repo_name
stringlengths
6
100
path
stringlengths
4
191
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
935
727k
license
stringclasses
15 values
benbo/FastDocumentClusters
fast_document_clusters.py
1
8883
# -*- coding: utf-8 -*- import time import os,sys import itertools import math import argparse import numpy as np from multiprocessing import Pool from hashlib import sha1 import random, struct from random import sample,choice from sklearn import metrics #we truncate sha1 for now. We should probably replace this with a proper hash function. M_PRIME = (1 << 89) - 1 #(x << n) is x shifted left by n bit MAX_HASH = (1 << 64) - 1 NUM_PERM=100 random.seed(427) A,B = np.array([(random.randint(1, M_PRIME),random.randint(0, M_PRIME)) for _ in range(NUM_PERM)]).T ############# # functions # ############# def set_permutations(numperm): NUM_PERM=numperm A,B = np.array([(random.randint(1, M_PRIME),random.randint(0, M_PRIME)) for _ in range(NUM_PERM)]).T def get_permuted_hashes(token): # get a hash value #abusing sha1 and truncating to 12 digit number hv=int(sha1(token).hexdigest(),16)% (10 ** 12) #do Carter and Wegman like hashing. return np.bitwise_and((A * hv + B) % M_PRIME,MAX_HASH) def get_clusters(fn): with open(fn,'r') as f: next(f)#skip header for line in f: a=line.split(',') yield a[0],a[2] def get_lsh(sig,nbands): for i,band in enumerate(np.array_split(sig,nbands)): yield sha1("ab" + str(band) + "ba"+str(i)).digest() def get_bandwidth(n, tr): """ Threshold tr = (1/b) ** (1/r) where b #bands r #rows per band n = b * r #elements in signature """ best = n, 1 minerr = float("inf") for r in range(1, n + 1): try: b = 1. / (tr ** r) except: return best err = abs(n - b * r) if err < minerr: best = r minerr = err return best def connected(seed,lshdict,doc2lsh,t): ''' Computes clusters based on the lsh bucket candidates. We do not actually check the full connected component. We only check for similar docs amongst the lsh candidates for each cluster member. ''' cluster=set([seed]) #get candidates and flatten list base=set([seed]) while len(base)>0: s=base.pop() #get candidates and flatten list candidates=set(itertools.chain.from_iterable([lshdict[sig] for sig in doc2lsh[s]])) m1=hashcorp[s] for cand in candidates: if cand in cluster:continue#don't check if we've already added this m2=hashcorp[cand] if jaccard(m1,m2) >=t: cluster.add(cand) base.add(cand) #all candidates have been checked return cluster def jaccard(h1,h2): ''' Compute jaccard similarity between two minhash signatures. Make sure to only compute jaccard similarity for hashes created with same hash functions (i.e. same seed for random permutation) ''' return np.float(np.count_nonzero(h1==h2)) /np.float(h2.size) def near_duplicates(seed,lshdict,doc2lsh,t): cluster=set([seed]) #get candidates and flatten list candidates=set(itertools.chain.from_iterable([lshdict[sig] for sig in doc2lsh[seed]])) m1=hashcorp[seed] for cand in candidates: if cand in cluster:continue#don't check if we've already added this m2=hashcorp[cand] if jaccard(m2,m1) >=t: cluster.add(cand) #all candidates have been checked return cluster def compute_clusters(obj): thr=obj[0] bandwidth=get_bandwidth(NUM_PERM, thr)#r bands=int(math.ceil(float(NUM_PERM)/float(bandwidth)))#b print("starting calculations for threshold "+str(thr)+"\nnumber of lsh bands: "+str(bands)) sys.stdout.flush() start_time = time.time() doc_to_lsh={} lsh_dict={} for key,m in hashcorp.items(): #compute lsh signatures = [sig for sig in get_lsh(m,bands)] #store signatures for this document doc_to_lsh[key]=signatures #store lsh signature to key for sig in signatures: if sig in lsh_dict: lsh_dict[sig].append(key) else: lsh_dict[sig]=[key] print(("Calculating lsh signatures for threshold "+str(thr)+" took\n ---%s seconds ---\n" % (time.time() - start_time))) sys.stdout.flush() #compute connected components start_time = time.time() doc2cluster={} count=0 for doc in hashcorp: if doc not in doc2cluster: cl=connected(doc,lsh_dict,doc_to_lsh,thr) doc2cluster.update({i:count for i in cl }) count+=1 print(("Computing connected components for threshold: "+str(thr)+" took\n--- %s seconds ---\n" % (time.time() - start_time))) print("write results to file") start_time = time.time() f=open(outdir+'/doc2cluster_'+str(thr)+'_'+suffix+'.csv','w') f.write('line,cluster\n') for key, value in doc2cluster.items(): f.write(str(key)+','+str(value)+'\n') f.close() print(("Writing results to files for threshold "+str(thr)+" took:\n--- %s seconds ---\n" % (time.time() - start_time))) #Set up command line arguments parser = argparse.ArgumentParser(description='Calculate connected components of documents with given threshold(s)') parser.add_argument("-t", dest="threshold",type=float,help="threshold for ER", metavar="T") parser.add_argument("-lt", dest="lt",type=float,help="lower threshold for ER", metavar="TL") parser.add_argument("-ut", dest="ut",type=float,help="upper threshold for ER", metavar="TU") parser.add_argument("-out", dest="out",help="output directory", metavar="OUT") parser.add_argument("-steps", dest="steps",type=float,help="number of steps between lower and upper threshold", metavar="TSTEP") parser.add_argument("-sigl", dest="num_permutations",type=int,help="minhash signature length", metavar="SIG") parser.add_argument("-suff", dest="suffix",help="output file suffix", metavar="S") parser.add_argument("-infile", dest="infile",help="input file",required=True, metavar="IF") parser.add_argument('-header', dest='header', action='store_true') parser.add_argument('-near_dups', dest='near_dups',help="Do near duplicate detection. If this is not set, connected components will be computed", action='store_true') parser.add_argument("-p", dest="nump", required=False,type=int,help="number of processes for multithreading", metavar="NUMP") parser.set_defaults(match=False) parser.set_defaults(header=True) parser.set_defaults(near_dups=True) parser.set_defaults(threshold=None) parser.set_defaults(num_permutations=100) parser.set_defaults(lt=0.0) parser.set_defaults(ut=1.0) parser.set_defaults(steps=2) parser.set_defaults(nump=1) parser.set_defaults(suffix='') parser.set_defaults(out='out') if __name__ == "__main__": #fetch command line arguments args = parser.parse_args() num_processes=args.nump suffix=args.suffix if NUM_PERM!=args.num_permutations: set_permutations(args.num_permutations) #create output directory if it does not exist outdir=args.out if not os.path.exists(outdir): os.makedirs(outdir) thresholds=[] lt=args.lt near_dups=args.near_dups ut=args.ut steps=args.steps if args.threshold is not None: thresholds=[args.threshold] else: if None in [lt,ut,steps]: print("need lower threshold, upper threshold, and number of steps") exit() else: thresholds=np.linspace(lt, ut, num=steps) #load text. Flat file for now print('load text') start_time = time.time() with open(args.infile,'r') as f: if args.header: next(f) #TODO test robustness #mycorpus=[(i,set(line.encode('utf8', 'ignore').lower().split())) for i,line in enumerate(f)] mycorpus=[(i,set(line.lower().split())) for i,line in enumerate(f)] print(("--- %s seconds ---" % (time.time() - start_time))) print('Calculate minhash signatures') start_time = time.time() #prepare dictionary of hashes hashcorp=dict.fromkeys([tup[0] for tup in mycorpus]) #compute hashes for key,doc in mycorpus: #compute minhash signature hashvalues=np.empty(NUM_PERM) hashvalues.fill(MAX_HASH) for token in doc: #np.minimum(get_permuted_hashes(token.encode('utf-8','ignore')), hashvalues) np.minimum(get_permuted_hashes(token), hashvalues) hashcorp[key]=hashvalues print(("--- %s seconds ---" % (time.time() - start_time))) if num_processes> 1: if len(thresholds)<num_processes: num_processes=len(thresholds) p=Pool(num_processes) assignment=[ (x,) for x in thresholds] p.map(compute_clusters,assignment) else: for x in thresholds: compute_clusters((x,))
bsd-3-clause
belavenir/rpg_svo
svo_analysis/src/svo_analysis/tum_benchmark_tools/evaluate_rpe.py
20
15381
#!/usr/bin/python # Software License Agreement (BSD License) # # Copyright (c) 2013, Juergen Sturm, TUM # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of TUM nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ This script computes the relative pose error from the ground truth trajectory and the estimated trajectory. """ import argparse import random import numpy import sys _EPS = numpy.finfo(float).eps * 4.0 def transform44(l): """ Generate a 4x4 homogeneous transformation matrix from a 3D point and unit quaternion. Input: l -- tuple consisting of (stamp,tx,ty,tz,qx,qy,qz,qw) where (tx,ty,tz) is the 3D position and (qx,qy,qz,qw) is the unit quaternion. Output: matrix -- 4x4 homogeneous transformation matrix """ t = l[1:4] q = numpy.array(l[4:8], dtype=numpy.float64, copy=True) nq = numpy.dot(q, q) if nq < _EPS: return numpy.array(( ( 1.0, 0.0, 0.0, t[0]) ( 0.0, 1.0, 0.0, t[1]) ( 0.0, 0.0, 1.0, t[2]) ( 0.0, 0.0, 0.0, 1.0) ), dtype=numpy.float64) q *= numpy.sqrt(2.0 / nq) q = numpy.outer(q, q) return numpy.array(( (1.0-q[1, 1]-q[2, 2], q[0, 1]-q[2, 3], q[0, 2]+q[1, 3], t[0]), ( q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2], q[1, 2]-q[0, 3], t[1]), ( q[0, 2]-q[1, 3], q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], t[2]), ( 0.0, 0.0, 0.0, 1.0) ), dtype=numpy.float64) def read_trajectory(filename, matrix=True): """ Read a trajectory from a text file. Input: filename -- file to be read matrix -- convert poses to 4x4 matrices Output: dictionary of stamped 3D poses """ file = open(filename) data = file.read() lines = data.replace(","," ").replace("\t"," ").split("\n") list = [[float(v.strip()) for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"] list_ok = [] for i,l in enumerate(list): if l[4:8]==[0,0,0,0]: continue isnan = False for v in l: if numpy.isnan(v): isnan = True break if isnan: sys.stderr.write("Warning: line %d of file '%s' has NaNs, skipping line\n"%(i,filename)) continue list_ok.append(l) if matrix : traj = dict([(l[0],transform44(l[0:])) for l in list_ok]) else: traj = dict([(l[0],l[1:8]) for l in list_ok]) return traj def find_closest_index(L,t): """ Find the index of the closest value in a list. Input: L -- the list t -- value to be found Output: index of the closest element """ beginning = 0 difference = abs(L[0] - t) best = 0 end = len(L) while beginning < end: middle = int((end+beginning)/2) if abs(L[middle] - t) < difference: difference = abs(L[middle] - t) best = middle if t == L[middle]: return middle elif L[middle] > t: end = middle else: beginning = middle + 1 return best def ominus(a,b): """ Compute the relative 3D transformation between a and b. Input: a -- first pose (homogeneous 4x4 matrix) b -- second pose (homogeneous 4x4 matrix) Output: Relative 3D transformation from a to b. """ return numpy.dot(numpy.linalg.inv(a),b) def scale(a,scalar): """ Scale the translational components of a 4x4 homogeneous matrix by a scale factor. """ return numpy.array( [[a[0,0], a[0,1], a[0,2], a[0,3]*scalar], [a[1,0], a[1,1], a[1,2], a[1,3]*scalar], [a[2,0], a[2,1], a[2,2], a[2,3]*scalar], [a[3,0], a[3,1], a[3,2], a[3,3]]] ) def compute_distance(transform): """ Compute the distance of the translational component of a 4x4 homogeneous matrix. """ return numpy.linalg.norm(transform[0:3,3]) def compute_angle(transform): """ Compute the rotation angle from a 4x4 homogeneous matrix. """ # an invitation to 3-d vision, p 27 return numpy.arccos( min(1,max(-1, (numpy.trace(transform[0:3,0:3]) - 1)/2) )) def distances_along_trajectory(traj): """ Compute the translational distances along a trajectory. """ keys = traj.keys() keys.sort() motion = [ominus(traj[keys[i+1]],traj[keys[i]]) for i in range(len(keys)-1)] distances = [0] sum = 0 for t in motion: sum += compute_distance(t) distances.append(sum) return distances def rotations_along_trajectory(traj,scale): """ Compute the angular rotations along a trajectory. """ keys = traj.keys() keys.sort() motion = [ominus(traj[keys[i+1]],traj[keys[i]]) for i in range(len(keys)-1)] distances = [0] sum = 0 for t in motion: sum += compute_angle(t)*scale distances.append(sum) return distances def evaluate_trajectory(traj_gt,traj_est,param_max_pairs=10000,param_fixed_delta=False,param_delta=1.00,param_delta_unit="s",param_offset=0.00,param_scale=1.00): """ Compute the relative pose error between two trajectories. Input: traj_gt -- the first trajectory (ground truth) traj_est -- the second trajectory (estimated trajectory) param_max_pairs -- number of relative poses to be evaluated param_fixed_delta -- false: evaluate over all possible pairs true: only evaluate over pairs with a given distance (delta) param_delta -- distance between the evaluated pairs param_delta_unit -- unit for comparison: "s": seconds "m": meters "rad": radians "deg": degrees "f": frames param_offset -- time offset between two trajectories (to model the delay) param_scale -- scale to be applied to the second trajectory Output: list of compared poses and the resulting translation and rotation error """ stamps_gt = list(traj_gt.keys()) stamps_est = list(traj_est.keys()) stamps_gt.sort() stamps_est.sort() stamps_est_return = [] for t_est in stamps_est: t_gt = stamps_gt[find_closest_index(stamps_gt,t_est + param_offset)] t_est_return = stamps_est[find_closest_index(stamps_est,t_gt - param_offset)] t_gt_return = stamps_gt[find_closest_index(stamps_gt,t_est_return + param_offset)] if not t_est_return in stamps_est_return: stamps_est_return.append(t_est_return) if(len(stamps_est_return)<2): raise Exception("Number of overlap in the timestamps is too small. Did you run the evaluation on the right files?") if param_delta_unit=="s": index_est = list(traj_est.keys()) index_est.sort() elif param_delta_unit=="m": index_est = distances_along_trajectory(traj_est) elif param_delta_unit=="rad": index_est = rotations_along_trajectory(traj_est,1) elif param_delta_unit=="deg": index_est = rotations_along_trajectory(traj_est,180/numpy.pi) elif param_delta_unit=="f": index_est = range(len(traj_est)) else: raise Exception("Unknown unit for delta: '%s'"%param_delta_unit) if not param_fixed_delta: if(param_max_pairs==0 or len(traj_est)<numpy.sqrt(param_max_pairs)): pairs = [(i,j) for i in range(len(traj_est)) for j in range(len(traj_est))] else: pairs = [(random.randint(0,len(traj_est)-1),random.randint(0,len(traj_est)-1)) for i in range(param_max_pairs)] else: pairs = [] for i in range(len(traj_est)): j = find_closest_index(index_est,index_est[i] + param_delta) if j!=len(traj_est)-1: pairs.append((i,j)) if(param_max_pairs!=0 and len(pairs)>param_max_pairs): pairs = random.sample(pairs,param_max_pairs) gt_interval = numpy.median([s-t for s,t in zip(stamps_gt[1:],stamps_gt[:-1])]) gt_max_time_difference = 2*gt_interval result = [] for i,j in pairs: stamp_est_0 = stamps_est[i] stamp_est_1 = stamps_est[j] stamp_gt_0 = stamps_gt[ find_closest_index(stamps_gt,stamp_est_0 + param_offset) ] stamp_gt_1 = stamps_gt[ find_closest_index(stamps_gt,stamp_est_1 + param_offset) ] if(abs(stamp_gt_0 - (stamp_est_0 + param_offset)) > gt_max_time_difference or abs(stamp_gt_1 - (stamp_est_1 + param_offset)) > gt_max_time_difference): continue error44 = ominus( scale( ominus( traj_est[stamp_est_1], traj_est[stamp_est_0] ),param_scale), ominus( traj_gt[stamp_gt_1], traj_gt[stamp_gt_0] ) ) trans = compute_distance(error44) rot = compute_angle(error44) result.append([stamp_est_0,stamp_est_1,stamp_gt_0,stamp_gt_1,trans,rot]) if len(result)<2: raise Exception("Couldn't find matching timestamp pairs between groundtruth and estimated trajectory!") return result def percentile(seq,q): """ Return the q-percentile of a list """ seq_sorted = list(seq) seq_sorted.sort() return seq_sorted[int((len(seq_sorted)-1)*q)] if __name__ == '__main__': random.seed(0) parser = argparse.ArgumentParser(description=''' This script computes the relative pose error from the ground truth trajectory and the estimated trajectory. ''') parser.add_argument('groundtruth_file', help='ground-truth trajectory file (format: "timestamp tx ty tz qx qy qz qw")') parser.add_argument('estimated_file', help='estimated trajectory file (format: "timestamp tx ty tz qx qy qz qw")') parser.add_argument('--max_pairs', help='maximum number of pose comparisons (default: 10000, set to zero to disable downsampling)', default=10000) parser.add_argument('--fixed_delta', help='only consider pose pairs that have a distance of delta delta_unit (e.g., for evaluating the drift per second/meter/radian)', action='store_true') parser.add_argument('--delta', help='delta for evaluation (default: 1.0)',default=1.0) parser.add_argument('--delta_unit', help='unit of delta (options: \'s\' for seconds, \'m\' for meters, \'rad\' for radians, \'f\' for frames; default: \'s\')',default='s') parser.add_argument('--offset', help='time offset between ground-truth and estimated trajectory (default: 0.0)',default=0.0) parser.add_argument('--scale', help='scaling factor for the estimated trajectory (default: 1.0)',default=1.0) parser.add_argument('--save', help='text file to which the evaluation will be saved (format: stamp_est0 stamp_est1 stamp_gt0 stamp_gt1 trans_error rot_error)') parser.add_argument('--plot', help='plot the result to a file (requires --fixed_delta, output format: png)') parser.add_argument('--verbose', help='print all evaluation data (otherwise, only the mean translational error measured in meters will be printed)', action='store_true') args = parser.parse_args() if args.plot and not args.fixed_delta: sys.exit("The '--plot' option can only be used in combination with '--fixed_delta'") traj_gt = read_trajectory(args.groundtruth_file) traj_est = read_trajectory(args.estimated_file) result = evaluate_trajectory(traj_gt, traj_est, int(args.max_pairs), args.fixed_delta, float(args.delta), args.delta_unit, float(args.offset), float(args.scale)) stamps = numpy.array(result)[:,0] trans_error = numpy.array(result)[:,4] rot_error = numpy.array(result)[:,5] if args.save: f = open(args.save,"w") f.write("\n".join([" ".join(["%f"%v for v in line]) for line in result])) f.close() if args.verbose: print "compared_pose_pairs %d pairs"%(len(trans_error)) print "translational_error.rmse %f m"%numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)) print "translational_error.mean %f m"%numpy.mean(trans_error) print "translational_error.median %f m"%numpy.median(trans_error) print "translational_error.std %f m"%numpy.std(trans_error) print "translational_error.min %f m"%numpy.min(trans_error) print "translational_error.max %f m"%numpy.max(trans_error) print "rotational_error.rmse %f deg"%(numpy.sqrt(numpy.dot(rot_error,rot_error) / len(rot_error)) * 180.0 / numpy.pi) print "rotational_error.mean %f deg"%(numpy.mean(rot_error) * 180.0 / numpy.pi) print "rotational_error.median %f deg"%numpy.median(rot_error) print "rotational_error.std %f deg"%(numpy.std(rot_error) * 180.0 / numpy.pi) print "rotational_error.min %f deg"%(numpy.min(rot_error) * 180.0 / numpy.pi) print "rotational_error.max %f deg"%(numpy.max(rot_error) * 180.0 / numpy.pi) else: print numpy.mean(trans_error) if args.plot: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.pylab as pylab fig = plt.figure() ax = fig.add_subplot(111) ax.plot(stamps - stamps[0],trans_error,'-',color="blue") #ax.plot([t for t,e in err_rot],[e for t,e in err_rot],'-',color="red") ax.set_xlabel('time [s]') ax.set_ylabel('translational error [m]') plt.savefig(args.plot,dpi=300)
gpl-3.0
aleksandr-bakanov/astropy
examples/coordinates/plot_galactocentric-frame.py
2
7979
# -*- coding: utf-8 -*- """ ======================================================================== Transforming positions and velocities to and from a Galactocentric frame ======================================================================== This document shows a few examples of how to use and customize the `~astropy.coordinates.Galactocentric` frame to transform Heliocentric sky positions, distance, proper motions, and radial velocities to a Galactocentric, Cartesian frame, and the same in reverse. The main configurable parameters of the `~astropy.coordinates.Galactocentric` frame control the position and velocity of the solar system barycenter within the Galaxy. These are specified by setting the ICRS coordinates of the Galactic center, the distance to the Galactic center (the sun-galactic center line is always assumed to be the x-axis of the Galactocentric frame), and the Cartesian 3-velocity of the sun in the Galactocentric frame. We'll first demonstrate how to customize these values, then show how to set the solar motion instead by inputting the proper motion of Sgr A*. Note that, for brevity, we may refer to the solar system barycenter as just "the sun" in the examples below. *By: Adrian Price-Whelan* *License: BSD* """ ############################################################################## # Make `print` work the same in all versions of Python, set up numpy, # matplotlib, and use a nicer set of plot parameters: import numpy as np import matplotlib.pyplot as plt from astropy.visualization import astropy_mpl_style plt.style.use(astropy_mpl_style) ############################################################################## # Import the necessary astropy subpackages import astropy.coordinates as coord import astropy.units as u ############################################################################## # Let's first define a barycentric coordinate and velocity in the ICRS frame. # We'll use the data for the star HD 39881 from the `Simbad # <simbad.harvard.edu/simbad/>`_ database: c1 = coord.ICRS(ra=89.014303*u.degree, dec=13.924912*u.degree, distance=(37.59*u.mas).to(u.pc, u.parallax()), pm_ra_cosdec=372.72*u.mas/u.yr, pm_dec=-483.69*u.mas/u.yr, radial_velocity=0.37*u.km/u.s) ############################################################################## # This is a high proper-motion star; suppose we'd like to transform its position # and velocity to a Galactocentric frame to see if it has a large 3D velocity # as well. To use the Astropy default solar position and motion parameters, we # can simply do: gc1 = c1.transform_to(coord.Galactocentric) ############################################################################## # From here, we can access the components of the resulting # `~astropy.coordinates.Galactocentric` instance to see the 3D Cartesian # velocity components: print(gc1.v_x, gc1.v_y, gc1.v_z) ############################################################################## # The default parameters for the `~astropy.coordinates.Galactocentric` frame # are detailed in the linked documentation, but we can modify the most commonly # changes values using the keywords ``galcen_distance``, ``galcen_v_sun``, and # ``z_sun`` which set the sun-Galactic center distance, the 3D velocity vector # of the sun, and the height of the sun above the Galactic midplane, # respectively. The velocity of the sun can be specified as an # `~astropy.units.Quantity` object with velocity units and is interepreted as a # Cartesian velocity, as in the example below. Note that, as with the positions, # the Galactocentric frame is a right-handed system (i.e., the Sun is at negative # x values) so ``v_x`` is opposite of the Galactocentric radial velocity: v_sun = [11.1, 244, 7.25] * (u.km / u.s) # [vx, vy, vz] gc_frame = coord.Galactocentric( galcen_distance=8*u.kpc, galcen_v_sun=v_sun, z_sun=0*u.pc) ############################################################################## # We can then transform to this frame instead, with our custom parameters: gc2 = c1.transform_to(gc_frame) print(gc2.v_x, gc2.v_y, gc2.v_z) ############################################################################## # It's sometimes useful to specify the solar motion using the `proper motion # of Sgr A* <https://arxiv.org/abs/astro-ph/0408107>`_ instead of Cartesian # velocity components. With an assumed distance, we can convert proper motion # components to Cartesian velocity components using `astropy.units`: galcen_distance = 8*u.kpc pm_gal_sgrA = [-6.379, -0.202] * u.mas/u.yr # from Reid & Brunthaler 2004 vy, vz = -(galcen_distance * pm_gal_sgrA).to(u.km/u.s, u.dimensionless_angles()) ############################################################################## # We still have to assume a line-of-sight velocity for the Galactic center, # which we will again take to be 11 km/s: vx = 11.1 * u.km/u.s v_sun2 = u.Quantity([vx, vy, vz]) # List of Quantity -> a single Quantity gc_frame2 = coord.Galactocentric(galcen_distance=galcen_distance, galcen_v_sun=v_sun2, z_sun=0*u.pc) gc3 = c1.transform_to(gc_frame2) print(gc3.v_x, gc3.v_y, gc3.v_z) ############################################################################## # The transformations also work in the opposite direction. This can be useful # for transforming simulated or theoretical data to observable quantities. As # an example, we'll generate 4 theoretical circular orbits at different # Galactocentric radii with the same circular velocity, and transform them to # Heliocentric coordinates: ring_distances = np.arange(10, 25+1, 5) * u.kpc circ_velocity = 220 * u.km/u.s phi_grid = np.linspace(90, 270, 512) * u.degree # grid of azimuths ring_rep = coord.CylindricalRepresentation( rho=ring_distances[:,np.newaxis], phi=phi_grid[np.newaxis], z=np.zeros_like(ring_distances)[:,np.newaxis]) angular_velocity = (-circ_velocity / ring_distances).to(u.mas/u.yr, u.dimensionless_angles()) ring_dif = coord.CylindricalDifferential( d_rho=np.zeros(phi_grid.shape)[np.newaxis]*u.km/u.s, d_phi=angular_velocity[:,np.newaxis], d_z=np.zeros(phi_grid.shape)[np.newaxis]*u.km/u.s ) ring_rep = ring_rep.with_differentials(ring_dif) gc_rings = coord.Galactocentric(ring_rep) ############################################################################## # First, let's visualize the geometry in Galactocentric coordinates. Here are # the positions and velocities of the rings; note that in the velocity plot, # the velocities of the 4 rings are identical and thus overlaid under the same # curve: fig,axes = plt.subplots(1, 2, figsize=(12,6)) # Positions axes[0].plot(gc_rings.x.T, gc_rings.y.T, marker='None', linewidth=3) axes[0].text(-8., 0, r'$\odot$', fontsize=20) axes[0].set_xlim(-30, 30) axes[0].set_ylim(-30, 30) axes[0].set_xlabel('$x$ [kpc]') axes[0].set_ylabel('$y$ [kpc]') # Velocities axes[1].plot(gc_rings.v_x.T, gc_rings.v_y.T, marker='None', linewidth=3) axes[1].set_xlim(-250, 250) axes[1].set_ylim(-250, 250) axes[1].set_xlabel('$v_x$ [{0}]'.format((u.km/u.s).to_string("latex_inline"))) axes[1].set_ylabel('$v_y$ [{0}]'.format((u.km/u.s).to_string("latex_inline"))) fig.tight_layout() ############################################################################## # Now we can transform to Galactic coordinates and visualize the rings in # observable coordinates: gal_rings = gc_rings.transform_to(coord.Galactic) fig,ax = plt.subplots(1, 1, figsize=(8,6)) for i in range(len(ring_distances)): ax.plot(gal_rings[i].l.degree, gal_rings[i].pm_l_cosb.value, label=str(ring_distances[i]), marker='None', linewidth=3) ax.set_xlim(360, 0) ax.set_xlabel('$l$ [deg]') ax.set_ylabel(r'$\mu_l \, \cos b$ [{0}]'.format((u.mas/u.yr).to_string('latex_inline'))) ax.legend()
bsd-3-clause
annahs/atmos_research
util_display_hysplit_traj.py
1
1661
import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.basemap import Basemap from matplotlib.collections import LineCollection from matplotlib.colors import ListedColormap, BoundaryNorm import os import sys import matplotlib.colors import colorsys from pprint import pprint from datetime import datetime from datetime import timedelta import pickle import mmap tdump_file = open('C:/Users/Sarah Hanna/Documents/Data/Alert Data/Alert-March 2016/tdump201603', 'r') print file data_start = False for line in tdump_file: newline = line.split() if data_start == True: lat = float(newline[9]) lon = float(newline[10]) pressure = float(newline[11]) #in hPa year = int(newline[2]) month = int(newline[3]) day = int(newline[4]) hour = int(newline[5]) endpoint = [lat, lon] endpoints.append(endpoint) if newline[1] == 'PRESSURE': data_start = True tdump_file.close() #plottting ###set up the basemap instance lat_pt = 80. lon_pt = -65. plt_lat_min = 0 plt_lat_max = 90#44.2 plt_lon_min = -150#-125.25 plt_lon_max = -1 m = Basemap(width=9000000,height=7000000, rsphere=(6378137.00,6356752.3142), resolution='l',area_thresh=1000.,projection='lcc', lat_1=45.,lat_2=55,lat_0=lat_pt,lon_0=lon_pt) fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111) m.drawmapboundary(fill_color='white') #rough shapes m.drawcoastlines() m.fillcontinents(color='#FFFFBF',lake_color='#ABD9E9',zorder=0) m.drawcountries() ####other data np_endpoints = np.array(endpoints) lats = np_endpoints[:,0] lons = np_endpoints[:,1] x,y = m(lons,lats) bt = m.plot(x,y,linewidth = 2, color ='r') plt.show()
mit
astocko/statsmodels
statsmodels/formula/tests/test_formula.py
29
4647
from statsmodels.compat.python import iteritems, StringIO import warnings from statsmodels.formula.api import ols from statsmodels.formula.formulatools import make_hypotheses_matrices from statsmodels.tools import add_constant from statsmodels.datasets.longley import load, load_pandas import numpy.testing as npt from statsmodels.tools.testing import assert_equal from numpy.testing.utils import WarningManager longley_formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR' class CheckFormulaOLS(object): @classmethod def setupClass(cls): cls.data = load() def test_endog_names(self): assert self.model.endog_names == 'TOTEMP' def test_exog_names(self): assert self.model.exog_names == ['Intercept', 'GNPDEFL', 'GNP', 'UNEMP', 'ARMED', 'POP', 'YEAR'] def test_design(self): npt.assert_equal(self.model.exog, add_constant(self.data.exog, prepend=True)) def test_endog(self): npt.assert_equal(self.model.endog, self.data.endog) def test_summary(self): # smoke test warn_ctx = WarningManager() warn_ctx.__enter__() try: warnings.filterwarnings("ignore", "kurtosistest only valid for n>=20") self.model.fit().summary() finally: warn_ctx.__exit__() class TestFormulaPandas(CheckFormulaOLS): @classmethod def setupClass(cls): data = load_pandas().data cls.model = ols(longley_formula, data) super(TestFormulaPandas, cls).setupClass() class TestFormulaDict(CheckFormulaOLS): @classmethod def setupClass(cls): data = dict((k, v.tolist()) for k, v in iteritems(load_pandas().data)) cls.model = ols(longley_formula, data) super(TestFormulaDict, cls).setupClass() class TestFormulaRecArray(CheckFormulaOLS): @classmethod def setupClass(cls): data = load().data cls.model = ols(longley_formula, data) super(TestFormulaRecArray, cls).setupClass() def test_tests(): formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR' dta = load_pandas().data results = ols(formula, dta).fit() test_formula = '(GNPDEFL = GNP), (UNEMP = 2), (YEAR/1829 = 1)' LC = make_hypotheses_matrices(results, test_formula) R = LC.coefs Q = LC.constants npt.assert_almost_equal(R, [[0, 1, -1, 0, 0, 0, 0], [0, 0 , 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1./1829]], 8) npt.assert_array_equal(Q, [[0],[2],[1]]) def test_formula_labels(): # make sure labels pass through patsy as expected # data(Duncan) from car in R dta = StringIO(""""type" "income" "education" "prestige"\n"accountant" "prof" 62 86 82\n"pilot" "prof" 72 76 83\n"architect" "prof" 75 92 90\n"author" "prof" 55 90 76\n"chemist" "prof" 64 86 90\n"minister" "prof" 21 84 87\n"professor" "prof" 64 93 93\n"dentist" "prof" 80 100 90\n"reporter" "wc" 67 87 52\n"engineer" "prof" 72 86 88\n"undertaker" "prof" 42 74 57\n"lawyer" "prof" 76 98 89\n"physician" "prof" 76 97 97\n"welfare.worker" "prof" 41 84 59\n"teacher" "prof" 48 91 73\n"conductor" "wc" 76 34 38\n"contractor" "prof" 53 45 76\n"factory.owner" "prof" 60 56 81\n"store.manager" "prof" 42 44 45\n"banker" "prof" 78 82 92\n"bookkeeper" "wc" 29 72 39\n"mail.carrier" "wc" 48 55 34\n"insurance.agent" "wc" 55 71 41\n"store.clerk" "wc" 29 50 16\n"carpenter" "bc" 21 23 33\n"electrician" "bc" 47 39 53\n"RR.engineer" "bc" 81 28 67\n"machinist" "bc" 36 32 57\n"auto.repairman" "bc" 22 22 26\n"plumber" "bc" 44 25 29\n"gas.stn.attendant" "bc" 15 29 10\n"coal.miner" "bc" 7 7 15\n"streetcar.motorman" "bc" 42 26 19\n"taxi.driver" "bc" 9 19 10\n"truck.driver" "bc" 21 15 13\n"machine.operator" "bc" 21 20 24\n"barber" "bc" 16 26 20\n"bartender" "bc" 16 28 7\n"shoe.shiner" "bc" 9 17 3\n"cook" "bc" 14 22 16\n"soda.clerk" "bc" 12 30 6\n"watchman" "bc" 17 25 11\n"janitor" "bc" 7 20 8\n"policeman" "bc" 34 47 41\n"waiter" "bc" 8 32 10""") from pandas import read_table dta = read_table(dta, sep=" ") model = ols("prestige ~ income + education", dta).fit() assert_equal(model.fittedvalues.index, dta.index) def test_formula_predict(): from numpy import log formula = """TOTEMP ~ log(GNPDEFL) + log(GNP) + UNEMP + ARMED + POP + YEAR""" data = load_pandas() dta = load_pandas().data results = ols(formula, dta).fit() npt.assert_almost_equal(results.fittedvalues.values, results.predict(data.exog), 8)
bsd-3-clause
phdowling/scikit-learn
sklearn/decomposition/__init__.py
147
1421
""" The :mod:`sklearn.decomposition` module includes matrix decomposition algorithms, including among others PCA, NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. """ from .nmf import NMF, ProjectedGradientNMF from .pca import PCA, RandomizedPCA from .incremental_pca import IncrementalPCA from .kernel_pca import KernelPCA from .sparse_pca import SparsePCA, MiniBatchSparsePCA from .truncated_svd import TruncatedSVD from .fastica_ import FastICA, fastica from .dict_learning import (dict_learning, dict_learning_online, sparse_encode, DictionaryLearning, MiniBatchDictionaryLearning, SparseCoder) from .factor_analysis import FactorAnalysis from ..utils.extmath import randomized_svd from .online_lda import LatentDirichletAllocation __all__ = ['DictionaryLearning', 'FastICA', 'IncrementalPCA', 'KernelPCA', 'MiniBatchDictionaryLearning', 'MiniBatchSparsePCA', 'NMF', 'PCA', 'ProjectedGradientNMF', 'RandomizedPCA', 'SparseCoder', 'SparsePCA', 'dict_learning', 'dict_learning_online', 'fastica', 'randomized_svd', 'sparse_encode', 'FactorAnalysis', 'TruncatedSVD', 'LatentDirichletAllocation']
bsd-3-clause
larrybradley/photutils
photutils/psf/groupstars.py
2
9059
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module provides classes to perform grouping of stars. """ import abc from astropy.table import Column import numpy as np __all__ = ['DAOGroup', 'DBSCANGroup', 'GroupStarsBase'] class GroupStarsBase(metaclass=abc.ABCMeta): """ This base class provides the basic interface for subclasses that are capable of classifying stars in groups. """ def __call__(self, starlist): """ Classify stars into groups. Parameters ---------- starlist : `~astropy.table.Table` List of star positions. Columns named as ``x_0`` and ``y_0``, which corresponds to the centroid coordinates of the sources, must be provided. Returns ------- group_starlist : `~astropy.table.Table` ``starlist`` with an additional column named ``group_id`` whose unique values represent groups of mutually overlapping stars. """ return self.group_stars(starlist) @abc.abstractmethod def group_stars(self, starlist): """ Classify stars into groups. Parameters ---------- starlist : `~astropy.table.Table` List of star positions. Columns named as ``x_0`` and ``y_0``, which corresponds to the centroid coordinates of the sources, must be provided. Returns ------- group_starlist : `~astropy.table.Table` ``starlist`` with an additional column named ``group_id`` whose unique values represent groups of mutually overlapping stars. """ raise NotImplementedError('Needs to be implemented in a subclass.') class DAOGroup(GroupStarsBase): """ This class implements the DAOGROUP algorithm presented by Stetson (1987). The method ``group_stars`` divides an entire starlist into sets of distinct, self-contained groups of mutually overlapping stars. It accepts as input a list of stars and determines which stars are close enough to be capable of adversely influencing each others' profile fits. Parameters ---------- crit_separation : float or int Distance, in units of pixels, such that any two stars separated by less than this distance will be placed in the same group. Notes ----- Assuming the psf fwhm to be known, ``crit_separation`` may be set to k*fwhm, for some positive real k. See Also -------- photutils.detection.DAOStarFinder References ---------- [1] Stetson, Astronomical Society of the Pacific, Publications, (ISSN 0004-6280), vol. 99, March 1987, p. 191-222. Available at: https://ui.adsabs.harvard.edu/abs/1987PASP...99..191S/abstract """ def __init__(self, crit_separation): self.crit_separation = crit_separation @property def crit_separation(self): return self._crit_separation @crit_separation.setter def crit_separation(self, crit_separation): if not isinstance(crit_separation, (float, int)): raise ValueError('crit_separation is expected to be either float' f'or int. Received {type(crit_separation)}.') elif crit_separation < 0.0: raise ValueError('crit_separation is expected to be a positive ' f'real number. Got {crit_separation}.') else: self._crit_separation = crit_separation def group_stars(self, starlist): cstarlist = starlist.copy() if 'id' not in cstarlist.colnames: cstarlist.add_column(Column(name='id', data=np.arange(len(cstarlist)) + 1)) cstarlist.add_column(Column(name='group_id', data=np.zeros(len(cstarlist), dtype=int))) if not np.array_equal(cstarlist['id'], np.arange(len(cstarlist)) + 1): raise ValueError('id colum must be an integer-valued ' + 'sequence starting from 1. ' + f"Got {cstarlist['id']}") n = 1 while (cstarlist['group_id'] == 0).sum() > 0: init_star = cstarlist[np.where(cstarlist['group_id'] == 0)[0][0]] index = self.find_group(init_star, cstarlist[cstarlist['group_id'] == 0]) cstarlist['group_id'][index-1] = n k = 1 K = len(index) while k < K: init_star = cstarlist[cstarlist['id'] == index[k]] tmp_index = self.find_group( init_star, cstarlist[cstarlist['group_id'] == 0]) if len(tmp_index) > 0: cstarlist['group_id'][tmp_index-1] = n index = np.append(index, tmp_index) K = len(index) k += 1 n += 1 return cstarlist def find_group(self, star, starlist): """ Find the ids of those stars in ``starlist`` which are at a distance less than ``crit_separation`` from ``star``. Parameters ---------- star : `~astropy.table.Row` Star which will be either the head of a cluster or an isolated one. starlist : `~astropy.table.Table` List of star positions. Columns named as ``x_0`` and ``y_0``, which corresponds to the centroid coordinates of the sources, must be provided. Returns ------- result : `~numpy.ndarray` Array containing the ids of those stars which are at a distance less than ``crit_separation`` from ``star``. """ star_distance = np.hypot(star['x_0'] - starlist['x_0'], star['y_0'] - starlist['y_0']) distance_criteria = star_distance < self.crit_separation return np.asarray(starlist[distance_criteria]['id']) class DBSCANGroup(GroupStarsBase): """ Class to create star groups according to a distance criteria using the Density-based Spatial Clustering of Applications with Noise (DBSCAN) from scikit-learn. Parameters ---------- crit_separation : float or int Distance, in units of pixels, such that any two stars separated by less than this distance will be placed in the same group. min_samples : int, optional (default=1) Minimum number of stars necessary to form a group. metric : string or callable (default='euclidean') The metric to use when calculating distance between each pair of stars. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional The algorithm to be used to actually find nearest neighbors. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. References ---------- [1] Scikit Learn DBSCAN. https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN Notes ----- * The attribute ``crit_separation`` corresponds to ``eps`` in `sklearn.cluster.DBSCAN <https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN>`_. * This class provides more general algorithms than `photutils.psf.DAOGroup`. More precisely, `photutils.psf.DAOGroup` is a special case of `photutils.psf.DBSCANGroup` when ``min_samples=1`` and ``metric=euclidean``. Additionally, `photutils.psf.DBSCANGroup` may be faster than `photutils.psf.DAOGroup`. """ def __init__(self, crit_separation, min_samples=1, metric='euclidean', algorithm='auto', leaf_size=30): self.crit_separation = crit_separation self.min_samples = min_samples self.metric = metric self.algorithm = algorithm self.leaf_size = leaf_size def group_stars(self, starlist): from sklearn.cluster import DBSCAN cstarlist = starlist.copy() if 'id' not in cstarlist.colnames: cstarlist.add_column(Column(name='id', data=np.arange(len(cstarlist)) + 1)) if not np.array_equal(cstarlist['id'], np.arange(len(cstarlist)) + 1): raise ValueError('id colum must be an integer-valued ' + 'sequence starting from 1. ' + f"Got {cstarlist['id']}") pos_stars = np.transpose((cstarlist['x_0'], cstarlist['y_0'])) dbscan = DBSCAN(eps=self.crit_separation, min_samples=self.min_samples, metric=self.metric, algorithm=self.algorithm, leaf_size=self.leaf_size) cstarlist['group_id'] = (dbscan.fit(pos_stars).labels_ + np.ones(len(cstarlist), dtype=int)) return cstarlist
bsd-3-clause
alexbruy/QGIS
python/plugins/processing/algs/qgis/QGISAlgorithmProvider.py
1
11178
# -*- coding: utf-8 -*- """ *************************************************************************** QGISAlgorithmProvider.py --------------------- Date : December 2012 Copyright : (C) 2012 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'December 2012' __copyright__ = '(C) 2012, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import os try: import matplotlib.pyplot assert matplotlib # NOQA silence pyflakes hasMatplotlib = True except: hasMatplotlib = False try: import shapely assert shapely # silence pyflakes hasShapely = True except: hasShapely = False from qgis.PyQt.QtGui import QIcon from qgis.core import Qgis, QgsWkbTypes from processing.core.AlgorithmProvider import AlgorithmProvider from processing.script.ScriptUtils import ScriptUtils from .RegularPoints import RegularPoints from .SymmetricalDifference import SymmetricalDifference from .VectorSplit import VectorSplit from .VectorGrid import VectorGrid from .RandomExtract import RandomExtract from .RandomExtractWithinSubsets import RandomExtractWithinSubsets from .ExtractByLocation import ExtractByLocation from .PointsInPolygon import PointsInPolygon from .PointsInPolygonUnique import PointsInPolygonUnique from .PointsInPolygonWeighted import PointsInPolygonWeighted from .SumLines import SumLines from .BasicStatisticsNumbers import BasicStatisticsNumbers from .BasicStatisticsStrings import BasicStatisticsStrings from .NearestNeighbourAnalysis import NearestNeighbourAnalysis from .LinesIntersection import LinesIntersection from .MeanCoords import MeanCoords from .PointDistance import PointDistance from .UniqueValues import UniqueValues from .ReprojectLayer import ReprojectLayer from .ExportGeometryInfo import ExportGeometryInfo from .Centroids import Centroids from .Delaunay import Delaunay from .VoronoiPolygons import VoronoiPolygons from .DensifyGeometries import DensifyGeometries from .MultipartToSingleparts import MultipartToSingleparts from .SimplifyGeometries import SimplifyGeometries from .LinesToPolygons import LinesToPolygons from .PolygonsToLines import PolygonsToLines from .SinglePartsToMultiparts import SinglePartsToMultiparts from .ExtractNodes import ExtractNodes from .ConvexHull import ConvexHull from .FixedDistanceBuffer import FixedDistanceBuffer from .VariableDistanceBuffer import VariableDistanceBuffer from .Clip import Clip from .Difference import Difference from .Dissolve import Dissolve from .Intersection import Intersection from .ExtentFromLayer import ExtentFromLayer from .RandomSelection import RandomSelection from .RandomSelectionWithinSubsets import RandomSelectionWithinSubsets from .SelectByLocation import SelectByLocation from .Union import Union from .DensifyGeometriesInterval import DensifyGeometriesInterval from .Eliminate import Eliminate from .SpatialJoin import SpatialJoin from .DeleteColumn import DeleteColumn from .DeleteHoles import DeleteHoles from .DeleteDuplicateGeometries import DeleteDuplicateGeometries from .TextToFloat import TextToFloat from .ExtractByAttribute import ExtractByAttribute from .SelectByAttribute import SelectByAttribute from .Grid import Grid from .Gridify import Gridify from .HubDistance import HubDistance from .HubLines import HubLines from .Merge import Merge from .GeometryConvert import GeometryConvert from .ConcaveHull import ConcaveHull from .RasterLayerStatistics import RasterLayerStatistics from .StatisticsByCategories import StatisticsByCategories from .EquivalentNumField import EquivalentNumField from .AddTableField import AddTableField from .FieldsCalculator import FieldsCalculator from .SaveSelectedFeatures import SaveSelectedFeatures from .Explode import Explode from .AutoincrementalField import AutoincrementalField from .FieldPyculator import FieldsPyculator from .JoinAttributes import JoinAttributes from .CreateConstantRaster import CreateConstantRaster from .PointsLayerFromTable import PointsLayerFromTable from .PointsDisplacement import PointsDisplacement from .ZonalStatistics import ZonalStatistics from .PointsFromPolygons import PointsFromPolygons from .PointsFromLines import PointsFromLines from .RandomPointsExtent import RandomPointsExtent from .RandomPointsLayer import RandomPointsLayer from .RandomPointsPolygonsFixed import RandomPointsPolygonsFixed from .RandomPointsPolygonsVariable import RandomPointsPolygonsVariable from .RandomPointsAlongLines import RandomPointsAlongLines from .PointsToPaths import PointsToPaths from .PostGISExecuteSQL import PostGISExecuteSQL from .ImportIntoPostGIS import ImportIntoPostGIS from .SetVectorStyle import SetVectorStyle from .SetRasterStyle import SetRasterStyle from .SelectByExpression import SelectByExpression from .SelectByAttributeSum import SelectByAttributeSum from .HypsometricCurves import HypsometricCurves from .SplitLinesWithLines import SplitLinesWithLines from .FieldsMapper import FieldsMapper from .Datasources2Vrt import Datasources2Vrt from .CheckValidity import CheckValidity from .OrientedMinimumBoundingBox import OrientedMinimumBoundingBox from .Smooth import Smooth from .ReverseLineDirection import ReverseLineDirection from .SpatialIndex import SpatialIndex from .DefineProjection import DefineProjection from .RectanglesOvalsDiamondsVariable import RectanglesOvalsDiamondsVariable from .RectanglesOvalsDiamondsFixed import RectanglesOvalsDiamondsFixed from .MergeLines import MergeLines pluginPath = os.path.normpath(os.path.join( os.path.split(os.path.dirname(__file__))[0], os.pardir)) class QGISAlgorithmProvider(AlgorithmProvider): def __init__(self): AlgorithmProvider.__init__(self) self._icon = QIcon(os.path.join(pluginPath, 'images', 'qgis.svg')) self.alglist = [SumLines(), PointsInPolygon(), PointsInPolygonWeighted(), PointsInPolygonUnique(), BasicStatisticsStrings(), BasicStatisticsNumbers(), NearestNeighbourAnalysis(), MeanCoords(), LinesIntersection(), UniqueValues(), PointDistance(), ReprojectLayer(), ExportGeometryInfo(), Centroids(), Delaunay(), VoronoiPolygons(), SimplifyGeometries(), DensifyGeometries(), DensifyGeometriesInterval(), MultipartToSingleparts(), SinglePartsToMultiparts(), PolygonsToLines(), LinesToPolygons(), ExtractNodes(), Eliminate(), ConvexHull(), FixedDistanceBuffer(), VariableDistanceBuffer(), Dissolve(), Difference(), Intersection(), Union(), Clip(), ExtentFromLayer(), RandomSelection(), RandomSelectionWithinSubsets(), SelectByLocation(), RandomExtract(), DeleteHoles(), RandomExtractWithinSubsets(), ExtractByLocation(), SpatialJoin(), RegularPoints(), SymmetricalDifference(), VectorSplit(), VectorGrid(), DeleteColumn(), DeleteDuplicateGeometries(), TextToFloat(), ExtractByAttribute(), SelectByAttribute(), Grid(), Gridify(), HubDistance(), HubLines(), Merge(), GeometryConvert(), AddTableField(), FieldsCalculator(), SaveSelectedFeatures(), JoinAttributes(), AutoincrementalField(), Explode(), FieldsPyculator(), EquivalentNumField(), PointsLayerFromTable(), StatisticsByCategories(), ConcaveHull(), RasterLayerStatistics(), PointsDisplacement(), ZonalStatistics(), PointsFromPolygons(), PointsFromLines(), RandomPointsExtent(), RandomPointsLayer(), RandomPointsPolygonsFixed(), RandomPointsPolygonsVariable(), RandomPointsAlongLines(), PointsToPaths(), PostGISExecuteSQL(), ImportIntoPostGIS(), SetVectorStyle(), SetRasterStyle(), SelectByExpression(), HypsometricCurves(), SplitLinesWithLines(), CreateConstantRaster(), FieldsMapper(), SelectByAttributeSum(), Datasources2Vrt(), CheckValidity(), OrientedMinimumBoundingBox(), Smooth(), ReverseLineDirection(), SpatialIndex(), DefineProjection(), RectanglesOvalsDiamondsVariable(), RectanglesOvalsDiamondsFixed(), MergeLines() ] if hasMatplotlib: from .VectorLayerHistogram import VectorLayerHistogram from .RasterLayerHistogram import RasterLayerHistogram from .VectorLayerScatterplot import VectorLayerScatterplot from .MeanAndStdDevPlot import MeanAndStdDevPlot from .BarPlot import BarPlot from .PolarPlot import PolarPlot self.alglist.extend([ VectorLayerHistogram(), RasterLayerHistogram(), VectorLayerScatterplot(), MeanAndStdDevPlot(), BarPlot(), PolarPlot(), ]) if hasShapely: from .Polygonize import Polygonize self.alglist.extend([Polygonize()]) if Qgis.QGIS_VERSION_INT >= 21300: from .ExecuteSQL import ExecuteSQL self.alglist.extend([ExecuteSQL()]) self.externalAlgs = [] # to store algs added by 3rd party plugins as scripts folder = os.path.join(os.path.dirname(__file__), 'scripts') scripts = ScriptUtils.loadFromFolder(folder) for script in scripts: script.allowEdit = False self.alglist.extend(scripts) for alg in self.alglist: alg._icon = self._icon def initializeSettings(self): AlgorithmProvider.initializeSettings(self) def unload(self): AlgorithmProvider.unload(self) def getName(self): return 'qgis' def getDescription(self): return self.tr('QGIS geoalgorithms') def getIcon(self): return self._icon def _loadAlgorithms(self): self.algs = list(self.alglist) + self.externalAlgs def supportsNonFileBasedOutput(self): return True
gpl-2.0
dmsuehir/spark-tk
regression-tests/sparktkregtests/testcases/frames/frame_binary_classification_test.py
13
9995
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ tests multiclass classification metrics""" import unittest from sparktkregtests.lib import sparktk_test class BinaryClassificationMetrics(sparktk_test.SparkTKTestCase): def setUp(self): """Tests binary classification""" super(BinaryClassificationMetrics, self).setUp() self.dataset = [("blue", 1, 0, 0), ("blue", 3, 1, 0), ("green", 1, 0, 0), ("green", 0, 1, 0)] self.schema = [("a", str), ("b", int), ("labels", int), ("predictions", int)] self.frame = self.context.frame.create(self.dataset, schema=self.schema) def test_binary_classification_metrics(self): """test binary classification metrics with normal data""" # call the binary classification metrics function class_metrics = self.frame.binary_classification_metrics("labels", "predictions", 1, 1) # get the confusion matrix values conf_matrix = class_metrics.confusion_matrix.values # labeling each of the cells in our confusion matrix # makes this easier for me to read # the confusion matrix should look something like this: # predicted pos predicted neg # actual pos [0][0] [0][1] # actual neg [1][0] [1][1] true_pos = conf_matrix[0][0] false_neg = conf_matrix[0][1] false_pos = conf_matrix[1][0] true_neg = conf_matrix[1][1] # the total number of predictions, total number pos and neg total_pos = true_pos + false_neg total_neg = true_neg + false_pos total = total_pos + total_neg # recall is defined in the docs as the total number of true pos # results divided by the false negatives + pos recall = true_pos / (false_neg + true_pos) # from the docs, precision = true pos / false pos + true pos precision = true_pos / (false_pos + true_pos) # from the docs this is the def of f_measure f_measure = (recall * precision) / (recall + precision) # according to the documentation the accuracy # is defined as the total correct predictions divided by the # total number of predictions accuracy = float(true_pos + true_neg) / float(total) pos_count = 0 pandas_frame = self.frame.to_pandas() # calculate the number of pos results and neg results in the data for index, row in pandas_frame.iterrows(): if row["labels"] is 1: pos_count = pos_count + 1 neg_count = total - pos_count # finally we compare our results with sparktk's self.assertAlmostEqual(class_metrics.recall, recall) self.assertAlmostEqual(class_metrics.precision, precision) self.assertAlmostEqual(class_metrics.f_measure, f_measure) self.assertAlmostEqual(class_metrics.accuracy, accuracy) self.assertEqual(total_pos, pos_count) self.assertEqual(total_neg, neg_count) def test_binary_classification_metrics_bad_beta(self): """Test binary classification metrics with negative beta""" # should throw an error because beta must be >0 with self.assertRaisesRegexp(Exception, "greater than or equal to 0"): class_metrics = self.frame.binary_classification_metrics("labels", "predictions", 1, beta=-1) def test_binary_classification_metrics_valid_beta(self): """test binary class metrics with a valid value for beta""" # this is a valid value for beta so this should not throw an error class_metrics = self.frame.binary_classification_metrics("labels", "predictions", 1, beta=2) def test_binary_classification_matrics_with_invalid_beta_type(self): """Test binary class metrics with a beta of invalid type""" with self.assertRaisesRegexp(Exception, "could not convert string to float"): class_metrics = self.frame.binary_classification_metrics("labels", "predictions", 1, beta="bla") def test_binary_classification_metrics_with_invalid_pos_label(self): """Test binary class metrics with a pos label that does not exist""" # should not error but should return no pos predictions class_metrics = self.frame.binary_classification_metrics("labels", "predictions", "bla", 1) # assert that no positive results were found since # there are no labels in the data with "bla" conf_matrix = class_metrics.confusion_matrix.values # assert no predicted pos actual pos self.assertEqual(conf_matrix[0][0], 0) # assert no actual pos predicted neg self.assertEqual(conf_matrix[1][0], 0) def test_binary_classification_metrics_with_frequency_col(self): """test binay class metrics with a frequency column""" dataset = [("blue", 1, 0, 0, 1), ("blue", 3, 1, 0, 1), ("green", 1, 0, 0, 3), ("green", 0, 1, 0, 1)] schema = [("a", str), ("b", int), ("labels", int), ("predictions", int), ("frequency", int)] frame = self.context.frame.create(dataset, schema=schema) class_metrics = frame.binary_classification_metrics("labels", "predictions", 1, 1, frequency_column="frequency") conf_matrix = class_metrics.confusion_matrix.values true_pos = conf_matrix[0][0] false_neg = conf_matrix[0][1] false_pos = conf_matrix[1][0] true_neg = conf_matrix[1][1] total_pos = true_pos + false_neg total_neg = true_neg + false_pos total = total_pos + total_neg # these calculations use the definitions from the docs recall = true_pos / (false_neg + true_pos) precision = true_pos / (false_pos + true_pos) f_measure = (recall * precision) / (recall + precision) accuracy = float(true_pos + true_neg) / float(total) pos_count = 0 pandas_frame = self.frame.to_pandas() # calculate the number of pos results and neg results in the data for index, row in pandas_frame.iterrows(): if row["labels"] is 1: pos_count = pos_count + 1 neg_count = total - pos_count # finally we check that our values match sparktk's self.assertAlmostEqual(class_metrics.recall, recall) self.assertAlmostEqual(class_metrics.precision, precision) self.assertAlmostEqual(class_metrics.f_measure, f_measure) self.assertAlmostEqual(class_metrics.accuracy, accuracy) self.assertEqual(total_pos, pos_count) self.assertEqual(total_neg, neg_count) def test_binary_classification_metrics_with_invalid_frequency_col(self): """test binary class metrics with a frequency col of invalid type""" dataset = [("blue", 1, 0, 0, "bla"), ("blue", 3, 1, 0, "bla"), ("green", 1, 0, 0, "bla"), ("green", 0, 1, 0, "bla")] schema = [("a", str), ("b", int), ("labels", int), ("predictions", int), ("frequency", str)] frame = self.context.frame.create(dataset, schema=schema) # this should throw an error because the frequency col # we provided is of type str but should be of type int with self.assertRaisesRegexp(Exception, "NumberFormatException"): class_metrics = frame.binary_classification_metrics("labels", "predictions", 1, 1, frequency_column="frequency") if __name__ == '__main__': unittest.main()
apache-2.0
olologin/scikit-learn
examples/mixture/plot_gmm_pdf.py
140
1521
""" ========================================= Density Estimation for a Gaussian mixture ========================================= Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers and covariance matrices. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from sklearn import mixture n_samples = 300 # generate random sample, two components np.random.seed(0) # generate spherical data centered on (20, 20) shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20]) # generate zero centered stretched Gaussian data C = np.array([[0., -0.7], [3.5, .7]]) stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C) # concatenate the two datasets into the final training set X_train = np.vstack([shifted_gaussian, stretched_gaussian]) # fit a Gaussian Mixture Model with two components clf = mixture.GaussianMixture(n_components=2, covariance_type='full') clf.fit(X_train) # display predicted scores by the model as a contour plot x = np.linspace(-20., 30.) y = np.linspace(-20., 40.) X, Y = np.meshgrid(x, y) XX = np.array([X.ravel(), Y.ravel()]).T Z = -clf.score_samples(XX) Z = Z.reshape(X.shape) CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0), levels=np.logspace(0, 3, 10)) CB = plt.colorbar(CS, shrink=0.8, extend='both') plt.scatter(X_train[:, 0], X_train[:, 1], .8) plt.title('Negative log-likelihood predicted by a GMM') plt.axis('tight') plt.show()
bsd-3-clause
michaelaye/pyciss
pyciss/meta.py
1
2895
"""This module deals with the metadata I have received from collaborators. It defines the location of ring resonances for the RingCube plotting. """ import pandas as pd import pkg_resources as pr def get_order(name): ratio = name.split()[1] a, b = ratio.split(":") return int(a) - int(b) def get_resonances(): with pr.resource_stream("pyciss", "data/ring_resonances.csv") as f: resonances = pd.read_csv(f) resonances.columns = ["name", "radius", "a_moon", "n", "kappa"] resonances = resonances.sort_values(by="radius", ascending=True) resonances["order"] = resonances.name.map(get_order) return resonances def get_prime_resonances(): resonances = get_resonances() prime_resonances = resonances[resonances.order == 1].drop("order", axis=1) # filter out Janus and Epimetheus as we have a more precise file for that. prime_resonances = prime_resonances.loc[ ~prime_resonances.name.str.startswith("Janus") ] prime_resonances = prime_resonances.loc[ ~prime_resonances.name.str.startswith("Epimetheus") ] return prime_resonances # Janus Epithemeus resonances def get_janus_epimetheus_resonances(): w = [len(" Janus1"), len(" reson"), len(" Resonance radius R")] def get_janos_epi_order(reso): a, b = reso.split(":") return int(a) - int(b) fname = pr.resource_filename("pyciss", "data/ring_janus_epimetheus_resonances.txt") with open(fname) as f: jan_epi_resonances = pd.read_fwf( f, skiprows=15, header=0, widths=w, skipfooter=1 ) # replace column names jan_epi_resonances.columns = ["moon", "reson", "radius"] # calculate order from resonance name jan_epi_resonances["order"] = jan_epi_resonances.reson.map(get_janos_epi_order) def func(x): "Remove space from resonce string" return ":".join(i.strip() for i in x.split(":")) jan_epi_resonances.reson = jan_epi_resonances.reson.map(func) # calculate name for axes display jan_epi_resonances["name"] = ( jan_epi_resonances.moon + " " + jan_epi_resonances.reson ) return jan_epi_resonances def get_prime_jan_epi(): jan_epi_resonances = get_janus_epimetheus_resonances() # remove orders > 1 and drop unrequired columns prime_jan_epis = jan_epi_resonances[jan_epi_resonances.order == 1] to_drop = ["order", "moon"] prime_jan_epis = prime_jan_epis.drop(to_drop, axis=1) return prime_jan_epis def get_all_resonances(): prime_resonances = get_prime_resonances() prime_jan_epis = get_prime_jan_epi() all_resonances = pd.concat( [prime_resonances, prime_jan_epis], ignore_index=True, sort=False ) all_resonances.sort_values(by="radius", inplace=True) all_resonances["moon"] = all_resonances.name.map(lambda x: x.split()[0].lower()) return all_resonances
isc
kylerbrown/scikit-learn
sklearn/metrics/tests/test_pairwise.py
105
22788
import numpy as np from numpy import linalg from scipy.sparse import dok_matrix, csr_matrix, issparse from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.externals.six import iteritems from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances_argmin_min from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.metrics.pairwise import pairwise_kernels from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from sklearn.metrics.pairwise import PAIRED_DISTANCES from sklearn.metrics.pairwise import check_pairwise_arrays from sklearn.metrics.pairwise import check_paired_arrays from sklearn.metrics.pairwise import _parallel_pairwise from sklearn.metrics.pairwise import paired_distances from sklearn.metrics.pairwise import paired_euclidean_distances from sklearn.metrics.pairwise import paired_manhattan_distances from sklearn.preprocessing import normalize def test_pairwise_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # "cityblock" uses sklearn metric, cityblock (function) is scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert_equal(S.shape[0], S.shape[1]) assert_equal(S.shape[0], X.shape[0]) assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Low-level function for manhattan can divide in blocks to avoid # using too much memory during the broadcasting S3 = manhattan_distances(X, Y, size_threshold=10) assert_array_almost_equal(S, S3) # Test cosine as a string metric versus cosine callable # "cosine" uses sklearn metric, cosine (function) is scipy.spatial S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Tests that precomputed metric returns pointer to, and not copy of, X. S = np.dot(X, X.T) S2 = pairwise_distances(S, metric="precomputed") assert_true(S is S2) # Test with sparse X and Y, # currently only supported for Euclidean, L1 and cosine. X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") S2 = cosine_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan") S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo()) assert_array_almost_equal(S, S2) S2 = manhattan_distances(X, Y) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # same with Y = None kwds = {"p": 2.0} S = pairwise_distances(X, metric="minkowski", **kwds) S2 = pairwise_distances(X, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski") assert_raises(TypeError, pairwise_distances, X, Y_sparse, metric="minkowski") # Test that a value error is raised if the metric is unkown assert_raises(ValueError, pairwise_distances, X, Y, metric="blah") def check_pairwise_parallel(func, metric, kwds): rng = np.random.RandomState(0) for make_data in (np.array, csr_matrix): X = make_data(rng.random_sample((5, 4))) Y = make_data(rng.random_sample((3, 4))) try: S = func(X, metric=metric, n_jobs=1, **kwds) except (TypeError, ValueError) as exc: # Not all metrics support sparse input # ValueError may be triggered by bad callable if make_data is csr_matrix: assert_raises(type(exc), func, X, metric=metric, n_jobs=2, **kwds) continue else: raise S2 = func(X, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) S = func(X, Y, metric=metric, n_jobs=1, **kwds) S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) def test_pairwise_parallel(): wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1} metrics = [(pairwise_distances, 'euclidean', {}), (pairwise_distances, wminkowski, wminkowski_kwds), (pairwise_distances, 'wminkowski', wminkowski_kwds), (pairwise_kernels, 'polynomial', {'degree': 1}), (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}), ] for func, metric, kwds in metrics: yield check_pairwise_parallel, func, metric, kwds def test_pairwise_callable_nonstrict_metric(): # paired_distances should allow callable metric where metric(x, x) != 0 # Knowing that the callable is a strict metric would allow the diagonal to # be left uncalculated and set to 0. assert_equal(pairwise_distances([[1]], metric=lambda x, y: 5)[0, 0], 5) def callable_rbf_kernel(x, y, **kwds): # Callable version of pairwise.rbf_kernel. K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K def test_pairwise_kernels(): # Test the pairwise_kernels helper function. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. test_metrics = ["rbf", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"] for metric in test_metrics: function = PAIRWISE_KERNEL_FUNCTIONS[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet assert_raises(ValueError, pairwise_kernels, X_sparse, Y=Y_sparse, metric=metric) continue K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) # Test with a callable function, with given keywords. metric = callable_rbf_kernel kwds = {} kwds['gamma'] = 0.1 K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) # callable function, X=Y K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) K2 = rbf_kernel(X, Y=X, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) def test_paired_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) for metric, func in iteritems(PAIRED_DISTANCES): S = paired_distances(X, Y, metric=metric) S2 = func(X, Y) assert_array_almost_equal(S, S2) S3 = func(csr_matrix(X), csr_matrix(Y)) assert_array_almost_equal(S, S3) if metric in PAIRWISE_DISTANCE_FUNCTIONS: # Check the the pairwise_distances implementation # gives the same value distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) distances = np.diag(distances) assert_array_almost_equal(distances, S) # Check the callable implementation S = paired_distances(X, Y, metric='manhattan') S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) assert_array_almost_equal(S, S2) # Test that a value error is raised when the lengths of X and Y should not # differ Y = rng.random_sample((3, 4)) assert_raises(ValueError, paired_distances, X, Y) def test_pairwise_distances_argmin_min(): # Check pairwise minimum distances computation for any metric X = [[0], [1]] Y = [[-1], [2]] Xsp = dok_matrix(X) Ysp = csr_matrix(Y, dtype=np.float32) # euclidean metric D, E = pairwise_distances_argmin_min(X, Y, metric="euclidean") D2 = pairwise_distances_argmin(X, Y, metric="euclidean") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # sparse matrix case Dsp, Esp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") assert_array_equal(Dsp, D) assert_array_equal(Esp, E) # We don't want np.matrix here assert_equal(type(Dsp), np.ndarray) assert_equal(type(Esp), np.ndarray) # Non-euclidean sklearn metric D, E = pairwise_distances_argmin_min(X, Y, metric="manhattan") D2 = pairwise_distances_argmin(X, Y, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(E, [1., 1.]) D, E = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") D2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (callable) D, E = pairwise_distances_argmin_min(X, Y, metric=minkowski, metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (string) D, E = pairwise_distances_argmin_min(X, Y, metric="minkowski", metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Compare with naive implementation rng = np.random.RandomState(0) X = rng.randn(97, 149) Y = rng.randn(111, 149) dist = pairwise_distances(X, Y, metric="manhattan") dist_orig_ind = dist.argmin(axis=0) dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( X, Y, axis=0, metric="manhattan", batch_size=50) np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7) np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7) def test_euclidean_distances(): # Check the pairwise Euclidean distances computation X = [[0]] Y = [[1], [2]] D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) X = csr_matrix(X) Y = csr_matrix(Y) D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) # Paired distances def test_paired_euclidean_distances(): # Check the paired Euclidean distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_euclidean_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_paired_manhattan_distances(): # Check the paired manhattan distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_manhattan_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert_equal(K.dtype, np.float) for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert_equal(K.dtype, np.float32) # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert_true(np.isfinite(K).all()) assert_equal(K.dtype, np.float) # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert_greater(K[0, 0], K[0, 1]) assert_greater(K[1, 1], K[1, 0]) # test negative input assert_raises(ValueError, chi2_kernel, [[0, -1]]) assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]]) assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]]) # different n_features in X and Y assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]]) # sparse matrices assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y)) assert_raises(ValueError, additive_chi2_kernel, csr_matrix(X), csr_matrix(Y)) def test_kernel_symmetry(): # Valid kernels should be symmetric rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) def test_kernel_sparse(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_cosine_similarity_sparse_output(): # Test if cosine_similarity correctly produces sparse output. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) K1 = cosine_similarity(Xcsr, Ycsr, dense_output=False) assert_true(issparse(K1)) K2 = pairwise_kernels(Xcsr, Y=Ycsr, metric="cosine") assert_array_almost_equal(K1.todense(), K2) def test_cosine_similarity(): # Test the cosine_similarity. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): # Test that the cosine is kernel is equal to a linear kernel when data # has been previously normalized by L2-norm. K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") X_ = normalize(X_) if Y_ is not None: Y_ = normalize(Y_) K2 = pairwise_kernels(X_, Y=Y_, metric="linear") assert_array_almost_equal(K1, K2) def test_check_dense_matrices(): # Ensure that pairwise array check works for dense matrices. # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_true(XA_checked is XB_checked) assert_array_equal(XA, XA_checked) def test_check_XB_returned(): # Ensure that if XA and XB are given correctly, they return as equal. # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) XB = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_paired_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) def test_check_different_dimensions(): # Ensure an error is raised if the dimensions are different. XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XB = np.resize(np.arange(4 * 9), (4, 9)) assert_raises(ValueError, check_paired_arrays, XA, XB) def test_check_invalid_dimensions(): # Ensure an error is raised on 1D input arrays. XA = np.arange(45) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XA = np.resize(np.arange(45), (5, 9)) XB = np.arange(32) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_sparse_arrays(): # Ensures that checks return valid sparse matrices. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) # compare their difference because testing csr matrices for # equality with '==' does not work as expected. assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XB_checked)) assert_equal(abs(XB_sparse - XB_checked).sum(), 0) XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XA_2_checked)) assert_equal(abs(XA_2_checked - XA_checked).sum(), 0) def tuplify(X): # Turns a numpy matrix (any n-dimensional array) into tuples. s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): # Ensures that checks return valid tuples. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_array_equal(XA_tuples, XA_checked) assert_array_equal(XB_tuples, XB_checked) def test_check_preserve_type(): # Ensures that type float32 is preserved. XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_equal(XA_checked.dtype, np.float32) # both float32 XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_equal(XA_checked.dtype, np.float32) assert_equal(XB_checked.dtype, np.float32) # mismatched A XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float) # mismatched B XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float)) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float)
bsd-3-clause
sniemi/SamPy
sandbox/src/COSFUVSensitivityAndSAAMapping.py
1
34574
