (â.suc n))
â¡âš â€â.-1*nâ¡-n (+ (â.suc n)) â©
- (+ â.suc n)
â
where open â€â.â€-Reasoning
module _ where
open â€â.â€-Reasoning
P[-n,k]â¡[-1]^k*âPoch[n,k] : â n k â P (- (+ n)) k â¡ [-1]^ k * + âF.Poch n k
P[-n,k]â¡[-1]^k*âPoch[n,k] zero zero = refl
P[-n,k]â¡[-1]^k*âPoch[n,k] zero (â.suc k) = sym $ â€â.*-zeroʳ ([-1]^ â.suc k)
P[-n,k]â¡[-1]^k*âPoch[n,k] (â.suc n) k = refl
P[-n,2*k]â¡âPoch[n,2*k] : â n k â P (- (+ n)) (2 â.* k) â¡ + âF.Poch n (2 â.* k)
P[-n,2*k]â¡âPoch[n,2*k] n k = begin-equality
P (- (+ n)) (2 â.* k) â¡âš P[-n,k]â¡[-1]^k*âPoch[n,k] n (2 â.* k) â©
[-1]^ (2 â.* k) * p â¡âš cong (_* p) $ [-1]^[2*n]â¡1 k â©
1†* p â¡âš â€â.*-identityË¡ p â©
p â
where p = + âF.Poch n (2 â.* k)
P[-n,1+2*k]â¡-âPoch[n,1+2*k] : â n k â
P (- (+ n)) (1 â.+ 2 â.* k) â¡ - (+ âF.Poch n (1 â.+ 2 â.* k))
P[-n,1+2*k]â¡-âPoch[n,1+2*k] n k = begin-equality
P (- (+ n)) (1 â.+ 2 â.* k) â¡âš P[-n,k]â¡[-1]^k*âPoch[n,k] n (1 â.+ 2 â.* k) â©
[-1]^ (1 â.+ 2 â.* k) * p â¡âš cong (_* p) $ [-1]^[1+2*n]â¡-1 k â©
-1†* p â¡âš â€â.-1*nâ¡-n p â©
- p â
where p = + âF.Poch n (1 â.+ 2 â.* k)
0â€nâ§n<kâP[n,k]â¡0 : â {n k} â 0††n â n < + k â P n k â¡ + 0
0â€nâ§n<kâP[n,k]â¡0 {+_ n} {k} 0â€n (+<+ n<k) = cong (+_) $ âFâ.n<kâP[n,k]â¡0 n<k
P[1+n,1+k]â¡[1+n]*P[n,k] : â n k â P (â€.suc n) (â.suc k) â¡ â€.suc n * P n k
P[1+n,1+k]â¡[1+n]*P[n,k] (+ n) k = begin-equality
+ (â.suc n â.* âF.P n k) â¡âš sym $ â€â.pos-distrib-* (â.suc n) (âF.P n k) â©
+ (â.suc n) * + âF.P n k â¡âšâ©
â€.suc (+ n) * + âF.P n k â
P[1+n,1+k]â¡[1+n]*P[n,k] (-[1+ 0 ]) k = refl
P[1+n,1+k]â¡[1+n]*P[n,k] (-[1+ â.suc n ]) k = begin-equality
[-1]^ (â.suc k) * + âF.Poch (â.suc n) (â.suc k)
â¡âšâ©
[-1]^ (â.suc k) * + (â.suc n â.* p)
â¡âš cong (_* + (â.suc n â.* p)) $ [-1]^[1+n]â¡-1*[-1]^n k â©
-1†* [-1]^ k * + (â.suc n â.* p)
â¡âš sym $ cong (-1†* [-1]^ k *_) $ â€â.pos-distrib-* (â.suc n) p â©
-1†* [-1]^ k * (+ â.suc n * + p)
â¡âš Lemma.lemmaâ -1†([-1]^ k) (+ â.suc n) (+ p) â©
-1†* + â.suc n * ([-1]^ k * + p)
â¡âš cong (_* ([-1]^ k * + p)) $ â€â.-1*nâ¡-n (+ â.suc n) â©
-[1+ n ] * ([-1]^ k * + p)
â
where p = âF.Poch (â.suc (â.suc n)) k
