code
stringlengths
17
6.64M
def _pil_interp(method): if (method == 'bicubic'): return Image.BICUBIC elif (method == 'lanczos'): return Image.LANCZOS elif (method == 'hamming'): return Image.HAMMING else: return Image.BILINEAR
class RandomResizedCropAndInterpolationWithTwoPic(): 'Crop the given PIL Image to random size and aspect ratio with random interpolation.\n\n A crop of random size (default: of 0.08 to 1.0) of the original size and a random\n aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop\n is finally resized to given size.\n This is popularly used to train the Inception networks.\n\n Args:\n size: expected output size of each edge\n scale: range of size of the origin size cropped\n ratio: range of aspect ratio of the origin aspect ratio cropped\n interpolation: Default: PIL.Image.BILINEAR\n ' def __init__(self, size, second_size=None, scale=(0.08, 1.0), ratio=((3.0 / 4.0), (4.0 / 3.0)), interpolation='bilinear', second_interpolation='lanczos'): if isinstance(size, tuple): self.size = size else: self.size = (size, size) if (second_size is not None): if isinstance(second_size, tuple): self.second_size = second_size else: self.second_size = (second_size, second_size) else: self.second_size = None if ((scale[0] > scale[1]) or (ratio[0] > ratio[1])): warnings.warn('range should be of kind (min, max)') if (interpolation == 'random'): self.interpolation = _RANDOM_INTERPOLATION else: self.interpolation = _pil_interp(interpolation) self.second_interpolation = _pil_interp(second_interpolation) self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): 'Get parameters for ``crop`` for a random sized crop.\n\n Args:\n img (PIL Image): Image to be cropped.\n scale (tuple): range of size of the origin size cropped\n ratio (tuple): range of aspect ratio of the origin aspect ratio cropped\n\n Returns:\n tuple: params (i, j, h, w) to be passed to ``crop`` for a random\n sized crop.\n ' area = (img.size[0] * img.size[1]) for attempt in range(10): target_area = (random.uniform(*scale) * area) log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt((target_area * aspect_ratio)))) h = int(round(math.sqrt((target_area / aspect_ratio)))) if ((w <= img.size[0]) and (h <= img.size[1])): i = random.randint(0, (img.size[1] - h)) j = random.randint(0, (img.size[0] - w)) return (i, j, h, w) in_ratio = (img.size[0] / img.size[1]) if (in_ratio < min(ratio)): w = img.size[0] h = int(round((w / min(ratio)))) elif (in_ratio > max(ratio)): h = img.size[1] w = int(round((h * max(ratio)))) else: w = img.size[0] h = img.size[1] i = ((img.size[1] - h) // 2) j = ((img.size[0] - w) // 2) return (i, j, h, w) def __call__(self, img): '\n Args:\n img (PIL Image): Image to be cropped and resized.\n\n Returns:\n PIL Image: Randomly cropped and resized image.\n ' (i, j, h, w) = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation if (self.second_size is None): return F.resized_crop(img, i, j, h, w, self.size, interpolation) else: return (F.resized_crop(img, i, j, h, w, self.size, interpolation), F.resized_crop(img, i, j, h, w, self.second_size, self.second_interpolation)) def __repr__(self): if isinstance(self.interpolation, (tuple, list)): interpolate_str = ' '.join([_pil_interpolation_to_str[x] for x in self.interpolation]) else: interpolate_str = _pil_interpolation_to_str[self.interpolation] format_string = (self.__class__.__name__ + '(size={0}'.format(self.size)) format_string += ', scale={0}'.format(tuple((round(s, 4) for s in self.scale))) format_string += ', ratio={0}'.format(tuple((round(r, 4) for r in self.ratio))) format_string += ', interpolation={0}'.format(interpolate_str) if (self.second_size is not None): format_string += ', second_size={0}'.format(self.second_size) format_string += ', second_interpolation={0}'.format(_pil_interpolation_to_str[self.second_interpolation]) format_string += ')' return format_string
def convert_to_list(y_aspect, y_sentiment, mask): y_aspect_list = [] y_sentiment_list = [] for (seq_aspect, seq_sentiment, seq_mask) in zip(y_aspect, y_sentiment, mask): l_a = [] l_s = [] for (label_dist_a, label_dist_s, m) in zip(seq_aspect, seq_sentiment, seq_mask): if (m == 0): break else: l_a.append(np.argmax(label_dist_a)) if (not np.any(label_dist_s)): l_s.append(0) else: l_s.append((np.argmax(label_dist_s) + 1)) y_aspect_list.append(l_a) y_sentiment_list.append(l_s) return (y_aspect_list, y_sentiment_list)
def score(true_aspect, predict_aspect, true_sentiment, predict_sentiment, train_op): if train_op: begin = 3 inside = 4 else: begin = 1 inside = 2 pred_count = {'pos': 0, 'neg': 0, 'neu': 0} rel_count = {'pos': 0, 'neg': 0, 'neu': 0} correct_count = {'pos': 0, 'neg': 0, 'neu': 0} total_count = {'pos': 0, 'neg': 0, 'neu': 0} polarity_map = {1: 'pos', 2: 'neg', 3: 'neu'} predicted_conf = 0 (correct, predicted, relevant) = (0, 0, 0) for i in range(len(true_aspect)): true_seq = true_aspect[i] predict = predict_aspect[i] for num in range(len(true_seq)): if (true_seq[num] == begin): relevant += 1 if (not train_op): if (true_sentiment[i][num] != 0): total_count[polarity_map[true_sentiment[i][num]]] += 1 if (predict[num] == begin): match = True for j in range((num + 1), len(true_seq)): if ((true_seq[j] == inside) and (predict[j] == inside)): continue elif ((true_seq[j] != inside) and (predict[j] != inside)): break else: match = False break if match: correct += 1 if (not train_op): if (true_sentiment[i][num] != 0): rel_count[polarity_map[true_sentiment[i][num]]] += 1 pred_count[polarity_map[predict_sentiment[i][num]]] += 1 if (true_sentiment[i][num] == predict_sentiment[i][num]): correct_count[polarity_map[true_sentiment[i][num]]] += 1 else: predicted_conf += 1 for pred in predict: if (pred == begin): predicted += 1 p_aspect = (correct / (predicted + 1e-06)) r_aspect = (correct / (relevant + 1e-06)) f_aspect = (((2 * p_aspect) * r_aspect) / ((p_aspect + r_aspect) + 1e-06)) (acc_s, f_s, f_absa) = (0, 0, 0) if (not train_op): num_correct_overall = ((correct_count['pos'] + correct_count['neg']) + correct_count['neu']) num_correct_aspect = ((rel_count['pos'] + rel_count['neg']) + rel_count['neu']) num_total = ((total_count['pos'] + total_count['neg']) + total_count['neu']) acc_s = (num_correct_overall / (num_correct_aspect + 1e-06)) p_pos = (correct_count['pos'] / (pred_count['pos'] + 1e-06)) r_pos = (correct_count['pos'] / (rel_count['pos'] + 1e-06)) p_neg = (correct_count['neg'] / (pred_count['neg'] + 1e-06)) r_neg = (correct_count['neg'] / (rel_count['neg'] + 1e-06)) p_neu = (correct_count['neu'] / (pred_count['neu'] + 1e-06)) r_neu = (correct_count['neu'] / (rel_count['neu'] + 1e-06)) pr_s = (((p_pos + p_neg) + p_neu) / 3.0) re_s = (((r_pos + r_neg) + r_neu) / 3.0) f_s = (((2 * pr_s) * re_s) / (pr_s + re_s)) precision_absa = (num_correct_overall / ((predicted + 1e-06) - predicted_conf)) recall_absa = (num_correct_overall / (num_total + 1e-06)) f_absa = (((2 * precision_absa) * recall_absa) / ((precision_absa + recall_absa) + 1e-06)) return (f_aspect, acc_s, f_s, f_absa)
def get_metric(y_true_aspect, y_predict_aspect, y_true_sentiment, y_predict_sentiment, mask, train_op): (f_a, f_o) = (0, 0) (true_aspect, true_sentiment) = convert_to_list(y_true_aspect, y_true_sentiment, mask) (predict_aspect, predict_sentiment) = convert_to_list(y_predict_aspect, y_predict_sentiment, mask) (f_aspect, acc_s, f_s, f_absa) = score(true_aspect, predict_aspect, true_sentiment, predict_sentiment, 0) if train_op: (f_opinion, _, _, _) = score(true_aspect, predict_aspect, true_sentiment, predict_sentiment, 1) return (f_aspect, f_opinion, acc_s, f_s, f_absa)
def get_optimizer(args): clipvalue = 0 clipnorm = 10 if (args.algorithm == 'rmsprop'): optimizer = opt.RMSprop(lr=0.0001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif (args.algorithm == 'sgd'): optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) elif (args.algorithm == 'adagrad'): optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif (args.algorithm == 'adadelta'): optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue) elif (args.algorithm == 'adam'): optimizer = opt.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) elif (args.algorithm == 'adamax'): optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue) return optimizer
def child_model_params(num_features, num_layers, max_units): c = (((num_features * num_layers) * max_units) + (((max_units * num_layers) ** 2) / 2)) return c
def controller_search_space(input_blocks, output_blocks, num_layers, num_choices_per_layer): s = (np.log10(num_choices_per_layer) * num_layers) s += (((np.log10(2) * (num_layers - 1)) * num_layers) / 2) s += ((np.log10(input_blocks) * num_layers) + (np.log10(output_blocks) * num_layers)) return s
def unpack_data(data, unroll_generator_x=False, unroll_generator_y=False, callable_kwargs=None): is_generator = False unroll_generator = (unroll_generator_x or unroll_generator_y) if (type(data) in (tuple, list)): (x, y) = (data[0], data[1]) elif isinstance(data, tf.keras.utils.Sequence): x = data y = None is_generator = True elif hasattr(data, '__next__'): x = data y = None is_generator = True elif callable(data): callable_kwargs = (callable_kwargs or {}) (x, y) = unpack_data(data=data(**callable_kwargs), unroll_generator_x=unroll_generator_x, unroll_generator_y=unroll_generator_y) else: raise Exception(('cannot unpack data of type: %s' % type(data))) if (is_generator and unroll_generator): gen = (data if hasattr(data, '__next__') else iter(data)) d_ = [d for d in zip(*gen)] if (unroll_generator_x ^ unroll_generator_y): if hasattr(data, 'shuffle'): assert (data.shuffle == False) x = (np.concatenate(d_[0], axis=0) if unroll_generator_x else data) y = (np.concatenate(d_[1], axis=0) if unroll_generator_y else None) return (x, y)
def batchify(x, y=None, batch_size=None, shuffle=True, drop_remainder=True): if (not (type(x) is list)): x = [x] if ((y is not None) and (type(y) is not list)): y = [y] n = len(x[0]) idx = np.arange(n) if (batch_size is None): batch_size = n if shuffle: idx = np.random.choice(idx, n, replace=False) while True: for i in range(0, n, batch_size): tmp_x = [x_[idx[i:(i + batch_size)]] for x_ in x] if (drop_remainder and (tmp_x[0].shape[0] != batch_size)): continue if (y is not None): tmp_y = [y_[idx[i:(i + batch_size)]] for y_ in y] (yield (tmp_x, tmp_y)) else: (yield tmp_x)
def batchify_infer(x, y=None, batch_size=None, shuffle=True, drop_remainder=True): if (not (type(x) is list)): x = [x] if ((y is not None) and (type(y) is not list)): y = [y] n = len(x[0]) idx = np.arange(n) if (batch_size is None): batch_size = n if shuffle: idx = np.random.choice(idx, n, replace=False) for i in range(0, n, batch_size): tmp_x = [x_[idx[i:(i + batch_size)]] for x_ in x] if (drop_remainder and (tmp_x[0].shape[0] != batch_size)): continue if (y is not None): tmp_y = [y_[idx[i:(i + batch_size)]] for y_ in y] (yield (tmp_x, tmp_y)) else: (yield tmp_x)
def numpy_shuffle_in_unison(List): rng_state = np.random.get_state() for x in List: np.random.set_state(rng_state) np.random.shuffle(x)
def get_tf_loss(loss, y_true, y_pred): loss = loss.lower() if ((loss == 'mse') or (loss == 'mean_squared_error')): loss_ = tf.reduce_mean(tf.square((y_true - y_pred))) elif (loss == 'categorical_crossentropy'): loss_ = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true, y_pred)) elif (loss == 'binary_crossentropy'): loss_ = tf.reduce_mean(tf.keras.losses.binary_crossentropy(y_true, y_pred)) else: raise Exception(('cannot understand string loss: %s' % loss)) return loss_
def get_tf_metrics(m): if callable(m): return m elif (m.lower() == 'mae'): return tf.keras.metrics.MAE elif (m.lower() == 'mse'): return tf.keras.metrics.MSE elif (m.lower() == 'acc'): def acc(y_true, y_pred): return tf.reduce_mean(y_true) return acc elif (m.lower() == 'auc'): return tf.keras.metrics.AUC else: raise Exception(('cannot understand metric type: %s' % m))
def get_tf_layer(fn_str): fn_str = fn_str.lower() if (fn_str == 'relu'): return tf.nn.relu elif (fn_str == 'linear'): return (lambda x: x) elif (fn_str == 'softmax'): return tf.nn.softmax elif (fn_str == 'sigmoid'): return tf.nn.sigmoid elif (fn_str == 'leaky_relu'): return tf.nn.leaky_relu elif (fn_str == 'elu'): return tf.nn.elu elif (fn_str == 'tanh'): return tf.nn.tanh else: raise Exception(('cannot get tensorflow layer for: %s' % fn_str))
def create_weight(name, shape, initializer=None, trainable=True, seed=None): if (initializer is None): try: initializer = tf.contrib.keras.initializers.he_normal(seed=seed) except AttributeError: initializer = tf.keras.initializers.he_normal(seed=seed) return tf.get_variable(name, shape, initializer=initializer, trainable=trainable)
def create_bias(name, shape, initializer=None): if (initializer is None): initializer = tf.constant_initializer(0.0, dtype=tf.float32) return tf.get_variable(name, shape, initializer=initializer)
def batch_norm1d(x, is_training, name='bn', decay=0.9, epsilon=1e-05, data_format='NWC'): if (data_format == 'NWC'): shape = [x.get_shape()[(- 1)]] x = tf.expand_dims(x, axis=1) sq_dim = 1 elif (data_format == 'NCW'): shape = [x.get_shape()[1]] x = tf.expand_dims(x, axis=2) sq_dim = 2 else: raise NotImplementedError('Unknown data_format {}'.format(data_format)) with tf.variable_scope(name, reuse=(False if is_training else True)): offset = tf.get_variable('offset', shape, initializer=tf.constant_initializer(0.0, dtype=tf.float32)) scale = tf.get_variable('scale', shape, initializer=tf.constant_initializer(1.0, dtype=tf.float32)) moving_mean = tf.get_variable('moving_mean', shape, trainable=False, initializer=tf.constant_initializer(0.0, dtype=tf.float32)) moving_variance = tf.get_variable('moving_variance', shape, trainable=False, initializer=tf.constant_initializer(1.0, dtype=tf.float32)) if is_training: (x, mean, variance) = tf.nn.fused_batch_norm(x, scale, offset, epsilon=epsilon, is_training=True) update_mean = moving_averages.assign_moving_average(moving_mean, mean, decay) update_variance = moving_averages.assign_moving_average(moving_variance, variance, decay) with tf.control_dependencies([update_mean, update_variance]): x = tf.identity(x) else: (x, _, _) = tf.nn.fused_batch_norm(x, scale, offset, mean=moving_mean, variance=moving_variance, epsilon=epsilon, is_training=False) x = tf.squeeze(x, axis=sq_dim) return x
def get_keras_train_ops(loss, tf_variables, optim_algo, **kwargs): assert (K.backend() == 'tensorflow') from keras.optimizers import get as get_opt opt = get_opt(optim_algo) grads = tf.gradients(loss, tf_variables) grad_var = [] no_grad_var = [] for (g, v) in zip(grads, tf_variables): if (g is None): if ('compile' in v.name.split('/')): continue no_grad_var.append(v) else: grad_var.append(v) if no_grad_var: warnings.warn((('\n' + ('=' * 80)) + ('\nWarning: the following tf.variables have no gradients and have been discarded: \n %s' % no_grad_var)), stacklevel=2) train_op = opt.get_updates(loss, grad_var) try: config = opt.get_config() except NotImplementedError: config = {'lr': None} try: learning_rate = config['lr'] except: learning_rate = config['learning_rate'] return (train_op, learning_rate, None, opt)
def count_model_params(tf_variables): num_vars = 0 for var in tf_variables: num_vars += np.prod([dim.value for dim in var.get_shape()]) return num_vars
def proximal_policy_optimization_loss(curr_prediction, curr_onehot, old_prediction, old_onehotpred, rewards, advantage, clip_val, beta=None): rewards_ = tf.squeeze(rewards, axis=1) advantage_ = tf.squeeze(advantage, axis=1) entropy = 0 r = 1 for (t, (p, onehot, old_p, old_onehot)) in enumerate(zip(curr_prediction, curr_onehot, old_prediction, old_onehotpred)): ll_t = tf.log(tf.reduce_sum((old_onehot * p))) ll_0 = tf.log(tf.reduce_sum((old_onehot * old_p))) r_t = tf.exp((ll_t - ll_0)) r = (r * r_t) entropy += (- tf.reduce_mean(tf.log(tf.reduce_sum((onehot * p), axis=1)))) surr_obj = tf.reduce_mean((tf.abs((1 / (rewards_ + 1e-08))) * tf.minimum((r * advantage_), (tf.clip_by_value(r, clip_value_min=(1 - clip_val), clip_value_max=(1 + clip_val)) * advantage_)))) if beta: return ((- surr_obj) + (beta * (- entropy))) else: return (- surr_obj)
def get_kl_divergence_n_entropy(curr_prediction, curr_onehot, old_prediction, old_onehotpred): 'compute approx\n return kl, ent\n ' kl = [] ent = [] for (t, (p, onehot, old_p, old_onehot)) in enumerate(zip(curr_prediction, curr_onehot, old_prediction, old_onehotpred)): kl.append(tf.reshape(tf.keras.metrics.kullback_leibler_divergence(old_p, p), [(- 1)])) ent.append(tf.reshape(tf.keras.backend.binary_crossentropy(onehot, p), [(- 1)])) return (tf.reduce_mean(tf.concat(kl, axis=0)), tf.reduce_mean(tf.concat(ent, axis=0)))
def lstm(x, prev_c, prev_h, w): ifog = tf.matmul(tf.concat([x, prev_h], axis=1), w) (i, f, o, g) = tf.split(ifog, 4, axis=1) i = tf.sigmoid(i) f = tf.sigmoid(f) o = tf.sigmoid(o) g = tf.tanh(g) next_c = ((i * g) + (f * prev_c)) next_h = (o * tf.tanh(next_c)) return (next_c, next_h)
def stack_lstm(x, prev_c, prev_h, w): (next_c, next_h) = ([], []) for (layer_id, (_c, _h, _w)) in enumerate(zip(prev_c, prev_h, w)): inputs = (x if (layer_id == 0) else next_h[(- 1)]) (curr_c, curr_h) = lstm(inputs, _c, _h, _w) next_c.append(curr_c) next_h.append(curr_h) return (next_c, next_h)
class BaseNetworkManager(): def __init__(self, *args, **kwargs): pass def get_rewards(self, trial, model_arc): raise NotImplementedError('Abstract method.')