''' Adapted from Merle Reinhard's HST script. http://stevendkay.wordpress.com/2009/10/12/scatter-plots-with-basemap-and-matplotlib/ ''' from mpl_toolkits.basemap import Basemap from pylab import * from matplotlib.font_manager import FontProperties from matplotlib.collections import LineCollection from matplotlib import cm import sys import string, math import ephem import time_util import spst_getopt import numpy as N import pylab as P import datetime as D def toJulian(data): ''' Converts to Modified Julian Date. ''' return ephem.julian_date(data) - 2400000.5 def fromJulian(j): ''' Converts Modified Julian days to human readable format @return: human readable date and time ''' import time days = j - 40587 # From Jan 1 1900 sec = days*86400.0 return time.gmtime(sec) def padData(Data, hst_startMJD, hst_stopMJD): ''' Resamples telemetry data to every second. Pads missing time stamps with the previous value if necessary. @todo: Remove unnecessary use of Python list that cosumes memory @return: 2-d NumPy array ''' result = [] delta = int((hst_stopMJD - hst_startMJD) * 24 * 60 * 60) #in seconds newtime = N.arange(delta + 1) / (24 * 60 * 60.) + hst_startMJD if hst_startMJD == Data['MJD'][0]: one_before = 0 else: one_before = Data[Data['MJD'] <= hst_startMJD].shape[0] - 1 if hst_stopMJD == Data['MJD'][-1]: one_after = -1 else: one_after = Data[Data['MJD'] <= hst_stopMJD].shape[0] + 1 before = Data['COUNTS'][one_before] after = Data['COUNTS'][one_after] limited = Data[(Data['MJD'] <= hst_stopMJD) & (Data['MJD'] >= hst_startMJD)] length = limited.shape[0] i = 0 for x in newtime: if i < length and i == 0 and x < limited['MJD'][i]: result.append((x, before)) elif i < length and i > 0 and x < limited['MJD'][i]: result.append((x, limited['COUNTS'][i-1])) elif i == length: result.append((x, after)) else: result.append((x, limited['COUNTS'][i])) i += 1 return N.array(result, dtype = [('MJD', N.float64), ('COUNTS', N.float32)]) def plotCounts(FUVAevents, FUVBevents, FUVAhv, FUVBhv, MAMAevents, MAMAhv, hst_startMJD, hst_stopMJD): ''' Changes the HV signs. ''' fig = P.figure() left, width, height = 0.1, 0.8, 0.3 rect1 = [left, 0.7, width, height] rect2 = [left, 0.4, width, height] rect3 = [left, 0.1, width, height] ax1 = fig.add_axes(rect1) #left, bottom, width, height ax2 = fig.add_axes(rect2) ax3 = fig.add_axes(rect3) #FUVA subplot # ax1.plot(FUVAevents['MJD'], FUVAevents['COUNTS'], ls = 'steps-', lw = 2, label = 'EVENTS') # ax1.plot(FUVAhv['MJD'], -FUVAhv['COUNTS'], ls = 'steps-', lw = 2, label = 'High Voltage') ax1.plot(FUVAevents['MJD'], FUVAevents['COUNTS'], ls = '-', lw = 2, label = 'EVENTS') ax1.plot(FUVAhv['MJD'], -FUVAhv['COUNTS'], ls = '-', lw = 2, label = 'High Voltage') #FUVB subplot # ax2.plot(FUVBevents['MJD'], FUVBevents['COUNTS'], ls = 'steps-', lw = 2, label = 'EVENTS') # ax2.plot(FUVBhv['MJD'], -FUVBhv['COUNTS'], ls = 'steps-', lw = 2, label = 'High Voltage') ax2.plot(FUVBevents['MJD'], FUVBevents['COUNTS'], ls = '-', lw = 2, label = 'EVENTS') ax2.plot(FUVBhv['MJD'], -FUVBhv['COUNTS'], ls = '-', lw = 2, label = 'High Voltage') #MAM subplot # ax3.plot(MAMAevents['MJD'], MAMAevents['COUNTS'], ls = 'steps-', lw = 2, label = 'EVENTS') # ax3.plot(MAMAhv['MJD'], -MAMAhv['COUNTS'], ls = 'steps-', lw = 2, label = 'High Voltage') ax3.plot(MAMAevents['MJD'], MAMAevents['COUNTS'], ls = '-', lw = 2, label = 'EVENTS') ax3.plot(MAMAhv['MJD'], -MAMAhv['COUNTS'], ls = '-', lw = 2, label = 'High Voltage') ax1.annotate('FUVA', xy = (0.1,0.8), xycoords='axes fraction', horizontalalignment='center', verticalalignment='center') ax2.annotate('FUVB', xy = (0.1,0.8), xycoords='axes fraction', horizontalalignment='center', verticalalignment='center') ax3.annotate('NUV', xy = (0.1,0.8), xycoords='axes fraction', horizontalalignment='center', verticalalignment='center') ax1.set_xticklabels([]) ax2.set_xticklabels([]) ax1.set_yscale('log') ax2.set_yscale('log') ax3.set_yscale('log') ax1.set_yticks(ax1.get_yticks()[1:-1]) ax2.set_yticks(ax2.get_yticks()[1:-1]) ax3.set_yticks(ax3.get_yticks()[1:-1]) ax1.set_ylabel('COUNTS') ax2.set_ylabel('COUNTS') ax3.set_ylabel('COUNTS') ax1.set_xlabel('MJD') ax1.set_xlim(hst_startMJD, hst_stopMJD) ax2.set_xlim(hst_startMJD, hst_stopMJD) ax3.set_xlim(hst_startMJD, hst_stopMJD) ax3.set_ylim(5, 6000) #P.legend(shadow = True, fancybox = True) P.show() def plotHSTtrack(hst_start, hst_stop, tlefile, ephemerisOnline = False): num_points = int((hst_stop - hst_start)/ephem.minute) + 1 # Read in the HST Two-Line ephemeris if ephemerisOnline: import urllib2 hand = urllib2.open('http://celestrak.com/NORAD/elements/science.txt') data = hand.readlines() hand.close() HST = [[d[val], d[val+1], d[val+2]] for val, line in enumerate(d) if 'HST' in line] hst = ephem.readtle(string.strip(HST[0][0]), string.strip(HST[0][1]), string.strip(HST[0][2])) else: temp = open(tlefile, 'r').readlines() hst = ephem.readtle(string.strip(temp[0]), string.strip(temp[1]), string.strip(temp[2])) cur_time = hst_start hst_longs = [] hst_lats = [] for i in range(0,num_points): hst.compute(cur_time) hst_longs.append(hst.sublong.znorm*180.0/math.pi) hst_lats.append(hst.sublat*180.0/math.pi) cur_time = cur_time + ephem.minute lon_0 = 335 lat_0 = -20 llcrnrlat = -60 llcrnrlon = -100 urcrnrlat = 20 urcrnrlon = 60 # use these values to setup Basemap instance. width = 14000000 height = 10000000 #m = Basemap(width=width,height=height,\ # resolution='c',projection='aeqd',\ # lat_0=lat_0,lon_0=lon_0) #m = Basemap(resolution='c',projection='aeqd',lat_0=lat_0,lon_0=lon_0) #m = Basemap(width=width,height=height,\ # resolution='c',projection='aea',\ # lat_0=lat_0,lon_0=lon_0) m = Basemap(resolution='c', projection='mbtfpq', lon_0=lon_0) #m = Basemap(resolution='c',projection='moll',lon_0=lon_0) #m = Basemap(resolution='c',projection='ortho',lon_0=lon_0,lat_0=lat_0) #m = Basemap(resolution='c',projection='cyl',llcrnrlat=llcrnrlat,llcrnrlon=llcrnrlon,urcrnrlat=urcrnrlat,urcrnrlon=urcrnrlon) p = FontProperties() font1 = p.copy() font1.set_size('small') # draw coasts and fill continents. m.drawcoastlines(linewidth = 0.5) #m.fillcontinents() m.drawparallels(arange(-80,81,10),labels=[1,1,0,0],fontproperties=font1,labelstyle="+/-") m.drawmeridians(arange(-180,180,20),labels=[0,0,0,1],fontproperties=font1,labelstyle="+/-") m.bluemarble() m.drawmapboundary() # SAA 02 x2,y2 = m([357.4-360,357.6-360,356.9-360,355.0-360,352.3-360,348.7-360,342.9-360,336.4-360,324.8-360,303.2-360,292.1-360,289.0-360,285.9-360,283.5-360,282.5-360,282.4-360,282.7-360,357.4-360], \ [-28.3,-26.1,-23.7,-21.2,-18.8,-16.3,-13.0,-10.6, -9.1,-11.9,-14.9,-17.0,-19.1,-21.3,-23.7,-26.0,-28.6,-28.3]) # SAA 03 #x3,y3 = m([294.4-360,301.4-360,350.0-360,358.4-360,335.8-360,304.6-360,295.5-360,279.4-360,282.6-360,294.4-360], \ # [-41.0,-42.8,-30.0,-20.9,-4.9,-4.9,-7.0,-21.9,-32.7,-41.0]) x3,y3 = m([ 20.0, 21.0, 19.0, 7.5,347.0-360,336.4-360,324.8-360,303.2-360,292.1-360,285.9-360,283.5-360,282.5-360,282.4-360,282.7-360, 20.0], \ [-28.3,-27.5,-26.1,-19.8, -9.6, -7.6, -6.0, -7.9,-12.0,-17.1,-20.3,-23.5,-26.0,-28.6,-28.3]) # SAA 04 #x4,y4 = m([335.0-360,345.0-360,349.0-360,346.0-360,330.0-360,314.0-360,310.0-360,303.0-360,310.0-360,325.0-360,335.0-360], \ # [-33.0,-27.0,-24.0,-23.0,-25.0,-30.0,-32.2,-39.0,-40.0,-37.0,-33.0]) x4,y4 = m([ 25.0, 7.0,351.0-360,341.0-360,318.0-360,300.0-360,290.0-360,284.0-360,278.0-360,273.0-360,275.0-360, 25.0], \ [-28.5,-16.0, -6.5, -2.0, 1.0, -3.0, -7.0,-10.0,-15.0,-20.0,-30.0,-28.5]) # SAA 05,23 x5,y5 = m([300.0-360, 45.0, 40.0, 30.0, 10.0, 0.0,341.0-360,318.0-360,300.0-360,283.0-360,273.0-360,275.0-360,300.0-360], \ [-50.0,-30.0,-25.0,-21.0,-15.0,-10.2, -2.0, 1.0, -3.0, -8.0,-20.0,-30.0,-50.0]) # SAA 06 #x6,y6 = m([359.0-360,360.0-360,335.4-360,323.0-360,290.0-360,280.0-360,276.0-360,280.0-360,359.0-360], \ # [-28.0,-20.9,-3.4,-0.0,-7.0,-12.6,-20.9,-30.0,-28.0]) x6,y6 = m([ 20.0, 21.0, 19.0, 7.5,347.0-360,336.4-360,324.8-360,303.2-360,292.1-360,285.9-360,283.5-360,282.5-360,282.4-360,282.7-360, 20.0], \ [-28.3,-27.5,-26.1,-19.8, -9.6, -7.6, -6.0, -7.9,-12.0,-17.1,-20.3,-23.5,-26.0,-28.6,-28.3]) # SAA 07 x7,y7 = m([300.0-360,359.0-360,5.0,341.0-360,318.0-360,300.0-360,283.0-360,273.0-360,275.0-360,300.0-360], \ [-50.0,-41.0,-23.0,-2.0,1.0,-3.0,-8.0,-20.0,-30.0,-50.0]) # SAA 24,25,28,31,32 x24,y24=m([ 20.0, 21.0, 19.0, 7.5,347.0-360,336.4-360,324.8-360,303.2-360,292.1-360,285.9-360,283.5-360,282.5-360,282.4-360,282.7-360, 20.0], \ [-28.3,-27.5,-26.1,-19.8, -9.6, -7.6, -6.0, -7.9,-12.0,-17.1,-20.3,-23.5,-26.0,-28.6,-28.3]) # SAA 26,27,29,30 x26,y26=m([ 25.0, 7.0,351.0-360,341.0-360,318.0-360,300.0-360,290.0-360,284.0-360,278.0-360,273.0-360,275.0-360, 25.0], \ [-28.5,-16.0, -6.5, -2.0, 1.0, -3.0, -7.0,-10.0,-15.0,-20.0,-30.0,-28.5]) # HST observation ground track xhst,yhst = m(hst_longs, hst_lats) saa02 = m.plot(x2,y2,marker='D',markersize=4.0,markeredgewidth=0.0,color='turquoise',linestyle='-',label='02') saa03 = m.plot(x3,y3,marker='v',markersize=4.0,markeredgewidth=0.0,color='white',linestyle='-',label='03') saa04 = m.plot(x4,y4,marker='^',markersize=4.0,markeredgewidth=0.0,color='orange',linestyle='-',label='04') saa05 = m.plot(x5,y5,marker='s',markersize=4.0,markeredgewidth=0.0,color='green',linestyle='-',label='05') saa06 = m.plot(x6,y6,marker='x',markersize=4.0,markeredgewidth=1.0,color='magenta',linestyle='-',label='06') #saa07 = m.plot(x7,y7,marker='>',markersize=4.0,markeredgewidth=0.0,color='darkorchid',linestyle='-',label='07') #saa24 = m.plot(x24,y24,marker='x',markersize=4.0,markeredgewidth=1.0,color='green',linestyle='-',label='24') #saa26 = m.plot(x26,y26,marker='^',markersize=4.0,markeredgewidth=0.0,color='maroon',linestyle='-',label='26') hst = m.plot(xhst,yhst,marker='+',markersize=4.0,markeredgewidth=1.0,color='red',linestyle='-',linewidth=0.7,label='hst') #SMN: #cnts must be sampled similar as xhst and yhst! #cs = m.contour(xhst,yhst,cnts,15,linewidths=1.5) hst_label = 'HST once per minute' font = p.copy() #font.set_size('xx-small') font.set_size('small') leg=legend((saa02,saa03,saa04,saa05,saa06,hst), \ ('PASS SAA Level 1 - FGS Guidance & STIS LV', \ 'PASS SAA Level 2 - STIS', \ 'PASS SAA Level 3 - ACS & WFC3', \ 'PASS SAA Level 4 - Astrometry & NICMOS', \ 'PASS SAA Level 5 - COS', \ #'07 - GHRS', \ #'24/25/31/32 - STIS CCD/STIS MAMA/COS FUV/COS NUV', \ #'26/27/28/29/30 - WFPC2/ACS CCD/ACS SBC/WFC3 UVIS/WFC3 IR', \ hst_label), \ prop=font,numpoints=2,borderpad=0.3,loc='upper center',borderaxespad=0.0,ncol=2) leg.get_frame().set_alpha(0.7) #figlegend((saa02,saa05,saa24,saa26),('02','05','24','26'),'upper right') # draw the title. title('HST from %s to %s' % (str(arg1),str(arg2))) show() def plotContoursOverHSTTrack(data, hst_start, hst_stop, tlefile, ephemerisOnline = False, SAA_zoomed = False, hold_on = False): num_points = int((hst_stop - hst_start)/ephem.minute) + 1 # Read in the HST Two-Line ephemeris if ephemerisOnline: import urllib2 hand = urllib2.open('http://celestrak.com/NORAD/elements/science.txt') data = hand.readlines() hand.close() HST = [[d[val], d[val+1], d[val+2]] for val, line in enumerate(d) if 'HST' in line] hst = ephem.readtle(string.strip(HST[0][0]), string.strip(HST[0][1]), string.strip(HST[0][2])) else: temp = open(tlefile, 'r').readlines() hst = ephem.readtle(string.strip(temp[0]), string.strip(temp[1]), string.strip(temp[2])) cur_time = hst_start hst_longs = [] hst_lats = [] for i in range(0,num_points): hst.compute(cur_time) hst_longs.append(hst.sublong.znorm*180.0/math.pi) hst_lats.append(hst.sublat*180.0/math.pi) cur_time = cur_time + ephem.minute hst_longs = N.array(hst_longs) hst_lats = N.array(hst_lats) #projection lon_0 = 335 lat_0 = -20 llcrnrlat = -60 llcrnrlon = -100 urcrnrlat = 20 urcrnrlon = 60 # use these values to setup Basemap instance. width = 14000000 height = 10000000 #SAA if SAA_zoomed: m = Basemap(width = width, height = height, resolution = 'c', projection = 'aeqd', lat_0 = lat_0, lon_0 = lon_0) sz = 100 else: m = Basemap(resolution='c', projection='mbtfpq', lon_0 = lon_0) sz = 35 #OTHER PROJECTIONS # crashed? #m = Basemap(resolution='c', projection='aeqd', lat_0 = lat_0, lon_0 = lon_0) # Full map, good #m = Basemap(resolution='c', projection='mbtfpq', lon_0 = lon_0) # Full map, diff projection #m = Basemap(resolution='c', projection='moll', lon_0 = lon_0) # Globe, SAA well presented #m = Basemap(resolution='c', projection='ortho', lon_0 = lon_0, lat_0 = lat_0) # Square, SAA well presented. #m = Basemap(resolution='c',projection='cyl',llcrnrlat=llcrnrlat,llcrnrlon=llcrnrlon,urcrnrlat=urcrnrlat,urcrnrlon=urcrnrlon) p = FontProperties() font1 = p.copy() font1.set_size('small') # draw coasts and fill continents. m.drawcoastlines(linewidth = 0.5) #m.fillcontinents() m.drawparallels(arange(-80,81,10),labels=[1,1,0,0],fontproperties=font1,labelstyle="+/-") m.drawmeridians(arange(-180,180,20),labels=[0,0,0,1],fontproperties=font1,labelstyle="+/-") m.bluemarble() m.drawmapboundary() # SAA 02 x2,y2 = m([357.4-360,357.6-360,356.9-360,355.0-360,352.3-360,348.7-360,342.9-360,336.4-360,324.8-360,303.2-360,292.1-360,289.0-360,285.9-360,283.5-360,282.5-360,282.4-360,282.7-360,357.4-360], \ [-28.3,-26.1,-23.7,-21.2,-18.8,-16.3,-13.0,-10.6, -9.1,-11.9,-14.9,-17.0,-19.1,-21.3,-23.7,-26.0,-28.6,-28.3]) # SAA 03 x3,y3 = m([ 20.0, 21.0, 19.0, 7.5,347.0-360,336.4-360,324.8-360,303.2-360,292.1-360,285.9-360,283.5-360,282.5-360,282.4-360,282.7-360, 20.0], \ [-28.3,-27.5,-26.1,-19.8, -9.6, -7.6, -6.0, -7.9,-12.0,-17.1,-20.3,-23.5,-26.0,-28.6,-28.3]) # SAA 04 x4,y4 = m([ 25.0, 7.0,351.0-360,341.0-360,318.0-360,300.0-360,290.0-360,284.0-360,278.0-360,273.0-360,275.0-360, 25.0], \ [-28.5,-16.0, -6.5, -2.0, 1.0, -3.0, -7.0,-10.0,-15.0,-20.0,-30.0,-28.5]) # SAA 05,23 x5,y5 = m([300.0-360, 45.0, 40.0, 30.0, 10.0, 0.0,341.0-360,318.0-360,300.0-360,283.0-360,273.0-360,275.0-360,300.0-360], \ [-50.0,-30.0,-25.0,-21.0,-15.0,-10.2, -2.0, 1.0, -3.0, -8.0,-20.0,-30.0,-50.0]) # SAA 06 x6,y6 = m([ 20.0, 21.0, 19.0, 7.5,347.0-360,336.4-360,324.8-360,303.2-360,292.1-360,285.9-360,283.5-360,282.5-360,282.4-360,282.7-360, 20.0], \ [-28.3,-27.5,-26.1,-19.8, -9.6, -7.6, -6.0, -7.9,-12.0,-17.1,-20.3,-23.5,-26.0,-28.6,-28.3]) #SAA saa02 = m.plot(x2,y2,marker='D',markersize=4.0,markeredgewidth=0.0,color='turquoise',linestyle='-',label='02') saa03 = m.plot(x3,y3,marker='v',markersize=4.0,markeredgewidth=0.0,color='white',linestyle='-',label='03') saa04 = m.plot(x4,y4,marker='^',markersize=4.0,markeredgewidth=0.0,color='orange',linestyle='-',label='04') saa05 = m.plot(x5,y5,marker='s',markersize=4.0,markeredgewidth=0.0,color='green',linestyle='-',label='05') saa06 = m.plot(x6,y6,marker='x',markersize=4.0,markeredgewidth=1.0,color='magenta',linestyle='-',label='06') # HST observation ground track xhst, yhst = m(hst_longs, hst_lats) #hst = m.plot(xhst,yhst,marker='+',markersize=4.0,markeredgewidth=1.0,color='red',linestyle='-',linewidth=0.7,label='hst') #scatter plot if hold_on: scatter = m.scatter(xhst[:-1], yhst[:-1], s = sz, c = data, cmap = cm.jet, linestyle = 'solid', zorder = 11, hold = 'on') else: fig = P.figure(1) points = N.array([xhst, yhst]).T.reshape(-1, 1, 2) segments = N.concatenate([points[:-1], points[1:]], axis=1) ax = P.axes() lc = LineCollection(segments, cmap = P.get_cmap('jet'), norm = P.Normalize(0, 10000)) lc.set_array(data) lc.set_linewidth(5) ax.add_collection(lc) axcb = fig.colorbar(lc) axcb.set_label('EVENTS') #contour plot #cs = m.contour(xhst, yhst, data, 15, linewidths = 1.5) #mx = N.max(data) #cbar = map.colorbar(s, ticks=[N.max(data), mx//2., mx], orientation='vertical') hst_label = 'HST once per minute' font = p.copy() #font.set_size('xx-small') font.set_size('small') leg=legend((saa02,saa03,saa04,saa05,saa06,hst), \ ('PASS SAA Level 1 - FGS Guidance & STIS LV', \ 'PASS SAA Level 2 - STIS', \ 'PASS SAA Level 3 - ACS & WFC3', \ 'PASS SAA Level 4 - Astrometry & NICMOS', \ 'PASS SAA Level 5 - COS', \ hst_label), \ prop=font,numpoints=2,borderpad=0.3,loc='upper center',borderaxespad=0.0,ncol=2) leg.get_frame().set_alpha(0.7) # draw the title. P.title('HST from %s to %s' % (str(arg1),str(arg2))) if hold_on == False: P.show() def countEvents(eventsData, hvData, hvlow, hvhigh, sampling): ''' Counts EVENTS. Will prioritize eventsData over hvData ie time stamps in eventsData have more weight compared to time stamps in hvData. Sampling is not taken into account at this point. Should be added to be used for NUV data correctly. The algorithm is a little flacky and should be maybe rewritten as it is not the fastest. ''' results = 0 #Check the MJD interval common for both, but selects #the earlier time . if eventsData['MJD'][0] < hvData['MJD'][0]: minMJD = eventsData['MJD'][0] else: minMJD = hvData['MJD'][0] if eventsData['MJD'][-1] > hvData['MJD'][-1]: maxMJD = hvData['MJD'][-1] else: maxMJD = eventsData['MJD'][-1] #newtime vector has a timestamp for each second delta = int((maxMJD - minMJD) * 24 * 60 * 60) #in seconds newtime = N.arange(delta + 1) / (24 * 60 * 60.) + minMJD i = 0 j = 0 length_i = eventsData['MJD'].shape[0] length_j = hvData['MJD'].shape[0] #algorithm to count EVENTS from unevenly spaced data for x in newtime: if i == 0 and x < eventsData['MJD'][0]: if j == 0 and x < hvData['MJD'][0]: if hvData['COUNTS'][0] > hvlow and hvData['COUNTS'][0] < hvhigh: results += eventsData['COUNTS'][0] elif x < hvData['MJD'][j] and j > 0: if hvData['COUNTS'][j-1] > hvlow and hvData['COUNTS'][j-1] < hvhigh: results += eventsData['COUNTS'][0] elif x == hvData['MJD'][j]: if hvData['COUNTS'][j] > hvlow and hvData['COUNTS'][j] < hvhigh: results += eventsData['COUNTS'][0] j += 1 else: j += 1 if j < length_j: if hvData['COUNTS'][j] > hvlow and hvData['COUNTS'][j] < hvhigh: results += eventsData['COUNTS'][0] else: if hvData['COUNTS'][-1] > hvlow and hvData['COUNTS'][-1] < hvhigh: results += eventsData['COUNTS'][0] elif i < length_i and x < eventsData['MJD'][i]: if j == 0 and x < hvData['MJD'][0]: if hvData['COUNTS'][0] > hvlow and hvData['COUNTS'][0] < hvhigh: results += eventsData['COUNTS'][i-1] elif x < hvData['MJD'][j] and j > 0: if hvData['COUNTS'][j-1] > hvlow and hvData['COUNTS'][j-1] < hvhigh: results += eventsData['COUNTS'][i-1] elif x == hvData['MJD'][j]: if hvData['COUNTS'][j] > hvlow and hvData['COUNTS'][j] < hvhigh: results += eventsData['COUNTS'][i-1] j += 1 else: j += 1 if j < length_j: if hvData['COUNTS'][j] > hvlow and hvData['COUNTS'][j] < hvhigh: results += eventsData['COUNTS'][i-1] else: if hvData['COUNTS'][-1] > hvlow and hvData['COUNTS'][-1] < hvhigh: results += eventsData['COUNTS'][i-1] elif i < length_i and x == eventsData['MJD'][i]: if j == 0 and x < hvData['MJD'][0]: if hvData['COUNTS'][0] > hvlow and hvData['COUNTS'][0] < hvhigh: results += eventsData['COUNTS'][i] elif x < hvData['MJD'][j] and j > 0: if hvData['COUNTS'][j-1] > hvlow and hvData['COUNTS'][j-1] < hvhigh: results += eventsData['COUNTS'][i] elif x == hvData['MJD'][j]: if hvData['COUNTS'][j] > hvlow and hvData['COUNTS'][j] < hvhigh: results += eventsData['COUNTS'][i] j += 1 else: j += 1 if j < length_j: if hvData['COUNTS'][j] > hvlow and hvData['COUNTS'][j] < hvhigh: results += eventsData['COUNTS'][i] else: if hvData['COUNTS'][-1] > hvlow and hvData['COUNTS'][-1] < hvhigh: results += eventsData['COUNTS'][i] i += 1 else: if j == 0 and x < hvData['MJD'][0]: if hvData['COUNTS'][0] > hvlow and hvData['COUNTS'][0] < hvhigh: results += eventsData['COUNTS'][i] elif x < hvData['MJD'][j] and j > 0: if hvData['COUNTS'][j-1] > hvlow and hvData['COUNTS'][j-1] < hvhigh: results += eventsData['COUNTS'][i] elif x == hvData['MJD'][j]: if hvData['COUNTS'][j] > hvlow and hvData['COUNTS'][j] < hvhigh: results += eventsData['COUNTS'][i] j += 1 else: j += 1 if j < length_j: if hvData['COUNTS'][j] > hvlow and hvData['COUNTS'][j] < hvhigh: results += eventsData['COUNTS'][i] else: if hvData['COUNTS'][-1] > hvlow and hvData['COUNTS'][-1] < hvhigh: results += eventsData['COUNTS'][i] i += 1 return results def Bin(data, column, to_sample): result = [] a = 0 max = len(data[column]) ran = max / to_sample for i in range(ran): if (i+1)*to_sample < max: result.append(N.sum(data[column][a:(i+1)*to_sample])) a = (i+1)*to_sample else: result.append(N.sum(data[column][a:-1])) return N.array(result) if __name__ == '__main__': FUVsize = 16384*1024. MAMAsize = 1024*1024. FUVhvlow = -4135 FUVhvhigh = -3985 MAMAhvlow = -1825 MAMAhvhigh = -1675 TotalEvents = False #True calculateEvents = False #True #hard coded values and names startdate = '2010.178:01:30:00' stopdate = '2010.178:04:00:00' telepath = '/smov/cos/housekeeping/Telemetry/' # PATH FUVAevents = 'LDCEFECA' # FUVA FUVBevents = 'LDCEFECB' # FUVB events = 'LMEVENTS' # MAMA FUVAhv = 'LDCHVMNA' FUVBhv = 'LDCHVMNB' cmpv = 'LMMCPV' tlefile = '/Users/niemi/Desktop/Misc/hst_new.tle' ephemerisOnline = True #telemetry data files #FUV FUVAcountsfile = telepath + FUVAevents FUVBcountsfile = telepath + FUVBevents FUVAhvfile = telepath + FUVAhv FUVBhvfile = telepath + FUVBhv #MAMA lmeventsfile = telepath + events #EVENTS lmmcpvfile = telepath + cmpv #HV #Time manipulations arg1 = time_util.spss_time(startdate) arg2 = time_util.spss_time(stopdate) hst_start = ephem.Date(arg1.strftime("%Y/%m/%d %H:%M:%S")) hst_stop = ephem.Date(arg2.strftime("%Y/%m/%d %H:%M:%S")) hst_startMJD = toJulian(hst_start) hst_stopMJD = toJulian(hst_stop) #read the telemetry data in #FUV FUVAeventsData = N.loadtxt(FUVAcountsfile, dtype={'names': ('MJD', 'COUNTS'), 'formats' : ('f8','f4')}) FUVBeventsData = N.loadtxt(FUVBcountsfile, dtype={'names': ('MJD', 'COUNTS'), 'formats' : ('f8','f4')}) FUVAhvData = N.loadtxt(FUVAhvfile, dtype={'names': ('MJD', 'COUNTS'), 'formats' : ('f8', 'f4')}) FUVBhvData = N.loadtxt(FUVBhvfile, dtype={'names': ('MJD', 'COUNTS'), 'formats' : ('f8', 'f4')}) #MAMA MAMAeventsData = N.loadtxt(lmeventsfile, dtype={'names': ('MJD', 'COUNTS'), 'formats' : ('f8','f4')}) MAMAhvData = N.loadtxt(lmmcpvfile, dtype={'names': ('MJD', 'COUNTS'), 'formats' : ('f8', 'f4')}) if calculateEvents: FUVA = countEvents(FUVAeventsData, FUVAhvData, FUVhvlow, FUVhvhigh, 10) print '\nThe total number of events at HV-LOW (%0.f <= HV <= %0.f) for FUVA:' % (FUVhvlow, FUVhvhigh) print '%.0f' % FUVA print 'and per pixel' print '%.0f' % (FUVA / FUVsize) FUVB = countEvents(FUVBeventsData, FUVBhvData, FUVhvlow, FUVhvhigh, 10) print '\nThe total number of events at HV-LOW (%0.f <= HV <= %0.f) for FUVB:' % (FUVhvlow, FUVhvhigh) print '%.0f' % FUVB print 'and per pixel' print '%.0f' % (FUVB / FUVsize) MAMA = countEvents(MAMAeventsData, MAMAhvData, MAMAhvlow, MAMAhvhigh, 60) print '\nThe total number of events at HV-LOW (%0.f <= HV <= %0.f) for MAMA:' % (MAMAhvlow, MAMAhvhigh) print '%.0f' % MAMA print 'and per pixel' print '%.0f' % (MAMA / FUVsize) #with other limits FUVhvlow = -14135 FUVhvhigh = -985 MAMAhvlow = -11825 MAMAhvhigh = -675 FUVA = countEvents(FUVAeventsData, FUVAhvData, FUVhvlow, FUVhvhigh, 10) print '\nThe total number of events at %0.f <= HV <= %0.f for FUVA:' % (FUVhvlow, FUVhvhigh) print '%.0f' % FUVA print 'and per pixel' print '%.0f' % (FUVA / FUVsize) FUVB = countEvents(FUVBeventsData, FUVBhvData, FUVhvlow, FUVhvhigh, 10) print '\nThe total number of events at %0.f <= HV <= %0.f for FUVB:' % (FUVhvlow, FUVhvhigh) print '%.0f' % FUVB print 'and per pixel' print '%.0f' % (FUVB / FUVsize) MAMA = countEvents(MAMAeventsData, MAMAhvData, MAMAhvlow, MAMAhvhigh, 60) print '\nThe total number of events at %0.f <= HV <= %0.f for MAMA:' % (MAMAhvlow, MAMAhvhigh) print '%.0f' % MAMA print 'and per pixel' print '%.0f' % (MAMA / FUVsize) if TotalEvents: print '\nThe total number of telemetry measurements (only changes count) for' print 'FUVA %0.f' % FUVAeventsData.shape[0] print 'FUVB %0.f' % FUVBeventsData.shape[0] print 'MAMA %0.f' % MAMAeventsData.shape[0] #Total counts minFUVAMJD = N.min(FUVAeventsData['MJD']) maxFUVAMJD = N.max(FUVAeventsData['MJD']) paddedFUVAevents = padData(FUVAeventsData, minFUVAMJD, maxFUVAMJD) sumFUVAevents = N.sum(paddedFUVAevents['COUNTS']) print '\nThe total event counts in the FUVA telemetry data (between %f and %f MJD)' % (minFUVAMJD, maxFUVAMJD) print 'between %s and %s' % (D.datetime(*fromJulian(minFUVAMJD)[0:6]).strftime('%A %d, %B, %Y (%H:%M%Z)'), D.datetime(*fromJulian(maxFUVAMJD)[0:6]).strftime('%A %d, %B, %Y (%H:%M%Z)')) print '%.0f' % sumFUVAevents print 'and per pixel' print '%.0f' % (sumFUVAevents / FUVsize) minFUVBMJD = N.min(FUVBeventsData['MJD']) maxFUVBMJD = N.max(FUVBeventsData['MJD']) paddedFUVBevents = padData(FUVBeventsData, minFUVBMJD, maxFUVBMJD) sumFUVBevents = N.sum(paddedFUVBevents['COUNTS']) print '\nThe total event counts in the FUVB telemetry data (between %f and %f MJD)' % (minFUVBMJD, maxFUVBMJD) print 'between %s and %s' % (D.datetime(*fromJulian(minFUVBMJD)[0:6]).strftime('%A %d, %B, %Y (%H:%M%Z)'), D.datetime(*fromJulian(maxFUVBMJD)[0:6]).strftime('%A %d, %B, %Y (%H:%M%Z)')) print '%.0f' % sumFUVBevents print 'and per pixel' print '%.0f' % (sumFUVBevents / FUVsize) minMAMAMJD = N.min(MAMAeventsData['MJD']) maxMAMAMJD = N.max(MAMAeventsData['MJD']) paddedMAMAevents = padData(MAMAeventsData, minMAMAMJD, maxMAMAMJD) sumMAMAevents = N.sum(paddedMAMAevents['COUNTS']) print '\nThe total event counts in the MAMA telemetry data (between %f and %f MJD)' % (minMAMAMJD, maxMAMAMJD) print 'between %s and %s' % (D.datetime(*fromJulian(minMAMAMJD)[0:6]).strftime('%A %d, %B, %Y (%H:%M%Z)'), D.datetime(*fromJulian(maxMAMAMJD)[0:6]).strftime('%A %d, %B, %Y (%H:%M%Z)')) print '%.0f' % sumMAMAevents print 'and per pixel' print '%.0f' % (sumMAMAevents / MAMAsize) #telemetry between the plotted dates #FUV print '\nStart and Stop MJDs:', hst_startMJD, hst_stopMJD FUVAevents = padData(FUVAeventsData, hst_startMJD, hst_stopMJD) FUVBevents = padData(FUVBeventsData, hst_startMJD, hst_stopMJD) FUVAhv = padData(FUVAhvData, hst_startMJD, hst_stopMJD) FUVBhv = padData(FUVBhvData, hst_startMJD, hst_stopMJD) print 'Number of FUV Telemetry points measured:', FUVAevents.shape[0] #MAMA MAMAevents = padData(MAMAeventsData, hst_startMJD, hst_stopMJD) MAMAhv = padData(MAMAhvData, hst_startMJD, hst_stopMJD) print 'Number of MAMA Telemetry points measured:', MAMAevents.shape[0] #plot counts vs. time plotCounts(FUVAevents, FUVBevents, FUVAhv, FUVBhv, MAMAevents, MAMAhv, hst_startMJD, hst_stopMJD) #Bin data to 60 second bins FUVA60cnts = Bin(FUVAevents, 'COUNTS', 60) FUVB60cnts = Bin(FUVBevents, 'COUNTS', 60) MAMA60cnts = Bin(MAMAevents, 'COUNTS', 60) print 'Total counts for FUVA, B, and MAMA:' print N.sum(FUVA60cnts), N.sum(FUVB60cnts), N.sum(MAMA60cnts) #make HST track plot #print 'Will plot HST ground tracks' #plotHSTtrack(hst_start, hst_stop, tlefile) #Overplot counts print 'Will plot FUV counts' plotContoursOverHSTTrack(FUVA60cnts+FUVB60cnts, hst_start, hst_stop, tlefile, ephemerisOnline, SAA_zoomed = True) plotContoursOverHSTTrack(FUVA60cnts+FUVB60cnts, hst_start, hst_stop, tlefile, ephemerisOnline) print 'Will plot MAMA counts' plotContoursOverHSTTrack(MAMA60cnts, hst_start, hst_stop, tlefile, ephemerisOnline, SAA_zoomed = True) plotContoursOverHSTTrack(MAMA60cnts, hst_start, hst_stop, tlefile, ephemerisOnline) #plot many tracks: for i in range(11,30): startdate = '2010.0%i:00:00:00' % i #stopdate = '2010.0%i:23:59:59' % i stopdate = '2010.0%i:06:00:0' % i arg1 = time_util.spss_time(startdate) arg2 = time_util.spss_time(stopdate) hst_start = ephem.Date(arg1.strftime("%Y/%m/%d %H:%M:%S")) hst_stop = ephem.Date(arg2.strftime("%Y/%m/%d %H:%M:%S")) hst_startMJD = toJulian(hst_start) hst_stopMJD = toJulian(hst_stop) print 'Start and Stop MJDs:', hst_startMJD, hst_stopMJD #read the telemetry data in #FUV FUVAeventsData = N.loadtxt(FUVAcountsfile, dtype={'names': ('MJD', 'COUNTS'), 'formats' : ('f8','f4')}) FUVBeventsData = N.loadtxt(FUVBcountsfile, dtype={'names': ('MJD', 'COUNTS'), 'formats' : ('f8','f4')}) FUVAhvData = N.loadtxt(FUVAhvfile, dtype={'names': ('MJD', 'COUNTS'), 'formats' : ('f8', 'f4')}) FUVBhvData = N.loadtxt(FUVBhvfile, dtype={'names': ('MJD', 'COUNTS'), 'formats' : ('f8', 'f4')}) #MAMA MAMAeventsData = N.loadtxt(lmeventsfile, dtype={'names': ('MJD', 'COUNTS'), 'formats' : ('f8','f4')}) MAMAhvData = N.loadtxt(lmmcpvfile, dtype={'names': ('MJD', 'COUNTS'), 'formats' : ('f8', 'f4')}) #telemetry between the plotted dates #FUV FUVAevents = padData(FUVAeventsData, hst_startMJD, hst_stopMJD) FUVBevents = padData(FUVBeventsData, hst_startMJD, hst_stopMJD) FUVAhv = padData(FUVAhvData, hst_startMJD, hst_stopMJD) FUVBhv = padData(FUVBhvData, hst_startMJD, hst_stopMJD) print 'Number of FUV Telemetry points measured:', FUVAevents.shape[0] #MAMA MAMAevents = padData(MAMAeventsData, hst_startMJD, hst_stopMJD) MAMAhv = padData(MAMAhvData, hst_startMJD, hst_stopMJD) print 'Number of MAMA Telemetry points measured:', MAMAevents.shape[0] #plot counts vs time #plotCounts(FUVAevents, FUVBevents, FUVAhv, FUVBhv, MAMAevents, MAMAhv, hst_startMJD, hst_stopMJD) FUVA60cnts = Bin(FUVAevents, 'COUNTS', 60) FUVB60cnts = Bin(FUVBevents, 'COUNTS', 60) MAMA60cnts = Bin(MAMAevents, 'COUNTS', 60) print 'Total counts for FUVA, B, and MAMA:' print N.sum(FUVA60cnts), N.sum(FUVB60cnts), N.sum(MAMA60cnts) plotContoursOverHSTTrack(FUVA60cnts+FUVB60cnts, hst_start, hst_stop, tlefile, ephemerisOnline, hold_on = True) P.show()
bsd-2-clause
datapythonista/pandas
pandas/tests/frame/methods/test_tz_localize.py
4
2100
import numpy as np import pytest from pandas import ( DataFrame, Series, date_range, ) import pandas._testing as tm class TestTZLocalize: # See also: # test_tz_convert_and_localize in test_tz_convert def test_tz_localize(self, frame_or_series): rng = date_range("1/1/2011", periods=100, freq="H") obj = DataFrame({"a": 1}, index=rng) if frame_or_series is not DataFrame: obj = obj["a"] result = obj.tz_localize("utc") expected = DataFrame({"a": 1}, rng.tz_localize("UTC")) if frame_or_series is not DataFrame: expected = expected["a"] assert result.index.tz.zone == "UTC" tm.assert_equal(result, expected) def test_tz_localize_axis1(self): rng = date_range("1/1/2011", periods=100, freq="H") df = DataFrame({"a": 1}, index=rng) df = df.T result = df.tz_localize("utc", axis=1) assert result.columns.tz.zone == "UTC" expected = DataFrame({"a": 1}, rng.tz_localize("UTC")) tm.assert_frame_equal(result, expected.T) def test_tz_localize_naive(self, frame_or_series): # Can't localize if already tz-aware rng = date_range("1/1/2011", periods=100, freq="H", tz="utc") ts = Series(1, index=rng) ts = frame_or_series(ts) with pytest.raises(TypeError, match="Already tz-aware"): ts.tz_localize("US/Eastern") @pytest.mark.parametrize("copy", [True, False]) def test_tz_localize_copy_inplace_mutate(self, copy, frame_or_series): # GH#6326 obj = frame_or_series( np.arange(0, 5), index=date_range("20131027", periods=5, freq="1H", tz=None) ) orig = obj.copy() result = obj.tz_localize("UTC", copy=copy) expected = frame_or_series( np.arange(0, 5), index=date_range("20131027", periods=5, freq="1H", tz="UTC"), ) tm.assert_equal(result, expected) tm.assert_equal(obj, orig) assert result.index is not obj.index assert result is not obj
bsd-3-clause
befelix/GPy
GPy/plotting/matplot_dep/defaults.py
7
3838
#=============================================================================== # Copyright (c) 2015, Max Zwiessele # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of GPy nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #=============================================================================== from matplotlib import cm from .. import Tango ''' This file is for defaults for the gpy plot, specific to the plotting library. Create a kwargs dictionary with the right name for the plotting function you are implementing. If you do not provide defaults, the default behaviour of the plotting library will be used. In the code, always ise plotting.gpy_plots.defaults to get the defaults, as it gives back an empty default, when defaults are not defined. ''' # Data plots: data_1d = dict(lw=1.5, marker='x', color='k') data_2d = dict(s=35, edgecolors='none', linewidth=0., cmap=cm.get_cmap('hot'), alpha=.5) inducing_1d = dict(lw=0, s=500, color=Tango.colorsHex['darkRed']) inducing_2d = dict(s=17, edgecolor='k', linewidth=.4, color='white', alpha=.5, marker='^') inducing_3d = dict(lw=.3, s=500, color=Tango.colorsHex['darkRed'], edgecolor='k') xerrorbar = dict(color='k', fmt='none', elinewidth=.5, alpha=.5) yerrorbar = dict(color=Tango.colorsHex['darkRed'], fmt='none', elinewidth=.5, alpha=.5) # GP plots: meanplot_1d = dict(color=Tango.colorsHex['mediumBlue'], linewidth=2) meanplot_2d = dict(cmap='hot', linewidth=.5) meanplot_3d = dict(linewidth=0, antialiased=True, cstride=1, rstride=1, cmap='hot', alpha=.3) samples_1d = dict(color=Tango.colorsHex['mediumBlue'], linewidth=.3) samples_3d = dict(cmap='hot', alpha=.1, antialiased=True, cstride=1, rstride=1, linewidth=0) confidence_interval = dict(edgecolor=Tango.colorsHex['darkBlue'], linewidth=.5, color=Tango.colorsHex['lightBlue'],alpha=.2) density = dict(alpha=.5, color=Tango.colorsHex['lightBlue']) # GPLVM plots: data_y_1d = dict(linewidth=0, cmap='RdBu', s=40) data_y_1d_plot = dict(color='k', linewidth=1.5) # Kernel plots: ard = dict(edgecolor='k', linewidth=1.2) # Input plots: latent = dict(aspect='auto', cmap='Greys', interpolation='bicubic') gradient = dict(aspect='auto', cmap='RdBu', interpolation='nearest', alpha=.7) magnification = dict(aspect='auto', cmap='Greys', interpolation='bicubic') latent_scatter = dict(s=20, linewidth=.2, edgecolor='k', alpha=.9) annotation = dict(fontdict=dict(family='sans-serif', weight='light', fontsize=9), zorder=.3, alpha=.7)
bsd-3-clause
Lx37/seaborn
doc/sphinxext/plot_generator.py
38
10035
""" Sphinx plugin to run example scripts and create a gallery page. Lightly modified from the mpld3 project. """ from __future__ import division import os import os.path as op import re import glob import token import tokenize import shutil import json import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib import image RST_TEMPLATE = """ .. _{sphinx_tag}: {docstring} .. image:: {img_file} **Python source code:** :download:`[download source: {fname}]<{fname}>` .. literalinclude:: {fname} :lines: {end_line}- """ INDEX_TEMPLATE = """ .. raw:: html <style type="text/css"> .figure {{ position: relative; float: left; margin: 10px; width: 180px; height: 200px; }} .figure img {{ position: absolute; display: inline; left: 0; width: 170px; height: 170px; opacity:1.0; filter:alpha(opacity=100); /* For IE8 and earlier */ }} .figure:hover img {{ -webkit-filter: blur(3px); -moz-filter: blur(3px); -o-filter: blur(3px); -ms-filter: blur(3px); filter: blur(3px); opacity:1.0; filter:alpha(opacity=100); /* For IE8 and earlier */ }} .figure span {{ position: absolute; display: inline; left: 0; width: 170px; height: 170px; background: #000; color: #fff; visibility: hidden; opacity: 0; z-index: 100; }} .figure p {{ position: absolute; top: 45%; width: 170px; font-size: 110%; }} .figure:hover span {{ visibility: visible; opacity: .4; }} .caption {{ position: absolue; width: 180px; top: 170px; text-align: center !important; }} </style> .. _{sphinx_tag}: Example gallery =============== {toctree} {contents} .. raw:: html <div style="clear: both"></div> """ def create_thumbnail(infile, thumbfile, width=300, height=300, cx=0.5, cy=0.5, border=4): baseout, extout = op.splitext(thumbfile) im = image.imread(infile) rows, cols = im.shape[:2] x0 = int(cx * cols - .5 * width) y0 = int(cy * rows - .5 * height) xslice = slice(x0, x0 + width) yslice = slice(y0, y0 + height) thumb = im[yslice, xslice] thumb[:border, :, :3] = thumb[-border:, :, :3] = 0 thumb[:, :border, :3] = thumb[:, -border:, :3] = 0 dpi = 100 fig = plt.figure(figsize=(width / dpi, height / dpi), dpi=dpi) ax = fig.add_axes([0, 0, 1, 1], aspect='auto', frameon=False, xticks=[], yticks=[]) ax.imshow(thumb, aspect='auto', resample=True, interpolation='bilinear') fig.savefig(thumbfile, dpi=dpi) return fig def indent(s, N=4): """indent a string""" return s.replace('\n', '\n' + N * ' ') class ExampleGenerator(object): """Tools for generating an example page from a file""" def __init__(self, filename, target_dir): self.filename = filename self.target_dir = target_dir self.thumbloc = .5, .5 self.extract_docstring() with open(filename, "r") as fid: self.filetext = fid.read() outfilename = op.join(target_dir, self.rstfilename) # Only actually run it if the output RST file doesn't # exist or it was modified less recently than the example if (not op.exists(outfilename) or (op.getmtime(outfilename) < op.getmtime(filename))): self.exec_file() else: print("skipping {0}".format(self.filename)) @property def dirname(self): return op.split(self.filename)[0] @property def fname(self): return op.split(self.filename)[1] @property def modulename(self): return op.splitext(self.fname)[0] @property def pyfilename(self): return self.modulename + '.py' @property def rstfilename(self): return self.modulename + ".rst" @property def htmlfilename(self): return self.modulename + '.html' @property def pngfilename(self): pngfile = self.modulename + '.png' return "_images/" + pngfile @property def thumbfilename(self): pngfile = self.modulename + '_thumb.png' return pngfile @property def sphinxtag(self): return self.modulename @property def pagetitle(self): return self.docstring.strip().split('\n')[0].strip() @property def plotfunc(self): match = re.search(r"sns\.(.+plot)\(", self.filetext) if match: return match.group(1) match = re.search(r"sns\.(.+map)\(", self.filetext) if match: return match.group(1) match = re.search(r"sns\.(.+Grid)\(", self.filetext) if match: return match.group(1) return "" def extract_docstring(self): """ Extract a module-level docstring """ lines = open(self.filename).readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' tokens = tokenize.generate_tokens(lines.__iter__().next) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) # If the docstring is formatted with several paragraphs, # extract the first one: paragraphs = '\n'.join(line.rstrip() for line in docstring.split('\n') ).split('\n\n') if len(paragraphs) > 0: first_par = paragraphs[0] break thumbloc = None for i, line in enumerate(docstring.split("\n")): m = re.match(r"^_thumb: (\.\d+),\s*(\.\d+)", line) if m: thumbloc = float(m.group(1)), float(m.group(2)) break if thumbloc is not None: self.thumbloc = thumbloc docstring = "\n".join([l for l in docstring.split("\n") if not l.startswith("_thumb")]) self.docstring = docstring self.short_desc = first_par self.end_line = erow + 1 + start_row def exec_file(self): print("running {0}".format(self.filename)) plt.close('all') my_globals = {'pl': plt, 'plt': plt} execfile(self.filename, my_globals) fig = plt.gcf() fig.canvas.draw() pngfile = op.join(self.target_dir, self.pngfilename) thumbfile = op.join("example_thumbs", self.thumbfilename) self.html = "<img src=../%s>" % self.pngfilename fig.savefig(pngfile, dpi=75, bbox_inches="tight") cx, cy = self.thumbloc create_thumbnail(pngfile, thumbfile, cx=cx, cy=cy) def toctree_entry(self): return " ./%s\n\n" % op.splitext(self.htmlfilename)[0] def contents_entry(self): return (".. raw:: html\n\n" " <div class='figure align-center'>\n" " <a href=./{0}>\n" " <img src=../_static/{1}>\n" " <span class='figure-label'>\n" " <p>{2}</p>\n" " </span>\n" " </a>\n" " </div>\n\n" "\n\n" "".format(self.htmlfilename, self.thumbfilename, self.plotfunc)) def main(app): static_dir = op.join(app.builder.srcdir, '_static') target_dir = op.join(app.builder.srcdir, 'examples') image_dir = op.join(app.builder.srcdir, 'examples/_images') thumb_dir = op.join(app.builder.srcdir, "example_thumbs") source_dir = op.abspath(op.join(app.builder.srcdir, '..', 'examples')) if not op.exists(static_dir): os.makedirs(static_dir) if not op.exists(target_dir): os.makedirs(target_dir) if not op.exists(image_dir): os.makedirs(image_dir) if not op.exists(thumb_dir): os.makedirs(thumb_dir) if not op.exists(source_dir): os.makedirs(source_dir) banner_data = [] toctree = ("\n\n" ".. toctree::\n" " :hidden:\n\n") contents = "\n\n" # Write individual example files for filename in glob.glob(op.join(source_dir, "*.py")): ex = ExampleGenerator(filename, target_dir) banner_data.append({"title": ex.pagetitle, "url": op.join('examples', ex.htmlfilename), "thumb": op.join(ex.thumbfilename)}) shutil.copyfile(filename, op.join(target_dir, ex.pyfilename)) output = RST_TEMPLATE.format(sphinx_tag=ex.sphinxtag, docstring=ex.docstring, end_line=ex.end_line, fname=ex.pyfilename, img_file=ex.pngfilename) with open(op.join(target_dir, ex.rstfilename), 'w') as f: f.write(output) toctree += ex.toctree_entry() contents += ex.contents_entry() if len(banner_data) < 10: banner_data = (4 * banner_data)[:10] # write index file index_file = op.join(target_dir, 'index.rst') with open(index_file, 'w') as index: index.write(INDEX_TEMPLATE.format(sphinx_tag="example_gallery", toctree=toctree, contents=contents)) def setup(app): app.connect('builder-inited', main)
bsd-3-clause
vivekmishra1991/scikit-learn
benchmarks/bench_glmnet.py
297
3848
""" To run this, you'll need to have installed. * glmnet-python * scikit-learn (of course) Does two benchmarks First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import numpy as np import gc from time import time from sklearn.datasets.samples_generator import make_regression alpha = 0.1 # alpha = 0.01 def rmse(a, b): return np.sqrt(np.mean((a - b) ** 2)) def bench(factory, X, Y, X_test, Y_test, ref_coef): gc.collect() # start time tstart = time() clf = factory(alpha=alpha).fit(X, Y) delta = (time() - tstart) # stop time print("duration: %0.3fs" % delta) print("rmse: %f" % rmse(Y_test, clf.predict(X_test))) print("mean coef abs diff: %f" % abs(ref_coef - clf.coef_.ravel()).mean()) return delta if __name__ == '__main__': from glmnet.elastic_net import Lasso as GlmnetLasso from sklearn.linear_model import Lasso as ScikitLasso # Delayed import of pylab import pylab as pl scikit_results = [] glmnet_results = [] n = 20 step = 500 n_features = 1000 n_informative = n_features / 10 n_test_samples = 1000 for i in range(1, n + 1): print('==================') print('Iteration %s of %s' % (i, n)) print('==================') X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:(i * step)] Y = Y[:(i * step)] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) pl.clf() xx = range(0, n * step, step) pl.title('Lasso regression on sample dataset (%d features)' % n_features) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of samples to classify') pl.ylabel('Time (s)') pl.show() # now do a benchmark where the number of points is fixed # and the variable is the number of features scikit_results = [] glmnet_results = [] n = 20 step = 100 n_samples = 500 for i in range(1, n + 1): print('==================') print('Iteration %02d of %02d' % (i, n)) print('==================') n_features = i * step n_informative = n_features / 10 X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:n_samples] Y = Y[:n_samples] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) xx = np.arange(100, 100 + n * step, step) pl.figure('scikit-learn vs. glmnet benchmark results') pl.title('Regression in high dimensional spaces (%d samples)' % n_samples) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
elijah513/scikit-learn
sklearn/datasets/__init__.py
176
3671
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_linnerud from .base import load_boston from .base import get_data_home from .base import clear_data_home from .base import load_sample_images from .base import load_sample_image from .covtype import fetch_covtype from .mlcomp import load_mlcomp from .lfw import load_lfw_pairs from .lfw import load_lfw_people from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_lfw_pairs', 'load_lfw_people', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
ujjwalkarn/data-science-from-scratch
code/introduction.py
48
8085
from __future__ import division ########################## # # # FINDING KEY CONNECTORS # # # ########################## users = [ { "id": 0, "name": "Hero" }, { "id": 1, "name": "Dunn" }, { "id": 2, "name": "Sue" }, { "id": 3, "name": "Chi" }, { "id": 4, "name": "Thor" }, { "id": 5, "name": "Clive" }, { "id": 6, "name": "Hicks" }, { "id": 7, "name": "Devin" }, { "id": 8, "name": "Kate" }, { "id": 9, "name": "Klein" }, { "id": 10, "name": "Jen" } ] friendships = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (5, 6), (5, 7), (6, 8), (7, 8), (8, 9)] # first give each user an empty list for user in users: user["friends"] = [] # and then populate the lists with friendships for i, j in friendships: # this works because users[i] is the user whose id is i users[i]["friends"].append(users[j]) # add i as a friend of j users[j]["friends"].append(users[i]) # add j as a friend of i def number_of_friends(user): """how many friends does _user_ have?""" return len(user["friends"]) # length of friend_ids list total_connections = sum(number_of_friends(user) for user in users) # 24 num_users = len(users) avg_connections = total_connections / num_users # 2.4 ################################ # # # DATA SCIENTISTS YOU MAY KNOW # # # ################################ def friends_of_friend_ids_bad(user): # "foaf" is short for "friend of a friend" return [foaf["id"] for friend in user["friends"] # for each of user's friends for foaf in friend["friends"]] # get each of _their_ friends from collections import Counter # not loaded by default def not_the_same(user, other_user): """two users are not the same if they have different ids""" return user["id"] != other_user["id"] def not_friends(user, other_user): """other_user is not a friend if he's not in user["friends"]; that is, if he's not_the_same as all the people in user["friends"]""" return all(not_the_same(friend, other_user) for friend in user["friends"]) def friends_of_friend_ids(user): return Counter(foaf["id"] for friend in user["friends"] # for each of my friends for foaf in friend["friends"] # count *their* friends if not_the_same(user, foaf) # who aren't me and not_friends(user, foaf)) # and aren't my friends print friends_of_friend_ids(users[3]) # Counter({0: 2, 5: 1}) interests = [ (0, "Hadoop"), (0, "Big Data"), (0, "HBase"), (0, "Java"), (0, "Spark"), (0, "Storm"), (0, "Cassandra"), (1, "NoSQL"), (1, "MongoDB"), (1, "Cassandra"), (1, "HBase"), (1, "Postgres"), (2, "Python"), (2, "scikit-learn"), (2, "scipy"), (2, "numpy"), (2, "statsmodels"), (2, "pandas"), (3, "R"), (3, "Python"), (3, "statistics"), (3, "regression"), (3, "probability"), (4, "machine learning"), (4, "regression"), (4, "decision trees"), (4, "libsvm"), (5, "Python"), (5, "R"), (5, "Java"), (5, "C++"), (5, "Haskell"), (5, "programming languages"), (6, "statistics"), (6, "probability"), (6, "mathematics"), (6, "theory"), (7, "machine learning"), (7, "scikit-learn"), (7, "Mahout"), (7, "neural networks"), (8, "neural networks"), (8, "deep learning"), (8, "Big Data"), (8, "artificial intelligence"), (9, "Hadoop"), (9, "Java"), (9, "MapReduce"), (9, "Big Data") ] def data_scientists_who_like(target_interest): return [user_id for user_id, user_interest in interests if user_interest == target_interest] from collections import defaultdict # keys are interests, values are lists of user_ids with that interest user_ids_by_interest = defaultdict(list) for user_id, interest in interests: user_ids_by_interest[interest].append(user_id) # keys are user_ids, values are lists of interests for that user_id interests_by_user_id = defaultdict(list) for user_id, interest in interests: interests_by_user_id[user_id].append(interest) def most_common_interests_with(user_id): return Counter(interested_user_id for interest in interests_by_user["user_id"] for interested_user_id in users_by_interest[interest] if interested_user_id != user_id) ########################### # # # SALARIES AND EXPERIENCE # # # ########################### salaries_and_tenures = [(83000, 8.7), (88000, 8.1), (48000, 0.7), (76000, 6), (69000, 6.5), (76000, 7.5), (60000, 2.5), (83000, 10), (48000, 1.9), (63000, 4.2)] def make_chart_salaries_by_tenure(plt): tenures = [tenure for salary, tenure in salaries_and_tenures] salaries = [salary for salary, tenure in salaries_and_tenures] plt.scatter(tenures, salaries) plt.xlabel("Years Experience") plt.ylabel("Salary") plt.show() # keys are years # values are the salaries for each tenure salary_by_tenure = defaultdict(list) for salary, tenure in salaries_and_tenures: salary_by_tenure[tenure].append(salary) average_salary_by_tenure = { tenure : sum(salaries) / len(salaries) for tenure, salaries in salary_by_tenure.items() } def tenure_bucket(tenure): if tenure < 2: return "less than two" elif tenure < 5: return "between two and five" else: return "more than five" salary_by_tenure_bucket = defaultdict(list) for salary, tenure in salaries_and_tenures: bucket = tenure_bucket(tenure) salary_by_tenure_bucket[bucket].append(salary) average_salary_by_bucket = { tenure_bucket : sum(salaries) / len(salaries) for tenure_bucket, salaries in salary_by_tenure_bucket.iteritems() } ################# # # # PAID_ACCOUNTS # # # ################# def predict_paid_or_unpaid(years_experience): if years_experience < 3.0: return "paid" elif years_experience < 8.5: return "unpaid" else: return "paid" ###################### # # # TOPICS OF INTEREST # # # ###################### words_and_counts = Counter(word for user, interest in interests for word in interest.lower().split()) if __name__ == "__main__": print print "######################" print "#" print "# FINDING KEY CONNECTORS" print "#" print "######################" print print "total connections", total_connections print "number of users", num_users print "average connections", total_connections / num_users print # create a list (user_id, number_of_friends) num_friends_by_id = [(user["id"], number_of_friends(user)) for user in users] print "users sorted by number of friends:" print sorted(num_friends_by_id, key=lambda (user_id, num_friends): num_friends, # by number of friends reverse=True) # largest to smallest print print "######################" print "#" print "# DATA SCIENTISTS YOU MAY KNOW" print "#" print "######################" print print "friends of friends bad for user 0:", friends_of_friend_ids_bad(users[0]) print "friends of friends for user 3:", friends_of_friend_ids(users[3]) print print "######################" print "#" print "# SALARIES AND TENURES" print "#" print "######################" print print "average salary by tenure", average_salary_by_tenure print "average salary by tenure bucket", average_salary_by_bucket print print "######################" print "#" print "# MOST COMMON WORDS" print "#" print "######################" print for word, count in words_and_counts.most_common(): if count > 1: print word, count
unlicense
yandex-load/volta
volta/core/postloader.py
1
2832
import logging import pandas as pd import json import yaml from volta.listeners.uploader.uploader import DataUploader from volta.core.core import VoltaConfig from volta.core.config.dynamic_options import DYNAMIC_OPTIONS logger = logging.getLogger(__name__) def main(): import argparse parser = argparse.ArgumentParser(description='volta console post-loader') parser.add_argument('--debug', dest='debug', action='store_true', default=False) parser.add_argument('-l', '--logs', action='append', help='Log files list') parser.add_argument('-c', '--config', dest='config') args = parser.parse_args() logging.basicConfig( level="DEBUG" if args.debug else "INFO", format='%(asctime)s [%(levelname)s] [Volta Post-loader] %(filename)s:%(lineno)d %(message)s') config = {} PACKAGE_SCHEMA_PATH = 'volta.core' if not args.config: raise RuntimeError('config should be specified') if not args.logs: raise RuntimeError('Empty log list') with open(args.config, 'r') as cfg_stream: try: config = VoltaConfig(yaml.load(cfg_stream), DYNAMIC_OPTIONS, PACKAGE_SCHEMA_PATH) except Exception: raise RuntimeError('Config file not in yaml or malformed') uploader = DataUploader(config) uploader.create_job() for log in args.logs: try: with open(log, 'r') as logname: meta = json.loads(logname.readline()) except ValueError: logger.warning('Skipped data file: no json header in logfile %s or json malformed...', log) logger.debug('Skipped data file: no json header in logfile %s or json malformed', log, exc_info=True) continue else: df = pd.read_csv(log, sep='\t', skiprows=1, names=meta['names'], dtype=meta['dtypes']) logger.info('Uploading %s, meta type: %s', log, meta['type']) uploader.put(df, meta['type']) logger.info('Updating job metadata...') try: update_job_data = { 'test_id': config.get_option('core', 'test_id'), 'name': config.get_option('uploader', 'name'), 'dsc': config.get_option('uploader', 'dsc'), 'device_id': config.get_option('uploader', 'device_id'), 'device_model': config.get_option('uploader', 'device_model'), 'device_os': config.get_option('uploader', 'device_os'), 'app': config.get_option('uploader', 'app'), 'ver': config.get_option('uploader', 'ver'), 'meta': config.get_option('uploader', 'meta'), 'task': config.get_option('uploader', 'task'), } uploader.update_job(update_job_data) except Exception: logger.warning('Exception updating metadata') uploader.close() logger.info('Done!')
mpl-2.0
mugizico/scikit-learn
sklearn/neighbors/nearest_centroid.py
199
7249
# -*- coding: utf-8 -*- """ Nearest Centroid Classification """ # Author: Robert Layton <robertlayton@gmail.com> # Olivier Grisel <olivier.grisel@ensta.org> # # License: BSD 3 clause import warnings import numpy as np from scipy import sparse as sp from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import pairwise_distances from ..preprocessing import LabelEncoder from ..utils.validation import check_array, check_X_y, check_is_fitted from ..utils.sparsefuncs import csc_median_axis_0 class NearestCentroid(BaseEstimator, ClassifierMixin): """Nearest centroid classifier. Each class is represented by its centroid, with test samples classified to the class with the nearest centroid. Read more in the :ref:`User Guide <nearest_centroid_classifier>`. Parameters ---------- metric: string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. The centroids for the samples corresponding to each class is the point from which the sum of the distances (according to the metric) of all samples that belong to that particular class are minimized. If the "manhattan" metric is provided, this centroid is the median and for all other metrics, the centroid is now set to be the mean. shrink_threshold : float, optional (default = None) Threshold for shrinking centroids to remove features. Attributes ---------- centroids_ : array-like, shape = [n_classes, n_features] Centroid of each class Examples -------- >>> from sklearn.neighbors.nearest_centroid import NearestCentroid >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = NearestCentroid() >>> clf.fit(X, y) NearestCentroid(metric='euclidean', shrink_threshold=None) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier Notes ----- When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier. References ---------- Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6567-6572. The National Academy of Sciences. """ def __init__(self, metric='euclidean', shrink_threshold=None): self.metric = metric self.shrink_threshold = shrink_threshold def fit(self, X, y): """ Fit the NearestCentroid model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. Note that centroid shrinking cannot be used with sparse matrices. y : array, shape = [n_samples] Target values (integers) """ # If X is sparse and the metric is "manhattan", store it in a csc # format is easier to calculate the median. if self.metric == 'manhattan': X, y = check_X_y(X, y, ['csc']) else: X, y = check_X_y(X, y, ['csr', 'csc']) is_X_sparse = sp.issparse(X) if is_X_sparse and self.shrink_threshold: raise ValueError("threshold shrinking not supported" " for sparse input") n_samples, n_features = X.shape le = LabelEncoder() y_ind = le.fit_transform(y) self.classes_ = classes = le.classes_ n_classes = classes.size if n_classes < 2: raise ValueError('y has less than 2 classes') # Mask mapping each class to it's members. self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64) # Number of clusters in each class. nk = np.zeros(n_classes) for cur_class in range(n_classes): center_mask = y_ind == cur_class nk[cur_class] = np.sum(center_mask) if is_X_sparse: center_mask = np.where(center_mask)[0] # XXX: Update other averaging methods according to the metrics. if self.metric == "manhattan": # NumPy does not calculate median of sparse matrices. if not is_X_sparse: self.centroids_[cur_class] = np.median(X[center_mask], axis=0) else: self.centroids_[cur_class] = csc_median_axis_0(X[center_mask]) else: if self.metric != 'euclidean': warnings.warn("Averaging for metrics other than " "euclidean and manhattan not supported. " "The average is set to be the mean." ) self.centroids_[cur_class] = X[center_mask].mean(axis=0) if self.shrink_threshold: dataset_centroid_ = np.mean(X, axis=0) # m parameter for determining deviation m = np.sqrt((1. / nk) + (1. / n_samples)) # Calculate deviation using the standard deviation of centroids. variance = (X - self.centroids_[y_ind]) ** 2 variance = variance.sum(axis=0) s = np.sqrt(variance / (n_samples - n_classes)) s += np.median(s) # To deter outliers from affecting the results. mm = m.reshape(len(m), 1) # Reshape to allow broadcasting. ms = mm * s deviation = ((self.centroids_ - dataset_centroid_) / ms) # Soft thresholding: if the deviation crosses 0 during shrinking, # it becomes zero. signs = np.sign(deviation) deviation = (np.abs(deviation) - self.shrink_threshold) deviation[deviation < 0] = 0 deviation *= signs # Now adjust the centroids using the deviation msd = ms * deviation self.centroids_ = dataset_centroid_[np.newaxis, :] + msd return self def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Notes ----- If the metric constructor parameter is "precomputed", X is assumed to be the distance matrix between the data to be predicted and ``self.centroids_``. """ check_is_fitted(self, 'centroids_') X = check_array(X, accept_sparse='csr') return self.classes_[pairwise_distances( X, self.centroids_, metric=self.metric).argmin(axis=1)]
bsd-3-clause
meghana1995/sympy
examples/intermediate/mplot3d.py
93
1252
#!/usr/bin/env python """Matplotlib 3D plotting example Demonstrates plotting with matplotlib. """ import sys from sample import sample from sympy import sin, Symbol from sympy.external import import_module def mplot3d(f, var1, var2, show=True): """ Plot a 3d function using matplotlib/Tk. """ import warnings warnings.filterwarnings("ignore", "Could not match \S") p = import_module('pylab') # Try newer version first p3 = import_module('mpl_toolkits.mplot3d', __import__kwargs={'fromlist': ['something']}) or import_module('matplotlib.axes3d') if not p or not p3: sys.exit("Matplotlib is required to use mplot3d.") x, y, z = sample(f, var1, var2) fig = p.figure() ax = p3.Axes3D(fig) # ax.plot_surface(x, y, z, rstride=2, cstride=2) ax.plot_wireframe(x, y, z) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') if show: p.show() def main(): x = Symbol('x') y = Symbol('y') mplot3d(x**2 - y**2, (x, -10.0, 10.0, 20), (y, -10.0, 10.0, 20)) # mplot3d(x**2+y**2, (x, -10.0, 10.0, 20), (y, -10.0, 10.0, 20)) # mplot3d(sin(x)+sin(y), (x, -3.14, 3.14, 10), (y, -3.14, 3.14, 10)) if __name__ == "__main__": main()
bsd-3-clause
hlin117/statsmodels
docs/source/conf.py
27
11559
# -*- coding: utf-8 -*- # # statsmodels documentation build configuration file, created by # sphinx-quickstart on Sat Jan 22 11:17:58 2011. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../sphinxext')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.pngmath', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'sphinx.ext.inheritance_diagram', 'matplotlib.sphinxext.plot_directive', 'matplotlib.sphinxext.only_directives', 'IPython.sphinxext.ipython_console_highlighting', 'IPython.sphinxext.ipython_directive', 'numpy_ext.numpydoc', 'github' # for GitHub links ] import sphinx if sphinx.__version__ == '1.1.3': print ("WARNING: Not building inheritance diagrams on sphinx 1.1.3. " "See https://github.com/statsmodels/statsmodels/issues/1002") extensions.remove('sphinx.ext.inheritance_diagram') # plot_directive is broken on old matplotlib from matplotlib import __version__ as mpl_version from distutils.version import LooseVersion if LooseVersion(mpl_version) < LooseVersion('1.0.1'): extensions.remove('matplotlib.sphinxext.plot_directive') extensions.append('numpy_ext.plot_directive') # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'statsmodels' copyright = u'2009-2013, Josef Perktold, Skipper Seabold, Jonathan Taylor, statsmodels-developers' autosummary_generate = True autoclass_content = 'class' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # from statsmodels.version import short_version, full_version release = short_version # The full version, including dev tag. version = full_version # set inheritance_graph_attrs # you need graphviz installed to use this # see: http://sphinx.pocoo.org/ext/inheritance.html # and graphviz dot documentation http://www.graphviz.org/content/attrs #NOTE: giving the empty string to size allows graphviz to figure out # the size inheritance_graph_attrs = dict(size='""', ratio="compress", fontsize=14, rankdir="LR") #inheritance_node_attrs = dict(shape='ellipse', fontsize=14, height=0.75, # color='dodgerblue1', style='filled') # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['*/autosummary/class.rst', '*/autosummary/glmfamilies.rst'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. #html_theme = 'default' if 'htmlhelp' in sys.argv: #html_theme = 'statsmodels_htmlhelp' #doesn't look nice yet html_theme = 'default' print '################# using statsmodels_htmlhelp ############' else: html_theme = 'statsmodels' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['../themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'images/statsmodels_hybi_banner.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'images/statsmodels_hybi_favico.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = {'index' : ['indexsidebar.html','searchbox.html','sidelinks.html']} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'statsmodelsdoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'statsmodels.tex', u'statsmodels Documentation', u'Josef Perktold, Skipper Seabold', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # pngmath options # http://sphinx-doc.org/ext/math.html#module-sphinx.ext.pngmath pngmath_latex_preamble=r'\usepackage[active]{preview}' # + other custom stuff for inline math, such as non-default math fonts etc. pngmath_use_preview=True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'statsmodels', u'statsmodels Documentation', [u'Josef Perktold, Skipper Seabold, Jonathan Taylor'], 1) ] # -- Options for Epub output --------------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'statsmodels' epub_author = u'Josef Perktold, Skipper Seabold' epub_publisher = u'Josef Perktold, Skipper Seabold' epub_copyright = u'2009-2013, Josef Perktold, Skipper Seabold, Jonathan Taylor, statsmodels-developers' # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. #epub_exclude_files = [] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'numpy' : ('http://docs.scipy.org/doc/numpy/', None), 'python' : ('http://docs.python.org/3.2', None), 'pydagogue' : ('http://matthew-brett.github.io/pydagogue/', None), 'patsy' : ('http://patsy.readthedocs.org/en/latest/', None), 'pandas' : ('http://pandas.pydata.org/pandas-docs/dev/', None), } from os.path import dirname, abspath, join plot_basedir = join(dirname(dirname(os.path.abspath(__file__))), 'source') # ghissue config github_project_url = "https://github.com/statsmodels/statsmodels" # for the examples landing page import json example_context = json.load(open('examples/landing.json')) html_context = {'examples': example_context }
bsd-3-clause
cl4rke/scikit-learn
sklearn/datasets/tests/test_base.py
205
5878
import os import shutil import tempfile import warnings import nose import numpy from pickle import loads from pickle import dumps from sklearn.datasets import get_data_home from sklearn.datasets import clear_data_home from sklearn.datasets import load_files from sklearn.datasets import load_sample_images from sklearn.datasets import load_sample_image from sklearn.datasets import load_digits from sklearn.datasets import load_diabetes from sklearn.datasets import load_linnerud from sklearn.datasets import load_iris from sklearn.datasets import load_boston from sklearn.datasets.base import Bunch from sklearn.externals.six import b, u from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises DATA_HOME = tempfile.mkdtemp(prefix="scikit_learn_data_home_test_") LOAD_FILES_ROOT = tempfile.mkdtemp(prefix="scikit_learn_load_files_test_") TEST_CATEGORY_DIR1 = "" TEST_CATEGORY_DIR2 = "" def _remove_dir(path): if os.path.isdir(path): shutil.rmtree(path) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" for path in [DATA_HOME, LOAD_FILES_ROOT]: _remove_dir(path) def setup_load_files(): global TEST_CATEGORY_DIR1 global TEST_CATEGORY_DIR2 TEST_CATEGORY_DIR1 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) TEST_CATEGORY_DIR2 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) sample_file = tempfile.NamedTemporaryFile(dir=TEST_CATEGORY_DIR1, delete=False) sample_file.write(b("Hello World!\n")) sample_file.close() def teardown_load_files(): _remove_dir(TEST_CATEGORY_DIR1) _remove_dir(TEST_CATEGORY_DIR2) def test_data_home(): # get_data_home will point to a pre-existing folder data_home = get_data_home(data_home=DATA_HOME) assert_equal(data_home, DATA_HOME) assert_true(os.path.exists(data_home)) # clear_data_home will delete both the content and the folder it-self clear_data_home(data_home=data_home) assert_false(os.path.exists(data_home)) # if the folder is missing it will be created again data_home = get_data_home(data_home=DATA_HOME) assert_true(os.path.exists(data_home)) def test_default_empty_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 0) assert_equal(len(res.target_names), 0) assert_equal(res.DESCR, None) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_default_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.data, [b("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_w_categories_desc_and_encoding(): category = os.path.abspath(TEST_CATEGORY_DIR1).split('/').pop() res = load_files(LOAD_FILES_ROOT, description="test", categories=category, encoding="utf-8") assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 1) assert_equal(res.DESCR, "test") assert_equal(res.data, [u("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_wo_load_content(): res = load_files(LOAD_FILES_ROOT, load_content=False) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.get('data'), None) def test_load_sample_images(): try: res = load_sample_images() assert_equal(len(res.images), 2) assert_equal(len(res.filenames), 2) assert_true(res.DESCR) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_digits(): digits = load_digits() assert_equal(digits.data.shape, (1797, 64)) assert_equal(numpy.unique(digits.target).size, 10) def test_load_digits_n_class_lt_10(): digits = load_digits(9) assert_equal(digits.data.shape, (1617, 64)) assert_equal(numpy.unique(digits.target).size, 9) def test_load_sample_image(): try: china = load_sample_image('china.jpg') assert_equal(china.dtype, 'uint8') assert_equal(china.shape, (427, 640, 3)) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_missing_sample_image_error(): have_PIL = True try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: have_PIL = False if have_PIL: assert_raises(AttributeError, load_sample_image, 'blop.jpg') else: warnings.warn("Could not load sample images, PIL is not available.") def test_load_diabetes(): res = load_diabetes() assert_equal(res.data.shape, (442, 10)) assert_true(res.target.size, 442) def test_load_linnerud(): res = load_linnerud() assert_equal(res.data.shape, (20, 3)) assert_equal(res.target.shape, (20, 3)) assert_equal(len(res.target_names), 3) assert_true(res.DESCR) def test_load_iris(): res = load_iris() assert_equal(res.data.shape, (150, 4)) assert_equal(res.target.size, 150) assert_equal(res.target_names.size, 3) assert_true(res.DESCR) def test_load_boston(): res = load_boston() assert_equal(res.data.shape, (506, 13)) assert_equal(res.target.size, 506) assert_equal(res.feature_names.size, 13) assert_true(res.DESCR) def test_loads_dumps_bunch(): bunch = Bunch(x="x") bunch_from_pkl = loads(dumps(bunch)) bunch_from_pkl.x = "y" assert_equal(bunch_from_pkl['x'], bunch_from_pkl.x)
bsd-3-clause
simon-pepin/scikit-learn
examples/decomposition/plot_incremental_pca.py
244
1878
""" =============== Incremental PCA =============== Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the input data using an amount of memory which is independent of the number of input data samples. It is still dependent on the input data features, but changing the batch size allows for control of memory usage. This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip), while only processing a few samples at a time. This can be considered a "toy example", as IPCA is intended for large datasets which do not fit in main memory, requiring incremental approaches. """ print(__doc__) # Authors: Kyle Kastner # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA, IncrementalPCA iris = load_iris() X = iris.data y = iris.target n_components = 2 ipca = IncrementalPCA(n_components=n_components, batch_size=10) X_ipca = ipca.fit_transform(X) pca = PCA(n_components=n_components) X_pca = pca.fit_transform(X) for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]: plt.figure(figsize=(8, 8)) for c, i, target_name in zip("rgb", [0, 1, 2], iris.target_names): plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1], c=c, label=target_name) if "Incremental" in title: err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() plt.title(title + " of iris dataset\nMean absolute unsigned error " "%.6f" % err) else: plt.title(title + " of iris dataset") plt.legend(loc="best") plt.axis([-4, 4, -1.5, 1.5]) plt.show()
bsd-3-clause
jennyzhang0215/incubator-mxnet
example/kaggle-ndsb1/training_curves.py
52
1879
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. ## based on https://github.com/dmlc/mxnet/issues/1302 ## Parses the model fit log file and generates a train/val vs epoch plot import matplotlib.pyplot as plt import numpy as np import re import argparse parser = argparse.ArgumentParser(description='Parses log file and generates train/val curves') parser.add_argument('--log-file', type=str,default="log_tr_va", help='the path of log file') args = parser.parse_args() TR_RE = re.compile('.*?]\sTrain-accuracy=([\d\.]+)') VA_RE = re.compile('.*?]\sValidation-accuracy=([\d\.]+)') log = open(args.log_file).read() log_tr = [float(x) for x in TR_RE.findall(log)] log_va = [float(x) for x in VA_RE.findall(log)] idx = np.arange(len(log_tr)) plt.figure(figsize=(8, 6)) plt.xlabel("Epoch") plt.ylabel("Accuracy") plt.plot(idx, log_tr, 'o', linestyle='-', color="r", label="Train accuracy") plt.plot(idx, log_va, 'o', linestyle='-', color="b", label="Validation accuracy") plt.legend(loc="best") plt.xticks(np.arange(min(idx), max(idx)+1, 5)) plt.yticks(np.arange(0, 1, 0.2)) plt.ylim([0,1]) plt.show()
apache-2.0
toobaz/pandas
pandas/tests/indexes/multi/test_sorting.py
2
8261
import numpy as np import pytest from pandas.errors import PerformanceWarning, UnsortedIndexError import pandas as pd from pandas import CategoricalIndex, DataFrame, Index, MultiIndex, RangeIndex import pandas.util.testing as tm def test_sortlevel(idx): import random tuples = list(idx) random.shuffle(tuples) index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_sortlevel_not_sort_remaining(): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list("ABC")) sorted_idx, _ = mi.sortlevel("A", sort_remaining=False) assert sorted_idx.equals(mi) def test_sortlevel_deterministic(): tuples = [ ("bar", "one"), ("foo", "two"), ("qux", "two"), ("foo", "one"), ("baz", "two"), ("qux", "one"), ] index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_sort(indices): with pytest.raises(TypeError): indices.sort() def test_numpy_argsort(idx): result = np.argsort(idx) expected = idx.argsort() tm.assert_numpy_array_equal(result, expected) # these are the only two types that perform # pandas compatibility input validation - the # rest already perform separate (or no) such # validation via their 'values' attribute as # defined in pandas.core.indexes/base.py - they # cannot be changed at the moment due to # backwards compatibility concerns if isinstance(type(idx), (CategoricalIndex, RangeIndex)): msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(idx, axis=1) msg = "the 'kind' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(idx, kind="mergesort") msg = "the 'order' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(idx, order=("a", "b")) def test_unsortedindex(): # GH 11897 mi = pd.MultiIndex.from_tuples( [("z", "a"), ("x", "a"), ("y", "b"), ("x", "b"), ("y", "a"), ("z", "b")], names=["one", "two"], ) df = pd.DataFrame([[i, 10 * i] for i in range(6)], index=mi, columns=["one", "two"]) # GH 16734: not sorted, but no real slicing result = df.loc(axis=0)["z", "a"] expected = df.iloc[0] tm.assert_series_equal(result, expected) with pytest.raises(UnsortedIndexError): df.loc(axis=0)["z", slice("a")] df.sort_index(inplace=True) assert len(df.loc(axis=0)["z", :]) == 2 with pytest.raises(KeyError, match="'q'"): df.loc(axis=0)["q", :] def test_unsortedindex_doc_examples(): # http://pandas.pydata.org/pandas-docs/stable/advanced.html#sorting-a-multiindex # noqa dfm = DataFrame( {"jim": [0, 0, 1, 1], "joe": ["x", "x", "z", "y"], "jolie": np.random.rand(4)} ) dfm = dfm.set_index(["jim", "joe"]) with tm.assert_produces_warning(PerformanceWarning): dfm.loc[(1, "z")] with pytest.raises(UnsortedIndexError): dfm.loc[(0, "y"):(1, "z")] assert not dfm.index.is_lexsorted() assert dfm.index.lexsort_depth == 1 # sort it dfm = dfm.sort_index() dfm.loc[(1, "z")] dfm.loc[(0, "y"):(1, "z")] assert dfm.index.is_lexsorted() assert dfm.index.lexsort_depth == 2 def test_reconstruct_sort(): # starts off lexsorted & monotonic mi = MultiIndex.from_arrays([["A", "A", "B", "B", "B"], [1, 2, 1, 2, 3]]) assert mi.is_lexsorted() assert mi.is_monotonic recons = mi._sort_levels_monotonic() assert recons.is_lexsorted() assert recons.is_monotonic assert mi is recons assert mi.equals(recons) assert Index(mi.values).equals(Index(recons.values)) # cannot convert to lexsorted mi = pd.MultiIndex.from_tuples( [("z", "a"), ("x", "a"), ("y", "b"), ("x", "b"), ("y", "a"), ("z", "b")], names=["one", "two"], ) assert not mi.is_lexsorted() assert not mi.is_monotonic recons = mi._sort_levels_monotonic() assert not recons.is_lexsorted() assert not recons.is_monotonic assert mi.equals(recons) assert Index(mi.values).equals(Index(recons.values)) # cannot convert to lexsorted mi = MultiIndex( levels=[["b", "d", "a"], [1, 2, 3]], codes=[[0, 1, 0, 2], [2, 0, 0, 1]], names=["col1", "col2"], ) assert not mi.is_lexsorted() assert not mi.is_monotonic recons = mi._sort_levels_monotonic() assert not recons.is_lexsorted() assert not recons.is_monotonic assert mi.equals(recons) assert Index(mi.values).equals(Index(recons.values)) def test_reconstruct_remove_unused(): # xref to GH 2770 df = DataFrame( [["deleteMe", 1, 9], ["keepMe", 2, 9], ["keepMeToo", 3, 9]], columns=["first", "second", "third"], ) df2 = df.set_index(["first", "second"], drop=False) df2 = df2[df2["first"] != "deleteMe"] # removed levels are there expected = MultiIndex( levels=[["deleteMe", "keepMe", "keepMeToo"], [1, 2, 3]], codes=[[1, 2], [1, 2]], names=["first", "second"], ) result = df2.index tm.assert_index_equal(result, expected) expected = MultiIndex( levels=[["keepMe", "keepMeToo"], [2, 3]], codes=[[0, 1], [0, 1]], names=["first", "second"], ) result = df2.index.remove_unused_levels() tm.assert_index_equal(result, expected) # idempotent result2 = result.remove_unused_levels() tm.assert_index_equal(result2, expected) assert result2.is_(result) @pytest.mark.parametrize( "first_type,second_type", [("int64", "int64"), ("datetime64[D]", "str")] ) def test_remove_unused_levels_large(first_type, second_type): # GH16556 # because tests should be deterministic (and this test in particular # checks that levels are removed, which is not the case for every # random input): rng = np.random.RandomState(4) # seed is arbitrary value that works size = 1 << 16 df = DataFrame( dict( first=rng.randint(0, 1 << 13, size).astype(first_type), second=rng.randint(0, 1 << 10, size).astype(second_type), third=rng.rand(size), ) ) df = df.groupby(["first", "second"]).sum() df = df[df.third < 0.1] result = df.index.remove_unused_levels() assert len(result.levels[0]) < len(df.index.levels[0]) assert len(result.levels[1]) < len(df.index.levels[1]) assert result.equals(df.index) expected = df.reset_index().set_index(["first", "second"]).index tm.assert_index_equal(result, expected) @pytest.mark.parametrize("level0", [["a", "d", "b"], ["a", "d", "b", "unused"]]) @pytest.mark.parametrize( "level1", [["w", "x", "y", "z"], ["w", "x", "y", "z", "unused"]] ) def test_remove_unused_nan(level0, level1): # GH 18417 mi = pd.MultiIndex( levels=[level0, level1], codes=[[0, 2, -1, 1, -1], [0, 1, 2, 3, 2]] ) result = mi.remove_unused_levels() tm.assert_index_equal(result, mi) for level in 0, 1: assert "unused" not in result.levels[level] def test_argsort(idx): result = idx.argsort() expected = idx.values.argsort() tm.assert_numpy_array_equal(result, expected)
bsd-3-clause
pravsripad/mne-python
mne/fixes.py
4
37120
