repo_name
stringlengths
7
60
path
stringlengths
6
134
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
1.04k
149k
license
stringclasses
12 values
cemarchi/biosphere
Src/BioAnalyzer/Analysis/GenePrioritization/Steps/DataIntegration/IntermediateRepresentation/Transformers/MicroRnaToGeneTransformer.py
1
4546
import math import statistics from itertools import groupby from random import randint from typing import Dict, Tuple, Counter import pandas as pd from Src.BioAnalyzer.Analysis.GenePrioritization.Steps.DataIntegration.IntermediateRepresentation.Generators import \ IntermediateRepresentationGeneratorBase from Src.BioAnalyzer.Analysis.GenePrioritization.Steps.DataIntegration.IntermediateRepresentation.Transformers.SampleTransformerBase import \ SampleTransformerBase from Src.BioDataManagement.CrossCutting.DTOs.ExpressionLevelStatusDto import ExpressionLevelStatusDto class MicroRnaToGeneTransformer(SampleTransformerBase): """ """ def __init__(self, intermediateRepresentationGenerator: IntermediateRepresentationGeneratorBase, get_global_diff_values_action, get_mirna_gene_target_action): super().__init__(intermediateRepresentationGenerator) self.__get_mirna_gene_target_action = get_mirna_gene_target_action self.__get_global_diff_values_action = get_global_diff_values_action def transform(self, from_sample_matrix: pd.DataFrame, is_highly_significant: bool) -> Tuple[pd.DataFrame, Dict[int, ExpressionLevelStatusDto]]: mirna_gene_targets = {mirna.lower(): g for mirna, g in self.__get_mirna_gene_targets(from_sample_matrix.columns.tolist()).items()} mirna_samples = self.__get_mirna_samples(from_sample_matrix, mirna_gene_targets) id_entrez_list = list(set([id_entrez for mirna_symbol, id_entrez_list in mirna_gene_targets.items() for id_entrez in id_entrez_list])) measure_matrix = dict([(g, []) for g in id_entrez_list]) key_func = lambda gene: gene[0] for patient_id, exp_values in mirna_samples.items(): gene_values = [(id_entrez, exp_value) for mirna_symbol, exp_value in exp_values.items() for id_entrez in mirna_gene_targets[mirna_symbol]] gene_values = sorted(gene_values, key=key_func) for id_entrez, measures in groupby(gene_values, key_func): measures = [measure for id_entrez, measure in list(measures) if not math.isnan(measure)] measure_matrix[id_entrez].append(float('NaN') if not measures else statistics.mean(measures)) gene_matrix = pd.DataFrame.from_dict(measure_matrix).dropna(axis=1,how='all') gene_matrix = self.intermediateRepresentationGenerator.generate(gene_matrix).dropna(axis=1,how='all') return gene_matrix, \ self.__get_gene_status(mirna_gene_targets, gene_matrix.columns.tolist(), is_highly_significant) def __get_mirna_gene_targets(self, mirnas): gene_targets = {} fe_target = self.__get_mirna_gene_target_action(mirnas) gene_targets.update(dict([(t.microrna_symbol, list(set(gene_targets[t.microrna_symbol] + t.id_entrez_genes))) if t.microrna_symbol in gene_targets else (t.microrna_symbol, t.id_entrez_genes) for t in fe_target.result_list])) return gene_targets def __get_mirna_samples(self, from_sample_matrix, mirna_gene_targets): from_sample_matrix = from_sample_matrix[list(mirna_gene_targets.keys()) + ['patient_id']] from_sample_matrix.set_index("patient_id", drop=True, inplace=True) return from_sample_matrix.to_dict(orient="index") def __get_gene_status(self, mirna_gene_targets, genes, is_highly_significant): diff_mirna = [diff for diff in self.__get_global_diff_values_action(is_highly_significant).result.values if diff.element_id in mirna_gene_targets] genes_status = [(g, diff.status) for diff in diff_mirna for g in mirna_gene_targets[diff.element_id] if g in genes] key_func = lambda gene: gene[0] genes_status = sorted(genes_status, key=key_func) genes_status_dict = {} for id_entrez, status in groupby(genes_status, key_func): status = list(status) status_counter = Counter(status) status = [k for k, v in status_counter.most_common()] len_status = len(status) - 1 genes_status_dict[id_entrez] = status[0] if len_status == 1 else status[randint(0, len_status)] return dict([(entrez_id, status[1]) for entrez_id, status in genes_status_dict.items()])
bsd-3-clause
winklerand/pandas
pandas/tests/test_errors.py
9
1147
# -*- coding: utf-8 -*- import pytest from warnings import catch_warnings import pandas # noqa import pandas as pd @pytest.mark.parametrize( "exc", ['UnsupportedFunctionCall', 'UnsortedIndexError', 'OutOfBoundsDatetime', 'ParserError', 'PerformanceWarning', 'DtypeWarning', 'EmptyDataError', 'ParserWarning', 'MergeError']) def test_exception_importable(exc): from pandas import errors e = getattr(errors, exc) assert e is not None # check that we can raise on them with pytest.raises(e): raise e() def test_catch_oob(): from pandas import errors try: pd.Timestamp('15000101') except errors.OutOfBoundsDatetime: pass def test_error_rename(): # see gh-12665 from pandas.errors import ParserError from pandas.io.common import CParserError try: raise CParserError() except ParserError: pass try: raise ParserError() except CParserError: pass with catch_warnings(record=True): try: raise ParserError() except pd.parser.CParserError: pass
bsd-3-clause
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/pandas/tests/frame/test_query_eval.py
11
42389
# -*- coding: utf-8 -*- from __future__ import print_function import operator import pytest from pandas.compat import (zip, range, lrange, StringIO) from pandas import DataFrame, Series, Index, MultiIndex, date_range import pandas as pd import numpy as np from numpy.random import randn from pandas.util.testing import (assert_series_equal, assert_frame_equal, makeCustomDataframe as mkdf) import pandas.util.testing as tm from pandas.core.computation import _NUMEXPR_INSTALLED from pandas.tests.frame.common import TestData PARSERS = 'python', 'pandas' ENGINES = 'python', 'numexpr' @pytest.fixture(params=PARSERS, ids=lambda x: x) def parser(request): return request.param @pytest.fixture(params=ENGINES, ids=lambda x: x) def engine(request): return request.param def skip_if_no_pandas_parser(parser): if parser != 'pandas': pytest.skip("cannot evaluate with parser {0!r}".format(parser)) def skip_if_no_ne(engine='numexpr'): if engine == 'numexpr': if not _NUMEXPR_INSTALLED: pytest.skip("cannot query engine numexpr when numexpr not " "installed") class TestCompat(object): def setup_method(self, method): self.df = DataFrame({'A': [1, 2, 3]}) self.expected1 = self.df[self.df.A > 0] self.expected2 = self.df.A + 1 def test_query_default(self): # GH 12749 # this should always work, whether _NUMEXPR_INSTALLED or not df = self.df result = df.query('A>0') assert_frame_equal(result, self.expected1) result = df.eval('A+1') assert_series_equal(result, self.expected2, check_names=False) def test_query_None(self): df = self.df result = df.query('A>0', engine=None) assert_frame_equal(result, self.expected1) result = df.eval('A+1', engine=None) assert_series_equal(result, self.expected2, check_names=False) def test_query_python(self): df = self.df result = df.query('A>0', engine='python') assert_frame_equal(result, self.expected1) result = df.eval('A+1', engine='python') assert_series_equal(result, self.expected2, check_names=False) def test_query_numexpr(self): df = self.df if _NUMEXPR_INSTALLED: result = df.query('A>0', engine='numexpr') assert_frame_equal(result, self.expected1) result = df.eval('A+1', engine='numexpr') assert_series_equal(result, self.expected2, check_names=False) else: pytest.raises(ImportError, lambda: df.query('A>0', engine='numexpr')) pytest.raises(ImportError, lambda: df.eval('A+1', engine='numexpr')) class TestDataFrameEval(TestData): def test_ops(self): # tst ops and reversed ops in evaluation # GH7198 # smaller hits python, larger hits numexpr for n in [4, 4000]: df = DataFrame(1, index=range(n), columns=list('abcd')) df.iloc[0] = 2 m = df.mean() for op_str, op, rop in [('+', '__add__', '__radd__'), ('-', '__sub__', '__rsub__'), ('*', '__mul__', '__rmul__'), ('/', '__truediv__', '__rtruediv__')]: base = (DataFrame(np.tile(m.values, n) # noqa .reshape(n, -1), columns=list('abcd'))) expected = eval("base{op}df".format(op=op_str)) # ops as strings result = eval("m{op}df".format(op=op_str)) assert_frame_equal(result, expected) # these are commutative if op in ['+', '*']: result = getattr(df, op)(m) assert_frame_equal(result, expected) # these are not elif op in ['-', '/']: result = getattr(df, rop)(m) assert_frame_equal(result, expected) # GH7192 df = DataFrame(dict(A=np.random.randn(25000))) df.iloc[0:5] = np.nan expected = (1 - np.isnan(df.iloc[0:25])) result = (1 - np.isnan(df)).iloc[0:25] assert_frame_equal(result, expected) def test_query_non_str(self): # GH 11485 df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'b']}) msg = "expr must be a string to be evaluated" with tm.assert_raises_regex(ValueError, msg): df.query(lambda x: x.B == "b") with tm.assert_raises_regex(ValueError, msg): df.query(111) def test_query_empty_string(self): # GH 13139 df = pd.DataFrame({'A': [1, 2, 3]}) msg = "expr cannot be an empty string" with tm.assert_raises_regex(ValueError, msg): df.query('') def test_eval_resolvers_as_list(self): # GH 14095 df = DataFrame(randn(10, 2), columns=list('ab')) dict1 = {'a': 1} dict2 = {'b': 2} assert (df.eval('a + b', resolvers=[dict1, dict2]) == dict1['a'] + dict2['b']) assert (pd.eval('a + b', resolvers=[dict1, dict2]) == dict1['a'] + dict2['b']) class TestDataFrameQueryWithMultiIndex(object): def test_query_with_named_multiindex(self, parser, engine): tm.skip_if_no_ne(engine) skip_if_no_pandas_parser(parser) a = np.random.choice(['red', 'green'], size=10) b = np.random.choice(['eggs', 'ham'], size=10) index = MultiIndex.from_arrays([a, b], names=['color', 'food']) df = DataFrame(randn(10, 2), index=index) ind = Series(df.index.get_level_values('color').values, index=index, name='color') # equality res1 = df.query('color == "red"', parser=parser, engine=engine) res2 = df.query('"red" == color', parser=parser, engine=engine) exp = df[ind == 'red'] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # inequality res1 = df.query('color != "red"', parser=parser, engine=engine) res2 = df.query('"red" != color', parser=parser, engine=engine) exp = df[ind != 'red'] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # list equality (really just set membership) res1 = df.query('color == ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] == color', parser=parser, engine=engine) exp = df[ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) res1 = df.query('color != ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] != color', parser=parser, engine=engine) exp = df[~ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # in/not in ops res1 = df.query('["red"] in color', parser=parser, engine=engine) res2 = df.query('"red" in color', parser=parser, engine=engine) exp = df[ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) res1 = df.query('["red"] not in color', parser=parser, engine=engine) res2 = df.query('"red" not in color', parser=parser, engine=engine) exp = df[~ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) def test_query_with_unnamed_multiindex(self, parser, engine): tm.skip_if_no_ne(engine) skip_if_no_pandas_parser(parser) a = np.random.choice(['red', 'green'], size=10) b = np.random.choice(['eggs', 'ham'], size=10) index = MultiIndex.from_arrays([a, b]) df = DataFrame(randn(10, 2), index=index) ind = Series(df.index.get_level_values(0).values, index=index) res1 = df.query('ilevel_0 == "red"', parser=parser, engine=engine) res2 = df.query('"red" == ilevel_0', parser=parser, engine=engine) exp = df[ind == 'red'] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # inequality res1 = df.query('ilevel_0 != "red"', parser=parser, engine=engine) res2 = df.query('"red" != ilevel_0', parser=parser, engine=engine) exp = df[ind != 'red'] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # list equality (really just set membership) res1 = df.query('ilevel_0 == ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] == ilevel_0', parser=parser, engine=engine) exp = df[ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) res1 = df.query('ilevel_0 != ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] != ilevel_0', parser=parser, engine=engine) exp = df[~ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # in/not in ops res1 = df.query('["red"] in ilevel_0', parser=parser, engine=engine) res2 = df.query('"red" in ilevel_0', parser=parser, engine=engine) exp = df[ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) res1 = df.query('["red"] not in ilevel_0', parser=parser, engine=engine) res2 = df.query('"red" not in ilevel_0', parser=parser, engine=engine) exp = df[~ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # ## LEVEL 1 ind = Series(df.index.get_level_values(1).values, index=index) res1 = df.query('ilevel_1 == "eggs"', parser=parser, engine=engine) res2 = df.query('"eggs" == ilevel_1', parser=parser, engine=engine) exp = df[ind == 'eggs'] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # inequality res1 = df.query('ilevel_1 != "eggs"', parser=parser, engine=engine) res2 = df.query('"eggs" != ilevel_1', parser=parser, engine=engine) exp = df[ind != 'eggs'] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # list equality (really just set membership) res1 = df.query('ilevel_1 == ["eggs"]', parser=parser, engine=engine) res2 = df.query('["eggs"] == ilevel_1', parser=parser, engine=engine) exp = df[ind.isin(['eggs'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) res1 = df.query('ilevel_1 != ["eggs"]', parser=parser, engine=engine) res2 = df.query('["eggs"] != ilevel_1', parser=parser, engine=engine) exp = df[~ind.isin(['eggs'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # in/not in ops res1 = df.query('["eggs"] in ilevel_1', parser=parser, engine=engine) res2 = df.query('"eggs" in ilevel_1', parser=parser, engine=engine) exp = df[ind.isin(['eggs'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) res1 = df.query('["eggs"] not in ilevel_1', parser=parser, engine=engine) res2 = df.query('"eggs" not in ilevel_1', parser=parser, engine=engine) exp = df[~ind.isin(['eggs'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) def test_query_with_partially_named_multiindex(self, parser, engine): tm.skip_if_no_ne(engine) skip_if_no_pandas_parser(parser) a = np.random.choice(['red', 'green'], size=10) b = np.arange(10) index = MultiIndex.from_arrays([a, b]) index.names = [None, 'rating'] df = DataFrame(randn(10, 2), index=index) res = df.query('rating == 1', parser=parser, engine=engine) ind = Series(df.index.get_level_values('rating').values, index=index, name='rating') exp = df[ind == 1] assert_frame_equal(res, exp) res = df.query('rating != 1', parser=parser, engine=engine) ind = Series(df.index.get_level_values('rating').values, index=index, name='rating') exp = df[ind != 1] assert_frame_equal(res, exp) res = df.query('ilevel_0 == "red"', parser=parser, engine=engine) ind = Series(df.index.get_level_values(0).values, index=index) exp = df[ind == "red"] assert_frame_equal(res, exp) res = df.query('ilevel_0 != "red"', parser=parser, engine=engine) ind = Series(df.index.get_level_values(0).values, index=index) exp = df[ind != "red"] assert_frame_equal(res, exp) def test_query_multiindex_get_index_resolvers(self): df = mkdf(10, 3, r_idx_nlevels=2, r_idx_names=['spam', 'eggs']) resolvers = df._get_index_resolvers() def to_series(mi, level): level_values = mi.get_level_values(level) s = level_values.to_series() s.index = mi return s col_series = df.columns.to_series() expected = {'index': df.index, 'columns': col_series, 'spam': to_series(df.index, 'spam'), 'eggs': to_series(df.index, 'eggs'), 'C0': col_series} for k, v in resolvers.items(): if isinstance(v, Index): assert v.is_(expected[k]) elif isinstance(v, Series): assert_series_equal(v, expected[k]) else: raise AssertionError("object must be a Series or Index") def test_raise_on_panel_with_multiindex(self, parser, engine): tm.skip_if_no_ne() p = tm.makePanel(7) p.items = tm.makeCustomIndex(len(p.items), nlevels=2) with pytest.raises(NotImplementedError): pd.eval('p + 1', parser=parser, engine=engine) def test_raise_on_panel4d_with_multiindex(self, parser, engine): tm.skip_if_no_ne() p4d = tm.makePanel4D(7) p4d.items = tm.makeCustomIndex(len(p4d.items), nlevels=2) with pytest.raises(NotImplementedError): pd.eval('p4d + 1', parser=parser, engine=engine) class TestDataFrameQueryNumExprPandas(object): @classmethod def setup_class(cls): cls.engine = 'numexpr' cls.parser = 'pandas' tm.skip_if_no_ne(cls.engine) @classmethod def teardown_class(cls): del cls.engine, cls.parser def test_date_query_with_attribute_access(self): engine, parser = self.engine, self.parser skip_if_no_pandas_parser(parser) df = DataFrame(randn(5, 3)) df['dates1'] = date_range('1/1/2012', periods=5) df['dates2'] = date_range('1/1/2013', periods=5) df['dates3'] = date_range('1/1/2014', periods=5) res = df.query('@df.dates1 < 20130101 < @df.dates3', engine=engine, parser=parser) expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_query_no_attribute_access(self): engine, parser = self.engine, self.parser df = DataFrame(randn(5, 3)) df['dates1'] = date_range('1/1/2012', periods=5) df['dates2'] = date_range('1/1/2013', periods=5) df['dates3'] = date_range('1/1/2014', periods=5) res = df.query('dates1 < 20130101 < dates3', engine=engine, parser=parser) expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_query_with_NaT(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates2'] = date_range('1/1/2013', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT df.loc[np.random.rand(n) > 0.5, 'dates3'] = pd.NaT res = df.query('dates1 < 20130101 < dates3', engine=engine, parser=parser) expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_index_query(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.set_index('dates1', inplace=True, drop=True) res = df.query('index < 20130101 < dates3', engine=engine, parser=parser) expec = df[(df.index < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_index_query_with_NaT(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.iloc[0, 0] = pd.NaT df.set_index('dates1', inplace=True, drop=True) res = df.query('index < 20130101 < dates3', engine=engine, parser=parser) expec = df[(df.index < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_index_query_with_NaT_duplicates(self): engine, parser = self.engine, self.parser n = 10 d = {} d['dates1'] = date_range('1/1/2012', periods=n) d['dates3'] = date_range('1/1/2014', periods=n) df = DataFrame(d) df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT df.set_index('dates1', inplace=True, drop=True) res = df.query('dates1 < 20130101 < dates3', engine=engine, parser=parser) expec = df[(df.index.to_series() < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_query_with_non_date(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame({'dates': date_range('1/1/2012', periods=n), 'nondate': np.arange(n)}) ops = '==', '!=', '<', '>', '<=', '>=' for op in ops: with pytest.raises(TypeError): df.query('dates %s nondate' % op, parser=parser, engine=engine) def test_query_syntax_error(self): engine, parser = self.engine, self.parser df = DataFrame({"i": lrange(10), "+": lrange(3, 13), "r": lrange(4, 14)}) with pytest.raises(SyntaxError): df.query('i - +', engine=engine, parser=parser) def test_query_scope(self): from pandas.core.computation.ops import UndefinedVariableError engine, parser = self.engine, self.parser skip_if_no_pandas_parser(parser) df = DataFrame(np.random.randn(20, 2), columns=list('ab')) a, b = 1, 2 # noqa res = df.query('a > b', engine=engine, parser=parser) expected = df[df.a > df.b] assert_frame_equal(res, expected) res = df.query('@a > b', engine=engine, parser=parser) expected = df[a > df.b] assert_frame_equal(res, expected) # no local variable c with pytest.raises(UndefinedVariableError): df.query('@a > b > @c', engine=engine, parser=parser) # no column named 'c' with pytest.raises(UndefinedVariableError): df.query('@a > b > c', engine=engine, parser=parser) def test_query_doesnt_pickup_local(self): from pandas.core.computation.ops import UndefinedVariableError engine, parser = self.engine, self.parser n = m = 10 df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc')) # we don't pick up the local 'sin' with pytest.raises(UndefinedVariableError): df.query('sin > 5', engine=engine, parser=parser) def test_query_builtin(self): from pandas.core.computation.engines import NumExprClobberingError engine, parser = self.engine, self.parser n = m = 10 df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc')) df.index.name = 'sin' with tm.assert_raises_regex(NumExprClobberingError, 'Variables in expression.+'): df.query('sin > 5', engine=engine, parser=parser) def test_query(self): engine, parser = self.engine, self.parser df = DataFrame(np.random.randn(10, 3), columns=['a', 'b', 'c']) assert_frame_equal(df.query('a < b', engine=engine, parser=parser), df[df.a < df.b]) assert_frame_equal(df.query('a + b > b * c', engine=engine, parser=parser), df[df.a + df.b > df.b * df.c]) def test_query_index_with_name(self): engine, parser = self.engine, self.parser df = DataFrame(np.random.randint(10, size=(10, 3)), index=Index(range(10), name='blob'), columns=['a', 'b', 'c']) res = df.query('(blob < 5) & (a < b)', engine=engine, parser=parser) expec = df[(df.index < 5) & (df.a < df.b)] assert_frame_equal(res, expec) res = df.query('blob < b', engine=engine, parser=parser) expec = df[df.index < df.b] assert_frame_equal(res, expec) def test_query_index_without_name(self): engine, parser = self.engine, self.parser df = DataFrame(np.random.randint(10, size=(10, 3)), index=range(10), columns=['a', 'b', 'c']) # "index" should refer to the index res = df.query('index < b', engine=engine, parser=parser) expec = df[df.index < df.b] assert_frame_equal(res, expec) # test against a scalar res = df.query('index < 5', engine=engine, parser=parser) expec = df[df.index < 5] assert_frame_equal(res, expec) def test_nested_scope(self): engine = self.engine parser = self.parser skip_if_no_pandas_parser(parser) df = DataFrame(np.random.randn(5, 3)) df2 = DataFrame(np.random.randn(5, 3)) expected = df[(df > 0) & (df2 > 0)] result = df.query('(@df > 0) & (@df2 > 0)', engine=engine, parser=parser) assert_frame_equal(result, expected) result = pd.eval('df[df > 0 and df2 > 0]', engine=engine, parser=parser) assert_frame_equal(result, expected) result = pd.eval('df[df > 0 and df2 > 0 and df[df > 0] > 0]', engine=engine, parser=parser) expected = df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)] assert_frame_equal(result, expected) result = pd.eval('df[(df>0) & (df2>0)]', engine=engine, parser=parser) expected = df.query('(@df>0) & (@df2>0)', engine=engine, parser=parser) assert_frame_equal(result, expected) def test_nested_raises_on_local_self_reference(self): from pandas.core.computation.ops import UndefinedVariableError df = DataFrame(np.random.randn(5, 3)) # can't reference ourself b/c we're a local so @ is necessary with pytest.raises(UndefinedVariableError): df.query('df > 0', engine=self.engine, parser=self.parser) def test_local_syntax(self): skip_if_no_pandas_parser(self.parser) engine, parser = self.engine, self.parser df = DataFrame(randn(100, 10), columns=list('abcdefghij')) b = 1 expect = df[df.a < b] result = df.query('a < @b', engine=engine, parser=parser) assert_frame_equal(result, expect) expect = df[df.a < df.b] result = df.query('a < b', engine=engine, parser=parser) assert_frame_equal(result, expect) def test_chained_cmp_and_in(self): skip_if_no_pandas_parser(self.parser) engine, parser = self.engine, self.parser cols = list('abc') df = DataFrame(randn(100, len(cols)), columns=cols) res = df.query('a < b < c and a not in b not in c', engine=engine, parser=parser) ind = (df.a < df.b) & (df.b < df.c) & ~df.b.isin(df.a) & ~df.c.isin(df.b) # noqa expec = df[ind] assert_frame_equal(res, expec) def test_local_variable_with_in(self): engine, parser = self.engine, self.parser skip_if_no_pandas_parser(parser) a = Series(np.random.randint(3, size=15), name='a') b = Series(np.random.randint(10, size=15), name='b') df = DataFrame({'a': a, 'b': b}) expected = df.loc[(df.b - 1).isin(a)] result = df.query('b - 1 in a', engine=engine, parser=parser) assert_frame_equal(expected, result) b = Series(np.random.randint(10, size=15), name='b') expected = df.loc[(b - 1).isin(a)] result = df.query('@b - 1 in a', engine=engine, parser=parser) assert_frame_equal(expected, result) def test_at_inside_string(self): engine, parser = self.engine, self.parser skip_if_no_pandas_parser(parser) c = 1 # noqa df = DataFrame({'a': ['a', 'a', 'b', 'b', '@c', '@c']}) result = df.query('a == "@c"', engine=engine, parser=parser) expected = df[df.a == "@c"] assert_frame_equal(result, expected) def test_query_undefined_local(self): from pandas.core.computation.ops import UndefinedVariableError engine, parser = self.engine, self.parser skip_if_no_pandas_parser(parser) df = DataFrame(np.random.rand(10, 2), columns=list('ab')) with tm.assert_raises_regex(UndefinedVariableError, "local variable 'c' is not defined"): df.query('a == @c', engine=engine, parser=parser) def test_index_resolvers_come_after_columns_with_the_same_name(self): n = 1 # noqa a = np.r_[20:101:20] df = DataFrame({'index': a, 'b': np.random.randn(a.size)}) df.index.name = 'index' result = df.query('index > 5', engine=self.engine, parser=self.parser) expected = df[df['index'] > 5] assert_frame_equal(result, expected) df = DataFrame({'index': a, 'b': np.random.randn(a.size)}) result = df.query('ilevel_0 > 5', engine=self.engine, parser=self.parser) expected = df.loc[df.index[df.index > 5]] assert_frame_equal(result, expected) df = DataFrame({'a': a, 'b': np.random.randn(a.size)}) df.index.name = 'a' result = df.query('a > 5', engine=self.engine, parser=self.parser) expected = df[df.a > 5] assert_frame_equal(result, expected) result = df.query('index > 5', engine=self.engine, parser=self.parser) expected = df.loc[df.index[df.index > 5]] assert_frame_equal(result, expected) def test_inf(self): n = 10 df = DataFrame({'a': np.random.rand(n), 'b': np.random.rand(n)}) df.loc[::2, 0] = np.inf ops = '==', '!=' d = dict(zip(ops, (operator.eq, operator.ne))) for op, f in d.items(): q = 'a %s inf' % op expected = df[f(df.a, np.inf)] result = df.query(q, engine=self.engine, parser=self.parser) assert_frame_equal(result, expected) class TestDataFrameQueryNumExprPython(TestDataFrameQueryNumExprPandas): @classmethod def setup_class(cls): super(TestDataFrameQueryNumExprPython, cls).setup_class() cls.engine = 'numexpr' cls.parser = 'python' tm.skip_if_no_ne(cls.engine) cls.frame = TestData().frame def test_date_query_no_attribute_access(self): engine, parser = self.engine, self.parser df = DataFrame(randn(5, 3)) df['dates1'] = date_range('1/1/2012', periods=5) df['dates2'] = date_range('1/1/2013', periods=5) df['dates3'] = date_range('1/1/2014', periods=5) res = df.query('(dates1 < 20130101) & (20130101 < dates3)', engine=engine, parser=parser) expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_query_with_NaT(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates2'] = date_range('1/1/2013', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT df.loc[np.random.rand(n) > 0.5, 'dates3'] = pd.NaT res = df.query('(dates1 < 20130101) & (20130101 < dates3)', engine=engine, parser=parser) expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_index_query(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.set_index('dates1', inplace=True, drop=True) res = df.query('(index < 20130101) & (20130101 < dates3)', engine=engine, parser=parser) expec = df[(df.index < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_index_query_with_NaT(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.iloc[0, 0] = pd.NaT df.set_index('dates1', inplace=True, drop=True) res = df.query('(index < 20130101) & (20130101 < dates3)', engine=engine, parser=parser) expec = df[(df.index < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_index_query_with_NaT_duplicates(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT df.set_index('dates1', inplace=True, drop=True) with pytest.raises(NotImplementedError): df.query('index < 20130101 < dates3', engine=engine, parser=parser) def test_nested_scope(self): from pandas.core.computation.ops import UndefinedVariableError engine = self.engine parser = self.parser # smoke test x = 1 # noqa result = pd.eval('x + 1', engine=engine, parser=parser) assert result == 2 df = DataFrame(np.random.randn(5, 3)) df2 = DataFrame(np.random.randn(5, 3)) # don't have the pandas parser with pytest.raises(SyntaxError): df.query('(@df>0) & (@df2>0)', engine=engine, parser=parser) with pytest.raises(UndefinedVariableError): df.query('(df>0) & (df2>0)', engine=engine, parser=parser) expected = df[(df > 0) & (df2 > 0)] result = pd.eval('df[(df > 0) & (df2 > 0)]', engine=engine, parser=parser) assert_frame_equal(expected, result) expected = df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)] result = pd.eval('df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]', engine=engine, parser=parser) assert_frame_equal(expected, result) class TestDataFrameQueryPythonPandas(TestDataFrameQueryNumExprPandas): @classmethod def setup_class(cls): super(TestDataFrameQueryPythonPandas, cls).setup_class() cls.engine = 'python' cls.parser = 'pandas' cls.frame = TestData().frame def test_query_builtin(self): engine, parser = self.engine, self.parser n = m = 10 df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc')) df.index.name = 'sin' expected = df[df.index > 5] result = df.query('sin > 5', engine=engine, parser=parser) assert_frame_equal(expected, result) class TestDataFrameQueryPythonPython(TestDataFrameQueryNumExprPython): @classmethod def setup_class(cls): super(TestDataFrameQueryPythonPython, cls).setup_class() cls.engine = cls.parser = 'python' cls.frame = TestData().frame def test_query_builtin(self): engine, parser = self.engine, self.parser n = m = 10 df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc')) df.index.name = 'sin' expected = df[df.index > 5] result = df.query('sin > 5', engine=engine, parser=parser) assert_frame_equal(expected, result) class TestDataFrameQueryStrings(object): def test_str_query_method(self, parser, engine): tm.skip_if_no_ne(engine) df = DataFrame(randn(10, 1), columns=['b']) df['strings'] = Series(list('aabbccddee')) expect = df[df.strings == 'a'] if parser != 'pandas': col = 'strings' lst = '"a"' lhs = [col] * 2 + [lst] * 2 rhs = lhs[::-1] eq, ne = '==', '!=' ops = 2 * ([eq] + [ne]) for lhs, op, rhs in zip(lhs, ops, rhs): ex = '{lhs} {op} {rhs}'.format(lhs=lhs, op=op, rhs=rhs) pytest.raises(NotImplementedError, df.query, ex, engine=engine, parser=parser, local_dict={'strings': df.strings}) else: res = df.query('"a" == strings', engine=engine, parser=parser) assert_frame_equal(res, expect) res = df.query('strings == "a"', engine=engine, parser=parser) assert_frame_equal(res, expect) assert_frame_equal(res, df[df.strings.isin(['a'])]) expect = df[df.strings != 'a'] res = df.query('strings != "a"', engine=engine, parser=parser) assert_frame_equal(res, expect) res = df.query('"a" != strings', engine=engine, parser=parser) assert_frame_equal(res, expect) assert_frame_equal(res, df[~df.strings.isin(['a'])]) def test_str_list_query_method(self, parser, engine): tm.skip_if_no_ne(engine) df = DataFrame(randn(10, 1), columns=['b']) df['strings'] = Series(list('aabbccddee')) expect = df[df.strings.isin(['a', 'b'])] if parser != 'pandas': col = 'strings' lst = '["a", "b"]' lhs = [col] * 2 + [lst] * 2 rhs = lhs[::-1] eq, ne = '==', '!=' ops = 2 * ([eq] + [ne]) for lhs, op, rhs in zip(lhs, ops, rhs): ex = '{lhs} {op} {rhs}'.format(lhs=lhs, op=op, rhs=rhs) with pytest.raises(NotImplementedError): df.query(ex, engine=engine, parser=parser) else: res = df.query('strings == ["a", "b"]', engine=engine, parser=parser) assert_frame_equal(res, expect) res = df.query('["a", "b"] == strings', engine=engine, parser=parser) assert_frame_equal(res, expect) expect = df[~df.strings.isin(['a', 'b'])] res = df.query('strings != ["a", "b"]', engine=engine, parser=parser) assert_frame_equal(res, expect) res = df.query('["a", "b"] != strings', engine=engine, parser=parser) assert_frame_equal(res, expect) def test_query_with_string_columns(self, parser, engine): tm.skip_if_no_ne(engine) df = DataFrame({'a': list('aaaabbbbcccc'), 'b': list('aabbccddeeff'), 'c': np.random.randint(5, size=12), 'd': np.random.randint(9, size=12)}) if parser == 'pandas': res = df.query('a in b', parser=parser, engine=engine) expec = df[df.a.isin(df.b)] assert_frame_equal(res, expec) res = df.query('a in b and c < d', parser=parser, engine=engine) expec = df[df.a.isin(df.b) & (df.c < df.d)] assert_frame_equal(res, expec) else: with pytest.raises(NotImplementedError): df.query('a in b', parser=parser, engine=engine) with pytest.raises(NotImplementedError): df.query('a in b and c < d', parser=parser, engine=engine) def test_object_array_eq_ne(self, parser, engine): tm.skip_if_no_ne(engine) df = DataFrame({'a': list('aaaabbbbcccc'), 'b': list('aabbccddeeff'), 'c': np.random.randint(5, size=12), 'd': np.random.randint(9, size=12)}) res = df.query('a == b', parser=parser, engine=engine) exp = df[df.a == df.b] assert_frame_equal(res, exp) res = df.query('a != b', parser=parser, engine=engine) exp = df[df.a != df.b] assert_frame_equal(res, exp) def test_query_with_nested_strings(self, parser, engine): tm.skip_if_no_ne(engine) skip_if_no_pandas_parser(parser) raw = """id event timestamp 1 "page 1 load" 1/1/2014 0:00:01 1 "page 1 exit" 1/1/2014 0:00:31 2 "page 2 load" 1/1/2014 0:01:01 2 "page 2 exit" 1/1/2014 0:01:31 3 "page 3 load" 1/1/2014 0:02:01 3 "page 3 exit" 1/1/2014 0:02:31 4 "page 1 load" 2/1/2014 1:00:01 4 "page 1 exit" 2/1/2014 1:00:31 5 "page 2 load" 2/1/2014 1:01:01 5 "page 2 exit" 2/1/2014 1:01:31 6 "page 3 load" 2/1/2014 1:02:01 6 "page 3 exit" 2/1/2014 1:02:31 """ df = pd.read_csv(StringIO(raw), sep=r'\s{2,}', engine='python', parse_dates=['timestamp']) expected = df[df.event == '"page 1 load"'] res = df.query("""'"page 1 load"' in event""", parser=parser, engine=engine) assert_frame_equal(expected, res) def test_query_with_nested_special_character(self, parser, engine): skip_if_no_pandas_parser(parser) tm.skip_if_no_ne(engine) df = DataFrame({'a': ['a', 'b', 'test & test'], 'b': [1, 2, 3]}) res = df.query('a == "test & test"', parser=parser, engine=engine) expec = df[df.a == 'test & test'] assert_frame_equal(res, expec) def test_query_lex_compare_strings(self, parser, engine): tm.skip_if_no_ne(engine=engine) import operator as opr a = Series(np.random.choice(list('abcde'), 20)) b = Series(np.arange(a.size)) df = DataFrame({'X': a, 'Y': b}) ops = {'<': opr.lt, '>': opr.gt, '<=': opr.le, '>=': opr.ge} for op, func in ops.items(): res = df.query('X %s "d"' % op, engine=engine, parser=parser) expected = df[func(df.X, 'd')] assert_frame_equal(res, expected) def test_query_single_element_booleans(self, parser, engine): tm.skip_if_no_ne(engine) columns = 'bid', 'bidsize', 'ask', 'asksize' data = np.random.randint(2, size=(1, len(columns))).astype(bool) df = DataFrame(data, columns=columns) res = df.query('bid & ask', engine=engine, parser=parser) expected = df[df.bid & df.ask] assert_frame_equal(res, expected) def test_query_string_scalar_variable(self, parser, engine): tm.skip_if_no_ne(engine) skip_if_no_pandas_parser(parser) df = pd.DataFrame({'Symbol': ['BUD US', 'BUD US', 'IBM US', 'IBM US'], 'Price': [109.70, 109.72, 183.30, 183.35]}) e = df[df.Symbol == 'BUD US'] symb = 'BUD US' # noqa r = df.query('Symbol == @symb', parser=parser, engine=engine) assert_frame_equal(e, r) class TestDataFrameEvalNumExprPandas(object): @classmethod def setup_class(cls): cls.engine = 'numexpr' cls.parser = 'pandas' tm.skip_if_no_ne() def setup_method(self, method): self.frame = DataFrame(randn(10, 3), columns=list('abc')) def teardown_method(self, method): del self.frame def test_simple_expr(self): res = self.frame.eval('a + b', engine=self.engine, parser=self.parser) expect = self.frame.a + self.frame.b assert_series_equal(res, expect) def test_bool_arith_expr(self): res = self.frame.eval('a[a < 1] + b', engine=self.engine, parser=self.parser) expect = self.frame.a[self.frame.a < 1] + self.frame.b assert_series_equal(res, expect) def test_invalid_type_for_operator_raises(self): df = DataFrame({'a': [1, 2], 'b': ['c', 'd']}) ops = '+', '-', '*', '/' for op in ops: with tm.assert_raises_regex(TypeError, "unsupported operand type\(s\) " "for .+: '.+' and '.+'"): df.eval('a {0} b'.format(op), engine=self.engine, parser=self.parser) class TestDataFrameEvalNumExprPython(TestDataFrameEvalNumExprPandas): @classmethod def setup_class(cls): super(TestDataFrameEvalNumExprPython, cls).setup_class() cls.engine = 'numexpr' cls.parser = 'python' tm.skip_if_no_ne(cls.engine) class TestDataFrameEvalPythonPandas(TestDataFrameEvalNumExprPandas): @classmethod def setup_class(cls): super(TestDataFrameEvalPythonPandas, cls).setup_class() cls.engine = 'python' cls.parser = 'pandas' class TestDataFrameEvalPythonPython(TestDataFrameEvalNumExprPython): @classmethod def setup_class(cls): cls.engine = cls.parser = 'python'
mit
JT5D/scikit-learn
examples/plot_multilabel.py
9
4299
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pylab as pl from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] pl.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": # Convert list of tuples to a class indicator matrix first Y_indicator = LabelBinarizer().fit(Y).transform(Y) X = CCA(n_components=2).fit(X, Y_indicator).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) pl.subplot(2, 2, subplot) pl.title(title) zero_class = np.where([0 in y for y in Y]) one_class = np.where([1 in y for y in Y]) pl.scatter(X[:, 0], X[:, 1], s=40, c='gray') pl.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') pl.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') pl.xticks(()) pl.yticks(()) pl.xlim(min_x - .5 * max_x, max_x + .5 * max_x) pl.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: pl.xlabel('First principal component') pl.ylabel('Second principal component') pl.legend(loc="upper left") pl.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") pl.subplots_adjust(.04, .02, .97, .94, .09, .2) pl.show()
bsd-3-clause
bgris/ODL_bgris
lib/python3.5/site-packages/odl/util/graphics.py
1
15419
# Copyright 2014-2016 The ODL development group # # This file is part of ODL. # # ODL is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ODL is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ODL. If not, see <http://www.gnu.org/licenses/>. """Functions for graphical output.""" # Imports for common Python 2/3 codebase from __future__ import print_function, division, absolute_import from future import standard_library standard_library.install_aliases() import numpy as np from odl.util.testutils import run_doctests from odl.util.utility import is_real_dtype __all__ = ('show_discrete_data',) def _safe_minmax(values): """Calculate min and max of array with guards for nan and inf.""" # Nan and inf guarded min and max minval = np.min(values[np.isfinite(values)]) maxval = np.max(values[np.isfinite(values)]) return minval, maxval def _colorbar_ticks(minval, maxval): """Return the ticks (values show) in the colorbar.""" return [minval, (maxval + minval) / 2., maxval] def _digits(minval, maxval): """Digits needed to comforatbly display values in [minval, maxval]""" if minval == maxval: return 3 else: return min(10, max(2, int(1 + abs(np.log10(maxval - minval))))) def _colorbar_format(minval, maxval): """Return the format string for the colorbar.""" return '%.{}f'.format(_digits(minval, maxval)) def _axes_info(grid, npoints=5): result = [] min_pt = grid.min() max_pt = grid.max() for axis in range(grid.ndim): xmin = min_pt[axis] xmax = max_pt[axis] points = np.linspace(xmin, xmax, npoints) indices = np.linspace(0, grid.shape[axis] - 1, npoints, dtype=int) tick_values = grid.coord_vectors[axis][indices] # Do not use corner point in case of a partition, use outer corner tick_values[[0, -1]] = xmin, xmax format_str = '{:.' + str(_digits(xmin, xmax)) + 'f}' tick_labels = [format_str.format(f) for f in tick_values] result += [(points, tick_labels)] return result def show_discrete_data(values, grid, title=None, method='', force_show=False, fig=None, **kwargs): """Display a discrete 1d or 2d function. Parameters ---------- values : `numpy.ndarray` The values to visualize grid : `TensorGrid` or `RectPartition` Grid of the values title : string, optional Set the title of the figure method : string, optional 1d methods: 'plot' : graph plot 'scatter' : scattered 2d points (2nd axis <-> value) 2d methods: 'imshow' : image plot with coloring according to value, including a colorbar. 'scatter' : cloud of scattered 3d points (3rd axis <-> value) 'wireframe', 'plot_wireframe' : surface plot force_show : bool, optional Whether the plot should be forced to be shown now or deferred until later. Note that some backends always displays the plot, regardless of this value. fig : `matplotlib.figure.Figure`, optional The figure to show in. Expected to be of same "style", as the figure given by this function. The most common usecase is that fig is the return value from an earlier call to this function. Default: New figure interp : {'nearest', 'linear'}, optional Interpolation method to use. Default: 'nearest' axis_labels : string, optional Axis labels, default: ['x', 'y'] update_in_place : bool, optional Update the content of the figure in place. Intended for faster real time plotting, typically ~5 times faster. This is only performed for ``method == 'imshow'`` with real data and ``fig != None``. Otherwise this parameter is treated as False. Default: False axis_fontsize : int, optional Fontsize for the axes. Default: 16 kwargs : {'figsize', 'saveto', ...} Extra keyword arguments passed on to display method See the Matplotlib functions for documentation of extra options. Returns ------- fig : `matplotlib.figure.Figure` The resulting figure. It is also shown to the user. See Also -------- matplotlib.pyplot.plot : Show graph plot matplotlib.pyplot.imshow : Show data as image matplotlib.pyplot.scatter : Show scattered 3d points """ # Importing pyplot takes ~2 sec, only import when needed. import matplotlib.pyplot as plt args_re = [] args_im = [] dsp_kwargs = {} sub_kwargs = {} arrange_subplots = (121, 122) # horzontal arrangement # Create axis labels which remember their original meaning axis_labels = kwargs.pop('axis_labels', ['x', 'y']) values_are_complex = not is_real_dtype(values.dtype) figsize = kwargs.pop('figsize', None) saveto = kwargs.pop('saveto', None) interp = kwargs.pop('interp', 'nearest') axis_fontsize = kwargs.pop('axis_fontsize', 16) # Check if we should and can update the plot in place update_in_place = kwargs.pop('update_in_place', False) if (update_in_place and (fig is None or values_are_complex or values.ndim != 2 or (values.ndim == 2 and method not in ('', 'imshow')))): update_in_place = False if values.ndim == 1: # TODO: maybe a plotter class would be better if not method: if interp == 'nearest': method = 'step' dsp_kwargs['where'] = 'mid' elif interp == 'linear': method = 'plot' else: method = 'plot' if method == 'plot' or method == 'step' or method == 'scatter': args_re += [grid.coord_vectors[0], values.real] args_im += [grid.coord_vectors[0], values.imag] else: raise ValueError('`method` {!r} not supported' ''.format(method)) elif values.ndim == 2: if not method: method = 'imshow' if method == 'imshow': args_re = [np.rot90(values.real)] args_im = [np.rot90(values.imag)] if values_are_complex else [] extent = [grid.min()[0], grid.max()[0], grid.min()[1], grid.max()[1]] if interp == 'nearest': interpolation = 'nearest' elif interp == 'linear': interpolation = 'bilinear' else: interpolation = 'none' dsp_kwargs.update({'interpolation': interpolation, 'cmap': 'bone', 'extent': extent, 'aspect': 'auto'}) elif method == 'scatter': pts = grid.points() args_re = [pts[:, 0], pts[:, 1], values.ravel().real] args_im = ([pts[:, 0], pts[:, 1], values.ravel().imag] if values_are_complex else []) sub_kwargs.update({'projection': '3d'}) elif method in ('wireframe', 'plot_wireframe'): method = 'plot_wireframe' x, y = grid.meshgrid args_re = [x, y, np.rot90(values.real)] args_im = ([x, y, np.rot90(values.imag)] if values_are_complex else []) sub_kwargs.update({'projection': '3d'}) else: raise ValueError('`method` {!r} not supported' ''.format(method)) else: raise NotImplementedError('no method for {}d display implemented' ''.format(values.ndim)) # Additional keyword args are passed on to the display method dsp_kwargs.update(**kwargs) if fig is not None: # Reuse figure if given as input if not isinstance(fig, plt.Figure): raise TypeError('`fig` {} not a matplotlib figure'.format(fig)) if not plt.fignum_exists(fig.number): # If figure does not exist, user either closed the figure or # is using IPython, in this case we need a new figure. fig = plt.figure(figsize=figsize) updatefig = False else: # Set current figure to given input fig = plt.figure(fig.number) updatefig = True if values.ndim > 1 and not update_in_place: # If the figure is larger than 1d, we can clear it since we # dont reuse anything. Keeping it causes performance problems. fig.clf() else: fig = plt.figure(figsize=figsize) updatefig = False if values_are_complex: # Real if len(fig.axes) == 0: # Create new axis if needed sub_re = plt.subplot(arrange_subplots[0], **sub_kwargs) sub_re.set_title('Real part') sub_re.set_xlabel(axis_labels[0], fontsize=axis_fontsize) if values.ndim == 2: sub_re.set_ylabel(axis_labels[1], fontsize=axis_fontsize) else: sub_re.set_ylabel('value') else: sub_re = fig.axes[0] display_re = getattr(sub_re, method) csub_re = display_re(*args_re, **dsp_kwargs) # Axis ticks if method == 'imshow' and not grid.is_uniform: (xpts, xlabels), (ypts, ylabels) = _axes_info(grid) plt.xticks(xpts, xlabels) plt.yticks(ypts, ylabels) if method == 'imshow' and len(fig.axes) < 2: # Create colorbar if none seems to exist # Use clim from kwargs if given if 'clim' not in kwargs: minval_re, maxval_re = _safe_minmax(values.real) else: minval_re, maxval_re = kwargs['clim'] ticks_re = _colorbar_ticks(minval_re, maxval_re) format_re = _colorbar_format(minval_re, maxval_re) plt.colorbar(csub_re, orientation='horizontal', ticks=ticks_re, format=format_re) # Imaginary if len(fig.axes) < 3: sub_im = plt.subplot(arrange_subplots[1], **sub_kwargs) sub_im.set_title('Imaginary part') sub_im.set_xlabel(axis_labels[0], fontsize=axis_fontsize) if values.ndim == 2: sub_im.set_ylabel(axis_labels[1], fontsize=axis_fontsize) else: sub_im.set_ylabel('value') else: sub_im = fig.axes[2] display_im = getattr(sub_im, method) csub_im = display_im(*args_im, **dsp_kwargs) # Axis ticks if method == 'imshow' and not grid.is_uniform: (xpts, xlabels), (ypts, ylabels) = _axes_info(grid) plt.xticks(xpts, xlabels) plt.yticks(ypts, ylabels) if method == 'imshow' and len(fig.axes) < 4: # Create colorbar if none seems to exist # Use clim from kwargs if given if 'clim' not in kwargs: minval_im, maxval_im = _safe_minmax(values.imag) else: minval_im, maxval_im = kwargs['clim'] ticks_im = _colorbar_ticks(minval_im, maxval_im) format_im = _colorbar_format(minval_im, maxval_im) plt.colorbar(csub_im, orientation='horizontal', ticks=ticks_im, format=format_im) else: if len(fig.axes) == 0: # Create new axis object if needed sub = plt.subplot(111, **sub_kwargs) sub.set_xlabel(axis_labels[0], fontsize=axis_fontsize) if values.ndim == 2: sub.set_ylabel(axis_labels[1], fontsize=axis_fontsize) else: sub.set_ylabel('value') try: # For 3d plots sub.set_zlabel('z') except AttributeError: pass else: sub = fig.axes[0] if update_in_place: import matplotlib as mpl imgs = [obj for obj in sub.get_children() if isinstance(obj, mpl.image.AxesImage)] if len(imgs) > 0 and updatefig: imgs[0].set_data(args_re[0]) csub = imgs[0] # Update min-max if 'clim' not in kwargs: minval, maxval = _safe_minmax(values) else: minval, maxval = kwargs['clim'] csub.set_clim(minval, maxval) else: display = getattr(sub, method) csub = display(*args_re, **dsp_kwargs) else: display = getattr(sub, method) csub = display(*args_re, **dsp_kwargs) # Axis ticks if method == 'imshow' and not grid.is_uniform: (xpts, xlabels), (ypts, ylabels) = _axes_info(grid) plt.xticks(xpts, xlabels) plt.yticks(ypts, ylabels) if method == 'imshow': # Add colorbar # Use clim from kwargs if given if 'clim' not in kwargs: minval, maxval = _safe_minmax(values) else: minval, maxval = kwargs['clim'] ticks = _colorbar_ticks(minval, maxval) format = _colorbar_format(minval, maxval) if len(fig.axes) < 2: # Create colorbar if none seems to exist plt.colorbar(mappable=csub, ticks=ticks, format=format) elif update_in_place: # If it exists and we should update it csub.colorbar.set_clim(minval, maxval) csub.colorbar.set_ticks(ticks) csub.colorbar.set_ticklabels([format % tick for tick in ticks]) csub.colorbar.draw_all() # Fixes overlapping stuff at the expense of potentially squashed subplots if not update_in_place: fig.tight_layout() if title is not None: if not values_are_complex: # Do not overwrite title for complex values plt.title(title) fig.canvas.manager.set_window_title(title) if updatefig or plt.isinteractive(): # If we are running in interactive mode, we can always show the fig # This causes an artifact, where users of `CallbackShow` without # interactive mode only shows the figure after the second iteration. plt.show(block=False) if not update_in_place: plt.draw() plt.pause(0.0001) else: try: sub.draw_artist(csub) fig.canvas.blit(fig.bbox) fig.canvas.update() fig.canvas.flush_events() except AttributeError: plt.draw() plt.pause(0.0001) if force_show: plt.show() if saveto is not None: fig.savefig(saveto) return fig if __name__ == '__main__': run_doctests()
gpl-3.0
DistrictDataLabs/django-data-product
irisfinder/views.py
1
1948
from django.shortcuts import render import datetime from models import Iris, SVMModels from forms import UserIrisData import sklearn from sklearn import svm from sklearn.cross_validation import train_test_split import numpy as np from django.conf import settings import cPickle import scipy from pytz import timezone import random # Create your views here. def predict(request): data = { "app_name": "irisfinder", "random_number": random.randint(0, 10000) } if request.method == "GET": form = UserIrisData() data.update({"form": form, "submit": True}) elif request.method == "POST": form = UserIrisData(request.POST) sepal_length = request.POST.get("sepal_length") sepal_width = request.POST.get("sepal_width") petal_length = request.POST.get("petal_length") petal_width = request.POST.get("petal_width") if request.POST.get('submit'): user_data = Iris(user_data=True, sepal_length=sepal_length, sepal_width=sepal_width, petal_length=petal_length, petal_width=petal_width) user_data.save() model_object = SVMModels.objects.order_by("-run_date").first() model = cPickle.loads(model_object.model_pickle) prediction = model.predict([sepal_length, sepal_width, petal_length, petal_width]) item_pk = user_data.pk species = prediction[0] data.update({"form": form, "verify": True, "item_pk": item_pk, "species": species, "prediction": prediction[0]}) elif request.POST.get('verified'): user_data = Iris.objects.get(pk=int(request.POST.get("item_pk"))) user_data.species = request.POST.get("species") user_data.save() return render(request, "predict.html", context=data)
apache-2.0
nvoron23/statsmodels
statsmodels/sandbox/examples/try_multiols.py
33
1243
# -*- coding: utf-8 -*- """ Created on Sun May 26 13:23:40 2013 Author: Josef Perktold, based on Enrico Giampieri's multiOLS """ #import numpy as np import pandas as pd import statsmodels.api as sm from statsmodels.sandbox.multilinear import multiOLS, multigroup data = sm.datasets.longley.load_pandas() df = data.exog df['TOTEMP'] = data.endog #This will perform the specified linear model on all the #other columns of the dataframe res0 = multiOLS('GNP + 1', df) #This select only a certain subset of the columns res = multiOLS('GNP + 0', df, ['GNPDEFL', 'TOTEMP', 'POP']) print(res.to_string()) url = "http://vincentarelbundock.github.com/" url = url + "Rdatasets/csv/HistData/Guerry.csv" df = pd.read_csv(url, index_col=1) #'dept') #evaluate the relationship between the various parameters whith the Wealth pvals = multiOLS('Wealth', df)['adj_pvals', '_f_test'] #define the groups groups = {} groups['crime'] = ['Crime_prop', 'Infanticide', 'Crime_parents', 'Desertion', 'Crime_pers'] groups['religion'] = ['Donation_clergy', 'Clergy', 'Donations'] groups['wealth'] = ['Commerce', 'Lottery', 'Instruction', 'Literacy'] #do the analysis of the significance res3 = multigroup(pvals < 0.05, groups) print(res3)
bsd-3-clause
ChanderG/scikit-learn
sklearn/manifold/tests/test_isomap.py
226
3941
from itertools import product import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from sklearn import datasets from sklearn import manifold from sklearn import neighbors from sklearn import pipeline from sklearn import preprocessing from sklearn.utils.testing import assert_less eigen_solvers = ['auto', 'dense', 'arpack'] path_methods = ['auto', 'FW', 'D'] def test_isomap_simple_grid(): # Isomap should preserve distances when all neighbors are used N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # distances from each point to all others G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() assert_array_almost_equal(G, G_iso) def test_isomap_reconstruction_error(): # Same setup as in test_isomap_simple_grid, with an added dimension N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # add noise in a third dimension rng = np.random.RandomState(0) noise = 0.1 * rng.randn(Npts, 1) X = np.concatenate((X, noise), 1) # compute input kernel G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() centerer = preprocessing.KernelCenterer() K = centerer.fit_transform(-0.5 * G ** 2) for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) # compute output kernel G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() K_iso = centerer.fit_transform(-0.5 * G_iso ** 2) # make sure error agrees reconstruction_error = np.linalg.norm(K - K_iso) / Npts assert_almost_equal(reconstruction_error, clf.reconstruction_error()) def test_transform(): n_samples = 200 n_components = 10 noise_scale = 0.01 # Create S-curve dataset X, y = datasets.samples_generator.make_s_curve(n_samples, random_state=0) # Compute isomap embedding iso = manifold.Isomap(n_components, 2) X_iso = iso.fit_transform(X) # Re-embed a noisy version of the points rng = np.random.RandomState(0) noise = noise_scale * rng.randn(*X.shape) X_iso2 = iso.transform(X + noise) # Make sure the rms error on re-embedding is comparable to noise_scale assert_less(np.sqrt(np.mean((X_iso - X_iso2) ** 2)), 2 * noise_scale) def test_pipeline(): # check that Isomap works fine as a transformer in a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('isomap', manifold.Isomap()), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y))
bsd-3-clause
nmayorov/scikit-learn
sklearn/linear_model/logistic.py
9
67760
""" Logistic Regression """ # Author: Gael Varoquaux <gael.varoquaux@normalesup.org> # Fabian Pedregosa <f@bianp.net> # Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Manoj Kumar <manojkumarsivaraj334@gmail.com> # Lars Buitinck # Simon Wu <s8wu@uwaterloo.ca> import numbers import warnings import numpy as np from scipy import optimize, sparse from .base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator from .sag import sag_solver from ..feature_selection.from_model import _LearntSelectorMixin from ..preprocessing import LabelEncoder, LabelBinarizer from ..svm.base import _fit_liblinear from ..utils import check_array, check_consistent_length, compute_class_weight from ..utils import check_random_state from ..utils.extmath import (logsumexp, log_logistic, safe_sparse_dot, softmax, squared_norm) from ..utils.extmath import row_norms from ..utils.optimize import newton_cg from ..utils.validation import check_X_y from ..exceptions import DataConversionWarning from ..exceptions import NotFittedError from ..utils.fixes import expit from ..utils.multiclass import check_classification_targets from ..externals.joblib import Parallel, delayed from ..model_selection import check_cv from ..externals import six from ..metrics import SCORERS # .. some helper functions for logistic_regression_path .. def _intercept_dot(w, X, y): """Computes y * np.dot(X, w). It takes into consideration if the intercept should be fit or not. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. """ c = 0. if w.size == X.shape[1] + 1: c = w[-1] w = w[:-1] z = safe_sparse_dot(X, w) + c return w, c, y * z def _logistic_loss_and_grad(w, X, y, alpha, sample_weight=None): """Computes the logistic loss and gradient. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. """ _, n_features = X.shape grad = np.empty_like(w) w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if grad.shape[0] > n_features: grad[-1] = z0.sum() return out, grad def _logistic_loss(w, X, y, alpha, sample_weight=None): """Computes the logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. """ w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) return out def _logistic_grad_hess(w, X, y, alpha, sample_weight=None): """Computes the gradient and the Hessian, in the case of a logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. Hs : callable Function that takes the gradient as a parameter and returns the matrix product of the Hessian and gradient. """ n_samples, n_features = X.shape grad = np.empty_like(w) fit_intercept = grad.shape[0] > n_features w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if fit_intercept: grad[-1] = z0.sum() # The mat-vec product of the Hessian d = sample_weight * z * (1 - z) if sparse.issparse(X): dX = safe_sparse_dot(sparse.dia_matrix((d, 0), shape=(n_samples, n_samples)), X) else: # Precompute as much as possible dX = d[:, np.newaxis] * X if fit_intercept: # Calculate the double derivative with respect to intercept # In the case of sparse matrices this returns a matrix object. dd_intercept = np.squeeze(np.array(dX.sum(axis=0))) def Hs(s): ret = np.empty_like(s) ret[:n_features] = X.T.dot(dX.dot(s[:n_features])) ret[:n_features] += alpha * s[:n_features] # For the fit intercept case. if fit_intercept: ret[:n_features] += s[-1] * dd_intercept ret[-1] = dd_intercept.dot(s[:n_features]) ret[-1] += d.sum() * s[-1] return ret return grad, Hs def _multinomial_loss(w, X, Y, alpha, sample_weight): """Computes multinomial loss and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- loss : float Multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities. w : ndarray, shape (n_classes, n_features) Reshaped param vector excluding intercept terms. Reference --------- Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. (Chapter 4.3.4) """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) w = w.reshape(n_classes, -1) sample_weight = sample_weight[:, np.newaxis] if fit_intercept: intercept = w[:, -1] w = w[:, :-1] else: intercept = 0 p = safe_sparse_dot(X, w.T) p += intercept p -= logsumexp(p, axis=1)[:, np.newaxis] loss = -(sample_weight * Y * p).sum() loss += 0.5 * alpha * squared_norm(w) p = np.exp(p, p) return loss, p, w def _multinomial_loss_grad(w, X, Y, alpha, sample_weight): """Computes the multinomial loss, gradient and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- loss : float Multinomial loss. grad : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities Reference --------- Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. (Chapter 4.3.4) """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = (w.size == n_classes * (n_features + 1)) grad = np.zeros((n_classes, n_features + bool(fit_intercept))) loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] diff = sample_weight * (p - Y) grad[:, :n_features] = safe_sparse_dot(diff.T, X) grad[:, :n_features] += alpha * w if fit_intercept: grad[:, -1] = diff.sum(axis=0) return loss, grad.ravel(), p def _multinomial_grad_hess(w, X, Y, alpha, sample_weight): """ Computes the gradient and the Hessian, in the case of a multinomial loss. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- grad : array, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. hessp : callable Function that takes in a vector input of shape (n_classes * n_features) or (n_classes * (n_features + 1)) and returns matrix-vector product with hessian. References ---------- Barak A. Pearlmutter (1993). Fast Exact Multiplication by the Hessian. http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf """ n_features = X.shape[1] n_classes = Y.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) # `loss` is unused. Refactoring to avoid computing it does not # significantly speed up the computation and decreases readability loss, grad, p = _multinomial_loss_grad(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] # Hessian-vector product derived by applying the R-operator on the gradient # of the multinomial loss function. def hessp(v): v = v.reshape(n_classes, -1) if fit_intercept: inter_terms = v[:, -1] v = v[:, :-1] else: inter_terms = 0 # r_yhat holds the result of applying the R-operator on the multinomial # estimator. r_yhat = safe_sparse_dot(X, v.T) r_yhat += inter_terms r_yhat += (-p * r_yhat).sum(axis=1)[:, np.newaxis] r_yhat *= p r_yhat *= sample_weight hessProd = np.zeros((n_classes, n_features + bool(fit_intercept))) hessProd[:, :n_features] = safe_sparse_dot(r_yhat.T, X) hessProd[:, :n_features] += v * alpha if fit_intercept: hessProd[:, -1] = r_yhat.sum(axis=0) return hessProd.ravel() return grad, hessp def _check_solver_option(solver, multi_class, penalty, dual): if solver not in ['liblinear', 'newton-cg', 'lbfgs', 'sag']: raise ValueError("Logistic Regression supports only liblinear," " newton-cg, lbfgs and sag solvers, got %s" % solver) if multi_class not in ['multinomial', 'ovr']: raise ValueError("multi_class should be either multinomial or " "ovr, got %s" % multi_class) if multi_class == 'multinomial' and solver == 'liblinear': raise ValueError("Solver %s does not support " "a multinomial backend." % solver) if solver != 'liblinear': if penalty != 'l2': raise ValueError("Solver %s supports only l2 penalties, " "got %s penalty." % (solver, penalty)) if dual: raise ValueError("Solver %s supports only " "dual=False, got dual=%s" % (solver, dual)) def logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, solver='lbfgs', coef=None, copy=False, class_weight=None, dual=False, penalty='l2', intercept_scaling=1., multi_class='ovr', random_state=None, check_input=True, max_squared_sum=None, sample_weight=None): """Compute a Logistic Regression model for a list of regularization parameters. This is an implementation that uses the result of the previous model to speed up computations along the set of solutions, making it faster than sequentially calling LogisticRegression for the different parameters. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) Input data, target values. Cs : int | array-like, shape (n_cs,) List of values for the regularization parameter or integer specifying the number of regularization parameters that should be used. In this case, the parameters will be chosen in a logarithmic scale between 1e-4 and 1e4. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. fit_intercept : bool Whether to fit an intercept for the model. In this case the shape of the returned array is (n_cs, n_features + 1). max_iter : int Maximum number of iterations for the solver. tol : float Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag'} Numerical solver to use. coef : array-like, shape (n_features,), default None Initialization value for coefficients of logistic regression. Useless for liblinear solver. copy : bool, default False Whether or not to produce a copy of the data. A copy is not required anymore. This parameter is deprecated and will be removed in 0.19. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. intercept_scaling : float, default 1. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' and 'newton-cg' solvers. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used only in solvers 'sag' and 'liblinear'. check_input : bool, default True If False, the input arrays X and y will not be checked. max_squared_sum : float, default None Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like, shape(n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. n_iter : array, shape (n_cs,) Actual number of iteration for each Cs. Notes ----- You might get slightly different results with the solver liblinear than with the others since this uses LIBLINEAR which penalizes the intercept. """ if copy: warnings.warn("A copy is not required anymore. The 'copy' parameter " "is deprecated and will be removed in 0.19.", DeprecationWarning) if isinstance(Cs, numbers.Integral): Cs = np.logspace(-4, 4, Cs) _check_solver_option(solver, multi_class, penalty, dual) # Preprocessing. if check_input or copy: X = check_array(X, accept_sparse='csr', dtype=np.float64) y = check_array(y, ensure_2d=False, copy=copy, dtype=None) check_consistent_length(X, y) _, n_features = X.shape classes = np.unique(y) random_state = check_random_state(random_state) if pos_class is None and multi_class != 'multinomial': if (classes.size > 2): raise ValueError('To fit OvR, use the pos_class argument') # np.unique(y) gives labels in sorted order. pos_class = classes[1] # If sample weights exist, convert them to array (support for lists) # and check length # Otherwise set them to 1 for all examples if sample_weight is not None: sample_weight = np.array(sample_weight, dtype=np.float64, order='C') check_consistent_length(y, sample_weight) else: sample_weight = np.ones(X.shape[0]) # If class_weights is a dict (provided by the user), the weights # are assigned to the original labels. If it is "balanced", then # the class_weights are assigned after masking the labels with a OvR. le = LabelEncoder() if isinstance(class_weight, dict) or multi_class == 'multinomial': if solver == "liblinear": if classes.size == 2: # Reconstruct the weights with keys 1 and -1 temp = {1: class_weight[pos_class], -1: class_weight[classes[0]]} class_weight = temp.copy() else: raise ValueError("In LogisticRegressionCV the liblinear " "solver cannot handle multiclass with " "class_weight of type dict. Use the lbfgs, " "newton-cg or sag solvers or set " "class_weight='balanced'") else: class_weight_ = compute_class_weight(class_weight, classes, y) sample_weight *= class_weight_[le.fit_transform(y)] # For doing a ovr, we need to mask the labels first. for the # multinomial case this is not necessary. if multi_class == 'ovr': w0 = np.zeros(n_features + int(fit_intercept)) mask_classes = np.array([-1, 1]) mask = (y == pos_class) y_bin = np.ones(y.shape, dtype=np.float64) y_bin[~mask] = -1. # for compute_class_weight # 'auto' is deprecated and will be removed in 0.19 if class_weight in ("auto", "balanced"): class_weight_ = compute_class_weight(class_weight, mask_classes, y_bin) sample_weight *= class_weight_[le.fit_transform(y_bin)] else: if solver != 'sag': lbin = LabelBinarizer() Y_multi = lbin.fit_transform(y) if Y_multi.shape[1] == 1: Y_multi = np.hstack([1 - Y_multi, Y_multi]) else: # SAG multinomial solver needs LabelEncoder, not LabelBinarizer le = LabelEncoder() Y_multi = le.fit_transform(y) w0 = np.zeros((classes.size, n_features + int(fit_intercept)), order='F') if coef is not None: # it must work both giving the bias term and not if multi_class == 'ovr': if coef.size not in (n_features, w0.size): raise ValueError( 'Initialization coef is of shape %d, expected shape ' '%d or %d' % (coef.size, n_features, w0.size)) w0[:coef.size] = coef else: # For binary problems coef.shape[0] should be 1, otherwise it # should be classes.size. n_classes = classes.size if n_classes == 2: n_classes = 1 if (coef.shape[0] != n_classes or coef.shape[1] not in (n_features, n_features + 1)): raise ValueError( 'Initialization coef is of shape (%d, %d), expected ' 'shape (%d, %d) or (%d, %d)' % ( coef.shape[0], coef.shape[1], classes.size, n_features, classes.size, n_features + 1)) w0[:, :coef.shape[1]] = coef if multi_class == 'multinomial': # fmin_l_bfgs_b and newton-cg accepts only ravelled parameters. if solver in ['lbfgs', 'newton-cg']: w0 = w0.ravel() target = Y_multi if solver == 'lbfgs': func = lambda x, *args: _multinomial_loss_grad(x, *args)[0:2] elif solver == 'newton-cg': func = lambda x, *args: _multinomial_loss(x, *args)[0] grad = lambda x, *args: _multinomial_loss_grad(x, *args)[1] hess = _multinomial_grad_hess warm_start_sag = {'coef': w0.T} else: target = y_bin if solver == 'lbfgs': func = _logistic_loss_and_grad elif solver == 'newton-cg': func = _logistic_loss grad = lambda x, *args: _logistic_loss_and_grad(x, *args)[1] hess = _logistic_grad_hess warm_start_sag = {'coef': np.expand_dims(w0, axis=1)} coefs = list() n_iter = np.zeros(len(Cs), dtype=np.int32) for i, C in enumerate(Cs): if solver == 'lbfgs': try: w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol, maxiter=max_iter) except TypeError: # old scipy doesn't have maxiter w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol) if info["warnflag"] == 1 and verbose > 0: warnings.warn("lbfgs failed to converge. Increase the number " "of iterations.") try: n_iter_i = info['nit'] - 1 except: n_iter_i = info['funcalls'] - 1 elif solver == 'newton-cg': args = (X, target, 1. / C, sample_weight) w0, n_iter_i = newton_cg(hess, func, grad, w0, args=args, maxiter=max_iter, tol=tol) elif solver == 'liblinear': coef_, intercept_, n_iter_i, = _fit_liblinear( X, target, C, fit_intercept, intercept_scaling, class_weight, penalty, dual, verbose, max_iter, tol, random_state, sample_weight=sample_weight) if fit_intercept: w0 = np.concatenate([coef_.ravel(), intercept_]) else: w0 = coef_.ravel() elif solver == 'sag': if multi_class == 'multinomial': target = target.astype(np.float64) loss = 'multinomial' else: loss = 'log' w0, n_iter_i, warm_start_sag = sag_solver( X, target, sample_weight, loss, 1. / C, max_iter, tol, verbose, random_state, False, max_squared_sum, warm_start_sag) else: raise ValueError("solver must be one of {'liblinear', 'lbfgs', " "'newton-cg', 'sag'}, got '%s' instead" % solver) if multi_class == 'multinomial': multi_w0 = np.reshape(w0, (classes.size, -1)) if classes.size == 2: multi_w0 = multi_w0[1][np.newaxis, :] coefs.append(multi_w0) else: coefs.append(w0.copy()) n_iter[i] = n_iter_i return coefs, np.array(Cs), n_iter # helper function for LogisticCV def _log_reg_scoring_path(X, y, train, test, pos_class=None, Cs=10, scoring=None, fit_intercept=False, max_iter=100, tol=1e-4, class_weight=None, verbose=0, solver='lbfgs', penalty='l2', dual=False, intercept_scaling=1., multi_class='ovr', random_state=None, max_squared_sum=None, sample_weight=None): """Computes scores across logistic_regression_path Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target labels. train : list of indices The indices of the train set. test : list of indices The indices of the test set. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. If not provided, then a fixed set of values for Cs are used. scoring : callable For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. fit_intercept : bool If False, then the bias term is set to zero. Else the last term of each coef_ gives us the intercept. max_iter : int Maximum number of iterations for the solver. tol : float Tolerance for stopping criteria. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag'} Decides which solver to use. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. intercept_scaling : float, default 1. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' and 'newton-cg' solver. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used only in solvers 'sag' and 'liblinear'. max_squared_sum : float, default None Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like, shape(n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. scores : ndarray, shape (n_cs,) Scores obtained for each Cs. n_iter : array, shape(n_cs,) Actual number of iteration for each Cs. """ _check_solver_option(solver, multi_class, penalty, dual) X_train = X[train] X_test = X[test] y_train = y[train] y_test = y[test] if sample_weight is not None: sample_weight = sample_weight[train] coefs, Cs, n_iter = logistic_regression_path( X_train, y_train, Cs=Cs, fit_intercept=fit_intercept, solver=solver, max_iter=max_iter, class_weight=class_weight, pos_class=pos_class, multi_class=multi_class, tol=tol, verbose=verbose, dual=dual, penalty=penalty, intercept_scaling=intercept_scaling, random_state=random_state, check_input=False, max_squared_sum=max_squared_sum, sample_weight=sample_weight) log_reg = LogisticRegression(fit_intercept=fit_intercept) # The score method of Logistic Regression has a classes_ attribute. if multi_class == 'ovr': log_reg.classes_ = np.array([-1, 1]) elif multi_class == 'multinomial': log_reg.classes_ = np.unique(y_train) else: raise ValueError("multi_class should be either multinomial or ovr, " "got %d" % multi_class) if pos_class is not None: mask = (y_test == pos_class) y_test = np.ones(y_test.shape, dtype=np.float64) y_test[~mask] = -1. # To deal with object dtypes, we need to convert into an array of floats. y_test = check_array(y_test, dtype=np.float64, ensure_2d=False) scores = list() if isinstance(scoring, six.string_types): scoring = SCORERS[scoring] for w in coefs: if multi_class == 'ovr': w = w[np.newaxis, :] if fit_intercept: log_reg.coef_ = w[:, :-1] log_reg.intercept_ = w[:, -1] else: log_reg.coef_ = w log_reg.intercept_ = 0. if scoring is None: scores.append(log_reg.score(X_test, y_test)) else: scores.append(scoring(log_reg, X_test, y_test)) return coefs, Cs, np.array(scores), n_iter class LogisticRegression(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr' and uses the cross- entropy loss, if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag' and 'newton-cg' solvers.) This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag' and 'lbfgs' solvers. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- penalty : str, 'l1' or 'l2', default: 'l2' Used to specify the norm used in the penalization. The newton-cg, sag and lbfgs solvers support only l2 penalties. dual : bool, default: False Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. C : float, default: 1.0 Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. intercept_scaling : float, default: 1 Useful only if solver is liblinear. when self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : dict or 'balanced', default: None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. .. versionadded:: 0.17 *class_weight='balanced'* instead of deprecated *class_weight='auto'*. max_iter : int, default: 100 Useful only for the newton-cg, sag and lbfgs solvers. Maximum number of iterations taken for the solvers to converge. random_state : int seed, RandomState instance, default: None The seed of the pseudo random number generator to use when shuffling the data. Used only in solvers 'sag' and 'liblinear'. solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag'}, default: 'liblinear' Algorithm to use in the optimization problem. - For small datasets, 'liblinear' is a good choice, whereas 'sag' is faster for large ones. - For multiclass problems, only 'newton-cg', 'sag' and 'lbfgs' handle multinomial loss; 'liblinear' is limited to one-versus-rest schemes. - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. tol : float, default: 1e-4 Tolerance for stopping criteria. multi_class : str, {'ovr', 'multinomial'}, default: 'ovr' Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'newton-cg', 'sag' and 'lbfgs' solver. .. versionadded:: 0.18 Stochastic Average Gradient descent solver for 'multinomial' case. verbose : int, default: 0 For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. warm_start : bool, default: False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Useless for liblinear solver. .. versionadded:: 0.17 *warm_start* to support *lbfgs*, *newton-cg*, *sag* solvers. n_jobs : int, default: 1 Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used. Attributes ---------- coef_ : array, shape (n_classes, n_features) Coefficient of the features in the decision function. intercept_ : array, shape (n_classes,) Intercept (a.k.a. bias) added to the decision function. If `fit_intercept` is set to False, the intercept is set to zero. n_iter_ : array, shape (n_classes,) or (1, ) Actual number of iterations for all classes. If binary or multinomial, it returns only 1 element. For liblinear solver, only the maximum number of iteration across all classes is given. See also -------- SGDClassifier : incrementally trained logistic regression (when given the parameter ``loss="log"``). sklearn.svm.LinearSVC : learns SVM models using the same algorithm. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a smaller tol parameter. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. References ---------- LIBLINEAR -- A Library for Large Linear Classification http://www.csie.ntu.edu.tw/~cjlin/liblinear/ Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning 85(1-2):41-75. http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf """ def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=1): self.penalty = penalty self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.random_state = random_state self.solver = solver self.max_iter = max_iter self.multi_class = multi_class self.verbose = verbose self.warm_start = warm_start self.n_jobs = n_jobs def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. .. versionadded:: 0.17 *sample_weight* support to LogisticRegression. Returns ------- self : object Returns self. """ if not isinstance(self.C, numbers.Number) or self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") check_classification_targets(y) self.classes_ = np.unique(y) n_samples, n_features = X.shape _check_solver_option(self.solver, self.multi_class, self.penalty, self.dual) if self.solver == 'liblinear': self.coef_, self.intercept_, n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, sample_weight=sample_weight) self.n_iter_ = np.array([n_iter_]) return self if self.solver == 'sag': max_squared_sum = row_norms(X, squared=True).max() else: max_squared_sum = None n_classes = len(self.classes_) classes_ = self.classes_ if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % classes_[0]) if len(self.classes_) == 2: n_classes = 1 classes_ = classes_[1:] if self.warm_start: warm_start_coef = getattr(self, 'coef_', None) else: warm_start_coef = None if warm_start_coef is not None and self.fit_intercept: warm_start_coef = np.append(warm_start_coef, self.intercept_[:, np.newaxis], axis=1) self.coef_ = list() self.intercept_ = np.zeros(n_classes) # Hack so that we iterate only once for the multinomial case. if self.multi_class == 'multinomial': classes_ = [None] warm_start_coef = [warm_start_coef] if warm_start_coef is None: warm_start_coef = [None] * n_classes path_func = delayed(logistic_regression_path) # The SAG solver releases the GIL so it's more efficient to use # threads for this solver. backend = 'threading' if self.solver == 'sag' else 'multiprocessing' fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend=backend)( path_func(X, y, pos_class=class_, Cs=[self.C], fit_intercept=self.fit_intercept, tol=self.tol, verbose=self.verbose, solver=self.solver, copy=False, multi_class=self.multi_class, max_iter=self.max_iter, class_weight=self.class_weight, check_input=False, random_state=self.random_state, coef=warm_start_coef_, max_squared_sum=max_squared_sum, sample_weight=sample_weight) for (class_, warm_start_coef_) in zip(classes_, warm_start_coef)) fold_coefs_, _, n_iter_ = zip(*fold_coefs_) self.n_iter_ = np.asarray(n_iter_, dtype=np.int32)[:, 0] if self.multi_class == 'multinomial': self.coef_ = fold_coefs_[0][0] else: self.coef_ = np.asarray(fold_coefs_) self.coef_ = self.coef_.reshape(n_classes, n_features + int(self.fit_intercept)) if self.fit_intercept: self.intercept_ = self.coef_[:, -1] self.coef_ = self.coef_[:, :-1] return self def predict_proba(self, X): """Probability estimates. The returned estimates for all classes are ordered by the label of classes. For a multi_class problem, if multi_class is set to be "multinomial" the softmax function is used to find the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of each class assuming it to be positive using the logistic function. and normalize these values across all the classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ if not hasattr(self, "coef_"): raise NotFittedError("Call fit before prediction") calculate_ovr = self.coef_.shape[0] == 1 or self.multi_class == "ovr" if calculate_ovr: return super(LogisticRegression, self)._predict_proba_lr(X) else: return softmax(self.decision_function(X), copy=False) def predict_log_proba(self, X): """Log of probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return np.log(self.predict_proba(X)) class LogisticRegressionCV(LogisticRegression, BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin): """Logistic Regression CV (aka logit, MaxEnt) classifier. This class implements logistic regression using liblinear, newton-cg, sag of lbfgs optimizer. The newton-cg, sag and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. For the grid of Cs values (that are set by default to be ten values in a logarithmic scale between 1e-4 and 1e4), the best hyperparameter is selected by the cross-validator StratifiedKFold, but it can be changed using the cv parameter. In the case of newton-cg and lbfgs solvers, we warm start along the path i.e guess the initial coefficients of the present fit to be the coefficients got after convergence in the previous fit, so it is supposed to be faster for high-dimensional dense data. For a multiclass problem, the hyperparameters for each class are computed using the best scores got by doing a one-vs-rest in parallel across all folds and classes. Hence this is not the true multinomial loss. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. .. versionadded:: 0.17 class_weight == 'balanced' cv : integer or cross-validation generator The default cross-validation generator used is Stratified K-Folds. If an integer is provided, then it is the number of folds used. See the module :mod:`sklearn.model_selection` module for the list of possible cross-validation objects. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. scoring : callabale Scoring function to use as cross-validation criteria. For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag'} Algorithm to use in the optimization problem. - For small datasets, 'liblinear' is a good choice, whereas 'sag' is faster for large ones. - For multiclass problems, only 'newton-cg', 'sag' and 'lbfgs' handle multinomial loss; 'liblinear' is limited to one-versus-rest schemes. - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty. - 'liblinear' might be slower in LogisticRegressionCV because it does not handle warm-starting. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. tol : float, optional Tolerance for stopping criteria. max_iter : int, optional Maximum number of iterations of the optimization algorithm. n_jobs : int, optional Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used. verbose : int For the 'liblinear', 'sag' and 'lbfgs' solvers set verbose to any positive number for verbosity. refit : bool If set to True, the scores are averaged across all folds, and the coefs and the C that corresponds to the best score is taken, and a final refit is done using these parameters. Otherwise the coefs, intercepts and C that correspond to the best scores across folds are averaged. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'newton-cg', 'sag' and 'lbfgs' solver. .. versionadded:: 0.18 Stochastic Average Gradient descent solver for 'multinomial' case. intercept_scaling : float, default 1. Useful only if solver is liblinear. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Attributes ---------- coef_ : array, shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function. `coef_` is of shape (1, n_features) when the given problem is binary. `coef_` is readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape (1,) or (n_classes,) Intercept (a.k.a. bias) added to the decision function. It is available only when parameter intercept is set to True and is of shape(1,) when the problem is binary. Cs_ : array Array of C i.e. inverse of regularization parameter values used for cross-validation. coefs_paths_ : array, shape ``(n_folds, len(Cs_), n_features)`` or \ ``(n_folds, len(Cs_), n_features + 1)`` dict with classes as the keys, and the path of coefficients obtained during cross-validating across each fold and then across each Cs after doing an OvR for the corresponding class as values. If the 'multi_class' option is set to 'multinomial', then the coefs_paths are the coefficients corresponding to each class. Each dict value has shape ``(n_folds, len(Cs_), n_features)`` or ``(n_folds, len(Cs_), n_features + 1)`` depending on whether the intercept is fit or not. scores_ : dict dict with classes as the keys, and the values as the grid of scores obtained during cross-validating each fold, after doing an OvR for the corresponding class. If the 'multi_class' option given is 'multinomial' then the same scores are repeated across all classes, since this is the multinomial class. Each dict value has shape (n_folds, len(Cs)) C_ : array, shape (n_classes,) or (n_classes - 1,) Array of C that maps to the best scores across every class. If refit is set to False, then for each class, the best C is the average of the C's that correspond to the best scores for each fold. n_iter_ : array, shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs) Actual number of iterations for all classes, folds and Cs. In the binary or multinomial cases, the first dimension is equal to 1. See also -------- LogisticRegression """ def __init__(self, Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None, solver='lbfgs', tol=1e-4, max_iter=100, class_weight=None, n_jobs=1, verbose=0, refit=True, intercept_scaling=1., multi_class='ovr', random_state=None): self.Cs = Cs self.fit_intercept = fit_intercept self.cv = cv self.dual = dual self.penalty = penalty self.scoring = scoring self.tol = tol self.max_iter = max_iter self.class_weight = class_weight self.n_jobs = n_jobs self.verbose = verbose self.solver = solver self.refit = refit self.intercept_scaling = intercept_scaling self.multi_class = multi_class self.random_state = random_state def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- self : object Returns self. """ _check_solver_option(self.solver, self.multi_class, self.penalty, self.dual) if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") if self.solver == 'sag': max_squared_sum = row_norms(X, squared=True).max() else: max_squared_sum = None check_classification_targets(y) if y.ndim == 2 and y.shape[1] == 1: warnings.warn( "A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning) y = np.ravel(y) check_consistent_length(X, y) # init cross-validation generator cv = check_cv(self.cv, y, classifier=True) folds = list(cv.split(X, y)) self._enc = LabelEncoder() self._enc.fit(y) labels = self.classes_ = np.unique(y) n_classes = len(labels) if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % self.classes_[0]) if n_classes == 2: # OvR in case of binary problems is as good as fitting # the higher label n_classes = 1 labels = labels[1:] # We need this hack to iterate only once over labels, in the case of # multi_class = multinomial, without changing the value of the labels. iter_labels = labels if self.multi_class == 'multinomial': iter_labels = [None] if self.class_weight and not(isinstance(self.class_weight, dict) or self.class_weight in ['balanced', 'auto']): # 'auto' is deprecated and will be removed in 0.19 raise ValueError("class_weight provided should be a " "dict or 'balanced'") # compute the class weights for the entire dataset y if self.class_weight in ("auto", "balanced"): classes = np.unique(y) class_weight = compute_class_weight(self.class_weight, classes, y) class_weight = dict(zip(classes, class_weight)) else: class_weight = self.class_weight path_func = delayed(_log_reg_scoring_path) # The SAG solver releases the GIL so it's more efficient to use # threads for this solver. backend = 'threading' if self.solver == 'sag' else 'multiprocessing' fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend=backend)( path_func(X, y, train, test, pos_class=label, Cs=self.Cs, fit_intercept=self.fit_intercept, penalty=self.penalty, dual=self.dual, solver=self.solver, tol=self.tol, max_iter=self.max_iter, verbose=self.verbose, class_weight=class_weight, scoring=self.scoring, multi_class=self.multi_class, intercept_scaling=self.intercept_scaling, random_state=self.random_state, max_squared_sum=max_squared_sum, sample_weight=sample_weight ) for label in iter_labels for train, test in folds) if self.multi_class == 'multinomial': multi_coefs_paths, Cs, multi_scores, n_iter_ = zip(*fold_coefs_) multi_coefs_paths = np.asarray(multi_coefs_paths) multi_scores = np.asarray(multi_scores) # This is just to maintain API similarity between the ovr and # multinomial option. # Coefs_paths in now n_folds X len(Cs) X n_classes X n_features # we need it to be n_classes X len(Cs) X n_folds X n_features # to be similar to "ovr". coefs_paths = np.rollaxis(multi_coefs_paths, 2, 0) # Multinomial has a true score across all labels. Hence the # shape is n_folds X len(Cs). We need to repeat this score # across all labels for API similarity. scores = np.tile(multi_scores, (n_classes, 1, 1)) self.Cs_ = Cs[0] self.n_iter_ = np.reshape(n_iter_, (1, len(folds), len(self.Cs_))) else: coefs_paths, Cs, scores, n_iter_ = zip(*fold_coefs_) self.Cs_ = Cs[0] coefs_paths = np.reshape(coefs_paths, (n_classes, len(folds), len(self.Cs_), -1)) self.n_iter_ = np.reshape(n_iter_, (n_classes, len(folds), len(self.Cs_))) self.coefs_paths_ = dict(zip(labels, coefs_paths)) scores = np.reshape(scores, (n_classes, len(folds), -1)) self.scores_ = dict(zip(labels, scores)) self.C_ = list() self.coef_ = np.empty((n_classes, X.shape[1])) self.intercept_ = np.zeros(n_classes) # hack to iterate only once for multinomial case. if self.multi_class == 'multinomial': scores = multi_scores coefs_paths = multi_coefs_paths for index, label in enumerate(iter_labels): if self.multi_class == 'ovr': scores = self.scores_[label] coefs_paths = self.coefs_paths_[label] if self.refit: best_index = scores.sum(axis=0).argmax() C_ = self.Cs_[best_index] self.C_.append(C_) if self.multi_class == 'multinomial': coef_init = np.mean(coefs_paths[:, best_index, :, :], axis=0) else: coef_init = np.mean(coefs_paths[:, best_index, :], axis=0) w, _, _ = logistic_regression_path( X, y, pos_class=label, Cs=[C_], solver=self.solver, fit_intercept=self.fit_intercept, coef=coef_init, max_iter=self.max_iter, tol=self.tol, penalty=self.penalty, copy=False, class_weight=class_weight, multi_class=self.multi_class, verbose=max(0, self.verbose - 1), random_state=self.random_state, check_input=False, max_squared_sum=max_squared_sum, sample_weight=sample_weight) w = w[0] else: # Take the best scores across every fold and the average of all # coefficients corresponding to the best scores. best_indices = np.argmax(scores, axis=1) w = np.mean([coefs_paths[i][best_indices[i]] for i in range(len(folds))], axis=0) self.C_.append(np.mean(self.Cs_[best_indices])) if self.multi_class == 'multinomial': self.C_ = np.tile(self.C_, n_classes) self.coef_ = w[:, :X.shape[1]] if self.fit_intercept: self.intercept_ = w[:, -1] else: self.coef_[index] = w[: X.shape[1]] if self.fit_intercept: self.intercept_[index] = w[-1] self.C_ = np.asarray(self.C_) return self
bsd-3-clause
google-research/google-research
smu/parser/smu_utils_lib_test.py
1
35529