class GeneralManager(BaseNetworkManager): "Manager creates child networks, train them on a dataset, and retrieve rewards.\n\n Parameters\n ----------\n train_data : tuple, string or generator\n Training data to be fed to ``keras.models.Model.fit``.\n\n validation_data : tuple, string, or generator\n Validation data. The data format is understood similarly to train_data.\n\n model_fn : amber.modeler\n A callable function to build and implement child models given an architecture sequence.\n\n reward_fn : amber.architect.rewards\n A callable function to evaluate the rewards on a trained model and the validation dataset.\n\n store_fn : amber.architect.store\n A callable function to store necessary information (such as predictions, model architectures, and a variety of\n plots etc.) for the given child model.\n\n working_dir : str\n File path for working directory.\n\n save_full_model : bool\n If true, save the full model beside the model weights. Default is False.\n\n epochs : int\n The total number of epochs to train the child model.\n\n child_batchsize : int\n The batch size for training the child model.\n\n fit_kwargs : dict or None\n Keyword arguments for model.fit\n\n predict_kwargs : dict or None\n Keyword arguments for model.predict\n\n evaluate_kwargs : dict or None\n Keyword arguments for model.evaluate\n\n verbose : bool or int\n Verbose level. 0=non-verbose, 1=verbose, 2=less verbose.\n\n kwargs : dict\n Other keyword arguments parsed.\n\n\n Attributes\n ----------\n train_data : tuple or generator\n The unpacked training data\n\n validation_data : tuple or generator\n The unpacked validation data\n\n model_fn : amber.modeler\n Reference to the callable function to build and implement child models given an architecture sequence.\n\n reward_fn : amber.architect.rewards\n Reference to the callable function to evaluate the rewards on a trained model and the validation dataset.\n\n store_fn : amber.architect.store\n Reference to the callable function to store necessary information (such as predictions, model architectures, and a variety of\n plots etc.) for the given child model.\n\n working_dir : str\n File path to working directory\n\n verbose : bool or int\n Verbose level\n\n TODO\n ------\n - Refactor the rest of attributes as private.\n - Update the description of ``train_data`` and ``validation_data`` to more flexible unpacking, once it's added::\n\n If it's tuple, expects it to be a tuple of numpy.array of\n (x,y); if it's string, expects it to be the file path to a compiled training data; if it's a generator, expects\n it yield a batch of training features and samples.\n\n " def __init__(self, train_data, validation_data, model_fn, reward_fn, store_fn, working_dir='.', save_full_model=False, epochs=5, child_batchsize=128, verbose=0, fit_kwargs=None, predict_kwargs=None, evaluate_kwargs=None, **kwargs): super(GeneralManager, self).__init__(**kwargs) self.train_data = train_data self.validation_data = validation_data self.working_dir = working_dir self.fit_kwargs = (fit_kwargs or {}) self.predict_kwargs = (predict_kwargs or {}) self.evaluate_kwargs = (evaluate_kwargs or {}) self._earlystop_patience = self.fit_kwargs.pop('earlystop_patience', 5) if (not os.path.exists(self.working_dir)): os.makedirs(self.working_dir) self.model_compile_dict = kwargs.pop('model_compile_dict', None) if (self.model_compile_dict is None): self.model_compile_dict = model_fn.model_compile_dict self.model_space = kwargs.pop('model_space', None) self.save_full_model = save_full_model self.epochs = epochs self.batchsize = child_batchsize self.verbose = verbose self.model_fn = model_fn self.reward_fn = reward_fn self.store_fn = get_store_fn(store_fn) def get_rewards(self, trial, model_arc, **kwargs): 'The reward getter for a given model architecture\n\n Parameters\n ----------\n trial : int\n An integer number indicating the trial for this architecture\n\n model_arc : list\n The list of architecture sequence\n\n Returns\n -------\n this_reward : float\n The reward signal as determined by ``reward_fn(model, val_data)``\n\n loss_and_metrics : dict\n A dictionary of auxillary information for this model, such as loss, and other metrics (as in ``tf.keras.metrics``)\n ' train_graph = tf.Graph() train_sess = tf.Session(graph=train_graph) with train_graph.as_default(), train_sess.as_default(): try: K.set_session(train_sess) except RuntimeError: assert (keras.__version__ > '2.2.5') pass model = self.model_fn(model_arc) if (model is None): assert hasattr(self.reward_fn, 'min'), ('model_fn of type %s returned a non-valid model, but the given reward_fn of type %s does not have .min() method' % (type(self.model_fn), type(self.reward_fn))) hist = None (this_reward, loss_and_metrics, reward_metrics) = self.reward_fn.min(data=self.validation_data) loss = loss_and_metrics.pop(0) loss_and_metrics = {str(self.model_compile_dict['metrics'][i]): loss_and_metrics[i] for i in range(len(loss_and_metrics))} loss_and_metrics['loss'] = loss if reward_metrics: loss_and_metrics.update(reward_metrics) else: if self.verbose: print((' Trial %i: Start training model...' % trial)) (train_x, train_y) = unpack_data(self.train_data) hist = model.fit(x=train_x, y=train_y, batch_size=(self.batchsize if (train_y is not None) else None), epochs=self.epochs, verbose=self.verbose, validation_data=self.validation_data, callbacks=[ModelCheckpoint(os.path.join(self.working_dir, 'temp_network.h5'), monitor='val_loss', verbose=self.verbose, save_best_only=True), EarlyStopping(monitor='val_loss', patience=self.fit_kwargs.pop('earlystop_patience', 5), verbose=self.verbose)], **self.fit_kwargs) if os.path.isfile(os.path.join(self.working_dir, 'temp_network.h5')): model.load_weights(os.path.join(self.working_dir, 'temp_network.h5')) else: model.save_weights(os.path.join(self.working_dir, 'temp_network.h5')) (this_reward, loss_and_metrics, reward_metrics) = self.reward_fn(model, self.validation_data, session=train_sess, graph=train_graph) loss = loss_and_metrics.pop(0) loss_and_metrics = {str(self.model_compile_dict['metrics'][i]): loss_and_metrics[i] for i in range(len(loss_and_metrics))} loss_and_metrics['loss'] = loss if reward_metrics: loss_and_metrics.update(reward_metrics) if self.store_fn: val_pred = model.predict(self.validation_data, verbose=self.verbose, **self.predict_kwargs) self.store_fn(trial=trial, model=model, hist=hist, data=self.validation_data, pred=val_pred, loss_and_metrics=loss_and_metrics, working_dir=self.working_dir, save_full_model=self.save_full_model, knowledge_func=self.reward_fn.knowledge_function) del model del hist gc.collect() return (this_reward, loss_and_metrics)
class DistributedGeneralManager(GeneralManager): 'Distributed manager will place all tensors of any child models to a pre-assigned GPU device\n ' def __init__(self, devices, train_data_kwargs, validate_data_kwargs, do_resample=False, *args, **kwargs): self.devices = devices super().__init__(*args, **kwargs) assert ((devices is None) or (len(self.devices) == 1)), 'Only supports one GPU device currently' self.train_data_kwargs = (train_data_kwargs or {}) self.validate_data_kwargs = (validate_data_kwargs or {}) self.train_x = None self.train_y = None self.file_connected = False self.arc_records = defaultdict(dict) self.do_resample = do_resample def close_handler(self): if self.file_connected: self.train_x.close() if self.train_y: self.train_y.close() self._validation_data_gen.close() self.train_x = None self.train_y = None self.file_connected = False def get_rewards(self, trial, model_arc, remap_device=None, **kwargs): pid = os.getpid() sys.stderr.write(('[%s][%s] Preprocessing..' % (pid, datetime.now().strftime('%H:%M:%S')))) start_time = time.time() train_graph = tf.Graph() config = tf.ConfigProto() config.gpu_options.allow_growth = True train_sess = tf.Session(graph=train_graph, config=config) if (remap_device is not None): target_device = remap_device elif (self.devices is None): from ..utils.gpu_query import get_idle_gpus idle_gpus = get_idle_gpus() target_device = idle_gpus[0] target_device = ('/device:GPU:%i' % target_device) self.devices = [target_device] sys.stderr.write(('[%s] Auto-assign device: %s' % (pid, target_device))) else: target_device = self.devices[0] with train_graph.as_default(), train_sess.as_default(): with tf.device(target_device): try: K.set_session(train_sess) except RuntimeError: pass model = self.model_fn(model_arc) if (not self.file_connected): (X_train, y_train) = unpack_data(self.train_data, callable_kwargs=self.train_data_kwargs) self.train_x = X_train self.train_y = y_train assert callable(self.validation_data), ('Expect validation_data to be callable, got %s' % type(self.validation_data)) self._validation_data_gen = self.validation_data(**self.validate_data_kwargs) self.file_connected = True elapse_time = (time.time() - start_time) sys.stderr.write((' %.3f sec\n' % elapse_time)) model_arc_ = tuple(model_arc) if ((model_arc_ in self.arc_records) and (self.do_resample is True)): this_reward = self.arc_records[model_arc_]['reward'] old_trial = self.arc_records[model_arc_]['trial'] loss_and_metrics = self.arc_records[model_arc_]['loss_and_metrics'] sys.stderr.write(('[%s][%s] Trial %i: Re-sampled from history %i\n' % (pid, datetime.now().strftime('%H:%M:%S'), trial, old_trial))) else: start_time = time.time() sys.stderr.write(('[%s][%s] Trial %i: Start training model..' % (pid, datetime.now().strftime('%H:%M:%S'), trial))) hist = model.fit(self.train_x, self.train_y, batch_size=self.batchsize, epochs=self.epochs, verbose=self.verbose, validation_data=self._validation_data_gen, callbacks=[ModelCheckpoint(os.path.join(self.working_dir, 'temp_network.h5'), monitor='val_loss', verbose=self.verbose, save_best_only=True), EarlyStopping(monitor='val_loss', patience=self._earlystop_patience, verbose=self.verbose)], **self.fit_kwargs) model.load_weights(os.path.join(self.working_dir, 'temp_network.h5')) elapse_time = (time.time() - start_time) sys.stderr.write((' %.3f sec\n' % elapse_time)) start_time = time.time() sys.stderr.write(('[%s] Postprocessing..' % pid)) (this_reward, loss_and_metrics, reward_metrics) = self.reward_fn(model, self._validation_data_gen, session=train_sess) loss = loss_and_metrics.pop(0) loss_and_metrics = {str(self.model_compile_dict['metrics'][i]): loss_and_metrics[i] for i in range(len(loss_and_metrics))} loss_and_metrics['loss'] = loss if reward_metrics: loss_and_metrics.update(reward_metrics) if self.store_fn: val_pred = model.predict(self.validation_data, verbose=self.verbose) self.store_fn(trial=trial, model=model, hist=hist, data=self._validation_data_gen, pred=val_pred, loss_and_metrics=loss_and_metrics, working_dir=self.working_dir, save_full_model=self.save_full_model, knowledge_func=self.reward_fn.knowledge_function) elapse_time = (time.time() - start_time) sys.stderr.write((' %.3f sec\n' % elapse_time)) self.arc_records[model_arc_]['trial'] = trial self.arc_records[model_arc_]['reward'] = this_reward self.arc_records[model_arc_]['loss_and_metrics'] = loss_and_metrics start_time = time.time() sys.stderr.write(('[%s] Cleaning up..' % pid)) try: del train_sess del train_graph del model del hist except UnboundLocalError: pass gc.collect() elapse_time = (time.time() - start_time) sys.stderr.write((' %.3f sec\n' % elapse_time)) return (this_reward, loss_and_metrics)
class EnasManager(GeneralManager): "A specialized manager for Efficient Neural Architecture Search (ENAS).\n\n Because\n\n Parameters\n ----------\n session : tensorflow.Session or None\n The tensorflow session that the manager will be parsed to modelers. By default it's None, which will then get the\n Session from the modeler.\n\n train_data : tuple, string or generator\n Training data to be fed to ``keras.models.Model.fit``.\n\n validation_data : tuple, string, or generator\n Validation data. The data format is understood similarly to train_data.\n\n model_fn : amber.modeler\n A callable function to build and implement child models given an architecture sequence. Must be a model_fn that\n is compatible with ENAS parameter sharing.\n\n reward_fn : amber.architect.rewards\n A callable function to evaluate the rewards on a trained model and the validation dataset.\n\n store_fn : amber.architect.store\n A callable function to store necessary information (such as predictions, model architectures, and a variety of\n plots etc.) for the given child model.\n\n working_dir : str\n File path for working directory.\n\n Attributes\n ----------\n model : amber.modeler.child\n The child DAG that is connected to ``controller.sample_arc`` as the input architecture sequence, which\n will activate a randomly sampled subgraph within child DAG. Because it's hard-wired to the sampled architecture\n in controller, using this model to train and predict will also have the inherent stochastic behaviour that is\n linked to controller.\n\n See Also\n --------\n amber.modeler.child : AMBER wrapped-up version of child models that is intended to have similar interface and\n methods as the ``keras.models.Model`` API.\n\n train_data : tuple or generator\n The unpacked training data\n\n validation_data : tuple or generator\n The unpacked validation data\n\n model_fn : amber.modeler\n Reference to the callable function to build and implement child models given an architecture sequence.\n\n reward_fn : amber.architect.rewards\n Reference to the callable function to evaluate the rewards on a trained model and the validation dataset.\n\n store_fn : amber.architect.store\n Reference to the callable function to store necessary information (such as predictions, model architectures, and a variety of\n plots etc.) for the given child model.\n\n disable_controller : bool\n If true, will randomly return a reward by uniformly sampling in the interval [0,1]. Default is False.