"""Compatibility fixes for older versions of libraries If you add content to this file, please give the version of the package at which the fix is no longer needed. # originally copied from scikit-learn """ # Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org> # Gael Varoquaux <gael.varoquaux@normalesup.org> # Fabian Pedregosa <fpedregosa@acm.org> # Lars Buitinck <L.J.Buitinck@uva.nl> # License: BSD from distutils.version import LooseVersion import functools import inspect from math import log import os from pathlib import Path import warnings import numpy as np ############################################################################### # Misc def _median_complex(data, axis): """Compute marginal median on complex data safely. XXX: Can be removed when numpy introduces a fix. See: https://github.com/scipy/scipy/pull/12676/. """ # np.median must be passed real arrays for the desired result if np.iscomplexobj(data): data = (np.median(np.real(data), axis=axis) + 1j * np.median(np.imag(data), axis=axis)) else: data = np.median(data, axis=axis) return data # helpers to get function arguments def _get_args(function, varargs=False): params = inspect.signature(function).parameters args = [key for key, param in params.items() if param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)] if varargs: varargs = [param.name for param in params.values() if param.kind == param.VAR_POSITIONAL] if len(varargs) == 0: varargs = None return args, varargs else: return args def _safe_svd(A, **kwargs): """Wrapper to get around the SVD did not converge error of death""" # Intel has a bug with their GESVD driver: # https://software.intel.com/en-us/forums/intel-distribution-for-python/topic/628049 # noqa: E501 # For SciPy 0.18 and up, we can work around it by using # lapack_driver='gesvd' instead. from scipy import linalg if kwargs.get('overwrite_a', False): raise ValueError('Cannot set overwrite_a=True with this function') try: return linalg.svd(A, **kwargs) except np.linalg.LinAlgError as exp: from .utils import warn if 'lapack_driver' in _get_args(linalg.svd): warn('SVD error (%s), attempting to use GESVD instead of GESDD' % (exp,)) return linalg.svd(A, lapack_driver='gesvd', **kwargs) else: raise def _csc_matrix_cast(x): from scipy.sparse import csc_matrix return csc_matrix(x) ############################################################################### # Backporting nibabel's read_geometry def _get_read_geometry(): """Get the geometry reading function.""" try: import nibabel as nib has_nibabel = True except ImportError: has_nibabel = False if has_nibabel: from nibabel.freesurfer import read_geometry else: read_geometry = _read_geometry return read_geometry def _read_geometry(filepath, read_metadata=False, read_stamp=False): """Backport from nibabel.""" from .surface import _fread3, _fread3_many volume_info = dict() TRIANGLE_MAGIC = 16777214 QUAD_MAGIC = 16777215 NEW_QUAD_MAGIC = 16777213 with open(filepath, "rb") as fobj: magic = _fread3(fobj) if magic in (QUAD_MAGIC, NEW_QUAD_MAGIC): # Quad file nvert = _fread3(fobj) nquad = _fread3(fobj) (fmt, div) = (">i2", 100.) if magic == QUAD_MAGIC else (">f4", 1.) coords = np.fromfile(fobj, fmt, nvert * 3).astype(np.float64) / div coords = coords.reshape(-1, 3) quads = _fread3_many(fobj, nquad * 4) quads = quads.reshape(nquad, 4) # # Face splitting follows # faces = np.zeros((2 * nquad, 3), dtype=np.int64) nface = 0 for quad in quads: if (quad[0] % 2) == 0: faces[nface] = quad[0], quad[1], quad[3] nface += 1 faces[nface] = quad[2], quad[3], quad[1] nface += 1 else: faces[nface] = quad[0], quad[1], quad[2] nface += 1 faces[nface] = quad[0], quad[2], quad[3] nface += 1 elif magic == TRIANGLE_MAGIC: # Triangle file create_stamp = fobj.readline().rstrip(b'\n').decode('utf-8') fobj.readline() vnum = np.fromfile(fobj, ">i4", 1)[0] fnum = np.fromfile(fobj, ">i4", 1)[0] coords = np.fromfile(fobj, ">f4", vnum * 3).reshape(vnum, 3) faces = np.fromfile(fobj, ">i4", fnum * 3).reshape(fnum, 3) if read_metadata: volume_info = _read_volume_info(fobj) else: raise ValueError("File does not appear to be a Freesurfer surface") coords = coords.astype(np.float64) # XXX: due to mayavi bug on mac 32bits ret = (coords, faces) if read_metadata: if len(volume_info) == 0: warnings.warn('No volume information contained in the file') ret += (volume_info,) if read_stamp: ret += (create_stamp,) return ret ############################################################################### # Triaging FFT functions to get fast pocketfft (SciPy 1.4) @functools.lru_cache(None) def _import_fft(name): single = False if not isinstance(name, tuple): name = (name,) single = True try: from scipy.fft import rfft # noqa analysis:ignore except ImportError: from numpy import fft # noqa else: from scipy import fft # noqa out = [getattr(fft, n) for n in name] if single: out = out[0] return out ############################################################################### # NumPy Generator (NumPy 1.17) def rng_uniform(rng): """Get the unform/randint from the rng.""" # prefer Generator.integers, fall back to RandomState.randint return getattr(rng, 'integers', getattr(rng, 'randint', None)) def _validate_sos(sos): """Helper to validate a SOS input""" sos = np.atleast_2d(sos) if sos.ndim != 2: raise ValueError('sos array must be 2D') n_sections, m = sos.shape if m != 6: raise ValueError('sos array must be shape (n_sections, 6)') if not (sos[:, 3] == 1).all(): raise ValueError('sos[:, 3] should be all ones') return sos, n_sections ############################################################################### # Misc utilities # get_fdata() requires knowing the dtype ahead of time, so let's triage on our # own instead def _get_img_fdata(img): data = np.asanyarray(img.dataobj) dtype = np.complex128 if np.iscomplexobj(data) else np.float64 return data.astype(dtype) def _read_volume_info(fobj): """An implementation of nibabel.freesurfer.io._read_volume_info, since old versions of nibabel (<=2.1.0) don't have it. """ volume_info = dict() head = np.fromfile(fobj, '>i4', 1) if not np.array_equal(head, [20]): # Read two bytes more head = np.concatenate([head, np.fromfile(fobj, '>i4', 2)]) if not np.array_equal(head, [2, 0, 20]): warnings.warn("Unknown extension code.") return volume_info volume_info['head'] = head for key in ['valid', 'filename', 'volume', 'voxelsize', 'xras', 'yras', 'zras', 'cras']: pair = fobj.readline().decode('utf-8').split('=') if pair[0].strip() != key or len(pair) != 2: raise IOError('Error parsing volume info.') if key in ('valid', 'filename'): volume_info[key] = pair[1].strip() elif key == 'volume': volume_info[key] = np.array(pair[1].split()).astype(int) else: volume_info[key] = np.array(pair[1].split()).astype(float) # Ignore the rest return volume_info def _serialize_volume_info(volume_info): """An implementation of nibabel.freesurfer.io._serialize_volume_info, since old versions of nibabel (<=2.1.0) don't have it.""" keys = ['head', 'valid', 'filename', 'volume', 'voxelsize', 'xras', 'yras', 'zras', 'cras'] diff = set(volume_info.keys()).difference(keys) if len(diff) > 0: raise ValueError('Invalid volume info: %s.' % diff.pop()) strings = list() for key in keys: if key == 'head': if not (np.array_equal(volume_info[key], [20]) or np.array_equal( volume_info[key], [2, 0, 20])): warnings.warn("Unknown extension code.") strings.append(np.array(volume_info[key], dtype='>i4').tobytes()) elif key in ('valid', 'filename'): val = volume_info[key] strings.append('{} = {}\n'.format(key, val).encode('utf-8')) elif key == 'volume': val = volume_info[key] strings.append('{} = {} {} {}\n'.format( key, val[0], val[1], val[2]).encode('utf-8')) else: val = volume_info[key] strings.append('{} = {:0.10g} {:0.10g} {:0.10g}\n'.format( key.ljust(6), val[0], val[1], val[2]).encode('utf-8')) return b''.join(strings) ############################################################################## # adapted from scikit-learn def is_classifier(estimator): """Returns True if the given estimator is (probably) a classifier. Parameters ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a classifier and False otherwise. """ return getattr(estimator, "_estimator_type", None) == "classifier" def is_regressor(estimator): """Returns True if the given estimator is (probably) a regressor. Parameters ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a regressor and False otherwise. """ return getattr(estimator, "_estimator_type", None) == "regressor" _DEFAULT_TAGS = { 'non_deterministic': False, 'requires_positive_X': False, 'requires_positive_y': False, 'X_types': ['2darray'], 'poor_score': False, 'no_validation': False, 'multioutput': False, "allow_nan": False, 'stateless': False, 'multilabel': False, '_skip_test': False, '_xfail_checks': False, 'multioutput_only': False, 'binary_only': False, 'requires_fit': True, 'preserves_dtype': [np.float64], 'requires_y': False, 'pairwise': False, } class BaseEstimator(object): """Base class for all estimators in scikit-learn. Notes ----- All estimators should specify all the parameters that can be set at the class level in their ``__init__`` as explicit keyword arguments (no ``*args`` or ``**kwargs``). """ @classmethod def _get_param_names(cls): """Get parameter names for the estimator""" # fetch the constructor or the original constructor before # deprecation wrapping if any init = getattr(cls.__init__, 'deprecated_original', cls.__init__) if init is object.__init__: # No explicit constructor to introspect return [] # introspect the constructor arguments to find the model parameters # to represent init_signature = inspect.signature(init) # Consider the constructor parameters excluding 'self' parameters = [p for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD] for p in parameters: if p.kind == p.VAR_POSITIONAL: raise RuntimeError("scikit-learn estimators should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s with constructor %s doesn't " " follow this convention." % (cls, init_signature)) # Extract and sort argument names excluding 'self' return sorted([p.name for p in parameters]) def get_params(self, deep=True): """Get parameters for this estimator. Parameters ---------- deep : bool, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : dict Parameter names mapped to their values. """ out = dict() for key in self._get_param_names(): # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category == DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) # XXX: should we rather test if instance of estimator? if deep and hasattr(value, 'get_params'): deep_items = value.get_params().items() out.update((key + '__' + k, val) for k, val in deep_items) out[key] = value return out def set_params(self, **params): """Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Parameters ---------- **params : dict Parameters. Returns ------- inst : instance The object. """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in params.items(): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def __repr__(self): from sklearn.base import _pprint class_name = self.__class__.__name__ return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False), offset=len(class_name),),) # __getstate__ and __setstate__ are omitted because they only contain # conditionals that are not satisfied by our objects (e.g., # ``if type(self).__module__.startswith('sklearn.')``. def _more_tags(self): return _DEFAULT_TAGS def _get_tags(self): collected_tags = {} for base_class in reversed(inspect.getmro(self.__class__)): if hasattr(base_class, '_more_tags'): # need the if because mixins might not have _more_tags # but might do redundant work in estimators # (i.e. calling more tags on BaseEstimator multiple times) more_tags = base_class._more_tags(self) collected_tags.update(more_tags) return collected_tags # newer sklearn deprecates importing from sklearn.metrics.scoring, # but older sklearn does not expose check_scoring in sklearn.metrics. def _get_check_scoring(): try: from sklearn.metrics import check_scoring # noqa except ImportError: from sklearn.metrics.scorer import check_scoring # noqa return check_scoring def _check_fit_params(X, fit_params, indices=None): """Check and validate the parameters passed during `fit`. Parameters ---------- X : array-like of shape (n_samples, n_features) Data array. fit_params : dict Dictionary containing the parameters passed at fit. indices : array-like of shape (n_samples,), default=None Indices to be selected if the parameter has the same size as `X`. Returns ------- fit_params_validated : dict Validated parameters. We ensure that the values support indexing. """ try: from sklearn.utils.validation import \ _check_fit_params as _sklearn_check_fit_params return _sklearn_check_fit_params(X, fit_params, indices) except ImportError: from sklearn.model_selection import _validation fit_params_validated = \ {k: _validation._index_param_value(X, v, indices) for k, v in fit_params.items()} return fit_params_validated ############################################################################### # Copied from sklearn to simplify code paths def empirical_covariance(X, assume_centered=False): """Computes the Maximum likelihood covariance estimator Parameters ---------- X : ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate assume_centered : Boolean If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation. Returns ------- covariance : 2D ndarray, shape (n_features, n_features) Empirical covariance (Maximum Likelihood Estimator). """ X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (1, -1)) if X.shape[0] == 1: warnings.warn("Only one sample available. " "You may want to reshape your data array") if assume_centered: covariance = np.dot(X.T, X) / X.shape[0] else: covariance = np.cov(X.T, bias=1) if covariance.ndim == 0: covariance = np.array([[covariance]]) return covariance class EmpiricalCovariance(BaseEstimator): """Maximum likelihood covariance estimator Read more in the :ref:`User Guide <covariance>`. Parameters ---------- store_precision : bool Specifies if the estimated precision is stored. assume_centered : bool If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False (default), data are centered before computation. Attributes ---------- covariance_ : 2D ndarray, shape (n_features, n_features) Estimated covariance matrix precision_ : 2D ndarray, shape (n_features, n_features) Estimated pseudo-inverse matrix. (stored only if store_precision is True) """ def __init__(self, store_precision=True, assume_centered=False): self.store_precision = store_precision self.assume_centered = assume_centered def _set_covariance(self, covariance): """Saves the covariance and precision estimates Storage is done accordingly to `self.store_precision`. Precision stored only if invertible. Parameters ---------- covariance : 2D ndarray, shape (n_features, n_features) Estimated covariance matrix to be stored, and from which precision is computed. """ from scipy import linalg # covariance = check_array(covariance) # set covariance self.covariance_ = covariance # set precision if self.store_precision: self.precision_ = linalg.pinvh(covariance) else: self.precision_ = None def get_precision(self): """Getter for the precision matrix. Returns ------- precision_ : array-like, The precision matrix associated to the current covariance object. """ from scipy import linalg if self.store_precision: precision = self.precision_ else: precision = linalg.pinvh(self.covariance_) return precision def fit(self, X, y=None): """Fit the Maximum Likelihood Estimator covariance model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data, where n_samples is the number of samples and n_features is the number of features. y : ndarray | None Not used, present for API consistency. Returns ------- self : object Returns self. """ # noqa: E501 # X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) covariance = empirical_covariance( X, assume_centered=self.assume_centered) self._set_covariance(covariance) return self def score(self, X_test, y=None): """Compute the log-likelihood of a Gaussian dataset. Uses ``self.covariance_`` as an estimator of its covariance matrix. Parameters ---------- X_test : array-like, shape = [n_samples, n_features] Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering). y : ndarray | None Not used, present for API consistency. Returns ------- res : float The likelihood of the data set with `self.covariance_` as an estimator of its covariance matrix. """ # compute empirical covariance of the test set test_cov = empirical_covariance( X_test - self.location_, assume_centered=True) # compute log likelihood res = log_likelihood(test_cov, self.get_precision()) return res def error_norm(self, comp_cov, norm='frobenius', scaling=True, squared=True): """Computes the Mean Squared Error between two covariance estimators. Parameters ---------- comp_cov : array-like, shape = [n_features, n_features] The covariance to compare with. norm : str The type of norm used to compute the error. Available error types: - 'frobenius' (default): sqrt(tr(A^t.A)) - 'spectral': sqrt(max(eigenvalues(A^t.A)) where A is the error ``(comp_cov - self.covariance_)``. scaling : bool If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled. squared : bool Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned. Returns ------- The Mean Squared Error (in the sense of the Frobenius norm) between `self` and `comp_cov` covariance estimators. """ from scipy import linalg # compute the error error = comp_cov - self.covariance_ # compute the error norm if norm == "frobenius": squared_norm = np.sum(error ** 2) elif norm == "spectral": squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error))) else: raise NotImplementedError( "Only spectral and frobenius norms are implemented") # optionally scale the error norm if scaling: squared_norm = squared_norm / error.shape[0] # finally get either the squared norm or the norm if squared: result = squared_norm else: result = np.sqrt(squared_norm) return result def mahalanobis(self, observations): """Computes the squared Mahalanobis distances of given observations. Parameters ---------- observations : array-like, shape = [n_observations, n_features] The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit. Returns ------- mahalanobis_distance : array, shape = [n_observations,] Squared Mahalanobis distances of the observations. """ precision = self.get_precision() # compute mahalanobis distances centered_obs = observations - self.location_ mahalanobis_dist = np.sum( np.dot(centered_obs, precision) * centered_obs, 1) return mahalanobis_dist def log_likelihood(emp_cov, precision): """Computes the sample mean of the log_likelihood under a covariance model computes the empirical expected log-likelihood (accounting for the normalization terms and scaling), allowing for universal comparison (beyond this software package) Parameters ---------- emp_cov : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance precision : 2D ndarray (n_features, n_features) The precision matrix of the covariance model to be tested Returns ------- sample mean of the log-likelihood """ p = precision.shape[0] log_likelihood_ = - np.sum(emp_cov * precision) + _logdet(precision) log_likelihood_ -= p * np.log(2 * np.pi) log_likelihood_ /= 2. return log_likelihood_ # sklearn uses np.linalg for this, but ours is more robust to zero eigenvalues def _logdet(A): """Compute the log det of a positive semidefinite matrix.""" from scipy import linalg vals = linalg.eigvalsh(A) # avoid negative (numerical errors) or zero (semi-definite matrix) values tol = vals.max() * vals.size * np.finfo(np.float64).eps vals = np.where(vals > tol, vals, tol) return np.sum(np.log(vals)) def _infer_dimension_(spectrum, n_samples, n_features): """Infers the dimension of a dataset of shape (n_samples, n_features) The dataset is described by its spectrum `spectrum`. """ n_spectrum = len(spectrum) ll = np.empty(n_spectrum) for rank in range(n_spectrum): ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features) return ll.argmax() def _assess_dimension_(spectrum, rank, n_samples, n_features): from scipy.special import gammaln if rank > len(spectrum): raise ValueError("The tested rank cannot exceed the rank of the" " dataset") pu = -rank * log(2.) for i in range(rank): pu += (gammaln((n_features - i) / 2.) - log(np.pi) * (n_features - i) / 2.) pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2. if rank == n_features: pv = 0 v = 1 else: v = np.sum(spectrum[rank:]) / (n_features - rank) pv = -np.log(v) * n_samples * (n_features - rank) / 2. m = n_features * rank - rank * (rank + 1.) / 2. pp = log(2. * np.pi) * (m + rank + 1.) / 2. pa = 0. spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log((spectrum[i] - spectrum[j]) * (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples) ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2. return ll def svd_flip(u, v, u_based_decision=True): if u_based_decision: # columns of u, rows of v max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, np.arange(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] else: # rows of v, columns of u max_abs_rows = np.argmax(np.abs(v), axis=1) signs = np.sign(v[np.arange(v.shape[0]), max_abs_rows]) u *= signs v *= signs[:, np.newaxis] return u, v def stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08): """Use high precision for cumsum and check that final value matches sum Parameters ---------- arr : array-like To be cumulatively summed as flat axis : int, optional Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. rtol : float Relative tolerance, see ``np.allclose`` atol : float Absolute tolerance, see ``np.allclose`` """ out = np.cumsum(arr, axis=axis, dtype=np.float64) expected = np.sum(arr, axis=axis, dtype=np.float64) if not np.all(np.isclose(out.take(-1, axis=axis), expected, rtol=rtol, atol=atol, equal_nan=True)): warnings.warn('cumsum was found to be unstable: ' 'its last element does not correspond to sum', RuntimeWarning) return out # This shim can be removed once NumPy 1.19.0+ is required (1.18.4 has sign bug) def svd(a, hermitian=False): if hermitian: # faster s, u = np.linalg.eigh(a) sgn = np.sign(s) s = np.abs(s) sidx = np.argsort(s)[..., ::-1] sgn = take_along_axis(sgn, sidx, axis=-1) s = take_along_axis(s, sidx, axis=-1) u = take_along_axis(u, sidx[..., None, :], axis=-1) # singular values are unsigned, move the sign into v vt = (u * sgn[..., np.newaxis, :]).swapaxes(-2, -1).conj() np.abs(s, out=s) return u, s, vt else: return np.linalg.svd(a) ############################################################################### # NumPy einsum backward compat (allow "optimize" arg and fix 1.14.0 bug) # XXX eventually we should hand-tune our `einsum` calls given our array sizes! def einsum(*args, **kwargs): if 'optimize' not in kwargs: kwargs['optimize'] = False return np.einsum(*args, **kwargs) try: from numpy import take_along_axis except ImportError: # NumPy < 1.15 def take_along_axis(arr, indices, axis): # normalize inputs if axis is None: arr = arr.flat arr_shape = (len(arr),) # flatiter has no .shape axis = 0 else: # there is a NumPy function for this, but rather than copy our # internal uses should be correct, so just normalize quickly if axis < 0: axis += arr.ndim assert 0 <= axis < arr.ndim arr_shape = arr.shape # use the fancy index return arr[_make_along_axis_idx(arr_shape, indices, axis)] def _make_along_axis_idx(arr_shape, indices, axis): # compute dimensions to iterate over if not np.issubdtype(indices.dtype, np.integer): raise IndexError('`indices` must be an integer array') if len(arr_shape) != indices.ndim: raise ValueError( "`indices` and `arr` must have the same number of dimensions") shape_ones = (1,) * indices.ndim dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim)) # build a fancy index, consisting of orthogonal aranges, with the # requested index inserted at the right location fancy_index = [] for dim, n in zip(dest_dims, arr_shape): if dim is None: fancy_index.append(indices) else: ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:] fancy_index.append(np.arange(n).reshape(ind_shape)) return tuple(fancy_index) ############################################################################### # From nilearn def _crop_colorbar(cbar, cbar_vmin, cbar_vmax): """ crop a colorbar to show from cbar_vmin to cbar_vmax Used when symmetric_cbar=False is used. """ import matplotlib if (cbar_vmin is None) and (cbar_vmax is None): return cbar_tick_locs = cbar.locator.locs if cbar_vmax is None: cbar_vmax = cbar_tick_locs.max() if cbar_vmin is None: cbar_vmin = cbar_tick_locs.min() new_tick_locs = np.linspace(cbar_vmin, cbar_vmax, len(cbar_tick_locs)) # matplotlib >= 3.2.0 no longer normalizes axes between 0 and 1 # See https://matplotlib.org/3.2.1/api/prev_api_changes/api_changes_3.2.0.html # _outline was removed in # https://github.com/matplotlib/matplotlib/commit/03a542e875eba091a027046d5ec652daa8be6863 # so we use the code from there if LooseVersion(matplotlib.__version__) >= LooseVersion("3.2.0"): cbar.ax.set_ylim(cbar_vmin, cbar_vmax) X, _ = cbar._mesh() X = np.array([X[0], X[-1]]) Y = np.array([[cbar_vmin, cbar_vmin], [cbar_vmax, cbar_vmax]]) N = X.shape[0] ii = [0, 1, N - 2, N - 1, 2 * N - 1, 2 * N - 2, N + 1, N, 0] x = X.T.reshape(-1)[ii] y = Y.T.reshape(-1)[ii] xy = (np.column_stack([y, x]) if cbar.orientation == 'horizontal' else np.column_stack([x, y])) cbar.outline.set_xy(xy) else: cbar.ax.set_ylim(cbar.norm(cbar_vmin), cbar.norm(cbar_vmax)) outline = cbar.outline.get_xy() outline[:2, 1] += cbar.norm(cbar_vmin) outline[2:6, 1] -= (1. - cbar.norm(cbar_vmax)) outline[6:, 1] += cbar.norm(cbar_vmin) cbar.outline.set_xy(outline) cbar.set_ticks(new_tick_locs, update_ticks=True) ############################################################################### # Matplotlib def _get_status(checks): """Deal with old MPL to get check box statuses.""" try: return list(checks.get_status()) except AttributeError: return [x[0].get_visible() for x in checks.lines] ############################################################################### # Numba (optional requirement) # Here we choose different defaults to speed things up by default try: import numba if LooseVersion(numba.__version__) < LooseVersion('0.40'): raise ImportError prange = numba.prange def jit(nopython=True, nogil=True, fastmath=True, cache=True, **kwargs): # noqa return numba.jit(nopython=nopython, nogil=nogil, fastmath=fastmath, cache=cache, **kwargs) except ImportError: has_numba = False else: has_numba = (os.getenv('MNE_USE_NUMBA', 'true').lower() == 'true') if not has_numba: def jit(**kwargs): # noqa def _jit(func): return func return _jit prange = range bincount = np.bincount mean = np.mean else: @jit() def bincount(x, weights, minlength): # noqa: D103 out = np.zeros(minlength) for idx, w in zip(x, weights): out[idx] += w return out # fix because Numba does not support axis kwarg for mean @jit() def _np_apply_along_axis(func1d, axis, arr): assert arr.ndim == 2 assert axis in [0, 1] if axis == 0: result = np.empty(arr.shape[1]) for i in range(len(result)): result[i] = func1d(arr[:, i]) else: result = np.empty(arr.shape[0]) for i in range(len(result)): result[i] = func1d(arr[i, :]) return result @jit() def mean(array, axis): return _np_apply_along_axis(np.mean, axis, array) ############################################################################### # Added in Python 3.7 (remove when we drop support for 3.6) try: from contextlib import nullcontext except ImportError: from contextlib import contextmanager @contextmanager def nullcontext(enter_result=None): yield enter_result
bsd-3-clause
saketkc/gencode_regions
genepred_to_bed.py
1
4715
#!/usr/bin/env python """ Extract first/last exon and CDS from GenePred formatted file """ from __future__ import print_function import re import pandas import argparse import sys def extract_first_coding_exon(row): cdsStart = int(row["cdsStart"]) cdsEnd = int(row["cdsEnd"]) strand = row["strand"] exonStarts = row["exonStarts"] exonEnds = row["exonEnds"] ## Noncoding if cdsStart == cdsEnd: return exonStarts_all = exonStarts.split(",") exonEnds_all = exonEnds.split(",") exonEnds_all = [int(x) for x in exonEnds_all if x] exonStarts_all = [int(x) for x in exonStarts_all if x] name = "{}".format(row["name"]) if strand == "+": for i in range(0, len(exonEnds_all)): ## If the end of exon is greater than the start of CDS if exonEnds_all[i] >= cdsStart: name = re.sub(r"\.[0-9]+", "", name) return "{}\t{}\t{}\t{}\t.\t{}".format( row["chrom"], cdsStart, exonEnds_all[i], name, strand ) if strand == "-": for i in range(len(exonEnds_all) - 1, 0, -1): if exonStarts_all[i] <= cdsEnd: name = re.sub(r"\.[0-9]+", "", name) return "{}\t{}\t{}\t{}\t.\t{}".format( row["chrom"], exonStarts_all[i], cdsEnd, name, strand ) def extract_last_coding_exon(row): cdsStart = int(row["cdsStart"]) cdsEnd = int(row["cdsEnd"]) strand = row["strand"] exonStarts = row["exonStarts"] exonEnds = row["exonEnds"] ## Noncoding if cdsStart == cdsEnd: return exonStarts_all = exonStarts.split(",") exonEnds_all = exonEnds.split(",") exonEnds_all = [int(x) for x in exonEnds_all if x] exonStarts_all = [int(x) for x in exonStarts_all if x] name = "{}".format(row["name"]) if strand == "+": for i in range(len(exonEnds_all) - 1, 0, -1): ## If the end of exon is greater than the start of CDS if exonEnds_all[i] <= cdsEnd and exonStarts_all[i] >= cdsStart: name = re.sub(r"\.[0-9]+", "", name) return "{}\t{}\t{}\t{}\t.\t{}".format( row["chrom"], exonStarts_all[i], exonEnds_all[i], name, strand ) if strand == "-": for i in range(0, len(exonStarts_all)): if exonStarts_all[i] >= cdsStart and exonEnds_all[i] <= cdsEnd: name = re.sub(r"\.[0-9]+", "", name) return "{}\t{}\t{}\t{}\t.\t{}".format( row["chrom"], exonStarts_all[i], exonEnds_all[i], name, strand ) def get_CDS(row): cdsStart = int(row["cdsStart"]) cdsEnd = int(row["cdsEnd"]) strand = row["strand"] name = "{}".format(row["name"]) if (-cdsStart + cdsEnd) > 0: name = re.sub(r"\.[0-9]+", "", name) return "{}\t{}\t{}\t{}\t.\t{}".format( row["chrom"], cdsStart, cdsEnd, name, strand ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--first_exon", help="Output first exon BED", action="store_true" ) parser.add_argument("--last_exon", help="Output last exon BED", action="store_true") parser.add_argument("--cds", help="Output CDS BED", action="store_true") parser.add_argument("genepred", help="Path to GTF") args = parser.parse_args() if not (args.first_exon or args.last_exon or args.cds): sys.stderr.write("Should select one of --first_exon, --last_exon, --cds") sys.exit(1) if args.first_exon: fetch_func = extract_first_coding_exon elif args.last_exon: fetch_func = extract_last_coding_exon elif args.cds: fetch_func = get_CDS df = pandas.read_table(args.genepred, header=None) if len(df.columns) == 10: df.columns = [ "name", "chrom", "strand", "txStart", "txEnd", "cdsStart", "cdsEnd", "exonCount", "exonStarts", "exonEnds", ] elif len(df.columns) == 15: df.columns = [ "name", "chrom", "strand", "txStart", "txEnd", "cdsStart", "cdsEnd", "exonCount", "exonStarts", "exonEnds", "score", "name2", "cdsStartStat", "cdsEndStat", "exonFrames", ] else: raise RuntimeError("Input not in GenePred format") for index, row in df.iterrows(): record = fetch_func(row) if record: print(record)
bsd-2-clause
momiah/cvariants_opencv
ensembleInputs.py
1
4269
# -*- coding: utf-8 -*- """ Created on Tue Jun 23 16:32:55 2015 @author: mdmiah """ import matplotlib as mpl mpl.use('Agg') # Needed to work on server import numpy as np import random import sys import modelInputs # ---------------------------------- ---------------------------------- def getRowsForImages(u, v, labels, brisks, colors): X = [] y = [] meta = [] for i in xrange(u*4, (u*4)+4): for j in xrange(v*4, (v*4)+4): Xrow, yrow, metarow = modelInputs.getRowForCombination(i, j, labels, brisks, colors) X.append(Xrow) y.append(yrow) meta.append(metarow) return X, y, meta def sampleVariant(labels, brisks, colors, start=0, end=None): if end is None: end = colors.shape[0]-1 # Choose an image at random u = random.randint(start, end) label1 = labels[u][1] # Make sure minimum number of BRISK features exist i = u*4 + np.arange(4) brisk1 = brisks[i,1:] # If ANY of them have brisk features of lower than the threshold, then skip if np.sum( np.sum(brisk1,axis=1)<modelInputs.minBriskFeatures ): return sampleVariant(labels, brisks, colors, start, end) # Match with a color variant for m in xrange(20): # Search nearby for a color variant v = random.randint(u-50, u+50) v = start if v<start else end if v>end else v if u==v: # Don't match with itself continue label2 = labels[v][1] # Make sure minimum number of BRISK features exist j = v*4 + np.arange(4) brisk2 = brisks[j,1:] if np.sum( np.sum(brisk2,axis=1)<modelInputs.minBriskFeatures ): continue if label1==label2: return getRowsForImages(u, v, labels, brisks, colors) # If the randomly chosen image has no color variant, # sample again return sampleVariant(labels, brisks, colors) def sampleNonVariant(labels, brisks, colors, start=0, end=None): if end is None: end = colors.shape[0]-1 # Choose an image at random u = random.randint(start, end) label1 = labels[u][1] # Make sure minimum number of BRISK features exist i = u*4 + np.arange(4) brisk1 = brisks[i,1:] # If ANY of them have brisk features of lower than the threshold, then skip if np.sum( np.sum(brisk1,axis=1)<modelInputs.minBriskFeatures ): return sampleNonVariant(labels, brisks, colors, start, end) # Match random non variants label2 = label1 while label1==label2: v = random.randint(start, end) # Make sure minimum number of BRISK features exist j = v*4 + np.arange(4) brisk2 = brisks[j,1:] if np.sum( np.sum(brisk2,axis=1)<modelInputs.minBriskFeatures ): continue label2 = labels[v][1] return getRowsForImages(u, v, labels, brisks, colors) def save(no_of_pairs = 10000): labels, brisks, colors = modelInputs.loadHists() test_start_n = no_of_pairs * modelInputs.train_fraction # Fraction of dataset used in training test_start_u = np.int((colors.shape[0]-1) * modelInputs.train_fraction) # Fraction of images used in training with open("Cache/X1.csv", "w") as X_fh, open("Cache/y1.csv", "w") as y_fh, open("Cache/Xmeta1.csv", "w") as meta_fh: for n in xrange(no_of_pairs): if n<test_start_n: start = 0 end = test_start_u-1 else: start = test_start_u end = None X, y, meta = sampleVariant(labels, brisks, colors, start, end) X2, y2, meta2 = sampleNonVariant(labels, brisks, colors, start, end) X.extend(X2) y.extend(y2) meta.extend(meta2) np.savetxt(X_fh, X, delimiter=",", fmt="%f") np.savetxt(y_fh, y, delimiter=",", fmt="%d") np.savetxt(meta_fh, meta, delimiter=",", fmt="%d") if (n+1)%1000==0: percentage_completion = 100.0*np.float(n+1)/no_of_pairs sys.stdout.write(str(n+1)+" of "+str(no_of_pairs)+" done ("+str(percentage_completion)+"%)\r") sys.stdout.flush() print ""
gpl-2.0
mlyundin/scikit-learn
sklearn/tests/test_kernel_ridge.py
342
3027
import numpy as np import scipy.sparse as sp from sklearn.datasets import make_regression from sklearn.linear_model import Ridge from sklearn.kernel_ridge import KernelRidge from sklearn.metrics.pairwise import pairwise_kernels from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_almost_equal X, y = make_regression(n_features=10) Xcsr = sp.csr_matrix(X) Xcsc = sp.csc_matrix(X) Y = np.array([y, y]).T def test_kernel_ridge(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csr(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsr, y).predict(Xcsr) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csc(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsc, y).predict(Xcsc) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_singular_kernel(): # alpha=0 causes a LinAlgError in computing the dual coefficients, # which causes a fallback to a lstsq solver. This is tested here. pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) kr = KernelRidge(kernel="linear", alpha=0) ignore_warnings(kr.fit)(X, y) pred2 = kr.predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed(): for kernel in ["linear", "rbf", "poly", "cosine"]: K = pairwise_kernels(X, X, metric=kernel) pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed_kernel_unchanged(): K = np.dot(X, X.T) K2 = K.copy() KernelRidge(kernel="precomputed").fit(K, y) assert_array_almost_equal(K, K2) def test_kernel_ridge_sample_weights(): K = np.dot(X, X.T) # precomputed kernel sw = np.random.RandomState(0).rand(X.shape[0]) pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) pred3 = KernelRidge(kernel="precomputed", alpha=1).fit(K, y, sample_weight=sw).predict(K) assert_array_almost_equal(pred, pred2) assert_array_almost_equal(pred, pred3) def test_kernel_ridge_multi_output(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) assert_array_almost_equal(pred, pred2) pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) pred3 = np.array([pred3, pred3]).T assert_array_almost_equal(pred2, pred3)
bsd-3-clause
gechong/XlsxWriter
examples/pandas_datetime.py
9
1758
############################################################################## # # An example of converting a Pandas dataframe with datetimes to an xlsx file # with a default datetime and date format using Pandas and XlsxWriter. # # Copyright 2013-2015, John McNamara, jmcnamara@cpan.org # import pandas as pd from datetime import datetime, date # Create a Pandas dataframe from some datetime data. df = pd.DataFrame({'Date and time': [datetime(2015, 1, 1, 11, 30, 55), datetime(2015, 1, 2, 1, 20, 33), datetime(2015, 1, 3, 11, 10 ), datetime(2015, 1, 4, 16, 45, 35), datetime(2015, 1, 5, 12, 10, 15)], 'Dates only': [date(2015, 2, 1), date(2015, 2, 2), date(2015, 2, 3), date(2015, 2, 4), date(2015, 2, 5)], }) # Create a Pandas Excel writer using XlsxWriter as the engine. # Also set the default datetime and date formats. writer = pd.ExcelWriter("pandas_datetime.xlsx", engine='xlsxwriter', datetime_format='mmm d yyyy hh:mm:ss', date_format='mmmm dd yyyy') # Convert the dataframe to an XlsxWriter Excel object. df.to_excel(writer, sheet_name='Sheet1') # Get the xlsxwriter workbook and worksheet objects in order to set the column # widths, to make the dates clearer. workbook = writer.book worksheet = writer.sheets['Sheet1'] worksheet.set_column('B:C', 20) # Close the Pandas Excel writer and output the Excel file. writer.save()
bsd-2-clause
depet/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
7
3089
# Author: Lars Buitinck <L.J.Buitinck@uva.nl> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from nose.tools import assert_equal from nose.tools import assert_true from nose.tools import assert_false from numpy.testing import assert_array_equal from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): v = DictVectorizer(sparse=sparse, dtype=dtype) X = v.fit_transform(D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(D).A) else: assert_array_equal(X, v.transform(D)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
FederatedAI/FATE
python/federatedml/evaluation/metrics/classification_metric.py
1
21454
import copy import sys import numpy as np import pandas as pd from scipy.stats import stats from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import average_precision_score ROUND_NUM = 6 def neg_pos_count(labels: np.ndarray, pos_label: int): pos_num = ((labels == pos_label) + 0).sum() neg_num = len(labels) - pos_num return pos_num, neg_num def sort_score_and_label(labels: np.ndarray, pred_scores: np.ndarray): labels = np.array(labels) pred_scores = np.array(pred_scores) sort_idx = np.flip(pred_scores.argsort()) sorted_labels = labels[sort_idx] sorted_scores = pred_scores[sort_idx] return sorted_labels, sorted_scores class ConfusionMatrix(object): @staticmethod def compute(sorted_labels: list, sorted_pred_scores: list, score_thresholds: list, ret: list, pos_label=1): for ret_type in ret: assert ret_type in ['tp', 'tn', 'fp', 'fn'] sorted_labels = np.array(sorted_labels) sorted_scores = np.array(sorted_pred_scores) sorted_labels[sorted_labels != pos_label] = 0 sorted_labels[sorted_labels == pos_label] = 1 score_thresholds = np.array([score_thresholds]).transpose() pred_labels = (sorted_scores > score_thresholds) + 0 ret_dict = {} if 'tp' in ret or 'tn' in ret: match_arr = (pred_labels + sorted_labels) if 'tp' in ret: tp_num = (match_arr == 2).sum(axis=-1) ret_dict['tp'] = tp_num if 'tn' in ret: tn_num = (match_arr == 0).sum(axis=-1) ret_dict['tn'] = tn_num if 'fp' in ret or 'fn' in ret: match_arr = (sorted_labels - pred_labels) if 'fp' in ret: fp_num = (match_arr == -1).sum(axis=-1) ret_dict['fp'] = fp_num if 'fn' in ret: fn_num = (match_arr == 1).sum(axis=-1) ret_dict['fn'] = fn_num return ret_dict class ThresholdCutter(object): @staticmethod def cut_by_step(sorted_scores, steps=0.01): assert isinstance(steps, float) and (0 < steps < 1) thresholds = list(set(sorted_scores)) thresholds, cuts = ThresholdCutter.__filt_threshold(thresholds, 0.01) score_threshold = thresholds return score_threshold, cuts @staticmethod def cut_by_index(sorted_scores): cuts = np.array([c / 100 for c in range(100)]) data_size = len(sorted_scores) indexs = [int(data_size * cut) for cut in cuts] score_threshold = [sorted_scores[idx] for idx in indexs] return score_threshold, cuts @staticmethod def __filt_threshold(thresholds, step): cuts = list(map(float, np.arange(0, 1, step))) size = len(list(thresholds)) thresholds.sort(reverse=True) index_list = [int(size * cut) for cut in cuts] new_thresholds = [thresholds[idx] for idx in index_list] return new_thresholds, cuts @staticmethod def cut_by_quantile(scores, quantile_list=None, interpolation='nearest', remove_duplicate=True): if quantile_list is None: # default is 20 intervals quantile_list = [round(i * 0.05, 3) for i in range(20)] + [1.0] quantile_val = np.quantile(scores, quantile_list, interpolation=interpolation) if remove_duplicate: quantile_val = sorted(list(set(quantile_val))) else: quantile_val = sorted(list(quantile_val)) if len(quantile_val) == 1: quantile_val = [np.min(scores), np.max(scores)] return quantile_val class KS(object): @staticmethod def compute(labels, pred_scores, pos_label=1): sorted_labels, sorted_scores = sort_score_and_label(labels, pred_scores) score_threshold, cuts = ThresholdCutter.cut_by_index(sorted_scores) confusion_mat = ConfusionMatrix.compute(sorted_labels, sorted_scores, score_threshold, ret=['tp', 'fp'], pos_label=pos_label) pos_num, neg_num = neg_pos_count(sorted_labels, pos_label=pos_label) assert pos_num > 0 and neg_num > 0, "error when computing KS metric, pos sample number and neg sample number" \ "must be larger than 0" tpr_arr = confusion_mat['tp'] / pos_num fpr_arr = confusion_mat['fp'] / neg_num tpr = np.append(tpr_arr, np.array([1.0])) fpr = np.append(fpr_arr, np.array([1.0])) cuts = np.append(cuts, np.array([1.0])) ks_curve = tpr[:-1] - fpr[:-1] ks_val = np.max(ks_curve) return ks_val, fpr, tpr, score_threshold, cuts class BiClassMetric(object): def __init__(self, cut_method='step', remove_duplicate=False, pos_label=1): assert cut_method in ['step', 'quantile'] self.cut_method = cut_method self.remove_duplicate = remove_duplicate # available when cut_method is quantile self.pos_label = pos_label def prepare_confusion_mat(self, labels, scores, add_to_end=True, ): sorted_labels, sorted_scores = sort_score_and_label(labels, scores) score_threshold, cuts = None, None if self.cut_method == 'step': score_threshold, cuts = ThresholdCutter.cut_by_step(sorted_scores, steps=0.01) if add_to_end: score_threshold.append(min(score_threshold) - 0.001) cuts.append(1) elif self.cut_method == 'quantile': score_threshold = ThresholdCutter.cut_by_quantile(sorted_scores, remove_duplicate=self.remove_duplicate) score_threshold = list(np.flip(score_threshold)) confusion_mat = ConfusionMatrix.compute(sorted_labels, sorted_scores, score_threshold, ret=['tp', 'fp', 'fn', 'tn'], pos_label=self.pos_label) return confusion_mat, score_threshold, cuts def compute(self, labels, scores, ): confusion_mat, score_threshold, cuts = self.prepare_confusion_mat(labels, scores, ) metric_scores = self.compute_metric_from_confusion_mat(confusion_mat) return list(metric_scores), score_threshold, cuts def compute_metric_from_confusion_mat(self, *args): raise NotImplementedError() class Lift(BiClassMetric): """ Compute lift """ @staticmethod def _lift_helper(val): tp, fp, fn, tn, labels_num = val[0], val[1], val[2], val[3], val[4] lift_x_type, lift_y_type = [], [] for label_type in ['1', '0']: if label_type == '0': tp, tn = tn, tp fp, fn = fn, fp if labels_num == 0: lift_x = 1 denominator = 1 else: lift_x = (tp + fp) / labels_num denominator = (tp + fn) / labels_num if tp + fp == 0: numerator = 1 else: numerator = tp / (tp + fp) if denominator == 0: lift_y = sys.float_info.max else: lift_y = numerator / denominator lift_x_type.insert(0, lift_x) lift_y_type.insert(0, lift_y) return lift_x_type, lift_y_type def compute(self, labels, pred_scores, pos_label=1): confusion_mat, score_threshold, cuts = self.prepare_confusion_mat(labels, pred_scores, add_to_end=False, ) lifts_y, lifts_x = self.compute_metric_from_confusion_mat(confusion_mat, len(labels), ) return lifts_y, lifts_x, list(score_threshold) def compute_metric_from_confusion_mat(self, confusion_mat, labels_len, ): labels_nums = np.zeros(len(confusion_mat['tp'])) + labels_len rs = map(self._lift_helper, zip(confusion_mat['tp'], confusion_mat['fp'], confusion_mat['fn'], confusion_mat['tn'], labels_nums)) rs = list(rs) lifts_x, lifts_y = [i[0] for i in rs], [i[1] for i in rs] return lifts_y, lifts_x class Gain(BiClassMetric): """ Compute Gain """ @staticmethod def _gain_helper(val): tp, fp, fn, tn, num_label = val[0], val[1], val[2], val[3], val[4] gain_x_type, gain_y_type = [], [] for pos_label in ['1', '0']: if pos_label == '0': tp, tn = tn, tp fp, fn = fn, fp if num_label == 0: gain_x = 1 else: gain_x = float((tp + fp) / num_label) num_positives = tp + fn if num_positives == 0: gain_y = 1 else: gain_y = float(tp / num_positives) gain_x_type.insert(0, gain_x) gain_y_type.insert(0, gain_y) return gain_x_type, gain_y_type def compute(self, labels, pred_scores, pos_label=1): confusion_mat, score_threshold, cuts = self.prepare_confusion_mat(labels, pred_scores, add_to_end=False, ) gain_y, gain_x = self.compute_metric_from_confusion_mat(confusion_mat, len(labels)) return gain_y, gain_x, list(score_threshold) def compute_metric_from_confusion_mat(self, confusion_mat, labels_len): labels_nums = np.zeros(len(confusion_mat['tp'])) + labels_len rs = map(self._gain_helper, zip(confusion_mat['tp'], confusion_mat['fp'], confusion_mat['fn'], confusion_mat['tn'], labels_nums)) rs = list(rs) gain_x, gain_y = [i[0] for i in rs], [i[1] for i in rs] return gain_y, gain_x class BiClassPrecision(BiClassMetric): """ Compute binary classification precision """ def compute_metric_from_confusion_mat(self, confusion_mat, formatted=True, impute_val=1.0): numerator = confusion_mat['tp'] denominator = (confusion_mat['tp'] + confusion_mat['fp']) zero_indexes = (denominator == 0) denominator[zero_indexes] = 1 precision_scores = numerator / denominator precision_scores[zero_indexes] = impute_val # impute_val is for prettifying when drawing pr curves if formatted: score_formatted = [[0, i] for i in precision_scores] return score_formatted else: return precision_scores class MultiClassPrecision(object): """ Compute multi-classification precision """ def compute(self, labels, pred_scores): all_labels = list(set(labels).union(set(pred_scores))) all_labels.sort() return precision_score(labels, pred_scores, average=None), all_labels class BiClassRecall(BiClassMetric): """ Compute binary classification recall """ def compute_metric_from_confusion_mat(self, confusion_mat, formatted=True): recall_scores = confusion_mat['tp'] / (confusion_mat['tp'] + confusion_mat['fn']) if formatted: score_formatted = [[0, i] for i in recall_scores] return score_formatted else: return recall_scores class MultiClassRecall(object): """ Compute multi-classification recall """ def compute(self, labels, pred_scores): all_labels = list(set(labels).union(set(pred_scores))) all_labels.sort() return recall_score(labels, pred_scores, average=None), all_labels class BiClassAccuracy(BiClassMetric): """ Compute binary classification accuracy """ def compute(self, labels, scores, normalize=True): confusion_mat, score_threshold, cuts = self.prepare_confusion_mat(labels, scores) metric_scores = self.compute_metric_from_confusion_mat(confusion_mat, normalize=normalize) return list(metric_scores), score_threshold[: len(metric_scores)], cuts[: len(metric_scores)] def compute_metric_from_confusion_mat(self, confusion_mat, normalize=True): rs = (confusion_mat['tp'] + confusion_mat['tn']) / \ (confusion_mat['tp'] + confusion_mat['tn'] + confusion_mat['fn'] + confusion_mat['fp']) if normalize \ else (confusion_mat['tp'] + confusion_mat['tn']) return rs[:-1] class MultiClassAccuracy(object): """ Compute multi-classification accuracy """ def compute(self, labels, pred_scores, normalize=True): return accuracy_score(labels, pred_scores, normalize) class FScore(object): """ Compute F score from bi-class confusion mat """ @staticmethod def compute(labels, pred_scores, beta=1, pos_label=1): sorted_labels, sorted_scores = sort_score_and_label(labels, pred_scores) score_threshold, cuts = ThresholdCutter.cut_by_step(sorted_scores, steps=0.01) score_threshold.append(0) confusion_mat = ConfusionMatrix.compute(sorted_labels, sorted_scores, score_threshold, ret=['tp', 'fp', 'fn', 'tn'], pos_label=pos_label) precision_computer = BiClassPrecision() recall_computer = BiClassRecall() p_score = precision_computer.compute_metric_from_confusion_mat(confusion_mat, formatted=False) r_score = recall_computer.compute_metric_from_confusion_mat(confusion_mat, formatted=False) beta_2 = beta * beta denominator = (beta_2 * p_score + r_score) denominator[denominator == 0] = 1e-6 # in case denominator is 0 numerator = (1 + beta_2) * (p_score * r_score) f_score = numerator / denominator return f_score, score_threshold, cuts class PSI(object): def compute(self, train_scores: list, validate_scores: list, train_labels=None, validate_labels=None, debug=False, str_intervals=False, round_num=3, pos_label=1): """ train/validate scores: predicted scores on train/validate set train/validate labels: true labels debug: print debug message if train&validate labels are not None, count positive sample percentage in every interval pos_label: pos label round_num: round number str_intervals: return str intervals """ train_scores = np.array(train_scores) validate_scores = np.array(validate_scores) quantile_points = ThresholdCutter().cut_by_quantile(train_scores) train_count = self.quantile_binning_and_count(train_scores, quantile_points) validate_count = self.quantile_binning_and_count(validate_scores, quantile_points) train_pos_perc, validate_pos_perc = None, None if train_labels is not None and validate_labels is not None: assert len(train_labels) == len(train_scores) and len(validate_labels) == len(validate_scores) train_labels, validate_labels = np.array(train_labels), np.array(validate_labels) train_pos_count = self.quantile_binning_and_count(train_scores[train_labels == pos_label], quantile_points) validate_pos_count = self.quantile_binning_and_count(validate_scores[validate_labels == pos_label], quantile_points) train_pos_perc = np.array(train_pos_count['count']) / np.array(train_count['count']) validate_pos_perc = np.array(validate_pos_count['count']) / np.array(validate_count['count']) # handle special cases train_pos_perc[train_pos_perc == np.inf] = -1 validate_pos_perc[validate_pos_perc == np.inf] = -1 train_pos_perc[np.isnan(train_pos_perc)] = 0 validate_pos_perc[np.isnan(validate_pos_perc)] = 0 if debug: print(train_count) print(validate_count) assert (train_count['interval'] == validate_count['interval']), 'train count interval is not equal to ' \ 'validate count interval' expected_interval = np.array(train_count['count']) actual_interval = np.array(validate_count['count']) expected_interval = expected_interval.astype(np.float) actual_interval = actual_interval.astype(np.float) psi_scores, total_psi, expected_interval, actual_interval, expected_percentage, actual_percentage \ = self.psi_score(expected_interval, actual_interval, len(train_scores), len(validate_scores)) intervals = train_count['interval'] if not str_intervals else PSI.intervals_to_str(train_count['interval'], round_num=round_num) if train_labels is None and validate_labels is None: return psi_scores, total_psi, expected_interval, expected_percentage, actual_interval, actual_percentage, \ intervals else: return psi_scores, total_psi, expected_interval, expected_percentage, actual_interval, actual_percentage, \ train_pos_perc, validate_pos_perc, intervals @staticmethod def quantile_binning_and_count(scores, quantile_points): """ left edge and right edge of last interval are closed """ assert len(quantile_points) >= 2 left_bounds = copy.deepcopy(quantile_points[:-1]) right_bounds = copy.deepcopy(quantile_points[1:]) last_interval_left = left_bounds.pop() last_interval_right = right_bounds.pop() bin_result_1, bin_result_2 = None, None if len(left_bounds) != 0 and len(right_bounds) != 0: bin_result_1 = pd.cut(scores, pd.IntervalIndex.from_arrays(left_bounds, right_bounds, closed='left')) bin_result_2 = pd.cut(scores, pd.IntervalIndex.from_arrays([last_interval_left], [last_interval_right], closed='both')) count1 = None if bin_result_1 is None else bin_result_1.value_counts().reset_index() count2 = bin_result_2.value_counts().reset_index() # if predict scores are the same, count1 will be None, only one interval exists final_interval = list(count1['index']) + list(count2['index']) if count1 is not None else list(count2['index']) final_count = list(count1[0]) + list(count2[0]) if count1 is not None else list(count2[0]) rs = {'interval': final_interval, 'count': final_count} return rs @staticmethod def interval_psi_score(val): expected, actual = val[0], val[1] return (actual - expected) * np.log(actual / expected) @staticmethod def intervals_to_str(intervals, round_num=3): str_intervals = [] for interval in intervals: left_bound, right_bound = '[', ']' if interval.closed == 'left': right_bound = ')' elif interval.closed == 'right': left_bound = '(' str_intervals.append("{}{}, {}{}".format(left_bound, round(interval.left, round_num), round(interval.right, round_num), right_bound)) return str_intervals @staticmethod def psi_score(expected_interval: np.ndarray, actual_interval: np.ndarray, expect_total_num, actual_total_num, debug=False): expected_interval[expected_interval == 0] = 1e-6 # in case no overlap samples actual_interval[actual_interval == 0] = 1e-6 # in case no overlap samples expected_percentage = expected_interval / expect_total_num actual_percentage = actual_interval / actual_total_num if debug: print(expected_interval) print(actual_interval) print(expected_percentage) print(actual_percentage) psi_scores = list(map(PSI.interval_psi_score, zip(expected_percentage, actual_percentage))) psi_scores = np.array(psi_scores) total_psi = psi_scores.sum() return psi_scores, total_psi, expected_interval, actual_interval, expected_percentage, actual_percentage class KSTest(object): @staticmethod def compute(train_scores, validate_scores): """ train/validate scores: predicted scores on train/validate set """ return stats.ks_2samp(train_scores, validate_scores).pvalue class AveragePrecisionScore(object): @staticmethod def compute(train_scores, validate_scores, train_labels, validate_labels): """ train/validate scores: predicted scores on train/validate set train/validate labels: true labels """ train_mAP = average_precision_score(train_labels, train_scores) validate_mAP = average_precision_score(validate_labels, validate_scores) return abs(train_mAP - validate_mAP) class Distribution(object): @staticmethod def compute(train_scores: list, validate_scores: list): """ train/validate scores: predicted scores on train/validate set """ train_scores = np.array(train_scores) validate_scores = np.array(validate_scores) validate_scores = dict(validate_scores) count = 0 for key, value in train_scores: if key in validate_scores.keys() and value != validate_scores.get(key): count += 1 return count / len(train_scores)
apache-2.0
justincassidy/scikit-learn
benchmarks/bench_20newsgroups.py
377
3555
from __future__ import print_function, division from time import time import argparse import numpy as np from sklearn.dummy import DummyClassifier from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.metrics import accuracy_score from sklearn.utils.validation import check_array from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB ESTIMATORS = { "dummy": DummyClassifier(), "random_forest": RandomForestClassifier(n_estimators=100, max_features="sqrt", min_samples_split=10), "extra_trees": ExtraTreesClassifier(n_estimators=100, max_features="sqrt", min_samples_split=10), "logistic_regression": LogisticRegression(), "naive_bayes": MultinomialNB(), "adaboost": AdaBoostClassifier(n_estimators=10), } ############################################################################### # Data if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-e', '--estimators', nargs="+", required=True, choices=ESTIMATORS) args = vars(parser.parse_args()) data_train = fetch_20newsgroups_vectorized(subset="train") data_test = fetch_20newsgroups_vectorized(subset="test") X_train = check_array(data_train.data, dtype=np.float32, accept_sparse="csc") X_test = check_array(data_test.data, dtype=np.float32, accept_sparse="csr") y_train = data_train.target y_test = data_test.target print("20 newsgroups") print("=============") print("X_train.shape = {0}".format(X_train.shape)) print("X_train.format = {0}".format(X_train.format)) print("X_train.dtype = {0}".format(X_train.dtype)) print("X_train density = {0}" "".format(X_train.nnz / np.product(X_train.shape))) print("y_train {0}".format(y_train.shape)) print("X_test {0}".format(X_test.shape)) print("X_test.format = {0}".format(X_test.format)) print("X_test.dtype = {0}".format(X_test.dtype)) print("y_test {0}".format(y_test.shape)) print() print("Classifier Training") print("===================") accuracy, train_time, test_time = {}, {}, {} for name in sorted(args["estimators"]): clf = ESTIMATORS[name] try: clf.set_params(random_state=0) except (TypeError, ValueError): pass print("Training %s ... " % name, end="") t0 = time() clf.fit(X_train, y_train) train_time[name] = time() - t0 t0 = time() y_pred = clf.predict(X_test) test_time[name] = time() - t0 accuracy[name] = accuracy_score(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print() print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "Accuracy")) print("-" * 44) for name in sorted(accuracy, key=accuracy.get): print("%s %s %s %s" % (name.ljust(16), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % accuracy[name]).center(10))) print()
bsd-3-clause
geopandas/geopandas
geopandas/tools/tests/test_tools.py
2
2954
from distutils.version import LooseVersion from shapely.geometry import LineString, MultiPoint, Point import pyproj from pyproj import CRS from geopandas import GeoSeries from geopandas.tools import collect from geopandas.tools.crs import epsg_from_crs, explicit_crs_from_epsg import pytest # pyproj 2.3.1 fixed a segfault for the case working in an environment with # 'init' dicts (https://github.com/pyproj4/pyproj/issues/415) PYPROJ_LT_231 = LooseVersion(pyproj.__version__) < LooseVersion("2.3.1") class TestTools: def setup_method(self): self.p1 = Point(0, 0) self.p2 = Point(1, 1) self.p3 = Point(2, 2) self.mpc = MultiPoint([self.p1, self.p2, self.p3]) self.mp1 = MultiPoint([self.p1, self.p2]) self.line1 = LineString([(3, 3), (4, 4)]) def test_collect_single(self): result = collect(self.p1) assert self.p1.equals(result) def test_collect_single_force_multi(self): result = collect(self.p1, multi=True) expected = MultiPoint([self.p1]) assert expected.equals(result) def test_collect_multi(self): result = collect(self.mp1) assert self.mp1.equals(result) def test_collect_multi_force_multi(self): result = collect(self.mp1) assert self.mp1.equals(result) def test_collect_list(self): result = collect([self.p1, self.p2, self.p3]) assert self.mpc.equals(result) def test_collect_GeoSeries(self): s = GeoSeries([self.p1, self.p2, self.p3]) result = collect(s) assert self.mpc.equals(result) def test_collect_mixed_types(self): with pytest.raises(ValueError): collect([self.p1, self.line1]) def test_collect_mixed_multi(self): with pytest.raises(ValueError): collect([self.mpc, self.mp1]) @pytest.mark.skipif(PYPROJ_LT_231, reason="segfault") def test_epsg_from_crs(self): with pytest.warns(FutureWarning): assert epsg_from_crs({"init": "epsg:4326"}) == 4326 assert epsg_from_crs({"init": "EPSG:4326"}) == 4326 assert epsg_from_crs("+init=epsg:4326") == 4326 @pytest.mark.skipif(PYPROJ_LT_231, reason="segfault") def test_explicit_crs_from_epsg(self): with pytest.warns(FutureWarning): assert explicit_crs_from_epsg(epsg=4326) == CRS.from_epsg(4326) assert explicit_crs_from_epsg(epsg="4326") == CRS.from_epsg(4326) assert explicit_crs_from_epsg(crs={"init": "epsg:4326"}) == CRS.from_dict( {"init": "epsg:4326"} ) assert explicit_crs_from_epsg(crs="+init=epsg:4326") == CRS.from_proj4( "+init=epsg:4326" ) @pytest.mark.filterwarnings("ignore:explicit_crs_from_epsg:FutureWarning") def test_explicit_crs_from_epsg__missing_input(self): with pytest.raises(ValueError): explicit_crs_from_epsg()
bsd-3-clause
mstrader/MkidDigitalReadout
DarknessFilters/makeNoiseSpectrum.py
1
3961
from matplotlib import rcParams, rc import numpy as np import sys import scipy.interpolate import scipy.signal from baselineIIR import IirFilter import matplotlib.pyplot as plt def makeWienerNoiseSpectrum(data, peakIndices=[], numBefore=100, numAfter=700, noiseOffsetFromPeak=200, sampleRate=1e6, template=[],isVerbose=False,baselineSubtract=True): nFftPoints = numBefore + numAfter peakIndices=np.array(peakIndices).astype(int) #If no peaks, choose random indices to make spectrum if len(peakIndices)==0: print 'warning: makeWienerNoiseSpectrum was not passed any peakIndices. Generating random indicies now' peakIndices=np.array([0]) rate = len(data)/nFftPoints/10 while peakIndices[-1]<(len(data)-1): prob=np.random.rand() currentIndex=peakIndices[-1] peakIndices=np.append(peakIndices,currentIndex+np.ceil(-np.log(prob)/rate).astype(int)) peakIndices=peakIndices[:-2] if len(peakIndices)==0: raise ValueError('makeWienerNoiseSpectrum: input data set is too short for the number of FFT points specified') #Baseline subtract noise data if(baselineSubtract): noiseStream = np.array([]) for iPeak,peakIndex in enumerate(peakIndices): if peakIndex > nFftPoints+noiseOffsetFromPeak and peakIndex < len(data)-numAfter: noiseStream = np.append(noiseStream, data[peakIndex-nFftPoints-noiseOffsetFromPeak:peakIndex-noiseOffsetFromPeak]) data = data - np.mean(noiseStream) #Calculate noise spectra for the defined area before each pulse noiseSpectra = np.zeros((len(peakIndices), nFftPoints)) rejectInd=np.array([]) for iPeak,peakIndex in enumerate(peakIndices): if peakIndex > nFftPoints+noiseOffsetFromPeak and peakIndex < len(data)-numAfter: noiseData = data[peakIndex-nFftPoints-noiseOffsetFromPeak:peakIndex-noiseOffsetFromPeak] noiseSpectra[iPeak] = np.abs(np.fft.fft(data[peakIndex-nFftPoints-noiseOffsetFromPeak:peakIndex-noiseOffsetFromPeak])/nFftPoints)**2 if len(template)!=0: filteredData=np.correlate(noiseData,template,mode='same') peakDict=tP.detectPulses(filteredData, nSigmaThreshold = 3., negDerivLenience = 1, bNegativePulses=False) if len(peakDict['peakIndices'])!=0: rejectInd=np.append(rejectInd,iPeak) #Remove indicies with pulses by coorelating with a template if provided if len(template)!=0: noiseSpectra = np.delete(noiseSpectra, rejectInd, axis=0) noiseFreqs = np.fft.fftfreq(nFftPoints,1./sampleRate) noiseSpectrum = np.median(noiseSpectra,axis=0) #noiseSpectrum[0] = 2.*noiseSpectrum[1] #look into this later 8/15/16 if isVerbose: print len(noiseSpectra[:,0]),'traces used to make noise spectrum', len(rejectInd), 'cut for pulse contamination' return {'noiseSpectrum':noiseSpectrum, 'noiseFreqs':noiseFreqs} def covFromData(data,size=800,nTrials=None): nSamples = len(data) if nTrials is None: nTrials = nSamples//size data = data[0:nTrials*size] data = data.reshape((nTrials,size)) data = data.T covMatrix = np.cov(data) covMatrixInv = np.linalg.inv(covMatrix) return {'covMatrix':covMatrix,'covMatrixInv':covMatrixInv} def covFromPsd(powerSpectrum,size=None): autocovariance = np.abs(np.fft.ifft(powerSpectrum)) if size is None: size = len(autocovariance) sampledAutocovariance = autocovariance[0:size] shiftingRow = np.concatenate((sampledAutocovariance[:0:-1],sampledAutocovariance)) covMatrix = [] for iRow in range(size): covMatrix.append(shiftingRow[size-iRow-1:size-iRow-1+size]) covMatrix = np.array(covMatrix) covMatrixInv = np.linalg.inv(covMatrix) return {'covMatrix':covMatrix,'covMatrixInv':covMatrixInv,'autocovariance':sampledAutocovariance}
gpl-2.0
cerebis/meta-sweeper
bin/truthtable.py
1
21629
""" meta-sweeper - for performing parametric sweeps of simulated metagenomic sequencing experiments. Copyright (C) 2016 "Matthew Z DeMaere" This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import copy import json from collections import OrderedDict, Iterable, Counter import numpy as np import pandas as pd import yaml import io_utils YAML_WIDTH = 1000 def order_rep(dumper, data): """ Dump OrderedDict like a regular dict. Will not reserialize ordered in this case. :param dumper: :param data: :return: representer """ return dumper.represent_mapping(u'tag:yaml.org,2002:map', data.items(), flow_style=False) yaml.add_representer(OrderedDict, order_rep) class AssignmentEncoder(json.JSONEncoder): """ Simple JSON Encoder which stores an Assignment as a dict """ def default(self, obj): """ Members to dictionary :param obj: instance to convert :return: dictionary of members """ return obj.__dict__ class Assignment: """ Represents the assignment of an object to 1 or many classes """ def __init__(self, mapping, weight=1): self.mapping = mapping self.weight = weight def get_classes(self): """ :return: the list of classes """ return self.mapping.keys() def get_primary_class(self): """ The class possessing the largest weight. Ties are broken by random uniform selection. :return: most significant (primary) class """ if len(self.mapping) == 1: return self.mapping.keys()[0] else: _v = sorted(self.mapping.items(), key=lambda x: x[1], reverse=True) _nv = np.array([vi[1] for vi in _v]) return _v[np.random.choice(np.where(_nv == _nv.max())[0])][0] def mean_proportion(self): """ :return: the mean of assignment weights """ return np.mean(self.mapping.values()) def num_classes(self): """ :return: The number of classes to which the object is assigned """ return len(self.get_classes()) def __repr__(self): return str(self) def __str__(self): return 'weight={0} mapping={1}'.format(self.weight, str(self.mapping)) def assignment_rep(dumper, data): """ Dump Assignment objects as a mapping of member variables :param dumper: :param data: :return: representer """ return dumper.represent_mapping(u'tag:yaml.org,2002:map', data.__dict__, flow_style=True) yaml.add_representer(Assignment, assignment_rep) class TruthTable(object): """ Class which represents a truth table in the general sense. This can be either a prediction or the ground truth. The object stores object:class assignments along with a value representing the support/strength of that assignment. The intention is that this support can be used to convert multi-class assignments to a single most significant assignment. It is up to the user supply to choose a useful support value. """ def __init__(self): self.asgn_dict = {} self.label_map = {} self.label_count = Counter() def __len__(self): """ Length of truth table is equal to the number of assignment classes. :return: number of assignment classes """ return len(self.asgn_dict.keys()) def num_symbols(self): return len(self.label_count) def num_assignments(self): return sum(self.label_count.values()) def num_objects(self): return len(self.asgn_dict.keys()) def degeneracy(self, lengths=None): """ Calculate the degeneracy inherent in this truthtable. For non-overlapping assignments (clusterings) this will be 1. If there is overlap (degenerate assignment) (soft-clustering) then this number will be >1. If a dictionary of object lengths (weights) is supplied, the measure is weighted by the size of objects. :param lengths: a dictionary of object lengths/weights :return: a value >= 1. """ nobj = self.num_objects() if nobj == 0: return None if lengths: s = 0 l = 0 for k, v in self.asgn_dict.iteritems(): s += v.num_classes() * lengths[k] l += lengths[k] return s/float(l) else: return float(self.num_assignments()) / nobj def invert(self): cl = {} for oi, clist in self.asgn_dict.iteritems(): for ci in clist.mapping: if ci not in cl: cl[ci] = set() cl[ci].add(oi) return cl def mean_overlap(self, lengths=None): cl = self.invert() ckeys = cl.keys() nkeys = len(ckeys) if nkeys == 0: return None ovl = 0.0 if lengths: for i in xrange(nkeys): for j in xrange(i+1, nkeys): int_cls = cl[ckeys[i]] & cl[ckeys[j]] sint = 0 for ic in int_cls: sint += lengths[ic] uni_cls = cl[ckeys[i]] | cl[ckeys[j]] sovl = 0 for ic in uni_cls: sovl += lengths[ic] ovl += sint / float(sovl) return ovl / (2*nkeys) else: for i in xrange(nkeys): for j in xrange(i+1, nkeys): int_cls = len(cl[ckeys[i]] & cl[ckeys[j]]) uni_cls = len(cl[ckeys[i]] | cl[ckeys[j]]) ovl += int_cls / float(uni_cls) return ovl / (2*nkeys) def overlaps(self, lengths=None): cl = self.invert() ckeys = cl.keys() nkeys = len(ckeys) if nkeys == 0: return None print nkeys ovl = np.zeros((nkeys, nkeys)) if lengths: for i in xrange(nkeys): for j in xrange(nkeys): int_cls = cl[ckeys[i]] & cl[ckeys[j]] sint = 0 for ic in int_cls: sint += lengths[ic] uni_cls = cl[ckeys[i]] | cl[ckeys[j]] sovl = 0 for ic in uni_cls: sovl += lengths[ic] ovl[i, j] = sint / float(sovl) else: for i in xrange(nkeys): for j in xrange(nkeys): int_cls = len(cl[ckeys[i]] & cl[ckeys[j]]) uni_cls = len(cl[ckeys[i]] | cl[ckeys[j]]) ovl[i, j] = int_cls / float(uni_cls) return pd.DataFrame(ovl, index=ckeys, columns=ckeys) def print_tally(self, max_n=None): n_symbol = self.num_symbols() n_assignments = self.num_assignments() n_objects = self.num_objects() degen_ratio = 100.0 * self.degeneracy() print '{0} symbols in table, {1:.0f} assignments of {2} objects ({3:.1f}% degeneracy)'.format( n_symbol, n_assignments, n_objects, degen_ratio) print 'ext_symb\tint_symb\tcount\tpercentage' for n, ci in enumerate(sorted(self.label_count, key=self.label_count.get, reverse=True), start=1): print '{0}\t{1}\t{2}\t{3:5.3f}'.format(ci, self.label_map[ci], self.label_count[ci], self.label_count[ci] / float(n_assignments)) if n == max_n: break def refresh_counter(self): self.label_count = Counter() for k, v in self.asgn_dict.iteritems(): self.label_count.update(v.mapping) def cluster_extents(self, obj_weights): cl_map = self.invert() extents = {} for ci in cl_map: extents[ci] = np.sum([obj_weights[oi] for oi in cl_map[ci]]) return extents def cluster_N50(self, obj_weights): cl_map = self.invert() n50 = {} for ci in cl_map: desc_len = sorted([obj_weights[oi] for oi in cl_map[ci]], reverse=True) sum_len = np.sum(desc_len) sum_oi = 0 i = None for i in xrange(len(desc_len)): sum_oi += desc_len[i] if sum_oi > 0.5*sum_len: break n50[ci] = desc_len[i] return n50 def _remove_class(self, cl_id, cl_to_obj=None): """ Delete a class from the table. :param cl_id: id of class to delete :param cl_to_obj: class to object dict, if None then it is computed. """ if not cl_to_obj: cl_to_obj = self.invert() for oi in cl_to_obj[cl_id]: # remove the class assignment from each object del self.asgn_dict[oi].mapping[cl_id] if len(self.asgn_dict[oi].mapping) == 0: # delete the object if it is no longer assigned to any class del self.asgn_dict[oi] del self.label_map[cl_id] def filter_extent(self, min_proportion, obj_weights): """ Remove classes which represent less than a threshold proportion of the total extent of the objects in the table. Object weights/lengths must be supplied as a dictionary. If an object becomes unassigned, it is removed. :param min_proportion: threshold minimum extent of a class :param obj_weights: dict of object weights/lengths """ print '##filter_started_with {0}'.format(len(self.label_count.keys())) # make a inverted mapping, to build the deletion collection cl_to_obj = self.invert() sum_weight = float(sum(obj_weights.values())) for ci in cl_to_obj: cl_weight = sum(obj_weights[oi] for oi in cl_to_obj[ci])/sum_weight if cl_weight < min_proportion: self._remove_class(ci, cl_to_obj) self.refresh_counter() if len(self.label_count) == 0: raise ValueError('Filtering resulted in an empty table') print '##filter_finished_with {0}'.format(len(self.label_count.keys())) def filter_class(self, min_proportion): """ Remove classes which represent less than a threshold proportion of all objects in the table. This can be used to address problems of scale wrt algorithm performance. :param min_proportion least significant weight for a class assignment to pass """ print '##filter_started_with {0}'.format(len(self.label_count.keys())) cl_to_obj = self.invert() n_obj = float(sum(self.label_count.values())) for ci, cl_size in self.label_count.iteritems(): if self.label_count[ci] / n_obj < min_proportion: self._remove_class(ci, cl_to_obj) self.refresh_counter() if len(self.label_count) == 0: raise ValueError('Filtering resulted in an empty table') print '##filter_finished_with {0}'.format(len(self.label_count.keys())) def get_weights(self): _w = {} for k, asgn in self.asgn_dict.iteritems(): _w[k] = asgn.weight return _w def soft(self, universal=False): """ Soft clustering result :param universal: use universal symbols rather than labels supplied :return plain dictionary with degenerate classification """ _s = OrderedDict() _keys = sorted(self.asgn_dict.keys()) for k in _keys: clz = self.asgn_dict[k].mapping.keys() if universal: # relabel with universal symbols if requested clz = [self.label_map[ci] for ci in clz] _s[k] = set(clz) return _s def hard(self, universal=False, use_set=False): """ Convert TT to a plain dictionary with the single most significant classification only. In the case of a tie, no effort is made to be uniformly random in the case of a tie and dependent on the behaviour of sort. :param universal: use universal symbols rather than labels supplied :return plain dict with only one class->cluster mapping. """ _s = OrderedDict() _keys = sorted(self.asgn_dict.keys()) for _k in _keys: pc = self.asgn_dict[_k].get_primary_class() if universal: pc = self.label_map[pc] _s[_k] = pc if not use_set else set([pc]) return _s def get(self, key): return self.asgn_dict.get(key) def put(self, key, value, weight=None): self.asgn_dict[key] = Assignment(value) if weight: self.asgn_dict[key].weight = weight def update_from_serialized(self, yd): """ Initialise a TruthTable from a generic dict of dicts object most likely retrieved from a serialized object. We chose to avoid a custom class here for inter-codebase portability. :param yd: generic yaml object, dict of dicts :return: """ for k, v in yd.iteritems(): self.asgn_dict[k] = Assignment(v['mapping'], v['weight']) self.label_count.update(v['mapping'].keys()) labels = sorted(self.label_count.keys()) self.label_map = dict((l, n) for n, l in enumerate(labels, 1)) def update(self, dt, weights=None, min_score=0): """ Initialise the assignment dictionary and also generate a mapping of class symbol to the positive integers. We can use this as a universal symbol basis. :param dt: the dictionary to initialise from :param weights: new weights for assignments :param min_score: minimum score to consider """ all_asgn = 0 filt_obj = 0 filt_asgn = 0 all_obj = len(dt) for k, v in dt.iteritems(): v_filt = dict((kv, vv) for kv, vv in v.iteritems() if int(vv) >= min_score) filt_asgn += len(v) - len(v_filt) all_asgn += len(v) if len(v_filt) == 0: filt_obj += 1 continue self.asgn_dict[str(k)] = Assignment(v_filt) if weights: self.asgn_dict[str(k)].weight = weights[k] self.label_count.update(v_filt.keys()) if filt_asgn > 0: print 'Filtered {0}/{1} assignments and {2}/{3} objects below minimum score {4}'.format( filt_asgn, all_asgn, filt_obj, all_obj, min_score) labels = sorted(self.label_count.keys()) self.label_map = dict((l, n) for n, l in enumerate(labels, 1)) def to_vector(self): vec = {} keys = sorted(self.asgn_dict.keys()) hd = self.hard() for k in keys: vec[k] = hd[k] return vec def write(self, pathname, fmt='json'): """ Write the full table in either JSON or YAML format" :param pathname: the output path :param fmt: json or yaml """ TruthTable._write_dict(self.asgn_dict, pathname, fmt=fmt, encoder=AssignmentEncoder) def write_hard(self, pathname, fmt='json'): """ Write a plain dictionary representation of only the most significant object:class assignments. :param pathname: the output path :param fmt: json, yaml or delim """ TruthTable._write_dict(self.hard(), pathname, fmt=fmt) @staticmethod def _write_dict(d, pathname, fmt='json', sep='\t', encoder=None): """ Serialize a plain dict to file :param d: dict to serialize :param pathname: output path :param fmt: json, yaml or delim :param sep: delimited format separator """ with open(pathname, 'w') as h_out: if fmt == 'json': json.dump(d, h_out, cls=encoder, indent=1) elif fmt == 'yaml': yaml.dump(d, h_out, default_flow_style=False, width=YAML_WIDTH) elif fmt == 'delim': for qry, sbjs in d.iteritems(): line = [str(qry)] + [str(si) for si in sorted(sbjs)] h_out.write('{0}\n'.format(sep.join(line))) else: raise RuntimeError('Unknown format requested [{0}]'.format(fmt)) def read_truth(pathname, fmt='json'): """ Read a TruthTable in YAML format :param pathname: path to truth table :param fmt: json or yaml :return: truth table """ with open(pathname, 'r') as h_in: tt = TruthTable() if fmt == 'json': d = io_utils.json_load_byteified(h_in) elif fmt == 'yaml': d = yaml.load(h_in) else: raise RuntimeError('Unsupported format requested [{0}]'.format(format)) tt.update_from_serialized(d) return tt def read_mcl(pathname): """ Read a MCL solution file converting this to a TruthTable :param pathname: mcl output file :return: truth table """ with open(pathname, 'r') as h_in: # read the MCL file, which lists all members of a class on a single line # the class ids are implicit, therefore we use line number. mcl = {} for ci, line in enumerate(h_in, start=1): objects = line.rstrip().split() for oi in objects: if oi not in mcl: mcl[oi] = {} mcl[oi][ci] = 1.0 # there are no weights, therefore give them all 1 # initialise the table tt = TruthTable() tt.update(mcl) return tt def unique_labels(dt): """ Extract the unique set of class labels used in the truth table :param dt: dictionary representation of truth table to analyze :return: sorted set of unique labels """ labels = set() for v in dt.values(): if isinstance(v, Iterable): labels.update(v) else: labels.add(v) return sorted(labels) def crosstab(dt1, dt2): """ Cross-tabulate two truth tables on hard clusters. :param dt1: first dictionary rep of truth table :param dt2: second dictionary rep of truth table :return: pandas dataframe """ joined_keys = sorted(set(dt1.keys() + dt2.keys())) rows = unique_labels(dt1) cols = unique_labels(dt2) ctab = pd.DataFrame(0, index=rows, columns=cols) for k in joined_keys: if k in dt1 and k in dt2: i1 = dt1[k] i2 = dt2[k] ctab.loc[i1, i2] += 1 return ctab def simulate_error(tt, p_mut, p_indel, extra_symb=()): """ Simple method for introducing error in a truth table. This is useful when testing clustering metrics (Fm, Vm, Bcubed, etc). By default, the list of possible symbols is taken from those already assigned, but a user may provide additional symbols. These can provide a useful source of novelty, when for instance an object is already assigned to all existing class symbols. :param tt: the truth table to add error :param p_mut: the probably of a class mutation :param p_indel: the probability of deletion or insertion of a class to an object :param extra_symb: extra class symbols for inserting :return: truth table mutatant """ symbols = list(set(tt.label_count.keys() + extra_symb)) print symbols mut_dict = copy.deepcopy(tt.asgn_dict) for o_i in mut_dict.keys(): others = list(set(symbols) - set(mut_dict[o_i].mapping)) if np.random.uniform() < p_mut: if len(others) > 0: c_mut = np.random.choice(others, 1)[0] c_old = np.random.choice(mut_dict[o_i].mapping.keys(), 1)[0] # retain the weighting from the original to mutated # we do this pedantically so its easy to read weight = mut_dict[o_i].mapping[c_old] mut_dict[o_i].mapping[c_mut] = weight del mut_dict[o_i].mapping[c_old] if np.random.uniform() < p_indel: # flip a coin, delete or insert if np.random.uniform() < 0.5: # delete c_del = np.random.choice(mut_dict[o_i].mapping.keys(), 1)[0] del mut_dict[o_i].mapping[c_del] elif len(others) > 0: # insert from 'others' c_add = np.random.choice(others, 1)[0] num_cl = mut_dict[o_i].num_classes() adj_fac = float(num_cl / (num_cl+1.)) ins_prop = mut_dict[o_i].mean_proportion() * adj_fac for k in mut_dict[o_i].mapping: mut_dict[o_i].mapping[k] *= adj_fac mut_dict[o_i].mapping[c_add] = ins_prop mut_tt = TruthTable() mut_tt.update_from_serialized(mut_dict) return mut_tt
gpl-3.0
abhishek8gupta/sp17-i524
project/S17-IO-3012/code/bin/benchmark_version_import.py
19
4590
import matplotlib.pyplot as plt import sys import pandas as pd def get_parm(): """retrieves mandatory parameter to program @param: none @type: n/a """ try: return sys.argv[1] except: print ('Must enter file name as parameter') exit() def read_file(filename): """reads a file into a pandas dataframe @param: filename The name of the file to read @type: string """ try: return pd.read_csv(filename) except: print ('Error retrieving file') exit() def select_data(benchmark_df, mongo_version, config_replicas, mongos_instances, shard_replicas, shards_per_replica): benchmark_df = benchmark_df[benchmark_df.cloud == "chameleon"] benchmark_df = benchmark_df[benchmark_df.test_size == "large"] if mongo_version != 'X': benchmark_df = benchmark_df[benchmark_df.mongo_version == mongo_version] if config_replicas != 'X': benchmark_df = benchmark_df[benchmark_df.config_replicas == config_replicas] if mongos_instances != 'X': benchmark_df = benchmark_df[benchmark_df.mongos_instances == mongos_instances] if shard_replicas != 'X': benchmark_df = benchmark_df[benchmark_df.shard_replicas == shard_replicas] if shards_per_replica != 'X': benchmark_df = benchmark_df[benchmark_df.shards_per_replica == shards_per_replica] #benchmark_df1 = benchmark_df.groupby(['cloud', 'config_replicas', 'mongos_instances', 'shard_replicas', 'shards_per_replica']).mean() #http://stackoverflow.com/questions/10373660/converting-a-pandas-groupby-object-to-dataframe benchmark_df = benchmark_df.groupby(['cloud', 'config_replicas', 'mongos_instances', 'shard_replicas', 'shards_per_replica'], as_index=False).mean() #http://stackoverflow.com/questions/10373660/converting-a-pandas-groupby-object-to-dataframe #print benchmark_df1['shard_replicas'] #print benchmark_df1 #print benchmark_df benchmark_df = benchmark_df.sort_values(by='shard_replicas', ascending=1) return benchmark_df def make_figure(import_seconds_32, shards_32, import_seconds_34, shards_34): """formats and creates a line chart @param1: find_seconds_kilo Array with find_seconds from kilo @type: numpy array @param2: shards_kilo Array with shards from kilo @type: numpy array @param3: find_seconds_chameleon Array with find_seconds from chameleon @type: numpy array @param4: shards_chameleon Array with shards from chameleon @type: numpy array """ fig = plt.figure() #plt.title('Average MongoImport Runtime with Various Numbers of Shards') plt.ylabel('Runtime in Seconds') plt.xlabel('Number of Shards') # Make the chart plt.plot(shards_32, import_seconds_32, label='Version 3.2') plt.plot(shards_34, import_seconds_34, label='Version 3.4') #http://stackoverflow.com/questions/11744990/how-to-set-auto-for-upper-limit-but-keep-a-fixed-lower-limit-with-matplotlib plt.ylim(ymin=0) plt.legend(loc='best') # Show the chart (for testing) # plt.show() # Save the chart fig.savefig('../report/version_import.png') # Run the program by calling the functions if __name__ == "__main__": filename = get_parm() benchmark_df = read_file(filename) mongo_version = 32 config_replicas = 1 mongos_instances = 1 shard_replicas = 'X' shards_per_replica = 1 select_df = select_data(benchmark_df, mongo_version, config_replicas, mongos_instances, shard_replicas, shards_per_replica) #http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror #percentage death=\ import_seconds_32=select_df.as_matrix(columns=[select_df.columns[6]]) shards_32 = select_df.as_matrix(columns=[select_df.columns[3]]) #http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror mongo_version = 34 config_replicas = 1 mongos_instances = 1 shard_replicas = 'X' shards_per_replica = 1 select_df = select_data(benchmark_df, mongo_version, config_replicas, mongos_instances, shard_replicas, shards_per_replica) #http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror #percentage death=\ import_seconds_34=select_df.as_matrix(columns=[select_df.columns[6]]) shards_34 = select_df.as_matrix(columns=[select_df.columns[3]]) #http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror make_figure(import_seconds_32, shards_32, import_seconds_34, shards_34)
apache-2.0
karstenw/nodebox-pyobjc
examples/Extended Application/sklearn/examples/decomposition/plot_pca_vs_fa_model_selection.py
1
5331
""" =============================================================== Model selection with Probabilistic PCA and Factor Analysis (FA) =============================================================== Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data can be used for model selection and covariance estimation. Here we compare PCA and FA with cross-validation on low rank data corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature). In a second step we compare the model likelihood to the likelihoods obtained from shrinkage covariance estimators. One can observe that with homoscedastic noise both FA and PCA succeed in recovering the size of the low rank subspace. The likelihood with PCA is higher than FA in this case. However PCA fails and overestimates the rank when heteroscedastic noise is present. Under appropriate circumstances the low rank models are more likely than shrinkage models. The automatic estimation from Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 by Thomas P. Minka is also compared. """ # Authors: Alexandre Gramfort # Denis A. Engemann # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.decomposition import PCA, FactorAnalysis from sklearn.covariance import ShrunkCovariance, LedoitWolf from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end print(__doc__) # ############################################################################# # Create the data n_samples, n_features, rank = 1000, 50, 10 sigma = 1. rng = np.random.RandomState(42) U, _, _ = linalg.svd(rng.randn(n_features, n_features)) X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T) # Adding homoscedastic noise X_homo = X + sigma * rng.randn(n_samples, n_features) # Adding heteroscedastic noise sigmas = sigma * rng.rand(n_features) + sigma / 2. X_hetero = X + rng.randn(n_samples, n_features) * sigmas # ############################################################################# # Fit the models n_components = np.arange(0, n_features, 5) # options for n_components def compute_scores(X): pca = PCA(svd_solver='full') fa = FactorAnalysis() pca_scores, fa_scores = [], [] for n in n_components: pca.n_components = n fa.n_components = n pca_scores.append(np.mean(cross_val_score(pca, X))) fa_scores.append(np.mean(cross_val_score(fa, X))) return pca_scores, fa_scores def shrunk_cov_score(X): shrinkages = np.logspace(-2, 0, 30) cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages}) return np.mean(cross_val_score(cv.fit(X).best_estimator_, X)) def lw_score(X): return np.mean(cross_val_score(LedoitWolf(), X)) for X, title in [(X_homo, 'Homoscedastic Noise'), (X_hetero, 'Heteroscedastic Noise')]: pca_scores, fa_scores = compute_scores(X) n_components_pca = n_components[np.argmax(pca_scores)] n_components_fa = n_components[np.argmax(fa_scores)] pca = PCA(svd_solver='full', n_components='mle') pca.fit(X) n_components_pca_mle = pca.n_components_ print("best n_components by PCA CV = %d" % n_components_pca) print("best n_components by FactorAnalysis CV = %d" % n_components_fa) print("best n_components by PCA MLE = %d" % n_components_pca_mle) plt.figure() plt.plot(n_components, pca_scores, 'b', label='PCA scores') plt.plot(n_components, fa_scores, 'r', label='FA scores') plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-') plt.axvline(n_components_pca, color='b', label='PCA CV: %d' % n_components_pca, linestyle='--') plt.axvline(n_components_fa, color='r', label='FactorAnalysis CV: %d' % n_components_fa, linestyle='--') plt.axvline(n_components_pca_mle, color='k', label='PCA MLE: %d' % n_components_pca_mle, linestyle='--') # compare with other covariance estimators plt.axhline(shrunk_cov_score(X), color='violet', label='Shrunk Covariance MLE', linestyle='-.') plt.axhline(lw_score(X), color='orange', label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.') plt.xlabel('nb of components') plt.ylabel('CV scores') plt.legend(loc='lower right') plt.title(title) # plt.show() pltshow(plt)