P[n,1+k]â¡n*P[n-1,k] : â n k â P n (â.suc k) â¡ n * P (n - 1â€) k
P[n,1+k]â¡n*P[n-1,k] n k = begin-equality
P n (â.suc k) â¡âš cong (λ v â P v (â.suc k)) $ Lemma.lemmaâ n â©
P (1†+ (n - 1â€)) (â.suc k) â¡âš P[1+n,1+k]â¡[1+n]*P[n,k] (n - 1â€) k â©
(1†+ (n - 1â€)) * P (n - 1â€) k â¡âš sym $ cong (_* P (n - 1â€) k) $ Lemma.lemmaâ n â©
n * P (n - 1â€) k â
P-split : â (m : â) (n : â€) (o : â) â P ((+ m) + n) (m â.+ o) â¡ P ((+ m) + n) m * P n o
P-split zero n o = begin-equality
P (0†+ n) o â¡âš cong (λ v â P v o) $ â€â.+-identityË¡ n â©
P n o â¡âš sym $ â€â.*-identityË¡ (P n o) â©
1†* P n o â¡âš sym $ cong (_* P n o) $ P[n,0]â¡1 (0†+ n) â©
P (0†+ n) 0 * P n o â
P-split (â.suc m) n o = begin-equality
P (â€.suc (+ m) + n) (â.suc (m â.+ o))
â¡âš cong (λ v â P v (â.suc (m â.+ o))) $ â€â.+-assoc 1†(+ m) n â©
P (â€.suc (+ m + n)) (â.suc (m â.+ o))
â¡âš P[1+n,1+k]â¡[1+n]*P[n,k] (+ m + n) (m â.+ o) â©
â€.suc (+ m + n) * P (+ m + n) (m â.+ o)
â¡âš cong (â€.suc (+ m + n) *_) $ P-split m n o â©
â€.suc (+ m + n) * (P (+ m + n) m * P n o)
â¡âš sym $ â€â.*-assoc (â€.suc (+ m + n)) (P (+ m + n) m) (P n o) â©
â€.suc (+ m + n) * P (+ m + n) m * P n o
â¡âš sym $ cong (_* P n o) $ P[1+n,1+k]â¡[1+n]*P[n,k] (+ m + n) m â©
P (â€.suc (+ m + n)) (â.suc m) * P n o
â¡âš sym $ cong (λ v â P v (â.suc m) * P n o) $ â€â.+-assoc 1†(+ m) n â©
P (+ (â.suc m) + n) (â.suc m) * P n o
â
P-split-minus : â m n o â P m (n â.+ o) â¡ P m n * P (m - + n) o
P-split-minus m n o = begin-equality
P m (n â.+ o) â¡âš cong (λ v â P v (n â.+ o)) mâ¡n+p â©
P (+ n + p) (n â.+ o) â¡âš P-split n p o â©
P (+ n + p) n * P p o â¡âš sym $ cong (λ v â P v n * P p o) $ mâ¡n+p â©
P m n * P (m - + n) o â
where
p = m - + n
mâ¡n+p : m â¡ + n + (m - + n)
mâ¡n+p = Lemma.lemmaâ m (+ n)
|
data Unit : Set where
unit : Unit
F : Unit â Setâ
F unit = Set
data D (u : Unit) (f : F u) : Set where
variable
u : Unit
f : F u
d : D u f
postulate
P : {u : Unit} {f : F u} â D u f â Set
p : P d
p' : (u : Unit) (f : F u) (d : D u f) â P d
p' u f d = p {u} {f} {d}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.