\n\n working_dir : str\n File path to working directory\n\n verbose : bool or int\n Verbose level\n\n " def __init__(self, session=None, *args, **kwargs): super().__init__(*args, **kwargs) if (session is None): self.session = self.model_fn.session else: self.session = session self.model = None self.disable_controller = kwargs.pop('disable_controller', False) def get_rewards(self, trial, model_arc=None, nsteps=None): 'The reward getter for a given model architecture.\n\n Because Enas will train child model by random sampling an architecture to activate for each mini-batch,\n there will not be any rewards evaluation in the Manager anymore.\n However, we can still use `get_rewards` as a proxy to train child models\n\n Parameters\n ----------\n trial : int\n An integer number indicating the trial for this architecture\n\n model_arc : list or None\n The list of architecture sequence. If is None (as by default), will return the child DAG with architecture\n connected directly to ``controller.sample_arc`` tensors.\n\n\n nsteps: int\n Optional, if specified, train model nsteps of batches instead of a whole epoch\n\n Returns\n -------\n this_reward : float\n The reward signal as determined by ``reward_fn(model, val_data)``\n\n loss_and_metrics : dict\n A dictionary of auxillary information for this model, such as loss, and other metrics (as in ``tf.keras.metrics``)\n\n\n ' if (self.model is None): self.model = self.model_fn() if (model_arc is None): (X_val, y_val) = self.validation_data[0:2] (X_train, y_train) = self.train_data if self.verbose: print((' Trial %i: Start training model with sample_arc...' % trial)) hist = self.model.fit(X_train, y_train, batch_size=self.batchsize, nsteps=nsteps, epochs=self.epochs, verbose=self.verbose) if self.store_fn: val_pred = self.model.predict(X_val, verbose=self.verbose) self.store_fn(trial=trial, model=self.model, hist=hist, data=self.validation_data, pred=val_pred, loss_and_metrics=None, working_dir=self.working_dir, save_full_model=self.save_full_model, knowledge_func=self.reward_fn.knowledge_function) return (None, None) else: model = self.model_fn(model_arc) (this_reward, loss_and_metrics, reward_metrics) = self.reward_fn(model, self.validation_data, session=self.session) loss = loss_and_metrics.pop(0) loss_and_metrics = {str(self.model_compile_dict['metrics'][i]): loss_and_metrics[i] for i in range(len(loss_and_metrics))} loss_and_metrics['loss'] = loss if reward_metrics: loss_and_metrics.update(reward_metrics) if self.disable_controller: this_reward = np.random.uniform(0, 1) return (this_reward, loss_and_metrics)
def get_layer_shortname(layer): 'Get the short name for a computational operation of a layer, useful in converting a Layer object to a string as\n ID or when plotting\n\n Parameters\n ----------\n layer : amber.architect.Operation\n The ``Operation`` object for any layer.\n\n Returns\n -------\n sn : str\n The unique short name for this operation\n\n TODO\n -----\n Consider refactoring ``layer`` to ``operation``\n ' if (layer.Layer_type == 'conv1d'): sn = ('conv_f%s_k%s_%s' % (layer.Layer_attributes['filters'], layer.Layer_attributes['kernel_size'], layer.Layer_attributes['activation'])) if ('dilation' in layer.Layer_attributes): sn += ('_d%i' % layer.Layer_attributes['dilation']) elif (layer.Layer_type == 'denovo'): sn = ('%s_f%s_k%s' % ('regconv2d', layer.Layer_attributes['filters'], layer.Layer_attributes['kernel_size'])) elif (layer.Layer_type == 'dense'): sn = ('%s_u%s_%s' % (layer.Layer_type, layer.Layer_attributes['units'], layer.Layer_attributes['activation'])) elif ((layer.Layer_type == 'maxpool1d') or (layer.Layer_type == 'avgpool1d')): sn = layer.Layer_type elif ((layer.Layer_type == 'flatten') or (layer.Layer_type == 'identity') or (layer.Layer_type == 'globalmaxpool1d') or (layer.Layer_type == 'globalavgpool1d')): sn = layer.Layer_type elif (layer.Layer_type == 'sfc'): sn = layer.Layer_type else: sn = str(layer) return sn
class State(object): 'The Amber internal holder for a computational operation at any layer\n\n Parameters\n ----------\n Layer_type : str\n The string for the operation type; supports most commonly used ``tf.keras.layers`` types\n\n kwargs :\n Operation/layer specifications are parsed through keyword arguments\n\n Attributes\n ----------\n Layer_type : str\n The string for the operation type.\n\n Layer_attributes : dict\n The dictionary that holds key-value pairs for all specification for this layer.\n\n Notes\n ------\n Any attributes that are not specified in ``Layer_attributes`` will use the default value as defined in\n ``tf.keras.layers``. For example, if you do not specify ``activation`` in ``Layer_attributes``, it will use ``linear``.\n\n Examples\n --------\n For example, to create a 1D-convolutional operation with ReLU activation, kernel size=8, number of kernels=32::\n\n >>> from amber.architect import State\n >>> op = State("conv1d", filters=32, kernel_size=8, activation=\'relu\')\n\n ' def __init__(self, Layer_type, **kwargs): Layer_type = Layer_type.lower() self.Layer_type = Layer_type self.Layer_attributes = kwargs def __str__(self): return '{}:{}'.format(self.Layer_type, self.Layer_attributes) def __eq__(self, other): return ((self.Layer_type == other.Layer_type) and (self.Layer_attributes == other.Layer_attributes)) def __hash__(self): unroll_attr = ((x, self.Layer_attributes[x]) for x in self.Layer_attributes) return hash((self.Layer_type, unroll_attr))
class ModelSpace(): 'Model Space constructor\n\n Provides utility functions for holding "states" / "operations" that the controller must use to train and predict.\n Also provides a more convenient way to define the model search space\n\n There are several ways to construct a model space. For example, one way is to initialize an empty ``ModelSpace`` then\n iteratively add layers to it, where each layer has a number of candidate operations::\n\n >>> def get_model_space(out_filters=64, num_layers=9):\n >>> model_space = ModelSpace()\n >>> num_pool = 4\n >>> expand_layers = [num_layers//num_pool*i-1 for i in range(1, num_pool)]\n >>> for i in range(num_layers):\n >>> model_space.add_layer(i, [\n >>> Operation(\'conv1d\', filters=out_filters, kernel_size=8, activation=\'relu\'),\n >>> Operation(\'conv1d\', filters=out_filters, kernel_size=4, activation=\'relu\'),\n >>> Operation(\'maxpool1d\', filters=out_filters, pool_size=4, strides=1),\n >>> Operation(\'avgpool1d\', filters=out_filters, pool_size=4, strides=1),\n >>> Operation(\'identity\', filters=out_filters),\n >>> ])\n >>> if i in expand_layers:\n >>> out_filters *= 2\n >>> return model_space\n\n Alternatively, ModelSpace can also be constructed from a dictionary.\n\n ' def __init__(self, **kwargs): self.state_space = defaultdict(list) def __str__(self): return 'StateSpace with {} layers and {} total combinations'.format(len(self.state_space), self.get_space_size()) def __len__(self): return len(self.state_space) def __getitem__(self, layer_id): if (layer_id < 0): layer_id = (len(self.state_space) + layer_id) if (layer_id not in self.state_space): raise IndexError('layer_id out of range') return self.state_space[layer_id] def __setitem__(self, layer_id, layer_states): self.add_layer(layer_id, layer_states) def get_space_size(self): 'Get the total model space size by the product of all candidate operations across all layers. No residual\n connections are considered.\n\n Returns\n -------\n size : int\n The total number of possible combinations of operations.\n ' size_ = 1 for i in self.state_space: size_ *= len(self.state_space[i]) return size_ def add_state(self, layer_id, state): 'Append a new state/operation to a layer\n\n Parameters\n ----------\n layer_id : int\n Which layer to append a new operation.\n\n state : amber.architect.State\n The new operation object to be appended.\n\n Returns\n -------\n\n ' self.state_space[layer_id].append(state) def delete_state(self, layer_id, state_id): 'Delete an operation from layer\n\n Parameters\n ----------\n layer_id : int\n Which layer to delete an operation\n\n state_id : int\n Which operation index to be deleted\n\n Returns\n -------\n\n ' del self.state_space[layer_id][state_id] def add_layer(self, layer_id, layer_states=None): 'Add a new layer to model space\n\n Parameters\n ----------\n layer_id : int\n The layer id of which layer to be added. Can be incontinuous to previous layers.\n\n layer_states : list of amber.architect.Operation\n A list of ``Operation`` object to be added.\n\n Returns\n -------\n bool\n Boolean value of Whether the model space is valid after inserting this layer\n ' if (layer_states is None): self.state_space[layer_id] = [] else: self.state_space[layer_id] = layer_states return self._check_space_integrity() def delete_layer(self, layer_id): 'Delete an entire layer and its associated values\n\n Parameters\n ----------\n layer_id : int\n which layer index to be deleted\n\n Returns\n -------\n bool\n Boolean value of Whether the model space is valid after inserting this layer\n ' del self.state_space[layer_id] return self._check_space_integrity() def _check_space_integrity(self): return ((len(self.state_space) - 1) == max(self.state_space.keys())) def print_state_space(self): '\n print out the model space in a nice layout (not so nice yet)\n ' for i in range(len(self.state_space)): print('Layer {}'.format(i)) print('\n'.join([(' ' + str(x)) for x in self.state_space[i]])) print(('-' * 10)) return def get_random_model_states(self): 'Get a random combination of model operations throughout each layer\n\n Returns\n -------\n model_states : list\n A list of randomly sampled model operations\n ' model_states = [] for i in range(len(self.state_space)): model_states.append(np.random.choice(self.state_space[i])) return model_states @staticmethod def from_dict(d): 'Static method for creating a ModelSpace from a Dictionary or List\n\n Parameters\n ----------\n d : dict or list\n A dictionary or list specifying candidate operations for each layer\n\n Returns\n -------\n amber.architect.ModelSpace\n The constructed model space from the given dict/list\n\n ' import ast assert (type(d) in (dict, list)) num_layers = len(d) ms = ModelSpace() for i in range(num_layers): for j in range(len(d[i])): if (('shape' in d[i][j]) and (type(d[i][j]['shape']) is str)): d[i][j] = ast.literal_eval(d[i][j]['shape']) ms.add_layer(layer_id=i, layer_states=[State(**d[i][j]) for j in range(len(d[i]))]) return ms
class BranchedModelSpace(ModelSpace): '\n Parameters\n ----------\n subspaces : list\n A list of `ModelSpace`. First element is a list of input branches. Second element is a stem model space\n concat_op : str\n string identifier for how to concatenate different input branches\n\n ' def __init__(self, subspaces, concat_op='concatenate', **kwargs): super().__init__(**kwargs) self.subspaces = subspaces self.concat_op = concat_op self._layer_to_branch = {} self._branch_to_layer = {} layer_id = 0 for (i, model_space) in enumerate(self.subspaces[0]): for _layer in range(len(model_space)): self.state_space[layer_id] = model_space[_layer] self._layer_to_branch[layer_id] = (0, i) layer_id += 1 for _layer in range(len(self.subspaces[1])): self.state_space[layer_id] = self.subspaces[1][_layer] self._layer_to_branch[layer_id] = (1, None) layer_id += 1 for (k, v) in self._layer_to_branch.items(): if (v in self._branch_to_layer): self._branch_to_layer[v].append(k) else: self._branch_to_layer[v] = [k] @property def layer_to_branch(self): return self._layer_to_branch @property def branch_to_layer(self): return self._branch_to_layer
class MultiInputController(GeneralController): "\n DOCSTRING\n\n Parameters\n ----------\n model_space:\n with_skip_connection:\n with_input_blocks:\n share_embedding: dict\n a Dictionary defining which child-net layers will share the softmax and\n embedding weights during Controller training and sampling\n use_ppo_loss:\n kl_threshold:\n num_input_blocks:\n input_block_unique_connection:\n buffer_size:\n batch_size:\n session:\n train_pi_iter:\n lstm_size:\n lstm_num_layers:\n lstm_keep_prob:\n tanh_constant:\n temperature:\n lr_init:\n lr_dec_start:\n lr_dec_every:\n lr_dec_rate:\n l2_reg:\n clip_mode:\n grad_bound:\n use_critic:\n bl_dec:\n optim_algo:\n sync_replicas:\n num_aggregate:\n num_replicas:\n skip_target: float\n the expected proportion of skip connections, i.e. the proportion of 1's in the skip/extra\n connections in the output `arc_seq`\n skip_weight: float\n the weight for skip connection kl-divergence from the expected `skip_target`\n name: str\n name for the instance; also used for all tensor variable scopes\n\n Attributes\n ----------\n g_emb: tf.Tensor\n initial controller hidden state tensor; to be learned\n Placeholder\n\n Note\n ----------\n This class derived from `GeneralController` adds the input feature block selection upon the Base class. Since the\n selection is inherently embedded in the NAS cell rolling-out, the sampler and trainer methods are overwritten.\n\n TODO:\n needs to evaluate how different ways of connecting inputs will affect search performance; e.g. connect input\n before operation or after?\n " def __init__(self, model_space, buffer_type='ordinal', with_skip_connection=True, with_input_blocks=True, share_embedding=None, use_ppo_loss=False, kl_threshold=0.05, num_input_blocks=2, input_block_unique_connection=True, skip_connection_unique_connection=False, buffer_size=15, batch_size=5, session=None, train_pi_iter=20, lstm_size=32, lstm_num_layers=2, lstm_keep_prob=1.0, tanh_constant=None, temperature=None, skip_target=0.8, skip_weight=0.5, optim_algo='adam', name='controller', *args, **kwargs): self.with_input_blocks = with_input_blocks self.num_input_blocks = num_input_blocks self.input_block_unique_connection = input_block_unique_connection super().