mit
airanmehr/bio
Scripts/Miscellaneous/Tutorials/demography.py
1
2014
''' Copyleft Mar 10, 2017 Arya Iranmehr, PhD Student, Bafna Lab, UC San Diego, Email: airanmehr@gmail.com ''' import numpy as np; np.set_printoptions(linewidth=200, precision=5, suppress=True) import pandas as pd; pd.options.display.max_rows = 20; pd.options.display.expand_frame_repr = False # import seaborn as sns import pylab as plt; import matplotlib as mpl import os; import simuPOP as sim from simuPOP.demography import * model = MultiStageModel([ InstantChangeModel(T=200, # start with an ancestral population of size 1000 N0=(1000, 'Ancestral'), # change population size at 50 and 60 G=[50, 60], # change to population size 200 and back to 1000 NG=[(200, 'bottleneck'), (1000, 'Post-Bottleneck')]), ExponentialGrowthModel( T=50, # split the population into two subpopulations N0=[(400, 'P1'), (600, 'P2')], # expand to size 4000 and 5000 respectively NT=[4000, 5000])] ) def exp(T=10):return ExponentialGrowthModel(T=T, N0=1000, NT=200) def lin(T=10):return LinearGrowthModel(T=T, N0=200, NT=1000) model=MultiStageModel([exp(),lin(),exp(),lin(),exp(),lin(),exp(),lin(),exp(),lin()]) # model.init_size returns the initial population size # migrate_to is required for migration model=exp(50) #model=lin(50) #model=MultiStageModel([exp(50),lin(50)]) pop = sim.Population(size=model.init_size, loci=1, infoFields=model.info_fields) pop.evolve( initOps=[ sim.InitSex(), sim.InitGenotype(freq=[0.5, 0.5]) ], matingScheme=sim.RandomMating(subPopSize=model), finalOps= sim.Stat(alleleFreq=0, vars=['alleleFreq_sp']), gen=model.num_gens ) model # print out population size and frequency #for idx, name in enumerate(pop.subPopNames()): #print('%s (%d): %.4f' % (name, pop.subPopSize(name), pop.dvars(idx).alleleFreq[0][0])) # get a visual presentation of the demographic model import matplotlib model.plot('/home/arya/bottleneck.png',title='bottleneck')
mit
thilbern/scikit-learn
examples/classification/plot_classifier_comparison.py
181
4699
#!/usr/bin/python # -*- coding: utf-8 -*- """ ===================== Classifier comparison ===================== A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition conveyed by these examples does not necessarily carry over to real datasets. Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers. The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classification accuracy on the test set. """ print(__doc__) # Code source: Gaël Varoquaux # Andreas Müller # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.lda import LDA from sklearn.qda import QDA h = .02 # step size in the mesh names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes", "LDA", "QDA"] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), GaussianNB(), LDA(), QDA()] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds in datasets: # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.show()
bsd-3-clause
JonWel/CoolProp
Web/conf.py
3
11060
# -*- coding: utf-8 -*- # # sampledoc documentation build configuration file, created by # sphinx-quickstart on Tue Aug 11 05:04:40 2009. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # import CoolProp ver = CoolProp.__version__ # The short X.Y version. version = ver.rsplit('.',1)[0] # The full version, including alpha/beta/rc tags. release = ver # Some hacking to determine release or nightly build if ver[-2]=="." and ver[-1].isdigit()>=0 and ver[-3].isdigit()>=0: isRelease = True else: isRelease = False print("------------ Project information ------------") print("Detected version: "+version) print("Detected release: "+release) print("Public release : "+ ("True" if isRelease else "False") ) print(" ") if isRelease: extlinks = {'sfdownloads': ('http://sourceforge.net/projects/coolprop/files/CoolProp/'+release+'/%s',''), 'sfnightly' : ('http://sourceforge.net/projects/coolprop/files/CoolProp/nightly/%s',''), #'bbbinaries' : ('http://www.coolprop.dreamhosters.com:8010/binaries/%s',''), #'bbsphinx' : ('http://www.coolprop.dreamhosters.com:8010/sphinx/%s','') } else: extlinks = {'sfdownloads': ('http://sourceforge.net/projects/coolprop/files/CoolProp/'+release+'/%s',''), 'sfnightly' : ('http://www.coolprop.dreamhosters.com/binaries/%s',''), #'bbbinaries' : ('http://www.coolprop.dreamhosters.com:8010/binaries/%s',''), #'bbsphinx' : ('http://www.coolprop.dreamhosters.com:8010/sphinx/%s','') } import sys, os, datetime #~ # If your extensions are in another directory, add it here. If the directory #~ # is relative to the documentation root, use os.path.abspath to make it #~ # absolute, like shown here. #~ sys.path.append(os.path.abspath('sphinxext')) sys.path.insert(0, os.path.abspath('_ext')) try: import sphinxcontrib.doxylink except ImportError: print('Unable to import sphinxcontrib.doxylink; try to run "pip install sphinxcontrib-doxylink"') if isRelease: doxylink = { 'cpapi' : ('_static/doxygen/CoolPropDoxyLink.tag', 'http://www.coolprop.org/_static/doxygen/html') } else: doxylink = { 'cpapi' : ('_static/doxygen/CoolPropDoxyLink.tag', 'http://www.coolprop.dreamhosters.com/binaries/sphinx/_static/doxygen/html') } # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['IPython.sphinxext.ipython_console_highlighting', 'IPython.sphinxext.ipython_directive', 'sphinx.ext.intersphinx', 'sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'sphinx.ext.extlinks', 'sphinxcontrib.bibtex', 'sphinxcontrib.napoleon', 'sphinxcontrib.doxylink', 'matplotlib.sphinxext.plot_directive', 'edit_on_github', # see https://gist.github.com/mgedmin/6052926#file-edit_on_github-pyb # cloud's extensions #'cloud_sptheme.ext.autodoc_sections', 'cloud_sptheme.ext.index_styling', 'cloud_sptheme.ext.relbar_toc', #'cloud_sptheme.ext.escaped_samp_literals', 'cloud_sptheme.ext.issue_tracker', #'cloud_sptheme.ext.table_styling', #'inheritance_diagram', #'numpydoc', #'breathe' ] # set path to issue tracker: issue_tracker_url = "gh:CoolProp/CoolProp" plot_formats = [('png',80),('.pdf')] index_doc = "index" numpydoc_show_class_members = False mathjax_path = 'http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. source_encoding = 'utf-8' # The master toctree document. master_doc = 'contents' # General information about the project. d = datetime.datetime.today() project = u'CoolProp' copyright = u'2010-{0}, Ian H. Bell and the CoolProp Team'.format(d.year) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = ['_build','sphinxext'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] #This value selects what content will be inserted into the main body of an autoclass directive. #'class' - Only the class’ docstring is inserted. This is the default. #'init' - Only the __init__ method’s docstring is inserted. #'both' - Both the class’ and the __init__ method’s docstring are concatenated and inserted autoclass_content = 'both' # -- Options for HTML output --------------------------------------------------- try: import cloud_sptheme as csp except: print('unable to import cloud_sptheme as csp; try a "pip install cloud_sptheme"') # import Cloud import cloud_sptheme as csp # ... some contents omitted ... # set the html theme html_theme = "cloud" # NOTE: there is also a red-colored version named "redcloud" # ... some contents omitted ... # set the theme path to point to cloud's theme data html_theme_path = [csp.get_theme_dir()] # [optional] set some of the options listed above... html_theme_options = { "roottarget": "index", "max_width" : "13in", "logotarget": "index", "googleanalytics_id": "UA-53205480-2", "default_layout_text_size": "85%" } edit_on_github_project = 'CoolProp/CoolProp' edit_on_github_branch = 'master' edit_on_github_path_prefix = 'Web' # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. ## html_theme = 'sphinxdoc' ## html_theme='nature' # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. #html_style = 'CoolProp2.css' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = "_static/CoolPropLogo.png" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Content template for the index page. #html_index = 'index.html' # Custom sidebar templates, maps page names to templates. # html_sidebars = {'index': 'indexsidebar.html', # } html_sidebars = { '**': ['globaltoc.html'], } # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {'index': 'index.html'} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'sampledocdoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('contents', 'CoolPropdoc.tex', u'CoolProp Documentation', u'Ian Bell', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True
mit
mrlb05/Nifty4Gemini
nifty/pipeline/steps/routines/nifsMakeTelluric.py
4
13051
import sys, glob, shutil, getopt, os, time, logging, glob, sgmllib, urllib, re, traceback, pkg_resources import pexpect as p from pyraf import iraf, iraffunctions import astropy.io.fits from astropy.io.fits import getdata, getheader import numpy as np from scipy.interpolate import interp1d from scipy import arange, array, exp from scipy.ndimage.interpolation import shift import pylab as pl import matplotlib.pyplot as plt # LOCAL # Import config parsing. from ..configobj.configobj import ConfigObj # Import custom Nifty functions. from ..nifsUtils import datefmt, listit, writeList, checkLists, makeSkyList, MEFarith, convertRAdec # Import Nifty python data cube merging script. from .nifsMerge import mergeCubes # Define constants # Paths to Nifty data. RECIPES_PATH = pkg_resources.resource_filename('nifty', 'recipes/') RUNTIME_DATA_PATH = pkg_resources.resource_filename('nifty', 'runtimeData/') def makeTelluricCorrection( telluricDirectory, path, continuuminter, hlineinter, tempInter, hline_method="vega", spectemp="", mag="", log="test.log", over=False): """FLUX CALIBRATION Consists of this start function and six required functions at the end of this file. """ """iraf.gemini(_doprint=0, motd="no") iraf.gnirs(_doprint=0) iraf.imutil(_doprint=0) iraf.onedspec(_doprint=0) iraf.nsheaders('nifs',Stdout='/dev/null')""" # Overview of Telluric Correction procedure: # We make a telluric correction by: # Remove H-lines from combined 1D standard star spectrum. # Divide by H-line corrected standard spectrum by continuum fit. # We apply a telluric correction by: # Dividing the cube by the correction spectrum (with iraf.telluric) to figure out the shift and scaling. # Dividing again by the continuum to add a continuum shape back in. # Telluric correction done. # Overview of flux calibration procedure: # Make a blackbody spectrum. # Scale to the observed magnitude of the standard. # Multiply telluric corrected target spectrum by this scaled blackbody. # Done! iraffunctions.chdir(telluricDirectory) logging.info('I am starting to create telluric correction spectrum and blackbody spectrum') logging.info('I am starting to create telluric correction spectrum and blackbody spectrum ') # Open the combine extracted 1d spectrum. try: combined_extracted_1d_spectra = str(open('telluricfile', 'r').readlines()[0]).strip() except: logging.info("No telluricfile found in " + str(telluricDirectory) + "Skipping telluric correction and flux calibration.") return if not os.path.exists('scienceMatchedTellsList'): logging.info("No scienceMatchedTellsList found in " + str(telluricDirectory)) return telheader = astropy.io.fits.open(combined_extracted_1d_spectra+'.fits') grating = telheader[0].header['GRATING'][0] # Get standard star spectral type, teff, and magnitude from the interwebs. Go forth, brave parser! getStandardInfo(path, mag, grating, spectemp) hLineCorrection(combined_extracted_1d_spectra, grating, path, hlineinter, tempInter, hline_method, log, over) # Fit a continuum from the standard star spectrum, saving both continuum and continuum divided standard spectrum. fitContinuum(continuuminter, tempInter, grating) # Divide the standard star spectrum by the continuum to normalize it. if os.path.exists("telluricCorrection.fits"): os.remove("telluricCorrection.fits") iraf.imarith('final_tel_no_hlines_no_norm', "/", 'fit', result='telluricCorrection',title='',divzero=0.0,hparams='',pixtype='',calctype='',verbose='no',noact='no',mode='al') # Done deriving telluric correction! We have two new products: # 1) A continuum-normalized telluric correction spectrum, telluricCorrection.fits, and # 2) The continuum we used to normalize it, fit.fits. def hLineCorrection(combined_extracted_1d_spectra, grating, path, hlineinter, tempInter, hline_method, log, over, airmass_std=1.0): """ Remove hydrogen lines from the spectrum of a telluric standard, using a model of vega's atmosphere. """ # File for recording shift/scale from calls to "telluric" telluric_shift_scale_record = open('telluric_hlines.txt', 'w') # Remove H lines from standard star correction spectrum no_hline = False if os.path.exists("final_tel_no_hlines_no_norm.fits"): if over: iraf.delete("final_tel_no_hlines_no_norm.fits") else: no_hline = True logging.info("Output file exists and -over- not set - skipping H line removal") if hline_method == "vega" and not no_hline: vega(combined_extracted_1d_spectra, grating, path, hlineinter, telluric_shift_scale_record, log, over) #if hline_method == "linefitAuto" and not no_hline: # linefitAuto(combined_extracted_1d_spectra, grating) # Disabled and untested because interactive scripted iraf tasks are broken... #if hline_method == "linefitManual" and not no_hline: # linefitManual(combined_extracted_1d_spectra+'[sci,1]', grating) #if hline_method == "vega_tweak" and not no_hline: #run vega removal automatically first, then give user chance to interact with spectrum as well # vega(combined_extracted_1d_spectra,grating, path, hlineinter, telluric_shift_scale_record, log, over) # linefitManual("final_tel_no_hlines_no_norm", grating) #if hline_method == "linefit_tweak" and not no_hline: #run Lorentz removal automatically first, then give user chance to interact with spectrum as well # linefitAuto(combined_extracted_1d_spectra,grating) # linefitManual("final_tel_no_hlines_no_norm", grating) if hline_method == "none" and not no_hline: #need to copy files so have right names for later use iraf.imcopy(input=combined_extracted_1d_spectra+'[sci,'+str(1)+']', output="final_tel_no_hlines_no_norm", verbose='no') # Plot the non-hline corrected spectrum and the h-line corrected spectrum. uncorrected = astropy.io.fits.open(combined_extracted_1d_spectra+'.fits')[1].data corrected = astropy.io.fits.open("final_tel_no_hlines_no_norm.fits")[0].data if hlineinter or tempInter: plt.title('Before and After HLine Correction') plt.plot(uncorrected) plt.plot(corrected) plt.show() def vega(spectrum, band, path, hlineinter, telluric_shift_scale_record, log, over, airmass=1.0): """ Use iraf.telluric to remove H lines from standard star, then remove normalization added by telluric with iraf.imarith. The extension for vega_ext.fits is specified from band (from header of telluricfile.fits). Args: spectrum (string): filename from 'telluricfile'. band: from telluricfile .fits header. Eg 'K', 'H', 'J'. path: usually top directory with Nifty scripts. hlineinter (boolean): Interactive H line fitting. Specified with -i at command line. Default False. airmass: from telluricfile .fits header. telluric_shift_scale_record: "pointer" to telluric_hlines.txt. log: path to logfile. over (boolean): overwrite old files. Specified at command line. """ if band=='K': ext = '1' sample = "21537:21778" scale = 0.8 if band=='H': ext = '2' sample = "16537:17259" scale = 0.7 if band=='J': ext = '3' sample = "11508:13492" scale = 0.885 if band=='Z': ext = '4' sample = "*" scale = 0.8 if os.path.exists("tell_nolines.fits"): if over: os.remove("tell_nolines.fits") tell_info = iraf.telluric(input=spectrum+"[1]", output='tell_nolines', cal= RUNTIME_DATA_PATH+'vega_ext.fits['+ext+']', xcorr='yes', tweakrms='yes', airmass=airmass, inter=hlineinter, sample=sample, threshold=0.1, lag=3, shift=0., dshift=0.05, scale=scale, dscale=0.05, offset=0., smooth=1, cursor='', mode='al', Stdout=1) else: logging.info("Output file exists and -over not set - skipping H line correction") else: tell_info = iraf.telluric(input=spectrum+"[1]", output='tell_nolines', cal= RUNTIME_DATA_PATH+'vega_ext.fits['+ext+']', xcorr='yes', tweakrms='yes', inter=hlineinter, airmass=airmass, sample=sample, threshold=0.1, lag=3, shift=0., dshift=0.05, scale=scale, dscale=0.05, offset=0., smooth=1, cursor='', mode='al', Stdout=1) # need this loop to identify telluric output containing warning about pix outside calibration limits (different formatting) if "limits" in tell_info[-1].split()[-1]: norm=tell_info[-2].split()[-1] else: norm=tell_info[-1].split()[-1] if os.path.exists("final_tel_no_hlines_no_norm.fits"): if over: os.remove("final_tel_no_hlines_no_norm.fits") iraf.imarith(operand1='tell_nolines', op='/', operand2=norm, result='final_tel_no_hlines_no_norm', title='', divzero=0.0, hparams='', pixtype='', calctype='', verbose='yes', noact='no', mode='al') else: logging.info("Output file exists and -over not set - skipping H line normalization") else: iraf.imarith(operand1='tell_nolines', op='/', operand2=norm, result='final_tel_no_hlines_no_norm', title='', divzero=0.0, hparams='', pixtype='', calctype='', verbose='yes', noact='no', mode='al') # TODO(nat): linefitAuto and linefitManual could be useful at some point. def linefitAuto(spectrum, band): """automatically fit Lorentz profiles to lines defined in existing cur* files Go to x position in cursor file and use space bar to find spectrum at each of those points """ specpos = iraf.bplot(images=spectrum+'[SCI,1]', cursor='cur'+band, Stdout=1, StdoutG='/dev/null') specpose = str(specpos).split("'x,y,z(x):") nextcur = 'nextcur'+band+'.txt' # Write line x,y info to file containing Lorentz fitting commands for bplot write_line_positions(nextcur, specpos) iraf.delete('final_tel_no_hlines_no_norm.fits',ver="no",go_ahead='yes',Stderr='/dev/null') # Fit and subtract Lorentz profiles. Might as well write output to file. iraf.bplot(images=spectrum+'[sci,1]',cursor='nextcur'+band+'.txt', new_image='final_tel_no_hlines_no_norm', overwrite="yes",StdoutG='/dev/null',Stdout='Lorentz'+band) def linefitManual(spectrum, band): """ Enter splot so the user can fit and subtract lorents (or, actually, any) profiles """ iraf.splot(images=spectrum, new_image='final_tel_no_hlines_no_norm', save_file='../PRODUCTS/lorentz_hlines.txt', overwrite='yes') # it's easy to forget to use the 'i' key to actually write out the line-free spectrum, so check that it exists: # with the 'tweak' options, the line-free spectrum will already exists, so this lets the user simply 'q' and move on w/o editing (too bad if they edit and forget to hit 'i'...) while True: try: with open("final_tel_no_hlines_no_norm.fits") as f: pass break except IOError as e: logging.info("It looks as if you didn't use the i key to write out the lineless spectrum. We'll have to try again. --> Re-entering splot") iraf.splot(images=spectrum, new_image='final_tel_no_hlines_no_norm', save_file='../PRODUCTS/lorentz_hlines.txt', overwrite='yes') def fitContinuum(continuuminter, tempInter, grating): """ Fit a continuum to the telluric correction spectrum to normalize it. The continuum fitting regions were derived by eye and can be improved. Results are in fit<Grating>.fits """ # These were found to fit the curves well by hand. You can probably improve them; feel free to fiddle around! if grating == "K": order = 5 sample = "20279:20395,20953:24283" elif grating == "J": order = 5 sample = "11561:12627,12745:12792,12893:13566" elif grating == "H": order = 5 sample = "*" elif grating == "Z": order = 5 sample = "9453:10015,10106:10893,10993:11553" if os.path.exists("fit.fits"): os.remove("fit.fits") iraf.continuum(input='final_tel_no_hlines_no_norm',output='fit',ask='yes',lines='*',bands='1',type="fit",replace='no',wavescale='yes',logscale='no',override='no',listonly='no',logfiles='',inter=continuuminter,sample=sample,naverage=1,func='spline3',order=order,low_rej=1.0,high_rej=3.0,niterate=2,grow=1.0,markrej='yes',graphics='stdgraph',cursor='',mode='ql') # Plot the telluric correction spectrum with the continuum fit. final_tel_no_hlines_no_norm = astropy.io.fits.open('final_tel_no_hlines_no_norm.fits')[0].data fit = astropy.io.fits.open('fit.fits')[0].data if continuuminter or tempInter: plt.title('Unnormalized Telluric Correction and Continuum fit Used to Normalize') plt.plot(final_tel_no_hlines_no_norm) plt.plot(fit) plt.show() def divideByContinuum(inputSpectra, divisor, )
mit
RayMick/scikit-learn
sklearn/covariance/__init__.py
389
1157
""" The :mod:`sklearn.covariance` module includes methods and algorithms to robustly estimate the covariance of features given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance estimation is closely related to the theory of Gaussian Graphical Models. """ from .empirical_covariance_ import empirical_covariance, EmpiricalCovariance, \ log_likelihood from .shrunk_covariance_ import shrunk_covariance, ShrunkCovariance, \ ledoit_wolf, ledoit_wolf_shrinkage, \ LedoitWolf, oas, OAS from .robust_covariance import fast_mcd, MinCovDet from .graph_lasso_ import graph_lasso, GraphLasso, GraphLassoCV from .outlier_detection import EllipticEnvelope __all__ = ['EllipticEnvelope', 'EmpiricalCovariance', 'GraphLasso', 'GraphLassoCV', 'LedoitWolf', 'MinCovDet', 'OAS', 'ShrunkCovariance', 'empirical_covariance', 'fast_mcd', 'graph_lasso', 'ledoit_wolf', 'ledoit_wolf_shrinkage', 'log_likelihood', 'oas', 'shrunk_covariance']
bsd-3-clause
HolgerPeters/scikit-learn
doc/conf.py
22
9789
# -*- coding: utf-8 -*- # # scikit-learn documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import print_function import sys import os from sklearn.externals.six import u # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) from github_link import make_linkcode_resolve import sphinx_gallery # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'numpy_ext.numpydoc', 'sphinx.ext.linkcode', 'sphinx.ext.doctest', 'sphinx_gallery.gen_gallery', 'sphinx_issues', ] # pngmath / imgmath compatibility layer for different sphinx versions import sphinx from distutils.version import LooseVersion if LooseVersion(sphinx.__version__) < LooseVersion('1.4'): extensions.append('sphinx.ext.pngmath') else: extensions.append('sphinx.ext.imgmath') autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u('scikit-learn') copyright = u('2007 - 2017, scikit-learn developers (BSD License)') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import sklearn version = sklearn.__version__ # The full version, including alpha/beta/rc tags. release = sklearn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-learn' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {'oldversion': False, 'collapsiblesidebar': True, 'google_analytics': True, 'surveybanner': False, 'sprintbanner': True} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'scikit-learn' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/scikit-learn-logo-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-learndoc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', 'user_guide.tex', u('scikit-learn user guide'), u('scikit-learn developers'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/scikit-learn-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \usepackage{enumitem} \setlistdepth{10} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False trim_doctests_flags = True sphinx_gallery_conf = { 'doc_module': 'sklearn', 'reference_url': { 'sklearn': None, 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.6.0', 'scipy': 'http://docs.scipy.org/doc/scipy-0.11.0/reference', 'nibabel': 'http://nipy.org/nibabel'} } # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'sphx_glr_plot_classifier_comparison_001.png': 600, 'sphx_glr_plot_outlier_detection_003.png': 372, 'sphx_glr_plot_gpr_co2_001.png': 350, 'sphx_glr_plot_adaboost_twoclass_001.png': 372, 'sphx_glr_plot_compare_methods_001.png': 349} def make_carousel_thumbs(app, exception): """produces the final resized carousel images""" if exception is not None: return print('Preparing carousel images') image_dir = os.path.join(app.builder.outdir, '_images') for glr_plot, max_width in carousel_thumbs.items(): image = os.path.join(image_dir, glr_plot) if os.path.exists(image): c_thumb = os.path.join(image_dir, glr_plot[:-4] + '_carousel.png') sphinx_gallery.gen_rst.scale_image(image, c_thumb, max_width, 190) # Config for sphinx_issues issues_uri = 'https://github.com/scikit-learn/scikit-learn/issues/{issue}' issues_github_path = 'scikit-learn/scikit-learn' issues_user_uri = 'https://github.com/{user}' def setup(app): # to hide/show the prompt in code examples: app.add_javascript('js/copybutton.js') app.connect('build-finished', make_carousel_thumbs) # The following is used by sphinx.ext.linkcode to provide links to github linkcode_resolve = make_linkcode_resolve('sklearn', u'https://github.com/scikit-learn/' 'scikit-learn/blob/{revision}/' '{package}/{path}#L{lineno}')
bsd-3-clause
alberto-antonietti/nest-simulator
pynest/examples/structural_plasticity.py
6
13978
# -*- coding: utf-8 -*- # # structural_plasticity.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Structural Plasticity example ---------------------------------- This example shows a simple network of two populations where structural plasticity is used. The network has 1000 neurons, 80% excitatory and 20% inhibitory. The simulation starts without any connectivity. A set of homeostatic rules are defined, according to which structural plasticity will create and delete synapses dynamically during the simulation until a desired level of electrical activity is reached. The model of structural plasticity used here corresponds to the formulation presented in [1]_. At the end of the simulation, a plot of the evolution of the connectivity in the network and the average calcium concentration in the neurons is created. References ~~~~~~~~~~~ .. [1] Butz, M., and van Ooyen, A. (2013). A simple rule for dendritic spine and axonal bouton formation can account for cortical reorganization after focal retinal lesions. PLoS Comput. Biol. 9 (10), e1003259. """ #################################################################################### # First, we have import all necessary modules. import nest import numpy import matplotlib.pyplot as plt import sys #################################################################################### # We define general simulation parameters class StructralPlasticityExample: def __init__(self): # simulated time (ms) self.t_sim = 200000.0 # simulation step (ms). self.dt = 0.1 self.number_excitatory_neurons = 800 self.number_inhibitory_neurons = 200 # Structural_plasticity properties self.update_interval = 10000.0 self.record_interval = 1000.0 # rate of background Poisson input self.bg_rate = 10000.0 self.neuron_model = 'iaf_psc_exp' #################################################################################### # In this implementation of structural plasticity, neurons grow # connection points called synaptic elements. Synapses can be created # between compatible synaptic elements. The growth of these elements is # guided by homeostatic rules, defined as growth curves. # Here we specify the growth curves for synaptic elements of excitatory # and inhibitory neurons. # Excitatory synaptic elements of excitatory neurons self.growth_curve_e_e = { 'growth_curve': "gaussian", 'growth_rate': 0.0001, # (elements/ms) 'continuous': False, 'eta': 0.0, # Ca2+ 'eps': 0.05, # Ca2+ } # Inhibitory synaptic elements of excitatory neurons self.growth_curve_e_i = { 'growth_curve': "gaussian", 'growth_rate': 0.0001, # (elements/ms) 'continuous': False, 'eta': 0.0, # Ca2+ 'eps': self.growth_curve_e_e['eps'], # Ca2+ } # Excitatory synaptic elements of inhibitory neurons self.growth_curve_i_e = { 'growth_curve': "gaussian", 'growth_rate': 0.0004, # (elements/ms) 'continuous': False, 'eta': 0.0, # Ca2+ 'eps': 0.2, # Ca2+ } # Inhibitory synaptic elements of inhibitory neurons self.growth_curve_i_i = { 'growth_curve': "gaussian", 'growth_rate': 0.0001, # (elements/ms) 'continuous': False, 'eta': 0.0, # Ca2+ 'eps': self.growth_curve_i_e['eps'] # Ca2+ } # Now we specify the neuron model. self.model_params = {'tau_m': 10.0, # membrane time constant (ms) # excitatory synaptic time constant (ms) 'tau_syn_ex': 0.5, # inhibitory synaptic time constant (ms) 'tau_syn_in': 0.5, 't_ref': 2.0, # absolute refractory period (ms) 'E_L': -65.0, # resting membrane potential (mV) 'V_th': -50.0, # spike threshold (mV) 'C_m': 250.0, # membrane capacitance (pF) 'V_reset': -65.0 # reset potential (mV) } self.nodes_e = None self.nodes_i = None self.mean_ca_e = [] self.mean_ca_i = [] self.total_connections_e = [] self.total_connections_i = [] #################################################################################### # We initialize variables for the post-synaptic currents of the # excitatory, inhibitory, and external synapses. These values were # calculated from a PSP amplitude of 1 for excitatory synapses, # -1 for inhibitory synapses and 0.11 for external synapses. self.psc_e = 585.0 self.psc_i = -585.0 self.psc_ext = 6.2 def prepare_simulation(self): nest.ResetKernel() nest.set_verbosity('M_ERROR') #################################################################################### # We set global kernel parameters. Here we define the resolution # for the simulation, which is also the time resolution for the update # of the synaptic elements. nest.SetKernelStatus( { 'resolution': self.dt } ) #################################################################################### # Set Structural Plasticity synaptic update interval which is how often # the connectivity will be updated inside the network. It is important # to notice that synaptic elements and connections change on different # time scales. nest.SetStructuralPlasticityStatus({ 'structural_plasticity_update_interval': self.update_interval, }) #################################################################################### # Now we define Structural Plasticity synapses. In this example we create # two synapse models, one for excitatory and one for inhibitory synapses. # Then we define that excitatory synapses can only be created between a # pre-synaptic element called `Axon_ex` and a post synaptic element # called `Den_ex`. In a similar manner, synaptic elements for inhibitory # synapses are defined. nest.CopyModel('static_synapse', 'synapse_ex') nest.SetDefaults('synapse_ex', {'weight': self.psc_e, 'delay': 1.0}) nest.CopyModel('static_synapse', 'synapse_in') nest.SetDefaults('synapse_in', {'weight': self.psc_i, 'delay': 1.0}) nest.SetStructuralPlasticityStatus({ 'structural_plasticity_synapses': { 'synapse_ex': { 'synapse_model': 'synapse_ex', 'post_synaptic_element': 'Den_ex', 'pre_synaptic_element': 'Axon_ex', }, 'synapse_in': { 'synapse_model': 'synapse_in', 'post_synaptic_element': 'Den_in', 'pre_synaptic_element': 'Axon_in', }, } }) def create_nodes(self): """ Assign growth curves to synaptic elements """ synaptic_elements = { 'Den_ex': self.growth_curve_e_e, 'Den_in': self.growth_curve_e_i, 'Axon_ex': self.growth_curve_e_e, } synaptic_elements_i = { 'Den_ex': self.growth_curve_i_e, 'Den_in': self.growth_curve_i_i, 'Axon_in': self.growth_curve_i_i, } #################################################################################### # Then it is time to create a population with 80% of the total network # size excitatory neurons and another one with 20% of the total network # size of inhibitory neurons. self.nodes_e = nest.Create('iaf_psc_alpha', self.number_excitatory_neurons, {'synaptic_elements': synaptic_elements}) self.nodes_i = nest.Create('iaf_psc_alpha', self.number_inhibitory_neurons, {'synaptic_elements': synaptic_elements_i}) self.nodes_e.synaptic_elements = synaptic_elements self.nodes_i.synaptic_elements = synaptic_elements_i def connect_external_input(self): """ We create and connect the Poisson generator for external input """ noise = nest.Create('poisson_generator') noise.rate = self.bg_rate nest.Connect(noise, self.nodes_e, 'all_to_all', {'weight': self.psc_ext, 'delay': 1.0}) nest.Connect(noise, self.nodes_i, 'all_to_all', {'weight': self.psc_ext, 'delay': 1.0}) #################################################################################### # In order to save the amount of average calcium concentration in each # population through time we create the function ``record_ca``. Here we use the # ``GetStatus`` function to retrieve the value of `Ca` for every neuron in the # network and then store the average. def record_ca(self): ca_e = self.nodes_e.Ca, # Calcium concentration self.mean_ca_e.append(numpy.mean(ca_e)) ca_i = self.nodes_i.Ca, # Calcium concentration self.mean_ca_i.append(numpy.mean(ca_i)) #################################################################################### # In order to save the state of the connectivity in the network through time # we create the function ``record_connectivity``. Here we use the ``GetStatus`` # function to retrieve the number of connected pre-synaptic elements of each # neuron. The total amount of excitatory connections is equal to the total # amount of connected excitatory pre-synaptic elements. The same applies for # inhibitory connections. def record_connectivity(self): syn_elems_e = self.nodes_e.synaptic_elements syn_elems_i = self.nodes_i.synaptic_elements self.total_connections_e.append(sum(neuron['Axon_ex']['z_connected'] for neuron in syn_elems_e)) self.total_connections_i.append(sum(neuron['Axon_in']['z_connected'] for neuron in syn_elems_i)) #################################################################################### # We define a function to plot the recorded values # at the end of the simulation. def plot_data(self): fig, ax1 = plt.subplots() ax1.axhline(self.growth_curve_e_e['eps'], linewidth=4.0, color='#9999FF') ax1.plot(self.mean_ca_e, 'b', label='Ca Concentration Excitatory Neurons', linewidth=2.0) ax1.axhline(self.growth_curve_i_e['eps'], linewidth=4.0, color='#FF9999') ax1.plot(self.mean_ca_i, 'r', label='Ca Concentration Inhibitory Neurons', linewidth=2.0) ax1.set_ylim([0, 0.275]) ax1.set_xlabel("Time in [s]") ax1.set_ylabel("Ca concentration") ax2 = ax1.twinx() ax2.plot(self.total_connections_e, 'm', label='Excitatory connections', linewidth=2.0, linestyle='--') ax2.plot(self.total_connections_i, 'k', label='Inhibitory connections', linewidth=2.0, linestyle='--') ax2.set_ylim([0, 2500]) ax2.set_ylabel("Connections") ax1.legend(loc=1) ax2.legend(loc=4) plt.savefig('StructuralPlasticityExample.eps', format='eps') #################################################################################### # It is time to specify how we want to perform the simulation. In this # function we first enable structural plasticity in the network and then we # simulate in steps. On each step we record the calcium concentration and the # connectivity. At the end of the simulation, the plot of connections and # calcium concentration through time is generated. def simulate(self): if nest.NumProcesses() > 1: sys.exit("For simplicity, this example only works " + "for a single process.") nest.EnableStructuralPlasticity() print("Starting simulation") sim_steps = numpy.arange(0, self.t_sim, self.record_interval) for i, step in enumerate(sim_steps): nest.Simulate(self.record_interval) self.record_ca() self.record_connectivity() if i % 20 == 0: print("Progress: " + str(i / 2) + "%") print("Simulation finished successfully") #################################################################################### # Finally we take all the functions that we have defined and create the sequence # for our example. We prepare the simulation, create the nodes for the network, # connect the external input and then simulate. Please note that as we are # simulating 200 biological seconds in this example, it will take a few minutes # to complete. if __name__ == '__main__': example = StructralPlasticityExample() # Prepare simulation example.prepare_simulation() example.create_nodes() example.connect_external_input() # Start simulation example.simulate() example.plot_data()
gpl-2.0
kirel/political-affiliation-prediction
newsreader.py
2
11936
# -*- coding: utf-8 -*- from sklearn.decomposition import KernelPCA from sklearn.metrics.pairwise import pairwise_distances from scipy.stats.mstats import zscore import glob import json import re import datetime import os import cPickle import codecs import itertools from sklearn.feature_extraction.text import TfidfVectorizer from scipy import double,triu,ones,hstack,arange,reshape,zeros,setdiff1d,array,zeros,eye,argmax,percentile def get_news(sources=['spiegel','faz','welt','zeit'], folder='model'): ''' Collects all news articles from political ressort of major German newspapers Articles are transformed to BoW vectors and assigned to a political party For better visualization, articles' BoW vectors are also clustered into topics INPUT folder the model folder containing classifier and BoW transformer sources a list of strings for each newspaper for which a crawl is implemented default ['zeit','sz'] ''' import classifier from bs4 import BeautifulSoup from api import fetch_url import urllib2 news = dict([(source,[]) for source in sources]) # the classifier for prediction of political affiliation clf = classifier.Classifier(folder=folder) for source in sources: if source is 'spiegel': # fetching articles from sueddeutsche.de/politik url = 'http://www.spiegel.de/politik' site = BeautifulSoup(urllib2.urlopen(url).read()) titles = site.findAll("div", { "class" : "teaser" }) urls = ['http://www.spiegel.de'+a.findNext('a')['href'] for a in titles] if source is 'faz': # fetching articles from sueddeutsche.de/politik url = 'http://www.faz.net/aktuell/politik' site = BeautifulSoup(urllib2.urlopen(url).read()) titles = site.findAll("a", { "class" : "TeaserHeadLink" }) urls = ['http://www.faz.net'+a['href'] for a in titles] if source is 'welt': # fetching articles from sueddeutsche.de/politik url = 'http://www.welt.de/politik' site = BeautifulSoup(urllib2.urlopen(url).read()) titles = site.findAll("a", { "class" : "as_teaser-kicker" }) urls = [a['href'] for a in titles] if source is 'sz-without-readability': # fetching articles from sueddeutsche.de/politik url = 'http://www.sueddeutsche.de/politik' site = BeautifulSoup(urllib2.urlopen(url).read()) titles = site.findAll("div", { "class" : "teaser" }) urls = [a.findNext('a')['href'] for a in titles] if source is 'zeit': # fetching articles from zeit.de/politik url = 'http://www.zeit.de/politik' site = BeautifulSoup(urllib2.urlopen(url).read()) titles = site.findAll("span", { "class" : "supertitle" }) urls = [a.parent['href'] for a in titles if a.parent['href'].find('/2015-')>0] print "Found %d articles on %s"%(len(urls),url) # predict party from url for this source print "Predicting %s"%source articles = [] for url in urls: try: title,text = fetch_url(url) prediction = clf.predict(text) prediction['url'] = url articles.append((title,prediction)) except: print('Could not get text from %s'%url) pass news[source] = dict(articles) # save results datestr = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") open(folder+'/news-%s'%(datestr) + '.json', 'wb').write(json.dumps(news,ensure_ascii=False).encode('utf8')) def all_saved_news(folder='model'): import glob from string import digits # get just the most recent news articles file (assuming date label ordering) news = json.load(open(glob.glob(folder+'/news*.json')[-1],"r")) # collect text data from all articles articles, data = [], [] for source in news.keys(): for title, article in news[source].items(): # remove numbers for d in digits: article['text'] = article['text'].replace(d,'') data.append(article['text']) predictions = [prediction['probability'] for prediction in article['prediction']] articles.append({ 'source':source, 'title':title, 'url':article['url'], 'prediction':article['prediction'], 'predictedLabel':article['prediction'][argmax(predictions)]['party'] }) return articles, data def pairwise_dists(data, nneighbors=10, folder='model', dist='l2'): ''' Computes pairwise distances between bag-of-words vectors of articles INPUT folder model folder nneighbors number of closest neighbors to include in distance list ''' stopwords = codecs.open("stopwords.txt", "r", encoding="utf-8", errors='ignore').readlines()[5:] stops = map(lambda x:x.lower().strip(),stopwords) # using now stopwords and filtering out digits bow = TfidfVectorizer(min_df=2,stop_words=stops) X = bow.fit_transform(data) print 'Computing %s pairwise distances'%dist # KPCA transform bow vectors if dist is 'l2_kpca_zscore': K = pairwise_distances(X,metric='l2',n_jobs=1) perc = 50.0 width = percentile(K.flatten(),perc) Xc = zscore(KernelPCA(n_components=50,kernel='rbf',gamma=width).fit_transform(X)) K = pairwise_distances(Xc,metric='l2',n_jobs=1) elif dist is 'l2_kpca': K = pairwise_distances(X,metric='l2',n_jobs=1) perc = 100./len(data) width = percentile(K.flatten(),perc) Xc = KernelPCA(n_components=50,kernel='rbf',gamma=width).fit_transform(X) K = pairwise_distances(Xc,metric='l2',n_jobs=1) elif dist is 'l2': K = pairwise_distances(X,metric='l2',n_jobs=1) elif dist is 'l1': K = pairwise_distances(X,metric='l1',n_jobs=1) # collect closest neighbors distances = [] for urlidx in range(len(data)): idx = (K[urlidx,:]).argsort()[1:nneighbors+1] for sidx in idx: distances.append([urlidx,sidx,(idx==sidx).nonzero()[0][0]]) return distances def load_sentiment(negative='SentiWS_v1.8c/SentiWS_v1.8c_Negative.txt',\ positive='SentiWS_v1.8c/SentiWS_v1.8c_Positive.txt'): words = dict() for line in open(negative).readlines(): parts = line.strip('\n').split('\t') words[parts[0].split('|')[0]] = double(parts[1]) if len(parts)>2: for inflection in parts[2].strip('\n').split(','): words[inflection] = double(parts[1]) for line in open(positive).readlines(): parts = line.strip('\n').split('\t') words[parts[0].split('|')[0]] = double(parts[1]) if len(parts)>2: for inflection in parts[2].strip('\n').split(','): words[inflection] = double(parts[1]) return words def get_sentiments(data): # filtering out some noise words stops = map(lambda x:x.lower().strip(),open('stopwords.txt').readlines()[6:]) # vectorize non-stopwords bow = TfidfVectorizer(min_df=2,stop_words=stops) X = bow.fit_transform(data) # map sentiment vector to bow space words = load_sentiment() sentiment_vec = zeros(X.shape[1]) for key in words.keys(): if bow.vocabulary_.has_key(key): sentiment_vec[bow.vocabulary_[key]] = words[key] # compute sentiments return X.dot(sentiment_vec) def kpca_cluster(data,nclusters=100,ncomponents=40,topwhat=10,zscored=False): ''' Computes clustering of bag-of-words vectors of articles INPUT folder model folder nclusters number of clusters ''' from sklearn.cluster import KMeans # filtering out some noise words stops = map(lambda x:x.lower().strip(),open('stopwords.txt').readlines()[6:]) # vectorize non-stopwords bow = TfidfVectorizer(min_df=2,stop_words=stops) X = bow.fit_transform(data) # creating bow-index-to-word map idx2word = dict(zip(bow.vocabulary_.values(),bow.vocabulary_.keys())) # using now stopwords and filtering out digits print 'Computing pairwise distances' K = pairwise_distances(X,metric='l2',n_jobs=1) perc = 50.0 width = percentile(K.flatten(),perc) # KPCA transform bow vectors Xc = KernelPCA(n_components=ncomponents,kernel='rbf',gamma=width).fit_transform(X) if zscored: Xc = zscore(Xc) # compute clusters km = KMeans(n_clusters=nclusters).fit(Xc) Xc = km.predict(Xc) clusters = [] for icluster in range(nclusters): nmembers = (Xc==icluster).sum() if True:#nmembers < len(data) / 5.0 and nmembers > 1: # only group clusters big enough but not too big members = (Xc==icluster).nonzero()[0] topwordidx = array(X[members,:].sum(axis=0))[0].argsort()[-topwhat:][::-1] topwords = ' '.join([idx2word[wi] for wi in topwordidx]) meanDist = triu(pairwise_distances(X[members,:],metric='l2',n_jobs=1)).sum() meanDist = meanDist / (len(members) + (len(members)**2 - len(members))/2.0) # print u'Cluster %d'%icluster + u' %d members'%nmembers + u' mean Distance %f'%meanDist + u'\n\t'+topwords clusters.append({ 'name':'Cluster-%d'%icluster, 'description': topwords, 'members': list(members), 'meanL2Distances': meanDist }) return clusters def party_cluster(articles): clusters = [] keyf = lambda a: a[1]['predictedLabel'] for k, group in itertools.groupby(sorted(enumerate(articles), key=keyf), keyf): clusters.append({ 'name': k, 'description': k, 'members': [index_article_tuple[0] for index_article_tuple in group] }) return clusters def write_distances_json(folder='model'): articles, data = all_saved_news(folder) dists = ['l2_kpca'] distances_json = { 'articles': articles, 'sentiments': json.dumps(get_sentiments(data).tolist()), 'distances': [ { 'name': dist, 'distances': pairwise_dists(data,dist = dist) } for dist in dists ], 'clusterings': [ { 'name': 'Parteivorhersage', 'clusters': party_cluster(articles) }, { 'name': 'Ähnlichkeit', 'clusters': kpca_cluster(data,nclusters=len(articles)/2,ncomponents=40,zscored=False) }, ] } # save article with party prediction and distances to closest articles datestr = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") open(folder+'/distances-%s'%(datestr)+'.json', 'wb').write(json.dumps(distances_json)) # also save that latest version for the visualization open(folder+'/distances.json', 'wb').write(json.dumps(distances_json)) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(\ description='Downloads, transforms and clusters news articles') parser.add_argument('-f','--folder',help='Folder to store text files [./model]',\ default='model') parser.add_argument('-d','--download',help='If files should be downloaded',\ action='store_true', default=False) parser.add_argument('-p','--distances',help='If pairwise distances of text should be computed',\ action='store_true', default=False) args = vars(parser.parse_args()) if not os.path.isdir(args['folder']): os.mkdir(args['folder']) if args['download']: get_news(folder=args['folder']) if args['distances']: write_distances_json(folder=args['folder'])
mit
ARM-software/lisa
lisa/analysis/thermal.py
2
7490
# SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2017, Arm Limited and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from matplotlib.ticker import MaxNLocator from devlib.utils.misc import list_to_mask, mask_to_list from lisa.analysis.base import TraceAnalysisBase from lisa.utils import memoized from lisa.trace import requires_events, CPU from lisa.datautils import df_refit_index, series_refit_index class ThermalAnalysis(TraceAnalysisBase): """ Support for plotting Thermal Analysis data :param trace: input Trace object :type trace: :class:`trace.Trace` """ name = 'thermal' @requires_events("thermal_temperature") def df_thermal_zones_temperature(self): """ Get the temperature of the thermal zones :returns: a :class:`pandas.DataFrame` with: * An ``id`` column (The thermal zone ID) * A ``thermal_zone`` column (The thermal zone name) * A ``temp`` column (The reported temperature) """ df = self.trace.df_event("thermal") df = df[['id', 'thermal_zone', 'temp']] return df @TraceAnalysisBase.cache @requires_events("thermal_power_cpu_limit") def df_cpufreq_cooling_state(self, cpus=None): """ Get cpufreq cooling device states :param cpus: The CPUs to consider (all by default) :type cpus: list(int) :returns: a :class:`pandas.DataFrame` with: * An ``cpus`` column (The CPUs affected by the cooling device) * A ``freq`` column (The frequency limit) * A ``cdev_state`` column (The cooling device state index) """ df = self.trace.df_event("thermal_power_cpu_limit") df = df[['cpus', 'freq', 'cdev_state']] if cpus is not None: # Find masks that match the requested CPUs # This can include other CPUs masks = self._matching_masks(cpus) df = df[df.cpus.isin(masks)] return df @TraceAnalysisBase.cache @requires_events("thermal_power_devfreq_limit") def df_devfreq_cooling_state(self, devices=None): """ Get devfreq cooling device states :param devices: The devfreq devices to consider (all by default) :type device: list(str) :returns: a :class:`pandas.DataFrame` with: * An ``cpus`` column (The CPUs affected by the cooling device) * A ``freq`` column (The frequency limit) * A ``cdev_state`` column (The cooling device state index) """ df = self.trace.df_event("devfreq_out_power") df = df[['type', 'freq', 'cdev_state']] if devices is not None: df = df[df.type.isin(devices)] return df @property @memoized @df_thermal_zones_temperature.used_events def thermal_zones(self): """ Get thermal zone ids that appear in the trace """ df = self.df_thermal_zones_temperature() return df["thermal_zone"].unique().tolist() @property @memoized @df_cpufreq_cooling_state.used_events def cpufreq_cdevs(self): """ Get cpufreq cooling devices that appear in the trace """ df = self.df_cpufreq_cooling_state() res = df['cpus'].unique().tolist() return [mask_to_list(mask) for mask in res] @property @memoized @df_devfreq_cooling_state.used_events def devfreq_cdevs(self): """ Get devfreq cooling devices that appear in the trace """ df = self.df_devfreq_cooling_state() return df['type'].unique().tolist() ############################################################################### # Plotting Methods ############################################################################### @TraceAnalysisBase.plot_method() @df_thermal_zones_temperature.used_events def plot_thermal_zone_temperature(self, thermal_zone_id: int, axis, local_fig): """ Plot temperature of thermal zones (all by default) :param thermal_zone_id: ID of the zone :type thermal_zone_id: int """ window = self.trace.window df = self.df_thermal_zones_temperature() df = df[df.id == thermal_zone_id] df = df_refit_index(df, window=window) tz_name = df.thermal_zone.unique()[0] series = series_refit_index(df['temp'], window=window) series.plot(drawstyle="steps-post", ax=axis, label=f"Thermal zone \"{tz_name}\"") axis.legend() if local_fig: axis.grid(True) axis.set_title("Temperature evolution") axis.set_ylabel("Temperature (°C.10e3)") @TraceAnalysisBase.plot_method() @df_cpufreq_cooling_state.used_events def plot_cpu_cooling_states(self, cpu: CPU, axis, local_fig): """ Plot the state evolution of a cpufreq cooling device :param cpu: The CPU. Whole clusters can be controlled as a single cooling device, they will be plotted as long this CPU belongs to the cluster. :type cpu: int """ window = self.trace.window df = self.df_cpufreq_cooling_state([cpu]) df = df_refit_index(df, window=window) cdev_name = f"CPUs {mask_to_list(df.cpus.unique()[0])}" series = series_refit_index(df['cdev_state'], window=window) series.plot(drawstyle="steps-post", ax=axis, label=f"\"{cdev_name}\"") axis.legend() if local_fig: axis.grid(True) axis.set_title("cpufreq cooling devices status") axis.yaxis.set_major_locator(MaxNLocator(integer=True)) axis.grid(axis='y') @TraceAnalysisBase.plot_method() def plot_dev_freq_cooling_states(self, device: str, axis, local_fig): """ Plot the state evolution of a devfreq cooling device :param device: The devfreq devices to consider :type device: str """ df = self.df_devfreq_cooling_state([device]) df = df_refit_index(df, window=self.trace.window) df['cdev_state'].plot(drawstyle="steps-post", ax=axis, label=f"Device \"{device}\"") axis.legend() if local_fig: axis.grid(True) axis.set_title("devfreq cooling devices status") axis.yaxis.set_major_locator(MaxNLocator(integer=True)) axis.grid(axis='y') ############################################################################### # Utility Methods ############################################################################### def _matching_masks(self, cpus): df = self.trace.df_event('thermal_power_cpu_limit') global_mask = list_to_mask(cpus) cpumasks = df['cpus'].unique().tolist() return [m for m in cpumasks if m & global_mask] # vim :set tabstop=4 shiftwidth=4 expandtab textwidth=80
apache-2.0
idlead/scikit-learn
benchmarks/bench_plot_svd.py
325
2899
"""Benchmarks of Singular Value Decomposition (Exact and Approximate) The data is mostly low rank but is a fat infinite tail. """ import gc from time import time import numpy as np from collections import defaultdict from scipy.linalg import svd from sklearn.utils.extmath import randomized_svd from sklearn.datasets.samples_generator import make_low_rank_matrix def compute_bench(samples_range, features_range, n_iter=3, rank=50): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') X = make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2) gc.collect() print("benchmarking scipy svd: ") tstart = time() svd(X, full_matrices=False) results['scipy svd'].append(time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=0") tstart = time() randomized_svd(X, rank, n_iter=0) results['scikit-learn randomized_svd (n_iter=0)'].append( time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=%d " % n_iter) tstart = time() randomized_svd(X, rank, n_iter=n_iter) results['scikit-learn randomized_svd (n_iter=%d)' % n_iter].append(time() - tstart) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(2, 1000, 4).astype(np.int) features_range = np.linspace(2, 1000, 4).astype(np.int) results = compute_bench(samples_range, features_range) label = 'scikit-learn singular value decomposition benchmark results' fig = plt.figure(label) ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbg', sorted(results.iteritems())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('Time (s)') ax.legend() plt.show()
bsd-3-clause
xuyifan0720/image-processor
photo_editor.py
1
7183
import numpy as np import cv2 from matplotlib import pyplot as plt import os from Tkinter import * from PIL import Image, ImageStat import math import argparse class PhotoEditor: def __init__(self, directory_name, destination, brightness,blur): self.img = None self.imageFile = None self.directory = directory_name self.destination = destination self.brightness = int(brightness) self.index = 1 self.blur = blur self.contrastConstant = 0 def maskCreation(self, img): # converting to gray scale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) lower = np.array([130, 130, 70], dtype = "uint8") upper = np.array([255, 175, 135], dtype = "uint8") #masks ppl's face skin mask = cv2.inRange(ycrcb, lower, upper) lowerhsv = np.array([7, 90, 100], dtype="uint8") upperhsv = np.array([14, 255, 255], dtype="uint8") #masks ppl's face skin hsv = cv2.GaussianBlur(hsv,(3,3),0) mask2 = cv2.inRange(hsv, lowerhsv, upperhsv) mask += mask2 # remove noise img2 = cv2.GaussianBlur(gray,(3,3),0) #laplacian detects the edges laplacian = cv2.Laplacian(img2,cv2.CV_64F,ksize=1,scale=0.02,delta=0) sobel = cv2.Sobel(img2,cv2.CV_64F,1,1,ksize=1,scale = 0.02,delta=0) #adds laplacian and mask you get edges on people's face finalMask = cv2.bitwise_and(laplacian,laplacian,mask=mask) finalMask2 = cv2.bitwise_and(sobel,sobel,mask=mask) #img2gray = cv2.cvtColor(finalMask2,cv2.COLOR_HSV2BGR) #newMask = cv2.threshold(finalMask2, 10, 255, cv2.THRESH_BINARY) #appliedMask = cv2.bitwise_and(img,img,mask=finalMask) #makes a new mask according to finalMask for i in range(0,len(finalMask)): for j in range(0,len(finalMask[0])): if finalMask[i,j]<0.05: mask[i,j]=0 else: mask[i,j]=255 #if img[i,j,0]+img[i,j,1]+img[i,j,2]>300 and img[i,j,0]+img[i,j,1]+img[i,j,2]<350: #mask[i,j]=0 mask = cv2.GaussianBlur(mask,(5,5),0) return mask def saveImg(self,img): rand = self.index self.index = self.index + 1 fileName = self.destination+"/Updated-"+os.path.basename(self.imageFile)+".jpg" cv2.imwrite(fileName, img) def pimpleRemoval(self,mask,img): image = cv2.medianBlur(img, 17) img1 = cv2.bitwise_and(image,image,mask=mask) img2 = cv2.bitwise_and(img,img,mask=mask) img2 = img-img2 final = img1+img2 return final def adjust_gamma(self, image, gamma): # build a lookup table mapping the pixel values [0, 255] to # their adjusted gamma values invGamma = 1.0 / gamma table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8") # apply gamma correction using the lookup table return cv2.LUT(image, table) def contrast_adjustment(self,image,constant): table1 = np.array([0.5**(1-constant)*(i/255.0)**constant*255 for i in np.arange(0,128)]).astype("uint8") table2 = np.array([-0.5**(1-constant)*(1-i/255.0)**constant*255+255 for i in np.arange(128,256)]).astype("uint8") table = np.append(table1,table2) return cv2.LUT(image,table) def adjust(self): result = self.img for i in range(0,5): currentBright = self.calcBrightness(result) print("currentBright") print(currentBright) targetDiff = self.brightness-currentBright adjust_constant = (targetDiff)*0.01+1 cv2_im = cv2.cvtColor(result,cv2.COLOR_BGR2RGB) pil_im = Image.fromarray(cv2_im) gs = (math.sqrt(0.241*(r**2) + 0.691*(g**2) + 0.068*(b**2))for r,g,b in pil_im.getdata()) gslist = list(gs) diff = float(max(gslist)-min(gslist)) #adjust_constant = adjust_constant+(diff-100)/400 print("adjust_constant") print(adjust_constant) result = self.adjust_gamma(result,adjust_constant) print("first round of process done") oldBright = self.calcBrightness(self.img) newBright = self.calcBrightness(result) constant = (newBright/oldBright) #result = self.saturation_adjust(result,constant) print("saturation done") mask = self.maskCreation(self.img) print("mask creation done") if self.blur == "yes": result = self.pimpleRemoval(mask,result) result = self.contrast_adjustment(result,constant) self.saveImg(result) def testLimit(self,n): if n > 255: return 255 else: return n def saturation_adjust(self,img,constant): hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) hsv[:,:,1] = [self.testLimit(x*constant) for x in hsv[:,:,1]] return cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR) def calcBrightness(self,img): cv2_im = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) pil_im = Image.fromarray(cv2_im) stat = ImageStat.Stat(pil_im) r,g,b = stat.rms print("r is %f g is %f b is %f")%(r,g,b) currentBright = math.sqrt(0.241*(r**2) + 0.691*(g**2) + 0.068*(b**2)) return currentBright def blemishFix(self): mask = self.maskCreation removed = self.pimpleRemoval(mask) self.saveImg(removed) def loop(self, command): for files in os.walk(self.directory): for pic in files: for pics in pic: if pics.endswith(".jpg"): print("start processing") print(pics) pics = self.directory+"/"+pics self.imageFile = pics self.img = cv2.imread(pics) command() if __name__ == "__main__": parser = argparse.ArgumentParser(description='Arguments for UDI Transfer') parser.add_argument('-s', action="store", dest="storage", required=True, help="path where you store your source pictures.") parser.add_argument('-d', action="store", dest="destination", required=True, help="destination path where you store your updated pictures.") parser.add_argument('-f', action="store", dest="brightness", required=True, help="desired brightness.") parser.add_argument('-g', action="store", dest="blur", required=False, default = "yes", help="yes or no whether you want to do blemish adjust.") args = parser.parse_args() if not os.path.exists(args.storage): print("Source storage folder doesn't exist!") exit() if not os.path.exists(args.destination): os.mkdir(args.destination) editor = PhotoEditor(args.storage, args.destination,args.brightness,args.blur) editor.loop(editor.adjust)
mit
JeanKossaifi/scikit-learn
doc/sphinxext/numpy_ext/docscrape_sphinx.py
408
8061
import re import inspect import textwrap import pydoc from .docscrape import NumpyDocString from .docscrape import FunctionDoc from .docscrape import ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config=None): config = {} if config is None else config self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' ' * indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc, 8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: # GAEL: Toctree commented out below because it creates # hundreds of sphinx warnings # out += ['.. autosummary::', ' :toctree:', ''] out += ['.. autosummary::', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "=" * maxlen_0 + " " + "=" * maxlen_1 + " " + "=" * 10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default', '')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it import sphinx # local import to avoid test dependency if sphinx.__version__ >= "0.6": out += ['.. only:: latex', ''] else: out += ['.. latexonly::', ''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Raises', 'Attributes'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Methods',): out += self._str_member_list(param_list) out = self._str_indent(out, indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config=None): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
bsd-3-clause
vortex-ape/scikit-learn
benchmarks/bench_random_projections.py
397
8900
""" =========================== Random projection benchmark =========================== Benchmarks for random projections. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import collections import numpy as np import scipy.sparse as sp from sklearn import clone from sklearn.externals.six.moves import xrange from sklearn.random_projection import (SparseRandomProjection, GaussianRandomProjection, johnson_lindenstrauss_min_dim) def type_auto_or_float(val): if val == "auto": return "auto" else: return float(val) def type_auto_or_int(val): if val == "auto": return "auto" else: return int(val) def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_scikit_transformer(X, transfomer): gc.collect() clf = clone(transfomer) # start time t_start = datetime.now() clf.fit(X) delta = (datetime.now() - t_start) # stop time time_to_fit = compute_time(t_start, delta) # start time t_start = datetime.now() clf.transform(X) delta = (datetime.now() - t_start) # stop time time_to_transform = compute_time(t_start, delta) return time_to_fit, time_to_transform # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=None): rng = np.random.RandomState(random_state) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def print_row(clf_type, time_fit, time_transform): print("%s | %s | %s" % (clf_type.ljust(30), ("%.4fs" % time_fit).center(12), ("%.4fs" % time_transform).center(12))) if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-features", dest="n_features", default=10 ** 4, type=int, help="Number of features in the benchmarks") op.add_option("--n-components", dest="n_components", default="auto", help="Size of the random subspace." " ('auto' or int > 0)") op.add_option("--ratio-nonzeros", dest="ratio_nonzeros", default=10 ** -3, type=float, help="Number of features in the benchmarks") op.add_option("--n-samples", dest="n_samples", default=500, type=int, help="Number of samples in the benchmarks") op.add_option("--random-seed", dest="random_seed", default=13, type=int, help="Seed used by the random number generators.") op.add_option("--density", dest="density", default=1 / 3, help="Density used by the sparse random projection." " ('auto' or float (0.0, 1.0]") op.add_option("--eps", dest="eps", default=0.5, type=float, help="See the documentation of the underlying transformers.") op.add_option("--transformers", dest="selected_transformers", default='GaussianRandomProjection,SparseRandomProjection', type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. Available: " "GaussianRandomProjection,SparseRandomProjection") op.add_option("--dense", dest="dense", default=False, action="store_true", help="Set input space as a dense matrix.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) opts.n_components = type_auto_or_int(opts.n_components) opts.density = type_auto_or_float(opts.density) selected_transformers = opts.selected_transformers.split(',') ########################################################################### # Generate dataset ########################################################################### n_nonzeros = int(opts.ratio_nonzeros * opts.n_features) print('Dataset statics') print("===========================") print('n_samples \t= %s' % opts.n_samples) print('n_features \t= %s' % opts.n_features) if opts.n_components == "auto": print('n_components \t= %s (auto)' % johnson_lindenstrauss_min_dim(n_samples=opts.n_samples, eps=opts.eps)) else: print('n_components \t= %s' % opts.n_components) print('n_elements \t= %s' % (opts.n_features * opts.n_samples)) print('n_nonzeros \t= %s per feature' % n_nonzeros) print('ratio_nonzeros \t= %s' % opts.ratio_nonzeros) print('') ########################################################################### # Set transformer input ########################################################################### transformers = {} ########################################################################### # Set GaussianRandomProjection input gaussian_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed } transformers["GaussianRandomProjection"] = \ GaussianRandomProjection(**gaussian_matrix_params) ########################################################################### # Set SparseRandomProjection input sparse_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed, "density": opts.density, "eps": opts.eps, } transformers["SparseRandomProjection"] = \ SparseRandomProjection(**sparse_matrix_params) ########################################################################### # Perform benchmark ########################################################################### time_fit = collections.defaultdict(list) time_transform = collections.defaultdict(list) print('Benchmarks') print("===========================") print("Generate dataset benchmarks... ", end="") X_dense, X_sparse = make_sparse_random_data(opts.n_samples, opts.n_features, n_nonzeros, random_state=opts.random_seed) X = X_dense if opts.dense else X_sparse print("done") for name in selected_transformers: print("Perform benchmarks for %s..." % name) for iteration in xrange(opts.n_times): print("\titer %s..." % iteration, end="") time_to_fit, time_to_transform = bench_scikit_transformer(X_dense, transformers[name]) time_fit[name].append(time_to_fit) time_transform[name].append(time_to_transform) print("done") print("") ########################################################################### # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Transformer performance:") print("===========================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") print("%s | %s | %s" % ("Transformer".ljust(30), "fit".center(12), "transform".center(12))) print(31 * "-" + ("|" + "-" * 14) * 2) for name in sorted(selected_transformers): print_row(name, np.mean(time_fit[name]), np.mean(time_transform[name])) print("") print("")
bsd-3-clause
lhogstrom/ThornsInRoses
pubmed_grab/pubmed_api.py
1
3160
from Bio import Entrez import numpy as np import pandas as pd ### pull info from pubmed api outDir = '/Users/hogstrom/Dropbox (MIT)/pubmed_scrp' Entrez.email = "Your.Name.Here@example.org" ### search for specific email in abstract # handle = Entrez.efetch(db="pubmed", id="25081398", rettype="abstract") # search_term = ".com&Cambridge, MA" # search_term = ".com&Boston" #search_term = "Novartis&Cambridge, MA" # search_term = "oncology&.com&Cambridge, MA" search_term = "regulatory&.com&Cambridge, MA" oFile = outDir + '/regulatory_tbl.txt' # search_term = "Oncotype&Cambridge" # oFile = outDir + '/oncotype_dx_tbl.txt' handle = Entrez.esearch(db="pubmed", rettype="abstract", term=search_term,retmax=100) # handle = Entrez.esearch(db="pubmed", rettype="abstract", term="Cambridge, MA",retmax=10) record = Entrez.read(handle) handle.close() idList = record['IdList'] if len(idList) == 0: print "no resutlts for query: " +search_term else: ### retrieve article info handle = Entrez.efetch(db="pubmed", id=idList, rettype="abstract") abstract_records = Entrez.read(handle) handle.close() #loop through for each - save article info articles_dict = {} for a_rec in abstract_records: article_dict = {} if a_rec.has_key('BookDocument'): # if book skip continue # title article_dict['journal'] = a_rec['MedlineCitation']['Article']['Journal']['Title'] # date date_entry = a_rec['MedlineCitation']['Article']['Journal']['JournalIssue']['PubDate'] # date_entry = a_rec['MedlineCitation']['Article']['Journal']['JournalIssue']['PubDate']['MedlineDate'] # date_entry = a_rec['MedlineCitation']['Article']['ArticleDate'] if date_entry.has_key('Year'): # article_dict['Date'] = date_entry[0]['Year'] article_dict['Date'] = date_entry['Year'] # title art_title = a_rec['MedlineCitation']['Article']['ArticleTitle'] art_title = ''.join([i if ord(i) < 128 else ' ' for i in art_title]) #remove non ascii art_title = art_title.encode('utf-8') article_dict['Title'] = art_title # authors authorList = a_rec['MedlineCitation']['Article']['AuthorList'] author_number = len(authorList) if authorList[-1].has_key('LastName'): # check author name is listed article_dict['last_author'] = authorList[-1]['LastName'] if authorList[-1]['AffiliationInfo']: article_dict['last_author_affiliation'] = authorList[-1]['AffiliationInfo'][0]['Affiliation'] pID = a_rec['MedlineCitation']['PMID'] articles_dict[str(pID)] = article_dict aFrm = pd.DataFrame(articles_dict) aFrm = aFrm.T # transpose # save file aFrm.to_csv(oFile,sep='\t', encoding='utf-8') # journal_name = record[0]['MedlineCitation']['Article']['Journal']['Title'] # abstract_text = record[0]['MedlineCitation']['Article']['Abstract'] # read abstract # handle = Entrez.efetch(db="pubmed", id="25081398", retmode="text", rettype="abstract") # handle.read() ### desired out-pu #author, email, journal article, title, date, location, pubmed_id
mit
startcode/apollo
modules/tools/navigation/driving_behavior/plot_gps_path.py
4
1469
#!/usr/bin/env python ############################################################################### # Copyright 2017 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import sys import pyproj import matplotlib.pyplot as plt projector = pyproj.Proj(proj='utm', zone=10, ellps='WGS84') fig = plt.figure() ax = plt.subplot2grid((1, 1), (0, 0)) styles = ['r-', 'b-'] i = 0 for fn in sys.argv[1:]: X = [] Y = [] f = open(fn, 'r') for line in f: line = line.replace('\n', '') vals = line.split(",") if len(vals) < 3: continue print float(vals[-2]), float(vals[-1]) x, y = projector(float(vals[-1]), float(vals[-2])) print x, y X.append(x) Y.append(y) f.close() ax.plot(X, Y, styles[i % len(styles)], lw=3, alpha=0.8) i += 1 ax.axis('equal') plt.show()
apache-2.0
jblackburne/scikit-learn
examples/ensemble/plot_forest_importances.py
168
1793
""" ========================================= Feature importances with forests of trees ========================================= This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature importances of the forest, along with their inter-trees variability. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False) # Build a forest and compute the feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(X.shape[1]): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(X.shape[1]), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(X.shape[1]), indices) plt.xlim([-1, X.shape[1]]) plt.show()
bsd-3-clause
dschien/PyExcelModelingHelper
tests/test_parameter.py
1
4438
import unittest import pandas as pd from excel_helper import Parameter, DistributionFunctionGenerator, GrowthTimeSeriesGenerator from scipy import stats class ParameterTestCase(unittest.TestCase): def test_distribution_generate_values(self): p = Parameter('test', module_name='numpy.random', distribution_name='normal', param_a=0, param_b=.1) settings = {'sample_size': 32} a = p(settings) assert abs(stats.shapiro(a)[0] - 0.9) < 0.1 def test_ExponentialGrowthTimeSeriesDistributionFunctionParameter_generate_values(self): p = Parameter('test', module_name='numpy.random', distribution_name='normal', param_a=0, param_b=.1) settings = { 'use_time_series': True, 'times': pd.date_range('2009-01-01', '2009-03-01', freq='MS'), 'sample_size': 5, 'cagr': 0.1} a = p(settings) print(a) # assert abs(stats.shapiro(a)[0] - 0.9) < 0.1 def test_ExponentialGrowthTimeSeriesDistributionFunctionParameter_generate_values_uniform(self): p = Parameter('test', module_name='numpy.random', distribution_name='uniform', param_a=1, param_b=2) settings = { 'use_time_series': True, 'times': pd.date_range('2009-01-01', '2009-03-01', freq='MS'), 'sample_size': 5, 'cagr': 1} a = p(settings) print(a) # assert abs(stats.shapiro(a)[0] - 0.9) < 0.1 def test_ExponentialGrowthTimeSeriesDistributionFunctionParameter_generate_values_uniform_mean(self): p = Parameter('test', module_name='numpy.random', distribution_name='uniform', param_a=1, param_b=2, cagr=.1) settings = { 'use_time_series': True, 'times': pd.date_range('2009-01-01', '2010-01-01', freq='MS'), 'sample_size': 1, 'sample_mean_value': True} a = p(settings) assert a.iloc[0] * 1.1 == a.iloc[-1] def test_normal_zero_variance(self): p = Parameter('a', module_name='numpy.random', distribution_name='normal', param_a=0, param_b=0, ) q = Parameter('b', module_name='numpy.random', distribution_name='normal', param_a=0, param_b=0) settings = {'sample_size': 64, } a = p(settings) * q(settings) # print(a) assert abs(stats.shapiro(a)[0] - 0.9) < 0.1 def test_get_mean_uniform(self): p = Parameter('a', module_name='numpy.random', distribution_name='uniform', param_a=2, param_b=4, ) settings = { 'sample_size': 5, 'sample_mean_value': True} val = p(settings) # print(val) assert (val == 3).all() def test_get_mean_normal_timeseries(self): p = Parameter('test', module_name='numpy.random', distribution_name='normal', param_a=3., param_b=.1, ) settings = { 'use_time_series': True, 'times': pd.date_range('2009-01-01', '2009-03-01', freq='MS'), 'sample_size': 5, 'cagr': 0, 'sample_mean_value': True} val = p(settings) # print(val) assert (val == 3).all() def test_get_mean_normal(self): p = Parameter('a', module_name='numpy.random', distribution_name='normal', param_a=3, param_b=4, ) val = p() # print(val) # assert (val == 3).all() def test_get_mean_choice(self): p = Parameter('a', module_name='numpy.random', distribution_name='choice', param_a=3, param_b=4, ) settings = {'sample_mean_value': True, 'sample_size': 3} val = p(settings) # print(val) assert (val == 3.5).all() def test_get_mean_numerically(self): p = Parameter('a', module_name='numpy.random', distribution_name='normal', param_a=3, param_b=4) settings = {'sample_mean_value': True, 'sample_size': 3} val = p(settings) # print(val) assert (val == 3).all() if __name__ == '__main__': unittest.main()
mit
hugobuddel/orange3
Orange/regression/linear_bfgs.py
2
4661
import numpy as np from scipy.optimize import fmin_l_bfgs_b from Orange.regression import Learner, Model from Orange.preprocess import Normalize, Continuize, Impute, RemoveNaNColumns __all__ = ["LinearRegressionLearner"] class LinearRegressionLearner(Learner): '''L2 regularized linear regression (a.k.a Ridge regression) This model uses the L-BFGS algorithm to minimize the linear least squares penalty with L2 regularization. When using this model you should: - Choose a suitable regularization parameter lambda_ - Consider appending a column of ones to the dataset (intercept term) Parameters ---------- lambda\_ : float, optional (default=1.0) Regularization parameter. It controls trade-off between fitting the data and keeping parameters small. Higher values of lambda\_ force parameters to be smaller. preprocessors : list, optional (default="[Normalize(), Continuize(), Impute(), RemoveNaNColumns()]) Preprocessors are applied to data before training or testing. Default preprocessors - transform the dataset so that the columns are on a similar scale, - continuize all discrete attributes, - remove columns with all values as NaN - replace NaN values with suitable values fmin_args : dict, optional Parameters for L-BFGS algorithm. """ Examples -------- import numpy as np from Orange.data import Table from Orange.regression.linear_bfgs import LinearRegressionLearner data = Table('housing') data.X = np.hstack((data.X, np.ones((data.X.shape[0], 1)))) # append ones m = LinearRegressionLearner(lambda_=1.0) c = m(data) # fit print(c(data)) # predict ''' name = 'linear_bfgs' preprocessors = [Normalize(), Continuize(), Impute(), RemoveNaNColumns()] def __init__(self, lambda_=1.0, preprocessors=None, **fmin_args): super().__init__(preprocessors=preprocessors) self.lambda_ = lambda_ self.fmin_args = fmin_args def cost_grad(self, theta, X, y): t = X.dot(theta) - y cost = t.dot(t) cost += self.lambda_ * theta.dot(theta) cost /= 2.0 * X.shape[0] grad = X.T.dot(t) grad += self.lambda_ * theta grad /= X.shape[0] return cost, grad def fit(self, X, Y, W): if len(Y.shape) > 1 and Y.shape[1] > 1: raise ValueError('Linear regression does not support ' 'multi-target classification') if np.isnan(np.sum(X)) or np.isnan(np.sum(Y)): raise ValueError('Linear regression does not support ' 'unknown values') theta = np.zeros(X.shape[1]) theta, cost, ret = fmin_l_bfgs_b(self.cost_grad, theta, args=(X, Y.ravel()), **self.fmin_args) return LinearRegressionModel(theta) class LinearRegressionModel(Model): def __init__(self, theta): self.theta = theta def predict(self, X): return X.dot(self.theta) if __name__ == '__main__': import Orange.data import sklearn.cross_validation as skl_cross_validation np.random.seed(42) def numerical_grad(f, params, e=1e-4): grad = np.zeros_like(params) perturb = np.zeros_like(params) for i in range(params.size): perturb[i] = e j1 = f(params - perturb) j2 = f(params + perturb) grad[i] = (j2 - j1) / (2.0 * e) perturb[i] = 0 return grad d = Orange.data.Table('housing') d.X = np.hstack((d.X, np.ones((d.X.shape[0], 1)))) d.shuffle() # m = LinearRegressionLearner(lambda_=1.0) # print(m(d)(d)) # # gradient check # m = LinearRegressionLearner(lambda_=1.0) # theta = np.random.randn(d.X.shape[1]) # # ga = m.cost_grad(theta, d.X, d.Y.ravel())[1] # gm = numerical_grad(lambda t: m.cost_grad(t, d.X, d.Y.ravel())[0], theta) # # print(np.sum((ga - gm)**2)) for lambda_ in (0.01, 0.03, 0.1, 0.3, 1, 3): m = LinearRegressionLearner(lambda_=lambda_) scores = [] for tr_ind, te_ind in skl_cross_validation.KFold(d.X.shape[0]): s = np.mean((m(d[tr_ind])(d[te_ind]) - d[te_ind].Y.ravel())**2) scores.append(s) print('{:5.2f} {}'.format(lambda_, np.mean(scores))) m = LinearRegressionLearner(lambda_=0) print('test data', np.mean((m(d)(d) - d.Y.ravel())**2)) print('majority', np.mean((np.mean(d.Y.ravel()) - d.Y.ravel())**2))