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for smu_utils_lib.""" import copy import os import tempfile from absl.testing import absltest from absl.testing import parameterized import numpy as np import pandas as pd from rdkit import Chem from google.protobuf import text_format from smu import dataset_pb2 from smu.parser import smu_parser_lib from smu.parser import smu_utils_lib MAIN_DAT_FILE = 'x07_sample.dat' STAGE1_DAT_FILE = 'x07_stage1.dat' TESTDATA_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'testdata') def str_to_bond_topology(s): bt = dataset_pb2.BondTopology() text_format.Parse(s, bt) return bt def get_stage1_conformer(): parser = smu_parser_lib.SmuParser( os.path.join(TESTDATA_PATH, STAGE1_DAT_FILE)) conformer, _ = next(parser.process_stage1()) return conformer def get_stage2_conformer(): parser = smu_parser_lib.SmuParser(os.path.join(TESTDATA_PATH, MAIN_DAT_FILE)) conformer, _ = next(parser.process_stage2()) return conformer class SpecialIDTest(absltest.TestCase): def test_from_dat_id(self): self.assertIsNone( smu_utils_lib.special_case_bt_id_from_dat_id(123456, 'CC')) self.assertEqual(smu_utils_lib.special_case_bt_id_from_dat_id(999998, 'O'), 899650) self.assertEqual(smu_utils_lib.special_case_bt_id_from_dat_id(0, 'O'), 899650) with self.assertRaises(ValueError): smu_utils_lib.special_case_bt_id_from_dat_id(0, 'NotASpecialCaseSmiles') def test_from_bt_id(self): self.assertIsNone(smu_utils_lib.special_case_dat_id_from_bt_id(123456)) self.assertEqual( smu_utils_lib.special_case_dat_id_from_bt_id(899651), 999997) class GetCompositionTest(absltest.TestCase): def test_simple(self): bt = dataset_pb2.BondTopology() bt.atoms.extend([dataset_pb2.BondTopology.ATOM_C, dataset_pb2.BondTopology.ATOM_C, dataset_pb2.BondTopology.ATOM_N, dataset_pb2.BondTopology.ATOM_H, dataset_pb2.BondTopology.ATOM_H, dataset_pb2.BondTopology.ATOM_H]) self.assertEqual('x03_c2nh3', smu_utils_lib.get_composition(bt)) class GetCanonicalStoichiometryWithHydrogensTest(absltest.TestCase): def test_cyclobutane(self): bt = smu_utils_lib.create_bond_topology('CCCC', '110011', '2222') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens(bt), '(ch2)4') def test_ethylene(self): bt = smu_utils_lib.create_bond_topology('CC', '2', '22') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens(bt), '(ch2)2') def test_acrylic_acid(self): bt = smu_utils_lib.create_bond_topology('CCCOO', '2000100210', '21001') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens(bt), '(c)(ch)(ch2)(o)(oh)') def test_fluorine(self): bt = smu_utils_lib.create_bond_topology('OFF', '110', '000') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens(bt), '(o)(f)2') def test_fully_saturated(self): self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens( smu_utils_lib.create_bond_topology('C', '', '4')), '(ch4)') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens( smu_utils_lib.create_bond_topology('N', '', '3')), '(nh3)') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens( smu_utils_lib.create_bond_topology('O', '', '2')), '(oh2)') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens( smu_utils_lib.create_bond_topology('F', '', '1')), '(fh)') def test_nplus_oneg(self): bt = smu_utils_lib.create_bond_topology('NO', '1', '30') self.assertEqual( smu_utils_lib.get_canonical_stoichiometry_with_hydrogens(bt), '(nh3)(o)') class ParseBondTopologyTest(absltest.TestCase): def test_4_heavy(self): num_atoms, atoms_str, matrix, hydrogens = smu_utils_lib.parse_bond_topology_line( ' 4 N+O O O- 010110 3000') self.assertEqual(num_atoms, 4) self.assertEqual(atoms_str, 'N+O O O-') self.assertEqual(matrix, '010110') self.assertEqual(hydrogens, '3000') def test_7_heavy(self): num_atoms, atoms_str, matrix, hydrogens = smu_utils_lib.parse_bond_topology_line( ' 7 N+O O O O-F F 001011101001000000000 1000000') self.assertEqual(num_atoms, 7) self.assertEqual(atoms_str, 'N+O O O O-F F ') # Note the trailing space self.assertEqual(matrix, '001011101001000000000') self.assertEqual(hydrogens, '1000000') class CreateBondTopologyTest(absltest.TestCase): def test_no_charged(self): got = smu_utils_lib.create_bond_topology('CNFF', '111000', '1200') expected_str = ''' atoms: ATOM_C atoms: ATOM_N atoms: ATOM_F atoms: ATOM_F atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H bonds { atom_b: 1 bond_type: BOND_SINGLE } bonds { atom_b: 2 bond_type: BOND_SINGLE } bonds { atom_b: 3 bond_type: BOND_SINGLE } bonds { atom_b: 4 bond_type: BOND_SINGLE } bonds { atom_a: 1 atom_b: 5 bond_type: BOND_SINGLE } bonds { atom_a: 1 atom_b: 6 bond_type: BOND_SINGLE } ''' expected = str_to_bond_topology(expected_str) self.assertEqual(str(expected), str(got)) def test_charged(self): # This is actually C N N+O- got = smu_utils_lib.create_bond_topology('CNNO', '200101', '2020') expected_str = ''' atoms: ATOM_C atoms: ATOM_N atoms: ATOM_NPOS atoms: ATOM_ONEG atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H bonds { atom_b: 1 bond_type: BOND_DOUBLE } bonds { atom_a: 1 atom_b: 2 bond_type: BOND_SINGLE } bonds { atom_a: 2 atom_b: 3 bond_type: BOND_SINGLE } bonds { atom_b: 4 bond_type: BOND_SINGLE } bonds { atom_b: 5 bond_type: BOND_SINGLE } bonds { atom_a: 2 atom_b: 6 bond_type: BOND_SINGLE } bonds { atom_a: 2 atom_b: 7 bond_type: BOND_SINGLE } ''' expected = str_to_bond_topology(expected_str) self.assertEqual(str(expected), str(got)) def test_one_heavy(self): got = smu_utils_lib.create_bond_topology('C', '', '4') expected_str = ''' atoms: ATOM_C atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H bonds { atom_b: 1 bond_type: BOND_SINGLE } bonds { atom_b: 2 bond_type: BOND_SINGLE } bonds { atom_b: 3 bond_type: BOND_SINGLE } bonds { atom_b: 4 bond_type: BOND_SINGLE } ''' expected = str_to_bond_topology(expected_str) self.assertEqual(str(expected), str(got)) class FromCSVTest(absltest.TestCase): def test_basic(self): infile = tempfile.NamedTemporaryFile(mode='w', delete=False) infile.write( 'id,num_atoms,atoms_str,connectivity_matrix,hydrogens,smiles\n') infile.write('68,3,C N+O-,310,010,[NH+]#C[O-]\n') infile.write('134,4,N+O-F F ,111000,1000,[O-][NH+](F)F\n') infile.close() out = smu_utils_lib.generate_bond_topologies_from_csv(infile.name) bt = next(out) self.assertEqual(68, bt.bond_topology_id) self.assertLen(bt.atoms, 4) self.assertEqual(bt.smiles, '[NH+]#C[O-]') bt = next(out) self.assertEqual(134, bt.bond_topology_id) self.assertLen(bt.atoms, 5) self.assertEqual(bt.smiles, '[O-][NH+](F)F') class ParseDuplicatesFileTest(absltest.TestCase): def test_basic(self): df = smu_utils_lib.parse_duplicates_file( os.path.join(TESTDATA_PATH, 'small.equivalent_isomers.dat')) pd.testing.assert_frame_equal( pd.DataFrame( columns=['name1', 'stoich1', 'btid1', 'shortconfid1', 'confid1', 'name2', 'stoich2', 'btid2', 'shortconfid2', 'confid2'], data=[ ['x07_c2n2o2fh3.224227.004', 'c2n2o2fh3', 224227, 4, 224227004, 'x07_c2n2o2fh3.224176.005', 'c2n2o2fh3', 224176, 5, 224176005], ['x07_c2n2o2fh3.260543.005', 'c2n2o2fh3', 260543, 5, 260543005, 'x07_c2n2o2fh3.224050.001', 'c2n2o2fh3', 224050, 1, 224050001], ]), df, check_like=True) class BondTopologyToMoleculeTest(absltest.TestCase): def test_o2(self): bond_topology = str_to_bond_topology(''' atoms: ATOM_O atoms: ATOM_O bonds { atom_b: 1 bond_type: BOND_DOUBLE } ''') got = smu_utils_lib.bond_topology_to_molecule(bond_topology) self.assertEqual('O=O', Chem.MolToSmiles(got)) def test_methane(self): bond_topology = str_to_bond_topology(''' atoms: ATOM_C atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H atoms: ATOM_H bonds { atom_b: 1 bond_type: BOND_SINGLE } bonds { atom_b: 2 bond_type: BOND_SINGLE } bonds { atom_b: 3 bond_type: BOND_SINGLE } bonds { atom_b: 4 bond_type: BOND_SINGLE } ''') got = smu_utils_lib.bond_topology_to_molecule(bond_topology) self.assertEqual('[H]C([H])([H])[H]', Chem.MolToSmiles(got)) # This molecule is an N+ central atom, bonded to C (triply), O-, and F def test_charged_molecule(self): bond_topology = str_to_bond_topology(''' atoms: ATOM_C atoms: ATOM_NPOS atoms: ATOM_ONEG atoms: ATOM_F bonds { atom_b: 1 bond_type: BOND_TRIPLE } bonds { atom_a: 1 atom_b: 2 bond_type: BOND_SINGLE } bonds { atom_a: 1 atom_b: 3 bond_type: BOND_SINGLE } ''') got = smu_utils_lib.bond_topology_to_molecule(bond_topology) self.assertEqual('C#[N+]([O-])F', Chem.MolToSmiles(got)) class ConformerToMoleculeTest(absltest.TestCase): def setUp(self): super().setUp() self.conformer = get_stage2_conformer() # We'll make a new initial_geometry which is just the current one with all # coordinates multiplied by 1000 self.conformer.initial_geometries.append( self.conformer.initial_geometries[0]) new_geom = self.conformer.initial_geometries[1] for atom_pos in new_geom.atom_positions: atom_pos.x = atom_pos.x * 1000 atom_pos.y = atom_pos.y * 1000 atom_pos.z = atom_pos.z * 1000 # For the extra bond_topology, we'll just copy the existing one and change # the id. Through the dumb luck of the molecule we picked there's not a # simple way to make this a new bond topology and still have it look valid # to RDKit self.conformer.bond_topologies.append(self.conformer.bond_topologies[0]) self.conformer.bond_topologies[1].bond_topology_id = 99999 def test_all_outputs(self): mols = list(smu_utils_lib.conformer_to_molecules(self.conformer)) self.assertLen(mols, 6) # 2 bond topologies * (1 opt geom + 2 init_geom) self.assertEqual([m.GetProp('_Name') for m in mols], [ 'SMU 618451001 bt=618451(0/2) geom=init(0/2)', 'SMU 618451001 bt=618451(0/2) geom=init(1/2)', 'SMU 618451001 bt=618451(0/2) geom=opt', 'SMU 618451001 bt=99999(1/2) geom=init(0/2)', 'SMU 618451001 bt=99999(1/2) geom=init(1/2)', 'SMU 618451001 bt=99999(1/2) geom=opt' ]) self.assertEqual( '[H]C(F)=C(OC([H])([H])[H])OC([H])([H])[H]', Chem.MolToSmiles(mols[0], kekuleSmiles=True, isomericSmiles=False)) self.assertEqual( '[H]C(F)=C(OC([H])([H])[H])OC([H])([H])[H]', Chem.MolToSmiles(mols[4], kekuleSmiles=True, isomericSmiles=False)) def test_initial_only(self): mols = list( smu_utils_lib.conformer_to_molecules( self.conformer, include_initial_geometries=True, include_optimized_geometry=False, include_all_bond_topologies=False)) self.assertLen(mols, 2) self.assertEqual([m.GetProp('_Name') for m in mols], [ 'SMU 618451001 bt=618451(0/2) geom=init(0/2)', 'SMU 618451001 bt=618451(0/2) geom=init(1/2)', ]) # This is just one random atom I picked from the .dat file and converted to # angstroms instead of bohr. self.assertEqual('C', mols[0].GetAtomWithIdx(1).GetSymbol()) np.testing.assert_allclose([0.6643, -3.470301, 3.4766], list(mols[0].GetConformer().GetAtomPosition(1)), atol=1e-6) self.assertEqual('C', mols[1].GetAtomWithIdx(1).GetSymbol()) np.testing.assert_allclose([664.299998, -3470.300473, 3476.600215], list(mols[1].GetConformer().GetAtomPosition(1)), atol=1e-6) def test_optimized_only(self): mols = list( smu_utils_lib.conformer_to_molecules( self.conformer, include_initial_geometries=False, include_optimized_geometry=True, include_all_bond_topologies=False)) self.assertLen(mols, 1) self.assertEqual( mols[0].GetProp('_Name'), 'SMU 618451001 bt=618451(0/2) geom=opt', ) self.assertEqual( '[H]C(F)=C(OC([H])([H])[H])OC([H])([H])[H]', Chem.MolToSmiles(mols[0], kekuleSmiles=True, isomericSmiles=False)) # This is just two random atoms I picked from the .dat file and converted to # angstroms instead of bohr. self.assertEqual('C', mols[0].GetAtomWithIdx(1).GetSymbol()) np.testing.assert_allclose([0.540254, -3.465543, 3.456982], list(mols[0].GetConformer().GetAtomPosition(1)), atol=1e-6) self.assertEqual('H', mols[0].GetAtomWithIdx(13).GetSymbol()) np.testing.assert_allclose([2.135153, -1.817366, 0.226376], list(mols[0].GetConformer().GetAtomPosition(13)), atol=1e-6) class SmilesCompareTest(absltest.TestCase): def test_string_format(self): # for some simplicity later on, we use shorter names self.assertEqual('MISSING', str(smu_utils_lib.SmilesCompareResult.MISSING)) self.assertEqual('MISMATCH', str(smu_utils_lib.SmilesCompareResult.MISMATCH)) self.assertEqual('MATCH', str(smu_utils_lib.SmilesCompareResult.MATCH)) def test_missing(self): bond_topology = str_to_bond_topology(''' atoms: ATOM_O atoms: ATOM_O bonds { atom_b: 1 bond_type: BOND_DOUBLE } ''') result, with_h, without_h = smu_utils_lib.bond_topology_smiles_comparison( bond_topology) self.assertEqual(smu_utils_lib.SmilesCompareResult.MISSING, result) self.assertEqual('O=O', with_h) self.assertEqual('O=O', without_h) # Also directly test compute_smiles_for_bond_topology self.assertEqual( 'O=O', smu_utils_lib.compute_smiles_for_bond_topology( bond_topology, include_hs=True)) def test_mismatch(self): bond_topology = str_to_bond_topology(''' atoms: ATOM_O atoms: ATOM_O bonds { atom_b: 1 bond_type: BOND_DOUBLE } smiles: "BlahBlahBlah" ''') result, with_h, without_h = smu_utils_lib.bond_topology_smiles_comparison( bond_topology) self.assertEqual(smu_utils_lib.SmilesCompareResult.MISMATCH, result) self.assertEqual('O=O', with_h) self.assertEqual('O=O', without_h) def test_matched_and_h_stripping(self): bond_topology = str_to_bond_topology(''' atoms: ATOM_O atoms: ATOM_H atoms: ATOM_H bonds { atom_b: 1 bond_type: BOND_SINGLE } bonds { atom_b: 2 bond_type: BOND_SINGLE } smiles: "O" ''') result, with_h, without_h = smu_utils_lib.bond_topology_smiles_comparison( bond_topology) self.assertEqual(smu_utils_lib.SmilesCompareResult.MATCH, result) self.assertEqual('[H]O[H]', with_h) self.assertEqual('O', without_h) # Also directly test compute_smiles_for_bond_topology self.assertEqual( '[H]O[H]', smu_utils_lib.compute_smiles_for_bond_topology( bond_topology, include_hs=True)) self.assertEqual( 'O', smu_utils_lib.compute_smiles_for_bond_topology( bond_topology, include_hs=False)) def test_compute_smiles_from_molecule_no_hs(self): mol = Chem.MolFromSmiles('FOC', sanitize=False) self.assertEqual( smu_utils_lib.compute_smiles_for_molecule(mol, include_hs=False), 'COF') # This is expected. Even with include_hs=True, if there were no Hs in the # molecule, they will not be in the smiles. self.assertEqual( smu_utils_lib.compute_smiles_for_molecule(mol, include_hs=True), 'COF') def test_compute_smiles_from_molecule_with_hs(self): mol = Chem.MolFromSmiles('FOC', sanitize=False) Chem.SanitizeMol(mol, Chem.rdmolops.SanitizeFlags.SANITIZE_ADJUSTHS) mol = Chem.AddHs(mol) self.assertEqual( smu_utils_lib.compute_smiles_for_molecule(mol, include_hs=False), 'COF') self.assertEqual( smu_utils_lib.compute_smiles_for_molecule(mol, include_hs=True), '[H]C([H])([H])OF') def test_compute_smiles_from_molecule_special_case(self): mol = Chem.MolFromSmiles('C12=C3C4=C1C4=C23', sanitize=False) # Double check that this really is the special case -- we get back the # SMILES we put in even though it's not the one we want. self.assertEqual('C12=C3C4=C1C4=C23', Chem.MolToSmiles(mol, kekuleSmiles=True)) self.assertEqual( smu_utils_lib.compute_smiles_for_molecule(mol, include_hs=False), 'C12=C3C1=C1C2=C31') def test_compute_smiles_from_molecule_labeled_with_h(self): mol = Chem.MolFromSmiles( '[O-][N+]([H])([H])N([H])OC([H])([H])F', sanitize=False) self.assertIsNotNone(mol) self.assertEqual( '[O-][N+:1]([H:2])([H:3])[N:4]([H:5])[O:6][C:7]([H:8])([H:9])[F:10]', smu_utils_lib.compute_smiles_for_molecule( mol, include_hs=True, labeled_atoms=True)) def test_compute_smiles_from_molecule_labeled_no_h(self): mol = Chem.MolFromSmiles( '[O-][N+]([H])([H])N([H])OC([H])([H])F', sanitize=False) self.assertIsNotNone(mol) self.assertEqual( '[O-][NH2+:1][NH:2][O:3][CH2:4][F:5]', smu_utils_lib.compute_smiles_for_molecule( mol, include_hs=False, labeled_atoms=True)) class MergeConformersTest(absltest.TestCase): def setUp(self): super().setUp() # We are relying on the fact that the first conformer in both x07_sample.dat # and x07_stage1.dat are the same. self.stage1_conformer = get_stage1_conformer() self.stage2_conformer = get_stage2_conformer() self.duplicate_conformer = dataset_pb2.Conformer() self.duplicate_conformer.conformer_id = self.stage1_conformer.conformer_id # A real duplicate conformer wouldn't have both of these fields filled in, # but it's fine for the test to make sure everything is copied. self.duplicate_conformer.duplicated_by = 123 self.duplicate_conformer.duplicate_of.extend([111, 222]) def test_two_stage2(self): with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(self.stage2_conformer, self.stage2_conformer) def test_two_stage1(self): with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(self.stage1_conformer, self.stage1_conformer) def test_two_duplicates(self): duplicate_conformer2 = copy.deepcopy(self.duplicate_conformer) duplicate_conformer2.duplicate_of[:] = [333, 444] got_conf, got_conflict = smu_utils_lib.merge_conformer( self.duplicate_conformer, duplicate_conformer2) self.assertIsNone(got_conflict) self.assertEqual(123, got_conf.duplicated_by) self.assertCountEqual([111, 222, 333, 444], got_conf.duplicate_of) def test_stage2_stage1(self): # Add a duplicate to stage1 to make sure it is copied self.stage1_conformer.duplicate_of.append(999) got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.stage1_conformer) self.assertIsNone(got_conflict) self.assertEqual(got_conf.duplicate_of, [999]) # Just check a random field that is in stage2 but not stage1 self.assertNotEmpty(got_conf.properties.normal_modes) def test_stage2_stage1_conflict_energy(self): self.stage2_conformer.properties.initial_geometry_energy.value = -1.23 got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.stage1_conformer) self.assertEqual(got_conflict, [ 618451001, 1, 1, 1, 1, -406.51179, 0.052254, -406.522079, 2.5e-05, True, True, 1, 1, 1, 1, -1.23, 0.052254, -406.522079, 2.5e-05, True, True ]) # Just check a random field that is in stage2 but not stage1 self.assertNotEmpty(got_conf.properties.normal_modes) # This stage2 values should be returned self.assertEqual(got_conf.properties.initial_geometry_energy.value, -1.23) def test_stage2_stage1_conflict_error_codes(self): self.stage2_conformer.properties.errors.error_nstat1 = 999 got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.stage1_conformer) self.assertEqual(got_conflict, [ 618451001, 1, 1, 1, 1, -406.51179, 0.052254, -406.522079, 2.5e-05, True, True, 999, 1, 1, 1, -406.51179, 0.052254, -406.522079, 2.5e-05, True, True ]) # Just check a random field that is in stage2 but not stage1 self.assertNotEmpty(got_conf.properties.normal_modes) def test_stage2_stage1_conflict_missing_geometry(self): self.stage2_conformer.ClearField('optimized_geometry') got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.stage1_conformer) self.assertEqual(got_conflict, [ 618451001, 1, 1, 1, 1, -406.51179, 0.052254, -406.522079, 2.5e-05, True, True, 1, 1, 1, 1, -406.51179, 0.052254, -406.522079, 2.5e-05, True, False ]) # Just check a random field that is in stage2 but not stage1 self.assertNotEmpty(got_conf.properties.normal_modes) def test_stage2_stage1_no_conflict_minus1(self): # If stage2 contains a -1, we keep that (stricter error checking later on) self.stage2_conformer.properties.initial_geometry_energy.value = -1.0 got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.stage1_conformer) self.assertIsNone(got_conflict) self.assertEqual(got_conf.properties.initial_geometry_energy.value, -1.0) def test_stage2_stage1_no_conflict_approx_equal(self): self.stage2_conformer.properties.initial_geometry_energy.value += 1e-7 got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.stage1_conformer) self.assertIsNone(got_conflict) # Just check a random field from stage2 self.assertNotEmpty(got_conf.properties.normal_modes) def test_stage2_duplicate(self): got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage2_conformer, self.duplicate_conformer) self.assertIsNone(got_conflict) self.assertEqual(got_conf.duplicate_of, [111, 222]) self.assertEqual(got_conf.duplicated_by, 123) # Just check a random field from stage2 self.assertNotEmpty(got_conf.properties.normal_modes) def test_stage1_duplicate(self): got_conf, got_conflict = smu_utils_lib.merge_conformer( self.stage1_conformer, self.duplicate_conformer) self.assertIsNone(got_conflict) self.assertEqual(got_conf.duplicate_of, [111, 222]) self.assertEqual(got_conf.duplicated_by, 123) # Just check a random field from stage1 self.assertTrue(got_conf.properties.HasField('initial_geometry_energy')) def test_multiple_initial_geometries(self): bad_conformer = copy.deepcopy(self.stage1_conformer) bad_conformer.initial_geometries.append(bad_conformer.initial_geometries[0]) with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(bad_conformer, self.stage2_conformer) with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(self.stage2_conformer, bad_conformer) def test_multiple_bond_topologies(self): bad_conformer = copy.deepcopy(self.stage1_conformer) bad_conformer.bond_topologies.append(bad_conformer.bond_topologies[0]) with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(bad_conformer, self.stage2_conformer) with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(self.stage2_conformer, bad_conformer) def test_different_bond_topologies(self): self.stage1_conformer.bond_topologies[0].atoms[0] = ( dataset_pb2.BondTopology.ATOM_H) with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(self.stage1_conformer, self.stage2_conformer) with self.assertRaises(ValueError): smu_utils_lib.merge_conformer(self.stage2_conformer, self.stage1_conformer) class ConformerErrorTest(absltest.TestCase): def test_stage1_no_error(self): conformer = get_stage1_conformer() self.assertFalse(smu_utils_lib.conformer_has_calculation_errors(conformer)) def test_stage1_error(self): conformer = get_stage2_conformer() conformer.properties.errors.error_frequencies = 123 self.assertTrue(smu_utils_lib.conformer_has_calculation_errors(conformer)) def test_stage2_no_error(self): conformer = get_stage2_conformer() self.assertFalse(smu_utils_lib.conformer_has_calculation_errors(conformer)) def test_stage2_error_in_1_expected_field(self): conformer = get_stage2_conformer() conformer.properties.errors.error_rotational_modes = 123 self.assertTrue(smu_utils_lib.conformer_has_calculation_errors(conformer)) def test_stage2_error_in_0_expected_field(self): conformer = get_stage2_conformer() # This field is 0 to indicate no error. Why the discrepancy? Who knows! conformer.properties.errors.error_nsvg09 = 1 self.assertTrue(smu_utils_lib.conformer_has_calculation_errors(conformer)) def test_stage2_nstat1_is_3(self): # This is the other bizaare case. nstat1 of 3 is still considered success. conformer = get_stage2_conformer() conformer.properties.errors.error_nstat1 = 3 self.assertFalse(smu_utils_lib.conformer_has_calculation_errors(conformer)) class FilterConformerByAvailabilityTest(absltest.TestCase): def setUp(self): super().setUp() self.conformer = dataset_pb2.Conformer() properties = self.conformer.properties # A STANDARD field properties.single_point_energy_pbe0d3_6_311gd.value = 1.23 # A COMPLETE field properties.homo_pbe0_aug_pc_1.value = 1.23 # An INTERNAL_ONLY field properties.nuclear_repulsion_energy.value = 1.23 def test_standard(self): smu_utils_lib.filter_conformer_by_availability(self.conformer, [dataset_pb2.STANDARD]) self.assertTrue( self.conformer.properties.HasField( 'single_point_energy_pbe0d3_6_311gd')) self.assertFalse(self.conformer.properties.HasField('homo_pbe0_aug_pc_1')) self.assertFalse( self.conformer.properties.HasField('nuclear_repulsion_energy')) def test_complete_and_internal_only(self): smu_utils_lib.filter_conformer_by_availability( self.conformer, [dataset_pb2.COMPLETE, dataset_pb2.INTERNAL_ONLY]) self.assertFalse( self.conformer.properties.HasField( 'single_point_energy_pbe0d3_6_311gd')) self.assertTrue(self.conformer.properties.HasField('homo_pbe0_aug_pc_1')) self.assertTrue( self.conformer.properties.HasField('nuclear_repulsion_energy')) class ConformerToStandardTest(absltest.TestCase): def setUp(self): super().setUp() self.conformer = get_stage2_conformer() def test_field_filtering(self): # Check that the field which should be filtered starts out set self.assertTrue(self.conformer.properties.HasField( 'single_point_energy_hf_6_31gd')) got = smu_utils_lib.conformer_to_standard(self.conformer) # Check for a field that was originally in self.conformer and should be # filtered and a field which should still be present. self.assertTrue(got.properties.HasField( 'single_point_energy_pbe0d3_6_311gd')) self.assertFalse( got.properties.HasField('single_point_energy_hf_6_31gd')) def test_remove_error_conformer(self): self.conformer.properties.errors.error_frequencies = 123 self.assertIsNone(smu_utils_lib.conformer_to_standard(self.conformer)) def test_remove_duplicate(self): self.conformer.duplicated_by = 123 self.assertIsNone(smu_utils_lib.conformer_to_standard(self.conformer)) class DetermineFateTest(parameterized.TestCase): def test_duplicate_same_topology(self): conformer = get_stage1_conformer() # bond topology is conformer_id // 1000 conformer.duplicated_by = conformer.conformer_id + 1 self.assertEqual(dataset_pb2.Conformer.FATE_DUPLICATE_SAME_TOPOLOGY, smu_utils_lib.determine_fate(conformer)) def test_duplicate_different_topology(self): conformer = get_stage1_conformer() # bond topology is conformer_id // 1000 conformer.duplicated_by = conformer.conformer_id + 1000 self.assertEqual(dataset_pb2.Conformer.FATE_DUPLICATE_DIFFERENT_TOPOLOGY, smu_utils_lib.determine_fate(conformer)) @parameterized.parameters( (2, dataset_pb2.Conformer.FATE_GEOMETRY_OPTIMIZATION_PROBLEM), (5, dataset_pb2.Conformer.FATE_DISASSOCIATED), (4, dataset_pb2.Conformer.FATE_FORCE_CONSTANT_FAILURE), (6, dataset_pb2.Conformer.FATE_DISCARDED_OTHER)) def test_geometry_failures(self, nstat1, expected_fate): conformer = get_stage1_conformer() conformer.properties.errors.error_nstat1 = nstat1 self.assertEqual(expected_fate, smu_utils_lib.determine_fate(conformer)) def test_no_result(self): conformer = get_stage1_conformer() self.assertEqual(dataset_pb2.Conformer.FATE_NO_CALCULATION_RESULTS, smu_utils_lib.determine_fate(conformer)) def test_calculation_errors(self): conformer = get_stage2_conformer() # This is a random choice of an error to set. I just need some error. conformer.properties.errors.error_atomic_analysis = 999 self.assertEqual(dataset_pb2.Conformer.FATE_CALCULATION_WITH_ERROR, smu_utils_lib.determine_fate(conformer)) def test_success(self): conformer = get_stage2_conformer() self.assertEqual(dataset_pb2.Conformer.FATE_SUCCESS, smu_utils_lib.determine_fate(conformer)) class ToBondTopologySummaryTest(absltest.TestCase): def setUp(self): super().setUp() self.conformer = get_stage2_conformer() def test_dup_same(self): self.conformer.fate = dataset_pb2.Conformer.FATE_DUPLICATE_SAME_TOPOLOGY got = list( smu_utils_lib.conformer_to_bond_topology_summaries(self.conformer)) self.assertLen(got, 1) self.assertEqual(got[0].bond_topology.bond_topology_id, self.conformer.bond_topologies[0].bond_topology_id) self.assertEqual(got[0].count_attempted_conformers, 1) self.assertEqual(got[0].count_duplicates_same_topology, 1) def test_dup_diff(self): self.conformer.fate = ( dataset_pb2.Conformer.FATE_DUPLICATE_DIFFERENT_TOPOLOGY) got = list( smu_utils_lib.conformer_to_bond_topology_summaries(self.conformer)) self.assertLen(got, 1) self.assertEqual(got[0].count_attempted_conformers, 1) self.assertEqual(got[0].count_duplicates_different_topology, 1) def test_geometry_failed(self): self.conformer.fate = (dataset_pb2.Conformer.FATE_DISCARDED_OTHER) got = list( smu_utils_lib.conformer_to_bond_topology_summaries(self.conformer)) self.assertLen(got, 1) self.assertEqual(got[0].count_attempted_conformers, 1) self.assertEqual(got[0].count_failed_geometry_optimization, 1) def test_missing_calculation(self): self.conformer.fate = dataset_pb2.Conformer.FATE_NO_CALCULATION_RESULTS got = list( smu_utils_lib.conformer_to_bond_topology_summaries(self.conformer)) self.assertLen(got, 1) self.assertEqual(got[0].count_attempted_conformers, 1) self.assertEqual(got[0].count_kept_geometry, 1) self.assertEqual(got[0].count_missing_calculation, 1) def test_calculation_with_error(self): self.conformer.fate = dataset_pb2.Conformer.FATE_CALCULATION_WITH_ERROR self.conformer.bond_topologies.append(self.conformer.bond_topologies[0]) self.conformer.bond_topologies[-1].bond_topology_id = 123 got = list( smu_utils_lib.conformer_to_bond_topology_summaries(self.conformer)) self.assertLen(got, 2) # We don't actually care about the order, but this is what comes out right # now. self.assertEqual(got[0].bond_topology.bond_topology_id, 123) self.assertEqual(got[0].count_attempted_conformers, 0) self.assertEqual(got[0].count_kept_geometry, 0) self.assertEqual(got[0].count_calculation_with_error, 0) self.assertEqual(got[0].count_detected_match_with_error, 1) self.assertEqual(got[1].bond_topology.bond_topology_id, self.conformer.bond_topologies[0].bond_topology_id) self.assertEqual(got[1].count_attempted_conformers, 1) self.assertEqual(got[1].count_kept_geometry, 1) self.assertEqual(got[1].count_calculation_with_error, 1) self.assertEqual(got[1].count_detected_match_with_error, 0) def test_calculation_success(self): self.conformer.fate = dataset_pb2.Conformer.FATE_SUCCESS self.conformer.bond_topologies.append(self.conformer.bond_topologies[0]) self.conformer.bond_topologies[-1].bond_topology_id = 123 got = list( smu_utils_lib.conformer_to_bond_topology_summaries(self.conformer)) self.assertLen(got, 2) # We don't actually care about the order, but this is what comes out right # now. self.assertEqual(got[0].bond_topology.bond_topology_id, 123) self.assertEqual(got[0].count_attempted_conformers, 0) self.assertEqual(got[0].count_kept_geometry, 0) self.assertEqual(got[0].count_calculation_success, 0) self.assertEqual(got[0].count_detected_match_success, 1) self.assertEqual(got[1].bond_topology.bond_topology_id, self.conformer.bond_topologies[0].bond_topology_id) self.assertEqual(got[1].count_attempted_conformers, 1) self.assertEqual(got[1].count_kept_geometry, 1) self.assertEqual(got[1].count_calculation_success, 1) self.assertEqual(got[1].count_detected_match_success, 0) class LabeledSmilesTester(absltest.TestCase): def test_atom_labels(self): mol = Chem.MolFromSmiles('FCON[NH2+][O-]', sanitize=False) self.assertIsNotNone(mol) smiles_before = Chem.MolToSmiles(mol) self.assertEqual( smu_utils_lib.labeled_smiles(mol), 'F[CH2:1][O:2][NH:3][NH2+:4][O-:5]') # Testing both the atom numbers and the smiles is redundant, # but guards against possible future changes. for atom in mol.GetAtoms(): self.assertEqual(atom.GetAtomMapNum(), 0) self.assertEqual(Chem.MolToSmiles(mol), smiles_before) if __name__ == '__main__': absltest.main()
apache-2.0
fyffyt/scikit-learn
examples/ensemble/plot_adaboost_regression.py
311
1529
""" ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. .. [1] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng) regr_1.fit(X, y) regr_2.fit(X, y) # Predict y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="training samples") plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
cyliustack/sofa
bin/sofa_analyze.py
1
50661
import argparse import matplotlib matplotlib.use('agg') import csv import json import multiprocessing as mp import os import random import re import sys from functools import partial from operator import attrgetter, itemgetter import networkx as nx import numpy as np import pandas as pd import time from sofa_aisi import * from sofa_common import * from sofa_config import * from sofa_print import * from matplotlib import pyplot as plt import grpc import potato_pb2 import potato_pb2_grpc import socket import random import subprocess from sofa_ml import hsg_v2 def random_generate_color(): rand = lambda: random.randint(0, 255) return '#%02X%02X%02X' % (64, rand(), rand()) def get_top_k_events(cfg, df, topk): topk_events=[] gby = df.groupby(['name']) df_agg = gby.aggregate(np.sum) df_agg_sorted = df_agg.sort_values(by=['duration'],ascending=False) #memcpy = ['copyKind_1_','copyKind_2_','copyKind_8_'] if cfg.verbose: print("Top %d Events: "%topk) print(df_agg_sorted[['duration']][0:topk]) eventName = df_agg_sorted[df_agg_sorted.columns[0:0]].head(topk).index.values.tolist() return eventName # input: pfv(performance feature vector), Pandas.DataFrame # output: hint, docker_image def get_hint(potato_server, features): if len(features) > 0: pfv = potato_pb2.PerformanceFeatureVector() for i in range(len(features)): name = features.iloc[i]['name'] value = features.iloc[i]['value'] #print('%s%s%s' % (str(i).ljust(10), name.ljust(30), ('%.3lf'%value).ljust(20))) pfv.name.append(name) pfv.value.append(value) #print('Wait for response from POTATO server...') myhostname = socket.gethostname() channel = grpc.insecure_channel(potato_server) stub = potato_pb2_grpc.HintStub(channel) request = potato_pb2.HintRequest( hostname = myhostname, pfv = pfv) response = stub.Hint(request) hint = response.hint docker_image = response.docker_image else: hint = 'There is no pfv to get hints.' docker_image = 'NA' return hint, docker_image def concurrency_breakdown(logdir, cfg, df_mpstat, df_cpu, df_gpu, df_nvsmi, df_bandwidth, features): if cfg.verbose: print_title('Concurrency Breakdown Analysis') total_elapsed_time = {'usr':0, 'sys':0, 'gpu':0, 'iow':0, 'idl':0} elapsed_time_ratio = {'usr':0, 'sys':0, 'gpu':0, 'iow':0, 'idl':0} total_interval_vector = [] total_performace_vector = [] if len(df_mpstat) == 0: print_warning(cfg, 'no mpstat and perf traces!') return features t_begin = df_mpstat.iloc[0]['timestamp'] t_end = df_mpstat.iloc[-1]['timestamp'] t = t_begin sample_time = (1 / float(cfg.sys_mon_rate)) while t < t_end: t = t + sample_time if cfg.roi_end > 0 and (t < cfg.roi_begin or t > cfg.roi_end): continue window_begin = t - sample_time window_end = t if len(df_cpu) > 0: if df_cpu.iloc[0].timestamp > window_end: continue cond1 = (df_cpu['timestamp'] > window_begin) cond2 = (df_cpu['timestamp'] <= window_end) df_cpu_interval = df_cpu[ cond1 & cond2 ] num_gpus = len(list(set(df_nvsmi['deviceId']))) cond1 = (df_nvsmi['timestamp'] > window_begin) cond2 = (df_nvsmi['timestamp'] <= window_end) sm = df_nvsmi['event'] == int(0) df_nvsmi_interval = df_nvsmi[ cond1 & cond2 & sm ] cond1 = (df_mpstat['timestamp'] > window_begin) cond2 = (df_mpstat['timestamp'] <= window_end) df_mpstat_interval = df_mpstat[ cond1 & cond2 ] cond1 = (df_bandwidth['timestamp'] > window_begin) cond2 = (df_bandwidth['timestamp'] <= window_end) tx = df_bandwidth['event'] == float(0) rx = df_bandwidth['event'] == float(1) df_tx_interval = df_bandwidth[ cond1 & cond2 & tx ] df_rx_interval = df_bandwidth[ cond1 & cond2 & rx ] mp_usr = [] mp_sys = [] mp_idl = [] mp_iow = [] usr = [] sys = [] irq = [] cpu_max = 0 cpu_min = 100 for i in range(len(df_mpstat_interval)): ratios = df_mpstat_interval.iloc[i]['name'].split(':')[1].split('|') #print(ratios) mp_usr.append(sample_time*int(ratios[1])/100.0) mp_sys.append(sample_time*int(ratios[2])/100.0) mp_idl.append(sample_time*int(ratios[3])/100.0) mp_iow.append(sample_time*int(ratios[4])/100.0) usr.append(int(ratios[1])) sys.append(int(ratios[2])) irq.append(int(ratios[5])) cpu_tmp = int(ratios[1]) + int(ratios[2]) + int(ratios[5]) if cpu_tmp > cpu_max: cpu_max = cpu_tmp if cpu_tmp < cpu_min: cpu_min = cpu_tmp mp_usr = np.asarray(mp_usr) mp_sys = np.asarray(mp_sys) mp_idl = np.asarray(mp_idl) mp_iow = np.asarray(mp_iow) usr = np.asarray(usr) sys = np.asarray(sys) irq = np.asarray(irq) elapsed_time = {'usr':0, 'sys':0, 'gpu':0, 'iow':0, 'idl':0} if len(df_mpstat_interval) > 0: elapsed_time['usr'] = mp_usr.max() elapsed_time['sys'] = mp_sys.max() elapsed_time['gpu'] = df_nvsmi_interval['duration'].max() * 0.01 * sample_time elapsed_time['iow'] = mp_iow.max() #print('gput,usrt = ', elapsed_time['gpu'], elapsed_time['usr']) dominator = max(elapsed_time, key=elapsed_time.get) #if elapsed_time['gpu'] > 0.1 : # dominator = 'gpu' if elapsed_time[dominator] > sample_time * int(cfg.is_idle_threshold)/100: total_elapsed_time[dominator] = total_elapsed_time[dominator] + sample_time else: total_elapsed_time['idl'] += sample_time if num_gpus > 0: time_gpu_avg = df_nvsmi_interval['duration'].sum() * 0.01 * sample_time / num_gpus else: time_gpu_avg = 0 interval_vector = [mp_usr.max(), mp_sys.max(), mp_iow.max(), mp_idl.max(), time_gpu_avg, df_tx_interval['bandwidth'].sum(), df_rx_interval['bandwidth'].sum()] total_interval_vector.append(tuple(interval_vector)) if num_gpus > 0: sm_avg = df_nvsmi_interval['duration'].sum() / int(len(list(set(df_nvsmi_interval['deviceId'])))) else: sm_avg = 0 performace_vector = [window_end, df_nvsmi_interval['duration'].max(), sm_avg, df_nvsmi_interval['duration'].min(), round((usr.mean() + sys.mean() + irq.mean()), 0), cpu_max, cpu_min] total_performace_vector.append(tuple(performace_vector)) total_all_elapsed_time = sum(total_elapsed_time.values()) if total_all_elapsed_time > 0 : elapsed_time_ratio['usr'] = 100 * total_elapsed_time['usr'] / total_all_elapsed_time elapsed_time_ratio['sys'] = 100 * total_elapsed_time['sys'] / total_all_elapsed_time elapsed_time_ratio['gpu'] = 100 * total_elapsed_time['gpu'] / total_all_elapsed_time elapsed_time_ratio['idl'] = 100 * total_elapsed_time['idl'] / total_all_elapsed_time elapsed_time_ratio['iow'] = 100 * total_elapsed_time['iow'] / total_all_elapsed_time if cfg.verbose: print('Elapsed Time = %.1lf ' % total_all_elapsed_time) print('USR = %.1lf %%' % elapsed_time_ratio['usr']) print('SYS = %.1lf %%' % elapsed_time_ratio['sys']) if num_gpus > 0: print('GPU = %.1lf %%' % elapsed_time_ratio['gpu']) print('IDL = %.1lf %%' % elapsed_time_ratio['idl']) print('IOW = %.1lf %%' % elapsed_time_ratio['iow']) if cfg.spotlight_gpu: elapsed_hotspot_time = cfg.roi_end - cfg.roi_begin else: elapsed_hotspot_time = 0 df = pd.DataFrame({ 'name':['elapsed_usr_time_ratio', 'elapsed_sys_time_ratio', 'elapsed_gpu_time_ratio', 'elapsed_iow_time_ratio', 'elapsed_hotspot_time'], 'value':[elapsed_time_ratio['usr'], elapsed_time_ratio['sys'], elapsed_time_ratio['gpu'], elapsed_time_ratio['iow'], elapsed_hotspot_time ] }, columns=['name','value']) features = pd.concat([features, df]) if len(total_performace_vector) > 0: performance_table = pd.DataFrame(total_performace_vector, columns = ['time', 'max_gpu_util', 'avg_gpu_util', 'min_gpu_util', 'cpu_util', 'cpu_max', 'cpu_min']) performance_table.to_csv('%s/performance.csv' % logdir) vector_table = pd.DataFrame(total_interval_vector, columns = ['usr' , 'sys', 'iow', 'idl','gpu', 'net_tx', 'net_rx']) pearson = vector_table.corr(method ='pearson').round(2) if cfg.verbose: print('Correlation Table :') print(pearson) df = pd.DataFrame({ 'name':['corr_gpu_usr', 'corr_gpu_sys', 'corr_gpu_iow', 'corr_gpu_ntx', 'corr_gpu_nrx'], 'value':[pearson['gpu'].usr, pearson['gpu'].sys, pearson['gpu'].iow, pearson['gpu'].net_tx, pearson['gpu'].net_rx]}, columns=['name','value']) features = pd.concat([features, df]) return features def payload_sum(df): print((len(df))) class Event: def __init__(self, name, ttype, timestamp, duration): self.name = name self.ttype = ttype # 0 for begin, 1 for end self.timestamp = timestamp self.duration = duration def __repr__(self): return repr((self.name, self.ttype, self.timestamp, self.duration)) def nvsmi_profile(logdir, cfg, df_nvsmi, features): if not cfg.cluster_ip and cfg.verbose: print_title('SM & MEM & ENCODE/DECODE Profiling') if cfg.spotlight_gpu: if cfg.roi_end == 0 : print_warning(cfg, 'spotlight_gpu has no effects.') else: cond1 = (df_nvsmi['timestamp'] > cfg.roi_begin) cond2 = (df_nvsmi['timestamp'] <= cfg.roi_end) df_nvsmi = df_nvsmi[ cond1 & cond2 ] sm_start = df_nvsmi.iloc[0].timestamp sm_end = df_nvsmi.iloc[-1].timestamp SM_time = sm_end - sm_start result = df_nvsmi.groupby(['deviceId','event'])['duration'].mean() result = result.astype(int) gpu_sm_util = df_nvsmi.groupby(['event'])['duration'].mean()[0] gpu_mem_util = df_nvsmi.groupby(['event'])['duration'].mean()[1] if cfg.nvsmi_data: gpu_enc_util = df_nvsmi.groupby(['event'])['duration'].mean()[2] gpu_dec_util = df_nvsmi.groupby(['event'])['duration'].mean()[3] else: gpu_enc_util = 0 gpu_dec_util = 0 sm = df_nvsmi['event'] == int(0) mem = df_nvsmi['event'] == int(1) enc = df_nvsmi['event'] == int(2) dec = df_nvsmi['event'] == int(3) gpunum = list(set(df_nvsmi['deviceId'])) res = pd.DataFrame([], columns=['sm', 'mem', 'enc', 'dec']) sm_q = pd.DataFrame([], columns=['Q1', 'Q2', 'Q3', 'Avg']) mem_q = pd.DataFrame([], columns=['Q1', 'Q2', 'Q3', 'Avg']) for i in gpunum: gpuid = df_nvsmi['deviceId'] == int(i) gpudata = [round(df_nvsmi[sm & gpuid]['duration'].mean(), 2), round(df_nvsmi[mem & gpuid]['duration'].mean(), 2), round(df_nvsmi[enc & gpuid]['duration'].mean(), 2), round(df_nvsmi[dec & gpuid]['duration'].mean(), 2)] smdata = [round(df_nvsmi[sm & gpuid]['duration'].quantile(0.25), 2), round(df_nvsmi[sm & gpuid]['duration'].quantile(0.5), 2), round(df_nvsmi[sm & gpuid]['duration'].quantile(0.75), 2), round(df_nvsmi[sm & gpuid]['duration'].mean(), 2)] memdata = [round(df_nvsmi[mem & gpuid]['duration'].quantile(0.25), 2), round(df_nvsmi[mem & gpuid]['duration'].quantile(0.5), 2), round(df_nvsmi[mem & gpuid]['duration'].quantile(0.75), 2), round(df_nvsmi[mem & gpuid]['duration'].mean(), 2)] gpu_tmp = pd.DataFrame([gpudata], columns=['sm', 'mem', 'enc', 'dec'], index=[i]) sm_tmp = pd.DataFrame([smdata], columns=['Q1', 'Q2', 'Q3', 'Avg'], index=[i]) mem_tmp = pd.DataFrame([memdata], columns=['Q1', 'Q2', 'Q3', 'Avg'], index=[i]) res = pd.concat([res, gpu_tmp]) sm_q = pd.concat([sm_q, sm_tmp]) mem_q = pd.concat([mem_q, mem_tmp]) res.index.name = 'gpu_id' sm_q.index.name = 'gpu_id' mem_q.index.name = 'gpu_id' if not cfg.cluster_ip and cfg.verbose: print('GPU Utilization (%):') print(res) print('\nGPU SM Quartile (%):') print(sm_q) print('\nGPU MEM Quartile (%):') print(mem_q) print('Overall Average SM Utilization (%): ', int(gpu_sm_util)) print('Overall Average MEM Utilization (%): ', int(gpu_mem_util)) print('Overall Average ENC Utilization (%): ', int(gpu_enc_util)) print('Overall Average DEC Utilization (%): ', int(gpu_dec_util)) print('Overall Active GPU Time (s): %.3lf' % (SM_time * gpu_sm_util/100.0)) df = pd.DataFrame({'name':['gpu_sm_util_q2', 'gpu_sm_util_q3', 'gpu_sm_util', 'gpu_mem_util_q2', 'gpu_mem_util_q3', 'gpu_mem_util'], 'value':[df_nvsmi[sm & gpuid]['duration'].quantile(0.5), df_nvsmi[sm & gpuid]['duration'].quantile(0.75), int(gpu_sm_util), df_nvsmi[mem & gpuid]['duration'].quantile(0.5), df_nvsmi[mem & gpuid]['duration'].quantile(0.75), int(gpu_mem_util), ]}, columns=['name','value']) features = pd.concat([features, df]) return features def gpu_profile(logdir, cfg, df_gpu, features): if cfg.verbose: print_title('GPU Profiling') print('Per-GPU time (s):') groups = df_gpu.groupby("deviceId")["duration"] gpu_time = 0 for key, item in groups: gpuid = int(float(key)) per_gpu_time = groups.get_group(key).sum() if cfg.verbose: print("[%d]: %lf" % (gpuid, per_gpu_time)) gpu_time = gpu_time + per_gpu_time num_gpus = len(groups) kernel_time = 0 grouped_df = df_gpu.groupby("copyKind")["duration"] for key, item in grouped_df: if key == 0: kernel_time = grouped_df.get_group(key).sum() nccl_time = 0 grouped_df = df_gpu.groupby("name")["duration"] for key, item in grouped_df: #print("[%s]: %lf" % (key, grouped_df.get_group(key).sum())) if key.find("nccl") != -1: nccl_time = nccl_time + grouped_df.get_group(key).sum() features = comm_profile(logdir, cfg, df_gpu, features) get_top_k_events(cfg, df_gpu, 10) df = pd.DataFrame({'name':['gpu_time', 'num_gpus', 'kernel_time', 'nccl_time'], 'value':[gpu_time, num_gpus, kernel_time, nccl_time] }, columns=['name','value']) features = pd.concat([features, df]) return features def strace_profile(logdir, cfg, df, features): print_title('STRACE Profiling:') return features def net_profile(logdir, cfg, df, features): if not cfg.cluster_ip: print_title("Network Profiling:") grouped_df = df.groupby("name")["duration"] net_time = 0 n_packets = 0 for key, item in grouped_df: #print("[%s]: %lf" % (key, grouped_df.get_group(key).sum())) if key.find("network:tcp:") != -1: net_time = net_time + grouped_df.get_group(key).sum() n_packets = n_packets + 1 #print(("total network time (s) = %.3lf" % net_time)) #print(("total amount of network packets = %d" % n_packets)) # total network packet packet_num_matrix = df.groupby(['pkt_src','pkt_dst','payload']).size().unstack(level=1, fill_value=0) # total network traffic packet_sum_matrix = df.groupby(['pkt_src','pkt_dst'])["payload"].sum().unstack(level=1, fill_value=0) # ================ change pandas table columns and index name ==== rename_index = packet_sum_matrix.index.tolist() rename_index2 = packet_num_matrix.index.tolist() rename_columns = packet_sum_matrix.columns.tolist() rename_columns2 = packet_num_matrix.columns.tolist() def zero(s): if s[0:2] == '00': s = s[2] elif (s[0] == '0') and (s[1] != '0'): s = s[1:3] return(s) def check_str(rename_list): rename_list_new = [] for j in rename_list: j = str(int(j)) a = j[-9:-6] b = j[-6:-3] c = j[-3:] j = j[:-9] + '.' + zero(a) + '.' + zero(b) + '.' + zero(c) rename_list_new.append(j) return(rename_list_new) def check_str2(rename_list): rename_columns_2 = [] for i in rename_list: i = str(int(i[0])) a = i[-9:-6] b = i[-6:-3] c = i[-3:] i = i[:-9] + '.' + zero(a) + '.' + zero(b) + '.' + zero(c) rename_columns_2.append(i) return(rename_columns_2) rename_index_new = check_str(rename_index) rename_index_new = dict(zip(rename_index, rename_index_new)) rename_index2_new = check_str2(rename_index2) rename_index2_final = list(set(rename_index2_new)) rename_index2_final.sort(key=rename_index2_new.index) rename_columns_new = check_str(rename_columns) rename_columns_new = dict(zip(rename_columns, rename_columns_new)) rename_columns2_new = check_str(rename_columns2) rename_columns2_new = dict(zip(rename_columns2, rename_columns2_new)) # rename here packet_sum_matrix = packet_sum_matrix.rename(columns=rename_columns_new) packet_num_matrix = packet_num_matrix.rename(columns=rename_columns2_new) packet_sum_matrix = packet_sum_matrix.rename(index=rename_index_new) packet_num_matrix.index.set_levels(rename_index2_final , level = 0, inplace = True) if cfg.verbose: print("total amount of network traffic : ", convertbyte(df['payload'].sum()), '\n', packet_sum_matrix.to_string(), "\n") print("total amount of network packets = %d\n" % packet_num_matrix.sum().sum() ,packet_num_matrix.to_string(), "\n") network_value = [] src = [] dst = [] final = [] for index in packet_sum_matrix.index: for column in packet_sum_matrix.columns: src.append(index) dst.append(column) network_value.append(packet_sum_matrix[column][index]) record = list(zip(src, dst, network_value)) record.sort(key=lambda tup:tup[2], reverse=True) for src, dst, value in record: if value == 0: pass else: item = [src, dst, convertbyte(value), round(value / df['payload'].sum(), 2)] final.append(item) summary = pd.DataFrame(final, columns=['Source', 'Destination', 'Amount', 'Percentage of a Node']) summary.to_csv(logdir + 'netrank.csv', mode='w', header=True, index=False) df = pd.DataFrame({'name':['net_time'], 'value':[net_time] }, columns=['name','value']) features = pd.concat([features, df]) return features def convertbyte(B): B = int(B) KB = float(1024) MB = float(KB ** 2) # 1,048,576 GB = float(KB ** 3) # 1,073,741,824 TB = float(KB ** 4) # 1,099,511,627,776 if B < KB: return '{} Bytes'.format(B) elif KB <= B < MB: return '{0:.2f} KB'.format(B/KB) elif MB <= B < GB: return '{0:.2f} MB'.format(B/MB) elif GB <= B < TB: return '{0:.2f} GB'.format(B/GB) elif TB <= B: return '{0:.2f} TB'.format(B/TB) def convertbytes(B): B = float(B) KB = float(1024) MB = float(KB ** 2) # 1,048,576 GB = float(KB ** 3) # 1,073,741,824 TB = float(KB ** 4) # 1,099,511,627,776 if B < KB: return '{0:.2f} B/s'.format(B) elif KB <= B < MB: return '{0:.2f} KB/s'.format(B/KB) elif MB <= B < GB: return '{0:.2f} MB/s'.format(B/MB) elif GB <= B < TB: return '{0:.2f} GB/s'.format(B/GB) elif TB <= B: return '{0:.2f} TB/s'.format(B/TB) def netbandwidth_profile(logdir, cfg, df, features): if not cfg.cluster_ip and cfg.verbose: print_title('Network Bandwidth Profiling:') tx = df['event'] == float(0) rx = df['event'] == float(1) bw_tx_q1 = df[tx]['bandwidth'].quantile(0.25) bw_tx_q2 = df[tx]['bandwidth'].quantile(0.5) bw_tx_q3 = df[tx]['bandwidth'].quantile(0.75) bw_tx_mean = int(df[tx]['bandwidth'].mean()) bw_rx_q1 = df[rx]['bandwidth'].quantile(0.25) bw_rx_q2 = df[rx]['bandwidth'].quantile(0.5) bw_rx_q3 = df[rx]['bandwidth'].quantile(0.75) bw_rx_mean = int(df[rx]['bandwidth'].mean()) with open('%s/netstat.txt' % logdir) as f: lines = f.readlines() first_line = lines[0] last_line = lines[-1] tx_begin = first_line.split(',')[1] rx_begin = first_line.split(',')[2] tx_end = last_line.split(',')[1] rx_end = last_line.split(',')[2] tx_amount = int(last_line.split(',')[1]) - int(first_line.split(',')[1]) rx_amount = int(last_line.split(',')[2]) - int(first_line.split(',')[2]) if not cfg.cluster_ip: bw_tx_q1 = df[tx]['bandwidth'].quantile(0.25) bw_tx_q2 = df[tx]['bandwidth'].quantile(0.5) bw_tx_q3 = df[tx]['bandwidth'].quantile(0.75) bw_tx_mean = int(df[tx]['bandwidth'].mean()) bw_rx_q1 = df[rx]['bandwidth'].quantile(0.25) bw_rx_q2 = df[rx]['bandwidth'].quantile(0.5) bw_rx_q3 = df[rx]['bandwidth'].quantile(0.75) bw_rx_mean = int(df[rx]['bandwidth'].mean()) if cfg.verbose: print('Amount of Network Traffic : %s' % (convertbyte(tx_amount + rx_amount))) print('Amount of tx : %s' % convertbyte(tx_amount)) print('Amount of rx : %s' % convertbyte(rx_amount)) print('Bandwidth Quartile :') print('Q1 tx : %s, rx : %s' % ( convertbytes(bw_tx_q1), convertbytes(bw_rx_q1))) print('Q2 tx : %s, rx : %s' % ( convertbytes(bw_tx_q2), convertbytes(bw_rx_q2))) print('Q3 tx : %s, rx : %s' % ( convertbytes(bw_tx_q3), convertbytes(bw_rx_q3))) print('Avg tx : %s, rx : %s'% ( convertbytes(bw_tx_mean), convertbytes(bw_rx_mean))) #network chart part all_time = df[tx]['timestamp'].tolist() all_tx = df[tx]['bandwidth'].tolist() all_rx = df[rx]['bandwidth'].tolist() fig = plt.figure(dpi=128, figsize=(16, 14)) plt.plot(all_time, all_tx, c='red', alpha=0.5, label='tx') plt.plot(all_time, all_rx, c='blue', alpha=0.5, label='rx') plt.legend(loc='upper right') plt.title("Network Report", fontsize=18) plt.xlabel('Timestamp (s)', fontsize=16) plt.ylabel("Bandwidth (bytes)", fontsize=16) fig.savefig("%s/network_report.pdf" % logdir, bbox_inches='tight') if not cfg.cluster_ip and cfg.verbose: print('Network Bandwidth Chart is saved at %s/network_report.pdf' %logdir) df_feature = pd.DataFrame({ 'name':['bw_tx_q2', 'bw_tx_q3', 'bw_rx_q2', 'bw_rx_q3'], 'value':[bw_tx_q2, bw_tx_q3, bw_rx_q2, bw_rx_q3] }, columns=['name','value']) features = pd.concat([features, df_feature]) return features def blktrace_latency_profile(logdir, cfg, df, features): with open('%s/btt.txt' % logdir) as f: lines = f.readlines() for i, line in enumerate(lines): if '==================== All Devices ====================' in line: start = i if '==================== Device Merge Information ====================' in line: end = i break bttoutput_result = lines[start:end] df_offset = pd.read_table('%s/offset_all.txt' % logdir, delim_whitespace=True, names=('time', 'start', 'end')) time = df_offset['time'].tolist() start_b = df_offset['start'].tolist() end_b = df_offset['end'].tolist() fig = plt.figure(dpi=128, figsize=(16, 14)) plt.plot(time, start_b, c='red', marker='o', alpha=0.3, label='Start block') plt.legend(loc='upper right') plt.title("Block Offset Report", fontsize=18) plt.xlabel('Timestamp (s)', fontsize=16) plt.ylabel("Block Number", fontsize=16) fig.savefig("%s/offset_of_device_report.pdf" % logdir, bbox_inches='tight') print('Offset of Device Report is saved at %s/offset_of_device_report.pdf' %logdir) if cfg.verbose: print_title('Storage Profiling:') print('Blktracae Latency (s):') for btt in bttoutput_result: print(btt[:-1]) blktrace_latency = df['event'] == 'C' blktrace_latency_q1 = df[blktrace_latency]['duration'].quantile(0.25) blktrace_latency_q2 = df[blktrace_latency]['duration'].quantile(0.5) blktrace_latency_q3 = df[blktrace_latency]['duration'].quantile(0.75) blktrace_latency_mean = df[blktrace_latency]['duration'].mean() df_feature = pd.DataFrame({ 'name':['blktrace_latency_q1','blktrace_latency_q2','blktrace_latency_q3'], 'value': [blktrace_latency_q1, blktrace_latency_q2, blktrace_latency_q3] }, columns=['name','value']) features = pd.concat([features, df_feature]) return features def diskstat_profile(logdir, cfg, df, features): #diskstat_dev = list(set(df['dev'])) diskstat_r_q1 = df.groupby('dev')['d_read'].quantile(0.25) diskstat_w_q1 = df.groupby('dev')['d_write'].quantile(0.25) diskstat_q1 = df.groupby('dev')['d_disk_total'].quantile(0.25) diskstat_r_q2 = df.groupby('dev')['d_read'].quantile(0.5) diskstat_w_q2 = df.groupby('dev')['d_write'].quantile(0.5) diskstat_q2 = df.groupby('dev')['d_disk_total'].quantile(0.5) diskstat_r_q3 = df.groupby('dev')['d_read'].quantile(0.75) diskstat_w_q3 = df.groupby('dev')['d_write'].quantile(0.75) diskstat_q3 = df.groupby('dev')['d_disk_total'].quantile(0.75) diskstat_r_avg = df.groupby('dev')['d_read'].mean() diskstat_w_avg = df.groupby('dev')['d_write'].mean() diskstat_avg = df.groupby('dev')['d_disk_total'].mean() diskstat_r_iops = df.groupby('dev')['r_iops'].mean() diskstat_w_iops = df.groupby('dev')['w_iops'].mean() diskstat_iops = df.groupby('dev')['iops'].mean() diskstat_wait = df.groupby('dev')['await_time'].mean() diskstat_table = pd.concat([diskstat_r_q1, diskstat_r_q2, diskstat_r_q3, diskstat_r_avg, diskstat_w_q1, diskstat_w_q2, diskstat_w_q3, diskstat_w_avg, diskstat_q1, diskstat_q2, diskstat_q3, diskstat_avg, diskstat_r_iops, diskstat_w_iops, diskstat_iops, diskstat_wait], axis=1, sort=False) diskstat_columns = ['Q1 throughput(Read)', 'Q2 throughput(Read)', 'Q3 throughput(Read)', 'Avg throughput(Read)', 'Q1 throughput(Write)', 'Q2 throughput(Write)', 'Q3 throughput(Write)', 'Avg throughput(Write)', 'Q1 throughput(R+W)', 'Q2 throughput(R+W)', 'Q3 throughput(R+W)', 'Avg throughput(R+W)', 'Avg IOPS(Read)', 'Avg IOPS(Write)', 'Avg IOPS(R+W)', 'Avg Await time(ms)'] diskstat_table.columns = diskstat_columns diskstat_dev = diskstat_table.index.format() final_table = pd.DataFrame(columns=diskstat_columns) for j, dev in enumerate(diskstat_dev): tmp_list = [] for i in diskstat_columns[:-4]: tmp_list.append(convertbytes(diskstat_table.iloc[j][i])) for i in diskstat_columns[-4:-1]: tmp_list.append('%d' % int(diskstat_table.iloc[j][i])) tmp_list.append('%.3lf ms' % diskstat_table.iloc[j][-1]) tmp_table = pd.DataFrame([tuple(tmp_list)], columns=diskstat_columns, index=[dev]) final_table = pd.concat([final_table, tmp_table]) if cfg.verbose: print_title('DISKSTAT Profiling:') print('Disk Throughput Quartile :') print(final_table.T) df_feature = pd.DataFrame({ 'name':['diskstat_q1','diskstat_q2','diskstat_q3'], 'value': [diskstat_q1.mean(), diskstat_q2.mean(), diskstat_q3.mean()] }, columns=['name','value']) features = pd.concat([features, df_feature]) return features def cpu_profile(logdir, cfg, df): if cfg.verbose: print_title('CPU Profiling:') print('elapsed_time (s) = %.6lf' % cfg.elapsed_time) grouped_df = df.groupby("deviceId")["duration"] total_exec_time = 0 for key, item in grouped_df: print(("[%d]: %lf" % (key, grouped_df.get_group(key).sum()))) total_exec_time = total_exec_time + grouped_df.get_group(key).sum() print("total execution time (s) = %.3lf" % total_exec_time) cpu_detail_profile_df = df[['timestamp','duration','name']] cpu_detail_profile_df = cpu_detail_profile_df.sort_values(by=['duration'], ascending=False) cpu_detail_profile_df['ratio(%)'] = cpu_detail_profile_df['duration']/total_exec_time * 100 cpu_detail_profile_df = cpu_detail_profile_df[['timestamp','ratio(%)','duration','name']] print(cpu_detail_profile_df[:20].to_string(index=False)) def vmstat_profile(logdir, cfg, df, features): _,_,_,_,_,_,df['si'],df['so'],df['bi'],df['bo'],df['in'],df['cs'],_,_,_,_,_=df['name'].str.split('|').str for col_name in ('si','so','bi','bo','in','cs'): df[col_name] = df[col_name].str[3:] vmstat_traces = df[['si','so','bi','bo','in','cs']].astype(float) vm_bi = vmstat_traces['bi'].mean() vm_bo = vmstat_traces['bo'].mean() vm_cs = vmstat_traces['cs'].mean() vm_in = vmstat_traces['in'].mean() if cfg.verbose: print_title('VMSTAT Profiling:') print('average bi/s: %d' % int(vm_cs)) print('average bo/s: %d' % int(vm_in)) print('average cs/s: %d' % int(vm_bi)) print('average in/s: %d' % int(vm_bo)) df_feature = pd.DataFrame({ 'name':['vm_bi', 'vm_bo', 'vm_cs', 'vm_in' ], 'value':[vm_bi, vm_bo, vm_cs, vm_in] }, columns=['name','value']) features = pd.concat([features, df_feature]) return features def mpstat_profile(logdir, cfg, df, features): if not cfg.cluster_ip and cfg.verbose: print_title('MPSTAT Profiling:') num_cores = int(df['deviceId'].max() + 1) df_summary = pd.DataFrame( np.zeros((num_cores,5)), columns=['USR','SYS','IDL','IOW','IRQ']) _,_,_,_,_,df['USR'],df['SYS'],df['IDL'],df['IOW'],df['IRQ'],_ = df["name"].str.split('|').str df[['USR','SYS','IDL','IOW','IRQ']] = df[['USR','SYS','IDL','IOW','IRQ']].astype(float) df["dt_all"] = np.where(df["IDL"]==100, 0.1, df["duration"]/((100-df["IDL"])/100.0)) df["t_USR"] = df['dt_all'] * df['USR']/100.0 df["t_SYS"] = df['dt_all'] * df['SYS']/100.0 df["t_IDL"] = df['dt_all'] * df['IDL']/100.0 df["t_IOW"] = df['dt_all'] * df['IOW']/100.0 df["t_IRQ"] = df['dt_all'] * df['IRQ']/100.0 dfs=[] for i in range(num_cores): dfs.append(df.loc[df['deviceId'] == float(i)]) for index,dff in enumerate(dfs): df_summary.iloc[index]['USR'] = dff['t_USR'].sum() df_summary.iloc[index]['SYS'] = dff['t_SYS'].sum() df_summary.iloc[index]['IDL'] = dff['t_IDL'].sum() df_summary.iloc[index]['IRQ'] = dff['t_IRQ'].sum() df_summary.iloc[index]['IOW'] = dff['t_IOW'].sum() if not cfg.cluster_ip and cfg.verbose: print('CPU Utilization (%):') print('core\tUSR\tSYS\tIDL\tIOW\tIRQ') for i in range(len(df_summary)): t_sum = df_summary.iloc[i].sum() if not cfg.cluster_ip and cfg.verbose: print('%3d\t%3d\t%3d\t%3d\t%3d\t%3d'%(i,int(100.0*df_summary.iloc[i]['USR']/t_sum), int(100.0*df_summary.iloc[i]['SYS']/t_sum), int(100.0*df_summary.iloc[i]['IDL']/t_sum), int(100.0*df_summary.iloc[i]['IOW']/t_sum), int(100.0*df_summary.iloc[i]['IRQ']/t_sum) )) if not cfg.cluster_ip and cfg.verbose: print('CPU Time (s):') print('core\tUSR\tSYS\tIDL\tIOW\tIRQ') for i in range(len(df_summary)): t_sum = df_summary.iloc[i].sum() if not cfg.cluster_ip and cfg.verbose: print('%3d\t%.2lf\t%.2lf\t%.2lf\t%.2lf\t%.2lf'%(i, df_summary.iloc[i]['USR'], df_summary.iloc[i]['SYS'], df_summary.iloc[i]['IDL'], df_summary.iloc[i]['IOW'], df_summary.iloc[i]['IRQ'] )) total_cpu_time = df_summary[['USR','SYS','IRQ']].sum().sum() cpu_util = int(100*total_cpu_time / (num_cores*cfg.elapsed_time)) if not cfg.cluster_ip and cfg.verbose: print('Active CPU Time (s): %.3lf' % total_cpu_time) print('Active CPU ratio (%%): %3d' % cpu_util) df_feature = pd.DataFrame({ 'name':['num_cores', 'cpu_util'], 'value':[num_cores, cpu_util] }, columns=['name','value']) features = pd.concat([features, df_feature]) return features def sofa_analyze(cfg): print_main_progress('SOFA analyzing...') filein = [] df_cpu = pd.DataFrame([], columns=cfg.columns) df_gpu = pd.DataFrame([], columns=cfg.columns) df_net = pd.DataFrame([], columns=cfg.columns) df_mpstat = pd.DataFrame([], columns=cfg.columns) df_vmstat = pd.DataFrame([], columns=cfg.columns) df_bandwidth = pd.DataFrame([], columns=cfg.columns) df_blktrace = pd.DataFrame([], columns=cfg.columns) df_diskstat = pd.DataFrame([], columns=cfg.columns) df_nvsmi = pd.DataFrame([], columns=cfg.columns) iter_summary = None logdir = cfg.logdir with open(logdir+'/misc.txt') as f: lines = f.readlines() elapsed_time = float(lines[0].split()[1]) vcores = int(lines[2].split()[1]) cfg.elapsed_time = float(lines[0].split()[1]) filein_gpu = logdir + "gputrace.csv" filein_cpu = logdir + "cputrace.csv" filein_net = logdir + "nettrace.csv" filein_vmstat = logdir + "vmstat.csv" filein_mpstat = logdir + "mpstat.csv" filein_strace = logdir + "strace.csv" filein_nvsmi = logdir + "nvsmi_trace.csv" filein_bandwidth = logdir + "netstat.csv" filein_blktrace = logdir + "blktrace.csv" filein_diskstat = logdir + "diskstat_vector.csv" if os.path.isfile('%s/nvlink_topo.txt' % logdir): with open(logdir + 'nvlink_topo.txt') as f: lines = f.readlines() if len(lines) > 0: title = lines[0] num_gpus = 1 for word in title.split(): if re.match(r'GPU', word) != None : num_gpus = num_gpus + 1 print_info(cfg,'# of GPUs: ' + str(num_gpus) ) edges = [] if len(lines) >= num_gpus+1: for i in range(num_gpus): connections = lines[1+i].split() for j in range(len(connections)): if connections[j] == 'NV1' or connections[j] == 'NV2': edges.append((i,j-1)) #print('%d connects to %d' % (i, j-1)) ring_found = False G = nx.DiGraph(edges) # Try to find ring with its length of num_gpus for cycle in nx.simple_cycles(G): if len(cycle) == num_gpus: if cfg.verbose: print('One of the recommended ring having length of %d' % len(cycle)) ring_found = True os.system("mkdir -p sofalog/sofa_hints/") xring_order = ','.join(map(str, cycle)) with open("sofalog/sofa_hints/xring_order.txt", "w") as f: f.write('export CUDA_VISIBLE_DEVICES=' + xring_order) break # Try to find ring with its length of num_gpus/2 if not ring_found: for cycle in nx.simple_cycles(G): if len(cycle) == num_gpus/2: print(("One of the recommended ring having length of %d" % len(cycle) )) ring_found = True os.system("mkdir -p sofalog/sofa_hints/") xring_order = ','.join(map(str, cycle)) with open("sofalog/sofa_hints/xring_order.txt", "w") as f: f.write('export CUDA_VISIBLE_DEVICES=' + xring_order) break # Construct Performance Features features = pd.DataFrame({'name':['elapsed_time'], 'value':[cfg.elapsed_time]}, columns=['name','value']) try: df_nvsmi = pd.read_csv(filein_nvsmi) if not df_nvsmi.empty and cfg.spotlight_gpu: state = 0 sm_high = 0 trigger = 10 for i in range(len(df_nvsmi)): if df_nvsmi.iloc[i].event == 0 and df_nvsmi.iloc[i].deviceId == 0 : if df_nvsmi.iloc[i].duration >= 50: sm_high = min(trigger, sm_high + 1) if df_nvsmi.iloc[i].duration < 10: sm_high = max(0, sm_high - 1) if state == 0 and sm_high == trigger: state = 1 cfg.roi_begin = df_nvsmi.iloc[i].timestamp elif state == 1 and sm_high == 0: state = 0 cfg.roi_end = df_nvsmi.iloc[i].timestamp #print('sm_high=%d state=%d' % (sm_high, state)) if cfg.roi_end - cfg.roi_begin < 0: cfg.roi_end = 0 cfg.roi_begin = 0 except IOError: print_warning(cfg, "nvsmi_trace.csv is not found") try: df_cpu = pd.read_csv(filein_cpu) if not df_cpu.empty: if cfg.verbose: cpu_profile(logdir, cfg, df_cpu) if cfg.enable_swarms and len(df_cpu) > cfg.num_swarms: df_cpu, swarms = hsg_v2(cfg, df_cpu) except IOError as e: df_cpu = pd.DataFrame([], columns=cfg.columns) print_warning(cfg, "%s is not found" % filein_cpu) try: df_strace = pd.read_csv(filein_strace) if not df_strace.empty: features = strace_profile(logdir, cfg, df_strace, features) except IOError as e: df_strace = pd.DataFrame([], columns=cfg.columns) print_warning(cfg, "%s is not found" % filein_strace) try: df_net = pd.read_csv(filein_net) if not df_net.empty: features = net_profile(logdir, cfg, df_net, features) except IOError as e: df_net = pd.DataFrame([], columns=cfg.columns) print_warning(cfg, "%s is not found" % filein_net) try: df_bandwidth = pd.read_csv(filein_bandwidth) if not df_bandwidth.empty: features = netbandwidth_profile(logdir, cfg, df_bandwidth, features) except IOError as e: df_bandwidth = pd.DataFrame([], columns=cfg.columns) print_warning(cfg, "%s is not found" % filein_bandwidth) try: df_blktrace = pd.read_csv(filein_blktrace) if not df_blktrace.empty: features = blktrace_latency_profile(logdir, cfg, df_blktrace, features) except IOError as e: df_blktrace = pd.DataFrame([], columns=cfg.columns) print_warning(cfg, "%s is not found" % filein_blktrace) try: df_diskstat = pd.read_csv(filein_diskstat) if not df_diskstat.empty: features = diskstat_profile(logdir, cfg, df_diskstat, features) except IOError as e: df_diskstat = pd.DataFrame([], columns=cfg.columns) print_warning(cfg, "%s is not found" % filein_diskstat) try: df_vmstat = pd.read_csv(filein_vmstat) if not df_vmstat.empty: features = vmstat_profile(logdir, cfg, df_vmstat, features) except IOError as e: df_vmstat = pd.DataFrame([], columns=cfg.columns) print_warning(cfg, "%s is not found" % filein_vmstat) try: df_mpstat = pd.read_csv(filein_mpstat) if not df_mpstat.empty: features = mpstat_profile(logdir, cfg, df_mpstat, features) except IOError as e: df_mpstat = pd.DataFrame([], columns=cfg.columns) print_warning(cfg, "%s is not found" % filein_mpstat) try: df_nvsmi = pd.read_csv(filein_nvsmi) features = nvsmi_profile(logdir, cfg, df_nvsmi, features) except IOError: print_warning(cfg, "nvsmi_trace.csv is not found") try: df_gpu = pd.read_csv(filein_gpu) if not df_gpu.empty: features = gpu_profile(logdir, cfg, df_gpu, features) except IOError: df_gpu = pd.DataFrame([], columns=cfg.columns) print_warning(cfg, "%s is not found. If there is no need to profile GPU, just ignore it." % filein_gpu) try: if len(df_mpstat)>0: df_nvsmi.append(df_mpstat.iloc[0]) features = concurrency_breakdown(logdir, cfg, df_mpstat, df_cpu, df_gpu, df_nvsmi, df_bandwidth, features) except IOError as e: print_warning(cfg, "Some files are not found, which are needed for concurrency_breakdown analysis") if cfg.enable_aisi: selected_pattern, iter_summary, features = sofa_aisi(logdir, cfg, df_cpu, df_gpu, df_strace, df_mpstat, features) if 'IS_SOFA_ON_HAIHUB' not in os.environ or os.environ['IS_SOFA_ON_HAIHUB'] == 'no': print_title('Final Performance Features') print('%s%s%s%s' % ('ID'.ljust(10),'Feature'.ljust(30),'Value'.ljust(20),'Unit'.ljust(20)) ) for i in range(len(features)): name = features.iloc[i]['name'] value = features.iloc[i]['value'] print('%s%s%s' % (str(i).ljust(10), name.ljust(30), ('%.3lf'%value).ljust(20))) if cfg.spotlight_gpu: try: print('Elapsed hotspot time: %.3lf' % features[features.name=='elapsed_hotspot_time'].value) except: print_warning(cfg, 'elpased_hostspot_time is not defined.') if cfg.potato_server: if cfg.potato_server.find(':') == -1: cfg.potato_server = cfg.potato_server + ':50051' hint, docker_image = get_hint(cfg.potato_server, features) df_report = pd.read_json(hint, orient='table') file_potato_report = cfg.logdir + 'potato_report.html' # Export report to HTML file. df_report.to_html(file_potato_report ) with open(file_potato_report, 'a') as f: f.write('<head><link rel=stylesheet type="text/css" href="potato_report.css"></head>') print_title('POTATO Feedback') print('%s%s%s%s' % ('ID'.ljust(5), 'Metric'.ljust(20), 'Value'.ljust(10), 'Reference-Value'.ljust(30) ) ) for i in range(len(df_report)): metric = df_report.iloc[i]['Metric'] if metric != 'hybrid_suggestion': value = df_report.iloc[i]['Value'] ref_value = df_report.iloc[i]['ReferenceValue'] print('%s%s%s%s' % (str(i).ljust(5), metric.ljust(20), ('%.3lf'%value).ljust(20), str(ref_value).ljust(30))) print('\n') print_hint('General Suggestions:') for i in range(len(df_report)): metric = df_report.iloc[i]['Metric'] if metric != 'hybrid_suggestion': suggestion = df_report.iloc[i]['Suggestion'] print('%d. %s' % (i, suggestion)) print('\n') print_hint('Framework-specific Optimization Suggestions:') for i in range(len(df_report)): metric = df_report.iloc[i]['Metric'] if metric == 'hybrid_suggestion': suggestion = df_report.iloc[i]['Suggestion'] print('%d. %s' % (i, suggestion)) #print(df_report[['Metric', 'Value', 'Reference Value']]) #print(df_report[['Suggestion']]) #print('Tag of optimal image recommended from POTATO: ' + highlight(docker_image)) print('\n') print_hint('Please re-launch KubeFlow Jupyter-notebook to have suggested images or resources if necessary.') sofa_home = os.path.dirname(os.path.realpath(__file__)) subprocess.Popen( ['bash', '-c', 'cp %s/../sofaboard/* %s;' % (sofa_home, cfg.logdir)]) subprocess.Popen(['sleep', '2']) print('\n\n') print('Complete!!') def cluster_analyze(cfg): if cfg.verbose: print_title('Cluster Network Profiling :') cluster = cfg.cluster_ip.split(',') summary_net = pd.DataFrame([], columns=['Source', 'Destination', 'Amount', 'Percentage of a Node']) summary_compute = pd.DataFrame([], columns=['gpu_sm_util','gpu_mem_util','cpu_util']) summary_band = pd.DataFrame([], columns=['Q1', 'Q2', 'Q3', 'Avg']) all = [] for i, ip in enumerate(cluster): features = pd.DataFrame({'name':['elapsed_time'], 'value':[cfg.elapsed_time]}, columns=['name','value']) node = 'node ' + str(i) if cfg.verbose: print('node ' + str(i) + ' is ' + ip) logdir = tmp_dir[0:-1] + '-' + ip + '/' filein_net = logdir + "nettrace.csv" filein_mpstat = logdir + "mpstat.csv" filein_nvsmi = logdir + "nvsmi_trace.csv" filein_bandwidth = logdir + "netstat.csv" with open(logdir+'/misc.txt') as f: lines = f.readlines() elapsed_time = float(lines[0].split()[1]) vcores = int(lines[2].split()[1]) cfg.elapsed_time = float(lines[0].split()[1]) try: df_net = pd.read_csv(filein_net) features = net_profile(logdir, cfg, df_net, features) except IOError as e: df_net = pd.DataFrame([], columns=cfg.columns) print_warning(cfg, "%s is not found" % filein_net) try: df_mpstat = pd.read_csv(filein_mpstat) features = mpstat_profile(logdir, cfg, df_mpstat, features) except IOError as e: df_mpstat = pd.DataFrame([], columns=cfg.columns) print_warning(cfg, "%s is not found" % filein_mpstat) try: df_nvsmi = pd.read_csv(filein_nvsmi) features = nvsmi_profile(logdir, cfg, df_nvsmi, features) except IOError: print_warning(cfg, "nvsmi_trace.csv is not found") try: df_bandwidth = pd.read_csv(filein_bandwidth) features = netbandwidth_profile(logdir, cfg, df_bandwidth, features) except IOError as e: df_bandwidth = pd.DataFrame([], columns=cfg.columns) print_warning(cfg, "%s is not found" % filein_bandwidth) sm = int(features[features['name'] == 'gpu_sm_util']['value']) mem = int(features[features['name'] == 'gpu_mem_util']['value']) cpu = int(features[features['name'] == 'cpu_util']['value']) sm_mem_cpu = [sm, mem, cpu] compute_tmp = pd.DataFrame([sm_mem_cpu], columns = ['gpu_sm_util', 'gpu_mem_util', 'cpu_util']) summary_compute = pd.concat([summary_compute, pd.concat([compute_tmp], keys=[node])]) net_tmp = pd.read_csv(logdir + "netrank.csv") summary_net = pd.concat([summary_net, pd.concat([net_tmp], keys=[node])]) # for bandwidth report tx = df_bandwidth['event'] == float(0) rx = df_bandwidth['event'] == float(1) tx_tmp = [convertbytes(df_bandwidth[tx]['bandwidth'].quantile(0.25)), convertbytes(df_bandwidth[tx]['bandwidth'].quantile(0.5)), convertbytes(df_bandwidth[tx]['bandwidth'].quantile(0.75)), convertbytes(df_bandwidth[tx]['bandwidth'].mean())] rx_tmp = [convertbytes(df_bandwidth[rx]['bandwidth'].quantile(0.25)), convertbytes(df_bandwidth[rx]['bandwidth'].quantile(0.5)), convertbytes(df_bandwidth[rx]['bandwidth'].quantile(0.75)), convertbytes(df_bandwidth[rx]['bandwidth'].mean())] band_tmp = pd.DataFrame([tx_tmp], columns = ['Q1', 'Q2', 'Q3', 'Avg'], index = ['tx']) rx_pd = pd.DataFrame([rx_tmp], columns = ['Q1', 'Q2', 'Q3', 'Avg'], index = ['rx']) band_tmp = pd.concat([band_tmp, rx_pd]) summary_band = pd.concat([summary_band, pd.concat([band_tmp], keys=[node])]) if cfg.verbose: with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also print('Ranked Network Traffic : \n', summary_net, '\n') print('Cluster Bandwidth Quartile: \n', summary_band) print_title('Cluster Computation Profiling:') print(summary_compute)
apache-2.0
zrhans/pythonanywhere
.virtualenvs/django19/lib/python3.4/site-packages/pandas/tseries/tests/test_frequencies.py
9
25284
from datetime import datetime, time, timedelta from pandas.compat import range import sys import os import nose import numpy as np from pandas import Index, DatetimeIndex, Timestamp, Series, date_range, period_range import pandas.tseries.frequencies as frequencies from pandas.tseries.tools import to_datetime import pandas.tseries.offsets as offsets from pandas.tseries.period import PeriodIndex import pandas.compat as compat from pandas.compat import is_platform_windows import pandas.util.testing as tm from pandas import Timedelta def test_to_offset_multiple(): freqstr = '2h30min' freqstr2 = '2h 30min' result = frequencies.to_offset(freqstr) assert(result == frequencies.to_offset(freqstr2)) expected = offsets.Minute(150) assert(result == expected) freqstr = '2h30min15s' result = frequencies.to_offset(freqstr) expected = offsets.Second(150 * 60 + 15) assert(result == expected) freqstr = '2h 60min' result = frequencies.to_offset(freqstr) expected = offsets.Hour(3) assert(result == expected) freqstr = '15l500u' result = frequencies.to_offset(freqstr) expected = offsets.Micro(15500) assert(result == expected) freqstr = '10s75L' result = frequencies.to_offset(freqstr) expected = offsets.Milli(10075) assert(result == expected) freqstr = '2800N' result = frequencies.to_offset(freqstr) expected = offsets.Nano(2800) assert(result == expected) # malformed try: frequencies.to_offset('2h20m') except ValueError: pass else: assert(False) def test_to_offset_negative(): freqstr = '-1S' result = frequencies.to_offset(freqstr) assert(result.n == -1) freqstr = '-5min10s' result = frequencies.to_offset(freqstr) assert(result.n == -310) def test_to_offset_leading_zero(): freqstr = '00H 00T 01S' result = frequencies.to_offset(freqstr) assert(result.n == 1) freqstr = '-00H 03T 14S' result = frequencies.to_offset(freqstr) assert(result.n == -194) def test_to_offset_pd_timedelta(): # Tests for #9064 td = Timedelta(days=1, seconds=1) result = frequencies.to_offset(td) expected = offsets.Second(86401) assert(expected==result) td = Timedelta(days=-1, seconds=1) result = frequencies.to_offset(td) expected = offsets.Second(-86399) assert(expected==result) td = Timedelta(hours=1, minutes=10) result = frequencies.to_offset(td) expected = offsets.Minute(70) assert(expected==result) td = Timedelta(hours=1, minutes=-10) result = frequencies.to_offset(td) expected = offsets.Minute(50) assert(expected==result) td = Timedelta(weeks=1) result = frequencies.to_offset(td) expected = offsets.Day(7) assert(expected==result) td1 = Timedelta(hours=1) result1 = frequencies.to_offset(td1) result2 = frequencies.to_offset('60min') assert(result1 == result2) td = Timedelta(microseconds=1) result = frequencies.to_offset(td) expected = offsets.Micro(1) assert(expected == result) td = Timedelta(microseconds=0) tm.assertRaises(ValueError, lambda: frequencies.to_offset(td)) def test_anchored_shortcuts(): result = frequencies.to_offset('W') expected = frequencies.to_offset('W-SUN') assert(result == expected) result1 = frequencies.to_offset('Q') result2 = frequencies.to_offset('Q-DEC') expected = offsets.QuarterEnd(startingMonth=12) assert(result1 == expected) assert(result2 == expected) result1 = frequencies.to_offset('Q-MAY') expected = offsets.QuarterEnd(startingMonth=5) assert(result1 == expected) def test_get_rule_month(): result = frequencies._get_rule_month('W') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.Week()) assert(result == 'DEC') result = frequencies._get_rule_month('D') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.Day()) assert(result == 'DEC') result = frequencies._get_rule_month('Q') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.QuarterEnd(startingMonth=12)) print(result == 'DEC') result = frequencies._get_rule_month('Q-JAN') assert(result == 'JAN') result = frequencies._get_rule_month(offsets.QuarterEnd(startingMonth=1)) assert(result == 'JAN') result = frequencies._get_rule_month('A-DEC') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.YearEnd()) assert(result == 'DEC') result = frequencies._get_rule_month('A-MAY') assert(result == 'MAY') result = frequencies._get_rule_month(offsets.YearEnd(month=5)) assert(result == 'MAY') class TestFrequencyCode(tm.TestCase): def test_freq_code(self): self.assertEqual(frequencies.get_freq('A'), 1000) self.assertEqual(frequencies.get_freq('3A'), 1000) self.assertEqual(frequencies.get_freq('-1A'), 1000) self.assertEqual(frequencies.get_freq('W'), 4000) self.assertEqual(frequencies.get_freq('W-MON'), 4001) self.assertEqual(frequencies.get_freq('W-FRI'), 4005) for freqstr, code in compat.iteritems(frequencies._period_code_map): result = frequencies.get_freq(freqstr) self.assertEqual(result, code) result = frequencies.get_freq_group(freqstr) self.assertEqual(result, code // 1000 * 1000) result = frequencies.get_freq_group(code) self.assertEqual(result, code // 1000 * 1000) def test_freq_group(self): self.assertEqual(frequencies.get_freq_group('A'), 1000) self.assertEqual(frequencies.get_freq_group('3A'), 1000) self.assertEqual(frequencies.get_freq_group('-1A'), 1000) self.assertEqual(frequencies.get_freq_group('A-JAN'), 1000) self.assertEqual(frequencies.get_freq_group('A-MAY'), 1000) self.assertEqual(frequencies.get_freq_group(offsets.YearEnd()), 1000) self.assertEqual(frequencies.get_freq_group(offsets.YearEnd(month=1)), 1000) self.assertEqual(frequencies.get_freq_group(offsets.YearEnd(month=5)), 1000) self.assertEqual(frequencies.get_freq_group('W'), 4000) self.assertEqual(frequencies.get_freq_group('W-MON'), 4000) self.assertEqual(frequencies.get_freq_group('W-FRI'), 4000) self.assertEqual(frequencies.get_freq_group(offsets.Week()), 4000) self.assertEqual(frequencies.get_freq_group(offsets.Week(weekday=1)), 4000) self.assertEqual(frequencies.get_freq_group(offsets.Week(weekday=5)), 4000) def test_get_to_timestamp_base(self): tsb = frequencies.get_to_timestamp_base self.assertEqual(tsb(frequencies.get_freq_code('D')[0]), frequencies.get_freq_code('D')[0]) self.assertEqual(tsb(frequencies.get_freq_code('W')[0]), frequencies.get_freq_code('D')[0]) self.assertEqual(tsb(frequencies.get_freq_code('M')[0]), frequencies.get_freq_code('D')[0]) self.assertEqual(tsb(frequencies.get_freq_code('S')[0]), frequencies.get_freq_code('S')[0]) self.assertEqual(tsb(frequencies.get_freq_code('T')[0]), frequencies.get_freq_code('S')[0]) self.assertEqual(tsb(frequencies.get_freq_code('H')[0]), frequencies.get_freq_code('S')[0]) def test_freq_to_reso(self): Reso = frequencies.Resolution self.assertEqual(Reso.get_str_from_freq('A'), 'year') self.assertEqual(Reso.get_str_from_freq('Q'), 'quarter') self.assertEqual(Reso.get_str_from_freq('M'), 'month') self.assertEqual(Reso.get_str_from_freq('D'), 'day') self.assertEqual(Reso.get_str_from_freq('H'), 'hour') self.assertEqual(Reso.get_str_from_freq('T'), 'minute') self.assertEqual(Reso.get_str_from_freq('S'), 'second') self.assertEqual(Reso.get_str_from_freq('L'), 'millisecond') self.assertEqual(Reso.get_str_from_freq('U'), 'microsecond') self.assertEqual(Reso.get_str_from_freq('N'), 'nanosecond') for freq in ['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U', 'N']: # check roundtrip result = Reso.get_freq(Reso.get_str_from_freq(freq)) self.assertEqual(freq, result) for freq in ['D', 'H', 'T', 'S', 'L', 'U']: result = Reso.get_freq(Reso.get_str(Reso.get_reso_from_freq(freq))) self.assertEqual(freq, result) def test_get_freq_code(self): # freqstr self.assertEqual(frequencies.get_freq_code('A'), (frequencies.get_freq('A'), 1)) self.assertEqual(frequencies.get_freq_code('3D'), (frequencies.get_freq('D'), 3)) self.assertEqual(frequencies.get_freq_code('-2M'), (frequencies.get_freq('M'), -2)) # tuple self.assertEqual(frequencies.get_freq_code(('D', 1)), (frequencies.get_freq('D'), 1)) self.assertEqual(frequencies.get_freq_code(('A', 3)), (frequencies.get_freq('A'), 3)) self.assertEqual(frequencies.get_freq_code(('M', -2)), (frequencies.get_freq('M'), -2)) # numeric tuple self.assertEqual(frequencies.get_freq_code((1000, 1)), (1000, 1)) # offsets self.assertEqual(frequencies.get_freq_code(offsets.Day()), (frequencies.get_freq('D'), 1)) self.assertEqual(frequencies.get_freq_code(offsets.Day(3)), (frequencies.get_freq('D'), 3)) self.assertEqual(frequencies.get_freq_code(offsets.Day(-2)), (frequencies.get_freq('D'), -2)) self.assertEqual(frequencies.get_freq_code(offsets.MonthEnd()), (frequencies.get_freq('M'), 1)) self.assertEqual(frequencies.get_freq_code(offsets.MonthEnd(3)), (frequencies.get_freq('M'), 3)) self.assertEqual(frequencies.get_freq_code(offsets.MonthEnd(-2)), (frequencies.get_freq('M'), -2)) self.assertEqual(frequencies.get_freq_code(offsets.Week()), (frequencies.get_freq('W'), 1)) self.assertEqual(frequencies.get_freq_code(offsets.Week(3)), (frequencies.get_freq('W'), 3)) self.assertEqual(frequencies.get_freq_code(offsets.Week(-2)), (frequencies.get_freq('W'), -2)) # monday is weekday=0 self.assertEqual(frequencies.get_freq_code(offsets.Week(weekday=1)), (frequencies.get_freq('W-TUE'), 1)) self.assertEqual(frequencies.get_freq_code(offsets.Week(3, weekday=0)), (frequencies.get_freq('W-MON'), 3)) self.assertEqual(frequencies.get_freq_code(offsets.Week(-2, weekday=4)), (frequencies.get_freq('W-FRI'), -2)) _dti = DatetimeIndex class TestFrequencyInference(tm.TestCase): def test_raise_if_period_index(self): index = PeriodIndex(start="1/1/1990", periods=20, freq="M") self.assertRaises(TypeError, frequencies.infer_freq, index) def test_raise_if_too_few(self): index = _dti(['12/31/1998', '1/3/1999']) self.assertRaises(ValueError, frequencies.infer_freq, index) def test_business_daily(self): index = _dti(['12/31/1998', '1/3/1999', '1/4/1999']) self.assertEqual(frequencies.infer_freq(index), 'B') def test_day(self): self._check_tick(timedelta(1), 'D') def test_day_corner(self): index = _dti(['1/1/2000', '1/2/2000', '1/3/2000']) self.assertEqual(frequencies.infer_freq(index), 'D') def test_non_datetimeindex(self): dates = to_datetime(['1/1/2000', '1/2/2000', '1/3/2000']) self.assertEqual(frequencies.infer_freq(dates), 'D') def test_hour(self): self._check_tick(timedelta(hours=1), 'H') def test_minute(self): self._check_tick(timedelta(minutes=1), 'T') def test_second(self): self._check_tick(timedelta(seconds=1), 'S') def test_millisecond(self): self._check_tick(timedelta(microseconds=1000), 'L') def test_microsecond(self): self._check_tick(timedelta(microseconds=1), 'U') def test_nanosecond(self): self._check_tick(np.timedelta64(1, 'ns'), 'N') def _check_tick(self, base_delta, code): b = Timestamp(datetime.now()) for i in range(1, 5): inc = base_delta * i index = _dti([b + inc * j for j in range(3)]) if i > 1: exp_freq = '%d%s' % (i, code) else: exp_freq = code self.assertEqual(frequencies.infer_freq(index), exp_freq) index = _dti([b + base_delta * 7] + [b + base_delta * j for j in range(3)]) self.assertIsNone(frequencies.infer_freq(index)) index = _dti([b + base_delta * j for j in range(3)] + [b + base_delta * 7]) self.assertIsNone(frequencies.infer_freq(index)) def test_weekly(self): days = ['MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT', 'SUN'] for day in days: self._check_generated_range('1/1/2000', 'W-%s' % day) def test_week_of_month(self): days = ['MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT', 'SUN'] for day in days: for i in range(1, 5): self._check_generated_range('1/1/2000', 'WOM-%d%s' % (i, day)) def test_fifth_week_of_month(self): # Only supports freq up to WOM-4. See #9425 func = lambda: date_range('2014-01-01', freq='WOM-5MON') self.assertRaises(ValueError, func) def test_fifth_week_of_month_infer(self): # Only attempts to infer up to WOM-4. See #9425 index = DatetimeIndex(["2014-03-31", "2014-06-30", "2015-03-30"]) assert frequencies.infer_freq(index) is None def test_week_of_month_fake(self): #All of these dates are on same day of week and are 4 or 5 weeks apart index = DatetimeIndex(["2013-08-27","2013-10-01","2013-10-29","2013-11-26"]) assert frequencies.infer_freq(index) != 'WOM-4TUE' def test_monthly(self): self._check_generated_range('1/1/2000', 'M') def test_monthly_ambiguous(self): rng = _dti(['1/31/2000', '2/29/2000', '3/31/2000']) self.assertEqual(rng.inferred_freq, 'M') def test_business_monthly(self): self._check_generated_range('1/1/2000', 'BM') def test_business_start_monthly(self): self._check_generated_range('1/1/2000', 'BMS') def test_quarterly(self): for month in ['JAN', 'FEB', 'MAR']: self._check_generated_range('1/1/2000', 'Q-%s' % month) def test_annual(self): for month in MONTHS: self._check_generated_range('1/1/2000', 'A-%s' % month) def test_business_annual(self): for month in MONTHS: self._check_generated_range('1/1/2000', 'BA-%s' % month) def test_annual_ambiguous(self): rng = _dti(['1/31/2000', '1/31/2001', '1/31/2002']) self.assertEqual(rng.inferred_freq, 'A-JAN') def _check_generated_range(self, start, freq): freq = freq.upper() gen = date_range(start, periods=7, freq=freq) index = _dti(gen.values) if not freq.startswith('Q-'): self.assertEqual(frequencies.infer_freq(index), gen.freqstr) else: inf_freq = frequencies.infer_freq(index) self.assertTrue((inf_freq == 'Q-DEC' and gen.freqstr in ('Q', 'Q-DEC', 'Q-SEP', 'Q-JUN', 'Q-MAR')) or (inf_freq == 'Q-NOV' and gen.freqstr in ('Q-NOV', 'Q-AUG', 'Q-MAY', 'Q-FEB')) or (inf_freq == 'Q-OCT' and gen.freqstr in ('Q-OCT', 'Q-JUL', 'Q-APR', 'Q-JAN'))) gen = date_range(start, periods=5, freq=freq) index = _dti(gen.values) if not freq.startswith('Q-'): self.assertEqual(frequencies.infer_freq(index), gen.freqstr) else: inf_freq = frequencies.infer_freq(index) self.assertTrue((inf_freq == 'Q-DEC' and gen.freqstr in ('Q', 'Q-DEC', 'Q-SEP', 'Q-JUN', 'Q-MAR')) or (inf_freq == 'Q-NOV' and gen.freqstr in ('Q-NOV', 'Q-AUG', 'Q-MAY', 'Q-FEB')) or (inf_freq == 'Q-OCT' and gen.freqstr in ('Q-OCT', 'Q-JUL', 'Q-APR', 'Q-JAN'))) def test_infer_freq(self): rng = period_range('1959Q2', '2009Q3', freq='Q') rng = Index(rng.to_timestamp('D', how='e').asobject) self.assertEqual(rng.inferred_freq, 'Q-DEC') rng = period_range('1959Q2', '2009Q3', freq='Q-NOV') rng = Index(rng.to_timestamp('D', how='e').asobject) self.assertEqual(rng.inferred_freq, 'Q-NOV') rng = period_range('1959Q2', '2009Q3', freq='Q-OCT') rng = Index(rng.to_timestamp('D', how='e').asobject) self.assertEqual(rng.inferred_freq, 'Q-OCT') def test_infer_freq_tz(self): freqs = {'AS-JAN': ['2009-01-01', '2010-01-01', '2011-01-01', '2012-01-01'], 'Q-OCT': ['2009-01-31', '2009-04-30', '2009-07-31', '2009-10-31'], 'M': ['2010-11-30', '2010-12-31', '2011-01-31', '2011-02-28'], 'W-SAT': ['2010-12-25', '2011-01-01', '2011-01-08', '2011-01-15'], 'D': ['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04'], 'H': ['2011-12-31 22:00', '2011-12-31 23:00', '2012-01-01 00:00', '2012-01-01 01:00'] } # GH 7310 for tz in [None, 'Australia/Sydney', 'Asia/Tokyo', 'Europe/Paris', 'US/Pacific', 'US/Eastern']: for expected, dates in compat.iteritems(freqs): idx = DatetimeIndex(dates, tz=tz) self.assertEqual(idx.inferred_freq, expected) def test_infer_freq_tz_transition(self): # Tests for #8772 date_pairs = [['2013-11-02', '2013-11-5'], #Fall DST ['2014-03-08', '2014-03-11'], #Spring DST ['2014-01-01', '2014-01-03']] #Regular Time freqs = ['3H', '10T', '3601S', '3600001L', '3600000001U', '3600000000001N'] for tz in [None, 'Australia/Sydney', 'Asia/Tokyo', 'Europe/Paris', 'US/Pacific', 'US/Eastern']: for date_pair in date_pairs: for freq in freqs: idx = date_range(date_pair[0], date_pair[1], freq=freq, tz=tz) self.assertEqual(idx.inferred_freq, freq) index = date_range("2013-11-03", periods=5, freq="3H").tz_localize("America/Chicago") self.assertIsNone(index.inferred_freq) def test_infer_freq_businesshour(self): # GH 7905 idx = DatetimeIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00', '2014-07-01 14:00']) # hourly freq in a day must result in 'H' self.assertEqual(idx.inferred_freq, 'H') idx = DatetimeIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00', '2014-07-01 14:00', '2014-07-01 15:00', '2014-07-01 16:00', '2014-07-02 09:00', '2014-07-02 10:00', '2014-07-02 11:00']) self.assertEqual(idx.inferred_freq, 'BH') idx = DatetimeIndex(['2014-07-04 09:00', '2014-07-04 10:00', '2014-07-04 11:00', '2014-07-04 12:00', '2014-07-04 13:00', '2014-07-04 14:00', '2014-07-04 15:00', '2014-07-04 16:00', '2014-07-07 09:00', '2014-07-07 10:00', '2014-07-07 11:00']) self.assertEqual(idx.inferred_freq, 'BH') idx = DatetimeIndex(['2014-07-04 09:00', '2014-07-04 10:00', '2014-07-04 11:00', '2014-07-04 12:00', '2014-07-04 13:00', '2014-07-04 14:00', '2014-07-04 15:00', '2014-07-04 16:00', '2014-07-07 09:00', '2014-07-07 10:00', '2014-07-07 11:00', '2014-07-07 12:00', '2014-07-07 13:00', '2014-07-07 14:00', '2014-07-07 15:00', '2014-07-07 16:00', '2014-07-08 09:00', '2014-07-08 10:00', '2014-07-08 11:00', '2014-07-08 12:00', '2014-07-08 13:00', '2014-07-08 14:00', '2014-07-08 15:00', '2014-07-08 16:00']) self.assertEqual(idx.inferred_freq, 'BH') def test_not_monotonic(self): rng = _dti(['1/31/2000', '1/31/2001', '1/31/2002']) rng = rng[::-1] self.assertEqual(rng.inferred_freq, '-1A-JAN') def test_non_datetimeindex(self): rng = _dti(['1/31/2000', '1/31/2001', '1/31/2002']) vals = rng.to_pydatetime() result = frequencies.infer_freq(vals) self.assertEqual(result, rng.inferred_freq) def test_invalid_index_types(self): # test all index types for i in [ tm.makeIntIndex(10), tm.makeFloatIndex(10), tm.makePeriodIndex(10) ]: self.assertRaises(TypeError, lambda : frequencies.infer_freq(i)) # GH 10822 # odd error message on conversions to datetime for unicode if not is_platform_windows(): for i in [ tm.makeStringIndex(10), tm.makeUnicodeIndex(10) ]: self.assertRaises(ValueError, lambda : frequencies.infer_freq(i)) def test_string_datetimelike_compat(self): # GH 6463 expected = frequencies.infer_freq(['2004-01', '2004-02', '2004-03', '2004-04']) result = frequencies.infer_freq(Index(['2004-01', '2004-02', '2004-03', '2004-04'])) self.assertEqual(result,expected) def test_series(self): # GH6407 # inferring series # invalid type of Series for s in [ Series(np.arange(10)), Series(np.arange(10.))]: self.assertRaises(TypeError, lambda : frequencies.infer_freq(s)) # a non-convertible string self.assertRaises(ValueError, lambda : frequencies.infer_freq(Series(['foo','bar']))) # cannot infer on PeriodIndex for freq in [None, 'L']: s = Series(period_range('2013',periods=10,freq=freq)) self.assertRaises(TypeError, lambda : frequencies.infer_freq(s)) for freq in ['Y']: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s = Series(period_range('2013',periods=10,freq=freq)) self.assertRaises(TypeError, lambda : frequencies.infer_freq(s)) # DateTimeIndex for freq in ['M', 'L', 'S']: s = Series(date_range('20130101',periods=10,freq=freq)) inferred = frequencies.infer_freq(s) self.assertEqual(inferred,freq) s = Series(date_range('20130101','20130110')) inferred = frequencies.infer_freq(s) self.assertEqual(inferred,'D') def test_legacy_offset_warnings(self): for k, v in compat.iteritems(frequencies._rule_aliases): with tm.assert_produces_warning(FutureWarning): result = frequencies.get_offset(k) exp = frequencies.get_offset(v) self.assertEqual(result, exp) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): idx = date_range('2011-01-01', periods=5, freq=k) exp = date_range('2011-01-01', periods=5, freq=v) self.assert_index_equal(idx, exp) MONTHS = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC'] def test_is_superperiod_subperiod(): assert(frequencies.is_superperiod(offsets.YearEnd(), offsets.MonthEnd())) assert(frequencies.is_subperiod(offsets.MonthEnd(), offsets.YearEnd())) assert(frequencies.is_superperiod(offsets.Hour(), offsets.Minute())) assert(frequencies.is_subperiod(offsets.Minute(), offsets.Hour())) assert(frequencies.is_superperiod(offsets.Second(), offsets.Milli())) assert(frequencies.is_subperiod(offsets.Milli(), offsets.Second())) assert(frequencies.is_superperiod(offsets.Milli(), offsets.Micro())) assert(frequencies.is_subperiod(offsets.Micro(), offsets.Milli())) assert(frequencies.is_superperiod(offsets.Micro(), offsets.Nano())) assert(frequencies.is_subperiod(offsets.Nano(), offsets.Micro())) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
apache-2.0
hanteng/babel
scripts/geoname_cldr.py
1
2479
#!/usr/bin/env python # -*- coding: utf-8 -*- #歧視無邊,回頭是岸。鍵起鍵落,情真情幻。 # url_target="https://raw.githubusercontent.com/datasets/country-codes/master/data/country-codes.csv" import csv import pandas as pd import codecs def export_to_csv(df, ex_filename, sep=','): if sep==',': df.to_csv(ex_filename, sep=sep, quoting=csv.QUOTE_ALL, na_rep='{na}', encoding='utf-8') #+'.csv' if sep=='\t': df.to_csv(ex_filename, sep=sep, quoting=csv.QUOTE_NONE, na_rep='{na}', encoding='utf-8') #+'.tsv' , escapechar="'", quotechar="" def import_from_babel_cldr(): from babel import Locale #staring from the en-US to retrieve keys locale = Locale('en', 'US') completelist_territories = locale.territories.keys() completelist_languages = locale.languages.keys() #intiate the output dataframe from this df_cldr=pd.DataFrame.from_dict(locale.territories, orient="index") df_cldr.index.name='geocode' df_cldr.columns = ['name_en'] df_cldr.sort_index(inplace=True) for i_lang in completelist_languages: #print(i_lang) try: locale = Locale.parse(i_lang) df=pd.DataFrame.from_dict(locale.territories, orient="index") df.columns = ['name_{0}'.format(i_lang)] df.sort_index(inplace=True) df_cldr=df_cldr.join(df) except: pass return df_cldr ###################### MAIN ######################## import os path_script=os.path.dirname(os.path.abspath(__file__)) #print path_script import argparse if __name__ == "__main__": parser = argparse.ArgumentParser(description="""Fetch and generate the country and territory names in languages that are supported by the Unicode CLDR 25.""") parser.add_argument("-o", "--output", dest="outputpath", default="geoname_CLDR25_babel.csv", help="write data to a csv file or a tsv file", metavar="OUTPUTPATH") args = parser.parse_args() fn = args.outputpath #print fn df_cldr=import_from_babel_cldr() if fn[-3:]=='csv': print ("Outputing to {}".format(fn)) export_to_csv(df_cldr, ex_filename=os.path.join(path_script, fn), sep=',') elif fn[-3:]=='tsv': print ("Outputing to {}".format(fn)) export_to_csv(df_cldr, ex_filename=os.path.join(path_script, fn), sep='\t') else: print ("Only csv and tsv formats can be generated. Sorry.")
bsd-3-clause
tuanvu216/udacity-course
intro_to_machine_learning/lesson/lesson_4_choose_your_own_algorithm/your_algorithm.py
1
2628
#!/usr/bin/python import matplotlib.pyplot as plt from prep_terrain_data import makeTerrainData from class_vis import prettyPicture from time import time features_train, labels_train, features_test, labels_test = makeTerrainData() ### the training data (features_train, labels_train) have both "fast" and "slow" points mixed ### in together--separate them so we can give them different colors in the scatterplot, ### and visually identify them grade_fast = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==0] bumpy_fast = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==0] grade_slow = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==1] bumpy_slow = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==1] #### initial visualization plt.xlim(0.0, 1.0) plt.ylim(0.0, 1.0) plt.scatter(bumpy_fast, grade_fast, color = "b", label="fast") plt.scatter(grade_slow, bumpy_slow, color = "r", label="slow") plt.legend() plt.xlabel("bumpiness") plt.ylabel("grade") plt.show() ################################################################################# ### your code here! name your classifier object clf if you want the ### visualization code (prettyPicture) to show you the decision boundary # K Nearest Neighbor from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score clf = KNeighborsClassifier(n_neighbors=1) t0 = time() clf.fit(features_train, labels_train) print "training time:", round(time()-t0, 3), "s" t0 = time() pred = clf.predict(features_test) print "predicting time:", round(time()-t0, 3), "s" acc = accuracy_score(pred, labels_test) print acc # Random Forest from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score clf = RandomForestClassifier(n_estimators=10) t0 = time() clf.fit(features_train, labels_train) print "training time:", round(time()-t0, 3), "s" t0 = time() pred = clf.predict(features_test) print "predicting time:", round(time()-t0, 3), "s" acc = accuracy_score(pred, labels_test) print acc # Addaboost from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score clf = AdaBoostClassifier(n_estimators=100) t0 = time() clf.fit(features_train, labels_train) print "training time:", round(time()-t0, 3), "s" t0 = time() pred = clf.predict(features_test) print "predicting time:", round(time()-t0, 3), "s" acc = accuracy_score(pred, labels_test) print acc try: prettyPicture(clf, features_test, labels_test) except NameError: pass
mit
NZRS/content-analysis
netflix.py
2
3126
from bs4 import BeautifulSoup from urllib2 import quote import unicodedata import requests import json import glob import pandas as pd movie_list = [] for page in glob.glob('*.html'): with open(page, 'r+') as f: my_page = f.read() my_soup = BeautifulSoup(my_page) for div in my_soup.find_all('div', class_='lockup'): try: movie_list.append(div.img.get('alt')) except: movie_list.append('movie could not be extracted from page') ['movie could not be extracted from page' for movie in movie_list if movie is None] movie_list2 = [] for movie in movie_list: try: movie = quote(movie) movie_list2.append(movie) except: try: movie = unicodedata.normalize('NFKC', movie).encode('ascii','ignore') movie = quote(movie) movie_list2.append(movie) except: print movie movie_list2.append('movie could not be processed') all_movies_us = {} for movie in movie_list2: try: query_url = 'http://www.omdbapi.com/?t=' + movie + '&y=&plot=full&r=json' response = requests.get(query_url) my_dict = json.loads(response.text) all_movies_us[movie] = my_dict except: all_movies_us[movie] = 'No response' print movie # movies/single year shows years_dict = {} counter = 0 for k,v in all_movies.iteritems(): try: if len(v['Year']) == 4: try: years_dict[v['Year']] += 1 except: years_dict[v['Year']] = 1 continue except: counter += 1 continue print counter my_frame = pd.DataFrame.from_dict(years_dict, orient = 'index') my_frame.to_csv('single_years.csv') counter=0 score_dict = {} for k,v in all_movies.iteritems(): try: if v['imdbRating'] != 'N/A': score_dict[v['Title']] = v['imdbRating'] except: counter +=1 continue print counter score_dict2 ={} for title, score in score_dict.iteritems(): try: score_dict2[title] = float(score) except: print score score_dict = score_dict2 average_score = (sum(score_dict.values()))/len(score_dict) top_25 = print average_score years = [] country = [] language =[] actors = [] for movie, results in all_movies.iteritems(): try: years.append(results['Year']) except: continue try: country.append(results['Country']) except: continue try: language.append(results['Language']) except: continue try: for actor in results['Actors'].split(','): actors.append(actor) except: continue # Ongoing shows years_dict = {} counter = 0 for k,v in all_movies.iteritems(): try: print v['Year'][4] except: continue # Languages lang_list = [] for lang in language: for x in lang.split(','): lang_list.append(x) lang_list Counter(lang_list) Counter(lang_list).most_common(10)
agpl-3.0
einarhuseby/arctic
tests/integration/test_arctic.py
4
6898
from datetime import datetime as dt, timedelta as dtd from mock import patch from pandas import DataFrame from pandas.util.testing import assert_frame_equal import pytest import time import numpy as np from arctic.arctic import Arctic, VERSION_STORE from arctic.exceptions import LibraryNotFoundException, QuotaExceededException from ..util import get_large_ts def test_connect_to_Arctic_string(mongo_host): arctic = Arctic(mongo_host=mongo_host) assert arctic.list_libraries() == [] assert arctic.mongo_host == mongo_host def test_connect_to_Arctic_connection(mongodb, mongo_host): arctic = Arctic(mongodb) assert arctic.list_libraries() == [] assert arctic.mongo_host == mongo_host def test_simple(library): sym = 'symbol' data = get_large_ts(100) library.write(sym, data) orig = dt.now() time.sleep(1) # Move the timestamp on 1ms data2 = get_large_ts(100) library.write(sym, data2, prune_previous_version=False) # Get the timeseries, it should be the same read2 = library.read(sym).data assert_frame_equal(read2, data2) # Ensure we can get the previous version read = library.read(sym, as_of=orig).data assert_frame_equal(read, data) def test_indexes(arctic): c = arctic._conn arctic.initialize_library("library", VERSION_STORE, segment='month') chunk = c.arctic.library.index_information() assert chunk == {u'_id_': {u'key': [(u'_id', 1)], u'ns': u'arctic.library', u'v': 1}, u'symbol_1_parent_1_segment_1': {u'background': True, u'key': [(u'symbol', 1), (u'parent', 1), (u'segment', 1)], u'ns': u'arctic.library', u'unique': True, u'v': 1}, u'symbol_1_sha_1': {u'background': True, u'key': [(u'symbol', 1), (u'sha', 1)], u'ns': u'arctic.library', u'unique': True, u'v': 1}, u'symbol_hashed': {u'background': True, u'key': [(u'symbol', u'hashed')], u'ns': u'arctic.library', u'v': 1}} snapshots = c.arctic.library.snapshots.index_information() assert snapshots == {u'_id_': {u'key': [(u'_id', 1)], u'ns': u'arctic.library.snapshots', u'v': 1}, u'name_1': {u'background': True, u'key': [(u'name', 1)], u'ns': u'arctic.library.snapshots', u'unique': True, u'v': 1}} versions = c.arctic.library.versions.index_information() assert versions == {u'_id_': {u'key': [(u'_id', 1)], u'ns': u'arctic.library.versions', u'v': 1}, u'symbol_1__id_-1': {u'background': True, u'key': [(u'symbol', 1), (u'_id', -1)], u'ns': u'arctic.library.versions', u'v': 1}, u'symbol_1_version_-1': {u'background': True, u'key': [(u'symbol', 1), (u'version', -1)], u'ns': u'arctic.library.versions', u'unique': True, u'v': 1}} version_nums = c.arctic.library.version_nums.index_information() assert version_nums == {u'_id_': {u'key': [(u'_id', 1)], u'ns': u'arctic.library.version_nums', u'v': 1}, u'symbol_1': {u'background': True, u'key': [(u'symbol', 1)], u'ns': u'arctic.library.version_nums', u'unique': True, u'v': 1}} def test_delete_library(arctic, library, library_name): mongo = arctic._conn # create a library2 library too - ensure that this isn't deleted arctic.initialize_library('user.library2', VERSION_STORE, segment='month') library.write('asdf', get_large_ts(1)) assert 'TEST' in mongo.arctic_test.collection_names() assert 'TEST.versions' in mongo.arctic_test.collection_names() assert 'library2' in mongo.arctic_user.collection_names() assert 'library2.versions' in mongo.arctic_user.collection_names() arctic.delete_library(library_name) assert 'TEST' not in mongo.arctic_user.collection_names() assert 'TEST.versions' not in mongo.arctic_user.collection_names() with pytest.raises(LibraryNotFoundException): arctic[library_name] with pytest.raises(LibraryNotFoundException): arctic['arctic_{}'.format(library_name)] assert 'library2' in mongo.arctic_user.collection_names() assert 'library2.versions' in mongo.arctic_user.collection_names() def test_quota(arctic, library, library_name): thing = list(range(100)) library._arctic_lib.set_quota(10) assert arctic.get_quota(library_name) == 10 assert library._arctic_lib.get_quota() == 10 library.write('thing', thing) with pytest.raises(QuotaExceededException): library.write('ts', thing) library.write('ts', thing) library.write('ts', thing) library.write('ts', thing) with pytest.raises(QuotaExceededException): arctic.check_quota(library_name) def test_check_quota(arctic, library, library_name): with patch('arctic.arctic.logger.info') as info: arctic.check_quota(library_name) assert info.call_count == 1 def test_default_mongo_retry_timout(): now = time.time() with pytest.raises(LibraryNotFoundException): Arctic('unresolved-host', serverSelectionTimeoutMS=0)['some.lib'] assert time.time() - now < 1.