__init__(model_space=model_space, buffer_type=buffer_type, with_skip_connection=with_skip_connection, share_embedding=share_embedding, use_ppo_loss=use_ppo_loss, kl_threshold=kl_threshold, skip_connection_unique_connection=skip_connection_unique_connection, buffer_size=buffer_size, batch_size=batch_size, session=session, train_pi_iter=train_pi_iter, lstm_size=lstm_size, lstm_num_layers=lstm_num_layers, lstm_keep_prob=lstm_keep_prob, tanh_constant=tanh_constant, temperature=temperature, optim_algo=optim_algo, skip_target=skip_target, skip_weight=skip_weight, name=name, **kwargs) def _create_weight(self): super()._create_weight() if self.with_input_blocks: with tf.variable_scope('input', initializer=tf.random_uniform_initializer(minval=(- 0.1), maxval=0.1)): self.input_emb = tf.get_variable('inp_emb', [self.num_input_blocks, self.lstm_size]) self.w_soft['input'] = tf.get_variable('w_input', [self.lstm_size, self.num_input_blocks]) def _build_sampler(self): 'Build the sampler ops and the log_prob ops.' anchors = [] anchors_w_1 = [] arc_seq = [] hidden_states = [] entropys = [] probs_ = [] log_probs = [] skip_count = [] skip_penaltys = [] prev_c = [tf.zeros([1, self.lstm_size], tf.float32) for _ in range(self.lstm_num_layers)] prev_h = [tf.zeros([1, self.lstm_size], tf.float32) for _ in range(self.lstm_num_layers)] inputs = self.g_emb skip_targets = tf.constant([(1.0 - self.skip_target), self.skip_target], dtype=tf.float32) input_block_record = [] skip_conn_record = [] for layer_id in range(self.num_layers): (next_c, next_h) = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) (prev_c, prev_h) = (next_c, next_h) hidden_states.append(prev_h) logit = tf.matmul(next_h[(- 1)], self.w_soft['start'][layer_id]) if (self.temperature is not None): logit /= self.temperature if (self.tanh_constant is not None): logit = (self.tanh_constant * tf.tanh(logit)) probs_.append(tf.nn.softmax(logit)) start = tf.multinomial(logit, 1) start = tf.to_int32(start) start = tf.reshape(start, [1]) arc_seq.append(start) log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logit, labels=start) log_probs.append(log_prob) entropy = tf.stop_gradient((log_prob * tf.exp((- log_prob)))) entropys.append(entropy) inputs = tf.nn.embedding_lookup(self.w_emb['start'][layer_id], start) if self.with_input_blocks: (next_c, next_h) = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) (prev_c, prev_h) = (next_c, next_h) hidden_states.append(prev_h) block_query = tf.reshape(tf.matmul(next_h[(- 1)], self.w_soft['input']), (self.num_input_blocks, 1)) if (layer_id != (self.num_layers - 1)): if (self.input_block_unique_connection and (layer_id > 0)): mask = tf.stop_gradient(tf.reduce_sum(tf.stack(input_block_record), axis=0)) mask = tf.reshape(mask, [self.num_input_blocks, 1]) mask1 = tf.greater(mask, 0) block_query = tf.where(mask1, y=block_query, x=tf.fill(tf.shape(block_query), (- 10000.0))) else: mask = tf.stop_gradient(tf.reduce_sum(tf.stack(input_block_record), axis=0)) mask = tf.reshape(mask, [self.num_input_blocks, 1]) mask2 = tf.equal(mask, 0) block_query = tf.where(mask2, y=block_query, x=tf.fill(tf.shape(block_query), 10000.0)) logit = tf.concat([(- block_query), block_query], axis=1) if (self.temperature is not None): logit /= self.temperature if (self.tanh_constant is not None): logit = (self.tanh_constant * tf.tanh(logit)) probs_.append(tf.expand_dims(tf.nn.softmax(logit), axis=0)) input_block = tf.multinomial(logit, 1) input_block = tf.to_int32(input_block) input_block = tf.reshape(input_block, [self.num_input_blocks]) arc_seq.append(input_block) input_block_record.append(input_block) log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logit, labels=input_block) log_probs.append(tf.reshape(tf.reduce_sum(log_prob), [(- 1)])) entropy = tf.stop_gradient(tf.reshape(tf.reduce_sum((log_prob * tf.exp((- log_prob)))), [(- 1)])) entropys.append(entropy) inputs = tf.cast(tf.reshape(input_block, (1, self.num_input_blocks)), tf.float32) inputs /= (1.0 + tf.cast(tf.reduce_sum(input_block), tf.float32)) inputs = tf.matmul(inputs, self.input_emb) if self.with_skip_connection: if (layer_id > 0): (next_c, next_h) = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) (prev_c, prev_h) = (next_c, next_h) hidden_states.append(prev_h) query = tf.concat(anchors_w_1, axis=0) query = tf.tanh((query + tf.matmul(next_h[(- 1)], self.w_attn_2))) query = tf.matmul(query, self.v_attn) if self.skip_connection_unique_connection: mask = tf.stop_gradient(tf.reduce_sum(tf.stack(skip_conn_record), axis=0)) mask = tf.slice(mask, begin=[0], size=[layer_id]) mask1 = tf.greater(mask, 0) query = tf.where(mask1, y=query, x=tf.fill(tf.shape(query), (- 10000.0))) logit = tf.concat([(- query), query], axis=1) if (self.temperature is not None): logit /= self.temperature if (self.tanh_constant is not None): logit = (self.tanh_constant * tf.tanh(logit)) probs_.append(tf.expand_dims(tf.nn.softmax(logit), axis=0)) skip = tf.multinomial(logit, 1) skip = tf.to_int32(skip) skip = tf.reshape(skip, [layer_id]) arc_seq.append(skip) skip_conn_record.append(tf.concat([tf.cast(skip, tf.float32), tf.zeros((self.num_layers - layer_id))], axis=0)) skip_prob = tf.sigmoid(logit) kl = (skip_prob * tf.log((skip_prob / skip_targets))) kl = tf.reduce_sum(kl) skip_penaltys.append(kl) log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logit, labels=skip) log_probs.append(tf.reshape(tf.reduce_sum(log_prob), [(- 1)])) entropy = tf.stop_gradient(tf.reshape(tf.reduce_sum((log_prob * tf.exp((- log_prob)))), [(- 1)])) entropys.append(entropy) skip = tf.to_float(skip) skip = tf.reshape(skip, [1, layer_id]) skip_count.append(tf.reduce_sum(skip)) inputs = tf.matmul(skip, tf.concat(anchors, axis=0)) inputs /= (1.0 + tf.reduce_sum(skip)) else: skip_conn_record.append(tf.zeros(self.num_layers, 1)) anchors.append(next_h[(- 1)]) anchors_w_1.append(tf.matmul(next_h[(- 1)], self.w_attn_1)) self.anchors = anchors self.anchors_w_1 = anchors_w_1 self.sample_hidden_states = hidden_states arc_seq = tf.concat(arc_seq, axis=0) self.sample_arc = tf.reshape(arc_seq, [(- 1)]) entropys = tf.stack(entropys) self.sample_entropy = tf.reduce_sum(entropys) log_probs = tf.stack(log_probs) self.sample_log_prob = tf.reduce_sum(log_probs) skip_count = tf.stack(skip_count) self.skip_count = tf.reduce_sum(skip_count) skip_penaltys = tf.stack(skip_penaltys) self.skip_penaltys = tf.reduce_mean(skip_penaltys) self.sample_probs = probs_ def _build_trainer(self): anchors = [] anchors_w_1 = [] probs_ = [] ops_each_layer = 1 total_arc_len = sum(([(ops_each_layer + (self.num_input_blocks * self.with_input_blocks))] + [((ops_each_layer + (self.num_input_blocks * self.with_input_blocks)) + (i * self.with_skip_connection)) for i in range(1, self.num_layers)])) self.total_arc_len = total_arc_len self.input_arc = [tf.placeholder(shape=(None, 1), dtype=tf.int32, name='arc_{}'.format(i)) for i in range(total_arc_len)] batch_size = tf.shape(self.input_arc[0])[0] entropys = [] log_probs = [] skip_count = [] skip_penaltys = [] prev_c = [tf.zeros([batch_size, self.lstm_size], tf.float32) for _ in range(self.lstm_num_layers)] prev_h = [tf.zeros([batch_size, self.lstm_size], tf.float32) for _ in range(self.lstm_num_layers)] inputs = tf.matmul(tf.ones((batch_size, 1)), self.g_emb) skip_targets = tf.constant([(1.0 - self.skip_target), self.skip_target], dtype=tf.float32) arc_pointer = 0 input_block_record = [] skip_conn_record = [] hidden_states = [] for layer_id in range(self.num_layers): (next_c, next_h) = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) (prev_c, prev_h) = (next_c, next_h) hidden_states.append(prev_h) logit = tf.matmul(next_h[(- 1)], self.w_soft['start'][layer_id]) if (self.temperature is not None): logit /= self.temperature if (self.tanh_constant is not None): logit = (self.tanh_constant * tf.tanh(logit)) start = self.input_arc[arc_pointer] start = tf.reshape(start, [batch_size]) probs_.append(tf.nn.softmax(logit)) log_prob1 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logit, labels=start) log_probs.append(log_prob1) entropy = tf.stop_gradient((log_prob1 * tf.exp((- log_prob1)))) entropys.append(entropy) inputs = tf.nn.embedding_lookup(self.w_emb['start'][layer_id], start) if self.with_input_blocks: (next_c, next_h) = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) (prev_c, prev_h) = (next_c, next_h) hidden_states.append(prev_h) block_query = tf.reshape(tf.matmul(next_h[(- 1)], self.w_soft['input']), ((self.num_input_blocks * batch_size), 1)) if (layer_id != (self.num_layers - 1)): if (self.input_block_unique_connection and (layer_id > 0)): mask = tf.stop_gradient(tf.reduce_sum(tf.stack(input_block_record), axis=0)) mask = tf.reshape(mask, [(self.num_input_blocks * batch_size), 1]) mask1 = tf.greater(mask, 0) block_query = tf.where(mask1, y=block_query, x=tf.fill(tf.shape(block_query), (- 10000.0))) else: mask = tf.stop_gradient(tf.reduce_sum(tf.stack(input_block_record), axis=0)) mask = tf.reshape(mask, [(self.num_input_blocks * batch_size), 1]) mask2 = tf.equal(mask, 0) block_query = tf.where(mask2, y=block_query, x=tf.fill(tf.shape(block_query), 10000.0)) logit = tf.concat([(- block_query), block_query], axis=1) if (self.temperature is not None): logit /= self.temperature if (self.tanh_constant is not None): logit = (self.tanh_constant * tf.tanh(logit)) probs_.append(tf.reshape(tf.nn.softmax(logit), [batch_size, self.num_input_blocks, 2])) input_block = self.input_arc[(arc_pointer + ops_each_layer):((arc_pointer + ops_each_layer) + self.num_input_blocks)] input_block = tf.reshape(tf.transpose(input_block), [(batch_size * self.num_input_blocks)]) input_block_record.append(input_block) log_prob2 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logit, labels=input_block) log_prob2 = tf.reshape(log_prob2, [batch_size, (- 1)]) log_probs.append(tf.reduce_sum(log_prob2, axis=1)) entropy = tf.stop_gradient(tf.reshape(tf.reduce_sum((log_prob2 * tf.exp((- log_prob2)))), [(- 1)])) entropys.append(entropy) inputs = tf.cast(tf.reshape(input_block, (batch_size, self.num_input_blocks)), tf.float32) inputs /= tf.matmul(tf.reshape((1.0 + tf.cast(tf.reduce_sum(tf.reshape(input_block, (batch_size, self.num_input_blocks)), axis=1), tf.float32)), ((- 1), 1)), tf.ones((1, self.num_input_blocks), dtype=tf.float32)) inputs = tf.matmul(inputs, self.input_emb) if self.with_skip_connection: if (layer_id > 0): (next_c, next_h) = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) (prev_c, prev_h) = (next_c, next_h) hidden_states.append(prev_h) query = tf.transpose(tf.stack(anchors_w_1), [1, 0, 2]) query = tf.tanh((query + tf.expand_dims(tf.matmul(next_h[(- 1)], self.w_attn_2), axis=1))) query = tf.reshape(query, ((batch_size * layer_id), self.lstm_size)) query = tf.matmul(query, self.v_attn) if self.skip_connection_unique_connection: mask = tf.stop_gradient(tf.reduce_sum(tf.stack(skip_conn_record), axis=0)) mask = tf.slice(mask, begin=[0, 0], size=[batch_size, layer_id]) mask = tf.reshape(mask, ((batch_size * layer_id), 1)) mask1 = tf.greater(mask, 0) query = tf.where(mask1, y=query, x=tf.fill(tf.shape(query), (- 10000.0))) logit = tf.concat([(- query), query], axis=1) if (self.temperature is not None): logit /= self.temperature if (self.tanh_constant is not None): logit = (self.tanh_constant * tf.tanh(logit)) probs_.append(tf.reshape(tf.nn.softmax(logit), [batch_size, layer_id, 2])) if self.with_input_blocks: skip = self.input_arc[((arc_pointer + ops_each_layer) + self.num_input_blocks):(((arc_pointer + ops_each_layer) + self.num_input_blocks) + layer_id)] else: skip = self.input_arc[(arc_pointer + ops_each_layer):((arc_pointer + ops_each_layer) + layer_id)] skip = tf.reshape(tf.transpose(skip), [(batch_size * layer_id)]) skip = tf.to_int32(skip) skip_prob = tf.sigmoid(logit) kl = (skip_prob * tf.log((skip_prob / skip_targets))) kl = tf.reduce_sum(kl, axis=1) kl = tf.reshape(kl, [batch_size, (- 1)]) skip_penaltys.append(kl) log_prob3 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logit, labels=skip) log_prob3 = tf.reshape(log_prob3, [batch_size, (- 1)]) log_probs.append(tf.reduce_sum(log_prob3, axis=1)) entropy = tf.stop_gradient(tf.reduce_sum((log_prob3 * tf.exp((- log_prob3))), axis=1)) entropys.append(entropy) skip = tf.to_float(skip) skip = tf.reshape(skip, [batch_size, 1, layer_id]) skip_count.append(tf.reduce_sum(skip, axis=2)) anchors_ = tf.stack(anchors) anchors_ = tf.transpose(anchors_, [1, 0, 2]) inputs = tf.matmul(skip, anchors_) inputs = tf.squeeze(inputs, axis=1) inputs /= (1.0 + tf.reduce_sum(skip, axis=2)) else: skip_conn_record.append(tf.zeros((batch_size, self.num_layers))) anchors.append(next_h[(- 1)]) anchors_w_1.append(tf.matmul(next_h[(- 1)], self.w_attn_1)) arc_pointer += ((ops_each_layer + (layer_id * self.with_skip_connection)) + (self.num_input_blocks * self.with_input_blocks)) self.train_hidden_states = hidden_states self.entropys = tf.stack(entropys) self.onehot_probs = probs_ log_probs = tf.stack(log_probs) self.onehot_log_prob = tf.reduce_sum(log_probs, axis=0) skip_count = tf.stack(skip_count) self.onehot_skip_count = tf.reduce_sum(skip_count, axis=0) skip_penaltys_flat = [tf.reduce_mean(x, axis=1) for x in skip_penaltys] self.onehot_skip_penaltys = tf.reduce_mean(skip_penaltys_flat, axis=0)