gpl-3.0
samchrisinger/osf.io
scripts/analytics/email_invites.py
55
1332
# -*- coding: utf-8 -*- import os import matplotlib.pyplot as plt from framework.mongo import database from website import settings from utils import plot_dates, mkdirp user_collection = database['user'] FIG_PATH = os.path.join(settings.ANALYTICS_PATH, 'figs', 'features') mkdirp(FIG_PATH) def analyze_email_invites(): invited = user_collection.find({'unclaimed_records': {'$ne': {}}}) dates_invited = [ user['date_registered'] for user in invited ] if not dates_invited: return fig = plot_dates(dates_invited) plt.title('email invitations ({}) total)'.format(len(dates_invited))) plt.savefig(os.path.join(FIG_PATH, 'email-invites.png')) plt.close() def analyze_email_confirmations(): confirmed = user_collection.find({ 'unclaimed_records': {'$ne': {}}, 'is_claimed': True, }) dates_confirmed = [ user['date_confirmed'] for user in confirmed ] if not dates_confirmed: return fig = plot_dates(dates_confirmed) plt.title('confirmed email invitations ({}) total)'.format(len(dates_confirmed))) plt.savefig(os.path.join(FIG_PATH, 'email-invite-confirmations.png')) plt.close() def main(): analyze_email_invites() analyze_email_confirmations() if __name__ == '__main__': main()
apache-2.0
iyergkris/step-oracle
server/run.py
1
5470
#!/usr/bin/env python """ Created to Collect Real-time step count from an iPhone, which in turn collects it from an Apple Watch. Authors: Gopal Iyer, Vikas Iyer Github: @iyergkris, @vikasiyer For: Numenta HTM Challenge Hackathon 11/3/2015: 14:05 Cleanup: """ import sys import importlib import datetime import csv import nupic_anomaly_output import socket from optparse import OptionParser from nupic.data.inference_shifter import InferenceShifter from nupic.frameworks.opf.modelfactory import ModelFactory DEFAULT_PLOT = False DATETIME_FIELDNAME = 'datetime' # Format in Input file: 2015/08/19 12:00:00 DATE_FORMAT = "%Y/%m/%d %H:%M:%S" INPUT_FILE_NAME = "step-count-data" DATA_DIR = "." SERVER_ADDRESS = "192.168.210.166" SERVER_PORT = 8888 # Options parsing. parser = OptionParser( usage="%prog [options]" ) parser.add_option( "-p", "--plot", action="store_true", default=DEFAULT_PLOT, dest="plot", help="Plot results in matplotlib instead of writing to file " "(requires matplotlib).") parser.add_option( "-l", "--log", action="store_true", default=False, dest="log", help="Compute the log of anomaly likelihood " "(this is more useful for plotting)") def getModelParamsFromName(inputdataName): importName = "model_params.%s_model_params" % ( inputdataName.replace(" ", "_").replace("-", "_") ) print "Importing model params from %s" % importName try: importedModelParams = importlib.import_module(importName).MODEL_PARAMS except ImportError: raise Exception("No model params exist for '%s'. Run swarm first!" % inputdataName) return importedModelParams def createModel(modelParams): model = ModelFactory.create(modelParams) model.enableInference({"predictedField": "steps"}) return model """ This is the main function to push data into the HTM and get prediction and anomalyScore data Data source is being replaced with the Step count coming from an iPhone and Apple Watch real time data source 11/3/15: 14:05 Cleanup: """ def runModel(inputData, model, plot, logLikelihood): inputFile = open(inputData, "rb") csvReader = csv.reader(inputFile) # skip header rows csvReader.next() shifter = InferenceShifter() if plot: output = nupic_anomaly_output.NuPICPlotOutput([INPUT_FILE_NAME], logLikelihood) else: output = nupic_anomaly_output.NuPICFileOutput([INPUT_FILE_NAME], logLikelihood) for row in csvReader: timestamp = datetime.datetime.strptime(row[0], DATE_FORMAT) value = float(row[1]) if value is not None: result = model.run({ "timestamp": timestamp, "steps": value }) if plot: result = shifter.shift(result) prediction = result.inferences["multiStepBestPredictions"][1] anomalyScore = result.inferences["anomalyScore"] # print "Anomaly score %s" % anomalyScore output.write(timestamp, value, prediction, anomalyScore) inputFile.close() """ Below starts the code for Opening a UDP socket on port 8888 and waiting for message from client. On receiving message from client (iPhone), it is fed into the HTM model (no data format checks for now >> hackathon) Model returns prediction and anomaly data. Only prediction data is sent back to the Client (iPhone) 11/3/2015: 14:32: Cleanup """ # Create a TCP/IP socket sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Bind the socket to the port server_address = (SERVER_ADDRESS, SERVER_PORT) print >>sys.stderr, 'starting up on %s port %s' % server_address sock.bind(server_address) while True: print >>sys.stderr, '\nwaiting to receive message' data, address = sock.recvfrom(4096) print >>sys.stderr, 'received %s bytes from %s' % (len(data), address) print >>sys.stderr, data # code to feed into NuPIC HTM Neural machine watch_time, watch_steps = data.split(",") timestamp = datetime.datetime.strptime(watch_time, DATE_FORMAT) consumption = float(watch_steps) result = model.run({ "timestamp": timestamp, "steps": value }) # result.metrics = metricsManager.update(result) # print ("Prediction=%f" % (result.metrics["multiStepBestPredictions:multiStep:" # "errorMetric='altMAPE':steps=1:window=1000:" # "field=kw_energy_consumption"])) # predictForString = result.metrics["multiStepBestPredictions:multiStep:" # "errorMetric='altMAPE':steps=1:window=1000:" # "field=kw_energy_consumption"] if plot: result = shifter.shift(result) prediction = result.inferences["multiStepBestPredictions"][1] print "Prediction: %s" % prediction anomalyScore = result.inferences["anomalyScore"] output.write(timestamp, value, prediction, anomalyScore) if prediction: sent = sock.sendto(str(prediction), address) print >>sys.stderr, 'sent %s bytes back to %s' % (sent, address) output.close() if __name__ == "__main__": (options, args) = parser.parse_args(sys.argv[1:]) plot = options.plot # data = fetchData(url, river, stream, aggregate, # {'limit': options.dataLimit}) # (min, max) = getMinMax(data, field) modelParams = getModelParamsFromName(INPUT_FILE_NAME) model = createModel(modelParams) inputfilepath = "%s/%s.csv" % (DATA_DIR,INPUT_FILE_NAME.replace(" ","_")) runModel(inputfilepath, model, plot, options.log)
agpl-3.0
lmjohns3/speech-experiment
models/train-rica.py
1
2008
import climate import lmj.plot as plt import numpy as np import seaborn as sns import theanets logging = climate.get_logger('rica') import models climate.add_arg('--codebook', metavar='FILE', help='save codebook to FILE') climate.add_arg('--frames', type=int, metavar='T', help='train on sequences of T frames') climate.add_arg('--overcomplete', type=float, default=2, metavar='K', help='learn a Kx overcomplete codebook') def main(args): data = np.load(args.dataset, mmap_mode='r') N = data.shape[1] T = args.frames K = int(N * T * args.overcomplete) def batches(): batch = np.zeros((args.batch_size, N * T), 'f') for b in range(args.batch_size): o = np.random.randint(len(data) - T - 1) batch[b] = data[o:o+T].ravel() return [batch] net = theanets.Autoencoder([N * T, (K, 'linear'), (N * T, 'tied')]) net.train(batches, monitors={'hid1:out': (-0.1, -0.01, 0.01, 0.1)}, **models.kwargs_from_args(args)) D = net.find('hid1', 'w').get_value().T R = 6 C = 18 dimg = np.zeros((R * (N + 1) - 1, C * (T + 1) - 1), float) bimg = np.zeros((R * (N + 1) - 1, C * (T + 1) - 1), float) idx = abs(D).max(axis=1).argsort()[::-1] for r in range(R): for c in range(C): o = np.random.randint(len(data) - T - 1) dimg[r*(N+1):r*(N+1)+N, c*(T+1):c*(T+1)+T] = data[o:o+T].T bimg[r*(N+1):r*(N+1)+N, c*(T+1):c*(T+1)+T] = D[idx[r * C + c]].reshape((T, N)).T _, (dax, bax) = plt.subplots(1, 2) dax.imshow(dimg, cmap='coolwarm') sns.despine(ax=dax, left=True, bottom=True) dax.set_xticks([]) dax.set_yticks([]) bax.imshow(bimg, cmap='coolwarm') sns.despine(ax=bax, left=True, bottom=True) bax.set_xticks([]) bax.set_yticks([]) plt.show() logging.info('%s: saving %s %s', args.codebook, D.shape, D.dtype) np.save(args.codebook, D) if __name__ == '__main__': climate.call(main)
mit
thientu/scikit-learn
sklearn/cluster/tests/test_k_means.py
63
26190
"""Testing for K-means""" import sys import numpy as np from scipy import sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import if_safe_multiprocessing_with_blas from sklearn.utils.validation import DataConversionWarning from sklearn.utils.extmath import row_norms from sklearn.metrics.cluster import v_measure_score from sklearn.cluster import KMeans, k_means from sklearn.cluster import MiniBatchKMeans from sklearn.cluster.k_means_ import _labels_inertia from sklearn.cluster.k_means_ import _mini_batch_step from sklearn.datasets.samples_generator import make_blobs from sklearn.externals.six.moves import cStringIO as StringIO # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [1.0, 1.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 100 n_clusters, n_features = centers.shape X, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) X_csr = sp.csr_matrix(X) def test_kmeans_dtype(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) X = (X * 10).astype(np.uint8) km = KMeans(n_init=1).fit(X) pred_x = assert_warns(DataConversionWarning, km.predict, X) assert_array_equal(km.labels_, pred_x) def test_labels_assignment_and_inertia(): # pure numpy implementation as easily auditable reference gold # implementation rng = np.random.RandomState(42) noisy_centers = centers + rng.normal(size=centers.shape) labels_gold = - np.ones(n_samples, dtype=np.int) mindist = np.empty(n_samples) mindist.fill(np.infty) for center_id in range(n_clusters): dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1) labels_gold[dist < mindist] = center_id mindist = np.minimum(dist, mindist) inertia_gold = mindist.sum() assert_true((mindist >= 0.0).all()) assert_true((labels_gold != -1).all()) # perform label assignment using the dense array input x_squared_norms = (X ** 2).sum(axis=1) labels_array, inertia_array = _labels_inertia( X, x_squared_norms, noisy_centers) assert_array_almost_equal(inertia_array, inertia_gold) assert_array_equal(labels_array, labels_gold) # perform label assignment using the sparse CSR input x_squared_norms_from_csr = row_norms(X_csr, squared=True) labels_csr, inertia_csr = _labels_inertia( X_csr, x_squared_norms_from_csr, noisy_centers) assert_array_almost_equal(inertia_csr, inertia_gold) assert_array_equal(labels_csr, labels_gold) def test_minibatch_update_consistency(): # Check that dense and sparse minibatch update give the same results rng = np.random.RandomState(42) old_centers = centers + rng.normal(size=centers.shape) new_centers = old_centers.copy() new_centers_csr = old_centers.copy() counts = np.zeros(new_centers.shape[0], dtype=np.int32) counts_csr = np.zeros(new_centers.shape[0], dtype=np.int32) x_squared_norms = (X ** 2).sum(axis=1) x_squared_norms_csr = row_norms(X_csr, squared=True) buffer = np.zeros(centers.shape[1], dtype=np.double) buffer_csr = np.zeros(centers.shape[1], dtype=np.double) # extract a small minibatch X_mb = X[:10] X_mb_csr = X_csr[:10] x_mb_squared_norms = x_squared_norms[:10] x_mb_squared_norms_csr = x_squared_norms_csr[:10] # step 1: compute the dense minibatch update old_inertia, incremental_diff = _mini_batch_step( X_mb, x_mb_squared_norms, new_centers, counts, buffer, 1, None, random_reassign=False) assert_greater(old_inertia, 0.0) # compute the new inertia on the same batch to check that it decreased labels, new_inertia = _labels_inertia( X_mb, x_mb_squared_norms, new_centers) assert_greater(new_inertia, 0.0) assert_less(new_inertia, old_inertia) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers - old_centers) ** 2) assert_almost_equal(incremental_diff, effective_diff) # step 2: compute the sparse minibatch update old_inertia_csr, incremental_diff_csr = _mini_batch_step( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr, counts_csr, buffer_csr, 1, None, random_reassign=False) assert_greater(old_inertia_csr, 0.0) # compute the new inertia on the same batch to check that it decreased labels_csr, new_inertia_csr = _labels_inertia( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr) assert_greater(new_inertia_csr, 0.0) assert_less(new_inertia_csr, old_inertia_csr) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers_csr - old_centers) ** 2) assert_almost_equal(incremental_diff_csr, effective_diff) # step 3: check that sparse and dense updates lead to the same results assert_array_equal(labels, labels_csr) assert_array_almost_equal(new_centers, new_centers_csr) assert_almost_equal(incremental_diff, incremental_diff_csr) assert_almost_equal(old_inertia, old_inertia_csr) assert_almost_equal(new_inertia, new_inertia_csr) def _check_fitted_model(km): # check that the number of clusters centers and distinct labels match # the expectation centers = km.cluster_centers_ assert_equal(centers.shape, (n_clusters, n_features)) labels = km.labels_ assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(km.inertia_, 0.0) # check error on dataset being too small assert_raises(ValueError, km.fit, [[0., 1.]]) def test_k_means_plus_plus_init(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_new_centers(): # Explore the part of the code where a new center is reassigned X = np.array([[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0]]) labels = [0, 1, 2, 1, 1, 2] bad_centers = np.array([[+0, 1, 0, 0], [.2, 0, .2, .2], [+0, 0, 0, 0]]) km = KMeans(n_clusters=3, init=bad_centers, n_init=1, max_iter=10, random_state=1) for this_X in (X, sp.coo_matrix(X)): km.fit(this_X) this_labels = km.labels_ # Reorder the labels so that the first instance is in cluster 0, # the second in cluster 1, ... this_labels = np.unique(this_labels, return_index=True)[1][this_labels] np.testing.assert_array_equal(this_labels, labels) @if_safe_multiprocessing_with_blas def test_k_means_plus_plus_init_2_jobs(): if sys.version_info[:2] < (3, 4): raise SkipTest( "Possible multi-process bug with some BLAS under Python < 3.4") km = KMeans(init="k-means++", n_clusters=n_clusters, n_jobs=2, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_precompute_distances_flag(): # check that a warning is raised if the precompute_distances flag is not # supported km = KMeans(precompute_distances="wrong") assert_raises(ValueError, km.fit, X) def test_k_means_plus_plus_init_sparse(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_random_init(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X) _check_fitted_model(km) def test_k_means_random_init_sparse(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_plus_plus_init_not_precomputed(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_random_init_not_precomputed(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_perfect_init(): km = KMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1) km.fit(X) _check_fitted_model(km) def test_k_means_n_init(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) # two regression tests on bad n_init argument # previous bug: n_init <= 0 threw non-informative TypeError (#3858) assert_raises_regexp(ValueError, "n_init", KMeans(n_init=0).fit, X) assert_raises_regexp(ValueError, "n_init", KMeans(n_init=-1).fit, X) def test_k_means_fortran_aligned_data(): # Check the KMeans will work well, even if X is a fortran-aligned data. X = np.asfortranarray([[0, 0], [0, 1], [0, 1]]) centers = np.array([[0, 0], [0, 1]]) labels = np.array([0, 1, 1]) km = KMeans(n_init=1, init=centers, precompute_distances=False, random_state=42) km.fit(X) assert_array_equal(km.cluster_centers_, centers) assert_array_equal(km.labels_, labels) def test_mb_k_means_plus_plus_init_dense_array(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X) _check_fitted_model(mb_k_means) def test_mb_kmeans_verbose(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: mb_k_means.fit(X) finally: sys.stdout = old_stdout def test_mb_k_means_plus_plus_init_sparse_matrix(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_init_with_large_k(): mb_k_means = MiniBatchKMeans(init='k-means++', init_size=10, n_clusters=20) # Check that a warning is raised, as the number clusters is larger # than the init_size assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_random_init_dense_array(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_random_init_sparse_csr(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_k_means_perfect_init_dense_array(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_init_multiple_runs_with_explicit_centers(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=10) assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_perfect_init_sparse_csr(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_sensible_reassign_fit(): # check if identical initial clusters are reassigned # also a regression test for when there are more desired reassignments than # samples. zeroed_X, true_labels = make_blobs(n_samples=100, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=10, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) # do the same with batch-size > X.shape[0] (regression test) mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=201, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_sensible_reassign_partial_fit(): zeroed_X, true_labels = make_blobs(n_samples=n_samples, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, random_state=42, init="random") for i in range(100): mb_k_means.partial_fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_reassign(): # Give a perfect initialization, but a large reassignment_ratio, # as a result all the centers should be reassigned and the model # should not longer be good for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, random_state=42) mb_k_means.fit(this_X) score_before = mb_k_means.score(this_X) try: old_stdout = sys.stdout sys.stdout = StringIO() # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1, verbose=True) finally: sys.stdout = old_stdout assert_greater(score_before, mb_k_means.score(this_X)) # Give a perfect initialization, with a small reassignment_ratio, # no center should be reassigned for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init=centers.copy(), random_state=42, n_init=1) mb_k_means.fit(this_X) clusters_before = mb_k_means.cluster_centers_ # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1e-15) assert_array_almost_equal(clusters_before, mb_k_means.cluster_centers_) def test_minibatch_with_many_reassignments(): # Test for the case that the number of clusters to reassign is bigger # than the batch_size n_samples = 550 rnd = np.random.RandomState(42) X = rnd.uniform(size=(n_samples, 10)) # Check that the fit works if n_clusters is bigger than the batch_size. # Run the test with 550 clusters and 550 samples, because it turned out # that this values ensure that the number of clusters to reassign # is always bigger than the batch_size n_clusters = 550 MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init_size=n_samples, random_state=42).fit(X) def test_sparse_mb_k_means_callable_init(): def test_init(X, k, random_state): return centers # Small test to check that giving the wrong number of centers # raises a meaningful error assert_raises(ValueError, MiniBatchKMeans(init=test_init, random_state=42).fit, X_csr) # Now check that the fit actually works mb_k_means = MiniBatchKMeans(n_clusters=3, init=test_init, random_state=42).fit(X_csr) _check_fitted_model(mb_k_means) def test_mini_batch_k_means_random_init_partial_fit(): km = MiniBatchKMeans(n_clusters=n_clusters, init="random", random_state=42) # use the partial_fit API for online learning for X_minibatch in np.array_split(X, 10): km.partial_fit(X_minibatch) # compute the labeling on the complete dataset labels = km.predict(X) assert_equal(v_measure_score(true_labels, labels), 1.0) def test_minibatch_default_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, batch_size=10, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size_, 3 * mb_k_means.batch_size) _check_fitted_model(mb_k_means) def test_minibatch_tol(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=10, random_state=42, tol=.01).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_set_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, init_size=666, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size, 666) assert_equal(mb_k_means.init_size_, n_samples) _check_fitted_model(mb_k_means) def test_k_means_invalid_init(): km = KMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_mini_match_k_means_invalid_init(): km = MiniBatchKMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_k_means_copyx(): # Check if copy_x=False returns nearly equal X after de-centering. my_X = X.copy() km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42) km.fit(my_X) _check_fitted_model(km) # check if my_X is centered assert_array_almost_equal(my_X, X) def test_k_means_non_collapsed(): # Check k_means with a bad initialization does not yield a singleton # Starting with bad centers that are quickly ignored should not # result in a repositioning of the centers to the center of mass that # would lead to collapsed centers which in turns make the clustering # dependent of the numerical unstabilities. my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]]) array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]]) km = KMeans(init=array_init, n_clusters=3, random_state=42, n_init=1) km.fit(my_X) # centers must not been collapsed assert_equal(len(np.unique(km.labels_)), 3) centers = km.cluster_centers_ assert_true(np.linalg.norm(centers[0] - centers[1]) >= 0.1) assert_true(np.linalg.norm(centers[0] - centers[2]) >= 0.1) assert_true(np.linalg.norm(centers[1] - centers[2]) >= 0.1) def test_predict(): km = KMeans(n_clusters=n_clusters, random_state=42) km.fit(X) # sanity check: predict centroid labels pred = km.predict(km.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = km.predict(X) assert_array_equal(pred, km.labels_) # re-predict labels for training set using fit_predict pred = km.fit_predict(X) assert_array_equal(pred, km.labels_) def test_score(): km1 = KMeans(n_clusters=n_clusters, max_iter=1, random_state=42) s1 = km1.fit(X).score(X) km2 = KMeans(n_clusters=n_clusters, max_iter=10, random_state=42) s2 = km2.fit(X).score(X) assert_greater(s2, s1) def test_predict_minibatch_dense_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, random_state=40).fit(X) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = mb_k_means.predict(X) assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_kmeanspp_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='k-means++', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_random_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_input_dtypes(): X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]] X_int = np.array(X_list, dtype=np.int32) X_int_csr = sp.csr_matrix(X_int) init_int = X_int[:2] fitted_models = [ KMeans(n_clusters=2).fit(X_list), KMeans(n_clusters=2).fit(X_int), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_list), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_int), # mini batch kmeans is very unstable on such a small dataset hence # we use many inits MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_list), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int_csr), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_list), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int_csr), ] expected_labels = [0, 1, 1, 0, 0, 1] scores = np.array([v_measure_score(expected_labels, km.labels_) for km in fitted_models]) assert_array_equal(scores, np.ones(scores.shape[0])) def test_transform(): km = KMeans(n_clusters=n_clusters) km.fit(X) X_new = km.transform(km.cluster_centers_) for c in range(n_clusters): assert_equal(X_new[c, c], 0) for c2 in range(n_clusters): if c != c2: assert_greater(X_new[c, c2], 0) def test_fit_transform(): X1 = KMeans(n_clusters=3, random_state=51).fit(X).transform(X) X2 = KMeans(n_clusters=3, random_state=51).fit_transform(X) assert_array_equal(X1, X2) def test_n_init(): # Check that increasing the number of init increases the quality n_runs = 5 n_init_range = [1, 5, 10] inertia = np.zeros((len(n_init_range), n_runs)) for i, n_init in enumerate(n_init_range): for j in range(n_runs): km = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, random_state=j).fit(X) inertia[i, j] = km.inertia_ inertia = inertia.mean(axis=1) failure_msg = ("Inertia %r should be decreasing" " when n_init is increasing.") % list(inertia) for i in range(len(n_init_range) - 1): assert_true(inertia[i] >= inertia[i + 1], failure_msg) def test_k_means_function(): # test calling the k_means function directly # catch output old_stdout = sys.stdout sys.stdout = StringIO() try: cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters, verbose=True) finally: sys.stdout = old_stdout centers = cluster_centers assert_equal(centers.shape, (n_clusters, n_features)) labels = labels assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(inertia, 0.0) # check warning when centers are passed assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters, init=centers) # to many clusters desired assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1) def test_x_squared_norms_init_centroids(): """Test that x_squared_norms can be None in _init_centroids""" from sklearn.cluster.k_means_ import _init_centroids X_norms = np.sum(X**2, axis=1) precompute = _init_centroids( X, 3, "k-means++", random_state=0, x_squared_norms=X_norms) assert_array_equal( precompute, _init_centroids(X, 3, "k-means++", random_state=0))
bsd-3-clause
vshtanko/scikit-learn
examples/model_selection/randomized_search.py
201
3214
""" ========================================================================= Comparing randomized search and grid search for hyperparameter estimation ========================================================================= Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality tradeoff). The randomized search and the grid search explore exactly the same space of parameters. The result in parameter settings is quite similar, while the run time for randomized search is drastically lower. The performance is slightly worse for the randomized search, though this is most likely a noise effect and would not carry over to a held-out test set. Note that in practice, one would not search over this many different parameters simultaneously using grid search, but pick only the ones deemed most important. """ print(__doc__) import numpy as np from time import time from operator import itemgetter from scipy.stats import randint as sp_randint from sklearn.grid_search import GridSearchCV, RandomizedSearchCV from sklearn.datasets import load_digits from sklearn.ensemble import RandomForestClassifier # get some data digits = load_digits() X, y = digits.data, digits.target # build a classifier clf = RandomForestClassifier(n_estimators=20) # Utility function to report best scores def report(grid_scores, n_top=3): top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top] for i, score in enumerate(top_scores): print("Model with rank: {0}".format(i + 1)) print("Mean validation score: {0:.3f} (std: {1:.3f})".format( score.mean_validation_score, np.std(score.cv_validation_scores))) print("Parameters: {0}".format(score.parameters)) print("") # specify parameters and distributions to sample from param_dist = {"max_depth": [3, None], "max_features": sp_randint(1, 11), "min_samples_split": sp_randint(1, 11), "min_samples_leaf": sp_randint(1, 11), "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run randomized search n_iter_search = 20 random_search = RandomizedSearchCV(clf, param_distributions=param_dist, n_iter=n_iter_search) start = time() random_search.fit(X, y) print("RandomizedSearchCV took %.2f seconds for %d candidates" " parameter settings." % ((time() - start), n_iter_search)) report(random_search.grid_scores_) # use a full grid over all parameters param_grid = {"max_depth": [3, None], "max_features": [1, 3, 10], "min_samples_split": [1, 3, 10], "min_samples_leaf": [1, 3, 10], "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run grid search grid_search = GridSearchCV(clf, param_grid=param_grid) start = time() grid_search.fit(X, y) print("GridSearchCV took %.2f seconds for %d candidate parameter settings." % (time() - start, len(grid_search.grid_scores_))) report(grid_search.grid_scores_)
bsd-3-clause
e-koch/VLA_Lband
14B-088/HI/analysis/co_comparison/co_hi_cloud_spectra.py
1
8453
''' Use the clean cloud sample from cloud_catalog.py to find the CO and HI spectra over each cloud. ''' from astropy.io import fits from astropy.wcs import WCS from astropy.utils.console import ProgressBar import astropy.units as u from scipy import ndimage as nd from spectral_cube import SpectralCube from spectral_cube.lower_dimensional_structures import Projection from spectral_cube.cube_utils import average_beams from reproject import reproject_interp import numpy as np import matplotlib.pyplot as plt from multiprocessing import Pool import seaborn as sb from signal_id import Noise from cube_analysis.spectra_shifter import cube_shifter from analysis.paths import (fourteenB_HI_data_path, iram_co21_data_path, paper1_figures_path) from analysis.constants import hi_freq, cube_name, moment1_name from analysis.galaxy_params import gal from analysis.plotting_styles import onecolumn_figure, align_yaxis hi_cube = SpectralCube.read(fourteenB_HI_data_path(cube_name)) hi_beam = average_beams(hi_cube.beams) hi_mom1 = fits.open(fourteenB_HI_data_path(moment1_name))[0] # cloud_mask = \ # fits.open(iram_co21_data_path("m33.co21_new_assign_cprops_cleansample.fits"))[0] # Improved cloud mask from Braine & Corbelli cloud_mask_hdu = fits.open(iram_co21_data_path("asgn.fits"))[0] # The cloud edges can be quite strict. Spectrally expand the mask one pixel # in each direction cloud_mask = nd.binary_dilation(cloud_mask_hdu.data > 0, np.array([[[1, 1, 1]]]).T) cube = SpectralCube.read(iram_co21_data_path("m33.co21_iram.fits")) cube = cube.with_mask(cloud_mask) # Make a SNR cube # noise = Noise(cube) # noise.estimate_noise(spectral_flat=True) # noise.get_scale_cube() # snr = SpectralCube(data=noise.snr.copy(), wcs=cube.wcs) # Create a CO centroid map where the GMC mask is valid. def peak_velocity(y, x, cube): argmax = np.nanargmax(cube[:, y, x].value) return cube.spectral_axis[argmax] peak_intens = cube.max(0) valid_mask = cloud_mask.sum(0) > 0 cube_specinterp = cube.spectral_interpolate(hi_cube.spectral_axis) mom1 = cube_specinterp.moment1() # mom1[~peak_mask] = np.NaN peak_vels_arr = np.zeros_like(mom1) * np.NaN pbar = ProgressBar(len(zip(*np.where(valid_mask)))) for y, x in zip(*np.where(valid_mask)): peak_vels_arr[y, x] = peak_velocity(y, x, cube_specinterp) pbar.update() # Moment 1 and peak vels need to be somewhat close to each other # max_diff = 20 * u.km / u.s # bad_peaks = np.abs(peak_vels_arr - mom1) > max_diff # peak_vels_arr[bad_peaks] = np.NaN peak_vels = Projection(peak_vels_arr, unit=mom1.unit, wcs=mom1.wcs) peak_vels.write(iram_co21_data_path("m33.co21_iram.masked.peakvel.fits", no_check=True)) mom1_reproj_arr = reproject_interp(mom1.hdu, hi_cube.wcs.celestial, shape_out=hi_cube.shape[1:])[0] mom1_reproj = Projection(mom1_reproj_arr, unit=mom1.unit, wcs=hi_cube.wcs.celestial) peak_vels_reproj_arr = \ reproject_interp(peak_vels.hdu, hi_cube.wcs.celestial, shape_out=hi_cube.shape[1:])[0] peak_vels_reproj = Projection(peak_vels_reproj_arr, unit=mom1.unit, wcs=hi_cube.wcs.celestial) peak_vels_reproj.write(iram_co21_data_path("m33.co21_iram.masked.peakvel.hireprojection.fits", no_check=True)) # hi_mom1_reproj_arr = reproject_interp(hi_mom1, cube.wcs.celestial, # shape_out=mom1.shape)[0] # hi_mom1_reproj = Projection(hi_mom1_reproj_arr, unit=mom1.unit, # wcs=cube.wcs.celestial) # vels_co = hi_mom1_reproj # vels_hi = Projection(hi_mom1.data, header=hi_mom1.header, unit=u.m / u.s) vels_co = peak_vels vels_hi = peak_vels_reproj # vels_co = mom1 # vels_hi = mom1_reproj # Loop through the clouds, making the total/average profiles. num_clouds = int(cloud_mask_hdu.data.max()) cloud_total_specs_co = np.zeros((num_clouds, cube.shape[0])) cloud_total_specs_hi = np.zeros((num_clouds, hi_cube.shape[0])) cloud_avg_specs_co = np.zeros((num_clouds, cube.shape[0])) cloud_avg_specs_hi = np.zeros((num_clouds, hi_cube.shape[0])) # Plot for each cloud verbose = False # pool = Pool(6) pool = None for i in ProgressBar(num_clouds): # Find spatial extent of the cloud plane = (cloud_mask_hdu.data == i + 1).sum(0) > 0 xy_posns = np.where(plane) co_spec = np.zeros((cube.shape[0],)) co_count = np.zeros((cube.shape[0],)) # Shift wrt to CO peak or centroid. co_shifted = cube_shifter(cube, vels_co, gal.vsys, xy_posns=xy_posns, pool=pool, return_spectra=True,) for spec in co_shifted[0]: finites = np.isfinite(spec) co_spec[finites] += spec.value[finites] co_count += finites cloud_total_specs_co[i] = co_spec cloud_avg_specs_co[i] = co_spec / co_count # Now regrid plane onto the HI and do the same. plane_reproj = reproject_interp((plane, WCS(cloud_mask_hdu.header).celestial), hi_cube.wcs.celestial, shape_out=hi_cube.shape[1:])[0] > 0 xy_posns_hi = np.where(plane_reproj) hi_spec = np.zeros((hi_cube.shape[0],)) hi_count = np.zeros((hi_cube.shape[0],)) hi_shifted = cube_shifter(hi_cube, vels_hi, gal.vsys, xy_posns=xy_posns_hi, pool=pool, return_spectra=True,) for spec in hi_shifted[0]: # if np.nanmax(spec.value) < 0.0066: # continue finites = np.isfinite(spec) & (spec > 0) hi_spec[finites] += spec.value[finites] hi_count += finites cloud_total_specs_hi[i] = (hi_spec * hi_beam.jtok(hi_freq).value) cloud_avg_specs_hi[i] = (hi_spec * hi_beam.jtok(hi_freq).value) / hi_count if verbose: onecolumn_figure() sb.set_context("paper", rc={"font.family": "serif", "figure.figsize": np.array([7.325, 5.9375])}, font_scale=1.5) sb.set_palette("afmhot") fig, ax = plt.subplots(3, 1, sharex=True, sharey=False, num=1) plt.subplots_adjust(hspace=0.1, wspace=0.1) fig.text(0.5, 0.02, 'Velocity (km/s)', ha='center') ax[0].plot(hi_cube.spectral_axis.to(u.km / u.s).value, cloud_avg_specs_hi[i], 'b', drawstyle='steps-mid', label='HI') # For the legend ax[0].plot([], [], 'r--', label="CO(2-1)") ax2 = ax[0].twinx() ax2.plot(cube.spectral_axis.to(u.km / u.s).value, cloud_avg_specs_co[i] * 1000., 'r--', drawstyle='steps-mid', label='CO(2-1)') align_yaxis(ax[0], 0, ax2, 0) # ax[0].set_ylim([0, 1]) ax[0].set_xlim([gal.vsys.to(u.km / u.s).value - 40, gal.vsys.to(u.km / u.s).value + 40]) ax[0].set_ylabel("HI Intensity (K)") ax2.set_ylabel("CO Intensity (mK)") ax[0].grid() ax[0].legend(frameon=True, loc='upper right') for spec in hi_shifted[0]: if not np.isnan(spec).all(): ax[1].plot(hi_cube.spectral_axis.to(u.km / u.s).value, spec.value * hi_beam.jtok(hi_freq).value, '--', alpha=0.5, drawstyle='steps-mid') ax[1].set_ylabel("HI Intensity (K)") ax[1].grid() for spec in co_shifted[0]: if not np.isnan(spec).all(): ax[2].plot(cube.spectral_axis.to(u.km / u.s).value, spec.to(u.mK).value, '--', alpha=0.5, drawstyle='steps-mid') ax[2].set_ylabel("CO Intensity (mK)") ax[2].grid() # plt.draw() # raw_input("?") # plt.clf() fig.savefig(paper1_figures_path("GMC_CO_peakshift/GMC_CO_peakshift" "_{}.png".format(i + 1))) fig.savefig(paper1_figures_path("GMC_CO_peakshift/GMC_CO_peakshift" "_{}.pdf".format(i + 1))) plt.clf() plt.close() # Save the stacked spectra np.savetxt("GMC_stackedspectra_peakvels_CO.txt", cloud_avg_specs_co) np.savetxt("GMC_stackedspectra_peakvels_HI.txt", cloud_avg_specs_hi)
mit
quimaguirre/diana
scripts/compare_profiles.py
1
35855
import argparse import configparser import copy import ntpath import numpy as np import pandas as pd import time import sys, os, re from context import diana import diana.classes.drug as diana_drug import diana.classes.comparison as comparison import diana.classes.network_analysis as network_analysis import diana.classes.functional_analysis as functional_analysis import diana.classes.top_scoring as top_scoring import diana.toolbox.wrappers as wrappers def main(): """ Generate profiles for drugs using GUILD. Optimized for Python 3. python /home/quim/PHD/Projects/DIANA/diana/scripts/compare_profiles.py -d1 DB11699 -d2 DB00177 -sif /home/quim/PHD/Projects/DIANA/diana/data/network_cheng.sif """ options = parse_user_arguments() compare_profiles(options) def parse_user_arguments(*args, **kwds): """ Parses the arguments of the program """ parser = argparse.ArgumentParser( description = "Compare the profiles of the input drugs", epilog = "@oliva's lab 2017") parser.add_argument('-j1','--job_id_drug1',dest='job_id_drug1',action = 'store', help = """ Identifier of the drug number 1. If the name of the drug has more than one word or special characters (parentheses, single quotes), introduce the name between double quotes. """) parser.add_argument('-j2','--job_id_drug2',dest='job_id_drug2',action = 'store', help = """ Identifier of the drug number 2. If the name of the drug has more than one word or special characters (parentheses, single quotes), introduce the name between double quotes. """) parser.add_argument('-sif','--sif_file',dest='sif',action = 'store', help = 'Input file with a protein-protein interaction network in SIF format.') parser.add_argument('-th','--threshold_list',dest='threshold_list',action = 'store', help = """List of percentages that will be used as cut-offs to define the profiles of the drugs. It has to be a file containing: - Different numbers that will be the threshold values separated by newline characters. For example, a file called "top_threshold.list" containing: 0.1 0.5 1 5 10 """) parser.add_argument('-ws','--workspace',dest='workspace',action = 'store',default=os.path.join(os.path.join(os.path.dirname(__file__), '..'), 'workspace'), help = """Define the workspace directory where the data directory and the results directory will be created""") options=parser.parse_args() return options ################# ################# # MAIN FUNCTION # ################# ################# def compare_profiles(options): """ Compares the profiles of two input drugs """ # Start marker for time measure start = time.time() print("\n\t\t------------------------------------------------------------------------------------------------------------------------\n") print("\t\tStarting Drug Interactions ANAlysis (DIANA), a program created by @OLIVA'S LAB. Second part: Comparison of drug profiles\n") print("\t\t------------------------------------------------------------------------------------------------------------------------\n") # Get the script path and define directories used main_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) scripts_dir = os.path.join(main_path, 'scripts') mappings_dir = os.path.join(main_path, 'mappings') data_dir = os.path.join(main_path, 'data') workspace_dir = options.workspace create_directory(workspace_dir) profiles_dir = os.path.join(workspace_dir, 'profiles') # Create a directory for the results of the comparison results_dir = os.path.join(workspace_dir, "comparisons") create_directory(results_dir) # Create directories for additional data other_data_dir = os.path.join(workspace_dir, 'additional_data') create_directory(other_data_dir) random_networks_dir = os.path.join(other_data_dir, 'random_networks') create_directory(random_networks_dir) associations_dir = os.path.join(other_data_dir, 'gene_function_associations') create_directory(associations_dir) target_associations_dir = os.path.join(associations_dir, 'targets') numbers_dir = os.path.join(other_data_dir, 'numbers') create_directory(numbers_dir) # Create a ComparisonResult instance comparison_instance = comparison.ComparisonResult() #--------------------------------------# # GET INFORMATION FROM CONFIG FILE # #--------------------------------------# # Read the config file config_file = os.path.join(main_path, 'config.ini') config = configparser.ConfigParser() config.read(config_file) #--------------------# # SIF CONTROLLER # #--------------------# # SIF CONTROLLER: Checks the network in SIF format provided by the user. # Check if the network file is provided if options.sif and fileExist(options.sif): # Get the network name network_filename = ntpath.basename(options.sif) network_associations_dir = os.path.join(associations_dir, network_filename) else: # If not, we output an error print(' DIANA INFO:\tThe network SIF file is missing. Please, introduce the parameter -sif.\n\t\tIf you do not have a network, use one of the networks in the sif folder.\n') sys.exit(10) #------------------------------# # CREATE/READ NUMBERS FILE # #------------------------------# # Define parameters for the functional enrichment type_functions = ['gobp', 'gomf', 'reactome'] type_corrections = ['fdr_bh', 'bonferroni'] # Numbers file associated to all targets target_numbers_file = os.path.join(numbers_dir, 'target_numbers.txt') if not fileExist(target_numbers_file): with open(target_numbers_file, 'w') as num_fd: num_fd.write('#feature\tnumber\n') # Get targets drugbank_geneid_mapping_file = os.path.join(mappings_dir, 'drugbank_geneid_drug_target_interactions.txt') targets = diana_drug.get_all_targets_from_mappings(drugbank_geneid_mapping_file) num_fd.write('target\t{}\n'.format(len(targets))) # Get PFAMs geneid_target_mapping_file = os.path.join(mappings_dir, 'geneid_target_mappings.txt') pfams = diana_drug.get_all_pfams_from_mappings(geneid_target_mapping_file) num_fd.write('pfam\t{}\n'.format(len(pfams))) # Get functions for type_function in type_functions: associations_file = os.path.join(target_associations_dir, '{}_to_gene.txt'.format(type_function)) functions = functional_analysis.get_functions_from_associations_file(associations_file) num_fd.write('{}\t{}\n'.format(type_function, len(functions))) # Get ATCs drugbank_atc_file = os.path.join(mappings_dir, 'drugbank_drug_atc.txt') level_to_ATCs = diana_drug.get_all_atcs_from_mappings(drugbank_atc_file) for level in ['level1', 'level2', 'level3', 'level4', 'level5']: ATCs = set(level_to_ATCs[level]) num_fd.write('atc-{}\t{}\n'.format(level, len(ATCs))) # Get SEs drugbank_side_effects_file = os.path.join(mappings_dir, 'drugbank_drug_side_effects.txt') ses = diana_drug.get_all_ses_from_mappings(drugbank_side_effects_file) num_fd.write('se\t{}\n'.format(len(ses))) target_numbers_df = pd.read_csv(target_numbers_file, sep='\t', index_col=None) # Numbers file associated to network network_numbers_file = os.path.join(numbers_dir, '{}_numbers.txt'.format(network_filename)) if not fileExist(network_numbers_file): with open(network_numbers_file, 'w') as num_fd: num_fd.write('#feature\tnumber\n') # We create a Network instance network_instance = network_analysis.Network(network_file=options.sif, type_id='geneid', network_format='sif') # We keep the number of nodes num_fd.write('node\t{}\n'.format(network_instance.network.number_of_nodes())) num_fd.write('edge\t{}\n'.format(network_instance.network.number_of_edges())) # Get functions for type_function in type_functions: associations_file = os.path.join(network_associations_dir, '{}_to_gene.txt'.format(type_function)) functions = functional_analysis.get_functions_from_associations_file(associations_file) num_fd.write('{}\t{}\n'.format(type_function, len(functions))) network_numbers_df = pd.read_csv(network_numbers_file, sep='\t', index_col=None) #-------------------# # READ PROFILES # #-------------------# print(' DIANA INFO:\tREADING PROFILES\n') # Get the list of thresholds to create the profiles if options.threshold_list and fileExist(options.threshold_list): threshold_list = get_values_from_threshold_file(options.threshold_list) else: threshold_list = [1, 2, 5, 'functions'] print(' DIANA INFO:\tList of percentages used to define the drug profiles: {}\n'.format(', '.join([str(x) for x in threshold_list]))) # Check if the directories of the drugs exist if options.job_id_drug1: drug_dir1 = os.path.join(profiles_dir, options.job_id_drug1) check_directory(drug_dir1) else: print(' DIANA INFO:\tjob_id_drug1 parameter is missing. Please, introduce the parameter -j1 with the job identifier of the drug.\n') sys.exit(10) if options.job_id_drug2: drug_dir2 = os.path.join(profiles_dir, options.job_id_drug2) check_directory(drug_dir2) else: print(' DIANA INFO:\tjob_id_drug2 parameter is missing. Please, introduce the parameter -j2 with the job identifier of the drug.\n') sys.exit(10) # Read profiles for drug 1 drug_instance1, guild_profile_instance1, scored_network_instance1, target_function_results1, guild_results1 = read_drug_profiles(drug_dir=drug_dir1, mappings_dir=mappings_dir, target_associations_dir=target_associations_dir, network_associations_dir=network_associations_dir, threshold_list=threshold_list) # Read profiles for drug 2 drug_instance2, guild_profile_instance2, scored_network_instance2, target_function_results2, guild_results2 = read_drug_profiles(drug_dir=drug_dir2, mappings_dir=mappings_dir, target_associations_dir=target_associations_dir, network_associations_dir=network_associations_dir, threshold_list=threshold_list) #----------------------# # COMPARE PROFILES # #----------------------# # Compare targets targets_dict1 = comparison.generate_targets_dict_for_comparison(drug_instance1.targets) targets_dict2 = comparison.generate_targets_dict_for_comparison(drug_instance2.targets) num_targets = int(target_numbers_df[target_numbers_df['#feature'] == 'target']['number']) summary_targets = comparison.calculate_comparison(targets_dict1, targets_dict2, num_targets) comparison_instance.add_target_result('target', summary_targets) print(summary_targets) # Compare PFAMs pfams_dict1 = comparison.generate_targets_dict_for_comparison(drug_instance1.pfams) pfams_dict2 = comparison.generate_targets_dict_for_comparison(drug_instance2.pfams) num_pfams = int(target_numbers_df[target_numbers_df['#feature'] == 'pfam']['number']) summary_pfams = comparison.calculate_comparison(pfams_dict1, pfams_dict2, num_pfams) comparison_instance.add_target_result('pfam', summary_pfams) print(summary_pfams) # Compare functional profiles for type_function in type_functions: num_target_functions = int(target_numbers_df[target_numbers_df['#feature'] == type_function]['number']) for type_correction in type_corrections: targets_functions_instance1 = target_function_results1['{}-{}'.format(type_function, type_correction)] targets_functions_instance2 = target_function_results2['{}-{}'.format(type_function, type_correction)] summary_target_functions = comparison.calculate_comparison(targets_functions_instance1.term_id_to_values, targets_functions_instance2.term_id_to_values, num_target_functions) comparison_instance.add_target_result('{}-{}'.format(type_function, type_correction), summary_target_functions) print('Target: {} - {}'.format(type_function, type_correction)) print(summary_target_functions) # Compare GUILD profiles num_nodes = int(network_numbers_df[network_numbers_df['#feature'] == 'node']['number']) num_edges = int(network_numbers_df[network_numbers_df['#feature'] == 'edge']['number']) for top_threshold in threshold_list: if top_threshold == 'functions': for type_function in type_functions: num_network_functions = int(network_numbers_df[network_numbers_df['#feature'] == type_function]['number']) for type_correction in type_corrections: # Compare node profiles print('NODE PROFILES, THRESHOLD: {} - {} - {}'.format(top_threshold, type_function, type_correction)) node_profile1_values = copy.copy(guild_results1['node-{}-{}-{}'.format(top_threshold, type_function, type_correction)].node_to_score) node_profile2_values = copy.copy(guild_results2['node-{}-{}-{}'.format(top_threshold, type_function, type_correction)].node_to_score) guild_profile1_values = comparison.generate_guild_dict_for_comparison(guild_profile_instance1.node_to_score) guild_profile2_values = comparison.generate_guild_dict_for_comparison(guild_profile_instance2.node_to_score) summary_nodes = comparison.calculate_comparison_top_scoring(node_profile1_values, guild_profile1_values, node_profile2_values, guild_profile2_values, num_nodes) comparison_instance.add_guild_result('node', top_threshold, summary_nodes) print(summary_nodes) # Compare edge profiles print('EDGE PROFILES, THRESHOLD: {} - {} - {}'.format(top_threshold, type_function, type_correction)) edge_profile1_values = comparison.generate_guild_dict_for_comparison(guild_results1['edge-{}-{}-{}'.format(top_threshold, type_function, type_correction)].edge_to_score) edge_profile2_values = comparison.generate_guild_dict_for_comparison(guild_results2['edge-{}-{}-{}'.format(top_threshold, type_function, type_correction)].edge_to_score) scored_network1_values = comparison.generate_guild_dict_for_comparison(scored_network_instance1.edge_to_score) scored_network2_values = comparison.generate_guild_dict_for_comparison(scored_network_instance2.edge_to_score) summary_edges = comparison.calculate_comparison_top_scoring(edge_profile1_values, scored_network1_values , edge_profile2_values, scored_network2_values, num_edges) comparison_instance.add_guild_result('edge', top_threshold, summary_edges) print(summary_edges) # Compare functional profiles print('FUNCTIONAL PROFILES, THRESHOLD: {} - {} - {}'.format(top_threshold, type_function, type_correction)) functional_profile1_values = copy.copy(guild_results1['functional-{}-{}-{}'.format(top_threshold, type_function, type_correction)].term_id_to_values) functional_profile2_values = copy.copy(guild_results2['functional-{}-{}-{}'.format(top_threshold, type_function, type_correction)].term_id_to_values) summary_functions = comparison.calculate_comparison(functional_profile1_values, functional_profile2_values, num_network_functions) comparison_instance.add_guild_result('{}-{}'.format(type_function, type_correction), top_threshold, summary_functions) print(summary_functions) else: # Compare node profiles print('NODE PROFILES, THRESHOLD: {}'.format(top_threshold)) node_profile1_values = comparison.generate_guild_dict_for_comparison(guild_results1['node-{}'.format(top_threshold)].node_to_score) node_profile2_values = comparison.generate_guild_dict_for_comparison(guild_results2['node-{}'.format(top_threshold)].node_to_score) guild_profile1_values = comparison.generate_guild_dict_for_comparison(guild_profile_instance1.node_to_score) guild_profile2_values = comparison.generate_guild_dict_for_comparison(guild_profile_instance2.node_to_score) summary_nodes = comparison.calculate_comparison_top_scoring(node_profile1_values, guild_profile1_values, node_profile2_values, guild_profile2_values, num_nodes) comparison_instance.add_guild_result('node', top_threshold, summary_nodes) print(summary_nodes) # Compare edge profiles print('EDGE PROFILES, THRESHOLD: {}'.format(top_threshold)) edge_profile1_values = comparison.generate_guild_dict_for_comparison(guild_results1['edge-{}'.format(top_threshold)].edge_to_score) edge_profile2_values = comparison.generate_guild_dict_for_comparison(guild_results2['edge-{}'.format(top_threshold)].edge_to_score) scored_network1_values = comparison.generate_guild_dict_for_comparison(scored_network_instance1.edge_to_score) scored_network2_values = comparison.generate_guild_dict_for_comparison(scored_network_instance2.edge_to_score) summary_edges = comparison.calculate_comparison_top_scoring(edge_profile1_values, scored_network1_values , edge_profile2_values, scored_network2_values, num_edges) comparison_instance.add_guild_result('edge', top_threshold, summary_edges) print(summary_edges) for type_function in type_functions: num_network_functions = int(network_numbers_df[network_numbers_df['#feature'] == type_function]['number']) for type_correction in type_corrections: # Compare functional profiles print('FUNCTIONAL PROFILES, THRESHOLD: {}'.format(top_threshold)) functional_profile1_values = copy.copy(guild_results1['functional-{}-{}-{}'.format(top_threshold, type_function, type_correction)].term_id_to_values) functional_profile2_values = copy.copy(guild_results2['functional-{}-{}-{}'.format(top_threshold, type_function, type_correction)].term_id_to_values) summary_functions = comparison.calculate_comparison(functional_profile1_values, functional_profile2_values, num_network_functions) comparison_instance.add_guild_result('{}-{}'.format(type_function, type_correction), top_threshold, summary_functions) print(summary_functions) # Compare structures similarity_results = [] if len(drug_instance1.smiles) > 0 and len(drug_instance2.smiles) > 0: for smiles1 in drug_instance1.smiles: for smiles2 in drug_instance2.smiles: similarity_result = comparison.get_smiles_similarity_indigo(smiles1, smiles2, fp_type = "sub", metric = "tanimoto") if similarity_result: similarity_results.append(similarity_result) if len(similarity_results) > 0: similarity_results = np.mean(similarity_results) comparison_instance.structure_result = similarity_results print(' DIANA INFO:\tStructural similarity between the two drugs: {:.3f}\n'.format(similarity_results)) else: similarity_results = None print(' DIANA INFO:\tStructural similarity unavailable\n') else: similarity_results = None print(' DIANA INFO:\tThe SMILES of the drugs are missing! It is not possible to compute the structural similarity\n') # Compare ATC profiles for level in ['level1', 'level2', 'level3', 'level4', 'level5']: num_atcs = int(target_numbers_df[target_numbers_df['#feature'] == 'atc-{}'.format(level)]['number']) ATCs1 = drug_instance1.level_to_ATCs[level] ATCs2 = drug_instance2.level_to_ATCs[level] ATCs1_dict = comparison.generate_targets_dict_for_comparison(ATCs1) ATCs2_dict = comparison.generate_targets_dict_for_comparison(ATCs2) summary_ATCs = comparison.calculate_comparison(ATCs1_dict, ATCs2_dict, num_atcs) comparison_instance.atc_results[level] = summary_ATCs print('ATC comparison: {}'.format(level)) print(summary_ATCs) # Compare SE profiles num_ses = int(target_numbers_df[target_numbers_df['#feature'] == 'se']['number']) SEs1_dict = comparison.generate_targets_dict_for_comparison(drug_instance1.SEs) SEs2_dict = comparison.generate_targets_dict_for_comparison(drug_instance2.SEs) summary_SEs = comparison.calculate_comparison(SEs1_dict, SEs2_dict, num_ses) comparison_instance.se_result = summary_SEs print(summary_SEs) # Calculate network proximity network = wrappers.get_network(options.sif, only_lcc = True) nodes_from = drug_instance1.targets_in_network nodes_to = drug_instance2.targets_in_network d, z, (mean, sd) = wrappers.calculate_proximity(network, nodes_from, nodes_to, min_bin_size = 2) print (d, z, (mean, sd)) #-------------------# # WRITE RESULTS # #-------------------# # Write the results table comparison_id = '{}_vs_{}'.format(options.job_id_drug1, options.job_id_drug2) results_table = os.path.join(results_dir, '{}.tsv'.format(comparison_id)) comparison_instance.output_results_table(results_table, threshold_list) # End marker for time end = time.time() print('\n DIANA INFO:\tTIME OF EXECUTION: {:.3f} seconds or {:.3f} minutes.\n'.format(end - start, (end - start) / 60)) return ####################### ####################### # SECONDARY FUNCTIONS # ####################### ####################### def fileExist(file): """ Checks if a file exists AND is a file """ return os.path.exists(file) and os.path.isfile(file) def create_directory(directory): """ Checks if a directory exists and if not, creates it """ try: os.stat(directory) except: os.mkdir(directory) return def check_file(file): """ Checks if a file exists and if not, raises FileNotFound exception """ if not fileExist(file): raise FileNotFound(file) def check_directory(directory): """ Checks if a directory exists and if not, raises DirNotFound exception """ try: os.stat(directory) except: raise DirNotFound(directory) def get_targets_in_sif_file(sif_file, targets): """ Get the targets that are inside the network given by the user """ targets_in_network = set() str_tar = [str(x) for x in targets] with open(sif_file, 'r') as sif_fd: for line in sif_fd: node1, score, node2 = line.strip().split('\t') if node1 in str_tar: targets_in_network.add(node1) if node2 in str_tar: targets_in_network.add(node2) return list(targets_in_network) def read_parameters_file(parameters_file): """ Reads the parameters file of a drug profile """ with open(parameters_file, 'r') as parameters_fd: header = parameters_fd.readline() content = parameters_fd.readline() fields = content.strip().split('\t') return fields def read_drug_profiles(drug_dir, mappings_dir, target_associations_dir, network_associations_dir, threshold_list=[1, 2, 5, 'functions']): """ Read the profiles of a drug. """ # Check/Read parameters file output_parameters_file = os.path.join(drug_dir, 'parameters.txt') check_file(output_parameters_file) parameters = read_parameters_file(output_parameters_file) drugname = parameters[1] # Create drug instance drug_instance = diana_drug.Drug(drugname) # Read target profile target_dir = os.path.join(drug_dir, 'target_profiles') target_file = os.path.join(target_dir, '{}_targets.txt'.format(drugname)) check_file(target_file) drug_instance.obtain_targets_from_file(target_file, target_type_id='geneid') print(' DIANA INFO:\tTARGETS OF {}: {}\n'.format(drugname, ', '.join(drug_instance.targets))) # Read PFAM profile pfam_file = os.path.join(target_dir, 'pfam_profile.txt') if fileExist(pfam_file): drug_instance.obtain_pfams_from_file(pfam_file) else: # Obtain the PFAMs from a table target_mapping_file = os.path.join(mappings_dir, 'geneid_target_mappings.txt') drug_instance.obtain_pfams_from_geneid_target_table(drug_instance.targets, target_mapping_file) # Read target-functional profiles type_functions = ['gobp', 'gomf', 'reactome'] type_corrections = ['fdr_bh', 'bonferroni'] target_function_results = {} for type_function in type_functions: associations_file = os.path.join(target_associations_dir, '{}_to_gene.txt'.format(type_function)) for type_correction in type_corrections: targets_functional_file = os.path.join(target_dir, 'targets_functional_profile_{}_{}.txt'.format(type_function, type_correction)) if fileExist(targets_functional_file): targets_functions_instance = network_analysis.FunctionalProfile(targets_functional_file, 'targets', 'targets') else: top_scoring.functional_top_scoring(top_geneids=drug_instance.targets, type_correction=type_correction, associations_file=associations_file, output_file=targets_functional_file) target_function_results['{}-{}'.format(type_function, type_correction)] = targets_functions_instance # Read GUILD node scores guild_dir = os.path.join(drug_dir, 'guild_profiles') scores_file = os.path.join(guild_dir, 'output_scores.sif.netcombo') check_file(scores_file) guild_profile_instance = network_analysis.GUILDProfile(scores_file, type_id='geneid', top=100, top_type='percentage') drug_instance.targets_in_network = set([target for target in drug_instance.targets if target in guild_profile_instance.node_to_score.keys()]) # Read GUILD edge scores scored_network_file = os.path.join(guild_dir, 'network_scored.txt') check_file(scored_network_file) scored_network_instance = network_analysis.EdgeProfile(network_file=scored_network_file, type_id='geneid', network_format='sif', top=100) # Read GUILD profiles guild_results = {} for top_threshold in threshold_list: if top_threshold == 'functions': # Read profiles associated to a functions threshold for type_function in type_functions: associations_file = os.path.join(network_associations_dir, '{}_to_gene.txt'.format(type_function)) for type_correction in type_corrections: # Obtain cut-off output_sliding_window_file = os.path.join(guild_dir, 'sliding_window_{}_{}.txt'.format(type_function, type_correction)) if fileExist(output_sliding_window_file): cutoff_central_position, cutoff_right_interval = functional_analysis.read_sliding_window_file(output_sliding_window_file=output_sliding_window_file, num_seeds=len(drug_instance.targets_in_network)) else: cutoff_central_position, cutoff_right_interval = functional_analysis.calculate_functions_threshold(seed_geneids=drug_instance.targets_in_network, geneid_to_score=guild_profile_instance.node_to_score, type_correction=type_correction, associations_file=associations_file, output_sliding_window_file=output_sliding_window_file, output_seeds_enrichment_file=None, seed_functional_enrichment=False) print('{} - {} - {} - {}: Cut-off central position: {}. Cut-off right interval position: {}'.format(drug_instance.drug_name, top_threshold, type_function, type_correction, cutoff_central_position, cutoff_right_interval)) # Obtain node profile node_file = os.path.join(guild_dir, 'node_profile_top_{}_{}_{}_{}.txt'.format('functions', type_function, type_correction, guild_profile_instance.type_id)) if fileExist(node_file): node_profile_instance = network_analysis.GUILDProfile(scores_file=node_file, type_id=guild_profile_instance.type_id, top=cutoff_right_interval, top_type='number_of_nodes') else: node_profile_instance = guild_profile_instance.create_node_profile(threshold=cutoff_right_interval, threshold_type='number_of_nodes', output_file=node_file) guild_results['node-{}-{}-{}'.format(top_threshold, type_function, type_correction)] = node_profile_instance # Obtain edge profile edge_file = os.path.join(guild_dir, 'edge_profile_top_{}_{}_{}_{}.txt'.format('functions', type_function, type_correction, guild_profile_instance.type_id)) if fileExist(edge_file): edge_profile_instance = network_analysis.EdgeProfile(network_file=edge_file, type_id=guild_profile_instance.type_id, network_format='sif', top=cutoff_right_interval, top_type='number_of_nodes') else: edge_profile_instance = scored_network_instance.create_edge_profile(node_to_score=guild_profile_instance.node_to_score, threshold=cutoff_right_interval, threshold_type='number_of_nodes', output_file=edge_file) guild_results['edge-{}-{}-{}'.format(top_threshold, type_function, type_correction)] = edge_profile_instance # Obtain functional profile function_file = os.path.join(guild_dir, 'functional_profile_top_{}_{}_{}.txt'.format('functions', type_function, type_correction)) if fileExist(function_file): functional_profile_instance = network_analysis.FunctionalProfile(functional_file=function_file, top=cutoff_right_interval, node_file=node_file) else: functional_profile_instance = node_profile_instance.create_functional_profile(type_correction=type_correction, output_file=function_file, associations_file=associations_file) guild_results['functional-{}-{}-{}'.format(top_threshold, type_function, type_correction)] = functional_profile_instance else: # Obtain node profile node_file = os.path.join(guild_dir, 'node_profile_top_{}_{}.txt'.format(str(top_threshold), guild_profile_instance.type_id)) check_file(node_file) node_profile_instance = network_analysis.GUILDProfile(node_file, type_id=guild_profile_instance.type_id, top=top_threshold, top_type='percentage') guild_results['node-{}'.format(top_threshold)] = node_profile_instance # Obtain edge profiles edge_file = os.path.join(guild_dir, 'edge_profile_top_{}_{}.txt'.format(str(top_threshold), guild_profile_instance.type_id)) check_file(edge_file) edge_profile_instance = network_analysis.EdgeProfile(network_file=edge_file, type_id=guild_profile_instance.type_id, network_format='sif', top=top_threshold, top_type='percentage') guild_results['edge-{}'.format(top_threshold)] = edge_profile_instance # Obtain functional profiles for type_function in type_functions: for type_correction in type_corrections: functional_file = os.path.join(guild_dir, 'functional_profile_top_{}_{}_{}.txt'.format(str(top_threshold), type_function, type_correction)) if fileExist(functional_file): functional_profile_instance = network_analysis.FunctionalProfile(functional_file=functional_file, top=top_threshold, node_file=node_file) else: functional_profile_instance = node_profile_instance.create_functional_profile(type_correction=type_correction, output_file=functional_file, associations_file=associations_file) guild_results['functional-{}-{}-{}'.format(top_threshold, type_function, type_correction)] = functional_profile_instance # Read structures structure_file = os.path.join(drug_dir, 'structure_profiles/structure_profile.txt') if fileExist(structure_file): drug_instance.obtain_SMILES_from_file(structure_file) else: # Obtain SMILES from a table drug_mapping_file = os.path.join(mappings_dir, 'drugbank_drug_mappings.txt') drugbank_smiles_file = os.path.join(mappings_dir, 'drugbank_drug_smiles.txt') # First, translate the drug input name to drugbankid (if necessary) drugbankids = drug_instance.obtain_drugbankids_from_table(drug_mapping_file) # Search SMILES in the table drug_instance.obtain_SMILES_from_table(drugbankids, drugbank_smiles_file) # Read ATCs atc_file = os.path.join(drug_dir, 'atc_profiles/ATC_profile.txt') if fileExist(atc_file): drug_instance.obtain_ATCs_from_file(atc_file) else: # Obtain ATCs from a table drug_mapping_file = os.path.join(mappings_dir, 'drugbank_drug_mappings.txt') drugbank_atc_file = os.path.join(mappings_dir, 'drugbank_drug_atc.txt') # First, translate the drug input name to drugbankid (if necessary) drugbankids = drug_instance.obtain_drugbankids_from_table(drug_mapping_file) # Search ATCs in the table drug_instance.obtain_ATCs_from_table(drugbankids, drugbank_atc_file) # Read side effects se_file = os.path.join(drug_dir, 'se_profiles/SE_profile.txt') if fileExist(se_file): drug_instance.obtain_SE_from_file(se_file) else: # Obtain side effects from a table drugbank_side_effects_file = os.path.join(mappings_dir, 'drugbank_drug_side_effects.txt') # First, translate the drug input name to drugbankid (if necessary) drugbankids = drug_instance.obtain_drugbankids_from_table(drug_mapping_file) # Search side effects in the table drug_instance.obtain_SE_from_table(drugbankids, drugbank_side_effects_file) return drug_instance, guild_profile_instance, scored_network_instance, target_function_results, guild_results class FileNotFound(Exception): """ Exception raised when a file is not found. """ def __init__(self, file): self.file = file def __str__(self): return 'The file {} has not been found.\nTherefore, the comparison cannot be performed. Please, check that all the profiles have been correctly generated.\n'.format(self.file) class DirNotFound(Exception): """ Exception raised when a directory is not found. """ def __init__(self, directory): self.directory = directory def __str__(self): return 'The directory {} has not been found.\nTherefore, the comparison cannot be performed. Please, check that all the parameters have been correctly introduced and the profiles have been correctly generated.\n'.format(self.directory) if __name__ == "__main__": main()
mit
hsiaoyi0504/scikit-learn
sklearn/covariance/robust_covariance.py
198
29735
""" Robust location and covariance estimators. Here are implemented estimators that are resistant to outliers. """ # Author: Virgile Fritsch <virgile.fritsch@inria.fr> # # License: BSD 3 clause import warnings import numbers import numpy as np from scipy import linalg from scipy.stats import chi2 from . import empirical_covariance, EmpiricalCovariance from ..utils.extmath import fast_logdet, pinvh from ..utils import check_random_state, check_array # Minimum Covariance Determinant # Implementing of an algorithm by Rousseeuw & Van Driessen described in # (A Fast Algorithm for the Minimum Covariance Determinant Estimator, # 1999, American Statistical Association and the American Society # for Quality, TECHNOMETRICS) # XXX Is this really a public function? It's not listed in the docs or # exported by sklearn.covariance. Deprecate? def c_step(X, n_support, remaining_iterations=30, initial_estimates=None, verbose=False, cov_computation_method=empirical_covariance, random_state=None): """C_step procedure described in [Rouseeuw1984]_ aiming at computing MCD. Parameters ---------- X : array-like, shape (n_samples, n_features) Data set in which we look for the n_support observations whose scatter matrix has minimum determinant. n_support : int, > n_samples / 2 Number of observations to compute the robust estimates of location and covariance from. remaining_iterations : int, optional Number of iterations to perform. According to [Rouseeuw1999]_, two iterations are sufficient to get close to the minimum, and we never need more than 30 to reach convergence. initial_estimates : 2-tuple, optional Initial estimates of location and shape from which to run the c_step procedure: - initial_estimates[0]: an initial location estimate - initial_estimates[1]: an initial covariance estimate verbose : boolean, optional Verbose mode. random_state : integer or numpy.RandomState, optional The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. cov_computation_method : callable, default empirical_covariance The function which will be used to compute the covariance. Must return shape (n_features, n_features) Returns ------- location : array-like, shape (n_features,) Robust location estimates. covariance : array-like, shape (n_features, n_features) Robust covariance estimates. support : array-like, shape (n_samples,) A mask for the `n_support` observations whose scatter matrix has minimum determinant. References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS """ X = np.asarray(X) random_state = check_random_state(random_state) return _c_step(X, n_support, remaining_iterations=remaining_iterations, initial_estimates=initial_estimates, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state) def _c_step(X, n_support, random_state, remaining_iterations=30, initial_estimates=None, verbose=False, cov_computation_method=empirical_covariance): n_samples, n_features = X.shape # Initialisation support = np.zeros(n_samples, dtype=bool) if initial_estimates is None: # compute initial robust estimates from a random subset support[random_state.permutation(n_samples)[:n_support]] = True else: # get initial robust estimates from the function parameters location = initial_estimates[0] covariance = initial_estimates[1] # run a special iteration for that case (to get an initial support) precision = pinvh(covariance) X_centered = X - location dist = (np.dot(X_centered, precision) * X_centered).sum(1) # compute new estimates support[np.argsort(dist)[:n_support]] = True X_support = X[support] location = X_support.mean(0) covariance = cov_computation_method(X_support) # Iterative procedure for Minimum Covariance Determinant computation det = fast_logdet(covariance) previous_det = np.inf while (det < previous_det) and (remaining_iterations > 0): # save old estimates values previous_location = location previous_covariance = covariance previous_det = det previous_support = support # compute a new support from the full data set mahalanobis distances precision = pinvh(covariance) X_centered = X - location dist = (np.dot(X_centered, precision) * X_centered).sum(axis=1) # compute new estimates support = np.zeros(n_samples, dtype=bool) support[np.argsort(dist)[:n_support]] = True X_support = X[support] location = X_support.mean(axis=0) covariance = cov_computation_method(X_support) det = fast_logdet(covariance) # update remaining iterations for early stopping remaining_iterations -= 1 previous_dist = dist dist = (np.dot(X - location, precision) * (X - location)).sum(axis=1) # Catch computation errors if np.isinf(det): raise ValueError( "Singular covariance matrix. " "Please check that the covariance matrix corresponding " "to the dataset is full rank and that MinCovDet is used with " "Gaussian-distributed data (or at least data drawn from a " "unimodal, symmetric distribution.") # Check convergence if np.allclose(det, previous_det): # c_step procedure converged if verbose: print("Optimal couple (location, covariance) found before" " ending iterations (%d left)" % (remaining_iterations)) results = location, covariance, det, support, dist elif det > previous_det: # determinant has increased (should not happen) warnings.warn("Warning! det > previous_det (%.15f > %.15f)" % (det, previous_det), RuntimeWarning) results = previous_location, previous_covariance, \ previous_det, previous_support, previous_dist # Check early stopping if remaining_iterations == 0: if verbose: print('Maximum number of iterations reached') results = location, covariance, det, support, dist return results def select_candidates(X, n_support, n_trials, select=1, n_iter=30, verbose=False, cov_computation_method=empirical_covariance, random_state=None): """Finds the best pure subset of observations to compute MCD from it. The purpose of this function is to find the best sets of n_support observations with respect to a minimization of their covariance matrix determinant. Equivalently, it removes n_samples-n_support observations to construct what we call a pure data set (i.e. not containing outliers). The list of the observations of the pure data set is referred to as the `support`. Starting from a random support, the pure data set is found by the c_step procedure introduced by Rousseeuw and Van Driessen in [Rouseeuw1999]_. Parameters ---------- X : array-like, shape (n_samples, n_features) Data (sub)set in which we look for the n_support purest observations. n_support : int, [(n + p + 1)/2] < n_support < n The number of samples the pure data set must contain. select : int, int > 0 Number of best candidates results to return. n_trials : int, nb_trials > 0 or 2-tuple Number of different initial sets of observations from which to run the algorithm. Instead of giving a number of trials to perform, one can provide a list of initial estimates that will be used to iteratively run c_step procedures. In this case: - n_trials[0]: array-like, shape (n_trials, n_features) is the list of `n_trials` initial location estimates - n_trials[1]: array-like, shape (n_trials, n_features, n_features) is the list of `n_trials` initial covariances estimates n_iter : int, nb_iter > 0 Maximum number of iterations for the c_step procedure. (2 is enough to be close to the final solution. "Never" exceeds 20). random_state : integer or numpy.RandomState, default None The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. cov_computation_method : callable, default empirical_covariance The function which will be used to compute the covariance. Must return shape (n_features, n_features) verbose : boolean, default False Control the output verbosity. See Also --------- c_step Returns ------- best_locations : array-like, shape (select, n_features) The `select` location estimates computed from the `select` best supports found in the data set (`X`). best_covariances : array-like, shape (select, n_features, n_features) The `select` covariance estimates computed from the `select` best supports found in the data set (`X`). best_supports : array-like, shape (select, n_samples) The `select` best supports found in the data set (`X`). References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS """ random_state = check_random_state(random_state) n_samples, n_features = X.shape if isinstance(n_trials, numbers.Integral): run_from_estimates = False elif isinstance(n_trials, tuple): run_from_estimates = True estimates_list = n_trials n_trials = estimates_list[0].shape[0] else: raise TypeError("Invalid 'n_trials' parameter, expected tuple or " " integer, got %s (%s)" % (n_trials, type(n_trials))) # compute `n_trials` location and shape estimates candidates in the subset all_estimates = [] if not run_from_estimates: # perform `n_trials` computations from random initial supports for j in range(n_trials): all_estimates.append( _c_step( X, n_support, remaining_iterations=n_iter, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state)) else: # perform computations from every given initial estimates for j in range(n_trials): initial_estimates = (estimates_list[0][j], estimates_list[1][j]) all_estimates.append(_c_step( X, n_support, remaining_iterations=n_iter, initial_estimates=initial_estimates, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state)) all_locs_sub, all_covs_sub, all_dets_sub, all_supports_sub, all_ds_sub = \ zip(*all_estimates) # find the `n_best` best results among the `n_trials` ones index_best = np.argsort(all_dets_sub)[:select] best_locations = np.asarray(all_locs_sub)[index_best] best_covariances = np.asarray(all_covs_sub)[index_best] best_supports = np.asarray(all_supports_sub)[index_best] best_ds = np.asarray(all_ds_sub)[index_best] return best_locations, best_covariances, best_supports, best_ds def fast_mcd(X, support_fraction=None, cov_computation_method=empirical_covariance, random_state=None): """Estimates the Minimum Covariance Determinant matrix. Read more in the :ref:`User Guide <robust_covariance>`. Parameters ---------- X : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. support_fraction : float, 0 < support_fraction < 1 The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: `[n_sample + n_features + 1] / 2`. random_state : integer or numpy.RandomState, optional The generator used to randomly subsample. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. cov_computation_method : callable, default empirical_covariance The function which will be used to compute the covariance. Must return shape (n_features, n_features) Notes ----- The FastMCD algorithm has been introduced by Rousseuw and Van Driessen in "A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS". The principle is to compute robust estimates and random subsets before pooling them into a larger subsets, and finally into the full data set. Depending on the size of the initial sample, we have one, two or three such computation levels. Note that only raw estimates are returned. If one is interested in the correction and reweighting steps described in [Rouseeuw1999]_, see the MinCovDet object. References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS .. [Butler1993] R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400 Returns ------- location : array-like, shape (n_features,) Robust location of the data. covariance : array-like, shape (n_features, n_features) Robust covariance of the features. support : array-like, type boolean, shape (n_samples,) A mask of the observations that have been used to compute the robust location and covariance estimates of the data set. """ random_state = check_random_state(random_state) X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (1, -1)) warnings.warn("Only one sample available. " "You may want to reshape your data array") n_samples, n_features = X.shape # minimum breakdown value if support_fraction is None: n_support = int(np.ceil(0.5 * (n_samples + n_features + 1))) else: n_support = int(support_fraction * n_samples) # 1-dimensional case quick computation # (Rousseeuw, P. J. and Leroy, A. M. (2005) References, in Robust # Regression and Outlier Detection, John Wiley & Sons, chapter 4) if n_features == 1: if n_support < n_samples: # find the sample shortest halves X_sorted = np.sort(np.ravel(X)) diff = X_sorted[n_support:] - X_sorted[:(n_samples - n_support)] halves_start = np.where(diff == np.min(diff))[0] # take the middle points' mean to get the robust location estimate location = 0.5 * (X_sorted[n_support + halves_start] + X_sorted[halves_start]).mean() support = np.zeros(n_samples, dtype=bool) X_centered = X - location support[np.argsort(np.abs(X_centered), 0)[:n_support]] = True covariance = np.asarray([[np.var(X[support])]]) location = np.array([location]) # get precision matrix in an optimized way precision = pinvh(covariance) dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1) else: support = np.ones(n_samples, dtype=bool) covariance = np.asarray([[np.var(X)]]) location = np.asarray([np.mean(X)]) X_centered = X - location # get precision matrix in an optimized way precision = pinvh(covariance) dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1) # Starting FastMCD algorithm for p-dimensional case if (n_samples > 500) and (n_features > 1): # 1. Find candidate supports on subsets # a. split the set in subsets of size ~ 300 n_subsets = n_samples // 300 n_samples_subsets = n_samples // n_subsets samples_shuffle = random_state.permutation(n_samples) h_subset = int(np.ceil(n_samples_subsets * (n_support / float(n_samples)))) # b. perform a total of 500 trials n_trials_tot = 500 # c. select 10 best (location, covariance) for each subset n_best_sub = 10 n_trials = max(10, n_trials_tot // n_subsets) n_best_tot = n_subsets * n_best_sub all_best_locations = np.zeros((n_best_tot, n_features)) try: all_best_covariances = np.zeros((n_best_tot, n_features, n_features)) except MemoryError: # The above is too big. Let's try with something much small # (and less optimal) all_best_covariances = np.zeros((n_best_tot, n_features, n_features)) n_best_tot = 10 n_best_sub = 2 for i in range(n_subsets): low_bound = i * n_samples_subsets high_bound = low_bound + n_samples_subsets current_subset = X[samples_shuffle[low_bound:high_bound]] best_locations_sub, best_covariances_sub, _, _ = select_candidates( current_subset, h_subset, n_trials, select=n_best_sub, n_iter=2, cov_computation_method=cov_computation_method, random_state=random_state) subset_slice = np.arange(i * n_best_sub, (i + 1) * n_best_sub) all_best_locations[subset_slice] = best_locations_sub all_best_covariances[subset_slice] = best_covariances_sub # 2. Pool the candidate supports into a merged set # (possibly the full dataset) n_samples_merged = min(1500, n_samples) h_merged = int(np.ceil(n_samples_merged * (n_support / float(n_samples)))) if n_samples > 1500: n_best_merged = 10 else: n_best_merged = 1 # find the best couples (location, covariance) on the merged set selection = random_state.permutation(n_samples)[:n_samples_merged] locations_merged, covariances_merged, supports_merged, d = \ select_candidates( X[selection], h_merged, n_trials=(all_best_locations, all_best_covariances), select=n_best_merged, cov_computation_method=cov_computation_method, random_state=random_state) # 3. Finally get the overall best (locations, covariance) couple if n_samples < 1500: # directly get the best couple (location, covariance) location = locations_merged[0] covariance = covariances_merged[0] support = np.zeros(n_samples, dtype=bool) dist = np.zeros(n_samples) support[selection] = supports_merged[0] dist[selection] = d[0] else: # select the best couple on the full dataset locations_full, covariances_full, supports_full, d = \ select_candidates( X, n_support, n_trials=(locations_merged, covariances_merged), select=1, cov_computation_method=cov_computation_method, random_state=random_state) location = locations_full[0] covariance = covariances_full[0] support = supports_full[0] dist = d[0] elif n_features > 1: # 1. Find the 10 best couples (location, covariance) # considering two iterations n_trials = 30 n_best = 10 locations_best, covariances_best, _, _ = select_candidates( X, n_support, n_trials=n_trials, select=n_best, n_iter=2, cov_computation_method=cov_computation_method, random_state=random_state) # 2. Select the best couple on the full dataset amongst the 10 locations_full, covariances_full, supports_full, d = select_candidates( X, n_support, n_trials=(locations_best, covariances_best), select=1, cov_computation_method=cov_computation_method, random_state=random_state) location = locations_full[0] covariance = covariances_full[0] support = supports_full[0] dist = d[0] return location, covariance, support, dist class MinCovDet(EmpiricalCovariance): """Minimum Covariance Determinant (MCD): robust estimator of covariance. The Minimum Covariance Determinant covariance estimator is to be applied on Gaussian-distributed data, but could still be relevant on data drawn from a unimodal, symmetric distribution. It is not meant to be used with multi-modal data (the algorithm used to fit a MinCovDet object is likely to fail in such a case). One should consider projection pursuit methods to deal with multi-modal datasets. Read more in the :ref:`User Guide <robust_covariance>`. Parameters ---------- store_precision : bool Specify if the estimated precision is stored. assume_centered : Boolean If True, the support of the robust location and the covariance estimates is computed, and a covariance estimate is recomputed from it, without centering the data. Useful to work with data whose mean is significantly equal to zero but is not exactly zero. If False, the robust location and covariance are directly computed with the FastMCD algorithm without additional treatment. support_fraction : float, 0 < support_fraction < 1 The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: [n_sample + n_features + 1] / 2 random_state : integer or numpy.RandomState, optional The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- raw_location_ : array-like, shape (n_features,) The raw robust estimated location before correction and re-weighting. raw_covariance_ : array-like, shape (n_features, n_features) The raw robust estimated covariance before correction and re-weighting. raw_support_ : array-like, shape (n_samples,) A mask of the observations that have been used to compute the raw robust estimates of location and shape, before correction and re-weighting. location_ : array-like, shape (n_features,) Estimated robust location covariance_ : array-like, shape (n_features, n_features) Estimated robust covariance matrix precision_ : array-like, shape (n_features, n_features) Estimated pseudo inverse matrix. (stored only if store_precision is True) support_ : array-like, shape (n_samples,) A mask of the observations that have been used to compute the robust estimates of location and shape. dist_ : array-like, shape (n_samples,) Mahalanobis distances of the training set (on which `fit` is called) observations. References ---------- .. [Rouseeuw1984] `P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.` .. [Rouseeuw1999] `A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS` .. [Butler1993] `R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400` """ _nonrobust_covariance = staticmethod(empirical_covariance) def __init__(self, store_precision=True, assume_centered=False, support_fraction=None, random_state=None): self.store_precision = store_precision self.assume_centered = assume_centered self.support_fraction = support_fraction self.random_state = random_state def fit(self, X, y=None): """Fits a Minimum Covariance Determinant with the FastMCD algorithm. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data, where n_samples is the number of samples and n_features is the number of features. y : not used, present for API consistence purpose. Returns ------- self : object Returns self. """ X = check_array(X) random_state = check_random_state(self.random_state) n_samples, n_features = X.shape # check that the empirical covariance is full rank if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features: warnings.warn("The covariance matrix associated to your dataset " "is not full rank") # compute and store raw estimates raw_location, raw_covariance, raw_support, raw_dist = fast_mcd( X, support_fraction=self.support_fraction, cov_computation_method=self._nonrobust_covariance, random_state=random_state) if self.assume_centered: raw_location = np.zeros(n_features) raw_covariance = self._nonrobust_covariance(X[raw_support], assume_centered=True) # get precision matrix in an optimized way precision = pinvh(raw_covariance) raw_dist = np.sum(np.dot(X, precision) * X, 1) self.raw_location_ = raw_location self.raw_covariance_ = raw_covariance self.raw_support_ = raw_support self.location_ = raw_location self.support_ = raw_support self.dist_ = raw_dist # obtain consistency at normal models self.correct_covariance(X) # re-weight estimator self.reweight_covariance(X) return self def correct_covariance(self, data): """Apply a correction to raw Minimum Covariance Determinant estimates. Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in [Rouseeuw1984]_. Parameters ---------- data : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates. Returns ------- covariance_corrected : array-like, shape (n_features, n_features) Corrected robust covariance estimate. """ correction = np.median(self.dist_) / chi2(data.shape[1]).isf(0.5) covariance_corrected = self.raw_covariance_ * correction self.dist_ /= correction return covariance_corrected def reweight_covariance(self, data): """Re-weight raw Minimum Covariance Determinant estimates. Re-weight observations using Rousseeuw's method (equivalent to deleting outlying observations from the data set before computing location and covariance estimates). [Rouseeuw1984]_ Parameters ---------- data : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates. Returns ------- location_reweighted : array-like, shape (n_features, ) Re-weighted robust location estimate. covariance_reweighted : array-like, shape (n_features, n_features) Re-weighted robust covariance estimate. support_reweighted : array-like, type boolean, shape (n_samples,) A mask of the observations that have been used to compute the re-weighted robust location and covariance estimates. """ n_samples, n_features = data.shape mask = self.dist_ < chi2(n_features).isf(0.025) if self.assume_centered: location_reweighted = np.zeros(n_features) else: location_reweighted = data[mask].mean(0) covariance_reweighted = self._nonrobust_covariance( data[mask], assume_centered=self.assume_centered) support_reweighted = np.zeros(n_samples, dtype=bool) support_reweighted[mask] = True self._set_covariance(covariance_reweighted) self.location_ = location_reweighted self.support_ = support_reweighted X_centered = data - self.location_ self.dist_ = np.sum( np.dot(X_centered, self.get_precision()) * X_centered, 1) return location_reweighted, covariance_reweighted, support_reweighted