lgpl-2.1
BlueBrain/NEST
testsuite/manualtests/cross_check_test_mip_corrdet.py
13
2594
# -*- coding: utf-8 -*- # # cross_check_test_mip_corrdet.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. # Script to check correlation_detector. # Calculates spike cross correlation function of both spike trains in # spike_detector-0-0-3.gdf. The file is generated after running the # testscript testsuite/unittests/test_mip_corrdet.sli # # Author: Helias # Date: 08-04-07 # from scipy import * from matplotlib.pylab import * # for plot # Auto- and crosscorrelation functions for spike trains. # # A time bin of size tbin is centered around the time difference it # represents If the correlation function is calculated for tau in # [-tau_max, tau_max], the pair events contributing to the left-most # bin are those for which tau in [-tau_max-tbin/2, tau_max+tbin/2) and # so on. # correlate two spike trains with each other # assumes spike times to be ordered in time # tau > 0 means spike2 is later than spike1 # # tau_max: maximum time lag in ms correlation function # tbin: bin size # spike1: first spike train [tspike...] # spike2: second spike train [tspike...] # def corr_spikes_sorted(spike1, spike2, tbin, tau_max, h): tau_max_i = int(tau_max/h) tbin_i = int(tbin/h) cross = zeros(int(2*tau_max_i/tbin_i+1), 'd') j0 = 0 for spki in spike1: j = j0 while j < len(spike2) and spike2[j] - spki < -tau_max_i - tbin_i/2.0: j += 1 j0 = j while j < len(spike2) and spike2[j] - spki < tau_max_i + tbin_i/2.0: cross[int((spike2[j] - spki + tau_max_i + 0.5*tbin_i)/tbin_i)] += 1.0 j += 1 return cross def main(): # resolution h = 0.1 tau_max = 100.0 # ms correlation window t_bin = 10.0 # ms bin size # read input from spike detector spikes = load('spike_detector-0-0-3.gdf') sp1 = spikes[find(spikes[:,0] == 4), 1] sp2 = spikes[find(spikes[:,0] == 5), 1] cross = corr_spikes_sorted(sp1, sp2, t_bin, tau_max, h) print cross print sum(cross) main()
gpl-2.0
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/jupyter_core/tests/dotipython/profile_default/ipython_console_config.py
24
21691
# Configuration file for ipython-console. c = get_config() #------------------------------------------------------------------------------ # ZMQTerminalIPythonApp configuration #------------------------------------------------------------------------------ # ZMQTerminalIPythonApp will inherit config from: TerminalIPythonApp, # BaseIPythonApplication, Application, InteractiveShellApp, IPythonConsoleApp, # ConnectionFileMixin # Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? # c.ZMQTerminalIPythonApp.hide_initial_ns = True # set the heartbeat port [default: random] # c.ZMQTerminalIPythonApp.hb_port = 0 # A list of dotted module names of IPython extensions to load. # c.ZMQTerminalIPythonApp.extensions = [] # Execute the given command string. # c.ZMQTerminalIPythonApp.code_to_run = '' # Path to the ssh key to use for logging in to the ssh server. # c.ZMQTerminalIPythonApp.sshkey = '' # The date format used by logging formatters for %(asctime)s # c.ZMQTerminalIPythonApp.log_datefmt = '%Y-%m-%d %H:%M:%S' # set the control (ROUTER) port [default: random] # c.ZMQTerminalIPythonApp.control_port = 0 # Reraise exceptions encountered loading IPython extensions? # c.ZMQTerminalIPythonApp.reraise_ipython_extension_failures = False # Set the log level by value or name. # c.ZMQTerminalIPythonApp.log_level = 30 # Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. # c.ZMQTerminalIPythonApp.exec_PYTHONSTARTUP = True # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.ZMQTerminalIPythonApp.pylab = None # Run the module as a script. # c.ZMQTerminalIPythonApp.module_to_run = '' # Whether to display a banner upon starting IPython. # c.ZMQTerminalIPythonApp.display_banner = True # dotted module name of an IPython extension to load. # c.ZMQTerminalIPythonApp.extra_extension = '' # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.ZMQTerminalIPythonApp.verbose_crash = False # Whether to overwrite existing config files when copying # c.ZMQTerminalIPythonApp.overwrite = False # The IPython profile to use. # c.ZMQTerminalIPythonApp.profile = 'default' # If a command or file is given via the command-line, e.g. 'ipython foo.py', # start an interactive shell after executing the file or command. # c.ZMQTerminalIPythonApp.force_interact = False # List of files to run at IPython startup. # c.ZMQTerminalIPythonApp.exec_files = [] # Start IPython quickly by skipping the loading of config files. # c.ZMQTerminalIPythonApp.quick = False # The Logging format template # c.ZMQTerminalIPythonApp.log_format = '[%(name)s]%(highlevel)s %(message)s' # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.ZMQTerminalIPythonApp.copy_config_files = False # set the stdin (ROUTER) port [default: random] # c.ZMQTerminalIPythonApp.stdin_port = 0 # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.ZMQTerminalIPythonApp.extra_config_file = '' # lines of code to run at IPython startup. # c.ZMQTerminalIPythonApp.exec_lines = [] # Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk3', 'osx', # 'pyglet', 'qt', 'qt5', 'tk', 'wx'). # c.ZMQTerminalIPythonApp.gui = None # A file to be run # c.ZMQTerminalIPythonApp.file_to_run = '' # Configure matplotlib for interactive use with the default matplotlib backend. # c.ZMQTerminalIPythonApp.matplotlib = None # Suppress warning messages about legacy config files # c.ZMQTerminalIPythonApp.ignore_old_config = False # set the iopub (PUB) port [default: random] # c.ZMQTerminalIPythonApp.iopub_port = 0 # # c.ZMQTerminalIPythonApp.transport = 'tcp' # JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security # dir of the current profile, but can be specified by absolute path. # c.ZMQTerminalIPythonApp.connection_file = '' # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This option can also be specified through the environment # variable IPYTHONDIR. # c.ZMQTerminalIPythonApp.ipython_dir = '' # The SSH server to use to connect to the kernel. # c.ZMQTerminalIPythonApp.sshserver = '' # Set to display confirmation dialog on exit. You can always use 'exit' or # 'quit', to force a direct exit without any confirmation. # c.ZMQTerminalIPythonApp.confirm_exit = True # set the shell (ROUTER) port [default: random] # c.ZMQTerminalIPythonApp.shell_port = 0 # The name of the default kernel to start. # c.ZMQTerminalIPythonApp.kernel_name = 'python' # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.ZMQTerminalIPythonApp.pylab_import_all = True # Connect to an already running kernel # c.ZMQTerminalIPythonApp.existing = '' # Set the kernel's IP address [default localhost]. If the IP address is # something other than localhost, then Consoles on other machines will be able # to connect to the Kernel, so be careful! # c.ZMQTerminalIPythonApp.ip = '' #------------------------------------------------------------------------------ # ZMQTerminalInteractiveShell configuration #------------------------------------------------------------------------------ # A subclass of TerminalInteractiveShell that uses the 0MQ kernel # ZMQTerminalInteractiveShell will inherit config from: # TerminalInteractiveShell, InteractiveShell # # c.ZMQTerminalInteractiveShell.history_length = 10000 # auto editing of files with syntax errors. # c.ZMQTerminalInteractiveShell.autoedit_syntax = False # If True, anything that would be passed to the pager will be displayed as # regular output instead. # c.ZMQTerminalInteractiveShell.display_page = False # # c.ZMQTerminalInteractiveShell.debug = False # 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). # c.ZMQTerminalInteractiveShell.ast_node_interactivity = 'last_expr' # Start logging to the default log file in overwrite mode. Use `logappend` to # specify a log file to **append** logs to. # c.ZMQTerminalInteractiveShell.logstart = False # Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working # c.ZMQTerminalInteractiveShell.cache_size = 1000 # The shell program to be used for paging. # c.ZMQTerminalInteractiveShell.pager = 'less' # The name of the logfile to use. # c.ZMQTerminalInteractiveShell.logfile = '' # Save multi-line entries as one entry in readline history # c.ZMQTerminalInteractiveShell.multiline_history = True # # c.ZMQTerminalInteractiveShell.readline_remove_delims = '-/~' # Enable magic commands to be called without the leading %. # c.ZMQTerminalInteractiveShell.automagic = True # Prefix to add to outputs coming from clients other than this one. # # Only relevant if include_other_output is True. # c.ZMQTerminalInteractiveShell.other_output_prefix = '[remote] ' # # c.ZMQTerminalInteractiveShell.readline_parse_and_bind = ['tab: complete', '"\\C-l": clear-screen', 'set show-all-if-ambiguous on', '"\\C-o": tab-insert', '"\\C-r": reverse-search-history', '"\\C-s": forward-search-history', '"\\C-p": history-search-backward', '"\\C-n": history-search-forward', '"\\e[A": history-search-backward', '"\\e[B": history-search-forward', '"\\C-k": kill-line', '"\\C-u": unix-line-discard'] # Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. # c.ZMQTerminalInteractiveShell.color_info = True # Callable object called via 'callable' image handler with one argument, `data`, # which is `msg["content"]["data"]` where `msg` is the message from iopub # channel. For exmaple, you can find base64 encoded PNG data as # `data['image/png']`. # c.ZMQTerminalInteractiveShell.callable_image_handler = None # Command to invoke an image viewer program when you are using 'stream' image # handler. This option is a list of string where the first element is the # command itself and reminders are the options for the command. Raw image data # is given as STDIN to the program. # c.ZMQTerminalInteractiveShell.stream_image_handler = [] # # c.ZMQTerminalInteractiveShell.separate_out2 = '' # Autoindent IPython code entered interactively. # c.ZMQTerminalInteractiveShell.autoindent = True # The part of the banner to be printed after the profile # c.ZMQTerminalInteractiveShell.banner2 = '' # Don't call post-execute functions that have failed in the past. # c.ZMQTerminalInteractiveShell.disable_failing_post_execute = False # Deprecated, use PromptManager.out_template # c.ZMQTerminalInteractiveShell.prompt_out = 'Out[\\#]: ' # # c.ZMQTerminalInteractiveShell.object_info_string_level = 0 # # c.ZMQTerminalInteractiveShell.separate_out = '' # Automatically call the pdb debugger after every exception. # c.ZMQTerminalInteractiveShell.pdb = False # Deprecated, use PromptManager.in_template # c.ZMQTerminalInteractiveShell.prompt_in1 = 'In [\\#]: ' # # c.ZMQTerminalInteractiveShell.separate_in = '\n' # # c.ZMQTerminalInteractiveShell.wildcards_case_sensitive = True # Enable auto setting the terminal title. # c.ZMQTerminalInteractiveShell.term_title = False # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). deep_reload() # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). # c.ZMQTerminalInteractiveShell.deep_reload = False # Deprecated, use PromptManager.in2_template # c.ZMQTerminalInteractiveShell.prompt_in2 = ' .\\D.: ' # Whether to include output from clients other than this one sharing the same # kernel. # # Outputs are not displayed until enter is pressed. # c.ZMQTerminalInteractiveShell.include_other_output = False # Preferred object representation MIME type in order. First matched MIME type # will be used. # c.ZMQTerminalInteractiveShell.mime_preference = ['image/png', 'image/jpeg', 'image/svg+xml'] # # c.ZMQTerminalInteractiveShell.readline_use = True # Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). # c.ZMQTerminalInteractiveShell.autocall = 0 # The part of the banner to be printed before the profile # c.ZMQTerminalInteractiveShell.banner1 = 'Python 3.4.3 |Continuum Analytics, Inc.| (default, Mar 6 2015, 12:07:41) \nType "copyright", "credits" or "license" for more information.\n\nIPython 3.1.0 -- An enhanced Interactive Python.\nAnaconda is brought to you by Continuum Analytics.\nPlease check out: http://continuum.io/thanks and https://binstar.org\n? -> Introduction and overview of IPython\'s features.\n%quickref -> Quick reference.\nhelp -> Python\'s own help system.\nobject? -> Details about \'object\', use \'object??\' for extra details.\n' # Handler for image type output. This is useful, for example, when connecting # to the kernel in which pylab inline backend is activated. There are four # handlers defined. 'PIL': Use Python Imaging Library to popup image; 'stream': # Use an external program to show the image. Image will be fed into the STDIN # of the program. You will need to configure `stream_image_handler`; # 'tempfile': Use an external program to show the image. Image will be saved in # a temporally file and the program is called with the temporally file. You # will need to configure `tempfile_image_handler`; 'callable': You can set any # Python callable which is called with the image data. You will need to # configure `callable_image_handler`. # c.ZMQTerminalInteractiveShell.image_handler = None # Set the color scheme (NoColor, Linux, or LightBG). # c.ZMQTerminalInteractiveShell.colors = 'LightBG' # Set the editor used by IPython (default to $EDITOR/vi/notepad). # c.ZMQTerminalInteractiveShell.editor = 'mate -w' # Show rewritten input, e.g. for autocall. # c.ZMQTerminalInteractiveShell.show_rewritten_input = True # # c.ZMQTerminalInteractiveShell.xmode = 'Context' # # c.ZMQTerminalInteractiveShell.quiet = False # A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. # c.ZMQTerminalInteractiveShell.ast_transformers = [] # # c.ZMQTerminalInteractiveShell.ipython_dir = '' # Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, # Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a # direct exit without any confirmation. # c.ZMQTerminalInteractiveShell.confirm_exit = True # Deprecated, use PromptManager.justify # c.ZMQTerminalInteractiveShell.prompts_pad_left = True # Timeout for giving up on a kernel (in seconds). # # On first connect and restart, the console tests whether the kernel is running # and responsive by sending kernel_info_requests. This sets the timeout in # seconds for how long the kernel can take before being presumed dead. # c.ZMQTerminalInteractiveShell.kernel_timeout = 60 # Number of lines of your screen, used to control printing of very long strings. # Strings longer than this number of lines will be sent through a pager instead # of directly printed. The default value for this is 0, which means IPython # will auto-detect your screen size every time it needs to print certain # potentially long strings (this doesn't change the behavior of the 'print' # keyword, it's only triggered internally). If for some reason this isn't # working well (it needs curses support), specify it yourself. Otherwise don't # change the default. # c.ZMQTerminalInteractiveShell.screen_length = 0 # Start logging to the given file in append mode. Use `logfile` to specify a log # file to **overwrite** logs to. # c.ZMQTerminalInteractiveShell.logappend = '' # Command to invoke an image viewer program when you are using 'tempfile' image # handler. This option is a list of string where the first element is the # command itself and reminders are the options for the command. You can use # {file} and {format} in the string to represent the location of the generated # image file and image format. # c.ZMQTerminalInteractiveShell.tempfile_image_handler = [] #------------------------------------------------------------------------------ # KernelManager configuration #------------------------------------------------------------------------------ # Manages a single kernel in a subprocess on this host. # # This version starts kernels with Popen. # KernelManager will inherit config from: ConnectionFileMixin # set the heartbeat port [default: random] # c.KernelManager.hb_port = 0 # set the stdin (ROUTER) port [default: random] # c.KernelManager.stdin_port = 0 # # c.KernelManager.transport = 'tcp' # JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security # dir of the current profile, but can be specified by absolute path. # c.KernelManager.connection_file = '' # set the control (ROUTER) port [default: random] # c.KernelManager.control_port = 0 # set the shell (ROUTER) port [default: random] # c.KernelManager.shell_port = 0 # Should we autorestart the kernel if it dies. # c.KernelManager.autorestart = False # DEPRECATED: Use kernel_name instead. # # The Popen Command to launch the kernel. Override this if you have a custom # kernel. If kernel_cmd is specified in a configuration file, IPython does not # pass any arguments to the kernel, because it cannot make any assumptions about # the arguments that the kernel understands. In particular, this means that the # kernel does not receive the option --debug if it given on the IPython command # line. # c.KernelManager.kernel_cmd = [] # Set the kernel's IP address [default localhost]. If the IP address is # something other than localhost, then Consoles on other machines will be able # to connect to the Kernel, so be careful! # c.KernelManager.ip = '' # set the iopub (PUB) port [default: random] # c.KernelManager.iopub_port = 0 #------------------------------------------------------------------------------ # ProfileDir configuration #------------------------------------------------------------------------------ # An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. # Set the profile location directly. This overrides the logic used by the # `profile` option. # c.ProfileDir.location = '' #------------------------------------------------------------------------------ # Session configuration #------------------------------------------------------------------------------ # Object for handling serialization and sending of messages. # # The Session object handles building messages and sending them with ZMQ sockets # or ZMQStream objects. Objects can communicate with each other over the # network via Session objects, and only need to work with the dict-based IPython # message spec. The Session will handle serialization/deserialization, security, # and metadata. # # Sessions support configurable serialization via packer/unpacker traits, and # signing with HMAC digests via the key/keyfile traits. # # Parameters ---------- # # debug : bool # whether to trigger extra debugging statements # packer/unpacker : str : 'json', 'pickle' or import_string # importstrings for methods to serialize message parts. If just # 'json' or 'pickle', predefined JSON and pickle packers will be used. # Otherwise, the entire importstring must be used. # # The functions must accept at least valid JSON input, and output *bytes*. # # For example, to use msgpack: # packer = 'msgpack.packb', unpacker='msgpack.unpackb' # pack/unpack : callables # You can also set the pack/unpack callables for serialization directly. # session : bytes # the ID of this Session object. The default is to generate a new UUID. # username : unicode # username added to message headers. The default is to ask the OS. # key : bytes # The key used to initialize an HMAC signature. If unset, messages # will not be signed or checked. # keyfile : filepath # The file containing a key. If this is set, `key` will be initialized # to the contents of the file. # The digest scheme used to construct the message signatures. Must have the form # 'hmac-HASH'. # c.Session.signature_scheme = 'hmac-sha256' # The maximum number of digests to remember. # # The digest history will be culled when it exceeds this value. # c.Session.digest_history_size = 65536 # The name of the unpacker for unserializing messages. Only used with custom # functions for `packer`. # c.Session.unpacker = 'json' # The name of the packer for serializing messages. Should be one of 'json', # 'pickle', or an import name for a custom callable serializer. # c.Session.packer = 'json' # Username for the Session. Default is your system username. # c.Session.username = 'minrk' # Debug output in the Session # c.Session.debug = False # path to file containing execution key. # c.Session.keyfile = '' # The maximum number of items for a container to be introspected for custom # serialization. Containers larger than this are pickled outright. # c.Session.item_threshold = 64 # Threshold (in bytes) beyond which an object's buffer should be extracted to # avoid pickling. # c.Session.buffer_threshold = 1024 # The UUID identifying this session. # c.Session.session = '' # Threshold (in bytes) beyond which a buffer should be sent without copying. # c.Session.copy_threshold = 65536 # execution key, for signing messages. # c.Session.key = b'' # Metadata dictionary, which serves as the default top-level metadata dict for # each message. # c.Session.metadata = {}
mit
ofgulban/scikit-image
doc/examples/filters/plot_rank_mean.py
7
1525
""" ============ Mean filters ============ This example compares the following mean filters of the rank filter package: * **local mean**: all pixels belonging to the structuring element to compute average gray level. * **percentile mean**: only use values between percentiles p0 and p1 (here 10% and 90%). * **bilateral mean**: only use pixels of the structuring element having a gray level situated inside g-s0 and g+s1 (here g-500 and g+500) Percentile and usual mean give here similar results, these filters smooth the complete image (background and details). Bilateral mean exhibits a high filtering rate for continuous area (i.e. background) while higher image frequencies remain untouched. """ import numpy as np import matplotlib.pyplot as plt from skimage import data from skimage.morphology import disk from skimage.filters import rank image = data.coins() selem = disk(20) percentile_result = rank.mean_percentile(image, selem=selem, p0=.1, p1=.9) bilateral_result = rank.mean_bilateral(image, selem=selem, s0=500, s1=500) normal_result = rank.mean(image, selem=selem) fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 10), sharex=True, sharey=True) ax = axes.ravel() titles = ['Original', 'Percentile mean', 'Bilateral mean', 'Local mean'] imgs = [image, percentile_result, bilateral_result, normal_result] for n in range(0, len(imgs)): ax[n].imshow(imgs[n]) ax[n].set_title(titles[n]) ax[n].set_adjustable('box-forced') ax[n].axis('off') plt.show()
bsd-3-clause
tienjunhsu/trading-with-python
lib/widgets.py
78
3012
# -*- coding: utf-8 -*- """ A collection of widgets for gui building Copyright: Jev Kuznetsov License: BSD """ from __future__ import division import sys from PyQt4.QtCore import * from PyQt4.QtGui import * import numpy as np from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar from matplotlib.figure import Figure import matplotlib.pyplot as plt class MatplotlibWidget(QWidget): def __init__(self,parent=None,grid=True): QWidget.__init__(self,parent) self.grid = grid self.fig = Figure() self.canvas =FigureCanvas(self.fig) self.canvas.setParent(self) self.canvas.mpl_connect('button_press_event', self.onPick) # bind pick event #self.axes = self.fig.add_subplot(111) margins = [0.05,0.1,0.9,0.8] self.axes = self.fig.add_axes(margins) self.toolbar = NavigationToolbar(self.canvas,self) #self.initFigure() layout = QVBoxLayout() layout.addWidget(self.toolbar) layout.addWidget(self.canvas) self.setLayout(layout) def onPick(self,event): print 'Pick event' print 'you pressed', event.button, event.xdata, event.ydata def update(self): self.canvas.draw() def plot(self,*args,**kwargs): self.axes.plot(*args,**kwargs) self.axes.grid(self.grid) self.update() def clear(self): self.axes.clear() def initFigure(self): self.axes.grid(True) x = np.linspace(-1,1) y = x**2 self.axes.plot(x,y,'o-') class PlotWindow(QMainWindow): ''' a stand-alone window with embedded matplotlib widget ''' def __init__(self,parent=None): super(PlotWindow,self).__init__(parent) self.setAttribute(Qt.WA_DeleteOnClose) self.mplWidget = MatplotlibWidget() self.setCentralWidget(self.mplWidget) def plot(self,dataFrame): ''' plot dataframe ''' dataFrame.plot(ax=self.mplWidget.axes) def getAxes(self): return self.mplWidget.axes def getFigure(self): return self.mplWidget.fig def update(self): self.mplWidget.update() class MainForm(QMainWindow): def __init__(self, parent=None): QMainWindow.__init__(self, parent) self.setWindowTitle('Demo: PyQt with matplotlib') self.plot = MatplotlibWidget() self.setCentralWidget(self.plot) self.plot.clear() self.plot.plot(np.random.rand(10),'x-') #--------------------- if __name__=='__main__': app = QApplication(sys.argv) form = MainForm() form.show() app.exec_()
bsd-3-clause
igabriel85/dmon-adp
adpformater/adpformater.py
1
1615
import pandas as pd class DataFormatter(): def __init__(self, dataloc): self.dataloc = dataloc def aggJsonToCsv(self): return "CSV file" def expTimestamp(self): return "Expand metric timestamp" def window(self): return "Window metrics" def pivot(self): return "Pivot values" def addID(self): return "Add new ID as index" def removeID(self): return "Remove selected column as index" def renameHeader(self): return "Rename headers" def normalize(self): return "Normalize data" def denormalize(self): return "Denormalize data" input_table = pd.read_csv("metrics.csv") for index, row in input_table.iterrows(): input_table = input_table.append([row]*9) input_table = input_table.sort_values(['row ID']) input_table = input_table.reset_index(drop=True) for index, rows in input_table.iterrows(): if int(index) > 59: print "Index to big!" time = rows[0].split(", ", 1) #In Knime row for timestamp is row(55) last one timeHour = time[1].split(":", 2) timeHourSeconds = timeHour[2].split(".", 1) timeHourSecondsDecimal = timeHour[2].split(".", 1) timeHourSecondsDecimal[0] = str(index) if len(timeHourSecondsDecimal[0]) == 1: timeHourSecondsDecimal[0] = '0%s' %timeHourSecondsDecimal[0] decimal = '.'.join(timeHourSecondsDecimal) timeHour[2] = decimal timenew = ':'.join(timeHour) time[1] = timenew finalString = ', '.join(time) input_table.set_value(index, 'row ID', finalString) input_table.to_csv('out.csv')
apache-2.0
Weihonghao/ECM
Vpy34/lib/python3.5/site-packages/pandas/io/sql.py
7
58343
# -*- coding: utf-8 -*- """ Collection of query wrappers / abstractions to both facilitate data retrieval and to reduce dependency on DB-specific API. """ from __future__ import print_function, division from datetime import datetime, date, time import warnings import re import numpy as np import pandas._libs.lib as lib from pandas.core.dtypes.missing import isnull from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.core.dtypes.common import ( is_list_like, is_dict_like, is_datetime64tz_dtype) from pandas.compat import (map, zip, raise_with_traceback, string_types, text_type) from pandas.core.api import DataFrame, Series from pandas.core.base import PandasObject from pandas.core.tools.datetimes import to_datetime from contextlib import contextmanager class SQLAlchemyRequired(ImportError): pass class DatabaseError(IOError): pass # ----------------------------------------------------------------------------- # -- Helper functions _SQLALCHEMY_INSTALLED = None def _validate_flavor_parameter(flavor): """ Checks whether a database 'flavor' was specified. If not None, produces FutureWarning if 'sqlite' and raises a ValueError if anything else. """ if flavor is not None: if flavor == 'sqlite': warnings.warn("the 'flavor' parameter is deprecated " "and will be removed in a future version, " "as 'sqlite' is the only supported option " "when SQLAlchemy is not installed.", FutureWarning, stacklevel=2) else: raise ValueError("database flavor {flavor} is not " "supported".format(flavor=flavor)) def _is_sqlalchemy_connectable(con): global _SQLALCHEMY_INSTALLED if _SQLALCHEMY_INSTALLED is None: try: import sqlalchemy _SQLALCHEMY_INSTALLED = True from distutils.version import LooseVersion ver = LooseVersion(sqlalchemy.__version__) # For sqlalchemy versions < 0.8.2, the BIGINT type is recognized # for a sqlite engine, which results in a warning when trying to # read/write a DataFrame with int64 values. (GH7433) if ver < '0.8.2': from sqlalchemy import BigInteger from sqlalchemy.ext.compiler import compiles @compiles(BigInteger, 'sqlite') def compile_big_int_sqlite(type_, compiler, **kw): return 'INTEGER' except ImportError: _SQLALCHEMY_INSTALLED = False if _SQLALCHEMY_INSTALLED: import sqlalchemy return isinstance(con, sqlalchemy.engine.Connectable) else: return False def _convert_params(sql, params): """convert sql and params args to DBAPI2.0 compliant format""" args = [sql] if params is not None: if hasattr(params, 'keys'): # test if params is a mapping args += [params] else: args += [list(params)] return args def _handle_date_column(col, format=None): if isinstance(format, dict): return to_datetime(col, errors='ignore', **format) else: if format in ['D', 's', 'ms', 'us', 'ns']: return to_datetime(col, errors='coerce', unit=format, utc=True) elif (issubclass(col.dtype.type, np.floating) or issubclass(col.dtype.type, np.integer)): # parse dates as timestamp format = 's' if format is None else format return to_datetime(col, errors='coerce', unit=format, utc=True) elif is_datetime64tz_dtype(col): # coerce to UTC timezone # GH11216 return (to_datetime(col, errors='coerce') .astype('datetime64[ns, UTC]')) else: return to_datetime(col, errors='coerce', format=format, utc=True) def _parse_date_columns(data_frame, parse_dates): """ Force non-datetime columns to be read as such. Supports both string formatted and integer timestamp columns """ # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] if not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] for col_name in parse_dates: df_col = data_frame[col_name] try: fmt = parse_dates[col_name] except TypeError: fmt = None data_frame[col_name] = _handle_date_column(df_col, format=fmt) # we want to coerce datetime64_tz dtypes for now # we could in theory do a 'nice' conversion from a FixedOffset tz # GH11216 for col_name, df_col in data_frame.iteritems(): if is_datetime64tz_dtype(df_col): data_frame[col_name] = _handle_date_column(df_col) return data_frame def _wrap_result(data, columns, index_col=None, coerce_float=True, parse_dates=None): """Wrap result set of query in a DataFrame """ frame = DataFrame.from_records(data, columns=columns, coerce_float=coerce_float) _parse_date_columns(frame, parse_dates) if index_col is not None: frame.set_index(index_col, inplace=True) return frame def execute(sql, con, cur=None, params=None): """ Execute the given SQL query using the provided connection object. Parameters ---------- sql : string Query to be executed con : SQLAlchemy connectable(engine/connection) or sqlite3 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. cur : deprecated, cursor is obtained from connection, default: None params : list or tuple, optional, default: None List of parameters to pass to execute method. Returns ------- Results Iterable """ if cur is None: pandas_sql = pandasSQL_builder(con) else: pandas_sql = pandasSQL_builder(cur, is_cursor=True) args = _convert_params(sql, params) return pandas_sql.execute(*args) # ----------------------------------------------------------------------------- # -- Read and write to DataFrames def read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None): """Read SQL database table into a DataFrame. Given a table name and an SQLAlchemy connectable, returns a DataFrame. This function does not support DBAPI connections. Parameters ---------- table_name : string Name of SQL table in database con : SQLAlchemy connectable (or database string URI) Sqlite DBAPI connection mode not supported schema : string, default None Name of SQL schema in database to query (if database flavor supports this). If None, use default schema (default). index_col : string or list of strings, optional, default: None Column(s) to set as index(MultiIndex) coerce_float : boolean, default True Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. parse_dates : list or dict, default: None - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite columns : list, default: None List of column names to select from sql table chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame Notes ----- Any datetime values with time zone information will be converted to UTC See also -------- read_sql_query : Read SQL query into a DataFrame. read_sql """ con = _engine_builder(con) if not _is_sqlalchemy_connectable(con): raise NotImplementedError("read_sql_table only supported for " "SQLAlchemy connectable.") import sqlalchemy from sqlalchemy.schema import MetaData meta = MetaData(con, schema=schema) try: meta.reflect(only=[table_name], views=True) except sqlalchemy.exc.InvalidRequestError: raise ValueError("Table %s not found" % table_name) pandas_sql = SQLDatabase(con, meta=meta) table = pandas_sql.read_table( table_name, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates, columns=columns, chunksize=chunksize) if table is not None: return table else: raise ValueError("Table %s not found" % table_name, con) def read_sql_query(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, chunksize=None): """Read SQL query into a DataFrame. Returns a DataFrame corresponding to the result set of the query string. Optionally provide an `index_col` parameter to use one of the columns as the index, otherwise default integer index will be used. Parameters ---------- sql : string SQL query or SQLAlchemy Selectable (select or text object) to be executed. con : SQLAlchemy connectable(engine/connection) or database string URI or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : string or list of strings, optional, default: None Column(s) to set as index(MultiIndex) coerce_float : boolean, default True Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional, default: None List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'} parse_dates : list or dict, default: None - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame Notes ----- Any datetime values with time zone information parsed via the `parse_dates` parameter will be converted to UTC See also -------- read_sql_table : Read SQL database table into a DataFrame read_sql """ pandas_sql = pandasSQL_builder(con) return pandas_sql.read_query( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates, chunksize=chunksize) def read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None): """ Read SQL query or database table into a DataFrame. Parameters ---------- sql : string SQL query or SQLAlchemy Selectable (select or text object) to be executed, or database table name. con : SQLAlchemy connectable(engine/connection) or database string URI or DBAPI2 connection (fallback mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : string or list of strings, optional, default: None Column(s) to set as index(MultiIndex) coerce_float : boolean, default True Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional, default: None List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'} parse_dates : list or dict, default: None - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite columns : list, default: None List of column names to select from sql table (only used when reading a table). chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame Notes ----- This function is a convenience wrapper around ``read_sql_table`` and ``read_sql_query`` (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query). The delegated function might have more specific notes about their functionality not listed here. See also -------- read_sql_table : Read SQL database table into a DataFrame read_sql_query : Read SQL query into a DataFrame """ pandas_sql = pandasSQL_builder(con) if isinstance(pandas_sql, SQLiteDatabase): return pandas_sql.read_query( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates, chunksize=chunksize) try: _is_table_name = pandas_sql.has_table(sql) except: _is_table_name = False if _is_table_name: pandas_sql.meta.reflect(only=[sql]) return pandas_sql.read_table( sql, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates, columns=columns, chunksize=chunksize) else: return pandas_sql.read_query( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates, chunksize=chunksize) def to_sql(frame, name, con, flavor=None, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None): """ Write records stored in a DataFrame to a SQL database. Parameters ---------- frame : DataFrame name : string Name of SQL table con : SQLAlchemy connectable(engine/connection) or database string URI or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : 'sqlite', default None DEPRECATED: this parameter will be removed in a future version schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If None, use default schema (default). if_exists : {'fail', 'replace', 'append'}, default 'fail' - fail: If table exists, do nothing. - replace: If table exists, drop it, recreate it, and insert data. - append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column index_label : string or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : single SQLtype or dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. If all columns are of the same type, one single value can be used. """ if if_exists not in ('fail', 'replace', 'append'): raise ValueError("'{0}' is not valid for if_exists".format(if_exists)) pandas_sql = pandasSQL_builder(con, schema=schema, flavor=flavor) if isinstance(frame, Series): frame = frame.to_frame() elif not isinstance(frame, DataFrame): raise NotImplementedError("'frame' argument should be either a " "Series or a DataFrame") pandas_sql.to_sql(frame, name, if_exists=if_exists, index=index, index_label=index_label, schema=schema, chunksize=chunksize, dtype=dtype) def has_table(table_name, con, flavor=None, schema=None): """ Check if DataBase has named table. Parameters ---------- table_name: string Name of SQL table con: SQLAlchemy connectable(engine/connection) or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : 'sqlite', default None DEPRECATED: this parameter will be removed in a future version schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If None, use default schema (default). Returns ------- boolean """ pandas_sql = pandasSQL_builder(con, flavor=flavor, schema=schema) return pandas_sql.has_table(table_name) table_exists = has_table def _engine_builder(con): """ Returns a SQLAlchemy engine from a URI (if con is a string) else it just return con without modifying it """ global _SQLALCHEMY_INSTALLED if isinstance(con, string_types): try: import sqlalchemy except ImportError: _SQLALCHEMY_INSTALLED = False else: con = sqlalchemy.create_engine(con) return con return con def pandasSQL_builder(con, flavor=None, schema=None, meta=None, is_cursor=False): """ Convenience function to return the correct PandasSQL subclass based on the provided parameters """ _validate_flavor_parameter(flavor) # When support for DBAPI connections is removed, # is_cursor should not be necessary. con = _engine_builder(con) if _is_sqlalchemy_connectable(con): return SQLDatabase(con, schema=schema, meta=meta) elif isinstance(con, string_types): raise ImportError("Using URI string without sqlalchemy installed.") else: return SQLiteDatabase(con, is_cursor=is_cursor) class SQLTable(PandasObject): """ For mapping Pandas tables to SQL tables. Uses fact that table is reflected by SQLAlchemy to do better type convertions. Also holds various flags needed to avoid having to pass them between functions all the time. """ # TODO: support for multiIndex def __init__(self, name, pandas_sql_engine, frame=None, index=True, if_exists='fail', prefix='pandas', index_label=None, schema=None, keys=None, dtype=None): self.name = name self.pd_sql = pandas_sql_engine self.prefix = prefix self.frame = frame self.index = self._index_name(index, index_label) self.schema = schema self.if_exists = if_exists self.keys = keys self.dtype = dtype if frame is not None: # We want to initialize based on a dataframe self.table = self._create_table_setup() else: # no data provided, read-only mode self.table = self.pd_sql.get_table(self.name, self.schema) if self.table is None: raise ValueError("Could not init table '%s'" % name) def exists(self): return self.pd_sql.has_table(self.name, self.schema) def sql_schema(self): from sqlalchemy.schema import CreateTable return str(CreateTable(self.table).compile(self.pd_sql.connectable)) def _execute_create(self): # Inserting table into database, add to MetaData object self.table = self.table.tometadata(self.pd_sql.meta) self.table.create() def create(self): if self.exists(): if self.if_exists == 'fail': raise ValueError("Table '%s' already exists." % self.name) elif self.if_exists == 'replace': self.pd_sql.drop_table(self.name, self.schema) self._execute_create() elif self.if_exists == 'append': pass else: raise ValueError( "'{0}' is not valid for if_exists".format(self.if_exists)) else: self._execute_create() def insert_statement(self): return self.table.insert() def insert_data(self): if self.index is not None: temp = self.frame.copy() temp.index.names = self.index try: temp.reset_index(inplace=True) except ValueError as err: raise ValueError( "duplicate name in index/columns: {0}".format(err)) else: temp = self.frame column_names = list(map(text_type, temp.columns)) ncols = len(column_names) data_list = [None] * ncols blocks = temp._data.blocks for i in range(len(blocks)): b = blocks[i] if b.is_datetime: # convert to microsecond resolution so this yields # datetime.datetime d = b.values.astype('M8[us]').astype(object) else: d = np.array(b.get_values(), dtype=object) # replace NaN with None if b._can_hold_na: mask = isnull(d) d[mask] = None for col_loc, col in zip(b.mgr_locs, d): data_list[col_loc] = col return column_names, data_list def _execute_insert(self, conn, keys, data_iter): data = [dict((k, v) for k, v in zip(keys, row)) for row in data_iter] conn.execute(self.insert_statement(), data) def insert(self, chunksize=None): keys, data_list = self.insert_data() nrows = len(self.frame) if nrows == 0: return if chunksize is None: chunksize = nrows elif chunksize == 0: raise ValueError('chunksize argument should be non-zero') chunks = int(nrows / chunksize) + 1 with self.pd_sql.run_transaction() as conn: for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, nrows) if start_i >= end_i: break chunk_iter = zip(*[arr[start_i:end_i] for arr in data_list]) self._execute_insert(conn, keys, chunk_iter) def _query_iterator(self, result, chunksize, columns, coerce_float=True, parse_dates=None): """Return generator through chunked result set""" while True: data = result.fetchmany(chunksize) if not data: break else: self.frame = DataFrame.from_records( data, columns=columns, coerce_float=coerce_float) self._harmonize_columns(parse_dates=parse_dates) if self.index is not None: self.frame.set_index(self.index, inplace=True) yield self.frame def read(self, coerce_float=True, parse_dates=None, columns=None, chunksize=None): if columns is not None and len(columns) > 0: from sqlalchemy import select cols = [self.table.c[n] for n in columns] if self.index is not None: [cols.insert(0, self.table.c[idx]) for idx in self.index[::-1]] sql_select = select(cols) else: sql_select = self.table.select() result = self.pd_sql.execute(sql_select) column_names = result.keys() if chunksize is not None: return self._query_iterator(result, chunksize, column_names, coerce_float=coerce_float, parse_dates=parse_dates) else: data = result.fetchall() self.frame = DataFrame.from_records( data, columns=column_names, coerce_float=coerce_float) self._harmonize_columns(parse_dates=parse_dates) if self.index is not None: self.frame.set_index(self.index, inplace=True) return self.frame def _index_name(self, index, index_label): # for writing: index=True to include index in sql table if index is True: nlevels = self.frame.index.nlevels # if index_label is specified, set this as index name(s) if index_label is not None: if not isinstance(index_label, list): index_label = [index_label] if len(index_label) != nlevels: raise ValueError( "Length of 'index_label' should match number of " "levels, which is {0}".format(nlevels)) else: return index_label # return the used column labels for the index columns if (nlevels == 1 and 'index' not in self.frame.columns and self.frame.index.name is None): return ['index'] else: return [l if l is not None else "level_{0}".format(i) for i, l in enumerate(self.frame.index.names)] # for reading: index=(list of) string to specify column to set as index elif isinstance(index, string_types): return [index] elif isinstance(index, list): return index else: return None def _get_column_names_and_types(self, dtype_mapper): column_names_and_types = [] if self.index is not None: for i, idx_label in enumerate(self.index): idx_type = dtype_mapper( self.frame.index._get_level_values(i)) column_names_and_types.append((text_type(idx_label), idx_type, True)) column_names_and_types += [ (text_type(self.frame.columns[i]), dtype_mapper(self.frame.iloc[:, i]), False) for i in range(len(self.frame.columns)) ] return column_names_and_types def _create_table_setup(self): from sqlalchemy import Table, Column, PrimaryKeyConstraint column_names_and_types = \ self._get_column_names_and_types(self._sqlalchemy_type) columns = [Column(name, typ, index=is_index) for name, typ, is_index in column_names_and_types] if self.keys is not None: if not is_list_like(self.keys): keys = [self.keys] else: keys = self.keys pkc = PrimaryKeyConstraint(*keys, name=self.name + '_pk') columns.append(pkc) schema = self.schema or self.pd_sql.meta.schema # At this point, attach to new metadata, only attach to self.meta # once table is created. from sqlalchemy.schema import MetaData meta = MetaData(self.pd_sql, schema=schema) return Table(self.name, meta, *columns, schema=schema) def _harmonize_columns(self, parse_dates=None): """ Make the DataFrame's column types align with the SQL table column types. Need to work around limited NA value support. Floats are always fine, ints must always be floats if there are Null values. Booleans are hard because converting bool column with None replaces all Nones with false. Therefore only convert bool if there are no NA values. Datetimes should already be converted to np.datetime64 if supported, but here we also force conversion if required """ # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] if not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] for sql_col in self.table.columns: col_name = sql_col.name try: df_col = self.frame[col_name] # the type the dataframe column should have col_type = self._get_dtype(sql_col.type) if (col_type is datetime or col_type is date or col_type is DatetimeTZDtype): self.frame[col_name] = _handle_date_column(df_col) elif col_type is float: # floats support NA, can always convert! self.frame[col_name] = df_col.astype(col_type, copy=False) elif len(df_col) == df_col.count(): # No NA values, can convert ints and bools if col_type is np.dtype('int64') or col_type is bool: self.frame[col_name] = df_col.astype( col_type, copy=False) # Handle date parsing if col_name in parse_dates: try: fmt = parse_dates[col_name] except TypeError: fmt = None self.frame[col_name] = _handle_date_column( df_col, format=fmt) except KeyError: pass # this column not in results def _get_notnull_col_dtype(self, col): """ Infer datatype of the Series col. In case the dtype of col is 'object' and it contains NA values, this infers the datatype of the not-NA values. Needed for inserting typed data containing NULLs, GH8778. """ col_for_inference = col if col.dtype == 'object': notnulldata = col[~isnull(col)] if len(notnulldata): col_for_inference = notnulldata return lib.infer_dtype(col_for_inference) def _sqlalchemy_type(self, col): dtype = self.dtype or {} if col.name in dtype: return self.dtype[col.name] col_type = self._get_notnull_col_dtype(col) from sqlalchemy.types import (BigInteger, Integer, Float, Text, Boolean, DateTime, Date, Time) if col_type == 'datetime64' or col_type == 'datetime': try: tz = col.tzinfo # noqa return DateTime(timezone=True) except: return DateTime if col_type == 'timedelta64': warnings.warn("the 'timedelta' type is not supported, and will be " "written as integer values (ns frequency) to the " "database.", UserWarning, stacklevel=8) return BigInteger elif col_type == 'floating': if col.dtype == 'float32': return Float(precision=23) else: return Float(precision=53) elif col_type == 'integer': if col.dtype == 'int32': return Integer else: return BigInteger elif col_type == 'boolean': return Boolean elif col_type == 'date': return Date elif col_type == 'time': return Time elif col_type == 'complex': raise ValueError('Complex datatypes not supported') return Text def _get_dtype(self, sqltype): from sqlalchemy.types import (Integer, Float, Boolean, DateTime, Date, TIMESTAMP) if isinstance(sqltype, Float): return float elif isinstance(sqltype, Integer): # TODO: Refine integer size. return np.dtype('int64') elif isinstance(sqltype, TIMESTAMP): # we have a timezone capable type if not sqltype.timezone: return datetime return DatetimeTZDtype elif isinstance(sqltype, DateTime): # Caution: np.datetime64 is also a subclass of np.number. return datetime elif isinstance(sqltype, Date): return date elif isinstance(sqltype, Boolean): return bool return object class PandasSQL(PandasObject): """ Subclasses Should define read_sql and to_sql """ def read_sql(self, *args, **kwargs): raise ValueError("PandasSQL must be created with an SQLAlchemy " "connectable or sqlite connection") def to_sql(self, *args, **kwargs): raise ValueError("PandasSQL must be created with an SQLAlchemy " "connectable or sqlite connection") class SQLDatabase(PandasSQL): """ This class enables convertion between DataFrame and SQL databases using SQLAlchemy to handle DataBase abstraction Parameters ---------- engine : SQLAlchemy connectable Connectable to connect with the database. Using SQLAlchemy makes it possible to use any DB supported by that library. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If None, use default schema (default). meta : SQLAlchemy MetaData object, default None If provided, this MetaData object is used instead of a newly created. This allows to specify database flavor specific arguments in the MetaData object. """ def __init__(self, engine, schema=None, meta=None): self.connectable = engine if not meta: from sqlalchemy.schema import MetaData meta = MetaData(self.connectable, schema=schema) self.meta = meta @contextmanager def run_transaction(self): with self.connectable.begin() as tx: if hasattr(tx, 'execute'): yield tx else: yield self.connectable def execute(self, *args, **kwargs): """Simple passthrough to SQLAlchemy connectable""" return self.connectable.execute(*args, **kwargs) def read_table(self, table_name, index_col=None, coerce_float=True, parse_dates=None, columns=None, schema=None, chunksize=None): """Read SQL database table into a DataFrame. Parameters ---------- table_name : string Name of SQL table in database index_col : string, optional, default: None Column to set as index coerce_float : boolean, default True Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. This can result in loss of precision. parse_dates : list or dict, default: None - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg}``, where the arg corresponds to the keyword arguments of :func:`pandas.to_datetime`. Especially useful with databases without native Datetime support, such as SQLite columns : list, default: None List of column names to select from sql table schema : string, default None Name of SQL schema in database to query (if database flavor supports this). If specified, this overwrites the default schema of the SQLDatabase object. chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame See also -------- pandas.read_sql_table SQLDatabase.read_query """ table = SQLTable(table_name, self, index=index_col, schema=schema) return table.read(coerce_float=coerce_float, parse_dates=parse_dates, columns=columns, chunksize=chunksize) @staticmethod def _query_iterator(result, chunksize, columns, index_col=None, coerce_float=True, parse_dates=None): """Return generator through chunked result set""" while True: data = result.fetchmany(chunksize) if not data: break else: yield _wrap_result(data, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) def read_query(self, sql, index_col=None, coerce_float=True, parse_dates=None, params=None, chunksize=None): """Read SQL query into a DataFrame. Parameters ---------- sql : string SQL query to be executed index_col : string, optional, default: None Column name to use as index for the returned DataFrame object. coerce_float : boolean, default True Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional, default: None List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'} parse_dates : list or dict, default: None - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame See also -------- read_sql_table : Read SQL database table into a DataFrame read_sql """ args = _convert_params(sql, params) result = self.execute(*args) columns = result.keys() if chunksize is not None: return self._query_iterator(result, chunksize, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) else: data = result.fetchall() frame = _wrap_result(data, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) return frame read_sql = read_query def to_sql(self, frame, name, if_exists='fail', index=True, index_label=None, schema=None, chunksize=None, dtype=None): """ Write records stored in a DataFrame to a SQL database. Parameters ---------- frame : DataFrame name : string Name of SQL table if_exists : {'fail', 'replace', 'append'}, default 'fail' - fail: If table exists, do nothing. - replace: If table exists, drop it, recreate it, and insert data. - append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column index_label : string or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If specified, this overwrites the default schema of the SQLDatabase object. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : single type or dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type. If all columns are of the same type, one single value can be used. """ if dtype and not is_dict_like(dtype): dtype = {col_name: dtype for col_name in frame} if dtype is not None: from sqlalchemy.types import to_instance, TypeEngine for col, my_type in dtype.items(): if not isinstance(to_instance(my_type), TypeEngine): raise ValueError('The type of %s is not a SQLAlchemy ' 'type ' % col) table = SQLTable(name, self, frame=frame, index=index, if_exists=if_exists, index_label=index_label, schema=schema, dtype=dtype) table.create() table.insert(chunksize) if (not name.isdigit() and not name.islower()): # check for potentially case sensitivity issues (GH7815) # Only check when name is not a number and name is not lower case engine = self.connectable.engine with self.connectable.connect() as conn: table_names = engine.table_names( schema=schema or self.meta.schema, connection=conn, ) if name not in table_names: msg = ( "The provided table name '{0}' is not found exactly as " "such in the database after writing the table, possibly " "due to case sensitivity issues. Consider using lower " "case table names." ).format(name) warnings.warn(msg, UserWarning) @property def tables(self): return self.meta.tables def has_table(self, name, schema=None): return self.connectable.run_callable( self.connectable.dialect.has_table, name, schema or self.meta.schema, ) def get_table(self, table_name, schema=None): schema = schema or self.meta.schema if schema: tbl = self.meta.tables.get('.'.join([schema, table_name])) else: tbl = self.meta.tables.get(table_name) # Avoid casting double-precision floats into decimals from sqlalchemy import Numeric for column in tbl.columns: if isinstance(column.type, Numeric): column.type.asdecimal = False return tbl def drop_table(self, table_name, schema=None): schema = schema or self.meta.schema if self.has_table(table_name, schema): self.meta.reflect(only=[table_name], schema=schema) self.get_table(table_name, schema).drop() self.meta.clear() def _create_sql_schema(self, frame, table_name, keys=None, dtype=None): table = SQLTable(table_name, self, frame=frame, index=False, keys=keys, dtype=dtype) return str(table.sql_schema()) # ---- SQL without SQLAlchemy --- # sqlite-specific sql strings and handler class # dictionary used for readability purposes _SQL_TYPES = { 'string': 'TEXT', 'floating': 'REAL', 'integer': 'INTEGER', 'datetime': 'TIMESTAMP', 'date': 'DATE', 'time': 'TIME', 'boolean': 'INTEGER', } def _get_unicode_name(name): try: uname = text_type(name).encode("utf-8", "strict").decode("utf-8") except UnicodeError: raise ValueError("Cannot convert identifier to UTF-8: '%s'" % name) return uname def _get_valid_sqlite_name(name): # See http://stackoverflow.com/questions/6514274/how-do-you-escape-strings\ # -for-sqlite-table-column-names-in-python # Ensure the string can be encoded as UTF-8. # Ensure the string does not include any NUL characters. # Replace all " with "". # Wrap the entire thing in double quotes. uname = _get_unicode_name(name) if not len(uname): raise ValueError("Empty table or column name specified") nul_index = uname.find("\x00") if nul_index >= 0: raise ValueError('SQLite identifier cannot contain NULs') return '"' + uname.replace('"', '""') + '"' _SAFE_NAMES_WARNING = ("The spaces in these column names will not be changed. " "In pandas versions < 0.14, spaces were converted to " "underscores.") class SQLiteTable(SQLTable): """ Patch the SQLTable for fallback support. Instead of a table variable just use the Create Table statement. """ def __init__(self, *args, **kwargs): # GH 8341 # register an adapter callable for datetime.time object import sqlite3 # this will transform time(12,34,56,789) into '12:34:56.000789' # (this is what sqlalchemy does) sqlite3.register_adapter(time, lambda _: _.strftime("%H:%M:%S.%f")) super(SQLiteTable, self).__init__(*args, **kwargs) def sql_schema(self): return str(";\n".join(self.table)) def _execute_create(self): with self.pd_sql.run_transaction() as conn: for stmt in self.table: conn.execute(stmt) def insert_statement(self): names = list(map(text_type, self.frame.columns)) wld = '?' # wildcard char escape = _get_valid_sqlite_name if self.index is not None: [names.insert(0, idx) for idx in self.index[::-1]] bracketed_names = [escape(column) for column in names] col_names = ','.join(bracketed_names) wildcards = ','.join([wld] * len(names)) insert_statement = 'INSERT INTO %s (%s) VALUES (%s)' % ( escape(self.name), col_names, wildcards) return insert_statement def _execute_insert(self, conn, keys, data_iter): data_list = list(data_iter) conn.executemany(self.insert_statement(), data_list) def _create_table_setup(self): """ Return a list of SQL statement that create a table reflecting the structure of a DataFrame. The first entry will be a CREATE TABLE statement while the rest will be CREATE INDEX statements """ column_names_and_types = \ self._get_column_names_and_types(self._sql_type_name) pat = re.compile('\s+') column_names = [col_name for col_name, _, _ in column_names_and_types] if any(map(pat.search, column_names)): warnings.warn(_SAFE_NAMES_WARNING, stacklevel=6) escape = _get_valid_sqlite_name create_tbl_stmts = [escape(cname) + ' ' + ctype for cname, ctype, _ in column_names_and_types] if self.keys is not None and len(self.keys): if not is_list_like(self.keys): keys = [self.keys] else: keys = self.keys cnames_br = ", ".join([escape(c) for c in keys]) create_tbl_stmts.append( "CONSTRAINT {tbl}_pk PRIMARY KEY ({cnames_br})".format( tbl=self.name, cnames_br=cnames_br)) create_stmts = ["CREATE TABLE " + escape(self.name) + " (\n" + ',\n '.join(create_tbl_stmts) + "\n)"] ix_cols = [cname for cname, _, is_index in column_names_and_types if is_index] if len(ix_cols): cnames = "_".join(ix_cols) cnames_br = ",".join([escape(c) for c in ix_cols]) create_stmts.append( "CREATE INDEX " + escape("ix_" + self.name + "_" + cnames) + "ON " + escape(self.name) + " (" + cnames_br + ")") return create_stmts def _sql_type_name(self, col): dtype = self.dtype or {} if col.name in dtype: return dtype[col.name] col_type = self._get_notnull_col_dtype(col) if col_type == 'timedelta64': warnings.warn("the 'timedelta' type is not supported, and will be " "written as integer values (ns frequency) to the " "database.", UserWarning, stacklevel=8) col_type = "integer" elif col_type == "datetime64": col_type = "datetime" elif col_type == "empty": col_type = "string" elif col_type == "complex": raise ValueError('Complex datatypes not supported') if col_type not in _SQL_TYPES: col_type = "string" return _SQL_TYPES[col_type] class SQLiteDatabase(PandasSQL): """ Version of SQLDatabase to support sqlite connections (fallback without sqlalchemy). This should only be used internally. Parameters ---------- con : sqlite connection object """ def __init__(self, con, flavor=None, is_cursor=False): _validate_flavor_parameter(flavor) self.is_cursor = is_cursor self.con = con @contextmanager def run_transaction(self): cur = self.con.cursor() try: yield cur self.con.commit() except: self.con.rollback() raise finally: cur.close() def execute(self, *args, **kwargs): if self.is_cursor: cur = self.con else: cur = self.con.cursor() try: if kwargs: cur.execute(*args, **kwargs) else: cur.execute(*args) return cur except Exception as exc: try: self.con.rollback() except Exception: # pragma: no cover ex = DatabaseError("Execution failed on sql: %s\n%s\nunable" " to rollback" % (args[0], exc)) raise_with_traceback(ex) ex = DatabaseError( "Execution failed on sql '%s': %s" % (args[0], exc)) raise_with_traceback(ex) @staticmethod def _query_iterator(cursor, chunksize, columns, index_col=None, coerce_float=True, parse_dates=None): """Return generator through chunked result set""" while True: data = cursor.fetchmany(chunksize) if type(data) == tuple: data = list(data) if not data: cursor.close() break else: yield _wrap_result(data, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) def read_query(self, sql, index_col=None, coerce_float=True, params=None, parse_dates=None, chunksize=None): args = _convert_params(sql, params) cursor = self.execute(*args) columns = [col_desc[0] for col_desc in cursor.description] if chunksize is not None: return self._query_iterator(cursor, chunksize, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) else: data = self._fetchall_as_list(cursor) cursor.close() frame = _wrap_result(data, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) return frame def _fetchall_as_list(self, cur): result = cur.fetchall() if not isinstance(result, list): result = list(result) return result def to_sql(self, frame, name, if_exists='fail', index=True, index_label=None, schema=None, chunksize=None, dtype=None): """ Write records stored in a DataFrame to a SQL database. Parameters ---------- frame: DataFrame name: name of SQL table if_exists: {'fail', 'replace', 'append'}, default 'fail' fail: If table exists, do nothing. replace: If table exists, drop it, recreate it, and insert data. append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column index_label : string or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. schema : string, default None Ignored parameter included for compatability with SQLAlchemy version of ``to_sql``. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : single type or dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a string. If all columns are of the same type, one single value can be used. """ if dtype and not is_dict_like(dtype): dtype = {col_name: dtype for col_name in frame} if dtype is not None: for col, my_type in dtype.items(): if not isinstance(my_type, str): raise ValueError('%s (%s) not a string' % ( col, str(my_type))) table = SQLiteTable(name, self, frame=frame, index=index, if_exists=if_exists, index_label=index_label, dtype=dtype) table.create() table.insert(chunksize) def has_table(self, name, schema=None): # TODO(wesm): unused? # escape = _get_valid_sqlite_name # esc_name = escape(name) wld = '?' query = ("SELECT name FROM sqlite_master " "WHERE type='table' AND name=%s;") % wld return len(self.execute(query, [name, ]).fetchall()) > 0 def get_table(self, table_name, schema=None): return None # not supported in fallback mode def drop_table(self, name, schema=None): drop_sql = "DROP TABLE %s" % _get_valid_sqlite_name(name) self.execute(drop_sql) def _create_sql_schema(self, frame, table_name, keys=None, dtype=None): table = SQLiteTable(table_name, self, frame=frame, index=False, keys=keys, dtype=dtype) return str(table.sql_schema()) def get_schema(frame, name, flavor=None, keys=None, con=None, dtype=None): """ Get the SQL db table schema for the given frame. Parameters ---------- frame : DataFrame name : string name of SQL table keys : string or sequence, default: None columns to use a primary key con: an open SQL database connection object or a SQLAlchemy connectable Using SQLAlchemy makes it possible to use any DB supported by that library, default: None If a DBAPI2 object, only sqlite3 is supported. flavor : 'sqlite', default None DEPRECATED: this parameter will be removed in a future version dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. """ pandas_sql = pandasSQL_builder(con=con, flavor=flavor) return pandas_sql._create_sql_schema(frame, name, keys=keys, dtype=dtype)
agpl-3.0
rboyes/KerasScripts
CSVTrainer.py
1
5321
import os import datetime import sys import time import string import random import pandas as pd import numpy as np import gc if(len(sys.argv) < 2): print('Usage: CSVTrainer.py train.csv validation.csv model.h5 log.txt') sys.exit(1) trainingName = sys.argv[1] validationName = sys.argv[2] modelName = sys.argv[3] logName = sys.argv[4] from keras.utils import np_utils from keras.models import Sequential from keras.layers import * import keras.preprocessing.image as image from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ModelCheckpoint, CSVLogger from keras.layers import Input, merge, Dropout, Dense, Flatten, Activation from keras.layers.convolutional import MaxPooling2D, Convolution2D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.optimizers import Adam, SGD from keras.models import Model, load_model from keras import regularizers from keras import backend as K from keras.utils.data_utils import get_file from sklearn.metrics import accuracy_score from keras.applications import resnet50 def readCSV(fileList): namesDataFrame = pd.read_csv(fileList) flatten = lambda l: [item for sublist in l for item in sublist] labels = sorted(list(set(flatten([l.split(' ') for l in namesDataFrame['tags'].values])))) labelMap = {l: i for i, l in enumerate(labels)} numberOfLabels = len(labels) numberOfImages = len(namesDataFrame) fileNames = [] y = np.zeros((numberOfImages, numberOfLabels), np.float32) for index in range(0, numberOfImages): inputImage = image.img_to_array(image.load_img(namesDataFrame.iloc[index][0])) fileNames.append(namesDataFrame.iloc[index][0]) tags = namesDataFrame.iloc[index][1] for t in tags.split(' '): y[index, labelMap[t]] = 1.0 return (fileNames, y, labelMap) print('Loading images..........', end = '',flush = True) (trainingFileNames, trainY, trainingLabelMap) = readCSV(trainingName) (validationFileNames, validationY, validationLabelMap) = readCSV(validationName) print('done.', flush = True) if len(trainingLabelMap) != len(validationLabelMap): print("Label maps for training and validation are not equal") sys.exit(1) numberOfTrainingImages = len(trainingFileNames) numberOfValidationImages = len(validationFileNames) numberOfChannels = 3 nx = 256 ny = 256 batchSize = 25 lossName = 'binary_crossentropy' activationName = 'sigmoid' resnetModel = resnet50.ResNet50(include_top=False, weights='imagenet', input_shape=(numberOfChannels, nx, ny)) print('The number of layers in the resnet model = %d' % (len(resnetModel.layers))) bottleneckTrainingDataGenerator = ImageDataGenerator(rescale = 1.0/255.0) bottleneckValidationDataGenerator = ImageDataGenerator(rescale = 1.0/255.0) bottleneckTrainingGenerator = bottleneckTrainingDataGenerator.flow_from_filenames(trainingFileNames, target_size = (nx, ny), batch_size = batchSize, shuffle = False) bottleneckValidationGenerator = bottleneckTrainingDataGenerator.flow_from_filenames(validationFileNames, target_size = (nx, ny), batch_size = batchSize, shuffle = False) bottleneckTrainingFeatures = resnetModel.predict_generator(bottleneckTrainingGenerator, numberOfTrainingImages) bottleneckValidationFeatures = resnetModel.predict_generator(bottleneckValidationGenerator, numberOfValidationImages) newTop = Sequential() newTop.add(Flatten(input_shape = bottleneckTrainingFeatures.shape[1:])) newTop.add(Dense(512, activation='relu')) newTop.add(Dropout(0.5)) newTop.add(Dense(len(trainingLabelMap), activation=activationName, name='predictions')) newTop.compile(loss=lossName, optimizer=Adam(lr=1.0E-3)) print('Fitting predicted features...', flush = True) newTop.fit(bottleneckTrainingFeatures, trainY, validation_data = (bottleneckValidationFeatures, validationY), verbose = 1, batch_size = batchSize, nb_epoch = 25) print('Done.', flush = True) finalModel = Model(input = resnetModel.input, output = newTop(resnetModel.output)) print('The number of layers in the final model = %d' % (len(finalModel.layers))) for layer in finalModel.layers[:(len(resnetModel.layers) - 21)]: layer.trainable = False finalModel.compile(loss=lossName,optimizer=SGD(lr=1e-4, momentum=0.9)) print(finalModel.summary()) # Could add vertical_flip = True trainingDataGenerator = ImageDataGenerator(rescale = 1.0/255.0, rotation_range = 40, zoom_range = 0.15, horizontal_flip = True, width_shift_range = 0.1, height_shift_range = 0.1, shear_range = 0.1) validationDataGenerator = ImageDataGenerator(rescale = 1.0/255.0) trainingGenerator = trainingDataGenerator.flow_from_filenames(trainingFileNames, trainY, batch_size = batchSize, target_size = (nx, ny)) validationGenerator = validationDataGenerator.flow_from_filenames(validationFileNames, validationY, batch_size = batchSize, target_size = (nx, ny)) csvLogger = CSVLogger(logName, append=True) checkPointer = ModelCheckpoint(filepath=modelName, verbose = 1, save_best_only = True) finalModel.fit_generator(trainingGenerator, numberOfTrainingImages, 50, validation_data = validationGenerator, nb_val_samples = numberOfValidationImages, callbacks = [checkPointer, csvLogger])
apache-2.0
saimn/astropy
astropy/visualization/wcsaxes/frame.py
8
10649
# Licensed under a 3-clause BSD style license - see LICENSE.rst import abc from collections import OrderedDict import numpy as np from matplotlib import rcParams from matplotlib.lines import Line2D, Path from matplotlib.patches import PathPatch __all__ = ['RectangularFrame1D', 'Spine', 'BaseFrame', 'RectangularFrame', 'EllipticalFrame'] class Spine: """ A single side of an axes. This does not need to be a straight line, but represents a 'side' when determining which part of the frame to put labels and ticks on. """ def __init__(self, parent_axes, transform): self.parent_axes = parent_axes self.transform = transform self.data = None self.pixel = None self.world = None @property def data(self): return self._data @data.setter def data(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = value self._pixel = self.parent_axes.transData.transform(self._data) with np.errstate(invalid='ignore'): self._world = self.transform.transform(self._data) self._update_normal() @property def pixel(self): return self._pixel @pixel.setter def pixel(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = self.parent_axes.transData.inverted().transform(self._data) self._pixel = value self._world = self.transform.transform(self._data) self._update_normal() @property def world(self): return self._world @world.setter def world(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = self.transform.transform(value) self._pixel = self.parent_axes.transData.transform(self._data) self._world = value self._update_normal() def _update_normal(self): # Find angle normal to border and inwards, in display coordinate dx = self.pixel[1:, 0] - self.pixel[:-1, 0] dy = self.pixel[1:, 1] - self.pixel[:-1, 1] self.normal_angle = np.degrees(np.arctan2(dx, -dy)) def _halfway_x_y_angle(self): """ Return the x, y, normal_angle values halfway along the spine """ x_disp, y_disp = self.pixel[:, 0], self.pixel[:, 1] # Get distance along the path d = np.hstack([0., np.cumsum(np.sqrt(np.diff(x_disp) ** 2 + np.diff(y_disp) ** 2))]) xcen = np.interp(d[-1] / 2., d, x_disp) ycen = np.interp(d[-1] / 2., d, y_disp) # Find segment along which the mid-point lies imin = np.searchsorted(d, d[-1] / 2.) - 1 # Find normal of the axis label facing outwards on that segment normal_angle = self.normal_angle[imin] + 180. return xcen, ycen, normal_angle class SpineXAligned(Spine): """ A single side of an axes, aligned with the X data axis. This does not need to be a straight line, but represents a 'side' when determining which part of the frame to put labels and ticks on. """ @property def data(self): return self._data @data.setter def data(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = value self._pixel = self.parent_axes.transData.transform(self._data) with np.errstate(invalid='ignore'): self._world = self.transform.transform(self._data[:,0:1]) self._update_normal() @property def pixel(self): return self._pixel @pixel.setter def pixel(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = self.parent_axes.transData.inverted().transform(self._data) self._pixel = value self._world = self.transform.transform(self._data[:,0:1]) self._update_normal() class BaseFrame(OrderedDict, metaclass=abc.ABCMeta): """ Base class for frames, which are collections of :class:`~astropy.visualization.wcsaxes.frame.Spine` instances. """ spine_class = Spine def __init__(self, parent_axes, transform, path=None): super().__init__() self.parent_axes = parent_axes self._transform = transform self._linewidth = rcParams['axes.linewidth'] self._color = rcParams['axes.edgecolor'] self._path = path for axis in self.spine_names: self[axis] = self.spine_class(parent_axes, transform) @property def origin(self): ymin, ymax = self.parent_axes.get_ylim() return 'lower' if ymin < ymax else 'upper' @property def transform(self): return self._transform @transform.setter def transform(self, value): self._transform = value for axis in self: self[axis].transform = value def _update_patch_path(self): self.update_spines() x, y = [], [] for axis in self: x.append(self[axis].data[:, 0]) y.append(self[axis].data[:, 1]) vertices = np.vstack([np.hstack(x), np.hstack(y)]).transpose() if self._path is None: self._path = Path(vertices) else: self._path.vertices = vertices @property def patch(self): self._update_patch_path() return PathPatch(self._path, transform=self.parent_axes.transData, facecolor=rcParams['axes.facecolor'], edgecolor='white') def draw(self, renderer): for axis in self: x, y = self[axis].pixel[:, 0], self[axis].pixel[:, 1] line = Line2D(x, y, linewidth=self._linewidth, color=self._color, zorder=1000) line.draw(renderer) def sample(self, n_samples): self.update_spines() spines = OrderedDict() for axis in self: data = self[axis].data p = np.linspace(0., 1., data.shape[0]) p_new = np.linspace(0., 1., n_samples) spines[axis] = self.spine_class(self.parent_axes, self.transform) spines[axis].data = np.array([np.interp(p_new, p, d) for d in data.T]).transpose() return spines def set_color(self, color): """ Sets the color of the frame. Parameters ---------- color : str The color of the frame. """ self._color = color def get_color(self): return self._color def set_linewidth(self, linewidth): """ Sets the linewidth of the frame. Parameters ---------- linewidth : float The linewidth of the frame in points. """ self._linewidth = linewidth def get_linewidth(self): return self._linewidth @abc.abstractmethod def update_spines(self): raise NotImplementedError("") class RectangularFrame1D(BaseFrame): """ A classic rectangular frame. """ spine_names = 'bt' spine_class = SpineXAligned def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() self['b'].data = np.array(([xmin, ymin], [xmax, ymin])) self['t'].data = np.array(([xmax, ymax], [xmin, ymax])) def _update_patch_path(self): self.update_spines() xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() x = [xmin, xmax, xmax, xmin, xmin] y = [ymin, ymin, ymax, ymax, ymin] vertices = np.vstack([np.hstack(x), np.hstack(y)]).transpose() if self._path is None: self._path = Path(vertices) else: self._path.vertices = vertices def draw(self, renderer): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() x = [xmin, xmax, xmax, xmin, xmin] y = [ymin, ymin, ymax, ymax, ymin] line = Line2D(x, y, linewidth=self._linewidth, color=self._color, zorder=1000, transform=self.parent_axes.transData) line.draw(renderer) class RectangularFrame(BaseFrame): """ A classic rectangular frame. """ spine_names = 'brtl' def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() self['b'].data = np.array(([xmin, ymin], [xmax, ymin])) self['r'].data = np.array(([xmax, ymin], [xmax, ymax])) self['t'].data = np.array(([xmax, ymax], [xmin, ymax])) self['l'].data = np.array(([xmin, ymax], [xmin, ymin])) class EllipticalFrame(BaseFrame): """ An elliptical frame. """ spine_names = 'chv' def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() xmid = 0.5 * (xmax + xmin) ymid = 0.5 * (ymax + ymin) dx = xmid - xmin dy = ymid - ymin theta = np.linspace(0., 2 * np.pi, 1000) self['c'].data = np.array([xmid + dx * np.cos(theta), ymid + dy * np.sin(theta)]).transpose() self['h'].data = np.array([np.linspace(xmin, xmax, 1000), np.repeat(ymid, 1000)]).transpose() self['v'].data = np.array([np.repeat(xmid, 1000), np.linspace(ymin, ymax, 1000)]).transpose() def _update_patch_path(self): """Override path patch to include only the outer ellipse, not the major and minor axes in the middle.""" self.update_spines() vertices = self['c'].data if self._path is None: self._path = Path(vertices) else: self._path.vertices = vertices def draw(self, renderer): """Override to draw only the outer ellipse, not the major and minor axes in the middle. FIXME: we may want to add a general method to give the user control over which spines are drawn.""" axis = 'c' x, y = self[axis].pixel[:, 0], self[axis].pixel[:, 1] line = Line2D(x, y, linewidth=self._linewidth, color=self._color, zorder=1000) line.draw(renderer)
bsd-3-clause
mbayon/TFG-MachineLearning
vbig/lib/python2.7/site-packages/pandas/io/json/table_schema.py
12
5184
""" Table Schema builders http://specs.frictionlessdata.io/json-table-schema/ """ from pandas.core.dtypes.common import ( is_integer_dtype, is_timedelta64_dtype, is_numeric_dtype, is_bool_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_categorical_dtype, is_period_dtype, is_string_dtype ) def as_json_table_type(x): """ Convert a NumPy / pandas type to its corresponding json_table. Parameters ---------- x : array or dtype Returns ------- t : str the Table Schema data types Notes ----- This table shows the relationship between NumPy / pandas dtypes, and Table Schema dtypes. ============== ================= Pandas type Table Schema type ============== ================= int64 integer float64 number bool boolean datetime64[ns] datetime timedelta64[ns] duration object str categorical any =============== ================= """ if is_integer_dtype(x): return 'integer' elif is_bool_dtype(x): return 'boolean' elif is_numeric_dtype(x): return 'number' elif (is_datetime64_dtype(x) or is_datetime64tz_dtype(x) or is_period_dtype(x)): return 'datetime' elif is_timedelta64_dtype(x): return 'duration' elif is_categorical_dtype(x): return 'any' elif is_string_dtype(x): return 'string' else: return 'any' def set_default_names(data): """Sets index names to 'index' for regular, or 'level_x' for Multi""" if all(name is not None for name in data.index.names): return data data = data.copy() if data.index.nlevels > 1: names = [name if name is not None else 'level_{}'.format(i) for i, name in enumerate(data.index.names)] data.index.names = names else: data.index.name = data.index.name or 'index' return data def make_field(arr, dtype=None): dtype = dtype or arr.dtype if arr.name is None: name = 'values' else: name = arr.name field = {'name': name, 'type': as_json_table_type(dtype)} if is_categorical_dtype(arr): if hasattr(arr, 'categories'): cats = arr.categories ordered = arr.ordered else: cats = arr.cat.categories ordered = arr.cat.ordered field['constraints'] = {"enum": list(cats)} field['ordered'] = ordered elif is_period_dtype(arr): field['freq'] = arr.freqstr elif is_datetime64tz_dtype(arr): if hasattr(arr, 'dt'): field['tz'] = arr.dt.tz.zone else: field['tz'] = arr.tz.zone return field def build_table_schema(data, index=True, primary_key=None, version=True): """ Create a Table schema from ``data``. Parameters ---------- data : Series, DataFrame index : bool, default True Whether to include ``data.index`` in the schema. primary_key : bool or None, default True column names to designate as the primary key. The default `None` will set `'primaryKey'` to the index level or levels if the index is unique. version : bool, default True Whether to include a field `pandas_version` with the version of pandas that generated the schema. Returns ------- schema : dict Examples -------- >>> df = pd.DataFrame( ... {'A': [1, 2, 3], ... 'B': ['a', 'b', 'c'], ... 'C': pd.date_range('2016-01-01', freq='d', periods=3), ... }, index=pd.Index(range(3), name='idx')) >>> build_table_schema(df) {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'pandas_version': '0.20.0', 'primaryKey': ['idx']} Notes ----- See `_as_json_table_type` for conversion types. Timedeltas as converted to ISO8601 duration format with 9 decimal places after the secnods field for nanosecond precision. Categoricals are converted to the `any` dtype, and use the `enum` field constraint to list the allowed values. The `ordered` attribute is included in an `ordered` field. """ if index is True: data = set_default_names(data) schema = {} fields = [] if index: if data.index.nlevels > 1: for level in data.index.levels: fields.append(make_field(level)) else: fields.append(make_field(data.index)) if data.ndim > 1: for column, s in data.iteritems(): fields.append(make_field(s)) else: fields.append(make_field(data)) schema['fields'] = fields if index and data.index.is_unique and primary_key is None: if data.index.nlevels == 1: schema['primaryKey'] = [data.index.name] else: schema['primaryKey'] = data.index.names elif primary_key is not None: schema['primaryKey'] = primary_key if version: schema['pandas_version'] = '0.20.0' return schema
mit
ianatpn/nupictest
external/linux32/lib/python2.6/site-packages/matplotlib/pylab.py
70
10245
""" This is a procedural interface to the matplotlib object-oriented plotting library. The following plotting commands are provided; the majority have Matlab(TM) analogs and similar argument. _Plotting commands acorr - plot the autocorrelation function annotate - annotate something in the figure arrow - add an arrow to the axes axes - Create a new axes axhline - draw a horizontal line across axes axvline - draw a vertical line across axes axhspan - draw a horizontal bar across axes axvspan - draw a vertical bar across axes axis - Set or return the current axis limits bar - make a bar chart barh - a horizontal bar chart broken_barh - a set of horizontal bars with gaps box - set the axes frame on/off state boxplot - make a box and whisker plot cla - clear current axes clabel - label a contour plot clf - clear a figure window clim - adjust the color limits of the current image close - close a figure window colorbar - add a colorbar to the current figure cohere - make a plot of coherence contour - make a contour plot contourf - make a filled contour plot csd - make a plot of cross spectral density delaxes - delete an axes from the current figure draw - Force a redraw of the current figure errorbar - make an errorbar graph figlegend - make legend on the figure rather than the axes figimage - make a figure image figtext - add text in figure coords figure - create or change active figure fill - make filled polygons findobj - recursively find all objects matching some criteria gca - return the current axes gcf - return the current figure gci - get the current image, or None getp - get a handle graphics property grid - set whether gridding is on hist - make a histogram hold - set the axes hold state ioff - turn interaction mode off ion - turn interaction mode on isinteractive - return True if interaction mode is on imread - load image file into array imshow - plot image data ishold - return the hold state of the current axes legend - make an axes legend loglog - a log log plot matshow - display a matrix in a new figure preserving aspect pcolor - make a pseudocolor plot pcolormesh - make a pseudocolor plot using a quadrilateral mesh pie - make a pie chart plot - make a line plot plot_date - plot dates plotfile - plot column data from an ASCII tab/space/comma delimited file pie - pie charts polar - make a polar plot on a PolarAxes psd - make a plot of power spectral density quiver - make a direction field (arrows) plot rc - control the default params rgrids - customize the radial grids and labels for polar savefig - save the current figure scatter - make a scatter plot setp - set a handle graphics property semilogx - log x axis semilogy - log y axis show - show the figures specgram - a spectrogram plot spy - plot sparsity pattern using markers or image stem - make a stem plot subplot - make a subplot (numrows, numcols, axesnum) subplots_adjust - change the params controlling the subplot positions of current figure subplot_tool - launch the subplot configuration tool suptitle - add a figure title table - add a table to the plot text - add some text at location x,y to the current axes thetagrids - customize the radial theta grids and labels for polar title - add a title to the current axes xcorr - plot the autocorrelation function of x and y xlim - set/get the xlimits ylim - set/get the ylimits xticks - set/get the xticks yticks - set/get the yticks xlabel - add an xlabel to the current axes ylabel - add a ylabel to the current axes autumn - set the default colormap to autumn bone - set the default colormap to bone cool - set the default colormap to cool copper - set the default colormap to copper flag - set the default colormap to flag gray - set the default colormap to gray hot - set the default colormap to hot hsv - set the default colormap to hsv jet - set the default colormap to jet pink - set the default colormap to pink prism - set the default colormap to prism spring - set the default colormap to spring summer - set the default colormap to summer winter - set the default colormap to winter spectral - set the default colormap to spectral _Event handling connect - register an event handler disconnect - remove a connected event handler _Matrix commands cumprod - the cumulative product along a dimension cumsum - the cumulative sum along a dimension detrend - remove the mean or besdt fit line from an array diag - the k-th diagonal of matrix diff - the n-th differnce of an array eig - the eigenvalues and eigen vectors of v eye - a matrix where the k-th diagonal is ones, else zero find - return the indices where a condition is nonzero fliplr - flip the rows of a matrix up/down flipud - flip the columns of a matrix left/right linspace - a linear spaced vector of N values from min to max inclusive logspace - a log spaced vector of N values from min to max inclusive meshgrid - repeat x and y to make regular matrices ones - an array of ones rand - an array from the uniform distribution [0,1] randn - an array from the normal distribution rot90 - rotate matrix k*90 degress counterclockwise squeeze - squeeze an array removing any dimensions of length 1 tri - a triangular matrix tril - a lower triangular matrix triu - an upper triangular matrix vander - the Vandermonde matrix of vector x svd - singular value decomposition zeros - a matrix of zeros _Probability levypdf - The levy probability density function from the char. func. normpdf - The Gaussian probability density function rand - random numbers from the uniform distribution randn - random numbers from the normal distribution _Statistics corrcoef - correlation coefficient cov - covariance matrix amax - the maximum along dimension m mean - the mean along dimension m median - the median along dimension m amin - the minimum along dimension m norm - the norm of vector x prod - the product along dimension m ptp - the max-min along dimension m std - the standard deviation along dimension m asum - the sum along dimension m _Time series analysis bartlett - M-point Bartlett window blackman - M-point Blackman window cohere - the coherence using average periodiogram csd - the cross spectral density using average periodiogram fft - the fast Fourier transform of vector x hamming - M-point Hamming window hanning - M-point Hanning window hist - compute the histogram of x kaiser - M length Kaiser window psd - the power spectral density using average periodiogram sinc - the sinc function of array x _Dates date2num - convert python datetimes to numeric representation drange - create an array of numbers for date plots num2date - convert numeric type (float days since 0001) to datetime _Other angle - the angle of a complex array griddata - interpolate irregularly distributed data to a regular grid load - load ASCII data into array polyfit - fit x, y to an n-th order polynomial polyval - evaluate an n-th order polynomial roots - the roots of the polynomial coefficients in p save - save an array to an ASCII file trapz - trapezoidal integration __end """ import sys, warnings from cbook import flatten, is_string_like, exception_to_str, popd, \ silent_list, iterable, dedent import numpy as np from numpy import ma from matplotlib import mpl # pulls in most modules from matplotlib.dates import date2num, num2date,\ datestr2num, strpdate2num, drange,\ epoch2num, num2epoch, mx2num,\ DateFormatter, IndexDateFormatter, DateLocator,\ RRuleLocator, YearLocator, MonthLocator, WeekdayLocator,\ DayLocator, HourLocator, MinuteLocator, SecondLocator,\ rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, MONTHLY,\ WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY, relativedelta import matplotlib.dates # bring all the symbols in so folks can import them from # pylab in one fell swoop from matplotlib.mlab import window_hanning, window_none,\ conv, detrend, detrend_mean, detrend_none, detrend_linear,\ polyfit, polyval, entropy, normpdf, griddata,\ levypdf, find, trapz, prepca, rem, norm, orth, rank,\ sqrtm, prctile, center_matrix, rk4, exp_safe, amap,\ sum_flat, mean_flat, rms_flat, l1norm, l2norm, norm, frange,\ diagonal_matrix, base_repr, binary_repr, log2, ispower2,\ bivariate_normal, load, save from matplotlib.mlab import stineman_interp, slopes, \ stineman_interp, inside_poly, poly_below, poly_between, \ is_closed_polygon, path_length, distances_along_curve, vector_lengths from numpy import * from numpy.fft import * from numpy.random import * from numpy.linalg import * from matplotlib.mlab import window_hanning, window_none, conv, detrend, demean, \ detrend_mean, detrend_none, detrend_linear, entropy, normpdf, levypdf, \ find, longest_contiguous_ones, longest_ones, prepca, prctile, prctile_rank, \ center_matrix, rk4, bivariate_normal, get_xyz_where, get_sparse_matrix, dist, \ dist_point_to_segment, segments_intersect, fftsurr, liaupunov, movavg, \ save, load, exp_safe, \ amap, rms_flat, l1norm, l2norm, norm_flat, frange, diagonal_matrix, identity, \ base_repr, binary_repr, log2, ispower2, fromfunction_kw, rem, norm, orth, rank, sqrtm,\ mfuncC, approx_real, rec_append_field, rec_drop_fields, rec_join, csv2rec, rec2csv, isvector from matplotlib.pyplot import * # provide the recommended module abbrevs in the pylab namespace import matplotlib.pyplot as plt import numpy as np
gpl-3.0
googleinterns/cabby
cabby/model/datasets.py
1
4391
# coding=utf-8 # Copyright 2020 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl import logging import os import pandas as pd from sklearn.utils import shuffle from cabby.geo import regions from cabby.geo import util as gutil class RUNDataset: def __init__(self, data_dir: str, s2level: int, lines: bool = False): train_ds, valid_ds, test_ds, ds = self.load_data(data_dir, lines=lines) # Get labels. map_1 = regions.get_region("RUN-map1") map_2 = regions.get_region("RUN-map2") map_3 = regions.get_region("RUN-map3") logging.info(map_1.polygon.wkt) logging.info(map_2.polygon.wkt) logging.info(map_3.polygon.wkt) unique_cellid_map_1 = gutil.cellids_from_polygon(map_1.polygon, s2level) unique_cellid_map_2 = gutil.cellids_from_polygon(map_2.polygon, s2level) unique_cellid_map_3 = gutil.cellids_from_polygon(map_3.polygon, s2level) unique_cellid = ( unique_cellid_map_1 + unique_cellid_map_2 + unique_cellid_map_3) label_to_cellid = {idx: cellid for idx, cellid in enumerate(unique_cellid)} cellid_to_label = {cellid: idx for idx, cellid in enumerate(unique_cellid)} self.train = train_ds self.valid = valid_ds self.test = test_ds self.ds = ds self.unique_cellid = unique_cellid self.label_to_cellid = label_to_cellid self.cellid_to_label = cellid_to_label def load_data(self, data_dir: str, lines: bool): ds = pd.read_json(os.path.join(data_dir, 'dataset.json'), lines=lines) ds['instructions'] = ds.groupby( ['id'])['instruction'].transform(lambda x: ' '.join(x)) ds = ds.drop_duplicates(subset='id', keep="last") columns_keep = ds.columns.difference( ['map', 'id', 'instructions', 'end_point', 'start_point']) ds.drop(columns_keep, 1, inplace=True) ds = shuffle(ds) ds.reset_index(inplace=True, drop=True) dataset_size = ds.shape[0] logging.info(f"Size of dataset: {ds.shape[0]}") train_size = round(dataset_size * 80 / 100) valid_size = round(dataset_size * 10 / 100) train_ds = ds.iloc[:train_size] valid_ds = ds.iloc[train_size:train_size + valid_size] test_ds = ds.iloc[train_size + valid_size:] return train_ds, valid_ds, test_ds, ds class RVSDataset: def __init__(self, data_dir: str, s2level: int, region: str, lines: bool = True): ds = pd.read_json(os.path.join(data_dir, 'dataset.json'), lines=lines) logging.info(f"Size of dataset before removal of duplication: {ds.shape[0]}") ds = pd.concat([ds.drop(['geo_landmarks'], axis=1), ds['geo_landmarks'].apply(pd.Series)], axis=1) lengths = ds.end_point.apply(lambda x: x if len(x) == 3 else "").tolist() ds['end_osmid'] = ds.end_point.apply(lambda x: x[1]) ds['start_osmid'] = ds.start_point.apply(lambda x: x[1]) ds['end_pivot'] = ds.end_point ds['end_point'] = ds.end_point.apply(lambda x: x[3]) ds['start_point'] = ds.start_point.apply(lambda x: x[3]) ds = ds.drop_duplicates(subset=['end_osmid', 'start_osmid'], keep='last') logging.info(f"Size of dataset after removal of duplication: {ds.shape[0]}") dataset_size = ds.shape[0] train_size = round(dataset_size * 80 / 100) valid_size = round(dataset_size * 10 / 100) train_ds = ds.iloc[:train_size] valid_ds = ds.iloc[train_size:train_size + valid_size] test_ds = ds.iloc[train_size + valid_size:] # Get labels. active_region = regions.get_region(region) unique_cellid = gutil.cellids_from_polygon(active_region.polygon, s2level) label_to_cellid = {idx: cellid for idx, cellid in enumerate(unique_cellid)} cellid_to_label = {cellid: idx for idx, cellid in enumerate(unique_cellid)} self.train = train_ds self.valid = valid_ds self.test = test_ds self.unique_cellid = unique_cellid self.label_to_cellid = label_to_cellid self.cellid_to_label = cellid_to_label
apache-2.0
georgid/sms-tools
lectures/7-Sinusoidal-plus-residual-model/plots-code/stochasticSynthesisFrame.py
2
2997
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, hanning, triang, blackmanharris, resample import math import sys, os, time from scipy.fftpack import fft, ifft sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import utilFunctions as UF def stochasticModelFrame(x, w, N, stocf) : # x: input array sound, w: analysis window, N: FFT size, # stocf: decimation factor of mag spectrum for stochastic analysis hN = N/2 # size of positive spectrum hM = (w.size)/2 # half analysis window size pin = hM # initialize sound pointer in middle of analysis window fftbuffer = np.zeros(N) # initialize buffer for FFT yw = np.zeros(w.size) # initialize output sound frame w = w / sum(w) # normalize analysis window #-----analysis----- xw = x[pin-hM:pin+hM] * w # window the input sound X = fft(xw) # compute FFT mX = 20 * np.log10( abs(X[:hN]) ) # magnitude spectrum of positive frequencies mXenv = resample(np.maximum(-200, mX), mX.size*stocf) # decimate the mag spectrum pX = np.angle(X[:hN]) #-----synthesis----- mY = resample(mXenv, hN) # interpolate to original size pY = 2*np.pi*np.random.rand(hN) # generate phase random values Y = np.zeros(N, dtype = complex) Y[:hN] = 10**(mY/20) * np.exp(1j*pY) # generate positive freq. Y[hN+1:] = 10**(mY[:0:-1]/20) * np.exp(-1j*pY[:0:-1]) # generate negative freq. fftbuffer = np.real( ifft(Y) ) # inverse FFT y = fftbuffer*N/2 return mX, pX, mY, pY, y # example call of stochasticModel function if __name__ == '__main__': (fs, x) = UF.wavread('../../../sounds/ocean.wav') w = np.hanning(1024) N = 1024 stocf = 0.1 maxFreq = 10000.0 lastbin = N*maxFreq/fs first = 1000 last = first+w.size mX, pX, mY, pY, y = stochasticModelFrame(x[first:last], w, N, stocf) plt.figure(1, figsize=(9, 5)) plt.subplot(3,1,1) plt.plot(np.arange(0, fs/2.0, fs/float(N)), mY, 'r', lw=1.5, label="mY") plt.axis([0, maxFreq, -78, max(mX)+0.5]) plt.title('mY (stochastic approximation of mX)') plt.subplot(3,1,2) plt.plot(np.arange(0, fs/2.0, fs/float(N)), pY-np.pi, 'c', lw=1.5, label="pY") plt.axis([0, maxFreq, -np.pi, np.pi]) plt.title('pY random phases)') plt.subplot(3,1,3) plt.plot(np.arange(first, last)/float(fs), y, 'b', lw=1.5) plt.axis([first/float(fs), last/float(fs), min(y), max(y)]) plt.title('yst') plt.tight_layout() plt.savefig('stochasticSynthesisFrame.png') plt.show()
agpl-3.0
sriki18/scipy
scipy/signal/_max_len_seq.py
41
4942
# Author: Eric Larson # 2014 """Tools for MLS generation""" import numpy as np from ._max_len_seq_inner import _max_len_seq_inner __all__ = ['max_len_seq'] # These are definitions of linear shift register taps for use in max_len_seq() _mls_taps = {2: [1], 3: [2], 4: [3], 5: [3], 6: [5], 7: [6], 8: [7, 6, 1], 9: [5], 10: [7], 11: [9], 12: [11, 10, 4], 13: [12, 11, 8], 14: [13, 12, 2], 15: [14], 16: [15, 13, 4], 17: [14], 18: [11], 19: [18, 17, 14], 20: [17], 21: [19], 22: [21], 23: [18], 24: [23, 22, 17], 25: [22], 26: [25, 24, 20], 27: [26, 25, 22], 28: [25], 29: [27], 30: [29, 28, 7], 31: [28], 32: [31, 30, 10]} def max_len_seq(nbits, state=None, length=None, taps=None): """ Maximum length sequence (MLS) generator. Parameters ---------- nbits : int Number of bits to use. Length of the resulting sequence will be ``(2**nbits) - 1``. Note that generating long sequences (e.g., greater than ``nbits == 16``) can take a long time. state : array_like, optional If array, must be of length ``nbits``, and will be cast to binary (bool) representation. If None, a seed of ones will be used, producing a repeatable representation. If ``state`` is all zeros, an error is raised as this is invalid. Default: None. length : int, optional Number of samples to compute. If None, the entire length ``(2**nbits) - 1`` is computed. taps : array_like, optional Polynomial taps to use (e.g., ``[7, 6, 1]`` for an 8-bit sequence). If None, taps will be automatically selected (for up to ``nbits == 32``). Returns ------- seq : array Resulting MLS sequence of 0's and 1's. state : array The final state of the shift register. Notes ----- The algorithm for MLS generation is generically described in: https://en.wikipedia.org/wiki/Maximum_length_sequence The default values for taps are specifically taken from the first option listed for each value of ``nbits`` in: http://www.newwaveinstruments.com/resources/articles/ m_sequence_linear_feedback_shift_register_lfsr.htm .. versionadded:: 0.15.0 Examples -------- MLS uses binary convention: >>> from scipy.signal import max_len_seq >>> max_len_seq(4)[0] array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=int8) MLS has a white spectrum (except for DC): >>> import matplotlib.pyplot as plt >>> from numpy.fft import fft, ifft, fftshift, fftfreq >>> seq = max_len_seq(6)[0]*2-1 # +1 and -1 >>> spec = fft(seq) >>> N = len(seq) >>> plt.plot(fftshift(fftfreq(N)), fftshift(np.abs(spec)), '.-') >>> plt.margins(0.1, 0.1) >>> plt.grid(True) >>> plt.show() Circular autocorrelation of MLS is an impulse: >>> acorrcirc = ifft(spec * np.conj(spec)).real >>> plt.figure() >>> plt.plot(np.arange(-N/2+1, N/2+1), fftshift(acorrcirc), '.-') >>> plt.margins(0.1, 0.1) >>> plt.grid(True) >>> plt.show() Linear autocorrelation of MLS is approximately an impulse: >>> acorr = np.correlate(seq, seq, 'full') >>> plt.figure() >>> plt.plot(np.arange(-N+1, N), acorr, '.-') >>> plt.margins(0.1, 0.1) >>> plt.grid(True) >>> plt.show() """ if taps is None: if nbits not in _mls_taps: known_taps = np.array(list(_mls_taps.keys())) raise ValueError('nbits must be between %s and %s if taps is None' % (known_taps.min(), known_taps.max())) taps = np.array(_mls_taps[nbits], np.intp) else: taps = np.unique(np.array(taps, np.intp))[::-1] if np.any(taps < 0) or np.any(taps > nbits) or taps.size < 1: raise ValueError('taps must be non-empty with values between ' 'zero and nbits (inclusive)') taps = np.ascontiguousarray(taps) # needed for Cython n_max = (2**nbits) - 1 if length is None: length = n_max else: length = int(length) if length < 0: raise ValueError('length must be greater than or equal to 0') # We use int8 instead of bool here because numpy arrays of bools # don't seem to work nicely with Cython if state is None: state = np.ones(nbits, dtype=np.int8, order='c') else: # makes a copy if need be, ensuring it's 0's and 1's state = np.array(state, dtype=bool, order='c').astype(np.int8) if state.ndim != 1 or state.size != nbits: raise ValueError('state must be a 1-dimensional array of size nbits') if np.all(state == 0): raise ValueError('state must not be all zeros') seq = np.empty(length, dtype=np.int8, order='c') state = _max_len_seq_inner(taps, state, nbits, length, seq) return seq, state
bsd-3-clause
zseder/hunmisc
hunmisc/utils/plotting/matplotlib_simple_xy.py
1
1535
""" Copyright 2011-13 Attila Zseder Email: zseder@gmail.com This file is part of hunmisc project url: https://github.com/zseder/hunmisc hunmisc is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ import sys import matplotlib.pyplot as plt from matplotlib import rc def read_data(istream): r = [[],[],[],[],[]] for l in istream: le = l.strip().split() [r[i].append(le[i]) for i in xrange(len(le))] return r def main(): d = read_data(open(sys.argv[1])) rc('font', size=14) ax = plt.subplot(111) ax.plot(d[0], d[1], label="$M$", linewidth=2) ax.plot(d[0], d[2], label="$l KL$", linewidth=2) ax.plot(d[0], d[3], label="$l (H_q+KL)$", linewidth=2) ax.plot(d[0], d[4], label="$M + l (H_q+KL)$", linewidth=2) plt.xlabel("Bits") ax.legend(loc=7) plt.show() #plt.savefig("fig.png") if __name__ == "__main__": main()
gpl-3.0
pap/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/fontconfig_pattern.py
72
6429
""" A module for parsing and generating fontconfig patterns. See the `fontconfig pattern specification <http://www.fontconfig.org/fontconfig-user.html>`_ for more information. """ # Author : Michael Droettboom <mdroe@stsci.edu> # License : matplotlib license (PSF compatible) # This class is defined here because it must be available in: # - The old-style config framework (:file:`rcsetup.py`) # - The traits-based config framework (:file:`mpltraits.py`) # - The font manager (:file:`font_manager.py`) # It probably logically belongs in :file:`font_manager.py`, but # placing it in any of these places would have created cyclical # dependency problems, or an undesired dependency on traits even # when the traits-based config framework is not used. import re from matplotlib.pyparsing import Literal, ZeroOrMore, \ Optional, Regex, StringEnd, ParseException, Suppress family_punc = r'\\\-:,' family_unescape = re.compile(r'\\([%s])' % family_punc).sub family_escape = re.compile(r'([%s])' % family_punc).sub value_punc = r'\\=_:,' value_unescape = re.compile(r'\\([%s])' % value_punc).sub value_escape = re.compile(r'([%s])' % value_punc).sub class FontconfigPatternParser: """A simple pyparsing-based parser for fontconfig-style patterns. See the `fontconfig pattern specification <http://www.fontconfig.org/fontconfig-user.html>`_ for more information. """ _constants = { 'thin' : ('weight', 'light'), 'extralight' : ('weight', 'light'), 'ultralight' : ('weight', 'light'), 'light' : ('weight', 'light'), 'book' : ('weight', 'book'), 'regular' : ('weight', 'regular'), 'normal' : ('weight', 'normal'), 'medium' : ('weight', 'medium'), 'demibold' : ('weight', 'demibold'), 'semibold' : ('weight', 'semibold'), 'bold' : ('weight', 'bold'), 'extrabold' : ('weight', 'extra bold'), 'black' : ('weight', 'black'), 'heavy' : ('weight', 'heavy'), 'roman' : ('slant', 'normal'), 'italic' : ('slant', 'italic'), 'oblique' : ('slant', 'oblique'), 'ultracondensed' : ('width', 'ultra-condensed'), 'extracondensed' : ('width', 'extra-condensed'), 'condensed' : ('width', 'condensed'), 'semicondensed' : ('width', 'semi-condensed'), 'expanded' : ('width', 'expanded'), 'extraexpanded' : ('width', 'extra-expanded'), 'ultraexpanded' : ('width', 'ultra-expanded') } def __init__(self): family = Regex(r'([^%s]|(\\[%s]))*' % (family_punc, family_punc)) \ .setParseAction(self._family) size = Regex(r"([0-9]+\.?[0-9]*|\.[0-9]+)") \ .setParseAction(self._size) name = Regex(r'[a-z]+') \ .setParseAction(self._name) value = Regex(r'([^%s]|(\\[%s]))*' % (value_punc, value_punc)) \ .setParseAction(self._value) families =(family + ZeroOrMore( Literal(',') + family) ).setParseAction(self._families) point_sizes =(size + ZeroOrMore( Literal(',') + size) ).setParseAction(self._point_sizes) property =( (name + Suppress(Literal('=')) + value + ZeroOrMore( Suppress(Literal(',')) + value) ) | name ).setParseAction(self._property) pattern =(Optional( families) + Optional( Literal('-') + point_sizes) + ZeroOrMore( Literal(':') + property) + StringEnd() ) self._parser = pattern self.ParseException = ParseException def parse(self, pattern): """ Parse the given fontconfig *pattern* and return a dictionary of key/value pairs useful for initializing a :class:`font_manager.FontProperties` object. """ props = self._properties = {} try: self._parser.parseString(pattern) except self.ParseException, e: raise ValueError("Could not parse font string: '%s'\n%s" % (pattern, e)) self._properties = None return props def _family(self, s, loc, tokens): return [family_unescape(r'\1', str(tokens[0]))] def _size(self, s, loc, tokens): return [float(tokens[0])] def _name(self, s, loc, tokens): return [str(tokens[0])] def _value(self, s, loc, tokens): return [value_unescape(r'\1', str(tokens[0]))] def _families(self, s, loc, tokens): self._properties['family'] = [str(x) for x in tokens] return [] def _point_sizes(self, s, loc, tokens): self._properties['size'] = [str(x) for x in tokens] return [] def _property(self, s, loc, tokens): if len(tokens) == 1: if tokens[0] in self._constants: key, val = self._constants[tokens[0]] self._properties.setdefault(key, []).append(val) else: key = tokens[0] val = tokens[1:] self._properties.setdefault(key, []).extend(val) return [] parse_fontconfig_pattern = FontconfigPatternParser().parse def generate_fontconfig_pattern(d): """ Given a dictionary of key/value pairs, generates a fontconfig pattern string. """ props = [] families = '' size = '' for key in 'family style variant weight stretch file size'.split(): val = getattr(d, 'get_' + key)() if val is not None and val != []: if type(val) == list: val = [value_escape(r'\\\1', str(x)) for x in val if x is not None] if val != []: val = ','.join(val) props.append(":%s=%s" % (key, val)) return ''.join(props)
agpl-3.0
appapantula/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
258
4609
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.cross_validation import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
idlead/scikit-learn
examples/linear_model/plot_sgd_comparison.py
112
1819
""" ================================== Comparing various online solvers ================================== An example showing how different online solvers perform on the hand-written digits dataset. """ # Author: Rob Zinkov <rob at zinkov dot com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import SGDClassifier, Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import LogisticRegression heldout = [0.95, 0.90, 0.75, 0.50, 0.01] rounds = 20 digits = datasets.load_digits() X, y = digits.data, digits.target classifiers = [ ("SGD", SGDClassifier()), ("ASGD", SGDClassifier(average=True)), ("Perceptron", Perceptron()), ("Passive-Aggressive I", PassiveAggressiveClassifier(loss='hinge', C=1.0)), ("Passive-Aggressive II", PassiveAggressiveClassifier(loss='squared_hinge', C=1.0)), ("SAG", LogisticRegression(solver='sag', tol=1e-1, C=1.e4 / X.shape[0])) ] xx = 1. - np.array(heldout) for name, clf in classifiers: print("training %s" % name) rng = np.random.RandomState(42) yy = [] for i in heldout: yy_ = [] for r in range(rounds): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=i, random_state=rng) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) yy_.append(1 - np.mean(y_pred == y_test)) yy.append(np.mean(yy_)) plt.plot(xx, yy, label=name) plt.legend(loc="upper right") plt.xlabel("Proportion train") plt.ylabel("Test Error Rate") plt.show()
bsd-3-clause
abhishekkrthakur/scikit-learn
examples/svm/plot_oneclass.py
249
2302
""" ========================================== One-class SVM with non-linear kernel (RBF) ========================================== An example using a one-class SVM for novelty detection. :ref:`One-class SVM <svm_outlier_detection>` is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or different to the training set. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) # Generate train data X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_train = y_pred_train[y_pred_train == -1].size n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # plot the line, the points, and the nearest vectors to the plane Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Novelty Detection") plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r) a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red') plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange') b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green') c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([a.collections[0], b1, b2, c], ["learned frontier", "training observations", "new regular observations", "new abnormal observations"], loc="upper left", prop=matplotlib.font_manager.FontProperties(size=11)) plt.xlabel( "error train: %d/200 ; errors novel regular: %d/40 ; " "errors novel abnormal: %d/40" % (n_error_train, n_error_test, n_error_outliers)) plt.show()
bsd-3-clause
ati-ozgur/KDD99ReviewArticle
HelperCodes/create_table_JournalAndArticleCounts.py
1
1930
import ReviewHelper import pandas as pd df = ReviewHelper.get_pandas_data_frame_created_from_bibtex_file() #df_journal = df.groupby('journal')["ID"] dfJournalList = df.groupby(['journal'])['ID'].count().order(ascending=False) isOdd = (dfJournalList.size % 2 == 1) if (isOdd): table_row_length = dfJournalList.size / 2 +1 else: table_row_length = dfJournalList.size / 2 table_content_inside="" for index in range(table_row_length): journal_name_1column = dfJournalList.index[index] journal_count_1column = dfJournalList[index] second_column_index = index + table_row_length if(second_column_index < dfJournalList.size): journal_name_2column = dfJournalList.index[second_column_index] journal_count_2column = dfJournalList[second_column_index] else: journal_name_2column = "" journal_count_2column = "" line = "{journal_name_1column} & {journal_count_1column} & {journal_name_2column} & {journal_count_2column} \\\\ \n".format( journal_name_1column = journal_name_1column ,journal_count_1column = journal_count_1column ,journal_name_2column = journal_name_2column ,journal_count_2column = journal_count_2column ) table_content_inside = table_content_inside + line table_content_start = """ \\begin{table*}[!ht] \\caption{ \\textbf{Journals and Article Counts} } \\label{table-JournalAndArticleCounts} \\centering \\begin{adjustbox}{max width=\\textwidth} \\normalsize \\begin{tabular}{llll} \\toprule Journal Name & Article Count & Journal Name & Article Count \\\\ \\midrule """ table_content_end = """ \\bottomrule \\end{tabular} \\end{adjustbox} \\end{table*} """ table_content_full = table_content_start + table_content_inside + table_content_end filename = "../latex/table-JournalAndArticleCounts.tex" target = open(filename, 'w') target.write(table_content_full) target.close()
mit
arthurmensch/modl
benchmarks/log.py
1
2179
import time import numpy as np from lightning.impl.primal_cd import CDClassifier from lightning.impl.sag import SAGAClassifier from sklearn.datasets import fetch_20newsgroups_vectorized from lightning.classification import SAGClassifier from sklearn.linear_model import LogisticRegression bunch = fetch_20newsgroups_vectorized(subset="all") X = bunch.data y = bunch.target y[y >= 1] = 1 alpha = 1e-3 n_samples = X.shape[0] sag = SAGClassifier(eta='auto', loss='log', alpha=alpha, tol=1e-10, max_iter=1000, verbose=1, random_state=0) saga = SAGAClassifier(eta='auto', loss='log', alpha=alpha, tol=1e-10, max_iter=1000, verbose=1, random_state=0) cd_classifier = CDClassifier(loss='log', alpha=alpha / 2, C=1 / n_samples, tol=1e-10, max_iter=100, verbose=1, random_state=0) sklearn_sag = LogisticRegression(tol=1e-10, max_iter=1000, verbose=2, random_state=0, C=1. / (n_samples * alpha), solver='sag', penalty='l2', fit_intercept=False) classifiers = [{'name': 'Lightning SAG', 'estimator': sag}, {'name': 'Lightning SAGA', 'estimator': saga}, {'name': 'Sklearn SAG', 'estimator': sklearn_sag}, {'name': 'Lightning CD', 'estimator': cd_classifier}, ] start = time.time() for classifier in classifiers: print(classifier['name']) clf = classifier['estimator'] clf.fit(X, y) print("Training time", time.time() - start) print("Accuracy", np.mean(clf.predict(X) == y)) n_nz = np.sum(np.sum(clf.coef_ != 0, axis=0, dtype=bool)) n_nz /= clf.coef_.size print(clf.coef_) print('Non-zero', n_nz)
bsd-2-clause
hansonrobotics/chatbot
src/chatbot/stats.py
1
3618
import os import logging import pandas as pd import glob import re import datetime as dt from collections import Counter logger = logging.getLogger('hr.chatbot.stats') trace_pattern = re.compile( r'../(?P<fname>.*), (?P<tloc>\(.*\)), (?P<pname>.*), (?P<ploc>\(.*\))') def collect_history_data(history_dir, days): today = dt.datetime.utcnow() dfs = [] for d in glob.glob('{}/*'.format(history_dir)): if os.path.isdir(d): dirname = os.path.basename(d) dirdate = None try: dirdate = dt.datetime.strptime(dirname, '%Y%m%d') except Exception as ex: logger.error(ex) if dirdate and (days == -1 or (today - dirdate).days < days): for fname in glob.glob('{}/{}/*.csv'.format(history_dir, dirname)): try: dfs.append(pd.read_csv(fname)) except Exception as ex: logger.warn("Reading {} error: {}".format(fname, ex)) if not dfs: return None df = pd.concat(dfs, ignore_index=True) df = df[df.Datetime != 'Datetime'].sort( ['User', 'Datetime']).drop_duplicates() return df def history_stats(history_dir, days): df = collect_history_data(history_dir, days) if df is None: return {} if days == -1: stats_csv = '{}/full_history.csv'.format(history_dir) else: stats_csv = '{}/last_{}_days.csv'.format(history_dir, days) columns = [u'Datetime', u'Revision', u'User', u'BotName', u'AnsweredBy', u'Question', u'Answer', u'Rate', u'Trace'] df.to_csv(stats_csv, index=False, columns=columns) logger.info("Write statistic records to {}".format(stats_csv)) records = len(df) rates = len(df[df.Rate.notnull()]) good_rates = len(df[df.Rate.isin(['good'])]) bad_rates = len(df[df.Rate.isin(['bad'])]) if records > 0: csd = float(records - bad_rates) / records response = { 'customers_satisfaction_degree': csd, 'number_of_records': records, 'number_of_rates': rates, 'number_of_good_rates': good_rates, 'number_of_bad_rates': bad_rates, } return response def playback_history(df): from client import Client client = Client(os.environ.get('HR_CHATBOT_AUTHKEY', 'AAAAB3NzaC'), test=True) pattern_column = [] for question in df.Question: answer = client.ask(question, True) traces = answer.get('trace') patterns = [] if traces: for trace in traces: match_obj = trace_pattern.match(trace) if match_obj: patterns.append(match_obj.group('pname')) pattern_column.append(patterns) df.loc[:,'Pattern'] = pd.Series(pattern_column, index=df.index) return df def pattern_stats(history_dir, days): df = collect_history_data(history_dir, days) if df is None: return {} df = playback_history(df) patterns = sum(df.Pattern, []) counter = Counter(patterns) pattern_freq = pd.Series(counter) pattern_freq.sort(ascending=False) stats_csv = '{}/pattern_frequency.csv'.format(history_dir) pattern_freq.to_csv(stats_csv) logger.info("Write pattern statistic to {}".format(stats_csv)) if __name__ == '__main__': logging.basicConfig() logging.getLogger().setLevel(logging.INFO) history_stats(os.path.expanduser('~/.hr/chatbot/history'), -1) history_stats(os.path.expanduser('~/.hr/chatbot/history'), 7) pattern_stats(os.path.expanduser('~/.hr/chatbot/history'), -1)
mit
hdmetor/scikit-learn
sklearn/linear_model/ridge.py
89
39360