class MultiIOController(MultiInputController): '\n Example\n ----------\n >>> from BioNAS.MockBlackBox.dense_skipcon_space import get_model_space\n >>> from BioNAS.Controller.multiio_controller import MultiIOController\n >>> import numpy as np\n >>> model_space = get_model_space(5)\n >>> controller = MultiIOController(model_space, output_block_unique_connection=True)\n >>> s = controller.session\n >>> a1, p1 = controller.get_action()\n >>> a2, p2 = controller.get_action()\n >>> a_batch = np.array([a1,a2])\n >>> p_batch = [np.concatenate(x) for x in zip(*[p1,p2])]\n >>> feed_dict = {controller.input_arc[i]: a_batch[:, [i]]\n >>> for i in range(a_batch.shape[1])}\n >>> feed_dict.update({controller.advantage: np.array([1., -1.]).reshape((2,1))})\n >>> feed_dict.update({controller.old_probs[i]: p_batch[i]\n >>> for i in range(len(controller.old_probs))})\n >>> feed_dict.update({controller.reward: np.array([1., 1.]).reshape((2,1))})\n >>> print(s.run(controller.onehot_log_prob, feed_dict))\n >>> for _ in range(100):\n >>> s.run(controller.train_op, feed_dict=feed_dict)\n >>> if _%20==0: print(s.run(controller.loss, feed_dict))\n >>> print(s.run(controller.onehot_log_prob, feed_dict))\n\n Notes\n ----------\n Placeholder for now.\n ' def __init__(self, num_output_blocks=2, with_output_blocks=True, output_block_unique_connection=True, output_block_diversity_weight=None, **kwargs): self.with_output_blocks = with_output_blocks self.num_output_blocks = num_output_blocks skip_weight = (kwargs['skip_weight'] if ('skip_weight' in kwargs) else None) if (output_block_diversity_weight is not None): assert (skip_weight is not None), 'Cannot use output_block_diversity_weight when skip_weight is None' self.output_block_diversity_weight = (output_block_diversity_weight / skip_weight) else: self.output_block_diversity_weight = None self.output_block_unique_connection = output_block_unique_connection super().__init__(**kwargs) assert (self.with_skip_connection is True), 'Must have with_skip_connection=True for MultiIOController' def _create_weight(self): super()._create_weight() with tf.variable_scope('outputs', initializer=tf.random_uniform_initializer(minval=(- 0.1), maxval=0.1)): self.w_soft['output'] = [] for i in range(self.num_output_blocks): self.w_soft['output'].append(tf.get_variable(('output_block_%i' % i), [self.lstm_size, 1])) def _build_sampler(self): super()._build_sampler() step_size = ((1 + int(self.with_input_blocks)) + int(self.with_skip_connection)) layer_hs = [self.sample_hidden_states[i][(- 1)] for i in range(0, ((self.num_layers * step_size) - 1), step_size)] layer_hs = tf.concat(layer_hs, axis=0) output_probs = [] output_onehot = [] output_log_probs = [] for i in range(self.num_output_blocks): logit = tf.matmul(layer_hs, self.w_soft['output'][i]) if (self.temperature is not None): logit /= self.temperature if (self.tanh_constant is not None): logit = (self.tanh_constant * tf.tanh(logit)) if self.output_block_unique_connection: output_label = tf.reshape(tf.multinomial(tf.transpose(logit), 1), [(- 1)]) output = tf.one_hot(output_label, self.num_layers) prob = tf.nn.softmax(tf.squeeze(logit)) prob = tf.reshape(prob, [1, (- 1)]) log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=tf.transpose(logit), labels=output_label) else: logit_ = tf.concat([(- logit), logit], axis=1) output = tf.squeeze(tf.multinomial(logit_, 1)) prob = tf.nn.sigmoid(logit_) prob = tf.reshape(prob, [1, (- 1), 2]) log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logit_, labels=output) output_onehot.append(tf.cast(output, tf.int32)) output_probs.append(prob) output_log_probs.append(log_prob) self.sample_probs.extend(output_probs) self.sample_arc = tf.concat([self.sample_arc, tf.reshape(output_onehot, [(- 1)])], axis=0) self.sample_log_prob += tf.reduce_sum(output_log_probs) def _build_trainer(self): super()._build_trainer() output_arc_len = (self.num_layers * self.num_output_blocks) self.input_arc += [tf.placeholder(shape=(None, 1), dtype=tf.int32, name='arc_{}'.format(i)) for i in range(self.total_arc_len, (self.total_arc_len + output_arc_len))] self.total_arc_len += output_arc_len step_size = ((1 + int(self.with_input_blocks)) + int(self.with_skip_connection)) layer_hs = [self.train_hidden_states[i][(- 1)] for i in range(0, ((self.num_layers * step_size) - 1), step_size)] layer_hs = tf.transpose(tf.stack(layer_hs), [1, 0, 2]) output_probs = [] output_log_probs = [] for i in range(self.num_output_blocks): logit = tf.matmul(layer_hs, self.w_soft['output'][i]) if (self.temperature is not None): logit /= self.temperature if (self.tanh_constant is not None): logit = (self.tanh_constant * tf.tanh(logit)) output = self.input_arc[(- output_arc_len):][(self.num_layers * i):(self.num_layers * (i + 1))] output = tf.transpose(tf.squeeze(tf.stack(output), axis=(- 1))) if self.output_block_unique_connection: logit = tf.transpose(logit, [0, 2, 1]) prob = tf.squeeze(tf.nn.softmax(logit), axis=1) log_prob = tf.nn.softmax_cross_entropy_with_logits(logits=logit, labels=output) else: logit_ = tf.concat([(- logit), logit], axis=2) prob = tf.nn.sigmoid(logit_) log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logit_, labels=output) log_prob = tf.reshape(tf.reduce_mean(log_prob, axis=(- 1)), [(- 1), 1]) output_probs.append(prob) output_log_probs.append(log_prob) self.onehot_probs.extend(output_probs) output_log_probs = tf.squeeze(tf.transpose(tf.stack(output_log_probs), [1, 0, 2]), axis=(- 1)) self.onehot_log_prob += tf.reduce_sum(output_log_probs, axis=1) if (self.output_block_diversity_weight is not None): output_probs = tf.transpose(tf.stack(output_probs), [1, 0, 2]) diversity_penaltys = tf.math.reduce_std(output_probs, axis=1) diversity_penaltys = tf.reduce_mean(diversity_penaltys, axis=1) self.onehot_skip_penaltys -= (diversity_penaltys * self.output_block_diversity_weight)
def get_store_fn(arg): 'The getter function that returns a callable store function from a string\n\n Parameters\n ----------\n arg : str\n The string identifier for a particular store function. Current choices are:\n - general\n - model_plot\n - minimal\n\n Returns\n -------\n callable\n A callable store function\n ' if (callable(arg) is True): return arg elif (arg is None): return None elif ((arg.lower() == 'store_general') or (arg.lower() == 'general')): return store_general elif ((arg.lower() == 'store_regression') or (arg.lower() == 'regression')): return store_regression elif ((arg.lower() == 'store_with_hessian') or (arg.lower() == 'hessian')): return store_with_hessian elif ((arg.lower() == 'store_with_model_plot') or (arg.lower() == 'model_plot')): return store_with_model_plot elif ((arg.lower() == 'store_minimal') or (arg.lower() == 'minimal')): return store_minimal else: raise Exception(('cannot understand store_fn: %s' % arg))
def store_with_model_plot(trial, model, hist, data, pred, loss_and_metrics, working_dir='.', save_full_model=False, *args, **kwargs): par_dir = os.path.join(working_dir, 'weights', ('trial_%s' % trial)) os.makedirs(par_dir, exist_ok=True) store_general(trial=trial, model=model, hist=hist, data=data, pred=pred, loss_and_metrics=loss_and_metrics, working_dir=working_dir, save_full_model=save_full_model) from tensorflow.keras.utils import plot_model plot_model(model, to_file=os.path.join(par_dir, 'model_arc.png'), show_shapes=True, show_layer_names=True)
def store_with_hessian(trial, model, hist, data, pred, loss_and_metrics, working_dir='.', save_full_model=False, knowledge_func=None): assert (knowledge_func is not None), '`store_with_hessian` requires parsing theknowledge function used.' par_dir = os.path.join(working_dir, 'weights', ('trial_%s' % trial)) store_general(trial=trial, model=model, hist=hist, data=data, pred=pred, loss_and_metrics=loss_and_metrics, working_dir=working_dir, save_full_model=save_full_model) from keras.utils import plot_model plot_model(model, to_file=os.path.join(par_dir, 'model_arc.png')) plot_hessian(knowledge_func, os.path.join(par_dir, 'hess.png')) knowledge_func._reset() plt.close('all') return
def store_general(trial, model, hist, data, pred, loss_and_metrics, working_dir='.', save_full_model=False, *args, **kwargs): par_dir = os.path.join(working_dir, 'weights', ('trial_%s' % trial)) if os.path.isdir(par_dir): shutil.rmtree(par_dir) os.makedirs(par_dir) if save_full_model: model.save(os.path.join(working_dir, 'weights', ('trial_%s' % trial), 'full_bestmodel.h5')) try: plot_training_history(hist, par_dir) except: pass if os.path.isfile(os.path.join(working_dir, 'temp_network.h5')): shutil.move(os.path.join(working_dir, 'temp_network.h5'), os.path.join(par_dir, 'bestmodel.h5')) data = unpack_data(data, unroll_generator_y=True) metadata = (data[2] if (len(data) > 2) else None) obs = data[1] write_pred_to_disk(os.path.join(par_dir, 'pred.txt'), pred, obs, metadata, loss_and_metrics)
def store_minimal(trial, model, working_dir='.', save_full_model=False, **kwargs): par_dir = os.path.join(working_dir, 'weights', ('trial_%s' % trial)) if os.path.isdir(par_dir): shutil.rmtree(par_dir) os.makedirs(par_dir) if save_full_model: model.save(os.path.join(working_dir, 'weights', ('trial_%s' % trial), 'full_bestmodel.h5')) if os.path.isfile(os.path.join(working_dir, 'temp_network.h5')): shutil.move(os.path.join(working_dir, 'temp_network.h5'), os.path.join(par_dir, 'bestmodel.h5'))
def write_pred_to_disk(fn, y_pred, y_obs, metadata=None, metrics=None): with open(fn, 'w') as f: if (metrics is not None): f.write(('\n'.join(['# {}: {}'.format(x, metrics[x]) for x in metrics]) + '\n')) if (type(y_pred) is list): y_pred = np.concatenate(y_pred, axis=1) y_obs = np.concatenate(y_obs, axis=1) if (len(np.unique(y_obs)) < 10): str_format = '%i' else: str_format = '%.3f' f.write('pred\tobs\tmetadata\n') for i in range(len(y_pred)): if ((len(y_pred[i].shape) > 1) or (y_pred[i].shape[0] > 1)): y_pred_i = ','.join([('%.3f' % x) for x in np.array(y_pred[i])]) y_obs_i = ','.join([(str_format % x) for x in np.array(y_obs[i])]) else: y_pred_i = ('%.3f' % y_pred[i]) y_obs_i = (str_format % y_obs[i]) if metadata: f.write(('%s\t%s\t%s\n' % (y_pred_i, y_obs_i, metadata[i]))) else: f.write(('%s\t%s\t%s\n' % (y_pred_i, y_obs_i, 'NA')))
def get_controller_states(model): return [K.get_value(s) for (s, _) in model.state_updates]
def set_controller_states(model, states): for ((d, _), s) in zip(model.state_updates, states): K.set_value(d, s)
def get_controller_history(fn='train_history.csv'): with open(fn, 'r') as f: csvreader = csv.reader(f) for row in csvreader: trial = row[0] return int(trial)
def compute_entropy(prob_states): ent = 0 for prob in prob_states: for p in prob: p = np.array(p).flatten() i = np.where((p > 0))[0] t = np.sum(((- p[i]) * np.log2(p[i]))) ent += t return ent
class ControllerTrainEnvironment(): 'The training evnrionment employs ``controller`` model and ``manager`` to mange data and reward,\n creates a reinforcement learning environment\n\n Parameters\n ----------\n controller : amber.architect.BaseController\n The controller to search architectures in this environment.\n\n manager : amber.architect.BaseManager\n The manager to interact with modelers in this environment.\n\n max_episode : int\n Maximum number of controller steps. Each controller step will sample ``max_step_per_ep`` child model\n architectures.\n\n max_step_per_ep : int\n The number of child model architectures to sample in each controller step (aka ``max_episode``).\n\n logger : logging.Logger or None\n The logger to use in environment\n\n resume_prev_run : bool\n If true, try to reload existing controller and history in the given working directory. Default is False.\n\n should_plot : bool\n If false, turn off the plots at the end of training. Default is False.\n\n initial_buffering_queue : int\n\n\n working_dir : str\n File path to working directory\n\n squeezed_action : bool\n If false, will expect each entry in architecture sequence to be strictly one-hot encoded; if true, some entries\n will be categorically encoded. Categorical encoding is consistent with current settings in\n ``amber.architect.GeneralController``, thus is recommended ``squeezed_action=True``. Default is True.\n\n with_input_blocks : bool\n Whether the controller will search for input blocks. Default is False.\n\n with_skip_connection : bool\n Whether the controller will search for residual/skip connections. Default is True.\n\n save_controller : bool\n Whether to save the final controller parameters in working directory after training (i.e. reaching the max\n controller steps). Default is True.\n\n verbose : bool or int\n Verbosity level\n\n Attributes\n ----------\n\n Notes\n -----\n Note if either `with_input_blocks` or `with_skip_connection`, a list of integers will be used to represent the\n sequential model architecture and wiring, instead of a list of amber.architect.Operation\n\n TODO\n ----\n Refactor the rest of attributes to be private.