bsd-3-clause
ashhher3/cvxpy
examples/expr_trees/inpainting.py
12
3379
from scipy import misc import matplotlib.pyplot as plt import numpy as np l = misc.lena() l = l.astype(np.float64, copy=False) l = l/np.max(l) #rescale pixels into [0,1] plt.imshow(l, cmap=plt.cm.gray) #plt.show() from PIL import Image, ImageDraw num_lines = 5 width = 5 imshape = l.shape def drawRandLine(draw,width): x = [np.random.randint(0,im.size[0]) for i in range(2)] y = [np.random.randint(0,im.size[1]) for i in range(2)] xy = zip(x,y) #fill gives the color draw.line(xy,fill=255,width=width) im = Image.new("L",imshape) draw = ImageDraw.Draw(im) for i in range(num_lines): drawRandLine(draw,width) del draw # im.show() err = np.asarray(im,dtype=np.bool) r = l.copy() r[err] = 1.0 plt.imshow(r, cmap=plt.cm.gray) import itertools idx2pair = np.nonzero(err) idx2pair = zip(idx2pair[0].tolist(), idx2pair[1].tolist()) pair2idx = dict(itertools.izip(idx2pair, xrange(len(idx2pair)))) idx2pair = np.array(idx2pair) #convert back to numpy array import scipy.sparse as sp from cvxopt import spmatrix def involvedpairs(pairs): ''' Get all the pixel pairs whose gradient involves an unknown pixel. Input should be a set or dictionary of pixel pair tuples ''' for pair in pairs: #loop through unknown pixels yield pair left = (pair[0],pair[1]-1) if left[1] >= 0 and left not in pairs: #if 'left' in picture, and not already unknown yield left top = (pair[0]-1,pair[1]) topright = (pair[0]-1,pair[1]+1) #if not on top boundary, top is fixed, and top not already touched by upper right pixel if pair[0] > 0 and top not in pairs and topright not in pairs: yield top def formCOO(pair2idx, img): m, n = img.shape Is, Js, Vs, bs = [[],[]], [[],[]], [[],[]], [[],[]] row = 0 for pixel1 in involvedpairs(pair2idx): bottom = (pixel1[0]+1,pixel1[1]) right= (pixel1[0],pixel1[1]+1) for i, pixel2 in enumerate([bottom, right]): if pixel2[0] >= m or pixel2[1] >= n: bs[i].append(0) continue b = 0 for j, pix in enumerate([pixel2, pixel1]): if pix in pair2idx: #unknown pixel Is[i].append(row) Js[i].append(pair2idx[pix]) Vs[i].append(pow(-1,j)) else: #known pixel b += pow(-1,j)*img[pix] bs[i].append(b) row += 1 ''' Form Gx and Gy such that the x-component of the gradient is Gx*x + bx, where x is an array representing the unknown pixel values. ''' m = len(bs[0]) n = len(pair2idx) Gx = spmatrix(Vs[1], Is[1], Js[1],(m,n)) Gy = spmatrix(Vs[0], Is[0], Js[0],(m,n)) bx = np.array(bs[1]) by = np.array(bs[0]) return Gx, Gy, bx, by Gx, Gy, bx, by = formCOO(pair2idx, r) import cvxpy as cp m, n = Gx.size x = cp.Variable(n) #z = cp.vstack((x.__rmul__(Gx) + bx).T, (x.__rmul__(Gy) + by).T) #z = cp.hstack(x.__rmul__(Gx) + bx, x.__rmul__(Gy) + by) z = cp.Variable(m, 2) constraints = [z[:, 0] == x.__rmul__(Gx) + bx, z[:, 1] == x.__rmul__(Gy) + by] objective = cp.Minimize(sum([cp.norm(z[i,:]) for i in range(m)])) p = cp.Problem(objective, constraints) import cProfile cProfile.run(""" result = p.solve(solver=cp.ECOS, verbose=True) """)
gpl-3.0
tmhm/scikit-learn
sklearn/manifold/tests/test_mds.py
324
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
e-koch/Phys-595
project_code/Spec Fitting/plot_spec.py
1
4420
''' Figure of lines to fit for proposal ''' import matplotlib.pyplot as p from astropy.io import fits from scipy.ndimage import gaussian_filter1d lines = [r"H$\alpha$-6562$\AA$ \& NII-6583$\AA$", r"H$\beta$", r"H$\gamma", r"H$\delta$", "Ca H & K", "MgII", "NaI", "OIIIa \& b"] lambdas = [6562, 4861, 4340, 4103, 3950, 5175, 5894, 4959] filename = "/Users/eric/../../Volumes/Mac_Storage/sdss_datamining/spec-0266-51602-0001.fits" spec_file = fits.open(filename) flux = spec_file[1].data["flux"] smooth = gaussian_filter1d(flux, 2) lam_wav = 10**spec_file[1].data["loglam"] / (1 + spec_file[2].data["Z"]) p.plot(lam_wav, smooth, 'b') p.xlabel(r"Wavelength ($\AA$)") p.ylabel(r"Flux ($10^{-17} erg/s/cm^2/\AA$)") p.ylim(smooth.min(), smooth.max()+10) p.xlim(lam_wav.min(), 6800) for name, lam in zip(lines, lambdas): p.axvline(x=lam, color='k', linestyle='--') # p.annotate(name, xy=(lam, 60), xytext=(lam, 60)) p.annotate(r"H$\alpha$ - 6562$\AA$ \& NII - 6583$\AA$", xy=(6562, 50), xytext=(6562, 50), rotation=90, horizontalalignment='right', verticalalignment='center') p.annotate(r"H$\beta$ - 4861$\AA$", xy=(4861, 110), xytext=(4861+5, 110), rotation=90, horizontalalignment='right', verticalalignment='center') p.annotate(r"H$\gamma$ - 4340$\AA$", xy=(4340, 110), xytext=(4340+20, 110), rotation=90, horizontalalignment='left', verticalalignment='center') p.annotate(r"H$\delta$ - 4103$\AA$", xy=(4103, 90), xytext=(4103+20, 90), rotation=90, horizontalalignment='left', verticalalignment='center') p.annotate(r"Ca H \& K - 3934, 3969$\AA$", xy=(3950, 90), xytext=(3950, 90), rotation=90, horizontalalignment='right', verticalalignment='center') p.annotate(r"MgII - 5175$\AA$", xy=(5175, 110), xytext=(5175+20, 110), rotation=90, horizontalalignment='left', verticalalignment='center') p.annotate(r"NaI - 5894$\AA$", xy=(5894, 60), xytext=(5894, 60), rotation=90, horizontalalignment='right', verticalalignment='center') p.annotate(r"[OIII] - 4959, 5007$\AA$", xy=(4959, 50), xytext=(4959+20, 45), rotation=90, horizontalalignment='left', verticalalignment='center') p.show() p.close() # Two filename = "/Users/eric/../../Volumes/Mac_Storage/sdss_datamining/spec-0273-51957-0136.fits" spec_file = fits.open(filename) flux = spec_file[1].data["flux"] smooth = gaussian_filter1d(flux, 2) lam_wav = 10**spec_file[1].data["loglam"] / (1 + spec_file[2].data["Z"]) p.plot(lam_wav, smooth, 'b') p.xlabel(r"Wavelength ($\AA$)") p.ylabel(r"Flux ($10^{-17} erg/s/cm^2/\AA$)") p.ylim(smooth.min(), smooth.max()+5) p.xlim(lam_wav.min(), 6800) for name, lam in zip(lines, lambdas): p.axvline(x=lam, color='k', linestyle='--') # p.annotate(name, xy=(lam, 60), xytext=(lam, 60)) p.annotate(r"H$\alpha$ - 6562$\AA$ \& NII - 6583$\AA$", xy=(6562, 17), xytext=(6562-35, 15), rotation=90, horizontalalignment='right', verticalalignment='center') p.annotate(r"H$\beta$ - 4861$\AA$", xy=(4861, 15), xytext=(4861+5, 15), rotation=90, horizontalalignment='right', verticalalignment='center') p.annotate(r"H$\gamma$ - 4340$\AA$", xy=(4340, 15), xytext=(4340+20, 15), rotation=90, horizontalalignment='left', verticalalignment='center') p.annotate(r"H$\delta$ - 4103$\AA$", xy=(4103, 15), xytext=(4103+20, 15), rotation=90, horizontalalignment='left', verticalalignment='center') p.annotate(r"Ca H \& K - 3934, 3969$\AA$", xy=(3950, 15), xytext=(3950, 15), rotation=90, horizontalalignment='right', verticalalignment='center') p.annotate(r"MgII - 5175$\AA$", xy=(5175, 15), xytext=(5175+20, 15), rotation=90, horizontalalignment='left', verticalalignment='center') p.annotate(r"NaI - 5894$\AA$", xy=(5894, 15), xytext=(5894, 15), rotation=90, horizontalalignment='right', verticalalignment='center') p.annotate(r"[OIII] - 4959, 5007$\AA$", xy=(4959, 15), xytext=(4959+20, 15), rotation=90, horizontalalignment='left', verticalalignment='center') p.show()
mit
blackecho/Deep-Learning-TensorFlow
yadlt/models/autoencoders/denoising_autoencoder.py
2
9565
"""Implementation of Denoising Autoencoder using TensorFlow.""" from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tqdm import tqdm from yadlt.core import Layers, Loss, Trainer from yadlt.core import UnsupervisedModel from yadlt.utils import tf_utils, utilities class DenoisingAutoencoder(UnsupervisedModel): """Implementation of Denoising Autoencoders using TensorFlow. The interface of the class is sklearn-like. """ def __init__( self, n_components, name='dae', loss_func='mse', enc_act_func=tf.nn.tanh, dec_act_func=None, num_epochs=10, batch_size=10, opt='sgd', learning_rate=0.01, momentum=0.9, corr_type='none', corr_frac=0., regtype='none', regcoef=5e-4): """Constructor. Parameters ---------- n_components : int Number of hidden units. name : str, optional (default = "dae") Model name (used for save/load from disk). loss_func : str, optional (default = "mse") Loss function. ['mse', 'cross_entropy'] enc_act_func : tf.nn.[activation] Activation function for the encoder. dec_act_func : tf.nn.[activation] Activation function for the decoder. num_epochs : int, optional (default = 10) Number of epochs. batch_size : int, optional (default = 10) Size of each mini-batch. opt : str, optional (default = "sgd") Which tensorflow optimizer to use. Possible values: ['sgd', 'momentum', 'adagrad', 'adam'] learning_rate : float, optional (default = 0.01) Initial learning rate. momentum : float, optional (default = 0.9) Momentum parameter (only used if opt = "momentum"). corr_type : str, optional (default = "none") Type of input corruption. Can be one of: ["none", "masking", "salt_and_pepper"] corr_frac : float, optional (default = 0.0) Fraction of the input to corrupt. regtype : str, optional (default = "none") Type of regularization to apply. Can be one of: ["none", "l1", "l2"]. regcoef : float, optional (default = 5e-4) Regularization parameter. If 0, no regularization. Only considered if regtype != "none". """ UnsupervisedModel.__init__(self, name) self.loss_func = loss_func self.learning_rate = learning_rate self.opt = opt self.num_epochs = num_epochs self.batch_size = batch_size self.momentum = momentum self.regtype = regtype self.regcoef = regcoef self.loss = Loss(self.loss_func) self.trainer = Trainer( opt, learning_rate=learning_rate, momentum=momentum) self.n_components = n_components self.enc_act_func = enc_act_func self.dec_act_func = dec_act_func self.corr_type = corr_type self.corr_frac = corr_frac self.input_data_orig = None self.input_data = None self.W_ = None self.bh_ = None self.bv_ = None def _train_model(self, train_X, train_Y=None, val_X=None, val_Y=None): """Train the model. Parameters ---------- train_X : array_like Training data, shape (num_samples, num_features). train_Y : array_like, optional (default = None) Reference training data, shape (num_samples, num_features). val_X : array_like, optional, default None Validation data, shape (num_val_samples, num_features). val_Y : array_like, optional, default None Reference validation data, shape (num_val_samples, num_features). Returns ------- self : trained model instance """ pbar = tqdm(range(self.num_epochs)) for i in pbar: self._run_train_step(train_X) if val_X is not None: feed = {self.input_data_orig: val_X, self.input_data: val_X} err = tf_utils.run_summaries( self.tf_session, self.tf_merged_summaries, self.tf_summary_writer, i, feed, self.cost) pbar.set_description("Reconstruction loss: %s" % (err)) return self def _run_train_step(self, train_X): """Run a training step. A training step is made by randomly corrupting the training set, randomly shuffling it, divide it into batches and run the optimizer for each batch. Parameters ---------- train_X : array_like Training data, shape (num_samples, num_features). Returns ------- self """ x_corrupted = utilities.corrupt_input( train_X, self.tf_session, self.corr_type, self.corr_frac) shuff = list(zip(train_X, x_corrupted)) np.random.shuffle(shuff) batches = [_ for _ in utilities.gen_batches(shuff, self.batch_size)] for batch in batches: x_batch, x_corr_batch = zip(*batch) tr_feed = {self.input_data_orig: x_batch, self.input_data: x_corr_batch} self.tf_session.run(self.train_step, feed_dict=tr_feed) def build_model(self, n_features, W_=None, bh_=None, bv_=None): """Create the computational graph. Parameters ---------- n_features : int Number of units in the input layer. W_ : array_like, optional (default = None) Weight matrix np array. bh_ : array_like, optional (default = None) Hidden bias np array. bv_ : array_like, optional (default = None) Visible bias np array. Returns ------- self """ self._create_placeholders(n_features) self._create_variables(n_features, W_, bh_, bv_) self._create_encode_layer() self._create_decode_layer() variables = [self.W_, self.bh_, self.bv_] regterm = Layers.regularization(variables, self.regtype, self.regcoef) self.cost = self.loss.compile( self.reconstruction, self.input_data_orig, regterm=regterm) self.train_step = self.trainer.compile(self.cost) def _create_placeholders(self, n_features): """Create the TensorFlow placeholders for the model. :return: self """ self.input_data_orig = tf.placeholder( tf.float32, [None, n_features], name='x-input') self.input_data = tf.placeholder( tf.float32, [None, n_features], name='x-corr-input') # not used in this model, created just to comply # with unsupervised_model.py self.input_labels = tf.placeholder(tf.float32) self.keep_prob = tf.placeholder(tf.float32, name='keep-probs') def _create_variables(self, n_features, W_=None, bh_=None, bv_=None): """Create the TensorFlow variables for the model. :return: self """ if W_: self.W_ = tf.Variable(W_, name='enc-w') else: self.W_ = tf.Variable( tf.truncated_normal( shape=[n_features, self.n_components], stddev=0.1), name='enc-w') if bh_: self.bh_ = tf.Variable(bh_, name='hidden-bias') else: self.bh_ = tf.Variable(tf.constant( 0.1, shape=[self.n_components]), name='hidden-bias') if bv_: self.bv_ = tf.Variable(bv_, name='visible-bias') else: self.bv_ = tf.Variable(tf.constant( 0.1, shape=[n_features]), name='visible-bias') def _create_encode_layer(self): """Create the encoding layer of the network. Returns ------- self """ with tf.name_scope("encoder"): activation = tf.add( tf.matmul(self.input_data, self.W_), self.bh_ ) if self.enc_act_func: self.encode = self.enc_act_func(activation) else: self.encode = activation return self def _create_decode_layer(self): """Create the decoding layer of the network. Returns ------- self """ with tf.name_scope("decoder"): activation = tf.add( tf.matmul(self.encode, tf.transpose(self.W_)), self.bv_ ) if self.dec_act_func: self.reconstruction = self.dec_act_func(activation) else: self.reconstruction = activation return self def get_parameters(self, graph=None): """Return the model parameters in the form of numpy arrays. Parameters ---------- graph : tf.Graph, optional (default = None) Tensorflow graph object. Returns ------- dict : model parameters dictionary. """ g = graph if graph is not None else self.tf_graph with g.as_default(): with tf.Session() as self.tf_session: self.tf_saver.restore(self.tf_session, self.model_path) return { 'enc_w': self.W_.eval(), 'enc_b': self.bh_.eval(), 'dec_b': self.bv_.eval() }
mit
walterreade/scikit-learn
examples/cluster/plot_cluster_comparison.py
58
4681
""" ========================================================= Comparing different clustering algorithms on toy datasets ========================================================= This example aims at showing characteristics of different clustering algorithms on datasets that are "interesting" but still in 2D. The last dataset is an example of a 'null' situation for clustering: the data is homogeneous, and there is no good clustering. While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional data. The results could be improved by tweaking the parameters for each clustering strategy, for instance setting the number of clusters for the methods that needs this parameter specified. Note that affinity propagation has a tendency to create many clusters. Thus in this example its two parameters (damping and per-point preference) were set to mitigate this behavior. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn import cluster, datasets from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import StandardScaler np.random.seed(0) # Generate datasets. We choose the size big enough to see the scalability # of the algorithms, but not too big to avoid too long running times n_samples = 1500 noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05) noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05) blobs = datasets.make_blobs(n_samples=n_samples, random_state=8) no_structure = np.random.rand(n_samples, 2), None colors = np.array([x for x in 'bgrcmykbgrcmykbgrcmykbgrcmyk']) colors = np.hstack([colors] * 20) clustering_names = [ 'MiniBatchKMeans', 'AffinityPropagation', 'MeanShift', 'SpectralClustering', 'Ward', 'AgglomerativeClustering', 'DBSCAN', 'Birch'] plt.figure(figsize=(len(clustering_names) * 2 + 3, 9.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 datasets = [noisy_circles, noisy_moons, blobs, no_structure] for i_dataset, dataset in enumerate(datasets): X, y = dataset # normalize dataset for easier parameter selection X = StandardScaler().fit_transform(X) # estimate bandwidth for mean shift bandwidth = cluster.estimate_bandwidth(X, quantile=0.3) # connectivity matrix for structured Ward connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) # make connectivity symmetric connectivity = 0.5 * (connectivity + connectivity.T) # create clustering estimators ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True) two_means = cluster.MiniBatchKMeans(n_clusters=2) ward = cluster.AgglomerativeClustering(n_clusters=2, linkage='ward', connectivity=connectivity) spectral = cluster.SpectralClustering(n_clusters=2, eigen_solver='arpack', affinity="nearest_neighbors") dbscan = cluster.DBSCAN(eps=.2) affinity_propagation = cluster.AffinityPropagation(damping=.9, preference=-200) average_linkage = cluster.AgglomerativeClustering( linkage="average", affinity="cityblock", n_clusters=2, connectivity=connectivity) birch = cluster.Birch(n_clusters=2) clustering_algorithms = [ two_means, affinity_propagation, ms, spectral, ward, average_linkage, dbscan, birch] for name, algorithm in zip(clustering_names, clustering_algorithms): # predict cluster memberships t0 = time.time() algorithm.fit(X) t1 = time.time() if hasattr(algorithm, 'labels_'): y_pred = algorithm.labels_.astype(np.int) else: y_pred = algorithm.predict(X) # plot plt.subplot(4, len(clustering_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) plt.scatter(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), s=10) if hasattr(algorithm, 'cluster_centers_'): centers = algorithm.cluster_centers_ center_colors = colors[:len(centers)] plt.scatter(centers[:, 0], centers[:, 1], s=100, c=center_colors) plt.xlim(-2, 2) plt.ylim(-2, 2) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
bsd-3-clause
codester2/devide
modules/viewers/CodeRunner.py
7
8182
# check python24/lib/code.py - exceptions raised only result in # printouts. perhaps we want a real exception? import code # deep magic import md5 from module_base import ModuleBase from module_mixins import IntrospectModuleMixin, WindowRenameMixin import module_utils import sys import module_kits.wx_kit from module_kits.wx_kit.python_shell_mixin import PythonShellMixin import wx NUMBER_OF_INPUTS = 5 NUMBER_OF_OUTPUTS = 5 EDITWINDOW_LABELS = ['Scratch', 'Setup', 'Execute'] class CodeRunner(IntrospectModuleMixin, ModuleBase, PythonShellMixin, WindowRenameMixin): def __init__(self, module_manager): ModuleBase.__init__(self, module_manager) self.inputs = [None] * NUMBER_OF_INPUTS self.outputs = [None] * NUMBER_OF_OUTPUTS self._config.scratch_src = self._config.setup_src = \ self._config.execute_src = '' self._config_srcs = ['scratch_src', 'setup_src', 'execute_src'] # these are the real deals, i.e. the underlying logic self._src_scratch = self._src_setup = self._src_execute = '' self._srcs = ['_src_scratch', '_src_setup', '_src_execute'] # we use this to determine whether the current setup src has been # executed or not self._md5_setup_src = '' self._create_view_frame() PythonShellMixin.__init__(self, self._view_frame.shell_window, module_manager) module_utils.create_eoca_buttons(self, self._view_frame, self._view_frame.view_frame_panel, ok_default=False, cancel_hotkey=False) # more convenience bindings self._editwindows = [self._view_frame.scratch_editwindow, self._view_frame.setup_editwindow, self._view_frame.execute_editwindow] self.interp = self._view_frame.shell_window.interp # set interpreter on all three our editwindows for ew in self._editwindows: ew.set_interp(self.interp) self._bind_events() self.interp.locals.update( {'obj' : self}) # initialise macro packages self.support_vtk(self.interp) self.support_matplotlib(self.interp) self.config_to_logic() self.logic_to_config() self.config_to_view() self.view_initialised = True self.view() def close(self): # parameter is exception_printer method PythonShellMixin.close(self, self._module_manager.log_error_with_exception) for i in range(len(self.get_input_descriptions())): self.set_input(i, None) self._view_frame.Destroy() del self._view_frame ModuleBase.close(self) def get_input_descriptions(self): return ('Any input',) * NUMBER_OF_INPUTS def get_output_descriptions(self): return ('Dynamic output',) * NUMBER_OF_OUTPUTS def set_input(self, idx, input_stream): self.inputs[idx] = input_stream def get_output(self, idx): return self.outputs[idx] def view_to_config(self): for ew, cn, i in zip(self._editwindows, self._config_srcs, range(len(self._editwindows))): setattr(self._config, cn, ew.GetText()) self.set_editwindow_modified(i, False) def config_to_view(self): for ew, cn, i in zip(self._editwindows, self._config_srcs, range(len(self._editwindows))): ew.SetText(getattr(self._config, cn)) self.set_editwindow_modified(i, False) def config_to_logic(self): logic_changed = False for cn,ln in zip(self._config_srcs, self._srcs): c = getattr(self._config, cn) l = getattr(self, ln) if c != l: setattr(self, ln, c) logic_changed = True return logic_changed def logic_to_config(self): config_changed = False for cn,ln in zip(self._config_srcs, self._srcs): c = getattr(self._config, cn) l = getattr(self, ln) if l != c: setattr(self._config, cn, l) config_changed = True return config_changed def execute_module(self): # we only attempt running setup_src if its md5 is different from # that of the previous setup_src that we attempted to run hd = md5.md5(self._src_setup).hexdigest() if hd != self._md5_setup_src: self._md5_setup_src = hd self._run_source(self._src_setup, raise_exceptions=True) self._run_source(self._src_execute, raise_exceptions=True) def view(self): self._view_frame.Show() self._view_frame.Raise() def _bind_events(self): wx.EVT_MENU(self._view_frame, self._view_frame.file_open_id, self._handler_file_open) wx.EVT_MENU(self._view_frame, self._view_frame.file_save_id, self._handler_file_save) wx.EVT_MENU(self._view_frame, self._view_frame.run_id, self._handler_run) for i in range(len(self._editwindows)): def observer_modified(ew, i=i): self.set_editwindow_modified(i, True) self._editwindows[i].observer_modified = observer_modified def _create_view_frame(self): import resources.python.code_runner_frame reload(resources.python.code_runner_frame) self._view_frame = module_utils.instantiate_module_view_frame( self, self._module_manager, resources.python.code_runner_frame.\ CodeRunnerFrame) self._view_frame.main_splitter.SetMinimumPaneSize(50) # tried both self._view_frame.shell_window setFocus / # SetFocus. On Ubuntu 8.04, wxPython 2.8.7.1 this doesn't # seem to work. def _handler_file_open(self, evt): try: filename, t = self._open_python_file(self._view_frame) except IOError, e: self._module_manager.log_error_with_exception( 'Could not open file %s into CodeRunner edit: %s' % (filename, str(e))) else: if filename is not None: cew = self._get_current_editwindow() cew.SetText(t) self._view_frame.statusbar.SetStatusText( 'Loaded %s into current edit.' % (filename,)) def _handler_file_save(self, evt): try: cew = self._get_current_editwindow() filename = self._saveas_python_file(cew.GetText(), self._view_frame) if filename is not None: self._view_frame.statusbar.SetStatusText( 'Saved current edit to %s.' % (filename,)) except IOError, e: self._module_manager.log_error_with_exception( 'Could not save CodeRunner edit to file %s: %s' % (filename, str(e))) def _handler_run(self, evt): self.run_current_edit() def _get_current_editwindow(self): sel = self._view_frame.edit_notebook.GetSelection() return [self._view_frame.scratch_editwindow, self._view_frame.setup_editwindow, self._view_frame.execute_editwindow][sel] def run_current_edit(self): cew = self._get_current_editwindow() text = cew.GetText() self._run_source(text) self._view_frame.statusbar.SetStatusText( 'Current edit run completed.') def set_editwindow_modified(self, idx, modified): pt = EDITWINDOW_LABELS[idx] if modified: pt += ' *' self._view_frame.edit_notebook.SetPageText(idx, pt)
bsd-3-clause
kashif/scikit-learn
sklearn/preprocessing/tests/test_label.py
12
17807
import numpy as np from scipy.sparse import issparse from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.multiclass import type_of_target from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.preprocessing.label import LabelBinarizer from sklearn.preprocessing.label import MultiLabelBinarizer from sklearn.preprocessing.label import LabelEncoder from sklearn.preprocessing.label import label_binarize from sklearn.preprocessing.label import _inverse_binarize_thresholding from sklearn.preprocessing.label import _inverse_binarize_multiclass from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_label_binarizer(): lb = LabelBinarizer() # one-class case defaults to negative label inp = ["pos", "pos", "pos", "pos"] expected = np.array([[0, 0, 0, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["pos"]) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) # two-class case inp = ["neg", "pos", "pos", "neg"] expected = np.array([[0, 1, 1, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["neg", "pos"]) assert_array_equal(expected, got) to_invert = np.array([[1, 0], [0, 1], [0, 1], [1, 0]]) assert_array_equal(lb.inverse_transform(to_invert), inp) # multi-class case inp = ["spam", "ham", "eggs", "ham", "0"] expected = np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]]) got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ['0', 'eggs', 'ham', 'spam']) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) def test_label_binarizer_unseen_labels(): lb = LabelBinarizer() expected = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) got = lb.fit_transform(['b', 'd', 'e']) assert_array_equal(expected, got) expected = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) got = lb.transform(['a', 'b', 'c', 'd', 'e', 'f']) assert_array_equal(expected, got) def test_label_binarizer_set_label_encoding(): lb = LabelBinarizer(neg_label=-2, pos_label=0) # two-class case with pos_label=0 inp = np.array([0, 1, 1, 0]) expected = np.array([[-2, 0, 0, -2]]).T got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) lb = LabelBinarizer(neg_label=-2, pos_label=2) # multi-class case inp = np.array([3, 2, 1, 2, 0]) expected = np.array([[-2, -2, -2, +2], [-2, -2, +2, -2], [-2, +2, -2, -2], [-2, -2, +2, -2], [+2, -2, -2, -2]]) got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) @ignore_warnings def test_label_binarizer_errors(): # Check that invalid arguments yield ValueError one_class = np.array([0, 0, 0, 0]) lb = LabelBinarizer().fit(one_class) multi_label = [(2, 3), (0,), (0, 2)] assert_raises(ValueError, lb.transform, multi_label) lb = LabelBinarizer() assert_raises(ValueError, lb.transform, []) assert_raises(ValueError, lb.inverse_transform, []) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=1) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=2) assert_raises(ValueError, LabelBinarizer, neg_label=1, pos_label=2, sparse_output=True) # Fail on y_type assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2], threshold=0) # Sequence of seq type should raise ValueError y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]] assert_raises(ValueError, LabelBinarizer().fit_transform, y_seq_of_seqs) # Fail on the number of classes assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2, 3], threshold=0) # Fail on the dimension of 'binary' assert_raises(ValueError, _inverse_binarize_thresholding, y=np.array([[1, 2, 3], [2, 1, 3]]), output_type="binary", classes=[1, 2, 3], threshold=0) # Fail on multioutput data assert_raises(ValueError, LabelBinarizer().fit, np.array([[1, 3], [2, 1]])) assert_raises(ValueError, label_binarize, np.array([[1, 3], [2, 1]]), [1, 2, 3]) def test_label_encoder(): # Test LabelEncoder's transform and inverse_transform methods le = LabelEncoder() le.fit([1, 1, 4, 5, -1, 0]) assert_array_equal(le.classes_, [-1, 0, 1, 4, 5]) assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0]) assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1]) assert_raises(ValueError, le.transform, [0, 6]) le.fit(["apple", "orange"]) msg = "bad input shape" assert_raise_message(ValueError, msg, le.transform, "apple") def test_label_encoder_fit_transform(): # Test fit_transform le = LabelEncoder() ret = le.fit_transform([1, 1, 4, 5, -1, 0]) assert_array_equal(ret, [2, 2, 3, 4, 0, 1]) le = LabelEncoder() ret = le.fit_transform(["paris", "paris", "tokyo", "amsterdam"]) assert_array_equal(ret, [1, 1, 2, 0]) def test_label_encoder_errors(): # Check that invalid arguments yield ValueError le = LabelEncoder() assert_raises(ValueError, le.transform, []) assert_raises(ValueError, le.inverse_transform, []) # Fail on unseen labels le = LabelEncoder() le.fit([1, 2, 3, 1, -1]) assert_raises(ValueError, le.inverse_transform, [-1]) def test_sparse_output_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for sparse_output in [True, False]: for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit_transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit(inp()).transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) assert_raises(ValueError, mlb.inverse_transform, csr_matrix(np.array([[0, 1, 1], [2, 0, 0], [1, 1, 0]]))) def test_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer() got = mlb.fit_transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer() got = mlb.fit(inp()).transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) def test_multilabel_binarizer_empty_sample(): mlb = MultiLabelBinarizer() y = [[1, 2], [1], []] Y = np.array([[1, 1], [1, 0], [0, 0]]) assert_array_equal(mlb.fit_transform(y), Y) def test_multilabel_binarizer_unknown_class(): mlb = MultiLabelBinarizer() y = [[1, 2]] assert_raises(KeyError, mlb.fit(y).transform, [[0]]) mlb = MultiLabelBinarizer(classes=[1, 2]) assert_raises(KeyError, mlb.fit_transform, [[0]]) def test_multilabel_binarizer_given_classes(): inp = [(2, 3), (1,), (1, 2)] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # fit().transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # ensure works with extra class mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), np.hstack(([[0], [0], [0]], indicator_mat))) assert_array_equal(mlb.classes_, [4, 1, 3, 2]) # ensure fit is no-op as iterable is not consumed inp = iter(inp) mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) def test_multilabel_binarizer_same_length_sequence(): # Ensure sequences of the same length are not interpreted as a 2-d array inp = [[1], [0], [2]] indicator_mat = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) def test_multilabel_binarizer_non_integer_labels(): tuple_classes = np.empty(3, dtype=object) tuple_classes[:] = [(1,), (2,), (3,)] inputs = [ ([('2', '3'), ('1',), ('1', '2')], ['1', '2', '3']), ([('b', 'c'), ('a',), ('a', 'b')], ['a', 'b', 'c']), ([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) for inp, classes in inputs: # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) mlb = MultiLabelBinarizer() assert_raises(TypeError, mlb.fit_transform, [({}), ({}, {'a': 'b'})]) def test_multilabel_binarizer_non_unique(): inp = [(1, 1, 1, 0)] indicator_mat = np.array([[1, 1]]) mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) def test_multilabel_binarizer_inverse_validation(): inp = [(1, 1, 1, 0)] mlb = MultiLabelBinarizer() mlb.fit_transform(inp) # Not binary assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 3]])) # The following binary cases are fine, however mlb.inverse_transform(np.array([[0, 0]])) mlb.inverse_transform(np.array([[1, 1]])) mlb.inverse_transform(np.array([[1, 0]])) # Wrong shape assert_raises(ValueError, mlb.inverse_transform, np.array([[1]])) assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 1, 1]])) def test_label_binarize_with_class_order(): out = label_binarize([1, 6], classes=[1, 2, 4, 6]) expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]]) assert_array_equal(out, expected) # Modified class order out = label_binarize([1, 6], classes=[1, 6, 4, 2]) expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]]) assert_array_equal(out, expected) out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1]) expected = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0]]) assert_array_equal(out, expected) def check_binarized_results(y, classes, pos_label, neg_label, expected): for sparse_output in [True, False]: if ((pos_label == 0 or neg_label != 0) and sparse_output): assert_raises(ValueError, label_binarize, y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) continue # check label_binarize binarized = label_binarize(y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) # check inverse y_type = type_of_target(y) if y_type == "multiclass": inversed = _inverse_binarize_multiclass(binarized, classes=classes) else: inversed = _inverse_binarize_thresholding(binarized, output_type=y_type, classes=classes, threshold=((neg_label + pos_label) / 2.)) assert_array_equal(toarray(inversed), toarray(y)) # Check label binarizer lb = LabelBinarizer(neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) binarized = lb.fit_transform(y) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) inverse_output = lb.inverse_transform(binarized) assert_array_equal(toarray(inverse_output), toarray(y)) assert_equal(issparse(inverse_output), issparse(y)) def test_label_binarize_binary(): y = [0, 1, 0] classes = [0, 1] pos_label = 2 neg_label = -1 expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected # Binary case where sparse_output = True will not result in a ValueError y = [0, 1, 0] classes = [0, 1] pos_label = 3 neg_label = 0 expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected def test_label_binarize_multiclass(): y = [0, 1, 2] classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = 2 * np.eye(3) yield check_binarized_results, y, classes, pos_label, neg_label, expected assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_label_binarize_multilabel(): y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]]) classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = pos_label * y_ind y_sparse = [sparse_matrix(y_ind) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for y in [y_ind] + y_sparse: yield (check_binarized_results, y, classes, pos_label, neg_label, expected) assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_invalid_input_label_binarize(): assert_raises(ValueError, label_binarize, [0, 2], classes=[0, 2], pos_label=0, neg_label=1) def test_inverse_binarize_multiclass(): got = _inverse_binarize_multiclass(csr_matrix([[0, 1, 0], [-1, 0, -1], [0, 0, 0]]), np.arange(3)) assert_array_equal(got, np.array([1, 1, 0]))
bsd-3-clause
mwv/scikit-learn
examples/datasets/plot_random_dataset.py
348
2254
""" ============================================== Plot randomly generated classification dataset ============================================== Plot several randomly generated 2D classification datasets. This example illustrates the :func:`datasets.make_classification` :func:`datasets.make_blobs` and :func:`datasets.make_gaussian_quantiles` functions. For ``make_classification``, three binary and two multi-class classification datasets are generated, with different numbers of informative features and clusters per class. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_gaussian_quantiles plt.figure(figsize=(8, 8)) plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95) plt.subplot(321) plt.title("One informative feature, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(322) plt.title("Two informative features, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(323) plt.title("Two informative features, two clusters per class", fontsize='small') X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2) plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2) plt.subplot(324) plt.title("Multi-class, two informative features, one cluster", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(325) plt.title("Three blobs", fontsize='small') X1, Y1 = make_blobs(n_features=2, centers=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(326) plt.title("Gaussian divided into three quantiles", fontsize='small') X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.show()
bsd-3-clause
sanja7s/EEDC
src/timelines/all_nodes_plug_timeline.py
1
7788
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ author: sanja7s --------------- plot the distribution """ import os import datetime as dt import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib from collections import defaultdict from matplotlib import colors from pylab import MaxNLocator import pylab as pl from mpl_toolkits.axes_grid import inset_locator matplotlib.style.use('ggplot') IN_DIR = "../../data/timelines/all_TIMELINES" os.chdir(IN_DIR) font = {'family' : 'sans-serif', 'variant' : 'normal', 'weight' : 'light', 'size' : 14} grid = {'color' : 'gray', 'alpha' : 0.5, 'linestyle' : '-.'} lines = {'color' : 'gray'} #xticks = {'color' : 'gray'} matplotlib.rc('font', **font) matplotlib.rc('grid', **grid) matplotlib.rc('lines', **lines) #matplotlib.rc('ticks', **ticks) def read_in_all_node_variables(): f_in = 'nodedata.csv' distr_plug = defaultdict(float) distr_num_jobs = defaultdict(int) distr_CPU = defaultdict(tuple) distr_MEM = defaultdict(tuple) distr_rb = defaultdict(tuple) node_distr = defaultdict(list) i = 0 TESTi = 10000 with open(f_in, 'r') as f: for line in f: n, t, n, node, n, r, n, b, n, swpd, n, free, n,\ buff, n, cache, n, si, n, so, n, bi, n, bo, n,\ in1, n, cs, n, us, n, sy, n, id7s, n, wa, n,\ st, n, cpu1, n, dram1, n, cpu2, n, dram2, n, p, n,\ jobs_list, n, tp, n = line.split('"') if node not in node_distr: node_distr[node] = defaultdict(list) distr_plug[node] = defaultdict(float) distr_num_jobs[node] = defaultdict(int) distr_CPU[node] = defaultdict(tuple) distr_MEM[node] = defaultdict(tuple) distr_rb[node] = defaultdict(tuple) t = dt.datetime.fromtimestamp(int(t)) jobs = jobs_list.split(',') """ i += 1 if i == TESTi: return node_distr """ distr_plug[node][t] = float(p) if jobs_list == "": distr_num_jobs[node][t] = 0 else: distr_num_jobs[node][t] = len(jobs) distr_CPU[node][t] = (float(cpu1), float(cpu2)) distr_MEM[node][t] = (float(dram1), float(dram2)) distr_rb[node][t] = (int(r), int(b)) node_distr[node] = [distr_plug[node], distr_num_jobs[node], distr_CPU[node], \ distr_MEM[node], distr_rb[node]] return node_distr def plot_plug_timeline(node, distr_plug): print 'Plotting plug values' d = distr_plug dates = d.keys() X = pd.to_datetime(dates) values = [v if v > 0 else 0 for v in d.values()] ts = pd.Series(values, index = X) start_time = min(dates) end_time = max(dates) print start_time, end_time print min(values), max(values) fig, ax = plt.subplots() ts.plot(color = 'darkblue') for tl in ax.get_yticklabels(): tl.set_color('darkblue') fig.autofmt_xdate() ax.set_xlabel('time') ax.set_ylabel('plug value', color='darkblue') plt.xlim(pd.to_datetime(start_time), pd.to_datetime(end_time)) ymin = 240 ymax = 280 if min(values) < 160: ymin = min(values) - 10 if max(values) > 250: ymax = max(values) + 10 plt.ylim(ymin, ymax) plt.savefig('plug/plug_timeline_node_' + node + '.png') return fig, ax, plt def plot_plug_and_CPUs_timeline(node, d, distr_plug): dates = d.keys() X = pd.to_datetime(dates) values1 = [] values2 = [] for el in d.values(): if el[0] > 0: v1 = el[0] else: v1 = 0 values1.append(v1) if el[1] > 0: v2 = el[1] else: v2 = 0 values2.append(v2) start_time = min(dates) end_time = max(dates) print start_time, end_time print 'Min and max CPU1 ', min(values1), max(values1) print 'Min and max CPU2 ', min(values2), max(values2) fig, ax1, plt = plot_plug_timeline(node, distr_plug) ax2 = ax1.twinx() ts1 = pd.Series(values1, index = X) ax2.scatter(X, values1, marker='s', color='red', s=4, label = 'CPU1') #ts1.plot(color='red', label = 'CPU1') ts2 = pd.Series(values2, index = X) ax2.scatter(X, values2, marker='s', color='magenta', s=4, label = 'CPU2') #ts2.plot(color='magenta', label = 'CPU2') ax2.set_ylabel('CPU values', color='red') ya = ax2.get_yaxis() ya.set_major_locator(MaxNLocator(integer=True)) plt.xlim(pd.to_datetime(start_time), pd.to_datetime(end_time)) for tl in ax2.get_yticklabels(): tl.set_color('r') handles, labels = ax2.get_legend_handles_labels() l = ax2.legend(handles, labels, loc=3) for text in l.get_texts(): text.set_color('gray') plt.savefig('CPU_plug/CPUs_plug_timeline_node_' + node + '.png') def plot_plug_and_MEM_timeline(node, d, distr_plug): dates = d.keys() X = pd.to_datetime(dates) values1 = [v[0] if v[0] > -1 else -1 for v in d.values()] values2 = [v[1] if v[1] > -1 else -1 for v in d.values()] start_time = min(dates) end_time = max(dates) print start_time, end_time print 'Min and max MEM1 ', min(values1), max(values1) print 'Min and max MEM2 ', min(values2), max(values2) fig, ax1, plt = plot_plug_timeline(node, distr_plug) ax2 = ax1.twinx() ax2.scatter(X, values1, marker='s', color='darkgreen', s=4, label = 'DRAM1') ax2.scatter(X, values2, marker='s', color='olive', s=4, label = 'DRAM2') ax2.set_ylabel('DRAM values', color='olive') plt.xlim(pd.to_datetime(start_time), pd.to_datetime(end_time)) for tl in ax2.get_yticklabels(): tl.set_color('olive') handles, labels = ax2.get_legend_handles_labels() l = ax2.legend(handles, labels, loc=1) for text in l.get_texts(): text.set_color('gray') plt.savefig('MEM/MEM_plug_timeline_node_' + node + '.png') def plot_plug_and_rb_timeline(node, d, distr_plug): dates = d.keys() X = pd.to_datetime(dates) values1 = [v[0] if v[0] > 0 else 0 for v in d.values()] values2 = [v[1] if v[1] > 0 else 0 for v in d.values()] start_time = min(dates) end_time = max(dates) print start_time, end_time print 'Min and max MEM1 ', min(values1), max(values1) print 'Min and max MEM2 ', min(values2), max(values2) fig, ax1, plt = plot_plug_timeline(node, distr_plug) ax2 = ax1.twinx() ax2.scatter(X, values1, marker='s', color='tomato', s=3, label = 'r') ax2.scatter(X, values2, marker='s', color='sage', s=3, label = 'b') ax2.set_ylabel('r and b values', color='sage') ya = ax2.get_yaxis() ya.set_major_locator(MaxNLocator(integer=True)) plt.xlim(pd.to_datetime(start_time), pd.to_datetime(end_time)) for tl in ax2.get_yticklabels(): tl.set_color('sage') handles, labels = ax2.get_legend_handles_labels() l = ax2.legend(handles, labels, loc=1) for text in l.get_texts(): text.set_color('gray') plt.savefig('rb/rb_plug_timeline_node_' + node + '.png') def plot_plug_and_num_jobs_timeline(node, distr_num_jobs, distr_plug): d = distr_num_jobs dates = d.keys() X = pd.to_datetime(dates) values = d.values() start_time = min(dates) end_time = max(dates) print start_time, end_time print min(values), max(values) fig, ax1, plt = plot_plug_timeline(node, distr_plug) ax2 = ax1.twinx() ax2.scatter(X, values, marker='s', color='red', s=7) ax2.set_ylabel('# of jobs', color='red') ya = ax2.get_yaxis() ya.set_major_locator(MaxNLocator(integer=True)) plt.xlim(pd.to_datetime(start_time), pd.to_datetime(end_time)) for tl in ax2.get_yticklabels(): tl.set_color('r') plt.savefig('n_jobs_plug/num_jobs_and_plug_timeline_node_' + node + '.png') def plot_all(): node_variables = read_in_all_node_variables() for node in node_variables: distr_plug = node_variables[node][0] distr_num_jobs = node_variables[node][1] distr_CPU = node_variables[node][2] distr_MEM = node_variables[node][3] distr_rb = node_variables[node][4] plot_plug_timeline(node, distr_plug) plot_plug_and_num_jobs_timeline(node, distr_num_jobs, distr_plug) plot_plug_and_rb_timeline(node, distr_rb, distr_plug) plot_plug_and_CPUs_timeline(node, distr_CPU, distr_plug) plot_plug_and_MEM_timeline(node, distr_MEM, distr_plug) plot_all()
apache-2.0
pratapvardhan/pandas
asv_bench/benchmarks/multiindex_object.py
3
3894
import string import numpy as np import pandas.util.testing as tm from pandas import date_range, MultiIndex from .pandas_vb_common import setup # noqa class GetLoc(object): goal_time = 0.2 def setup(self): self.mi_large = MultiIndex.from_product( [np.arange(1000), np.arange(20), list(string.ascii_letters)], names=['one', 'two', 'three']) self.mi_med = MultiIndex.from_product( [np.arange(1000), np.arange(10), list('A')], names=['one', 'two', 'three']) self.mi_small = MultiIndex.from_product( [np.arange(100), list('A'), list('A')], names=['one', 'two', 'three']) def time_large_get_loc(self): self.mi_large.get_loc((999, 19, 'Z')) def time_large_get_loc_warm(self): for _ in range(1000): self.mi_large.get_loc((999, 19, 'Z')) def time_med_get_loc(self): self.mi_med.get_loc((999, 9, 'A')) def time_med_get_loc_warm(self): for _ in range(1000): self.mi_med.get_loc((999, 9, 'A')) def time_string_get_loc(self): self.mi_small.get_loc((99, 'A', 'A')) def time_small_get_loc_warm(self): for _ in range(1000): self.mi_small.get_loc((99, 'A', 'A')) class Duplicates(object): goal_time = 0.2 def setup(self): size = 65536 arrays = [np.random.randint(0, 8192, size), np.random.randint(0, 1024, size)] mask = np.random.rand(size) < 0.1 self.mi_unused_levels = MultiIndex.from_arrays(arrays) self.mi_unused_levels = self.mi_unused_levels[mask] def time_remove_unused_levels(self): self.mi_unused_levels.remove_unused_levels() class Integer(object): goal_time = 0.2 def setup(self): self.mi_int = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) self.obj_index = np.array([(0, 10), (0, 11), (0, 12), (0, 13), (0, 14), (0, 15), (0, 16), (0, 17), (0, 18), (0, 19)], dtype=object) def time_get_indexer(self): self.mi_int.get_indexer(self.obj_index) def time_is_monotonic(self): self.mi_int.is_monotonic class Duplicated(object): goal_time = 0.2 def setup(self): n, k = 200, 5000 levels = [np.arange(n), tm.makeStringIndex(n).values, 1000 + np.arange(n)] labels = [np.random.choice(n, (k * n)) for lev in levels] self.mi = MultiIndex(levels=levels, labels=labels) def time_duplicated(self): self.mi.duplicated() class Sortlevel(object): goal_time = 0.2 def setup(self): n = 1182720 low, high = -4096, 4096 arrs = [np.repeat(np.random.randint(low, high, (n // k)), k) for k in [11, 7, 5, 3, 1]] self.mi_int = MultiIndex.from_arrays(arrs)[np.random.permutation(n)] a = np.repeat(np.arange(100), 1000) b = np.tile(np.arange(1000), 100) self.mi = MultiIndex.from_arrays([a, b]) self.mi = self.mi.take(np.random.permutation(np.arange(100000))) def time_sortlevel_int64(self): self.mi_int.sortlevel() def time_sortlevel_zero(self): self.mi.sortlevel(0) def time_sortlevel_one(self): self.mi.sortlevel(1) class Values(object): goal_time = 0.2 def setup_cache(self): level1 = range(1000) level2 = date_range(start='1/1/2012', periods=100) mi = MultiIndex.from_product([level1, level2]) return mi def time_datetime_level_values_copy(self, mi): mi.copy().values def time_datetime_level_values_sliced(self, mi): mi[:10].values
bsd-3-clause
Karel-van-de-Plassche/bokeh
bokeh/sampledata/tests/test_airports.py
2
1951
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2017, Anaconda, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function, unicode_literals import pytest ; pytest #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports # External imports import pandas as pd # Bokeh imports from bokeh.util.testing import verify_all # Module under test #import bokeh.sampledata.airports as bsa #----------------------------------------------------------------------------- # Setup #----------------------------------------------------------------------------- ALL = ( 'data', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- Test___all__ = pytest.mark.sampledata(verify_all("bokeh.sampledata.airports", ALL)) @pytest.mark.sampledata def test_data(): import bokeh.sampledata.airports as bsa assert isinstance(bsa.data, pd.DataFrame) # don't check detail for external data #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #-----------------------------------------------------------------------------
bsd-3-clause
oduwa/Wheat-Count
PicNumero/template_matching.py
2
4973
from collections import namedtuple import numpy as np from scipy import misc from skimage.color import rgb2gray from skimage import data from skimage.feature import match_template # Way to import from matplotlib without warning according to # https://github.com/matplotlib/matplotlib/issues/5836#issuecomment-223997114 import warnings; with warnings.catch_warnings(): warnings.simplefilter("ignore"); import matplotlib.pyplot as plt def get_n_max_indices(X, n): '''Returns a 1d numpy array containing indices of n biggest values in x.''' indices = np.zeros(n); for i in range(0,n): indices[i] = np.argmax(X); X.flat[int(indices[i])] = -1; return indices def match_templates_1(search_image, template_image, n=0): ''' Calculates the n closest matches of some template image in another image and displays a figure illustrating the results. Args: search_image: image within which to match template. template_image: image to be matched. n: number of matches to be found. ie. closest n matches. ''' Point = namedtuple('Point', ['x', 'y']) # Calculate template matches match_result = match_template(search_image, template_image); # Get closest n matches print(match_result.shape) if(n == 0): n = int(match_result.shape[1]); matched_point_list = [] max_indices = get_n_max_indices(match_result, n) for index in max_indices: ij = np.unravel_index(int(index), match_result.shape) x, y = ij[::-1] point = Point(x,y) #print(point) matched_point_list.append(point) # Display fig = plt.figure(figsize=(8, 3)) plt.gray() ax1 = plt.subplot(1, 3, 1) ax2 = plt.subplot(1, 3, 2, adjustable='box-forced') ax3 = plt.subplot(1, 3, 3, sharex=ax2, sharey=ax2, adjustable='box-forced') ax1.imshow(template_image) ax1.set_axis_off() ax1.set_title('grain template') # highlight matched regions ax2.imshow(search_image) ax2.set_axis_off() ax2.set_title('image') himage, wimage = template_image.shape for point in matched_point_list: rect = plt.Rectangle((point.x, point.y), wimage, himage, edgecolor='r', facecolor='none') ax2.add_patch(rect) # highlight matched regions ax3.imshow(match_result) ax3.set_axis_off() ax3.set_title('`match_template`\nresult') ax3.autoscale(False) for point in matched_point_list: ax3.plot(point.x, point.y, 'o', markeredgecolor='r', markerfacecolor='none', markersize=10) plt.show() def match_templates_2(search_image, template_image, n=1): ''' Calculates the n closest matches of some template image in another image and displays a figure illustrating the results. This is a variation of the match_templates_1() method which takes a different approach to matching by iteratively matching, removing found match from search image and then running match again. Args: search_image: image within which to match template. template_image: image to be matched. n: number of matches to be found. ie. closest n matches. ''' Point = namedtuple('Point', ['x', 'y']) matched_point_list = [] # Calculate template matches i = 0 while (i < n): print(n) match_result = match_template(search_image, template_image); # Get closest match and store position ij = np.unravel_index(np.argmax(match_result), match_result.shape) x, y = ij[::-1] point = Point(x,y) matched_point_list.append(point) hTemplate, wTemplate = template_image.shape # Set matched patch to black for i in range(0, hTemplate): for j in range(0, wTemplate): search_image[i + point.y][j + point.x] = 0 i = i + 1 # Display fig = plt.figure(figsize=(8, 3)) plt.gray() ax1 = plt.subplot(1, 3, 1) ax2 = plt.subplot(1, 3, 2, adjustable='box-forced') ax3 = plt.subplot(1, 3, 3, sharex=ax2, sharey=ax2, adjustable='box-forced') ax1.imshow(template_image) ax1.set_axis_off() ax1.set_title('template') # highlight matched regions ax2.imshow(search_image) ax2.set_axis_off() ax2.set_title('image') himage, wimage = template_image.shape for point in matched_point_list: rect = plt.Rectangle((point.x, point.y), wimage, himage, edgecolor='r', facecolor='none') ax2.add_patch(rect) # highlight matched regions ax3.imshow(match_result) ax3.set_axis_off() ax3.set_title('`match_template`\nresult') ax3.autoscale(False) for point in matched_point_list: ax3.plot(point.x, point.y, 'o', markeredgecolor='r', markerfacecolor='none', markersize=10) plt.show() search_image = rgb2gray(misc.imread("../Assets/bush.png")) template_image = rgb2gray(misc.imread("../Assets/grain.png")) match_templates_1(search_image, template_image, 1);
mit
teonlamont/mne-python
examples/decoding/plot_decoding_csp_eeg.py
8
5516
""" =========================================================================== Motor imagery decoding from EEG data using the Common Spatial Pattern (CSP) =========================================================================== Decoding of motor imagery applied to EEG data decomposed using CSP. Here the classifier is applied to features extracted on CSP filtered signals. See http://en.wikipedia.org/wiki/Common_spatial_pattern and [1]_. The EEGBCI dataset is documented in [2]_. The data set is available at PhysioNet [3]_. References ---------- .. [1] Zoltan J. Koles. The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalography and Clinical Neurophysiology, 79(6):440--447, December 1991. .. [2] Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R. (2004) BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE TBME 51(6):1034-1043. .. [3] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. (2000) PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23):e215-e220. """ # Authors: Martin Billinger <martin.billinger@tugraz.at> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import ShuffleSplit, cross_val_score from mne import Epochs, pick_types, find_events from mne.channels import read_layout from mne.io import concatenate_raws, read_raw_edf from mne.datasets import eegbci from mne.decoding import CSP print(__doc__) # ############################################################################# # # Set parameters and read data # avoid classification of evoked responses by using epochs that start 1s after # cue onset. tmin, tmax = -1., 4. event_id = dict(hands=2, feet=3) subject = 1 runs = [6, 10, 14] # motor imagery: hands vs feet raw_fnames = eegbci.load_data(subject, runs) raw_files = [read_raw_edf(f, preload=True, stim_channel='auto') for f in raw_fnames] raw = concatenate_raws(raw_files) # strip channel names of "." characters raw.rename_channels(lambda x: x.strip('.')) # Apply band-pass filter raw.filter(7., 30., fir_design='firwin', skip_by_annotation='edge') events = find_events(raw, shortest_event=0, stim_channel='STI 014') picks = pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads') # Read epochs (train will be done only between 1 and 2s) # Testing will be done with a running classifier epochs = Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=None, preload=True) epochs_train = epochs.copy().crop(tmin=1., tmax=2.) labels = epochs.events[:, -1] - 2 ############################################################################### # Classification with linear discrimant analysis # Define a monte-carlo cross-validation generator (reduce variance): scores = [] epochs_data = epochs.get_data() epochs_data_train = epochs_train.get_data() cv = ShuffleSplit(10, test_size=0.2, random_state=42) cv_split = cv.split(epochs_data_train) # Assemble a classifier lda = LinearDiscriminantAnalysis() csp = CSP(n_components=4, reg=None, log=True, norm_trace=False) # Use scikit-learn Pipeline with cross_val_score function clf = Pipeline([('CSP', csp), ('LDA', lda)]) scores = cross_val_score(clf, epochs_data_train, labels, cv=cv, n_jobs=1) # Printing the results class_balance = np.mean(labels == labels[0]) class_balance = max(class_balance, 1. - class_balance) print("Classification accuracy: %f / Chance level: %f" % (np.mean(scores), class_balance)) # plot CSP patterns estimated on full data for visualization csp.fit_transform(epochs_data, labels) layout = read_layout('EEG1005') csp.plot_patterns(epochs.info, layout=layout, ch_type='eeg', units='Patterns (AU)', size=1.5) ############################################################################### # Look at performance over time sfreq = raw.info['sfreq'] w_length = int(sfreq * 0.5) # running classifier: window length w_step = int(sfreq * 0.1) # running classifier: window step size w_start = np.arange(0, epochs_data.shape[2] - w_length, w_step) scores_windows = [] for train_idx, test_idx in cv_split: y_train, y_test = labels[train_idx], labels[test_idx] X_train = csp.fit_transform(epochs_data_train[train_idx], y_train) X_test = csp.transform(epochs_data_train[test_idx]) # fit classifier lda.fit(X_train, y_train) # running classifier: test classifier on sliding window score_this_window = [] for n in w_start: X_test = csp.transform(epochs_data[test_idx][:, :, n:(n + w_length)]) score_this_window.append(lda.score(X_test, y_test)) scores_windows.append(score_this_window) # Plot scores over time w_times = (w_start + w_length / 2.) / sfreq + epochs.tmin plt.figure() plt.plot(w_times, np.mean(scores_windows, 0), label='Score') plt.axvline(0, linestyle='--', color='k', label='Onset') plt.axhline(0.5, linestyle='-', color='k', label='Chance') plt.xlabel('time (s)') plt.ylabel('classification accuracy') plt.title('Classification score over time') plt.legend(loc='lower right') plt.show()
bsd-3-clause
russel1237/scikit-learn
examples/semi_supervised/plot_label_propagation_digits_active_learning.py
294
3417
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import classification_report, confusion_matrix digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 10 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(5): y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print('Iteration %i %s' % (i, 70 * '_')) print("Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy( lp_model.label_distributions_.T) # select five digit examples that the classifier is most uncertain about uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:] # keep track of indices that we get labels for delete_indices = np.array([]) f.text(.05, (1 - (i + 1) * .183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index]), size=10) sub.axis('off') # labeling 5 points, remote from labeled set delete_index, = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += 5 f.suptitle("Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model.") plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45) plt.show()
bsd-3-clause
shaneknapp/spark
python/pyspark/sql/session.py
8
31156