""" Ridge regression """ # Author: Mathieu Blondel <mathieu@mblondel.org> # Reuben Fletcher-Costin <reuben.fletchercostin@gmail.com> # Fabian Pedregosa <fabian@fseoane.net> # Michael Eickenberg <michael.eickenberg@nsup.org> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy.sparse import linalg as sp_linalg from .base import LinearClassifierMixin, LinearModel from ..base import RegressorMixin from ..utils.extmath import safe_sparse_dot from ..utils import check_X_y from ..utils import compute_sample_weight from ..utils import column_or_1d from ..preprocessing import LabelBinarizer from ..grid_search import GridSearchCV from ..externals import six from ..metrics.scorer import check_scoring def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0): n_samples, n_features = X.shape X1 = sp_linalg.aslinearoperator(X) coefs = np.empty((y.shape[1], n_features)) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype) coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype) coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info < 0: raise ValueError("Failed with error code %d" % info) if max_iter is None and info > 0 and verbose: warnings.warn("sparse_cg did not converge after %d iterations." % info) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features)) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] coefs[i] = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter)[0] return coefs def _solve_cholesky(X, y, alpha): # w = inv(X^t X + alpha*Id) * X.T y n_samples, n_features = X.shape n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[::n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features]) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[::n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[::n_features + 1] -= current_alpha return coefs def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] if copy: K = K.copy() alpha = np.atleast_1d(alpha) one_alpha = (alpha == alpha[0]).all() has_sw = isinstance(sample_weight, np.ndarray) \ or sample_weight not in [1.0, None] if has_sw: # Unlike other solvers, we need to support sample_weight directly # because K might be a pre-computed kernel. sw = np.sqrt(np.atleast_1d(sample_weight)) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[::n_samples + 1] += alpha[0] try: # Note: we must use overwrite_a=False in order to be able to # use the fall-back solution below in case a LinAlgError # is raised dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=False) except np.linalg.LinAlgError: warnings.warn("Singular matrix in solving dual problem. Using " "least-squares solution instead.") dual_coef = linalg.lstsq(K, y)[0] # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[::n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples]) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[::n_samples + 1] += current_alpha dual_coef[:] = linalg.solve(K, target, sym_pos=True, overwrite_a=False).ravel() K.flat[::n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size)) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def _rescale_data(X, y, sample_weight): """Rescale data so as to support sample_weight""" n_samples = X.shape[0] sample_weight = sample_weight * np.ones(n_samples) sample_weight = np.sqrt(sample_weight) sw_matrix = sparse.dia_matrix((sample_weight, 0), shape=(n_samples, n_samples)) X = safe_sparse_dot(sw_matrix, X) y = safe_sparse_dot(sw_matrix, y) return X, y def ridge_regression(X, y, alpha, sample_weight=None, solver='auto', max_iter=None, tol=1e-3, verbose=0): """Solve the ridge equation by the method of normal equations. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- X : {array-like, sparse matrix, LinearOperator}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values alpha : {float, array-like}, shape = [n_targets] if array-like The l_2 penalty to be used. If an array is passed, penalties are assumed to be specific to targets max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample. If sample_weight is set, then the solver will automatically be set to 'cholesky' solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. All three solvers support both dense and sparse data. tol : float Precision of the solution. verbose : int Verbosity level. Setting verbose > 0 will display additional information depending on the solver used. Returns ------- coef : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). Notes ----- This function won't compute the intercept. """ n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError("Number of samples in X and y does not correspond:" " %d != %d" % (n_samples, n_samples_)) has_sw = sample_weight is not None if solver == 'auto': # cholesky if it's a dense array and cg in # any other case if not sparse.issparse(X) or has_sw: solver = 'cholesky' else: solver = 'sparse_cg' elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'): warnings.warn("""lsqr not available on this machine, falling back to sparse_cg.""") solver = 'sparse_cg' if has_sw: if np.atleast_1d(sample_weight).ndim > 1: raise ValueError("Sample weights must be 1D array or scalar") # Sample weight can be implemented via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) # There should be either 1 or n_targets penalties alpha = np.asarray(alpha).ravel() if alpha.size not in [1, n_targets]: raise ValueError("Number of targets and number of penalties " "do not correspond: %d != %d" % (alpha.size, n_targets)) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr'): raise ValueError('Solver %s not understood' % solver) if solver == 'sparse_cg': coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose) elif solver == "lsqr": coef = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == 'cholesky': if n_features > n_samples: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_cholesky_kernel(K, y, alpha) coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' else: try: coef = _solve_cholesky(X, y, alpha) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' if solver == 'svd': if sparse.issparse(X): raise TypeError('SVD solver does not support sparse' ' inputs currently') coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() return coef class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)): @abstractmethod def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto"): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver def fit(self, X, y, sample_weight=None): X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float, multi_output=True, y_numeric=True) if ((sample_weight is not None) and np.atleast_1d(sample_weight).ndim > 1): raise ValueError("Sample weights must be 1D array or scalar") X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) self.coef_ = ridge_regression(X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=self.solver) self._set_intercept(X_mean, y_mean, X_std) return self class Ridge(_BaseRidge, RegressorMixin): """Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : {float, array-like} shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. All three solvers support both dense and sparse data. tol : float Precision of the solution. Attributes ---------- coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). See also -------- RidgeClassifier, RidgeCV, KernelRidge Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, solver='auto', tol=0.001) """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto"): super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver) def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample Returns ------- self : returns an instance of self. """ return super(Ridge, self).fit(X, y, sample_weight=sample_weight) class RidgeClassifier(LinearClassifierMixin, _BaseRidge): """Classifier using Ridge regression. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : float Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines. 'svd' will use a Singular value decomposition to obtain the solution, 'cholesky' will use the standard scipy.linalg.solve function, 'sparse_cg' will use the conjugate gradient solver as found in scipy.sparse.linalg.cg while 'auto' will chose the most appropriate depending on the matrix X. 'lsqr' uses a direct regularized least-squares routine provided by scipy. tol : float Precision of the solution. Attributes ---------- coef_ : array, shape = [n_features] or [n_classes, n_features] Weight vector(s). See also -------- Ridge, RidgeClassifierCV Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto"): super(RidgeClassifier, self).__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit Ridge regression model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : returns an instance of self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_ class _RidgeGCV(LinearModel): """Ridge regression with built-in Generalized Cross-Validation It allows efficient Leave-One-Out cross-validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id)^-1. Dual solution: c = Gy Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KGY - diag(KG)Y) / diag(I-KG) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G) References ---------- http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, copy_X=True, gcv_mode=None, store_cv_values=False): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def _pre_compute(self, X, y): # even if X is very sparse, K is usually very dense K = safe_sparse_dot(X, X.T, dense_output=True) v, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return v, Q, QT_y def _decomp_diag(self, v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) def _diag_dot(self, D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)] return D * B def _errors(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def _pre_compute_svd(self, X, y): if sparse.issparse(X): raise TypeError("SVD not supported for sparse matrices") U, s, _ = linalg.svd(X, full_matrices=0) v = s ** 2 UT_y = np.dot(U.T, y) return v, U, UT_y def _errors_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case when y is 2-d G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float, multi_output=True, y_numeric=True) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) gcv_mode = self.gcv_mode with_sw = len(np.shape(sample_weight)) if gcv_mode is None or gcv_mode == 'auto': if sparse.issparse(X) or n_features > n_samples or with_sw: gcv_mode = 'eigen' else: gcv_mode = 'svd' elif gcv_mode == "svd" and with_sw: # FIXME non-uniform sample weights not yet supported warnings.warn("non-uniform sample weights unsupported for svd, " "forcing usage of eigen") gcv_mode = 'eigen' if gcv_mode == 'eigen': _pre_compute = self._pre_compute _errors = self._errors _values = self._values elif gcv_mode == 'svd': # assert n_samples >= n_features _pre_compute = self._pre_compute_svd _errors = self._errors_svd _values = self._values_svd else: raise ValueError('bad gcv_mode "%s"' % gcv_mode) v, Q, QT_y = _pre_compute(X, y) n_y = 1 if len(y.shape) == 1 else y.shape[1] cv_values = np.zeros((n_samples * n_y, len(self.alphas))) C = [] scorer = check_scoring(self, scoring=self.scoring, allow_none=True) error = scorer is None for i, alpha in enumerate(self.alphas): weighted_alpha = (sample_weight * alpha if sample_weight is not None else alpha) if error: out, c = _errors(weighted_alpha, y, v, Q, QT_y) else: out, c = _values(weighted_alpha, y, v, Q, QT_y) cv_values[:, i] = out.ravel() C.append(c) if error: best = cv_values.mean(axis=0).argmin() else: # The scorer want an object that will make the predictions but # they are already computed efficiently by _RidgeGCV. This # identity_estimator will just return them def identity_estimator(): pass identity_estimator.decision_function = lambda y_predict: y_predict identity_estimator.predict = lambda y_predict: y_predict out = [scorer(identity_estimator, y.ravel(), cv_values[:, i]) for i in range(len(self.alphas))] best = np.argmax(out) self.alpha_ = self.alphas[best] self.dual_coef_ = C[best] self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) self._set_intercept(X_mean, y_mean, X_std) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, len(self.alphas) else: cv_values_shape = n_samples, n_y, len(self.alphas) self.cv_values_ = cv_values.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ if self.cv is None: estimator = _RidgeGCV(self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True " " are incompatible") parameters = {'alpha': self.alphas} fit_params = {'sample_weight' : sample_weight} gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept), parameters, fit_params=fit_params, cv=self.cv) gs.fit(X, y) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ return self class RidgeCV(_BaseRidgeCV, RegressorMixin): """Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : integer or cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. If an integer is passed, it is the number of folds for KFold cross validation. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects gcv_mode : {None, 'auto', 'svd', eigen'}, optional Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:: 'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X The 'auto' mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data. store_cv_values : boolean, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the `cv_values_` attribute (see below). This flag is only compatible with `cv=None` (i.e. using Generalized Cross-Validation). Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_targets, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and \ `cv=None`). After `fit()` has been called, this attribute will \ contain the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). alpha_ : float Estimated regularization parameter. intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeClassifierCV: Ridge classifier with built-in cross validation """ pass class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and `cv=None`). After `fit()` has been called, this attribute will contain \ the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). alpha_ : float Estimated regularization parameter See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None): super(RidgeClassifierCV, self).__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, scoring=scoring, cv=cv) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit the ridge classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : object Returns self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_
bsd-3-clause
apaloczy/ap_tools
utils.py
1
54151
# Description: General-purpose functions for personal use. # Author: André Palóczy # E-mail: paloczy@gmail.com __all__ = ['seasonal_avg', 'seasonal_std', 'deseason', 'blkavg', 'blkavgdir', 'blkavgt', 'blkapply', 'stripmsk', 'pydatetime2m_arr', 'm2pydatetime_arr', 'npdt2dt', 'dt2sfloat', 'doy2date', 'flowfun', 'cumsimp', 'rot_vec', 'avgdir', 'lon180to360', 'lon360to180', 'bbox2ij', 'xy2dist', 'get_xtrackline', 'get_arrdepth', 'fpointsbox', 'near', 'near2', 'mnear', 'refine', 'denan', 'standardize', 'linear_trend', 'thomas', 'point_in_poly', 'get_mask_from_poly', 'sphericalpolygon_area', 'greatCircleBearing', 'weim', 'smoo2', 'topo_slope', 'curvature_geometric', 'get_isobath', 'angle_isobath', 'isopyc_depth', 'whiten_zero', 'wind2stress', 'gen_dates', 'fmt_isobath', 'float2latex', 'mat2npz', 'bb_map', 'dots_dualcolor'] from os import system import numpy as np import matplotlib.pyplot as plt import matplotlib from matplotlib import path from mpl_toolkits.basemap import Basemap from datetime import datetime, timedelta from dateutil import rrule, parser from scipy.io import loadmat, savemat from scipy import signal from scipy.signal import savgol_filter from glob import glob from netCDF4 import Dataset, num2date, date2num # from pandas import rolling_window # FIXME, new pandas way of doing this is, e.g., arr = Series(...).rolling(...).mean() from pandas import Timestamp from gsw import distance from pygeodesy import Datums, VincentyError from pygeodesy.ellipsoidalVincenty import LatLon as LatLon from pygeodesy.sphericalNvector import LatLon as LatLon_sphere def seasonal_avg(t, F): """ USAGE ----- F_seasonal = seasonal_avg(t, F) Calculates the seasonal average of variable F(t). Assumes 't' is a 'datetime.datetime' object. """ tmo = np.array([ti.month for ti in t]) ftmo = [tmo==mo for mo in range(1, 13)] return np.array([F[ft].mean() for ft in ftmo]) def seasonal_std(t, F): """ USAGE ----- F_seasonal = seasonal_std(t, F) Calculates the seasonal standard deviation of variable F(t). Assumes 't' is a 'datetime.datetime' object. """ tmo = np.array([ti.month for ti in t]) ftmo = [tmo==mo for mo in range(1, 13)] return np.array([F[ft].std() for ft in ftmo]) def deseason(t, F): """ USAGE ----- F_nonssn = deseason(t, F) Removes the seasonal signal of variable F(t). Assumes 't' is a 'datetime.datetime' object. Also assumes that F is sampled monthly and only for complete years (i.e., t.size is a multiple of 12). """ Fssn = seasonal_avg(t, F) nyears = int(t.size/12) aux = np.array([]) for n in range(nyears): aux = np.concatenate((aux, Fssn)) return F - aux def blkavg(x, y, every=2): """ Block-averages a variable y(x). Returns its block average and standard deviation and new x axis. """ nx = x.size xblk, yblk, yblkstd = np.array([]), np.array([]), np.array([]) for i in range(every, nx+every, every): yi = y[i-every:i] xblk = np.append(xblk, np.nanmean(x[i-every:i])) yblk = np.append(yblk, np.nanmean(yi)) yblkstd = np.append(yblkstd, np.nanstd(yi)) return xblk, yblk, yblkstd def blkavgdir(x, ydir, every=2, degrees=False, axis=None): """ Block-averages a PERIODIC variable ydir(x). Returns its block average and new x axis. """ nx = x.size xblk, yblk, yblkstd = np.array([]), np.array([]), np.array([]) for i in range(every, nx+every, every): xblk = np.append(xblk, np.nanmean(x[i-every:i])) yblk = np.append(yblk, avgdir(ydir[i-every:i], degrees=degrees, axis=axis)) return xblk, yblk def blkavgt(t, x, every=2): """ Block-averages a variable x(t). Returns its block average and the new t axis. """ nt = t.size units = 'days since 01-01-01' calendar = 'proleptic_gregorian' t = date2num(t, units=units, calendar=calendar) tblk, xblk = np.array([]), np.array([]) for i in range(every, nt+every, every): xi = x[i-every:i] tblk = np.append(tblk, np.nanmean(t[i-every:i])) xblk = np.append(xblk, np.nanmean(xi)) tblk = num2date(tblk, units=units, calendar=calendar) return tblk, xblk def blkapply(x, f, nblks, overlap=0, demean=False, detrend=False, verbose=True): """ Divides array 'x' in 'nblks' blocks and applies function 'f' = f(x) on each block. """ x = np.array(x) assert callable(f), "f must be a function" nx = x.size ni = int(nx/nblks) # Number of data points in each chunk. y = np.zeros(ni) # Array that will receive each block. dn = int(round(ni - overlap*ni)) # How many indices to move forward with # each chunk (depends on the % overlap). # Demean/detrend the full record first (removes the lowest frequencies). # Then, also demean/detrend each block beffore applying f(). if demean: x = x - x.mean() if detrend: x = signal.detrend(x, type='linear') n=0 il, ir = 0, ni while ir<=nx: xn = x[il:ir] if demean: xn = xn - xn.mean() if detrend: xn = signal.detrend(xn, type='linear') y = y + f(xn) # Apply function and accumulate the current bock. il+=dn; ir+=dn n+=1 y /= n # Divide by number of blocks actually used. ncap = nx - il # Number of points left out at the end of array. if verbose: print("") print("Left last %d data points out (%.1f %% of all points)."%(ncap,100*ncap/nx)) if overlap>0: print("") print("Intended %d blocks, but could fit %d blocks, with"%(nblks,n)) print('overlap of %.1f %%, %d points per block.'%(100*overlap,dn)) print("") return y def stripmsk(arr, mask_invalid=False): if mask_invalid: arr = np.ma.masked_invalid(arr) if np.ma.isMA(arr): msk = arr.mask arr = arr.data arr[msk] = np.nan return arr def pydatetime2m_arr(pydt_arr): pydt_arr = np.array(pydt_arr) secperyr = 86400.0 timedt = timedelta(days=366) matdt = [] for pydt in pydt_arr.tolist(): m = pydt.toordinal() + timedt dfrac = pydt - datetime(pydt.year,pydt.month,pydt.day,0,0,0).seconds/secperyr matdt.append(m.toordinal() + dfrac) return np.array(matdt) def m2pydatetime_arr(mdatenum_arr): mdatenum_arr = np.array(mdatenum_arr) timedt = timedelta(days=366) pydt = [] for mdt in mdatenum_arr.tolist(): d = datetime.fromordinal(int(mdt)) dfrac = timedelta(days=mdt%1) - timedt pydt.append(d + dfrac) return np.array(pydt) def npdt2dt(tnp): """ USAGE ----- t_datetime = npdt2dt(t_numpydatetime64) Convert an array of numpy.datetime64 timestamps to datetime.datetime. """ return np.array([Timestamp(ti).to_pydatetime() for ti in tnp]) def dt2sfloat(t): """ USAGE ----- t_float = dt2sfloat(t_datetime) Convert an array of datetime.datetime timestamps to an array of floats representing elapsed seconds since the first timestamp. """ t = np.array(t) t0 = t[0] return np.array([(tn - t0).total_seconds() for tn in t]) def doy2date(doy, year=2017): """ USAGE ----- t = doy2date(doy, year=2017) Convert an array `doy` of decimal yeardays to an array of datetime.datetime timestamps. """ doy = np.array(doy)*86400 # [seconds/day]. tunit = 'seconds since %d-01-01 00:00:00'%year return np.array([num2date(dn, tunit) for dn in doy]) def flowfun(x, y, u, v, variable='psi', geographic=True): """ FLOWFUN Computes the potential PHI and the streamfunction PSI of a 2-dimensional flow defined by the matrices of velocity components U and V, so that d(PHI) d(PSI) d(PHI) d(PSI) u = ----- - ----- , v = ----- + ----- dx dy dx dy P = FLOWFUN(x,y,u,v) returns an array P of the same size as u and v, which can be the velocity potential (PHI) or the streamfunction (PSI) Because these scalar fields are defined up to the integration constant, their absolute values are such that PHI[0,0] = PSI[0,0] = 0. For a potential (irrotational) flow PSI = 0, and the Laplacian of PSI is equal to the divergence of the velocity field. A solenoidal (non-divergent) flow can be described by the streamfunction alone, and the Laplacian of the streamfunction is equal to the vorticity (curl) of the velocity field. The units of the grid coordinates are assumed to be consistent with the units of the velocity components, e.g., [m] and [m/s]. If variable=='psi', the streamfunction (PSI) is returned. If variable=='phi', the velocity potential (PHI) is returned. If geographic==True (default), (x,y) are assumed to be (longitude,latitude) and are converted to meters before computing (dx,dy). If geographic==False, (x,y) are assumed to be in meters. Uses function 'cumsimp()' (Simpson rule summation). Author: Kirill K. Pankratov, March 7, 1994. Source: http://www-pord.ucsd.edu/~matlab/stream.htm Translated to Python by André Palóczy, January 15, 2015. Modified by André Palóczy on January 15, 2015. """ x,y,u,v = map(np.asanyarray, (x,y,u,v)) if not x.shape==y.shape==u.shape==v.shape: print("Error: Arrays (x, y, u, v) must be of equal shape.") return ## Calculating grid spacings. if geographic: dlat, _ = np.gradient(y) _, dlon = np.gradient(x) deg2m = 111120.0 # [m/deg] dx = dlon*deg2m*np.cos(y*np.pi/180.) # [m] dy = dlat*deg2m # [m] else: dy, _ = np.gradient(y) _, dx = np.gradient(x) ly, lx = x.shape # Shape of the (x,y,u,v) arrays. ## Now the main computations. ## Integrate velocity fields to get potential and streamfunction. ## Use Simpson rule summation (function CUMSIMP). ## Compute velocity potential PHI (non-rotating part). if variable=='phi': cx = cumsimp(u[0,:]*dx[0,:]) # Compute x-integration constant cy = cumsimp(v[:,0]*dy[:,0]) # Compute y-integration constant cx = np.expand_dims(cx, 0) cy = np.expand_dims(cy, 1) phiy = cumsimp(v*dy) + np.tile(cx, (ly,1)) phix = cumsimp(u.T*dx.T).T + np.tile(cy, (1,lx)) phi = (phix + phiy)/2. return phi ## Compute streamfunction PSI (non-divergent part). if variable=='psi': cx = cumsimp(v[0,:]*dx[0,:]) # Compute x-integration constant cy = cumsimp(u[:,0]*dy[:,0]) # Compute y-integration constant cx = np.expand_dims(cx, 0) cy = np.expand_dims(cy, 1) psix = -cumsimp(u*dy) + np.tile(cx, (ly,1)) psiy = cumsimp(v.T*dx.T).T - np.tile(cy, (1,lx)) psi = (psix + psiy)/2. return psi def cumsimp(y): """ F = CUMSIMP(Y) Simpson-rule column-wise cumulative summation. Numerical approximation of a function F(x) such that Y(X) = dF/dX. Each column of the input matrix Y represents the value of the integrand Y(X) at equally spaced points X = 0,1,...size(Y,1). The output is a matrix F of the same size as Y. The first row of F is equal to zero and each following row is the approximation of the integral of each column of matrix Y up to the givem row. CUMSIMP assumes continuity of each column of the function Y(X) and uses Simpson rule summation. Similar to the command F = CUMSUM(Y), exept for zero first row and more accurate summation (under the assumption of continuous integrand Y(X)). Author: Kirill K. Pankratov, March 7, 1994. Source: http://www-pord.ucsd.edu/~matlab/stream.htm Translated to Python by André Palóczy, January 15, 2015. """ y = np.asanyarray(y) ## 3-point interpolation coefficients to midpoints. ## Second-order polynomial (parabolic) interpolation coefficients ## from Xbasis = [0 1 2] to Xint = [.5 1.5] c1 = 3/8. c2 = 6/8. c3 = -1/8. if y.ndim==1: y = np.expand_dims(y,1) f = np.zeros((y.size,1)) # Initialize summation array. squeeze_after = True elif y.ndim==2: f = np.zeros(y.shape) # Initialize summation array. squeeze_after = False else: print("Error: Input array has more than 2 dimensions.") return if y.size==2: # If only 2 elements in columns - simple average. f[1,:] = (y[0,:] + y[1,:])/2. return f else: # If more than two elements in columns - Simpson summation. ## Interpolate values of y to all midpoints. f[1:-1,:] = c1*y[:-2,:] + c2*y[1:-1,:] + c3*y[2:,:] f[2:,:] = f[2:,:] + c3*y[:-2,:] + c2*y[1:-1,:] + c1*y[2:,:] f[1,:] = f[1,:]*2 f[-1,:] = f[-1,:]*2 ## Simpson (1,4,1) rule. f[1:,:] = 2*f[1:,:] + y[:-1,:] + y[1:,:] f = np.cumsum(f, axis=0)/6. # Cumulative sum, 6 - denominator from the Simpson rule. if squeeze_after: f = f.squeeze() return f def rot_vec(u, v, angle=-45, degrees=True): """ USAGE ----- u_rot,v_rot = rot_vec(u,v,angle=-45.,degrees=True) Returns the rotated vector components (`u_rot`,`v_rot`) from the zonal-meridional input vector components (`u`,`v`). The rotation is done using the angle `angle` positive counterclockwise (trigonometric convention). If `degrees` is set to `True``(default), then `angle` is converted to radians. is Example ------- >>> from matplotlib.pyplot import quiver >>> from ap_tools.utils import rot_vec >>> u = -1. >>> v = -1. >>> u2,v2 = rot_vec(u,v, angle=-30.) """ u,v = map(np.asanyarray, (u,v)) if degrees: angle = angle*np.pi/180. # Degrees to radians. u_rot = +u*np.cos(angle) + v*np.sin(angle) # Usually the across-shore component. v_rot = -u*np.sin(angle) + v*np.cos(angle) # Usually the along-shore component. return u_rot,v_rot def avgdir(dirs, degrees=False, axis=None): """ USAGE ----- dirm = avgdir(dirs, degrees=False, axis=None) Calculate the mean direction of an array of directions 'dirs'. If 'degrees' is 'False' (default), the input directions must be in radians. If 'degrees' is 'True', the input directions must be in degrees. The direction angle is measured from the ZONAL axis, i.e., (0, 90, -90) deg are (Eastward, Northward, Southward). 180 and -180 deg are both Westward. If 'axis' is 'None' (default) the mean is calculated on the flattened array. Otherwise, 'axis' is the index of the axis to calculate the mean over. """ dirs = np.array(dirs) if degrees: dirs = dirs*np.pi/180 # Degrees to radians. uxs = np.cos(dirs) vys = np.sin(dirs) dirm = np.arctan2(vys.sum(axis=axis), uxs.sum(axis=axis)) if degrees: dirm = dirm*180/np.pi # From radians to degrees. return dirm def lon180to360(lon): """ Converts longitude values in the range [-180,+180] to longitude values in the range [0,360]. """ lon = np.asanyarray(lon) return (lon + 360.0) % 360.0 def lon360to180(lon): """ Converts longitude values in the range [0,360] to longitude values in the range [-180,+180]. """ lon = np.asanyarray(lon) return ((lon + 180.) % 360.) - 180. def bbox2ij(lon, lat, bbox=[-135., -85., -76., -64.], FIX_IDL=True): """ USAGE ----- ilon_start, ilon_end, jlat_start, jlat_end = bbox2ij(lon, lat, bbox=[-135., -85., -76., -64.], FIX_IDL=True) OR (ilon_start_left, ilon_end_left, jlat_start, jlat_end), (ilon_start_right, ilon_end_right, jlat_start, jlat_end) = ... ... bbox2ij(lon, lat, bbox=[-135., -85., -76., -64.], FIX_IDL=True) Return indices for i,j that will completely cover the specified bounding box. 'lon' and 'lat' are 2D coordinate arrays (generated by meshgrid), and 'bbox' is a list like [lon_start, lon_end, lat_start, lat_end] describing the desired longitude-latitude box. If the specified bbox is such that it crosses the edges of the longitude array, two tuples of indices are returned. The first (second) tuple traces out the left (right) part of the bbox. If FIX_IDL is set to 'True' (default), the indices returned correspond to the "short route" around the globe, which amounts to assuming that the specified bbox crosses the International Date. If FIX_IDL is set to 'False', the "long route" is used instead. Example ------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> lon = np.arange(-180., 180.25, 0.25) >>> lat = np.arange(-90., 90.25, 0.25) >>> lon, lat = np.meshgrid(lon, lat) >>> h = np.sin(lon) + np.cos(lat) >>> i0, i1, j0, j1 = bbox2ij(lon, lat, bbox=[-71, -63., 39., 46]) >>> h_subset = h[j0:j1,i0:i1] >>> lon_subset = lon[j0:j1,i0:i1] >>> lat_subset = lat[j0:j1,i0:i1] >>> fig, ax = plt.subplots() >>> ax.pcolor(lon_subset,lat_subset,h_subset) >>> plt.axis('tight') Original function downloaded from http://gis.stackexchange.com/questions/71630/subsetting-a-curvilinear-netcdf-file-roms-model-output-using-a-lon-lat-boundin Modified by André Palóczy on August 20, 2016 to handle bboxes that cross the International Date Line or the edges of the longitude array. """ lon, lat, bbox = map(np.asanyarray, (lon, lat, bbox)) # Test whether the wanted bbox crosses the International Date Line (brach cut of the longitude array). dlon = bbox[:2].ptp() IDL_BBOX=dlon>180. IDL_BBOX=np.logical_and(IDL_BBOX, FIX_IDL) mypath = np.array([bbox[[0,1,1,0]], bbox[[2,2,3,3]]]).T p = path.Path(mypath) points = np.vstack((lon.flatten(), lat.flatten())).T n, m = lon.shape inside = p.contains_points(points).reshape((n, m)) # Fix mask if bbox goes throught the International Date Line. if IDL_BBOX: fcol=np.all(~inside, axis=0) flin=np.any(inside, axis=1) fcol, flin = map(np.expand_dims, (fcol, flin), (0, 1)) fcol = np.tile(fcol, (n, 1)) flin = np.tile(flin, (1, m)) inside=np.logical_and(flin, fcol) print("Bbox crosses the International Date Line.") ii, jj = np.meshgrid(range(m), range(n)) iiin, jjin = ii[inside], jj[inside] i0, i1, j0, j1 = min(iiin), max(iiin), min(jjin), max(jjin) SPLIT_BBOX=(i1-i0)==(m-1) # Test whether the wanted bbox crosses edges of the longitude array. # If wanted bbox crosses edges of the longitude array, return indices for the two boxes separately. if SPLIT_BBOX: Iiin = np.unique(iiin) ib0 = np.diff(Iiin).argmax() # Find edge of the inner side of the left bbox. ib1 = ib0 + 1 # Find edge of the inner side of the right bbox. Il, Ir = Iiin[ib0], Iiin[ib1] # Indices of the columns that bound the inner side of the two bboxes. print("Bbox crosses edges of the longitude array. Returning two sets of indices.") return (i0, Il, j0, j1), (Ir, i1, j0, j1) else: return i0, i1, j0, j1 def xy2dist(x, y, cyclic=False, datum='WGS84'): """ USAGE ----- d = xy2dist(x, y, cyclic=False, datum='WGS84') Calculates a distance axis from a line defined by longitudes and latitudes 'x' and 'y', using either the Vicenty formulae on an ellipsoidal earth (ellipsoid defaults to WGS84) or on a sphere (if datum=='Sphere'). Example ------- >>> yi, yf = -23.550520, 32.71573800 >>> xi, xf = -46.633309, -117.161084 >>> x, y = np.linspace(xi, xf), np.linspace(yi, yf) >>> d_ellipse = xy2dist(x, y, datum='WGS84')[-1]*1e-3 # [km]. >>> d_sphere = xy2dist(x, y, datum='Sphere')[-1]*1e-3 # [km]. >>> dd = np.abs(d_ellipse - d_sphere) >>> dperc = 100*dd/d_ellipse >>> msg = 'Difference of %.1f km over a %.0f km-long line (%.3f %% difference)'%(dd, d_ellipse, dperc) >>> print(msg) """ if datum!="Sphere": xy = [LatLon(y0, x0, datum=Datums[datum]) for x0, y0 in zip(x, y)] else: xy = [LatLon_sphere(y0, x0) for x0, y0 in zip(x, y)] d = np.array([xy[n].distanceTo(xy[n+1]) for n in range(len(xy)-1)]) return np.append(0, np.cumsum(d)) def get_xtrackline(lon1, lon2, lat1, lat2, L=200, dL=10): """ USAGE ----- lonp, latp = get_xtrackline(lon1, lon2, lat1, lat2, L=200, dL=13) Generates a great-circle line with length 2L (with L in km) that is perpendicular to the great-circle line defined by the input points (lon1, lat1) and (lon2, lat2). The spacing between the points along the output line is dL km. Assumes a spherical Earth. """ km2m = 1e3 L, dL = L*km2m, dL*km2m nh = int(L/dL) p1, p2 = LatLon_sphere(lat1, lon1), LatLon_sphere(lat2, lon2) angperp = p1.initialBearingTo(p2) + 90 angperpb = angperp + 180 pm = p1.midpointTo(p2) # Create perpendicular line starting from the midpoint. N = range(1, nh + 1) pperp = [] _ = [pperp.append(pm.destination(dL*n, angperpb)) for n in N] pperp.reverse() pperp.append(pm) _ = [pperp.append(pm.destination(dL*n, angperp)) for n in N] lonperp = np.array([p.lon for p in pperp]) latperp = np.array([p.lat for p in pperp]) return lonperp, latperp def get_arrdepth(arr): """ USAGE ----- arr_depths = get_arrdepth(arr) Determine number of nested levels in each element of an array of arrays of arrays... (or other array-like objects). """ arr = np.array(arr) # Make sure first level is an array. all_nlevs = [] for i in range(arr.size): nlev=0 wrk_arr = arr[i] while np.size(wrk_arr)>0: try: wrk_arr = np.array(wrk_arr[i]) except Exception: all_nlevs.append(nlev) nlev=0 break nlev+=1 return np.array(all_nlevs) def fpointsbox(x, y, fig, ax, nboxes=1, plot=True, pause_secs=5, return_index=True): """ USAGE ----- fpts = fpointsbox(x, y, fig, ax, nboxes=1, plot=True, pause_secs=5, return_index=True) Find points in a rectangle made with 2 ginput points. """ fpts = np.array([]) for n in range(nboxes): box = np.array(fig.ginput(n=2, timeout=0)) try: xb, yb = box[:,0], box[:,1] except IndexError: print("No points selected. Skipping box \# %d."%(n+1)) continue xl, xr, yd, yu = xb.min(), xb.max(), yb.min(), yb.max() xbox = np.array([xl, xr, xr, xl, xl]) ybox = np.array([yd, yd, yu, yu, yd]) fxbox, fybox = np.logical_and(x>xl, x<xr), np.logical_and(y>yd, y<yu) fptsi = np.logical_and(fxbox, fybox) if return_index: fptsi = np.where(fptsi)[0] fpts = np.append(fpts, fptsi) if plot: ax.plot(xbox, ybox, 'r', linestyle='solid', marker='o', ms=4) ax.plot(x[fptsi], y[fptsi], 'r', linestyle='none', marker='+', ms=5) plt.draw() fig.show() else: fig.close() if plot: plt.draw() fig.show() system("sleep %d"%pause_secs) return fpts def near(x, x0, npts=1, return_index=False): """ USAGE ----- xnear = near(x, x0, npts=1, return_index=False) Finds 'npts' points (defaults to 1) in array 'x' that are closest to a specified 'x0' point. If 'return_index' is True (defauts to False), then the indices of the closest points are returned. The indices are ordered in order of closeness. """ x = list(x) xnear = [] xidxs = [] for n in range(npts): idx = np.nanargmin(np.abs(np.array(x)-x0)) xnear.append(x.pop(idx)) if return_index: xidxs.append(idx) if return_index: # Sort indices according to the proximity of wanted points. xidxs = [xidxs[i] for i in np.argsort(xnear).tolist()] xnear.sort() if npts==1: xnear = xnear[0] if return_index: xidxs = xidxs[0] else: xnear = np.array(xnear) if return_index: return xidxs else: return xnear def near2(x, y, x0, y0, npts=1, return_index=False): """ USAGE ----- xnear, ynear = near2(x, y, x0, y0, npts=1, return_index=False) Finds 'npts' points (defaults to 1) in arrays 'x' and 'y' that are closest to a specified '(x0, y0)' point. If 'return_index' is True (defauts to False), then the indices of the closest point(s) are returned. Example ------- >>> x = np.arange(0., 100., 0.25) >>> y = np.arange(0., 100., 0.25) >>> x, y = np.meshgrid(x, y) >>> x0, y0 = 44.1, 30.9 >>> xn, yn = near2(x, y, x0, y0, npts=1) >>> print("(x0, y0) = (%f, %f)"%(x0, y0)) >>> print("(xn, yn) = (%f, %f)"%(xn, yn)) """ x, y = map(np.array, (x, y)) shp = x.shape xynear = [] xyidxs = [] dx = x - x0 dy = y - y0 dr = dx**2 + dy**2 for n in range(npts): xyidx = np.unravel_index(np.nanargmin(dr), dims=shp) if return_index: xyidxs.append(xyidx) xyn = (x[xyidx], y[xyidx]) xynear.append(xyn) dr[xyidx] = np.nan if npts==1: xynear = xynear[0] if return_index: xyidxs = xyidxs[0] if return_index: return xyidxs else: return xynear def mnear(x, y, x0, y0): """ USAGE ----- xmin,ymin = mnear(x, y, x0, y0) Finds the the point in a (lons,lats) line that is closest to a specified (lon0,lat0) point. """ x,y,x0,y0 = map(np.asanyarray, (x,y,x0,y0)) point = (x0,y0) d = np.array([]) for n in range(x.size): xn,yn = x[n],y[n] dn = distance((xn,x0),(yn,y0)) # Calculate distance point-wise. d = np.append(d,dn) idx = d.argmin() return x[idx],y[idx] def refine(line, nref=100, close=True): """ USAGE ----- ref_line = refine(line, nref=100, close=True) Given a 1-D sequence of points 'line', returns a new sequence 'ref_line', which is built by linearly interpolating 'nref' points between each pair of subsequent points in the original line. If 'close' is True (default), the first value of the original line is repeated at the end of the refined line, as in a closed polygon. """ line = np.squeeze(np.asanyarray(line)) if close: line = np.append(line,line[0]) ref_line = np.array([]) for n in range(line.shape[0]-1): xi, xf = line[n], line[n+1] xref = np.linspace(xi,xf,nref) ref_line = np.append(ref_line, xref) return ref_line def point_in_poly(x,y,poly): """ USAGE ----- isinside = point_in_poly(x,y,poly) Determine if a point is inside a given polygon or not Polygon is a list of (x,y) pairs. This fuction returns True or False. The algorithm is called 'Ray Casting Method'. Source: http://pseentertainmentcorp.com/smf/index.php?topic=545.0 """ n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xinters = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xinters: inside = not inside p1x,p1y = p2x,p2y return inside def get_mask_from_poly(xp, yp, poly, verbose=False): """ USAGE ----- mask = get_mask_from_poly(xp, yp, poly, verbose=False) Given two arrays 'xp' and 'yp' of (x,y) coordinates (generated by meshgrid) and a polygon defined by an array of (x,y) coordinates 'poly', with shape = (n,2), return a boolean array 'mask', where points that lie inside 'poly' are set to 'True'. """ print('Building the polygon mask...') jmax, imax = xp.shape mask = np.zeros((jmax,imax)) for j in range(jmax): if verbose: print("Row %s of %s"%(j+1,jmax)) for i in range(imax): px, py = xp[j,i], yp[j,i] # Test if this point is within the polygon. mask[j,i] = point_in_poly(px, py, poly) return mask def sphericalpolygon_area(lons, lats, R=6371000.): """ USAGE ----- area = sphericalpolygon_area(lons, lats, R=6371000.) Calculates the area of a polygon on the surface of a sphere of radius R using Girard's Theorem, which states that the area of a polygon of great circles is R**2 times the sum of the angles between the polygons minus (N-2)*pi, where N is number of corners. R = 6371000 m (6371 km, default) is a typical value for the mean radius of the Earth. Source: http://stackoverflow.com/questions/4681737/how-to-calculate-the-area-of-a-polygon-on-the-earths-surface-using-python """ lons, lats = map(np.asanyarray, (lons, lats)) N = lons.size angles = np.empty(N) for i in range(N): phiB1, phiA, phiB2 = np.roll(lats, i)[:3] LB1, LA, LB2 = np.roll(lons, i)[:3] # calculate angle with north (eastward) beta1 = greatCircleBearing(LA, phiA, LB1, phiB1) beta2 = greatCircleBearing(LA, phiA, LB2, phiB2) # calculate angle between the polygons and add to angle array angles[i] = np.arccos(np.cos(-beta1)*np.cos(-beta2) + np.sin(-beta1)*np.sin(-beta2)) return (np.sum(angles) - (N-2)*np.pi)*R**2 def greatCircleBearing(lon1, lat1, lon2, lat2): """ USAGE ----- angle = greatCircleBearing(lon1, lat1, lon2, lat2) Calculates the angle (positive eastward) a great circle passing through points (lon1,lat1) and (lon2,lat2) makes with true nirth. Source: http://stackoverflow.com/questions/4681737/how-to-calculate-the-area-of-a-polygon-on-the-earths-surface-using-python """ lon1, lat1, lon2, lat2 = map(np.asanyarray, (lon1, lat1, lon2, lat2)) dLong = lon1 - lon2 d2r = np.pi/180. s = np.cos(d2r*lat2)*np.sin(d2r*dLong) c = np.cos(d2r*lat1)*np.sin(d2r*lat2) - np.sin(lat1*d2r)*np.cos(d2r*lat2)*np.cos(d2r*dLong) return np.arctan2(s, c) def weim(x, N, kind='hann', badflag=-9999, beta=14): """ Usage ----- xs = weim(x, N, kind='hann', badflag=-9999, beta=14) Description ----------- Calculates the smoothed array 'xs' from the original array 'x' using the specified window of type 'kind' and size 'N'. 'N' must be an odd number. Parameters ---------- x : 1D array Array to be smoothed. N : integer Window size. Must be odd. kind : string, optional One of the window types available in the numpy module: hann (default) : Gaussian-like. The weight decreases toward the ends. Its end-points are zeroed. hamming : Similar to the hann window. Its end-points are not zeroed, therefore it is discontinuous at the edges, and may produce undesired artifacts. blackman : Similar to the hann and hamming windows, with sharper ends. bartlett : Triangular-like. Its end-points are zeroed. kaiser : Flexible shape. Takes the optional parameter "beta" as a shape parameter. For beta=0, the window is rectangular. As beta increases, the window gets narrower. Refer to the numpy functions for details about each window type. badflag : float, optional The bad data flag. Elements of the input array 'A' holding this value are ignored. beta : float, optional Shape parameter for the kaiser window. For windows other than the kaiser window, this parameter does nothing. Returns ------- xs : 1D array The smoothed array. --------------------------------------- André Palóczy Filho (paloczy@gmail.com) June 2012 ============================================================================================================== """ ########################################### ### Checking window type and dimensions ### ########################################### kinds = ['hann', 'hamming', 'blackman', 'bartlett', 'kaiser'] if ( kind not in kinds ): raise ValueError('Invalid window type requested: %s'%kind) if np.mod(N,2) == 0: raise ValueError('Window size must be odd') ########################### ### Creating the window ### ########################### if ( kind == 'kaiser' ): # If the window kind is kaiser (beta is required). wstr = 'np.kaiser(N, beta)' else: # If the window kind is hann, hamming, blackman or bartlett (beta is not required). if kind == 'hann': kind = 'hanning' wstr = 'np.' + kind + '(N)' w = eval(wstr) x = np.asarray(x).flatten() Fnan = np.isnan(x).flatten() ln = (N-1)/2 lx = x.size lf = lx - ln xs = np.nan*np.ones(lx) # Eliminating bad data from mean computation. fbad=x==badflag x[fbad] = np.nan for i in range(lx): if i <= ln: xx = x[:ln+i+1] ww = w[ln-i:] elif i >= lf: xx = x[i-ln:] ww = w[:lf-i-1] else: xx = x[i-ln:i+ln+1] ww = w.copy() f = ~np.isnan(xx) # Counting only NON-NaNs, both in the input array and in the window points. xx = xx[f] ww = ww[f] if f.sum() == 0: # Thou shalt not divide by zero. xs[i] = x[i] else: xs[i] = np.sum(xx*ww)/np.sum(ww) xs[Fnan] = np.nan # Assigning NaN to the positions holding NaNs in the input array. return xs def smoo2(A, hei, wid, kind='hann', badflag=-9999, beta=14): """ Usage ----- As = smoo2(A, hei, wid, kind='hann', badflag=-9999, beta=14) Description ----------- Calculates the smoothed array 'As' from the original array 'A' using the specified window of type 'kind' and shape ('hei','wid'). Parameters ---------- A : 2D array Array to be smoothed. hei : integer Window height. Must be odd and greater than or equal to 3. wid : integer Window width. Must be odd and greater than or equal to 3. kind : string, optional One of the window types available in the numpy module: hann (default) : Gaussian-like. The weight decreases toward the ends. Its end-points are zeroed. hamming : Similar to the hann window. Its end-points are not zeroed, therefore it is discontinuous at the edges, and may produce undesired artifacts. blackman : Similar to the hann and hamming windows, with sharper ends. bartlett : Triangular-like. Its end-points are zeroed. kaiser : Flexible shape. Takes the optional parameter "beta" as a shape parameter. For beta=0, the window is rectangular. As beta increases, the window gets narrower. Refer to the numpy functions for details about each window type. badflag : float, optional The bad data flag. Elements of the input array 'A' holding this value are ignored. beta : float, optional Shape parameter for the kaiser window. For windows other than the kaiser window, this parameter does nothing. Returns ------- As : 2D array The smoothed array. --------------------------------------- André Palóczy Filho (paloczy@gmail.com) April 2012 ============================================================================================================== """ ########################################### ### Checking window type and dimensions ### ########################################### kinds = ['hann', 'hamming', 'blackman', 'bartlett', 'kaiser'] if ( kind not in kinds ): raise ValueError('Invalid window type requested: %s'%kind) if ( np.mod(hei,2) == 0 ) or ( np.mod(wid,2) == 0 ): raise ValueError('Window dimensions must be odd') if (hei <= 1) or (wid <= 1): raise ValueError('Window shape must be (3,3) or greater') ############################## ### Creating the 2D window ### ############################## if ( kind == 'kaiser' ): # If the window kind is kaiser (beta is required). wstr = 'np.outer(np.kaiser(hei, beta), np.kaiser(wid, beta))' else: # If the window kind is hann, hamming, blackman or bartlett (beta is not required). if kind == 'hann': kind = 'hanning' # computing outer product to make a 2D window out of the original 1d windows. wstr = 'np.outer(np.' + kind + '(hei), np.' + kind + '(wid))' wdw = eval(wstr) A = np.asanyarray(A) Fnan = np.isnan(A) imax, jmax = A.shape As = np.nan*np.ones( (imax, jmax) ) for i in range(imax): for j in range(jmax): ### Default window parameters. wupp = 0 wlow = hei wlef = 0 wrig = wid lh = np.floor(hei/2) lw = np.floor(wid/2) ### Default array ranges (functions of the i,j indices). upp = i-lh low = i+lh+1 lef = j-lw rig = j+lw+1 ################################################## ### Tiling window and input array at the edges ### ################################################## # Upper edge. if upp < 0: wupp = wupp-upp upp = 0 # Left edge. if lef < 0: wlef = wlef-lef lef = 0 # Bottom edge. if low > imax: ex = low-imax wlow = wlow-ex low = imax # Right edge. if rig > jmax: ex = rig-jmax wrig = wrig-ex rig = jmax ############################################### ### Computing smoothed value at point (i,j) ### ############################################### Ac = A[upp:low, lef:rig] wdwc = wdw[wupp:wlow, wlef:wrig] fnan = np.isnan(Ac) Ac[fnan] = 0; wdwc[fnan] = 0 # Eliminating NaNs from mean computation. fbad = Ac==badflag wdwc[fbad] = 0 # Eliminating bad data from mean computation. a = Ac * wdwc As[i,j] = a.sum() / wdwc.sum() As[Fnan] = np.nan # Assigning NaN to the positions holding NaNs in the input array. return As def denan(arr): """ USAGE ----- denaned_arr = denan(arr) Remove the NaNs from an array. """ f = np.isnan(arr) return arr[~f] def standardize(series): """ USAGE ----- series2 = standardize(series) Standardizes a series by subtracting its mean value and dividing by its standard deviation. The result is a dimensionless series. Inputs can be of type "np.array", or "Pandas.Series"/"Pandas.TimeSeries". """ Mean, Std = series.mean(), series.std() return (series - Mean)/Std def linear_trend(series, return_line=True): """ USAGE ----- line = linear_trend(series, return_line=True) OR b, a, x = linear_trend(series, return_line=False) Returns the linear fit (line = b*x + a) associated with the 'series' array. Adapted from pylab.detrend_linear. """ series = np.asanyarray(series) x = np.arange(series.size, dtype=np.float_) C = np.cov(x, series, bias=1) # Covariance matrix. b = C[0, 1]/C[0, 0] # Angular coefficient. a = series.mean() - b*x.mean() # Linear coefficient. line = b*x + a if return_line: return line else: return b, a, x def thomas(A, b): """ USAGE ----- x = thomas(A,b) Solve Ax = b (where A is a tridiagonal matrix) using the Thomas Algorithm. References ---------- For a step-by-step derivation of the algorithm, see e.g., http://www3.ul.ie/wlee/ms6021_thomas.pdf """ # Step 1: Sweep rows from top to bottom, # calculating gammas and rhos along the way. N = b.size gam = [float(A[0,1]/A[0,0])] rho = [float(b[0]/A[0,0])] for i in range(0, N): rho.append(float((b[i] - A[i,i-1]*rho[-1])/(A[i,i] - A[i,i-1]*gam[-1]))) if i<N-1: # No gamma in the last row. gam.append(float(A[i,i+1]/(A[i,i] - A[i,i-1]*gam[-1]))) # Step 2: Substitute solutions for unknowns # starting from the bottom row all the way up. x = [] # Vector of unknowns. x.append(rho.pop()) # Last row is already solved. for i in range(N-2, -1, -1): x.append(float(rho.pop() - gam.pop()*x[-1])) x.reverse() return np.array(x) def topo_slope(lon, lat, h): """ USAGE ----- lons, lats, slope = topo_slope(lon, lat, h) Calculates bottom slope for a topography fields 'h' at coordinates ('lon', 'lat') using first-order finite differences. The output arrays have shape (M-1,L-1), where M,L = h.shape(). """ lon,lat,h = map(np.asanyarray, (lon,lat,h)) deg2m = 1852.*60. # m/deg. deg2rad = np.pi/180. # rad/deg. x = lon*deg2m*np.cos(lat*deg2rad) y = lat*deg2m # First-order differences, accurate to O(dx) and O(dy), # respectively. sx = (h[:,1:] - h[:,:-1]) / (x[:,1:] - x[:,:-1]) sy = (h[1:,:] - h[:-1,:]) / (y[1:,:] - y[:-1,:]) # Finding the values of the derivatives sx and sy # at the same location in physical space. sx = 0.5*(sx[1:,:]+sx[:-1,:]) sy = 0.5*(sy[:,1:]+sy[:,:-1]) # Calculating the bottom slope. slope = np.sqrt(sx**2 + sy**2) # Finding the lon,lat coordinates of the # values of the derivatives sx and sy. lons = 0.5*(lon[1:,:]+lon[:-1,:]) lats = 0.5*(lat[1:,:]+lat[:-1,:]) lons = 0.5*(lons[:,1:]+lons[:,:-1]) lats = 0.5*(lats[:,1:]+lats[:,:-1]) return lons, lats, slope def curvature_geometric(x, y): """ USAGE ----- k = curvature_geometric(x, y) Estimates the curvature k of a 2D curve (x,y) using a geometric method. If your curve is given by two arrays, x and y, you can approximate its curvature at each point by the reciprocal of the radius of a circumscribing triangle with that point, the preceding point, and the succeeding point as vertices. The radius of such a triangle is one fourth the product of the three sides divided by its area. The curvature will be positive for curvature to the left and negative for curvature to the right as you advance along the curve. Note that if your data are too closely spaced together or subject to substantial noise errors, this formula will not be very accurate. Author: Roger Stafford Source: http://www.mathworks.com/matlabcentral/newsreader/view_thread/125637 Translated to Python by André Palóczy, January 19, 2015. """ x,y = map(np.asanyarray, (x,y)) x1 = x[:-2]; x2 = x[1:-1]; x3 = x[2:] y1 = y[:-2]; y2 = y[1:-1]; y3 = y[2:] ## a, b, and c are the three sides of the triangle. a = np.sqrt((x3-x2)**2 + (y3-y2)**2) b = np.sqrt((x1-x3)**2 + (y1-y3)**2) c = np.sqrt((x2-x1)**2 + (y2-y1)**2) ## A is the area of the triangle. A = 0.5*(x1*y2 + x2*y3 + x3*y1 - x1*y3 - x2*y1 - x3*y2) ## The reciprocal of the circumscribed radius, i.e., the curvature. k = 4.0*A/(a*b*c) return np.squeeze(k) def get_isobath(lon, lat, topo, iso, cyclic=False, smooth_isobath=False, window_length=21, win_type='barthann', **kw): """ USAGE ----- lon_isob, lat_isob = get_isobath(lon, lat, topo, iso, cyclic=False, smooth_isobath=False, window_length=21, win_type='barthann', **kw) Retrieves the 'lon_isob','lat_isob' coordinates of a wanted 'iso' isobath from a topography array 'topo', with 'lon_topo','lat_topo' coordinates. """ lon, lat, topo = map(np.array, (lon, lat, topo)) fig, ax = plt.subplots() cs = ax.contour(lon, lat, topo, [iso]) coll = cs.collections[0] ## Test all lines to find thel ongest one. ## This is assumed to be the wanted isobath. ncoll = len(coll.get_paths()) siz = np.array([]) for n in range(ncoll): path = coll.get_paths()[n] siz = np.append(siz, path.vertices.shape[0]) f = siz.argmax() xiso = coll.get_paths()[f].vertices[:, 0] yiso = coll.get_paths()[f].vertices[:, 1] plt.close() # Smooth the isobath with a moving window. # Periodize according to window length to avoid losing edges. if smooth_isobath: fleft = window_length//2 fright = -window_length//2 + 1 if cyclic: xl = xiso[:fleft] + 360 xr = xiso[fright:] - 360 yl = yiso[:fleft] yr = yiso[fright:] xiso = np.concatenate((xr, xiso, xl)) yiso = np.concatenate((yr, yiso, yl)) # xiso = rolling_window(xiso, window=window_length, win_type=win_type, center=True, **kw)[fleft:fright] # FIXME # yiso = rolling_window(yiso, window=window_length, win_type=win_type, center=True, **kw)[fleft:fright] # FIXME # else: # xiso = rolling_window(xiso, window=window_length, win_type=win_type, center=True, **kw) # FIXME # yiso = rolling_window(yiso, window=window_length, win_type=win_type, center=True, **kw) # FIXME return xiso, yiso def angle_isobath(lon, lat, h, isobath=100, cyclic=False, smooth_isobath=True, window_length=21, win_type='barthann', plot_map=False, **kw): """ USAGE ----- lon_isob, lat_isob, angle = angle_isobath(lon, lat, h, isobath=100, cyclic=False, smooth_isobath=True, window_length=21, win_type='barthann', plot_map=False, **kw) Returns the coordinates ('lon_isob', 'lat_isob') and the angle an isobath makes with the zonal direction for a topography array 'h' at coordinates ('lon', 'lat'). Defaults to the 100 m isobath. If 'smooth_isobath'==True, smooths the isobath with a rolling window of type 'win_type' and 'window_length' points wide. All keyword arguments are passed to 'pandas.rolling_window()'. If 'plot_map'==True, plots a map showing the isobath (and its soothed version if smooth_isobath==True). """ lon, lat, h = map(np.array, (lon, lat, h)) R = 6371000.0 # Mean radius of the earth in meters (6371 km), from gsw.constants.earth_radius. deg2rad = np.pi/180. # [rad/deg] # Extract isobath coordinates xiso, yiso = get_isobath(lon, lat, h, isobath) if cyclic: # Add cyclic point. xiso = np.append(xiso, xiso[0]) yiso = np.append(yiso, yiso[0]) # Smooth the isobath with a moving window. if smooth_isobath: xiso = rolling_window(xiso, window=window_length, win_type=win_type, **kw) yiso = rolling_window(yiso, window=window_length, win_type=win_type, **kw) # From the coordinates of the isobath, find the angle it forms with the # zonal axis, using points k+1 and k. shth = yiso.size-1 theta = np.zeros(shth) for k in range(shth): dyk = R*(yiso[k+1]-yiso[k]) dxk = R*(xiso[k+1]-xiso[k])*np.cos(yiso[k]*deg2rad) theta[k] = np.arctan2(dyk,dxk) xisom = 0.5*(xiso[1:] + xiso[:-1]) yisom = 0.5*(yiso[1:] + yiso[:-1]) # Plots map showing the extracted isobath. if plot_map: fig, ax = plt.subplots() m = bb_map([lon.min(), lon.max()], [lat.min(), lat.max()], projection='cyl', resolution='h', ax=ax) m.plot(xisom, yisom, color='b', linestyle='-', zorder=3, latlon=True) input("Press any key to continue.") plt.close() return xisom, yisom, theta def isopyc_depth(z, dens0, isopyc=1027.75, dzref=1.): """ USAGE ----- hisopyc = isopyc_depth(z, dens0, isopyc=1027.75) Calculates the spatial distribution of the depth of a specified isopycnal 'isopyc' (defaults to 1027.75 kg/m3) from a 3D density array rho0 (in kg/m3) with shape (nz,ny,nx) and a 1D depth array 'z' (in m) with shape (nz). 'dzref' is the desired resolution for the refined depth array (defaults to 1 m) which is generated for calculating the depth of the isopycnal. The smaller 'dzref', the smoother the resolution of the returned isopycnal depth array 'hisopyc'. """ z, dens0 = map(np.asanyarray, (z, dens0)) ny, nx = dens0.shape[1:] zref = np.arange(z.min(), z.max(), dzref) if np.ma.isMaskedArray(dens0): dens0 = np.ma.filled(dens0, np.nan) hisopyc = np.nan*np.ones((ny,nx)) for j in range(ny): for i in range(nx): dens0ij = dens0[:,j,i] if np.logical_or(np.logical_or(isopyc<np.nanmin(dens0ij), np.nanmax(dens0ij)<isopyc), np.isnan(dens0ij).all()): continue else: dens0ref = np.interp(zref, z, dens0ij) # Refined density profile. dens0refn = near(dens0ref, isopyc) fz=dens0ref==dens0refn try: hisopyc[j,i] = zref[fz] except ValueError: print("Warning: More than 1 (%d) nearest depths found. Using the median of the depths for point (j=%d,i=%d)."%(fz.sum(), j, i)) hisopyc[j,i] = np.nanmedian(zref[fz]) return hisopyc def whiten_zero(x, y, z, ax, cs, n=1, cmap=plt.cm.RdBu_r, zorder=9): """ USAGE ----- whiten_zero(x, y, z, ax, cs, n=1, cmap=plt.cm.RdBu_r, zorder=9) Changes to white the color of the 'n' (defaults to 1) neighboring patches about the zero contour created by a command like 'cs = ax.contourf(x, y, z)'. """ x, y, z = map(np.asanyarray, (x,y,z)) white = (1.,1.,1.) cslevs = cs.levels assert 0. in cslevs f0=np.where(cslevs==0.)[0][0] f0m, f0p = f0-n, f0+n c0m, c0p = cslevs[f0m], cslevs[f0p] ax.contourf(x, y, z, levels=[c0m, c0p], linestyles='none', colors=[white, white], cmap=None, zorder=zorder) def wind2stress(u, v, formula='large_pond1981-modified'): """ USAGE ----- taux,tauy = wind2stress(u, v, formula='mellor2004') Converts u,v wind vector components to taux,tauy wind stress vector components. """ rho_air = 1.226 # kg/m3 mag = np.sqrt(u**2+v**2) # m/s Cd = np.zeros( mag.shape ) # Drag coefficient. if formula=='large_pond1981-modified': # Large and Pond (1981) formula # modified for light winds, as # in Trenberth et al. (1990). f=mag<=1. Cd[f] = 2.18e-3 f=np.logical_and(mag>1.,mag<3.) Cd[f] = (0.62+1.56/mag[f])*1e-3 f=np.logical_and(mag>=3.,mag<10.) Cd[f] = 1.14e-3 f=mag>=10. Cd[f] = (0.49 + 0.065*mag[f])*1e-3 elif formula=='mellor2004': Cd = 7.5e-4 + 6.7e-5*mag else: np.disp('Unknown formula for Cd.') pass # Computing wind stress [N/m2] taux = rho_air*Cd*mag*u tauy = rho_air*Cd*mag*v return taux,tauy def gen_dates(start, end, dt='day', input_datetime=False): """ Returns a list of datetimes within the date range from `start` to `end`, at a `dt` time interval. `dt` can be 'second', 'minute', 'hour', 'day', 'week', 'month' or 'year'. If `input_datetime` is False (default), `start` and `end` must be a date in string form. If `input_datetime` is True, `start` and `end` must be datetime objects. Note ---- Modified from original function by Filipe Fernandes (ocefpaf@gmail.com). Example ------- >>> from ap_tools.utils import gen_dates >>> from datetime import datetime >>> start = '1989-08-19' >>> end = datetime.utcnow().strftime("%Y-%m-%d") >>> gen_dates(start, end, dt='day') """ DT = dict(second=rrule.SECONDLY, minute=rrule.MINUTELY, hour=rrule.HOURLY, day=rrule.DAILY, week=rrule.WEEKLY, month=rrule.MONTHLY, year=rrule.YEARLY) dt = DT[dt] if input_datetime: # Input are datetime objects. No parsing needed. dates = rrule.rrule(dt, dtstart=start, until=end) else: # Input in string form, parse into datetime objects. dates = rrule.rrule(dt, dtstart=parser.parse(start), until=parser.parse(end)) return list(dates) def fmt_isobath(cs, fontsize=8, fmt='%g', inline=True, inline_spacing=7, manual=True, **kw): """ Formats the labels of isobath contours. `manual` is set to `True` by default, but can be `False`, or a tuple/list of tuples with the coordinates of the labels. All options are passed to plt.clabel(). """ isobstrH = plt.clabel(cs, fontsize=fontsize, fmt=fmt, inline=inline, \ inline_spacing=inline_spacing, manual=manual, **kw) for ih in range(0, len(isobstrH)): # Appends 'm' for meters at the end of the label. isobstrh = isobstrH[ih] isobstr = isobstrh.get_text() isobstr = isobstr.replace('-','') + ' m' isobstrh.set_text(isobstr) def float2latex(f, ndigits=1): """ USAGE ----- texstr = float2latex(f, ndigits=1) Converts a float input into a latex-formatted string with 'ndigits' (defaults to 1). Adapted from: http://stackoverflow.com/questions/13490292/format-number-using-latex-notation-in-python """ float_str = "{0:.%se}"%ndigits float_str = float_str.format(f) base, exponent = float_str.split("e") return "${0} \times 10^{{{1}}}$".format(base, int(exponent)) def mat2npz(matname): """ USAGE ----- mat2npz(matname) Extract variables stored in a .mat file, and saves them in a .npz file. """ d = loadmat(matname) _ = d.pop('__header__') _ = d.pop('__globals__') _ = d.pop('__version__') npzname = matname[:-4] + '.npz' np.savez(npzname,**d) return None def bb_map(lons, lats, ax, projection='merc', resolution='i', drawparallels=True, drawmeridians=True): """ USAGE ----- m = bb_map(lons, lats, **kwargs) Returns a Basemap instance with lon,lat bounding limits inferred from the input arrays `lons`,`lats`. Coastlines, countries, states, parallels and meridians are drawn, and continents are filled. """ lons,lats = map(np.asanyarray, (lons,lats)) lonmin,lonmax = lons.min(),lons.max() latmin,latmax = lats.min(),lats.max() m = Basemap(llcrnrlon=lonmin, urcrnrlon=lonmax, llcrnrlat=latmin, urcrnrlat=latmax, projection=projection, resolution=resolution, ax=ax) plt.ioff() # Avoid showing the figure. m.fillcontinents(color='0.9', zorder=9) m.drawcoastlines(zorder=10) m.drawstates(zorder=10) m.drawcountries(linewidth=2.0, zorder=10) m.drawmapboundary(zorder=9999) if drawmeridians: m.drawmeridians(np.arange(np.floor(lonmin), np.ceil(lonmax), 1), linewidth=0.15, labels=[1, 0, 1, 0], zorder=12) if drawparallels: m.drawparallels(np.arange(np.floor(latmin), np.ceil(latmax), 1), linewidth=0.15, labels=[1, 0, 0, 0], zorder=12) plt.ion() return m def dots_dualcolor(x, y, z, thresh=20., color_low='b', color_high='r', marker='o', markersize=5): """ USAGE ----- dots_dualcolor(x, y, z, thresh=20., color_low='b', color_high='r') Plots dots colored with a dual-color criterion, separated by a threshold value. """ ax = plt.gca() # Below-threshold dots. f=z<=thresh ax.plot(x[f], y[f], lw=0, marker=marker, ms=markersize, mfc=color_low, mec=color_low) # Above-threshold dots. f=z>thresh ax.plot(x[f], y[f], lw=0, marker=marker, ms=markersize, mfc=color_high, mec=color_high) if __name__=='__main__': import doctest doctest.testmod()
mit
camallen/aggregation
experimental/condor/animal_EM.py
2
7334
#!/usr/bin/env python __author__ = 'greghines' import numpy as np import os import pymongo import sys import cPickle as pickle import bisect import csv import matplotlib.pyplot as plt import random import math import urllib import matplotlib.cbook as cbook def index(a, x): 'Locate the leftmost value exactly equal to x' i = bisect.bisect_left(a, x) if i != len(a) and a[i] == x: return i raise ValueError if os.path.exists("/home/ggdhines"): sys.path.append("/home/ggdhines/PycharmProjects/reduction/experimental/clusteringAlg") sys.path.append("/home/ggdhines/PycharmProjects/reduction/experimental/classifier") else: sys.path.append("/home/greg/github/reduction/experimental/clusteringAlg") sys.path.append("/home/greg/github/reduction/experimental/classifier") #from divisiveDBSCAN import DivisiveDBSCAN from divisiveDBSCAN_multi import DivisiveDBSCAN from divisiveKmeans import DivisiveKmeans from iterativeEM import IterativeEM if os.path.exists("/home/ggdhines"): base_directory = "/home/ggdhines" else: base_directory = "/home/greg" client = pymongo.MongoClient() db = client['condor_2014-11-23'] classification_collection = db["condor_classifications"] subject_collection = db["condor_subjects"] big_userList = [] big_subjectList = [] animal_count = 0 f = open(base_directory+"/Databases/condor_ibcc.csv","wb") f.write("a,b,c\n") alreadyDone = [] animals_in_image = {} animal_index = -1 global_user_list = [] animal_to_image = [] zooniverse_list = [] condor_votes = {} animal_votes = {} #subject_vote = {} results = [] to_sample_from = list(subject_collection.find({"state":"complete"})) to_sample_from2 = list(subject_collection.find({"classification_count":1,"state":"active"})) votes = [] sample = random.sample(to_sample_from,100) #sample.extend(random.sample(to_sample_from2,1000)) # for subject_index,subject in enumerate(sample): # print "== " + str(subject_index) # zooniverse_id = subject["zooniverse_id"] # for user_index,classification in enumerate(classification_collection.find({"subjects.zooniverse_id":zooniverse_id})): # if "user_name" in classification: # user = classification["user_name"] # else: # user = classification["user_ip"] # # try: # tt = index(big_userList,user) # except ValueError: # bisect.insort(big_userList,user) for subject_index,subject in enumerate(sample): print subject_index zooniverse_id = subject["zooniverse_id"] annotation_list = [] user_list = [] animal_list = [] #local_users = [] for user_index,classification in enumerate(classification_collection.find({"subjects.zooniverse_id":zooniverse_id})): try: mark_index = [ann.keys() for ann in classification["annotations"]].index(["marks",]) markings = classification["annotations"][mark_index].values()[0] if "user_name" in classification: user = classification["user_name"] else: user = classification["user_ip"] found_condor = False for animal in markings.values(): scale = 1.875 x = scale*float(animal["x"]) y = scale*float(animal["y"]) animal_type = animal["animal"] if not(animal_type in ["carcassOrScale","carcass"]): annotation_list.append((x,y)) #print annotation_list user_list.append(user) animal_list.append(animal_type) if not(user in global_user_list): global_user_list.append(user) #local_users.append(user) if animal_type == "condor": found_condor = True except (ValueError,KeyError): pass #if there were any markings on the image, use divisive kmeans to cluster the points so that each #cluster represents an image if annotation_list != []: user_identified,clusters = DivisiveKmeans(3).fit2(annotation_list,user_list,debug=True) #fix split clusters if necessary if user_identified != []: user_identified,clusters = DivisiveKmeans(3).__fix__(user_identified,clusters,annotation_list,user_list,200) for center,c in zip(user_identified,clusters): animal_index += 1 #animal_votes.append([]) animal_to_image.append(zooniverse_id) if not(zooniverse_id in animals_in_image): animals_in_image[zooniverse_id] = [animal_index] else: animals_in_image[zooniverse_id].append(animal_index) results.append((zooniverse_id,center)) for pt in c: pt_index = annotation_list.index(pt) user_index = global_user_list.index(user_list[pt_index]) animal_type = animal_list[annotation_list.index(pt)] if animal_type == "condor": votes.append((user_index,animal_index,1)) if not(animal_index in animal_votes): animal_votes[animal_index] = [1] else: animal_votes[animal_index].append(1) else: votes.append((user_index,animal_index,0)) if not(animal_index in animal_votes): animal_votes[animal_index] = [0] else: animal_votes[animal_index].append(0) print "=====---" #print votes classify = IterativeEM() classify.__classify__(votes) most_likely = classify.__getMostLikely__() estimates = classify.__getEstimates__() X = [] Y = [] X2 = [] Y2 = [] #for subject_index,zooniverse_id in enumerate(big_subjectList): for ii in range(animal_index): x = np.mean(animal_votes[ii]) y = estimates[ii][1] X.append(x) Y.append(y) if math.fabs(x-y) > 0.3: zooniverse_id,(centerX,centerY) = results[ii] print x,y subject = subject_collection.find_one({"zooniverse_id":zooniverse_id}) url = subject["location"]["standard"] slash_index = url.rfind("/") object_id = url[slash_index+1:] if not(os.path.isfile(base_directory+"/Databases/condors/images/"+object_id)): urllib.urlretrieve (url, base_directory+"/Databases/condors/images/"+object_id) image_file = cbook.get_sample_data(base_directory+"/Databases/condors/images/"+object_id) image = plt.imread(image_file) fig, ax = plt.subplots() im = ax.imshow(image) plt.plot([centerX,],[centerY,],'o') plt.show() # #if ((x < 0.5) and (y > 0.5)) or ((x > 0.5) and (y < 0.5)): # subject = subject_collection.find_one({"zooniverse_id":zooniverse_id}) # print x,y # print subject["location"]["standard"] # #print most_likely[subject_index],estimates[subject_index],np.mean(subject_vote[zooniverse_id]) #else: # print estimates[subject_index],0 plt.plot(X,Y,'.',color="blue") plt.plot(X2,Y2,'.',color="red") plt.xlim((-0.05,1.05)) plt.ylim((-0.05,1.05)) plt.show()
apache-2.0
ominux/scikit-learn
examples/linear_model/plot_sgd_iris.py
4
2171
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print __doc__ import numpy as np import pylab as pl from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) pl.set_cmap(pl.cm.Paired) # Plot the decision boundary. For that, we will asign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) pl.set_cmap(pl.cm.Paired) cs = pl.contourf(xx, yy, Z) pl.axis('tight') # Plot also the training points for i, color in zip(clf.classes, colors): idx = np.where(y == i) pl.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i]) pl.title("Decision surface of multi-class SGD") pl.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = pl.xlim() ymin, ymax = pl.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] pl.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes, colors): plot_hyperplane(i, color) pl.legend() pl.show()
bsd-3-clause
HyperloopTeam/FullOpenMDAO
lib/python2.7/site-packages/mpl_toolkits/axisartist/grid_helper_curvelinear.py
18
26105
""" An experimental support for curvilinear grid. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import zip from itertools import chain from .grid_finder import GridFinder from .axislines import AxisArtistHelper, GridHelperBase from .axis_artist import AxisArtist from matplotlib.transforms import Affine2D, IdentityTransform import numpy as np from matplotlib.path import Path class FixedAxisArtistHelper(AxisArtistHelper.Fixed): """ Helper class for a fixed axis. """ def __init__(self, grid_helper, side, nth_coord_ticks=None): """ nth_coord = along which coordinate value varies. nth_coord = 0 -> x axis, nth_coord = 1 -> y axis """ super(FixedAxisArtistHelper, self).__init__( \ loc=side, ) self.grid_helper = grid_helper if nth_coord_ticks is None: nth_coord_ticks = self.nth_coord self.nth_coord_ticks = nth_coord_ticks self.side = side self._limits_inverted = False def update_lim(self, axes): self.grid_helper.update_lim(axes) if self.nth_coord == 0: xy1, xy2 = axes.get_ylim() else: xy1, xy2 = axes.get_xlim() if xy1 > xy2: self._limits_inverted = True else: self._limits_inverted = False def change_tick_coord(self, coord_number=None): if coord_number is None: self.nth_coord_ticks = 1 - self.nth_coord_ticks elif coord_number in [0, 1]: self.nth_coord_ticks = coord_number else: raise Exception("wrong coord number") def get_tick_transform(self, axes): return axes.transData def get_tick_iterators(self, axes): """tick_loc, tick_angle, tick_label""" g = self.grid_helper if self._limits_inverted: side = {"left":"right","right":"left", "top":"bottom", "bottom":"top"}[self.side] else: side = self.side ti1 = g.get_tick_iterator(self.nth_coord_ticks, side) ti2 = g.get_tick_iterator(1-self.nth_coord_ticks, side, minor=True) #ti2 = g.get_tick_iterator(1-self.nth_coord_ticks, self.side, minor=True) return chain(ti1, ti2), iter([]) class FloatingAxisArtistHelper(AxisArtistHelper.Floating): def __init__(self, grid_helper, nth_coord, value, axis_direction=None): """ nth_coord = along which coordinate value varies. nth_coord = 0 -> x axis, nth_coord = 1 -> y axis """ super(FloatingAxisArtistHelper, self).__init__(nth_coord, value, ) self.value = value self.grid_helper = grid_helper self._extremes = None, None self._get_line_path = None # a method that returns a Path. self._line_num_points = 100 # number of points to create a line def set_extremes(self, e1, e2): self._extremes = e1, e2 def update_lim(self, axes): self.grid_helper.update_lim(axes) x1, x2 = axes.get_xlim() y1, y2 = axes.get_ylim() grid_finder = self.grid_helper.grid_finder extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy, x1, y1, x2, y2) extremes = list(extremes) e1, e2 = self._extremes # ranges of other coordinates if self.nth_coord == 0: if e1 is not None: extremes[2] = max(e1, extremes[2]) if e2 is not None: extremes[3] = min(e2, extremes[3]) elif self.nth_coord == 1: if e1 is not None: extremes[0] = max(e1, extremes[0]) if e2 is not None: extremes[1] = min(e2, extremes[1]) grid_info = dict() lon_min, lon_max, lat_min, lat_max = extremes lon_levs, lon_n, lon_factor = \ grid_finder.grid_locator1(lon_min, lon_max) lat_levs, lat_n, lat_factor = \ grid_finder.grid_locator2(lat_min, lat_max) grid_info["extremes"] = extremes grid_info["lon_info"] = lon_levs, lon_n, lon_factor grid_info["lat_info"] = lat_levs, lat_n, lat_factor grid_info["lon_labels"] = grid_finder.tick_formatter1("bottom", lon_factor, lon_levs) grid_info["lat_labels"] = grid_finder.tick_formatter2("bottom", lat_factor, lat_levs) grid_finder = self.grid_helper.grid_finder #e1, e2 = self._extremes # ranges of other coordinates if self.nth_coord == 0: xx0 = np.linspace(self.value, self.value, self._line_num_points) yy0 = np.linspace(extremes[2], extremes[3], self._line_num_points) xx, yy = grid_finder.transform_xy(xx0, yy0) elif self.nth_coord == 1: xx0 = np.linspace(extremes[0], extremes[1], self._line_num_points) yy0 = np.linspace(self.value, self.value, self._line_num_points) xx, yy = grid_finder.transform_xy(xx0, yy0) grid_info["line_xy"] = xx, yy self.grid_info = grid_info def get_axislabel_transform(self, axes): return Affine2D() #axes.transData def get_axislabel_pos_angle(self, axes): extremes = self.grid_info["extremes"] if self.nth_coord == 0: xx0 = self.value yy0 = (extremes[2]+extremes[3])/2. dxx, dyy = 0., abs(extremes[2]-extremes[3])/1000. elif self.nth_coord == 1: xx0 = (extremes[0]+extremes[1])/2. yy0 = self.value dxx, dyy = abs(extremes[0]-extremes[1])/1000., 0. grid_finder = self.grid_helper.grid_finder xx1, yy1 = grid_finder.transform_xy([xx0], [yy0]) trans_passingthrough_point = axes.transData + axes.transAxes.inverted() p = trans_passingthrough_point.transform_point([xx1[0], yy1[0]]) if (0. <= p[0] <= 1.) and (0. <= p[1] <= 1.): xx1c, yy1c = axes.transData.transform_point([xx1[0], yy1[0]]) xx2, yy2 = grid_finder.transform_xy([xx0+dxx], [yy0+dyy]) xx2c, yy2c = axes.transData.transform_point([xx2[0], yy2[0]]) return (xx1c, yy1c), np.arctan2(yy2c-yy1c, xx2c-xx1c)/np.pi*180. else: return None, None def get_tick_transform(self, axes): return IdentityTransform() #axes.transData def get_tick_iterators(self, axes): """tick_loc, tick_angle, tick_label, (optionally) tick_label""" grid_finder = self.grid_helper.grid_finder lat_levs, lat_n, lat_factor = self.grid_info["lat_info"] lat_levs = np.asarray(lat_levs) if lat_factor is not None: yy0 = lat_levs / lat_factor dy = 0.01 / lat_factor else: yy0 = lat_levs dy = 0.01 lon_levs, lon_n, lon_factor = self.grid_info["lon_info"] lon_levs = np.asarray(lon_levs) if lon_factor is not None: xx0 = lon_levs / lon_factor dx = 0.01 / lon_factor else: xx0 = lon_levs dx = 0.01 if None in self._extremes: e0, e1 = self._extremes else: e0, e1 = sorted(self._extremes) if e0 is None: e0 = -np.inf if e1 is None: e1 = np.inf if self.nth_coord == 0: mask = (e0 <= yy0) & (yy0 <= e1) #xx0, yy0 = xx0[mask], yy0[mask] yy0 = yy0[mask] elif self.nth_coord == 1: mask = (e0 <= xx0) & (xx0 <= e1) #xx0, yy0 = xx0[mask], yy0[mask] xx0 = xx0[mask] def transform_xy(x, y): x1, y1 = grid_finder.transform_xy(x, y) x2y2 = axes.transData.transform(np.array([x1, y1]).transpose()) x2, y2 = x2y2.transpose() return x2, y2 # find angles if self.nth_coord == 0: xx0 = np.empty_like(yy0) xx0.fill(self.value) xx1, yy1 = transform_xy(xx0, yy0) xx00 = xx0.copy() xx00[xx0+dx>e1] -= dx xx1a, yy1a = transform_xy(xx00, yy0) xx1b, yy1b = transform_xy(xx00+dx, yy0) xx2a, yy2a = transform_xy(xx0, yy0) xx2b, yy2b = transform_xy(xx0, yy0+dy) labels = self.grid_info["lat_labels"] labels = [l for l, m in zip(labels, mask) if m] elif self.nth_coord == 1: yy0 = np.empty_like(xx0) yy0.fill(self.value) xx1, yy1 = transform_xy(xx0, yy0) xx1a, yy1a = transform_xy(xx0, yy0) xx1b, yy1b = transform_xy(xx0, yy0+dy) xx00 = xx0.copy() xx00[xx0+dx>e1] -= dx xx2a, yy2a = transform_xy(xx00, yy0) xx2b, yy2b = transform_xy(xx00+dx, yy0) labels = self.grid_info["lon_labels"] labels = [l for l, m in zip(labels, mask) if m] def f1(): dd = np.arctan2(yy1b-yy1a, xx1b-xx1a) # angle normal dd2 = np.arctan2(yy2b-yy2a, xx2b-xx2a) # angle tangent mm = ((yy1b-yy1a)==0.) & ((xx1b-xx1a)==0.) # mask where dd1 is not defined dd[mm] = dd2[mm]+3.14159/2. #dd = np.arctan2(yy2-yy1, xx2-xx1) # angle normal #dd2 = np.arctan2(yy3-yy1, xx3-xx1) # angle tangent #mm = ((yy2-yy1)==0.) & ((xx2-xx1)==0.) # mask where dd1 is not defined #dd[mm] = dd2[mm]+3.14159/2. #dd += 3.14159 #dd = np.arctan2(xx2-xx1, angle_tangent-yy1) trans_tick = self.get_tick_transform(axes) tr2ax = trans_tick + axes.transAxes.inverted() for x, y, d, d2, lab in zip(xx1, yy1, dd, dd2, labels): c2 = tr2ax.transform_point((x, y)) delta=0.00001 if (0. -delta<= c2[0] <= 1.+delta) and \ (0. -delta<= c2[1] <= 1.+delta): d1 = d/3.14159*180. d2 = d2/3.14159*180. yield [x, y], d1, d2, lab return f1(), iter([]) def get_line_transform(self, axes): return axes.transData def get_line(self, axes): self.update_lim(axes) x, y = self.grid_info["line_xy"] if self._get_line_path is None: return Path(list(zip(x, y))) else: return self._get_line_path(axes, x, y) class GridHelperCurveLinear(GridHelperBase): def __init__(self, aux_trans, extreme_finder=None, grid_locator1=None, grid_locator2=None, tick_formatter1=None, tick_formatter2=None): """ aux_trans : a transform from the source (curved) coordinate to target (rectilinear) coordinate. An instance of MPL's Transform (inverse transform should be defined) or a tuple of two callable objects which defines the transform and its inverse. The callables need take two arguments of array of source coordinates and should return two target coordinates: e.g., x2, y2 = trans(x1, y1) """ super(GridHelperCurveLinear, self).__init__() self.grid_info = None self._old_values = None #self._grid_params = dict() self._aux_trans = aux_trans self.grid_finder = GridFinder(aux_trans, extreme_finder, grid_locator1, grid_locator2, tick_formatter1, tick_formatter2) def update_grid_finder(self, aux_trans=None, **kw): if aux_trans is not None: self.grid_finder.update_transform(aux_trans) self.grid_finder.update(**kw) self.invalidate() def _update(self, x1, x2, y1, y2): "bbox in 0-based image coordinates" # update wcsgrid if self.valid() and self._old_values == (x1, x2, y1, y2): return self._update_grid(x1, y1, x2, y2) self._old_values = (x1, x2, y1, y2) self._force_update = False def new_fixed_axis(self, loc, nth_coord=None, axis_direction=None, offset=None, axes=None): if axes is None: axes = self.axes if axis_direction is None: axis_direction = loc _helper = FixedAxisArtistHelper(self, loc, #nth_coord, nth_coord_ticks=nth_coord, ) axisline = AxisArtist(axes, _helper, axis_direction=axis_direction) return axisline def new_floating_axis(self, nth_coord, value, axes=None, axis_direction="bottom" ): if axes is None: axes = self.axes _helper = FloatingAxisArtistHelper( \ self, nth_coord, value, axis_direction) axisline = AxisArtist(axes, _helper) #_helper = FloatingAxisArtistHelper(self, nth_coord, # value, # label_direction=label_direction, # ) #axisline = AxisArtistFloating(axes, _helper, # axis_direction=axis_direction) axisline.line.set_clip_on(True) axisline.line.set_clip_box(axisline.axes.bbox) #axisline.major_ticklabels.set_visible(True) #axisline.minor_ticklabels.set_visible(False) #axisline.major_ticklabels.set_rotate_along_line(True) #axisline.set_rotate_label_along_line(True) return axisline def _update_grid(self, x1, y1, x2, y2): self.grid_info = self.grid_finder.get_grid_info(x1, y1, x2, y2) def get_gridlines(self, which="major", axis="both"): grid_lines = [] if axis in ["both", "x"]: for gl in self.grid_info["lon"]["lines"]: grid_lines.extend(gl) if axis in ["both", "y"]: for gl in self.grid_info["lat"]["lines"]: grid_lines.extend(gl) return grid_lines def get_tick_iterator(self, nth_coord, axis_side, minor=False): #axisnr = dict(left=0, bottom=1, right=2, top=3)[axis_side] angle_tangent = dict(left=90, right=90, bottom=0, top=0)[axis_side] #angle = [0, 90, 180, 270][axisnr] lon_or_lat = ["lon", "lat"][nth_coord] if not minor: # major ticks def f(): for (xy, a), l in zip(self.grid_info[lon_or_lat]["tick_locs"][axis_side], self.grid_info[lon_or_lat]["tick_labels"][axis_side]): angle_normal = a yield xy, angle_normal, angle_tangent, l else: def f(): for (xy, a), l in zip(self.grid_info[lon_or_lat]["tick_locs"][axis_side], self.grid_info[lon_or_lat]["tick_labels"][axis_side]): angle_normal = a yield xy, angle_normal, angle_tangent, "" #for xy, a, l in self.grid_info[lon_or_lat]["ticks"][axis_side]: # yield xy, a, "" return f() def test3(): import numpy as np from matplotlib.transforms import Transform from matplotlib.path import Path class MyTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Aitoff transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Aitoff space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): x = ll[:, 0:1] y = ll[:, 1:2] return np.concatenate((x, y-x), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return MyTransformInv(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class MyTransformInv(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, ll): x = ll[:, 0:1] y = ll[:, 1:2] return np.concatenate((x, y+x), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return MyTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() tr = MyTransform(1) grid_helper = GridHelperCurveLinear(tr) from mpl_toolkits.axes_grid1.parasite_axes import host_subplot_class_factory from .axislines import Axes SubplotHost = host_subplot_class_factory(Axes) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) fig.add_subplot(ax1) ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") ax1.parasites.append(ax2) ax2.plot([3, 6], [5.0, 10.]) ax1.set_aspect(1.) ax1.set_xlim(0, 10) ax1.set_ylim(0, 10) ax1.grid(True) plt.draw() def curvelinear_test2(fig): """ polar projection, but in a rectangular box. """ global ax1 import numpy as np from . import angle_helper from matplotlib.projections import PolarAxes from matplotlib.transforms import Affine2D from mpl_toolkits.axes_grid.parasite_axes import SubplotHost, \ ParasiteAxesAuxTrans import matplotlib.cbook as cbook # PolarAxes.PolarTransform takes radian. However, we want our coordinate # system in degree tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform() # polar projection, which involves cycle, and also has limits in # its coordinates, needs a special method to find the extremes # (min, max of the coordinate within the view). # 20, 20 : number of sampling points along x, y direction extreme_finder = angle_helper.ExtremeFinderCycle(20, 20, lon_cycle = 360, lat_cycle = None, lon_minmax = None, lat_minmax = (0, np.inf), ) grid_locator1 = angle_helper.LocatorDMS(5) # Find a grid values appropriate for the coordinate (degree, # minute, second). tick_formatter1 = angle_helper.FormatterDMS() # And also uses an appropriate formatter. Note that,the # acceptable Locator and Formatter class is a bit different than # that of mpl's, and you cannot directly use mpl's Locator and # Formatter here (but may be possible in the future). grid_helper = GridHelperCurveLinear(tr, extreme_finder=extreme_finder, grid_locator1=grid_locator1, tick_formatter1=tick_formatter1 ) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) # make ticklabels of right and top axis visible. ax1.axis["right"].major_ticklabels.set_visible(True) ax1.axis["top"].major_ticklabels.set_visible(True) # let right axis shows ticklabels for 1st coordinate (angle) ax1.axis["right"].get_helper().nth_coord_ticks=0 # let bottom axis shows ticklabels for 2nd coordinate (radius) ax1.axis["bottom"].get_helper().nth_coord_ticks=1 fig.add_subplot(ax1) grid_helper = ax1.get_grid_helper() ax1.axis["lat"] = axis = grid_helper.new_floating_axis(0, 60, axes=ax1) axis.label.set_text("Test") axis.label.set_visible(True) #axis._extremes = 2, 10 #axis.label.set_text("Test") #axis.major_ticklabels.set_visible(False) #axis.major_ticks.set_visible(False) axis.get_helper()._extremes=2, 10 ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 6, axes=ax1) #axis.major_ticklabels.set_visible(False) #axis.major_ticks.set_visible(False) axis.label.set_text("Test 2") axis.get_helper()._extremes=-180, 90 # A parasite axes with given transform ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") # note that ax2.transData == tr + ax1.transData # Anthing you draw in ax2 will match the ticks and grids of ax1. ax1.parasites.append(ax2) intp = cbook.simple_linear_interpolation ax2.plot(intp(np.array([0, 30]), 50), intp(np.array([10., 10.]), 50)) ax1.set_aspect(1.) ax1.set_xlim(-5, 12) ax1.set_ylim(-5, 10) ax1.grid(True) def curvelinear_test3(fig): """ polar projection, but in a rectangular box. """ global ax1, axis import numpy as np from . import angle_helper from matplotlib.projections import PolarAxes from matplotlib.transforms import Affine2D from mpl_toolkits.axes_grid.parasite_axes import SubplotHost # PolarAxes.PolarTransform takes radian. However, we want our coordinate # system in degree tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform() # polar projection, which involves cycle, and also has limits in # its coordinates, needs a special method to find the extremes # (min, max of the coordinate within the view). # 20, 20 : number of sampling points along x, y direction extreme_finder = angle_helper.ExtremeFinderCycle(20, 20, lon_cycle = 360, lat_cycle = None, lon_minmax = None, lat_minmax = (0, np.inf), ) grid_locator1 = angle_helper.LocatorDMS(12) # Find a grid values appropriate for the coordinate (degree, # minute, second). tick_formatter1 = angle_helper.FormatterDMS() # And also uses an appropriate formatter. Note that,the # acceptable Locator and Formatter class is a bit different than # that of mpl's, and you cannot directly use mpl's Locator and # Formatter here (but may be possible in the future). grid_helper = GridHelperCurveLinear(tr, extreme_finder=extreme_finder, grid_locator1=grid_locator1, tick_formatter1=tick_formatter1 ) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) for axis in list(six.itervalues(ax1.axis)): axis.set_visible(False) fig.add_subplot(ax1) grid_helper = ax1.get_grid_helper() ax1.axis["lat1"] = axis = grid_helper.new_floating_axis(0, 130, axes=ax1, axis_direction="left" ) axis.label.set_text("Test") axis.label.set_visible(True) axis.get_helper()._extremes=0.001, 10 grid_helper = ax1.get_grid_helper() ax1.axis["lat2"] = axis = grid_helper.new_floating_axis(0, 50, axes=ax1, axis_direction="right") axis.label.set_text("Test") axis.label.set_visible(True) axis.get_helper()._extremes=0.001, 10 ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 10, axes=ax1, axis_direction="bottom") axis.label.set_text("Test 2") axis.get_helper()._extremes= 50, 130 axis.major_ticklabels.set_axis_direction("top") axis.label.set_axis_direction("top") grid_helper.grid_finder.grid_locator1.den = 5 grid_helper.grid_finder.grid_locator2._nbins = 5 # # A parasite axes with given transform # ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") # # note that ax2.transData == tr + ax1.transData # # Anthing you draw in ax2 will match the ticks and grids of ax1. # ax1.parasites.append(ax2) # intp = cbook.simple_linear_interpolation # ax2.plot(intp(np.array([0, 30]), 50), # intp(np.array([10., 10.]), 50)) ax1.set_aspect(1.) ax1.set_xlim(-5, 12) ax1.set_ylim(-5, 10) ax1.grid(True) if __name__ == "__main__": import matplotlib.pyplot as plt fig = plt.figure(1, figsize=(5, 5)) fig.clf() #test3() #curvelinear_test2(fig) curvelinear_test3(fig) #plt.draw() plt.show()
gpl-2.0
vshtanko/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
soleneulmer/atmos
indicators_molec.py
1
4324
# =================================== # CALCULATES Ioff and Ires # Indicators described in Molecfit II # # Solene 20.09.2016 # =================================== # import numpy as np from astropy.io import fits import matplotlib.pyplot as plt # from PyAstronomy import pyasl from scipy.interpolate import interp1d from scipy.interpolate import InterpolatedUnivariateSpline from scipy import stats # from sklearn.metrics import mean_squared_error # from math import sqrt # from numpy import linalg as LA # MOLECFIT # file_molecfit = '/home/solene/atmos/For_Solene/1203nm/output/molecfit_crires_solene_tac.fits' hdu_molecfit = fits.open(file_molecfit) data_molecfit = hdu_molecfit[1].data cols_molecfit = hdu_molecfit[1].columns # cols_molecfit.info() rawwl_molecfit = data_molecfit.field('mlambda') wl_molecfit = rawwl_molecfit*10e2 trans_molecfit = data_molecfit.field('mtrans') cflux_molecfit = data_molecfit.field('cflux') # TELFIT # file_telfit = '/home/solene/atmos/trans_telfit.txt' wl_telfit, trans_telfit, wl_datatelfit, flux_datatelfit = np.loadtxt( file_telfit, unpack=True) # Interpolation f_molecfit = interp1d(wl_molecfit, cflux_molecfit, kind='cubic') ftrans_molecfit = interp1d(wl_molecfit, trans_molecfit, kind='cubic') # f_tapas = interp1d(wlcorr_tapas, trans_tapas) # **1** BINNED DATA # 3 delta-lambda = 0.036 # Mean and std deviation of bins on the telluric CORRECTED spectrum fluxmean_bin_means, bin_edges, binnumber = stats.binned_statistic( wl_datatelfit, f_molecfit(wl_datatelfit), statistic='mean', bins=np.floor((wl_datatelfit[-1]-wl_datatelfit[0])/0.036)) fluxstd_bin_means, _, _ = stats.binned_statistic( wl_datatelfit, f_molecfit(wl_datatelfit), statistic=np.std, bins=np.floor((wl_datatelfit[-1]-wl_datatelfit[0])/0.036)) bin_width = (bin_edges[1] - bin_edges[0]) bin_centers = bin_edges[1:] - bin_width/2 # **2** Bins where average TRANSMISSION is > 0.99 flux_trans_mean_bin_means, _, _ = stats.binned_statistic( wl_datatelfit, ftrans_molecfit(wl_datatelfit), statistic='mean', bins=np.floor((wl_datatelfit[-1]-wl_datatelfit[0])/0.036)) # cont_bin_means = flux_trans_mean_bin_means[flux_trans_mean_bin_means > 0.99] ind_cont = np.where(flux_trans_mean_bin_means > 0.99) ind_out = np.where((flux_trans_mean_bin_means < 0.95) & (flux_trans_mean_bin_means > 0.1)) # plt.plot(bin_centers[ind_cont], flux_trans_mean_bin_means[ind_cont], 'kx') # **3** Interpolation of the continuum cubic # f_cont = interp1d(bin_centers[ind_cont], flux_trans_mean_bin_means[ind_cont], kind='cubic') # Extrapolation with constant value spline f_cont = InterpolatedUnivariateSpline( bin_centers[ind_cont], flux_trans_mean_bin_means[ind_cont], ext=3) # bbox=[bin_centers[ind_cont][0], bin_centers[ind_cont][-1]], # **5** Subtract cont to mean flux # and Divide offset and std by interpolated continuum mean value sys_offset = (fluxmean_bin_means - f_cont(bin_centers)) / f_cont(bin_centers) flux_std = fluxstd_bin_means / f_cont(bin_centers) # **6** independant WL = Divide by average absorption absorp_molecfit = 1 - flux_trans_mean_bin_means sys_offset_final = sys_offset / absorp_molecfit flux_std_final = flux_std / absorp_molecfit plt.figure(1) plt.plot(wl_datatelfit, flux_datatelfit, 'b.-', label='Raw data') # plt.hlines(flux_bin_means, bin_edges[:-1], # bin_edges[1:], colors='g', lw=5, label='binned statistic of data') plt.plot(bin_centers, fluxmean_bin_means, 'rx-', label='Mean binned data') plt.plot(bin_centers, fluxstd_bin_means, 'kx-', label='Standard deviation binned data') plt.legend() plt.figure(2) plt.plot(wl_datatelfit, flux_datatelfit, 'g.-', label='Data 2nd detector') plt.plot(wl_molecfit, trans_molecfit, 'r-', label='Molecfit') plt.plot(wl_datatelfit, f_molecfit(wl_datatelfit), 'b-', label='Corrected data - Molecfit') plt.plot(wl_datatelfit, f_cont(wl_datatelfit), 'k-', label='Interpolated Continuum') plt.plot(sys_offset_final[ind_out], flux_std_final[ind_out], 'kx') plt.plot(flux_trans_mean_bin_means[ind_out], sys_offset_final[ind_out], 'kx', label='Ioff vs Transmission') plt.plot(flux_trans_mean_bin_means[ind_out], flux_std_final[ind_out], 'r.', label='Ires vs Transmission') plt.xlabel('Wavelength (nm)') plt.ylabel('Transmission') plt.legend(loc=3.) plt.show()
mit
allenlavoie/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/pandas_io.py
28
5024
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Methods to allow pandas.DataFrame (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.estimator.inputs.pandas_io import pandas_input_fn as core_pandas_input_fn from tensorflow.python.util.deprecation import deprecated try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False PANDAS_DTYPES = { 'int8': 'int', 'int16': 'int', 'int32': 'int', 'int64': 'int', 'uint8': 'int', 'uint16': 'int', 'uint32': 'int', 'uint64': 'int', 'float16': 'float', 'float32': 'float', 'float64': 'float', 'bool': 'i' } @deprecated(None, 'Please use tf.estimator.inputs.pandas_input_fn') def pandas_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=True, queue_capacity=1000, num_threads=1, target_column='target'): """This input_fn diffs from the core version with default `shuffle`.""" return core_pandas_input_fn(x=x, y=y, batch_size=batch_size, shuffle=shuffle, num_epochs=num_epochs, queue_capacity=queue_capacity, num_threads=num_threads, target_column=target_column) @deprecated(None, 'Please access pandas data directly.') def extract_pandas_data(data): """Extract data from pandas.DataFrame for predictors. Given a DataFrame, will extract the values and cast them to float. The DataFrame is expected to contain values of type int, float or bool. Args: data: `pandas.DataFrame` containing the data to be extracted. Returns: A numpy `ndarray` of the DataFrame's values as floats. Raises: ValueError: if data contains types other than int, float or bool. """ if not isinstance(data, pd.DataFrame): return data bad_data = [column for column in data if data[column].dtype.name not in PANDAS_DTYPES] if not bad_data: return data.values.astype('float') else: error_report = [("'" + str(column) + "' type='" + data[column].dtype.name + "'") for column in bad_data] raise ValueError('Data types for extracting pandas data must be int, ' 'float, or bool. Found: ' + ', '.join(error_report)) @deprecated(None, 'Please access pandas data directly.') def extract_pandas_matrix(data): """Extracts numpy matrix from pandas DataFrame. Args: data: `pandas.DataFrame` containing the data to be extracted. Returns: A numpy `ndarray` of the DataFrame's values. """ if not isinstance(data, pd.DataFrame): return data return data.as_matrix() @deprecated(None, 'Please access pandas data directly.') def extract_pandas_labels(labels): """Extract data from pandas.DataFrame for labels. Args: labels: `pandas.DataFrame` or `pandas.Series` containing one column of labels to be extracted. Returns: A numpy `ndarray` of labels from the DataFrame. Raises: ValueError: if more than one column is found or type is not int, float or bool. """ if isinstance(labels, pd.DataFrame): # pandas.Series also belongs to DataFrame if len(labels.columns) > 1: raise ValueError('Only one column for labels is allowed.') bad_data = [column for column in labels if labels[column].dtype.name not in PANDAS_DTYPES] if not bad_data: return labels.values else: error_report = ["'" + str(column) + "' type=" + str(labels[column].dtype.name) for column in bad_data] raise ValueError('Data types for extracting labels must be int, ' 'float, or bool. Found: ' + ', '.join(error_report)) else: return labels
apache-2.0
sysid/kg
quora/Ensemble_CNN_TD_Quora.py
1
12948
# coding: utf-8 # In[1]: import pandas as pd import numpy as np import nltk from nltk.corpus import stopwords from nltk.stem import SnowballStemmer import re from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt # In[2]: train = pd.read_csv("../input/train.csv") test = pd.read_csv("../input/test.csv") # In[3]: train.head() # In[4]: test.head() # In[5]: print(train.shape) print(test.shape) # In[6]: print(train.isnull().sum()) print(test.isnull().sum()) # In[7]: train = train.fillna('empty') test = test.fillna('empty') # In[8]: print(train.isnull().sum()) print(test.isnull().sum()) # In[9]: test.head() # In[10]: for i in range(6): print(train.question1[i]) print(train.question2[i]) print() # In[17]: def text_to_wordlist(text, remove_stopwords=False, stem_words=False): # Clean the text, with the option to remove stopwords and to stem words. # Convert words to lower case and split them text = text.lower().split() # Optionally remove stop words (true by default) if remove_stopwords: stops = set(stopwords.words("english")) text = [w for w in text if not w in stops] text = " ".join(text) # Clean the text text = re.sub(r"[^A-Za-z0-9^,!.\'+-=]", " ", text) text = re.sub(r"\'s", " 's ", text) text = re.sub(r"\'ve", " have ", text) text = re.sub(r"can't", " cannot ", text) text = re.sub(r"n't", " not ", text) text = re.sub(r"\'re", " are ", text) text = re.sub(r"\'d", " would ", text) text = re.sub(r"\'ll", " will ", text) text = re.sub(r",", " ", text) text = re.sub(r"\.", " ", text) text = re.sub(r"!", " ! ", text) text = re.sub(r"\^", " ^ ", text) text = re.sub(r"\+", " + ", text) text = re.sub(r"\-", " - ", text) text = re.sub(r"\=", " = ", text) text = re.sub(r"\s{2,}", " ", text) # Shorten words to their stems if stem_words: text = text.split() stemmer = SnowballStemmer('english') stemmed_words = [stemmer.stem(word) for word in text] text = " ".join(stemmed_words) # Return a list of words return(text) # In[18]: def process_questions(question_list, questions, question_list_name, dataframe): # function to transform questions and display progress for question in questions: question_list.append(text_to_wordlist(question)) if len(question_list) % 100000 == 0: progress = len(question_list)/len(dataframe) * 100 print("{} is {}% complete.".format(question_list_name, round(progress, 1))) # In[19]: train_question1 = [] process_questions(train_question1, train.question1, 'train_question1', train) # In[35]: train_question2 = [] process_questions(train_question2, train.question2, 'train_question2', train) # In[36]: test_question1 = [] process_questions(test_question1, test.question1, 'test_question1', test) # In[37]: test_question2 = [] process_questions(test_question2, test.question2, 'test_question2', test) # # Using Keras # In[38]: from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences import datetime, time, json from keras.models import Sequential from keras.layers import Embedding, Dense, Dropout, Reshape, Merge, BatchNormalization, TimeDistributed, Lambda, Activation, LSTM, Flatten, Bidirectional, Convolution1D, GRU, MaxPooling1D, Convolution2D from keras.regularizers import l2 from keras.callbacks import Callback, ModelCheckpoint, EarlyStopping from keras import backend as K from sklearn.model_selection import train_test_split from keras.optimizers import SGD from collections import defaultdict # In[39]: # Count the number of different words in the reviews word_count = defaultdict(int) for question in train_question1: word_count[question] += 1 print("train_question1 is complete.") for question in train_question2: word_count[question] += 1 print("train_question2 is complete") for question in test_question1: word_count[question] += 1 print("test_question1 is complete.") for question in test_question2: word_count[question] += 1 print("test_question2 is complete") print("Total number of unique words:", len(word_count)) # In[40]: # Find the length of questions lengths = [] for question in train_question1: lengths.append(len(question.split())) for question in train_question2: lengths.append(len(question.split())) # Create a dataframe so that the values can be inspected lengths = pd.DataFrame(lengths, columns=['counts']) # In[41]: lengths.counts.describe() # In[42]: np.percentile(lengths.counts, 99.5) # In[43]: num_words = 200000 train_questions = train_question1 + train_question2 tokenizer = Tokenizer(nb_words = num_words) tokenizer.fit_on_texts(train_questions) print("Fitting is compelte.") train_question1_word_sequences = tokenizer.texts_to_sequences(train_question1) print("train_question1 is complete.") train_question2_word_sequences = tokenizer.texts_to_sequences(train_question2) print("train_question2 is complete") # In[44]: test_question1_word_sequences = tokenizer.texts_to_sequences(test_question1) print("test_question1 is complete.") test_question2_word_sequences = tokenizer.texts_to_sequences(test_question2) print("test_question2 is complete.") # In[45]: word_index = tokenizer.word_index print("Words in index: %d" % len(word_index)) # In[46]: # Pad the questions so that they all have the same length. max_question_len = 37 train_q1 = pad_sequences(train_question1_word_sequences, maxlen = max_question_len, padding = 'post', truncating = 'post') print("train_q1 is complete.") train_q2 = pad_sequences(train_question2_word_sequences, maxlen = max_question_len, padding = 'post', truncating = 'post') print("train_q2 is complete.") # In[47]: test_q1 = pad_sequences(test_question1_word_sequences, maxlen = max_question_len, padding = 'post', truncating = 'post') print("test_q1 is complete.") test_q2 = pad_sequences(test_question2_word_sequences, maxlen = max_question_len, padding = 'post', truncating = 'post') print("test_q2 is complete.") # In[48]: y_train = train.is_duplicate # In[49]: # Load GloVe to use pretrained vectors # From this link: https://nlp.stanford.edu/projects/glove/ embeddings_index = {} with open('glove.840B.300d.txt', encoding='utf-8') as f: for line in f: values = line.split(' ') word = values[0] embedding = np.asarray(values[1:], dtype='float32') embeddings_index[word] = embedding print('Word embeddings:', len(embeddings_index)) # In[50]: # Need to use 300 for embedding dimensions to match GloVe vectors. embedding_dim = 300 nb_words = len(word_index) word_embedding_matrix = np.zeros((nb_words + 1, embedding_dim)) for word, i in word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: # words not found in embedding index will be all-zeros. word_embedding_matrix[i] = embedding_vector print('Null word embeddings: %d' % np.sum(np.sum(word_embedding_matrix, axis=1) == 0)) # In[66]: units = 150 dropout = 0.25 nb_filter = 32 filter_length = 3 embedding_dim = 300 model1 = Sequential() model1.add(Embedding(nb_words + 1, embedding_dim, weights = [word_embedding_matrix], input_length = max_question_len, trainable = False)) model1.add(Convolution1D(nb_filter = nb_filter, filter_length = filter_length, border_mode = 'same')) model1.add(BatchNormalization()) model1.add(Activation('relu')) model1.add(Dropout(dropout)) model1.add(Convolution1D(nb_filter = nb_filter, filter_length = filter_length, border_mode = 'same')) model1.add(BatchNormalization()) model1.add(Activation('relu')) model1.add(Dropout(dropout)) model1.add(Flatten()) model2 = Sequential() model2.add(Embedding(nb_words + 1, embedding_dim, weights = [word_embedding_matrix], input_length = max_question_len, trainable = False)) model2.add(Convolution1D(nb_filter = nb_filter, filter_length = filter_length, border_mode = 'same')) model2.add(BatchNormalization()) model2.add(Activation('relu')) model2.add(Dropout(dropout)) model2.add(Convolution1D(nb_filter = nb_filter, filter_length = filter_length, border_mode = 'same')) model2.add(BatchNormalization()) model2.add(Activation('relu')) model2.add(Dropout(dropout)) model2.add(Flatten()) model3 = Sequential() model3.add(Embedding(nb_words + 1, embedding_dim, weights = [word_embedding_matrix], input_length = max_question_len, trainable = False)) model3.add(TimeDistributed(Dense(embedding_dim))) model3.add(BatchNormalization()) model3.add(Activation('relu')) model3.add(Dropout(dropout)) model3.add(Lambda(lambda x: K.max(x, axis=1), output_shape=(embedding_dim, ))) model4 = Sequential() model4.add(Embedding(nb_words + 1, embedding_dim, weights = [word_embedding_matrix], input_length = max_question_len, trainable = False)) model4.add(TimeDistributed(Dense(embedding_dim))) model4.add(BatchNormalization()) model4.add(Activation('relu')) model4.add(Dropout(dropout)) model4.add(Lambda(lambda x: K.max(x, axis=1), output_shape=(embedding_dim, ))) modela = Sequential() modela.add(Merge([model1, model2], mode='concat')) modela.add(Dense(units)) modela.add(BatchNormalization()) modela.add(Activation('relu')) modela.add(Dropout(dropout)) modela.add(Dense(units)) modela.add(BatchNormalization()) modela.add(Activation('relu')) modela.add(Dropout(dropout)) modelb = Sequential() modelb.add(Merge([model3, model4], mode='concat')) modelb.add(Dense(units)) modelb.add(BatchNormalization()) modelb.add(Activation('relu')) modelb.add(Dropout(dropout)) modelb.add(Dense(units)) modelb.add(BatchNormalization()) modelb.add(Activation('relu')) modelb.add(Dropout(dropout)) model = Sequential() model.add(Merge([modela, modelb], mode='concat')) model.add(Dense(units)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(dropout)) model.add(Dense(units)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(dropout)) model.add(Dense(1)) model.add(BatchNormalization()) model.add(Activation('sigmoid')) #sgd = SGD(lr=0.01, decay=5e-6, momentum=0.9, nesterov=True) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # In[67]: save_best_weights = 'question_pairs_weights.h5' t0 = time.time() callbacks = [ModelCheckpoint(save_best_weights, monitor='val_loss', save_best_only=True), EarlyStopping(monitor='val_loss', patience=5, verbose=1, mode='auto')] history = model.fit([train_q1, train_q2], y_train, batch_size=200, nb_epoch=100, validation_split=0.1, verbose=True, shuffle=True, callbacks=callbacks) t1 = time.time() print("Minutes elapsed: %f" % ((t1 - t0) / 60.)) # In[68]: summary_stats = pd.DataFrame({'epoch': [ i + 1 for i in history.epoch ], 'train_acc': history.history['acc'], 'valid_acc': history.history['val_acc'], 'train_loss': history.history['loss'], 'valid_loss': history.history['val_loss']}) # In[69]: summary_stats # In[70]: plt.plot(summary_stats.train_loss) plt.plot(summary_stats.valid_loss) plt.show() # In[71]: min_loss, idx = min((loss, idx) for (idx, loss) in enumerate(history.history['val_loss'])) print('Minimum loss at epoch', '{:d}'.format(idx+1), '=', '{:.4f}'.format(min_loss)) min_loss = round(min_loss, 4) # In[72]: model.load_weights(save_best_weights) predictions = model.predict([test_q1, test_q2], verbose = True) # In[73]: #Create submission submission = pd.DataFrame(predictions, columns=['is_duplicate']) submission.insert(0, 'test_id', test.test_id) file_name = 'submission_{}.csv'.format(min_loss) submission.to_csv(file_name, index=False) # In[74]: submission.head(10)
mit
lovexiaov/SandwichApp
venv/lib/python2.7/site-packages/py2app/build_app.py
9
77527
""" Mac OS X .app build command for distutils Originally (loosely) based on code from py2exe's build_exe.py by Thomas Heller. """ from __future__ import print_function import imp import sys import os import zipfile import plistlib import shlex import shutil import textwrap import pkg_resources import collections from modulegraph import modulegraph from py2app.apptemplate.setup import main as script_executable from py2app.util import mergecopy, make_exec try: from cStringIO import StringIO except ImportError: from io import StringIO from itertools import chain from setuptools import Command from distutils.util import convert_path from distutils import log from distutils.errors import * from modulegraph.find_modules import find_modules, parse_mf_results, find_needed_modules from modulegraph.modulegraph import SourceModule, Package, Script from modulegraph import zipio import macholib.dyld import macholib.MachOStandalone import macholib.MachO from macholib.util import flipwritable from py2app.create_appbundle import create_appbundle from py2app.create_pluginbundle import create_pluginbundle from py2app.util import \ fancy_split, byte_compile, make_loader, imp_find_module, \ copy_tree, fsencoding, strip_files, in_system_path, makedirs, \ iter_platform_files, find_version, skipscm, momc, copy_file, \ copy_resource from py2app.filters import \ not_stdlib_filter, not_system_filter, has_filename_filter from py2app import recipes from distutils.sysconfig import get_config_var, get_config_h_filename PYTHONFRAMEWORK=get_config_var('PYTHONFRAMEWORK') PLUGIN_SUFFIXES = { '.qlgenerator': 'QuickLook', '.mdimporter': 'Spotlight', '.xpc': 'XPCServices', '.service': 'Services', '.prefPane': 'PreferencePanes', '.iaplugin': 'InternetAccounts', '.action': 'Automator', } try: basestring except NameError: basestring = str def rewrite_tkinter_load_commands(tkinter_path): print("rewrite_tk", tkinter_path) m = macholib.MachO.MachO(tkinter_path) tcl_path = None tk_path = None rewrite_map = {} for header in m.headers: for idx, name, other in header.walkRelocatables(): if other.endswith('/Tk'): if tk_path is not None and other != tk_path: raise DistutilsPlatformError('_tkinter is linked to different Tk paths') tk_path = other elif other.endswith('/Tcl'): if tcl_path is not None and other != tcl_path: raise DistutilsPlatformError('_tkinter is linked to different Tcl paths') tcl_path = other if tcl_path is None or 'Tcl.framework' not in tcl_path: raise DistutilsPlatformError('_tkinter is not linked a Tcl.framework') if tk_path is None or 'Tk.framework' not in tk_path: raise DistutilsPlatformError('_tkinter is not linked a Tk.framework') system_tcl_versions = [nm for nm in os.listdir('/System/Library/Frameworks/Tcl.framework/Versions') if nm != 'Current'] system_tk_versions = [nm for nm in os.listdir('/System/Library/Frameworks/Tk.framework/Versions') if nm != 'Current'] if not tcl_path.startswith('/System/Library/Frameworks'): # ../Versions/8.5/Tcl ver = os.path.basename(os.path.dirname(tcl_path)) if ver not in system_tcl_versions: raise DistutilsPlatformError('_tkinter is linked to a version of Tcl not in /System') rewrite_map[tcl_path] = '/System/Library/Frameworks/Tcl.framework/Versions/%s/Tcl'%(ver,) if not tk_path.startswith('/System/Library/Frameworks'): # ../Versions/8.5/Tk ver = os.path.basename(os.path.dirname(tk_path)) if ver not in system_tk_versions: raise DistutilsPlatformError('_tkinter is linked to a version of Tk not in /System') rewrite_map[tk_path] = '/System/Library/Frameworks/Tk.framework/Versions/%s/Tk'%(ver,) if rewrite_map: print("Relinking _tkinter.so to system Tcl/Tk") rewroteAny = False for header in m.headers: for idx, name, other in header.walkRelocatables(): data = rewrite_map.get(other) if data: if header.rewriteDataForCommand(idx, data.encode(sys.getfilesystemencoding())): rewroteAny = True if rewroteAny: old_mode = flipwritable(m.filename) try: with open(m.filename, 'rb+') as f: for header in m.headers: f.seek(0) header.write(f) f.seek(0, 2) f.flush() finally: flipwritable(m.filename, old_mode) else: print("_tkinter already linked against system Tcl/Tk") def get_zipfile(dist, semi_standalone=False): if sys.version_info[0] == 3: if semi_standalone: return "python%d.%d/site-packages.zip"%(sys.version_info[:2]) else: return "python%d%d.zip"%(sys.version_info[:2]) return getattr(dist, "zipfile", None) or "site-packages.zip" def framework_copy_condition(src): # Skip Headers, .svn, and CVS dirs return skipscm(src) and os.path.basename(src) != 'Headers' class PythonStandalone(macholib.MachOStandalone.MachOStandalone): def __init__(self, appbuilder, *args, **kwargs): super(PythonStandalone, self).__init__(*args, **kwargs) self.appbuilder = appbuilder def copy_dylib(self, src): dest = os.path.join(self.dest, os.path.basename(src)) if os.path.islink(src): dest = os.path.join(self.dest, os.path.basename(os.path.realpath(src))) # Ensure that the orginal name also exists, avoids problems when # the filename is used from Python (see issue #65) # # NOTE: The if statement checks that the target link won't # point to itself, needed for systems like homebrew that # store symlinks in "public" locations that point to # files of the same name in a per-package install location. link_dest = os.path.join(self.dest, os.path.basename(src)) if os.path.basename(link_dest) != os.path.basename(dest): os.symlink(os.path.basename(dest), link_dest) else: dest = os.path.join(self.dest, os.path.basename(src)) return self.appbuilder.copy_dylib(src, dest) def copy_framework(self, info): destfn = self.appbuilder.copy_framework(info, self.dest) dest = os.path.join(self.dest, info['shortname'] + '.framework') self.pending.append((destfn, iter_platform_files(dest))) return destfn def iterRecipes(module=recipes): for name in dir(module): if name.startswith('_'): continue check = getattr(getattr(module, name), 'check', None) if check is not None: yield (name, check) # A very loosely defined "target". We assume either a "script" or "modules" # attribute. Some attributes will be target specific. class Target(object): def __init__(self, **kw): self.__dict__.update(kw) # If modules is a simple string, assume they meant list m = self.__dict__.get("modules") if m and isinstance(m, basestring): self.modules = [m] def get_dest_base(self): dest_base = getattr(self, "dest_base", None) if dest_base: return dest_base script = getattr(self, "script", None) if script: return os.path.basename(os.path.splitext(script)[0]) modules = getattr(self, "modules", None) assert modules, "no script, modules or dest_base specified" return modules[0].split(".")[-1] def validate(self): resources = getattr(self, "resources", []) for r_filename in resources: if not os.path.isfile(r_filename): raise DistutilsOptionError( "Resource filename '%s' does not exist" % (r_filename,)) def validate_target(dist, attr, value): res = FixupTargets(value, "script") other = {"app": "plugin", "plugin": "app"} if res and getattr(dist, other[attr]): # XXX - support apps and plugins? raise DistutilsOptionError( "You must specify either app or plugin, not both") def FixupTargets(targets, default_attribute): if not targets: return targets try: targets = eval(targets) except: pass ret = [] for target_def in targets: if isinstance(target_def, basestring): # Create a default target object, with the string as the attribute target = Target(**{default_attribute: target_def}) else: d = getattr(target_def, "__dict__", target_def) if default_attribute not in d: raise DistutilsOptionError( "This target class requires an attribute '%s'" % (default_attribute,)) target = Target(**d) target.validate() ret.append(target) return ret def normalize_data_file(fn): if isinstance(fn, basestring): fn = convert_path(fn) return ('', [fn]) return fn def is_system(): prefix = sys.prefix if os.path.exists(os.path.join(prefix, ".Python")): fn = os.path.join(prefix, "lib", "python%d.%d"%(sys.version_info[:2]), "orig-prefix.txt") if os.path.exists(fn): with open(fn, 'rU') as fp: prefix = fp.read().strip() return in_system_path(prefix) def installation_info(version=None): if version is None: version = sys.version if is_system(): return version[:3] + " (FORCED: Using vendor Python)" else: return version[:3] class py2app(Command): description = "create a Mac OS X application or plugin from Python scripts" # List of option tuples: long name, short name (None if no short # name), and help string. user_options = [ ("app=", None, "application bundle to be built"), ("plugin=", None, "plugin bundle to be built"), ('optimize=', 'O', "optimization level: -O1 for \"python -O\", " "-O2 for \"python -OO\", and -O0 to disable [default: -O0]"), ("includes=", 'i', "comma-separated list of modules to include"), ("packages=", 'p', "comma-separated list of packages to include"), ("iconfile=", None, "Icon file to use"), ("excludes=", 'e', "comma-separated list of modules to exclude"), ("dylib-excludes=", 'E', "comma-separated list of frameworks or dylibs to exclude"), ("datamodels=", None, "xcdatamodels to be compiled and copied into Resources"), ("mappingmodels=", None, "xcmappingmodels to be compiled and copied into Resources"), ("resources=", 'r', "comma-separated list of additional data files and folders to include (not for code!)"), ("frameworks=", 'f', "comma-separated list of additional frameworks and dylibs to include"), ("plist=", 'P', "Info.plist template file, dict, or plistlib.Plist"), ("extension=", None, "Bundle extension [default:.app for app, .plugin for plugin]"), ("graph", 'g', "output module dependency graph"), ("xref", 'x', "output module cross-reference as html"), ("no-strip", None, "do not strip debug and local symbols from output"), #("compressed", 'c', # "create a compressed zipfile"), ("no-chdir", 'C', "do not change to the data directory (Contents/Resources) [forced for plugins]"), #("no-zip", 'Z', # "do not use a zip file (XXX)"), ("semi-standalone", 's', "depend on an existing installation of Python " + installation_info()), ("alias", 'A', "Use an alias to current source file (for development only!)"), ("argv-emulation", 'a', "Use argv emulation [disabled for plugins]."), ("argv-inject=", None, "Inject some commands into the argv"), ("emulate-shell-environment", None, "Emulate the shell environment you get in a Terminal window"), ("use-pythonpath", None, "Allow PYTHONPATH to effect the interpreter's environment"), ("use-faulthandler", None, "Enable the faulthandler in the generated bundle (Python 3.3 or later)"), ("verbose-interpreter", None, "Start python in verbose mode"), ('bdist-base=', 'b', 'base directory for build library (default is build)'), ('dist-dir=', 'd', "directory to put final built distributions in (default is dist)"), ('site-packages', None, "include the system and user site-packages into sys.path"), ("strip", 'S', "strip debug and local symbols from output (on by default, for compatibility)"), ("prefer-ppc", None, "Force application to run translated on i386 (LSPrefersPPC=True)"), ('debug-modulegraph', None, 'Drop to pdb console after the module finding phase is complete'), ("debug-skip-macholib", None, "skip macholib phase (app will not be standalone!)"), ("arch=", None, "set of architectures to use (fat, fat3, universal, intel, i386, ppc, x86_64; default is the set for the current python binary)"), ("qt-plugins=", None, "set of Qt plugins to include in the application bundle (default None)"), ("matplotlib-backends=", None, "set of matplotlib backends to include (default: include entire package)"), ("extra-scripts=", None, "set of scripts to include in the application bundle, next to the main application script"), ("include-plugins=", None, "List of plugins to include"), ("force-system-tk", None, "Ensure that Tkinter is linked against Apple's build of Tcl/Tk"), ("report-missing-from-imports", None, "Report the list of missing names for 'from module import name'"), ("no-report-missing-conditional-import", None, "Don't report missing modules when they appear to be conditional imports"), ] boolean_options = [ #"compressed", "xref", "strip", "no-strip", "site-packages", "semi-standalone", "alias", "argv-emulation", #"no-zip", "use-pythonpath", "use-faulthandler", "verbose-interpreter", "no-chdir", "debug-modulegraph", "debug-skip-macholib", "graph", "prefer-ppc", "emulate-shell-environment", "force-system-tk", "report-missing-from-imports", "no-report-missing-conditional-import", ] def initialize_options (self): self.app = None self.plugin = None self.bdist_base = None self.xref = False self.graph = False self.no_zip = 0 self.optimize = 0 if hasattr(sys, 'flags'): self.optimize = sys.flags.optimize self.arch = None self.strip = True self.no_strip = False self.iconfile = None self.extension = None self.alias = 0 self.argv_emulation = 0 self.emulate_shell_environment = 0 self.argv_inject = None self.no_chdir = 0 self.site_packages = False self.use_pythonpath = False self.use_faulthandler = False self.verbose_interpreter = False self.includes = None self.packages = None self.excludes = None self.dylib_excludes = None self.frameworks = None self.resources = None self.datamodels = None self.mappingmodels = None self.plist = None self.compressed = True self.semi_standalone = is_system() self.dist_dir = None self.debug_skip_macholib = False self.debug_modulegraph = False self.prefer_ppc = False self.filters = [] self.eggs = [] self.qt_plugins = None self.matplotlib_backends = None self.extra_scripts = None self.include_plugins = None self.force_system_tk = False self.report_missing_from_imports = False self.no_report_missing_conditional_import = False def finalize_options (self): if not self.strip: self.no_strip = True elif self.no_strip: self.strip = False self.optimize = int(self.optimize) if self.argv_inject and isinstance(self.argv_inject, basestring): self.argv_inject = shlex.split(self.argv_inject) self.includes = set(fancy_split(self.includes)) self.includes.add('encodings.*') if self.use_faulthandler: self.includes.add('faulthandler') #if sys.version_info[:2] >= (3, 2): # self.includes.add('pkgutil') # self.includes.add('imp') self.packages = set(fancy_split(self.packages)) self.excludes = set(fancy_split(self.excludes)) self.excludes.add('readline') # included by apptemplate self.excludes.add('site') if getattr(self.distribution, 'install_requires', None): self.includes.add('pkg_resources') self.eggs = pkg_resources.require(self.distribution.install_requires) # Setuptools/distribute style namespace packages uses # __import__('pkg_resources'), and that import isn't detected at the # moment. Forcefully include pkg_resources. self.includes.add('pkg_resources') dylib_excludes = fancy_split(self.dylib_excludes) self.dylib_excludes = [] for fn in dylib_excludes: try: res = macholib.dyld.framework_find(fn) except ValueError: try: res = macholib.dyld.dyld_find(fn) except ValueError: res = fn self.dylib_excludes.append(res) self.resources = fancy_split(self.resources) frameworks = fancy_split(self.frameworks) self.frameworks = [] for fn in frameworks: try: res = macholib.dyld.framework_find(fn) except ValueError: res = macholib.dyld.dyld_find(fn) while res in self.dylib_excludes: self.dylib_excludes.remove(res) self.frameworks.append(res) if not self.plist: self.plist = {} if isinstance(self.plist, basestring): self.plist = plistlib.Plist.fromFile(self.plist) if isinstance(self.plist, plistlib.Dict): self.plist = dict(self.plist.__dict__) else: self.plist = dict(self.plist) self.set_undefined_options('bdist', ('dist_dir', 'dist_dir'), ('bdist_base', 'bdist_base')) if self.semi_standalone: self.filters.append(not_stdlib_filter) if self.iconfile is None and 'CFBundleIconFile' not in self.plist: # Default is the generic applet icon in the framework iconfile = os.path.join(sys.prefix, 'Resources', 'Python.app', 'Contents', 'Resources', 'PythonApplet.icns') if os.path.exists(iconfile): self.iconfile = iconfile self.runtime_preferences = list(self.get_runtime_preferences()) self.qt_plugins = fancy_split(self.qt_plugins) self.matplotlib_backends = fancy_split(self.matplotlib_backends) self.extra_scripts = fancy_split(self.extra_scripts) self.include_plugins = fancy_split(self.include_plugins) if self.datamodels: print("WARNING: the datamodels option is deprecated, add model files to the list of resources") if self.mappingmodels: print("WARNING: the mappingmodels option is deprecated, add model files to the list of resources") def get_default_plist(self): # XXX - this is all single target stuff plist = {} target = self.targets[0] version = self.distribution.get_version() if version == '0.0.0': try: version = find_version(target.script) except ValueError: pass if not isinstance(version, basestring): raise DistutilsOptionError("Version must be a string") if sys.version_info[0] > 2 and isinstance(version, type('a'.encode('ascii'))): raise DistutilsOptionError("Version must be a string") plist['CFBundleVersion'] = version name = self.distribution.get_name() if name == 'UNKNOWN': base = target.get_dest_base() name = os.path.basename(base) plist['CFBundleName'] = name return plist def get_runtime(self, prefix=None, version=None): # XXX - this is a bit of a hack! # ideally we'd use dylib functions to figure this out if prefix is None: prefix = sys.prefix if version is None: version = sys.version version = version[:3] info = None if os.path.exists(os.path.join(prefix, ".Python")): # We're in a virtualenv environment, locate the real prefix fn = os.path.join(prefix, "lib", "python%d.