\n ' def __init__(self, controller, manager, max_episode=100, max_step_per_ep=2, logger=None, resume_prev_run=False, should_plot=True, initial_buffering_queue=15, working_dir='.', entropy_converge_epsilon=0.01, squeezed_action=True, with_input_blocks=False, with_skip_connection=True, save_controller=True, continuous_run=False, verbose=0, **kwargs): self.controller = controller self.manager = manager self.max_episode = max_episode self.max_step_per_ep = max_step_per_ep self.start_ep = 0 self.should_plot = should_plot self.working_dir = working_dir self.total_reward = 0 self.entropy_record = [] self.entropy_converge_epsilon = entropy_converge_epsilon self.squeezed_action = squeezed_action self.with_input_blocks = with_input_blocks self.with_skip_connection = with_skip_connection self.save_controller = save_controller self.initial_buffering_queue = min(initial_buffering_queue, controller.buffer.max_size) self.continuous_run = continuous_run self.verbose = verbose try: self.last_actionState_size = len(self.controller.state_space[(- 1)]) except Exception as e: warnings.warn(('DEPRECATED Exception in ControllerTrainEnv: %s' % e), stacklevel=2) self.last_actionState_size = 1 self.resume_prev_run = resume_prev_run self.logger = (logger if logger else setup_logger(working_dir)) if issubclass(type(manager), BaseNetworkManager): if (os.path.realpath(manager.working_dir) != os.path.realpath(self.working_dir)): warnings.warn('manager working dir and environment working dir are different.', stacklevel=2) else: warnings.warn('ControllerTrainEnvironment: input manager is not a subclass of BaseNetworkManager; make sure this is intended', stacklevel=2) if resume_prev_run: self.restore() else: self.clean() def __str__(self): s = ('ControllerTrainEnv for %i max steps, %i child mod. each step' % (self.max_episode, self.max_step_per_ep)) return s def restore(self): if self.save_controller: self.controller.load_weights(os.path.join(self.working_dir, 'controller_weights.h5')) self.start_ep = get_controller_history(os.path.join(self.working_dir, 'train_history.csv')) else: raise Exception('Did not turn on option `save_controller`') def clean(self): bak_weights_dir = os.path.join(self.working_dir, ('weights_bak_%s' % datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))) if os.path.isdir(os.path.join(self.working_dir, 'weights')): shutil.move(os.path.join(self.working_dir, 'weights'), bak_weights_dir) movable_files = ['buffers.txt', 'log.controller.txt', 'train_history.csv', 'train_history.png', 'entropy.png', 'nas_training_stats.png', 'controller_states.npy', 'controller_weights.h5', 'controller_hidden_states.png'] if (not self.continuous_run): movable_files += ['nas_training_stats.json', 'weight_data.json'] movable_files += [x for x in os.listdir(self.working_dir) if (x.startswith('weight_at_layer_') and x.endswith('.png'))] movable_files += [x for x in os.listdir(self.working_dir) if (x.startswith('inp_at_layer_') and x.endswith('.png'))] movable_files += [x for x in os.listdir(self.working_dir) if (x.startswith('skip_at_layer_') and x.endswith('.png'))] for file in movable_files: file = os.path.join(self.working_dir, file) if os.path.exists(file): shutil.move(file, bak_weights_dir) os.makedirs(os.path.join(self.working_dir, 'weights')) self.controller.remove_files(movable_files, self.working_dir) def reset(self): x = np.random.uniform(0, 5, (1, 1, self.last_actionState_size)) x = (np.exp(x) / np.sum(np.exp(x))) return x def step(self, action_prob): try: next_state = np.array(action_prob[(- 1)]).reshape((1, 1, self.last_actionState_size)) except ValueError: next_state = self.reset() return next_state def train(self): 'Performs training for controller\n ' LOGGER = self.logger action_probs_record = [] loss_and_metrics_list = [] global_step = (self.start_ep * self.max_step_per_ep) if self.resume_prev_run: f = open(os.path.join(self.working_dir, 'train_history.csv'), mode='a+') else: f = open(os.path.join(self.working_dir, 'train_history.csv'), mode='w') writer = csv.writer(f) for ep in range(self.start_ep, self.max_episode): try: state = self.reset() ep_reward = 0 loss_and_metrics_ep = {'knowledge': 0, 'acc': 0, 'loss': 0} if ('metrics' in self.manager.model_compile_dict): loss_and_metrics_ep.update({x: 0 for x in self.manager.model_compile_dict['metrics']}) ep_probs = [] for step in range(self.max_step_per_ep): (actions, probs) = self.controller.get_action(state) self.entropy_record.append(compute_entropy(probs)) next_state = self.step(probs) ep_probs.append(probs) if self.squeezed_action: action_list = parse_action_str_squeezed(actions, self.controller.state_space) else: action_list = parse_action_str(actions, self.controller.state_space) LOGGER.debug('Predicted actions : {}'.format([str(x) for x in action_list])) if (self.with_input_blocks or self.with_skip_connection): (reward, loss_and_metrics) = self.manager.get_rewards(global_step, actions) else: (reward, loss_and_metrics) = self.manager.get_rewards(global_step, action_list) LOGGER.debug(((('Rewards : ' + str(reward)) + ' Metrics : ') + str(loss_and_metrics))) ep_reward += reward for x in loss_and_metrics.keys(): loss_and_metrics_ep[x] += loss_and_metrics[x] self.controller.store(state, probs, actions, reward) data = [global_step, [loss_and_metrics[x] for x in sorted(loss_and_metrics.keys())], reward] if self.squeezed_action: data.extend(actions) else: data.extend(action_list) writer.writerow(data) f.flush() global_step += 1 state = next_state loss_and_metrics_list.append({x: (v / self.max_step_per_ep) for (x, v) in loss_and_metrics_ep.items()}) ep_p = [(sum(p) / len(p)) for p in zip(*ep_probs)] action_probs_record.append(ep_p) if (ep >= (self.initial_buffering_queue - 1)): loss = self.controller.train(ep, self.working_dir) self.total_reward += np.sum(np.array(self.controller.buffer.lt_adbuffer[(- 1)]).flatten()) LOGGER.debug(('Total reward : ' + str(self.total_reward))) LOGGER.debug(('END episode %d: Controller loss : %0.6f' % (ep, loss))) LOGGER.debug(('-' * 10)) else: LOGGER.debug(('END episode %d: Buffering' % ep)) LOGGER.debug(('-' * 10)) if self.save_controller: self.controller.save_weights(os.path.join(self.working_dir, 'controller_weights.h5')) except KeyboardInterrupt: LOGGER.info('User disrupted training') break LOGGER.debug(('Total Reward : %s' % self.total_reward)) f.close() plot_controller_performance(os.path.join(self.working_dir, 'train_history.csv'), metrics_dict={k: v for (k, v) in zip(sorted(loss_and_metrics.keys()), range(len(loss_and_metrics)))}, save_fn=os.path.join(self.working_dir, 'train_history.png'), N_sma=10) plot_environment_entropy(self.entropy_record, os.path.join(self.working_dir, 'entropy.png')) save_kwargs = {} if self.with_input_blocks: save_kwargs['input_nodes'] = self.manager.model_fn.inputs_op save_action_weights(action_probs_record, self.controller.state_space, self.working_dir, with_input_blocks=self.with_input_blocks, with_skip_connection=self.with_skip_connection, **save_kwargs) save_stats(loss_and_metrics_list, self.working_dir) if self.should_plot: plot_action_weights(self.working_dir) plot_wiring_weights(self.working_dir, self.with_input_blocks, self.with_skip_connection) plot_stats2(self.working_dir) act_idx = [] for p in ep_p: act_idx.append(np.argmax(p)) return act_idx
class EnasTrainEnv(ControllerTrainEnvironment): '\n Params:\n time_budget: defaults to 72 hours\n ' def __init__(self, *args, **kwargs): self.time_budget = kwargs.pop('time_budget', '72:00:00') self.child_train_steps = kwargs.pop('child_train_steps', None) self.child_warm_up_epochs = kwargs.pop('child_warm_up_epochs', 0) self.save_controller_every = kwargs.pop('save_controller_every', None) super().__init__(*args, **kwargs) self.initial_buffering_queue = 0 if issubclass(type(self.manager), BaseNetworkManager): if (self.manager.model_fn.controller is None): self.manager.model_fn.set_controller(self.controller) else: warnings.warn('EnasTrainEnv: input manager is not a subclass of BaseNetworkManager; make sure this is intended', stacklevel=2) if (self.time_budget is None): pass elif (type(self.time_budget) is str): print(('time budget set to: %s' % self.time_budget)) self.time_budget = sum(((x * int(t)) for (x, t) in zip([3600, 60, 1], self.time_budget.split(':')))) else: raise Exception(('time budget should be in format HH:mm:ss; cannot understand : %s' % self.time_budget)) self.action_probs_record = None def train(self): LOGGER = self.logger if self.verbose: LOGGER.setLevel(10) else: LOGGER.setLevel(40) action_probs_record = [] loss_and_metrics_list = [] state = self.reset() controller_step = (self.start_ep * self.max_step_per_ep) if self.resume_prev_run: f = open(os.path.join(self.working_dir, 'train_history.csv'), mode='a+') else: f = open(os.path.join(self.working_dir, 'train_history.csv'), mode='w') writer = csv.writer(f) starttime = datetime.datetime.now() if (self.child_warm_up_epochs > 0): LOGGER.info(('warm-up for child model: %i epochs' % self.child_warm_up_epochs)) warmup_nsteps = None for i in range(1, (self.child_warm_up_epochs + 1)): LOGGER.info(('warm-up : %i epoch' % i)) self.manager.get_rewards(trial=(- i), model_arc=None, nsteps=warmup_nsteps) for child_step in range(self.start_ep, self.max_episode): try: ep_reward = 0 loss_and_metrics_ep = {'knowledge': 0, 'acc': 0, 'loss': 0} if ('metrics' in self.manager.model_compile_dict): loss_and_metrics_ep.update({x: 0 for x in self.manager.model_compile_dict['metrics']}) ep_probs = [] self.manager.get_rewards(child_step, None, nsteps=self.child_train_steps) for step in range(self.max_step_per_ep): (arc_seq, probs) = self.controller.get_action() self.entropy_record.append(compute_entropy(probs)) ep_probs.append(probs) action_list = parse_action_str_squeezed(arc_seq, self.controller.state_space) LOGGER.debug('Predicted actions : {}'.format([str(x) for x in action_list])) (reward, loss_and_metrics) = self.manager.get_rewards(controller_step, arc_seq, nsteps=self.child_train_steps) LOGGER.debug(((('Rewards : ' + str(reward)) + ' Metrics : ') + str(loss_and_metrics))) ep_reward += reward for x in loss_and_metrics.keys(): loss_and_metrics_ep[x] += loss_and_metrics[x] self.controller.store(state=state, prob=probs, action=arc_seq, reward=reward) data = [controller_step, [loss_and_metrics[x] for x in sorted(loss_and_metrics.keys())], reward] if self.squeezed_action: data.extend(arc_seq) else: data.extend(action_list) writer.writerow(data) f.flush() controller_step += 1 loss_and_metrics_list.append({x: (v / self.max_step_per_ep) for (x, v) in loss_and_metrics_ep.items()}) ep_p = [(sum(p) / len(p)) for p in zip(*ep_probs)] action_probs_record.append(ep_p) if (child_step >= (self.initial_buffering_queue - 1)): loss = self.controller.train(child_step, self.working_dir) self.total_reward += np.sum(np.array(self.controller.buffer.lt_adbuffer[(- 1)]).flatten()) LOGGER.info(('Total reward : ' + str(self.total_reward))) LOGGER.info(('END episode %d: Controller loss : %0.6f' % (child_step, loss))) LOGGER.info(('-' * 10)) else: LOGGER.info(('END episode %d: Buffering' % child_step)) LOGGER.info(('-' * 10)) if ((self.save_controller_every is not None) and ((child_step % self.save_controller_every) == 0)): self.logger.info(('Saving controller weights for epoch %d' % child_step)) self.controller.save_weights(os.path.join(self.working_dir, ('controller_weights-epoch-%i.h5' % child_step))) except KeyboardInterrupt: LOGGER.info('User disrupted training') break consumed_time = (datetime.datetime.now() - starttime).total_seconds() LOGGER.info(('used time: %.2f %%' % ((consumed_time / self.time_budget) * 100))) if (consumed_time >= self.time_budget): LOGGER.info('training ceased because run out of time budget') break LOGGER.debug(('Total Reward : %s' % self.total_reward)) if self.save_controller: self.controller.save_weights(os.path.join(self.working_dir, 'controller_weights.h5')) f.close() plot_controller_performance(os.path.join(self.working_dir, 'train_history.csv'), metrics_dict={k: v for (k, v) in zip(sorted(loss_and_metrics.keys()), range(len(loss_and_metrics)))}, save_fn=os.path.join(self.working_dir, 'train_history.png'), N_sma=10) plot_environment_entropy(self.entropy_record, os.path.join(self.working_dir, 'entropy.png')) save_kwargs = {} if self.with_input_blocks: save_kwargs['input_nodes'] = self.manager.model_fn.inputs_op self.action_probs_record = action_probs_record save_action_weights(action_probs_record, self.controller.state_space, self.working_dir, with_input_blocks=self.with_input_blocks, with_skip_connection=self.with_skip_connection, **save_kwargs) self.action_probs_record = loss_and_metrics_list save_stats(loss_and_metrics_list, self.working_dir) if self.should_plot: plot_action_weights(self.working_dir) plot_wiring_weights(self.working_dir, self.with_input_blocks, self.with_skip_connection) plot_stats2(self.working_dir) act_idx = [] for p in ep_p: act_idx.append(np.argmax(p)) return act_idx
class MultiManagerEnvironment(EnasTrainEnv): '\n MultiManagerEnvironment is an environment that allows one controller to interact with multiple EnasManagers\n ' def __init__(self, data_descriptive_features, is_enas='auto', *args, **kwargs): super(MultiManagerEnvironment, self).