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import warnings from functools import reduce from threading import RLock from pyspark import since from pyspark.rdd import RDD from pyspark.sql.conf import RuntimeConfig from pyspark.sql.dataframe import DataFrame from pyspark.sql.pandas.conversion import SparkConversionMixin from pyspark.sql.readwriter import DataFrameReader from pyspark.sql.streaming import DataStreamReader from pyspark.sql.types import DataType, StructType, \ _make_type_verifier, _infer_schema, _has_nulltype, _merge_type, _create_converter, \ _parse_datatype_string from pyspark.sql.utils import install_exception_handler __all__ = ["SparkSession"] def _monkey_patch_RDD(sparkSession): def toDF(self, schema=None, sampleRatio=None): """ Converts current :class:`RDD` into a :class:`DataFrame` This is a shorthand for ``spark.createDataFrame(rdd, schema, sampleRatio)`` Parameters ---------- schema : :class:`pyspark.sql.types.DataType`, str or list, optional a :class:`pyspark.sql.types.DataType` or a datatype string or a list of column names, default is None. The data type string format equals to :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use ``int`` as a short name for :class:`pyspark.sql.types.IntegerType`. sampleRatio : float, optional the sample ratio of rows used for inferring Returns ------- :class:`DataFrame` Examples -------- >>> rdd.toDF().collect() [Row(name='Alice', age=1)] """ return sparkSession.createDataFrame(self, schema, sampleRatio) RDD.toDF = toDF class SparkSession(SparkConversionMixin): """The entry point to programming Spark with the Dataset and DataFrame API. A SparkSession can be used create :class:`DataFrame`, register :class:`DataFrame` as tables, execute SQL over tables, cache tables, and read parquet files. To create a SparkSession, use the following builder pattern: .. autoattribute:: builder :annotation: Examples -------- >>> spark = SparkSession.builder \\ ... .master("local") \\ ... .appName("Word Count") \\ ... .config("spark.some.config.option", "some-value") \\ ... .getOrCreate() >>> from datetime import datetime >>> from pyspark.sql import Row >>> spark = SparkSession(sc) >>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1, ... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1), ... time=datetime(2014, 8, 1, 14, 1, 5))]) >>> df = allTypes.toDF() >>> df.createOrReplaceTempView("allTypes") >>> spark.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a ' ... 'from allTypes where b and i > 0').collect() [Row((i + 1)=2, (d + 1)=2.0, (NOT b)=False, list[1]=2, \ dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)] >>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect() [(1, 'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])] """ class Builder(object): """Builder for :class:`SparkSession`. """ _lock = RLock() _options = {} _sc = None def config(self, key=None, value=None, conf=None): """Sets a config option. Options set using this method are automatically propagated to both :class:`SparkConf` and :class:`SparkSession`'s own configuration. .. versionadded:: 2.0.0 Parameters ---------- key : str, optional a key name string for configuration property value : str, optional a value for configuration property conf : :class:`SparkConf`, optional an instance of :class:`SparkConf` Examples -------- For an existing SparkConf, use `conf` parameter. >>> from pyspark.conf import SparkConf >>> SparkSession.builder.config(conf=SparkConf()) <pyspark.sql.session... For a (key, value) pair, you can omit parameter names. >>> SparkSession.builder.config("spark.some.config.option", "some-value") <pyspark.sql.session... """ with self._lock: if conf is None: self._options[key] = str(value) else: for (k, v) in conf.getAll(): self._options[k] = v return self def master(self, master): """Sets the Spark master URL to connect to, such as "local" to run locally, "local[4]" to run locally with 4 cores, or "spark://master:7077" to run on a Spark standalone cluster. .. versionadded:: 2.0.0 Parameters ---------- master : str a url for spark master """ return self.config("spark.master", master) def appName(self, name): """Sets a name for the application, which will be shown in the Spark web UI. If no application name is set, a randomly generated name will be used. .. versionadded:: 2.0.0 Parameters ---------- name : str an application name """ return self.config("spark.app.name", name) @since(2.0) def enableHiveSupport(self): """Enables Hive support, including connectivity to a persistent Hive metastore, support for Hive SerDes, and Hive user-defined functions. """ return self.config("spark.sql.catalogImplementation", "hive") def _sparkContext(self, sc): with self._lock: self._sc = sc return self def getOrCreate(self): """Gets an existing :class:`SparkSession` or, if there is no existing one, creates a new one based on the options set in this builder. .. versionadded:: 2.0.0 Examples -------- This method first checks whether there is a valid global default SparkSession, and if yes, return that one. If no valid global default SparkSession exists, the method creates a new SparkSession and assigns the newly created SparkSession as the global default. >>> s1 = SparkSession.builder.config("k1", "v1").getOrCreate() >>> s1.conf.get("k1") == "v1" True In case an existing SparkSession is returned, the config options specified in this builder will be applied to the existing SparkSession. >>> s2 = SparkSession.builder.config("k2", "v2").getOrCreate() >>> s1.conf.get("k1") == s2.conf.get("k1") True >>> s1.conf.get("k2") == s2.conf.get("k2") True """ with self._lock: from pyspark.context import SparkContext from pyspark.conf import SparkConf session = SparkSession._instantiatedSession if session is None or session._sc._jsc is None: if self._sc is not None: sc = self._sc else: sparkConf = SparkConf() for key, value in self._options.items(): sparkConf.set(key, value) # This SparkContext may be an existing one. sc = SparkContext.getOrCreate(sparkConf) # Do not update `SparkConf` for existing `SparkContext`, as it's shared # by all sessions. session = SparkSession(sc) for key, value in self._options.items(): session._jsparkSession.sessionState().conf().setConfString(key, value) return session builder = Builder() """A class attribute having a :class:`Builder` to construct :class:`SparkSession` instances.""" _instantiatedSession = None _activeSession = None def __init__(self, sparkContext, jsparkSession=None): from pyspark.sql.context import SQLContext self._sc = sparkContext self._jsc = self._sc._jsc self._jvm = self._sc._jvm if jsparkSession is None: if self._jvm.SparkSession.getDefaultSession().isDefined() \ and not self._jvm.SparkSession.getDefaultSession().get() \ .sparkContext().isStopped(): jsparkSession = self._jvm.SparkSession.getDefaultSession().get() else: jsparkSession = self._jvm.SparkSession(self._jsc.sc()) self._jsparkSession = jsparkSession self._jwrapped = self._jsparkSession.sqlContext() self._wrapped = SQLContext(self._sc, self, self._jwrapped) _monkey_patch_RDD(self) install_exception_handler() # If we had an instantiated SparkSession attached with a SparkContext # which is stopped now, we need to renew the instantiated SparkSession. # Otherwise, we will use invalid SparkSession when we call Builder.getOrCreate. if SparkSession._instantiatedSession is None \ or SparkSession._instantiatedSession._sc._jsc is None: SparkSession._instantiatedSession = self SparkSession._activeSession = self self._jvm.SparkSession.setDefaultSession(self._jsparkSession) self._jvm.SparkSession.setActiveSession(self._jsparkSession) def _repr_html_(self): return """ <div> <p><b>SparkSession - {catalogImplementation}</b></p> {sc_HTML} </div> """.format( catalogImplementation=self.conf.get("spark.sql.catalogImplementation"), sc_HTML=self.sparkContext._repr_html_() ) @since(2.0) def newSession(self): """ Returns a new SparkSession as new session, that has separate SQLConf, registered temporary views and UDFs, but shared SparkContext and table cache. """ return self.__class__(self._sc, self._jsparkSession.newSession()) @classmethod def getActiveSession(cls): """ Returns the active SparkSession for the current thread, returned by the builder .. versionadded:: 3.0.0 Returns ------- :class:`SparkSession` Spark session if an active session exists for the current thread Examples -------- >>> s = SparkSession.getActiveSession() >>> l = [('Alice', 1)] >>> rdd = s.sparkContext.parallelize(l) >>> df = s.createDataFrame(rdd, ['name', 'age']) >>> df.select("age").collect() [Row(age=1)] """ from pyspark import SparkContext sc = SparkContext._active_spark_context if sc is None: return None else: if sc._jvm.SparkSession.getActiveSession().isDefined(): SparkSession(sc, sc._jvm.SparkSession.getActiveSession().get()) return SparkSession._activeSession else: return None @property @since(2.0) def sparkContext(self): """Returns the underlying :class:`SparkContext`.""" return self._sc @property @since(2.0) def version(self): """The version of Spark on which this application is running.""" return self._jsparkSession.version() @property @since(2.0) def conf(self): """Runtime configuration interface for Spark. This is the interface through which the user can get and set all Spark and Hadoop configurations that are relevant to Spark SQL. When getting the value of a config, this defaults to the value set in the underlying :class:`SparkContext`, if any. Returns ------- :class:`pyspark.sql.conf.RuntimeConfig` """ if not hasattr(self, "_conf"): self._conf = RuntimeConfig(self._jsparkSession.conf()) return self._conf @property def catalog(self): """Interface through which the user may create, drop, alter or query underlying databases, tables, functions, etc. .. versionadded:: 2.0.0 Returns ------- :class:`Catalog` """ from pyspark.sql.catalog import Catalog if not hasattr(self, "_catalog"): self._catalog = Catalog(self) return self._catalog @property def udf(self): """Returns a :class:`UDFRegistration` for UDF registration. .. versionadded:: 2.0.0 Returns ------- :class:`UDFRegistration` """ from pyspark.sql.udf import UDFRegistration return UDFRegistration(self) def range(self, start, end=None, step=1, numPartitions=None): """ Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. .. versionadded:: 2.0.0 Parameters ---------- start : int the start value end : int, optional the end value (exclusive) step : int, optional the incremental step (default: 1) numPartitions : int, optional the number of partitions of the DataFrame Returns ------- :class:`DataFrame` Examples -------- >>> spark.range(1, 7, 2).collect() [Row(id=1), Row(id=3), Row(id=5)] If only one argument is specified, it will be used as the end value. >>> spark.range(3).collect() [Row(id=0), Row(id=1), Row(id=2)] """ if numPartitions is None: numPartitions = self._sc.defaultParallelism if end is None: jdf = self._jsparkSession.range(0, int(start), int(step), int(numPartitions)) else: jdf = self._jsparkSession.range(int(start), int(end), int(step), int(numPartitions)) return DataFrame(jdf, self._wrapped) def _inferSchemaFromList(self, data, names=None): """ Infer schema from list of Row, dict, or tuple. Parameters ---------- data : iterable list of Row, dict, or tuple names : list, optional list of column names Returns ------- :class:`pyspark.sql.types.StructType` """ if not data: raise ValueError("can not infer schema from empty dataset") schema = reduce(_merge_type, (_infer_schema(row, names) for row in data)) if _has_nulltype(schema): raise ValueError("Some of types cannot be determined after inferring") return schema def _inferSchema(self, rdd, samplingRatio=None, names=None): """ Infer schema from an RDD of Row, dict, or tuple. Parameters ---------- rdd : :class:`RDD` an RDD of Row, dict, or tuple samplingRatio : float, optional sampling ratio, or no sampling (default) names : list, optional Returns ------- :class:`pyspark.sql.types.StructType` """ first = rdd.first() if not first: raise ValueError("The first row in RDD is empty, " "can not infer schema") if samplingRatio is None: schema = _infer_schema(first, names=names) if _has_nulltype(schema): for row in rdd.take(100)[1:]: schema = _merge_type(schema, _infer_schema(row, names=names)) if not _has_nulltype(schema): break else: raise ValueError("Some of types cannot be determined by the " "first 100 rows, please try again with sampling") else: if samplingRatio < 0.99: rdd = rdd.sample(False, float(samplingRatio)) schema = rdd.map(lambda row: _infer_schema(row, names)).reduce(_merge_type) return schema def _createFromRDD(self, rdd, schema, samplingRatio): """ Create an RDD for DataFrame from an existing RDD, returns the RDD and schema. """ if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchema(rdd, samplingRatio, names=schema) converter = _create_converter(struct) rdd = rdd.map(converter) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data rdd = rdd.map(schema.toInternal) return rdd, schema def _createFromLocal(self, data, schema): """ Create an RDD for DataFrame from a list or pandas.DataFrame, returns the RDD and schema. """ # make sure data could consumed multiple times if not isinstance(data, list): data = list(data) if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchemaFromList(data, names=schema) converter = _create_converter(struct) data = map(converter, data) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data data = [schema.toInternal(row) for row in data] return self._sc.parallelize(data), schema @staticmethod def _create_shell_session(): """ Initialize a SparkSession for a pyspark shell session. This is called from shell.py to make error handling simpler without needing to declare local variables in that script, which would expose those to users. """ import py4j from pyspark.conf import SparkConf from pyspark.context import SparkContext try: # Try to access HiveConf, it will raise exception if Hive is not added conf = SparkConf() if conf.get('spark.sql.catalogImplementation', 'hive').lower() == 'hive': SparkContext._jvm.org.apache.hadoop.hive.conf.HiveConf() return SparkSession.builder\ .enableHiveSupport()\ .getOrCreate() else: return SparkSession.builder.getOrCreate() except (py4j.protocol.Py4JError, TypeError): if conf.get('spark.sql.catalogImplementation', '').lower() == 'hive': warnings.warn("Fall back to non-hive support because failing to access HiveConf, " "please make sure you build spark with hive") return SparkSession.builder.getOrCreate() def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=True): """ Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`. When ``schema`` is a list of column names, the type of each column will be inferred from ``data``. When ``schema`` is ``None``, it will try to infer the schema (column names and types) from ``data``, which should be an RDD of either :class:`Row`, :class:`namedtuple`, or :class:`dict`. When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string, it must match the real data, or an exception will be thrown at runtime. If the given schema is not :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value". Each record will also be wrapped into a tuple, which can be converted to row later. If schema inference is needed, ``samplingRatio`` is used to determined the ratio of rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``. .. versionadded:: 2.0.0 .. versionchanged:: 2.1.0 Added verifySchema. Parameters ---------- data : :class:`RDD` or iterable an RDD of any kind of SQL data representation (:class:`Row`, :class:`tuple`, ``int``, ``boolean``, etc.), or :class:`list`, or :class:`pandas.DataFrame`. schema : :class:`pyspark.sql.types.DataType`, str or list, optional a :class:`pyspark.sql.types.DataType` or a datatype string or a list of column names, default is None. The data type string format equals to :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use ``int`` as a short name for :class:`pyspark.sql.types.IntegerType`. samplingRatio : float, optional the sample ratio of rows used for inferring verifySchema : bool, optional verify data types of every row against schema. Enabled by default. Returns ------- :class:`DataFrame` Notes ----- Usage with spark.sql.execution.arrow.pyspark.enabled=True is experimental. Examples -------- >>> l = [('Alice', 1)] >>> spark.createDataFrame(l).collect() [Row(_1='Alice', _2=1)] >>> spark.createDataFrame(l, ['name', 'age']).collect() [Row(name='Alice', age=1)] >>> d = [{'name': 'Alice', 'age': 1}] >>> spark.createDataFrame(d).collect() [Row(age=1, name='Alice')] >>> rdd = sc.parallelize(l) >>> spark.createDataFrame(rdd).collect() [Row(_1='Alice', _2=1)] >>> df = spark.createDataFrame(rdd, ['name', 'age']) >>> df.collect() [Row(name='Alice', age=1)] >>> from pyspark.sql import Row >>> Person = Row('name', 'age') >>> person = rdd.map(lambda r: Person(*r)) >>> df2 = spark.createDataFrame(person) >>> df2.collect() [Row(name='Alice', age=1)] >>> from pyspark.sql.types import * >>> schema = StructType([ ... StructField("name", StringType(), True), ... StructField("age", IntegerType(), True)]) >>> df3 = spark.createDataFrame(rdd, schema) >>> df3.collect() [Row(name='Alice', age=1)] >>> spark.createDataFrame(df.toPandas()).collect() # doctest: +SKIP [Row(name='Alice', age=1)] >>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP [Row(0=1, 1=2)] >>> spark.createDataFrame(rdd, "a: string, b: int").collect() [Row(a='Alice', b=1)] >>> rdd = rdd.map(lambda row: row[1]) >>> spark.createDataFrame(rdd, "int").collect() [Row(value=1)] >>> spark.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError: ... """ SparkSession._activeSession = self self._jvm.SparkSession.setActiveSession(self._jsparkSession) if isinstance(data, DataFrame): raise TypeError("data is already a DataFrame") if isinstance(schema, str): schema = _parse_datatype_string(schema) elif isinstance(schema, (list, tuple)): # Must re-encode any unicode strings to be consistent with StructField names schema = [x.encode('utf-8') if not isinstance(x, str) else x for x in schema] try: import pandas has_pandas = True except Exception: has_pandas = False if has_pandas and isinstance(data, pandas.DataFrame): # Create a DataFrame from pandas DataFrame. return super(SparkSession, self).createDataFrame( data, schema, samplingRatio, verifySchema) return self._create_dataframe(data, schema, samplingRatio, verifySchema) def _create_dataframe(self, data, schema, samplingRatio, verifySchema): if isinstance(schema, StructType): verify_func = _make_type_verifier(schema) if verifySchema else lambda _: True def prepare(obj): verify_func(obj) return obj elif isinstance(schema, DataType): dataType = schema schema = StructType().add("value", schema) verify_func = _make_type_verifier( dataType, name="field value") if verifySchema else lambda _: True def prepare(obj): verify_func(obj) return obj, else: prepare = lambda obj: obj if isinstance(data, RDD): rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio) else: rdd, schema = self._createFromLocal(map(prepare, data), schema) jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd()) jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json()) df = DataFrame(jdf, self._wrapped) df._schema = schema return df def sql(self, sqlQuery): """Returns a :class:`DataFrame` representing the result of the given query. .. versionadded:: 2.0.0 Returns ------- :class:`DataFrame` Examples -------- >>> df.createOrReplaceTempView("table1") >>> df2 = spark.sql("SELECT field1 AS f1, field2 as f2 from table1") >>> df2.collect() [Row(f1=1, f2='row1'), Row(f1=2, f2='row2'), Row(f1=3, f2='row3')] """ return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped) def table(self, tableName): """Returns the specified table as a :class:`DataFrame`. .. versionadded:: 2.0.0 Returns ------- :class:`DataFrame` Examples -------- >>> df.createOrReplaceTempView("table1") >>> df2 = spark.table("table1") >>> sorted(df.collect()) == sorted(df2.collect()) True """ return DataFrame(self._jsparkSession.table(tableName), self._wrapped) @property def read(self): """ Returns a :class:`DataFrameReader` that can be used to read data in as a :class:`DataFrame`. .. versionadded:: 2.0.0 Returns ------- :class:`DataFrameReader` """ return DataFrameReader(self._wrapped) @property def readStream(self): """ Returns a :class:`DataStreamReader` that can be used to read data streams as a streaming :class:`DataFrame`. .. versionadded:: 2.0.0 Notes ----- This API is evolving. Returns ------- :class:`DataStreamReader` """ return DataStreamReader(self._wrapped) @property def streams(self): """Returns a :class:`StreamingQueryManager` that allows managing all the :class:`StreamingQuery` instances active on `this` context. .. versionadded:: 2.0.0 Notes ----- This API is evolving. Returns ------- :class:`StreamingQueryManager` """ from pyspark.sql.streaming import StreamingQueryManager return StreamingQueryManager(self._jsparkSession.streams()) @since(2.0) def stop(self): """Stop the underlying :class:`SparkContext`. """ from pyspark.sql.context import SQLContext self._sc.stop() # We should clean the default session up. See SPARK-23228. self._jvm.SparkSession.clearDefaultSession() self._jvm.SparkSession.clearActiveSession() SparkSession._instantiatedSession = None SparkSession._activeSession = None SQLContext._instantiatedContext = None @since(2.0) def __enter__(self): """ Enable 'with SparkSession.builder.(...).getOrCreate() as session: app' syntax. """ return self @since(2.0) def __exit__(self, exc_type, exc_val, exc_tb): """ Enable 'with SparkSession.builder.(...).getOrCreate() as session: app' syntax. Specifically stop the SparkSession on exit of the with block. """ self.stop() def _test(): import os import doctest from pyspark.context import SparkContext from pyspark.sql import Row import pyspark.sql.session os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.sql.session.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc globs['spark'] = SparkSession(sc) globs['rdd'] = rdd = sc.parallelize( [Row(field1=1, field2="row1"), Row(field1=2, field2="row2"), Row(field1=3, field2="row3")]) globs['df'] = rdd.toDF() (failure_count, test_count) = doctest.testmod( pyspark.sql.session, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) globs['sc'].stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
jaredthomas68/FEM
assignments/coding1/fem.py
2
8004
import numpy as np import scipy.sparse as sparse from scipy.sparse.linalg import spsolve import time import matplotlib.pylab as plt def define_stiffness_matrix(Nell, he): k_basis = np.zeros((2,2)) K = np.zeros((Nell, Nell)) LM = get_lm(Nell) for e in np.arange(0, Nell): # get base k matrix for element e for a in np.arange(0, 2): for b in np.arange(0, 2): k_basis[a,b] = ((-1)**(a+b))/he[e] # populate the stifness matrix for entries corresponding to element e for a in np.arange(0, 2): if LM[a, e] == 0: continue for b in np.arange(0, 2): if LM[b, e] == 0: continue K[int(LM[a,e]-1), int(LM[b,e]-1)] += k_basis[a,b] return K def define_forcing_vector(Nell, he, ffunc=0): f_e = np.zeros(2) F = np.zeros(Nell) x1 = 0. for e in np.arange(0, Nell): x2 = x1 + he[e] f_e = (he[e]/6.)*np.array([2.*forcing_function(x1, ffunc) + forcing_function(x2, ffunc), forcing_function(x1, ffunc) + 2.*forcing_function(x2, ffunc)]) if e == 0: F[e] = f_e[0] F[e+1] = f_e[1] elif e < Nell - 1: F[e] += f_e[0] F[e+1] = f_e[1] else: F[e] += f_e[0] x1 += he[e] return F def forcing_function(x, ffunc=0): f = 0 if ffunc == 0: f = 1. elif ffunc == 1: f = x elif ffunc == 2: f = x**2 else: ValueError("ffunc must be one of [0, 1, 2]") return f def solve_for_d(K, F): # Kd = F # sK = sparse.csr_matrix(K) # sK = sparse.csr_matrix(F) # d = np.matmul(np.linalg.inv(K),F) # print d sK = sparse.csr_matrix(K) d = spsolve(sK, F) return d def solve_for_displacements(d, Nell, he, g=0): u = np.zeros(Nell+1) x1 = 0.0 u[0] = (1.-x1)*d[0] for e in np.arange(1, Nell): x1 += he[e] # u[e] = u[e-1] + (1.-x1)*d[e] # u[e] = (1.-x1)*d[e] u[e] = d[e] # u[-1] = u[-2] + g u[-1] = g return u def get_node_locations_x(Nell, he): x_el = np.zeros(Nell + 1) for e in np.arange(1, Nell): x_el[e] = x_el[e-1] + he[e-1] x_el[Nell] = x_el[Nell-1] + he[Nell-1] return x_el def plot_displaccements(u, x, he, Nell, q=1, ffunc=1): plt.rcParams.update({'font.size': 22}) x_ex = np.linspace(0, 1., 100) x_el = get_node_locations_x(Nell, he) u_ex = get_u_of_x_exact(x_ex, q, ffunc) u_a = get_u_of_x_approx(x, u, he) plt.figure() plt.plot(x_ex, u_ex, label="Exact sol.", linewidth=3) # plt.plot(x_el, u, '-s', label="Approx. sol. (nodes)") plt.plot(x, u_a, '--r', markerfacecolor='none', label="Approx. sol.", linewidth=3) plt.xlabel('X Position') plt.ylabel("Displacement") functions = ["$f(x)=c$", "$f(x)=x$", "$f(x)=x^2$"] plt.title(functions[ffunc]+", $n=%i$" %Nell, y=1.02) plt.legend(loc=3, frameon=False) plt.tight_layout() plt.savefig("displacement_func%i_Nell%i.pdf" %(ffunc, Nell)) plt.show() plt.close() return def get_u_of_x_approx(Xp, u, he): Nell = he.size Xn = np.zeros(Nell+1) for e in np.arange(1, Nell+1): Xn[e] = Xn[e-1] + he[e-1] u_x = np.zeros_like(Xp) for x, i in zip(Xp, np.arange(0,Xp.size)): for e in np.arange(1, Nell+1): if x < Xn[e]: u_x[i] = ((u[e] - u[e-1])/(Xn[e] - Xn[e-1]))*(x-Xn[e-1]) + u[e-1] break return u_x def get_u_of_x_exact(x, q, ffunc=1): u_ex = 0. if ffunc == 0: u_ex = q*(1.-x**2)/2. elif ffunc == 1: u_ex = q*(1.-x**3)/6. elif ffunc == 2: u_ex = q * (1. - x ** 4) / 12. return u_ex def quadrature(Xe, he, ue, ffunc): # print Xe, he, ue, ffunc # quit() Nell = he.size xi = np.array([-np.sqrt(3./5.), 0., np.sqrt(3./5.)]) w = np.array([5./9., 8./9., 5./9.]) error_squared = 0.0 for el in np.arange(0, Nell): x = x_of_xi(xi, Xe, he, el) dxdxi = he[el]/2 ux = get_u_of_x_exact(x, q=1, ffunc=ffunc) ua = get_u_of_x_approx(x, ue, he) error_squared += np.sum(((ux-ua)**2)*dxdxi*w) error = np.sqrt(error_squared) return error def x_of_xi(xi, Xe, he, el): # print xi, Xe.size, he, el # quit() x = (he[el]*xi+Xe[el]+Xe[el+1])/2. return x def get_lm(Nell): """ Populates the location matrix, LM, to track the location of data in the global stiffness matrix, K :param Nell: Number of elements :return LM: Location matrix for data in the stiffness matrix, K """ LM = np.zeros([2, Nell]) for e in np.arange(0, Nell): LM[0, e] = e + 1 LM[1, e] = e + 2 LM[-1, -1] = 0 return LM def plot_error(): n = np.array([10, 100, 1000, 10000]) error = np.zeros([3, n.size]) h = np.ones(n.size)/n print h, n for ffunc, i in zip(np.array([0, 1, 2]), np.arange(0, 3)): for Nell, j in zip(n, np.arange(n.size)): # print Nell he = np.ones(Nell) / Nell Xe = get_node_locations_x(Nell, he) K = define_stiffness_matrix(Nell, he) F = define_forcing_vector(Nell, he, ffunc=ffunc) d = solve_for_d(K, F) u = solve_for_displacements(d, Nell, he, g=0) error[i,j] = quadrature(Xe, he, u, ffunc) print "ffunc: %i, Nell: %i, Error: %f" % (ffunc, Nell, error[i, j]) np.savetxt('error.txt', np.c_[n, h, np.transpose(error)], header="Nell, h, E(f(x)=c), E(f(x)=x), E(f(x)=x^2)") plt.loglog(h, error[0,:], '-o', label='$f(x)=c$') plt.loglog(h, error[1,:], '-o', label='$f(x)=x$') plt.loglog(h, error[2,:], '-o', label='$f(x)=x^2$') plt.legend(loc=2) plt.xlabel('$h$') plt.ylabel('$Error$') plt.show() return def get_slope(): data = np.loadtxt('error.txt') fx0 = data[:, 2] fx1 = data[:, 3] fx2 = data[:, 4] h = data[:, 1] print h print fx0 print fx1 print fx2 print (np.log(fx0[-1])-np.log(fx0[0]))/(np.log(h[-1])-(np.log(h[0]))) print (np.log(fx1[-1])-np.log(fx1[0]))/(np.log(h[-1])-(np.log(h[0]))) print (np.log(fx2[-1])-np.log(fx2[0]))/(np.log(h[-1])-(np.log(h[0]))) # print (fx2[-1]-fx2[0])/(h[-1]-h[0]) return if __name__ == "__main__": # get_lm(10) # get_slope() # exit() # plot_error() # exit() # # input variables Nell = 10 ffunc = 2 # for ffunc in np.array([0, 1, 2]): # for Nell in np.array([10, 100]): he = np.ones(Nell)/Nell x = np.linspace(0, 1, 4*Nell+1) Xe = get_node_locations_x(Nell, he) # error # er_4_el = 0.0051 tic = time.time() K = define_stiffness_matrix(Nell, he) toc = time.time() print he, Nell, K print "Time to define stiffness matrix: %.3f (s)" % (toc-tic) tic = time.time() F = define_forcing_vector(Nell, he, ffunc=ffunc) toc = time.time() print F print np.array([1/96., 1./16., 1/8., 3./16.]) print "Time to define forcing vector: %.3f (s)" % (toc - tic) tic = time.time() d = solve_for_d(K, F) toc = time.time() print d print np.array([1./6., 21./128., 7./48., 37./384.]) print "Time to solve for d: %.3f (s)" % (toc - tic) tic = time.time() u = solve_for_displacements(d, Nell, he, g=0) toc = time.time() print u print np.array([1./6., 21./128., 7./48., 37./384., 0]) print "Time to solve for u(x): %.3f (s)" % (toc - tic) print "Finished" error = quadrature(Xe, he, u, ffunc) print error plot_displaccements(u, x, he, Nell, ffunc=ffunc) # pre compute # Nnodes = Nell + 1 # x = 2.0 # node = 1 # Nodes = np.array([0, 0.5, 1]) # Lengths = Nodes/Nodes.size # # x = Nodes[0] # # print x, node, Nodes, Lengths # print basis_functions(x, node, Nodes, Lengths)
mit
dangra/scrapy-sci
wallpaper_demo/wallpaper/classifier_pipelines.py
2
1983
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import os from scrapy.contrib.exporter import JsonItemExporter from scrapy.exceptions import DropItem from sklearn.linear_model import LogisticRegression from scrapy_sci.status import Status, Reader from scrapy_sci.classifier import ClassifierFactory class ClassifiersPipeline(object): def __init__(self): self.status = Status() self.classifiers = [] self.exporters = {} for classifier in self.status.classifiers.keys(): CF = ClassifierFactory(self.status.classifiers[classifier]) CF.create_data_set("both") lc = lc = CF.create_classifier(LogisticRegression(C=1e5), self.status.classifiers[classifier]['features']()) lc.fit() self.classifiers.append((classifier, lc)) self.classifiers = sorted(self.classifiers, key = lambda a: a[1].estimate_accuracy(5, verbose=True)) print "Classifier {0} needs the most improvement; selected for export".format(self.classifiers[0][0]) for classification in self.status.classifiers[self.classifiers[0][0]]['classifications']: f = file("{0}.json".format(classification), "wb") self.exporters[classification] = JsonItemExporter(f) def process_item(self, item, spider): keep = True for i, (name, classifier) in enumerate(self.classifiers): item_classification = classifier.classify(item) if i == 0: export_classification = item_classification if self.status.classifiers[name]['classifications'][item_classification] == False: raise DropItem("Item removed by classifier: {0}".format(name)) if keep == True: self.exporters[export_classification].export_item(item)
bsd-3-clause
zycdragonball/tensorflow
tensorflow/examples/learn/text_classification_character_cnn.py
29
5666
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of using convolutional networks over characters for DBpedia dataset. This model is similar to one described in this paper: "Character-level Convolutional Networks for Text Classification" http://arxiv.org/abs/1509.01626 and is somewhat alternative to the Lua code from here: https://github.com/zhangxiangxiao/Crepe """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf FLAGS = None MAX_DOCUMENT_LENGTH = 100 N_FILTERS = 10 FILTER_SHAPE1 = [20, 256] FILTER_SHAPE2 = [20, N_FILTERS] POOLING_WINDOW = 4 POOLING_STRIDE = 2 MAX_LABEL = 15 CHARS_FEATURE = 'chars' # Name of the input character feature. def char_cnn_model(features, labels, mode): """Character level convolutional neural network model to predict classes.""" features_onehot = tf.one_hot(features[CHARS_FEATURE], 256) input_layer = tf.reshape( features_onehot, [-1, MAX_DOCUMENT_LENGTH, 256, 1]) with tf.variable_scope('CNN_Layer1'): # Apply Convolution filtering on input sequence. conv1 = tf.layers.conv2d( input_layer, filters=N_FILTERS, kernel_size=FILTER_SHAPE1, padding='VALID', # Add a ReLU for non linearity. activation=tf.nn.relu) # Max pooling across output of Convolution+Relu. pool1 = tf.layers.max_pooling2d( conv1, pool_size=POOLING_WINDOW, strides=POOLING_STRIDE, padding='SAME') # Transpose matrix so that n_filters from convolution becomes width. pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'): # Second level of convolution filtering. conv2 = tf.layers.conv2d( pool1, filters=N_FILTERS, kernel_size=FILTER_SHAPE2, padding='VALID') # Max across each filter to get useful features for classification. pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1]) # Apply regular WX + B and classification. logits = tf.layers.dense(pool2, MAX_LABEL, activation=None) predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'class': predicted_classes, 'prob': tf.nn.softmax(logits) }) onehot_labels = tf.one_hot(labels, MAX_LABEL, 1, 0) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): # Prepare training and testing data dbpedia = tf.contrib.learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data, size='large') x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary char_processor = tf.contrib.learn.preprocessing.ByteProcessor( MAX_DOCUMENT_LENGTH) x_train = np.array(list(char_processor.fit_transform(x_train))) x_test = np.array(list(char_processor.transform(x_test))) x_train = x_train.reshape([-1, MAX_DOCUMENT_LENGTH, 1, 1]) x_test = x_test.reshape([-1, MAX_DOCUMENT_LENGTH, 1, 1]) # Build model classifier = tf.estimator.Estimator(model_fn=char_cnn_model) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={CHARS_FEATURE: x_train}, y=y_train, batch_size=len(x_train), num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=100) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={CHARS_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
michaellaier/pymor
src/pymordemos/analyze_pickle.py
1
9229
#!/usr/bin/env python # This file is part of the pyMOR project (http://www.pymor.org). # Copyright Holders: Rene Milk, Stephan Rave, Felix Schindler # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) """Analyze pickled data demo. Usage: analyze_pickle.py histogram [--detailed=DETAILED_DATA] [--error-norm=NORM] REDUCED_DATA SAMPLES analyze_pickle.py convergence [--detailed=DETAILED_DATA] [--error-norm=NORM] [--ndim=NDIM] REDUCED_DATA SAMPLES analyze_pickle.py (-h | --help) This demo loads a pickled reduced discretization, solves for random parameters, estimates the reduction errors and then visualizes these estimates. If the detailed discretization and the reconstructor are also provided, the estimated error is visualized in comparison to the real reduction error. The needed data files are created by the thermal block demo, by setting the '--pickle' option. Arguments: REDUCED_DATA File containing the pickled reduced discretization. SAMPLES Number of parameter samples to test with. Options: --detailed=DETAILED_DATA File containing the high-dimensional discretization and the reconstructor. --error-norm=NORM Name of norm in which to compute the errors. --ndim=NDIM Number of reduced basis dimensions for which to estimate the error. """ from __future__ import absolute_import, division, print_function import sys import time import numpy as np import matplotlib.pyplot as plt from docopt import docopt from pymor.core.logger import set_log_levels from pymor.core.pickle import load from pymor.reductors.basic import reduce_to_subbasis set_log_levels({'pymor.algorithms': 'INFO', 'pymor.discretizations': 'INFO', 'pymor.la': 'INFO'}) def analyze_pickle_histogram(args): args['SAMPLES'] = int(args['SAMPLES']) print('Loading reduced discretization ...') rb_discretization = load(open(args['REDUCED_DATA'])) mus = list(rb_discretization.parameter_space.sample_randomly(args['SAMPLES'])) us = [] for mu in mus: print('Solving reduced for {} ... '.format(mu), end='') sys.stdout.flush() us.append(rb_discretization.solve(mu)) print('done') print() if hasattr(rb_discretization, 'estimate'): ests = [] for u, mu in zip(us, mus): print('Estimating error for {} ... '.format(mu), end='') sys.stdout.flush() ests.append(rb_discretization.estimate(u, mu=mu)) print('done') if args['--detailed']: print('Loading high-dimensional data ...') discretization, reconstructor = load(open(args['--detailed'])) errs = [] for u, mu in zip(us, mus): print('Calculating error for {} ... '.format(mu)) sys.stdout.flush() err = discretization.solve(mu) - reconstructor.reconstruct(u) if args['--error-norm']: errs.append(np.max(getattr(discretization, args['--error-norm'] + '_norm')(err))) else: errs.append(np.max(err.l2_norm())) print('done') print() try: plt.style.use('ggplot') except AttributeError: pass # plt.style is only available in newer matplotlib versions if hasattr(rb_discretization, 'estimate') and args['--detailed']: # setup axes left, width = 0.1, 0.65 bottom, height = 0.1, 0.65 bottom_h = left_h = left+width+0.02 rect_scatter = [left, bottom, width, height] rect_histx = [left, bottom_h, width, 0.2] rect_histy = [left_h, bottom, 0.2, height] plt.figure(1, figsize=(8, 8)) axScatter = plt.axes(rect_scatter) axHistx = plt.axes(rect_histx) axHisty = plt.axes(rect_histy) # scatter plot total_min = min(min(ests), min(errs)) * 0.9 total_max = max(max(ests), max(errs)) * 1.1 axScatter.set_xscale('log') axScatter.set_yscale('log') axScatter.set_xlim([total_min, total_max]) axScatter.set_ylim([total_min, total_max]) axScatter.set_xlabel('errors') axScatter.set_ylabel('estimates') axScatter.plot([total_min, total_max], [total_min, total_max], 'r') axScatter.scatter(errs, ests) # plot histograms x_hist, x_bin_edges = np.histogram(errs, bins=np.logspace(np.log10(total_min), np.log10(total_max), 100)) axHistx.bar(x_bin_edges[1:], x_hist, width=x_bin_edges[:-1] - x_bin_edges[1:], color='blue') y_hist, y_bin_edges = np.histogram(ests, bins=np.logspace(np.log10(total_min), np.log10(total_max), 100)) axHisty.barh(y_bin_edges[1:], y_hist, height=y_bin_edges[:-1] - y_bin_edges[1:], color='blue') axHistx.set_xscale('log') axHisty.set_yscale('log') axHistx.set_xticklabels([]) axHisty.set_yticklabels([]) axHistx.set_xlim(axScatter.get_xlim()) axHisty.set_ylim(axScatter.get_ylim()) axHistx.set_ylim([0, max(max(x_hist), max(y_hist))]) axHisty.set_xlim([0, max(max(x_hist), max(y_hist))]) plt.show() elif hasattr(rb_discretization, 'estimate'): total_min = min(ests) * 0.9 total_max = max(ests) * 1.1 hist, bin_edges = np.histogram(ests, bins=np.logspace(np.log10(total_min), np.log10(total_max), 100)) plt.bar(bin_edges[1:], hist, width=bin_edges[:-1] - bin_edges[1:], color='blue') plt.xlim([total_min, total_max]) plt.xscale('log') plt.xlabel('estimated error') plt.show() elif args['--detailed']: total_min = min(ests) * 0.9 total_max = max(ests) * 1.1 hist, bin_edges = np.histogram(errs, bins=np.logspace(np.log10(total_min), np.log10(total_max), 100)) plt.bar(bin_edges[1:], hist, width=bin_edges[:-1] - bin_edges[1:], color='blue') plt.xlim([total_min, total_max]) plt.xscale('log') plt.xlabel('error') plt.show() else: raise ValueError('Nothing to plot!') def analyze_pickle_convergence(args): args['SAMPLES'] = int(args['SAMPLES']) print('Loading reduced discretization ...') rb_discretization = load(open(args['REDUCED_DATA'])) if args['--detailed']: print('Loading high-dimensional data ...') discretization, reconstructor = load(open(args['--detailed'])) if not hasattr(rb_discretization, 'estimate') and not args['--detailed']: raise ValueError('Nothing to do! (Neither estimates nor true error can be computed.)') dim = rb_discretization.solution_space.dim if args['--ndim']: dims = np.linspace(0, dim, args['--ndim'], dtype=np.int) else: dims = np.arange(dim + 1) mus = list(rb_discretization.parameter_space.sample_randomly(args['SAMPLES'])) ESTS = [] ERRS = [] T_SOLVES = [] T_ESTS = [] for N in dims: rd, rc, _ = reduce_to_subbasis(rb_discretization, N) print('N = {:3} '.format(N), end='') us = [] print('solve ', end='') sys.stdout.flush() start = time.time() for mu in mus: us.append(rd.solve(mu)) T_SOLVES.append((time.time() - start) * 1000. / len(mus)) print('estimate ', end='') sys.stdout.flush() if hasattr(rb_discretization, 'estimate'): ests = [] start = time.time() for u, mu in zip(us, mus): # print('e', end='') # sys.stdout.flush() ests.append(rd.estimate(u, mu=mu)) ESTS.append(max(ests)) T_ESTS.append((time.time() - start) * 1000. / len(mus)) if args['--detailed']: print('errors', end='') sys.stdout.flush() errs = [] for u, mu in zip(us, mus): err = discretization.solve(mu) - reconstructor.reconstruct(rc.reconstruct(u)) if args['--error-norm']: errs.append(np.max(getattr(discretization, args['--error-norm'] + '_norm')(err))) else: errs.append(np.max(err.l2_norm())) ERRS.append(max(errs)) print() print() try: plt.style.use('ggplot') except AttributeError: pass # plt.style is only available in newer matplotlib versions plt.subplot(1, 2, 1) if hasattr(rb_discretization, 'estimate'): plt.semilogy(dims, ESTS, label='max. estimate') if args['--detailed']: plt.semilogy(dims, ERRS, label='max. error') plt.xlabel('dimension') plt.legend() plt.subplot(1, 2, 2) plt.plot(dims, T_SOLVES, label='avg. solve time') if hasattr(rb_discretization, 'estimate'): plt.plot(dims, T_ESTS, label='avg. estimate time') plt.xlabel('dimension') plt.ylabel('milliseconds') plt.legend() plt.show() def analyze_pickle_demo(args): if args['histogram']: analyze_pickle_histogram(args) else: analyze_pickle_convergence(args) if __name__ == '__main__': # parse arguments args = docopt(__doc__) # run demo analyze_pickle_demo(args)
bsd-2-clause
wanggang3333/scikit-learn
examples/manifold/plot_swissroll.py
330
1446
""" =================================== Swiss Roll reduction with LLE =================================== An illustration of Swiss Roll reduction with locally linear embedding """ # Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr> # License: BSD 3 clause (C) INRIA 2011 print(__doc__) import matplotlib.pyplot as plt # This import is needed to modify the way figure behaves from mpl_toolkits.mplot3d import Axes3D Axes3D #---------------------------------------------------------------------- # Locally linear embedding of the swiss roll from sklearn import manifold, datasets X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500) print("Computing LLE embedding") X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12, n_components=2) print("Done. Reconstruction error: %g" % err) #---------------------------------------------------------------------- # Plot result fig = plt.figure() try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(211, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) except: ax = fig.add_subplot(211) ax.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.set_title("Original data") ax = fig.add_subplot(212) ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral) plt.axis('tight') plt.xticks([]), plt.yticks([]) plt.title('Projected data') plt.show()
bsd-3-clause
rmccoy7541/egillettii-rnaseq
scripts/sample_performance_analysis.py
1
3763
#! /bin/env python import sys from optparse import OptionParser import copy import matplotlib matplotlib.use('Agg') import pylab import scipy.optimize import numpy from numpy import array import dadi import os #call ms program from within dadi, using optimized parameters (converted to ms units) core = "-n 1 0.922 -n 2 0.104 -ej 0.0330 2 1 -en 0.0330 1 1" #modify the (20,20) portion to change the number of sampled chromosomes in each population command = dadi.Misc.ms_command(100000, (20,20), core, 1, 2000) ms_fs = dadi.Spectrum.from_ms_file(os.popen(command)) #scale the frequency spectrum to the same number of segregating sites scaled_ms_fs = ms_fs.fixed_size_sample(1881) scaled_ms_fs = scaled_ms_fs.fold() #import demographic models import gillettii_models def runModel(outFile, nuW_start, nuC_start, T_start): # Extract the spectrum from ms output fs = scaled_ms_fs ns = fs.sample_sizes print 'sample sizes:', ns # These are the grid point settings will use for extrapolation. pts_l = [20,30,40] # suggested that the smallest grid be slightly larger than the largest sample size. But this may take a long time. # bottleneck_split model func = gillettii_models.bottleneck_split params = array([nuW_start, nuC_start, T_start]) upper_bound = [30, 10, 10] lower_bound = [1e-5, 1e-10, 0] # Make the extrapolating version of the demographic model function. func_ex = dadi.Numerics.make_extrap_func(func) # Calculate the model AFS model = func_ex(params, ns, pts_l) # Calculate likelihood of the data given the model AFS # Likelihood of the data given the model AFS. ll_model = dadi.Inference.ll_multinom(model, fs) print 'Model log-likelihood:', ll_model, "\n" # The optimal value of theta given the model. theta = dadi.Inference.optimal_sfs_scaling(model, fs) p0 = dadi.Misc.perturb_params(params, fold=1, lower_bound=lower_bound, upper_bound=upper_bound) print 'perturbed parameters: ', p0, "\n" popt = dadi.Inference.optimize_log_fmin(p0, fs, func_ex, pts_l, upper_bound=upper_bound, lower_bound=lower_bound, maxiter=None, verbose=len(params)) print 'Optimized parameters:', repr(popt), "\n" #use the optimized parameters in a new model to try to get the parameters to converge new_model = func_ex(popt, ns, pts_l) ll_opt = dadi.Inference.ll_multinom(new_model, fs) print 'Optimized log-likelihood:', ll_opt, "\n" # Write the parameters and log-likelihood to the outFile s = str(nuW_start) + '\t' + str(nuC_start) + '\t' + str(T_start) + '\t' for i in range(0, len(popt)): s += str(popt[i]) + '\t' s += str(ll_opt) + '\n' outFile.write(s) ################# def mkOptionParser(): """ Defines options and returns parser """ usage = """%prog <outFN> <nuW_start> <nuC_start> <T_start> %prog performs demographic inference on gillettii RNA-seq data. """ parser = OptionParser(usage) return parser def main(): """ see usage in mkOptionParser. """ parser = mkOptionParser() options, args= parser.parse_args() if len(args) != 4: parser.error("Incorrect number of arguments") outFN = args[0] nuW_start = float(args[1]) nuC_start = float(args[2]) T_start = float(args[3]) if outFN == '-': outFile = sys.stdout else: outFile = open(outFN, 'a') runModel(outFile, nuW_start, nuC_start, T_start) #run main if __name__ == '__main__': main()
mit
abalkin/numpy
tools/refguide_check.py
1
37850
#!/usr/bin/env python3 """ refguide_check.py [OPTIONS] [-- ARGS] - Check for a NumPy submodule whether the objects in its __all__ dict correspond to the objects included in the reference guide. - Check docstring examples - Check example blocks in RST files Example of usage:: $ python refguide_check.py optimize Note that this is a helper script to be able to check if things are missing; the output of this script does need to be checked manually. In some cases objects are left out of the refguide for a good reason (it's an alias of another function, or deprecated, or ...) Another use of this helper script is to check validity of code samples in docstrings:: $ python refguide_check.py --doctests ma or in RST-based documentations:: $ python refguide_check.py --rst docs """ import copy import doctest import inspect import io import os import re import shutil import sys import tempfile import warnings import docutils.core from argparse import ArgumentParser from contextlib import contextmanager, redirect_stderr from doctest import NORMALIZE_WHITESPACE, ELLIPSIS, IGNORE_EXCEPTION_DETAIL from docutils.parsers.rst import directives from pkg_resources import parse_version import sphinx import numpy as np sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', 'doc', 'sphinxext')) from numpydoc.docscrape_sphinx import get_doc_object SKIPBLOCK = doctest.register_optionflag('SKIPBLOCK') if parse_version(sphinx.__version__) >= parse_version('1.5'): # Enable specific Sphinx directives from sphinx.directives.other import SeeAlso, Only directives.register_directive('seealso', SeeAlso) directives.register_directive('only', Only) else: # Remove sphinx directives that don't run without Sphinx environment. # Sphinx < 1.5 installs all directives on import... directives._directives.pop('versionadded', None) directives._directives.pop('versionchanged', None) directives._directives.pop('moduleauthor', None) directives._directives.pop('sectionauthor', None) directives._directives.pop('codeauthor', None) directives._directives.pop('toctree', None) BASE_MODULE = "numpy" PUBLIC_SUBMODULES = [ 'core', 'doc.structured_arrays', 'f2py', 'linalg', 'lib', 'lib.recfunctions', 'fft', 'ma', 'polynomial', 'matrixlib', 'random', 'testing', ] # Docs for these modules are included in the parent module OTHER_MODULE_DOCS = { 'fftpack.convolve': 'fftpack', 'io.wavfile': 'io', 'io.arff': 'io', } # these names are known to fail doctesting and we like to keep it that way # e.g. sometimes pseudocode is acceptable etc DOCTEST_SKIPLIST = set([ # cases where NumPy docstrings import things from SciPy: 'numpy.lib.vectorize', 'numpy.random.standard_gamma', 'numpy.random.gamma', 'numpy.random.vonmises', 'numpy.random.power', 'numpy.random.zipf', # remote / local file IO with DataSource is problematic in doctest: 'numpy.lib.DataSource', 'numpy.lib.Repository', ]) # Skip non-numpy RST files, historical release notes # Any single-directory exact match will skip the directory and all subdirs. # Any exact match (like 'doc/release') will scan subdirs but skip files in # the matched directory. # Any filename will skip that file RST_SKIPLIST = [ 'scipy-sphinx-theme', 'sphinxext', 'neps', 'changelog', 'doc/release', 'doc/source/release', 'c-info.ufunc-tutorial.rst', 'c-info.python-as-glue.rst', 'f2py.getting-started.rst', 'arrays.nditer.cython.rst', ] # these names are not required to be present in ALL despite being in # autosummary:: listing REFGUIDE_ALL_SKIPLIST = [ r'scipy\.sparse\.linalg', r'scipy\.spatial\.distance', r'scipy\.linalg\.blas\.[sdczi].*', r'scipy\.linalg\.lapack\.[sdczi].*', ] # these names are not required to be in an autosummary:: listing # despite being in ALL REFGUIDE_AUTOSUMMARY_SKIPLIST = [ # NOTE: should NumPy have a better match between autosummary # listings and __all__? For now, TR isn't convinced this is a # priority -- focus on just getting docstrings executed / correct r'numpy\.*', ] # deprecated windows in scipy.signal namespace for name in ('barthann', 'bartlett', 'blackmanharris', 'blackman', 'bohman', 'boxcar', 'chebwin', 'cosine', 'exponential', 'flattop', 'gaussian', 'general_gaussian', 'hamming', 'hann', 'hanning', 'kaiser', 'nuttall', 'parzen', 'slepian', 'triang', 'tukey'): REFGUIDE_AUTOSUMMARY_SKIPLIST.append(r'scipy\.signal\.' + name) HAVE_MATPLOTLIB = False def short_path(path, cwd=None): """ Return relative or absolute path name, whichever is shortest. Parameters ---------- path: str or None cwd: str or None Returns ------- str Relative path or absolute path based on current working directory """ if not isinstance(path, str): return path if cwd is None: cwd = os.getcwd() abspath = os.path.abspath(path) relpath = os.path.relpath(path, cwd) if len(abspath) <= len(relpath): return abspath return relpath def find_names(module, names_dict): """ Finds the occurrences of function names, special directives like data and functions and scipy constants in the docstrings of `module`. The following patterns are searched for: * 3 spaces followed by function name, and maybe some spaces, some dashes, and an explanation; only function names listed in refguide are formatted like this (mostly, there may be some false positives * special directives, such as data and function * (scipy.constants only): quoted list The `names_dict` is updated by reference and accessible in calling method Parameters ---------- module : ModuleType The module, whose docstrings is to be searched names_dict : dict Dictionary which contains module name as key and a set of found function names and directives as value Returns ------- None """ patterns = [ r"^\s\s\s([a-z_0-9A-Z]+)(\s+-+.*)?$", r"^\.\. (?:data|function)::\s*([a-z_0-9A-Z]+)\s*$" ] if module.__name__ == 'scipy.constants': patterns += ["^``([a-z_0-9A-Z]+)``"] patterns = [re.compile(pattern) for pattern in patterns] module_name = module.__name__ for line in module.__doc__.splitlines(): res = re.search(r"^\s*\.\. (?:currentmodule|module):: ([a-z0-9A-Z_.]+)\s*$", line) if res: module_name = res.group(1) continue for pattern in patterns: res = re.match(pattern, line) if res is not None: name = res.group(1) entry = '.'.join([module_name, name]) names_dict.setdefault(module_name, set()).add(name) break def get_all_dict(module): """ Return a copy of the __all__ dict with irrelevant items removed. Parameters ---------- module : ModuleType The module whose __all__ dict has to be processed Returns ------- deprecated : list List of callable and deprecated sub modules not_deprecated : list List of non callable or non deprecated sub modules others : list List of remaining types of sub modules """ if hasattr(module, "__all__"): all_dict = copy.deepcopy(module.__all__) else: all_dict = copy.deepcopy(dir(module)) all_dict = [name for name in all_dict if not name.startswith("_")] for name in ['absolute_import', 'division', 'print_function']: try: all_dict.remove(name) except ValueError: pass if not all_dict: # Must be a pure documentation module like doc.structured_arrays all_dict.append('__doc__') # Modules are almost always private; real submodules need a separate # run of refguide_check. all_dict = [name for name in all_dict if not inspect.ismodule(getattr(module, name, None))] deprecated = [] not_deprecated = [] for name in all_dict: f = getattr(module, name, None) if callable(f) and is_deprecated(f): deprecated.append(name) else: not_deprecated.append(name) others = set(dir(module)).difference(set(deprecated)).difference(set(not_deprecated)) return not_deprecated, deprecated, others def compare(all_dict, others, names, module_name): """ Return sets of objects from all_dict. Will return three sets: {in module_name.__all__}, {in REFGUIDE*}, and {missing from others} Parameters ---------- all_dict : list List of non deprecated sub modules for module_name others : list List of sub modules for module_name names : set Set of function names or special directives present in docstring of module_name module_name : ModuleType Returns ------- only_all : set only_ref : set missing : set """ only_all = set() for name in all_dict: if name not in names: for pat in REFGUIDE_AUTOSUMMARY_SKIPLIST: if re.match(pat, module_name + '.' + name): break else: only_all.add(name) only_ref = set() missing = set() for name in names: if name not in all_dict: for pat in REFGUIDE_ALL_SKIPLIST: if re.match(pat, module_name + '.' + name): if name not in others: missing.add(name) break else: only_ref.add(name) return only_all, only_ref, missing def is_deprecated(f): """ Check if module `f` is deprecated Parameter --------- f : ModuleType Returns ------- bool """ with warnings.catch_warnings(record=True) as w: warnings.simplefilter("error") try: f(**{"not a kwarg":None}) except DeprecationWarning: return True except Exception: pass return False def check_items(all_dict, names, deprecated, others, module_name, dots=True): """ Check that `all_dict` is consistent with the `names` in `module_name` For instance, that there are no deprecated or extra objects. Parameters ---------- all_dict : list names : set deprecated : list others : list module_name : ModuleType dots : bool Whether to print a dot for each check Returns ------- list List of [(name, success_flag, output)...] """ num_all = len(all_dict) num_ref = len(names) output = "" output += "Non-deprecated objects in __all__: %i\n" % num_all output += "Objects in refguide: %i\n\n" % num_ref only_all, only_ref, missing = compare(all_dict, others, names, module_name) dep_in_ref = set(only_ref).intersection(deprecated) only_ref = set(only_ref).difference(deprecated) if len(dep_in_ref) > 0: output += "Deprecated objects in refguide::\n\n" for name in sorted(deprecated): output += " " + name + "\n" if len(only_all) == len(only_ref) == len(missing) == 0: if dots: output_dot('.') return [(None, True, output)] else: if len(only_all) > 0: output += "ERROR: objects in %s.__all__ but not in refguide::\n\n" % module_name for name in sorted(only_all): output += " " + name + "\n" output += "\nThis issue can be fixed by adding these objects to\n" output += "the function listing in __init__.py for this module\n" if len(only_ref) > 0: output += "ERROR: objects in refguide but not in %s.__all__::\n\n" % module_name for name in sorted(only_ref): output += " " + name + "\n" output += "\nThis issue should likely be fixed by removing these objects\n" output += "from the function listing in __init__.py for this module\n" output += "or adding them to __all__.\n" if len(missing) > 0: output += "ERROR: missing objects::\n\n" for name in sorted(missing): output += " " + name + "\n" if dots: output_dot('F') return [(None, False, output)] def validate_rst_syntax(text, name, dots=True): """ Validates the doc string in a snippet of documentation `text` from file `name` Parameters ---------- text : str Docstring text name : str File name for which the doc string is to be validated dots : bool Whether to print a dot symbol for each check Returns ------- (bool, str) """ if text is None: if dots: output_dot('E') return False, "ERROR: %s: no documentation" % (name,) ok_unknown_items = set([ 'mod', 'doc', 'currentmodule', 'autosummary', 'data', 'attr', 'obj', 'versionadded', 'versionchanged', 'module', 'class', 'ref', 'func', 'toctree', 'moduleauthor', 'term', 'c:member', 'sectionauthor', 'codeauthor', 'eq', 'doi', 'DOI', 'arXiv', 'arxiv' ]) # Run through docutils error_stream = io.StringIO() def resolve(name, is_label=False): return ("http://foo", name) token = '<RST-VALIDATE-SYNTAX-CHECK>' docutils.core.publish_doctree( text, token, settings_overrides = dict(halt_level=5, traceback=True, default_reference_context='title-reference', default_role='emphasis', link_base='', resolve_name=resolve, stylesheet_path='', raw_enabled=0, file_insertion_enabled=0, warning_stream=error_stream)) # Print errors, disregarding unimportant ones error_msg = error_stream.getvalue() errors = error_msg.split(token) success = True output = "" for error in errors: lines = error.splitlines() if not lines: continue m = re.match(r'.*Unknown (?:interpreted text role|directive type) "(.*)".*$', lines[0]) if m: if m.group(1) in ok_unknown_items: continue m = re.match(r'.*Error in "math" directive:.*unknown option: "label"', " ".join(lines), re.S) if m: continue output += name + lines[0] + "::\n " + "\n ".join(lines[1:]).rstrip() + "\n" success = False if not success: output += " " + "-"*72 + "\n" for lineno, line in enumerate(text.splitlines()): output += " %-4d %s\n" % (lineno+1, line) output += " " + "-"*72 + "\n\n" if dots: output_dot('.' if success else 'F') return success, output def output_dot(msg='.', stream=sys.stderr): stream.write(msg) stream.flush() def check_rest(module, names, dots=True): """ Check reStructuredText formatting of docstrings Parameters ---------- module : ModuleType names : set Returns ------- result : list List of [(module_name, success_flag, output),...] """ try: skip_types = (dict, str, unicode, float, int) except NameError: # python 3 skip_types = (dict, str, float, int) results = [] if module.__name__[6:] not in OTHER_MODULE_DOCS: results += [(module.__name__,) + validate_rst_syntax(inspect.getdoc(module), module.__name__, dots=dots)] for name in names: full_name = module.__name__ + '.' + name obj = getattr(module, name, None) if obj is None: results.append((full_name, False, "%s has no docstring" % (full_name,))) continue elif isinstance(obj, skip_types): continue if inspect.ismodule(obj): text = inspect.getdoc(obj) else: try: text = str(get_doc_object(obj)) except Exception: import traceback results.append((full_name, False, "Error in docstring format!\n" + traceback.format_exc())) continue m = re.search("([\x00-\x09\x0b-\x1f])", text) if m: msg = ("Docstring contains a non-printable character %r! " "Maybe forgot r\"\"\"?" % (m.group(1),)) results.append((full_name, False, msg)) continue try: src_file = short_path(inspect.getsourcefile(obj)) except TypeError: src_file = None if src_file: file_full_name = src_file + ':' + full_name else: file_full_name = full_name results.append((full_name,) + validate_rst_syntax(text, file_full_name, dots=dots)) return results ### Doctest helpers #### # the namespace to run examples in DEFAULT_NAMESPACE = {'np': np} # the namespace to do checks in CHECK_NAMESPACE = { 'np': np, 'numpy': np, 'assert_allclose': np.testing.assert_allclose, 'assert_equal': np.testing.assert_equal, # recognize numpy repr's 'array': np.array, 'matrix': np.matrix, 'int64': np.int64, 'uint64': np.uint64, 'int8': np.int8, 'int32': np.int32, 'float32': np.float32, 'float64': np.float64, 'dtype': np.dtype, 'nan': np.nan, 'NaN': np.nan, 'inf': np.inf, 'Inf': np.inf, 'StringIO': io.StringIO, } class DTRunner(doctest.DocTestRunner): """ The doctest runner """ DIVIDER = "\n" def __init__(self, item_name, checker=None, verbose=None, optionflags=0): self._item_name = item_name doctest.DocTestRunner.__init__(self, checker=checker, verbose=verbose, optionflags=optionflags) def _report_item_name(self, out, new_line=False): if self._item_name is not None: if new_line: out("\n") self._item_name = None def report_start(self, out, test, example): self._checker._source = example.source return doctest.DocTestRunner.report_start(self, out, test, example) def report_success(self, out, test, example, got): if self._verbose: self._report_item_name(out, new_line=True) return doctest.DocTestRunner.report_success(self, out, test, example, got) def report_unexpected_exception(self, out, test, example, exc_info): self._report_item_name(out) return doctest.DocTestRunner.report_unexpected_exception( self, out, test, example, exc_info) def report_failure(self, out, test, example, got): self._report_item_name(out) return doctest.DocTestRunner.report_failure(self, out, test, example, got) class Checker(doctest.OutputChecker): """ Check the docstrings """ obj_pattern = re.compile('at 0x[0-9a-fA-F]+>') vanilla = doctest.OutputChecker() rndm_markers = {'# random', '# Random', '#random', '#Random', "# may vary", "# uninitialized", "#uninitialized"} stopwords = {'plt.', '.hist', '.show', '.ylim', '.subplot(', 'set_title', 'imshow', 'plt.show', '.axis(', '.plot(', '.bar(', '.title', '.ylabel', '.xlabel', 'set_ylim', 'set_xlim', '# reformatted', '.set_xlabel(', '.set_ylabel(', '.set_zlabel(', '.set(xlim=', '.set(ylim=', '.set(xlabel=', '.set(ylabel='} def __init__(self, parse_namedtuples=True, ns=None, atol=1e-8, rtol=1e-2): self.parse_namedtuples = parse_namedtuples self.atol, self.rtol = atol, rtol if ns is None: self.ns = CHECK_NAMESPACE else: self.ns = ns def check_output(self, want, got, optionflags): # cut it short if they are equal if want == got: return True # skip stopwords in source if any(word in self._source for word in self.stopwords): return True # skip random stuff if any(word in want for word in self.rndm_markers): return True # skip function/object addresses if self.obj_pattern.search(got): return True # ignore comments (e.g. signal.freqresp) if want.lstrip().startswith("#"): return True # try the standard doctest try: if self.vanilla.check_output(want, got, optionflags): return True except Exception: pass # OK then, convert strings to objects try: a_want = eval(want, dict(self.ns)) a_got = eval(got, dict(self.ns)) except Exception: # Maybe we're printing a numpy array? This produces invalid python # code: `print(np.arange(3))` produces "[0 1 2]" w/o commas between # values. So, reinsert commas and retry. # TODO: handle (1) abberivation (`print(np.arange(10000))`), and # (2) n-dim arrays with n > 1 s_want = want.strip() s_got = got.strip() cond = (s_want.startswith("[") and s_want.endswith("]") and s_got.startswith("[") and s_got.endswith("]")) if cond: s_want = ", ".join(s_want[1:-1].split()) s_got = ", ".join(s_got[1:-1].split()) return self.check_output(s_want, s_got, optionflags) if not self.parse_namedtuples: return False # suppose that "want" is a tuple, and "got" is smth like # MoodResult(statistic=10, pvalue=0.1). # Then convert the latter to the tuple (10, 0.1), # and then compare the tuples. try: num = len(a_want) regex = (r'[\w\d_]+\(' + ', '.join([r'[\w\d_]+=(.+)']*num) + r'\)') grp = re.findall(regex, got.replace('\n', ' ')) if len(grp) > 1: # no more than one for now return False # fold it back to a tuple got_again = '(' + ', '.join(grp[0]) + ')' return self.check_output(want, got_again, optionflags) except Exception: return False # ... and defer to numpy try: return self._do_check(a_want, a_got) except Exception: # heterog tuple, eg (1, np.array([1., 2.])) try: return all(self._do_check(w, g) for w, g in zip(a_want, a_got)) except (TypeError, ValueError): return False def _do_check(self, want, got): # This should be done exactly as written to correctly handle all of # numpy-comparable objects, strings, and heterogeneous tuples try: if want == got: return True except Exception: pass return np.allclose(want, got, atol=self.atol, rtol=self.rtol) def _run_doctests(tests, full_name, verbose, doctest_warnings): """ Run modified doctests for the set of `tests`. Parameters ---------- tests: list full_name : str verbose : bool doctest_warning : bool Returns ------- tuple(bool, list) Tuple of (success, output) """ flags = NORMALIZE_WHITESPACE | ELLIPSIS runner = DTRunner(full_name, checker=Checker(), optionflags=flags, verbose=verbose) output = io.StringIO(newline='') success = True # Redirect stderr to the stdout or output tmp_stderr = sys.stdout if doctest_warnings else output @contextmanager def temp_cwd(): cwd = os.getcwd() tmpdir = tempfile.mkdtemp() try: os.chdir(tmpdir) yield tmpdir finally: os.chdir(cwd) shutil.rmtree(tmpdir) # Run tests, trying to restore global state afterward cwd = os.getcwd() with np.errstate(), np.printoptions(), temp_cwd() as tmpdir, \ redirect_stderr(tmp_stderr): # try to ensure random seed is NOT reproducible np.random.seed(None) ns = {} for t in tests: # We broke the tests up into chunks to try to avoid PSEUDOCODE # This has the unfortunate side effect of restarting the global # namespace for each test chunk, so variables will be "lost" after # a chunk. Chain the globals to avoid this t.globs.update(ns) t.filename = short_path(t.filename, cwd) # Process our options if any([SKIPBLOCK in ex.options for ex in t.examples]): continue fails, successes = runner.run(t, out=output.write, clear_globs=False) if fails > 0: success = False ns = t.globs output.seek(0) return success, output.read() def check_doctests(module, verbose, ns=None, dots=True, doctest_warnings=False): """ Check code in docstrings of the module's public symbols. Parameters ---------- module : ModuleType Name of module verbose : bool Should the result be verbose ns : dict Name space of module dots : bool doctest_warnings : bool Returns ------- results : list List of [(item_name, success_flag, output), ...] """ if ns is None: ns = dict(DEFAULT_NAMESPACE) # Loop over non-deprecated items results = [] for name in get_all_dict(module)[0]: full_name = module.__name__ + '.' + name if full_name in DOCTEST_SKIPLIST: continue try: obj = getattr(module, name) except AttributeError: import traceback results.append((full_name, False, "Missing item!\n" + traceback.format_exc())) continue finder = doctest.DocTestFinder() try: tests = finder.find(obj, name, globs=dict(ns)) except Exception: import traceback results.append((full_name, False, "Failed to get doctests!\n" + traceback.format_exc())) continue success, output = _run_doctests(tests, full_name, verbose, doctest_warnings) if dots: output_dot('.' if success else 'F') results.append((full_name, success, output)) if HAVE_MATPLOTLIB: import matplotlib.pyplot as plt plt.close('all') return results def check_doctests_testfile(fname, verbose, ns=None, dots=True, doctest_warnings=False): """ Check code in a text file. Mimic `check_doctests` above, differing mostly in test discovery. (which is borrowed from stdlib's doctest.testfile here, https://github.com/python-git/python/blob/master/Lib/doctest.py) Parameters ---------- fname : str File name verbose : bool ns : dict Name space dots : bool doctest_warnings : bool Returns ------- list List of [(item_name, success_flag, output), ...] Notes ----- refguide can be signalled to skip testing code by adding ``#doctest: +SKIP`` to the end of the line. If the output varies or is random, add ``# may vary`` or ``# random`` to the comment. for example >>> plt.plot(...) # doctest: +SKIP >>> random.randint(0,10) 5 # random We also try to weed out pseudocode: * We maintain a list of exceptions which signal pseudocode, * We split the text file into "blocks" of code separated by empty lines and/or intervening text. * If a block contains a marker, the whole block is then assumed to be pseudocode. It is then not being doctested. The rationale is that typically, the text looks like this: blah <BLANKLINE> >>> from numpy import some_module # pseudocode! >>> func = some_module.some_function >>> func(42) # still pseudocode 146 <BLANKLINE> blah <BLANKLINE> >>> 2 + 3 # real code, doctest it 5 """ if ns is None: ns = CHECK_NAMESPACE results = [] _, short_name = os.path.split(fname) if short_name in DOCTEST_SKIPLIST: return results full_name = fname with open(fname, encoding='utf-8') as f: text = f.read() PSEUDOCODE = set(['some_function', 'some_module', 'import example', 'ctypes.CDLL', # likely need compiling, skip it 'integrate.nquad(func,' # ctypes integrate tutotial ]) # split the text into "blocks" and try to detect and omit pseudocode blocks. parser = doctest.DocTestParser() good_parts = [] base_line_no = 0 for part in text.split('\n\n'): try: tests = parser.get_doctest(part, ns, fname, fname, base_line_no) except ValueError as e: if e.args[0].startswith('line '): # fix line number since `parser.get_doctest` does not increment # the reported line number by base_line_no in the error message parts = e.args[0].split() parts[1] = str(int(parts[1]) + base_line_no) e.args = (' '.join(parts),) + e.args[1:] raise if any(word in ex.source for word in PSEUDOCODE for ex in tests.examples): # omit it pass else: # `part` looks like a good code, let's doctest it good_parts.append((part, base_line_no)) base_line_no += part.count('\n') + 2 # Reassemble the good bits and doctest them: tests = [] for good_text, line_no in good_parts: tests.append(parser.get_doctest(good_text, ns, fname, fname, line_no)) success, output = _run_doctests(tests, full_name, verbose, doctest_warnings) if dots: output_dot('.' if success else 'F') results.append((full_name, success, output)) if HAVE_MATPLOTLIB: import matplotlib.pyplot as plt plt.close('all') return results def iter_included_files(base_path, verbose=0, suffixes=('.rst',)): """ Generator function to walk `base_path` and its subdirectories, skipping files or directories in RST_SKIPLIST, and yield each file with a suffix in `suffixes` Parameters ---------- base_path : str Base path of the directory to be processed verbose : int suffixes : tuple Yields ------ path Path of the directory and its sub directories """ if os.path.exists(base_path) and os.path.isfile(base_path): yield base_path for dir_name, subdirs, files in os.walk(base_path, topdown=True): if dir_name in RST_SKIPLIST: if verbose > 0: sys.stderr.write('skipping files in %s' % dir_name) files = [] for p in RST_SKIPLIST: if p in subdirs: if verbose > 0: sys.stderr.write('skipping %s and subdirs' % p) subdirs.remove(p) for f in files: if (os.path.splitext(f)[1] in suffixes and f not in RST_SKIPLIST): yield os.path.join(dir_name, f) def check_documentation(base_path, results, args, dots): """ Check examples in any *.rst located inside `base_path`. Add the output to `results`. See Also -------- check_doctests_testfile """ for filename in iter_included_files(base_path, args.verbose): if dots: sys.stderr.write(filename + ' ') sys.stderr.flush() tut_results = check_doctests_testfile( filename, (args.verbose >= 2), dots=dots, doctest_warnings=args.doctest_warnings) # stub out a "module" which is needed when reporting the result def scratch(): pass scratch.__name__ = filename results.append((scratch, tut_results)) if dots: sys.stderr.write('\n') sys.stderr.flush() def init_matplotlib(): """ Check feasibility of matplotlib initialization. """ global HAVE_MATPLOTLIB try: import matplotlib matplotlib.use('Agg') HAVE_MATPLOTLIB = True except ImportError: HAVE_MATPLOTLIB = False def main(argv): """ Validates the docstrings of all the pre decided set of modules for errors and docstring standards. """ parser = ArgumentParser(usage=__doc__.lstrip()) parser.add_argument("module_names", metavar="SUBMODULES", default=[], nargs='*', help="Submodules to check (default: all public)") parser.add_argument("--doctests", action="store_true", help="Run also doctests on ") parser.add_argument("-v", "--verbose", action="count", default=0) parser.add_argument("--doctest-warnings", action="store_true", help="Enforce warning checking for doctests") parser.add_argument("--rst", nargs='?', const='doc', default=None, help=("Run also examples from *rst files " "discovered walking the directory(s) specified, " "defaults to 'doc'")) args = parser.parse_args(argv) modules = [] names_dict = {} if not args.module_names: args.module_names = list(PUBLIC_SUBMODULES) os.environ['SCIPY_PIL_IMAGE_VIEWER'] = 'true' module_names = list(args.module_names) for name in module_names: if name in OTHER_MODULE_DOCS: name = OTHER_MODULE_DOCS[name] if name not in module_names: module_names.append(name) dots = True success = True results = [] errormsgs = [] if args.doctests or args.rst: init_matplotlib() for submodule_name in module_names: module_name = BASE_MODULE + '.' + submodule_name __import__(module_name) module = sys.modules[module_name] if submodule_name not in OTHER_MODULE_DOCS: find_names(module, names_dict) if submodule_name in args.module_names: modules.append(module) if args.doctests or not args.rst: print("Running checks for %d modules:" % (len(modules),)) for module in modules: if dots: sys.stderr.write(module.__name__ + ' ') sys.stderr.flush() all_dict, deprecated, others = get_all_dict(module) names = names_dict.get(module.__name__, set()) mod_results = [] mod_results += check_items(all_dict, names, deprecated, others, module.__name__) mod_results += check_rest(module, set(names).difference(deprecated), dots=dots) if args.doctests: mod_results += check_doctests(module, (args.verbose >= 2), dots=dots, doctest_warnings=args.doctest_warnings) for v in mod_results: assert isinstance(v, tuple), v results.append((module, mod_results)) if dots: sys.stderr.write('\n') sys.stderr.flush() if args.rst: base_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), '..') rst_path = os.path.relpath(os.path.join(base_dir, args.rst)) if os.path.exists(rst_path): print('\nChecking files in %s:' % rst_path) check_documentation(rst_path, results, args, dots) else: sys.stderr.write(f'\ninvalid --rst argument "{args.rst}"') errormsgs.append('invalid directory argument to --rst') if dots: sys.stderr.write("\n") sys.stderr.flush() # Report results for module, mod_results in results: success = all(x[1] for x in mod_results) if not success: errormsgs.append(f'failed checking {module.__name__}') if success and args.verbose == 0: continue print("") print("=" * len(module.__name__)) print(module.__name__) print("=" * len(module.__name__)) print("") for name, success, output in mod_results: if name is None: if not success or args.verbose >= 1: print(output.strip()) print("") elif not success or (args.verbose >= 2 and output.strip()): print(name) print("-"*len(name)) print("") print(output.strip()) print("") if len(errormsgs) == 0: print("\nOK: all checks passed!") sys.exit(0) else: print('\nERROR: ', '\n '.join(errormsgs)) sys.exit(1) if __name__ == '__main__': main(argv=sys.argv[1:])
bsd-3-clause
mirestrepo/voxels-at-lems
bvpl/bvpl_octree/pca_test_vs_train.py
1
1887
# -*- coding: utf-8 -*- """ Created on Mon Mar 7 14:38:46 2011 Plot pca test error vs train error @author: - """ # Computes the gaussian gradients on a boxm_alpha_scene import os; import optparse; import time; import sys; import plot_pca_functions; import numpy as np import matplotlib.pyplot as plt import math if __name__=="__main__": #Parse inputs # parser = optparse.OptionParser(description='Compute PCA basis'); # # parser.add_option('--pca_dir', action="store", dest="pca_dir"); # options, args = parser.parse_args(); # # pca_dir = options.pca_dir; dirs=[]; dirs.append('/Users/isa/Experiments/PCA/site22/10'); #dirs.append('/Users/isa/Experiments/PCA/CapitolBOXM_6_4_4/10'); #dirs.append('/Users/isa/Experiments/PCA/DowntownBOXM_3_3_1/10'); labels=[]; #labels.append('Capitol Train'); #labels.append('Capitol Overall'); labels.append('Downtown Training Error'); labels.append('Downtown Overall Error'); dim=125; i= 0; fig = plt.figure(1); for pca_dir in dirs: print (pca_dir) if not os.path.isdir( pca_dir + '/'): sys.exit(-1); train_error_file = pca_dir + "/normalized_training_error.txt"; overall_error = plot_pca_functions.read_test_error(pca_dir, dim); train_error = plot_pca_functions.read_vector(train_error_file); print(train_error); print(overall_error); x = np.arange(0, len(train_error), 1); plt.plot(x, train_error, label=labels[i]); plt.hold(True); x = np.arange(0, len(train_error)+1, 5); plt.plot(x, overall_error, label=labels[i+1]); i=i+2; plt.title('Overall error vs training error ',fontsize= 14); plt.xlabel('Number of components used for reconstruction', fontsize= 14); a = plt.gca() a.set_xlim([0,125]) plt.ylabel('Average error per feature vector',fontsize= 14); plt.legend(); plt.show();
bsd-2-clause
tornadomeet/mxnet
python/mxnet/model.py
13
41314
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=fixme, invalid-name, too-many-arguments, too-many-locals, too-many-lines # pylint: disable=too-many-branches, too-many-statements """MXNet model module""" from __future__ import absolute_import, print_function import os import time import logging import warnings from collections import namedtuple import numpy as np from . import io from . import nd from . import symbol as sym from . import optimizer as opt from . import metric from . import kvstore as kvs from .context import Context, cpu from .initializer import Uniform from .optimizer import get_updater from .executor_manager import DataParallelExecutorManager, _check_arguments, _load_data from .io import DataDesc from .base import mx_real_t BASE_ESTIMATOR = object try: from sklearn.base import BaseEstimator BASE_ESTIMATOR = BaseEstimator except ImportError: SKLEARN_INSTALLED = False # Parameter to pass to batch_end_callback BatchEndParam = namedtuple('BatchEndParams', ['epoch', 'nbatch', 'eval_metric', 'locals']) def _create_kvstore(kvstore, num_device, arg_params): """Create kvstore This function select and create a proper kvstore if given the kvstore type. Parameters ---------- kvstore : KVStore or str The kvstore. num_device : int The number of devices arg_params : dict of str to `NDArray`. Model parameter, dict of name to `NDArray` of net's weights. """ update_on_kvstore = True if kvstore is None: kv = None elif isinstance(kvstore, kvs.KVStore): kv = kvstore elif isinstance(kvstore, str): # create kvstore using the string type if num_device is 1 and 'dist' not in kvstore: # no need to use kv for single device and single machine kv = None else: kv = kvs.create(kvstore) if kvstore == 'local': # automatically select a proper local max_size = max(np.prod(param.shape) for param in arg_params.values()) if max_size > 1024 * 1024 * 16: update_on_kvstore = False else: raise TypeError('kvstore must be KVStore, str or None') if kv is None: update_on_kvstore = False return (kv, update_on_kvstore) def _initialize_kvstore(kvstore, param_arrays, arg_params, param_names, update_on_kvstore): """Initialize kvstore""" for idx, param_on_devs in enumerate(param_arrays): name = param_names[idx] kvstore.init(name, arg_params[name]) if update_on_kvstore: kvstore.pull(name, param_on_devs, priority=-idx) def _update_params_on_kvstore_nccl(param_arrays, grad_arrays, kvstore, param_names): """Perform update of param_arrays from grad_arrays on NCCL kvstore.""" valid_indices = [index for index, grad_list in enumerate(grad_arrays) if grad_list[0] is not None] valid_grad_arrays = [grad_arrays[i] for i in valid_indices] valid_param_arrays = [param_arrays[i] for i in valid_indices] valid_param_names = [param_names[i] for i in valid_indices] size = len(valid_grad_arrays) start = 0 # Use aggregation by default only with NCCL default_batch = 16 batch = int(os.getenv('MXNET_UPDATE_AGGREGATION_SIZE', default_batch)) while start < size: end = start + batch if start + batch < size else size # push gradient, priority is negative index kvstore.push(valid_param_names[start:end], valid_grad_arrays[start:end], priority=-start) # pull back the weights kvstore.pull(valid_param_names[start:end], valid_param_arrays[start:end], priority=-start) start = end def _update_params_on_kvstore(param_arrays, grad_arrays, kvstore, param_names): """Perform update of param_arrays from grad_arrays on kvstore.""" for index, pair in enumerate(zip(param_arrays, grad_arrays)): arg_list, grad_list = pair if grad_list[0] is None: continue name = param_names[index] # push gradient, priority is negative index kvstore.push(name, grad_list, priority=-index) # pull back the weights kvstore.pull(name, arg_list, priority=-index) def _update_params(param_arrays, grad_arrays, updater, num_device, kvstore=None, param_names=None): """Perform update of param_arrays from grad_arrays not on kvstore.""" for i, pair in enumerate(zip(param_arrays, grad_arrays)): arg_list, grad_list = pair if grad_list[0] is None: continue index = i if kvstore: name = param_names[index] # push gradient, priority is negative index kvstore.push(name, grad_list, priority=-index) # pull back the sum gradients, to the same locations. kvstore.pull(name, grad_list, priority=-index) for k, p in enumerate(zip(arg_list, grad_list)): # faked an index here, to make optimizer create diff # state for the same index but on diff devs, TODO(mli) # use a better solution later w, g = p updater(index*num_device+k, g, w) def _multiple_callbacks(callbacks, *args, **kwargs): """Sends args and kwargs to any configured callbacks. This handles the cases where the 'callbacks' variable is ``None``, a single function, or a list. """ if isinstance(callbacks, list): for cb in callbacks: cb(*args, **kwargs) return if callbacks: callbacks(*args, **kwargs) def _train_multi_device(symbol, ctx, arg_names, param_names, aux_names, arg_params, aux_params, begin_epoch, end_epoch, epoch_size, optimizer, kvstore, update_on_kvstore, train_data, eval_data=None, eval_metric=None, epoch_end_callback=None, batch_end_callback=None, logger=None, work_load_list=None, monitor=None, eval_end_callback=None, eval_batch_end_callback=None, sym_gen=None): """Internal training function on multiple devices. This function will also work for single device as well. Parameters ---------- symbol : Symbol The network configuration. ctx : list of Context The training devices. arg_names: list of str Name of all arguments of the network. param_names: list of str Name of all trainable parameters of the network. aux_names: list of str Name of all auxiliary states of the network. arg_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's auxiliary states. begin_epoch : int The begining training epoch. end_epoch : int The end training epoch. epoch_size : int, optional Number of batches in a epoch. In default, it is set to ``ceil(num_train_examples / batch_size)``. optimizer : Optimizer The optimization algorithm train_data : DataIter Training data iterator. eval_data : DataIter Validation data iterator. eval_metric : EvalMetric An evaluation function or a list of evaluation functions. epoch_end_callback : callable(epoch, symbol, arg_params, aux_states) A callback that is invoked at end of each epoch. This can be used to checkpoint model each epoch. batch_end_callback : callable(BatchEndParams) A callback that is invoked at end of each batch. This can be used to measure speed, get result from evaluation metric. etc. kvstore : KVStore The KVStore. update_on_kvstore : bool Whether or not perform weight updating on kvstore. logger : logging logger When not specified, default logger will be used. work_load_list : list of float or int, optional The list of work load for different devices, in the same order as ``ctx``. monitor : Monitor, optional Monitor installed to executor, for monitoring outputs, weights, and gradients for debugging. Notes ----- - This function will inplace update the NDArrays in `arg_params` and `aux_states`. """ if logger is None: logger = logging executor_manager = DataParallelExecutorManager(symbol=symbol, sym_gen=sym_gen, ctx=ctx, train_data=train_data, param_names=param_names, arg_names=arg_names, aux_names=aux_names, work_load_list=work_load_list, logger=logger) if monitor: executor_manager.install_monitor(monitor) executor_manager.set_params(arg_params, aux_params) if not update_on_kvstore: updater = get_updater(optimizer) if kvstore: _initialize_kvstore(kvstore=kvstore, param_arrays=executor_manager.param_arrays, arg_params=arg_params, param_names=executor_manager.param_names, update_on_kvstore=update_on_kvstore) if update_on_kvstore: kvstore.set_optimizer(optimizer) # Now start training train_data.reset() for epoch in range(begin_epoch, end_epoch): # Training phase tic = time.time() eval_metric.reset() nbatch = 0 # Iterate over training data. while True: do_reset = True for data_batch in train_data: executor_manager.load_data_batch(data_batch) if monitor is not None: monitor.tic() executor_manager.forward(is_train=True) executor_manager.backward() if update_on_kvstore: if 'nccl' in kvstore.type: _update_params_on_kvstore_nccl(executor_manager.param_arrays, executor_manager.grad_arrays, kvstore, executor_manager.param_names) else: _update_params_on_kvstore(executor_manager.param_arrays, executor_manager.grad_arrays, kvstore, executor_manager.param_names) else: _update_params(executor_manager.param_arrays, executor_manager.grad_arrays, updater=updater, num_device=len(ctx), kvstore=kvstore, param_names=executor_manager.param_names) if monitor is not None: monitor.toc_print() # evaluate at end, so we can lazy copy executor_manager.update_metric(eval_metric, data_batch.label) nbatch += 1 # batch callback (for print purpose) if batch_end_callback is not None: batch_end_params = BatchEndParam(epoch=epoch, nbatch=nbatch, eval_metric=eval_metric, locals=locals()) _multiple_callbacks(batch_end_callback, batch_end_params) # this epoch is done possibly earlier if epoch_size is not None and nbatch >= epoch_size: do_reset = False break if do_reset: logger.info('Epoch[%d] Resetting Data Iterator', epoch) train_data.reset() # this epoch is done if epoch_size is None or nbatch >= epoch_size: break toc = time.time() logger.info('Epoch[%d] Time cost=%.3f', epoch, (toc - tic)) if epoch_end_callback or epoch + 1 == end_epoch: executor_manager.copy_to(arg_params, aux_params) _multiple_callbacks(epoch_end_callback, epoch, symbol, arg_params, aux_params) # evaluation if eval_data: eval_metric.reset() eval_data.reset() total_num_batch = 0 for i, eval_batch in enumerate(eval_data): executor_manager.load_data_batch(eval_batch) executor_manager.forward(is_train=False) executor_manager.update_metric(eval_metric, eval_batch.label) if eval_batch_end_callback is not None: batch_end_params = BatchEndParam(epoch=epoch, nbatch=i, eval_metric=eval_metric, locals=locals()) _multiple_callbacks(eval_batch_end_callback, batch_end_params) total_num_batch += 1 if eval_end_callback is not None: eval_end_params = BatchEndParam(epoch=epoch, nbatch=total_num_batch, eval_metric=eval_metric, locals=locals()) _multiple_callbacks(eval_end_callback, eval_end_params) eval_data.reset() # end of all epochs return def save_checkpoint(prefix, epoch, symbol, arg_params, aux_params): """Checkpoint the model data into file. Parameters ---------- prefix : str Prefix of model name. epoch : int The epoch number of the model. symbol : Symbol The input Symbol. arg_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's auxiliary states. Notes ----- - ``prefix-symbol.json`` will be saved for symbol. - ``prefix-epoch.params`` will be saved for parameters. """ if symbol is not None: symbol.save('%s-symbol.json' % prefix) save_dict = {('arg:%s' % k) : v.as_in_context(cpu()) for k, v in arg_params.items()} save_dict.update({('aux:%s' % k) : v.as_in_context(cpu()) for k, v in aux_params.items()}) param_name = '%s-%04d.params' % (prefix, epoch) nd.save(param_name, save_dict) logging.info('Saved checkpoint to \"%s\"', param_name) def load_checkpoint(prefix, epoch): """Load model checkpoint from file. Parameters ---------- prefix : str Prefix of model name. epoch : int Epoch number of model we would like to load. Returns ------- symbol : Symbol The symbol configuration of computation network. arg_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's auxiliary states. Notes ----- - Symbol will be loaded from ``prefix-symbol.json``. - Parameters will be loaded from ``prefix-epoch.params``. """ symbol = sym.load('%s-symbol.json' % prefix) save_dict = nd.load('%s-%04d.params' % (prefix, epoch)) arg_params = {} aux_params = {} for k, v in save_dict.items(): tp, name = k.split(':', 1) if tp == 'arg': arg_params[name] = v if tp == 'aux': aux_params[name] = v return (symbol, arg_params, aux_params) from .callback import LogValidationMetricsCallback # pylint: disable=wrong-import-position class FeedForward(BASE_ESTIMATOR): """Model class of MXNet for training and predicting feedforward nets. This class is designed for a single-data single output supervised network. Parameters ---------- symbol : Symbol The symbol configuration of computation network. ctx : Context or list of Context, optional The device context of training and prediction. To use multi GPU training, pass in a list of gpu contexts. num_epoch : int, optional Training parameter, number of training epochs(epochs). epoch_size : int, optional Number of batches in a epoch. In default, it is set to ``ceil(num_train_examples / batch_size)``. optimizer : str or Optimizer, optional Training parameter, name or optimizer object for training. initializer : initializer function, optional Training parameter, the initialization scheme used. numpy_batch_size : int, optional The batch size of training data. Only needed when input array is numpy. arg_params : dict of str to NDArray, optional Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray, optional Model parameter, dict of name to NDArray of net's auxiliary states. allow_extra_params : boolean, optional Whether allow extra parameters that are not needed by symbol to be passed by aux_params and ``arg_params``. If this is True, no error will be thrown when ``aux_params`` and ``arg_params`` contain more parameters than needed. begin_epoch : int, optional The begining training epoch. kwargs : dict The additional keyword arguments passed to optimizer. """ def __init__(self, symbol, ctx=None, num_epoch=None, epoch_size=None, optimizer='sgd', initializer=Uniform(0.01), numpy_batch_size=128, arg_params=None, aux_params=None, allow_extra_params=False, begin_epoch=0, **kwargs): warnings.warn( '\033[91mmxnet.model.FeedForward has been deprecated. ' + \ 'Please use mxnet.mod.Module instead.