%d"%(sys.version_info[:2]), "orig-prefix.txt") if os.path.exists(fn): with open(fn, 'rU') as fp: prefix = fp.read().strip() try: fmwk = macholib.dyld.framework_find(prefix) except ValueError: info = None else: info = macholib.dyld.framework_info(fmwk) if info is not None: dylib = info['name'] runtime = os.path.join(info['location'], info['name']) else: dylib = 'libpython%s.dylib' % (sys.version[:3],) runtime = os.path.join(prefix, 'lib', dylib) return dylib, runtime def symlink(self, src, dst): try: os.remove(dst) except OSError: pass os.symlink(src, dst) def get_runtime_preferences(self, prefix=None, version=None): dylib, runtime = self.get_runtime(prefix=prefix, version=version) yield os.path.join('@executable_path', '..', 'Frameworks', dylib) if self.semi_standalone or self.alias: yield runtime def run(self): if get_config_var('PYTHONFRAMEWORK') is None: if not get_config_var('Py_ENABLE_SHARED'): raise DistutilsPlatformError("This python does not have a shared library or framework") else: # Issue .. in py2app's tracker, and issue .. in python's tracker: a unix-style shared # library build did not read the application environment correctly. The collection of # if statements below gives a clean error message when py2app is started, instead of # building a bundle that will give a confusing error message when started. msg = "py2app is not supported for a shared library build with this version of python" if sys.version_info[:2] < (2,7): raise DistutilsPlatformError(msg) elif sys.version_info[:2] == (2,7) and sys.version[3] < 4: raise DistutilsPlatformError(msg) elif sys.version_info[0] == 3 and sys.version_info[1] < 2: raise DistutilsPlatformError(msg) elif sys.version_info[0] == 3 and sys.version_info[1] == 2 and sys.version_info[3] < 3: raise DistutilsPlatformError(msg) elif sys.version_info[0] == 3 and sys.version_info[1] == 3 and sys.version_info[3] < 1: raise DistutilsPlatformError(msg) if hasattr(self.distribution, "install_requires") \ and self.distribution.install_requires: self.distribution.fetch_build_eggs(self.distribution.install_requires) build = self.reinitialize_command('build') build.build_base = self.bdist_base build.run() self.create_directories() self.fixup_distribution() self.initialize_plist() sys_old_path = sys.path[:] extra_paths = [ os.path.dirname(target.script) for target in self.targets ] extra_paths.extend([build.build_platlib, build.build_lib]) self.additional_paths = [ os.path.abspath(p) for p in extra_paths if p is not None ] sys.path[:0] = self.additional_paths # this needs additional_paths self.initialize_prescripts() try: self._run() finally: sys.path = sys_old_path def iter_datamodels(self, resdir): for (path, files) in (normalize_data_file(fn) for fn in (self.datamodels or ())): path = fsencoding(path) for fn in files: fn = fsencoding(fn) basefn, ext = os.path.splitext(fn) if ext != '.xcdatamodel': basefn = fn fn += '.xcdatamodel' destfn = os.path.basename(basefn) + '.mom' yield fn, os.path.join(resdir, path, destfn) def compile_datamodels(self, resdir): for src, dest in self.iter_datamodels(resdir): print("compile datamodel", src, "->", dest) self.mkpath(os.path.dirname(dest)) momc(src, dest) def iter_mappingmodels(self, resdir): for (path, files) in (normalize_data_file(fn) for fn in (self.mappingmodels or ())): path = fsencoding(path) for fn in files: fn = fsencoding(fn) basefn, ext = os.path.splitext(fn) if ext != '.xcmappingmodel': basefn = fn fn += '.xcmappingmodel' destfn = os.path.basename(basefn) + '.cdm' yield fn, os.path.join(resdir, path, destfn) def compile_mappingmodels(self, resdir): for src, dest in self.iter_mappingmodels(resdir): self.mkpath(os.path.dirname(dest)) mapc(src, dest) def iter_extra_plugins(self): for item in self.include_plugins: if isinstance(item, (list, tuple)): subdir, path = item else: ext = os.path.splitext(item)[1] try: subdir = PLUGIN_SUFFIXES[ext] path = item except KeyError: raise DistutilsOptionError("Cannot determine subdirectory for plugin %s"%(item,)) yield path, os.path.join(subdir, os.path.basename(path)) def iter_data_files(self): dist = self.distribution allres = chain(getattr(dist, 'data_files', ()) or (), self.resources) for (path, files) in (normalize_data_file(fn) for fn in allres): path = fsencoding(path) for fn in files: fn = fsencoding(fn) yield fn, os.path.join(path, os.path.basename(fn)) def collect_scripts(self): # these contains file names scripts = set() for target in self.targets: scripts.add(target.script) scripts.update([ k for k in target.prescripts if isinstance(k, basestring) ]) if hasattr(target, 'extra_scripts'): scripts.update(target.extra_scripts) scripts.update(self.extra_scripts) return scripts def get_plist_options(self): result = dict( PyOptions=dict( use_pythonpath=bool(self.use_pythonpath), site_packages=bool(self.site_packages), alias=bool(self.alias), argv_emulation=bool(self.argv_emulation), emulate_shell_environment=bool(self.emulate_shell_environment), no_chdir=bool(self.no_chdir), prefer_ppc=self.prefer_ppc, verbose=self.verbose_interpreter, use_faulthandler=self.use_faulthandler, ), ) if self.optimize: result['PyOptions']['optimize'] = self.optimize return result def initialize_plist(self): plist = self.get_default_plist() for target in self.targets: plist.update(getattr(target, 'plist', {})) plist.update(self.plist) plist.update(self.get_plist_options()) if self.iconfile: iconfile = self.iconfile if not os.path.exists(iconfile): iconfile = iconfile + '.icns' if not os.path.exists(iconfile): raise DistutilsOptionError("icon file must exist: %r" % (self.iconfile,)) self.resources.append(iconfile) plist['CFBundleIconFile'] = os.path.basename(iconfile) if self.prefer_ppc: plist['LSPrefersPPC'] = True self.plist = plist return plist def run_alias(self): self.app_files = [] for target in self.targets: extra_scripts = list(self.extra_scripts) if hasattr(target, 'extra_scripts'): extra_scripts.update(extra_scripts) dst = self.build_alias_executable(target, target.script, extra_scripts) self.app_files.append(dst) for fn in extra_scripts: if fn.endswith('.py'): fn = fn[:-3] elif fn.endswith('.pyw'): fn = fn[:-4] src_fn = script_executable(arch=self.arch, secondary=True) tgt_fn = os.path.join(target.appdir, 'Contents', 'MacOS', os.path.basename(fn)) mergecopy(src_fn, tgt_fn) make_exec(tgt_fn) def collect_recipedict(self): return dict(iterRecipes()) def get_modulefinder(self): if self.debug_modulegraph: debug = 4 else: debug = 0 return find_modules( scripts=self.collect_scripts(), includes=self.includes, packages=self.packages, excludes=self.excludes, debug=debug, ) def collect_filters(self): return [has_filename_filter] + list(self.filters) def process_recipes(self, mf, filters, flatpackages, loader_files): rdict = self.collect_recipedict() while True: for name, check in rdict.items(): rval = check(self, mf) if rval is None: continue # we can pull this off so long as we stop the iter del rdict[name] print('*** using recipe: %s ***' % (name,)) if rval.get('packages'): self.packages.update(rval['packages']) find_needed_modules(mf, packages=rval['packages']) for pkg in rval.get('flatpackages', ()): if isinstance(pkg, basestring): pkg = (os.path.basename(pkg), pkg) flatpackages[pkg[0]] = pkg[1] filters.extend(rval.get('filters', ())) loader_files.extend(rval.get('loader_files', ())) newbootstraps = list(map(self.get_bootstrap, rval.get('prescripts', ()))) if rval.get('includes'): find_needed_modules(mf, includes=rval['includes']) if rval.get('resources'): self.resources.extend(rval['resources']) for fn in newbootstraps: if isinstance(fn, basestring): mf.run_script(fn) for target in self.targets: target.prescripts.extend(newbootstraps) break else: break def _run(self): try: if self.alias: self.run_alias() else: self.run_normal() except: raise # XXX - remove when not debugging # distutils sucks import pdb, sys, traceback traceback.print_exc() pdb.post_mortem(sys.exc_info()[2]) print("Done!") def filter_dependencies(self, mf, filters): print("*** filtering dependencies ***") nodes_seen, nodes_removed, nodes_orphaned = mf.filterStack(filters) print('%d total' % (nodes_seen,)) print('%d filtered' % (nodes_removed,)) print('%d orphaned' % (nodes_orphaned,)) print('%d remaining' % (nodes_seen - nodes_removed,)) def get_appname(self): return self.plist['CFBundleName'] def build_xref(self, mf, flatpackages): for target in self.targets: base = target.get_dest_base() appdir = os.path.join(self.dist_dir, os.path.dirname(base)) appname = self.get_appname() dgraph = os.path.join(appdir, appname + '.html') print("*** creating dependency html: %s ***" % (os.path.basename(dgraph),)) with open(dgraph, 'w') as fp: mf.create_xref(fp) def build_graph(self, mf, flatpackages): for target in self.targets: base = target.get_dest_base() appdir = os.path.join(self.dist_dir, os.path.dirname(base)) appname = self.get_appname() dgraph = os.path.join(appdir, appname + '.dot') print("*** creating dependency graph: %s ***" % (os.path.basename(dgraph),)) with open(dgraph, 'w') as fp: mf.graphreport(fp, flatpackages=flatpackages) def finalize_modulefinder(self, mf): for item in mf.flatten(): if isinstance(item, Package) and item.filename == '-': if sys.version_info[:2] <= (3,3): fn = os.path.join(self.temp_dir, 'empty_package', '__init__.py') if not os.path.exists(fn): dn = os.path.dirname(fn) if not os.path.exists(dn): os.makedirs(dn) with open(fn, 'w') as fp: pass item.filename = fn py_files, extensions = parse_mf_results(mf) # Remove all top-level scripts from the list of python files, # those get treated differently. py_files = [ item for item in py_files if not isinstance(item, Script) ] extensions = list(extensions) return py_files, extensions def collect_packagedirs(self): return list(filter(os.path.exists, [ os.path.join(os.path.realpath(self.get_bootstrap(pkg)), '') for pkg in self.packages ])) def run_normal(self): mf = self.get_modulefinder() filters = self.collect_filters() flatpackages = {} loader_files = [] self.process_recipes(mf, filters, flatpackages, loader_files) if self.debug_modulegraph: import pdb pdb.Pdb().set_trace() self.filter_dependencies(mf, filters) if self.graph: self.build_graph(mf, flatpackages) if self.xref: self.build_xref(mf, flatpackages) py_files, extensions = self.finalize_modulefinder(mf) pkgdirs = self.collect_packagedirs() self.create_binaries(py_files, pkgdirs, extensions, loader_files) missing = [] syntax_error = [] invalid_bytecode = [] for module in mf.nodes(): if isinstance(module, modulegraph.MissingModule): if module.identifier != '__main__': missing.append(module) elif isinstance(module, modulegraph.InvalidSourceModule): syntax_error.append(module) elif hasattr(modulegraph, 'InvalidCompiledModule') and isinstance(module, modulegraph.InvalidCompiledModule): invalid_bytecode.append(module) if missing: missing_unconditional = collections.defaultdict(set) missing_fromimport = collections.defaultdict(set) missing_fromimport_conditional = collections.defaultdict(set) missing_conditional = collections.defaultdict(set) for module in sorted(missing): for m in mf.getReferers(module): if m is None: continue # XXX try: ed = mf.edgeData(m, module) except KeyError: ed = None if hasattr(modulegraph, 'DependencyInfo') and isinstance(ed, modulegraph.DependencyInfo): c = missing_unconditional if ed.conditional or ed.function: if ed.fromlist: c = missing_fromimport_conditional else: c = missing_conditional elif ed.fromlist: c = missing_fromimport c[module.identifier].add(m.identifier) else: missing_unconditional[module.identifier].add(m.identifier) if missing_unconditional: log.warn("Modules not found (unconditional imports):") for m in sorted(missing_unconditional): log.warn(" * %s (%s)" % (m, ", ".join(sorted(missing_unconditional[m])))) log.warn("") if missing_conditional and not self.no_report_missing_conditional_import: log.warn("Modules not found (conditional imports):") for m in sorted(missing_conditional): log.warn(" * %s (%s)" % (m, ", ".join(sorted(missing_conditional[m])))) log.warn("") if self.report_missing_from_imports and ( missing_fromimport or ( not self.no_report_missing_conditional_import and missing_fromimport_conditional)): log.warn("Modules not found ('from ... import y'):") for m in sorted(missing_fromimport): log.warn(" * %s (%s)" % (m, ", ".join(sorted(missing_fromimport[m])))) if not self.no_report_missing_conditional_import and missing_fromimport_conditional: log.warn("") log.warn("Conditional:") for m in sorted(missing_fromimport_conditional): log.warn(" * %s (%s)" % (m, ", ".join(sorted(missing_fromimport_conditional[m])))) log.warn("") if syntax_error: log.warn("Modules with syntax errors:") for module in sorted(syntax_error): log.warn(" * %s"%(module.identifier)) log.warn("") if invalid_bytecode: log.warn("Modules with invalid bytecode:") for module in sorted(invalid_bytecode): log.warn(" * %s"%(module.identifier)) log.warn("") def create_directories(self): bdist_base = self.bdist_base if self.semi_standalone: self.bdist_dir = os.path.join(bdist_base, 'python%s-semi_standalone' % (sys.version[:3],), 'app') else: self.bdist_dir = os.path.join(bdist_base, 'python%s-standalone' % (sys.version[:3],), 'app') if os.path.exists(self.bdist_dir): shutil.rmtree(self.bdist_dir) self.collect_dir = os.path.abspath( os.path.join(self.bdist_dir, "collect")) self.mkpath(self.collect_dir) self.temp_dir = os.path.abspath(os.path.join(self.bdist_dir, "temp")) self.mkpath(self.temp_dir) self.dist_dir = os.path.abspath(self.dist_dir) self.mkpath(self.dist_dir) self.lib_dir = os.path.join(self.bdist_dir, os.path.dirname(get_zipfile(self.distribution, self.semi_standalone))) self.mkpath(self.lib_dir) self.ext_dir = os.path.join(self.lib_dir, 'lib-dynload') self.mkpath(self.ext_dir) self.framework_dir = os.path.join(self.bdist_dir, 'Frameworks') self.mkpath(self.framework_dir) def create_binaries(self, py_files, pkgdirs, extensions, loader_files): print("*** create binaries ***") dist = self.distribution pkgexts = [] copyexts = [] extmap = {} def packagefilter(mod, pkgdirs=pkgdirs): fn = os.path.realpath(getattr(mod, 'filename', None)) if fn is None: return None for pkgdir in pkgdirs: if fn.startswith(pkgdir): return None return fn if pkgdirs: py_files = list(filter(packagefilter, py_files)) for ext in extensions: fn = packagefilter(ext) if fn is None: fn = os.path.realpath(getattr(ext, 'filename', None)) pkgexts.append(ext) else: if '.' in ext.identifier: py_files.append(self.create_loader(ext)) copyexts.append(ext) extmap[fn] = ext # byte compile the python modules into the target directory print("*** byte compile python files ***") byte_compile(py_files, target_dir=self.collect_dir, optimize=self.optimize, force=self.force, verbose=self.verbose, dry_run=self.dry_run) for item in py_files: if not isinstance(item, Package): continue self.copy_package_data(item, self.collect_dir) self.lib_files = [] self.app_files = [] # create the shared zipfile containing all Python modules archive_name = os.path.join(self.lib_dir, get_zipfile(dist, self.semi_standalone)) for path, files in loader_files: dest = os.path.join(self.collect_dir, path) self.mkpath(dest) for fn in files: destfn = os.path.join(dest, os.path.basename(fn)) if os.path.isdir(fn): self.copy_tree(fn, destfn, preserve_symlinks=False) else: self.copy_file(fn, destfn) arcname = self.make_lib_archive(archive_name, base_dir=self.collect_dir, verbose=self.verbose, dry_run=self.dry_run) # XXX: this doesn't work with python3 #self.lib_files.append(arcname) # build the executables for target in self.targets: extra_scripts = list(self.extra_scripts) if hasattr(target, 'extra_scripts'): extra_scripts.extend(target.extra_scripts) dst = self.build_executable( target, arcname, pkgexts, copyexts, target.script, extra_scripts) exp = os.path.join(dst, 'Contents', 'MacOS') execdst = os.path.join(exp, 'python') if self.semi_standalone: self.symlink(sys.executable, execdst) else: if os.path.exists(os.path.join(sys.prefix, ".Python")): fn = os.path.join(sys.prefix, "lib", "python%d.%d"%(sys.version_info[:2]), "orig-prefix.txt") if os.path.exists(fn): with open(fn, 'rU') as fp: prefix = fp.read().strip() rest_path = os.path.normpath(sys.executable)[len(os.path.normpath(sys.prefix))+1:] if rest_path.startswith('.'): rest_path = rest_path[1:] if PYTHONFRAMEWORK: # When we're using a python framework bin/python refers to a stub executable # that we don't want use, we need the executable in Resources/Python.app dpath = os.path.join(prefix, 'Resources', 'Python.app', 'Contents', 'MacOS') self.copy_file(os.path.join(dpath, PYTHONFRAMEWORK), execdst) else: self.copy_file(os.path.join(prefix, rest_path), execdst) else: if PYTHONFRAMEWORK: # When we're using a python framework bin/python refers to a stub executable # that we don't want use, we need the executable in Resources/Python.app dpath = os.path.join(sys.prefix, 'Resources', 'Python.app', 'Contents', 'MacOS') self.copy_file(os.path.join(dpath, PYTHONFRAMEWORK), execdst) else: self.copy_file(sys.executable, execdst) if not self.debug_skip_macholib: if self.force_system_tk: print("force system tk") resdir = os.path.join(dst, 'Contents', 'Resources') pydir = os.path.join(resdir, 'lib', 'python%s.%s'%(sys.version_info[:2])) ext_dir = os.path.join(pydir, os.path.basename(self.ext_dir)) tkinter_path = os.path.join(ext_dir, '_tkinter.so') if os.path.exists(tkinter_path): rewrite_tkinter_load_commands(tkinter_path) else: print("tkinter not found at", tkinter_path) mm = PythonStandalone(self, dst, executable_path=exp) dylib, runtime = self.get_runtime() if self.semi_standalone: mm.excludes.append(runtime) else: mm.mm.run_file(runtime) for exclude in self.dylib_excludes: info = macholib.dyld.framework_info(exclude) if info is not None: exclude = os.path.join( info['location'], info['shortname'] + '.framework') mm.excludes.append(exclude) for fmwk in self.frameworks: mm.mm.run_file(fmwk) platfiles = mm.run() if self.strip: platfiles = self.strip_dsym(platfiles) self.strip_files(platfiles) self.app_files.append(dst) def copy_package_data(self, package, target_dir): """ Copy any package data in a python package into the target_dir. This is a bit of a hack, it would be better to identify python eggs and copy those in whole. """ exts = [ i[0] for i in imp.get_suffixes() ] exts.append('.py') exts.append('.pyc') exts.append('.pyo') def datafilter(item): for e in exts: if item.endswith(e): return False return True target_dir = os.path.join(target_dir, *(package.identifier.split('.'))) for dname in package.packagepath: filenames = list(filter(datafilter, zipio.listdir(dname))) for fname in filenames: if fname in ('.svn', 'CVS', '.hg', '.git'): # Scrub revision manager junk continue if fname in ('__pycache__',): # Ignore PEP 3147 bytecode cache continue if fname.startswith('.') and fname.endswith('.swp'): # Ignore vim(1) temporary files continue if fname.endswith('~') or fname.endswith('.orig'): # Ignore backup files for common tools (hg, emacs, ...) continue pth = os.path.join(dname, fname) # Check if we have found a package, exclude those if zipio.isdir(pth): # XXX: the 'and not' part is wrong, need to fix zipio.isdir for p in zipio.listdir(pth): if p.startswith('__init__.') and p[8:] in exts: break else: if os.path.isfile(pth): # Avoid extracting a resource file that happens # to be zipfile. # XXX: Need API in zipio for nicer code. copy_file(pth, os.path.join(target_dir, fname)) else: copy_tree(pth, os.path.join(target_dir, fname)) continue elif zipio.isdir(pth) and ( zipio.isfile(os.path.join(pth, '__init__.py')) or zipio.isfile(os.path.join(pth, '__init__.pyc')) or zipio.isfile(os.path.join(pth, '__init__.pyo'))): # Subdirectory is a python package, these will get included later on # when the subpackage itself is included, ignore for now. pass else: copy_file(pth, os.path.join(target_dir, fname)) def strip_dsym(self, platfiles): """ Remove .dSYM directories in the bundled application """ # # .dSYM directories are contain detached debugging information and # should be completely removed when the "strip" option is specified. # if self.dry_run: return platfiles for dirpath, dnames, fnames in os.walk(self.appdir): for nm in list(dnames): if nm.endswith('.dSYM'): print("removing debug info: %s/%s"%(dirpath, nm)) shutil.rmtree(os.path.join(dirpath, nm)) dnames.remove(nm) return [file for file in platfiles if '.dSYM' not in file] def strip_files(self, files): unstripped = 0 stripfiles = [] for fn in files: unstripped += os.stat(fn).st_size stripfiles.append(fn) log.info('stripping %s', os.path.basename(fn)) strip_files(stripfiles, dry_run=self.dry_run, verbose=self.verbose) stripped = 0 for fn in stripfiles: stripped += os.stat(fn).st_size log.info('stripping saved %d bytes (%d / %d)', unstripped - stripped, stripped, unstripped) def copy_dylib(self, src, dst): # will be copied from the framework? if src != sys.executable: force, self.force = self.force, True self.copy_file(src, dst) self.force = force return dst def copy_versioned_framework(self, info, dst): # XXX - Boy is this ugly, but it makes sense because the developer # could have both Python 2.3 and 2.4, or Tk 8.4 and 8.5, etc. # Saves a good deal of space, and I'm pretty sure this ugly # hack is correct in the general case. version = info['version'] if version is None: return self.raw_copy_framework(info, dst) short = info['shortname'] + '.framework' infile = os.path.join(info['location'], short) outfile = os.path.join(dst, short) vsplit = os.path.join(infile, 'Versions').split(os.sep) def condition(src, vsplit=vsplit, version=version): srcsplit = src.split(os.sep) if ( len(srcsplit) > len(vsplit) and srcsplit[:len(vsplit)] == vsplit and srcsplit[len(vsplit)] != version and not os.path.islink(src) ): return False # Skip Headers, .svn, and CVS dirs return framework_copy_condition(src) return self.copy_tree(infile, outfile, preserve_symlinks=True, condition=condition) def copy_framework(self, info, dst): force, self.force = self.force, True if info['shortname'] == PYTHONFRAMEWORK: self.copy_python_framework(info, dst) else: self.copy_versioned_framework(info, dst) self.force = force return os.path.join(dst, info['name']) def raw_copy_framework(self, info, dst): short = info['shortname'] + '.framework' infile = os.path.join(info['location'], short) outfile = os.path.join(dst, short) return self.copy_tree(infile, outfile, preserve_symlinks=True, condition=framework_copy_condition) def copy_python_framework(self, info, dst): # XXX - In this particular case we know exactly what we can # get away with.. should this be extended to the general # case? Per-framework recipes? includedir = get_config_var('CONFINCLUDEPY') configdir = get_config_var('LIBPL') if includedir is None: includedir = 'python%d.%d'%(sys.version_info[:2]) else: includedir = os.path.basename(includedir) if configdir is None: configdir = 'config' else: configdir = os.path.basename(configdir) indir = os.path.dirname(os.path.join(info['location'], info['name'])) outdir = os.path.dirname(os.path.join(dst, info['name'])) self.mkpath(os.path.join(outdir, 'Resources')) pydir = 'python%s.%s'%(sys.version_info[:2]) # Create a symlink "for Python.frameworks/Versions/Current". This # is required for the Mac App-store. os.symlink( os.path.basename(outdir), os.path.join(os.path.dirname(outdir), "Current")) # Likewise for two links in the root of the framework: os.symlink( 'Versions/Current/Resources', os.path.join(os.path.dirname(os.path.dirname(outdir)), 'Resources')) os.symlink( os.path.join('Versions/Current', PYTHONFRAMEWORK), os.path.join(os.path.dirname(os.path.dirname(outdir)), PYTHONFRAMEWORK)) # Experiment for issue 57 if not os.path.exists(os.path.join(indir, 'include')): alt = os.path.join(indir, 'Versions/Current') if os.path.exists(os.path.join(alt, 'include')): indir = alt # distutils looks for some files relative to sys.executable, which # means they have to be in the framework... self.mkpath(os.path.join(outdir, 'include')) self.mkpath(os.path.join(outdir, 'include', includedir)) self.mkpath(os.path.join(outdir, 'lib')) self.mkpath(os.path.join(outdir, 'lib', pydir)) self.mkpath(os.path.join(outdir, 'lib', pydir, configdir)) fmwkfiles = [ os.path.basename(info['name']), 'Resources/Info.plist', 'include/%s/pyconfig.h'%(includedir), ] if '_sysconfigdata' not in sys.modules: fmwkfiles.append( 'lib/%s/%s/Makefile'%(pydir, configdir) ) for fn in fmwkfiles: self.copy_file( os.path.join(indir, fn), os.path.join(outdir, fn)) def fixup_distribution(self): dist = self.distribution # Trying to obtain app and plugin from dist for backward compatibility # reasons. app = dist.app plugin = dist.plugin # If we can get suitable values from self.app and self.plugin, we prefer # them. if self.app is not None or self.plugin is not None: app = self.app plugin = self.plugin # Convert our args into target objects. dist.app = FixupTargets(app, "script") dist.plugin = FixupTargets(plugin, "script") if dist.app and dist.plugin: # XXX - support apps and plugins? raise DistutilsOptionError( "You must specify either app or plugin, not both") elif dist.app: self.style = 'app' self.targets = dist.app elif dist.plugin: self.style = 'plugin' self.targets = dist.plugin else: raise DistutilsOptionError( "You must specify either app or plugin") if len(self.targets) != 1: # XXX - support multiple targets? raise DistutilsOptionError( "Multiple targets not currently supported") if not self.extension: self.extension = '.' + self.style # make sure all targets use the same directory, this is # also the directory where the pythonXX.dylib must reside paths = set() for target in self.targets: paths.add(os.path.dirname(target.get_dest_base())) if len(paths) > 1: raise DistutilsOptionError( "all targets must use the same directory: %s" % ([p for p in paths],)) if paths: app_dir = paths.pop() # the only element if os.path.isabs(app_dir): raise DistutilsOptionError( "app directory must be relative: %s" % (app_dir,)) self.app_dir = os.path.join(self.dist_dir, app_dir) self.mkpath(self.app_dir) else: # Do we allow to specify no targets? # We can at least build a zipfile... self.app_dir = self.lib_dir def initialize_prescripts(self): prescripts = [] prescripts.append('reset_sys_path') if self.semi_standalone: prescripts.append('semi_standalone_path') if 0 and sys.version_info[:2] >= (3, 2) and not self.alias: # Python 3.2 or later requires a more complicated # bootstrap prescripts.append('import_encodings') if os.path.exists(os.path.join(sys.prefix, ".Python")): # We're in a virtualenv, which means sys.path # will be broken in alias builds unless we fix # it. if self.alias or self.semi_standalone: prescripts.append("virtualenv") prescripts.append(StringIO('_fixup_virtualenv(%r)' % (sys.real_prefix,))) if self.site_packages or self.alias: import site global_site_packages = not os.path.exists( os.path.join(os.path.dirname(site.__file__), 'no-global-site-packages.txt')) prescripts.append('virtualenv_site_packages') prescripts.append(StringIO('_site_packages(%r, %r, %d)' % ( sys.prefix, sys.real_prefix, global_site_packages))) elif self.site_packages or self.alias: prescripts.append('site_packages') if is_system(): prescripts.append('system_path_extras') #if self.style == 'app': # prescripts.append('setup_pkgresource') included_subpkg = [pkg for pkg in self.packages if '.' in pkg] if included_subpkg: prescripts.append('setup_included_subpackages') prescripts.append(StringIO('_path_hooks = %r'%( included_subpkg))) if self.emulate_shell_environment: prescripts.append('emulate_shell_environment') if self.argv_emulation and self.style == 'app': prescripts.append('argv_emulation') if 'CFBundleDocumentTypes' not in self.plist: self.plist['CFBundleDocumentTypes'] = [ { 'CFBundleTypeOSTypes' : [ '****', 'fold', 'disk', ], 'CFBundleTypeRole': 'Viewer' }, ] if self.argv_inject is not None: prescripts.append('argv_inject') prescripts.append( StringIO('_argv_inject(%r)\n' % (self.argv_inject,))) if self.style == 'app' and not self.no_chdir: prescripts.append('chdir_resource') if not self.alias: prescripts.append('disable_linecache') prescripts.append('boot_' + self.style) else: # Add ctypes prescript because it is needed to # find libraries in the bundle, but we don't run # recipes and hence the ctypes recipe is not used # for alias builds. prescripts.append('ctypes_setup') if self.additional_paths: prescripts.append('path_inject') prescripts.append( StringIO('_path_inject(%r)\n' % (self.additional_paths,))) prescripts.append('boot_alias' + self.style) newprescripts = [] for s in prescripts: if isinstance(s, basestring): newprescripts.append( self.get_bootstrap('py2app.bootstrap.' + s)) else: newprescripts.append(s) for target in self.targets: prescripts = getattr(target, 'prescripts', []) target.prescripts = newprescripts + prescripts def get_bootstrap(self, bootstrap): if isinstance(bootstrap, basestring): if not os.path.exists(bootstrap): bootstrap = imp_find_module(bootstrap)[1] return bootstrap def get_bootstrap_data(self, bootstrap): bootstrap = self.get_bootstrap(bootstrap) if not isinstance(bootstrap, basestring): return bootstrap.getvalue() else: with open(bootstrap, 'rU') as fp: return fp.read() def create_pluginbundle(self, target, script, use_runtime_preference=True): base = target.get_dest_base() appdir = os.path.join(self.dist_dir, os.path.dirname(base)) appname = self.get_appname() print("*** creating plugin bundle: %s ***" % (appname,)) if self.runtime_preferences and use_runtime_preference: self.plist.setdefault( 'PyRuntimeLocations', self.runtime_preferences) appdir, plist = create_pluginbundle( appdir, appname, plist=self.plist, extension=self.extension, arch=self.arch, ) appdir = fsencoding(appdir) resdir = os.path.join(appdir, 'Contents', 'Resources') return appdir, resdir, plist def create_appbundle(self, target, script, use_runtime_preference=True): base = target.get_dest_base() appdir = os.path.join(self.dist_dir, os.path.dirname(base)) appname = self.get_appname() print("*** creating application bundle: %s ***" % (appname,)) if self.runtime_preferences and use_runtime_preference: self.plist.setdefault( 'PyRuntimeLocations', self.runtime_preferences) pythonInfo = self.plist.setdefault('PythonInfoDict', {}) py2appInfo = pythonInfo.setdefault('py2app', {}).update(dict( alias=bool(self.alias), )) appdir, plist = create_appbundle( appdir, appname, plist=self.plist, extension=self.extension, arch=self.arch, ) appdir = fsencoding(appdir) resdir = os.path.join(appdir, 'Contents', 'Resources') return appdir, resdir, plist def create_bundle(self, target, script, use_runtime_preference=True): fn = getattr(self, 'create_%sbundle' % (self.style,)) return fn( target, script, use_runtime_preference=use_runtime_preference ) def iter_frameworks(self): for fn in self.frameworks: fmwk = macholib.dyld.framework_info(fn) if fmwk is None: yield fn else: basename = fmwk['shortname'] + '.framework' yield os.path.join(fmwk['location'], basename) def build_alias_executable(self, target, script, extra_scripts): # Build an alias executable for the target appdir, resdir, plist = self.create_bundle(target, script) # symlink python executable execdst = os.path.join(appdir, 'Contents', 'MacOS', 'python') prefixPathExecutable = os.path.join(sys.prefix, 'bin', 'python') if os.path.exists(prefixPathExecutable): pyExecutable = prefixPathExecutable else: pyExecutable = sys.executable self.symlink(pyExecutable, execdst) # make PYTHONHOME pyhome = os.path.join(resdir, 'lib', 'python' + sys.version[:3]) realhome = os.path.join(sys.prefix, 'lib', 'python' + sys.version[:3]) makedirs(pyhome) if self.optimize: self.symlink('../../site.pyo', os.path.join(pyhome, 'site.pyo')) else: self.symlink('../../site.pyc', os.path.join(pyhome, 'site.pyc')) self.symlink( os.path.join(realhome, 'config'), os.path.join(pyhome, 'config')) # symlink data files # XXX: fixme: need to integrate automatic data conversion for src, dest in self.iter_data_files(): dest = os.path.join(resdir, dest) if src == dest: continue makedirs(os.path.dirname(dest)) try: copy_resource(src, dest, dry_run=self.dry_run, symlink=1) except: import traceback traceback.print_exc() raise plugindir = os.path.join(appdir, 'Contents', 'Library') for src, dest in self.iter_extra_plugins(): dest = os.path.join(plugindir, dest) if src == dest: continue makedirs(os.path.dirname(dest)) try: copy_resource(src, dest, dry_run=self.dry_run) except: import traceback traceback.print_exc() raise # symlink frameworks for src in self.iter_frameworks(): dest = os.path.join( appdir, 'Contents', 'Frameworks', os.path.basename(src)) if src == dest: continue makedirs(os.path.dirname(dest)) self.symlink(os.path.abspath(src), dest) self.compile_datamodels(resdir) self.compile_mappingmodels(resdir) bootfn = '__boot__' bootfile = open(os.path.join(resdir, bootfn + '.py'), 'w') for fn in target.prescripts: bootfile.write(self.get_bootstrap_data(fn)) bootfile.write('\n\n') bootfile.write("DEFAULT_SCRIPT=%r\n"%(os.path.realpath(script),)) script_map = {} for fn in extra_scripts: tgt = os.path.realpath(fn) fn = os.path.basename(fn) if fn.endswith('.py'): script_map[fn[:-3]] = tgt elif fn.endswith('.py'): script_map[fn[:-4]] = tgt else: script_map[fn] = tgt bootfile.write("SCRIPT_MAP=%r\n"%(script_map,)) bootfile.write('try:\n') bootfile.write(' _run()\n') bootfile.write('except KeyboardInterrupt:\n') bootfile.write(' pass\n') bootfile.close() target.appdir = appdir return appdir def build_executable(self, target, arcname, pkgexts, copyexts, script, extra_scripts): # Build an executable for the target appdir, resdir, plist = self.create_bundle(target, script) self.appdir = appdir self.resdir = resdir self.plist = plist for fn in extra_scripts: if fn.endswith('.py'): fn = fn[:-3] elif fn.endswith('.pyw'): fn = fn[:-4] src_fn = script_executable(arch=self.arch, secondary=True) tgt_fn = os.path.join(self.appdir, 'Contents', 'MacOS', os.path.basename(fn)) mergecopy(src_fn, tgt_fn) make_exec(tgt_fn) site_path = os.path.join(resdir, 'site.py') byte_compile([ SourceModule('site', site_path), ], target_dir=resdir, optimize=self.optimize, force=self.force, verbose=self.verbose, dry_run=self.dry_run) if not self.dry_run: os.unlink(site_path) includedir = get_config_var('CONFINCLUDEPY') configdir = get_config_var('LIBPL') if includedir is None: includedir = 'python%d.%d'%(sys.version_info[:2]) else: includedir = os.path.basename(includedir) if configdir is None: configdir = 'config' else: configdir = os.path.basename(configdir) self.compile_datamodels(resdir) self.compile_mappingmodels(resdir) bootfn = '__boot__' bootfile = open(os.path.join(resdir, bootfn + '.py'), 'w') for fn in target.prescripts: bootfile.write(self.get_bootstrap_data(fn)) bootfile.write('\n\n') bootfile.write("DEFAULT_SCRIPT=%r\n"%(os.path.basename(script),)) script_map = {} for fn in extra_scripts: fn = os.path.basename(fn) if fn.endswith('.py'): script_map[fn[:-3]] = fn elif fn.endswith('.py'): script_map[fn[:-4]] = fn else: script_map[fn] = fn bootfile.write("SCRIPT_MAP=%r\n"%(script_map,)) bootfile.write('_run()\n') bootfile.close() self.copy_file(script, resdir) for fn in extra_scripts: self.copy_file(fn, resdir) pydir = os.path.join(resdir, 'lib', 'python%s.%s'%(sys.version_info[:2])) if sys.version_info[0] == 2 or self.semi_standalone: arcdir = os.path.join(resdir, 'lib', 'python' + sys.version[:3]) else: arcdir = os.path.join(resdir, 'lib') realhome = os.path.join(sys.prefix, 'lib', 'python' + sys.version[:3]) self.mkpath(pydir) # The site.py file needs to be a two locations # 1) in lib/pythonX.Y, to be found during normal startup and # by the 'python' executable # 2) in the resources directory next to the script for # semistandalone builds (the lib/pythonX.Y directory is too # late on sys.path to be found in that case). # if self.optimize: self.symlink('../../site.pyo', os.path.join(pydir, 'site.pyo')) else: self.symlink('../../site.pyc', os.path.join(pydir, 'site.pyc')) cfgdir = os.path.join(pydir, configdir) realcfg = os.path.join(realhome, configdir) real_include = os.path.join(sys.prefix, 'include') if self.semi_standalone: self.symlink(realcfg, cfgdir) self.symlink(real_include, os.path.join(resdir, 'include')) else: self.mkpath(cfgdir) if '_sysconfigdata' not in sys.modules: # Recent enough versions of Python 2.7 and 3.x have # an _sysconfigdata module and don't need the Makefile # to provide the sysconfig data interface. Don't copy # them. for fn in 'Makefile', 'Setup', 'Setup.local', 'Setup.config': rfn = os.path.join(realcfg, fn) if os.path.exists(rfn): self.copy_file(rfn, os.path.join(cfgdir, fn)) inc_dir = os.path.join(resdir, 'include', includedir) self.mkpath(inc_dir) self.copy_file(get_config_h_filename(), os.path.join(inc_dir, 'pyconfig.h')) self.copy_file(arcname, arcdir) if sys.version_info[0] != 2: import zlib self.copy_file(zlib.__file__, os.path.dirname(arcdir)) ext_dir = os.path.join(pydir, os.path.basename(self.ext_dir)) self.copy_tree(self.ext_dir, ext_dir, preserve_symlinks=True) self.copy_tree(self.framework_dir, os.path.join(appdir, 'Contents', 'Frameworks'), preserve_symlinks=True) for pkg_name in self.packages: pkg = self.get_bootstrap(pkg_name) print('XXXX', pkg_name, pkg) if self.semi_standalone: # For semi-standalone builds don't copy packages # from the stdlib into the app bundle, even when # they are mentioned in self.packages. p = Package(pkg_name, pkg) if not not_stdlib_filter(p): continue dst = os.path.join(pydir, pkg_name) self.mkpath(dst) self.copy_tree(pkg, dst) # FIXME: The python files should be bytecompiled # here (see issue 101) for copyext in copyexts: fn = os.path.join(ext_dir, (copyext.identifier.replace('.', os.sep) + os.path.splitext(copyext.filename)[1]) ) self.mkpath(os.path.dirname(fn)) copy_file(copyext.filename, fn, dry_run=self.dry_run) for src, dest in self.iter_data_files(): dest = os.path.join(resdir, dest) if src == dest: continue makedirs(os.path.dirname(dest)) copy_resource(src, dest, dry_run=self.dry_run) plugindir = os.path.join(appdir, 'Contents', 'Library') for src, dest in self.iter_extra_plugins(): dest = os.path.join(plugindir, dest) if src == dest: continue makedirs(os.path.dirname(dest)) copy_resource(src, dest, dry_run=self.dry_run) target.appdir = appdir return appdir def create_loader(self, item): # Hm, how to avoid needless recreation of this file? slashname = item.identifier.replace('.', os.sep) pathname = os.path.join(self.temp_dir, "%s.py" % slashname) if os.path.exists(pathname): if self.verbose: print("skipping python loader for extension %r" % (item.identifier,)) else: self.mkpath(os.path.dirname(pathname)) # and what about dry_run? if self.verbose: print("creating python loader for extension %r" % (item.identifier,)) fname = slashname + os.path.splitext(item.filename)[1] source = make_loader(fname) if not self.dry_run: with open(pathname, "w") as fp: fp.write(source) else: return return SourceModule(item.identifier, pathname) def make_lib_archive(self, zip_filename, base_dir, verbose=0, dry_run=0): # Like distutils "make_archive", except we can specify the # compression to use - default is ZIP_STORED to keep the # runtime performance up. # Also, we don't append '.zip' to the filename. from distutils.dir_util import mkpath mkpath(os.path.dirname(zip_filename), dry_run=dry_run) if self.compressed: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED if not dry_run: z = zipfile.ZipFile(zip_filename, "w", compression=compression) save_cwd = os.getcwd() os.chdir(base_dir) for dirpath, dirnames, filenames in os.walk('.'): if filenames: # Ensure that there are directory entries for # all directories in the zipfile. This is a # workaround for <http://bugs.python.org/issue14905>: # zipimport won't consider 'pkg/foo.py' to be in # namespace package 'pkg' unless there is an # entry for the directory (or there is a # pkg/__init__.py file as well) z.write(dirpath, dirpath) for fn in filenames: path = os.path.normpath(os.path.join(dirpath, fn)) if os.path.isfile(path): z.write(path, path) os.chdir(save_cwd) z.close() return zip_filename def copy_tree(self, infile, outfile, preserve_mode=1, preserve_times=1, preserve_symlinks=0, level=1, condition=None): """Copy an entire directory tree respecting verbose, dry-run, and force flags. This version doesn't bork on existing symlinks """ return copy_tree( infile, outfile, preserve_mode,preserve_times,preserve_symlinks, not self.force, dry_run=self.dry_run, condition=condition)
apache-2.0
ashhher3/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
metaml/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/lines.py
69
48233
""" This module contains all the 2D line class which can draw with a variety of line styles, markers and colors. """ # TODO: expose cap and join style attrs from __future__ import division import numpy as np from numpy import ma from matplotlib import verbose import artist from artist import Artist from cbook import iterable, is_string_like, is_numlike, ls_mapper, dedent,\ flatten from colors import colorConverter from path import Path from transforms import Affine2D, Bbox, TransformedPath, IdentityTransform from matplotlib import rcParams # special-purpose marker identifiers: (TICKLEFT, TICKRIGHT, TICKUP, TICKDOWN, CARETLEFT, CARETRIGHT, CARETUP, CARETDOWN) = range(8) # COVERAGE NOTE: Never called internally or from examples def unmasked_index_ranges(mask, compressed = True): warnings.warn("Import this directly from matplotlib.cbook", DeprecationWarning) # Warning added 2008/07/22 from matplotlib.cbook import unmasked_index_ranges as _unmasked_index_ranges return _unmasked_index_ranges(mask, compressed=compressed) def segment_hits(cx, cy, x, y, radius): """ Determine if any line segments are within radius of a point. Returns the list of line segments that are within that radius. """ # Process single points specially if len(x) < 2: res, = np.nonzero( (cx - x)**2 + (cy - y)**2 <= radius**2 ) return res # We need to lop the last element off a lot. xr,yr = x[:-1],y[:-1] # Only look at line segments whose nearest point to C on the line # lies within the segment. dx,dy = x[1:]-xr, y[1:]-yr Lnorm_sq = dx**2+dy**2 # Possibly want to eliminate Lnorm==0 u = ( (cx-xr)*dx + (cy-yr)*dy )/Lnorm_sq candidates = (u>=0) & (u<=1) #if any(candidates): print "candidates",xr[candidates] # Note that there is a little area near one side of each point # which will be near neither segment, and another which will # be near both, depending on the angle of the lines. The # following radius test eliminates these ambiguities. point_hits = (cx - x)**2 + (cy - y)**2 <= radius**2 #if any(point_hits): print "points",xr[candidates] candidates = candidates & ~(point_hits[:-1] | point_hits[1:]) # For those candidates which remain, determine how far they lie away # from the line. px,py = xr+u*dx,yr+u*dy line_hits = (cx-px)**2 + (cy-py)**2 <= radius**2 #if any(line_hits): print "lines",xr[candidates] line_hits = line_hits & candidates points, = point_hits.ravel().nonzero() lines, = line_hits.ravel().nonzero() #print points,lines return np.concatenate((points,lines)) class Line2D(Artist): """ A line - the line can have both a solid linestyle connecting all the vertices, and a marker at each vertex. Additionally, the drawing of the solid line is influenced by the drawstyle, eg one can create "stepped" lines in various styles. """ lineStyles = _lineStyles = { # hidden names deprecated '-' : '_draw_solid', '--' : '_draw_dashed', '-.' : '_draw_dash_dot', ':' : '_draw_dotted', 'None' : '_draw_nothing', ' ' : '_draw_nothing', '' : '_draw_nothing', } _drawStyles_l = { 'default' : '_draw_lines', 'steps-mid' : '_draw_steps_mid', 'steps-pre' : '_draw_steps_pre', 'steps-post' : '_draw_steps_post', } _drawStyles_s = { 'steps' : '_draw_steps_pre', } drawStyles = {} drawStyles.update(_drawStyles_l) drawStyles.update(_drawStyles_s) markers = _markers = { # hidden names deprecated '.' : '_draw_point', ',' : '_draw_pixel', 'o' : '_draw_circle', 'v' : '_draw_triangle_down', '^' : '_draw_triangle_up', '<' : '_draw_triangle_left', '>' : '_draw_triangle_right', '1' : '_draw_tri_down', '2' : '_draw_tri_up', '3' : '_draw_tri_left', '4' : '_draw_tri_right', 's' : '_draw_square', 'p' : '_draw_pentagon', '*' : '_draw_star', 'h' : '_draw_hexagon1', 'H' : '_draw_hexagon2', '+' : '_draw_plus', 'x' : '_draw_x', 'D' : '_draw_diamond', 'd' : '_draw_thin_diamond', '|' : '_draw_vline', '_' : '_draw_hline', TICKLEFT : '_draw_tickleft', TICKRIGHT : '_draw_tickright', TICKUP : '_draw_tickup', TICKDOWN : '_draw_tickdown', CARETLEFT : '_draw_caretleft', CARETRIGHT : '_draw_caretright', CARETUP : '_draw_caretup', CARETDOWN : '_draw_caretdown', 'None' : '_draw_nothing', ' ' : '_draw_nothing', '' : '_draw_nothing', } filled_markers = ('o', '^', 'v', '<', '>', 's', 'd', 'D', 'h', 'H', 'p', '*') zorder = 2 validCap = ('butt', 'round', 'projecting') validJoin = ('miter', 'round', 'bevel') def __str__(self): if self._label != "": return "Line2D(%s)"%(self._label) elif hasattr(self, '_x') and len(self._x) > 3: return "Line2D((%g,%g),(%g,%g),...,(%g,%g))"\ %(self._x[0],self._y[0],self._x[0],self._y[0],self._x[-1],self._y[-1]) elif hasattr(self, '_x'): return "Line2D(%s)"\ %(",".join(["(%g,%g)"%(x,y) for x,y in zip(self._x,self._y)])) else: return "Line2D()" def __init__(self, xdata, ydata, linewidth = None, # all Nones default to rc linestyle = None, color = None, marker = None, markersize = None, markeredgewidth = None, markeredgecolor = None, markerfacecolor = None, antialiased = None, dash_capstyle = None, solid_capstyle = None, dash_joinstyle = None, solid_joinstyle = None, pickradius = 5, drawstyle = None, **kwargs ): """ Create a :class:`~matplotlib.lines.Line2D` instance with *x* and *y* data in sequences *xdata*, *ydata*. The kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s See :meth:`set_linestyle` for a decription of the line styles, :meth:`set_marker` for a description of the markers, and :meth:`set_drawstyle` for a description of the draw styles. """ Artist.__init__(self) #convert sequences to numpy arrays if not iterable(xdata): raise RuntimeError('xdata must be a sequence') if not iterable(ydata): raise RuntimeError('ydata must be a sequence') if linewidth is None : linewidth=rcParams['lines.linewidth'] if linestyle is None : linestyle=rcParams['lines.linestyle'] if marker is None : marker=rcParams['lines.marker'] if color is None : color=rcParams['lines.color'] if markersize is None : markersize=rcParams['lines.markersize'] if antialiased is None : antialiased=rcParams['lines.antialiased'] if dash_capstyle is None : dash_capstyle=rcParams['lines.dash_capstyle'] if dash_joinstyle is None : dash_joinstyle=rcParams['lines.dash_joinstyle'] if solid_capstyle is None : solid_capstyle=rcParams['lines.solid_capstyle'] if solid_joinstyle is None : solid_joinstyle=rcParams['lines.solid_joinstyle'] if drawstyle is None : drawstyle='default' self.set_dash_capstyle(dash_capstyle) self.set_dash_joinstyle(dash_joinstyle) self.set_solid_capstyle(solid_capstyle) self.set_solid_joinstyle(solid_joinstyle) self.set_linestyle(linestyle) self.set_drawstyle(drawstyle) self.set_linewidth(linewidth) self.set_color(color) self.set_marker(marker) self.set_antialiased(antialiased) self.set_markersize(markersize) self._dashSeq = None self.set_markerfacecolor(markerfacecolor) self.set_markeredgecolor(markeredgecolor) self.set_markeredgewidth(markeredgewidth) self._point_size_reduction = 0.5 self.verticalOffset = None # update kwargs before updating data to give the caller a # chance to init axes (and hence unit support) self.update(kwargs) self.pickradius = pickradius if is_numlike(self._picker): self.pickradius = self._picker self._xorig = np.asarray([]) self._yorig = np.asarray([]) self._invalid = True self.set_data(xdata, ydata) def contains(self, mouseevent): """ Test whether the mouse event occurred on the line. The pick radius determines the precision of the location test (usually within five points of the value). Use :meth:`~matplotlib.lines.Line2D.get_pickradius` or :meth:`~matplotlib.lines.Line2D.set_pickradius` to view or modify it. Returns *True* if any values are within the radius along with ``{'ind': pointlist}``, where *pointlist* is the set of points within the radius. TODO: sort returned indices by distance """ if callable(self._contains): return self._contains(self,mouseevent) if not is_numlike(self.pickradius): raise ValueError,"pick radius should be a distance" # Make sure we have data to plot if self._invalid: self.recache() if len(self._xy)==0: return False,{} # Convert points to pixels path, affine = self._transformed_path.get_transformed_path_and_affine() path = affine.transform_path(path) xy = path.vertices xt = xy[:, 0] yt = xy[:, 1] # Convert pick radius from points to pixels if self.figure == None: warning.warn('no figure set when check if mouse is on line') pixels = self.pickradius else: pixels = self.figure.dpi/72. * self.pickradius # Check for collision if self._linestyle in ['None',None]: # If no line, return the nearby point(s) d = (xt-mouseevent.x)**2 + (yt-mouseevent.y)**2 ind, = np.nonzero(np.less_equal(d, pixels**2)) else: # If line, return the nearby segment(s) ind = segment_hits(mouseevent.x,mouseevent.y,xt,yt,pixels) # Debugging message if False and self._label != u'': print "Checking line",self._label,"at",mouseevent.x,mouseevent.y print 'xt', xt print 'yt', yt #print 'dx,dy', (xt-mouseevent.x)**2., (yt-mouseevent.y)**2. print 'ind',ind # Return the point(s) within radius return len(ind)>0,dict(ind=ind) def get_pickradius(self): 'return the pick radius used for containment tests' return self.pickradius def setpickradius(self,d): """Sets the pick radius used for containment tests ACCEPTS: float distance in points """ self.pickradius = d def set_picker(self,p): """Sets the event picker details for the line. ACCEPTS: float distance in points or callable pick function ``fn(artist, event)`` """ if callable(p): self._contains = p else: self.pickradius = p self._picker = p def get_window_extent(self, renderer): bbox = Bbox.unit() bbox.update_from_data_xy(self.get_transform().transform(self.get_xydata()), ignore=True) # correct for marker size, if any if self._marker is not None: ms = (self._markersize / 72.0 * self.figure.dpi) * 0.5 bbox = bbox.padded(ms) return bbox def set_axes(self, ax): Artist.set_axes(self, ax) if ax.xaxis is not None: self._xcid = ax.xaxis.callbacks.connect('units', self.recache) if ax.yaxis is not None: self._ycid = ax.yaxis.callbacks.connect('units', self.recache) set_axes.__doc__ = Artist.set_axes.__doc__ def set_data(self, *args): """ Set the x and y data ACCEPTS: 2D array """ if len(args)==1: x, y = args[0] else: x, y = args not_masked = 0 if not ma.isMaskedArray(x): x = np.asarray(x) not_masked += 1 if not ma.isMaskedArray(y): y = np.asarray(y) not_masked += 1 if (not_masked < 2 or (x is not self._xorig and (x.shape != self._xorig.shape or np.any(x != self._xorig))) or (y is not self._yorig and (y.shape != self._yorig.shape or np.any(y != self._yorig)))): self._xorig = x self._yorig = y self._invalid = True def recache(self): #if self.axes is None: print 'recache no axes' #else: print 'recache units', self.axes.xaxis.units, self.axes.yaxis.units if ma.isMaskedArray(self._xorig) or ma.isMaskedArray(self._yorig): x = ma.asarray(self.convert_xunits(self._xorig), float) y = ma.asarray(self.convert_yunits(self._yorig), float) x = ma.ravel(x) y = ma.ravel(y) else: x = np.asarray(self.convert_xunits(self._xorig), float) y = np.asarray(self.convert_yunits(self._yorig), float) x = np.ravel(x) y = np.ravel(y) if len(x)==1 and len(y)>1: x = x * np.ones(y.shape, float) if len(y)==1 and len(x)>1: y = y * np.ones(x.shape, float) if len(x) != len(y): raise RuntimeError('xdata and ydata must be the same length') x = x.reshape((len(x), 1)) y = y.reshape((len(y), 1)) if ma.isMaskedArray(x) or ma.isMaskedArray(y): self._xy = ma.concatenate((x, y), 1) else: self._xy = np.concatenate((x, y), 1) self._x = self._xy[:, 0] # just a view self._y = self._xy[:, 1] # just a view # Masked arrays are now handled by the Path class itself self._path = Path(self._xy) self._transformed_path = TransformedPath(self._path, self.get_transform()) self._invalid = False def set_transform(self, t): """ set the Transformation instance used by this artist ACCEPTS: a :class:`matplotlib.transforms.Transform` instance """ Artist.set_transform(self, t) self._invalid = True # self._transformed_path = TransformedPath(self._path, self.get_transform()) def _is_sorted(self, x): "return true if x is sorted" if len(x)<2: return 1 return np.alltrue(x[1:]-x[0:-1]>=0) def draw(self, renderer): if self._invalid: self.recache() renderer.open_group('line2d') if not self._visible: return gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_foreground(self._color) gc.set_antialiased(self._antialiased) gc.set_linewidth(self._linewidth) gc.set_alpha(self._alpha) if self.is_dashed(): cap = self._dashcapstyle join = self._dashjoinstyle else: cap = self._solidcapstyle join = self._solidjoinstyle gc.set_joinstyle(join) gc.set_capstyle(cap) gc.set_snap(self.get_snap()) funcname = self._lineStyles.get(self._linestyle, '_draw_nothing') if funcname != '_draw_nothing': tpath, affine = self._transformed_path.get_transformed_path_and_affine() self._lineFunc = getattr(self, funcname) funcname = self.drawStyles.get(self._drawstyle, '_draw_lines') drawFunc = getattr(self, funcname) drawFunc(renderer, gc, tpath, affine.frozen()) if self._marker is not None: gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_foreground(self.get_markeredgecolor()) gc.set_linewidth(self._markeredgewidth) gc.set_alpha(self._alpha) funcname = self._markers.get(self._marker, '_draw_nothing') if funcname != '_draw_nothing': tpath, affine = self._transformed_path.get_transformed_points_and_affine() markerFunc = getattr(self, funcname) markerFunc(renderer, gc, tpath, affine.frozen()) renderer.close_group('line2d') def get_antialiased(self): return self._antialiased def get_color(self): return self._color def get_drawstyle(self): return self._drawstyle def get_linestyle(self): return self._linestyle def get_linewidth(self): return self._linewidth def get_marker(self): return self._marker def get_markeredgecolor(self): if (is_string_like(self._markeredgecolor) and self._markeredgecolor == 'auto'): if self._marker in self.filled_markers: return 'k' else: return self._color else: return self._markeredgecolor return self._markeredgecolor def get_markeredgewidth(self): return self._markeredgewidth def get_markerfacecolor(self): if (self._markerfacecolor is None or (is_string_like(self._markerfacecolor) and self._markerfacecolor.lower()=='none') ): return self._markerfacecolor elif (is_string_like(self._markerfacecolor) and self._markerfacecolor.lower() == 'auto'): return self._color else: return self._markerfacecolor def get_markersize(self): return self._markersize def get_data(self, orig=True): """ Return the xdata, ydata. If *orig* is *True*, return the original data """ return self.get_xdata(orig=orig), self.get_ydata(orig=orig) def get_xdata(self, orig=True): """ Return the xdata. If *orig* is *True*, return the original data, else the processed data. """ if orig: return self._xorig if self._invalid: self.recache() return self._x def get_ydata(self, orig=True): """ Return the ydata. If *orig* is *True*, return the original data, else the processed data. """ if orig: return self._yorig if self._invalid: self.recache() return self._y def get_path(self): """ Return the :class:`~matplotlib.path.Path` object associated with this line. """ if self._invalid: self.recache() return self._path def get_xydata(self): """ Return the *xy* data as a Nx2 numpy array. """ if self._invalid: self.recache() return self._xy def set_antialiased(self, b): """ True if line should be drawin with antialiased rendering ACCEPTS: [True | False] """ self._antialiased = b def set_color(self, color): """ Set the color of the line ACCEPTS: any matplotlib color """ self._color = color def set_drawstyle(self, drawstyle): """ Set the drawstyle of the plot 'default' connects the points with lines. The steps variants produce step-plots. 'steps' is equivalent to 'steps-pre' and is maintained for backward-compatibility. ACCEPTS: [ 'default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' ] """ self._drawstyle = drawstyle def set_linewidth(self, w): """ Set the line width in points ACCEPTS: float value in points """ self._linewidth = w def set_linestyle(self, linestyle): """ Set the linestyle of the line (also accepts drawstyles) ================ ================= linestyle description ================ ================= '-' solid '--' dashed '-.' dash_dot ':' dotted 'None' draw nothing ' ' draw nothing '' draw nothing ================ ================= 'steps' is equivalent to 'steps-pre' and is maintained for backward-compatibility. .. seealso:: :meth:`set_drawstyle` ACCEPTS: [ '-' | '--' | '-.' | ':' | 'None' | ' ' | '' ] and any drawstyle in combination with a linestyle, e.g. 'steps--'. """ # handle long drawstyle names before short ones ! for ds in flatten([k.keys() for k in (self._drawStyles_l, self._drawStyles_s)], is_string_like): if linestyle.startswith(ds): self.set_drawstyle(ds) if len(linestyle) > len(ds): linestyle = linestyle[len(ds):] else: linestyle = '-' if linestyle not in self._lineStyles: if linestyle in ls_mapper: linestyle = ls_mapper[linestyle] else: verbose.report('Unrecognized line style %s, %s' % (linestyle, type(linestyle))) if linestyle in [' ','']: linestyle = 'None' self._linestyle = linestyle def set_marker(self, marker): """ Set the line marker ========== ========================== marker description ========== ========================== '.' point ',' pixel 'o' circle 'v' triangle_down '^' triangle_up '<' triangle_left '>' triangle_right '1' tri_down '2' tri_up '3' tri_left '4' tri_right 's' square 'p' pentagon '*' star 'h' hexagon1 'H' hexagon2 '+' plus 'x' x 'D' diamond 'd' thin_diamond '|' vline '_' hline TICKLEFT tickleft TICKRIGHT tickright TICKUP tickup TICKDOWN tickdown CARETLEFT caretleft CARETRIGHT caretright CARETUP caretup CARETDOWN caretdown 'None' nothing ' ' nothing '' nothing ========== ========================== ACCEPTS: [ '+' | '*' | ',' | '.' | '1' | '2' | '3' | '4' | '<' | '>' | 'D' | 'H' | '^' | '_' | 'd' | 'h' | 'o' | 'p' | 's' | 'v' | 'x' | '|' | TICKUP | TICKDOWN | TICKLEFT | TICKRIGHT | 'None' | ' ' | '' ] """ if marker not in self._markers: verbose.report('Unrecognized marker style %s, %s' % (marker, type(marker))) if marker in [' ','']: marker = 'None' self._marker = marker self._markerFunc = self._markers[marker] def set_markeredgecolor(self, ec): """ Set the marker edge color ACCEPTS: any matplotlib color """ if ec is None : ec = 'auto' self._markeredgecolor = ec def set_markeredgewidth(self, ew): """ Set the marker edge width in points ACCEPTS: float value in points """ if ew is None : ew = rcParams['lines.markeredgewidth'] self._markeredgewidth = ew def set_markerfacecolor(self, fc): """ Set the marker face color ACCEPTS: any matplotlib color """ if fc is None : fc = 'auto' self._markerfacecolor = fc def set_markersize(self, sz): """ Set the marker size in points ACCEPTS: float """ self._markersize = sz def set_xdata(self, x): """ Set the data np.array for x ACCEPTS: 1D array """ x = np.asarray(x) self.set_data(x, self._yorig) def set_ydata(self, y): """ Set the data np.array for y ACCEPTS: 1D array """ y = np.asarray(y) self.set_data(self._xorig, y) def set_dashes(self, seq): """ Set the dash sequence, sequence of dashes with on off ink in points. If seq is empty or if seq = (None, None), the linestyle will be set to solid. ACCEPTS: sequence of on/off ink in points """ if seq == (None, None) or len(seq)==0: self.set_linestyle('-') else: self.set_linestyle('--') self._dashSeq = seq # TODO: offset ignored for now def _draw_lines(self, renderer, gc, path, trans): self._lineFunc(renderer, gc, path, trans) def _draw_steps_pre(self, renderer, gc, path, trans): vertices = self._xy steps = ma.zeros((2*len(vertices)-1, 2), np.float_) steps[0::2, 0], steps[1::2, 0] = vertices[:, 0], vertices[:-1, 0] steps[0::2, 1], steps[1:-1:2, 1] = vertices[:, 1], vertices[1:, 1] path = Path(steps) path = path.transformed(self.get_transform()) self._lineFunc(renderer, gc, path, IdentityTransform()) def _draw_steps_post(self, renderer, gc, path, trans): vertices = self._xy steps = ma.zeros((2*len(vertices)-1, 2), np.float_) steps[::2, 0], steps[1:-1:2, 0] = vertices[:, 0], vertices[1:, 0] steps[0::2, 1], steps[1::2, 1] = vertices[:, 1], vertices[:-1, 1] path = Path(steps) path = path.transformed(self.get_transform()) self._lineFunc(renderer, gc, path, IdentityTransform()) def _draw_steps_mid(self, renderer, gc, path, trans): vertices = self._xy steps = ma.zeros((2*len(vertices), 2), np.float_) steps[1:-1:2, 0] = 0.5 * (vertices[:-1, 0] + vertices[1:, 0]) steps[2::2, 0] = 0.5 * (vertices[:-1, 0] + vertices[1:, 0]) steps[0, 0] = vertices[0, 0] steps[-1, 0] = vertices[-1, 0] steps[0::2, 1], steps[1::2, 1] = vertices[:, 1], vertices[:, 1] path = Path(steps) path = path.transformed(self.get_transform()) self._lineFunc(renderer, gc, path, IdentityTransform()) def _draw_nothing(self, *args, **kwargs): pass def _draw_solid(self, renderer, gc, path, trans): gc.set_linestyle('solid') renderer.draw_path(gc, path, trans) def _draw_dashed(self, renderer, gc, path, trans): gc.set_linestyle('dashed') if self._dashSeq is not None: gc.set_dashes(0, self._dashSeq) renderer.draw_path(gc, path, trans) def _draw_dash_dot(self, renderer, gc, path, trans): gc.set_linestyle('dashdot') renderer.draw_path(gc, path, trans) def _draw_dotted(self, renderer, gc, path, trans): gc.set_linestyle('dotted') renderer.draw_path(gc, path, trans) def _draw_point(self, renderer, gc, path, path_trans): w = renderer.points_to_pixels(self._markersize) * \ self._point_size_reduction * 0.5 gc.set_snap(renderer.points_to_pixels(self._markersize) > 3.0) rgbFace = self._get_rgb_face() transform = Affine2D().scale(w) renderer.draw_markers( gc, Path.unit_circle(), transform, path, path_trans, rgbFace) _draw_pixel_transform = Affine2D().translate(-0.5, -0.5) def _draw_pixel(self, renderer, gc, path, path_trans): rgbFace = self._get_rgb_face() gc.set_snap(False) renderer.draw_markers(gc, Path.unit_rectangle(), self._draw_pixel_transform, path, path_trans, rgbFace) def _draw_circle(self, renderer, gc, path, path_trans): w = renderer.points_to_pixels(self._markersize) * 0.5 gc.set_snap(renderer.points_to_pixels(self._markersize) > 3.0) rgbFace = self._get_rgb_face() transform = Affine2D().scale(w, w) renderer.draw_markers( gc, Path.unit_circle(), transform, path, path_trans, rgbFace) _triangle_path = Path([[0.0, 1.0], [-1.0, -1.0], [1.0, -1.0], [0.0, 1.0]]) def _draw_triangle_up(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset, offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, self._triangle_path, transform, path, path_trans, rgbFace) def _draw_triangle_down(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset, -offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, self._triangle_path, transform, path, path_trans, rgbFace) def _draw_triangle_left(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset, offset).rotate_deg(90) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, self._triangle_path, transform, path, path_trans, rgbFace) def _draw_triangle_right(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset, offset).rotate_deg(-90) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, self._triangle_path, transform, path, path_trans, rgbFace) def _draw_square(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 2.0) side = renderer.points_to_pixels(self._markersize) transform = Affine2D().translate(-0.5, -0.5).scale(side) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_rectangle(), transform, path, path_trans, rgbFace) def _draw_diamond(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) side = renderer.points_to_pixels(self._markersize) transform = Affine2D().translate(-0.5, -0.5).rotate_deg(45).scale(side) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_rectangle(), transform, path, path_trans, rgbFace) def _draw_thin_diamond(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = renderer.points_to_pixels(self._markersize) transform = Affine2D().translate(-0.5, -0.5) \ .rotate_deg(45).scale(offset * 0.6, offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_rectangle(), transform, path, path_trans, rgbFace) def _draw_pentagon(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5 * renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_regular_polygon(5), transform, path, path_trans, rgbFace) def _draw_star(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5 * renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) rgbFace = self._get_rgb_face() _starpath = Path.unit_regular_star(5, innerCircle=0.381966) renderer.draw_markers(gc, _starpath, transform, path, path_trans, rgbFace) def _draw_hexagon1(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5 * renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_regular_polygon(6), transform, path, path_trans, rgbFace) def _draw_hexagon2(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5 * renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(30) rgbFace = self._get_rgb_face() renderer.draw_markers(gc, Path.unit_regular_polygon(6), transform, path, path_trans, rgbFace) _line_marker_path = Path([[0.0, -1.0], [0.0, 1.0]]) def _draw_vline(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._line_marker_path, transform, path, path_trans) def _draw_hline(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(90) renderer.draw_markers(gc, self._line_marker_path, transform, path, path_trans) _tickhoriz_path = Path([[0.0, 0.0], [1.0, 0.0]]) def _draw_tickleft(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = renderer.points_to_pixels(self._markersize) marker_transform = Affine2D().scale(-offset, 1.0) renderer.draw_markers(gc, self._tickhoriz_path, marker_transform, path, path_trans) def _draw_tickright(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = renderer.points_to_pixels(self._markersize) marker_transform = Affine2D().scale(offset, 1.0) renderer.draw_markers(gc, self._tickhoriz_path, marker_transform, path, path_trans) _tickvert_path = Path([[-0.0, 0.0], [-0.0, 1.0]]) def _draw_tickup(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = renderer.points_to_pixels(self._markersize) marker_transform = Affine2D().scale(1.0, offset) renderer.draw_markers(gc, self._tickvert_path, marker_transform, path, path_trans) def _draw_tickdown(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 1.0) offset = renderer.points_to_pixels(self._markersize) marker_transform = Affine2D().scale(1.0, -offset) renderer.draw_markers(gc, self._tickvert_path, marker_transform, path, path_trans) _plus_path = Path([[-1.0, 0.0], [1.0, 0.0], [0.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _draw_plus(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._plus_path, transform, path, path_trans) _tri_path = Path([[0.0, 0.0], [0.0, -1.0], [0.0, 0.0], [0.8, 0.5], [0.0, 0.0], [-0.8, 0.5]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _draw_tri_down(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._tri_path, transform, path, path_trans) def _draw_tri_up(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(180) renderer.draw_markers(gc, self._tri_path, transform, path, path_trans) def _draw_tri_left(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(90) renderer.draw_markers(gc, self._tri_path, transform, path, path_trans) def _draw_tri_right(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 5.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(270) renderer.draw_markers(gc, self._tri_path, transform, path, path_trans) _caret_path = Path([[-1.0, 1.5], [0.0, 0.0], [1.0, 1.5]]) def _draw_caretdown(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._caret_path, transform, path, path_trans) def _draw_caretup(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(180) renderer.draw_markers(gc, self._caret_path, transform, path, path_trans) def _draw_caretleft(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(270) renderer.draw_markers(gc, self._caret_path, transform, path, path_trans) def _draw_caretright(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset).rotate_deg(90) renderer.draw_markers(gc, self._caret_path, transform, path, path_trans) _x_path = Path([[-1.0, -1.0], [1.0, 1.0], [-1.0, 1.0], [1.0, -1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _draw_x(self, renderer, gc, path, path_trans): gc.set_snap(renderer.points_to_pixels(self._markersize) >= 3.0) offset = 0.5*renderer.points_to_pixels(self._markersize) transform = Affine2D().scale(offset) renderer.draw_markers(gc, self._x_path, transform, path, path_trans) def update_from(self, other): 'copy properties from other to self' Artist.update_from(self, other) self._linestyle = other._linestyle self._linewidth = other._linewidth self._color = other._color self._markersize = other._markersize self._markerfacecolor = other._markerfacecolor self._markeredgecolor = other._markeredgecolor self._markeredgewidth = other._markeredgewidth self._dashSeq = other._dashSeq self._dashcapstyle = other._dashcapstyle self._dashjoinstyle = other._dashjoinstyle self._solidcapstyle = other._solidcapstyle self._solidjoinstyle = other._solidjoinstyle self._linestyle = other._linestyle self._marker = other._marker self._drawstyle = other._drawstyle def _get_rgb_face(self): facecolor = self.get_markerfacecolor() if is_string_like(facecolor) and facecolor.lower()=='none': rgbFace = None else: rgbFace = colorConverter.to_rgb(facecolor) return rgbFace # some aliases.... def set_aa(self, val): 'alias for set_antialiased' self.set_antialiased(val) def set_c(self, val): 'alias for set_color' self.set_color(val) def set_ls(self, val): 'alias for set_linestyle' self.set_linestyle(val) def set_lw(self, val): 'alias for set_linewidth' self.set_linewidth(val) def set_mec(self, val): 'alias for set_markeredgecolor' self.set_markeredgecolor(val) def set_mew(self, val): 'alias for set_markeredgewidth' self.set_markeredgewidth(val) def set_mfc(self, val): 'alias for set_markerfacecolor' self.set_markerfacecolor(val) def set_ms(self, val): 'alias for set_markersize' self.set_markersize(val) def get_aa(self): 'alias for get_antialiased' return self.get_antialiased() def get_c(self): 'alias for get_color' return self.get_color() def get_ls(self): 'alias for get_linestyle' return self.get_linestyle() def get_lw(self): 'alias for get_linewidth' return self.get_linewidth() def get_mec(self): 'alias for get_markeredgecolor' return self.get_markeredgecolor() def get_mew(self): 'alias for get_markeredgewidth' return self.get_markeredgewidth() def get_mfc(self): 'alias for get_markerfacecolor' return self.get_markerfacecolor() def get_ms(self): 'alias for get_markersize' return self.get_markersize() def set_dash_joinstyle(self, s): """ Set the join style for dashed linestyles ACCEPTS: ['miter' | 'round' | 'bevel'] """ s = s.lower() if s not in self.validJoin: raise ValueError('set_dash_joinstyle passed "%s";\n' % (s,) + 'valid joinstyles are %s' % (self.validJoin,)) self._dashjoinstyle = s def set_solid_joinstyle(self, s): """ Set the join style for solid linestyles ACCEPTS: ['miter' | 'round' | 'bevel'] """ s = s.lower() if s not in self.validJoin: raise ValueError('set_solid_joinstyle passed "%s";\n' % (s,) + 'valid joinstyles are %s' % (self.validJoin,)) self._solidjoinstyle = s def get_dash_joinstyle(self): """ Get the join style for dashed linestyles """ return self._dashjoinstyle def get_solid_joinstyle(self): """ Get the join style for solid linestyles """ return self._solidjoinstyle def set_dash_capstyle(self, s): """ Set the cap style for dashed linestyles ACCEPTS: ['butt' | 'round' | 'projecting'] """ s = s.lower() if s not in self.validCap: raise ValueError('set_dash_capstyle passed "%s";\n' % (s,) + 'valid capstyles are %s' % (self.validCap,)) self._dashcapstyle = s def set_solid_capstyle(self, s): """ Set the cap style for solid linestyles ACCEPTS: ['butt' | 'round' | 'projecting'] """ s = s.lower() if s not in self.validCap: raise ValueError('set_solid_capstyle passed "%s";\n' % (s,) + 'valid capstyles are %s' % (self.validCap,)) self._solidcapstyle = s def get_dash_capstyle(self): """ Get the cap style for dashed linestyles """ return self._dashcapstyle def get_solid_capstyle(self): """ Get the cap style for solid linestyles """ return self._solidcapstyle def is_dashed(self): 'return True if line is dashstyle' return self._linestyle in ('--', '-.', ':') class VertexSelector: """ Manage the callbacks to maintain a list of selected vertices for :class:`matplotlib.lines.Line2D`. Derived classes should override :meth:`~matplotlib.lines.VertexSelector.process_selected` to do something with the picks. Here is an example which highlights the selected verts with red circles:: import numpy as np import matplotlib.pyplot as plt import matplotlib.lines as lines class HighlightSelected(lines.VertexSelector): def __init__(self, line, fmt='ro', **kwargs): lines.VertexSelector.__init__(self, line) self.markers, = self.axes.plot([], [], fmt, **kwargs) def process_selected(self, ind, xs, ys): self.markers.set_data(xs, ys) self.canvas.draw() fig = plt.figure() ax = fig.add_subplot(111) x, y = np.random.rand(2, 30) line, = ax.plot(x, y, 'bs-', picker=5) selector = HighlightSelected(line) plt.show() """ def __init__(self, line): """ Initialize the class with a :class:`matplotlib.lines.Line2D` instance. The line should already be added to some :class:`matplotlib.axes.Axes` instance and should have the picker property set. """ if not hasattr(line, 'axes'): raise RuntimeError('You must first add the line to the Axes') if line.get_picker() is None: raise RuntimeError('You must first set the picker property of the line') self.axes = line.axes self.line = line self.canvas = self.axes.figure.canvas self.cid = self.canvas.mpl_connect('pick_event', self.onpick) self.ind = set() def process_selected(self, ind, xs, ys): """ Default "do nothing" implementation of the :meth:`process_selected` method. *ind* are the indices of the selected vertices. *xs* and *ys* are the coordinates of the selected vertices. """ pass def onpick(self, event): 'When the line is picked, update the set of selected indicies.' if event.artist is not self.line: return for i in event.ind: if i in self.ind: self.ind.remove(i) else: self.ind.add(i) ind = list(self.ind) ind.sort() xdata, ydata = self.line.get_data() self.process_selected(ind, xdata[ind], ydata[ind]) lineStyles = Line2D._lineStyles lineMarkers = Line2D._markers drawStyles = Line2D.drawStyles artist.kwdocd['Line2D'] = artist.kwdoc(Line2D) # You can not set the docstring of an instancemethod, # but you can on the underlying function. Go figure. Line2D.__init__.im_func.__doc__ = dedent(Line2D.__init__.__doc__) % artist.kwdocd
agpl-3.0
imaculate/scikit-learn
sklearn/linear_model/randomized_l1.py
11
24849
""" Randomized Lasso/Logistic: feature selection based on Lasso and sparse Logistic Regression """ # Author: Gael Varoquaux, Alexandre Gramfort # # License: BSD 3 clause import itertools from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy.sparse import issparse from scipy import sparse from scipy.interpolate import interp1d from .base import _preprocess_data from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.joblib import Memory, Parallel, delayed from ..utils import (as_float_array, check_random_state, check_X_y, check_array, safe_mask) from ..utils.validation import check_is_fitted from .least_angle import lars_path, LassoLarsIC from .logistic import LogisticRegression from ..exceptions import ConvergenceWarning ############################################################################### # Randomized linear model: feature selection def _resample_model(estimator_func, X, y, scaling=.5, n_resampling=200, n_jobs=1, verbose=False, pre_dispatch='3*n_jobs', random_state=None, sample_fraction=.75, **params): random_state = check_random_state(random_state) # We are generating 1 - weights, and not weights n_samples, n_features = X.shape if not (0 < scaling < 1): raise ValueError( "'scaling' should be between 0 and 1. Got %r instead." % scaling) scaling = 1. - scaling scores_ = 0.0 for active_set in Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)( delayed(estimator_func)( X, y, weights=scaling * random_state.randint( 0, 2, size=(n_features,)), mask=(random_state.rand(n_samples) < sample_fraction), verbose=max(0, verbose - 1), **params) for _ in range(n_resampling)): scores_ += active_set scores_ /= n_resampling return scores_ class BaseRandomizedLinearModel(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class to implement randomized linear models for feature selection This implements the strategy by Meinshausen and Buhlman: stability selection with randomized sampling, and random re-weighting of the penalty. """ @abstractmethod def __init__(self): pass _preprocess_data = staticmethod(_preprocess_data) def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data. y : array-like, shape = [n_samples] Target values. Returns ------- self : object Returns an instance of self. """ X, y = check_X_y(X, y, ['csr', 'csc'], y_numeric=True, ensure_min_samples=2, estimator=self) X = as_float_array(X, copy=False) n_samples, n_features = X.shape X, y, X_offset, y_offset, X_scale = \ self._preprocess_data(X, y, self.fit_intercept, self.normalize) estimator_func, params = self._make_estimator_and_params(X, y) memory = self.memory if isinstance(memory, six.string_types): memory = Memory(cachedir=memory) scores_ = memory.cache( _resample_model, ignore=['verbose', 'n_jobs', 'pre_dispatch'] )( estimator_func, X, y, scaling=self.scaling, n_resampling=self.n_resampling, n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=self.pre_dispatch, random_state=self.random_state, sample_fraction=self.sample_fraction, **params) if scores_.ndim == 1: scores_ = scores_[:, np.newaxis] self.all_scores_ = scores_ self.scores_ = np.max(self.all_scores_, axis=1) return self def _make_estimator_and_params(self, X, y): """Return the parameters passed to the estimator""" raise NotImplementedError def get_support(self, indices=False): """Return a mask, or list, of the features/indices selected.""" check_is_fitted(self, 'scores_') mask = self.scores_ > self.selection_threshold return mask if not indices else np.where(mask)[0] # XXX: the two function below are copy/pasted from feature_selection, # Should we add an intermediate base class? def transform(self, X): """Transform a new matrix using the selected features""" mask = self.get_support() X = check_array(X) if len(mask) != X.shape[1]: raise ValueError("X has a different shape than during fitting.") return check_array(X)[:, safe_mask(X, mask)] def inverse_transform(self, X): """Transform a new matrix using the selected features""" support = self.get_support() if X.ndim == 1: X = X[None, :] Xt = np.zeros((X.shape[0], support.size)) Xt[:, support] = X return Xt ############################################################################### # Randomized lasso: regression settings def _randomized_lasso(X, y, weights, mask, alpha=1., verbose=False, precompute=False, eps=np.finfo(np.float).eps, max_iter=500): X = X[safe_mask(X, mask)] y = y[mask] # Center X and y to avoid fit the intercept X -= X.mean(axis=0) y -= y.mean() alpha = np.atleast_1d(np.asarray(alpha, dtype=np.float64)) X = (1 - weights) * X with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas_, _, coef_ = lars_path(X, y, Gram=precompute, copy_X=False, copy_Gram=False, alpha_min=np.min(alpha), method='lasso', verbose=verbose, max_iter=max_iter, eps=eps) if len(alpha) > 1: if len(alphas_) > 1: # np.min(alpha) < alpha_min interpolator = interp1d(alphas_[::-1], coef_[:, ::-1], bounds_error=False, fill_value=0.) scores = (interpolator(alpha) != 0.0) else: scores = np.zeros((X.shape[1], len(alpha)), dtype=np.bool) else: scores = coef_[:, -1] != 0.0 return scores class RandomizedLasso(BaseRandomizedLinearModel): """Randomized Lasso. Randomized Lasso works by subsampling the training data and computing a Lasso estimate where the penalty of a random subset of coefficients has been scaled. By performing this double randomization several times, the method assigns high scores to features that are repeatedly selected across randomizations. This is known as stability selection. In short, features selected more often are considered good features. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- alpha : float, 'aic', or 'bic', optional The regularization parameter alpha parameter in the Lasso. Warning: this is not the alpha parameter in the stability selection article which is scaling. scaling : float, optional The s parameter used to randomly scale the penalty of different features (See :ref:`User Guide <randomized_l1>` for details ). Should be between 0 and 1. sample_fraction : float, optional The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional Number of randomized models. selection_threshold: float, optional The score above which features should be selected. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learned more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. precompute : True | False | 'auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform in the Lars algorithm. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the 'tol' parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max of \ ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLasso >>> randomized_lasso = RandomizedLasso() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLogisticRegression, Lasso, ElasticNet """ def __init__(self, alpha='aic', scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.alpha = alpha self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.eps = eps self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): assert self.precompute in (True, False, None, 'auto') alpha = self.alpha if isinstance(alpha, six.string_types) and alpha in ('aic', 'bic'): model = LassoLarsIC(precompute=self.precompute, criterion=self.alpha, max_iter=self.max_iter, eps=self.eps) model.fit(X, y) self.alpha_ = alpha = model.alpha_ return _randomized_lasso, dict(alpha=alpha, max_iter=self.max_iter, eps=self.eps, precompute=self.precompute) ############################################################################### # Randomized logistic: classification settings def _randomized_logistic(X, y, weights, mask, C=1., verbose=False, fit_intercept=True, tol=1e-3): X = X[safe_mask(X, mask)] y = y[mask] if issparse(X): size = len(weights) weight_dia = sparse.dia_matrix((1 - weights, 0), (size, size)) X = X * weight_dia else: X *= (1 - weights) C = np.atleast_1d(np.asarray(C, dtype=np.float64)) scores = np.zeros((X.shape[1], len(C)), dtype=np.bool) for this_C, this_scores in zip(C, scores.T): # XXX : would be great to do it with a warm_start ... clf = LogisticRegression(C=this_C, tol=tol, penalty='l1', dual=False, fit_intercept=fit_intercept) clf.fit(X, y) this_scores[:] = np.any( np.abs(clf.coef_) > 10 * np.finfo(np.float).eps, axis=0) return scores class RandomizedLogisticRegression(BaseRandomizedLinearModel): """Randomized Logistic Regression Randomized Logistic Regression works by subsampling the training data and fitting a L1-penalized LogisticRegression model where the penalty of a random subset of coefficients has been scaled. By performing this double randomization several times, the method assigns high scores to features that are repeatedly selected across randomizations. This is known as stability selection. In short, features selected more often are considered good features. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- C : float, optional, default=1 The regularization parameter C in the LogisticRegression. scaling : float, optional, default=0.5 The s parameter used to randomly scale the penalty of different features (See :ref:`User Guide <randomized_l1>` for details ). Should be between 0 and 1. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional, default=200 Number of randomized models. selection_threshold : float, optional, default=0.25 The score above which features should be selected. fit_intercept : boolean, optional, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. tol : float, optional, default=1e-3 tolerance for stopping criteria of LogisticRegression n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max \ of ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLogisticRegression >>> randomized_logistic = RandomizedLogisticRegression() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLasso, LogisticRegression """ def __init__(self, C=1, scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, tol=1e-3, fit_intercept=True, verbose=False, normalize=True, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.C = C self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.tol = tol self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): params = dict(C=self.C, tol=self.tol, fit_intercept=self.fit_intercept) return _randomized_logistic, params def _preprocess_data(self, X, y, fit_intercept, normalize=False): """Center the data in X but not in y""" X, _, X_offset, _, X_scale = _preprocess_data(X, y, fit_intercept, normalize=normalize) return X, y, X_offset, y, X_scale ############################################################################### # Stability paths def _lasso_stability_path(X, y, mask, weights, eps): "Inner loop of lasso_stability_path" X = X * weights[np.newaxis, :] X = X[safe_mask(X, mask), :] y = y[mask] alpha_max = np.max(np.abs(np.dot(X.T, y))) / X.shape[0] alpha_min = eps * alpha_max # set for early stopping in path with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas, _, coefs = lars_path(X, y, method='lasso', verbose=False, alpha_min=alpha_min) # Scale alpha by alpha_max alphas /= alphas[0] # Sort alphas in assending order alphas = alphas[::-1] coefs = coefs[:, ::-1] # Get rid of the alphas that are too small mask = alphas >= eps # We also want to keep the first one: it should be close to the OLS # solution mask[0] = True alphas = alphas[mask] coefs = coefs[:, mask] return alphas, coefs def lasso_stability_path(X, y, scaling=0.5, random_state=None, n_resampling=200, n_grid=100, sample_fraction=0.75, eps=4 * np.finfo(np.float).eps, n_jobs=1, verbose=False): """Stabiliy path based on randomized Lasso estimates Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- X : array-like, shape = [n_samples, n_features] training data. y : array-like, shape = [n_samples] target values. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. random_state : integer or numpy.random.RandomState, optional The generator used to randomize the design. n_resampling : int, optional, default=200 Number of randomized models. n_grid : int, optional, default=100 Number of grid points. The path is linearly reinterpolated on a grid between 0 and 1 before computing the scores. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. eps : float, optional Smallest value of alpha / alpha_max considered n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Returns ------- alphas_grid : array, shape ~ [n_grid] The grid points between 0 and 1: alpha/alpha_max scores_path : array, shape = [n_features, n_grid] The scores for each feature along the path. Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. """ rng = check_random_state(random_state) if not (0 < scaling < 1): raise ValueError("Parameter 'scaling' should be between 0 and 1." " Got %r instead." % scaling) n_samples, n_features = X.shape paths = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_lasso_stability_path)( X, y, mask=rng.rand(n_samples) < sample_fraction, weights=1. - scaling * rng.randint(0, 2, size=(n_features,)), eps=eps) for k in range(n_resampling)) all_alphas = sorted(list(set(itertools.chain(*[p[0] for p in paths])))) # Take approximately n_grid values stride = int(max(1, int(len(all_alphas) / float(n_grid)))) all_alphas = all_alphas[::stride] if not all_alphas[-1] == 1: all_alphas.append(1.) all_alphas = np.array(all_alphas) scores_path = np.zeros((n_features, len(all_alphas))) for alphas, coefs in paths: if alphas[0] != 0: alphas = np.r_[0, alphas] coefs = np.c_[np.ones((n_features, 1)), coefs] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] coefs = np.c_[coefs, np.zeros((n_features, 1))] scores_path += (interp1d(alphas, coefs, kind='nearest', bounds_error=False, fill_value=0, axis=-1)(all_alphas) != 0) scores_path /= n_resampling return all_alphas, scores_path
bsd-3-clause
SophieIPP/ipp-macro-series-parser
ipp_macro_series_parser/demographie/parser.py
1
3235
# -*- coding: utf-8 -*- # TAXIPP -- A French microsimulation model # By: IPP <taxipp@ipp.eu> # # Copyright (C) 2012, 2013, 2014, 2015 IPP # https://github.com/taxipp # # This file is part of TAXIPP. # # TAXIPP is free software; you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # TAXIPP is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import logging import os import pandas import pkg_resources from ipp_macro_series_parser.config import Config config_parser = Config( config_files_directory = os.path.join(pkg_resources.get_distribution('ipp-macro-series-parser').location) ) xls_directory = os.path.join(config_parser.get('data', 'demographie_directory'), 'xls') log = logging.getLogger(__name__) def create_demographie_data_frame(): data_frame = pandas.DataFrame() for year in range(1999, 2015 + 1): file_path = os.path.join(xls_directory, u'pyramide-des-ages-{}.xls'.format(year)) skiprows = 5 - (year == 1999) parse_cols = "A:E" slice_start = 0 slice_end = 101 sheetname = 'France' if year <= 2010: sheetnames = ['France', u'France métropolitaine'] elif year == 2011: sheetnames = ['{} France'.format(year), u"{} métropole".format(year)] else: sheetnames = ['Pyramide {} France'.format(year), u'Pyramide {} métropole'.format(year)] for sheetname in sheetnames: try: df = pandas.read_excel( file_path, # na_values = '-', sheetname = sheetname, skiprows = skiprows, parse_cols = parse_cols).iloc[slice_start:slice_end] df['year'] = year if sheetname in ['France', u'France métropolitaine']: df['champ'] = sheetname else: df['champ'] = u'France métropolitaine' if u'métropole' in sheetname else 'France' # All column name on one line remove_cr = dict( (column, column.replace(u"\n", " ").replace(" ", " ")) for column in df.columns) df.rename(columns = remove_cr, inplace = True) # Femmes _> Nombre de femmes etc df.rename(columns = dict( Femmes = "Nombre de femmes", Hommes = "Nombre d'hommes"), inplace = True) data_frame = pandas.concat((data_frame, df)) del df except Exception, e: print year print sheetname raise(e) return pandas.melt(data_frame, id_vars = ['year', 'champ', u'Âge révolu', u'Année de naissance'])
gpl-3.0
gef756/scipy
scipy/interpolate/interpolate.py
25
80287
""" Classes for interpolating values. """ from __future__ import division, print_function, absolute_import __all__ = ['interp1d', 'interp2d', 'spline', 'spleval', 'splmake', 'spltopp', 'ppform', 'lagrange', 'PPoly', 'BPoly', 'RegularGridInterpolator', 'interpn'] import itertools from numpy import (shape, sometrue, array, transpose, searchsorted, ones, logical_or, atleast_1d, atleast_2d, ravel, dot, poly1d, asarray, intp) import numpy as np import scipy.linalg import scipy.special as spec from scipy.special import comb import math import warnings import functools import operator from scipy._lib.six import xrange, integer_types from . import fitpack from . import dfitpack from . import _fitpack from .polyint import _Interpolator1D from . import _ppoly from .fitpack2 import RectBivariateSpline from .interpnd import _ndim_coords_from_arrays def reduce_sometrue(a): all = a while len(shape(all)) > 1: all = sometrue(all, axis=0) return all def prod(x): """Product of a list of numbers; ~40x faster vs np.prod for Python tuples""" if len(x) == 0: return 1 return functools.reduce(operator.mul, x) def lagrange(x, w): """ Return a Lagrange interpolating polynomial. Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating polynomial through the points ``(x, w)``. Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points even if they are chosen optimally. Parameters ---------- x : array_like `x` represents the x-coordinates of a set of datapoints. w : array_like `w` represents the y-coordinates of a set of datapoints, i.e. f(`x`). Returns ------- lagrange : numpy.poly1d instance The Lagrange interpolating polynomial. """ M = len(x) p = poly1d(0.0) for j in xrange(M): pt = poly1d(w[j]) for k in xrange(M): if k == j: continue fac = x[j]-x[k] pt *= poly1d([1.0, -x[k]])/fac p += pt return p # !! Need to find argument for keeping initialize. If it isn't # !! found, get rid of it! class interp2d(object): """ interp2d(x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=nan) Interpolate over a 2-D grid. `x`, `y` and `z` are arrays of values used to approximate some function f: ``z = f(x, y)``. This class returns a function whose call method uses spline interpolation to find the value of new points. If `x` and `y` represent a regular grid, consider using RectBivariateSpline. Methods ------- __call__ Parameters ---------- x, y : array_like Arrays defining the data point coordinates. If the points lie on a regular grid, `x` can specify the column coordinates and `y` the row coordinates, for example:: >>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]] Otherwise, `x` and `y` must specify the full coordinates for each point, for example:: >>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,6] If `x` and `y` are multi-dimensional, they are flattened before use. z : array_like The values of the function to interpolate at the data points. If `z` is a multi-dimensional array, it is flattened before use. The length of a flattened `z` array is either len(`x`)*len(`y`) if `x` and `y` specify the column and row coordinates or ``len(z) == len(x) == len(y)`` if `x` and `y` specify coordinates for each point. kind : {'linear', 'cubic', 'quintic'}, optional The kind of spline interpolation to use. Default is 'linear'. copy : bool, optional If True, the class makes internal copies of x, y and z. If False, references may be used. The default is to copy. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data (x,y), a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If omitted (None), values outside the domain are extrapolated. Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. See Also -------- RectBivariateSpline : Much faster 2D interpolation if your input data is on a grid bisplrep, bisplev : Spline interpolation based on FITPACK BivariateSpline : a more recent wrapper of the FITPACK routines interp1d : one dimension version of this function Notes ----- The minimum number of data points required along the interpolation axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for quintic interpolation. The interpolator is constructed by `bisplrep`, with a smoothing factor of 0. If more control over smoothing is needed, `bisplrep` should be used directly. Examples -------- Construct a 2-D grid and interpolate on it: >>> from scipy import interpolate >>> x = np.arange(-5.01, 5.01, 0.25) >>> y = np.arange(-5.01, 5.01, 0.25) >>> xx, yy = np.meshgrid(x, y) >>> z = np.sin(xx**2+yy**2) >>> f = interpolate.interp2d(x, y, z, kind='cubic') Now use the obtained interpolation function and plot the result: >>> import matplotlib.pyplot as plt >>> xnew = np.arange(-5.01, 5.01, 1e-2) >>> ynew = np.arange(-5.01, 5.01, 1e-2) >>> znew = f(xnew, ynew) >>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-') >>> plt.show() """ def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=None): x = ravel(x) y = ravel(y) z = asarray(z) rectangular_grid = (z.size == len(x) * len(y)) if rectangular_grid: if z.ndim == 2: if z.shape != (len(y), len(x)): raise ValueError("When on a regular grid with x.size = m " "and y.size = n, if z.ndim == 2, then z " "must have shape (n, m)") if not np.all(x[1:] >= x[:-1]): j = np.argsort(x) x = x[j] z = z[:, j] if not np.all(y[1:] >= y[:-1]): j = np.argsort(y) y = y[j] z = z[j, :] z = ravel(z.T) else: z = ravel(z) if len(x) != len(y): raise ValueError( "x and y must have equal lengths for non rectangular grid") if len(z) != len(x): raise ValueError( "Invalid length for input z for non rectangular grid") try: kx = ky = {'linear': 1, 'cubic': 3, 'quintic': 5}[kind] except KeyError: raise ValueError("Unsupported interpolation type.") if not rectangular_grid: # TODO: surfit is really not meant for interpolation! self.tck = fitpack.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0) else: nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth( x, y, z, None, None, None, None, kx=kx, ky=ky, s=0.0) self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], kx, ky) self.bounds_error = bounds_error self.fill_value = fill_value self.x, self.y, self.z = [array(a, copy=copy) for a in (x, y, z)] self.x_min, self.x_max = np.amin(x), np.amax(x) self.y_min, self.y_max = np.amin(y), np.amax(y) def __call__(self, x, y, dx=0, dy=0, assume_sorted=False): """Interpolate the function. Parameters ---------- x : 1D array x-coordinates of the mesh on which to interpolate. y : 1D array y-coordinates of the mesh on which to interpolate. dx : int >= 0, < kx Order of partial derivatives in x. dy : int >= 0, < ky Order of partial derivatives in y. assume_sorted : bool, optional If False, values of `x` and `y` can be in any order and they are sorted first. If True, `x` and `y` have to be arrays of monotonically increasing values. Returns ------- z : 2D array with shape (len(y), len(x)) The interpolated values. """ x = atleast_1d(x) y = atleast_1d(y) if x.ndim != 1 or y.ndim != 1: raise ValueError("x and y should both be 1-D arrays") if not assume_sorted: x = np.sort(x) y = np.sort(y) if self.bounds_error or self.fill_value is not None: out_of_bounds_x = (x < self.x_min) | (x > self.x_max) out_of_bounds_y = (y < self.y_min) | (y > self.y_max) any_out_of_bounds_x = np.any(out_of_bounds_x) any_out_of_bounds_y = np.any(out_of_bounds_y) if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y): raise ValueError("Values out of range; x must be in %r, y in %r" % ((self.x_min, self.x_max), (self.y_min, self.y_max))) z = fitpack.bisplev(x, y, self.tck, dx, dy) z = atleast_2d(z) z = transpose(z) if self.fill_value is not None: if any_out_of_bounds_x: z[:, out_of_bounds_x] = self.fill_value if any_out_of_bounds_y: z[out_of_bounds_y, :] = self.fill_value if len(z) == 1: z = z[0] return array(z) class interp1d(_Interpolator1D): """ Interpolate a 1-D function. `x` and `y` are arrays of values used to approximate some function f: ``y = f(x)``. This class returns a function whose call method uses interpolation to find the value of new points. Parameters ---------- x : (N,) array_like A 1-D array of real values. y : (...,N,...) array_like A N-D array of real values. The length of `y` along the interpolation axis must be equal to the length of `x`. kind : str or int, optional Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic' where 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of first, second or third order) or as an integer specifying the order of the spline interpolator to use. Default is 'linear'. axis : int, optional Specifies the axis of `y` along which to interpolate. Interpolation defaults to the last axis of `y`. copy : bool, optional If True, the class makes internal copies of x and y. If False, references to `x` and `y` are used. The default is to copy. bounds_error : bool, optional If True, a ValueError is raised any time interpolation is attempted on a value outside of the range of x (where extrapolation is necessary). If False, out of bounds values are assigned `fill_value`. By default, an error is raised. fill_value : float, optional If provided, then this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN. assume_sorted : bool, optional If False, values of `x` can be in any order and they are sorted first. If True, `x` has to be an array of monotonically increasing values. Methods ------- __call__ See Also -------- splrep, splev Spline interpolation/smoothing based on FITPACK. UnivariateSpline : An object-oriented wrapper of the FITPACK routines. interp2d : 2-D interpolation Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import interpolate >>> x = np.arange(0, 10) >>> y = np.exp(-x/3.0) >>> f = interpolate.interp1d(x, y) >>> xnew = np.arange(0, 9, 0.1) >>> ynew = f(xnew) # use interpolation function returned by `interp1d` >>> plt.plot(x, y, 'o', xnew, ynew, '-') >>> plt.show() """ def __init__(self, x, y, kind='linear', axis=-1, copy=True, bounds_error=True, fill_value=np.nan, assume_sorted=False): """ Initialize a 1D linear interpolation class.""" _Interpolator1D.__init__(self, x, y, axis=axis) self.copy = copy self.bounds_error = bounds_error self.fill_value = fill_value if kind in ['zero', 'slinear', 'quadratic', 'cubic']: order = {'nearest': 0, 'zero': 0,'slinear': 1, 'quadratic': 2, 'cubic': 3}[kind] kind = 'spline' elif isinstance(kind, int): order = kind kind = 'spline' elif kind not in ('linear', 'nearest'): raise NotImplementedError("%s is unsupported: Use fitpack " "routines for other types." % kind) x = array(x, copy=self.copy) y = array(y, copy=self.copy) if not assume_sorted: ind = np.argsort(x) x = x[ind] y = np.take(y, ind, axis=axis) if x.ndim != 1: raise ValueError("the x array must have exactly one dimension.") if y.ndim == 0: raise ValueError("the y array must have at least one dimension.") # Force-cast y to a floating-point type, if it's not yet one if not issubclass(y.dtype.type, np.inexact): y = y.astype(np.float_) # Backward compatibility self.axis = axis % y.ndim # Interpolation goes internally along the first axis self.y = y y = self._reshape_yi(y) # Adjust to interpolation kind; store reference to *unbound* # interpolation methods, in order to avoid circular references to self # stored in the bound instance methods, and therefore delayed garbage # collection. See: http://docs.python.org/2/reference/datamodel.html if kind in ('linear', 'nearest'): # Make a "view" of the y array that is rotated to the interpolation # axis. minval = 2 if kind == 'nearest': self.x_bds = (x[1:] + x[:-1]) / 2.0 self._call = self.__class__._call_nearest else: self._call = self.__class__._call_linear else: minval = order + 1 self._spline = splmake(x, y, order=order) self._call = self.__class__._call_spline if len(x) < minval: raise ValueError("x and y arrays must have at " "least %d entries" % minval) self._kind = kind self.x = x self._y = y def _call_linear(self, x_new): # 2. Find where in the orignal data, the values to interpolate # would be inserted. # Note: If x_new[n] == x[m], then m is returned by searchsorted. x_new_indices = searchsorted(self.x, x_new) # 3. Clip x_new_indices so that they are within the range of # self.x indices and at least 1. Removes mis-interpolation # of x_new[n] = x[0] x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int) # 4. Calculate the slope of regions that each x_new value falls in. lo = x_new_indices - 1 hi = x_new_indices x_lo = self.x[lo] x_hi = self.x[hi] y_lo = self._y[lo] y_hi = self._y[hi] # Note that the following two expressions rely on the specifics of the # broadcasting semantics. slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None] # 5. Calculate the actual value for each entry in x_new. y_new = slope*(x_new - x_lo)[:, None] + y_lo return y_new def _call_nearest(self, x_new): """ Find nearest neighbour interpolated y_new = f(x_new).""" # 2. Find where in the averaged data the values to interpolate # would be inserted. # Note: use side='left' (right) to searchsorted() to define the # halfway point to be nearest to the left (right) neighbour x_new_indices = searchsorted(self.x_bds, x_new, side='left') # 3. Clip x_new_indices so that they are within the range of x indices. x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp) # 4. Calculate the actual value for each entry in x_new. y_new = self._y[x_new_indices] return y_new def _call_spline(self, x_new): return spleval(self._spline, x_new) def _evaluate(self, x_new): # 1. Handle values in x_new that are outside of x. Throw error, # or return a list of mask array indicating the outofbounds values. # The behavior is set by the bounds_error variable. x_new = asarray(x_new) out_of_bounds = self._check_bounds(x_new) y_new = self._call(self, x_new) if len(y_new) > 0: y_new[out_of_bounds] = self.fill_value return y_new def _check_bounds(self, x_new): """Check the inputs for being in the bounds of the interpolated data. Parameters ---------- x_new : array Returns ------- out_of_bounds : bool array The mask on x_new of values that are out of the bounds. """ # If self.bounds_error is True, we raise an error if any x_new values # fall outside the range of x. Otherwise, we return an array indicating # which values are outside the boundary region. below_bounds = x_new < self.x[0] above_bounds = x_new > self.x[-1] # !! Could provide more information about which values are out of bounds if self.bounds_error and below_bounds.any(): raise ValueError("A value in x_new is below the interpolation " "range.") if self.bounds_error and above_bounds.any(): raise ValueError("A value in x_new is above the interpolation " "range.") # !! Should we emit a warning if some values are out of bounds? # !! matlab does not. out_of_bounds = logical_or(below_bounds, above_bounds) return out_of_bounds class _PPolyBase(object): """ Base class for piecewise polynomials. """ __slots__ = ('c', 'x', 'extrapolate', 'axis') def __init__(self, c, x, extrapolate=None, axis=0): self.c = np.asarray(c) self.x = np.ascontiguousarray(x, dtype=np.float64) if extrapolate is None: extrapolate = True self.extrapolate = bool(extrapolate) if not (0 <= axis < self.c.ndim - 1): raise ValueError("%s must be between 0 and %s" % (axis, c.ndim-1)) self.axis = axis if axis != 0: # roll the interpolation axis to be the first one in self.c # More specifically, the target shape for self.c is (k, m, ...), # and axis !=0 means that we have c.shape (..., k, m, ...) # ^ # axis # So we roll two of them. self.c = np.rollaxis(self.c, axis+1) self.c = np.rollaxis(self.c, axis+1) if self.x.ndim != 1: raise ValueError("x must be 1-dimensional") if self.x.size < 2: raise ValueError("at least 2 breakpoints are needed") if self.c.ndim < 2: raise ValueError("c must have at least 2 dimensions") if self.c.shape[0] == 0: raise ValueError("polynomial must be at least of order 0") if self.c.shape[1] != self.x.size-1: raise ValueError("number of coefficients != len(x)-1") if np.any(self.x[1:] - self.x[:-1] < 0): raise ValueError("x-coordinates are not in increasing order") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ @classmethod def construct_fast(cls, c, x, extrapolate=None, axis=0): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments `c` and `x` must be arrays of the correct shape and type. The `c` array can only be of dtypes float and complex, and `x` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x self.axis = axis if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _ensure_c_contiguous(self): """ c and x may be modified by the user. The Cython code expects that they are C contiguous. """ if not self.x.flags.c_contiguous: self.x = self.x.copy() if not self.c.flags.c_contiguous: self.c = self.c.copy() def extend(self, c, x, right=True): """ Add additional breakpoints and coefficients to the polynomial. Parameters ---------- c : ndarray, size (k, m, ...) Additional coefficients for polynomials in intervals ``self.x[-1] <= x < x_right[0]``, ``x_right[0] <= x < x_right[1]``, ..., ``x_right[m-2] <= x < x_right[m-1]`` x : ndarray, size (m,) Additional breakpoints. Must be sorted and either to the right or to the left of the current breakpoints. right : bool, optional Whether the new intervals are to the right or to the left of the current intervals. """ c = np.asarray(c) x = np.asarray(x) if c.ndim < 2: raise ValueError("invalid dimensions for c") if x.ndim != 1: raise ValueError("invalid dimensions for x") if x.shape[0] != c.shape[1]: raise ValueError("x and c have incompatible sizes") if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim: raise ValueError("c and self.c have incompatible shapes") if right: if x[0] < self.x[-1]: raise ValueError("new x are not to the right of current ones") else: if x[-1] > self.x[0]: raise ValueError("new x are not to the left of current ones") if c.size == 0: return dtype = self._get_dtype(c.dtype) k2 = max(c.shape[0], self.c.shape[0]) c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:], dtype=dtype) if right: c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c c2[k2-c.shape[0]:, self.c.shape[1]:] = c self.x = np.r_[self.x, x] else: c2[k2-self.c.shape[0]:, :c.shape[1]] = c c2[k2-c.shape[0]:, c.shape[1]:] = self.c self.x = np.r_[x, self.x] self.c = c2 def __call__(self, x, nu=0, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative Parameters ---------- x : array_like Points to evaluate the interpolant at. nu : int, optional Order of derivative to evaluate. Must be non-negative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- y : array_like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate x = np.asarray(x) x_shape, x_ndim = x.shape, x.ndim x = np.ascontiguousarray(x.ravel(), dtype=np.float_) out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype) self._ensure_c_contiguous() self._evaluate(x, nu, extrapolate, out) out = out.reshape(x_shape + self.c.shape[2:]) if self.axis != 0: # transpose to move the calculated values to the interpolation axis l = list(range(out.ndim)) l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:] out = out.transpose(l) return out class PPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial in the ith interval is ``x[i] <= xp < x[i+1]``:: S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) where ``k`` is the degree of the polynomial. This representation is the local power basis. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ derivative antiderivative integrate roots extend from_spline from_bernstein_basis construct_fast See also -------- BPoly : piecewise polynomials in the Bernstein basis Notes ----- High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear for orders larger than 20-30. """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if nu < 0: return self.antiderivative(-nu) # reduce order if nu == 0: c2 = self.c.copy() else: c2 = self.c[:-nu,:].copy() if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu) c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)] # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- nu : int, optional Order of antiderivative to evaluate. (Default: 1) If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. """ if nu <= 0: return self.derivative(-nu) c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:], dtype=self.c.dtype) c[:-nu] = self.c # divide by the correct rising factorials factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu) c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom self._ensure_c_contiguous() _ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1), self.x, nu - 1) # construct a compatible polynomial return self.construct_fast(c, self.x, self.extrapolate, self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a, b] """ if extrapolate is None: extrapolate = self.extrapolate # Swap integration bounds if needed sign = 1 if b < a: a, b = b, a sign = -1 # Compute the integral range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype) self._ensure_c_contiguous() _ppoly.integrate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, bool(extrapolate), out=range_int) # Return range_int *= sign return range_int.reshape(self.c.shape[2:]) def roots(self, discontinuity=True, extrapolate=None): """ Find real roots of the piecewise polynomial. Parameters ---------- discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : bool, optional Whether to return roots from the polynomial extrapolated based on first and last intervals. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. Notes ----- This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that are identically zero, the root list will contain the start point of the corresponding interval, followed by a ``nan`` value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint, this is reported if the `discont` parameter is True. Examples -------- Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals ``[-2, 1], [1, 2]``: >>> from scipy.interpolate import PPoly >>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2]) >>> pp.roots() array([-1., 1.]) """ if extrapolate is None: extrapolate = self.extrapolate self._ensure_c_contiguous() if np.issubdtype(self.c.dtype, np.complexfloating): raise ValueError("Root finding is only for " "real-valued polynomials") r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, bool(discontinuity), bool(extrapolate)) if self.c.ndim == 2: return r[0] else: r2 = np.empty(prod(self.c.shape[2:]), dtype=object) # this for-loop is equivalent to ``r2[...] = r``, but that's broken # in numpy 1.6.0 for ii, root in enumerate(r): r2[ii] = root return r2.reshape(self.c.shape[2:]) @classmethod def from_spline(cls, tck, extrapolate=None): """ Construct a piecewise polynomial from a spline Parameters ---------- tck A spline, as returned by `splrep` extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ t, c, k = tck cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype) for m in xrange(k, -1, -1): y = fitpack.splev(t[:-1], tck, der=m) cvals[k - m, :] = y/spec.gamma(m+1) return cls.construct_fast(cvals, t, extrapolate) @classmethod def from_bernstein_basis(cls, bp, extrapolate=None): """ Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis. Parameters ---------- bp : BPoly A Bernstein basis polynomial, as created by BPoly extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ dx = np.diff(bp.x) k = bp.c.shape[0] - 1 # polynomial order rest = (None,)*(bp.c.ndim-2) c = np.zeros_like(bp.c) for a in range(k+1): factor = (-1)**(a) * comb(k, a) * bp.c[a] for s in range(a, k+1): val = comb(k-a, s-a) * (-1)**s c[k-s] += factor * val / dx[(slice(None),)+rest]**s if extrapolate is None: extrapolate = bp.extrapolate return cls.construct_fast(c, bp.x, extrapolate, bp.axis) class BPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial in the ``i``-th interval ``x[i] <= xp < x[i+1]`` is written in the Bernstein polynomial basis:: S = sum(c[a, i] * b(a, k; x) for a in range(k+1)) where ``k`` is the degree of the polynomial, and:: b(a, k; x) = comb(k, a) * t**k * (1 - t)**(k - a) with ``t = (x - x[i]) / (x[i+1] - x[i])``. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ extend derivative antiderivative integrate construct_fast from_power_basis from_derivatives See also -------- PPoly : piecewise polynomials in the power basis Notes ----- Properties of Bernstein polynomials are well documented in the literature. Here's a non-exhaustive list: .. [1] http://en.wikipedia.org/wiki/Bernstein_polynomial .. [2] Kenneth I. Joy, Bernstein polynomials, http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf .. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, vol 2011, article ID 829546, doi:10.1155/2011/829543 Examples -------- >>> from scipy.interpolate import BPoly >>> x = [0, 1] >>> c = [[1], [2], [3]] >>> bp = BPoly(c, x) This creates a 2nd order polynomial .. math:: B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3 \\times b_{2, 2}(x) \\\\ = 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2 """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate_bernstein( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k2 = k - nu representing the derivative of this polynomial. """ if nu < 0: return self.antiderivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.derivative() return bp # reduce order if nu == 0: c2 = self.c.copy() else: # For a polynomial # B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x), # we use the fact that # b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ), # which leads to # B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1} # # finally, for an interval [y, y + dy] with dy != 1, # we need to correct for an extra power of dy rest = (None,)*(self.c.ndim-2) k = self.c.shape[0] - 1 dx = np.diff(self.x)[(None, slice(None))+rest] c2 = k * np.diff(self.c, axis=0) / dx if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. (Default: 1) If negative, the derivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k2 = k + nu representing the antiderivative of this polynomial. """ if nu <= 0: return self.derivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.antiderivative() return bp # Construct the indefinite integrals on individual intervals c, x = self.c, self.x k = c.shape[0] c2 = np.zeros((k+1,) + c.shape[1:], dtype=c.dtype) c2[1:, ...] = np.cumsum(c, axis=0) / k delta = x[1:] - x[:-1] c2 *= delta[(None, slice(None)) + (None,)*(c.ndim-2)] # Now fix continuity: on the very first interval, take the integration # constant to be zero; on an interval [x_j, x_{j+1}) with j>0, # the integration constant is then equal to the jump of the `bp` at x_j. # The latter is given by the coefficient of B_{n+1, n+1} # *on the previous interval* (other B. polynomials are zero at the breakpoint) # Finally, use the fact that BPs form a partition of unity. c2[:,1:] += np.cumsum(c2[k,:], axis=0)[:-1] return self.construct_fast(c2, x, self.extrapolate, axis=self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Defaults to ``self.extrapolate``. Returns ------- array_like Definite integral of the piecewise polynomial over [a, b] """ # XXX: can probably use instead the fact that # \int_0^{1} B_{j, n}(x) \dx = 1/(n+1) ib = self.antiderivative() if extrapolate is not None: ib.extrapolate = extrapolate return ib(b) - ib(a) def extend(self, c, x, right=True): k = max(self.c.shape[0], c.shape[0]) self.c = self._raise_degree(self.c, k - self.c.shape[0]) c = self._raise_degree(c, k - c.shape[0]) return _PPolyBase.extend(self, c, x, right) extend.__doc__ = _PPolyBase.extend.__doc__ @classmethod def from_power_basis(cls, pp, extrapolate=None): """ Construct a piecewise polynomial in Bernstein basis from a power basis polynomial. Parameters ---------- pp : PPoly A piecewise polynomial in the power basis extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. """ dx = np.diff(pp.x) k = pp.c.shape[0] - 1 # polynomial order rest = (None,)*(pp.c.ndim-2) c = np.zeros_like(pp.c) for a in range(k+1): factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a) for j in range(k-a, k+1): c[j] += factor * comb(j, k-a) if extrapolate is None: extrapolate = pp.extrapolate return cls.construct_fast(c, pp.x, extrapolate, pp.axis) @classmethod def from_derivatives(cls, xi, yi, orders=None, extrapolate=None): """Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array_likes ``yi[i][j]`` is the ``j``-th derivative known at ``xi[i]`` orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. Notes ----- If ``k`` derivatives are specified at a breakpoint ``x``, the constructed polynomial is exactly ``k`` times continuously differentiable at ``x``, unless the ``order`` is provided explicitly. In the latter case, the smoothness of the polynomial at the breakpoint is controlled by the ``order``. Deduces the number of derivatives to match at each end from ``order`` and the number of derivatives available. If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the extra one from y2. In any case if not enough derivatives are available at one end or another it draws enough to make up the total from the other end. If the order is too high and not enough derivatives are available, an exception is raised. Examples -------- >>> from scipy.interpolate import BPoly >>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]]) Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]` such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4` >>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]]) Creates a piecewise polynomial `f(x)`, such that `f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`. Based on the number of derivatives provided, the order of the local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`. Notice that no restriction is imposed on the derivatives at `x = 1` and `x = 2`. Indeed, the explicit form of the polynomial is:: f(x) = | x * (1 - x), 0 <= x < 1 | 2 * (x - 1), 1 <= x <= 2 So that f'(1-0) = -1 and f'(1+0) = 2 """ xi = np.asarray(xi) if len(xi) != len(yi): raise ValueError("xi and yi need to have the same length") if np.any(xi[1:] - xi[:1] <= 0): raise ValueError("x coordinates are not in increasing order") # number of intervals m = len(xi) - 1 # global poly order is k-1, local orders are <=k and can vary try: k = max(len(yi[i]) + len(yi[i+1]) for i in range(m)) except TypeError: raise ValueError("Using a 1D array for y? Please .reshape(-1, 1).") if orders is None: orders = [None] * m else: if isinstance(orders, integer_types): orders = [orders] * m k = max(k, max(orders)) if any(o <= 0 for o in orders): raise ValueError("Orders must be positive.") c = [] for i in range(m): y1, y2 = yi[i], yi[i+1] if orders[i] is None: n1, n2 = len(y1), len(y2) else: n = orders[i]+1 n1 = min(n//2, len(y1)) n2 = min(n - n1, len(y2)) n1 = min(n - n2, len(y2)) if n1+n2 != n: raise ValueError("Point %g has %d derivatives, point %g" " has %d derivatives, but order %d requested" % (xi[i], len(y1), xi[i+1], len(y2), orders[i])) if not (n1 <= len(y1) and n2 <= len(y2)): raise ValueError("`order` input incompatible with" " length y1 or y2.") b = BPoly._construct_from_derivatives(xi[i], xi[i+1], y1[:n1], y2[:n2]) if len(b) < k: b = BPoly._raise_degree(b, k - len(b)) c.append(b) c = np.asarray(c) return cls(c.swapaxes(0, 1), xi, extrapolate) @staticmethod def _construct_from_derivatives(xa, xb, ya, yb): """Compute the coefficients of a polynomial in the Bernstein basis given the values and derivatives at the edges. Return the coefficients of a polynomial in the Bernstein basis defined on `[xa, xb]` and having the values and derivatives at the endpoints ``xa`` and ``xb`` as specified by ``ya`` and ``yb``. The polynomial constructed is of the minimal possible degree, i.e., if the lengths of ``ya`` and ``yb`` are ``na`` and ``nb``, the degree of the polynomial is ``na + nb - 1``. Parameters ---------- xa : float Left-hand end point of the interval xb : float Right-hand end point of the interval ya : array_like Derivatives at ``xa``. ``ya[0]`` is the value of the function, and ``ya[i]`` for ``i > 0`` is the value of the ``i``-th derivative. yb : array_like Derivatives at ``xb``. Returns ------- array coefficient array of a polynomial having specified derivatives Notes ----- This uses several facts from life of Bernstein basis functions. First of all, .. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1}) If B(x) is a linear combination of the form .. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n}, then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}. Iterating the latter one, one finds for the q-th derivative .. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q}, with .. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a} This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and `c_q` are found one by one by iterating `q = 0, ..., na`. At `x = xb` it's the same with `a = n - q`. """ ya, yb = np.asarray(ya), np.asarray(yb) if ya.shape[1:] != yb.shape[1:]: raise ValueError('ya and yb have incompatible dimensions.') dta, dtb = ya.dtype, yb.dtype if (np.issubdtype(dta, np.complexfloating) or np.issubdtype(dtb, np.complexfloating)): dt = np.complex_ else: dt = np.float_ na, nb = len(ya), len(yb) n = na + nb c = np.empty((na+nb,) + ya.shape[1:], dtype=dt) # compute coefficients of a polynomial degree na+nb-1 # walk left-to-right for q in range(0, na): c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q for j in range(0, q): c[q] -= (-1)**(j+q) * comb(q, j) * c[j] # now walk right-to-left for q in range(0, nb): c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q for j in range(0, q): c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j] return c @staticmethod def _raise_degree(c, d): """Raise a degree of a polynomial in the Bernstein basis. Given the coefficients of a polynomial degree `k`, return (the coefficients of) the equivalent polynomial of degree `k+d`. Parameters ---------- c : array_like coefficient array, 1D d : integer Returns ------- array coefficient array, 1D array of length `c.shape[0] + d` Notes ----- This uses the fact that a Bernstein polynomial `b_{a, k}` can be identically represented as a linear combination of polynomials of a higher degree `k+d`: .. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \ comb(d, j) / comb(k+d, a+j) """ if d == 0: return c k = c.shape[0] - 1 out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype) for a in range(c.shape[0]): f = c[a] * comb(k, a) for j in range(d+1): out[a+j] += f * comb(d, j) / comb(k+d, a+j) return out class RegularGridInterpolator(object): """ Interpolation on a regular grid in arbitrary dimensions The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-neighbour interpolation are supported. After setting up the interpolator object, the interpolation method (*linear* or *nearest*) may be chosen at each evaluation. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest". This parameter will become the default for the object's ``__call__`` method. Default is "linear". bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Methods ------- __call__ Notes ----- Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the input data by taking advantage of the regular grid structure. .. versionadded:: 0.14 Examples -------- Evaluate a simple example function on the points of a 3D grid: >>> from scipy.interpolate import RegularGridInterpolator >>> def f(x,y,z): ... return 2 * x**3 + 3 * y**2 - z >>> x = np.linspace(1, 4, 11) >>> y = np.linspace(4, 7, 22) >>> z = np.linspace(7, 9, 33) >>> data = f(*np.meshgrid(x, y, z, indexing='ij', sparse=True)) ``data`` is now a 3D array with ``data[i,j,k] = f(x[i], y[j], z[k])``. Next, define an interpolating function from this data: >>> my_interpolating_function = RegularGridInterpolator((x, y, z), data) Evaluate the interpolating function at the two points ``(x,y,z) = (2.1, 6.2, 8.3)`` and ``(3.3, 5.2, 7.1)``: >>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]]) >>> my_interpolating_function(pts) array([ 125.80469388, 146.30069388]) which is indeed a close approximation to ``[f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)]``. See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions References ---------- .. [1] Python package *regulargrid* by Johannes Buchner, see https://pypi.python.org/pypi/regulargrid/ .. [2] Trilinear interpolation. (2013, January 17). In Wikipedia, The Free Encyclopedia. Retrieved 27 Feb 2013 01:28. http://en.wikipedia.org/w/index.php?title=Trilinear_interpolation&oldid=533448871 .. [3] Weiser, Alan, and Sergio E. Zarantonello. "A note on piecewise linear and multilinear table interpolation in many dimensions." MATH. COMPUT. 50.181 (1988): 189-196. http://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf """ # this class is based on code originally programmed by Johannes Buchner, # see https://github.com/JohannesBuchner/regulargrid def __init__(self, points, values, method="linear", bounds_error=True, fill_value=np.nan): if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) self.method = method self.bounds_error = bounds_error if not hasattr(values, 'ndim'): # allow reasonable duck-typed values values = np.asarray(values) if len(points) > values.ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), values.ndim)) if hasattr(values, 'dtype') and hasattr(values, 'astype'): if not np.issubdtype(values.dtype, np.inexact): values = values.astype(float) self.fill_value = fill_value if fill_value is not None: fill_value_dtype = np.asarray(fill_value).dtype if (hasattr(values, 'dtype') and not np.can_cast(fill_value_dtype, values.dtype, casting='same_kind')): raise ValueError("fill_value must be either 'None' or " "of a type compatible with values") for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) self.grid = tuple([np.asarray(p) for p in points]) self.values = values def __call__(self, xi, method=None): """ Interpolation at coordinates Parameters ---------- xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str The method of interpolation to perform. Supported are "linear" and "nearest". """ method = self.method if method is None else method if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) ndim = len(self.grid) xi = _ndim_coords_from_arrays(xi, ndim=ndim) if xi.shape[-1] != len(self.grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], ndim)) xi_shape = xi.shape xi = xi.reshape(-1, xi_shape[-1]) if self.bounds_error: for i, p in enumerate(xi.T): if not np.logical_and(np.all(self.grid[i][0] <= p), np.all(p <= self.grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) indices, norm_distances, out_of_bounds = self._find_indices(xi.T) if method == "linear": result = self._evaluate_linear(indices, norm_distances, out_of_bounds) elif method == "nearest": result = self._evaluate_nearest(indices, norm_distances, out_of_bounds) if not self.bounds_error and self.fill_value is not None: result[out_of_bounds] = self.fill_value return result.reshape(xi_shape[:-1] + self.values.shape[ndim:]) def _evaluate_linear(self, indices, norm_distances, out_of_bounds): # slice for broadcasting over trailing dimensions in self.values vslice = (slice(None),) + (None,)*(self.values.ndim - len(indices)) # find relevant values # each i and i+1 represents a edge edges = itertools.product(*[[i, i + 1] for i in indices]) values = 0. for edge_indices in edges: weight = 1. for ei, i, yi in zip(edge_indices, indices, norm_distances): weight *= np.where(ei == i, 1 - yi, yi) values += np.asarray(self.values[edge_indices]) * weight[vslice] return values def _evaluate_nearest(self, indices, norm_distances, out_of_bounds): idx_res = [] for i, yi in zip(indices, norm_distances): idx_res.append(np.where(yi <= .5, i, i + 1)) return self.values[idx_res] def _find_indices(self, xi): # find relevant edges between which xi are situated indices = [] # compute distance to lower edge in unity units norm_distances = [] # check for out of bounds xi out_of_bounds = np.zeros((xi.shape[1]), dtype=bool) # iterate through dimensions for x, grid in zip(xi, self.grid): i = np.searchsorted(grid, x) - 1 i[i < 0] = 0 i[i > grid.size - 2] = grid.size - 2 indices.append(i) norm_distances.append((x - grid[i]) / (grid[i + 1] - grid[i])) if not self.bounds_error: out_of_bounds += x < grid[0] out_of_bounds += x > grid[-1] return indices, norm_distances, out_of_bounds def interpn(points, values, xi, method="linear", bounds_error=True, fill_value=np.nan): """ Multidimensional interpolation on regular grids. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest", and "splinef2d". "splinef2d" is only supported for 2-dimensional data. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method "splinef2d". Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. Notes ----- .. versionadded:: 0.14 See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions RegularGridInterpolator : Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions RectBivariateSpline : Bivariate spline approximation over a rectangular mesh """ # sanity check 'method' kwarg if method not in ["linear", "nearest", "splinef2d"]: raise ValueError("interpn only understands the methods 'linear', " "'nearest', and 'splinef2d'. You provided %s." % method) if not hasattr(values, 'ndim'): values = np.asarray(values) ndim = values.ndim if ndim > 2 and method == "splinef2d": raise ValueError("The method spline2fd can only be used for " "2-dimensional input data") if not bounds_error and fill_value is None and method == "splinef2d": raise ValueError("The method spline2fd does not support extrapolation.") # sanity check consistency of input dimensions if len(points) > ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), ndim)) if len(points) != ndim and method == 'splinef2d': raise ValueError("The method spline2fd can only be used for " "scalar data with one point per coordinate") # sanity check input grid for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) grid = tuple([np.asarray(p) for p in points]) # sanity check requested xi xi = _ndim_coords_from_arrays(xi, ndim=len(grid)) if xi.shape[-1] != len(grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], len(grid))) for i, p in enumerate(xi.T): if bounds_error and not np.logical_and(np.all(grid[i][0] <= p), np.all(p <= grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) # perform interpolation if method == "linear": interp = RegularGridInterpolator(points, values, method="linear", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "nearest": interp = RegularGridInterpolator(points, values, method="nearest", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "splinef2d": xi_shape = xi.shape xi = xi.reshape(-1, xi.shape[-1]) # RectBivariateSpline doesn't support fill_value; we need to wrap here idx_valid = np.all((grid[0][0] <= xi[:, 0], xi[:, 0] <= grid[0][-1], grid[1][0] <= xi[:, 1], xi[:, 1] <= grid[1][-1]), axis=0) result = np.empty_like(xi[:, 0]) # make a copy of values for RectBivariateSpline interp = RectBivariateSpline(points[0], points[1], values[:]) result[idx_valid] = interp.ev(xi[idx_valid, 0], xi[idx_valid, 1]) result[np.logical_not(idx_valid)] = fill_value return result.reshape(xi_shape[:-1]) # backward compatibility wrapper class ppform(PPoly): """ Deprecated piecewise polynomial class. New code should use the `PPoly` class instead. """ def __init__(self, coeffs, breaks, fill=0.0, sort=False): warnings.warn("ppform is deprecated -- use PPoly instead", category=DeprecationWarning) if sort: breaks = np.sort(breaks) else: breaks = np.asarray(breaks) PPoly.__init__(self, coeffs, breaks) self.coeffs = self.c self.breaks = self.x self.K = self.coeffs.shape[0] self.fill = fill self.a = self.breaks[0] self.b = self.breaks[-1] def __call__(self, x): return PPoly.__call__(self, x, 0, False) def _evaluate(self, x, nu, extrapolate, out): PPoly._evaluate(self, x, nu, extrapolate, out) out[~((x >= self.a) & (x <= self.b))] = self.fill return out @classmethod def fromspline(cls, xk, cvals, order, fill=0.0): # Note: this spline representation is incompatible with FITPACK N = len(xk)-1 sivals = np.empty((order+1, N), dtype=float) for m in xrange(order, -1, -1): fact = spec.gamma(m+1) res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m) res /= fact sivals[order-m, :] = res return cls(sivals, xk, fill=fill) def _dot0(a, b): """Similar to numpy.dot, but sum over last axis of a and 1st axis of b""" if b.ndim <= 2: return dot(a, b) else: axes = list(range(b.ndim)) axes.insert(-1, 0) axes.pop(0) return dot(a, b.transpose(axes)) def _find_smoothest(xk, yk, order, conds=None, B=None): # construct Bmatrix, and Jmatrix # e = J*c # minimize norm(e,2) given B*c=yk # if desired B can be given # conds is ignored N = len(xk)-1 K = order if B is None: B = _fitpack._bsplmat(order, xk) J = _fitpack._bspldismat(order, xk) u, s, vh = scipy.linalg.svd(B) ind = K-1 V2 = vh[-ind:,:].T V1 = vh[:-ind,:].T A = dot(J.T,J) tmp = dot(V2.T,A) Q = dot(tmp,V2) p = scipy.linalg.solve(Q, tmp) tmp = dot(V2,p) tmp = np.eye(N+K) - tmp tmp = dot(tmp,V1) tmp = dot(tmp,np.diag(1.0/s)) tmp = dot(tmp,u.T) return _dot0(tmp, yk) def _setdiag(a, k, v): if not a.ndim == 2: raise ValueError("Input array should be 2-D.") M,N = a.shape if k > 0: start = k num = N - k else: num = M + k start = abs(k)*N end = start + num*(N+1)-1 a.flat[start:end:(N+1)] = v # Return the spline that minimizes the dis-continuity of the # "order-th" derivative; for order >= 2. def _find_smoothest2(xk, yk): N = len(xk) - 1 Np1 = N + 1 # find pseudo-inverse of B directly. Bd = np.empty((Np1, N)) for k in range(-N,N): if (k < 0): l = np.arange(-k, Np1) v = (l+k+1) if ((k+1) % 2): v = -v else: l = np.arange(k,N) v = N - l if ((k % 2)): v = -v _setdiag(Bd, k, v) Bd /= (Np1) V2 = np.ones((Np1,)) V2[1::2] = -1 V2 /= math.sqrt(Np1) dk = np.diff(xk) b = 2*np.diff(yk, axis=0)/dk J = np.zeros((N-1,N+1)) idk = 1.0/dk _setdiag(J,0,idk[:-1]) _setdiag(J,1,-idk[1:]-idk[:-1]) _setdiag(J,2,idk[1:]) A = dot(J.T,J) val = dot(V2,dot(A,V2)) res1 = dot(np.outer(V2,V2)/val,A) mk = dot(np.eye(Np1)-res1, _dot0(Bd,b)) return mk def _get_spline2_Bb(xk, yk, kind, conds): Np1 = len(xk) dk = xk[1:]-xk[:-1] if kind == 'not-a-knot': # use banded-solver nlu = (1,1) B = ones((3,Np1)) alpha = 2*(yk[1:]-yk[:-1])/dk zrs = np.zeros((1,)+yk.shape[1:]) row = (Np1-1)//2 b = np.concatenate((alpha[:row],zrs,alpha[row:]),axis=0) B[0,row+2:] = 0 B[2,:(row-1)] = 0 B[0,row+1] = dk[row-1] B[1,row] = -dk[row]-dk[row-1] B[2,row-1] = dk[row] return B, b, None, nlu else: raise NotImplementedError("quadratic %s is not available" % kind) def _get_spline3_Bb(xk, yk, kind, conds): # internal function to compute different tri-diagonal system # depending on the kind of spline requested. # conds is only used for 'second' and 'first' Np1 = len(xk) if kind in ['natural', 'second']: if kind == 'natural': m0, mN = 0.0, 0.0 else: m0, mN = conds # the matrix to invert is (N-1,N-1) # use banded solver beta = 2*(xk[2:]-xk[:-2]) alpha = xk[1:]-xk[:-1] nlu = (1,1) B = np.empty((3,Np1-2)) B[0,1:] = alpha[2:] B[1,:] = beta B[2,:-1] = alpha[1:-1] dyk = yk[1:]-yk[:-1] b = (dyk[1:]/alpha[1:] - dyk[:-1]/alpha[:-1]) b *= 6 b[0] -= m0 b[-1] -= mN def append_func(mk): # put m0 and mN into the correct shape for # concatenation ma = array(m0,copy=0,ndmin=yk.ndim) mb = array(mN,copy=0,ndmin=yk.ndim) if ma.shape[1:] != yk.shape[1:]: ma = ma*(ones(yk.shape[1:])[np.newaxis,...]) if mb.shape[1:] != yk.shape[1:]: mb = mb*(ones(yk.shape[1:])[np.newaxis,...]) mk = np.concatenate((ma,mk),axis=0) mk = np.concatenate((mk,mb),axis=0) return mk return B, b, append_func, nlu elif kind in ['clamped', 'endslope', 'first', 'not-a-knot', 'runout', 'parabolic']: if kind == 'endslope': # match slope of lagrange interpolating polynomial of # order 3 at end-points. x0,x1,x2,x3 = xk[:4] sl_0 = (1./(x0-x1)+1./(x0-x2)+1./(x0-x3))*yk[0] sl_0 += (x0-x2)*(x0-x3)/((x1-x0)*(x1-x2)*(x1-x3))*yk[1] sl_0 += (x0-x1)*(x0-x3)/((x2-x0)*(x2-x1)*(x3-x2))*yk[2] sl_0 += (x0-x1)*(x0-x2)/((x3-x0)*(x3-x1)*(x3-x2))*yk[3] xN3,xN2,xN1,xN0 = xk[-4:] sl_N = (1./(xN0-xN1)+1./(xN0-xN2)+1./(xN0-xN3))*yk[-1] sl_N += (xN0-xN2)*(xN0-xN3)/((xN1-xN0)*(xN1-xN2)*(xN1-xN3))*yk[-2] sl_N += (xN0-xN1)*(xN0-xN3)/((xN2-xN0)*(xN2-xN1)*(xN3-xN2))*yk[-3] sl_N += (xN0-xN1)*(xN0-xN2)/((xN3-xN0)*(xN3-xN1)*(xN3-xN2))*yk[-4] elif kind == 'clamped': sl_0, sl_N = 0.0, 0.0 elif kind == 'first': sl_0, sl_N = conds # Now set up the (N+1)x(N+1) system of equations beta = np.r_[0,2*(xk[2:]-xk[:-2]),0] alpha = xk[1:]-xk[:-1] gamma = np.r_[0,alpha[1:]] B = np.diag(alpha,k=-1) + np.diag(beta) + np.diag(gamma,k=1) d1 = alpha[0] dN = alpha[-1] if kind == 'not-a-knot': d2 = alpha[1] dN1 = alpha[-2] B[0,:3] = [d2,-d1-d2,d1] B[-1,-3:] = [dN,-dN1-dN,dN1] elif kind == 'runout': B[0,:3] = [1,-2,1] B[-1,-3:] = [1,-2,1] elif kind == 'parabolic': B[0,:2] = [1,-1] B[-1,-2:] = [-1,1] elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: B[0,:2] = [2*d1,d1] B[-1,-2:] = [dN,2*dN] # Set up RHS (b) b = np.empty((Np1,)+yk.shape[1:]) dyk = (yk[1:]-yk[:-1])*1.0 if kind in ['not-a-knot', 'runout', 'parabolic']: b[0] = b[-1] = 0.0 elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: b[0] = (dyk[0]/d1 - sl_0) b[-1] = -(dyk[-1]/dN - sl_N) b[1:-1,...] = (dyk[1:]/alpha[1:]-dyk[:-1]/alpha[:-1]) b *= 6.0 return B, b, None, None else: raise ValueError("%s not supported" % kind) # conds is a tuple of an array and a vector # giving the left-hand and the right-hand side # of the additional equations to add to B def _find_user(xk, yk, order, conds, B): lh = conds[0] rh = conds[1] B = np.concatenate((B, lh), axis=0) w = np.concatenate((yk, rh), axis=0) M, N = B.shape if (M > N): raise ValueError("over-specification of conditions") elif (M < N): return _find_smoothest(xk, yk, order, None, B) else: return scipy.linalg.solve(B, w) # If conds is None, then use the not_a_knot condition # at K-1 farthest separated points in the interval def _find_not_a_knot(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued second # derivative at K-1 farthest separated points def _find_natural(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued first # derivative at K-1 farthest separated points def _find_clamped(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def _find_fixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then use coefficient periodicity # If conds is 'function' then use function periodicity def _find_periodic(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # Doesn't use conds def _find_symmetric(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # conds is a dictionary with multiple values def _find_mixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def splmake(xk, yk, order=3, kind='smoothest', conds=None): """ Return a representation of a spline given data-points at internal knots Parameters ---------- xk : array_like The input array of x values of rank 1 yk : array_like The input array of y values of rank N. `yk` can be an N-d array to represent more than one curve, through the same `xk` points. The first dimension is assumed to be the interpolating dimension and is the same length of `xk`. order : int, optional Order of the spline kind : str, optional Can be 'smoothest', 'not_a_knot', 'fixed', 'clamped', 'natural', 'periodic', 'symmetric', 'user', 'mixed' and it is ignored if order < 2 conds : optional Conds Returns ------- splmake : tuple Return a (`xk`, `cvals`, `k`) representation of a spline given data-points where the (internal) knots are at the data-points. """ yk = np.asanyarray(yk) order = int(order) if order < 0: raise ValueError("order must not be negative") if order == 0: return xk, yk[:-1], order elif order == 1: return xk, yk, order try: func = eval('_find_%s' % kind) except: raise NotImplementedError # the constraint matrix B = _fitpack._bsplmat(order, xk) coefs = func(xk, yk, order, conds, B) return xk, coefs, order def spleval(xck, xnew, deriv=0): """ Evaluate a fixed spline represented by the given tuple at the new x-values The `xj` values are the interior knot points. The approximation region is `xj[0]` to `xj[-1]`. If N+1 is the length of `xj`, then `cvals` should have length N+k where `k` is the order of the spline. Parameters ---------- (xj, cvals, k) : tuple Parameters that define the fixed spline xj : array_like Interior knot points cvals : array_like Curvature k : int Order of the spline xnew : array_like Locations to calculate spline deriv : int Deriv Returns ------- spleval : ndarray If `cvals` represents more than one curve (`cvals.ndim` > 1) and/or `xnew` is N-d, then the result is `xnew.shape` + `cvals.shape[1:]` providing the interpolation of multiple curves. Notes ----- Internally, an additional `k`-1 knot points are added on either side of the spline. """ (xj,cvals,k) = xck oldshape = np.shape(xnew) xx = np.ravel(xnew) sh = cvals.shape[1:] res = np.empty(xx.shape + sh, dtype=cvals.dtype) for index in np.ndindex(*sh): sl = (slice(None),)+index if issubclass(cvals.dtype.type, np.complexfloating): res[sl].real = _fitpack._bspleval(xx,xj,cvals.real[sl],k,deriv) res[sl].imag = _fitpack._bspleval(xx,xj,cvals.imag[sl],k,deriv) else: res[sl] = _fitpack._bspleval(xx,xj,cvals[sl],k,deriv) res.shape = oldshape + sh return res def spltopp(xk, cvals, k): """Return a piece-wise polynomial object from a fixed-spline tuple. """ return ppform.fromspline(xk, cvals, k) def spline(xk, yk, xnew, order=3, kind='smoothest', conds=None): """ Interpolate a curve at new points using a spline fit Parameters ---------- xk, yk : array_like The x and y values that define the curve. xnew : array_like The x values where spline should estimate the y values. order : int Default is 3. kind : string One of {'smoothest'} conds : Don't know Don't know Returns ------- spline : ndarray An array of y values; the spline evaluated at the positions `xnew`. """ return spleval(splmake(xk,yk,order=order,kind=kind,conds=conds),xnew)
bsd-3-clause
tsherwen/AC_tools
Scripts/2D_GEOSChem_slice_subregion_plotter_example.py
1
2934
#!/usr/bin/python # -*- coding: utf-8 -*- """ Plotter for 2D slices of GEOS-Chem output NetCDFs files. NOTES --- - This is setup for Cly, but many other options (plot/species) are availible by just updating passed variables/plotting function called. """ import AC_tools as AC import numpy as np import matplotlib.pyplot as plt def main(): """ Basic plotter of NetCDF files using AC_tools """ # --- Local settings hardwired here... fam = 'Cly' # Family to plot # print species in family for reference... print((AC.GC_var(fam))) # --- Get working directory etc from command line (as a dictionary object) # (1st argument is fil directory with folder, 2nd is filename) Var_rc = AC.get_default_variable_dict() # Get details on extracted data (inc. resolution) Data_rc = AC.get_shared_data_as_dict(Var_rc=Var_rc) # --- extract data and units of data for family/species... arr, units = AC.fam_data_extractor(wd=Var_rc['wd'], fam=fam, res=Data_rc['res'], rtn_units=True, annual_mean=False) # --- Process data (add and extra processing of data here... ) # take average over time print((arr.shape)) arr = arr.mean(axis=-1) # Select surface values print((arr.shape)) arr = arr[..., 0] # convert to pptv arr = arr*1E12 units = 'pptv' # --- Plot up data... print((arr.shape)) # - Plot a (very) simple plot ... # AC.map_plot( arr.T, res=Data_rc['res'] ) # - plot a slightly better plot... # (loads of options here - just type help(AC.plot_spatial_figure) in ipython) # set range for data... fixcb = np.array([0., 100.]) # number of ticks on colorbar (make sure the fixcb range divides by this) nticks = 6 interval = (1/3.) # number of lat/lon labels... (x*15 degrees... ) # set limits of plot lat_min = 5. lat_max = 75. lon_min = -30. lon_max = 60. left_cb_pos = 0.85 # set X (fractional) position axis_titles = True # add labels for lat and lon # title for plot title = "Plot of annual average {}".format(fam) # save as pdf (just set to True) or show? # figsize = (7,5) # figsize to use? (e.g. square or rectangular plot) # call plotter... AC.plot_spatial_figure(arr, res=Data_rc['res'], units=units, fixcb=fixcb, lat_min=lat_min, lat_max=lat_max, lon_min=lon_min, lon_max=lon_max, axis_titles=axis_titles, left_cb_pos=left_cb_pos, nticks=nticks, interval=interval, title=title, show=False) # are the spacings right? - if not just up bottom = 0.1 top = 0.9 left = 0.1 right = 0.9 fig = plt.gcf() fig.subplots_adjust(bottom=bottom, top=top, left=left, right=right) # show and save as PDF? plt.savefig('pete_plot.png') AC.show_plot() if __name__ == "__main__": main()
mit
LaboratoireMecaniqueLille/crappy
crappy/blocks/grapher.py
1
5641
# coding: utf-8 import numpy as np from .block import Block from .._global import OptionalModule try: import matplotlib.pyplot as plt from matplotlib.widgets import Button except (ModuleNotFoundError, ImportError): plt = OptionalModule("matplotlib") Button = OptionalModule("matplotlib") class Grapher(Block): """The grapher receive data from a block (via a :ref:`Link`) and plots it.""" def __init__(self, *labels, length=0, freq=2, maxpt=20000, window_size=(8, 8), window_pos=None, interp=True, backend="TkAgg"): """Sets the args and initializes the parent class. Args: *labels (:obj:`tuple`): Tuples of the columns labels of input data for plotting. You can add as much as you want, depending on your performances. The first value is the `x` label, the second is the `y` label. length (:obj:`int`, optional): If `0` the graph is static and displays all data from the start of the assay. Else only displays the last ``length`` received chunks, and drops the previous ones. freq (:obj:`float`, optional): The refresh rate of the graph. May cause high memory consumption if set too high. maxpt (:obj:`int`, optional): The maximum number of points displayed on the graph. When reaching this limit, the block deletes one point out of two but this is almost invisible to the user. window_size (:obj:`tuple`, optional): The size of the graph, in inches. window_pos (:obj:`tuple`, optional): The position of the graph in pixels. The first value is for the `x` direction, the second for the `y` direction. The origin is the top left corner. Works with multiple screens. interp (:obj:`bool`, optional): If :obj:`True`, the points of data will be linked to the following by straight lines. Else, each value wil be displayed as constant until the next update. backend (:obj:`int`, optional): The :mod:`matplotlib` backend to use. Example: :: graph = Grapher(('t(s)', 'F(N)'), ('t(s)', 'def(%)')) will plot a dynamic graph with two lines plot (`F=f(t)` and `def=f(t)`). :: graph = Grapher(('def(%)', 'F(N)'), length=0) will plot a static graph. :: graph = Grapher(('t(s)', 'F(N)'), length=30) will plot a dynamic graph displaying the last 30 chunks of data. """ Block.__init__(self) self.niceness = 10 self.length = length self.freq = freq self.maxpt = maxpt self.window_size = window_size self.window_pos = window_pos self.interp = interp self.backend = backend self.labels = labels def prepare(self): if self.backend: plt.switch_backend(self.backend) self.f = plt.figure(figsize=self.window_size) self.ax = self.f.add_subplot(111) self.lines = [] for _ in self.labels: if self.interp: self.lines.append(self.ax.plot([], [])[0]) else: self.lines.append(self.ax.step([], [])[0]) # Keep only 1/factor points on each line self.factor = [1 for _ in self.labels] # Count to drop exactly 1/factor points, no more and no less self.counter = [0 for _ in self.labels] legend = [y for x, y in self.labels] plt.legend(legend, bbox_to_anchor=(-0.03, 1.02, 1.06, .102), loc=3, ncol=len(legend), mode="expand", borderaxespad=1) plt.xlabel(self.labels[0][0]) plt.ylabel(self.labels[0][1]) plt.grid() self.axclear = plt.axes([.8, .02, .15, .05]) self.bclear = Button(self.axclear, 'Clear') self.bclear.on_clicked(self.clear) if self.window_pos: mng = plt.get_current_fig_manager() mng.window.wm_geometry("+%s+%s" % self.window_pos) plt.draw() plt.pause(.001) def clear(self, event=None): for line in self.lines: line.set_xdata([]) line.set_ydata([]) self.factor = [1 for _ in self.labels] self.counter = [0 for _ in self.labels] def loop(self): # We need to recv data from all the links, but keep # ALL of the data, even with the same label (so not get_all_last) data = self.recv_all_delay() for i, (lx, ly) in enumerate(self.labels): x, y = 0, 0 # So that if we don't find it, we do nothing for d in data: if lx in d and ly in d: # Find the first input with both labels dx = d[lx][self.factor[i]-self.counter[i]-1::self.factor[i]] dy = d[ly][self.factor[i]-self.counter[i]-1::self.factor[i]] self.counter[i] = (self.counter[i]+len(d[lx])) % self.factor[i] x = np.hstack((self.lines[i].get_xdata(), dx)) y = np.hstack((self.lines[i].get_ydata(), dy)) break if isinstance(x, int): break if self.length and len(x) >= self.length: # Remove the beginning if the graph is dynamic x = x[-self.length:] y = y[-self.length:] elif len(x) > self.maxpt: # Reduce the number of points if we have to many to display print("[Grapher] Too many points on the graph {} ({}>{})".format( i, len(x), self.maxpt)) x, y = x[::2], y[::2] self.factor[i] *= 2 print("[Grapher] Resampling factor is now {}".format(self.factor[i])) self.lines[i].set_xdata(x) self.lines[i].set_ydata(y) self.ax.relim() # Update the window self.ax.autoscale_view(True, True, True) self.f.canvas.draw() # Update the graph self.f.canvas.flush_events() def finish(self): plt.close("all")
gpl-2.0
zorojean/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
221
5517
""" Testing for the gradient boosting loss functions and initial estimators. """ import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_almost_equal from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.utils import check_random_state from sklearn.ensemble.gradient_boosting import BinomialDeviance from sklearn.ensemble.gradient_boosting import LogOddsEstimator from sklearn.ensemble.gradient_boosting import LeastSquaresError from sklearn.ensemble.gradient_boosting import RegressionLossFunction from sklearn.ensemble.gradient_boosting import LOSS_FUNCTIONS from sklearn.ensemble.gradient_boosting import _weighted_percentile def test_binomial_deviance(): # Check binomial deviance loss. # Check against alternative definitions in ESLII. bd = BinomialDeviance(2) # pred has the same BD for y in {0, 1} assert_equal(bd(np.array([0.0]), np.array([0.0])), bd(np.array([1.0]), np.array([0.0]))) assert_almost_equal(bd(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), 0.0) assert_almost_equal(bd(np.array([1.0, 0.0, 0.0]), np.array([100.0, -100.0, -100.0])), 0) # check if same results as alternative definition of deviance (from ESLII) alt_dev = lambda y, pred: np.mean(np.logaddexp(0.0, -2.0 * (2.0 * y - 1) * pred)) test_data = [(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([-100.0, -100.0, -100.0])), (np.array([1.0, 1.0, 1.0]), np.array([-100.0, -100.0, -100.0]))] for datum in test_data: assert_almost_equal(bd(*datum), alt_dev(*datum)) # check the gradient against the alt_ng = lambda y, pred: (2 * y - 1) / (1 + np.exp(2 * (2 * y - 1) * pred)) for datum in test_data: assert_almost_equal(bd.negative_gradient(*datum), alt_ng(*datum)) def test_log_odds_estimator(): # Check log odds estimator. est = LogOddsEstimator() assert_raises(ValueError, est.fit, None, np.array([1])) est.fit(None, np.array([1.0, 0.0])) assert_equal(est.prior, 0.0) assert_array_equal(est.predict(np.array([[1.0], [1.0]])), np.array([[0.0], [0.0]])) def test_sample_weight_smoke(): rng = check_random_state(13) y = rng.rand(100) pred = rng.rand(100) # least squares loss = LeastSquaresError(1) loss_wo_sw = loss(y, pred) loss_w_sw = loss(y, pred, np.ones(pred.shape[0], dtype=np.float32)) assert_almost_equal(loss_wo_sw, loss_w_sw) def test_sample_weight_init_estimators(): # Smoke test for init estimators with sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y else: k = 2 y = clf_y if Loss.is_multi_class: # skip multiclass continue loss = Loss(k) init_est = loss.init_estimator() init_est.fit(X, y) out = init_est.predict(X) assert_equal(out.shape, (y.shape[0], 1)) sw_init_est = loss.init_estimator() sw_init_est.fit(X, y, sample_weight=sample_weight) sw_out = init_est.predict(X) assert_equal(sw_out.shape, (y.shape[0], 1)) # check if predictions match assert_array_equal(out, sw_out) def test_weighted_percentile(): y = np.empty(102, dtype=np.float) y[:50] = 0 y[-51:] = 2 y[-1] = 100000 y[50] = 1 sw = np.ones(102, dtype=np.float) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 1 def test_weighted_percentile_equal(): y = np.empty(102, dtype=np.float) y.fill(0.0) sw = np.ones(102, dtype=np.float) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 0 def test_weighted_percentile_zero_weight(): y = np.empty(102, dtype=np.float) y.fill(1.0) sw = np.ones(102, dtype=np.float) sw.fill(0.0) score = _weighted_percentile(y, sw, 50) assert score == 1.0 def test_sample_weight_deviance(): # Test if deviance supports sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) mclf_y = rng.randint(0, 3, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y p = reg_y else: k = 2 y = clf_y p = clf_y if Loss.is_multi_class: k = 3 y = mclf_y # one-hot encoding p = np.zeros((y.shape[0], k), dtype=np.float64) for i in range(k): p[:, i] = y == i loss = Loss(k) deviance_w_w = loss(y, p, sample_weight) deviance_wo_w = loss(y, p) assert deviance_wo_w == deviance_w_w
bsd-3-clause
debsankha/bedtime-programming
ls222/visual-lotka.py
1
5120
#!/usr/bin/env python from math import * import thread import random import time import pygtk pygtk.require("2.0") import gtk import gtk.glade import commands import matplotlib.pyplot class rodent: def __init__(self): self.time_from_last_childbirth=0 class felix: def __init__(self): self.size=0 self.is_virgin=1 self.reproduction_gap=0 self.time_from_last_childbirth=0 self.age=0 # print 'painted' class gui_display: def __init__(self): self.gladefile='./lvshort.glade' self.wTree = gtk.glade.XML(self.gladefile) dic={"on_start_clicked":self.dynamics,"on_mainwin_destroy":gtk.main_quit} self.wTree.signal_autoconnect(dic) self.wTree.get_widget("mainwin").show() self.wTree.get_widget("image").set_from_file("./start.png") def visualize(self,catn,mousen): # while True: num=40 size=10 catno=catn*num**2/(catn+mousen) cats=random.sample(range(num**2),catno) for i in range(num**2): if i in cats: self.dic[i].color=visual.color.red else : self.dic[i].color=visual.color.green def dynamics(self,*args,**kwargs): self.wTree.get_widget("image").set_from_file("./wait.png") print 'dynamics started' mouse_size=20 #ind parameter cat_mature_size=60 #ind parameter # catch_rate=5*10**-4 #parameter # cat_efficiency=0.8 #parameter # a=0.2 #will get from slider # c=0.2 #will get from slider cat_catch_rate=self.wTree.get_widget("catchrate").get_value()*10**-4 #parameter cat_efficiency=self.wTree.get_widget("efficiency").get_value() #parameter a=self.wTree.get_widget("a").get_value() #parameter c=self.wTree.get_widget("c").get_value() #parameter mouse_no=1000 cat_no=1000 t=0 tmax=200 dt=1 timeli=[] miceli=[] catli=[] mice=[rodent() for i in range(mouse_no)] cats=[felix() for i in range(cat_no)] catn=len(cats) mousen=len(mice) self.dic={} num=40 size=10 catno=catn*num**2/(catn+mousen) disp_cats=random.sample(range(num**2),catno) if self.wTree.get_widget("anim").get_active()==1: print 'yay!' for i in range(num**2): coords=((i%num)*size*2-num*size,(i/num)*size*2-num*size) if i in disp_cats: self.dic[i]=visual.sphere(pos=coords,radius=size,color=visual.color.red) else : self.dic[i]=visual.sphere(pos=coords,radius=size,color=visual.color.green) print self.dic catn=len(cats) mousen=len(mice) data=open('tempdata.dat','w') timestart=time.time() while (len(mice)>0 or len(cats)>0) and t<tmax and (time.time()-timestart)<60: # print time.time()-timestart catn=len(cats) mousen=len(mice) if self.wTree.get_widget("anim").get_active()==1: print 'yay!' # self.visualize(catn,mousen) thread.start_new_thread(self.visualize,(catn,mousen)) for mouse in mice: if mouse.time_from_last_childbirth>=1/a: mouse.time_from_last_childbirth=0 mice.append(rodent()) mouse.time_from_last_childbirth+=dt ind=0 while ind<len(cats): cat=cats[ind] cat.age+=dt num=cat_catch_rate*dt*len(mice) for i in range(int(num)): caught=random.randint(0,len(mice)-1) cat.size+=mouse_size*cat_efficiency #size increases mice.pop(caught) if (num-int(num))>random.uniform(0,1): caught=random.randint(0,len(mice)-1) cat.size+=mouse_size*cat_efficiency #size increases mice.pop(caught) if cat.size>cat_mature_size: if cat.is_virgin: cat.is_virgin=0 cat.reproduction_gap=cat.age cats.append(felix()) else : if cat.time_from_last_childbirth>cat.reproduction_gap: cats.append(felix()) cat.time_from_last_childbirth=0 if cat.is_virgin==0: cat.time_from_last_childbirth+=dt if len(cats)>0: if c*dt*2*atan(0.05*len(cats))/pi>random.uniform(0,1): cats.pop(ind) else : ind+=1 else : ind+=1 timeli.append(t) miceli.append(len(mice)) catli.append(len(cats)) print t,'\t',len(mice),'\t',len(cats) print >> data, t,'\t',len(mice),'\t',len(cats) t+=dt data.close() upper_limit=1.2*len(mice) pltfile=open('lv.plt','w') print >> pltfile,"""se te png se o "/tmp/lv.png" unse ke #se yrange [0:%f] se xl "Time" se yl "Number of Prey/Predator" p 'tempdata.dat' u 1:2 w l,'tempdata.dat' u 1:3 w l """%upper_limit pltfile.close() commands.getoutput('gnuplot lv.plt') self.wTree.get_widget("image").set_from_file("/tmp/lv.png") print 'dynamics ended' reload(matplotlib.pyplot) matplotlib.pyplot.plot(timeli,catli,'g-')#timeli,catli,'r-') matplotlib.pyplot.xlabel("Time") matplotlib.pyplot.ylabel("Number of mice and cats") matplotlib.pyplot.show() gui=gui_display() gtk.main() #dynamics() #import matplotlib.pyplot as plt #plt.plot(timeli,miceli,'go',timeli,catli,'ro') #plt.show()
gpl-3.0
karvenka/sp17-i524
project/S17-IR-P014/code/delay.py
15
5276
import sys import csv import sip #import org.apache.log4j.{Level, Logger} import matplotlib #matplotlib.user('agg') import matplotlib.pyplot as plt plt.switch_backend('agg') from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) from pyspark import SparkContext, SparkConf from datetime import datetime from operator import add, itemgetter from collections import namedtuple from datetime import datetime import os import time from StringIO import StringIO #Defining the fields, Creating a Flights class with the following fields as a tuple #Each row is converted into a list timestarted = time.time() fields = ('date', 'airline', 'flightnum', 'origin', 'dest', 'dep', 'dep_delay', 'arv', 'arv_delay', 'airtime', 'distance') Flight = namedtuple('Flight', fields, verbose=True) DATE_FMT = "%Y-%m-%d" TIME_FMT = "%H%M" # User Defined Functions def toCSVLine(data): return ','.join(str(d) for d in data) def split(line): reader = csv.reader(StringIO(line)) return reader.next() def parse(row): row[0] = datetime.strptime(row[0], DATE_FMT).time() row[5] = datetime.strptime(row[5], TIME_FMT).time() row[6] = float(row[6]) row[7] = datetime.strptime(row[7], TIME_FMT).time() row[8] = float(row[8]) row[9] = float(row[9]) row[10] = float(row[10]) return Flight(*row[:11]) def notHeader(row): return "Description" not in row def plot(airlinesdelays): airlines = [d[0] for d in airlinesdelays] minutes = [d[1] for d in airlinesdelays] index = list(xrange(len(airlines))) #Above we retrieved the respective columns from the list #Here we mention the plot as a horizontal bar plot fig, axe = plt.subplots() bars = axe.barh(index, minutes) # Add the total minutes to the right for idx, air, min in zip(index, airlines, minutes): if min > 0: bars[idx].set_color('#d9230f') axe.annotate(" %0.0f min" % min, xy=(min+1, idx+0.5), va='center') else: bars[idx].set_color('#469408') axe.annotate(" %0.0f min" % min, xy=(10, idx+0.5), va='center') # Set the ticks ticks = plt.yticks([idx+ 0.5 for idx in index], airlines) xt = plt.xticks()[0] plt.xticks(xt, [' '] * len(xt)) # minimize chart junk plt.grid(axis = 'x', color ='white', linestyle='-') plt.title('Total Minutes Delayed per Airline') plt.savefig('airlines.png') #airlines.filter(notHeader).take(10) #main method is the entry point for the following program if __name__ == "__main__": conf = SparkConf().setAppName("average") sc = SparkContext(conf=conf) #setting log level to error # val rootLogger = Logger.getRootLogger() # rootLogger.setLevel(Level.ERROR) #importing data from HDFS for performing analysis airlines = sc.textFile(sys.argv[1]) # airlines = sc.textFile("hdfs://192.168.1.8:8020/fltdata/airlines.csv") flights = sc.textFile(sys.argv[2]) airports =sc.textFile(sys.argv[3]) airlinesParsed = dict(airlines.map(split).collect()) airportsParsed= airports.filter(notHeader).map(split) # print "without header and spliting up", airlines.take(10) # print "without header and spliting up", airlines.take(10) flightsParsed= flights.map(lambda x: x.split(',')).map(parse) #print "The average delay is "+str(sumCount[0]/float(sumCount[1])) airportDelays = flightsParsed.map(lambda x: (x.origin,x.dep_delay)) # First find the total delay per airport airportTotalDelay=airportDelays.reduceByKey(lambda x,y:x+y) # Find the count per airport airportCount=airportDelays.mapValues(lambda x:1).reduceByKey(lambda x,y:x+y) # Join to have the sum, count in 1 RDD airportSumCount=airportTotalDelay.join(airportCount) # Compute avg delay per airport airportAvgDelay=airportSumCount.mapValues(lambda x : x[0]/float(x[1])) airportDelay = airportAvgDelay.sortBy(lambda x:-x[1]) print "", airportDelay.take(10) airportLookup=airportsParsed.collectAsMap() #airlineLookup=airlinesParsed.collectAsMap() airline_lookup = sc.broadcast(airlinesParsed) airlinesdelays = flightsParsed.map(lambda f: (airline_lookup.value[f.airline],add(f.dep_delay, f.arv_delay))) airlinesdelays = delays.reduceByKey(add).collect() airlinesdelays = sorted(delays, key=itemgetter(1)) #tenairlines = delays.map(toCSVLine) ten = airportAvgDelay.map(lambda x: (airportLookup[x[0]],x[1])) #print "", ten.take(10) for d in airlinesdelays: print "%0.0f minutes delayed\t%s" % (d[1], d[0]) airportBC=sc.broadcast(airportLookup) topTenAirportsWithDelays = airportAvgDelay.map(lambda x: (airportBC.value[x[0]],x[1])).sortBy(lambda x:-x[1]) lines = topTenAirportsWithDelays.take(10) topten = "/home/hadoop/" tenairlines = "/home/hadoop/" #For collecting the outputs into csv files with open('topten', "w") as output: writer = csv.writer(output, lineterminator='\n') for val in lines: writer.writerows([val]) with open('tenairlines',"w") as output: writer = csv.writer(output, lineterminator='\n') for val in delays: writer.writerows([val]) plot(airlinesdelays) #Final time taken will be calculated here timetaken = time.time()-timestarted print "", timetaken
apache-2.0
garrettkatz/directional-fibers
dfibers/experiments/levy_opt/levy_opt.py
1
6952
""" Measure global optimization performance of Levy function """ import sys, time import numpy as np import matplotlib.pyplot as pt import multiprocessing as mp import dfibers.traversal as tv import dfibers.numerical_utilities as nu import dfibers.logging_utilities as lu import dfibers.fixed_points as fx import dfibers.solvers as sv import dfibers.examples.levy as lv from mpl_toolkits.mplot3d import Axes3D def run_trial(args): basename, sample, timeout = args stop_time = time.clock() + timeout logfile = open("%s_s%d.log"%(basename,sample),"w") # Set up fiber arguments np.random.seed() v = 20*np.random.rand(2,1) - 10 # random point in domain c = lv.f(v) # direction at that point c = c + 0.1*np.random.randn(2,1) # perturb for more variability fiber_kwargs = { "f": lv.f, "ef": lv.ef, "Df": lv.Df, "compute_step_amount": lambda trace: (0.0001, 0), "v": v, "c": c, "stop_time": stop_time, "terminate": lambda trace: (np.fabs(trace.x[:-1]) > 10).any(), "max_solve_iterations": 2**5, } solve_start = time.clock() # Run in one direction solution = sv.fiber_solver( logger=lu.Logger(logfile).plus_prefix("+: "), **fiber_kwargs) X1 = np.concatenate(solution["Fiber trace"].points, axis=1) V1 = solution["Fixed points"] z = solution["Fiber trace"].z_initial # print("Status: %s\n"%solution["Fiber trace"].status) # Run in other direction (negate initial tangent) solution = sv.fiber_solver( z= -z, logger=lu.Logger(logfile).plus_prefix("-: "), **fiber_kwargs) X2 = np.concatenate(solution["Fiber trace"].points, axis=1) V2 = solution["Fixed points"] # print("Status: %s\n"%solution["Fiber trace"].status) # Join fiber segments fiber = np.concatenate((np.fliplr(X1), X2), axis=1) # Union solutions fxpts = fx.sanitize_points( np.concatenate((V1, V2), axis=1), f = lv.f, ef = lv.ef, Df = lv.Df, duplicates = lambda V, v: (np.fabs(V - v) < 10**-6).all(axis=0), ) # Save results with open("%s_s%d.npz"%(basename,sample), 'w') as rf: np.savez(rf, **{ "fxpts": fxpts, "fiber": fiber, "runtime": time.clock() - solve_start }) logfile.close() def run_experiment(basename, num_samples, timeout, num_procs=0): pool_args = [] for sample in range(num_samples): pool_args.append((basename, sample, timeout)) if num_procs > 0: num_procs = min(num_procs, mp.cpu_count()) print("using %d processes..."%num_procs) pool = mp.Pool(processes=num_procs) pool.map(run_trial, pool_args) pool.close() pool.join() else: for pa in pool_args: run_trial(pa) def compile_results(basename, num_samples): L = [] F = [] runtimes = [] for sample in range(num_samples): with open("%s_s%d.npz"%(basename,sample), 'r') as rf: data = dict(np.load(rf)) fxpts = data["fxpts"] Fs = np.fabs(lv.f(fxpts)).max(axis=0) Ls = lv.levy(fxpts) within = (np.fabs(fxpts) < 10).all(axis=0) mean_within = Ls[within].mean() if within.any() else np.nan print("sample %d: %d secs, %d solns, mean %f, mean within %f, min %f"%( sample, data["runtime"], len(Ls), Ls.mean(), mean_within, Ls.min())) L.append(Ls) F.append(Fs) runtimes.append(data["runtime"]) counts = np.array([len(Ls) for Ls in L]) bests = np.array([Ls.min() for Ls in L]) resids = np.array([Fs.max() for Fs in F]) runtimes = np.array(runtimes) print("avg count = %d, avg best = %f, avg resid = %f, best best = %f"%( counts.mean(), bests.mean(), resids.mean(), bests.min())) return counts, bests, runtimes def plot_results(basename, num_samples, counts, bests, runtimes, timeout): ### Optimization order stats pt.figure(figsize=(5,4)) pt.subplot(2,1,1) pt.plot(np.sort(bests), '-k.') pt.xlabel("Ordered samples") pt.ylabel("Best objective value") ##### Work complexity pt.subplot(2,1,2) terms = (runtimes < timeout) pt.plot(runtimes[terms], bests[terms], 'k+', markerfacecolor='none') pt.plot(runtimes[~terms], bests[~terms], 'ko', markerfacecolor='none') pt.legend(["terminated","timed out"]) pt.xlabel("Runtime (seconds)") pt.ylabel("Best objective value") pt.tight_layout() pt.show() ### Fiber visuals pt.figure(figsize=(4,7)) # objective fun X_surface, Y_surface = np.mgrid[-10:10:100j,-10:10:100j] L = lv.levy(np.array([X_surface.flatten(), Y_surface.flatten()])).reshape(X_surface.shape) ax_surface = pt.gcf().add_subplot(2,1,1,projection="3d") ax_surface.plot_surface(X_surface, Y_surface, L, linewidth=0, antialiased=False, color='gray') ax_surface.set_xlabel("v0") ax_surface.set_ylabel("v1") ax_surface.set_zlabel("levy(v)") ax_surface.view_init(azim=-80, elev=20) # fibers ax = pt.gcf().add_subplot(2,1,2) X_grid, Y_grid = np.mgrid[-10:10:60j,-10:10:60j] XY = np.array([X_grid.flatten(), Y_grid.flatten()]) C_XY = lv.f(XY) ax.quiver(XY[0,:],XY[1,:],C_XY[0,:],C_XY[1,:],color=0.5*np.ones((1,3)), scale=10,units='xy',angles='xy') num_plot_samples = 3 sort_idx = np.argsort(bests) plot_idx = [0] + list(np.random.permutation(num_samples)[:num_plot_samples-1]) samples = sort_idx[plot_idx] # samples = [41,73,20] # all through global # samples = [41, 97, 11] # two through global # samples = [41, 49, 13] # two through global, one horiz not through # samples = [41, 46, 70] # one through global, one horiz # samples = [41, 96, 27] # two through global, one almost horiz samples = [41, 63, 28] # two through global, all interesting print("samples:") print(samples) for i,sample in enumerate(samples[::-1]): with open("%s_s%d.npz"%(basename,sample), 'r') as rf: data = dict(np.load(rf)) fxpts = data["fxpts"] fiber = data["fiber"][:,::] L = lv.levy(fxpts).min() col = 0.5*float(num_plot_samples-i-1)/num_plot_samples print(sample,col) ax.plot(fiber[0],fiber[1],color=(col,col,col,1), linestyle='-', linewidth=1) pt.plot(fxpts[0],fxpts[1], 'o', color=(col,col,col,1)) pt.xlabel("v0") pt.ylabel("v1",rotation=0) pt.yticks(np.linspace(-10,10,5)) pt.xlim([-10,10]) pt.ylim([-10,10]) pt.tight_layout() pt.show() if __name__ == "__main__": basename = "levy_opt" num_samples = 100 num_plot_samples = 3 timeout = 60*30 num_procs = 10 # run_experiment(basename, num_samples=num_samples, timeout=timeout, num_procs=num_procs) counts, bests, runtimes = compile_results(basename, num_samples) plot_results(basename, num_samples, counts, bests, runtimes, timeout)
mit
jreback/pandas
pandas/io/formats/latex.py
2
25201
""" Module for formatting output data in Latex. """ from abc import ABC, abstractmethod from typing import Iterator, List, Optional, Sequence, Tuple, Type, Union import numpy as np from pandas.core.dtypes.generic import ABCMultiIndex from pandas.io.formats.format import DataFrameFormatter def _split_into_full_short_caption( caption: Optional[Union[str, Tuple[str, str]]] ) -> Tuple[str, str]: """Extract full and short captions from caption string/tuple. Parameters ---------- caption : str or tuple, optional Either table caption string or tuple (full_caption, short_caption). If string is provided, then it is treated as table full caption, while short_caption is considered an empty string. Returns ------- full_caption, short_caption : tuple Tuple of full_caption, short_caption strings. """ if caption: if isinstance(caption, str): full_caption = caption short_caption = "" else: try: full_caption, short_caption = caption except ValueError as err: msg = "caption must be either a string or a tuple of two strings" raise ValueError(msg) from err else: full_caption = "" short_caption = "" return full_caption, short_caption class RowStringConverter(ABC): r"""Converter for dataframe rows into LaTeX strings. Parameters ---------- formatter : `DataFrameFormatter` Instance of `DataFrameFormatter`. multicolumn: bool, optional Whether to use \multicolumn macro. multicolumn_format: str, optional Multicolumn format. multirow: bool, optional Whether to use \multirow macro. """ def __init__( self, formatter: DataFrameFormatter, multicolumn: bool = False, multicolumn_format: Optional[str] = None, multirow: bool = False, ): self.fmt = formatter self.frame = self.fmt.frame self.multicolumn = multicolumn self.multicolumn_format = multicolumn_format self.multirow = multirow self.clinebuf: List[List[int]] = [] self.strcols = self._get_strcols() self.strrows = list(zip(*self.strcols)) def get_strrow(self, row_num: int) -> str: """Get string representation of the row.""" row = self.strrows[row_num] is_multicol = ( row_num < self.column_levels and self.fmt.header and self.multicolumn ) is_multirow = ( row_num >= self.header_levels and self.fmt.index and self.multirow and self.index_levels > 1 ) is_cline_maybe_required = is_multirow and row_num < len(self.strrows) - 1 crow = self._preprocess_row(row) if is_multicol: crow = self._format_multicolumn(crow) if is_multirow: crow = self._format_multirow(crow, row_num) lst = [] lst.append(" & ".join(crow)) lst.append(" \\\\") if is_cline_maybe_required: cline = self._compose_cline(row_num, len(self.strcols)) lst.append(cline) return "".join(lst) @property def _header_row_num(self) -> int: """Number of rows in header.""" return self.header_levels if self.fmt.header else 0 @property def index_levels(self) -> int: """Integer number of levels in index.""" return self.frame.index.nlevels @property def column_levels(self) -> int: return self.frame.columns.nlevels @property def header_levels(self) -> int: nlevels = self.column_levels if self.fmt.has_index_names and self.fmt.show_index_names: nlevels += 1 return nlevels def _get_strcols(self) -> List[List[str]]: """String representation of the columns.""" if self.fmt.frame.empty: strcols = [[self._empty_info_line]] else: strcols = self.fmt.get_strcols() # reestablish the MultiIndex that has been joined by get_strcols() if self.fmt.index and isinstance(self.frame.index, ABCMultiIndex): out = self.frame.index.format( adjoin=False, sparsify=self.fmt.sparsify, names=self.fmt.has_index_names, na_rep=self.fmt.na_rep, ) # index.format will sparsify repeated entries with empty strings # so pad these with some empty space def pad_empties(x): for pad in reversed(x): if pad: break return [x[0]] + [i if i else " " * len(pad) for i in x[1:]] gen = (pad_empties(i) for i in out) # Add empty spaces for each column level clevels = self.frame.columns.nlevels out = [[" " * len(i[-1])] * clevels + i for i in gen] # Add the column names to the last index column cnames = self.frame.columns.names if any(cnames): new_names = [i if i else "{}" for i in cnames] out[self.frame.index.nlevels - 1][:clevels] = new_names # Get rid of old multiindex column and add new ones strcols = out + strcols[1:] return strcols @property def _empty_info_line(self): return ( f"Empty {type(self.frame).__name__}\n" f"Columns: {self.frame.columns}\n" f"Index: {self.frame.index}" ) def _preprocess_row(self, row: Sequence[str]) -> List[str]: """Preprocess elements of the row.""" if self.fmt.escape: crow = _escape_symbols(row) else: crow = [x if x else "{}" for x in row] if self.fmt.bold_rows and self.fmt.index: crow = _convert_to_bold(crow, self.index_levels) return crow def _format_multicolumn(self, row: List[str]) -> List[str]: r""" Combine columns belonging to a group to a single multicolumn entry according to self.multicolumn_format e.g.: a & & & b & c & will become \multicolumn{3}{l}{a} & b & \multicolumn{2}{l}{c} """ row2 = row[: self.index_levels] ncol = 1 coltext = "" def append_col(): # write multicolumn if needed if ncol > 1: row2.append( f"\\multicolumn{{{ncol:d}}}{{{self.multicolumn_format}}}" f"{{{coltext.strip()}}}" ) # don't modify where not needed else: row2.append(coltext) for c in row[self.index_levels :]: # if next col has text, write the previous if c.strip(): if coltext: append_col() coltext = c ncol = 1 # if not, add it to the previous multicolumn else: ncol += 1 # write last column name if coltext: append_col() return row2 def _format_multirow(self, row: List[str], i: int) -> List[str]: r""" Check following rows, whether row should be a multirow e.g.: becomes: a & 0 & \multirow{2}{*}{a} & 0 & & 1 & & 1 & b & 0 & \cline{1-2} b & 0 & """ for j in range(self.index_levels): if row[j].strip(): nrow = 1 for r in self.strrows[i + 1 :]: if not r[j].strip(): nrow += 1 else: break if nrow > 1: # overwrite non-multirow entry row[j] = f"\\multirow{{{nrow:d}}}{{*}}{{{row[j].strip()}}}" # save when to end the current block with \cline self.clinebuf.append([i + nrow - 1, j + 1]) return row def _compose_cline(self, i: int, icol: int) -> str: """ Create clines after multirow-blocks are finished. """ lst = [] for cl in self.clinebuf: if cl[0] == i: lst.append(f"\n\\cline{{{cl[1]:d}-{icol:d}}}") # remove entries that have been written to buffer self.clinebuf = [x for x in self.clinebuf if x[0] != i] return "".join(lst) class RowStringIterator(RowStringConverter): """Iterator over rows of the header or the body of the table.""" @abstractmethod def __iter__(self) -> Iterator[str]: """Iterate over LaTeX string representations of rows.""" class RowHeaderIterator(RowStringIterator): """Iterator for the table header rows.""" def __iter__(self) -> Iterator[str]: for row_num in range(len(self.strrows)): if row_num < self._header_row_num: yield self.get_strrow(row_num) class RowBodyIterator(RowStringIterator): """Iterator for the table body rows.""" def __iter__(self) -> Iterator[str]: for row_num in range(len(self.strrows)): if row_num >= self._header_row_num: yield self.get_strrow(row_num) class TableBuilderAbstract(ABC): """ Abstract table builder producing string representation of LaTeX table. Parameters ---------- formatter : `DataFrameFormatter` Instance of `DataFrameFormatter`. column_format: str, optional Column format, for example, 'rcl' for three columns. multicolumn: bool, optional Use multicolumn to enhance MultiIndex columns. multicolumn_format: str, optional The alignment for multicolumns, similar to column_format. multirow: bool, optional Use multirow to enhance MultiIndex rows. caption: str, optional Table caption. short_caption: str, optional Table short caption. label: str, optional LaTeX label. position: str, optional Float placement specifier, for example, 'htb'. """ def __init__( self, formatter: DataFrameFormatter, column_format: Optional[str] = None, multicolumn: bool = False, multicolumn_format: Optional[str] = None, multirow: bool = False, caption: Optional[str] = None, short_caption: Optional[str] = None, label: Optional[str] = None, position: Optional[str] = None, ): self.fmt = formatter self.column_format = column_format self.multicolumn = multicolumn self.multicolumn_format = multicolumn_format self.multirow = multirow self.caption = caption self.short_caption = short_caption self.label = label self.position = position def get_result(self) -> str: """String representation of LaTeX table.""" elements = [ self.env_begin, self.top_separator, self.header, self.middle_separator, self.env_body, self.bottom_separator, self.env_end, ] result = "\n".join([item for item in elements if item]) trailing_newline = "\n" result += trailing_newline return result @property @abstractmethod def env_begin(self) -> str: """Beginning of the environment.""" @property @abstractmethod def top_separator(self) -> str: """Top level separator.""" @property @abstractmethod def header(self) -> str: """Header lines.""" @property @abstractmethod def middle_separator(self) -> str: """Middle level separator.""" @property @abstractmethod def env_body(self) -> str: """Environment body.""" @property @abstractmethod def bottom_separator(self) -> str: """Bottom level separator.""" @property @abstractmethod def env_end(self) -> str: """End of the environment.""" class GenericTableBuilder(TableBuilderAbstract): """Table builder producing string representation of LaTeX table.""" @property def header(self) -> str: iterator = self._create_row_iterator(over="header") return "\n".join(list(iterator)) @property def top_separator(self) -> str: return "\\toprule" @property def middle_separator(self) -> str: return "\\midrule" if self._is_separator_required() else "" @property def env_body(self) -> str: iterator = self._create_row_iterator(over="body") return "\n".join(list(iterator)) def _is_separator_required(self) -> bool: return bool(self.header and self.env_body) @property def _position_macro(self) -> str: r"""Position macro, extracted from self.position, like [h].""" return f"[{self.position}]" if self.position else "" @property def _caption_macro(self) -> str: r"""Caption macro, extracted from self.caption. With short caption: \caption[short_caption]{caption_string}. Without short caption: \caption{caption_string}. """ if self.caption: return "".join( [ r"\caption", f"[{self.short_caption}]" if self.short_caption else "", f"{{{self.caption}}}", ] ) return "" @property def _label_macro(self) -> str: r"""Label macro, extracted from self.label, like \label{ref}.""" return f"\\label{{{self.label}}}" if self.label else "" def _create_row_iterator(self, over: str) -> RowStringIterator: """Create iterator over header or body of the table. Parameters ---------- over : {'body', 'header'} Over what to iterate. Returns ------- RowStringIterator Iterator over body or header. """ iterator_kind = self._select_iterator(over) return iterator_kind( formatter=self.fmt, multicolumn=self.multicolumn, multicolumn_format=self.multicolumn_format, multirow=self.multirow, ) def _select_iterator(self, over: str) -> Type[RowStringIterator]: """Select proper iterator over table rows.""" if over == "header": return RowHeaderIterator elif over == "body": return RowBodyIterator else: msg = f"'over' must be either 'header' or 'body', but {over} was provided" raise ValueError(msg) class LongTableBuilder(GenericTableBuilder): """Concrete table builder for longtable. >>> from pandas import DataFrame >>> from pandas.io.formats import format as fmt >>> df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) >>> formatter = fmt.DataFrameFormatter(df) >>> builder = LongTableBuilder(formatter, caption='a long table', ... label='tab:long', column_format='lrl') >>> table = builder.get_result() >>> print(table) \\begin{longtable}{lrl} \\caption{a long table} \\label{tab:long}\\\\ \\toprule {} & a & b \\\\ \\midrule \\endfirsthead \\caption[]{a long table} \\\\ \\toprule {} & a & b \\\\ \\midrule \\endhead \\midrule \\multicolumn{3}{r}{{Continued on next page}} \\\\ \\midrule \\endfoot <BLANKLINE> \\bottomrule \\endlastfoot 0 & 1 & b1 \\\\ 1 & 2 & b2 \\\\ \\end{longtable} <BLANKLINE> """ @property def env_begin(self) -> str: first_row = ( f"\\begin{{longtable}}{self._position_macro}{{{self.column_format}}}" ) elements = [first_row, f"{self._caption_and_label()}"] return "\n".join([item for item in elements if item]) def _caption_and_label(self) -> str: if self.caption or self.label: double_backslash = "\\\\" elements = [f"{self._caption_macro}", f"{self._label_macro}"] caption_and_label = "\n".join([item for item in elements if item]) caption_and_label += double_backslash return caption_and_label else: return "" @property def middle_separator(self) -> str: iterator = self._create_row_iterator(over="header") # the content between \endfirsthead and \endhead commands # mitigates repeated List of Tables entries in the final LaTeX # document when dealing with longtable environments; GH #34360 elements = [ "\\midrule", "\\endfirsthead", f"\\caption[]{{{self.caption}}} \\\\" if self.caption else "", self.top_separator, self.header, "\\midrule", "\\endhead", "\\midrule", f"\\multicolumn{{{len(iterator.strcols)}}}{{r}}" "{{Continued on next page}} \\\\", "\\midrule", "\\endfoot\n", "\\bottomrule", "\\endlastfoot", ] if self._is_separator_required(): return "\n".join(elements) return "" @property def bottom_separator(self) -> str: return "" @property def env_end(self) -> str: return "\\end{longtable}" class RegularTableBuilder(GenericTableBuilder): """Concrete table builder for regular table. >>> from pandas import DataFrame >>> from pandas.io.formats import format as fmt >>> df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) >>> formatter = fmt.DataFrameFormatter(df) >>> builder = RegularTableBuilder(formatter, caption='caption', label='lab', ... column_format='lrc') >>> table = builder.get_result() >>> print(table) \\begin{table} \\centering \\caption{caption} \\label{lab} \\begin{tabular}{lrc} \\toprule {} & a & b \\\\ \\midrule 0 & 1 & b1 \\\\ 1 & 2 & b2 \\\\ \\bottomrule \\end{tabular} \\end{table} <BLANKLINE> """ @property def env_begin(self) -> str: elements = [ f"\\begin{{table}}{self._position_macro}", "\\centering", f"{self._caption_macro}", f"{self._label_macro}", f"\\begin{{tabular}}{{{self.column_format}}}", ] return "\n".join([item for item in elements if item]) @property def bottom_separator(self) -> str: return "\\bottomrule" @property def env_end(self) -> str: return "\n".join(["\\end{tabular}", "\\end{table}"]) class TabularBuilder(GenericTableBuilder): """Concrete table builder for tabular environment. >>> from pandas import DataFrame >>> from pandas.io.formats import format as fmt >>> df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) >>> formatter = fmt.DataFrameFormatter(df) >>> builder = TabularBuilder(formatter, column_format='lrc') >>> table = builder.get_result() >>> print(table) \\begin{tabular}{lrc} \\toprule {} & a & b \\\\ \\midrule 0 & 1 & b1 \\\\ 1 & 2 & b2 \\\\ \\bottomrule \\end{tabular} <BLANKLINE> """ @property def env_begin(self) -> str: return f"\\begin{{tabular}}{{{self.column_format}}}" @property def bottom_separator(self) -> str: return "\\bottomrule" @property def env_end(self) -> str: return "\\end{tabular}" class LatexFormatter: r""" Used to render a DataFrame to a LaTeX tabular/longtable environment output. Parameters ---------- formatter : `DataFrameFormatter` longtable : bool, default False Use longtable environment. column_format : str, default None The columns format as specified in `LaTeX table format <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g 'rcl' for 3 columns multicolumn : bool, default False Use \multicolumn to enhance MultiIndex columns. multicolumn_format : str, default 'l' The alignment for multicolumns, similar to `column_format` multirow : bool, default False Use \multirow to enhance MultiIndex rows. caption : str or tuple, optional Tuple (full_caption, short_caption), which results in \caption[short_caption]{full_caption}; if a single string is passed, no short caption will be set. label : str, optional The LaTeX label to be placed inside ``\label{}`` in the output. position : str, optional The LaTeX positional argument for tables, to be placed after ``\begin{}`` in the output. See Also -------- HTMLFormatter """ def __init__( self, formatter: DataFrameFormatter, longtable: bool = False, column_format: Optional[str] = None, multicolumn: bool = False, multicolumn_format: Optional[str] = None, multirow: bool = False, caption: Optional[Union[str, Tuple[str, str]]] = None, label: Optional[str] = None, position: Optional[str] = None, ): self.fmt = formatter self.frame = self.fmt.frame self.longtable = longtable self.column_format = column_format self.multicolumn = multicolumn self.multicolumn_format = multicolumn_format self.multirow = multirow self.caption, self.short_caption = _split_into_full_short_caption(caption) self.label = label self.position = position def to_string(self) -> str: """ Render a DataFrame to a LaTeX tabular, longtable, or table/tabular environment output. """ return self.builder.get_result() @property def builder(self) -> TableBuilderAbstract: """Concrete table builder. Returns ------- TableBuilder """ builder = self._select_builder() return builder( formatter=self.fmt, column_format=self.column_format, multicolumn=self.multicolumn, multicolumn_format=self.multicolumn_format, multirow=self.multirow, caption=self.caption, short_caption=self.short_caption, label=self.label, position=self.position, ) def _select_builder(self) -> Type[TableBuilderAbstract]: """Select proper table builder.""" if self.longtable: return LongTableBuilder if any([self.caption, self.label, self.position]): return RegularTableBuilder return TabularBuilder @property def column_format(self) -> Optional[str]: """Column format.""" return self._column_format @column_format.setter def column_format(self, input_column_format: Optional[str]) -> None: """Setter for column format.""" if input_column_format is None: self._column_format = ( self._get_index_format() + self._get_column_format_based_on_dtypes() ) elif not isinstance(input_column_format, str): raise ValueError( f"column_format must be str or unicode, " f"not {type(input_column_format)}" ) else: self._column_format = input_column_format def _get_column_format_based_on_dtypes(self) -> str: """Get column format based on data type. Right alignment for numbers and left - for strings. """ def get_col_type(dtype): if issubclass(dtype.type, np.number): return "r" return "l" dtypes = self.frame.dtypes._values return "".join(map(get_col_type, dtypes)) def _get_index_format(self) -> str: """Get index column format.""" return "l" * self.frame.index.nlevels if self.fmt.index else "" def _escape_symbols(row: Sequence[str]) -> List[str]: """Carry out string replacements for special symbols. Parameters ---------- row : list List of string, that may contain special symbols. Returns ------- list list of strings with the special symbols replaced. """ return [ ( x.replace("\\", "\\textbackslash ") .replace("_", "\\_") .replace("%", "\\%") .replace("$", "\\$") .replace("#", "\\#") .replace("{", "\\{") .replace("}", "\\}") .replace("~", "\\textasciitilde ") .replace("^", "\\textasciicircum ") .replace("&", "\\&") if (x and x != "{}") else "{}" ) for x in row ] def _convert_to_bold(crow: Sequence[str], ilevels: int) -> List[str]: """Convert elements in ``crow`` to bold.""" return [ f"\\textbf{{{x}}}" if j < ilevels and x.strip() not in ["", "{}"] else x for j, x in enumerate(crow) ] if __name__ == "__main__": import doctest doctest.testmod()
bsd-3-clause
junbochen/pylearn2
pylearn2/scripts/papers/jia_huang_wkshp_11/evaluate.py
44
3208
from __future__ import print_function from optparse import OptionParser import warnings try: from sklearn.metrics import classification_report except ImportError: classification_report = None warnings.warn("couldn't find sklearn.metrics.classification_report") try: from sklearn.metrics import confusion_matrix except ImportError: confusion_matrix = None warnings.warn("couldn't find sklearn.metrics.metrics.confusion_matrix") from galatea.s3c.feature_loading import get_features from pylearn2.utils import serial from pylearn2.datasets.cifar10 import CIFAR10 from pylearn2.datasets.cifar100 import CIFAR100 import numpy as np def test(model, X, y): print("Evaluating svm") y_pred = model.predict(X) #try: if True: acc = (y == y_pred).mean() print("Accuracy ",acc) """except: print("something went wrong") print('y:') print(y) print('y_pred:') print(y_pred) print('extra info') print(type(y)) print(type(y_pred)) print(y.dtype) print(y_pred.dtype) print(y.shape) print(y_pred.shape) raise """ # def get_test_labels(cifar10, cifar100, stl10): assert cifar10 + cifar100 + stl10 == 1 if stl10: print('loading entire stl-10 test set just to get the labels') stl10 = serial.load("${PYLEARN2_DATA_PATH}/stl10/stl10_32x32/test.pkl") return stl10.y if cifar10: print('loading entire cifar10 test set just to get the labels') cifar10 = CIFAR10(which_set = 'test') return np.asarray(cifar10.y) if cifar100: print('loading entire cifar100 test set just to get the fine labels') cifar100 = CIFAR100(which_set = 'test') return np.asarray(cifar100.y_fine) assert False def main(model_path, test_path, dataset, **kwargs): model = serial.load(model_path) cifar100 = dataset == 'cifar100' cifar10 = dataset == 'cifar10' stl10 = dataset == 'stl10' assert cifar10 + cifar100 + stl10 == 1 y = get_test_labels(cifar10, cifar100, stl10) X = get_features(test_path, False, False) if stl10: num_examples = 8000 if cifar10 or cifar100: num_examples = 10000 if not X.shape[0] == num_examples: raise AssertionError('Expected %d examples but got %d' % (num_examples, X.shape[0])) assert y.shape[0] == num_examples test(model,X,y) if __name__ == '__main__': """ Useful for quick tests. Usage: python train_bilinear.py """ parser = OptionParser() parser.add_option("-m", "--model", action="store", type="string", dest="model_path") parser.add_option("-t", "--test", action="store", type="string", dest="test") parser.add_option("-o", action="store", dest="output", default = None, help="path to write the report to") parser.add_option('--dataset', type='string', dest = 'dataset', action='store', default = None) #(options, args) = parser.parse_args() #assert options.output main(model_path='final_model.pkl', test_path='test_features.npy', dataset = 'cifar100', )
bsd-3-clause
versae/DH2304
data/arts1.py
1
1038
import numpy as np import pandas as pd arts = pd.DataFrame() # Clean the dates so you only see numbers. def clean_years(value): result = value chars_to_replace = ["c.", "©", ", CARCC", "no date", "n.d.", " SODRAC", ", CA", " CARCC", ""] chars_to_split = ["-", "/"] if isinstance(result, str): for char in chars_to_split: if char in result: result = result.split(char)[1].strip() for char in chars_to_replace: result = result.replace(char, "") if result == "": return np.nan else: return int(result) else: return result arts['execution_date'] = arts['execution_date'].apply(clean_years) arts.head() # If a year is lower than 100, then is referred to 1900. For example, 78 is actually 1978, and that needs to be fixed too. def clean_year_99(value): if value < 100: return value + 1900 else: return value arts["execution_date"] = arts["execution_date"].apply(clean_year_99) arts.head()
mit
nakul02/systemml
src/main/python/systemml/classloader.py
4
7952
#------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- __all__ = ['createJavaObject', 'jvm_stdout', 'default_jvm_stdout', 'default_jvm_stdout_parallel_flush', 'set_default_jvm_stdout', 'get_spark_context' ] import os import numpy as np import pandas as pd import threading, time try: import py4j.java_gateway from py4j.java_gateway import JavaObject from pyspark import SparkContext from pyspark.sql import SparkSession except ImportError: raise ImportError('Unable to import `pyspark`. Hint: Make sure you are running with PySpark.') _loadedSystemML = False def get_spark_context(): """ Internal method to get already initialized SparkContext. Developers should always use get_spark_context() instead of SparkContext._active_spark_context to ensure SystemML loaded. Returns ------- sc: SparkContext SparkContext """ if SparkContext._active_spark_context is not None: sc = SparkContext._active_spark_context global _loadedSystemML if not _loadedSystemML: createJavaObject(sc, 'dummy') _loadedSystemML = True return sc else: raise Exception('Expected spark context to be created.') _in_jvm_stdout = False default_jvm_stdout = True default_jvm_stdout_parallel_flush = True def set_default_jvm_stdout(enable, parallel_flush=True): """ This is useful utility method to get the output of the driver JVM from within a Jupyter notebook Parameters ---------- enable: boolean Should flush the stdout by default when mlcontext.execute is invoked parallel_flush: boolean Should flush the stdout in parallel """ global default_jvm_stdout, default_jvm_stdout_parallel_flush default_jvm_stdout = enable default_jvm_stdout_parallel_flush = parallel_flush # This is useful utility class to get the output of the driver JVM from within a Jupyter notebook # Example usage: # with jvm_stdout(): # ml.execute(script) class jvm_stdout(object): """ This is useful utility class to get the output of the driver JVM from within a Jupyter notebook Parameters ---------- parallel_flush: boolean Should flush the stdout in parallel """ def __init__(self, parallel_flush=False): self.util = get_spark_context()._jvm.org.apache.sysml.api.ml.Utils() self.parallel_flush = parallel_flush self.t = threading.Thread(target=self.flush_stdout) self.stop = False def flush_stdout(self): while not self.stop: time.sleep(1) # flush stdout every 1 second str = self.util.flushStdOut() if str != '': str = str[:-1] if str.endswith('\n') else str print(str) def __enter__(self): global _in_jvm_stdout if _in_jvm_stdout: # Allow for nested jvm_stdout self.donotRedirect = True else: self.donotRedirect = False self.util.startRedirectStdOut() if self.parallel_flush: self.t.start() _in_jvm_stdout = True def __exit__(self, *args): global _in_jvm_stdout if not self.donotRedirect: if self.parallel_flush: self.stop = True self.t.join() print(self.util.stopRedirectStdOut()) _in_jvm_stdout = False _initializedSparkSession = False def _createJavaObject(sc, obj_type): # ----------------------------------------------------------------------------------- # Avoids race condition between locking of metastore_db of Scala SparkSession and PySpark SparkSession. # This is done at toDF() rather than import level to avoid creation of SparkSession in worker processes. global _initializedSparkSession if not _initializedSparkSession: _initializedSparkSession = True SparkSession.builder.getOrCreate().createDataFrame(pd.DataFrame(np.array([[1,2],[3,4]]))) # ----------------------------------------------------------------------------------- if obj_type == 'mlcontext': return sc._jvm.org.apache.sysml.api.mlcontext.MLContext(sc._jsc) elif obj_type == 'dummy': return sc._jvm.org.apache.sysml.utils.SystemMLLoaderUtils() else: raise ValueError('Incorrect usage: supported values: mlcontext or dummy') def _getJarFileNames(sc): import imp, fnmatch jar_file_name = '_ignore.jar' java_dir = os.path.join(imp.find_module("systemml")[1], "systemml-java") jar_file_names = [] for file in os.listdir(java_dir): if fnmatch.fnmatch(file, 'systemml-*-SNAPSHOT.jar') or fnmatch.fnmatch(file, 'systemml-*.jar'): jar_file_names = jar_file_names + [ os.path.join(java_dir, file) ] return jar_file_names def _getLoaderInstance(sc, jar_file_name, className, hint): err_msg = 'Unable to load systemml-*.jar into current pyspark session.' if os.path.isfile(jar_file_name): sc._jsc.addJar(jar_file_name) jar_file_url = sc._jvm.java.io.File(jar_file_name).toURI().toURL() url_class = sc._jvm.java.net.URL jar_file_url_arr = sc._gateway.new_array(url_class, 1) jar_file_url_arr[0] = jar_file_url url_class_loader = sc._jvm.java.net.URLClassLoader(jar_file_url_arr, sc._jsc.getClass().getClassLoader()) c1 = sc._jvm.java.lang.Class.forName(className, True, url_class_loader) return c1.newInstance() else: raise ImportError(err_msg + ' Hint: Download the jar from http://systemml.apache.org/download and ' + hint ) def createJavaObject(sc, obj_type): """ Performs appropriate check if SystemML.jar is available and returns the handle to MLContext object on JVM Parameters ---------- sc: SparkContext SparkContext obj_type: Type of object to create ('mlcontext' or 'dummy') """ try: return _createJavaObject(sc, obj_type) except (py4j.protocol.Py4JError, TypeError): ret = None err_msg = 'Unable to load systemml-*.jar into current pyspark session.' hint = 'Provide the following argument to pyspark: --driver-class-path ' jar_file_names = _getJarFileNames(sc) if len(jar_file_names) != 2: raise ImportError('Expected only systemml and systemml-extra jars, but found ' + str(jar_file_names)) for jar_file_name in jar_file_names: if 'extra' in jar_file_name: x = _getLoaderInstance(sc, jar_file_name, 'org.apache.sysml.api.dl.Caffe2DMLLoader', hint + 'systemml-*-extra.jar') x.loadCaffe2DML(jar_file_name) else: x = _getLoaderInstance(sc, jar_file_name, 'org.apache.sysml.utils.SystemMLLoaderUtils', hint + 'systemml-*.jar') x.loadSystemML(jar_file_name) try: ret = _createJavaObject(sc, obj_type) except (py4j.protocol.Py4JError, TypeError): raise ImportError(err_msg + ' Hint: ' + hint + jar_file_name) return ret
apache-2.0
sauloal/cnidaria
scripts/venv/lib/python2.7/site-packages/mpl_toolkits/axisartist/axisline_style.py
8
5277
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from matplotlib.patches import _Style, FancyArrowPatch from matplotlib.transforms import IdentityTransform from matplotlib.path import Path import numpy as np class _FancyAxislineStyle: class SimpleArrow(FancyArrowPatch): """ The artist class that will be returned for SimpleArrow style. """ _ARROW_STYLE = "->" def __init__(self, axis_artist, line_path, transform, line_mutation_scale): self._axis_artist = axis_artist self._line_transform = transform self._line_path = line_path self._line_mutation_scale = line_mutation_scale FancyArrowPatch.__init__(self, path=self._line_path, arrowstyle=self._ARROW_STYLE, arrow_transmuter=None, patchA=None, patchB=None, shrinkA=0., shrinkB=0., mutation_scale=line_mutation_scale, mutation_aspect=None, transform=IdentityTransform(), ) def set_line_mutation_scale(self, scale): self.set_mutation_scale(scale*self._line_mutation_scale) def _extend_path(self, path, mutation_size=10): """ Extend the path to make a room for drawing arrow. """ from matplotlib.bezier import get_cos_sin x0, y0 = path.vertices[-2] x1, y1 = path.vertices[-1] cost, sint = get_cos_sin(x0, y0, x1, y1) d = mutation_size * 1. x2, y2 = x1 + cost*d, y1+sint*d if path.codes is None: _path = Path(np.concatenate([path.vertices, [[x2, y2]]])) else: _path = Path(np.concatenate([path.vertices, [[x2, y2]]]), np.concatenate([path.codes, [Path.LINETO]])) return _path def set_path(self, path): self._line_path = path def draw(self, renderer): """ Draw the axis line. 1) transform the path to the display coordinate. 2) extend the path to make a room for arrow 3) update the path of the FancyArrowPatch. 4) draw """ path_in_disp = self._line_transform.transform_path(self._line_path) mutation_size = self.get_mutation_scale() #line_mutation_scale() extented_path = self._extend_path(path_in_disp, mutation_size=mutation_size) self._path_original = extented_path FancyArrowPatch.draw(self, renderer) class FilledArrow(SimpleArrow): """ The artist class that will be returned for SimpleArrow style. """ _ARROW_STYLE = "-|>" class AxislineStyle(_Style): """ :class:`AxislineStyle` is a container class which defines style classes for AxisArtists. An instance of any axisline style class is an callable object, whose call signature is :: __call__(self, axis_artist, path, transform) When called, this should return a mpl artist with following methods implemented. :: def set_path(self, path): # set the path for axisline. def set_line_mutation_scale(self, scale): # set the scale def draw(self, renderer): # draw """ _style_list = {} class _Base(object): # The derived classes are required to be able to be initialized # w/o arguments, i.e., all its argument (except self) must have # the default values. def __init__(self): """ initialization. """ super(AxislineStyle._Base, self).__init__() def __call__(self, axis_artist, transform): """ Given the AxisArtist instance, and transform for the path (set_path method), return the mpl artist for drawing the axis line. """ return self.new_line(axis_artist, transform) class SimpleArrow(_Base): """ A simple arrow. """ ArrowAxisClass = _FancyAxislineStyle.SimpleArrow def __init__(self, size=1): """ *size* size of the arrow as a fraction of the ticklabel size. """ self.size = size super(AxislineStyle.SimpleArrow, self).__init__() def new_line(self, axis_artist, transform): linepath = Path([(0,0), (0, 1)]) axisline = self.ArrowAxisClass(axis_artist, linepath, transform, line_mutation_scale=self.size) return axisline _style_list["->"] = SimpleArrow class FilledArrow(SimpleArrow): ArrowAxisClass = _FancyAxislineStyle.FilledArrow _style_list["-|>"] = FilledArrow
mit
yunfeilu/scikit-learn
examples/semi_supervised/plot_label_propagation_versus_svm_iris.py
286
2378
""" ===================================================================== Decision boundary of label propagation versus SVM on the Iris dataset ===================================================================== Comparison for decision boundary generated on iris dataset between Label Propagation and SVM. This demonstrates Label Propagation learning a good boundary even with a small amount of labeled data. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn import svm from sklearn.semi_supervised import label_propagation rng = np.random.RandomState(0) iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target # step size in the mesh h = .02 y_30 = np.copy(y) y_30[rng.rand(len(y)) < 0.3] = -1 y_50 = np.copy(y) y_50[rng.rand(len(y)) < 0.5] = -1 # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors ls30 = (label_propagation.LabelSpreading().fit(X, y_30), y_30) ls50 = (label_propagation.LabelSpreading().fit(X, y_50), y_50) ls100 = (label_propagation.LabelSpreading().fit(X, y), y) rbf_svc = (svm.SVC(kernel='rbf').fit(X, y), y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['Label Spreading 30% data', 'Label Spreading 50% data', 'Label Spreading 100% data', 'SVC with rbf kernel'] color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)} for i, (clf, y_train) in enumerate((ls30, ls50, ls100, rbf_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points colors = [color_map[y] for y in y_train] plt.scatter(X[:, 0], X[:, 1], c=colors, cmap=plt.cm.Paired) plt.title(titles[i]) plt.text(.90, 0, "Unlabeled points are colored white") plt.show()
bsd-3-clause
pianomania/scikit-learn
sklearn/utils/tests/test_random.py
85
7349
from __future__ import division import numpy as np import scipy.sparse as sp from scipy.misc import comb as combinations from numpy.testing import assert_array_almost_equal from sklearn.utils.random import sample_without_replacement from sklearn.utils.random import random_choice_csc from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_population < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilites = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Edge case probabilities 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilites[k])) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilites = [np.array([0.0, 1.0]), np.array([1.0])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilites is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # Given probabilities don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1)
bsd-3-clause
dingocuster/scikit-learn
sklearn/metrics/regression.py
175
16953
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Olivier Grisel <olivier.grisel@ensta.org> # Arnaud Joly <a.joly@ulg.ac.be> # Jochen Wersdorfer <jochen@wersdoerfer.de> # Lars Buitinck <L.J.Buitinck@uva.nl> # Joel Nothman <joel.nothman@gmail.com> # Noel Dawe <noel@dawe.me> # Manoj Kumar <manojkumarsivaraj334@gmail.com> # Michael Eickenberg <michael.eickenberg@gmail.com> # Konstantin Shmelkov <konstantin.shmelkov@polytechnique.edu> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d import warnings __ALL__ = [ "mean_absolute_error", "mean_squared_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred, multioutput): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, multioutput : array-like or string in ['raw_values', uniform_average', 'variance_weighted'] or None None is accepted due to backward compatibility of r2_score(). Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by 'utils.multiclass.type_of_target' y_true : array-like of shape = (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples, n_outputs) Estimated target values. multioutput : array-like of shape = (n_outputs) or string in ['raw_values', uniform_average', 'variance_weighted'] or None Custom output weights if ``multioutput`` is array-like or just the corresponding argument if ``multioutput`` is a correct keyword. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) n_outputs = y_true.shape[1] multioutput_options = (None, 'raw_values', 'uniform_average', 'variance_weighted') if multioutput not in multioutput_options: multioutput = check_array(multioutput, ensure_2d=False) if n_outputs == 1: raise ValueError("Custom weights are useful only in " "multi-output cases.") elif n_outputs != len(multioutput): raise ValueError(("There must be equally many custom weights " "(%d) as outputs (%d).") % (len(multioutput), n_outputs)) y_type = 'continuous' if n_outputs == 1 else 'continuous-multioutput' return y_type, y_true, y_pred, multioutput def mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean absolute error regression loss Read more in the :ref:`User Guide <mean_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats If multioutput is 'raw_values', then mean absolute error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the weighted average of all output errors is returned. MAE output is non-negative floating point. The best value is 0.0. Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values') array([ 0.5, 1. ]) >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.849... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared error regression loss Read more in the :ref:`User Guide <mean_squared_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... >>> mean_squared_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.416..., 1. ]) >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.824... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Read more in the :ref:`User Guide <median_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, 'uniform_average') if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Read more in the :ref:`User Guide <explained_variance_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- score : float or ndarray of floats The explained variance or ndarray if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... # doctest: +ELLIPSIS 0.983... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0) numerator = np.average((y_true - y_pred - y_diff_avg) ** 2, weights=sample_weight, axis=0) y_true_avg = np.average(y_true, weights=sample_weight, axis=0) denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing to np.average() None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights) def r2_score(y_true, y_pred, sample_weight=None, multioutput=None): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Read more in the :ref:`User Guide <r2_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', 'variance_weighted'] or None or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default value correponds to 'variance_weighted', but will be changed to 'uniform_average' in next versions. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- z : float or ndarray of floats The R^2 score or ndarray of scores if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred, multioutput='variance_weighted') # doctest: +ELLIPSIS 0.938... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0, dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(axis=0, dtype=np.float64) nonzero_denominator = denominator != 0 nonzero_numerator = numerator != 0 valid_score = nonzero_denominator & nonzero_numerator output_scores = np.ones([y_true.shape[1]]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput is None and y_true.shape[1] != 1: # @FIXME change in 0.18 warnings.warn("Default 'multioutput' behavior now corresponds to " "'variance_weighted' value, it will be changed " "to 'uniform_average' in 0.18.", DeprecationWarning) multioutput = 'variance_weighted' if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator # avoid fail on constant y or one-element arrays if not np.any(nonzero_denominator): if not np.any(nonzero_numerator): return 1.0 else: return 0.0 else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
bsd-3-clause
timqian/sms-tools
lectures/5-Sinusoidal-model/plots-code/sineModelAnal-flute.py
24
1179
import numpy as np import matplotlib.pyplot as plt import sys, os, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import stft as STFT import sineModel as SM import utilFunctions as UF (fs, x) = UF.wavread(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../sounds/flute-A4.wav')) w = np.blackman(601) N = 1024 H = 150 t = -80 minSineDur = .1 maxnSines = 150 mX, pX = STFT.stftAnal(x, fs, w, N, H) tfreq, tmag, tphase = SM.sineModelAnal(x, fs, w, N, H, t, maxnSines, minSineDur) plt.figure(1, figsize=(9.5, 5)) maxplotfreq = 5000.0 maxplotbin = int(N*maxplotfreq/fs) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(maxplotbin+1)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX[:,:maxplotbin+1])) plt.autoscale(tight=True) tracks = tfreq*np.less(tfreq, maxplotfreq) tracks[tracks<=0] = np.nan plt.plot(frmTime, tracks, color='k', lw=1.5) plt.autoscale(tight=True) plt.title('mX + sinusoidal tracks (flute-A4.wav)') plt.tight_layout() plt.savefig('sineModelAnal-flute.png') plt.show()
agpl-3.0
jcrist/blaze
blaze/compute/tests/test_bcolz_compute.py
9
5874
from __future__ import absolute_import, division, print_function import pytest bcolz = pytest.importorskip('bcolz') from datashape import discover, dshape import numpy as np import pandas.util.testing as tm from odo import into from blaze import by from blaze.expr import symbol from blaze.compute.core import compute, pre_compute from blaze.compute.bcolz import get_chunksize b = bcolz.ctable(np.array([(1, 1., np.datetime64('2010-01-01')), (2, 2., np.datetime64('NaT')), (3, 3., np.datetime64('2010-01-03'))], dtype=[('a', 'i8'), ('b', 'f8'), ('date', 'datetime64[D]')])) t = symbol('t', 'var * {a: int64, b: float64, date: ?date}') to = symbol('to', 'var * {a: int64, b: float64}') bo = bcolz.ctable(np.array([(1, 1.), (2, 2.), (3, np.nan)], dtype=[('a', 'i8'), ('b', 'f8')])) def test_discover(): assert discover(b) == dshape('3 * {a: int64, b: float64, date: date}') assert discover(b['a']) == dshape('3 * int64') def test_reductions(): assert compute(t.a.sum(), b) == 6 assert compute(t.a.min(), b) == 1 assert compute(t.a.max(), b) == 3 assert compute(t.a.mean(), b) == 2.0 assert abs(compute(t.a.std(), b) - np.std([1, 2, 3])) < 1e-5 assert abs(compute(t.a.var(), b) - np.var([1, 2, 3])) < 1e-5 assert abs(compute(t.a.std(unbiased=True), b) - np.std([1, 2, 3], ddof=1)) < 1e-5 assert abs(compute(t.a.var(unbiased=True), b) - np.var([1, 2, 3], ddof=1)) < 1e-5 assert len(list(compute(t.distinct(), b))) == 3 assert len(list(compute(t.a.distinct(), b))) == 3 assert compute(t.a.nunique(), b) == 3 assert isinstance(compute(t.a.nunique(), b), np.integer) assert compute(t.a.count(), b) == 3 assert isinstance(compute(t.date.count(), b), np.integer) assert compute(t.date.nunique(), b) == 2 assert isinstance(compute(t.date.nunique(), b), np.integer) assert compute(t.date.count(), b) == 2 assert isinstance(compute(t.a.count(), b), np.integer) assert compute(t.a[0], b) == 1 assert compute(t.a[-1], b) == 3 assert compute(t[0], b) == compute(t[0], b) assert compute(t[-1], b) == compute(t[-1], b) def test_nunique(): assert compute(t.a.nunique(), b) == 3 assert compute(t.nunique(), b) == 3 def test_selection_head(): ds = dshape('var * {a: int32, b: int32, c: float64}') b = into(bcolz.ctable, [(i, i + 1, float(i) ** 2) for i in range(10)], dshape=ds) t = symbol('t', ds) # numpy reductions return numpy scalars assert compute((t.a < t.b).all(), b).item() is True assert list(compute(t[t.a < t.b].a.head(10), b)) == list(range(10)) assert list(compute(t[t.a > t.b].a.head(10), b)) == [] assert into([], compute(t[t.a + t.b > t.c], b)) == [(0, 1, 0), (1, 2, 1), (2, 3, 4)] assert len(compute(t[t.a + t.b > t.c].head(10), b)) # non-empty assert len(compute(t[t.a + t.b < t.c].head(10), b)) # non-empty def test_selection_isnan(): b = bcolz.ctable([[1, np.nan, 3], [1., 2., np.nan]], names=['a', 'b']) t = symbol('t', discover(b)) lhs = compute(t[t.a.isnan()], b) rhs = np.array([(np.nan, 2.0)], dtype=b.dtype) for n in b.dtype.names: assert np.isclose(lhs[n], rhs[n], equal_nan=True).all() assert np.isclose(compute(t[~t.b.isnan()], b)[n], np.array( [(1, 1.0), (np.nan, 2.0)], dtype=b.dtype)[n], equal_nan=True).all() def test_count_isnan(): assert compute(to.a[~to.b.isnan()].count(), bo) == 2 def test_count_isnan_object(): assert compute(to.a[~to.b.isnan()].count(), bo) == 2 def test_count_isnan_struct(): assert compute(t[~t.b.isnan()].count(), b) == 3 def test_nrows(): assert compute(t.nrows, b) == len(b) def test_nelements(): assert compute(t.nelements(axis=0), b) == len(b) assert compute(t.nelements(), b) == len(b) # This is no longer desired. Handled by compute_up def dont_test_pre_compute(): b = bcolz.ctable(np.array([(1, 1., 10.), (2, 2., 20.), (3, 3., 30.)], dtype=[('a', 'i8'), ('b', 'f8'), ('c', 'f8')])) s = symbol('s', discover(b)) result = pre_compute(s[['a', 'b']], b) assert result.names == ['a', 'b'] def eq(a, b): return np.array_equal(a, b) def test_unicode_field_names(): b = bcolz.ctable(np.array([(1, 1., 10.), (2, 2., 20.), (3, 3., 30.)], dtype=[('a', 'i8'), ('b', 'f8'), ('c', 'f8')])) s = symbol('s', discover(b)) assert eq(compute(s[u'a'], b)[:], compute(s['a'], b)[:]) assert eq(compute(s[[u'a', u'c']], b)[:], compute(s[['a', 'c']], b)[:]) assert eq(compute(s[u'a'], b)[:], compute(s['a'], b)[:]) assert eq(compute(s[[u'a', u'c']], b)[:], compute(s[['a', 'c']], b)[:]) def test_chunksize_inference(): b = bcolz.ctable(np.array([(1, 1., 10.), (2, 2., 20.), (3, 3., 30.)], dtype=[('a', 'i8'), ('b', 'f8'), ('c', 'f8')]), chunklen=2) assert get_chunksize(b) == 2 def test_notnull(): with pytest.raises(AttributeError): t.b.notnull def test_by_with_single_row(): ct = bcolz.ctable([[1, 1, 3, 3], [1, 2, 3, 4]], names=list('ab')) t = symbol('t', discover(ct)) subset = t[t.a == 3] expr = by(subset.a, b_sum=subset.b.sum()) result = compute(expr, ct) expected = compute(expr, ct, optimize=False) tm.assert_frame_equal(result, expected)
bsd-3-clause
themrmax/scikit-learn
sklearn/manifold/tests/test_t_sne.py
11
25443
import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import scipy.sparse as sp from sklearn.neighbors import BallTree from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_in from sklearn.utils.testing import skip_if_32bit from sklearn.utils import check_random_state from sklearn.manifold.t_sne import _joint_probabilities from sklearn.manifold.t_sne import _joint_probabilities_nn from sklearn.manifold.t_sne import _kl_divergence from sklearn.manifold.t_sne import _kl_divergence_bh from sklearn.manifold.t_sne import _gradient_descent from sklearn.manifold.t_sne import trustworthiness from sklearn.manifold.t_sne import TSNE from sklearn.manifold import _barnes_hut_tsne from sklearn.manifold._utils import _binary_search_perplexity from sklearn.datasets import make_blobs from scipy.optimize import check_grad from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from sklearn.metrics.pairwise import pairwise_distances def test_gradient_descent_stops(): # Test stopping conditions of gradient descent. class ObjectiveSmallGradient: def __init__(self): self.it = -1 def __call__(self, _): self.it += 1 return (10 - self.it) / 10.0, np.array([1e-5]) def flat_function(_): return 0.0, np.ones(1) # Gradient norm old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=1e-5, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 1.0) assert_equal(it, 0) assert("gradient norm" in out) # Error difference old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.2, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.9) assert_equal(it, 1) assert("error difference" in out) # Maximum number of iterations without improvement old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( flat_function, np.zeros(1), 0, n_iter=100, n_iter_without_progress=10, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=-1.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 11) assert("did not make any progress" in out) # Maximum number of iterations old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=11, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 10) assert("Iteration 10" in out) def test_binary_search(): # Test if the binary search finds Gaussians with desired perplexity. random_state = check_random_state(0) distances = random_state.randn(50, 2).astype(np.float32) # Distances shouldn't be negative distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) desired_perplexity = 25.0 P = _binary_search_perplexity(distances, None, desired_perplexity, verbose=0) P = np.maximum(P, np.finfo(np.double).eps) mean_perplexity = np.mean([np.exp(-np.sum(P[i] * np.log(P[i]))) for i in range(P.shape[0])]) assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3) def test_binary_search_neighbors(): # Binary perplexity search approximation. # Should be approximately equal to the slow method when we use # all points as neighbors. n_samples = 500 desired_perplexity = 25.0 random_state = check_random_state(0) distances = random_state.randn(n_samples, 2).astype(np.float32) # Distances shouldn't be negative distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) P1 = _binary_search_perplexity(distances, None, desired_perplexity, verbose=0) # Test that when we use all the neighbors the results are identical k = n_samples neighbors_nn = np.argsort(distances, axis=1)[:, :k].astype(np.int64) P2 = _binary_search_perplexity(distances, neighbors_nn, desired_perplexity, verbose=0) assert_array_almost_equal(P1, P2, decimal=4) # Test that the highest P_ij are the same when few neighbors are used for k in np.linspace(80, n_samples, 10): k = int(k) topn = k * 10 # check the top 10 *k entries out of k * k entries neighbors_nn = np.argsort(distances, axis=1)[:, :k].astype(np.int64) P2k = _binary_search_perplexity(distances, neighbors_nn, desired_perplexity, verbose=0) idx = np.argsort(P1.ravel())[::-1] P1top = P1.ravel()[idx][:topn] P2top = P2k.ravel()[idx][:topn] assert_array_almost_equal(P1top, P2top, decimal=2) def test_binary_perplexity_stability(): # Binary perplexity search should be stable. # The binary_search_perplexity had a bug wherein the P array # was uninitialized, leading to sporadically failing tests. k = 10 n_samples = 100 random_state = check_random_state(0) distances = random_state.randn(n_samples, 2).astype(np.float32) # Distances shouldn't be negative distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) last_P = None neighbors_nn = np.argsort(distances, axis=1)[:, :k].astype(np.int64) for _ in range(100): P = _binary_search_perplexity(distances.copy(), neighbors_nn.copy(), 3, verbose=0) P1 = _joint_probabilities_nn(distances, neighbors_nn, 3, verbose=0) if last_P is None: last_P = P last_P1 = P1 else: assert_array_almost_equal(P, last_P, decimal=4) assert_array_almost_equal(P1, last_P1, decimal=4) def test_gradient(): # Test gradient of Kullback-Leibler divergence. random_state = check_random_state(0) n_samples = 50 n_features = 2 n_components = 2 alpha = 1.0 distances = random_state.randn(n_samples, n_features).astype(np.float32) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) X_embedded = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, desired_perplexity=25.0, verbose=0) def fun(params): return _kl_divergence(params, P, alpha, n_samples, n_components)[0] def grad(params): return _kl_divergence(params, P, alpha, n_samples, n_components)[1] assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0, decimal=5) def test_trustworthiness(): # Test trustworthiness score. random_state = check_random_state(0) # Affine transformation X = random_state.randn(100, 2) assert_equal(trustworthiness(X, 5.0 + X / 10.0), 1.0) # Randomly shuffled X = np.arange(100).reshape(-1, 1) X_embedded = X.copy() random_state.shuffle(X_embedded) assert_less(trustworthiness(X, X_embedded), 0.6) # Completely different X = np.arange(5).reshape(-1, 1) X_embedded = np.array([[0], [2], [4], [1], [3]]) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2) def test_preserve_trustworthiness_approximately(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) # The Barnes-Hut approximation uses a different method to estimate # P_ij using only a number of nearest neighbors instead of all # points (so that k = 3 * perplexity). As a result we set the # perplexity=5, so that the number of neighbors is 5%. n_components = 2 methods = ['exact', 'barnes_hut'] X = random_state.randn(100, n_components).astype(np.float32) for init in ('random', 'pca'): for method in methods: tsne = TSNE(n_components=n_components, perplexity=50, learning_rate=100.0, init=init, random_state=0, method=method) X_embedded = tsne.fit_transform(X) T = trustworthiness(X, X_embedded, n_neighbors=1) assert_almost_equal(T, 1.0, decimal=1) def test_optimization_minimizes_kl_divergence(): """t-SNE should give a lower KL divergence with more iterations.""" random_state = check_random_state(0) X, _ = make_blobs(n_features=3, random_state=random_state) kl_divergences = [] for n_iter in [200, 250, 300]: tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, n_iter=n_iter, random_state=0) tsne.fit_transform(X) kl_divergences.append(tsne.kl_divergence_) assert_less_equal(kl_divergences[1], kl_divergences[0]) assert_less_equal(kl_divergences[2], kl_divergences[1]) def test_fit_csr_matrix(): # X can be a sparse matrix. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, random_state=0, method='exact') X_embedded = tsne.fit_transform(X_csr) assert_almost_equal(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_preserve_trustworthiness_approximately_with_precomputed_distances(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) D = squareform(pdist(X), "sqeuclidean") tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0, metric="precomputed", random_state=0, verbose=0) X_embedded = tsne.fit_transform(D) assert_almost_equal(trustworthiness(D, X_embedded, n_neighbors=1, precomputed=True), 1.0, decimal=1) def test_early_exaggeration_too_small(): # Early exaggeration factor must be >= 1. tsne = TSNE(early_exaggeration=0.99) assert_raises_regexp(ValueError, "early_exaggeration .*", tsne.fit_transform, np.array([[0.0]])) def test_too_few_iterations(): # Number of gradient descent iterations must be at least 200. tsne = TSNE(n_iter=199) assert_raises_regexp(ValueError, "n_iter .*", tsne.fit_transform, np.array([[0.0]])) def test_non_square_precomputed_distances(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed") assert_raises_regexp(ValueError, ".* square distance matrix", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_init_not_available(): # 'init' must be 'pca', 'random', or numpy array. m = "'init' must be 'pca', 'random', or a numpy array" assert_raises_regexp(ValueError, m, TSNE, init="not available") def test_init_ndarray(): # Initialize TSNE with ndarray and test fit tsne = TSNE(init=np.zeros((100, 2))) X_embedded = tsne.fit_transform(np.ones((100, 5))) assert_array_equal(np.zeros((100, 2)), X_embedded) def test_init_ndarray_precomputed(): # Initialize TSNE with ndarray and metric 'precomputed' # Make sure no FutureWarning is thrown from _fit tsne = TSNE(init=np.zeros((100, 2)), metric="precomputed") tsne.fit(np.zeros((100, 100))) def test_distance_not_available(): # 'metric' must be valid. tsne = TSNE(metric="not available") assert_raises_regexp(ValueError, "Unknown metric not available.*", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_pca_initialization_not_compatible_with_precomputed_kernel(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed", init="pca") assert_raises_regexp(ValueError, "The parameter init=\"pca\" cannot be " "used with metric=\"precomputed\".", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_answer_gradient_two_points(): # Test the tree with only a single set of children. # # These tests & answers have been checked against the reference # implementation by LvdM. pos_input = np.array([[1.0, 0.0], [0.0, 1.0]]) pos_output = np.array([[-4.961291e-05, -1.072243e-04], [9.259460e-05, 2.702024e-04]]) neighbors = np.array([[1], [0]]) grad_output = np.array([[-2.37012478e-05, -6.29044398e-05], [2.37012478e-05, 6.29044398e-05]]) _run_answer_test(pos_input, pos_output, neighbors, grad_output) def test_answer_gradient_four_points(): # Four points tests the tree with multiple levels of children. # # These tests & answers have been checked against the reference # implementation by LvdM. pos_input = np.array([[1.0, 0.0], [0.0, 1.0], [5.0, 2.0], [7.3, 2.2]]) pos_output = np.array([[6.080564e-05, -7.120823e-05], [-1.718945e-04, -4.000536e-05], [-2.271720e-04, 8.663310e-05], [-1.032577e-04, -3.582033e-05]]) neighbors = np.array([[1, 2, 3], [0, 2, 3], [1, 0, 3], [1, 2, 0]]) grad_output = np.array([[5.81128448e-05, -7.78033454e-06], [-5.81526851e-05, 7.80976444e-06], [4.24275173e-08, -3.69569698e-08], [-2.58720939e-09, 7.52706374e-09]]) _run_answer_test(pos_input, pos_output, neighbors, grad_output) def test_skip_num_points_gradient(): # Test the kwargs option skip_num_points. # # Skip num points should make it such that the Barnes_hut gradient # is not calculated for indices below skip_num_point. # Aside from skip_num_points=2 and the first two gradient rows # being set to zero, these data points are the same as in # test_answer_gradient_four_points() pos_input = np.array([[1.0, 0.0], [0.0, 1.0], [5.0, 2.0], [7.3, 2.2]]) pos_output = np.array([[6.080564e-05, -7.120823e-05], [-1.718945e-04, -4.000536e-05], [-2.271720e-04, 8.663310e-05], [-1.032577e-04, -3.582033e-05]]) neighbors = np.array([[1, 2, 3], [0, 2, 3], [1, 0, 3], [1, 2, 0]]) grad_output = np.array([[0.0, 0.0], [0.0, 0.0], [4.24275173e-08, -3.69569698e-08], [-2.58720939e-09, 7.52706374e-09]]) _run_answer_test(pos_input, pos_output, neighbors, grad_output, False, 0.1, 2) def _run_answer_test(pos_input, pos_output, neighbors, grad_output, verbose=False, perplexity=0.1, skip_num_points=0): distances = pairwise_distances(pos_input).astype(np.float32) args = distances, perplexity, verbose pos_output = pos_output.astype(np.float32) neighbors = neighbors.astype(np.int64) pij_input = _joint_probabilities(*args) pij_input = squareform(pij_input).astype(np.float32) grad_bh = np.zeros(pos_output.shape, dtype=np.float32) _barnes_hut_tsne.gradient(pij_input, pos_output, neighbors, grad_bh, 0.5, 2, 1, skip_num_points=0) assert_array_almost_equal(grad_bh, grad_output, decimal=4) def test_verbose(): # Verbose options write to stdout. random_state = check_random_state(0) tsne = TSNE(verbose=2) X = random_state.randn(5, 2) old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[t-SNE]" in out) assert("Computing pairwise distances" in out) assert("Computed conditional probabilities" in out) assert("Mean sigma" in out) assert("Finished" in out) assert("early exaggeration" in out) assert("Finished" in out) def test_chebyshev_metric(): # t-SNE should allow metrics that cannot be squared (issue #3526). random_state = check_random_state(0) tsne = TSNE(metric="chebyshev") X = random_state.randn(5, 2) tsne.fit_transform(X) def test_reduction_to_one_component(): # t-SNE should allow reduction to one component (issue #4154). random_state = check_random_state(0) tsne = TSNE(n_components=1) X = random_state.randn(5, 2) X_embedded = tsne.fit(X).embedding_ assert(np.all(np.isfinite(X_embedded))) def test_no_sparse_on_barnes_hut(): # No sparse matrices allowed on Barnes-Hut. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_iter=199, method='barnes_hut') assert_raises_regexp(TypeError, "A sparse matrix was.*", tsne.fit_transform, X_csr) def test_64bit(): # Ensure 64bit arrays are handled correctly. random_state = check_random_state(0) methods = ['barnes_hut', 'exact'] for method in methods: for dt in [np.float32, np.float64]: X = random_state.randn(100, 2).astype(dt) tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0, random_state=0, method=method) tsne.fit_transform(X) def test_barnes_hut_angle(): # When Barnes-Hut's angle=0 this corresponds to the exact method. angle = 0.0 perplexity = 10 n_samples = 100 for n_components in [2, 3]: n_features = 5 degrees_of_freedom = float(n_components - 1.0) random_state = check_random_state(0) distances = random_state.randn(n_samples, n_features) distances = distances.astype(np.float32) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) params = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, perplexity, False) kl, gradex = _kl_divergence(params, P, degrees_of_freedom, n_samples, n_components) k = n_samples - 1 bt = BallTree(distances) distances_nn, neighbors_nn = bt.query(distances, k=k + 1) neighbors_nn = neighbors_nn[:, 1:] Pbh = _joint_probabilities_nn(distances, neighbors_nn, perplexity, False) kl, gradbh = _kl_divergence_bh(params, Pbh, neighbors_nn, degrees_of_freedom, n_samples, n_components, angle=angle, skip_num_points=0, verbose=False) assert_array_almost_equal(Pbh, P, decimal=5) assert_array_almost_equal(gradex, gradbh, decimal=5) def test_quadtree_similar_point(): # Introduce a point into a quad tree where a similar point already exists. # Test will hang if it doesn't complete. Xs = [] # check the case where points are actually different Xs.append(np.array([[1, 2], [3, 4]], dtype=np.float32)) # check the case where points are the same on X axis Xs.append(np.array([[1.0, 2.0], [1.0, 3.0]], dtype=np.float32)) # check the case where points are arbitrarily close on X axis Xs.append(np.array([[1.00001, 2.0], [1.00002, 3.0]], dtype=np.float32)) # check the case where points are the same on Y axis Xs.append(np.array([[1.0, 2.0], [3.0, 2.0]], dtype=np.float32)) # check the case where points are arbitrarily close on Y axis Xs.append(np.array([[1.0, 2.00001], [3.0, 2.00002]], dtype=np.float32)) # check the case where points are arbitrarily close on both axes Xs.append(np.array([[1.00001, 2.00001], [1.00002, 2.00002]], dtype=np.float32)) # check the case where points are arbitrarily close on both axes # close to machine epsilon - x axis Xs.append(np.array([[1, 0.0003817754041], [2, 0.0003817753750]], dtype=np.float32)) # check the case where points are arbitrarily close on both axes # close to machine epsilon - y axis Xs.append(np.array([[0.0003817754041, 1.0], [0.0003817753750, 2.0]], dtype=np.float32)) for X in Xs: counts = np.zeros(3, dtype='int64') _barnes_hut_tsne.check_quadtree(X, counts) m = "Tree consistency failed: unexpected number of points at root node" assert_equal(counts[0], counts[1], m) m = "Tree consistency failed: unexpected number of points on the tree" assert_equal(counts[0], counts[2], m) def test_index_offset(): # Make sure translating between 1D and N-D indices are preserved assert_equal(_barnes_hut_tsne.test_index2offset(), 1) assert_equal(_barnes_hut_tsne.test_index_offset(), 1) @skip_if_32bit def test_n_iter_without_progress(): # Use a dummy negative n_iter_without_progress and check output on stdout random_state = check_random_state(0) X = random_state.randn(100, 2) tsne = TSNE(n_iter_without_progress=-1, verbose=2, random_state=1, method='exact') old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout # The output needs to contain the value of n_iter_without_progress assert_in("did not make any progress during the " "last -1 episodes. Finished.", out) def test_min_grad_norm(): # Make sure that the parameter min_grad_norm is used correctly random_state = check_random_state(0) X = random_state.randn(100, 2) min_grad_norm = 0.002 tsne = TSNE(min_grad_norm=min_grad_norm, verbose=2, random_state=0, method='exact') old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout lines_out = out.split('\n') # extract the gradient norm from the verbose output gradient_norm_values = [] for line in lines_out: # When the computation is Finished just an old gradient norm value # is repeated that we do not need to store if 'Finished' in line: break start_grad_norm = line.find('gradient norm') if start_grad_norm >= 0: line = line[start_grad_norm:] line = line.replace('gradient norm = ', '') gradient_norm_values.append(float(line)) # Compute how often the gradient norm is smaller than min_grad_norm gradient_norm_values = np.array(gradient_norm_values) n_smaller_gradient_norms = \ len(gradient_norm_values[gradient_norm_values <= min_grad_norm]) # The gradient norm can be smaller than min_grad_norm at most once, # because in the moment it becomes smaller the optimization stops assert_less_equal(n_smaller_gradient_norms, 1) def test_accessible_kl_divergence(): # Ensures that the accessible kl_divergence matches the computed value random_state = check_random_state(0) X = random_state.randn(100, 2) tsne = TSNE(n_iter_without_progress=2, verbose=2, random_state=0, method='exact') old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout # The output needs to contain the accessible kl_divergence as the error at # the last iteration for line in out.split('\n')[::-1]: if 'Iteration' in line: _, _, error = line.partition('error = ') if error: error, _, _ = error.partition(',') break assert_almost_equal(tsne.kl_divergence_, float(error), decimal=5)
bsd-3-clause
xhochy/arrow
python/pyarrow/tests/test_hdfs.py
1
13325
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import pickle import pytest import random import unittest from io import BytesIO from os.path import join as pjoin import numpy as np import pyarrow as pa import pyarrow.tests.test_parquet as test_parquet from pyarrow.pandas_compat import _pandas_api from pyarrow.tests import util from pyarrow.util import guid # ---------------------------------------------------------------------- # HDFS tests def hdfs_test_client(): host = os.environ.get('ARROW_HDFS_TEST_HOST', 'default') user = os.environ.get('ARROW_HDFS_TEST_USER', None) try: port = int(os.environ.get('ARROW_HDFS_TEST_PORT', 0)) except ValueError: raise ValueError('Env variable ARROW_HDFS_TEST_PORT was not ' 'an integer') with pytest.warns(DeprecationWarning): return pa.hdfs.connect(host, port, user) @pytest.mark.hdfs class HdfsTestCases: def _make_test_file(self, hdfs, test_name, test_path, test_data): base_path = pjoin(self.tmp_path, test_name) hdfs.mkdir(base_path) full_path = pjoin(base_path, test_path) with hdfs.open(full_path, 'wb') as f: f.write(test_data) return full_path @classmethod def setUpClass(cls): cls.check_driver() cls.hdfs = hdfs_test_client() cls.tmp_path = '/tmp/pyarrow-test-{}'.format(random.randint(0, 1000)) cls.hdfs.mkdir(cls.tmp_path) @classmethod def tearDownClass(cls): cls.hdfs.delete(cls.tmp_path, recursive=True) cls.hdfs.close() def test_pickle(self): s = pickle.dumps(self.hdfs) h2 = pickle.loads(s) assert h2.is_open assert h2.host == self.hdfs.host assert h2.port == self.hdfs.port assert h2.user == self.hdfs.user assert h2.kerb_ticket == self.hdfs.kerb_ticket # smoketest unpickled client works h2.ls(self.tmp_path) def test_cat(self): path = pjoin(self.tmp_path, 'cat-test') data = b'foobarbaz' with self.hdfs.open(path, 'wb') as f: f.write(data) contents = self.hdfs.cat(path) assert contents == data def test_capacity_space(self): capacity = self.hdfs.get_capacity() space_used = self.hdfs.get_space_used() disk_free = self.hdfs.df() assert capacity > 0 assert capacity > space_used assert disk_free == (capacity - space_used) def test_close(self): client = hdfs_test_client() assert client.is_open client.close() assert not client.is_open with pytest.raises(Exception): client.ls('/') def test_mkdir(self): path = pjoin(self.tmp_path, 'test-dir/test-dir') parent_path = pjoin(self.tmp_path, 'test-dir') self.hdfs.mkdir(path) assert self.hdfs.exists(path) self.hdfs.delete(parent_path, recursive=True) assert not self.hdfs.exists(path) def test_mv_rename(self): path = pjoin(self.tmp_path, 'mv-test') new_path = pjoin(self.tmp_path, 'mv-new-test') data = b'foobarbaz' with self.hdfs.open(path, 'wb') as f: f.write(data) assert self.hdfs.exists(path) self.hdfs.mv(path, new_path) assert not self.hdfs.exists(path) assert self.hdfs.exists(new_path) assert self.hdfs.cat(new_path) == data self.hdfs.rename(new_path, path) assert self.hdfs.cat(path) == data def test_info(self): path = pjoin(self.tmp_path, 'info-base') file_path = pjoin(path, 'ex') self.hdfs.mkdir(path) data = b'foobarbaz' with self.hdfs.open(file_path, 'wb') as f: f.write(data) path_info = self.hdfs.info(path) file_path_info = self.hdfs.info(file_path) assert path_info['kind'] == 'directory' assert file_path_info['kind'] == 'file' assert file_path_info['size'] == len(data) def test_exists_isdir_isfile(self): dir_path = pjoin(self.tmp_path, 'info-base') file_path = pjoin(dir_path, 'ex') missing_path = pjoin(dir_path, 'this-path-is-missing') self.hdfs.mkdir(dir_path) with self.hdfs.open(file_path, 'wb') as f: f.write(b'foobarbaz') assert self.hdfs.exists(dir_path) assert self.hdfs.exists(file_path) assert not self.hdfs.exists(missing_path) assert self.hdfs.isdir(dir_path) assert not self.hdfs.isdir(file_path) assert not self.hdfs.isdir(missing_path) assert not self.hdfs.isfile(dir_path) assert self.hdfs.isfile(file_path) assert not self.hdfs.isfile(missing_path) def test_disk_usage(self): path = pjoin(self.tmp_path, 'disk-usage-base') p1 = pjoin(path, 'p1') p2 = pjoin(path, 'p2') subdir = pjoin(path, 'subdir') p3 = pjoin(subdir, 'p3') if self.hdfs.exists(path): self.hdfs.delete(path, True) self.hdfs.mkdir(path) self.hdfs.mkdir(subdir) data = b'foobarbaz' for file_path in [p1, p2, p3]: with self.hdfs.open(file_path, 'wb') as f: f.write(data) assert self.hdfs.disk_usage(path) == len(data) * 3 def test_ls(self): base_path = pjoin(self.tmp_path, 'ls-test') self.hdfs.mkdir(base_path) dir_path = pjoin(base_path, 'a-dir') f1_path = pjoin(base_path, 'a-file-1') self.hdfs.mkdir(dir_path) f = self.hdfs.open(f1_path, 'wb') f.write(b'a' * 10) contents = sorted(self.hdfs.ls(base_path, False)) assert contents == [dir_path, f1_path] def test_chmod_chown(self): path = pjoin(self.tmp_path, 'chmod-test') with self.hdfs.open(path, 'wb') as f: f.write(b'a' * 10) def test_download_upload(self): base_path = pjoin(self.tmp_path, 'upload-test') data = b'foobarbaz' buf = BytesIO(data) buf.seek(0) self.hdfs.upload(base_path, buf) out_buf = BytesIO() self.hdfs.download(base_path, out_buf) out_buf.seek(0) assert out_buf.getvalue() == data def test_file_context_manager(self): path = pjoin(self.tmp_path, 'ctx-manager') data = b'foo' with self.hdfs.open(path, 'wb') as f: f.write(data) with self.hdfs.open(path, 'rb') as f: assert f.size() == 3 result = f.read(10) assert result == data def test_open_not_exist_error_message(self): # ARROW-226 path = pjoin(self.tmp_path, 'does-not-exist-123') try: self.hdfs.open(path) except Exception as e: assert 'file does not exist' in e.args[0].lower() def test_read_whole_file(self): path = pjoin(self.tmp_path, 'read-whole-file') data = b'foo' * 1000 with self.hdfs.open(path, 'wb') as f: f.write(data) with self.hdfs.open(path, 'rb') as f: result = f.read() assert result == data def _write_multiple_hdfs_pq_files(self, tmpdir): import pyarrow.parquet as pq nfiles = 10 size = 5 test_data = [] for i in range(nfiles): df = test_parquet._test_dataframe(size, seed=i) df['index'] = np.arange(i * size, (i + 1) * size) # Hack so that we don't have a dtype cast in v1 files df['uint32'] = df['uint32'].astype(np.int64) path = pjoin(tmpdir, '{}.parquet'.format(i)) table = pa.Table.from_pandas(df, preserve_index=False) with self.hdfs.open(path, 'wb') as f: pq.write_table(table, f) test_data.append(table) expected = pa.concat_tables(test_data) return expected @pytest.mark.pandas @pytest.mark.parquet def test_read_multiple_parquet_files(self): tmpdir = pjoin(self.tmp_path, 'multi-parquet-' + guid()) self.hdfs.mkdir(tmpdir) expected = self._write_multiple_hdfs_pq_files(tmpdir) result = self.hdfs.read_parquet(tmpdir) _pandas_api.assert_frame_equal(result.to_pandas() .sort_values(by='index') .reset_index(drop=True), expected.to_pandas()) @pytest.mark.pandas @pytest.mark.parquet def test_read_multiple_parquet_files_with_uri(self): import pyarrow.parquet as pq tmpdir = pjoin(self.tmp_path, 'multi-parquet-uri-' + guid()) self.hdfs.mkdir(tmpdir) expected = self._write_multiple_hdfs_pq_files(tmpdir) path = _get_hdfs_uri(tmpdir) # TODO for URI it should not be needed to pass this argument result = pq.read_table(path, use_legacy_dataset=True) _pandas_api.assert_frame_equal(result.to_pandas() .sort_values(by='index') .reset_index(drop=True), expected.to_pandas()) @pytest.mark.pandas @pytest.mark.parquet def test_read_write_parquet_files_with_uri(self): import pyarrow.parquet as pq tmpdir = pjoin(self.tmp_path, 'uri-parquet-' + guid()) self.hdfs.mkdir(tmpdir) path = _get_hdfs_uri(pjoin(tmpdir, 'test.parquet')) size = 5 df = test_parquet._test_dataframe(size, seed=0) # Hack so that we don't have a dtype cast in v1 files df['uint32'] = df['uint32'].astype(np.int64) table = pa.Table.from_pandas(df, preserve_index=False) pq.write_table(table, path, filesystem=self.hdfs) result = pq.read_table( path, filesystem=self.hdfs, use_legacy_dataset=True ).to_pandas() _pandas_api.assert_frame_equal(result, df) @pytest.mark.parquet @pytest.mark.pandas def test_read_common_metadata_files(self): tmpdir = pjoin(self.tmp_path, 'common-metadata-' + guid()) self.hdfs.mkdir(tmpdir) test_parquet._test_read_common_metadata_files(self.hdfs, tmpdir) @pytest.mark.parquet @pytest.mark.pandas def test_write_to_dataset_with_partitions(self): tmpdir = pjoin(self.tmp_path, 'write-partitions-' + guid()) self.hdfs.mkdir(tmpdir) test_parquet._test_write_to_dataset_with_partitions( tmpdir, filesystem=self.hdfs) @pytest.mark.parquet @pytest.mark.pandas def test_write_to_dataset_no_partitions(self): tmpdir = pjoin(self.tmp_path, 'write-no_partitions-' + guid()) self.hdfs.mkdir(tmpdir) test_parquet._test_write_to_dataset_no_partitions( tmpdir, filesystem=self.hdfs) class TestLibHdfs(HdfsTestCases, unittest.TestCase): @classmethod def check_driver(cls): if not pa.have_libhdfs(): message = 'No libhdfs available on system' if os.environ.get('PYARROW_HDFS_TEST_LIBHDFS_REQUIRE'): pytest.fail(message) else: pytest.skip(message) def test_orphaned_file(self): hdfs = hdfs_test_client() file_path = self._make_test_file(hdfs, 'orphaned_file_test', 'fname', b'foobarbaz') f = hdfs.open(file_path) hdfs = None f = None # noqa def _get_hdfs_uri(path): host = os.environ.get('ARROW_HDFS_TEST_HOST', 'localhost') try: port = int(os.environ.get('ARROW_HDFS_TEST_PORT', 0)) except ValueError: raise ValueError('Env variable ARROW_HDFS_TEST_PORT was not ' 'an integer') uri = "hdfs://{}:{}{}".format(host, port, path) return uri @pytest.mark.hdfs @pytest.mark.pandas @pytest.mark.parquet @pytest.mark.fastparquet def test_fastparquet_read_with_hdfs(): from pandas.testing import assert_frame_equal try: import snappy # noqa except ImportError: pytest.skip('fastparquet test requires snappy') import pyarrow.parquet as pq fastparquet = pytest.importorskip('fastparquet') fs = hdfs_test_client() df = util.make_dataframe() table = pa.Table.from_pandas(df) path = '/tmp/testing.parquet' with fs.open(path, 'wb') as f: pq.write_table(table, f) parquet_file = fastparquet.ParquetFile(path, open_with=fs.open) result = parquet_file.to_pandas() assert_frame_equal(result, df)