__init__(*args, **kwargs) assert (type(self.manager) is list), ('MultiManagerEnasEnvironment must have a List of manager instances, got %s' % type(self.manager)) self.manager_cnt = len(self.manager) self.is_enas = is_enas for i in range(self.manager_cnt): assert issubclass(type(self.manager[i]), BaseNetworkManager), ('MultiManagerEnasEnvironment expects a List of Manager instances, got %s for %i-th element' % (type(self.manager[i]), i)) self.data_descriptive_features = data_descriptive_features assert (len(self.data_descriptive_features) == self.manager_cnt), ('data descriptive features must match the number of managers; got %i description, %i managers' % (len(self.data_descriptive_features), self.manager_cnt)) if (self.is_enas == 'auto'): if all([isinstance(self.manager[i], EnasManager) for i in range(self.manager_cnt)]): self.is_enas = True else: self.is_enas = False def _warmup(self): assert self.is_enas, 'You can only set warm_up_epochs>0 if is_enas=True' self.logger.info(('warm-up for child model: %i epochs' % self.child_warm_up_epochs)) warmup_nsteps = None for i in range(1, (self.child_warm_up_epochs + 1)): self.logger.info(('warm-up : %i epoch' % i)) for j in range(self.manager_cnt): self.manager[j].get_rewards(trial=(- i), model_arc=None, nsteps=warmup_nsteps) def _train_loop(self): if self.resume_prev_run: f = open(os.path.join(self.working_dir, 'train_history.csv'), mode='a+') else: f = open(os.path.join(self.working_dir, 'train_history.csv'), mode='w') writer = csv.writer(f) starttime = datetime.datetime.now() action_probs_record = [] loss_and_metrics_list = [] controller_step = (self.start_ep * self.max_step_per_ep) for child_step in range(self.start_ep, self.max_episode): try: if self.is_enas: for j in range(self.manager_cnt): self.logger.info(('sampling with manager %i' % j)) self.manager[j].get_rewards(child_step, None, nsteps=self.child_train_steps) ep_reward = 0 loss_and_metrics_ep = defaultdict(float) for step in range(self.max_step_per_ep): for j in range(self.manager_cnt): ep_probs = [] (arc_seq, probs) = self.controller.get_action(description_feature=self.data_descriptive_features[[j]]) self.entropy_record.append(compute_entropy(probs)) ep_probs.append(probs) action_list = parse_action_str_squeezed(arc_seq, self.controller.state_space) self.logger.debug('Manager {}, Predicted actions : {}'.format(j, [str(x) for x in action_list])) (reward, loss_and_metrics) = self.manager[j].get_rewards(trial=controller_step, model_arc=arc_seq, nsteps=self.child_train_steps) self.logger.debug(((('Rewards : ' + str(reward)) + ' Metrics : ') + str(loss_and_metrics))) ep_reward += reward for x in loss_and_metrics.keys(): loss_and_metrics_ep[x] += loss_and_metrics[x] self.controller.store(prob=probs, action=arc_seq, reward=reward, description=self.data_descriptive_features[[j]], manager_index=j) data = [('%i-%i' % (j, controller_step)), [loss_and_metrics[x] for x in sorted(loss_and_metrics.keys())], reward] if self.squeezed_action: data.extend(arc_seq) else: data.extend(action_list) writer.writerow(data) f.flush() controller_step += 1 loss_and_metrics_list.append({x: (v / self.max_step_per_ep) for (x, v) in loss_and_metrics_ep.items()}) ep_p = [(sum(p) / len(p)) for p in zip(*ep_probs)] action_probs_record.append(ep_p) if (child_step >= (self.initial_buffering_queue - 1)): loss = self.controller.train(child_step, self.working_dir) self.total_reward += np.sum(np.array(self.controller.buffer.lt_adv[(- 1)]).flatten()) self.logger.info(('Total reward : ' + str(self.total_reward))) self.logger.info(('END episode %d: Controller loss : %0.6f' % (child_step, loss))) self.logger.info(('-' * 10)) else: self.logger.info(('END episode %d: Buffering' % child_step)) self.logger.info(('-' * 10)) if ((self.save_controller_every is not None) and ((child_step % self.save_controller_every) == 0)): self.logger.info(('Saving controller weights for epoch %d' % child_step)) self.controller.save_weights(os.path.join(self.working_dir, ('controller_weights-epoch-%i.h5' % child_step))) except KeyboardInterrupt: self.logger.info('User disrupted training') break consumed_time = (datetime.datetime.now() - starttime).total_seconds() self.logger.info(('used time: %.2f %%' % ((consumed_time / self.time_budget) * 100))) if (consumed_time >= self.time_budget): self.logger.info('training ceased because run out of time budget') break self.logger.debug(('Total Reward : %s' % self.total_reward)) f.close() return (action_probs_record, loss_and_metrics_list) def train(self): if (self.child_warm_up_epochs > 0): self._warmup() (action_probs_record, loss_and_metrics_list) = self._train_loop() metrics_dict = {k: v for (k, v) in zip(sorted(loss_and_metrics_list[0].keys()), range(len(loss_and_metrics_list[0])))} plot_controller_performance(os.path.join(self.working_dir, 'train_history.csv'), metrics_dict=metrics_dict, save_fn=os.path.join(self.working_dir, 'train_history.png'), N_sma=5) plot_environment_entropy(self.entropy_record, os.path.join(self.working_dir, 'entropy.png')) save_kwargs = {} if self.with_input_blocks: save_kwargs['input_nodes'] = self.manager.model_fn.inputs_op self.action_probs_record = action_probs_record save_action_weights(action_probs_record, self.controller.state_space, self.working_dir, with_input_blocks=self.with_input_blocks, with_skip_connection=self.with_skip_connection, **save_kwargs) save_stats(loss_and_metrics_list, self.working_dir) if self.should_plot: plot_action_weights(self.working_dir) plot_wiring_weights(self.working_dir, self.with_input_blocks, self.with_skip_connection) plot_stats2(self.working_dir) act_idx = [] for p in action_probs_record[(- 1)]: act_idx.append(np.argmax(p)) return act_idx
class ParallelMultiManagerEnvironment(MultiManagerEnvironment): def __init__(self, processes=2, enable_manager_sampling=False, *args, **kwargs): super().__init__(*args, **kwargs) self.processes = processes self.enable_manager_sampling = enable_manager_sampling self._gpus = get_available_gpus() assert (self.processes >= 1) if (self.enable_manager_sampling is False): assert (self.processes <= self.manager_cnt), 'Cannot have more processes than managers without sampling' @staticmethod def _reward_getter(args): pid = os.getpid() res = [] for i in range(len(args)): try: if ('remap_device' in args[i]): devices = args[i]['remap_device'] elif hasattr(args[i]['manager'], 'devices'): devices = args[i]['manager'].devices args[i]['remap_device'] = None else: devices = 'NoAttribute' args[i]['remap_device'] = None sys.stderr.write(('PID %i: %i/%i run; devices=%s\n' % (pid, i, len(args), devices))) (reward, loss_and_metrics) = args[i]['manager'].get_rewards(trial=args[i]['trial'], model_arc=args[i]['model_arc'], nsteps=args[i]['nsteps'], remap_device=args[i]['remap_device']) except Exception as e: raise Exception(('child pid %i when processing %s, has exception %s' % (pid, args[i]['model_arc'], e))) res.append({'reward': reward, 'loss_and_metrics': loss_and_metrics}) for i in range(len(args)): if hasattr(args[i]['manager'], 'close_handler'): args[i]['manager'].close_handler() return res def _train_loop(self): if self.resume_prev_run: f = open(os.path.join(self.working_dir, 'train_history.csv'), mode='a+') else: f = open(os.path.join(self.working_dir, 'train_history.csv'), mode='w') writer = csv.writer(f) starttime = datetime.datetime.now() action_probs_record = [] loss_and_metrics_list = [] controller_step = (self.start_ep * self.max_step_per_ep) from multiprocessing import set_start_method, get_context set_start_method('spawn') for child_step in range(self.start_ep, self.max_episode): try: if self.is_enas: pool_args = [] for j in range(self.manager_cnt): pool_args.append([{'manager': self.manager[j], 'trial': child_step, 'model_arc': None, 'nsteps': self.child_train_steps}]) self.logger.info(('sampling of n=%i managers executed in parallel..' % self.manager_cnt)) _ = pool.map(self._reward_getter, pool_args) ep_reward = 0 loss_and_metrics_ep = defaultdict(float) pool_args = [] store_args = [] if (self.enable_manager_sampling == True): replace = (True if (len(self._gpus) > self.manager_cnt) else False) this_manager_index = np.random.choice(self.manager_cnt, len(self._gpus), replace=replace) else: this_manager_index = np.arange(self.manager_cnt) for (k, j) in enumerate(this_manager_index): this_pool = [] this_store = [] controller_step_ = controller_step for step in range(self.max_step_per_ep): ep_probs = [] (arc_seq, probs) = self.controller.get_action(description_feature=self.data_descriptive_features[[j]]) self.entropy_record.append(compute_entropy(probs)) ep_probs.append(probs) action_list = parse_action_str_squeezed(arc_seq, self.controller.state_space) self.logger.debug('Manager {}, Predicted actions : {}'.format(j, [str(x) for x in action_list])) this_pool.append({'manager': self.manager[j], 'trial': controller_step_, 'model_arc': arc_seq, 'nsteps': self.child_train_steps}) if self.enable_manager_sampling: this_pool[(- 1)].update({'remap_device': self._gpus[k]}) this_store.append({'prob': probs, 'action': arc_seq, 'description': self.data_descriptive_features[[j]]}) controller_step_ += 1 pool_args.append(this_pool) store_args.append(this_store) controller_step += self.max_step_per_ep a_time = time.time() with get_context('spawn').Pool(processes=self.processes) as pool: elp = (time.time() - a_time) if (self.processes > 1): self.logger.info(('distributing %i/%i reward-getters to a pool of %i workers.. %.3f sec' % (len(pool_args), self.manager_cnt, self.processes, elp))) res_list = pool.map(self._reward_getter, pool_args) else: self.logger.info(('Only %i worker, running sequentially.. %.3f' % (self.processes, elp))) res_list = [] for x in pool_args: res_list.append(self._reward_getter(x)) assert (len(res_list) == len(this_manager_index)) self.logger.info('storing..') for (m_, (store_, res_)) in enumerate(zip(store_args, res_list)): m = this_manager_index[m_] for (t, (store, res)) in enumerate(zip(store_, res_)): (reward, loss_and_metrics) = (res['reward'], res['loss_and_metrics']) (probs, arc_seq, description) = (store['prob'], store['action'], store['description']) ep_reward += reward trial = pool_args[m_][t]['trial'] for x in loss_and_metrics.keys(): loss_and_metrics_ep[x] += loss_and_metrics[x] self.controller.store(prob=probs, action=arc_seq, reward=reward, description=self.data_descriptive_features[[m]], manager_index=m) data = [('%i-%i' % (m, trial)), [loss_and_metrics[x] for x in sorted(loss_and_metrics.keys())], reward] if self.squeezed_action: data.extend(arc_seq) else: data.extend(action_list) writer.writerow(data) f.flush() loss_and_metrics_list.append({x: (v / self.max_step_per_ep) for (x, v) in loss_and_metrics_ep.items()}) ep_p = [(sum(p) / len(p)) for p in zip(*ep_probs)] action_probs_record.append(ep_p) if (child_step >= (self.initial_buffering_queue - 1)): loss = self.controller.train(child_step, self.working_dir) self.total_reward += np.sum(np.array(self.controller.buffer.lt_adv[(- 1)]).flatten()) self.logger.info(('Total reward : ' + str(self.total_reward))) self.logger.info(('END episode %d: Controller loss : %0.6f' % (child_step, loss))) self.logger.info(('-' * 10)) else: self.logger.info(('END episode %d: Buffering' % child_step)) self.logger.info(('-' * 10)) if ((self.save_controller_every is not None) and ((child_step % self.save_controller_every) == 0)): self.logger.info(('Saving controller weights for epoch %d' % child_step)) self.controller.save_weights(os.path.join(self.working_dir, ('controller_weights-epoch-%i.h5' % child_step))) except KeyboardInterrupt: self.logger.info('User disrupted training') break consumed_time = (datetime.datetime.now() - starttime).total_seconds() self.logger.info(('used time: %.2f %%' % ((consumed_time / self.time_budget) * 100))) if (consumed_time >= self.time_budget): self.logger.info('training ceased because run out of time budget') break self.logger.debug(('Total Reward : %s' % self.total_reward)) f.close() return (action_probs_record, loss_and_metrics_list) def restore(self): self.controller.load_weights(os.path.join(self.working_dir, 'controller_weights.h5')) self.logger.info('Loaded existing weights') finished_records = 0 with open(os.path.join(self.working_dir, 'train_history.csv'), 'r') as f: for _ in f: finished_records += 1 self.start_ep = (finished_records // (len(self.manager) * self.max_step_per_ep)) self.logger.info(('Loaded existing history; starting from ep %i' % self.start_ep))
def get_model_space(num_layers): state_space = ModelSpace() for i in range(num_layers): state_space.add_layer(i, [State('Dense', units=5, activation='relu'), State('Dense', units=5, activation='tanh')]) return state_space
def get_input_nodes(num_inputs, with_input_blocks): input_state = [] if with_input_blocks: for node in range(num_inputs): units = 1 name = ('X%i' % node) node_op = State('input', shape=(units,), name=name) input_state.append(node_op) else: input_state = [State('input', shape=(num_inputs,), name='Input')] return input_state
def get_output_nodes(): output_op = State('Dense', units=1, activation='linear', name='output') return output_op
def get_data(with_input_blocks): np.random.seed(111) n = 5000 p = 4 beta_a = np.array([0, 0, 0, 0]).astype('float32') beta_i = np.array(((([0, 3, 0, 0] + ([0] * 3)) + [0, (- 2)]) + [0])).astype('float32') simulator = HigherOrderSimulator(n=n, p=p, noise_var=0.1, x_var=1.0, degree=2, discretize_beta=True, discretize_x=False, with_input_blocks=with_input_blocks) simulator.set_effect(beta_a, beta_i) (X_train, y_train) = simulator.sample_data() (X_val, y_val) = simulator.sample_data(N=500) (X_test, y_test) = simulator.sample_data(N=500) return ((X_train, y_train), (X_val, y_val), (X_test, y_test))
def get_data_correlated(with_input_blocks, corr_coef=0.6): np.random.seed(111) n = 5000 p = 4 beta_a = np.array([0, 0, 0, 0]).astype('float32') beta_i = np.array(((([0, 3, 0, 0] + ([0] * 3)) + [0, (- 2)]) + [0])).astype('float32') cov_mat = (np.eye(4) * 1.0) cov_mat[(0, 2)] = cov_mat[(2, 0)] = (1.0 * corr_coef) simulator = CorrelatedDataSimulator(n=n, p=p, noise_var=0.1, data_cov_matrix=cov_mat, degree=2, discretize_beta=True, with_input_blocks=with_input_blocks) simulator.set_effect(beta_a, beta_i) (X_train, y_train) = simulator.sample_data() (X_val, y_val) = simulator.sample_data(N=500) (X_test, y_test) = simulator.sample_data(N=500) return ((X_train, y_train), (X_val, y_val), (X_test, y_test))
def get_knowledge_fn(): gkf = GraphKnowledgeHessFunc(total_feature_num=4) adjacency = np.zeros((4, 4)) adjacency[(0, 1)] = adjacency[(1, 0)] = 3.0 adjacency[(2, 3)] = adjacency[(3, 2)] = (- 2.0) (intr_idx, intr_eff) = gkf.convert_adjacency_to_knowledge(adjacency) gkf.knowledge_encoder(intr_idx, intr_eff) return gkf
def get_reward_fn(gkf, Lambda=1.0): reward_fn = KnowledgeReward(gkf, Lambda=Lambda) return reward_fn
def get_manager(train_data, validation_data, model_fn, reward_fn, wd='./tmp'): model_compile_dict = {'loss': 'mse', 'optimizer': 'adam', 'metrics': ['mae']} manager = GeneralManager(train_data, validation_data, working_dir=wd, model_fn=model_fn, reward_fn=reward_fn, post_processing_fn=store_with_hessian, model_compile_dict=model_compile_dict, epochs=100, verbose=0, child_batchsize=100) return manager
def get_model_fn(model_space, inputs_op, output_op, num_layers, with_skip_connection, with_input_blocks): model_compile_dict = {'loss': 'mse', 'optimizer': 'adam', 'metrics': ['mae']} model_fn = DAGModelBuilder(inputs_op, output_op, num_layers, model_space, model_compile_dict, with_skip_connection, with_input_blocks, dag_func='InputBlockDAG') return model_fn