\033[0m', DeprecationWarning, stacklevel=2) if isinstance(symbol, sym.Symbol): self.symbol = symbol self.sym_gen = None else: assert(callable(symbol)) self.symbol = None self.sym_gen = symbol # model parameters self.arg_params = arg_params self.aux_params = aux_params self.allow_extra_params = allow_extra_params self.argument_checked = False if self.sym_gen is None: self._check_arguments() # basic configuration if ctx is None: ctx = [cpu()] elif isinstance(ctx, Context): ctx = [ctx] self.ctx = ctx # training parameters self.num_epoch = num_epoch self.epoch_size = epoch_size self.kwargs = kwargs.copy() self.optimizer = optimizer self.initializer = initializer self.numpy_batch_size = numpy_batch_size # internal helper state self._pred_exec = None self.begin_epoch = begin_epoch def _check_arguments(self): """verify the argument of the default symbol and user provided parameters""" if self.argument_checked: return assert(self.symbol is not None) self.argument_checked = True # check if symbol contain duplicated names. _check_arguments(self.symbol) # rematch parameters to delete useless ones if self.allow_extra_params: if self.arg_params: arg_names = set(self.symbol.list_arguments()) self.arg_params = {k : v for k, v in self.arg_params.items() if k in arg_names} if self.aux_params: aux_names = set(self.symbol.list_auxiliary_states()) self.aux_params = {k : v for k, v in self.aux_params.items() if k in aux_names} @staticmethod def _is_data_arg(name): """Check if name is a data argument.""" return name.endswith('data') or name.endswith('label') def _init_params(self, inputs, overwrite=False): """Initialize weight parameters and auxiliary states.""" inputs = [x if isinstance(x, DataDesc) else DataDesc(*x) for x in inputs] input_shapes = {item.name: item.shape for item in inputs} arg_shapes, _, aux_shapes = self.symbol.infer_shape(**input_shapes) assert arg_shapes is not None input_dtypes = {item.name: item.dtype for item in inputs} arg_dtypes, _, aux_dtypes = self.symbol.infer_type(**input_dtypes) assert arg_dtypes is not None arg_names = self.symbol.list_arguments() input_names = input_shapes.keys() param_names = [key for key in arg_names if key not in input_names] aux_names = self.symbol.list_auxiliary_states() param_name_attrs = [x for x in zip(arg_names, arg_shapes, arg_dtypes) if x[0] in param_names] arg_params = {k : nd.zeros(shape=s, dtype=t) for k, s, t in param_name_attrs} aux_name_attrs = [x for x in zip(aux_names, aux_shapes, aux_dtypes) if x[0] in aux_names] aux_params = {k : nd.zeros(shape=s, dtype=t) for k, s, t in aux_name_attrs} for k, v in arg_params.items(): if self.arg_params and k in self.arg_params and (not overwrite): arg_params[k][:] = self.arg_params[k][:] else: self.initializer(k, v) for k, v in aux_params.items(): if self.aux_params and k in self.aux_params and (not overwrite): aux_params[k][:] = self.aux_params[k][:] else: self.initializer(k, v) self.arg_params = arg_params self.aux_params = aux_params return (arg_names, list(param_names), aux_names) def __getstate__(self): this = self.__dict__.copy() this['_pred_exec'] = None return this def __setstate__(self, state): self.__dict__.update(state) def _init_predictor(self, input_shapes, type_dict=None): """Initialize the predictor module for running prediction.""" if self._pred_exec is not None: arg_shapes, _, _ = self.symbol.infer_shape(**dict(input_shapes)) assert arg_shapes is not None, "Incomplete input shapes" pred_shapes = [x.shape for x in self._pred_exec.arg_arrays] if arg_shapes == pred_shapes: return # for now only use the first device pred_exec = self.symbol.simple_bind( self.ctx[0], grad_req='null', type_dict=type_dict, **dict(input_shapes)) pred_exec.copy_params_from(self.arg_params, self.aux_params) _check_arguments(self.symbol) self._pred_exec = pred_exec def _init_iter(self, X, y, is_train): """Initialize the iterator given input.""" if isinstance(X, (np.ndarray, nd.NDArray)): if y is None: if is_train: raise ValueError('y must be specified when X is numpy.ndarray') else: y = np.zeros(X.shape[0]) if not isinstance(y, (np.ndarray, nd.NDArray)): raise TypeError('y must be ndarray when X is numpy.ndarray') if X.shape[0] != y.shape[0]: raise ValueError("The numbers of data points and labels not equal") if y.ndim == 2 and y.shape[1] == 1: y = y.flatten() if y.ndim != 1: raise ValueError("Label must be 1D or 2D (with 2nd dimension being 1)") if is_train: return io.NDArrayIter(X, y, min(X.shape[0], self.numpy_batch_size), shuffle=is_train, last_batch_handle='roll_over') else: return io.NDArrayIter(X, y, min(X.shape[0], self.numpy_batch_size), shuffle=False) if not isinstance(X, io.DataIter): raise TypeError('X must be DataIter, NDArray or numpy.ndarray') return X def _init_eval_iter(self, eval_data): """Initialize the iterator given eval_data.""" if eval_data is None: return eval_data if isinstance(eval_data, (tuple, list)) and len(eval_data) == 2: if eval_data[0] is not None: if eval_data[1] is None and isinstance(eval_data[0], io.DataIter): return eval_data[0] input_data = (np.array(eval_data[0]) if isinstance(eval_data[0], list) else eval_data[0]) input_label = (np.array(eval_data[1]) if isinstance(eval_data[1], list) else eval_data[1]) return self._init_iter(input_data, input_label, is_train=True) else: raise ValueError("Eval data is NONE") if not isinstance(eval_data, io.DataIter): raise TypeError('Eval data must be DataIter, or ' \ 'NDArray/numpy.ndarray/list pair (i.e. tuple/list of length 2)') return eval_data def predict(self, X, num_batch=None, return_data=False, reset=True): """Run the prediction, always only use one device. Parameters ---------- X : mxnet.DataIter num_batch : int or None The number of batch to run. Go though all batches if ``None``. Returns ------- y : numpy.ndarray or a list of numpy.ndarray if the network has multiple outputs. The predicted value of the output. """ X = self._init_iter(X, None, is_train=False) if reset: X.reset() data_shapes = X.provide_data data_names = [x[0] for x in data_shapes] type_dict = dict((key, value.dtype) for (key, value) in self.arg_params.items()) for x in X.provide_data: if isinstance(x, DataDesc): type_dict[x.name] = x.dtype else: type_dict[x[0]] = mx_real_t self._init_predictor(data_shapes, type_dict) batch_size = X.batch_size data_arrays = [self._pred_exec.arg_dict[name] for name in data_names] output_list = [[] for _ in range(len(self._pred_exec.outputs))] if return_data: data_list = [[] for _ in X.provide_data] label_list = [[] for _ in X.provide_label] i = 0 for batch in X: _load_data(batch, data_arrays) self._pred_exec.forward(is_train=False) padded = batch.pad real_size = batch_size - padded for o_list, o_nd in zip(output_list, self._pred_exec.outputs): o_list.append(o_nd[0:real_size].asnumpy()) if return_data: for j, x in enumerate(batch.data): data_list[j].append(x[0:real_size].asnumpy()) for j, x in enumerate(batch.label): label_list[j].append(x[0:real_size].asnumpy()) i += 1 if num_batch is not None and i == num_batch: break outputs = [np.concatenate(x) for x in output_list] if len(outputs) == 1: outputs = outputs[0] if return_data: data = [np.concatenate(x) for x in data_list] label = [np.concatenate(x) for x in label_list] if len(data) == 1: data = data[0] if len(label) == 1: label = label[0] return outputs, data, label else: return outputs def score(self, X, eval_metric='acc', num_batch=None, batch_end_callback=None, reset=True): """Run the model given an input and calculate the score as assessed by an evaluation metric. Parameters ---------- X : mxnet.DataIter eval_metric : metric.metric The metric for calculating score. num_batch : int or None The number of batches to run. Go though all batches if ``None``. Returns ------- s : float The final score. """ # setup metric if not isinstance(eval_metric, metric.EvalMetric): eval_metric = metric.create(eval_metric) X = self._init_iter(X, None, is_train=False) if reset: X.reset() data_shapes = X.provide_data data_names = [x[0] for x in data_shapes] type_dict = dict((key, value.dtype) for (key, value) in self.arg_params.items()) for x in X.provide_data: if isinstance(x, DataDesc): type_dict[x.name] = x.dtype else: type_dict[x[0]] = mx_real_t self._init_predictor(data_shapes, type_dict) data_arrays = [self._pred_exec.arg_dict[name] for name in data_names] for i, batch in enumerate(X): if num_batch is not None and i == num_batch: break _load_data(batch, data_arrays) self._pred_exec.forward(is_train=False) eval_metric.update(batch.label, self._pred_exec.outputs) if batch_end_callback is not None: batch_end_params = BatchEndParam(epoch=0, nbatch=i, eval_metric=eval_metric, locals=locals()) _multiple_callbacks(batch_end_callback, batch_end_params) return eval_metric.get()[1] def fit(self, X, y=None, eval_data=None, eval_metric='acc', epoch_end_callback=None, batch_end_callback=None, kvstore='local', logger=None, work_load_list=None, monitor=None, eval_end_callback=LogValidationMetricsCallback(), eval_batch_end_callback=None): """Fit the model. Parameters ---------- X : DataIter, or numpy.ndarray/NDArray Training data. If `X` is a `DataIter`, the name or (if name not available) the position of its outputs should match the corresponding variable names defined in the symbolic graph. y : numpy.ndarray/NDArray, optional Training set label. If X is ``numpy.ndarray`` or `NDArray`, `y` is required to be set. While y can be 1D or 2D (with 2nd dimension as 1), its first dimension must be the same as `X`, i.e. the number of data points and labels should be equal. eval_data : DataIter or numpy.ndarray/list/NDArray pair If eval_data is numpy.ndarray/list/NDArray pair, it should be ``(valid_data, valid_label)``. eval_metric : metric.EvalMetric or str or callable The evaluation metric. This could be the name of evaluation metric or a custom evaluation function that returns statistics based on a minibatch. epoch_end_callback : callable(epoch, symbol, arg_params, aux_states) A callback that is invoked at end of each epoch. This can be used to checkpoint model each epoch. batch_end_callback: callable(epoch) A callback that is invoked at end of each batch for purposes of printing. kvstore: KVStore or str, optional The KVStore or a string kvstore type: 'local', 'dist_sync', 'dist_async' In default uses 'local', often no need to change for single machiine. logger : logging logger, optional When not specified, default logger will be used. work_load_list : float or int, optional The list of work load for different devices, in the same order as `ctx`. Note ---- KVStore behavior - 'local', multi-devices on a single machine, will automatically choose best type. - 'dist_sync', multiple machines communicating via BSP. - 'dist_async', multiple machines with asynchronous communication. """ data = self._init_iter(X, y, is_train=True) eval_data = self._init_eval_iter(eval_data) if self.sym_gen: self.symbol = self.sym_gen(data.default_bucket_key) # pylint: disable=no-member self._check_arguments() self.kwargs["sym"] = self.symbol arg_names, param_names, aux_names = \ self._init_params(data.provide_data+data.provide_label) # setup metric if not isinstance(eval_metric, metric.EvalMetric): eval_metric = metric.create(eval_metric) # create kvstore (kvstore, update_on_kvstore) = _create_kvstore( kvstore, len(self.ctx), self.arg_params) param_idx2name = {} if update_on_kvstore: param_idx2name.update(enumerate(param_names)) else: for i, n in enumerate(param_names): for k in range(len(self.ctx)): param_idx2name[i*len(self.ctx)+k] = n self.kwargs["param_idx2name"] = param_idx2name # init optmizer if isinstance(self.optimizer, str): batch_size = data.batch_size if kvstore and 'dist' in kvstore.type and not '_async' in kvstore.type: batch_size *= kvstore.num_workers optimizer = opt.create(self.optimizer, rescale_grad=(1.0/batch_size), **(self.kwargs)) elif isinstance(self.optimizer, opt.Optimizer): optimizer = self.optimizer # do training _train_multi_device(self.symbol, self.ctx, arg_names, param_names, aux_names, self.arg_params, self.aux_params, begin_epoch=self.begin_epoch, end_epoch=self.num_epoch, epoch_size=self.epoch_size, optimizer=optimizer, train_data=data, eval_data=eval_data, eval_metric=eval_metric, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=kvstore, update_on_kvstore=update_on_kvstore, logger=logger, work_load_list=work_load_list, monitor=monitor, eval_end_callback=eval_end_callback, eval_batch_end_callback=eval_batch_end_callback, sym_gen=self.sym_gen) def save(self, prefix, epoch=None): """Checkpoint the model checkpoint into file. You can also use `pickle` to do the job if you only work on Python. The advantage of `load` and `save` (as compared to `pickle`) is that the resulting file can be loaded from other MXNet language bindings. One can also directly `load`/`save` from/to cloud storage(S3, HDFS) Parameters ---------- prefix : str Prefix of model name. Notes ----- - ``prefix-symbol.json`` will be saved for symbol. - ``prefix-epoch.params`` will be saved for parameters. """ if epoch is None: epoch = self.num_epoch assert epoch is not None save_checkpoint(prefix, epoch, self.symbol, self.arg_params, self.aux_params) @staticmethod def load(prefix, epoch, ctx=None, **kwargs): """Load model checkpoint from file. Parameters ---------- prefix : str Prefix of model name. epoch : int epoch number of model we would like to load. ctx : Context or list of Context, optional The device context of training and prediction. kwargs : dict Other parameters for model, including `num_epoch`, optimizer and `numpy_batch_size`. Returns ------- model : FeedForward The loaded model that can be used for prediction. Notes ----- - ``prefix-symbol.json`` will be saved for symbol. - ``prefix-epoch.params`` will be saved for parameters. """ symbol, arg_params, aux_params = load_checkpoint(prefix, epoch) return FeedForward(symbol, ctx=ctx, arg_params=arg_params, aux_params=aux_params, begin_epoch=epoch, **kwargs) @staticmethod def create(symbol, X, y=None, ctx=None, num_epoch=None, epoch_size=None, optimizer='sgd', initializer=Uniform(0.01), eval_data=None, eval_metric='acc', epoch_end_callback=None, batch_end_callback=None, kvstore='local', logger=None, work_load_list=None, eval_end_callback=LogValidationMetricsCallback(), eval_batch_end_callback=None, **kwargs): """Functional style to create a model. This function is more consistent with functional languages such as R, where mutation is not allowed. Parameters ---------- symbol : Symbol The symbol configuration of a computation network. X : DataIter Training data. y : numpy.ndarray, optional If `X` is a ``numpy.ndarray``, `y` must be set. ctx : Context or list of Context, optional The device context of training and prediction. To use multi-GPU training, pass in a list of GPU contexts. num_epoch : int, optional The number of training epochs(epochs). epoch_size : int, optional Number of batches in a epoch. In default, it is set to ``ceil(num_train_examples / batch_size)``. optimizer : str or Optimizer, optional The name of the chosen optimizer, or an optimizer object, used for training. initializer : initializer function, optional The initialization scheme used. eval_data : DataIter or numpy.ndarray pair If `eval_set` is ``numpy.ndarray`` pair, it should be (`valid_data`, `valid_label`). eval_metric : metric.EvalMetric or str or callable The evaluation metric. Can be the name of an evaluation metric or a custom evaluation function that returns statistics based on a minibatch. epoch_end_callback : callable(epoch, symbol, arg_params, aux_states) A callback that is invoked at end of each epoch. This can be used to checkpoint model each epoch. batch_end_callback: callable(epoch) A callback that is invoked at end of each batch for print purposes. kvstore: KVStore or str, optional The KVStore or a string kvstore type: 'local', 'dist_sync', 'dis_async'. Defaults to 'local', often no need to change for single machine. logger : logging logger, optional When not specified, default logger will be used. work_load_list : list of float or int, optional The list of work load for different devices, in the same order as `ctx`. """ model = FeedForward(symbol, ctx=ctx, num_epoch=num_epoch, epoch_size=epoch_size, optimizer=optimizer, initializer=initializer, **kwargs) model.fit(X, y, eval_data=eval_data, eval_metric=eval_metric, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=kvstore, logger=logger, work_load_list=work_load_list, eval_end_callback=eval_end_callback, eval_batch_end_callback=eval_batch_end_callback) return model
apache-2.0
michaelpacer/pyhawkes
experiments/discrete_continuous_comparison.py
2
5308
import time import numpy as np np.random.seed(1111) np.seterr(over="raise") import cPickle, os from hips.plotting.layout import create_figure import matplotlib.pyplot as plt import brewer2mpl colors = brewer2mpl.get_map("Set1", "Qualitative", 9).mpl_colors # goodcolors = np.array([0,1,2,4,6,7,8]) # colors = np.array(colors)[goodcolors] from pybasicbayes.util.general import ibincount from pybasicbayes.util.text import progprint_xrange import pyhawkes.models reload(pyhawkes.models) # Set globals K = 10 B = 3 dt = 1 dt_max = 10. T = 100. network_hypers = {'C': 1, 'kappa': 1., 'c': np.zeros(K, dtype=np.int), 'p': 1*np.ones((1,1)), 'v': 10.} def generate_dataset(bias=1.): # Create the model with these parameters network_hypers = {'C': 1, 'kappa': 1., 'c': np.zeros(K, dtype=np.int), 'p': 1*np.ones((1,1)), 'v': 100.} bkgd_hypers = {"alpha": 3., "beta": 3./bias} dt_model = pyhawkes.models.\ DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K, dt=dt, dt_max=dt_max, B=B, bkgd_hypers=bkgd_hypers, network_hypers=network_hypers) # dt_model.bias_model.lambda0 = bias * np.ones(K) assert dt_model.check_stability() S_dt,_ = dt_model.generate(T=int(np.ceil(T/dt)), keep=False) print "sampled dataset with ", S_dt.sum(), "events" # Convert S_dt to continuous time S_ct = dt * np.concatenate([ibincount(S) for S in S_dt.T]).astype(float) S_ct += dt * np.random.rand(*S_ct.shape) assert np.all(S_ct < T) C_ct = np.concatenate([k*np.ones(S.sum()) for k,S in enumerate(S_dt.T)]).astype(int) # Sort the data perm = np.argsort(S_ct) S_ct = S_ct[perm] C_ct = C_ct[perm] return S_dt, S_ct, C_ct def fit_discrete_time_model_gibbs(S_dt, N_samples=100): # Now fit a DT model dt_model_test = pyhawkes.models.\ DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K, dt=dt, dt_max=dt_max, B=B, network_hypers=network_hypers) dt_model_test.add_data(S_dt) tic = time.time() for iter in progprint_xrange(N_samples, perline=25): dt_model_test.resample_model() toc = time.time() return (toc-tic) / N_samples def fit_continuous_time_model_gibbs(S_ct, C_ct, N_samples=100): # Now fit a DT model ct_model = pyhawkes.models.\ ContinuousTimeNetworkHawkesModel(K, dt_max=dt_max, network_hypers=network_hypers) ct_model.add_data(S_ct, C_ct, T) tic = time.time() for iter in progprint_xrange(N_samples, perline=25): ct_model.resample_model() toc = time.time() return (toc-tic) / N_samples # def run_time_vs_bias(): if __name__ == "__main__": # run_time_vs_bias() # biases = np.logspace(-1,1, num=10) res_file = os.path.join("results", "run_time_vs_rate_2.pkl") if os.path.exists(res_file): print "Loading results from ", res_file with open(res_file, "r") as f: events_per_bin, dt_times, ct_times = cPickle.load(f) else: biases = np.linspace(10**-1,3**1, num=5) N_runs_per_bias = 5 N_samples = 100 events_per_bin = [] dt_times = [] ct_times = [] for bias in biases: for iter in xrange(N_runs_per_bias): print "Bias ", bias, " Run (%d/%d)" % (iter, N_runs_per_bias) S_dt, S_ct, C_ct = generate_dataset(bias) events_per_bin.append(S_dt.sum() / float(S_dt.size)) dt_times.append(fit_discrete_time_model_gibbs(S_dt, N_samples)) ct_times.append(fit_continuous_time_model_gibbs(S_ct, C_ct, N_samples)) with open(res_file, "w") as f: cPickle.dump((events_per_bin, dt_times, ct_times), f, protocol=-1) events_per_bin = np.array(events_per_bin) dt_times = np.array(dt_times) ct_times = np.array(ct_times) perm = np.argsort(events_per_bin) events_per_bin = events_per_bin[perm] dt_times = dt_times[perm] ct_times = ct_times[perm] # Plot the results fig = create_figure(figsize=(2.5,2.5)) fig.set_tight_layout(True) ax = fig.add_subplot(111) # Plot DT data ax.plot(events_per_bin, dt_times, 'o', linestyle="none", markerfacecolor=colors[2], markeredgecolor=colors[2], markersize=4, label="Discrete") # Plot linear fit p_dt = np.poly1d(np.polyfit(events_per_bin, dt_times, deg=1)) dt_pred = p_dt(events_per_bin) ax.plot(events_per_bin, dt_pred, ':', lw=2, color=colors[2]) # Plot CT data ax.plot(events_per_bin, ct_times, 's', linestyle="none", markerfacecolor=colors[7], markeredgecolor=colors[7], markersize=4, label="Continuous") # Plot quadratic fit p_ct = np.poly1d(np.polyfit(events_per_bin, ct_times, deg=2)) ct_pred = p_ct(sorted(events_per_bin)) ax.plot(events_per_bin, ct_pred, ':', lw=2, color=colors[7]) plt.xlabel("Events per bin") # plt.xlim(0, events_per_bin.max()) plt.xlim(0, 6) plt.ylabel("time per iter [sec]") plt.ylim(0, 0.15) plt.legend(loc="upper left", prop={"size": 8}) fig.savefig(os.path.join("results", "discrete_cont_comparison.pdf")) plt.show()
mit
vlarson/class-scripts
arm_analysis/arm_utilities.py
1
6034
# -*- coding: utf-8 -*- """ Analyze ARM observations. """ def plotSfcRad(beflux_file, min_sdn): """Plot surface radiative fields.""" # Point to directory containing ARM observations #data_dir = '/home/studi/Larson/arm_data_files/' #beflux_file = data_dir + 'sgpbeflux1longC1.c1.20131204.000000.custom.cdf' #beflux_file = data_dir + 'sgpbeflux1longC1.c1.20131205.000000.custom.cdf' #beflux_file = data_dir + 'sgpbeflux1longC1.c1.20131206.000000.custom.cdf' #beflux_file = data_dir + 'sgpbeflux1longC1.c1.20131207.000000.custom.cdf' #beflux_file = data_dir + 'sgpbeflux1longC1.c1.20131208.000000.custom.cdf' # SDN showed a few clouds on 20131215: #beflux_file = data_dir + 'sgpbeflux1longC1.c1.20131215.000000.custom.cdf' # 20131217 had essentially clear skies #beflux_file = data_dir + 'sgpbeflux1longC1.c1.20131217.000000.custom.cdf' #beflux_file = data_dir + 'sgpbeflux1longC1.c1.20131218.000000.custom.cdf' # Import libraries from numpy import fmax import matplotlib.pyplot as plt from scipy.io import netcdf import pdb beflux_nc = netcdf.netcdf_file(beflux_file, 'r') time_offset_beflux = beflux_nc.variables['time_offset'] short_direct_normal = beflux_nc.variables['short_direct_normal'] # Replace small values with threshold, for plotting time series sdn_floored = fmax(min_sdn,short_direct_normal[:]) # Remove small values from time series, thereby shortening vector length sdn_truncated = [x for x in short_direct_normal if x > min_sdn] #pdb.set_trace() # Plot time series of shortwave direct normal flux plt.clf() plt.subplot(211) plt.plot(time_offset_beflux[:],sdn_floored[:]) plt.xlabel('Time') plt.ylabel('Shortwave direct normal flux') #pdb.set_trace() # Plot histogram of shortwave direct normal flux plt.subplot(212) n, bins, patches = plt.hist(sdn_truncated[:], 50, normed=1, histtype='stepfilled') plt.setp(patches, 'facecolor', 'g', 'alpha', 0.75) plt.xlabel('Shortwave direct normal flux') plt.ylabel('Probability') plt.figure() plt.show() return def findTruncNormalRoots(truncMean,truncVarnce,muInit,sigmaInit,min_refl): """Returns parameters mu and sigma of a truncated normal distribution. Inputs: truncMean = mean of truncated part of full (untruncated) normal truncVarnce = variance of truncated part of full normal muInit = first guess value of mu, the mean of the full normal sigmaInit = first guess value of sigma, the standard deviation of the full normal min_refl = minimum (left) threshold value at which normal is truncated """ from scipy.optimize import root sol = root(findTruncMeanVarnceFncResid, [muInit, sigmaInit], args=(truncMean,truncVarnce,min_refl), jac=False, method='hybr') mu = sol.x[0] sigma = sol.x[1] return (mu, sigma) def findTruncMeanVarnceFncResid(x,truncMean,truncVarnce,min_refl): """Evaluates the residual of the function that we want to zero in order to solve for the parameters of a truncated normal distribution. Inputs: x[0] = mean of untruncated (full) normal x[1] = standard deviation of untruncated normal truncMean = mean of truncated part of full normal truncVarnce = variance of truncated part of full normal min_refl = minimum (left) threshold value at which normal is truncated Output: Residual of the function to be zeroed """ mu = x[0] sigma = x[1] alpha = (min_refl-mu)/sigma lambdaAlpha = lambdaFnc(alpha) truncMeanResid = mu + sigma * lambdaAlpha - truncMean truncVarnceResid = sigma**2 * ( 1.0 - deltaFnc(alpha,lambdaAlpha) ) - truncVarnce return (truncMeanResid, truncVarnceResid) def lambdaFnc(alpha): """A utility function used to relate moments and parameters of a truncated normal.""" from scipy.stats import norm from numpy import finfo, amax return norm.pdf(alpha) / amax([ 1.0 - norm.cdf(alpha) , finfo(float).eps ]) def deltaFnc(alpha,lambdaAlpha): """A utility function used to relate variance and sigma parameter of a truncated normal.""" return lambdaAlpha * ( lambdaAlpha - alpha ) def findKSDn(cdf1, cdf2): """Computes the Kolmogorov-Smirnov statistic, Dn. Used to determine if two distributions are different. Inputs: cdf1 = first cumulative distribution function cdf2 = second cumulative distribution function Output: Dn = KS statistic""" from numpy import abs, amax Dn = amax( abs( cdf1 - cdf2 ) ) return Dn def calcMeanAlbedo(reflCloudBlockFilled, meanReflCloudBlock, meanLWP): """Calculate mean albedo of cloud layer, which depends on vertical overlap. Inputs: reflCloudBlockFilled = Block of cloud reflectivity values - minimum reflectivity. Out-of-cloud values are filled with 0. Each column is an altitude level. Each row is a vertical profile at a different time. meanReflCloudBlock = within-cloud mean of reflCloudBlock meanLWP = within-cloud mean of LWP Output: meanAlbedo = average reflectivity of cloud layer""" from numpy import std, sqrt, mean, sum import pdb # Sum reflectivity in vertical sumReflCloudBlockFilled = sum(reflCloudBlockFilled,axis=1) # LWP = Liquid water path. Assume it is linearly proportional to refl. LWP = meanLWP * sumReflCloudBlockFilled / meanReflCloudBlock # tau = optical depth # According to Brenguier et al. (2011), tau ~= 0.15 LWP, # where LWP is in g/m**2. # According to Hartmann et al. (1992), tau ~= 9 for medium clouds tau = 0.15 * LWP # albedo = cloud reflectivity, 0 <= albedo <= 1 albedo = tau / (9.0 + tau) meanAlbedo = mean(albedo) #pdb.set_trace() return (meanAlbedo, LWP)
gpl-2.0
arjoly/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_01_language_train_model.py
254
2005
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf # TASK: Fit the pipeline on the training set # TASK: Predict the outcome on the testing set in a variable named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
macks22/scikit-learn
sklearn/ensemble/__init__.py
217
1307
""" The :mod:`sklearn.ensemble` module includes ensemble-based methods for classification and regression. """ from .base import BaseEnsemble from .forest import RandomForestClassifier from .forest import RandomForestRegressor from .forest import RandomTreesEmbedding from .forest import ExtraTreesClassifier from .forest import ExtraTreesRegressor from .bagging import BaggingClassifier from .bagging import BaggingRegressor from .weight_boosting import AdaBoostClassifier from .weight_boosting import AdaBoostRegressor from .gradient_boosting import GradientBoostingClassifier from .gradient_boosting import GradientBoostingRegressor from .voting_classifier import VotingClassifier from . import bagging from . import forest from . import weight_boosting from . import gradient_boosting from . import partial_dependence __all__ = ["BaseEnsemble", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "ExtraTreesClassifier", "ExtraTreesRegressor", "BaggingClassifier", "BaggingRegressor", "GradientBoostingClassifier", "GradientBoostingRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "VotingClassifier", "bagging", "forest", "gradient_boosting", "partial_dependence", "weight_boosting"]
bsd-3-clause
vladpopovici/WSItk
WSItk/descriptors/txtgrey.py
2
28559
""" DESCRIPTORS.TXTGREY: textural descriptors from grey-scale images. @author: vlad """ from __future__ import (absolute_import, division, print_function, unicode_literals) __version__ = 0.05 __author__ = 'Vlad Popovici' __all__ = ['GaborDescriptor', 'LBPDescriptor', 'GLCMDescriptor', 'HOGDescriptor', 'HistDescriptor', 'HaarLikeDescriptor', 'MFSDescriptor', 'StatsDescriptor'] # from abc import ABCMeta, abstractmethod import numpy as np from numpy import dot from scipy.stats.mstats import kurtosis, skew from matplotlib.cbook import flatten from future.utils import bytes_to_native_str as nstr from scipy import ndimage as nd from scipy.linalg import norm from scipy.stats import entropy from scipy.signal import convolve2d from skimage.filters import gabor_kernel from skimage.util import img_as_float from skimage.feature.texture import greycoprops, greycomatrix, \ local_binary_pattern from skimage.exposure import rescale_intensity from skimage.feature import hog # from skimage.transform import integral_image from .basic import * class GaborDescriptor(LocalDescriptor): """ Computes Gabor descriptors from an image. These descriptors are the means and variances of the filter responses obtained by convolving an image with a bank of Gabor filters. """ name = nstr(b'gabor') def __init__(self, theta=np.array([0.0, np.pi / 4.0, np.pi / 2.0, 3.0 * np.pi / 4.0], dtype=np.double), freq=np.array([3.0 / 4.0, 3.0 / 8.0, 3.0 / 16.0], dtype=np.double), sigma=np.array([1.0, 2 * np.sqrt(2.0)], dtype=np.double), normalized=True): """ Initialize the Gabor kernels (only real part). Args: theta: numpy.ndarray (vector) Contains the orientations of the filter; defaults to [0, pi/4, pi/2, 3*pi/4]. freq: numpy.ndarray (vector) The frequencies of the Gabor filter; defaults to [3/4, 3/8, 3/16]. sigma: numpy.ndarray (vector) The sigma parameter for the Gaussian smoothing filter; defaults to [1, 2*sqrt(2)]. normalized: bool If true, the kernels are normalized """ self.kernels_ = [np.real(gabor_kernel(frequency=f, theta=t, sigma_x=s, sigma_y=s)) for f in freq for s in sigma for t in theta] if normalized: for k, krn in enumerate(self.kernels_): self.kernels_[k] = krn / np.sqrt((krn ** 2).sum()) return def compute(self, image): """ Compute the Gabor descriptors on the given image. Args: image: numpy.ndarray (.ndim=2) Grey scale image. Returns: numpy.ndarray (vector) containing the Gabor descriptors (means followed by the variances of the filter responses) """ try: image = img_as_float(image) nk = len(self.kernels_) ft = np.zeros(2 * nk, dtype=np.double) for k, krn in enumerate(self.kernels_): flt = nd.convolve(image, krn, mode='wrap') ft[k] = flt.mean() ft[k + nk] = flt.var() except: print("Error in GaborDescriptor.compute()") return ft @staticmethod def dist(ft1, ft2, method='euclidean'): """ Compute the distance between two sets of Gabor features. Possible distance types are: -euclidean -cosine distance: this is not a proper distance! """ dm = {'euclidean': lambda x_, y_: norm(x_ - y_), 'cosine': lambda x_, y_: dot(x_, y_) / (norm(x_) * norm(y_)) } method = method.lower() if method not in dm: raise ValueError('Unknown method') return dm[method](ft1, ft2) ## end class GaborDescriptors class GLCMDescriptor(LocalDescriptor): """ Grey Level Co-occurrence Matrix: the image is decomposed into a number of non-overlapping regions, and the GLCM features are computed on each of these regions. """ name = nstr(b'glcm') def __init__(self, wsize, dist=0.0, theta=0.0, levels=256, which=None, symmetric=True, normed=True): """ Initialize GLCM. Args: wsize: uint window size: the image is decomposed into small non-overlapping regions of size <wsize x wsize> from which the GLCMs are computed. If the last region in a row or the last row in an image are smaller than the required size, then they are not used in computing the features. dist: uint pair distance theta: float pair angle levels: uint number of grey levels which: string which features to be computed from the GLCM. See the help for skimage.feature.texture.greycoprops for details symmetric: bool consider symmetric pairs? normed: bool normalize the co-occurrence matrix, before computing the features? """ self.wsize_ = wsize self.dist_ = dist self.theta_ = theta self.levels_ = levels if which is None: which = ['dissimilarity', 'correlation'] self.which_feats_ = [w.lower() for w in which] self.symmetric_ = symmetric self.normed_ = normed return def compute(self, image): """ Compute the GLCM features. """ assert (image.ndim == 2) w, h = image.shape nw = int(w / self.wsize_) nh = int(h / self.wsize_) nf = len(self.which_feats_) ft = np.zeros((nf, nw * nh)) # features will be on rows k = 0 for x in np.arange(0, nw): for y in np.arange(0, nh): x0, y0 = x * self.wsize_, y * self.wsize_ x1, y1 = x0 + self.wsize_, y0 + self.wsize_ glcm = greycomatrix(image[y0:y1, x0:x1], self.dist_, self.theta_, self.levels_, self.symmetric_, self.normed_) ft[:, k] = np.array([greycoprops(glcm, f)[0, 0] for f in self.which_feats_]) k += 1 res = {} k = 0 for f in self.which_feats_: res[f] = ft[k, :] k += 1 return res @staticmethod def dist(ft1, ft2, method='bh'): """ Computes the distance between two sets of GLCM features. The features are assumed to have been computed using the same parameters. The distance is based on comparing the distributions of these features. Args: ft1, ft2: dict each dictionary contains for each feature a vector of values computed from the images method: string the method used for computing the distance between the histograms of features: 'kl' - Kullback-Leibler divergence (symmetrized by 0.5*(KL(p,q)+KL(q,p)) 'js' - Jensen-Shannon divergence: 0.5*(KL(p,m)+KL(q,m)) where m=(p+q)/2 'bh' - Bhattacharyya distance: -log(sqrt(sum_i (p_i*q_i))) 'ma' - Matusita distance: sqrt(sum_i (sqrt(p_i)-sqrt(q_i))**2) Returns: dict a dictionary with distances computed between pairs of features """ # distance methods dm = {'kl': lambda x_, y_: 0.5 * (entropy(x_, y_) + entropy(y_, x_)), 'js': lambda x_, y_: 0.5 * (entropy(x_, 0.5 * (x_ + y_)) + entropy(y_, 0.5 * (x_ + y_))), 'bh': lambda x_, y_: -np.log(np.sum(np.sqrt(x_ * y_))), 'ma': lambda x_, y_: np.sqrt(np.sum((np.sqrt(x_) - np.sqrt(y_)) ** 2)) } method = method.lower() if method not in dm.keys(): raise ValueError('Unknown method') res = {} for k in ft1.keys(): if k in ft2.keys(): # build the histograms: mn = min(ft1[k].min(), ft2[k].min()) mx = max(ft1[k].max(), ft2[k].max()) h1, _ = np.histogram(ft1[k], normed=True, bins=10, range=(mn, mx)) h2, _ = np.histogram(ft2[k], normed=True, bins=10, range=(mn, mx)) res[k] = dm[method](h1, h2) return res # end class GLCMDescriptors class LBPDescriptor(LocalDescriptor): """ Local Binary Pattern for texture description. A LBP descriptor set is a histogram of LBPs computed from the image. """ name = nstr(b'lbp') def __init__(self, radius=3, npoints=None, method='uniform'): """ Initialize a LBP descriptor set. See skimage.feature.texture.local_binary_pattern for details on the meaning of parameters. Args: radius: int defaults to 3 npoints: int defaults to None. If None, npoints is set to 8*radius method: string defaults to 'uniform'. Could be 'uniform', 'ror', 'var', 'nri_uniform' """ self.radius_ = radius self.npoints_ = radius * 8 if npoints is None else npoints self.method_ = method.lower() self.nhbins_ = self.npoints_ + 2 return def compute(self, image): """ Compute the LBP features. These features are returned as histograms of LBPs. """ try: lbp = local_binary_pattern(image, self.npoints_, self.radius_, self.method_) hist, _ = np.histogram(lbp, normed=True, bins=self.nhbins_, range=(0, self.nhbins_)) except: print("Error in LBPDescriptor.compute()") return hist @staticmethod def dist(ft1, ft2, method='bh'): """ Computes the distance between two sets of LBP features. The features are assumed to have been computed using the same parameters. The features are represented as histograms of LBPs. Args: ft1, ft2: numpy.ndarray (vector) histograms of LBPs as returned by compute() method: string the method used for computing the distance between the two sets of features: 'kl' - Kullback-Leibler divergence (symmetrized by 0.5*(KL(p,q)+KL(q,p)) 'js' - Jensen-Shannon divergence: 0.5*(KL(p,m)+KL(q,m)) where m=(p+q)/2 'bh' - Bhattacharyya distance: -log(sqrt(sum_i (p_i*q_i))) 'ma' - Matusita distance: sqrt(sum_i (sqrt(p_i)-sqrt(q_i))**2) """ # distance methods dm = {'kl': lambda x_, y_: 0.5 * (entropy(x_, y_) + entropy(y_, x_)), 'js': lambda x_, y_: 0.5 * (entropy(x_, 0.5 * (x_ + y_)) + entropy(y_, 0.5 * (x_ + y_))), 'bh': lambda x_, y_: -np.log(np.sum(np.sqrt(x_ * y_))), 'ma': lambda x_, y_: np.sqrt(np.sum((np.sqrt(x_) - np.sqrt(y_)) ** 2)) } method = method.lower() if method not in dm.keys(): raise ValueError('Unknown method') return dm[method](ft1, ft2) # end class LBPDescriptors # MFSDescriptors - Multi-Fractal Dimensions class MFSDescriptor(LocalDescriptor): """ Multi-Fractal Dimensions for texture description. Adapted from IMFRACTAL project at https://github.com/rbaravalle/imfractal """ name = nstr(b'fract') def __init__(self, _nlevels_avg=1, _wsize=15, _niter=1): """ Initialize an MFDDescriptors object. Arguments: _nlevels_avg: number of levels to be averaged in density computation (uint) =1: no averaging _wsize: size of the window for computing descriptors (uint) _niter: number of iterations """ self.nlevels_avg = _nlevels_avg self.wsize = _wsize self.niter = _niter return def compute(self, im): """ Computes MFS over the given image. Arguments: im: image (grey-scale) (numpy.ndarray) Returns: a vector of descriptors (numpy.array) """ ## TODO: this needs much polishing to get it run faster! assert (im.ndim == 2) # Using [0..255] to denote the intensity profile of the image grayscale_box = [0, 255] # Preprocessing: default intensity value of image ranges from 0 to 255 if abs(im).max() < 1: im = rescale_intensity(im, out_range=(0, 255)) ####################### ### Estimating density function of the image ### by solving least squares for D in the equation ### log10(bw) = D*log10(c) + b r = 1.0 / max(im.shape) c = np.log10(r * np.arange(start=1, stop=self.nlevels_avg + 1)) bw = np.zeros((self.nlevels_avg, im.shape[0], im.shape[1]), dtype=np.float32) bw[0, :, :] = im + 1 def _gauss_krn(size): """ Returns a normalized 2D gauss kernel array for convolutions """ if size <= 3: sigma = 1.5 else: sigma = size / 2.0 y, x = np.mgrid[-(size - 1.0) / 2.0:(size - 1.0) / 2.0 + 1, -(size - 1.0) / 2.0:(size - 1.0) / 2.0 + 1] s2 = 2.0 * sigma ** 2 g = np.exp(-(x ** 2 + y ** 2) / s2) return g / g.sum() k = 1 if self.nlevels_avg > 1: bw[1, :, :] = convolve2d(bw[0, :, :], _gauss_krn(k + 1), mode="full")[1:, 1:] * ((k + 1) ** 2) for k in np.arange(2, self.nlevels_avg): temp = convolve2d(bw[0, :, :], _gauss_krn(k + 1), mode="full") * ((k + 1) ** 2) if k == 4: bw[k] = temp[k - 1 - 1:temp.shape[0] - (k / 2), k - 1 - 1:temp.shape[1] - (k / 2)] else: bw[k] = temp[k - 1:temp.shape[0] - (1), k - 1:temp.shape[1] - (1)] bw = np.log10(bw) n1 = np.sum(c ** 2) n2 = bw[0] * c[0] for k in np.arange(1, self.nlevels_avg): n2 += bw[k] * c[k] sum3 = np.sum(bw, axis=0) if self.nlevels_avg > 1: D = (n2 * self.nlevels_avg - c.sum() * sum3) / (n1 * self.nlevels_avg - c.sum() ** 2) min_D, max_D = 1.0, 4.0 D = grayscale_box[1] * (D - min_D) / (max_D - min_D) + grayscale_box[0] else: D = im D = D[self.nlevels_avg - 1:D.shape[0] - self.nlevels_avg + 1, self.nlevels_avg - 1:D.shape[1] - self.nlevels_avg + 1] IM = np.zeros(D.shape) gap = np.ceil((grayscale_box[1] - grayscale_box[0]) / np.float32(self.wsize)) center = np.zeros(self.wsize) for k in np.arange(1, self.wsize + 1): bin_min = (k - 1) * gap bin_max = k * gap - 1 center[k - 1] = round((bin_min + bin_max) / 2.0) D = ((D <= bin_max) & (D >= bin_min)).choose(D, center[k - 1]) D = ((D >= bin_max)).choose(D, 0) D = ((D < 0)).choose(D, 0) IM = D # Constructing the filter for approximating log fitting r = max(IM.shape) c = np.zeros(self.niter) c[0] = 1; for k in range(1, self.niter): c[k] = c[k - 1] / (k + 1) c = c / sum(c); # Construct level sets Idx_IM = np.zeros(IM.shape); for k in range(0, self.wsize): IM = (IM == center[k]).choose(IM, k + 1) Idx_IM = IM IM = np.zeros(IM.shape) # Estimate MFS by box-counting num = np.zeros(self.niter) MFS = np.zeros(self.wsize) for k in range(1, self.wsize + 1): IM = np.zeros(IM.shape) IM = (Idx_IM == k).choose(Idx_IM, 255 + k) IM = (IM < 255 + k).choose(IM, 0) IM = (IM > 0).choose(IM, 1) temp = max(IM.sum(), 1) num[0] = np.log10(temp) / np.log10(r); for j in range(2, self.niter + 1): mask = np.ones((j, j)) bw = convolve2d(IM, mask, mode="full")[1:, 1:] indx = np.arange(0, IM.shape[0], j) indy = np.arange(0, IM.shape[1], j) bw = bw[np.ix_(indx, indy)] idx = (bw > 0).sum() temp = max(idx, 1) num[j - 1] = np.log10(temp) / np.log10(r / j) MFS[k - 1] = sum(c * num) return MFS @staticmethod def dist(ft1, ft2, method='euclidean'): """ Compute the distance between two sets of multifractal dimension features. Possible distance types are: -Euclidean -cosine distance: this is not a proper distance! """ assert (ft1.ndim == ft2.ndim == 1) assert (ft1.size == ft2.size) dm = {'euclidean': lambda x_, y_: norm(x_ - y_), 'cosine': lambda x_, y_: dot(x_, y_) / (norm(x_) * norm(y_)) } method = method.lower() if method not in dm.keys(): raise ValueError('Unknown method') return dm[method](ft1, ft2) # end class MFSDescriptors class HOGDescriptor(LocalDescriptor): """ Provides local descriptors in terms of histograms of oriented gradients. """ name = nstr(b'hog') def __init__(self, _norient=9, _ppc=(128, 128), _cpb=(4, 4)): """ Initialize an HOGDescriptors object. For details see the HOG descriptor in sciki-image package: skimage.feature.hog :param _norient: uint number of orientations of the gradients :param _ppc: uint pixels per cell :param _cpb: uint cells per block """ self.norient = _norient self.ppc = _ppc self.cpb = _cpb return def compute(self, image): """ Computes HOG on a given image. :param image: numpy.ndarray :return: numpy.ndarray a vector of features """ r = hog(image, pixels_per_cell=self.ppc, cells_per_block=self.cpb, visualise=False, normalise=False) return r @staticmethod def dist(ft1, ft2, method='euclidean'): """ Compute the distance between two sets of HOG features. Possible distance types are: -Euclidean -cosine distance: this is not a proper distance! """ dm = {'euclidean': lambda x_, y_: norm(x_ - y_), 'cosine': lambda x_, y_: dot(x_, y_) / (norm(x_) * norm(y_)) } method = method.lower() if method not in dm.keys(): raise ValueError('Unknown method') return dm[method](ft1, ft2) # end HOGDescriptors class HistDescriptor(LocalDescriptor): """ Provides local descriptors in terms of histograms of grey levels. """ name = nstr(b'hist') def __init__(self, _interval=(0, 1), _nbins=10): """ Initialize an HistDescriptors object: a simple histogram of grey-levels :param _interval: tuple the minimum and maximum values to be accounted for :param _nbins: uint number of bins in the histogram """ self.interval = _interval self.nbins = _nbins return def compute(self, image): """ Computes the histogram on a given image. :param image: numpy.ndarray :return: numpy.ndarray a vector of frequencies """ if image.ndim != 2: raise ValueError("Only grey-level images are supported") h, _ = np.histogram(image, normed=True, bins=self.nbins, range=self.interval) return h @staticmethod def dist(ft1, ft2, method='bh'): """ Computes the distance between two sets of histogram features. Args: ft1, ft2: numpy.ndarray (vector) histograms as returned by compute() method: string the method used for computing the distance between the two sets of features: 'kl' - Kullback-Leibler divergence (symmetrized by 0.5*(KL(p,q)+KL(q,p)) 'js' - Jensen-Shannon divergence: 0.5*(KL(p,m)+KL(q,m)) where m=(p+q)/2 'bh' - Bhattacharyya distance: -log(sqrt(sum_i (p_i*q_i))) 'ma' - Matusita distance: sqrt(sum_i (sqrt(p_i)-sqrt(q_i))**2) """ # distance methods dm = {'kl': lambda x_, y_: 0.5 * (entropy(x_, y_) + entropy(y_, x_)), 'js': lambda x_, y_: 0.5 * (entropy(x_, 0.5 * (x_ + y_)) + entropy(y_, 0.5 * (x_ + y_))), 'bh': lambda x_, y_: -np.log(np.sum(np.sqrt(x_ * y_))), 'ma': lambda x_, y_: np.sqrt(np.sum((np.sqrt(x_) - np.sqrt(y_)) ** 2)) } method = method.lower() if method not in dm.keys(): raise ValueError('Unknown method') return dm[method](ft1, ft2) # end HistDescriptors # Haar-like descriptors class HaarLikeDescriptor(LocalDescriptor): """ Provides local descriptors in terms of respones to a series of Haar-like features [1]_. The coding is inspired by HaarLikeFeature class from SimpleCV (www.simplecv.org). .. [1] http://en.wikipedia.org/wiki/Haar-like_features """ name = nstr(b'haar') def __init__(self, _haars, _norm=True): """ Initialize an HaarLikeDescriptors object. :param _haars: list a list of feature descriptors. A feature descriptor is a list of points (row, column) in a normalized coordinate system ((0,0) -> (1,1)) describing the "positive" (black) patches from a Haar-like feature. All the patches not specified in this list are considered "negative" (white). The value corresponding to such a feature is the (weighted) sum of pixel intensities covered by "positive" patches from which the (weighted) sum of pixel intensities covered by "negative" patches is subtracted. See some examples at: - http://www.codeproject.com/Articles/27125/Ultra-Rapid-Object-Detection-in-Computer-Vision-Ap - http://en.wikipedia.org/wiki/Haar-like_features Examples of Haar-like features coding: - a Haar-like feature in which the left side is "positive" (*) and the right side "negative" (.): +-------+-------+ |*******|.......| |*******|.......| |*******|.......| |*******|.......| |*******|.......| |*******|.......| +-------+-------+ The corresponding coding is: [[(0.0, 0.0), (0.5, 1.0)]]. - a Haar-like feature with diagonal "positive" (*) patches: +-------+-------+ |*******|.......| |*******|.......| |*******|.......| +-------+-------+ |.......|*******| |.......|*******| |.......|*******| +-------+-------+ The corresponding coding is: [[(0.0, 0.0), (0.5, 0.5)], [(0.5, 0.5), (1.0, 1.0)]]. :param _norm: boolean Should the features be normalized? (scale-independent?) Default: True """ self.haars = _haars self.nfeats = len(_haars) self.norm = _norm # Check that all coordinates are between 0 and 1: if any([_p < 0.0 or _p > 1.0 for _p in flatten(_haars)]): raise ValueError("Improper Haar feature specification.") return def compute(self, image): """ Computes the Haar-like descriptors on an INTEGRAL image. :param image: numpy.ndarray This must be the integral image, as computed by skimage.transform.integral_image(), for example. This format does not contain the first row and column of 0s. :param _norm: boolean If True, the features are normalized by half the number of pixels in the image. :return: numpy.ndarray a vector of feature values (one per Haar-like feature) """ if image.ndim != 2: raise ValueError("Only grey-level images are supported") h, w = image.shape h -= 1 w -= 1 nrm_fact = h * w if self.norm else 1.0 f = np.zeros(self.nfeats, dtype=np.float) i = 0 S0 = image[h, w] + image[0, 0] - image[h, 0] - image[0, w] # integral over the image for hr in self.haars: # for each Haar-like feature S = 0L # will contain the sum of positive patches in the feature for p in hr: # for each patch in the current feature a, b = p # coords of the corners of the patch row_a = np.int(np.floor(p[0][0] * h)) col_a = np.int(np.floor(p[0][1] * w)) row_b = np.int(np.floor(p[1][0] * h)) col_b = np.int(np.floor(p[1][1] * w)) S += image[row_b, col_b] + image[row_a, col_a] - image[row_b, col_a] - image[row_a, col_b] # The final value of the Haar-like feature is the sum of positive patches minus # the sum of negative patches. Since everything that is not specified as positive # patch is considered negative, the sum of the negative patches is the total sum # in the image (corner bottom-right in the integral image) minus the sum of positive # ones. Hence, the value of the Haar-like feature is 2*S - S0 f[i] = (2.0 * S - S0) / nrm_fact i += 1 return f @staticmethod def dist(ft1, ft2, method='euclidean'): """ Computes the distance between two Haar-like feature vectors. :param ft1: a vector of features :type ft1: numpy.array (1xn) :param ft2: a vector of features :type ft2: numpy.array (1xn) :param method: the method for computing the distance :type method: string :return: a distance :rtype: float """ dm = {'euclidean': lambda x_, y_: norm(x_ - y_), 'cosine': lambda x_, y_: dot(x_, y_) / (norm(x_) * norm(y_)) } method = method.lower() if method not in dm.keys(): raise ValueError('Unknown method') return dm[method](ft1, ft2) @staticmethod def haars1(): """ Generates a list of Haar-like feature specifications. :return: :rtype: """ h = [ [[(0.0, 0.0), (0.5, 0.5)], [(0.5, 0.5), (1.0, 1.0)]], # diagonal blocks [[(0.0, 0.0), (1.0, 0.5)]], # vertical edge [[(0.0, 0.0), (0.5, 1.0)]], # horizontal edge [[(0.0, 0.33), (1.0, 0.67)]], # vertical central band [[(0.33, 0.0), (0.67, 1.0)]], # horizontal central band [[(0.25, 0.25), (0.75, 0.75)]] ] return h # end HaarLikeDescriptor # Summary statistics descriptor class StatsDescriptor(LocalDescriptor): """ A very simple local descriptor based on the first moments statistics. """ name = nstr(b'stats') def __init__(self, stats=None): self._statsfn = { 'mean': lambda x_: x_.mean(), 'std': lambda x_: x_.std(), 'kurtosis': lambda x_: kurtosis(x_, axis=None, fisher=True), 'skewness': lambda x_: skew(x_, axis=None, bias=True) } if stats is None: self.stats = ['mean', 'std'] else: self.stats = [s.lower() for s in stats] for s in self.stats: if s not in self._statsfn: raise ValueError('Unknown summary statistic') def compute(self, image): return np.array([self._statsfn[s](image) for s in self.stats]) @staticmethod def dist(ft1, ft2, method='euclidean'): """ Computes the distance between two Stats feature vectors. :param ft1: a vector of features :type ft1: numpy.array (1xn) :param ft2: a vector of features :type ft2: numpy.array (1xn) :param method: the method for computing the distance :type method: string :return: a distance :rtype: float """ return norm(ft1 - ft2) # end StatsDescriptor
mit
fsimkovic/conkit
conkit/plot/tools.py
1
6281
# BSD 3-Clause License # # Copyright (c) 2016-18, University of Liverpool # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Internal utility functions""" __author__ = "Felix Simkovic" __date__ = "16 Feb 2017" __version__ = "0.1" import numpy as np from conkit.core.contact import Contact from conkit.core.contactmap import ContactMap from conkit.core.contactfile import ContactFile from conkit.core.sequence import Sequence from conkit.core.sequencefile import SequenceFile from conkit.misc import deprecate HierarchyIndex = { 'Contact': Contact, 'ContactMap': ContactMap, 'ContactFile': ContactFile, 'Sequence': Sequence, 'SequenceFile': SequenceFile } class ColorDefinitions(object): """A class storing all color definitions for the various plots for fast and easy handling """ GENERAL = '#000000' MATCH = '#0F0B2C' MISMATCH = '#DC4869' STRUCTURAL = '#D8D6D6' L5CUTOFF = '#3F4587' L20CUTOFF = '#B5DD2B' PRECISION50 = L5CUTOFF FACTOR1 = L20CUTOFF AA_ENCODING = { 'A': '#882D17', 'C': '#F3C300', 'D': '#875692', 'E': '#F38400', 'F': '#A1CAF1', 'G': '#BE0032', 'H': '#C2B280', 'I': '#848482', 'K': '#008856', 'L': '#E68FAC', 'M': '#0067A5', 'N': '#F99379', 'P': '#604E97', 'Q': '#F6A600', 'R': '#B3446C', 'S': '#DCD300', 'T': '#8DB600', 'V': '#654522', 'W': '#E25822', 'Y': '#2B3D26', 'X': '#000000' } def find_minima(data, order=1): """Find the minima in a 1-D list Parameters ---------- data : list, tuple A list of values order : int, optional The order, i.e. number of points next to point to consider Returns ------- list A list of indices for minima Warning ------- For multi-dimensional problems, see :func:`~scipy.signal.argrelmin`. Raises ------ :exc:`ValueError` Order needs to be >= 1! :exc:`ValueError` More than two elements required! """ if order < 1: raise ValueError("Order needs to be >= 1!") data = np.asarray(data) nelements = data.shape[0] if nelements < 2: raise ValueError("More than two elements required!") results = np.zeros(nelements, dtype=np.bool_) for i in np.arange(1, nelements - 1): start = 0 if i - order < 0 else i - order end = nelements if i + order + 1 > nelements else i + order + 1 results[i] = np.all(data[start:i] > data[i]) and np.all(data[i] < data[i + 1:end]) return np.where(results)[0].tolist() def get_adjusted_aspect(ax, aspect_ratio): """Adjust the aspect ratio Parameters ---------- ax : :obj:`~matplotlib.axes.Axes` A :obj:`~matplotlib.axes.Axes` instance aspect_ratio : float The desired aspect ratio for :obj:`~matplotlib.axes.Axes` Returns ------- float The required aspect ratio to achieve the desired one Warning ------- This function only works for non-logarithmic axes. """ default_ratio = (ax.get_xlim()[1] - ax.get_xlim()[0]) / (ax.get_ylim()[1] - ax.get_ylim()[0]) return float(default_ratio * aspect_ratio) @deprecate('0.11', msg='Use get_points_on_circle instead') def points_on_circle(*args, **kwargs): return get_points_on_circle(*args, **kwargs) def get_points_on_circle(radius, h=0, k=0): """Calculate points on a circle with even spacing Parameters ---------- radius : int The radius of the circle h : int, optional The x coordinate of the origin k : int, optional The y coordinate of the origin Returns ------- list The list of coordinates for each point """ if radius == 0: return [[]] else: space = 2 * np.pi / radius coords = np.zeros((radius, 2)) for i in np.arange(radius): coords[i] = [round(h + radius * np.cos(space * i), 6), round(k + radius * np.sin(space * i), 6)] return coords.tolist() def get_radius_around_circle(p1, p2): """Obtain the radius around a given circle Parameters ---------- p1 : list, tuple Point 1 p2 : list, tuple Point 2 adjacent `p1` Returns ------- float The radius for points so p1 and p2 do not intersect """ dist = np.linalg.norm(np.array(p1) - np.array(p2)) return dist / 2.0 - dist * 0.1 def _isinstance(hierarchy, hierarchy_type): """Confirm the data structure to be a ConKit definition""" if isinstance(hierarchy_type, str) and hierarchy_type in HierarchyIndex: return isinstance(hierarchy, HierarchyIndex[hierarchy_type]) else: return isinstance(hierarchy, hierarchy_type)
bsd-3-clause
sebalander/sebaPhD
calibration/calibrateRegularCameraIntr.py
2
10632
# -*- coding: utf-8 -*- """ Created on Tue Jul 5 16:30:53 2016 calibrates using fisheye distortion model (polynomial in theta) help in http://docs.opencv.org/ref/master/d9/d0c/group__calib3d.html#ga3207604e4b1a1758aa66acb6ed5aa65d&gsc.tab=0 @author: sebalander """ # %% import cv2 import numpy as np from numpy import zeros import glob import matplotlib.pyplot as plt #from scipy import linalg import poseCalibration as pc from lmfit import minimize, Parameters import poseRationalCalibration as rational # %% ========== ========== RATIONAL PARAMETER HANDLING ========== ========== def formatParametersChessIntrs(rVecs, tVecs, linearCoeffs, distCoeffs): ''' set to vary all parameetrs ''' params = Parameters() for j in range(len(rVecs)): for i in range(3): params.add('rvec%d%d'%(j,i), value=rVecs[j,i,0], vary=True) params.add('tvec%d%d'%(j,i), value=tVecs[j,i,0], vary=True) params.add('fX', value=linearCoeffs[0,0], vary=True) params.add('fY', value=linearCoeffs[1,1], vary=True) params.add('cX', value=linearCoeffs[0,2], vary=True) params.add('cY', value=linearCoeffs[1,2], vary=True) # polynomial coeffs, grade 7 # # (k1,k2,p1,p2[,k3[,k4,k5,k6[,s1,s2,s3,s4[,τx,τy]]]]) #for i in [2,3,8,9,10,11,12,13]: # params.add('distCoeffs%d'%i, # value=distCoeffs[i,0], vary=False) params.add('numDist0', value=distCoeffs[0,0], vary=True) params.add('numDist1', value=distCoeffs[1,0], vary=True) params.add('numDist2', value=distCoeffs[4,0], vary=True) params.add('denomDist0', value=distCoeffs[5,0], vary=True) params.add('denomDist1', value=distCoeffs[6,0], vary=True) params.add('denomDist2', value=distCoeffs[7,0], vary=True) return params # %% def retrieveParametersChess(params): n = len([0 for x in params.iterkeys()])/6 - 3 rvec = zeros((n,3,1)) tvec = zeros((n,3,1)) for j in range(n): for i in range(3): rvec[j,i,0] = params['rvec%d%d'%(j,i)].value tvec[j,i,0] = params['tvec%d%d'%(j,i)].value cameraMatrix = zeros((3,3)) cameraMatrix[0,0] = params['fX'].value cameraMatrix[1,1] = params['fY'].value cameraMatrix[0,2] = params['cX'].value cameraMatrix[1,2] = params['cY'].value cameraMatrix[2,2] = 1 distCoeffs = zeros((14,1)) distCoeffs[0] = params['numDist0'].value distCoeffs[1] = params['numDist1'].value distCoeffs[4] = params['numDist2'].value distCoeffs[5] = params['denomDist0'].value distCoeffs[6] = params['denomDist1'].value distCoeffs[7] = params['denomDist2'].value return rvec, tvec, cameraMatrix, distCoeffs # %% change state of paramters def setDistortionParams(params, state): for i in [0,1,4,5,6,7]: params['distCoeffs%d'%i].vary=state def setLinearParams(params, state): params['cameraMatrix0'].value = state params['cameraMatrix1'].value = state params['cameraMatrix2'].value = state params['cameraMatrix3'].value = state def setExtrinsicParams(params, state): n = len([0 for x in params.iterkeys()])/6 - 3 for j in range(n): for i in range(3): params['rvec%d%d'%(j,i)].vary = state params['tvec%d%d'%(j,i)].vary = state # %% residual def residualDirectChessRatio(params, fiducialPoints, corners): ''' ''' n = len(corners) rVecs, tVecs, linearCoeffs, distCoeffs = retrieveParametersChess(params) E = list() for j in range(n): projectedCorners = rational.direct(fiducialPoints, rVecs[j], tVecs[j], linearCoeffs, distCoeffs) err = projectedCorners[:,0,:] - corners[j,:,0,:] E.append(err) return np.reshape(E,(n*len(fiducialPoints[0]),2)) # %% def calibrateDirectChessRatio(fiducialPoints, corners, rVecs, tVecs, linearCoeffs, distCoeffs): ''' parece que si no se hace por etapas hay inestabilidad numerica. lo veo con la camara plana que en ppio no deberia tener problemas para ajustar y en mucha mayor medida con la fisheye. quiza valga la pena iterar ete ciclo la cantidad de veces que sea necesario hasta que converja. roguemos que converja ''' params = formatParametersChessIntrs(rVecs, tVecs, linearCoeffs, distCoeffs) # generate Parameters obj setDistortionParams(params,False) setLinearParams(params,True) setExtrinsicParams(params,True) out = minimize(residualDirectChessRatio, params, args=(fiducialPoints, corners), xtol=1e-5, # Relative error in the approximate solution ftol=1e-5, # Relative error in the desired sum of squares maxfev=int(1e3)) ''' params = out.params # setDistortionParams(params,False) setLinearParams(params,True) setExtrinsicParams(params,False) out = minimize(residualDirectChessRatio, params, args=(fiducialPoints, corners), xtol=1e-5, # Relative error in the approximate solution ftol=1e-5, # Relative error in the desired sum of squares maxfev=int(1e3)) params = out.params setDistortionParams(params,True) setLinearParams(params,False) # setExtrinsicParams(params,False) out = minimize(residualDirectChessRatio, params, args=(fiducialPoints, corners), xtol=1e-5, # Relative error in the approximate solution ftol=1e-5, # Relative error in the desired sum of squares maxfev=int(1e3)) ''' return out # %% reload(pc) # %% LOAD DATA ### fisheye data imagesFolder = "./resources/fishChessboard/" extension = "*.png" cornersFile = "./resources/fishChessboard/fishCorners.npy" patternFile = "./resources/chessPattern.npy" imgShapeFile = "./resources/fishImgShape.npy" distCoeffsFile = "./resources/fishDistCoeffs.npy" linearCoeffsFile = "./resources/fishLinearCoeffs.npy" rvecsFile = "./resources/fishChessboard/fishRvecs.npy" tvecsFile = "./resources/fishChessboard/fishTvecs.npy" ### ptz data #imagesFolder = "./resources/PTZchessboard/zoom 0.0/" #extension = "*.jpg" #cornersFile = "./resources/PTZchessboard/zoom 0.0/ptzCorners.npy" #patternFile = "./resources/chessPattern.npy" #imgShapeFile = "./resources/ptzImgShape.npy" # #distCoeffsFile = "./resources/PTZchessboard/zoom 0.0/ptzDistCoeffs.npy" #linearCoeffsFile = "./resources/PTZchessboard/zoom 0.0/ptzLinearCoeffs.npy" #rvecsFile = "./resources/PTZchessboard/zoom 0.0/ptzRvecs.npy" #tvecsFile = "./resources/PTZchessboard/zoom 0.0/ptzTvecs.npy" corners = np.load(cornersFile).transpose((0,2,1,3)) fiducialPoints = np.load(patternFile) imgSize = np.load(imgShapeFile) images = glob.glob(imagesFolder+extension) distCoeffsTrue = np.load(distCoeffsFile) linearCoeffsTrue = np.load(linearCoeffsFile) rVecsTrue = np.load(rvecsFile) tVecsTrue = np.load(tvecsFile) # %% # %% from testHomography.py ## use real data #f = 5e2 # proposal of f, can't be estimated from homography # #rVecs, tVecs, Hs = pc.estimateInitialPose(fiducialPoints, corners, f, imgSize) # #pc.plotHomographyToMatch(fiducialPoints, corners[1:3], f, imgSize, images[1:3]) # #pc.plotForwardHomography(fiducialPoints, corners[1:3], f, imgSize, Hs[1:3], images[1:3]) # #pc.plotBackwardHomography(fiducialPoints, corners[1:3], f, imgSize, Hs[1:3]) # %% model= 'rational' f = 1e3 # importa el orden de magnitud aunque no demaisado. # entre 1e2 y 1e3 anda? # %% intrinsic parameters initial conditions linearCoeffsIni = np.array([[f, 0, imgSize[1]/2], [0, f, imgSize[0]/2], [0, 0, 1]]) #distCoeffsIni = np.zeros((14, 1)) # despues hacer generico para todos los modelos #k = 10 # factor en que escalear la distancia focal #linearCoeffsIni = linearCoeffsTrue * [k,k,1] distCoeffsIni = distCoeffsTrue # %% extrinsic parameters initial conditions, from estimated homography rVecsIni, tVecsIni, Hs = pc.estimateInitialPose(fiducialPoints, corners, linearCoeffsIni) #rVecsIni = rVecsTrue #tVecsIni = tVecsTrue # %% from testposecalibration DIRECT GENERIC CALIBRATION i=0 img = plt.imread(images[i]) imageCorners = corners[i] rVec = rVecsIni[i] tVec = tVecsIni[i] linearCoeffs = linearCoeffsIni distCoeffs = distCoeffsIni # direct mapping with initial conditions cornersProjected = pc.direct(fiducialPoints, rVec, tVec, linearCoeffs, distCoeffs, model) # plot corners in image pc.cornerComparison(img, imageCorners, cornersProjected) # %% # format parameters initialParams = formatParametersChessIntrs(rVecsIni, tVecsIni, linearCoeffsIni, distCoeffsIni) # test retrieving parameters # n=10 # retrieveParametersChess(initialParams) # %% #E = residualDirectChessRatio(initialParams, fiducialPoints, corners) out = calibrateDirectChessRatio(fiducialPoints, corners, rVecsIni, tVecsIni, linearCoeffsIni, distCoeffsIni) out.nfev out.message out.lmdif_message (out.residual**2).sum() # %% rVecsOpt, tVecsOpt, cameraMatrixOpt, distCoeffsOpt = retrieveParametersChess(out.params) # %%cameraMatrix0 img = plt.imread(images[i]) imageCorners = corners[i] rVec = rVecsOpt[i] tVec = tVecsOpt[i] linearCoeffs = cameraMatrixOpt distCoeffs = distCoeffsOpt # direct mapping with initial conditions cornersProjected = pc.direct(fiducialPoints, rVec, tVec, linearCoeffs, distCoeffs, model) # plot corners in image pc.cornerComparison(img, imageCorners, cornersProjected) # %% comparar fiteos. true corresponde a lo que da chessboard distCoeffsTrue distCoeffsOpt pc.plotRationalDist(distCoeffsTrue,imgSize, linearCoeffsTrue) pc.plotRationalDist(distCoeffsOpt,imgSize, cameraMatrixOpt) linearCoeffsTrue cameraMatrixOpt rVecsTrue[i] rVecsOpt[i] tVecsTrue[i] tVecsOpt[i] np.linalg.norm(rVecsTrue[9]) np.linalg.norm(rVecsOpt[9]) # %% ver porque el signo cambiado en rVecs, que significa? r1, r2 = rVecsTrue[1,:,0],rVecsOpt[1,:,0] r1 r2 np.linalg.norm(r1), np.linalg.norm(r2) distance = np.array([np.linalg.norm(rVecsTrue[j,:,0] - rVecsOpt[j,:,0]) for j in range(len(rVecsTrue))]) / np.pi / 2 # es por la periodicidad en 2pi plt.figure() plt.plot(distance) ''' pero no quiere decir que la camara apunta hacia donde debe. pero da igual que opencv al menos '''
bsd-3-clause
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/build/lib.linux-i686-2.7/matplotlib/testing/decorators.py
2
10495
from __future__ import print_function from matplotlib.testing.noseclasses import KnownFailureTest, \ KnownFailureDidNotFailTest, ImageComparisonFailure import os, sys, shutil import nose import matplotlib import matplotlib.tests import matplotlib.units from matplotlib import ticker from matplotlib import pyplot as plt from matplotlib import ft2font import numpy as np from matplotlib.testing.compare import comparable_formats, compare_images, \ make_test_filename import warnings def knownfailureif(fail_condition, msg=None, known_exception_class=None ): """ Assume a will fail if *fail_condition* is True. *fail_condition* may also be False or the string 'indeterminate'. *msg* is the error message displayed for the test. If *known_exception_class* is not None, the failure is only known if the exception is an instance of this class. (Default = None) """ # based on numpy.testing.dec.knownfailureif if msg is None: msg = 'Test known to fail' def known_fail_decorator(f): # Local import to avoid a hard nose dependency and only incur the # import time overhead at actual test-time. import nose def failer(*args, **kwargs): try: # Always run the test (to generate images). result = f(*args, **kwargs) except Exception as err: if fail_condition: if known_exception_class is not None: if not isinstance(err,known_exception_class): # This is not the expected exception raise # (Keep the next ultra-long comment so in shows in console.) raise KnownFailureTest(msg) # An error here when running nose means that you don't have the matplotlib.testing.noseclasses:KnownFailure plugin in use. else: raise if fail_condition and fail_condition != 'indeterminate': raise KnownFailureDidNotFailTest(msg) return result return nose.tools.make_decorator(f)(failer) return known_fail_decorator class CleanupTest(object): @classmethod def setup_class(cls): cls.original_units_registry = matplotlib.units.registry.copy() @classmethod def teardown_class(cls): plt.close('all') matplotlib.tests.setup() matplotlib.units.registry.clear() matplotlib.units.registry.update(cls.original_units_registry) warnings.resetwarnings() #reset any warning filters set in tests def test(self): self._func() def cleanup(func): name = func.__name__ func = staticmethod(func) func.__get__(1).__name__ = '_private' new_class = type( name, (CleanupTest,), {'_func': func}) return new_class def check_freetype_version(ver): if ver is None: return True from distutils import version if isinstance(ver, str): ver = (ver, ver) ver = [version.StrictVersion(x) for x in ver] found = version.StrictVersion(ft2font.__freetype_version__) return found >= ver[0] and found <= ver[1] class ImageComparisonTest(CleanupTest): @classmethod def setup_class(cls): CleanupTest.setup_class() cls._func() @staticmethod def remove_text(figure): figure.suptitle("") for ax in figure.get_axes(): ax.set_title("") ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(ticker.NullFormatter()) ax.yaxis.set_major_formatter(ticker.NullFormatter()) ax.yaxis.set_minor_formatter(ticker.NullFormatter()) def test(self): baseline_dir, result_dir = _image_directories(self._func) for fignum, baseline in zip(plt.get_fignums(), self._baseline_images): figure = plt.figure(fignum) for extension in self._extensions: will_fail = not extension in comparable_formats() if will_fail: fail_msg = 'Cannot compare %s files on this system' % extension else: fail_msg = 'No failure expected' orig_expected_fname = os.path.join(baseline_dir, baseline) + '.' + extension if extension == 'eps' and not os.path.exists(orig_expected_fname): orig_expected_fname = os.path.join(baseline_dir, baseline) + '.pdf' expected_fname = make_test_filename(os.path.join( result_dir, os.path.basename(orig_expected_fname)), 'expected') actual_fname = os.path.join(result_dir, baseline) + '.' + extension if os.path.exists(orig_expected_fname): shutil.copyfile(orig_expected_fname, expected_fname) else: will_fail = True fail_msg = 'Do not have baseline image %s' % expected_fname @knownfailureif( will_fail, fail_msg, known_exception_class=ImageComparisonFailure) def do_test(): if self._remove_text: self.remove_text(figure) figure.savefig(actual_fname) err = compare_images(expected_fname, actual_fname, self._tol, in_decorator=True) try: if not os.path.exists(expected_fname): raise ImageComparisonFailure( 'image does not exist: %s' % expected_fname) if err: raise ImageComparisonFailure( 'images not close: %(actual)s vs. %(expected)s ' '(RMS %(rms).3f)'%err) except ImageComparisonFailure: if not check_freetype_version(self._freetype_version): raise KnownFailureTest( "Mismatched version of freetype. Test requires '%s', you have '%s'" % (self._freetype_version, ft2font.__freetype_version__)) raise yield (do_test,) def image_comparison(baseline_images=None, extensions=None, tol=1e-3, freetype_version=None, remove_text=False): """ call signature:: image_comparison(baseline_images=['my_figure'], extensions=None) Compare images generated by the test with those specified in *baseline_images*, which must correspond else an ImageComparisonFailure exception will be raised. Keyword arguments: *baseline_images*: list A list of strings specifying the names of the images generated by calls to :meth:`matplotlib.figure.savefig`. *extensions*: [ None | list ] If *None*, default to all supported extensions. Otherwise, a list of extensions to test. For example ['png','pdf']. *tol*: (default 1e-3) The RMS threshold above which the test is considered failed. *freetype_version*: str or tuple The expected freetype version or range of versions for this test to pass. *remove_text*: bool Remove the title and tick text from the figure before comparison. This does not remove other, more deliberate, text, such as legends and annotations. """ if baseline_images is None: raise ValueError('baseline_images must be specified') if extensions is None: # default extensions to test extensions = ['png', 'pdf', 'svg'] def compare_images_decorator(func): # We want to run the setup function (the actual test function # that generates the figure objects) only once for each type # of output file. The only way to achieve this with nose # appears to be to create a test class with "setup_class" and # "teardown_class" methods. Creating a class instance doesn't # work, so we use type() to actually create a class and fill # it with the appropriate methods. name = func.__name__ # For nose 1.0, we need to rename the test function to # something without the word "test", or it will be run as # well, outside of the context of our image comparison test # generator. func = staticmethod(func) func.__get__(1).__name__ = '_private' new_class = type( name, (ImageComparisonTest,), {'_func': func, '_baseline_images': baseline_images, '_extensions': extensions, '_tol': tol, '_freetype_version': freetype_version, '_remove_text': remove_text}) return new_class return compare_images_decorator def _image_directories(func): """ Compute the baseline and result image directories for testing *func*. Create the result directory if it doesn't exist. """ module_name = func.__module__ if module_name == '__main__': # FIXME: this won't work for nested packages in matplotlib.tests warnings.warn('test module run as script. guessing baseline image locations') script_name = sys.argv[0] basedir = os.path.abspath(os.path.dirname(script_name)) subdir = os.path.splitext(os.path.split(script_name)[1])[0] else: mods = module_name.split('.') mods.pop(0) # <- will be the name of the package being tested (in # most cases "matplotlib") assert mods.pop(0) == 'tests' subdir = os.path.join(*mods) import imp def find_dotted_module(module_name, path=None): """A version of imp which can handle dots in the module name""" res = None for sub_mod in module_name.split('.'): res = _, path, _ = imp.find_module(sub_mod, path) path = [path] return res mod_file = find_dotted_module(func.__module__)[1] basedir = os.path.dirname(mod_file) baseline_dir = os.path.join(basedir, 'baseline_images', subdir) result_dir = os.path.abspath(os.path.join('result_images', subdir)) if not os.path.exists(result_dir): os.makedirs(result_dir) return baseline_dir, result_dir
mit
crcollins/chemtools-webapp
chemtools/dataparser.py
1
3311
from cStringIO import StringIO import math import numpy as np from scipy.optimize import curve_fit import matplotlib matplotlib.use('Cairo') import matplotlib.pyplot as plot np.seterr(all="ignore") from fileparser import Output, catch def kuhn_exp(x, a, b): return a * np.sqrt(1 - b * np.cos(math.pi / (x + 1))) def predict_values(xvals, homovals, lumovals, gapvals): x = np.array(xvals) maxx = max(xvals) if maxx > 1: x = 1. / x maxx = x.max() homoy = np.array(homovals) homo_fit = lambda x, a, b: kuhn_exp(x, a, b) (homoa, homob), var_matrix = curve_fit(homo_fit, x, homoy, p0=[-8, -.8]) homo_func = lambda x: kuhn_exp(x, homoa, homob) lumoy = np.array(lumovals) lumo_fit = lambda x, a, b: kuhn_exp(x, a, b) + homo_func(x) (lumoa, lumob), var_matrix = curve_fit(lumo_fit, x, lumoy, p0=[5, -.8]) lumo_func = lambda x: kuhn_exp(x, lumoa, lumob) + homo_func(x) gapy = np.array(gapvals) gap_fit = lambda x, a, b: kuhn_exp(x, a, b) + lumo_func(x) (gapa, gapb), var_matrix = curve_fit(gap_fit, x, gapy, p0=[11, -.8]) gap_func = lambda x: kuhn_exp(x, gapa, gapb) + lumo_func(x) homo_limit = homo_func(0) lumo_limit = lumo_func(0) gap_limit = gap_func(0) results = { "homo": (homo_limit, homoa, homob, homo_func), "lumo": (lumo_limit, lumoa, lumob, lumo_func), "gap": (gap_limit, gapa, gapb, gap_func), } return results class DataParser(Output): def __init__(self, f): super(DataParser, self).__init__() self.plots = (StringIO(), StringIO()) self.parse_file(f) def get_graphs(self): return self.plots def extract_data(self, f): out = [] for line in f: if not line.startswith("#") and line.strip(): out.append([float(x.strip()) for x in line.replace(' ', '').split(',') if x]) return out @catch def parse_file(self, f): datax, datahomo, datalumo, datagap = self.extract_data(f) x = np.array(datax) homoy = np.array(datahomo) lumoy = np.array(datalumo) gapy = np.array(datagap) results = predict_values(datax, homoy, lumoy, gapy) for key in ["Homo", "Lumo", "Gap"]: values = results[key.lower()] self.write(key) self.write("A: %f, B: %f" % (values[1], values[2])) self.write("limit: %f" % values[0]) self.write('') maxx = max(datax) if maxx > 1: x = 1. / x maxx = x.max() xvals = np.linspace(0, maxx, 20) # Make HOMO/LUMO plot plot.plot(x, homoy, 'ro') homo_func = results["homo"][3] plot.plot(xvals, homo_func(xvals), 'r') plot.plot(x, lumoy, 'ro') lumo_func = results["lumo"][3] plot.plot(xvals, lumo_func(xvals), 'g') plot.ylabel("Eg in eV") plot.xlabel("1/N") plot.savefig(self.plots[0], format="eps") plot.clf() # Make Gap plot plot.plot(x, gapy, 'ro') gap_func = results["gap"][3] plot.plot(xvals, gap_func(xvals), 'r') plot.ylabel("Eg in eV") plot.xlabel("1/N") plot.savefig(self.plots[1], format="eps") plot.clf()
mit
michaelgat/Udacity_DL
weight-initialization/helper.py
153
3649
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf def hist_dist(title, distribution_tensor, hist_range=(-4, 4)): """ Display histogram of a TF distribution """ with tf.Session() as sess: values = sess.run(distribution_tensor) plt.title(title) plt.hist(values, np.linspace(*hist_range, num=len(values)/2)) plt.show() def _get_loss_acc(dataset, weights): """ Get losses and validation accuracy of example neural network """ batch_size = 128 epochs = 2 learning_rate = 0.001 features = tf.placeholder(tf.float32) labels = tf.placeholder(tf.float32) learn_rate = tf.placeholder(tf.float32) biases = [ tf.Variable(tf.zeros([256])), tf.Variable(tf.zeros([128])), tf.Variable(tf.zeros([dataset.train.labels.shape[1]])) ] # Layers layer_1 = tf.nn.relu(tf.matmul(features, weights[0]) + biases[0]) layer_2 = tf.nn.relu(tf.matmul(layer_1, weights[1]) + biases[1]) logits = tf.matmul(layer_2, weights[2]) + biases[2] # Training loss loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)) # Optimizer optimizer = tf.train.AdamOptimizer(learn_rate).minimize(loss) # Accuracy correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Measurements use for graphing loss loss_batch = [] with tf.Session() as session: session.run(tf.global_variables_initializer()) batch_count = int((dataset.train.num_examples / batch_size)) # The training cycle for epoch_i in range(epochs): for batch_i in range(batch_count): batch_features, batch_labels = dataset.train.next_batch(batch_size) # Run optimizer and get loss session.run( optimizer, feed_dict={features: batch_features, labels: batch_labels, learn_rate: learning_rate}) l = session.run( loss, feed_dict={features: batch_features, labels: batch_labels, learn_rate: learning_rate}) loss_batch.append(l) valid_acc = session.run( accuracy, feed_dict={features: dataset.validation.images, labels: dataset.validation.labels, learn_rate: 1.0}) # Hack to Reset batches dataset.train._index_in_epoch = 0 dataset.train._epochs_completed = 0 return loss_batch, valid_acc def compare_init_weights( dataset, title, weight_init_list, plot_n_batches=100): """ Plot loss and print stats of weights using an example neural network """ colors = ['r', 'b', 'g', 'c', 'y', 'k'] label_accs = [] label_loss = [] assert len(weight_init_list) <= len(colors), 'Too many inital weights to plot' for i, (weights, label) in enumerate(weight_init_list): loss, val_acc = _get_loss_acc(dataset, weights) plt.plot(loss[:plot_n_batches], colors[i], label=label) label_accs.append((label, val_acc)) label_loss.append((label, loss[-1])) plt.title(title) plt.xlabel('Batches') plt.ylabel('Loss') plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() print('After 858 Batches (2 Epochs):') print('Validation Accuracy') for label, val_acc in label_accs: print(' {:7.3f}% -- {}'.format(val_acc*100, label)) print('Loss') for label, loss in label_loss: print(' {:7.3f} -- {}'.format(loss, label))
mit