apache-2.0
sumitsourabh/opencog
opencog/python/utility/functions.py
34
11056
from math import fabs, isnan from datetime import datetime from spatiotemporal.unix_time import UnixTime from utility.generic import convert_dict_to_sorted_lists from utility.numeric.globals import EPSILON from numpy import NINF as NEGATIVE_INFINITY, PINF as POSITIVE_INFINITY from scipy.integrate import quad __author__ = 'keyvan' def integral(function, start, end): if hasattr(function, 'integral'): return function.integral(start, end) area, error = quad(function, start, end) return area def almost_equals(a, b, epsilon=EPSILON): if fabs(a - b) < epsilon: return True return False def invoke_method_on(method, sequence_or_point): if method is None: return None if not callable(method): raise TypeError("'method' is not callable") result = [] try: for point in sequence_or_point: if type(point) is datetime: point = UnixTime(point) result.append(method(point)) except TypeError: if type(sequence_or_point) is datetime: sequence_or_point = UnixTime(sequence_or_point) return method(sequence_or_point) return result def index_of_first_local_maximum(sequence): first_time = True index = 0 for element in sequence: if first_time: previous = element first_time = False continue if element <= previous: return index previous = element index += 1 return None class Function(object): _domain = None _range = None _function_undefined = None def __init__(self, function_undefined=None, domain=None): if function_undefined is not None: self.function_undefined = function_undefined if domain is not None: if not hasattr(domain, '__iter__') or not hasattr(domain, '__getitem__'): raise TypeError("'domain' should be iterable and support indexing") self._domain = domain def call_on_single_point(self, x): """ to override, __call__ invokes this to handle both points and sequences """ return 0 def derivative(self, point): return None def _check_domain_for(self, feature_name): if self.domain is None: raise TypeError("'{0}' object does not support {1}, 'domain' should be specified".format( self.__class__.__name__, feature_name)) def plot(self, plt=None): self._check_domain_for('plotting') if plt is None: import matplotlib.pyplot as plt plt.plot(self.domain, self.range) return plt @property def function_undefined(self): return self._function_undefined @function_undefined.setter def function_undefined(self, value): if value is not None and not isinstance(value, Function): raise TypeError("'function_undefined' should be of type 'Function'") self._function_undefined = value @property def domain(self): return self._domain @property def range(self): return self() def __call__(self, x=None): if x is None: self._check_domain_for("call with 'None'") x = self.domain return invoke_method_on(self.call_on_single_point, x) def __getitem__(self, index): self._check_domain_for('indexing') return self.range[index] def __len__(self): self._check_domain_for('len()') return len(self.range) def __iter__(self): self._check_domain_for('iter()') return iter(self.range) def __reversed__(self): self._check_domain_for('reversed()') return reversed(self.range) class FunctionLinear(Function): def __init__(self, a=None, b=None, x_0=None, y_0=None, x_1=None, y_1=None): #(x_0, y_0), (x_1, y_1) = sorted([(x_0, y_0), (x_1, y_1)]) if (a, b) == (None, None): a = (float(y_1) - y_0) / (x_1 - x_0) b = y_0 - a * x_0 if isnan(a) or isnan(b): pass self.a = a self.b = b def call_on_single_point(self, x): return float(self.a * x + self.b) def intersect(self, other): if almost_equals(self.a, other.a): return None x = (float(other.b) - self.b) / (self.a - other.a) return x, self(x) def integral(self, start, end): if start >= end: return 0 if self.a == 0: return self.b * (end - start) x_intercept = self.x_intercept if start > x_intercept or end < x_intercept or almost_equals(end, x_intercept) or almost_equals(start, x_intercept): return (self(start) + self(end)) * (end - start) / 2.0 minus_triangle = (x_intercept - start) * self(start) plus_triangle = (end - x_intercept) * self(end) return minus_triangle + plus_triangle def derivative(self, point): return self.a @property def x_intercept(self): return - float(self.b) / self.a @property def y_intercept(self): return self(0) class FunctionHorizontalLinear(FunctionLinear): def __init__(self, y_intercept): FunctionLinear.__init__(self, a=0, b=y_intercept) def call_on_single_point(self, x): return self.b def integral(self, start, end): if start >= end: return 0 if almost_equals(self.b, 0): return 0 return float(self.b) * (end - start) def derivative(self, point): return 0 FUNCTION_ZERO = FunctionHorizontalLinear(0) FUNCTION_ONE = FunctionHorizontalLinear(1) class FunctionComposite(Function): is_normalised = False def __init__(self, dictionary_bounds_function, function_undefined=None, domain=None, is_normalised=False): if is_normalised is not False: self.is_normalised = True Function.__init__(self, function_undefined=function_undefined, domain=domain) if not isinstance(dictionary_bounds_function, dict): raise TypeError("'dictionary_bounds_function' should be a dictionary with (lower_bound, higher_bound) " "tuple keys and values of type 'Function'") self._dictionary_bounds_function = dictionary_bounds_function def call_on_single_point(self, x): for function_bounds in self.dictionary_bounds_function: (a, b) = function_bounds if a <= x: if b >= x: if self.dictionary_bounds_function[function_bounds] is None: return None return self.dictionary_bounds_function[function_bounds](x) return self.function_undefined(x) def integral(self, start, end): if self.is_normalised and self.domain is not None: if (start < self.domain[0] or almost_equals(start, self.domain[0])) and ( end > self.domain[-1] or almost_equals(end, self.domain[-1])): return 1.0 if start >= end: return 0 result = 0 for function_bounds in self.dictionary_bounds_function: (a, b) = function_bounds if a <= start: if b >= end: return self.dictionary_bounds_function[function_bounds].integral(start, end) not_ordered = { (start, 0): 's', (end, 0): 'e', (a, 1): 'a', (b, 1): 'b' } order = ''.join([not_ordered[i] for i in sorted(not_ordered)]) if (a == start or a == end) and order == 'saeb' or (b == start or b == end) and order == 'asbe': continue if order in 'seab abse': continue if order == 'saeb': b = end elif order == 'asbe': a = start result += self.dictionary_bounds_function[function_bounds].integral(a, b) return result def find_bounds_for(self, point): for bounds in self.dictionary_bounds_function: (a, b) = bounds if a <= point and b >= point: return bounds def derivative(self, point): return self.dictionary_bounds_function[self.find_bounds_for(point)].derivative(point) def function_in_point(self, point): for bounds in self.dictionary_bounds_function: a, b = bounds if a <= point <= b: return self.dictionary_bounds_function[bounds] return None # def functions_in_interval(self, interval_start, interval_end): # dictionary_bounds_function = {} # for bounds in self.dictionary_bounds_function: # a, b = bounds # if (interval_start < a or almost_equals(interval_start, a)) and ( # # ): @property def dictionary_bounds_function(self): return self._dictionary_bounds_function class FunctionPiecewiseLinear(FunctionComposite): def __init__(self, dictionary_input_output, function_undefined=None, is_normalised=False): self.input_list, self.output_list = convert_dict_to_sorted_lists(dictionary_input_output) dictionary_bounds_function = {} for i in xrange(1, len(self.input_list)): x_0, x_1 = self.input_list[i - 1], self.input_list[i] y_0, y_1 = self.output_list[i - 1], self.output_list[i] dictionary_bounds_function[(x_0, x_1)] = FunctionLinear(x_0=x_0, x_1=x_1, y_0=y_0, y_1=y_1) if NEGATIVE_INFINITY not in self.input_list: dictionary_bounds_function[(NEGATIVE_INFINITY, self.input_list[0])] = function_undefined if POSITIVE_INFINITY not in self.input_list: dictionary_bounds_function[(self.input_list[-1], POSITIVE_INFINITY)] = function_undefined FunctionComposite.__init__(self, dictionary_bounds_function, function_undefined=function_undefined, domain=self.input_list, is_normalised=is_normalised) def normalised(self): area = self.integral(NEGATIVE_INFINITY, POSITIVE_INFINITY) if almost_equals(area, 0): area = self.integral(NEGATIVE_INFINITY, POSITIVE_INFINITY) dictionary_input_output = {} output_list = [y / area for y in self.output_list] for i in xrange(len(self.input_list)): dictionary_input_output[self.input_list[i]] = output_list[i] result = FunctionPiecewiseLinear(dictionary_input_output, function_undefined=self.function_undefined) result.is_normalised = True return result def __and__(self, other): for bounds in self.dictionary_bounds_function: a, b = bounds linear_function = self.dictionary_bounds_function[bounds] if __name__ == '__main__': a = FunctionLinear(1, 0) b = FunctionLinear(-1, 1) print a.intersect(b)
agpl-3.0
jeffery-do/Vizdoombot
doom/lib/python3.5/site-packages/scipy/stats/_stats_mstats_common.py
12
8157
from collections import namedtuple import numpy as np from . import distributions __all__ = ['_find_repeats', 'linregress', 'theilslopes'] def linregress(x, y=None): """ Calculate a linear least-squares regression for two sets of measurements. Parameters ---------- x, y : array_like Two sets of measurements. Both arrays should have the same length. If only x is given (and y=None), then it must be a two-dimensional array where one dimension has length 2. The two sets of measurements are then found by splitting the array along the length-2 dimension. Returns ------- slope : float slope of the regression line intercept : float intercept of the regression line rvalue : float correlation coefficient pvalue : float two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero. stderr : float Standard error of the estimated gradient. See also -------- optimize.curve_fit : Use non-linear least squares to fit a function to data. optimize.leastsq : Minimize the sum of squares of a set of equations. Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) >>> x = np.random.random(10) >>> y = np.random.random(10) >>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) # To get coefficient of determination (r_squared) >>> print("r-squared:", r_value**2) ('r-squared:', 0.080402268539028335) """ TINY = 1.0e-20 if y is None: # x is a (2, N) or (N, 2) shaped array_like x = np.asarray(x) if x.shape[0] == 2: x, y = x elif x.shape[1] == 2: x, y = x.T else: msg = ("If only `x` is given as input, it has to be of shape " "(2, N) or (N, 2), provided shape was %s" % str(x.shape)) raise ValueError(msg) else: x = np.asarray(x) y = np.asarray(y) if x.size == 0 or y.size == 0: raise ValueError("Inputs must not be empty.") n = len(x) xmean = np.mean(x, None) ymean = np.mean(y, None) # average sum of squares: ssxm, ssxym, ssyxm, ssym = np.cov(x, y, bias=1).flat r_num = ssxym r_den = np.sqrt(ssxm * ssym) if r_den == 0.0: r = 0.0 else: r = r_num / r_den # test for numerical error propagation if r > 1.0: r = 1.0 elif r < -1.0: r = -1.0 df = n - 2 t = r * np.sqrt(df / ((1.0 - r + TINY)*(1.0 + r + TINY))) prob = 2 * distributions.t.sf(np.abs(t), df) slope = r_num / ssxm intercept = ymean - slope*xmean sterrest = np.sqrt((1 - r**2) * ssym / ssxm / df) LinregressResult = namedtuple('LinregressResult', ('slope', 'intercept', 'rvalue', 'pvalue', 'stderr')) return LinregressResult(slope, intercept, r, prob, sterrest) def theilslopes(y, x=None, alpha=0.95): r""" Computes the Theil-Sen estimator for a set of points (x, y). `theilslopes` implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values. Parameters ---------- y : array_like Dependent variable. x : array_like or None, optional Independent variable. If None, use ``arange(len(y))`` instead. alpha : float, optional Confidence degree between 0 and 1. Default is 95% confidence. Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as "find the 90% confidence interval". Returns ------- medslope : float Theil slope. medintercept : float Intercept of the Theil line, as ``median(y) - medslope*median(x)``. lo_slope : float Lower bound of the confidence interval on `medslope`. up_slope : float Upper bound of the confidence interval on `medslope`. Notes ----- The implementation of `theilslopes` follows [1]_. The intercept is not defined in [1]_, and here it is defined as ``median(y) - medslope*median(x)``, which is given in [3]_. Other definitions of the intercept exist in the literature. A confidence interval for the intercept is not given as this question is not addressed in [1]_. References ---------- .. [1] P.K. Sen, "Estimates of the regression coefficient based on Kendall's tau", J. Am. Stat. Assoc., Vol. 63, pp. 1379-1389, 1968. .. [2] H. Theil, "A rank-invariant method of linear and polynomial regression analysis I, II and III", Nederl. Akad. Wetensch., Proc. 53:, pp. 386-392, pp. 521-525, pp. 1397-1412, 1950. .. [3] W.L. Conover, "Practical nonparametric statistics", 2nd ed., John Wiley and Sons, New York, pp. 493. Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> x = np.linspace(-5, 5, num=150) >>> y = x + np.random.normal(size=x.size) >>> y[11:15] += 10 # add outliers >>> y[-5:] -= 7 Compute the slope, intercept and 90% confidence interval. For comparison, also compute the least-squares fit with `linregress`: >>> res = stats.theilslopes(y, x, 0.90) >>> lsq_res = stats.linregress(x, y) Plot the results. The Theil-Sen regression line is shown in red, with the dashed red lines illustrating the confidence interval of the slope (note that the dashed red lines are not the confidence interval of the regression as the confidence interval of the intercept is not included). The green line shows the least-squares fit for comparison. >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, y, 'b.') >>> ax.plot(x, res[1] + res[0] * x, 'r-') >>> ax.plot(x, res[1] + res[2] * x, 'r--') >>> ax.plot(x, res[1] + res[3] * x, 'r--') >>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-') >>> plt.show() """ # We copy both x and y so we can use _find_repeats. y = np.array(y).flatten() if x is None: x = np.arange(len(y), dtype=float) else: x = np.array(x, dtype=float).flatten() if len(x) != len(y): raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y), len(x))) # Compute sorted slopes only when deltax > 0 deltax = x[:, np.newaxis] - x deltay = y[:, np.newaxis] - y slopes = deltay[deltax > 0] / deltax[deltax > 0] slopes.sort() medslope = np.median(slopes) medinter = np.median(y) - medslope * np.median(x) # Now compute confidence intervals if alpha > 0.5: alpha = 1. - alpha z = distributions.norm.ppf(alpha / 2.) # This implements (2.6) from Sen (1968) _, nxreps = _find_repeats(x) _, nyreps = _find_repeats(y) nt = len(slopes) # N in Sen (1968) ny = len(y) # n in Sen (1968) # Equation 2.6 in Sen (1968): sigsq = 1/18. * (ny * (ny-1) * (2*ny+5) - np.sum(k * (k-1) * (2*k + 5) for k in nxreps) - np.sum(k * (k-1) * (2*k + 5) for k in nyreps)) # Find the confidence interval indices in `slopes` sigma = np.sqrt(sigsq) Ru = min(int(np.round((nt - z*sigma)/2.)), len(slopes)-1) Rl = max(int(np.round((nt + z*sigma)/2.)) - 1, 0) delta = slopes[[Rl, Ru]] return medslope, medinter, delta[0], delta[1] def _find_repeats(arr): # This function assumes it may clobber its input. if len(arr) == 0: return np.array(0, np.float64), np.array(0, np.intp) # XXX This cast was previously needed for the Fortran implementation, # should we ditch it? arr = np.asarray(arr, np.float64).ravel() arr.sort() # Taken from NumPy 1.9's np.unique. change = np.concatenate(([True], arr[1:] != arr[:-1])) unique = arr[change] change_idx = np.concatenate(np.nonzero(change) + ([arr.size],)) freq = np.diff(change_idx) atleast2 = freq > 1 return unique[atleast2], freq[atleast2]
mit
nikitasingh981/scikit-learn
examples/semi_supervised/plot_label_propagation_versus_svm_iris.py
50
2378
""" ===================================================================== Decision boundary of label propagation versus SVM on the Iris dataset ===================================================================== Comparison for decision boundary generated on iris dataset between Label Propagation and SVM. This demonstrates Label Propagation learning a good boundary even with a small amount of labeled data. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # License: BSD import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn import svm from sklearn.semi_supervised import label_propagation rng = np.random.RandomState(0) iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target # step size in the mesh h = .02 y_30 = np.copy(y) y_30[rng.rand(len(y)) < 0.3] = -1 y_50 = np.copy(y) y_50[rng.rand(len(y)) < 0.5] = -1 # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors ls30 = (label_propagation.LabelSpreading().fit(X, y_30), y_30) ls50 = (label_propagation.LabelSpreading().fit(X, y_50), y_50) ls100 = (label_propagation.LabelSpreading().fit(X, y), y) rbf_svc = (svm.SVC(kernel='rbf').fit(X, y), y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['Label Spreading 30% data', 'Label Spreading 50% data', 'Label Spreading 100% data', 'SVC with rbf kernel'] color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)} for i, (clf, y_train) in enumerate((ls30, ls50, ls100, rbf_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points colors = [color_map[y] for y in y_train] plt.scatter(X[:, 0], X[:, 1], c=colors, cmap=plt.cm.Paired) plt.title(titles[i]) plt.text(.90, 0, "Unlabeled points are colored white") plt.show()
bsd-3-clause
kylerbrown/scikit-learn
sklearn/covariance/tests/test_robust_covariance.py
213
3359
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Gael Varoquaux <gael.varoquaux@normalesup.org> # Virgile Fritsch <virgile.fritsch@inria.fr> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.validation import NotFittedError from sklearn import datasets from sklearn.covariance import empirical_covariance, MinCovDet, \ EllipticEnvelope X = datasets.load_iris().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_mcd(): # Tests the FastMCD algorithm implementation # Small data set # test without outliers (random independent normal data) launch_mcd_on_dataset(100, 5, 0, 0.01, 0.1, 80) # test with a contaminated data set (medium contamination) launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70) # test with a contaminated data set (strong contamination) launch_mcd_on_dataset(100, 5, 40, 0.1, 0.1, 50) # Medium data set launch_mcd_on_dataset(1000, 5, 450, 0.1, 0.1, 540) # Large data set launch_mcd_on_dataset(1700, 5, 800, 0.1, 0.1, 870) # 1D data set launch_mcd_on_dataset(500, 1, 100, 0.001, 0.001, 350) def launch_mcd_on_dataset(n_samples, n_features, n_outliers, tol_loc, tol_cov, tol_support): rand_gen = np.random.RandomState(0) data = rand_gen.randn(n_samples, n_features) # add some outliers outliers_index = rand_gen.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (rand_gen.randint(2, size=(n_outliers, n_features)) - 0.5) data[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False pure_data = data[inliers_mask] # compute MCD by fitting an object mcd_fit = MinCovDet(random_state=rand_gen).fit(data) T = mcd_fit.location_ S = mcd_fit.covariance_ H = mcd_fit.support_ # compare with the estimates learnt from the inliers error_location = np.mean((pure_data.mean(0) - T) ** 2) assert(error_location < tol_loc) error_cov = np.mean((empirical_covariance(pure_data) - S) ** 2) assert(error_cov < tol_cov) assert(np.sum(H) >= tol_support) assert_array_almost_equal(mcd_fit.mahalanobis(data), mcd_fit.dist_) def test_mcd_issue1127(): # Check that the code does not break with X.shape = (3, 1) # (i.e. n_support = n_samples) rnd = np.random.RandomState(0) X = rnd.normal(size=(3, 1)) mcd = MinCovDet() mcd.fit(X) def test_outlier_detection(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) assert_raises(NotFittedError, clf.predict, X) assert_raises(NotFittedError, clf.decision_function, X) clf.fit(X) y_pred = clf.predict(X) decision = clf.decision_function(X, raw_values=True) decision_transformed = clf.decision_function(X, raw_values=False) assert_array_almost_equal( decision, clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.) assert(sum(y_pred == -1) == sum(decision_transformed < 0))
bsd-3-clause
Mako-kun/mangaki
mangaki/mangaki/utils/svd.py
2
5410
from django.contrib.auth.models import User from mangaki.models import Rating, Work, Recommendation from mangaki.utils.chrono import Chrono from mangaki.utils.values import rating_values from scipy.sparse import lil_matrix from sklearn.utils.extmath import randomized_svd import numpy as np from django.db import connection import pickle import json import math NB_COMPONENTS = 10 TOP = 10 class MangakiSVD(object): M = None U = None sigma = None VT = None chrono = None inv_work = None inv_user = None work_titles = None def __init__(self): self.chrono = Chrono(True) def save(self, filename): with open(filename, 'wb') as f: pickle.dump(self, f) def load(self, filename): with open(filename, 'rb') as f: backup = pickle.load(f) self.M = backup.M self.U = backup.U self.sigma = backup.sigma self.VT = backup.VT self.inv_work = backup.inv_work self.inv_user = backup.inv_user self.work_titles = backup.work_titles def fit(self, X, y): self.work_titles = {} for work in Work.objects.values('id', 'title'): self.work_titles[work['id']] = work['title'] work_ids = list(Rating.objects.values_list('work_id', flat=True).distinct()) nb_works = len(work_ids) self.inv_work = {work_ids[i]: i for i in range(nb_works)} user_ids = list(User.objects.values_list('id', flat=True)) nb_users = len(user_ids) self.inv_user = {user_ids[i]: i for i in range(nb_users)} self.chrono.save('get_work_ids') # print("Computing M: (%i × %i)" % (nb_users, nb_works)) self.M = lil_matrix((nb_users, nb_works)) """ratings_of = {} for (user_id, work_id), rating in zip(X, y): ratings_of.setdefault(user_id, []).append(rating)""" for (user_id, work_id), rating in zip(X, y): self.M[self.inv_user[user_id], self.inv_work[work_id]] = rating #- np.mean(ratings_of[user_id]) # np.save('backupM', self.M) self.chrono.save('fill matrix') # Ranking computation self.U, self.sigma, self.VT = randomized_svd(self.M, NB_COMPONENTS, n_iter=3, random_state=42) # print('Formes', self.U.shape, self.sigma.shape, self.VT.shape) self.save('backup.pickle') self.chrono.save('factor matrix') def predict(self, X): y = [] for user_id, work_id in X: i = self.inv_user[user_id] j = self.inv_work[work_id] y.append(self.U[i].dot(np.diag(self.sigma)).dot(self.VT.transpose()[j])) return np.array(y) def get_reco(self, username, sending=False): target_user = User.objects.get(username=username) the_user_id = target_user.id svd_user = User.objects.get(username='svd') work_ids = {self.inv_work[work_id]: work_id for work_id in self.inv_work} nb_works = len(work_ids) seen_works = set(Rating.objects.filter(user__id=the_user_id).exclude(choice='willsee').values_list('work_id', flat=True)) the_i = self.inv_user[the_user_id] self.chrono.save('get_seen_works') print('mon vecteur (taille %d)' % len(self.U[the_i]), self.U[the_i]) print(self.sigma) for i, line in enumerate(self.VT): print('=> Ligne %d' % (i + 1), '(ma note : %f)' % self.U[the_i][i]) sorted_line = sorted((line[j], self.work_titles[work_ids[j]]) for j in range(nb_works))[::-1] top5 = sorted_line[:10] bottom5 = sorted_line[-10:] for anime in top5: print(anime) for anime in bottom5: print(anime) """if i == 0 or i == 1: # First two vectors explaining variance with open('vector%d.json' % (i + 1), 'w') as f: vi = X.dot(line).tolist() x_norm = [np.dot(X.data[k], X.data[k]) / (nb_works + 1) for k in range(nb_users + 1)] f.write(json.dumps({'v': [v / math.sqrt(x_norm[k]) if x_norm[k] != 0 else float('inf') for k, v in enumerate(vi)]}))""" # print(VT.dot(VT.transpose())) # return the_ratings = self.predict((the_user_id, work_ids[j]) for j in range(nb_works)) ranking = sorted(zip(the_ratings, [(work_ids[j], self.work_titles[work_ids[j]]) for j in range(nb_works)]), reverse=True) # Summarize the results of the ranking for the_user_id: # “=> rank, title, score” c = 0 for i, (rating, (work_id, title)) in enumerate(ranking, start=1): if work_id not in seen_works: print('=>', i, title, rating, self.predict([(the_user_id, work_id)])) if Recommendation.objects.filter(user=svd_user, target_user__id=the_user_id, work__id=work_id).count() == 0: Recommendation.objects.create(user=svd_user, target_user_id=the_user_id, work_id=work_id) c += 1 elif i < TOP: print(i, title, rating) if c >= TOP: break """print(len(connection.queries), 'queries') for line in connection.queries: print(line)""" self.chrono.save('complete') def __str__(self): return '[SVD]' def get_shortname(self): return 'svd'
agpl-3.0
IndraVikas/scikit-learn
examples/hetero_feature_union.py
288
6236
""" ============================================= Feature Union with Heterogeneous Data Sources ============================================= Datasets can often contain components of that require different feature extraction and processing pipelines. This scenario might occur when: 1. Your dataset consists of heterogeneous data types (e.g. raster images and text captions) 2. Your dataset is stored in a Pandas DataFrame and different columns require different processing pipelines. This example demonstrates how to use :class:`sklearn.feature_extraction.FeatureUnion` on a dataset containing different types of features. We use the 20-newsgroups dataset and compute standard bag-of-words features for the subject line and body in separate pipelines as well as ad hoc features on the body. We combine them (with weights) using a FeatureUnion and finally train a classifier on the combined set of features. The choice of features is not particularly helpful, but serves to illustrate the technique. """ # Author: Matt Terry <matt.terry@gmail.com> # # License: BSD 3 clause from __future__ import print_function import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.datasets import fetch_20newsgroups from sklearn.datasets.twenty_newsgroups import strip_newsgroup_footer from sklearn.datasets.twenty_newsgroups import strip_newsgroup_quoting from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report from sklearn.pipeline import FeatureUnion from sklearn.pipeline import Pipeline from sklearn.svm import SVC class ItemSelector(BaseEstimator, TransformerMixin): """For data grouped by feature, select subset of data at a provided key. The data is expected to be stored in a 2D data structure, where the first index is over features and the second is over samples. i.e. >> len(data[key]) == n_samples Please note that this is the opposite convention to sklearn feature matrixes (where the first index corresponds to sample). ItemSelector only requires that the collection implement getitem (data[key]). Examples include: a dict of lists, 2D numpy array, Pandas DataFrame, numpy record array, etc. >> data = {'a': [1, 5, 2, 5, 2, 8], 'b': [9, 4, 1, 4, 1, 3]} >> ds = ItemSelector(key='a') >> data['a'] == ds.transform(data) ItemSelector is not designed to handle data grouped by sample. (e.g. a list of dicts). If your data is structured this way, consider a transformer along the lines of `sklearn.feature_extraction.DictVectorizer`. Parameters ---------- key : hashable, required The key corresponding to the desired value in a mappable. """ def __init__(self, key): self.key = key def fit(self, x, y=None): return self def transform(self, data_dict): return data_dict[self.key] class TextStats(BaseEstimator, TransformerMixin): """Extract features from each document for DictVectorizer""" def fit(self, x, y=None): return self def transform(self, posts): return [{'length': len(text), 'num_sentences': text.count('.')} for text in posts] class SubjectBodyExtractor(BaseEstimator, TransformerMixin): """Extract the subject & body from a usenet post in a single pass. Takes a sequence of strings and produces a dict of sequences. Keys are `subject` and `body`. """ def fit(self, x, y=None): return self def transform(self, posts): features = np.recarray(shape=(len(posts),), dtype=[('subject', object), ('body', object)]) for i, text in enumerate(posts): headers, _, bod = text.partition('\n\n') bod = strip_newsgroup_footer(bod) bod = strip_newsgroup_quoting(bod) features['body'][i] = bod prefix = 'Subject:' sub = '' for line in headers.split('\n'): if line.startswith(prefix): sub = line[len(prefix):] break features['subject'][i] = sub return features pipeline = Pipeline([ # Extract the subject & body ('subjectbody', SubjectBodyExtractor()), # Use FeatureUnion to combine the features from subject and body ('union', FeatureUnion( transformer_list=[ # Pipeline for pulling features from the post's subject line ('subject', Pipeline([ ('selector', ItemSelector(key='subject')), ('tfidf', TfidfVectorizer(min_df=50)), ])), # Pipeline for standard bag-of-words model for body ('body_bow', Pipeline([ ('selector', ItemSelector(key='body')), ('tfidf', TfidfVectorizer()), ('best', TruncatedSVD(n_components=50)), ])), # Pipeline for pulling ad hoc features from post's body ('body_stats', Pipeline([ ('selector', ItemSelector(key='body')), ('stats', TextStats()), # returns a list of dicts ('vect', DictVectorizer()), # list of dicts -> feature matrix ])), ], # weight components in FeatureUnion transformer_weights={ 'subject': 0.8, 'body_bow': 0.5, 'body_stats': 1.0, }, )), # Use a SVC classifier on the combined features ('svc', SVC(kernel='linear')), ]) # limit the list of categories to make running this exmaple faster. categories = ['alt.atheism', 'talk.religion.misc'] train = fetch_20newsgroups(random_state=1, subset='train', categories=categories, ) test = fetch_20newsgroups(random_state=1, subset='test', categories=categories, ) pipeline.fit(train.data, train.target) y = pipeline.predict(test.data) print(classification_report(y, test.target))
bsd-3-clause
samuelstjean/dipy
scratch/very_scratch/diffusion_sphere_stats.py
20
18082
import nibabel import os import numpy as np import dipy as dp #import dipy.core.generalized_q_sampling as dgqs import dipy.reconst.gqi as dgqs import dipy.reconst.dti as ddti import dipy.reconst.recspeed as rp import dipy.io.pickles as pkl import scipy as sp from matplotlib.mlab import find #import dipy.core.sphere_plots as splots import dipy.core.sphere_stats as sphats import dipy.core.geometry as geometry import get_vertices as gv #old SimData files ''' results_SNR030_1fibre results_SNR030_1fibre+iso results_SNR030_2fibres_15deg results_SNR030_2fibres_30deg results_SNR030_2fibres_60deg results_SNR030_2fibres_90deg results_SNR030_2fibres+iso_15deg results_SNR030_2fibres+iso_30deg results_SNR030_2fibres+iso_60deg results_SNR030_2fibres+iso_90deg results_SNR030_isotropic ''' #fname='/home/ian/Data/SimData/results_SNR030_1fibre' ''' file has one row for every voxel, every voxel is repeating 1000 times with the same noise level , then we have 100 different directions. 1000 * 100 is the number of all rows. The 100 conditions are given by 10 polar angles (in degrees) 0, 20, 40, 60, 80, 80, 60, 40, 20 and 0, and each of these with longitude angle 0, 40, 80, 120, 160, 200, 240, 280, 320, 360. ''' #new complete SimVoxels files simdata = ['fibres_2_SNR_80_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_100_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_40_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_100_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_60_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_40_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_20_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_100_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_100_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_1_SNR_20_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_40_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_80_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_80_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_20_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_80_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_100_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_20_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_80_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_80_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_40_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_60_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_1_SNR_40_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_20_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00'] simdir = '/home/ian/Data/SimVoxels/' def gq_tn_calc_save(): for simfile in simdata: dataname = simfile print dataname sim_data=np.loadtxt(simdir+dataname) marta_table_fname='/home/ian/Data/SimData/Dir_and_bvals_DSI_marta.txt' b_vals_dirs=np.loadtxt(marta_table_fname) bvals=b_vals_dirs[:,0]*1000 gradients=b_vals_dirs[:,1:] gq = dgqs.GeneralizedQSampling(sim_data,bvals,gradients) gqfile = simdir+'gq/'+dataname+'.pkl' pkl.save_pickle(gqfile,gq) ''' gq.IN gq.__doc__ gq.glob_norm_param gq.QA gq.__init__ gq.odf gq.__class__ gq.__module__ gq.q2odf_params ''' tn = ddti.Tensor(sim_data,bvals,gradients) tnfile = simdir+'tn/'+dataname+'.pkl' pkl.save_pickle(tnfile,tn) ''' tn.ADC tn.__init__ tn._getevals tn.B tn.__module__ tn._getevecs tn.D tn.__new__ tn._getndim tn.FA tn.__reduce__ tn._getshape tn.IN tn.__reduce_ex__ tn._setevals tn.MD tn.__repr__ tn._setevecs tn.__class__ tn.__setattr__ tn.adc tn.__delattr__ tn.__sizeof__ tn.evals tn.__dict__ tn.__str__ tn.evecs tn.__doc__ tn.__subclasshook__ tn.fa tn.__format__ tn.__weakref__ tn.md tn.__getattribute__ tn._evals tn.ndim tn.__getitem__ tn._evecs tn.shape tn.__hash__ tn._getD ''' ''' file has one row for every voxel, every voxel is repeating 1000 times with the same noise level , then we have 100 different directions. 100 * 1000 is the number of all rows. At the moment this module is hardwired to the use of the EDS362 spherical mesh. I am assumung (needs testing) that directions 181 to 361 are the antipodal partners of directions 0 to 180. So when counting the number of different vertices that occur as maximal directions we wll map the indices modulo 181. ''' def analyze_maxima(indices, max_dirs, subsets): '''This calculates the eigenstats for each of the replicated batches of the simulation data ''' results = [] for direction in subsets: batch = max_dirs[direction,:,:] index_variety = np.array([len(set(np.remainder(indices[direction,:],181)))]) #normed_centroid, polar_centroid, centre, b1 = sphats.eigenstats(batch) centre, b1 = sphats.eigenstats(batch) # make azimuth be in range (0,360) rather than (-180,180) centre[1] += 360*(centre[1] < 0) #results.append(np.concatenate((normed_centroid, polar_centroid, centre, b1, index_variety))) results.append(np.concatenate((centre, b1, index_variety))) return results #dt_first_directions = tn.evecs[:,:,0].reshape((100,1000,3)) # these are the principal directions for the full set of simulations #gq_tn_calc_save() #eds=np.load(os.path.join(os.path.dirname(dp.__file__),'core','matrices','evenly_distributed_sphere_362.npz')) from dipy.data import get_sphere odf_vertices,odf_faces=get_sphere('symmetric362') #odf_vertices=eds['vertices'] def run_comparisons(sample_data=35): for simfile in [simdata[sample_data]]: dataname = simfile print dataname sim_data=np.loadtxt(simdir+dataname) gqfile = simdir+'gq/'+dataname+'.pkl' gq = pkl.load_pickle(gqfile) tnfile = simdir+'tn/'+dataname+'.pkl' tn = pkl.load_pickle(tnfile) dt_first_directions_in=odf_vertices[tn.IN] dt_indices = tn.IN.reshape((100,1000)) dt_results = analyze_maxima(dt_indices, dt_first_directions_in.reshape((100,1000,3)),range(10,90)) gq_indices = np.array(gq.IN[:,0],dtype='int').reshape((100,1000)) gq_first_directions_in=odf_vertices[np.array(gq.IN[:,0],dtype='int')] #print gq_first_directions_in.shape gq_results = analyze_maxima(gq_indices, gq_first_directions_in.reshape((100,1000,3)),range(10,90)) #for gqi see example dicoms_2_tracks gq.IN[:,0] np.set_printoptions(precision=3, suppress=True, linewidth=200, threshold=5000) out = open('/home/ian/Data/SimVoxels/Out/'+'***_'+dataname,'w') #print np.vstack(dt_results).shape, np.vstack(gq_results).shape results = np.hstack((np.vstack(dt_results), np.vstack(gq_results))) #print results.shape #results = np.vstack(dt_results) print >> out, results[:,:] out.close() #up = dt_batch[:,2]>= 0 #splots.plot_sphere(dt_batch[up], 'batch '+str(direction)) #splots.plot_lambert(dt_batch[up],'batch '+str(direction), centre) #spread = gq.q2odf_params e,v = np.linalg.eigh(np.dot(spread,spread.transpose())) effective_dimension = len(find(np.cumsum(e) > 0.05*np.sum(e))) #95% #rotated = np.dot(dt_batch,evecs) #rot_evals, rot_evecs = np.linalg.eig(np.dot(rotated.T,rotated)/rotated.shape[0]) #eval_order = np.argsort(rot_evals) #rotated = rotated[:,eval_order] #up = rotated[:,2]>= 0 #splot.plot_sphere(rotated[up],'first1000') #splot.plot_lambert(rotated[up],'batch '+str(direction)) def run_gq_sims(sample_data=[35,23,46,39,40,10,37,27,21,20]): results = [] out = open('/home/ian/Data/SimVoxels/Out/'+'npa+fa','w') for j in range(len(sample_data)): sample = sample_data[j] simfile = simdata[sample] dataname = simfile print dataname sim_data=np.loadtxt(simdir+dataname) marta_table_fname='/home/ian/Data/SimData/Dir_and_bvals_DSI_marta.txt' b_vals_dirs=np.loadtxt(marta_table_fname) bvals=b_vals_dirs[:,0]*1000 gradients=b_vals_dirs[:,1:] for j in np.vstack((np.arange(100)*1000,np.arange(100)*1000+1)).T.ravel(): # 0,1,1000,1001,2000,2001,... s = sim_data[j,:] gqs = dp.GeneralizedQSampling(s.reshape((1,102)),bvals,gradients,Lambda=3.5) tn = dp.Tensor(s.reshape((1,102)),bvals,gradients,fit_method='LS') t0, t1, t2, npa = gqs.npa(s, width = 5) print >> out, dataname, j, npa, tn.fa()[0] ''' for (i,o) in enumerate(gqs.odf(s)): print i,o for (i,o) in enumerate(gqs.odf_vertices): print i,o ''' #o = gqs.odf(s) #v = gqs.odf_vertices #pole = v[t0[0]] #eqv = dgqs.equatorial_zone_vertices(v, pole, 5) #print 'Number of equatorial vertices: ', len(eqv) #print np.max(o[eqv]),np.min(o[eqv]) #cos_e_pole = [np.dot(pole.T, v[i]) for i in eqv] #print np.min(cos1), np.max(cos1) #print 'equatorial max in equatorial vertices:', t1[0] in eqv #x = np.cross(v[t0[0]],v[t1[0]]) #x = x/np.sqrt(np.sum(x**2)) #print x #ptchv = dgqs.patch_vertices(v, x, 5) #print len(ptchv) #eqp = eqv[np.argmin([np.abs(np.dot(v[t1[0]].T,v[p])) for p in eqv])] #print (eqp, o[eqp]) #print t2[0] in ptchv, t2[0] in eqv #print np.dot(pole.T, v[t1[0]]), np.dot(pole.T, v[t2[0]]) #print ptchv[np.argmin([o[v] for v in ptchv])] #gq_indices = np.array(gq.IN[:,0],dtype='int').reshape((100,1000)) #gq_first_directions_in=odf_vertices[np.array(gq.IN[:,0],dtype='int')] #print gq_first_directions_in.shape #gq_results = analyze_maxima(gq_indices, gq_first_directions_in.reshape((100,1000,3)),range(100)) #for gqi see example dicoms_2_tracks gq.IN[:,0] #np.set_printoptions(precision=6, suppress=True, linewidth=200, threshold=5000) #out = open('/home/ian/Data/SimVoxels/Out/'+'+++_'+dataname,'w') #results = np.hstack((np.vstack(dt_results), np.vstack(gq_results))) #results = np.vstack(dt_results) #print >> out, results[:,:] out.close() def run_small_data(): #smalldir = '/home/ian/Devel/dipy/dipy/data/' smalldir = '/home/eg309/Devel/dipy/dipy/data/' # from os.path import join as opj # bvals=np.load(opj(os.path.dirname(__file__), \ # 'data','small_64D.bvals.npy')) bvals=np.load(smalldir+'small_64D.bvals.npy') # gradients=np.load(opj(os.path.dirname(__file__), \ # 'data','small_64D.gradients.npy')) gradients=np.load(smalldir+'small_64D.gradients.npy') # img =ni.load(os.path.join(os.path.dirname(__file__),\ # 'data','small_64D.nii')) img=nibabel.load(smalldir+'small_64D.nii') small_data=img.get_data() print 'real_data', small_data.shape gqsmall = dgqs.GeneralizedQSampling(small_data,bvals,gradients) tnsmall = ddti.Tensor(small_data,bvals,gradients) x,y,z,a,b=tnsmall.evecs.shape evecs=tnsmall.evecs xyz=x*y*z evecs = evecs.reshape(xyz,3,3) #vs = np.sign(evecs[:,2,:]) #print vs.shape #print np.hstack((vs,vs,vs)).reshape(1000,3,3).shape #evecs = np.hstack((vs,vs,vs)).reshape(1000,3,3) #print evecs.shape evals=tnsmall.evals evals = evals.reshape(xyz,3) #print evals.shape #print('GQS in %d' %(t2-t1)) ''' eds=np.load(opj(os.path.dirname(__file__),\ '..','matrices',\ 'evenly_distributed_sphere_362.npz')) ''' from dipy.data import get_sphere odf_vertices,odf_faces=get_sphere('symmetric362') #odf_vertices=eds['vertices'] #odf_faces=eds['faces'] #Yeh et.al, IEEE TMI, 2010 #calculate the odf using GQI scaling=np.sqrt(bvals*0.01506) # 0.01506 = 6*D where D is the free #water diffusion coefficient #l_values sqrt(6 D tau) D free water #diffusion coefficiet and tau included in the b-value tmp=np.tile(scaling,(3,1)) b_vector=gradients.T*tmp Lambda = 1.2 # smoothing parameter - diffusion sampling length q2odf_params=np.sinc(np.dot(b_vector.T, odf_vertices.T) * Lambda/np.pi) #implements equation no. 9 from Yeh et.al. S=small_data.copy() x,y,z,g=S.shape S=S.reshape(x*y*z,g) QA = np.zeros((x*y*z,5)) IN = np.zeros((x*y*z,5)) FA = tnsmall.fa().reshape(x*y*z) fwd = 0 #Calculate Quantitative Anisotropy and find the peaks and the indices #for every voxel summary = {} summary['vertices'] = odf_vertices v = odf_vertices.shape[0] summary['faces'] = odf_faces f = odf_faces.shape[0] for (i,s) in enumerate(S): #print 'Volume %d' % i istr = str(i) summary[istr] = {} t0, t1, t2, npa = gqsmall.npa(s, width = 5) summary[istr]['triple']=(t0,t1,t2) summary[istr]['npa']=npa odf = Q2odf(s,q2odf_params) peaks,inds=rp.peak_finding(odf,odf_faces) fwd=max(np.max(odf),fwd) #peaks = peaks - np.min(odf) n_peaks=min(len(peaks),5) peak_heights = [odf[i] for i in inds[:n_peaks]] #QA[i][:l] = peaks[:n_peaks] IN[i][:n_peaks] = inds[:n_peaks] summary[istr]['odf'] = odf summary[istr]['peaks'] = peaks summary[istr]['inds'] = inds summary[istr]['evecs'] = evecs[i,:,:] summary[istr]['evals'] = evals[i,:] summary[istr]['n_peaks'] = n_peaks summary[istr]['peak_heights'] = peak_heights # summary[istr]['fa'] = tnsmall.fa()[0] summary[istr]['fa'] = FA[i] ''' QA/=fwd QA=QA.reshape(x,y,z,5) IN=IN.reshape(x,y,z,5) ''' peaks_1 = [i for i in range(1000) if summary[str(i)]['n_peaks']==1] peaks_2 = [i for i in range(1000) if summary[str(i)]['n_peaks']==2] peaks_3 = [i for i in range(1000) if summary[str(i)]['n_peaks']==3] #peaks_2 = [i for i in range(1000) if len(summary[str(i)]['inds'])==2] #peaks_3 = [i for i in range(1000) if len(summary[str(i)]['inds'])==3] print '#voxels with 1, 2, 3 peaks', len(peaks_1),len(peaks_2),len(peaks_3) return FA, summary def Q2odf(s,q2odf_params): ''' construct odf for a voxel ''' odf=np.dot(s,q2odf_params) return odf #run_comparisons() #run_gq_sims() FA, summary = run_small_data() peaks_1 = [i for i in range(1000) if summary[str(i)]['n_peaks']==1] peaks_2 = [i for i in range(1000) if summary[str(i)]['n_peaks']==2] peaks_3 = [i for i in range(1000) if summary[str(i)]['n_peaks']==3] fa_npa_1 = [[summary[str(i)]['fa'], summary[str(i)]['npa'], summary[str(i)]['peak_heights']] for i in peaks_1] fa_npa_2 = [[summary[str(i)]['fa'], summary[str(i)]['npa'], summary[str(i)]['peak_heights']] for i in peaks_2] fa_npa_3 = [[summary[str(i)]['fa'], summary[str(i)]['npa'], summary[str(i)]['peak_heights']] for i in peaks_3]
bsd-3-clause
Vimos/scikit-learn
sklearn/kernel_approximation.py
7
18505
""" The :mod:`sklearn.kernel_approximation` module implements several approximate kernel feature maps base on Fourier transforms. """ # Author: Andreas Mueller <amueller@ais.uni-bonn.de> # # License: BSD 3 clause import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import svd from .base import BaseEstimator from .base import TransformerMixin from .utils import check_array, check_random_state, as_float_array from .utils.extmath import safe_sparse_dot from .utils.validation import check_is_fitted from .metrics.pairwise import pairwise_kernels class RBFSampler(BaseEstimator, TransformerMixin): """Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform. It implements a variant of Random Kitchen Sinks.[1] Read more in the :ref:`User Guide <rbf_kernel_approx>`. Parameters ---------- gamma : float Parameter of RBF kernel: exp(-gamma * x^2) n_components : int Number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Notes ----- See "Random Features for Large-Scale Kernel Machines" by A. Rahimi and Benjamin Recht. [1] "Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning" by A. Rahimi and Benjamin Recht. (http://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf) """ def __init__(self, gamma=1., n_components=100, random_state=None): self.gamma = gamma self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = check_array(X, accept_sparse='csr') random_state = check_random_state(self.random_state) n_features = X.shape[1] self.random_weights_ = (np.sqrt(2 * self.gamma) * random_state.normal( size=(n_features, self.n_components))) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) return self def transform(self, X, y=None): """Apply the approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'random_weights_') X = check_array(X, accept_sparse='csr') projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.) / np.sqrt(self.n_components) return projection class SkewedChi2Sampler(BaseEstimator, TransformerMixin): """Approximates feature map of the "skewed chi-squared" kernel by Monte Carlo approximation of its Fourier transform. Read more in the :ref:`User Guide <skewed_chi_kernel_approx>`. Parameters ---------- skewedness : float "skewedness" parameter of the kernel. Needs to be cross-validated. n_components : int number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. References ---------- See "Random Fourier Approximations for Skewed Multiplicative Histogram Kernels" by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu. See also -------- AdditiveChi2Sampler : A different approach for approximating an additive variant of the chi squared kernel. sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel. """ def __init__(self, skewedness=1., n_components=100, random_state=None): self.skewedness = skewedness self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = check_array(X) random_state = check_random_state(self.random_state) n_features = X.shape[1] uniform = random_state.uniform(size=(n_features, self.n_components)) # transform by inverse CDF of sech self.random_weights_ = (1. / np.pi * np.log(np.tan(np.pi / 2. * uniform))) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) return self def transform(self, X, y=None): """Apply the approximate feature map to X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. All values of X must be strictly greater than "-skewedness". Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'random_weights_') X = as_float_array(X, copy=True) X = check_array(X, copy=False) if (X <= -self.skewedness).any(): raise ValueError("X may not contain entries smaller than" " -skewedness.") X += self.skewedness np.log(X, X) projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.) / np.sqrt(self.n_components) return projection class AdditiveChi2Sampler(BaseEstimator, TransformerMixin): """Approximate feature map for additive chi2 kernel. Uses sampling the fourier transform of the kernel characteristic at regular intervals. Since the kernel that is to be approximated is additive, the components of the input vectors can be treated separately. Each entry in the original space is transformed into 2*sample_steps+1 features, where sample_steps is a parameter of the method. Typical values of sample_steps include 1, 2 and 3. Optimal choices for the sampling interval for certain data ranges can be computed (see the reference). The default values should be reasonable. Read more in the :ref:`User Guide <additive_chi_kernel_approx>`. Parameters ---------- sample_steps : int, optional Gives the number of (complex) sampling points. sample_interval : float, optional Sampling interval. Must be specified when sample_steps not in {1,2,3}. Notes ----- This estimator approximates a slightly different version of the additive chi squared kernel then ``metric.additive_chi2`` computes. See also -------- SkewedChi2Sampler : A Fourier-approximation to a non-additive variant of the chi squared kernel. sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel. sklearn.metrics.pairwise.additive_chi2_kernel : The exact additive chi squared kernel. References ---------- See `"Efficient additive kernels via explicit feature maps" <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>`_ A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, 2011 """ def __init__(self, sample_steps=2, sample_interval=None): self.sample_steps = sample_steps self.sample_interval = sample_interval def fit(self, X, y=None): """Set parameters.""" X = check_array(X, accept_sparse='csr') if self.sample_interval is None: # See reference, figure 2 c) if self.sample_steps == 1: self.sample_interval_ = 0.8 elif self.sample_steps == 2: self.sample_interval_ = 0.5 elif self.sample_steps == 3: self.sample_interval_ = 0.4 else: raise ValueError("If sample_steps is not in [1, 2, 3]," " you need to provide sample_interval") else: self.sample_interval_ = self.sample_interval return self def transform(self, X, y=None): """Apply approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Returns ------- X_new : {array, sparse matrix}, \ shape = (n_samples, n_features * (2*sample_steps + 1)) Whether the return value is an array of sparse matrix depends on the type of the input X. """ msg = ("%(name)s is not fitted. Call fit to set the parameters before" " calling transform") check_is_fitted(self, "sample_interval_", msg=msg) X = check_array(X, accept_sparse='csr') sparse = sp.issparse(X) # check if X has negative values. Doesn't play well with np.log. if ((X.data if sparse else X) < 0).any(): raise ValueError("Entries of X must be non-negative.") # zeroth component # 1/cosh = sech # cosh(0) = 1.0 transf = self._transform_sparse if sparse else self._transform_dense return transf(X) def _transform_dense(self, X): non_zero = (X != 0.0) X_nz = X[non_zero] X_step = np.zeros_like(X) X_step[non_zero] = np.sqrt(X_nz * self.sample_interval_) X_new = [X_step] log_step_nz = self.sample_interval_ * np.log(X_nz) step_nz = 2 * X_nz * self.sample_interval_ for j in range(1, self.sample_steps): factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * self.sample_interval_)) X_step = np.zeros_like(X) X_step[non_zero] = factor_nz * np.cos(j * log_step_nz) X_new.append(X_step) X_step = np.zeros_like(X) X_step[non_zero] = factor_nz * np.sin(j * log_step_nz) X_new.append(X_step) return np.hstack(X_new) def _transform_sparse(self, X): indices = X.indices.copy() indptr = X.indptr.copy() data_step = np.sqrt(X.data * self.sample_interval_) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new = [X_step] log_step_nz = self.sample_interval_ * np.log(X.data) step_nz = 2 * X.data * self.sample_interval_ for j in range(1, self.sample_steps): factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * self.sample_interval_)) data_step = factor_nz * np.cos(j * log_step_nz) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new.append(X_step) data_step = factor_nz * np.sin(j * log_step_nz) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new.append(X_step) return sp.hstack(X_new) class Nystroem(BaseEstimator, TransformerMixin): """Approximate a kernel map using a subset of the training data. Constructs an approximate feature map for an arbitrary kernel using a subset of the data as basis. Read more in the :ref:`User Guide <nystroem_kernel_approx>`. Parameters ---------- kernel : string or callable, default="rbf" Kernel map to be approximated. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. n_components : int Number of features to construct. How many data points will be used to construct the mapping. gamma : float, default=None Gamma parameter for the RBF, laplacian, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- components_ : array, shape (n_components, n_features) Subset of training points used to construct the feature map. component_indices_ : array, shape (n_components) Indices of ``components_`` in the training set. normalization_ : array, shape (n_components, n_components) Normalization matrix needed for embedding. Square root of the kernel matrix on ``components_``. References ---------- * Williams, C.K.I. and Seeger, M. "Using the Nystroem method to speed up kernel machines", Advances in neural information processing systems 2001 * T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou "Nystroem Method vs Random Fourier Features: A Theoretical and Empirical Comparison", Advances in Neural Information Processing Systems 2012 See also -------- RBFSampler : An approximation to the RBF kernel using random Fourier features. sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels. """ def __init__(self, kernel="rbf", gamma=None, coef0=1, degree=3, kernel_params=None, n_components=100, random_state=None): self.kernel = kernel self.gamma = gamma self.coef0 = coef0 self.degree = degree self.kernel_params = kernel_params self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit estimator to data. Samples a subset of training points, computes kernel on these and computes normalization matrix. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Training data. """ X = check_array(X, accept_sparse='csr') rnd = check_random_state(self.random_state) n_samples = X.shape[0] # get basis vectors if self.n_components > n_samples: # XXX should we just bail? n_components = n_samples warnings.warn("n_components > n_samples. This is not possible.\n" "n_components was set to n_samples, which results" " in inefficient evaluation of the full kernel.") else: n_components = self.n_components n_components = min(n_samples, n_components) inds = rnd.permutation(n_samples) basis_inds = inds[:n_components] basis = X[basis_inds] basis_kernel = pairwise_kernels(basis, metric=self.kernel, filter_params=True, **self._get_kernel_params()) # sqrt of kernel matrix on basis vectors U, S, V = svd(basis_kernel) S = np.maximum(S, 1e-12) self.normalization_ = np.dot(U / np.sqrt(S), V) self.components_ = basis self.component_indices_ = inds return self def transform(self, X): """Apply feature map to X. Computes an approximate feature map using the kernel between some training points and X. Parameters ---------- X : array-like, shape=(n_samples, n_features) Data to transform. Returns ------- X_transformed : array, shape=(n_samples, n_components) Transformed data. """ check_is_fitted(self, 'components_') X = check_array(X, accept_sparse='csr') kernel_params = self._get_kernel_params() embedded = pairwise_kernels(X, self.components_, metric=self.kernel, filter_params=True, **kernel_params) return np.dot(embedded, self.normalization_.T) def _get_kernel_params(self): params = self.kernel_params if params is None: params = {} if not callable(self.kernel): params['gamma'] = self.gamma params['degree'] = self.degree params['coef0'] = self.coef0 return params
bsd-3-clause
xebitstudios/Kayak
examples/poisson_glm.py
3
1224
import numpy as np import numpy.random as npr import matplotlib.pyplot as plt import sys sys.path.append('..') import kayak N = 10000 D = 5 P = 1 learn = 0.00001 batch_size = 500 # Random inputs. X = npr.randn(N,D) true_W = npr.randn(D,P) lam = np.exp(np.dot(X, true_W)) Y = npr.poisson(lam) kyk_batcher = kayak.Batcher(batch_size, N) # Build network. kyk_inputs = kayak.Inputs(X, kyk_batcher) # Labels. kyk_targets = kayak.Targets(Y, kyk_batcher) # Weights. W = 0.01*npr.randn(D,P) kyk_W = kayak.Parameter(W) # Linear layer. kyk_activation = kayak.MatMult( kyk_inputs, kyk_W) # Exponential inverse-link function. kyk_lam = kayak.ElemExp(kyk_activation) # Poisson negative log likelihood. kyk_nll = kyk_lam - kayak.ElemLog(kyk_lam) * kyk_targets # Sum the losses. kyk_loss = kayak.MatSum( kyk_nll ) for ii in xrange(100): for batch in kyk_batcher: loss = kyk_loss.value print loss, np.sum((kyk_W.value - true_W)**2) grad = kyk_loss.grad(kyk_W) kyk_W.value -= learn * grad # Plot the true and inferred rate for a subset of data. T_slice = slice(0,100) kyk_inputs.value = X[T_slice,:] plt.figure() plt.plot(lam[T_slice], 'k') plt.plot(kyk_lam.value, '--r') plt.show()
mit
jbloom/mutpath
src/plot.py
1
10257
"""Module for performing plotting for ``mutpath`` package. This module uses ``pylab`` and ``matplotlib`` to make plots. These plots will fail if ``pylab`` and ``matplotlib`` are not available for importation. Before running any function in this module, you can run the *PylabAvailable* function to determine if ``pylab`` and ``matplotlib`` are available. Otherwise, calling any other function will raise an Exception if thise modules are not available. The ``pdf`` backend is used for ``matplotlib`` / ``pylab``. This means that plots must be created as PDF files. Functions are: `PylabAvailable` `CumulativeFractionPlot` 'DatesPlot` `Base10Formatter` `SplitLabel` Written by Jesse Bloom. """ import os import sys import math # global variable _pylabavailable indicates if pylab/matplotlib present try: import matplotlib matplotlib.use('pdf') import pylab _pylabavailable = True except ImportError: _pylabavailable = False def PylabAvailable(): """Returns True if pylab/matplotlib available, False otherwise. You should call this function to test for the availability of the pylab/matplotlib plotting modules before using other functions in this module. """ return _pylabavailable def DatesPlot(mutdates, plotfile, interval): """Plots dates of mutations. Uses pylab / matplotlib to plot the dates and credible intervals for mutations. Will raise an error *PylabAvailable() == False*. The plot is a PDF. * *mutdates* is a list of the mutations, in the form of the tuples *(median, mininterval, maxinterval, mut, fractoca, weight)*. Mutations are plotted in the order they are listed. In these tuples: * *median* : posterior median date * *minterval* : minimum of credible interval * *maxinterval* : maximum of credible interval * *mut* : string giving name of mutation * *fractoca* : probability mutation is on path from common ancestor to starting sequence * *weight* : fraction of paths containing mutation. * *plotfile* is a string giving the name of the PDF file we create. * *interval* is the range of the credible interval. For example, 0.9 means a 90% credible interval. """ ext = os.path.splitext(plotfile)[1].lower() if ext != '.pdf': raise ValueError("Extension must be .pdf, but found %s" % ext) if not PylabAvailable(): raise ValueError("pylab / matplotlib not available.") if not mutdates: raise ValueError("no mutation dates to plot") tocalabels = [] tocamedians = [] tocaerrlow = [] tocaerrhigh = [] tocays = [] fromcalabels = [] fromcamedians = [] fromcaerrlow = [] fromcaerrhigh = [] fromcays = [] y = 0 for (median, mininterval, maxinterval, mut, fractoca, weight) in mutdates: label = "%s" % (mut) errlow = median - mininterval errhigh = maxinterval - median if fractoca > 0.5: tocays.append(y) tocalabels.append(label) tocamedians.append(median) tocaerrlow.append(errlow) tocaerrhigh.append(errhigh) else: fromcays.append(y) fromcalabels.append(label) fromcamedians.append(median) fromcaerrlow.append(errlow) fromcaerrhigh.append(errhigh) y += 1 (lmargin, rmargin, bmargin, tmargin) = (0.11, 0.05, 0.08, 0.01) matplotlib.rc('font', size=10) matplotlib.rc('xtick', labelsize=10) matplotlib.rc('ytick', labelsize=10) matplotlib.rc('legend', numpoints=1) matplotlib.rc('legend', fontsize=10) fig = pylab.figure(figsize=(6, 6)) ax = pylab.axes([lmargin, bmargin, 1 - lmargin - rmargin, 1 - tmargin - bmargin]) tocabar = fromcabar = None if tocalabels: tocabar = pylab.errorbar(tocamedians, tocays, xerr=[tocaerrlow, tocaerrhigh], fmt='sr') if fromcalabels: fromcabar = pylab.errorbar(fromcamedians, fromcays, xerr=[fromcaerrlow, fromcaerrhigh], fmt='sb') ny = len(mutdates) pylab.gca().set_ylim((-1, ny)) pylab.gca().yaxis.set_major_locator(matplotlib.ticker.FixedLocator([y for y in range(ny)])) pylab.gca().yaxis.set_major_formatter(matplotlib.ticker.FixedFormatter(tocalabels + fromcalabels)) pylab.gca().xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter(useOffset=False)) pylab.xlabel("Date (posterior median and Bayesian %.2f%s credible interval)" % (interval * 100, '%')) if tocabar and fromcabar: pylab.legend([tocabar[0], fromcabar[0]], ['path to common ancestor', 'path from common ancestor'], loc='lower right') elif tocabar: pylab.legend([tocabar[0]], ['path to common ancestor'], loc='lower right') elif fromcabar: pylab.legend([fromcabar[0]], ['path from common ancestor'], loc='lower right') pylab.savefig(plotfile) def CumulativeFractionPlot(datalist, plotfile, title, xlabel): """Creates a cumulative fraction plot. Takes a list of numeric data. Plots a cumulative fraction plot giving the fraction of the data points that are <= the indicated value. *datalist* is a list of numbers giving the data for which we are computing the cumulative fraction plot. Raises an exception if this is an empty list. *plotfile* is the name of the output plot file created by this method (such as 'plot.pdf'). The extension must be '.pdf'. *title* is a string placed above the plot as a title. Uses LaTex formatting. *xlabel* is the label given to the X-axis. Uses LaTex formatting. This function uses pylab / matplotlib. It will raise an Exception if these modules cannot be imported (if PylabAvailable() is False). """ if len(datalist) < 1: raise ValueError("datalist is empty") if not _pylabavailable: raise ImportError("Could not find pylab or matplotlib") if os.path.splitext(plotfile)[1] != '.pdf': raise ValueError("plotfile must end in .pdf: %s" % plotfile) datalist.sort() # sort from smallest to largest (xmin, xmax) = (datalist[0], datalist[-1]) n = len(datalist) cumfracs = [] cf = 0.0 for x in datalist: cf += 1. / n cumfracs.append(cf) assert len(datalist) == len(cumfracs) assert abs(1.0 - cf) < 1e-7 matplotlib.rc('text', usetex=True) matplotlib.rc('font', size=12) fig = pylab.figure(figsize=(6, 4)) (lmargin, rmargin, bmargin, tmargin) = (0.1, 0.01, 0.15, 0.1) ax = pylab.axes([lmargin, bmargin, 1 - lmargin - rmargin, 1 -\ bmargin - tmargin]) pylab.plot(datalist, cumfracs, 'r-') pylab.gca().set_ylim([0, 1]) pylab.gca().set_xlim([xmin, xmax]) pylab.ylabel('cumulative fraction') pylab.xlabel(xlabel) pylab.title(title) if plotfile: pylab.savefig(plotfile) pylab.clf() pylab.close() def Base10Formatter(number, exp_cutoff, exp_decimal_digits, decimal_digits): """Converts a number into Latex formatting with scientific notation. Takes a number and converts it to a string that can be shown in LaTex using math mode. It is converted to scientific notation if the criteria specified by exp_cutoff. *number* the number to be formatted, should be a float or integer. Currently only works for numbers >= 0 *exp_cutoff* convert to scientific notation if abs(math.log10(number)) >= this. *exp_decimal_digits* show this many digits after the decimal if number is converted to scientific notation. *decimal_digits* show this many digits after the decimal if number is NOT converted to scientific notation. The returned value is the LaTex' string. If the number is zero, the returned string is simply '0'. >>> Base10Formatter(103, 3, 1, 1) '103.0' >>> Base10Formatter(103.0, 2, 1, 1) '1.0 \\\\times 10^{2}' >>> Base10Formatter(103.0, 2, 2, 1) '1.03 \\\\times 10^{2}' >>> Base10Formatter(2892.3, 3, 1, 1) '2.9 \\\\times 10^{3}' >>> Base10Formatter(0.0, 3, 1, 1) '0' >>> Base10Formatter(0.012, 2, 1, 1) '1.2 \\\\times 10^{-2}' >>> Base10Formatter(-0.1, 3, 1, 1) Traceback (most recent call last): ... ValueError: number must be >= 0 """ if number < 0: raise ValueError('number must be >= 0') if number == 0: return '0' exponent = int(math.log10(number)) if math.log10(number) < exponent and number < 1: exponent -= 1 if abs(exponent) >= exp_cutoff: x = number / (10.**exponent) formatstr = '%.' + '%d' % exp_decimal_digits + 'f \\times 10^{%d}' return formatstr % (x, exponent) else: formatstr = '%.' + '%d' % decimal_digits + 'f' return formatstr % number def SplitLabel(label, splitlen, splitchar): """Splits a string with a return if it exceeds a certain length. *label* a string giving the label we might split. *splitlen* the maximum length of a label before we attempt to split it. *splitchar* the character added when splitting a label. If len(*label*) > *splitlen*, we attempt to split the label in the middle by adding *splitchar*. The label is split as close to the middle as possible while splitting at a space. No splitting as label length less than *splitlen* >>> SplitLabel('WT virus 1', 10, '\\n') 'WT virus 1' Splitting of this label >>> SplitLabel('WT plasmid 1', 10, '\\n') 'WT\\nplasmid 1' Splitting of this label >>> SplitLabel('mutated WT plasmid 1', 10, '\\n') 'mutated WT\\nplasmid 1' """ if len(label) <= splitlen: return label else: j = 0 imid = len(label) // 2 index = None while 0 <= imid - j <= imid + j < len(label): if label[imid - j].isspace(): return "%s%s%s" % (label[ : imid - j], splitchar, label[imid - j + 1 : ]) elif label[imid + j].isspace(): return "%s%s%s" % (label[ : imid + j], splitchar, label[imid + j + 1 : ]) j += 1 else: return label # no white space to split if __name__ == '__main__': import doctest doctest.testmod()
gpl-3.0
edxnercel/edx-platform
.pycharm_helpers/pydev/pydev_ipython/inputhook.py
52
18411
# coding: utf-8 """ Inputhook management for GUI event loop integration. """ #----------------------------------------------------------------------------- # Copyright (C) 2008-2011 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- import sys import select #----------------------------------------------------------------------------- # Constants #----------------------------------------------------------------------------- # Constants for identifying the GUI toolkits. GUI_WX = 'wx' GUI_QT = 'qt' GUI_QT4 = 'qt4' GUI_GTK = 'gtk' GUI_TK = 'tk' GUI_OSX = 'osx' GUI_GLUT = 'glut' GUI_PYGLET = 'pyglet' GUI_GTK3 = 'gtk3' GUI_NONE = 'none' # i.e. disable #----------------------------------------------------------------------------- # Utilities #----------------------------------------------------------------------------- def ignore_CTRL_C(): """Ignore CTRL+C (not implemented).""" pass def allow_CTRL_C(): """Take CTRL+C into account (not implemented).""" pass #----------------------------------------------------------------------------- # Main InputHookManager class #----------------------------------------------------------------------------- class InputHookManager(object): """Manage PyOS_InputHook for different GUI toolkits. This class installs various hooks under ``PyOSInputHook`` to handle GUI event loop integration. """ def __init__(self): self._return_control_callback = None self._apps = {} self._reset() self.pyplot_imported = False def _reset(self): self._callback_pyfunctype = None self._callback = None self._current_gui = None def set_return_control_callback(self, return_control_callback): self._return_control_callback = return_control_callback def get_return_control_callback(self): return self._return_control_callback def return_control(self): return self._return_control_callback() def get_inputhook(self): return self._callback def set_inputhook(self, callback): """Set inputhook to callback.""" # We don't (in the context of PyDev console) actually set PyOS_InputHook, but rather # while waiting for input on xmlrpc we run this code self._callback = callback def clear_inputhook(self, app=None): """Clear input hook. Parameters ---------- app : optional, ignored This parameter is allowed only so that clear_inputhook() can be called with a similar interface as all the ``enable_*`` methods. But the actual value of the parameter is ignored. This uniform interface makes it easier to have user-level entry points in the main IPython app like :meth:`enable_gui`.""" self._reset() def clear_app_refs(self, gui=None): """Clear IPython's internal reference to an application instance. Whenever we create an app for a user on qt4 or wx, we hold a reference to the app. This is needed because in some cases bad things can happen if a user doesn't hold a reference themselves. This method is provided to clear the references we are holding. Parameters ---------- gui : None or str If None, clear all app references. If ('wx', 'qt4') clear the app for that toolkit. References are not held for gtk or tk as those toolkits don't have the notion of an app. """ if gui is None: self._apps = {} elif gui in self._apps: del self._apps[gui] def enable_wx(self, app=None): """Enable event loop integration with wxPython. Parameters ---------- app : WX Application, optional. Running application to use. If not given, we probe WX for an existing application object, and create a new one if none is found. Notes ----- This methods sets the ``PyOS_InputHook`` for wxPython, which allows the wxPython to integrate with terminal based applications like IPython. If ``app`` is not given we probe for an existing one, and return it if found. If no existing app is found, we create an :class:`wx.App` as follows:: import wx app = wx.App(redirect=False, clearSigInt=False) """ import wx from distutils.version import LooseVersion as V wx_version = V(wx.__version__).version if wx_version < [2, 8]: raise ValueError("requires wxPython >= 2.8, but you have %s" % wx.__version__) from pydev_ipython.inputhookwx import inputhook_wx self.set_inputhook(inputhook_wx) self._current_gui = GUI_WX if app is None: app = wx.GetApp() if app is None: app = wx.App(redirect=False, clearSigInt=False) app._in_event_loop = True self._apps[GUI_WX] = app return app def disable_wx(self): """Disable event loop integration with wxPython. This merely sets PyOS_InputHook to NULL. """ if GUI_WX in self._apps: self._apps[GUI_WX]._in_event_loop = False self.clear_inputhook() def enable_qt4(self, app=None): """Enable event loop integration with PyQt4. Parameters ---------- app : Qt Application, optional. Running application to use. If not given, we probe Qt for an existing application object, and create a new one if none is found. Notes ----- This methods sets the PyOS_InputHook for PyQt4, which allows the PyQt4 to integrate with terminal based applications like IPython. If ``app`` is not given we probe for an existing one, and return it if found. If no existing app is found, we create an :class:`QApplication` as follows:: from PyQt4 import QtCore app = QtGui.QApplication(sys.argv) """ from pydev_ipython.inputhookqt4 import create_inputhook_qt4 app, inputhook_qt4 = create_inputhook_qt4(self, app) self.set_inputhook(inputhook_qt4) self._current_gui = GUI_QT4 app._in_event_loop = True self._apps[GUI_QT4] = app return app def disable_qt4(self): """Disable event loop integration with PyQt4. This merely sets PyOS_InputHook to NULL. """ if GUI_QT4 in self._apps: self._apps[GUI_QT4]._in_event_loop = False self.clear_inputhook() def enable_gtk(self, app=None): """Enable event loop integration with PyGTK. Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for PyGTK, which allows the PyGTK to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookgtk import create_inputhook_gtk self.set_inputhook(create_inputhook_gtk(self._stdin_file)) self._current_gui = GUI_GTK def disable_gtk(self): """Disable event loop integration with PyGTK. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_tk(self, app=None): """Enable event loop integration with Tk. Parameters ---------- app : toplevel :class:`Tkinter.Tk` widget, optional. Running toplevel widget to use. If not given, we probe Tk for an existing one, and create a new one if none is found. Notes ----- If you have already created a :class:`Tkinter.Tk` object, the only thing done by this method is to register with the :class:`InputHookManager`, since creating that object automatically sets ``PyOS_InputHook``. """ self._current_gui = GUI_TK if app is None: try: import Tkinter as _TK except: # Python 3 import tkinter as _TK app = _TK.Tk() app.withdraw() self._apps[GUI_TK] = app from pydev_ipython.inputhooktk import create_inputhook_tk self.set_inputhook(create_inputhook_tk(app)) return app def disable_tk(self): """Disable event loop integration with Tkinter. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_glut(self, app=None): """ Enable event loop integration with GLUT. Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for GLUT, which allows the GLUT to integrate with terminal based applications like IPython. Due to GLUT limitations, it is currently not possible to start the event loop without first creating a window. You should thus not create another window but use instead the created one. See 'gui-glut.py' in the docs/examples/lib directory. The default screen mode is set to: glut.GLUT_DOUBLE | glut.GLUT_RGBA | glut.GLUT_DEPTH """ import OpenGL.GLUT as glut from pydev_ipython.inputhookglut import glut_display_mode, \ glut_close, glut_display, \ glut_idle, inputhook_glut if GUI_GLUT not in self._apps: glut.glutInit(sys.argv) glut.glutInitDisplayMode(glut_display_mode) # This is specific to freeglut if bool(glut.glutSetOption): glut.glutSetOption(glut.GLUT_ACTION_ON_WINDOW_CLOSE, glut.GLUT_ACTION_GLUTMAINLOOP_RETURNS) glut.glutCreateWindow(sys.argv[0]) glut.glutReshapeWindow(1, 1) glut.glutHideWindow() glut.glutWMCloseFunc(glut_close) glut.glutDisplayFunc(glut_display) glut.glutIdleFunc(glut_idle) else: glut.glutWMCloseFunc(glut_close) glut.glutDisplayFunc(glut_display) glut.glutIdleFunc(glut_idle) self.set_inputhook(inputhook_glut) self._current_gui = GUI_GLUT self._apps[GUI_GLUT] = True def disable_glut(self): """Disable event loop integration with glut. This sets PyOS_InputHook to NULL and set the display function to a dummy one and set the timer to a dummy timer that will be triggered very far in the future. """ import OpenGL.GLUT as glut from glut_support import glutMainLoopEvent # @UnresolvedImport glut.glutHideWindow() # This is an event to be processed below glutMainLoopEvent() self.clear_inputhook() def enable_pyglet(self, app=None): """Enable event loop integration with pyglet. Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the ``PyOS_InputHook`` for pyglet, which allows pyglet to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookpyglet import inputhook_pyglet self.set_inputhook(inputhook_pyglet) self._current_gui = GUI_PYGLET return app def disable_pyglet(self): """Disable event loop integration with pyglet. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_gtk3(self, app=None): """Enable event loop integration with Gtk3 (gir bindings). Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for Gtk3, which allows the Gtk3 to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookgtk3 import create_inputhook_gtk3 self.set_inputhook(create_inputhook_gtk3(self._stdin_file)) self._current_gui = GUI_GTK def disable_gtk3(self): """Disable event loop integration with PyGTK. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_mac(self, app=None): """ Enable event loop integration with MacOSX. We call function pyplot.pause, which updates and displays active figure during pause. It's not MacOSX-specific, but it enables to avoid inputhooks in native MacOSX backend. Also we shouldn't import pyplot, until user does it. Cause it's possible to choose backend before importing pyplot for the first time only. """ def inputhook_mac(app=None): if self.pyplot_imported: pyplot = sys.modules['matplotlib.pyplot'] try: pyplot.pause(0.01) except: pass else: if 'matplotlib.pyplot' in sys.modules: self.pyplot_imported = True self.set_inputhook(inputhook_mac) self._current_gui = GUI_OSX def disable_mac(self): self.clear_inputhook() def current_gui(self): """Return a string indicating the currently active GUI or None.""" return self._current_gui inputhook_manager = InputHookManager() enable_wx = inputhook_manager.enable_wx disable_wx = inputhook_manager.disable_wx enable_qt4 = inputhook_manager.enable_qt4 disable_qt4 = inputhook_manager.disable_qt4 enable_gtk = inputhook_manager.enable_gtk disable_gtk = inputhook_manager.disable_gtk enable_tk = inputhook_manager.enable_tk disable_tk = inputhook_manager.disable_tk enable_glut = inputhook_manager.enable_glut disable_glut = inputhook_manager.disable_glut enable_pyglet = inputhook_manager.enable_pyglet disable_pyglet = inputhook_manager.disable_pyglet enable_gtk3 = inputhook_manager.enable_gtk3 disable_gtk3 = inputhook_manager.disable_gtk3 enable_mac = inputhook_manager.enable_mac disable_mac = inputhook_manager.disable_mac clear_inputhook = inputhook_manager.clear_inputhook set_inputhook = inputhook_manager.set_inputhook current_gui = inputhook_manager.current_gui clear_app_refs = inputhook_manager.clear_app_refs # We maintain this as stdin_ready so that the individual inputhooks # can diverge as little as possible from their IPython sources stdin_ready = inputhook_manager.return_control set_return_control_callback = inputhook_manager.set_return_control_callback get_return_control_callback = inputhook_manager.get_return_control_callback get_inputhook = inputhook_manager.get_inputhook # Convenience function to switch amongst them def enable_gui(gui=None, app=None): """Switch amongst GUI input hooks by name. This is just a utility wrapper around the methods of the InputHookManager object. Parameters ---------- gui : optional, string or None If None (or 'none'), clears input hook, otherwise it must be one of the recognized GUI names (see ``GUI_*`` constants in module). app : optional, existing application object. For toolkits that have the concept of a global app, you can supply an existing one. If not given, the toolkit will be probed for one, and if none is found, a new one will be created. Note that GTK does not have this concept, and passing an app if ``gui=="GTK"`` will raise an error. Returns ------- The output of the underlying gui switch routine, typically the actual PyOS_InputHook wrapper object or the GUI toolkit app created, if there was one. """ if get_return_control_callback() is None: raise ValueError("A return_control_callback must be supplied as a reference before a gui can be enabled") guis = {GUI_NONE: clear_inputhook, GUI_OSX: enable_mac, GUI_TK: enable_tk, GUI_GTK: enable_gtk, GUI_WX: enable_wx, GUI_QT: enable_qt4, # qt3 not supported GUI_QT4: enable_qt4, GUI_GLUT: enable_glut, GUI_PYGLET: enable_pyglet, GUI_GTK3: enable_gtk3, } try: gui_hook = guis[gui] except KeyError: if gui is None or gui == '': gui_hook = clear_inputhook else: e = "Invalid GUI request %r, valid ones are:%s" % (gui, guis.keys()) raise ValueError(e) return gui_hook(app) __all__ = [ "GUI_WX", "GUI_QT", "GUI_QT4", "GUI_GTK", "GUI_TK", "GUI_OSX", "GUI_GLUT", "GUI_PYGLET", "GUI_GTK3", "GUI_NONE", "ignore_CTRL_C", "allow_CTRL_C", "InputHookManager", "inputhook_manager", "enable_wx", "disable_wx", "enable_qt4", "disable_qt4", "enable_gtk", "disable_gtk", "enable_tk", "disable_tk", "enable_glut", "disable_glut", "enable_pyglet", "disable_pyglet", "enable_gtk3", "disable_gtk3", "enable_mac", "disable_mac", "clear_inputhook", "set_inputhook", "current_gui", "clear_app_refs", "stdin_ready", "set_return_control_callback", "get_return_control_callback", "get_inputhook", "enable_gui"]
agpl-3.0
mmottahedi/neuralnilm_prototype
scripts/e249.py
2
3897
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer from lasagne.updates import nesterov_momentum from functools import partial import os from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ from copy import deepcopy from math import sqrt NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 """ e233 based on e131c but with: * lag=32 * pool e234 * init final layer and conv layer 235 no lag 236 should be exactly as 131c: no pool, no lag, no init for final and conv layer 237 putting the pool back 238 seems pooling hurts us! disable pooling. enable lag = 32 239 BLSTM lag = 20 240 LSTM not BLSTM various lags 241 output is prediction ideas for next TODO: * 3 LSTM layers with smaller conv between them * why does pooling hurt us? """ source_dict = dict( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[5] * 5, max_input_power=5900, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=1500, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], # skip_probability=0.0, n_seq_per_batch=50, # subsample_target=5, include_diff=False, clip_appliance_power=True, target_is_prediction=True #lag=0 ) net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, layers_config=[ { 'type': LSTMLayer, 'num_units': 10, 'gradient_steps': GRADIENT_STEPS, 'peepholes': False, 'W_in_to_cell': Normal(std=1.) } ] ) def exp_x(name, learning_rate): global source try: a = source except NameError: source = RealApplianceSource(**source_dict) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source, updates=partial(nesterov_momentum, learning_rate=learning_rate) )) net_dict_copy['layers_config'].append( { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid, 'W': Normal(std=(1/sqrt(50))) } ) net = Net(**net_dict_copy) return net def main(): for experiment, learning_rate in [('a', 1.0), ('b', 0.1), ('c', 0.01), ('d', 0.001), ('e', 0.0001)]: full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) print("***********************************") print("Preparing", full_exp_name, "...") try: net = exp_x(full_exp_name, learning_rate) run_experiment(net, path, epochs=1000) except KeyboardInterrupt: break except TrainingError as exception: print("EXCEPTION:", exception) except Exception as exception: print("EXCEPTION:", exception) if __name__ == "__main__": main()
mit
carlvlewis/bokeh
bokeh/charts/builder/tests/test_line_builder.py
33
2376
""" This is the Bokeh charts testing interface. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from collections import OrderedDict import unittest import numpy as np from numpy.testing import assert_array_equal import pandas as pd from bokeh.charts import Line from bokeh.charts.builder.tests._utils import create_chart #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class TestLine(unittest.TestCase): def test_supported_input(self): xyvalues = OrderedDict() y_python = xyvalues['python'] = [2, 3, 7, 5, 26] y_pypy = xyvalues['pypy'] = [12, 33, 47, 15, 126] y_jython = xyvalues['jython'] = [22, 43, 10, 25, 26] xyvaluesdf = pd.DataFrame(xyvalues) for i, _xy in enumerate([xyvalues, xyvaluesdf]): hm = create_chart(Line, _xy) builder = hm._builders[0] self.assertEqual(sorted(builder._groups), sorted(list(xyvalues.keys()))) assert_array_equal(builder._data['x'], [0, 1, 2, 3, 4]) assert_array_equal(builder._data['y_python'], y_python) assert_array_equal(builder._data['y_pypy'], y_pypy) assert_array_equal(builder._data['y_jython'], y_jython) lvalues = [[2, 3, 7, 5, 26], [12, 33, 47, 15, 126], [22, 43, 10, 25, 26]] for _xy in [lvalues, np.array(lvalues)]: hm = create_chart(Line, _xy) builder = hm._builders[0] self.assertEqual(builder._groups, ['0', '1', '2']) assert_array_equal(builder._data['x'], [0, 1, 2, 3, 4]) assert_array_equal(builder._data['y_0'], y_python) assert_array_equal(builder._data['y_1'], y_pypy) assert_array_equal(builder._data['y_2'], y_jython)
bsd-3-clause
kevin-intel/scikit-learn
sklearn/datasets/_openml.py
2
34451
import gzip import json import os import shutil import hashlib from os.path import join from warnings import warn from contextlib import closing from functools import wraps from typing import Callable, Optional, Dict, Tuple, List, Any, Union import itertools from collections.abc import Generator from collections import OrderedDict from functools import partial from urllib.request import urlopen, Request import numpy as np import scipy.sparse from ..externals import _arff from ..externals._arff import ArffSparseDataType, ArffContainerType from . import get_data_home from urllib.error import HTTPError from ..utils import Bunch from ..utils import is_scalar_nan from ..utils import get_chunk_n_rows from ..utils import _chunk_generator from ..utils import check_pandas_support # noqa __all__ = ['fetch_openml'] _OPENML_PREFIX = "https://openml.org/" _SEARCH_NAME = "api/v1/json/data/list/data_name/{}/limit/2" _DATA_INFO = "api/v1/json/data/{}" _DATA_FEATURES = "api/v1/json/data/features/{}" _DATA_QUALITIES = "api/v1/json/data/qualities/{}" _DATA_FILE = "data/v1/download/{}" OpenmlQualitiesType = List[Dict[str, str]] OpenmlFeaturesType = List[Dict[str, str]] def _get_local_path(openml_path: str, data_home: str) -> str: return os.path.join(data_home, 'openml.org', openml_path + ".gz") def _retry_with_clean_cache( openml_path: str, data_home: Optional[str] ) -> Callable: """If the first call to the decorated function fails, the local cached file is removed, and the function is called again. If ``data_home`` is ``None``, then the function is called once. """ def decorator(f): @wraps(f) def wrapper(*args, **kw): if data_home is None: return f(*args, **kw) try: return f(*args, **kw) except HTTPError: raise except Exception: warn("Invalid cache, redownloading file", RuntimeWarning) local_path = _get_local_path(openml_path, data_home) if os.path.exists(local_path): os.unlink(local_path) return f(*args, **kw) return wrapper return decorator def _open_openml_url(openml_path: str, data_home: Optional[str]): """ Returns a resource from OpenML.org. Caches it to data_home if required. Parameters ---------- openml_path : str OpenML URL that will be accessed. This will be prefixes with _OPENML_PREFIX data_home : str Directory to which the files will be cached. If None, no caching will be applied. Returns ------- result : stream A stream to the OpenML resource """ def is_gzip_encoded(_fsrc): return _fsrc.info().get('Content-Encoding', '') == 'gzip' req = Request(_OPENML_PREFIX + openml_path) req.add_header('Accept-encoding', 'gzip') if data_home is None: fsrc = urlopen(req) if is_gzip_encoded(fsrc): return gzip.GzipFile(fileobj=fsrc, mode='rb') return fsrc local_path = _get_local_path(openml_path, data_home) if not os.path.exists(local_path): try: os.makedirs(os.path.dirname(local_path)) except OSError: # potentially, the directory has been created already pass try: with closing(urlopen(req)) as fsrc: opener: Callable if is_gzip_encoded(fsrc): opener = open else: opener = gzip.GzipFile with opener(local_path, 'wb') as fdst: shutil.copyfileobj(fsrc, fdst) except Exception: if os.path.exists(local_path): os.unlink(local_path) raise # XXX: First time, decompression will not be necessary (by using fsrc), but # it will happen nonetheless return gzip.GzipFile(local_path, 'rb') class OpenMLError(ValueError): """HTTP 412 is a specific OpenML error code, indicating a generic error""" pass def _get_json_content_from_openml_api( url: str, error_message: Optional[str], data_home: Optional[str] ) -> Dict: """ Loads json data from the openml api Parameters ---------- url : str The URL to load from. Should be an official OpenML endpoint error_message : str or None The error message to raise if an acceptable OpenML error is thrown (acceptable error is, e.g., data id not found. Other errors, like 404's will throw the native error message) data_home : str or None Location to cache the response. None if no cache is required. Returns ------- json_data : json the json result from the OpenML server if the call was successful. An exception otherwise. """ @_retry_with_clean_cache(url, data_home) def _load_json(): with closing(_open_openml_url(url, data_home)) as response: return json.loads(response.read().decode("utf-8")) try: return _load_json() except HTTPError as error: # 412 is an OpenML specific error code, indicating a generic error # (e.g., data not found) if error.code != 412: raise error # 412 error, not in except for nicer traceback raise OpenMLError(error_message) def _split_sparse_columns( arff_data: ArffSparseDataType, include_columns: List ) -> ArffSparseDataType: """ obtains several columns from sparse arff representation. Additionally, the column indices are re-labelled, given the columns that are not included. (e.g., when including [1, 2, 3], the columns will be relabelled to [0, 1, 2]) Parameters ---------- arff_data : tuple A tuple of three lists of equal size; first list indicating the value, second the x coordinate and the third the y coordinate. include_columns : list A list of columns to include. Returns ------- arff_data_new : tuple Subset of arff data with only the include columns indicated by the include_columns argument. """ arff_data_new: ArffSparseDataType = (list(), list(), list()) reindexed_columns = {column_idx: array_idx for array_idx, column_idx in enumerate(include_columns)} for val, row_idx, col_idx in zip(arff_data[0], arff_data[1], arff_data[2]): if col_idx in include_columns: arff_data_new[0].append(val) arff_data_new[1].append(row_idx) arff_data_new[2].append(reindexed_columns[col_idx]) return arff_data_new def _sparse_data_to_array( arff_data: ArffSparseDataType, include_columns: List ) -> np.ndarray: # turns the sparse data back into an array (can't use toarray() function, # as this does only work on numeric data) num_obs = max(arff_data[1]) + 1 y_shape = (num_obs, len(include_columns)) reindexed_columns = {column_idx: array_idx for array_idx, column_idx in enumerate(include_columns)} # TODO: improve for efficiency y = np.empty(y_shape, dtype=np.float64) for val, row_idx, col_idx in zip(arff_data[0], arff_data[1], arff_data[2]): if col_idx in include_columns: y[row_idx, reindexed_columns[col_idx]] = val return y def _convert_arff_data( arff: ArffContainerType, col_slice_x: List[int], col_slice_y: List[int], shape: Optional[Tuple] = None ) -> Tuple: """ converts the arff object into the appropriate matrix type (np.array or scipy.sparse.csr_matrix) based on the 'data part' (i.e., in the liac-arff dict, the object from the 'data' key) Parameters ---------- arff : dict As obtained from liac-arff object. col_slice_x : list The column indices that are sliced from the original array to return as X data col_slice_y : list The column indices that are sliced from the original array to return as y data Returns ------- X : np.array or scipy.sparse.csr_matrix y : np.array """ arff_data = arff['data'] if isinstance(arff_data, Generator): if shape is None: raise ValueError( "shape must be provided when arr['data'] is a Generator" ) if shape[0] == -1: count = -1 else: count = shape[0] * shape[1] data = np.fromiter(itertools.chain.from_iterable(arff_data), dtype='float64', count=count) data = data.reshape(*shape) X = data[:, col_slice_x] y = data[:, col_slice_y] return X, y elif isinstance(arff_data, tuple): arff_data_X = _split_sparse_columns(arff_data, col_slice_x) num_obs = max(arff_data[1]) + 1 X_shape = (num_obs, len(col_slice_x)) X = scipy.sparse.coo_matrix( (arff_data_X[0], (arff_data_X[1], arff_data_X[2])), shape=X_shape, dtype=np.float64) X = X.tocsr() y = _sparse_data_to_array(arff_data, col_slice_y) return X, y else: # This should never happen raise ValueError('Unexpected Data Type obtained from arff.') def _feature_to_dtype(feature: Dict[str, str]): """Map feature to dtype for pandas DataFrame """ if feature['data_type'] == 'string': return object elif feature['data_type'] == 'nominal': return 'category' # only numeric, integer, real are left elif (feature['number_of_missing_values'] != '0' or feature['data_type'] in ['numeric', 'real']): # cast to floats when there are any missing values return np.float64 elif feature['data_type'] == 'integer': return np.int64 raise ValueError('Unsupported feature: {}'.format(feature)) def _convert_arff_data_dataframe( arff: ArffContainerType, columns: List, features_dict: Dict[str, Any] ) -> Tuple: """Convert the ARFF object into a pandas DataFrame. Parameters ---------- arff : dict As obtained from liac-arff object. columns : list Columns from dataframe to return. features_dict : dict Maps feature name to feature info from openml. Returns ------- result : tuple tuple with the resulting dataframe """ pd = check_pandas_support('fetch_openml with as_frame=True') attributes = OrderedDict(arff['attributes']) arff_columns = list(attributes) if not isinstance(arff['data'], Generator): raise ValueError( "arff['data'] must be a generator when converting to pd.DataFrame." ) # calculate chunksize first_row = next(arff['data']) first_df = pd.DataFrame([first_row], columns=arff_columns) row_bytes = first_df.memory_usage(deep=True).sum() chunksize = get_chunk_n_rows(row_bytes) # read arff data with chunks columns_to_keep = [col for col in arff_columns if col in columns] dfs = [] dfs.append(first_df[columns_to_keep]) for data in _chunk_generator(arff['data'], chunksize): dfs.append(pd.DataFrame(data, columns=arff_columns)[columns_to_keep]) df = pd.concat(dfs, ignore_index=True) for column in columns_to_keep: dtype = _feature_to_dtype(features_dict[column]) if dtype == 'category': cats_without_missing = [cat for cat in attributes[column] if cat is not None and not is_scalar_nan(cat)] dtype = pd.api.types.CategoricalDtype(cats_without_missing) df[column] = df[column].astype(dtype, copy=False) return (df, ) def _get_data_info_by_name( name: str, version: Union[int, str], data_home: Optional[str] ): """ Utilizes the openml dataset listing api to find a dataset by name/version OpenML api function: https://www.openml.org/api_docs#!/data/get_data_list_data_name_data_name Parameters ---------- name : str name of the dataset version : int or str If version is an integer, the exact name/version will be obtained from OpenML. If version is a string (value: "active") it will take the first version from OpenML that is annotated as active. Any other string values except "active" are treated as integer. data_home : str or None Location to cache the response. None if no cache is required. Returns ------- first_dataset : json json representation of the first dataset object that adhired to the search criteria """ if version == "active": # situation in which we return the oldest active version url = _SEARCH_NAME.format(name) + "/status/active/" error_msg = "No active dataset {} found.".format(name) json_data = _get_json_content_from_openml_api( url, error_msg, data_home=data_home ) res = json_data['data']['dataset'] if len(res) > 1: warn("Multiple active versions of the dataset matching the name" " {name} exist. Versions may be fundamentally different, " "returning version" " {version}.".format(name=name, version=res[0]['version'])) return res[0] # an integer version has been provided url = (_SEARCH_NAME + "/data_version/{}").format(name, version) try: json_data = _get_json_content_from_openml_api( url, error_message=None, data_home=data_home ) except OpenMLError: # we can do this in 1 function call if OpenML does not require the # specification of the dataset status (i.e., return datasets with a # given name / version regardless of active, deactivated, etc. ) # TODO: feature request OpenML. url += "/status/deactivated" error_msg = "Dataset {} with version {} not found.".format(name, version) json_data = _get_json_content_from_openml_api( url, error_msg, data_home=data_home ) return json_data['data']['dataset'][0] def _get_data_description_by_id( data_id: int, data_home: Optional[str] ) -> Dict[str, Any]: # OpenML API function: https://www.openml.org/api_docs#!/data/get_data_id url = _DATA_INFO.format(data_id) error_message = "Dataset with data_id {} not found.".format(data_id) json_data = _get_json_content_from_openml_api( url, error_message, data_home=data_home ) return json_data['data_set_description'] def _get_data_features( data_id: int, data_home: Optional[str] ) -> OpenmlFeaturesType: # OpenML function: # https://www.openml.org/api_docs#!/data/get_data_features_id url = _DATA_FEATURES.format(data_id) error_message = "Dataset with data_id {} not found.".format(data_id) json_data = _get_json_content_from_openml_api( url, error_message, data_home=data_home ) return json_data['data_features']['feature'] def _get_data_qualities( data_id: int, data_home: Optional[str] ) -> OpenmlQualitiesType: # OpenML API function: # https://www.openml.org/api_docs#!/data/get_data_qualities_id url = _DATA_QUALITIES.format(data_id) error_message = "Dataset with data_id {} not found.".format(data_id) json_data = _get_json_content_from_openml_api( url, error_message, data_home=data_home ) # the qualities might not be available, but we still try to process # the data return json_data.get('data_qualities', {}).get('quality', []) def _get_num_samples(data_qualities: OpenmlQualitiesType) -> int: """Get the number of samples from data qualities. Parameters ---------- data_qualities : list of dict Used to retrieve the number of instances (samples) in the dataset. Returns ------- n_samples : int The number of samples in the dataset or -1 if data qualities are unavailable. """ # If the data qualities are unavailable, we return -1 default_n_samples = -1 qualities = {d['name']: d['value'] for d in data_qualities} return int(float(qualities.get('NumberOfInstances', default_n_samples))) def _load_arff_response( url: str, data_home: Optional[str], return_type, encode_nominal: bool, parse_arff: Callable[[ArffContainerType], Tuple], md5_checksum: str ) -> Tuple: """Load arff data with url and parses arff response with parse_arff""" response = _open_openml_url(url, data_home) with closing(response): # Note that if the data is dense, no reading is done until the data # generator is iterated. actual_md5_checksum = hashlib.md5() def _stream_checksum_generator(response): for line in response: actual_md5_checksum.update(line) yield line.decode('utf-8') stream = _stream_checksum_generator(response) arff = _arff.load(stream, return_type=return_type, encode_nominal=encode_nominal) parsed_arff = parse_arff(arff) # consume remaining stream, if early exited for _ in stream: pass if actual_md5_checksum.hexdigest() != md5_checksum: raise ValueError("md5 checksum of local file for " + url + " does not match description. " "Downloaded file could have been modified / " "corrupted, clean cache and retry...") return parsed_arff def _download_data_to_bunch( url: str, sparse: bool, data_home: Optional[str], *, as_frame: bool, features_list: List, data_columns: List[int], target_columns: List, shape: Optional[Tuple[int, int]], md5_checksum: str ): """Download OpenML ARFF and convert to Bunch of data """ # NB: this function is long in order to handle retry for any failure # during the streaming parse of the ARFF. # Prepare which columns and data types should be returned for the X and y features_dict = {feature['name']: feature for feature in features_list} # XXX: col_slice_y should be all nominal or all numeric _verify_target_data_type(features_dict, target_columns) col_slice_y = [int(features_dict[col_name]['index']) for col_name in target_columns] col_slice_x = [int(features_dict[col_name]['index']) for col_name in data_columns] for col_idx in col_slice_y: feat = features_list[col_idx] nr_missing = int(feat['number_of_missing_values']) if nr_missing > 0: raise ValueError('Target column {} has {} missing values. ' 'Missing values are not supported for target ' 'columns. '.format(feat['name'], nr_missing)) # Access an ARFF file on the OpenML server. Documentation: # https://www.openml.org/api_data_docs#!/data/get_download_id if sparse is True: return_type = _arff.COO else: return_type = _arff.DENSE_GEN frame = nominal_attributes = None parse_arff: Callable postprocess: Callable if as_frame: columns = data_columns + target_columns parse_arff = partial(_convert_arff_data_dataframe, columns=columns, features_dict=features_dict) def postprocess(frame): X = frame[data_columns] if len(target_columns) >= 2: y = frame[target_columns] elif len(target_columns) == 1: y = frame[target_columns[0]] else: y = None return X, y, frame, nominal_attributes else: def parse_arff(arff): X, y = _convert_arff_data(arff, col_slice_x, col_slice_y, shape) # nominal attributes is a dict mapping from the attribute name to # the possible values. Includes also the target column (which will # be popped off below, before it will be packed in the Bunch # object) nominal_attributes = {k: v for k, v in arff['attributes'] if isinstance(v, list) and k in data_columns + target_columns} return X, y, nominal_attributes def postprocess(X, y, nominal_attributes): is_classification = {col_name in nominal_attributes for col_name in target_columns} if not is_classification: # No target pass elif all(is_classification): y = np.hstack([ np.take( np.asarray(nominal_attributes.pop(col_name), dtype='O'), y[:, i:i + 1].astype(int, copy=False)) for i, col_name in enumerate(target_columns) ]) elif any(is_classification): raise ValueError('Mix of nominal and non-nominal targets is ' 'not currently supported') # reshape y back to 1-D array, if there is only 1 target column; # back to None if there are not target columns if y.shape[1] == 1: y = y.reshape((-1,)) elif y.shape[1] == 0: y = None return X, y, frame, nominal_attributes out = _retry_with_clean_cache(url, data_home)( _load_arff_response)(url, data_home, return_type=return_type, encode_nominal=not as_frame, parse_arff=parse_arff, md5_checksum=md5_checksum) X, y, frame, nominal_attributes = postprocess(*out) return Bunch(data=X, target=y, frame=frame, categories=nominal_attributes, feature_names=data_columns, target_names=target_columns) def _verify_target_data_type(features_dict, target_columns): # verifies the data type of the y array in case there are multiple targets # (throws an error if these targets do not comply with sklearn support) if not isinstance(target_columns, list): raise ValueError('target_column should be list, ' 'got: %s' % type(target_columns)) found_types = set() for target_column in target_columns: if target_column not in features_dict: raise KeyError('Could not find target_column={}') if features_dict[target_column]['data_type'] == "numeric": found_types.add(np.float64) else: found_types.add(object) # note: we compare to a string, not boolean if features_dict[target_column]['is_ignore'] == 'true': warn('target_column={} has flag is_ignore.'.format( target_column)) if features_dict[target_column]['is_row_identifier'] == 'true': warn('target_column={} has flag is_row_identifier.'.format( target_column)) if len(found_types) > 1: raise ValueError('Can only handle homogeneous multi-target datasets, ' 'i.e., all targets are either numeric or ' 'categorical.') def _valid_data_column_names(features_list, target_columns): # logic for determining on which columns can be learned. Note that from the # OpenML guide follows that columns that have the `is_row_identifier` or # `is_ignore` flag, these can not be learned on. Also target columns are # excluded. valid_data_column_names = [] for feature in features_list: if (feature['name'] not in target_columns and feature['is_ignore'] != 'true' and feature['is_row_identifier'] != 'true'): valid_data_column_names.append(feature['name']) return valid_data_column_names def fetch_openml( name: Optional[str] = None, *, version: Union[str, int] = 'active', data_id: Optional[int] = None, data_home: Optional[str] = None, target_column: Optional[Union[str, List]] = 'default-target', cache: bool = True, return_X_y: bool = False, as_frame: Union[str, bool] = 'auto' ): """Fetch dataset from openml by name or dataset id. Datasets are uniquely identified by either an integer ID or by a combination of name and version (i.e. there might be multiple versions of the 'iris' dataset). Please give either name or data_id (not both). In case a name is given, a version can also be provided. Read more in the :ref:`User Guide <openml>`. .. versionadded:: 0.20 .. note:: EXPERIMENTAL The API is experimental (particularly the return value structure), and might have small backward-incompatible changes without notice or warning in future releases. Parameters ---------- name : str, default=None String identifier of the dataset. Note that OpenML can have multiple datasets with the same name. version : int or 'active', default='active' Version of the dataset. Can only be provided if also ``name`` is given. If 'active' the oldest version that's still active is used. Since there may be more than one active version of a dataset, and those versions may fundamentally be different from one another, setting an exact version is highly recommended. data_id : int, default=None OpenML ID of the dataset. The most specific way of retrieving a dataset. If data_id is not given, name (and potential version) are used to obtain a dataset. data_home : str, default=None Specify another download and cache folder for the data sets. By default all scikit-learn data is stored in '~/scikit_learn_data' subfolders. target_column : str, list or None, default='default-target' Specify the column name in the data to use as target. If 'default-target', the standard target column a stored on the server is used. If ``None``, all columns are returned as data and the target is ``None``. If list (of strings), all columns with these names are returned as multi-target (Note: not all scikit-learn classifiers can handle all types of multi-output combinations) cache : bool, default=True Whether to cache downloaded datasets using joblib. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` objects. as_frame : bool or 'auto', default='auto' If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric, string or categorical). The target is a pandas DataFrame or Series depending on the number of target_columns. The Bunch will contain a ``frame`` attribute with the target and the data. If ``return_X_y`` is True, then ``(data, target)`` will be pandas DataFrames or Series as describe above. If as_frame is 'auto', the data and target will be converted to DataFrame or Series as if as_frame is set to True, unless the dataset is stored in sparse format. .. versionchanged:: 0.24 The default value of `as_frame` changed from `False` to `'auto'` in 0.24. Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : np.array, scipy.sparse.csr_matrix of floats, or pandas DataFrame The feature matrix. Categorical features are encoded as ordinals. target : np.array, pandas Series or DataFrame The regression target or classification labels, if applicable. Dtype is float if numeric, and object if categorical. If ``as_frame`` is True, ``target`` is a pandas object. DESCR : str The full description of the dataset feature_names : list The names of the dataset columns target_names: list The names of the target columns .. versionadded:: 0.22 categories : dict or None Maps each categorical feature name to a list of values, such that the value encoded as i is ith in the list. If ``as_frame`` is True, this is None. details : dict More metadata from OpenML frame : pandas DataFrame Only present when `as_frame=True`. DataFrame with ``data`` and ``target``. (data, target) : tuple if ``return_X_y`` is True .. note:: EXPERIMENTAL This interface is **experimental** and subsequent releases may change attributes without notice (although there should only be minor changes to ``data`` and ``target``). Missing values in the 'data' are represented as NaN's. Missing values in 'target' are represented as NaN's (numerical target) or None (categorical target) """ if cache is False: # no caching will be applied data_home = None else: data_home = get_data_home(data_home=data_home) data_home = join(data_home, 'openml') # check valid function arguments. data_id XOR (name, version) should be # provided if name is not None: # OpenML is case-insensitive, but the caching mechanism is not # convert all data names (str) to lower case name = name.lower() if data_id is not None: raise ValueError( "Dataset data_id={} and name={} passed, but you can only " "specify a numeric data_id or a name, not " "both.".format(data_id, name)) data_info = _get_data_info_by_name(name, version, data_home) data_id = data_info['did'] elif data_id is not None: # from the previous if statement, it is given that name is None if version != "active": raise ValueError( "Dataset data_id={} and version={} passed, but you can only " "specify a numeric data_id or a version, not " "both.".format(data_id, version)) else: raise ValueError( "Neither name nor data_id are provided. Please provide name or " "data_id.") data_description = _get_data_description_by_id(data_id, data_home) if data_description['status'] != "active": warn("Version {} of dataset {} is inactive, meaning that issues have " "been found in the dataset. Try using a newer version from " "this URL: {}".format( data_description['version'], data_description['name'], data_description['url'])) if 'error' in data_description: warn("OpenML registered a problem with the dataset. It might be " "unusable. Error: {}".format(data_description['error'])) if 'warning' in data_description: warn("OpenML raised a warning on the dataset. It might be " "unusable. Warning: {}".format(data_description['warning'])) return_sparse = False if data_description['format'].lower() == 'sparse_arff': return_sparse = True if as_frame == 'auto': as_frame = not return_sparse if as_frame and return_sparse: raise ValueError('Cannot return dataframe with sparse data') # download data features, meta-info about column types features_list = _get_data_features(data_id, data_home) if not as_frame: for feature in features_list: if 'true' in (feature['is_ignore'], feature['is_row_identifier']): continue if feature['data_type'] == 'string': raise ValueError('STRING attributes are not supported for ' 'array representation. Try as_frame=True') if target_column == "default-target": # determines the default target based on the data feature results # (which is currently more reliable than the data description; # see issue: https://github.com/openml/OpenML/issues/768) target_columns = [feature['name'] for feature in features_list if feature['is_target'] == 'true'] elif isinstance(target_column, str): # for code-simplicity, make target_column by default a list target_columns = [target_column] elif target_column is None: target_columns = [] elif isinstance(target_column, list): target_columns = target_column else: raise TypeError("Did not recognize type of target_column" "Should be str, list or None. Got: " "{}".format(type(target_column))) data_columns = _valid_data_column_names(features_list, target_columns) shape: Optional[Tuple[int, int]] # determine arff encoding to return if not return_sparse: # The shape must include the ignored features to keep the right indexes # during the arff data conversion. data_qualities = _get_data_qualities(data_id, data_home) shape = _get_num_samples(data_qualities), len(features_list) else: shape = None # obtain the data url = _DATA_FILE.format(data_description['file_id']) bunch = _download_data_to_bunch(url, return_sparse, data_home, as_frame=bool(as_frame), features_list=features_list, shape=shape, target_columns=target_columns, data_columns=data_columns, md5_checksum=data_description[ "md5_checksum"]) if return_X_y: return bunch.data, bunch.target description = "{}\n\nDownloaded from openml.org.".format( data_description.pop('description')) bunch.update( DESCR=description, details=data_description, url="https://www.openml.org/d/{}".format(data_id)) return bunch
bsd-3-clause
zrhans/pythonanywhere
pyscripts/ply_wrose.py
1
1678
""" DATA,Chuva,Chuva_min,Chuva_max,VVE,VVE_min,VVE_max,DVE,DVE_min,DVE_max,Temp.,Temp._min,Temp._max,Umidade,Umidade_min,Umidade_max,Rad.,Rad._min,Rad._max,Pres.Atm.,Pres.Atm._min,Pres.Atm._max,Temp.Int.,Temp.Int._min,Temp.Int._max,CH4,CH4_min,CH4_max,HCnM,HCnM_min,HCnM_max,HCT,HCT_min,HCT_max,SO2,SO2_min,SO2_max,O3,O3_min,O3_max,NO,NO_min,NO_max,NO2,NO2_min,NO2_max,NOx,NOx_min,NOx_max,CO,CO_min,CO_max,MP10,MP10_min,MP10_max,MPT,MPT_min,MPT_max,Fin,Fin_min,Fin_max,Vin,Vin_min,Vin_max,Vout,Vout_min,Vout_max """ import plotly.plotly as py # Every function in this module will communicate with an external plotly server import plotly.graph_objs as go import pandas as pd DATAFILE = r'/home/zrhans/w3/bns/bns_2016-1.csv' df = pd.read_csv(DATAFILE, parse_dates=True, sep=',', header=0, index_col='DATA') x = df.DVE y = df.VVE #print(y) # Definindo as series dedados trace1 = go.Area( r = y,#["2015-12-01","2015-12-01 01:00:00","2015-12-01 02:00:00","2015-12-01 03:00:00","2015-12-01 04:00:00","2015-12-01 05:00:00"], t = x,#[74.73,76.59,76.5,79.03,77.89,81.9,], name='Vento m/s', marker=dict( color='rgb(158,154,200)' ) ) # Edit the layout layout = go.Layout( title='Distribuição da Velocidade do Vento no diagrama Laurel', font = dict(size=16), radialaxis=dict( ticksuffix='m/s' ), orientation=270 ) data = [trace1] fig = go.Figure(data=data, layout=layout) # Tracando o objeto py.plot( fig, filename='hans/oi_wrose', # name of the file as saved in your plotly account sharing='public' ) # 'public' | 'private' | 'secret': Learn more: https://plot.ly/python/privacy
apache-2.0
dudulianangang/vps
EneConsTest.py
1
5969
import sdf import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl plt.style.use('seaborn-white') # plt.rcParams['font.family'] = 'sans-serif' # plt.rcParams['font.sans-serif'] = 'Tahoma' # # plt.rcParams['font.monospace'] = 'Ubuntu Mono' plt.rcParams['font.size'] = 16 # plt.rcParams['axes.labelsize'] = 10 # plt.rcParams['axes.labelweight'] = 'bold' # plt.rcParams['xtick.labelsize'] = 8 # plt.rcParams['ytick.labelsize'] = 8 # plt.rcParams['legend.fontsize'] = 10 # plt.rcParams['figure.titlesize'] = 12 # constants for normalization n0 = 1.8e20 me = 9.1e-31 qe = 1.6e-19 ep = 8.9e-12 c = 3e8 wp = np.sqrt(n0*qe*qe/me/ep) ld = c/wp e0 = me*c*wp/qe b0 = e0/c tt = 1/wp ts = 50*5 te = 1500 pct = 100 en0 = me*c**2 en1 = 0.5*ep*ld**2 # simulation domain nx = 3500 ny = 3500 lx = 3500 ly = 3500 # figure domain (set by grid) grid_min_x = 0 grid_max_x = nx grid_min_y = 0 grid_max_y = ny Gx = np.linspace(0,lx,nx) Gy = np.linspace(0,ly,ny) gx = Gx[grid_min_x:grid_max_x+1] gy = Gy[grid_min_y:grid_max_y+1] # figure parameters # fs = 24 jetcmap = plt.cm.get_cmap("rainbow", 9) #generate a jet map with 10 values jet_vals = jetcmap(np.arange(9)) #extract those values as an array jet_vals[0] = [1.0, 1, 1.0, 1] #change the first value newcmap = mpl.colors.LinearSegmentedColormap.from_list("newjet", jet_vals) # define array EneBmE = np.ones(7) EneBmI = np.ones(7) EneBgE = np.ones(7) EneBgI = np.ones(7) sex = np.ones(7) sey = np.ones(7) sez = np.ones(7) sbx = np.ones(7) sby = np.ones(7) sbz = np.ones(7) TpeC1 = np.ones(7) TpeS1 = np.ones(7) TfeC1 = np.ones(7) TfeS1 = np.ones(7) TpeC2 = np.ones(7) TpeS2 = np.ones(7) TfeC2 = np.ones(7) TfeS2 = np.ones(7) TeC1 = np.ones(7) TeS1 = np.ones(7) TeC2 = np.ones(7) TeS2 = np.ones(7) time = np.ones(7) # plot function file = '/Volumes/yaowp2016/' folder = 'nj' for i in range(7): ii = i*5 time[i] = i*ts fname = file+folder+'/6'+str(ii).zfill(4)+'.sdf' datafile = sdf.read(fname) GamBmE = datafile.Particles_Gamma_subset_ele1_ele_bm.data GamBmI = datafile.Particles_Gamma_subset_ion1_ion_bm.data GamBgE = datafile.Particles_Gamma_subset_ele1_ele_e.data GamBgI = datafile.Particles_Gamma_subset_ion1_ion_e.data WgtBmE = datafile.Particles_Weight_subset_ele1_ele_bm.data WgtBmI = datafile.Particles_Weight_subset_ion1_ion_bm.data WgtBgE = datafile.Particles_Weight_subset_ele1_ele_e.data WgtBgI = datafile.Particles_Weight_subset_ion1_ion_e.data EneBmE[i] = np.sum((GamBmE-1)*en0*np.mean(WgtBmE))*pct EneBmI[i] = np.sum((GamBmI-1)*en0*np.mean(WgtBmI))*pct EneBgE[i] = np.sum((GamBgE-1)*en0*np.mean(WgtBgE))*pct EneBgI[i] = np.sum((GamBgI-1)*en0*np.mean(WgtBgI))*pct fname = file+folder+'/'+str(ii).zfill(4)+'.sdf' datafile = sdf.read(fname) Ex = datafile.Electric_Field_Ex.data Ey = datafile.Electric_Field_Ey.data Ez = datafile.Electric_Field_Ez.data Bx = datafile.Magnetic_Field_Bx.data*c By = datafile.Magnetic_Field_By.data*c Bz = datafile.Magnetic_Field_Bz.data*c sex[i] = np.sum(Ex**2)*en1 sey[i] = np.sum(Ey**2)*en1 sez[i] = np.sum(Ez**2)*en1 sbx[i] = np.sum(Bx**2)*en1 sby[i] = np.sum(By**2)*en1 sbz[i] = np.sum(Bz**2)*en1 TpeC1[i] = EneBmE[i]+EneBmI[i]+EneBgE[i]+EneBgI[i] TfeC1[i] = sex[i]+sey[i]+sez[i]+sbx[i]+sby[i]+sbz[i] TfeS1[i] = datafile.Total_Field_Energy_in_Simulation__J_.data TpeS1[i] = datafile.Total_Particle_Energy_in_Simulation__J_.data folder = 'nj_non' for i in range(7): ii = i*5 time[i] = i*ts fname = file+folder+'/6'+str(ii).zfill(4)+'.sdf' datafile = sdf.read(fname) GamBmE = datafile.Particles_Gamma_subset_ele1_ele_bm.data GamBmI = datafile.Particles_Gamma_subset_ion1_ion_bm.data GamBgE = datafile.Particles_Gamma_subset_ele1_ele_e.data GamBgI = datafile.Particles_Gamma_subset_ion1_ion_e.data WgtBmE = datafile.Particles_Weight_subset_ele1_ele_bm.data WgtBmI = datafile.Particles_Weight_subset_ion1_ion_bm.data WgtBgE = datafile.Particles_Weight_subset_ele1_ele_e.data WgtBgI = datafile.Particles_Weight_subset_ion1_ion_e.data EneBmE[i] = np.sum((GamBmE-1)*en0*np.mean(WgtBmE))*pct EneBmI[i] = np.sum((GamBmI-1)*en0*np.mean(WgtBmI))*pct EneBgE[i] = np.sum((GamBgE-1)*en0*np.mean(WgtBgE))*pct EneBgI[i] = np.sum((GamBgI-1)*en0*np.mean(WgtBgI))*pct fname = file+folder+'/'+str(ii).zfill(4)+'.sdf' datafile = sdf.read(fname) Ex = datafile.Electric_Field_Ex.data Ey = datafile.Electric_Field_Ey.data Ez = datafile.Electric_Field_Ez.data Bx = datafile.Magnetic_Field_Bx.data*c By = datafile.Magnetic_Field_By.data*c Bz = datafile.Magnetic_Field_Bz.data*c sex[i] = np.sum(Ex**2)*en1 sey[i] = np.sum(Ey**2)*en1 sez[i] = np.sum(Ez**2)*en1 sbx[i] = np.sum(Bx**2)*en1 sby[i] = np.sum(By**2)*en1 sbz[i] = np.sum(Bz**2)*en1 TpeC2[i] = EneBmE[i]+EneBmI[i]+EneBgE[i]+EneBgI[i] TfeC2[i] = sex[i]+sey[i]+sez[i]+sbx[i]+sby[i]+sbz[i] TfeS2[i] = datafile.Total_Field_Energy_in_Simulation__J_.data TpeS2[i] = datafile.Total_Particle_Energy_in_Simulation__J_.data TeC1 = TpeC1+TfeC1 TeS1 = TpeS1+TfeS1 TeC2 = TpeC2+TfeC2 TeS2 = TpeS2+TfeS2 np.save('tpec1.npy', TpeC1) np.save('tpes1.npy', TpeS1) np.save('tfec1.npy', TfeC1) np.save('tfes1.npy', TfeS1) np.save('tpec2.npy', TpeC2) np.save('tpes2.npy', TpeS2) np.save('tfec2.npy', TfeC2) np.save('tfes2.npy', TfeS2) np.save('tec1.npy', TeC1) np.save('tes1.npy', TeS1) np.save('tec2.npy', TeC2) np.save('tes2.npy', TeS2) # plt.figure(figsize=(8,5)) # ax = plt.subplot() # ax.plot(time, TpeC1,'r-', lw=2, label='tbc-cal') # ax.plot(time, TpeS1,'r--', lw=2, label='tbc-sys') # ax.plot(time, TpeC2,'b-', lw=2, label='pbc-cal') # ax.plot(time, TpeS2,'b--', lw=2, label='pbc-sys') # plt.xlabel('time($\omega_{pe}^{-1}$)',fontsize=24) # plt.ylabel('energy($J$)',fontsize=24) # plt.legend(loc='best', numpoints=1, fancybox=True) # plt.title('total system energy',fontsize=32,fontstyle='normal') # plt.show() # plt.savefig(file+folder+'/plots/'+'TotalEnergyComp.png',bbox_inches='tight') # n means normalized # plt.close()
apache-2.0
planetarymike/IDL-Colorbars
IDL_py_test/027_Eos_B.py
1
5942
from matplotlib.colors import LinearSegmentedColormap from numpy import nan, inf cm_data = [[1., 1., 1.], [1., 1., 1.], [0.498039, 0.498039, 0.498039], [0., 0., 0.513725], [0., 0., 0.533333], [0., 0., 0.54902], [0., 0., 0.564706], [0., 0., 0.580392], [0., 0., 0.6], [0., 0., 0.615686], [0., 0., 0.568627], [0., 0., 0.584314], [0., 0., 0.666667], [0., 0., 0.682353], [0., 0., 0.698039], [0., 0., 0.713725], [0., 0., 0.733333], [0., 0., 0.74902], [0., 0., 0.764706], [0., 0., 0.780392], [0., 0., 0.717647], [0., 0., 0.733333], [0., 0., 0.831373], [0., 0., 0.847059], [0., 0., 0.866667], [0., 0., 0.882353], [0., 0., 0.898039], [0., 0., 0.913725], [0., 0., 0.933333], [0., 0., 0.94902], [0., 0., 0.866667], [0., 0., 0.882353], [0., 0., 1.], [0., 0.027451, 0.968627], [0., 0.0588235, 0.937255], [0., 0.0901961, 0.905882], [0., 0.121569, 0.87451], [0., 0.152941, 0.843137], [0., 0.184314, 0.811765], [0., 0.215686, 0.780392], [0., 0.223529, 0.67451], [0., 0.25098, 0.643137], [0., 0.309804, 0.686275], [0., 0.341176, 0.654902], [0., 0.372549, 0.623529], [0., 0.403922, 0.592157], [0., 0.435294, 0.560784], [0., 0.466667, 0.529412], [0., 0.498039, 0.498039], [0., 0.529412, 0.466667], [0., 0.505882, 0.392157], [0., 0.533333, 0.364706], [0., 0.623529, 0.372549], [0., 0.654902, 0.341176], [0., 0.686275, 0.309804], [0., 0.717647, 0.278431], [0., 0.74902, 0.247059], [0., 0.780392, 0.215686], [0., 0.811765, 0.184314], [0., 0.843137, 0.152941], [0., 0.784314, 0.109804], [0., 0.811765, 0.0823529], [0., 0.937255, 0.0588235], [0., 0.968627, 0.027451], [0., 1., 0.], [0.0352941, 1., 0.], [0.0705882, 1., 0.], [0.105882, 1., 0.], [0.141176, 1., 0.], [0.176471, 1., 0.], [0.192157, 0.898039, 0.], [0.223529, 0.898039, 0.], [0.282353, 1., 0.], [0.317647, 1., 0.], [0.356863, 1., 0.], [0.392157, 1., 0.], [0.427451, 1., 0.], [0.462745, 1., 0.], [0.498039, 1., 0.], [0.533333, 1., 0.], [0.513725, 0.898039, 0.], [0.545098, 0.898039, 0.], [0.639216, 1., 0.], [0.678431, 1., 0.], [0.713725, 1., 0.], [0.74902, 1., 0.], [0.784314, 1., 0.], [0.819608, 1., 0.], [0.854902, 1., 0.], [0.890196, 1., 0.], [0.835294, 0.898039, 0.], [0.866667, 0.898039, 0.], [1., 1., 0.], [1., 0.980392, 0.], [1., 0.964706, 0.], [1., 0.94902, 0.], [1., 0.933333, 0.], [1., 0.913725, 0.], [1., 0.898039, 0.], [1., 0.882353, 0.], [0.898039, 0.776471, 0.], [0.898039, 0.764706, 0.], [1., 0.831373, 0.], [1., 0.815686, 0.], [1., 0.8, 0.], [1., 0.780392, 0.], [1., 0.764706, 0.], [1., 0.74902, 0.], [1., 0.733333, 0.], [1., 0.713725, 0.], [0.898039, 0.627451, 0.], [0.898039, 0.611765, 0.], [1., 0.662745, 0.], [1., 0.647059, 0.], [1., 0.631373, 0.], [1., 0.615686, 0.], [1., 0.6, 0.], [1., 0.580392, 0.], [1., 0.564706, 0.], [1., 0.54902, 0.], [0.898039, 0.478431, 0.], [0.898039, 0.462745, 0.], [1., 0.498039, 0.], [1., 0.490196, 0.], [1., 0.482353, 0.], [1., 0.47451, 0.], [1., 0.466667, 0.], [1., 0.454902, 0.], [1., 0.447059, 0.], [1., 0.439216, 0.], [0.898039, 0.388235, 0.], [0.898039, 0.380392, 0.], [1., 0.415686, 0.], [1., 0.407843, 0.], [1., 0.4, 0.], [1., 0.388235, 0.], [1., 0.380392, 0.], [1., 0.372549, 0.], [1., 0.364706, 0.], [1., 0.356863, 0.], [0.898039, 0.313725, 0.], [0.898039, 0.305882, 0.], [1., 0.329412, 0.], [1., 0.321569, 0.], [1., 0.313725, 0.], [1., 0.305882, 0.], [1., 0.298039, 0.], [1., 0.290196, 0.], [1., 0.282353, 0.], [1., 0.27451, 0.], [0.898039, 0.239216, 0.], [0.898039, 0.231373, 0.], [1., 0.247059, 0.], [1., 0.239216, 0.], [1., 0.231373, 0.], [1., 0.223529, 0.], [1., 0.215686, 0.], [1., 0.207843, 0.], [1., 0.196078, 0.], [1., 0.188235, 0.], [0.898039, 0.164706, 0.], [0.898039, 0.156863, 0.], [1., 0.164706, 0.], [1., 0.156863, 0.], [1., 0.14902, 0.], [1., 0.141176, 0.], [1., 0.129412, 0.], [1., 0.121569, 0.], [1., 0.113725, 0.], [1., 0.105882, 0.], [0.898039, 0.0862745, 0.], [0.898039, 0.0823529, 0.], [1., 0.0823529, 0.], [1., 0.0745098, 0.], [1., 0.0627451, 0.], [1., 0.054902, 0.], [1., 0.0470588, 0.], [1., 0.0509804, 0.], [1., 0.0313725, 0.], [1., 0.0235294, 0.], [0.898039, 0.0117647, 0.], [0.898039, 0.00392157, 0.], [1., 0., 0.], [0.992157, 0., 0.], [0.984314, 0., 0.], [0.976471, 0., 0.], [0.968627, 0., 0.], [0.960784, 0., 0.], [0.952941, 0., 0.], [0.945098, 0., 0.], [0.843137, 0., 0.], [0.839216, 0., 0.], [0.921569, 0., 0.], [0.917647, 0., 0.], [0.909804, 0., 0.], [0.901961, 0., 0.], [0.894118, 0., 0.], [0.886275, 0., 0.], [0.878431, 0., 0.], [0.870588, 0., 0.], [0.776471, 0., 0.], [0.768627, 0., 0.], [0.847059, 0., 0.], [0.843137, 0., 0.], [0.835294, 0., 0.], [0.827451, 0., 0.], [0.819608, 0., 0.], [0.811765, 0., 0.], [0.803922, 0., 0.], [0.796078, 0., 0.], [0.709804, 0., 0.], [0.701961, 0., 0.], [0.772549, 0., 0.], [0.768627, 0., 0.], [0.760784, 0., 0.], [0.752941, 0., 0.], [0.745098, 0., 0.], [0.737255, 0., 0.], [0.729412, 0., 0.], [0.721569, 0., 0.], [0.643137, 0., 0.], [0.635294, 0., 0.], [0.698039, 0., 0.], [0.690196, 0., 0.], [0.686275, 0., 0.], [0.678431, 0., 0.], [0.670588, 0., 0.], [0.662745, 0., 0.], [0.654902, 0., 0.], [0.647059, 0., 0.], [0.576471, 0., 0.], [0.568627, 0., 0.], [0.623529, 0., 0.], [0.615686, 0., 0.], [0.611765, 0., 0.], [0.603922, 0., 0.], [0.596078, 0., 0.], [0.588235, 0., 0.], [0.580392, 0., 0.], [0.572549, 0., 0.], [0.509804, 0., 0.], [0.501961, 0., 0.], [0.54902, 0., 0.], [0.541176, 0., 0.], [0.537255, 0., 0.], [0.529412, 0., 0.], [0.521569, 0., 0.], [0.513725, 0., 0.], [0.505882, 0., 0.], [0.498039, 0., 0.], [0.443137, 0., 0.], [0.435294, 0., 0.], [0.47451, 0., 0.], [0.466667, 0., 0.], [0.458824, 0., 0.], [0.458824, 0., 0.]] test_cm = LinearSegmentedColormap.from_list(__file__, cm_data) if __name__ == "__main__": import matplotlib.pyplot as plt import numpy as np try: from pycam02ucs.cm.viscm import viscm viscm(test_cm) except ImportError: print("pycam02ucs not found, falling back on simple display") plt.imshow(np.linspace(0, 100, 256)[None, :], aspect='auto', cmap=test_cm) plt.show()
gpl-2.0
ManuSchmi88/landlab
landlab/plot/imshow.py
3
21050
#! /usr/bin/env python """ Methods to plot data defined on Landlab grids. Plotting functions ++++++++++++++++++ .. autosummary:: :toctree: generated/ ~landlab.plot.imshow.imshow_grid ~landlab.plot.imshow.imshow_grid_at_cell ~landlab.plot.imshow.imshow_grid_at_node """ import numpy as np import inspect from landlab.field.scalar_data_fields import FieldError try: import matplotlib.pyplot as plt except ImportError: import warnings warnings.warn('matplotlib not found', ImportWarning) from landlab.grid import CLOSED_BOUNDARY from landlab.grid.raster import RasterModelGrid from landlab.grid.voronoi import VoronoiDelaunayGrid from landlab.utils.decorators import deprecated def imshow_grid_at_node(grid, values, **kwds): """Prepare a map view of data over all nodes in the grid. Data is plotted as cells shaded with the value at the node at its center. Outer edges of perimeter cells are extrapolated. Closed elements are colored uniformly (default black, overridden with kwd 'color_for_closed'); other open boundary nodes get their actual values. *values* can be a field name, a regular array, or a masked array. If a masked array is provided, masked entries will be treated as if they were Landlab CLOSED_BOUNDARYs. Used together with the color_at_closed=None keyword (i.e., "transparent"), this can allow for construction of overlay layers in a figure (e.g., only defining values in a river network, and overlaying it on another landscape). Use matplotlib functions like xlim, ylim to modify your plot after calling :func:`imshow_grid`, as desired. This function happily works with both regular and irregular grids. Construction :: imshow_grid_at_node(grid, values, plot_name=None, var_name=None, var_units=None, grid_units=None, symmetric_cbar=False, cmap='pink', limits=(values.min(), values.max()), vmin=values.min(), vmax=values.max(), allow_colorbar=True, norm=[linear], shrink=1., color_for_closed='black', color_for_background=None, show_elements=False, output=None) Parameters ---------- grid : ModelGrid Grid containing the field to plot, or describing the geometry of the provided array. values : array_like, masked_array, or str Node values, or a field name as a string from which to draw the data. plot_name : str, optional String to put as the plot title. var_name : str, optional Variable name, to use as a colorbar label. var_units : str, optional Units for the variable being plotted, for the colorbar. grid_units : tuple of str, optional Units for y, and x dimensions. If None, component will look to the gri property `axis_units` for this information. If no units are specified there, no entry is made. symmetric_cbar : bool Make the colormap symetric about 0. cmap : str Name of a colormap limits : tuple of float Minimum and maximum of the colorbar. vmin, vmax: floats Alternatives to limits. allow_colorbar : bool If True, include the colorbar. colorbar_label : str or None The string with which to label the colorbar. norm : matplotlib.colors.Normalize The normalizing object which scales data, typically into the interval [0, 1]. Ignore in most cases. shrink : float Fraction by which to shrink the colorbar. color_for_closed : str or None Color to use for closed nodes (default 'black'). If None, closed (or masked) nodes will be transparent. color_for_background : color str or other color declaration, or None Color to use for closed elements (default None). If None, the background will be transparent, and appear white. show_elements : bool If True, and grid is a Voronoi, the faces will be plotted in black along with just the colour of the cell, defining the cell outlines (defaults False). output : None, string, or bool If None (or False), the image is sent to the imaging buffer to await an explicit call to show() or savefig() from outside this function. If a string, the string should be the path to a save location, and the filename (with file extension). The function will then call plt.savefig([string]) itself. If True, the function will call plt.show() itself once plotting is complete. """ if isinstance(values, str): values_at_node = grid.at_node[values] else: values_at_node = values if values_at_node.size != grid.number_of_nodes: raise ValueError('number of values does not match number of nodes') values_at_node = np.ma.masked_where( grid.status_at_node == CLOSED_BOUNDARY, values_at_node) try: shape = grid.shape except AttributeError: shape = (-1, ) _imshow_grid_values(grid, values_at_node.reshape(shape), **kwds) if isinstance(values, str): plt.title(values) @deprecated(use='imshow_grid_at_node', version='0.5') def imshow_node_grid(grid, values, **kwds): imshow_grid_at_node(grid, values, **kwds) def imshow_grid_at_cell(grid, values, **kwds): """Map view of grid data over all grid cells. Prepares a map view of data over all cells in the grid. Method can take any of the same ``**kwds`` as :func:`imshow_grid_at_node`. Construction :: imshow_grid_at_cell(grid, values, plot_name=None, var_name=None, var_units=None, grid_units=None, symmetric_cbar=False, cmap='pink', limits=(values.min(), values.max()), vmin=values.min(), vmax=values.max(), allow_colorbar=True, colorbar_label=None, norm=[linear], shrink=1., color_for_closed='black', color_for_background=None, show_elements=False, output=None) Parameters ---------- grid : ModelGrid Grid containing the field to plot, or describing the geometry of the provided array. values : array_like, masked_array, or str Values at the cells on the grid. Alternatively, can be a field name (string) from which to draw the data from the grid. plot_name : str, optional String to put as the plot title. var_name : str, optional Variable name, to use as a colorbar label. var_units : str, optional Units for the variable being plotted, for the colorbar. grid_units : tuple of str, optional Units for y, and x dimensions. If None, component will look to the gri property `axis_units` for this information. If no units are specified there, no entry is made. symmetric_cbar : bool Make the colormap symetric about 0. cmap : str Name of a colormap limits : tuple of float Minimum and maximum of the colorbar. vmin, vmax: floats Alternatives to limits. allow_colorbar : bool If True, include the colorbar. colorbar_label : str or None The string with which to label the colorbar. norm : matplotlib.colors.Normalize The normalizing object which scales data, typically into the interval [0, 1]. Ignore in most cases. shrink : float Fraction by which to shrink the colorbar. color_for_closed : str or None Color to use for closed elements (default 'black'). If None, closed (or masked) elements will be transparent. color_for_background : color str or other color declaration, or None Color to use for closed elements (default None). If None, the background will be transparent, and appear white. show_elements : bool If True, and grid is a Voronoi, the faces will be plotted in black along with just the colour of the cell, defining the cell outlines (defaults False). output : None, string, or bool If None (or False), the image is sent to the imaging buffer to await an explicit call to show() or savefig() from outside this function. If a string, the string should be the path to a save location, and the filename (with file extension). The function will then call plt.savefig([string]) itself. If True, the function will call plt.show() itself once plotting is complete. Raises ------ ValueError If input grid is not uniform rectilinear. """ if isinstance(values, str): try: values_at_cell = grid.at_cell[values] except FieldError: values_at_cell = grid.at_node[values] else: values_at_cell = values if values_at_cell.size == grid.number_of_nodes: values_at_cell = values_at_cell[grid.node_at_cell] if values_at_cell.size != grid.number_of_cells: raise ValueError('number of values must match number of cells or ' 'number of nodes') values_at_cell = np.ma.asarray(values_at_cell) values_at_cell.mask = True values_at_cell.mask[grid.core_cells] = False myimage = _imshow_grid_values(grid, values_at_cell.reshape(grid.cell_grid_shape), **kwds) if isinstance(values, str): plt.title(values) return myimage @deprecated(use='imshow_grid_at_cell', version='0.5') def imshow_cell_grid(grid, values, **kwds): imshow_grid_at_cell(grid, values, **kwds) def _imshow_grid_values(grid, values, plot_name=None, var_name=None, var_units=None, grid_units=(None, None), symmetric_cbar=False, cmap='pink', limits=None, colorbar_label = None, allow_colorbar=True, vmin=None, vmax=None, norm=None, shrink=1., color_for_closed='black', color_for_background=None, show_elements=False, output=None): gridtypes = inspect.getmro(grid.__class__) cmap = plt.get_cmap(cmap) if color_for_closed is not None: cmap.set_bad(color=color_for_closed) else: cmap.set_bad(alpha=0.) if isinstance(grid, RasterModelGrid): if values.ndim != 2: raise ValueError('values must have ndim == 2') y = np.arange(values.shape[0] + 1) * grid.dy - grid.dy * .5 x = np.arange(values.shape[1] + 1) * grid.dx - grid.dx * .5 kwds = dict(cmap=cmap) (kwds['vmin'], kwds['vmax']) = (values.min(), values.max()) if (limits is None) and ((vmin is None) and (vmax is None)): if symmetric_cbar: (var_min, var_max) = (values.min(), values.max()) limit = max(abs(var_min), abs(var_max)) (kwds['vmin'], kwds['vmax']) = (- limit, limit) elif limits is not None: (kwds['vmin'], kwds['vmax']) = (limits[0], limits[1]) else: if vmin is not None: kwds['vmin'] = vmin if vmax is not None: kwds['vmax'] = vmax if np.isclose(grid.dx, grid.dy): if values.size == grid.number_of_nodes: myimage = plt.imshow( values.reshape(grid.shape), origin='lower', extent=(x[0], x[-1], y[0], y[-1]), **kwds) else: # this is a cell grid, and has been reshaped already... myimage = plt.imshow(values, origin='lower', extent=(x[0], x[-1], y[0], y[-1]), **kwds) myimage = plt.pcolormesh(x, y, values, **kwds) plt.gca().set_aspect(1.) plt.autoscale(tight=True) if allow_colorbar: cb = plt.colorbar(norm=norm, shrink=shrink) if colorbar_label: cb.set_label(colorbar_label) elif VoronoiDelaunayGrid in gridtypes: # This is still very much ad-hoc, and needs prettifying. # We should save the modifications needed to plot color all the way # to the diagram edge *into* the grid, for faster plotting. # (see http://stackoverflow.com/questions/20515554/... # colorize-voronoi-diagram) # (This technique is not implemented yet) from scipy.spatial import voronoi_plot_2d import matplotlib.colors as colors import matplotlib.cm as cmx cm = plt.get_cmap(cmap) if (limits is None) and ((vmin is None) and (vmax is None)): # only want to work with NOT CLOSED nodes open_nodes = grid.status_at_node != 4 if symmetric_cbar: (var_min, var_max) = (values.flat[ open_nodes].min(), values.flat[open_nodes].max()) limit = max(abs(var_min), abs(var_max)) (vmin, vmax) = (- limit, limit) else: (vmin, vmax) = (values.flat[ open_nodes].min(), values.flat[open_nodes].max()) elif limits is not None: (vmin, vmax) = (limits[0], limits[1]) else: open_nodes = grid.status_at_node != 4 if vmin is None: vmin = values.flat[open_nodes].min() if vmax is None: vmax = values.flat[open_nodes].max() cNorm = colors.Normalize(vmin, vmax) scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm) colorVal = scalarMap.to_rgba(values) if show_elements: myimage = voronoi_plot_2d(grid.vor, show_vertices=False, show_points=False) # show_points to be supported in scipy0.18, but harmless for now mycolors = (i for i in colorVal) for order in grid.vor.point_region: region = grid.vor.regions[order] colortouse = next(mycolors) if -1 not in region: polygon = [grid.vor.vertices[i] for i in region] plt.fill(*zip(*polygon), color=colortouse) plt.gca().set_aspect(1.) # plt.autoscale(tight=True) # Tempting though it is to move the boundary outboard of the outermost # nodes (e.g., to the outermost corners), this is a bad idea, as the # outermost cells tend to have highly elongated shapes which make the # plot look stupid plt.xlim((np.min(grid.node_x), np.max(grid.node_x))) plt.ylim((np.min(grid.node_y), np.max(grid.node_y))) scalarMap.set_array(values) if allow_colorbar: cb = plt.colorbar(scalarMap, shrink=shrink) if grid_units[1] is None and grid_units[0] is None: grid_units = grid.axis_units if grid_units[1] == '-' and grid_units[0] == '-': plt.xlabel('X') plt.ylabel('Y') else: plt.xlabel('X (%s)' % grid_units[1]) plt.ylabel('Y (%s)' % grid_units[0]) else: plt.xlabel('X (%s)' % grid_units[1]) plt.ylabel('Y (%s)' % grid_units[0]) if plot_name is not None: plt.title('%s' % (plot_name)) if var_name is not None or var_units is not None: if var_name is not None: assert type(var_name) is str if var_units is not None: assert type(var_units) is str colorbar_label = var_name + ' (' + var_units + ')' else: colorbar_label = var_name else: assert type(var_units) is str colorbar_label = '(' + var_units + ')' assert type(colorbar_label) is str assert allow_colorbar cb.set_label(colorbar_label) if color_for_background is not None: plt.gca().set_axis_bgcolor(color_for_background) if output is not None: if type(output) is str: plt.savefig(output) plt.clf() elif output: plt.show() def imshow_grid(grid, values, **kwds): """Prepare a map view of data over all nodes or cells in the grid. Data is plotted as colored cells. If at='node', the surrounding cell is shaded with the value at the node at its center. If at='cell', the cell is shaded with its own value. Outer edges of perimeter cells are extrapolated. Closed elements are colored uniformly (default black, overridden with kwd 'color_for_closed'); other open boundary nodes get their actual values. *values* can be a field name, a regular array, or a masked array. If a masked array is provided, masked entries will be treated as if they were Landlab CLOSED_BOUNDARYs. Used together with the color_at_closed=None keyword (i.e., "transparent"), this can allow for construction of overlay layers in a figure (e.g., only defining values in a river network, and overlaying it on another landscape). Use matplotlib functions like xlim, ylim to modify your plot after calling :func:`imshow_grid`, as desired. This function happily works with both regular and irregular grids. Construction :: imshow_grid(grid, values, plot_name=None, var_name=None, var_units=None, grid_units=None, symmetric_cbar=False, cmap='pink', limits=(values.min(), values.max()), vmin=values.min(), vmax=values.max(), allow_colorbar=True, colorbar_label=None, norm=[linear], shrink=1., color_for_closed='black', color_for_background=None, show_elements=False) Parameters ---------- grid : ModelGrid Grid containing the field to plot, or describing the geometry of the provided array. values : array_like, masked_array, or str Node or cell values, or a field name as a string from which to draw the data. at : str, {'node', 'cell'} Tells plotter where values are defined. plot_name : str, optional String to put as the plot title. var_name : str, optional Variable name, to use as a colorbar label. var_units : str, optional Units for the variable being plotted, for the colorbar. grid_units : tuple of str, optional Units for y, and x dimensions. If None, component will look to the gri property `axis_units` for this information. If no units are specified there, no entry is made. symmetric_cbar : bool Make the colormap symetric about 0. cmap : str Name of a colormap limits : tuple of float Minimum and maximum of the colorbar. vmin, vmax: floats Alternatives to limits. allow_colorbar : bool If True, include the colorbar. colorbar_label : str or None The string with which to label the colorbar. norm : matplotlib.colors.Normalize The normalizing object which scales data, typically into the interval [0, 1]. Ignore in most cases. shrink : float Fraction by which to shrink the colorbar. color_for_closed : str or None Color to use for closed elements (default 'black'). If None, closed (or masked) elements will be transparent. color_for_background : color str or other color declaration, or None Color to use for closed elements (default None). If None, the background will be transparent, and appear white. show_elements : bool If True, and grid is a Voronoi, the faces will be plotted in black along with just the colour of the cell, defining the cell outlines (defaults False). output : None, string, or bool If None (or False), the image is sent to the imaging buffer to await an explicit call to show() or savefig() from outside this function. If a string, the string should be the path to a save location, and the filename (with file extension). The function will then call plt.savefig([string]) itself. If True, the function will call plt.show() itself once plotting is complete. """ show = kwds.pop('show', False) values_at = kwds.pop('values_at', 'node') values_at = kwds.pop('at', values_at) if isinstance(values, str): values = grid.field_values(values_at, values) if isinstance(values, str): values = grid.field_values(values_at, values) if values_at == 'node': imshow_grid_at_node(grid, values, **kwds) elif values_at == 'cell': imshow_grid_at_cell(grid, values, **kwds) else: raise TypeError('value location %s not understood' % values_at) # retained for backwards compatibility: if show: plt.show()
mit
hrjn/scikit-learn
examples/feature_selection/plot_f_test_vs_mi.py
75
1647
""" =========================================== Comparison of F-test and mutual information =========================================== This example illustrates the differences between univariate F-test statistics and mutual information. We consider 3 features x_1, x_2, x_3 distributed uniformly over [0, 1], the target depends on them as follows: y = x_1 + sin(6 * pi * x_2) + 0.1 * N(0, 1), that is the third features is completely irrelevant. The code below plots the dependency of y against individual x_i and normalized values of univariate F-tests statistics and mutual information. As F-test captures only linear dependency, it rates x_1 as the most discriminative feature. On the other hand, mutual information can capture any kind of dependency between variables and it rates x_2 as the most discriminative feature, which probably agrees better with our intuitive perception for this example. Both methods correctly marks x_3 as irrelevant. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.feature_selection import f_regression, mutual_info_regression np.random.seed(0) X = np.random.rand(1000, 3) y = X[:, 0] + np.sin(6 * np.pi * X[:, 1]) + 0.1 * np.random.randn(1000) f_test, _ = f_regression(X, y) f_test /= np.max(f_test) mi = mutual_info_regression(X, y) mi /= np.max(mi) plt.figure(figsize=(15, 5)) for i in range(3): plt.subplot(1, 3, i + 1) plt.scatter(X[:, i], y) plt.xlabel("$x_{}$".format(i + 1), fontsize=14) if i == 0: plt.ylabel("$y$", fontsize=14) plt.title("F-test={:.2f}, MI={:.2f}".format(f_test[i], mi[i]), fontsize=16) plt.show()
bsd-3-clause
waddell/urbansim
urbansim/urbanchoice/mnl.py
4
9002
""" Number crunching code for multinomial logit. ``mnl_estimate`` and ``mnl_simulate`` especially are used by ``urbansim.models.lcm``. """ from __future__ import print_function import logging import numpy as np import pandas as pd import scipy.optimize import pmat from pmat import PMAT from ..utils.logutil import log_start_finish logger = logging.getLogger(__name__) # right now MNL can only estimate location choice models, where every equation # is the same # it might be better to use stats models for a non-location choice problem # data should be column matrix of dimensions NUMVARS x (NUMALTS*NUMOBVS) # beta is a row vector of dimensions 1 X NUMVARS def mnl_probs(data, beta, numalts): logging.debug('start: calculate MNL probabilities') clamp = data.typ == 'numpy' utilities = beta.multiply(data) if numalts == 0: raise Exception("Number of alternatives is zero") utilities.reshape(numalts, utilities.size() / numalts) exponentiated_utility = utilities.exp(inplace=True) if clamp: exponentiated_utility.inftoval(1e20) if clamp: exponentiated_utility.clamptomin(1e-300) sum_exponentiated_utility = exponentiated_utility.sum(axis=0) probs = exponentiated_utility.divide_by_row( sum_exponentiated_utility, inplace=True) if clamp: probs.nantoval(1e-300) if clamp: probs.clamptomin(1e-300) logging.debug('finish: calculate MNL probabilities') return probs def get_hessian(derivative): return np.linalg.inv(np.dot(derivative, np.transpose(derivative))) def get_standard_error(hessian): return np.sqrt(np.diagonal(hessian)) # data should be column matrix of dimensions NUMVARS x (NUMALTS*NUMOBVS) # beta is a row vector of dimensions 1 X NUMVARS def mnl_loglik(beta, data, chosen, numalts, weights=None, lcgrad=False, stderr=0): logger.debug('start: calculate MNL log-likelihood') numvars = beta.size numobs = data.size() / numvars / numalts beta = np.reshape(beta, (1, beta.size)) beta = PMAT(beta, data.typ) probs = mnl_probs(data, beta, numalts) # lcgrad is the special gradient for the latent class membership model if lcgrad: assert weights gradmat = weights.subtract(probs).reshape(probs.size(), 1) gradarr = data.multiply(gradmat) else: if not weights: gradmat = chosen.subtract(probs).reshape(probs.size(), 1) else: gradmat = chosen.subtract(probs).multiply_by_row( weights).reshape(probs.size(), 1) gradarr = data.multiply(gradmat) if stderr: gradmat = data.multiply_by_row(gradmat.reshape(1, gradmat.size())) gradmat.reshape(numvars, numalts * numobs) return get_standard_error(get_hessian(gradmat.get_mat())) chosen.reshape(numalts, numobs) if weights is not None: if probs.shape() == weights.shape(): loglik = ((probs.log(inplace=True) .element_multiply(weights, inplace=True) .element_multiply(chosen, inplace=True)) .sum(axis=1).sum(axis=0)) else: loglik = ((probs.log(inplace=True) .multiply_by_row(weights, inplace=True) .element_multiply(chosen, inplace=True)) .sum(axis=1).sum(axis=0)) else: loglik = (probs.log(inplace=True).element_multiply( chosen, inplace=True)).sum(axis=1).sum(axis=0) if loglik.typ == 'numpy': loglik, gradarr = loglik.get_mat(), gradarr.get_mat().flatten() else: loglik = loglik.get_mat()[0, 0] gradarr = np.reshape(gradarr.get_mat(), (1, gradarr.size()))[0] logger.debug('finish: calculate MNL log-likelihood') return -1 * loglik, -1 * gradarr def mnl_simulate(data, coeff, numalts, GPU=False, returnprobs=True): """ Get the probabilities for each chooser choosing between `numalts` alternatives. Parameters ---------- data : 2D array The data are expected to be in "long" form where each row is for one alternative. Alternatives are in groups of `numalts` rows per choosers. Alternatives must be in the same order for each chooser. coeff : 1D array The model coefficients corresponding to each column in `data`. numalts : int The number of alternatives available to each chooser. GPU : bool, optional returnprobs : bool, optional If True, return the probabilities for each chooser/alternative instead of actual choices. Returns ------- probs or choices: 2D array If `returnprobs` is True the probabilities are a 2D array with a row for each chooser and columns for each alternative. """ logger.debug( 'start: MNL simulation with len(data)={} and numalts={}'.format( len(data), numalts)) atype = 'numpy' if not GPU else 'cuda' data = np.transpose(data) coeff = np.reshape(np.array(coeff), (1, len(coeff))) data, coeff = PMAT(data, atype), PMAT(coeff, atype) probs = mnl_probs(data, coeff, numalts) if returnprobs: return np.transpose(probs.get_mat()) # convert to cpu from here on - gpu doesn't currently support these ops if probs.typ == 'cuda': probs = PMAT(probs.get_mat()) probs = probs.cumsum(axis=0) r = pmat.random(probs.size() / numalts) choices = probs.subtract(r, inplace=True).firstpositive(axis=0) logger.debug('finish: MNL simulation') return choices.get_mat() def mnl_estimate(data, chosen, numalts, GPU=False, coeffrange=(-3, 3), weights=None, lcgrad=False, beta=None): """ Calculate coefficients of the MNL model. Parameters ---------- data : 2D array The data are expected to be in "long" form where each row is for one alternative. Alternatives are in groups of `numalts` rows per choosers. Alternatives must be in the same order for each chooser. chosen : 2D array This boolean array has a row for each chooser and a column for each alternative. The column ordering for alternatives is expected to be the same as their row ordering in the `data` array. A one (True) indicates which alternative each chooser has chosen. numalts : int The number of alternatives. GPU : bool, optional coeffrange : tuple of floats, optional Limits of (min, max) to which coefficients are clipped. weights : ndarray, optional lcgrad : bool, optional beta : 1D array, optional Any initial guess for the coefficients. Returns ------- log_likelihood : dict Dictionary of log-likelihood values describing the quality of the model fit. fit_parameters : pandas.DataFrame Table of fit parameters with columns 'Coefficient', 'Std. Error', 'T-Score'. Each row corresponds to a column in `data` and are given in the same order as in `data`. See Also -------- scipy.optimize.fmin_l_bfgs_b : The optimization routine used. """ logger.debug( 'start: MNL fit with len(data)={} and numalts={}'.format( len(data), numalts)) atype = 'numpy' if not GPU else 'cuda' numvars = data.shape[1] numobs = data.shape[0] / numalts if chosen is None: chosen = np.ones((numobs, numalts)) # used for latent classes data = np.transpose(data) chosen = np.transpose(chosen) data, chosen = PMAT(data, atype), PMAT(chosen, atype) if weights is not None: weights = PMAT(np.transpose(weights), atype) if beta is None: beta = np.zeros(numvars) bounds = [coeffrange] * numvars with log_start_finish('scipy optimization for MNL fit', logger): args = (data, chosen, numalts, weights, lcgrad) bfgs_result = scipy.optimize.fmin_l_bfgs_b(mnl_loglik, beta, args=args, fprime=None, factr=10, approx_grad=False, bounds=bounds ) beta = bfgs_result[0] stderr = mnl_loglik( beta, data, chosen, numalts, weights, stderr=1, lcgrad=lcgrad) l0beta = np.zeros(numvars) l0 = -1 * mnl_loglik(l0beta, *args)[0] l1 = -1 * mnl_loglik(beta, *args)[0] log_likelihood = { 'null': float(l0[0][0]), 'convergence': float(l1[0][0]), 'ratio': float((1 - (l1 / l0))[0][0]) } fit_parameters = pd.DataFrame({ 'Coefficient': beta, 'Std. Error': stderr, 'T-Score': beta / stderr}) logger.debug('finish: MNL fit') return log_likelihood, fit_parameters
bsd-3-clause
sinhrks/scikit-learn
sklearn/tree/tests/test_tree.py
32
52369
""" Testing for the tree module (sklearn.tree). """ import pickle from functools import partial from itertools import product import platform import numpy as np from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from sklearn.random_projection import sparse_random_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.validation import check_random_state from sklearn.exceptions import NotFittedError from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn.tree import ExtraTreeClassifier from sklearn.tree import ExtraTreeRegressor from sklearn import tree from sklearn.tree.tree import SPARSE_SPLITTERS from sklearn.tree._tree import TREE_LEAF from sklearn import datasets from sklearn.utils import compute_sample_weight CLF_CRITERIONS = ("gini", "entropy") REG_CRITERIONS = ("mse", ) CLF_TREES = { "DecisionTreeClassifier": DecisionTreeClassifier, "Presort-DecisionTreeClassifier": partial(DecisionTreeClassifier, presort=True), "ExtraTreeClassifier": ExtraTreeClassifier, } REG_TREES = { "DecisionTreeRegressor": DecisionTreeRegressor, "Presort-DecisionTreeRegressor": partial(DecisionTreeRegressor, presort=True), "ExtraTreeRegressor": ExtraTreeRegressor, } ALL_TREES = dict() ALL_TREES.update(CLF_TREES) ALL_TREES.update(REG_TREES) SPARSE_TREES = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] X_small = np.array([ [0, 0, 4, 0, 0, 0, 1, -14, 0, -4, 0, 0, 0, 0, ], [0, 0, 5, 3, 0, -4, 0, 0, 1, -5, 0.2, 0, 4, 1, ], [-1, -1, 0, 0, -4.5, 0, 0, 2.1, 1, 0, 0, -4.5, 0, 1, ], [-1, -1, 0, -1.2, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 1, ], [-1, -1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, ], [-1, -2, 0, 4, -3, 10, 4, 0, -3.2, 0, 4, 3, -4, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -1, 0, ], [2, 8, 5, 1, 0.5, -4, 10, 0, 1, -5, 3, 0, 2, 0, ], [2, 0, 1, 1, 1, -1, 1, 0, 0, -2, 3, 0, 1, 0, ], [2, 0, 1, 2, 3, -1, 10, 2, 0, -1, 1, 2, 2, 0, ], [1, 1, 0, 2, 2, -1, 1, 2, 0, -5, 1, 2, 3, 0, ], [3, 1, 0, 3, 0, -4, 10, 0, 1, -5, 3, 0, 3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 1.5, 1, -1, -1, ], [2.11, 8, -6, -0.5, 0, 10, 0, 0, -3.2, 6, 0.5, 0, -1, -1, ], [2, 0, 5, 1, 0.5, -2, 10, 0, 1, -5, 3, 1, 0, -1, ], [2, 0, 1, 1, 1, -2, 1, 0, 0, -2, 0, 0, 0, 1, ], [2, 1, 1, 1, 2, -1, 10, 2, 0, -1, 0, 2, 1, 1, ], [1, 1, 0, 0, 1, -3, 1, 2, 0, -5, 1, 2, 1, 1, ], [3, 1, 0, 1, 0, -4, 1, 0, 1, -2, 0, 0, 1, 0, ]]) y_small = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] y_small_reg = [1.0, 2.1, 1.2, 0.05, 10, 2.4, 3.1, 1.01, 0.01, 2.98, 3.1, 1.1, 0.0, 1.2, 2, 11, 0, 0, 4.5, 0.201, 1.06, 0.9, 0] # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] random_state = check_random_state(0) X_multilabel, y_multilabel = datasets.make_multilabel_classification( random_state=0, n_samples=30, n_features=10) X_sparse_pos = random_state.uniform(size=(20, 5)) X_sparse_pos[X_sparse_pos <= 0.8] = 0. y_random = random_state.randint(0, 4, size=(20, )) X_sparse_mix = sparse_random_matrix(20, 10, density=0.25, random_state=0) DATASETS = { "iris": {"X": iris.data, "y": iris.target}, "boston": {"X": boston.data, "y": boston.target}, "digits": {"X": digits.data, "y": digits.target}, "toy": {"X": X, "y": y}, "clf_small": {"X": X_small, "y": y_small}, "reg_small": {"X": X_small, "y": y_small_reg}, "multilabel": {"X": X_multilabel, "y": y_multilabel}, "sparse-pos": {"X": X_sparse_pos, "y": y_random}, "sparse-neg": {"X": - X_sparse_pos, "y": y_random}, "sparse-mix": {"X": X_sparse_mix, "y": y_random}, "zeros": {"X": np.zeros((20, 3)), "y": y_random} } for name in DATASETS: DATASETS[name]["X_sparse"] = csc_matrix(DATASETS[name]["X"]) def assert_tree_equal(d, s, message): assert_equal(s.node_count, d.node_count, "{0}: inequal number of node ({1} != {2})" "".format(message, s.node_count, d.node_count)) assert_array_equal(d.children_right, s.children_right, message + ": inequal children_right") assert_array_equal(d.children_left, s.children_left, message + ": inequal children_left") external = d.children_right == TREE_LEAF internal = np.logical_not(external) assert_array_equal(d.feature[internal], s.feature[internal], message + ": inequal features") assert_array_equal(d.threshold[internal], s.threshold[internal], message + ": inequal threshold") assert_array_equal(d.n_node_samples.sum(), s.n_node_samples.sum(), message + ": inequal sum(n_node_samples)") assert_array_equal(d.n_node_samples, s.n_node_samples, message + ": inequal n_node_samples") assert_almost_equal(d.impurity, s.impurity, err_msg=message + ": inequal impurity") assert_array_almost_equal(d.value[external], s.value[external], err_msg=message + ": inequal value") def test_classification_toy(): # Check classification on a toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_weighted_classification_toy(): # Check classification on a weighted toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y, sample_weight=np.ones(len(X))) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf.fit(X, y, sample_weight=np.ones(len(X)) * 0.5) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_regression_toy(): # Check regression on a toy dataset. for name, Tree in REG_TREES.items(): reg = Tree(random_state=1) reg.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) def test_xor(): # Check on a XOR problem y = np.zeros((10, 10)) y[:5, :5] = 1 y[5:, 5:] = 1 gridx, gridy = np.indices(y.shape) X = np.vstack([gridx.ravel(), gridy.ravel()]).T y = y.ravel() for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) clf = Tree(random_state=0, max_features=1) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) def test_iris(): # Check consistency on dataset iris. for (name, Tree), criterion in product(CLF_TREES.items(), CLF_CRITERIONS): clf = Tree(criterion=criterion, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.9, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) clf = Tree(criterion=criterion, max_features=2, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.5, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_boston(): # Check consistency on dataset boston house prices. for (name, Tree), criterion in product(REG_TREES.items(), REG_CRITERIONS): reg = Tree(criterion=criterion, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 1, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) # using fewer features reduces the learning ability of this tree, # but reduces training time. reg = Tree(criterion=criterion, max_features=6, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 2, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_probability(): # Predict probabilities using DecisionTreeClassifier. for name, Tree in CLF_TREES.items(): clf = Tree(max_depth=1, max_features=1, random_state=42) clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal(np.sum(prob_predict, 1), np.ones(iris.data.shape[0]), err_msg="Failed with {0}".format(name)) assert_array_equal(np.argmax(prob_predict, 1), clf.predict(iris.data), err_msg="Failed with {0}".format(name)) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8, err_msg="Failed with {0}".format(name)) def test_arrayrepr(): # Check the array representation. # Check resize X = np.arange(10000)[:, np.newaxis] y = np.arange(10000) for name, Tree in REG_TREES.items(): reg = Tree(max_depth=None, random_state=0) reg.fit(X, y) def test_pure_set(): # Check when y is pure. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [1, 1, 1, 1, 1, 1] for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(X, y) assert_almost_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) def test_numerical_stability(): # Check numerical stability. X = np.array([ [152.08097839, 140.40744019, 129.75102234, 159.90493774], [142.50700378, 135.81935120, 117.82884979, 162.75781250], [127.28772736, 140.40744019, 129.75102234, 159.90493774], [132.37025452, 143.71923828, 138.35694885, 157.84558105], [103.10237122, 143.71928406, 138.35696411, 157.84559631], [127.71276855, 143.71923828, 138.35694885, 157.84558105], [120.91514587, 140.40744019, 129.75102234, 159.90493774]]) y = np.array( [1., 0.70209277, 0.53896582, 0., 0.90914464, 0.48026916, 0.49622521]) with np.errstate(all="raise"): for name, Tree in REG_TREES.items(): reg = Tree(random_state=0) reg.fit(X, y) reg.fit(X, -y) reg.fit(-X, y) reg.fit(-X, -y) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) importances = clf.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10, "Failed with {0}".format(name)) assert_equal(n_important, 3, "Failed with {0}".format(name)) X_new = assert_warns( DeprecationWarning, clf.transform, X, threshold="mean") assert_less(0, X_new.shape[1], "Failed with {0}".format(name)) assert_less(X_new.shape[1], X.shape[1], "Failed with {0}".format(name)) # Check on iris that importances are the same for all builders clf = DecisionTreeClassifier(random_state=0) clf.fit(iris.data, iris.target) clf2 = DecisionTreeClassifier(random_state=0, max_leaf_nodes=len(iris.data)) clf2.fit(iris.data, iris.target) assert_array_equal(clf.feature_importances_, clf2.feature_importances_) @raises(ValueError) def test_importances_raises(): # Check if variable importance before fit raises ValueError. clf = DecisionTreeClassifier() clf.feature_importances_ def test_importances_gini_equal_mse(): # Check that gini is equivalent to mse for binary output variable X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) # The gini index and the mean square error (variance) might differ due # to numerical instability. Since those instabilities mainly occurs at # high tree depth, we restrict this maximal depth. clf = DecisionTreeClassifier(criterion="gini", max_depth=5, random_state=0).fit(X, y) reg = DecisionTreeRegressor(criterion="mse", max_depth=5, random_state=0).fit(X, y) assert_almost_equal(clf.feature_importances_, reg.feature_importances_) assert_array_equal(clf.tree_.feature, reg.tree_.feature) assert_array_equal(clf.tree_.children_left, reg.tree_.children_left) assert_array_equal(clf.tree_.children_right, reg.tree_.children_right) assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples) def test_max_features(): # Check max_features. for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(max_features="auto") reg.fit(boston.data, boston.target) assert_equal(reg.max_features_, boston.data.shape[1]) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(max_features="auto") clf.fit(iris.data, iris.target) assert_equal(clf.max_features_, 2) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_features="sqrt") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.sqrt(iris.data.shape[1]))) est = TreeEstimator(max_features="log2") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.log2(iris.data.shape[1]))) est = TreeEstimator(max_features=1) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=3) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 3) est = TreeEstimator(max_features=0.01) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=0.5) est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(0.5 * iris.data.shape[1])) est = TreeEstimator(max_features=1.0) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) est = TreeEstimator(max_features=None) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) # use values of max_features that are invalid est = TreeEstimator(max_features=10) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=-1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=0.0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=1.5) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features="foobar") assert_raises(ValueError, est.fit, X, y) def test_error(): # Test that it gives proper exception on deficient input. for name, TreeEstimator in CLF_TREES.items(): # predict before fit est = TreeEstimator() assert_raises(NotFittedError, est.predict_proba, X) est.fit(X, y) X2 = [[-2, -1, 1]] # wrong feature shape for sample assert_raises(ValueError, est.predict_proba, X2) for name, TreeEstimator in ALL_TREES.items(): # Invalid values for parameters assert_raises(ValueError, TreeEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_leaf=.6).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_leaf=0.).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=0.51).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=0.0).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=1.1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_depth=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_features=42).fit, X, y) # Wrong dimensions est = TreeEstimator() y2 = y[:-1] assert_raises(ValueError, est.fit, X, y2) # Test with arrays that are non-contiguous. Xf = np.asfortranarray(X) est = TreeEstimator() est.fit(Xf, y) assert_almost_equal(est.predict(T), true_result) # predict before fitting est = TreeEstimator() assert_raises(NotFittedError, est.predict, T) # predict on vector with different dims est.fit(X, y) t = np.asarray(T) assert_raises(ValueError, est.predict, t[:, 1:]) # wrong sample shape Xt = np.array(X).T est = TreeEstimator() est.fit(np.dot(X, Xt), y) assert_raises(ValueError, est.predict, X) assert_raises(ValueError, est.apply, X) clf = TreeEstimator() clf.fit(X, y) assert_raises(ValueError, clf.predict, Xt) assert_raises(ValueError, clf.apply, Xt) # apply before fitting est = TreeEstimator() assert_raises(NotFittedError, est.apply, T) def test_min_samples_split(): """Test min_samples_split parameter""" X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] # test for integer parameter est = TreeEstimator(min_samples_split=10, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) # count samples on nodes, -1 means it is a leaf node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1] assert_greater(np.min(node_samples), 9, "Failed with {0}".format(name)) # test for float parameter est = TreeEstimator(min_samples_split=0.2, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) # count samples on nodes, -1 means it is a leaf node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1] assert_greater(np.min(node_samples), 9, "Failed with {0}".format(name)) def test_min_samples_leaf(): # Test if leaves contain more than leaf_count training examples X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] # test integer parameter est = TreeEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) # test float parameter est = TreeEstimator(min_samples_leaf=0.1, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) def check_min_weight_fraction_leaf(name, datasets, sparse=False): """Test if leaves contain at least min_weight_fraction_leaf of the training set""" if sparse: X = DATASETS[datasets]["X_sparse"].astype(np.float32) else: X = DATASETS[datasets]["X"].astype(np.float32) y = DATASETS[datasets]["y"] weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) TreeEstimator = ALL_TREES[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)): est = TreeEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y, sample_weight=weights) if sparse: out = est.tree_.apply(X.tocsr()) else: out = est.tree_.apply(X) node_weights = np.bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): # Check on dense input for name in ALL_TREES: yield check_min_weight_fraction_leaf, name, "iris" # Check on sparse input for name in SPARSE_TREES: yield check_min_weight_fraction_leaf, name, "multilabel", True def test_pickle(): for name, TreeEstimator in ALL_TREES.items(): if "Classifier" in name: X, y = iris.data, iris.target else: X, y = boston.data, boston.target est = TreeEstimator(random_state=0) est.fit(X, y) score = est.score(X, y) fitted_attribute = dict() for attribute in ["max_depth", "node_count", "capacity"]: fitted_attribute[attribute] = getattr(est.tree_, attribute) serialized_object = pickle.dumps(est) est2 = pickle.loads(serialized_object) assert_equal(type(est2), est.__class__) score2 = est2.score(X, y) assert_equal(score, score2, "Failed to generate same score after pickling " "with {0}".format(name)) for attribute in fitted_attribute: assert_equal(getattr(est2.tree_, attribute), fitted_attribute[attribute], "Failed to generate same attribute {0} after " "pickling with {1}".format(attribute, name)) def test_multioutput(): # Check estimators on multi-output problems. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] T = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]] # toy classification problem for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) y_hat = clf.fit(X, y).predict(T) assert_array_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) proba = clf.predict_proba(T) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = clf.predict_log_proba(T) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) # toy regression problem for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) y_hat = reg.fit(X, y).predict(T) assert_almost_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) def test_classes_shape(): # Test that n_classes_ and classes_ have proper shape. for name, TreeClassifier in CLF_TREES.items(): # Classification, single output clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = TreeClassifier(random_state=0) clf.fit(X, _y) assert_equal(len(clf.n_classes_), 2) assert_equal(len(clf.classes_), 2) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_unbalanced_iris(): # Check class rebalancing. unbalanced_X = iris.data[:125] unbalanced_y = iris.target[:125] sample_weight = compute_sample_weight("balanced", unbalanced_y) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight) assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y) def test_memory_layout(): # Check that it works no matter the memory layout for (name, TreeEstimator), dtype in product(ALL_TREES.items(), [np.float64, np.float32]): est = TreeEstimator(random_state=0) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if not est.presort: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_sample_weight(): # Check sample weighting. # Test that zero-weighted samples are not taken into account X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 sample_weight = np.ones(100) sample_weight[y == 0] = 0.0 clf = DecisionTreeClassifier(random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), np.ones(100)) # Test that low weighted samples are not taken into account at low depth X = np.arange(200)[:, np.newaxis] y = np.zeros(200) y[50:100] = 1 y[100:200] = 2 X[100:200, 0] = 200 sample_weight = np.ones(200) sample_weight[y == 2] = .51 # Samples of class '2' are still weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 149.5) sample_weight[y == 2] = .5 # Samples of class '2' are no longer weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 49.5) # Threshold should have moved # Test that sample weighting is the same as having duplicates X = iris.data y = iris.target duplicates = rng.randint(0, X.shape[0], 100) clf = DecisionTreeClassifier(random_state=1) clf.fit(X[duplicates], y[duplicates]) sample_weight = np.bincount(duplicates, minlength=X.shape[0]) clf2 = DecisionTreeClassifier(random_state=1) clf2.fit(X, y, sample_weight=sample_weight) internal = clf.tree_.children_left != tree._tree.TREE_LEAF assert_array_almost_equal(clf.tree_.threshold[internal], clf2.tree_.threshold[internal]) def test_sample_weight_invalid(): # Check sample weighting raises errors. X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 clf = DecisionTreeClassifier(random_state=0) sample_weight = np.random.rand(100, 1) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.array(0) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(101) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(99) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) def check_class_weights(name): """Check class_weights resemble sample_weights behavior.""" TreeClassifier = CLF_TREES[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = TreeClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = TreeClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "auto" which should also have no effect clf4 = TreeClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in CLF_TREES: yield check_class_weights, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. TreeClassifier = CLF_TREES[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = TreeClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Not a list or preset for multi-output clf = TreeClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = TreeClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in CLF_TREES: yield check_class_weight_errors, name def test_max_leaf_nodes(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=None, max_leaf_nodes=k + 1).fit(X, y) tree = est.tree_ assert_equal((tree.children_left == TREE_LEAF).sum(), k + 1) # max_leaf_nodes in (0, 1) should raise ValueError est = TreeEstimator(max_depth=None, max_leaf_nodes=0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=0.1) assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test precedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.tree_ assert_greater(tree.max_depth, 1) def test_arrays_persist(): # Ensure property arrays' memory stays alive when tree disappears # non-regression for #2726 for attr in ['n_classes', 'value', 'children_left', 'children_right', 'threshold', 'impurity', 'feature', 'n_node_samples']: value = getattr(DecisionTreeClassifier().fit([[0], [1]], [0, 1]).tree_, attr) # if pointing to freed memory, contents may be arbitrary assert_true(-3 <= value.flat[0] < 3, 'Array points to arbitrary memory') def test_only_constant_features(): random_state = check_random_state(0) X = np.zeros((10, 20)) y = random_state.randint(0, 2, (10, )) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(random_state=0) est.fit(X, y) assert_equal(est.tree_.max_depth, 0) def test_with_only_one_non_constant_features(): X = np.hstack([np.array([[1.], [1.], [0.], [0.]]), np.zeros((4, 1000))]) y = np.array([0., 1., 0., 1.0]) for name, TreeEstimator in CLF_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict_proba(X), 0.5 * np.ones((4, 2))) for name, TreeEstimator in REG_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict(X), 0.5 * np.ones((4, ))) def test_big_input(): # Test if the warning for too large inputs is appropriate. X = np.repeat(10 ** 40., 4).astype(np.float64).reshape(-1, 1) clf = DecisionTreeClassifier() try: clf.fit(X, [0, 1, 0, 1]) except ValueError as e: assert_in("float32", str(e)) def test_realloc(): from sklearn.tree._utils import _realloc_test assert_raises(MemoryError, _realloc_test) def test_huge_allocations(): n_bits = int(platform.architecture()[0].rstrip('bit')) X = np.random.randn(10, 2) y = np.random.randint(0, 2, 10) # Sanity check: we cannot request more memory than the size of the address # space. Currently raises OverflowError. huge = 2 ** (n_bits + 1) clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(Exception, clf.fit, X, y) # Non-regression test: MemoryError used to be dropped by Cython # because of missing "except *". huge = 2 ** (n_bits - 1) - 1 clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(MemoryError, clf.fit, X, y) def check_sparse_input(tree, dataset, max_depth=None): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Gain testing time if dataset in ["digits", "boston"]: n_samples = X.shape[0] // 5 X = X[:n_samples] X_sparse = X_sparse[:n_samples] y = y[:n_samples] for sparse_format in (csr_matrix, csc_matrix, coo_matrix): X_sparse = sparse_format(X_sparse) # Check the default (depth first search) d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) y_pred = d.predict(X) if tree in CLF_TREES: y_proba = d.predict_proba(X) y_log_proba = d.predict_log_proba(X) for sparse_matrix in (csr_matrix, csc_matrix, coo_matrix): X_sparse_test = sparse_matrix(X_sparse, dtype=np.float32) assert_array_almost_equal(s.predict(X_sparse_test), y_pred) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X_sparse_test), y_proba) assert_array_almost_equal(s.predict_log_proba(X_sparse_test), y_log_proba) def test_sparse_input(): for tree, dataset in product(SPARSE_TREES, ("clf_small", "toy", "digits", "multilabel", "sparse-pos", "sparse-neg", "sparse-mix", "zeros")): max_depth = 3 if dataset == "digits" else None yield (check_sparse_input, tree, dataset, max_depth) # Due to numerical instability of MSE and too strict test, we limit the # maximal depth for tree, dataset in product(REG_TREES, ["boston", "reg_small"]): if tree in SPARSE_TREES: yield (check_sparse_input, tree, dataset, 2) def check_sparse_parameters(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check max_features d = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_split d = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_leaf d = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X, y) s = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check best-first search d = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X, y) s = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_parameters(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_parameters, tree, dataset) def check_sparse_criterion(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check various criterion CRITERIONS = REG_CRITERIONS if tree in REG_TREES else CLF_CRITERIONS for criterion in CRITERIONS: d = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X, y) s = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_criterion(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_criterion, tree, dataset) def check_explicit_sparse_zeros(tree, max_depth=3, n_features=10): TreeEstimator = ALL_TREES[tree] # n_samples set n_feature to ease construction of a simultaneous # construction of a csr and csc matrix n_samples = n_features samples = np.arange(n_samples) # Generate X, y random_state = check_random_state(0) indices = [] data = [] offset = 0 indptr = [offset] for i in range(n_features): n_nonzero_i = random_state.binomial(n_samples, 0.5) indices_i = random_state.permutation(samples)[:n_nonzero_i] indices.append(indices_i) data_i = random_state.binomial(3, 0.5, size=(n_nonzero_i, )) - 1 data.append(data_i) offset += n_nonzero_i indptr.append(offset) indices = np.concatenate(indices) data = np.array(np.concatenate(data), dtype=np.float32) X_sparse = csc_matrix((data, indices, indptr), shape=(n_samples, n_features)) X = X_sparse.toarray() X_sparse_test = csr_matrix((data, indices, indptr), shape=(n_samples, n_features)) X_test = X_sparse_test.toarray() y = random_state.randint(0, 3, size=(n_samples, )) # Ensure that X_sparse_test owns its data, indices and indptr array X_sparse_test = X_sparse_test.copy() # Ensure that we have explicit zeros assert_greater((X_sparse.data == 0.).sum(), 0) assert_greater((X_sparse_test.data == 0.).sum(), 0) # Perform the comparison d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) Xs = (X_test, X_sparse_test) for X1, X2 in product(Xs, Xs): assert_array_almost_equal(s.tree_.apply(X1), d.tree_.apply(X2)) assert_array_almost_equal(s.apply(X1), d.apply(X2)) assert_array_almost_equal(s.apply(X1), s.tree_.apply(X1)) assert_array_almost_equal(s.tree_.decision_path(X1).toarray(), d.tree_.decision_path(X2).toarray()) assert_array_almost_equal(s.decision_path(X1).toarray(), d.decision_path(X2).toarray()) assert_array_almost_equal(s.decision_path(X1).toarray(), s.tree_.decision_path(X1).toarray()) assert_array_almost_equal(s.predict(X1), d.predict(X2)) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X1), d.predict_proba(X2)) def test_explicit_sparse_zeros(): for tree in SPARSE_TREES: yield (check_explicit_sparse_zeros, tree) @ignore_warnings def check_raise_error_on_1d_input(name): TreeEstimator = ALL_TREES[name] X = iris.data[:, 0].ravel() X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target assert_raises(ValueError, TreeEstimator(random_state=0).fit, X, y) est = TreeEstimator(random_state=0) est.fit(X_2d, y) assert_raises(ValueError, est.predict, [X]) @ignore_warnings def test_1d_input(): for name in ALL_TREES: yield check_raise_error_on_1d_input, name def _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight): # Private function to keep pretty printing in nose yielded tests est = TreeEstimator(random_state=0) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 1) est = TreeEstimator(random_state=0, min_weight_fraction_leaf=0.4) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 0) def check_min_weight_leaf_split_level(name): TreeEstimator = ALL_TREES[name] X = np.array([[0], [0], [0], [0], [1]]) y = [0, 0, 0, 0, 1] sample_weight = [0.2, 0.2, 0.2, 0.2, 0.2] _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight) if not TreeEstimator().presort: _check_min_weight_leaf_split_level(TreeEstimator, csc_matrix(X), y, sample_weight) def test_min_weight_leaf_split_level(): for name in ALL_TREES: yield check_min_weight_leaf_split_level, name def check_public_apply(name): X_small32 = X_small.astype(tree._tree.DTYPE) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def check_public_apply_sparse(name): X_small32 = csr_matrix(X_small.astype(tree._tree.DTYPE)) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def test_public_apply(): for name in ALL_TREES: yield (check_public_apply, name) for name in SPARSE_TREES: yield (check_public_apply_sparse, name) def check_presort_sparse(est, X, y): assert_raises(ValueError, est.fit, X, y) def test_presort_sparse(): ests = (DecisionTreeClassifier(presort=True), DecisionTreeRegressor(presort=True)) sparse_matrices = (csr_matrix, csc_matrix, coo_matrix) y, X = datasets.make_multilabel_classification(random_state=0, n_samples=50, n_features=1, n_classes=20) y = y[:, 0] for est, sparse_matrix in product(ests, sparse_matrices): yield check_presort_sparse, est, sparse_matrix(X), y def test_decision_path_hardcoded(): X = iris.data y = iris.target est = DecisionTreeClassifier(random_state=0, max_depth=1).fit(X, y) node_indicator = est.decision_path(X[:2]).toarray() assert_array_equal(node_indicator, [[1, 1, 0], [1, 0, 1]]) def check_decision_path(name): X = iris.data y = iris.target n_samples = X.shape[0] TreeEstimator = ALL_TREES[name] est = TreeEstimator(random_state=0, max_depth=2) est.fit(X, y) node_indicator_csr = est.decision_path(X) node_indicator = node_indicator_csr.toarray() assert_equal(node_indicator.shape, (n_samples, est.tree_.node_count)) # Assert that leaves index are correct leaves = est.apply(X) leave_indicator = [node_indicator[i, j] for i, j in enumerate(leaves)] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) # Ensure only one leave node per sample all_leaves = est.tree_.children_left == TREE_LEAF assert_array_almost_equal(np.dot(node_indicator, all_leaves), np.ones(shape=n_samples)) # Ensure max depth is consistent with sum of indicator max_depth = node_indicator.sum(axis=1).max() assert_less_equal(est.tree_.max_depth, max_depth) def test_decision_path(): for name in ALL_TREES: yield (check_decision_path, name) def check_no_sparse_y_support(name): X, y = X_multilabel, csr_matrix(y_multilabel) TreeEstimator = ALL_TREES[name] assert_raises(TypeError, TreeEstimator(random_state=0).fit, X, y) def test_no_sparse_y_support(): # Currently we don't support sparse y for name in ALL_TREES: yield (check_no_sparse_y_support, name)
bsd-3-clause
dmitriz/zipline
zipline/utils/tradingcalendar.py
6
11182
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import pytz from datetime import datetime from dateutil import rrule from functools import partial start = pd.Timestamp('1990-01-01', tz='UTC') end_base = pd.Timestamp('today', tz='UTC') # Give an aggressive buffer for logic that needs to use the next trading # day or minute. end = end_base + pd.Timedelta(days=365) def canonicalize_datetime(dt): # Strip out any HHMMSS or timezone info in the user's datetime, so that # all the datetimes we return will be 00:00:00 UTC. return datetime(dt.year, dt.month, dt.day, tzinfo=pytz.utc) def get_non_trading_days(start, end): non_trading_rules = [] start = canonicalize_datetime(start) end = canonicalize_datetime(end) weekends = rrule.rrule( rrule.YEARLY, byweekday=(rrule.SA, rrule.SU), cache=True, dtstart=start, until=end ) non_trading_rules.append(weekends) new_years = rrule.rrule( rrule.MONTHLY, byyearday=1, cache=True, dtstart=start, until=end ) non_trading_rules.append(new_years) new_years_sunday = rrule.rrule( rrule.MONTHLY, byyearday=2, byweekday=rrule.MO, cache=True, dtstart=start, until=end ) non_trading_rules.append(new_years_sunday) mlk_day = rrule.rrule( rrule.MONTHLY, bymonth=1, byweekday=(rrule.MO(+3)), cache=True, dtstart=datetime(1998, 1, 1, tzinfo=pytz.utc), until=end ) non_trading_rules.append(mlk_day) presidents_day = rrule.rrule( rrule.MONTHLY, bymonth=2, byweekday=(rrule.MO(3)), cache=True, dtstart=start, until=end ) non_trading_rules.append(presidents_day) good_friday = rrule.rrule( rrule.DAILY, byeaster=-2, cache=True, dtstart=start, until=end ) non_trading_rules.append(good_friday) memorial_day = rrule.rrule( rrule.MONTHLY, bymonth=5, byweekday=(rrule.MO(-1)), cache=True, dtstart=start, until=end ) non_trading_rules.append(memorial_day) july_4th = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=4, cache=True, dtstart=start, until=end ) non_trading_rules.append(july_4th) july_4th_sunday = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=5, byweekday=rrule.MO, cache=True, dtstart=start, until=end ) non_trading_rules.append(july_4th_sunday) july_4th_saturday = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=rrule.FR, cache=True, dtstart=start, until=end ) non_trading_rules.append(july_4th_saturday) labor_day = rrule.rrule( rrule.MONTHLY, bymonth=9, byweekday=(rrule.MO(1)), cache=True, dtstart=start, until=end ) non_trading_rules.append(labor_day) thanksgiving = rrule.rrule( rrule.MONTHLY, bymonth=11, byweekday=(rrule.TH(4)), cache=True, dtstart=start, until=end ) non_trading_rules.append(thanksgiving) christmas = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=25, cache=True, dtstart=start, until=end ) non_trading_rules.append(christmas) christmas_sunday = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=26, byweekday=rrule.MO, cache=True, dtstart=start, until=end ) non_trading_rules.append(christmas_sunday) # If Christmas is a Saturday then 24th, a Friday is observed. christmas_saturday = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=24, byweekday=rrule.FR, cache=True, dtstart=start, until=end ) non_trading_rules.append(christmas_saturday) non_trading_ruleset = rrule.rruleset() for rule in non_trading_rules: non_trading_ruleset.rrule(rule) non_trading_days = non_trading_ruleset.between(start, end, inc=True) # Add September 11th closings # http://en.wikipedia.org/wiki/Aftermath_of_the_September_11_attacks # Due to the terrorist attacks, the stock market did not open on 9/11/2001 # It did not open again until 9/17/2001. # # September 2001 # Su Mo Tu We Th Fr Sa # 1 # 2 3 4 5 6 7 8 # 9 10 11 12 13 14 15 # 16 17 18 19 20 21 22 # 23 24 25 26 27 28 29 # 30 for day_num in range(11, 17): non_trading_days.append( datetime(2001, 9, day_num, tzinfo=pytz.utc)) # Add closings due to Hurricane Sandy in 2012 # http://en.wikipedia.org/wiki/Hurricane_sandy # # The stock exchange was closed due to Hurricane Sandy's # impact on New York. # It closed on 10/29 and 10/30, reopening on 10/31 # October 2012 # Su Mo Tu We Th Fr Sa # 1 2 3 4 5 6 # 7 8 9 10 11 12 13 # 14 15 16 17 18 19 20 # 21 22 23 24 25 26 27 # 28 29 30 31 for day_num in range(29, 31): non_trading_days.append( datetime(2012, 10, day_num, tzinfo=pytz.utc)) # Misc closings from NYSE listing. # http://www.nyse.com/pdfs/closings.pdf # # National Days of Mourning # - President Richard Nixon non_trading_days.append(datetime(1994, 4, 27, tzinfo=pytz.utc)) # - President Ronald W. Reagan - June 11, 2004 non_trading_days.append(datetime(2004, 6, 11, tzinfo=pytz.utc)) # - President Gerald R. Ford - Jan 2, 2007 non_trading_days.append(datetime(2007, 1, 2, tzinfo=pytz.utc)) non_trading_days.sort() return pd.DatetimeIndex(non_trading_days) non_trading_days = get_non_trading_days(start, end) trading_day = pd.tseries.offsets.CDay(holidays=non_trading_days) def get_trading_days(start, end, trading_day=trading_day): return pd.date_range(start=start.date(), end=end.date(), freq=trading_day).tz_localize('UTC') trading_days = get_trading_days(start, end) def get_early_closes(start, end): # 1:00 PM close rules based on # http://quant.stackexchange.com/questions/4083/nyse-early-close-rules-july-4th-and-dec-25th # noqa # and verified against http://www.nyse.com/pdfs/closings.pdf # These rules are valid starting in 1993 start = canonicalize_datetime(start) end = canonicalize_datetime(end) start = max(start, datetime(1993, 1, 1, tzinfo=pytz.utc)) end = max(end, datetime(1993, 1, 1, tzinfo=pytz.utc)) # Not included here are early closes prior to 1993 # or unplanned early closes early_close_rules = [] day_after_thanksgiving = rrule.rrule( rrule.MONTHLY, bymonth=11, # 4th Friday isn't correct if month starts on Friday, so restrict to # day range: byweekday=(rrule.FR), bymonthday=range(23, 30), cache=True, dtstart=start, until=end ) early_close_rules.append(day_after_thanksgiving) christmas_eve = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=24, byweekday=(rrule.MO, rrule.TU, rrule.WE, rrule.TH), cache=True, dtstart=start, until=end ) early_close_rules.append(christmas_eve) friday_after_christmas = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=26, byweekday=rrule.FR, cache=True, dtstart=start, # valid 1993-2007 until=min(end, datetime(2007, 12, 31, tzinfo=pytz.utc)) ) early_close_rules.append(friday_after_christmas) day_before_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=(rrule.MO, rrule.TU, rrule.TH), cache=True, dtstart=start, until=end ) early_close_rules.append(day_before_independence_day) day_after_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=5, byweekday=rrule.FR, cache=True, dtstart=start, # starting in 2013: wednesday before independence day until=min(end, datetime(2012, 12, 31, tzinfo=pytz.utc)) ) early_close_rules.append(day_after_independence_day) wednesday_before_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=rrule.WE, cache=True, # starting in 2013 dtstart=max(start, datetime(2013, 1, 1, tzinfo=pytz.utc)), until=max(end, datetime(2013, 1, 1, tzinfo=pytz.utc)) ) early_close_rules.append(wednesday_before_independence_day) early_close_ruleset = rrule.rruleset() for rule in early_close_rules: early_close_ruleset.rrule(rule) early_closes = early_close_ruleset.between(start, end, inc=True) # Misc early closings from NYSE listing. # http://www.nyse.com/pdfs/closings.pdf # # New Year's Eve nye_1999 = datetime(1999, 12, 31, tzinfo=pytz.utc) if start <= nye_1999 and nye_1999 <= end: early_closes.append(nye_1999) early_closes.sort() return pd.DatetimeIndex(early_closes) early_closes = get_early_closes(start, end) def get_open_and_close(day, early_closes): market_open = pd.Timestamp( datetime( year=day.year, month=day.month, day=day.day, hour=9, minute=31), tz='US/Eastern').tz_convert('UTC') # 1 PM if early close, 4 PM otherwise close_hour = 13 if day in early_closes else 16 market_close = pd.Timestamp( datetime( year=day.year, month=day.month, day=day.day, hour=close_hour), tz='US/Eastern').tz_convert('UTC') return market_open, market_close def get_open_and_closes(trading_days, early_closes, get_open_and_close): open_and_closes = pd.DataFrame(index=trading_days, columns=('market_open', 'market_close')) get_o_and_c = partial(get_open_and_close, early_closes=early_closes) open_and_closes['market_open'], open_and_closes['market_close'] = \ zip(*open_and_closes.index.map(get_o_and_c)) return open_and_closes open_and_closes = get_open_and_closes(trading_days, early_closes, get_open_and_close)
apache-2.0
barbagroup/PetIBM
examples/ibpm/cylinder2dRe40/scripts/plotVorticity.py
4
1401
""" Computes, plots, and saves the 2D vorticity field from a PetIBM simulation after 2000 time steps (20 non-dimensional time-units). """ import pathlib import h5py import numpy from matplotlib import pyplot simu_dir = pathlib.Path(__file__).absolute().parents[1] data_dir = simu_dir / 'output' # Read vorticity field and its grid from files. name = 'wz' filepath = data_dir / 'grid.h5' f = h5py.File(filepath, 'r') x, y = f[name]['x'][:], f[name]['y'][:] X, Y = numpy.meshgrid(x, y) timestep = 2000 filepath = data_dir / '{:0>7}.h5'.format(timestep) f = h5py.File(filepath, 'r') wz = f[name][:] # Read body coordinates from file. filepath = simu_dir / 'circle.body' with open(filepath, 'r') as infile: xb, yb = numpy.loadtxt(infile, dtype=numpy.float64, unpack=True, skiprows=1) pyplot.rc('font', family='serif', size=16) # Plot the filled contour of the vorticity. fig, ax = pyplot.subplots(figsize=(6.0, 6.0)) ax.grid() ax.set_xlabel('x') ax.set_ylabel('y') levels = numpy.linspace(-3.0, 3.0, 16) ax.contour(X, Y, wz, levels=levels, colors='black') ax.plot(xb, yb, color='red') ax.set_xlim(-1.0, 4.0) ax.set_ylim(-2.0, 2.0) ax.set_aspect('equal') fig.tight_layout() pyplot.show() # Save figure. fig_dir = simu_dir / 'figures' fig_dir.mkdir(parents=True, exist_ok=True) filepath = fig_dir / 'wz{:0>7}.png'.format(timestep) fig.savefig(str(filepath), dpi=300)
bsd-3-clause
rhoscanner-team/pcd-plotter
delaunay_example.py
1
1435
import numpy as np from scipy.spatial import Delaunay points = np.random.rand(30, 2) # 30 points in 2-d tri = Delaunay(points) # Make a list of line segments: # edge_points = [ ((x1_1, y1_1), (x2_1, y2_1)), # ((x1_2, y1_2), (x2_2, y2_2)), # ... ] edge_points = [] edges = set() def add_edge(i, j): """Add a line between the i-th and j-th points, if not in the list already""" if (i, j) in edges or (j, i) in edges: # already added return edges.add( (i, j) ) edge_points.append(points[ [i, j] ]) # loop over triangles: # ia, ib, ic = indices of corner points of the triangle for ia, ib, ic in tri.vertices: add_edge(ia, ib) add_edge(ib, ic) add_edge(ic, ia) # plot it: the LineCollection is just a (maybe) faster way to plot lots of # lines at once import matplotlib.pyplot as plt from matplotlib.collections import LineCollection lines = LineCollection(edge_points) plt.figure() plt.title('Delaunay triangulation') plt.gca().add_collection(lines) plt.plot(points[:,0], points[:,1], 'o', hold=1) plt.xlim(-1, 2) plt.ylim(-1, 2) # -- the same stuff for the convex hull edges = set() edge_points = [] for ia, ib in tri.convex_hull: add_edge(ia, ib) lines = LineCollection(edge_points) plt.figure() plt.title('Convex hull') plt.gca().add_collection(lines) plt.plot(points[:,0], points[:,1], 'o', hold=1) plt.xlim(-1, 2) plt.ylim(-1, 2) plt.show()
gpl-2.0
rahul-c1/scikit-learn
sklearn/cluster/tests/test_mean_shift.py
19
2844
""" Testing for mean shift clustering methods """ import numpy as np from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.cluster import MeanShift from sklearn.cluster import mean_shift from sklearn.cluster import estimate_bandwidth from sklearn.cluster import get_bin_seeds from sklearn.datasets.samples_generator import make_blobs n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=300, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=11) def test_estimate_bandwidth(): """Test estimate_bandwidth""" bandwidth = estimate_bandwidth(X, n_samples=200) assert_true(0.9 <= bandwidth <= 1.5) def test_mean_shift(): """ Test MeanShift algorithm """ bandwidth = 1.2 ms = MeanShift(bandwidth=bandwidth) labels = ms.fit(X).labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) cluster_centers, labels = mean_shift(X, bandwidth=bandwidth) labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) def test_meanshift_predict(): """Test MeanShift.predict""" ms = MeanShift(bandwidth=1.2) labels = ms.fit_predict(X) labels2 = ms.predict(X) assert_array_equal(labels, labels2) def test_unfitted(): """Non-regression: before fit, there should be not fitted attributes.""" ms = MeanShift() assert_false(hasattr(ms, "cluster_centers_")) assert_false(hasattr(ms, "labels_")) def test_bin_seeds(): """ Test the bin seeding technique which can be used in the mean shift algorithm """ # Data is just 6 points in the plane X = np.array([[1., 1.], [1.5, 1.5], [1.8, 1.2], [2., 1.], [2.1, 1.1], [0., 0.]]) # With a bin coarseness of 1.0 and min_bin_freq of 1, 3 bins should be # found ground_truth = set([(1., 1.), (2., 1.), (0., 0.)]) test_bins = get_bin_seeds(X, 1, 1) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin coarseness of 1.0 and min_bin_freq of 2, 2 bins should be # found ground_truth = set([(1., 1.), (2., 1.)]) test_bins = get_bin_seeds(X, 1, 2) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin size of 0.01 and min_bin_freq of 1, 6 bins should be found test_bins = get_bin_seeds(X, 0.01, 1) test_result = set([tuple(p) for p in test_bins]) assert_true(len(test_result) == 6)
bsd-3-clause
hainm/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
270
2040
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <mr.phil.roth@gmail.com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
wdurhamh/statsmodels
statsmodels/sandbox/examples/ex_cusum.py
33
3219
# -*- coding: utf-8 -*- """ Created on Fri Apr 02 11:41:25 2010 Author: josef-pktd """ import numpy as np from scipy import stats from numpy.testing import assert_almost_equal import statsmodels.api as sm from statsmodels.sandbox.regression.onewaygls import OneWayLS from statsmodels.stats.diagnostic import recursive_olsresiduals from statsmodels.sandbox.stats.diagnostic import _recursive_olsresiduals2 as recursive_olsresiduals2 #examples from ex_onewaygls.py #choose example #-------------- example = ['null', 'smalldiff', 'mediumdiff', 'largediff'][1] example_size = [20, 100][1] example_groups = ['2', '2-2'][1] #'2-2': 4 groups, # groups 0 and 1 and groups 2 and 3 have identical parameters in DGP #generate example #---------------- #np.random.seed(87654589) nobs = example_size x1 = 0.1+np.random.randn(nobs) y1 = 10 + 15*x1 + 2*np.random.randn(nobs) x1 = sm.add_constant(x1, prepend=False) #assert_almost_equal(x1, np.vander(x1[:,0],2), 16) #res1 = sm.OLS(y1, x1).fit() #print res1.params #print np.polyfit(x1[:,0], y1, 1) #assert_almost_equal(res1.params, np.polyfit(x1[:,0], y1, 1), 14) #print res1.summary(xname=['x1','const1']) #regression 2 x2 = 0.1+np.random.randn(nobs) if example == 'null': y2 = 10 + 15*x2 + 2*np.random.randn(nobs) # if H0 is true elif example == 'smalldiff': y2 = 11 + 16*x2 + 2*np.random.randn(nobs) elif example == 'mediumdiff': y2 = 12 + 16*x2 + 2*np.random.randn(nobs) else: y2 = 19 + 17*x2 + 2*np.random.randn(nobs) x2 = sm.add_constant(x2, prepend=False) # stack x = np.concatenate((x1,x2),0) y = np.concatenate((y1,y2)) if example_groups == '2': groupind = (np.arange(2*nobs)>nobs-1).astype(int) else: groupind = np.mod(np.arange(2*nobs),4) groupind.sort() #x = np.column_stack((x,x*groupind[:,None])) res1 = sm.OLS(y, x).fit() skip = 8 rresid, rparams, rypred, rresid_standardized, rresid_scaled, rcusum, rcusumci = \ recursive_olsresiduals(res1, skip) print(rcusum) print(rresid_scaled[skip-1:]) assert_almost_equal(rparams[-1], res1.params) import matplotlib.pyplot as plt plt.plot(rcusum) plt.plot(rcusumci[0]) plt.plot(rcusumci[1]) plt.figure() plt.plot(rresid) plt.plot(np.abs(rresid)) print('cusum test reject:') print(((rcusum[1:]>rcusumci[1])|(rcusum[1:]<rcusumci[0])).any()) rresid2, rparams2, rypred2, rresid_standardized2, rresid_scaled2, rcusum2, rcusumci2 = \ recursive_olsresiduals2(res1, skip) #assert_almost_equal(rparams[skip+1:], rparams2[skip:-1],13) assert_almost_equal(rparams[skip:], rparams2[skip:],13) #np.c_[rparams[skip+1:], rparams2[skip:-1]] #plt.show() #################### Example break test #import statsmodels.sandbox.tools.stattools from statsmodels.sandbox.stats.diagnostic import breaks_hansen, \ breaks_cusumolsresid#, breaks_cusum H, crit95, ft, s = breaks_hansen(res1) print(H) print(crit95) supb, pval, crit = breaks_cusumolsresid(res1.resid) print(supb, pval, crit) ##check whether this works directly: Ploberger/Kramer framing of standard cusum ##no, it's different, there is another denominator #print breaks_cusumolsresid(rresid[skip:]) #this function is still completely wrong, cut and paste doesn't apply #print breaks_cusum(rresid[skip:])
bsd-3-clause
nmartensen/pandas
pandas/io/sql.py
3
58612
# -*- coding: utf-8 -*- """ Collection of query wrappers / abstractions to both facilitate data retrieval and to reduce dependency on DB-specific API. """ from __future__ import print_function, division from datetime import datetime, date, time import warnings import re import numpy as np import pandas._libs.lib as lib from pandas.core.dtypes.missing import isna from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.core.dtypes.common import ( is_list_like, is_dict_like, is_datetime64tz_dtype) from pandas.compat import (map, zip, raise_with_traceback, string_types, text_type) from pandas.core.api import DataFrame, Series from pandas.core.base import PandasObject from pandas.core.tools.datetimes import to_datetime from contextlib import contextmanager class SQLAlchemyRequired(ImportError): pass class DatabaseError(IOError): pass # ----------------------------------------------------------------------------- # -- Helper functions _SQLALCHEMY_INSTALLED = None def _validate_flavor_parameter(flavor): """ Checks whether a database 'flavor' was specified. If not None, produces FutureWarning if 'sqlite' and raises a ValueError if anything else. """ if flavor is not None: if flavor == 'sqlite': warnings.warn("the 'flavor' parameter is deprecated " "and will be removed in a future version, " "as 'sqlite' is the only supported option " "when SQLAlchemy is not installed.", FutureWarning, stacklevel=2) else: raise ValueError("database flavor {flavor} is not " "supported".format(flavor=flavor)) def _is_sqlalchemy_connectable(con): global _SQLALCHEMY_INSTALLED if _SQLALCHEMY_INSTALLED is None: try: import sqlalchemy _SQLALCHEMY_INSTALLED = True from distutils.version import LooseVersion ver = LooseVersion(sqlalchemy.__version__) # For sqlalchemy versions < 0.8.2, the BIGINT type is recognized # for a sqlite engine, which results in a warning when trying to # read/write a DataFrame with int64 values. (GH7433) if ver < '0.8.2': from sqlalchemy import BigInteger from sqlalchemy.ext.compiler import compiles @compiles(BigInteger, 'sqlite') def compile_big_int_sqlite(type_, compiler, **kw): return 'INTEGER' except ImportError: _SQLALCHEMY_INSTALLED = False if _SQLALCHEMY_INSTALLED: import sqlalchemy return isinstance(con, sqlalchemy.engine.Connectable) else: return False def _convert_params(sql, params): """convert sql and params args to DBAPI2.0 compliant format""" args = [sql] if params is not None: if hasattr(params, 'keys'): # test if params is a mapping args += [params] else: args += [list(params)] return args def _handle_date_column(col, utc=None, format=None): if isinstance(format, dict): return to_datetime(col, errors='ignore', **format) else: if format in ['D', 's', 'ms', 'us', 'ns']: return to_datetime(col, errors='coerce', unit=format, utc=utc) elif (issubclass(col.dtype.type, np.floating) or issubclass(col.dtype.type, np.integer)): # parse dates as timestamp format = 's' if format is None else format return to_datetime(col, errors='coerce', unit=format, utc=utc) elif is_datetime64tz_dtype(col): # coerce to UTC timezone # GH11216 return (to_datetime(col, errors='coerce') .astype('datetime64[ns, UTC]')) else: return to_datetime(col, errors='coerce', format=format, utc=utc) def _parse_date_columns(data_frame, parse_dates): """ Force non-datetime columns to be read as such. Supports both string formatted and integer timestamp columns """ # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] if not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] for col_name in parse_dates: df_col = data_frame[col_name] try: fmt = parse_dates[col_name] except TypeError: fmt = None data_frame[col_name] = _handle_date_column(df_col, format=fmt) # we want to coerce datetime64_tz dtypes for now # we could in theory do a 'nice' conversion from a FixedOffset tz # GH11216 for col_name, df_col in data_frame.iteritems(): if is_datetime64tz_dtype(df_col): data_frame[col_name] = _handle_date_column(df_col) return data_frame def _wrap_result(data, columns, index_col=None, coerce_float=True, parse_dates=None): """Wrap result set of query in a DataFrame """ frame = DataFrame.from_records(data, columns=columns, coerce_float=coerce_float) _parse_date_columns(frame, parse_dates) if index_col is not None: frame.set_index(index_col, inplace=True) return frame def execute(sql, con, cur=None, params=None): """ Execute the given SQL query using the provided connection object. Parameters ---------- sql : string Query to be executed con : SQLAlchemy connectable(engine/connection) or sqlite3 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. cur : deprecated, cursor is obtained from connection, default: None params : list or tuple, optional, default: None List of parameters to pass to execute method. Returns ------- Results Iterable """ if cur is None: pandas_sql = pandasSQL_builder(con) else: pandas_sql = pandasSQL_builder(cur, is_cursor=True) args = _convert_params(sql, params) return pandas_sql.execute(*args) # ----------------------------------------------------------------------------- # -- Read and write to DataFrames def read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None): """Read SQL database table into a DataFrame. Given a table name and an SQLAlchemy connectable, returns a DataFrame. This function does not support DBAPI connections. Parameters ---------- table_name : string Name of SQL table in database con : SQLAlchemy connectable (or database string URI) Sqlite DBAPI connection mode not supported schema : string, default None Name of SQL schema in database to query (if database flavor supports this). If None, use default schema (default). index_col : string or list of strings, optional, default: None Column(s) to set as index(MultiIndex) coerce_float : boolean, default True Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. parse_dates : list or dict, default: None - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite columns : list, default: None List of column names to select from sql table chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame Notes ----- Any datetime values with time zone information will be converted to UTC See also -------- read_sql_query : Read SQL query into a DataFrame. read_sql """ con = _engine_builder(con) if not _is_sqlalchemy_connectable(con): raise NotImplementedError("read_sql_table only supported for " "SQLAlchemy connectable.") import sqlalchemy from sqlalchemy.schema import MetaData meta = MetaData(con, schema=schema) try: meta.reflect(only=[table_name], views=True) except sqlalchemy.exc.InvalidRequestError: raise ValueError("Table %s not found" % table_name) pandas_sql = SQLDatabase(con, meta=meta) table = pandas_sql.read_table( table_name, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates, columns=columns, chunksize=chunksize) if table is not None: return table else: raise ValueError("Table %s not found" % table_name, con) def read_sql_query(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, chunksize=None): """Read SQL query into a DataFrame. Returns a DataFrame corresponding to the result set of the query string. Optionally provide an `index_col` parameter to use one of the columns as the index, otherwise default integer index will be used. Parameters ---------- sql : string SQL query or SQLAlchemy Selectable (select or text object) to be executed. con : SQLAlchemy connectable(engine/connection) or database string URI or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : string or list of strings, optional, default: None Column(s) to set as index(MultiIndex) coerce_float : boolean, default True Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional, default: None List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'} parse_dates : list or dict, default: None - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame Notes ----- Any datetime values with time zone information parsed via the `parse_dates` parameter will be converted to UTC See also -------- read_sql_table : Read SQL database table into a DataFrame read_sql """ pandas_sql = pandasSQL_builder(con) return pandas_sql.read_query( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates, chunksize=chunksize) def read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None): """ Read SQL query or database table into a DataFrame. Parameters ---------- sql : string SQL query or SQLAlchemy Selectable (select or text object) to be executed, or database table name. con : SQLAlchemy connectable(engine/connection) or database string URI or DBAPI2 connection (fallback mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : string or list of strings, optional, default: None Column(s) to set as index(MultiIndex) coerce_float : boolean, default True Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional, default: None List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'} parse_dates : list or dict, default: None - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite columns : list, default: None List of column names to select from sql table (only used when reading a table). chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame Notes ----- This function is a convenience wrapper around ``read_sql_table`` and ``read_sql_query`` (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query). The delegated function might have more specific notes about their functionality not listed here. See also -------- read_sql_table : Read SQL database table into a DataFrame read_sql_query : Read SQL query into a DataFrame """ pandas_sql = pandasSQL_builder(con) if isinstance(pandas_sql, SQLiteDatabase): return pandas_sql.read_query( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates, chunksize=chunksize) try: _is_table_name = pandas_sql.has_table(sql) except: _is_table_name = False if _is_table_name: pandas_sql.meta.reflect(only=[sql]) return pandas_sql.read_table( sql, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates, columns=columns, chunksize=chunksize) else: return pandas_sql.read_query( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates, chunksize=chunksize) def to_sql(frame, name, con, flavor=None, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None): """ Write records stored in a DataFrame to a SQL database. Parameters ---------- frame : DataFrame name : string Name of SQL table con : SQLAlchemy connectable(engine/connection) or database string URI or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : 'sqlite', default None .. deprecated:: 0.19.0 'sqlite' is the only supported option if SQLAlchemy is not used. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If None, use default schema (default). if_exists : {'fail', 'replace', 'append'}, default 'fail' - fail: If table exists, do nothing. - replace: If table exists, drop it, recreate it, and insert data. - append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column index_label : string or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : single SQLtype or dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. If all columns are of the same type, one single value can be used. """ if if_exists not in ('fail', 'replace', 'append'): raise ValueError("'{0}' is not valid for if_exists".format(if_exists)) pandas_sql = pandasSQL_builder(con, schema=schema, flavor=flavor) if isinstance(frame, Series): frame = frame.to_frame() elif not isinstance(frame, DataFrame): raise NotImplementedError("'frame' argument should be either a " "Series or a DataFrame") pandas_sql.to_sql(frame, name, if_exists=if_exists, index=index, index_label=index_label, schema=schema, chunksize=chunksize, dtype=dtype) def has_table(table_name, con, flavor=None, schema=None): """ Check if DataBase has named table. Parameters ---------- table_name: string Name of SQL table con: SQLAlchemy connectable(engine/connection) or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. flavor : 'sqlite', default None .. deprecated:: 0.19.0 'sqlite' is the only supported option if SQLAlchemy is not installed. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If None, use default schema (default). Returns ------- boolean """ pandas_sql = pandasSQL_builder(con, flavor=flavor, schema=schema) return pandas_sql.has_table(table_name) table_exists = has_table def _engine_builder(con): """ Returns a SQLAlchemy engine from a URI (if con is a string) else it just return con without modifying it """ global _SQLALCHEMY_INSTALLED if isinstance(con, string_types): try: import sqlalchemy except ImportError: _SQLALCHEMY_INSTALLED = False else: con = sqlalchemy.create_engine(con) return con return con def pandasSQL_builder(con, flavor=None, schema=None, meta=None, is_cursor=False): """ Convenience function to return the correct PandasSQL subclass based on the provided parameters """ _validate_flavor_parameter(flavor) # When support for DBAPI connections is removed, # is_cursor should not be necessary. con = _engine_builder(con) if _is_sqlalchemy_connectable(con): return SQLDatabase(con, schema=schema, meta=meta) elif isinstance(con, string_types): raise ImportError("Using URI string without sqlalchemy installed.") else: return SQLiteDatabase(con, is_cursor=is_cursor) class SQLTable(PandasObject): """ For mapping Pandas tables to SQL tables. Uses fact that table is reflected by SQLAlchemy to do better type convertions. Also holds various flags needed to avoid having to pass them between functions all the time. """ # TODO: support for multiIndex def __init__(self, name, pandas_sql_engine, frame=None, index=True, if_exists='fail', prefix='pandas', index_label=None, schema=None, keys=None, dtype=None): self.name = name self.pd_sql = pandas_sql_engine self.prefix = prefix self.frame = frame self.index = self._index_name(index, index_label) self.schema = schema self.if_exists = if_exists self.keys = keys self.dtype = dtype if frame is not None: # We want to initialize based on a dataframe self.table = self._create_table_setup() else: # no data provided, read-only mode self.table = self.pd_sql.get_table(self.name, self.schema) if self.table is None: raise ValueError("Could not init table '%s'" % name) def exists(self): return self.pd_sql.has_table(self.name, self.schema) def sql_schema(self): from sqlalchemy.schema import CreateTable return str(CreateTable(self.table).compile(self.pd_sql.connectable)) def _execute_create(self): # Inserting table into database, add to MetaData object self.table = self.table.tometadata(self.pd_sql.meta) self.table.create() def create(self): if self.exists(): if self.if_exists == 'fail': raise ValueError("Table '%s' already exists." % self.name) elif self.if_exists == 'replace': self.pd_sql.drop_table(self.name, self.schema) self._execute_create() elif self.if_exists == 'append': pass else: raise ValueError( "'{0}' is not valid for if_exists".format(self.if_exists)) else: self._execute_create() def insert_statement(self): return self.table.insert() def insert_data(self): if self.index is not None: temp = self.frame.copy() temp.index.names = self.index try: temp.reset_index(inplace=True) except ValueError as err: raise ValueError( "duplicate name in index/columns: {0}".format(err)) else: temp = self.frame column_names = list(map(text_type, temp.columns)) ncols = len(column_names) data_list = [None] * ncols blocks = temp._data.blocks for i in range(len(blocks)): b = blocks[i] if b.is_datetime: # convert to microsecond resolution so this yields # datetime.datetime d = b.values.astype('M8[us]').astype(object) else: d = np.array(b.get_values(), dtype=object) # replace NaN with None if b._can_hold_na: mask = isna(d) d[mask] = None for col_loc, col in zip(b.mgr_locs, d): data_list[col_loc] = col return column_names, data_list def _execute_insert(self, conn, keys, data_iter): data = [dict((k, v) for k, v in zip(keys, row)) for row in data_iter] conn.execute(self.insert_statement(), data) def insert(self, chunksize=None): keys, data_list = self.insert_data() nrows = len(self.frame) if nrows == 0: return if chunksize is None: chunksize = nrows elif chunksize == 0: raise ValueError('chunksize argument should be non-zero') chunks = int(nrows / chunksize) + 1 with self.pd_sql.run_transaction() as conn: for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, nrows) if start_i >= end_i: break chunk_iter = zip(*[arr[start_i:end_i] for arr in data_list]) self._execute_insert(conn, keys, chunk_iter) def _query_iterator(self, result, chunksize, columns, coerce_float=True, parse_dates=None): """Return generator through chunked result set""" while True: data = result.fetchmany(chunksize) if not data: break else: self.frame = DataFrame.from_records( data, columns=columns, coerce_float=coerce_float) self._harmonize_columns(parse_dates=parse_dates) if self.index is not None: self.frame.set_index(self.index, inplace=True) yield self.frame def read(self, coerce_float=True, parse_dates=None, columns=None, chunksize=None): if columns is not None and len(columns) > 0: from sqlalchemy import select cols = [self.table.c[n] for n in columns] if self.index is not None: [cols.insert(0, self.table.c[idx]) for idx in self.index[::-1]] sql_select = select(cols) else: sql_select = self.table.select() result = self.pd_sql.execute(sql_select) column_names = result.keys() if chunksize is not None: return self._query_iterator(result, chunksize, column_names, coerce_float=coerce_float, parse_dates=parse_dates) else: data = result.fetchall() self.frame = DataFrame.from_records( data, columns=column_names, coerce_float=coerce_float) self._harmonize_columns(parse_dates=parse_dates) if self.index is not None: self.frame.set_index(self.index, inplace=True) return self.frame def _index_name(self, index, index_label): # for writing: index=True to include index in sql table if index is True: nlevels = self.frame.index.nlevels # if index_label is specified, set this as index name(s) if index_label is not None: if not isinstance(index_label, list): index_label = [index_label] if len(index_label) != nlevels: raise ValueError( "Length of 'index_label' should match number of " "levels, which is {0}".format(nlevels)) else: return index_label # return the used column labels for the index columns if (nlevels == 1 and 'index' not in self.frame.columns and self.frame.index.name is None): return ['index'] else: return [l if l is not None else "level_{0}".format(i) for i, l in enumerate(self.frame.index.names)] # for reading: index=(list of) string to specify column to set as index elif isinstance(index, string_types): return [index] elif isinstance(index, list): return index else: return None def _get_column_names_and_types(self, dtype_mapper): column_names_and_types = [] if self.index is not None: for i, idx_label in enumerate(self.index): idx_type = dtype_mapper( self.frame.index._get_level_values(i)) column_names_and_types.append((text_type(idx_label), idx_type, True)) column_names_and_types += [ (text_type(self.frame.columns[i]), dtype_mapper(self.frame.iloc[:, i]), False) for i in range(len(self.frame.columns)) ] return column_names_and_types def _create_table_setup(self): from sqlalchemy import Table, Column, PrimaryKeyConstraint column_names_and_types = \ self._get_column_names_and_types(self._sqlalchemy_type) columns = [Column(name, typ, index=is_index) for name, typ, is_index in column_names_and_types] if self.keys is not None: if not is_list_like(self.keys): keys = [self.keys] else: keys = self.keys pkc = PrimaryKeyConstraint(*keys, name=self.name + '_pk') columns.append(pkc) schema = self.schema or self.pd_sql.meta.schema # At this point, attach to new metadata, only attach to self.meta # once table is created. from sqlalchemy.schema import MetaData meta = MetaData(self.pd_sql, schema=schema) return Table(self.name, meta, *columns, schema=schema) def _harmonize_columns(self, parse_dates=None): """ Make the DataFrame's column types align with the SQL table column types. Need to work around limited NA value support. Floats are always fine, ints must always be floats if there are Null values. Booleans are hard because converting bool column with None replaces all Nones with false. Therefore only convert bool if there are no NA values. Datetimes should already be converted to np.datetime64 if supported, but here we also force conversion if required """ # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] if not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] for sql_col in self.table.columns: col_name = sql_col.name try: df_col = self.frame[col_name] # the type the dataframe column should have col_type = self._get_dtype(sql_col.type) if (col_type is datetime or col_type is date or col_type is DatetimeTZDtype): # Convert tz-aware Datetime SQL columns to UTC utc = col_type is DatetimeTZDtype self.frame[col_name] = _handle_date_column(df_col, utc=utc) elif col_type is float: # floats support NA, can always convert! self.frame[col_name] = df_col.astype(col_type, copy=False) elif len(df_col) == df_col.count(): # No NA values, can convert ints and bools if col_type is np.dtype('int64') or col_type is bool: self.frame[col_name] = df_col.astype( col_type, copy=False) # Handle date parsing if col_name in parse_dates: try: fmt = parse_dates[col_name] except TypeError: fmt = None self.frame[col_name] = _handle_date_column( df_col, format=fmt) except KeyError: pass # this column not in results def _get_notna_col_dtype(self, col): """ Infer datatype of the Series col. In case the dtype of col is 'object' and it contains NA values, this infers the datatype of the not-NA values. Needed for inserting typed data containing NULLs, GH8778. """ col_for_inference = col if col.dtype == 'object': notnadata = col[~isna(col)] if len(notnadata): col_for_inference = notnadata return lib.infer_dtype(col_for_inference) def _sqlalchemy_type(self, col): dtype = self.dtype or {} if col.name in dtype: return self.dtype[col.name] col_type = self._get_notna_col_dtype(col) from sqlalchemy.types import (BigInteger, Integer, Float, Text, Boolean, DateTime, Date, Time) if col_type == 'datetime64' or col_type == 'datetime': try: tz = col.tzinfo # noqa return DateTime(timezone=True) except: return DateTime if col_type == 'timedelta64': warnings.warn("the 'timedelta' type is not supported, and will be " "written as integer values (ns frequency) to the " "database.", UserWarning, stacklevel=8) return BigInteger elif col_type == 'floating': if col.dtype == 'float32': return Float(precision=23) else: return Float(precision=53) elif col_type == 'integer': if col.dtype == 'int32': return Integer else: return BigInteger elif col_type == 'boolean': return Boolean elif col_type == 'date': return Date elif col_type == 'time': return Time elif col_type == 'complex': raise ValueError('Complex datatypes not supported') return Text def _get_dtype(self, sqltype): from sqlalchemy.types import (Integer, Float, Boolean, DateTime, Date, TIMESTAMP) if isinstance(sqltype, Float): return float elif isinstance(sqltype, Integer): # TODO: Refine integer size. return np.dtype('int64') elif isinstance(sqltype, TIMESTAMP): # we have a timezone capable type if not sqltype.timezone: return datetime return DatetimeTZDtype elif isinstance(sqltype, DateTime): # Caution: np.datetime64 is also a subclass of np.number. return datetime elif isinstance(sqltype, Date): return date elif isinstance(sqltype, Boolean): return bool return object class PandasSQL(PandasObject): """ Subclasses Should define read_sql and to_sql """ def read_sql(self, *args, **kwargs): raise ValueError("PandasSQL must be created with an SQLAlchemy " "connectable or sqlite connection") def to_sql(self, *args, **kwargs): raise ValueError("PandasSQL must be created with an SQLAlchemy " "connectable or sqlite connection") class SQLDatabase(PandasSQL): """ This class enables convertion between DataFrame and SQL databases using SQLAlchemy to handle DataBase abstraction Parameters ---------- engine : SQLAlchemy connectable Connectable to connect with the database. Using SQLAlchemy makes it possible to use any DB supported by that library. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If None, use default schema (default). meta : SQLAlchemy MetaData object, default None If provided, this MetaData object is used instead of a newly created. This allows to specify database flavor specific arguments in the MetaData object. """ def __init__(self, engine, schema=None, meta=None): self.connectable = engine if not meta: from sqlalchemy.schema import MetaData meta = MetaData(self.connectable, schema=schema) self.meta = meta @contextmanager def run_transaction(self): with self.connectable.begin() as tx: if hasattr(tx, 'execute'): yield tx else: yield self.connectable def execute(self, *args, **kwargs): """Simple passthrough to SQLAlchemy connectable""" return self.connectable.execute(*args, **kwargs) def read_table(self, table_name, index_col=None, coerce_float=True, parse_dates=None, columns=None, schema=None, chunksize=None): """Read SQL database table into a DataFrame. Parameters ---------- table_name : string Name of SQL table in database index_col : string, optional, default: None Column to set as index coerce_float : boolean, default True Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. This can result in loss of precision. parse_dates : list or dict, default: None - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg}``, where the arg corresponds to the keyword arguments of :func:`pandas.to_datetime`. Especially useful with databases without native Datetime support, such as SQLite columns : list, default: None List of column names to select from sql table schema : string, default None Name of SQL schema in database to query (if database flavor supports this). If specified, this overwrites the default schema of the SQLDatabase object. chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame See also -------- pandas.read_sql_table SQLDatabase.read_query """ table = SQLTable(table_name, self, index=index_col, schema=schema) return table.read(coerce_float=coerce_float, parse_dates=parse_dates, columns=columns, chunksize=chunksize) @staticmethod def _query_iterator(result, chunksize, columns, index_col=None, coerce_float=True, parse_dates=None): """Return generator through chunked result set""" while True: data = result.fetchmany(chunksize) if not data: break else: yield _wrap_result(data, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) def read_query(self, sql, index_col=None, coerce_float=True, parse_dates=None, params=None, chunksize=None): """Read SQL query into a DataFrame. Parameters ---------- sql : string SQL query to be executed index_col : string, optional, default: None Column name to use as index for the returned DataFrame object. coerce_float : boolean, default True Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets params : list, tuple or dict, optional, default: None List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'} parse_dates : list or dict, default: None - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. Returns ------- DataFrame See also -------- read_sql_table : Read SQL database table into a DataFrame read_sql """ args = _convert_params(sql, params) result = self.execute(*args) columns = result.keys() if chunksize is not None: return self._query_iterator(result, chunksize, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) else: data = result.fetchall() frame = _wrap_result(data, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) return frame read_sql = read_query def to_sql(self, frame, name, if_exists='fail', index=True, index_label=None, schema=None, chunksize=None, dtype=None): """ Write records stored in a DataFrame to a SQL database. Parameters ---------- frame : DataFrame name : string Name of SQL table if_exists : {'fail', 'replace', 'append'}, default 'fail' - fail: If table exists, do nothing. - replace: If table exists, drop it, recreate it, and insert data. - append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column index_label : string or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. schema : string, default None Name of SQL schema in database to write to (if database flavor supports this). If specified, this overwrites the default schema of the SQLDatabase object. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : single type or dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type. If all columns are of the same type, one single value can be used. """ if dtype and not is_dict_like(dtype): dtype = {col_name: dtype for col_name in frame} if dtype is not None: from sqlalchemy.types import to_instance, TypeEngine for col, my_type in dtype.items(): if not isinstance(to_instance(my_type), TypeEngine): raise ValueError('The type of %s is not a SQLAlchemy ' 'type ' % col) table = SQLTable(name, self, frame=frame, index=index, if_exists=if_exists, index_label=index_label, schema=schema, dtype=dtype) table.create() table.insert(chunksize) if (not name.isdigit() and not name.islower()): # check for potentially case sensitivity issues (GH7815) # Only check when name is not a number and name is not lower case engine = self.connectable.engine with self.connectable.connect() as conn: table_names = engine.table_names( schema=schema or self.meta.schema, connection=conn, ) if name not in table_names: msg = ( "The provided table name '{0}' is not found exactly as " "such in the database after writing the table, possibly " "due to case sensitivity issues. Consider using lower " "case table names." ).format(name) warnings.warn(msg, UserWarning) @property def tables(self): return self.meta.tables def has_table(self, name, schema=None): return self.connectable.run_callable( self.connectable.dialect.has_table, name, schema or self.meta.schema, ) def get_table(self, table_name, schema=None): schema = schema or self.meta.schema if schema: tbl = self.meta.tables.get('.'.join([schema, table_name])) else: tbl = self.meta.tables.get(table_name) # Avoid casting double-precision floats into decimals from sqlalchemy import Numeric for column in tbl.columns: if isinstance(column.type, Numeric): column.type.asdecimal = False return tbl def drop_table(self, table_name, schema=None): schema = schema or self.meta.schema if self.has_table(table_name, schema): self.meta.reflect(only=[table_name], schema=schema) self.get_table(table_name, schema).drop() self.meta.clear() def _create_sql_schema(self, frame, table_name, keys=None, dtype=None): table = SQLTable(table_name, self, frame=frame, index=False, keys=keys, dtype=dtype) return str(table.sql_schema()) # ---- SQL without SQLAlchemy --- # sqlite-specific sql strings and handler class # dictionary used for readability purposes _SQL_TYPES = { 'string': 'TEXT', 'floating': 'REAL', 'integer': 'INTEGER', 'datetime': 'TIMESTAMP', 'date': 'DATE', 'time': 'TIME', 'boolean': 'INTEGER', } def _get_unicode_name(name): try: uname = text_type(name).encode("utf-8", "strict").decode("utf-8") except UnicodeError: raise ValueError("Cannot convert identifier to UTF-8: '%s'" % name) return uname def _get_valid_sqlite_name(name): # See http://stackoverflow.com/questions/6514274/how-do-you-escape-strings\ # -for-sqlite-table-column-names-in-python # Ensure the string can be encoded as UTF-8. # Ensure the string does not include any NUL characters. # Replace all " with "". # Wrap the entire thing in double quotes. uname = _get_unicode_name(name) if not len(uname): raise ValueError("Empty table or column name specified") nul_index = uname.find("\x00") if nul_index >= 0: raise ValueError('SQLite identifier cannot contain NULs') return '"' + uname.replace('"', '""') + '"' _SAFE_NAMES_WARNING = ("The spaces in these column names will not be changed. " "In pandas versions < 0.14, spaces were converted to " "underscores.") class SQLiteTable(SQLTable): """ Patch the SQLTable for fallback support. Instead of a table variable just use the Create Table statement. """ def __init__(self, *args, **kwargs): # GH 8341 # register an adapter callable for datetime.time object import sqlite3 # this will transform time(12,34,56,789) into '12:34:56.000789' # (this is what sqlalchemy does) sqlite3.register_adapter(time, lambda _: _.strftime("%H:%M:%S.%f")) super(SQLiteTable, self).__init__(*args, **kwargs) def sql_schema(self): return str(";\n".join(self.table)) def _execute_create(self): with self.pd_sql.run_transaction() as conn: for stmt in self.table: conn.execute(stmt) def insert_statement(self): names = list(map(text_type, self.frame.columns)) wld = '?' # wildcard char escape = _get_valid_sqlite_name if self.index is not None: [names.insert(0, idx) for idx in self.index[::-1]] bracketed_names = [escape(column) for column in names] col_names = ','.join(bracketed_names) wildcards = ','.join([wld] * len(names)) insert_statement = 'INSERT INTO %s (%s) VALUES (%s)' % ( escape(self.name), col_names, wildcards) return insert_statement def _execute_insert(self, conn, keys, data_iter): data_list = list(data_iter) conn.executemany(self.insert_statement(), data_list) def _create_table_setup(self): """ Return a list of SQL statement that create a table reflecting the structure of a DataFrame. The first entry will be a CREATE TABLE statement while the rest will be CREATE INDEX statements """ column_names_and_types = \ self._get_column_names_and_types(self._sql_type_name) pat = re.compile('\s+') column_names = [col_name for col_name, _, _ in column_names_and_types] if any(map(pat.search, column_names)): warnings.warn(_SAFE_NAMES_WARNING, stacklevel=6) escape = _get_valid_sqlite_name create_tbl_stmts = [escape(cname) + ' ' + ctype for cname, ctype, _ in column_names_and_types] if self.keys is not None and len(self.keys): if not is_list_like(self.keys): keys = [self.keys] else: keys = self.keys cnames_br = ", ".join([escape(c) for c in keys]) create_tbl_stmts.append( "CONSTRAINT {tbl}_pk PRIMARY KEY ({cnames_br})".format( tbl=self.name, cnames_br=cnames_br)) create_stmts = ["CREATE TABLE " + escape(self.name) + " (\n" + ',\n '.join(create_tbl_stmts) + "\n)"] ix_cols = [cname for cname, _, is_index in column_names_and_types if is_index] if len(ix_cols): cnames = "_".join(ix_cols) cnames_br = ",".join([escape(c) for c in ix_cols]) create_stmts.append( "CREATE INDEX " + escape("ix_" + self.name + "_" + cnames) + "ON " + escape(self.name) + " (" + cnames_br + ")") return create_stmts def _sql_type_name(self, col): dtype = self.dtype or {} if col.name in dtype: return dtype[col.name] col_type = self._get_notna_col_dtype(col) if col_type == 'timedelta64': warnings.warn("the 'timedelta' type is not supported, and will be " "written as integer values (ns frequency) to the " "database.", UserWarning, stacklevel=8) col_type = "integer" elif col_type == "datetime64": col_type = "datetime" elif col_type == "empty": col_type = "string" elif col_type == "complex": raise ValueError('Complex datatypes not supported') if col_type not in _SQL_TYPES: col_type = "string" return _SQL_TYPES[col_type] class SQLiteDatabase(PandasSQL): """ Version of SQLDatabase to support sqlite connections (fallback without sqlalchemy). This should only be used internally. Parameters ---------- con : sqlite connection object """ def __init__(self, con, flavor=None, is_cursor=False): _validate_flavor_parameter(flavor) self.is_cursor = is_cursor self.con = con @contextmanager def run_transaction(self): cur = self.con.cursor() try: yield cur self.con.commit() except: self.con.rollback() raise finally: cur.close() def execute(self, *args, **kwargs): if self.is_cursor: cur = self.con else: cur = self.con.cursor() try: if kwargs: cur.execute(*args, **kwargs) else: cur.execute(*args) return cur except Exception as exc: try: self.con.rollback() except Exception: # pragma: no cover ex = DatabaseError("Execution failed on sql: %s\n%s\nunable" " to rollback" % (args[0], exc)) raise_with_traceback(ex) ex = DatabaseError( "Execution failed on sql '%s': %s" % (args[0], exc)) raise_with_traceback(ex) @staticmethod def _query_iterator(cursor, chunksize, columns, index_col=None, coerce_float=True, parse_dates=None): """Return generator through chunked result set""" while True: data = cursor.fetchmany(chunksize) if type(data) == tuple: data = list(data) if not data: cursor.close() break else: yield _wrap_result(data, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) def read_query(self, sql, index_col=None, coerce_float=True, params=None, parse_dates=None, chunksize=None): args = _convert_params(sql, params) cursor = self.execute(*args) columns = [col_desc[0] for col_desc in cursor.description] if chunksize is not None: return self._query_iterator(cursor, chunksize, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) else: data = self._fetchall_as_list(cursor) cursor.close() frame = _wrap_result(data, columns, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) return frame def _fetchall_as_list(self, cur): result = cur.fetchall() if not isinstance(result, list): result = list(result) return result def to_sql(self, frame, name, if_exists='fail', index=True, index_label=None, schema=None, chunksize=None, dtype=None): """ Write records stored in a DataFrame to a SQL database. Parameters ---------- frame: DataFrame name: name of SQL table if_exists: {'fail', 'replace', 'append'}, default 'fail' fail: If table exists, do nothing. replace: If table exists, drop it, recreate it, and insert data. append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column index_label : string or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. schema : string, default None Ignored parameter included for compatability with SQLAlchemy version of ``to_sql``. chunksize : int, default None If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once. dtype : single type or dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a string. If all columns are of the same type, one single value can be used. """ if dtype and not is_dict_like(dtype): dtype = {col_name: dtype for col_name in frame} if dtype is not None: for col, my_type in dtype.items(): if not isinstance(my_type, str): raise ValueError('%s (%s) not a string' % ( col, str(my_type))) table = SQLiteTable(name, self, frame=frame, index=index, if_exists=if_exists, index_label=index_label, dtype=dtype) table.create() table.insert(chunksize) def has_table(self, name, schema=None): # TODO(wesm): unused? # escape = _get_valid_sqlite_name # esc_name = escape(name) wld = '?' query = ("SELECT name FROM sqlite_master " "WHERE type='table' AND name=%s;") % wld return len(self.execute(query, [name, ]).fetchall()) > 0 def get_table(self, table_name, schema=None): return None # not supported in fallback mode def drop_table(self, name, schema=None): drop_sql = "DROP TABLE %s" % _get_valid_sqlite_name(name) self.execute(drop_sql) def _create_sql_schema(self, frame, table_name, keys=None, dtype=None): table = SQLiteTable(table_name, self, frame=frame, index=False, keys=keys, dtype=dtype) return str(table.sql_schema()) def get_schema(frame, name, flavor=None, keys=None, con=None, dtype=None): """ Get the SQL db table schema for the given frame. Parameters ---------- frame : DataFrame name : string name of SQL table keys : string or sequence, default: None columns to use a primary key con: an open SQL database connection object or a SQLAlchemy connectable Using SQLAlchemy makes it possible to use any DB supported by that library, default: None If a DBAPI2 object, only sqlite3 is supported. flavor : 'sqlite', default None .. deprecated:: 0.19.0 'sqlite' is the only supported option if SQLAlchemy is not installed. dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. """ pandas_sql = pandasSQL_builder(con=con, flavor=flavor) return pandas_sql._create_sql_schema(frame, name, keys=keys, dtype=dtype)
bsd-3-clause
jenshnielsen/basemap
examples/maskoceans.py
4
1922
from mpl_toolkits.basemap import Basemap, shiftgrid, maskoceans, interp import numpy as np import matplotlib.pyplot as plt # example showing how to mask out 'wet' areas on a contour or pcolor plot. topodatin = np.loadtxt('etopo20data.gz') lonsin = np.loadtxt('etopo20lons.gz') latsin = np.loadtxt('etopo20lats.gz') # shift data so lons go from -180 to 180 instead of 20 to 380. topoin,lons1 = shiftgrid(180.,topodatin,lonsin,start=False) lats1 = latsin fig=plt.figure() # setup basemap m=Basemap(resolution='l',projection='lcc',lon_0=-100,lat_0=40,width=8.e6,height=6.e6) lons, lats = np.meshgrid(lons1,lats1) x, y = m(lons, lats) # interpolate land/sea mask to topo grid, mask ocean values. # output may look 'blocky' near coastlines, since data is at much # lower resolution than land/sea mask. topo = maskoceans(lons, lats, topoin) # make contour plot (ocean values will be masked) CS=m.contourf(x,y,topo,np.arange(-300,3001,50),cmap=plt.cm.jet,extend='both') #im=m.pcolormesh(x,y,topo,cmap=plt.cm.jet,vmin=-300,vmax=3000) # draw coastlines. m.drawcoastlines() plt.title('ETOPO data with marine areas masked (original grid)') fig=plt.figure() # interpolate topo data to higher resolution grid (to better match # the land/sea mask). Output looks less 'blocky' near coastlines. nlats = 3*topoin.shape[0] nlons = 3*topoin.shape[1] lons = np.linspace(-180,180,nlons) lats = np.linspace(-90,90,nlats) lons, lats = np.meshgrid(lons, lats) x, y = m(lons, lats) topo = interp(topoin,lons1,lats1,lons,lats,order=1) # interpolate land/sea mask to topo grid, mask ocean values. topo = maskoceans(lons, lats, topo) # make contour plot (ocean values will be masked) CS=m.contourf(x,y,topo,np.arange(-300,3001,50),cmap=plt.cm.jet,extend='both') #im=m.pcolormesh(x,y,topo,cmap=plt.cm.jet,vmin=-300,vmax=3000) # draw coastlines. m.drawcoastlines() plt.title('ETOPO data with marine areas masked (data on finer grid)') plt.show()
gpl-2.0