def ID2arch(hist_df, state_str_to_state_shortname): id2arch = {} num_layers = sum([1 for x in hist_df.columns.values if x.startswith('L')]) for i in hist_df.ID: arch = tuple((state_str_to_state_shortname[x][hist_df.loc[(hist_df.ID == i)][('L%i' % (x + 1))].iloc[0]] for x in range(num_layers))) id2arch[i] = arch return id2arch
def get_gold_standard(history_fn_list, state_space, metric_name_dict={'acc': 0, 'knowledge': 1, 'loss': 2}, id_remainder=None): state_str_to_state_shortname = {} for i in range(len(state_space)): state_str_to_state_shortname[i] = {str(x): get_layer_shortname(x) for x in state_space[i]} df = read_history(history_fn_list, metric_name_dict=metric_name_dict) if (id_remainder is not None): df.ID = (df.ID % id_remainder) df.at[((df.ID == 0), 'ID')] = id_remainder id2arch = ID2arch(df, state_str_to_state_shortname) arch2id = {v: k for (k, v) in id2arch.items()} gs = df.groupby(by='ID', as_index=False).agg(np.median) gs['loss_rank'] = ss.rankdata(gs.loss) gs['knowledge_rank'] = ss.rankdata(gs.knowledge) return (gs, arch2id)
def get_gold_standard_arc_seq(history_fn_list, model_space, metric_name_dict, with_skip_connection, with_input_blocks, num_input_blocks): model_gen = get_model_space_generator(model_space, with_skip_connection=with_skip_connection, with_input_blocks=with_input_blocks, num_input_blocks=num_input_blocks) df = read_history(history_fn_list, metric_name_dict) gs = df.groupby(by='ID', as_index=False).agg(np.median) gs['loss_rank'] = ss.rankdata(gs.loss) gs['knowledge_rank'] = ss.rankdata(gs.knowledge) archs = [x for x in model_gen] arch2id = {','.join([str(x) for x in archs[i]]): i for i in range(len(archs))} return (gs, arch2id)
def get_model_space_generator(model_space, with_skip_connection, with_input_blocks, num_input_blocks=1): new_space = [] num_layers = len(model_space) for layer_id in range(num_layers): new_space.append([x for x in range(len(model_space[layer_id]))]) if with_skip_connection: for i in range(layer_id): new_space.append([0, 1]) if with_input_blocks: assert (num_input_blocks > 1), 'if `with_input_blocks=True`, expect `num_input_blocks>1`' ib_arr = combine_input_blocks(num_layers, num_input_blocks) insert_pos = np.zeros(num_layers, dtype='int32') insert_pos[0] = p = 1 for i in range(1, num_layers): p += (1 + ((i - 1) * with_skip_connection)) insert_pos[i] = p for n in itertools.product(*new_space): for ib in ib_arr: tmp = [] for (layer_op, layer_ib) in zip(np.split(n, insert_pos), (list(ib) + [np.array([])])): tmp.extend(layer_op) tmp.extend(layer_ib) (yield np.array(tmp)) else: return itertools.product(*new_space)
def combine_input_blocks(num_layers, num_input_blocks): 'return all combinations of input_blocks when `input_block_unique_connection=True`\n ' cmb_arr = np.zeros(((num_layers ** num_input_blocks), num_layers, num_input_blocks), dtype='int32') cmb_list = [list(range(num_layers)) for _ in range(num_input_blocks)] idx_g = list(itertools.product(*cmb_list)) for i in range(cmb_arr.shape[0]): idxs = idx_g[i] for j in range(len(idxs)): cmb_arr[(i, idxs[j], j)] = 1 return cmb_arr
def train_hist_csv_writter(writer, trial, loss_and_metrics, reward, model_states): data = [trial, [loss_and_metrics[x] for x in sorted(loss_and_metrics.keys())], reward] action_list = [str(x) for x in model_states] data.extend(action_list) writer.writerow(data) print(action_list)
def rewrite_train_hist(working_dir, model_fn, knowledge_fn, data, suffix='new', metric_name_dict={'acc': 0, 'knowledge': 1, 'loss': 2}): import tensorflow as tf from ..utils.io import read_history old_df = read_history([os.path.join(working_dir, 'train_history.csv')], metric_name_dict) new_fh = open(os.path.join(working_dir, ('train_history-%s.csv' % suffix)), 'w') csv_writter = csv.writer(new_fh) total_layers = (max([int(x.lstrip('L')) for x in old_df.columns.values if x.lstrip('L').isdigit()]) + 1) for i in range(old_df.shape[0]): id = old_df['ID'][i] param_fp = os.path.join(old_df['dir'][i], 'weights', ('trial_%i' % id), 'bestmodel.h5') arc = np.array([old_df[('L%i' % l)][i] for l in range(1, total_layers)], dtype=np.int32) train_graph = tf.Graph() train_sess = tf.Session(graph=train_graph) with train_graph.as_default(), train_sess.as_default(): model = model_fn(arc) model.load_weights(param_fp) new_k = knowledge_fn(model, data) loss_and_metrics = {x: old_df[x][i] for x in metric_name_dict} loss_and_metrics.update({'knowledge': new_k}) reward = (old_df['loss'][i] + new_k) train_hist_csv_writter(csv_writter, id, loss_and_metrics, reward, arc) new_fh.flush() new_fh.close() return
def grid_search(model_space_generator, manager, working_dir, B=10, resume_prev_run=True): write_mode = ('a' if resume_prev_run else 'w') fh = open(os.path.join(working_dir, 'train_history.csv'), write_mode) writer = csv.writer(fh) i = 0 for b in range(B): if getattr(model_space_generator, '__next__', None): model_space_generator_ = model_space_generator else: model_space_generator_ = itertools.product(*model_space_generator) for model_states in model_space_generator_: i += 1 print('B={} i={} arc={}'.format(b, i, ','.join([str(x) for x in model_states]))) if (not os.path.isdir(os.path.join(working_dir, 'weights', ('trial_%i' % i)))): os.makedirs(os.path.join(working_dir, 'weights', ('trial_%i' % i))) if (resume_prev_run and os.path.isfile(os.path.join(working_dir, 'weights', ('trial_%i' % i), 'bestmodel.h5'))): continue (reward, loss_and_metrics) = manager.get_rewards(i, model_states) train_hist_csv_writter(writer, i, loss_and_metrics, reward, model_states) fh.flush() fh.close() return
def get_mock_reward(model_states, train_history_df, metric, stringify_states=True): if stringify_states: model_states_ = [str(x) for x in model_states] else: model_states_ = model_states idx_bool = np.array([(train_history_df[('L%i' % (i + 1))] == model_states_[i]) for i in range(len(model_states_))]) index = np.apply_along_axis(func1d=(lambda x: all(x)), axis=0, arr=idx_bool) if (np.sum(index) == 0): idx = train_history_df['loss'].idxmax() return train_history_df[metric].iloc[idx] else: return train_history_df[metric].iloc[np.random.choice(np.where(index)[0])]
def get_default_mock_reward_fn(model_states, train_history_df, lbd=1.0, metric=['loss', 'knowledge', 'acc']): Lambda = lbd mock_reward = get_mock_reward(model_states, train_history_df, metric) this_reward = (- (mock_reward['loss'] + (Lambda * mock_reward['knowledge']))) loss_and_metrics = [mock_reward['loss'], mock_reward['acc']] reward_metrics = {'knowledge': mock_reward['knowledge']} return (this_reward, loss_and_metrics, reward_metrics)
def get_mock_reward_fn(train_history_df, metric, stringify_states, lbd=1.0): def reward_fn(model_states, *args, **kwargs): mock_reward = get_mock_reward(model_states, train_history_df, metric, stringify_states) this_reward = (- (mock_reward['loss'] + (lbd * mock_reward['knowledge']))) loss_and_metrics = ([mock_reward['loss']] + [mock_reward[x] for x in metric if ((x != 'loss') and (x != 'knowledge'))]) reward_metrics = {'knowledge': mock_reward['knowledge']} return (this_reward, loss_and_metrics, reward_metrics) return reward_fn
class MockManager(GeneralManager): 'Helper class for bootstrapping a random reward for any given architecture from a set of history records' def __init__(self, history_fn_list, model_compile_dict, train_data=None, validation_data=None, input_state=None, output_state=None, model_fn=None, reward_fn=None, post_processing_fn=None, working_dir='.', Lambda=1.0, acc_beta=0.8, clip_rewards=0.0, metric_name_dict={'acc': 0, 'knowledge': 1, 'loss': 2}, verbose=0): assert (type(Lambda) in (float, int)), 'Lambda potentially confused with `Keras.core.Lambda` layer' self._lambda = Lambda self.reward_fn = reward_fn self.model_fn = model_fn self.model_compile_dict = model_compile_dict self.train_history_df = read_history(history_fn_list, metric_name_dict) self.clip_rewards = clip_rewards self.verbose = verbose self.working_dir = working_dir if (not os.path.exists(self.working_dir)): os.makedirs(self.working_dir) self.beta = acc_beta self.beta_bias = acc_beta self.moving_reward = 0.0 def __str__(self): s = ('MockManager with %i records' % self.train_history_df.shape[0]) return s def get_rewards(self, trial, model_states=None, **kwargs): if (model_states is None): model_states = kwargs.pop('model_arc', None) if self.reward_fn: (this_reward, loss_and_metrics, reward_metrics) = self.reward_fn(model_states, self.train_history_df, self._lambda) else: (this_reward, loss_and_metrics, reward_metrics) = get_default_mock_reward_fn(model_states, self.train_history_df, self._lambda) loss = loss_and_metrics.pop(0) loss_and_metrics = {str(self.model_compile_dict['metrics'][i]): loss_and_metrics[i] for i in range(len(loss_and_metrics))} loss_and_metrics['loss'] = loss if reward_metrics: loss_and_metrics.update(reward_metrics) return (this_reward, loss_and_metrics)
def get_state_space(): 'State_space is the place we define all possible operations (called `States`) on each layer to stack a neural net.\n The state_space is defined in a layer-by-layer manner, i.e. first define the first layer (layer 0), then layer 1,\n so on and so forth. See below for how to define all possible choices for a given layer.\n\n Returns\n -------\n a pre-defined state_space object\n\n Notes\n ------\n Use key-word arguments to define layer-specific attributes.\n\n Adding `Identity` state to a layer is basically omitting a layer by performing no operations.\n ' state_space = ModelSpace() state_space.add_layer(0, [State('conv1d', filters=3, kernel_size=8, kernel_initializer='glorot_uniform', activation='relu', name='conv1'), State('conv1d', filters=3, kernel_size=14, kernel_initializer='glorot_uniform', activation='relu', name='conv1'), State('conv1d', filters=3, kernel_size=20, kernel_initializer='glorot_uniform', activation='relu', name='conv1'), State('denovo', filters=3, kernel_size=8, lambda_pos=0.0001, lambda_l1=0.0001, lambda_filter=1e-08, name='conv1'), State('denovo', filters=3, kernel_size=14, lambda_pos=0.0001, lambda_l1=0.0001, lambda_filter=1e-08, name='conv1'), State('denovo', filters=3, kernel_size=20, lambda_pos=0.0001, lambda_l1=0.0001, lambda_filter=1e-08, name='conv1')]) state_space.add_layer(1, [State('Identity'), State('maxpool1d', pool_size=8, strides=8), State('avgpool1d', pool_size=8, strides=8)]) state_space.add_layer(2, [State('Flatten'), State('GlobalMaxPool1D'), State('GlobalAvgPool1D'), State('SFC', output_dim=10, symmetric=True, smoothness_penalty=1.0, smoothness_l1=True, smoothness_second_diff=True, curvature_constraint=10.0, name='sfc')]) state_space.add_layer(3, [State('Dense', units=3, activation='relu'), State('Dense', units=10, activation='relu'), State('Identity')]) return state_space
def get_data(): 'Test function for reading data from a set of FASTA sequences. Read Positive and Negative FASTA files, and\n convert to 4 x N matrices.\n ' pos_file = resource_filename('amber.resources', 'simdata/DensityEmbedding_motifs-MYC_known1_min-1_max-1_mean-1_zeroProb-0p0_seqLength-200_numSeqs-10000.fa.gz') neg_file = resource_filename('amber.resources', 'simdata/EmptyBackground_seqLength-200_numSeqs-10000.fa.gz') (X, y) = data_parser.get_data_from_fasta_sequence(pos_file, neg_file) (X_train, y_train, X_test, y_test) = (X[:18000], y[:18000], X[18000:], y[18000:]) return ((X_train, y_train), (X_test, y_test))
class DataToParse(): def __init__(self, path, method=None): self.path = path self.method = method self._extension() def _extension(self): ext = os.path.splitext(self.path)[1] if (ext in ('.pkl', '.pickle')): self.method = 'pickle' elif (ext in ('.npy',)): self.method = 'numpy' elif (ext in ('.h5', '.hdf5')): self.method = 'hdf5' else: raise Exception(('Unknown data format: %s' % self.path)) def __str__(self): s = ('DataToParse-%s' % self.path) return s def unpack(self): assert os.path.isfile(self.path), ('File does not exist: %s' % self.path) assert (self.method is not None), ('Cannot determine parse method for file: %s' % self.path) print(('unpacking data.. %s' % self.path)) if (self.method == 'pickle'): import pickle return pickle.load(open(self.path, 'rb')) elif (self.method == 'numpy'): import numpy return numpy.load(self.path) elif (self.method == 'hdf5'): import h5py return h5py.File(self.path, 'r')
def load_data_dict(d): for (k, v) in d.items(): if (type(v) is DataToParse): d[k] = v.unpack() elif (type(v) is str): assert os.path.isfile(v), ('cannot find file: %s' % v) d[k] = DataToParse(v).unpack() return d
def get_train_env(env_type, controller, manager, *args, **kwargs): if (env_type == 'ControllerTrainEnv'): from .architect.trainEnv import ControllerTrainEnvironment env = ControllerTrainEnvironment(*args, controller=controller, manager=manager, **kwargs) elif (env_type == 'EnasTrainEnv'): from .architect.trainEnv import EnasTrainEnv env = EnasTrainEnv(*args, controller=controller, manager=manager, **kwargs) else: raise Exception(('cannot understand manager type: %s' % env_type)) print(('env_type = %s' % env_type)) return env
def get_controller(controller_type, model_space, session, **kwargs): if ((controller_type == 'General') or (controller_type == 'GeneralController')): from .architect import GeneralController controller = GeneralController(model_space=model_space, session=session, **kwargs) elif ((controller_type == 'Operation') or (controller_type == 'OperationController')): from .architect import OperationController controller = OperationController(model_space=model_space, **kwargs) elif ((controller_type == 'MultiIO') or (controller_type == 'MultiIOController')): from .architect import MultiIOController controller = MultiIOController(model_space=model_space, session=session, **kwargs) elif ((controller_type == 'ZeroShot') or (controller_type == 'ZeroShotController')): from .architect import ZeroShotController controller = ZeroShotController(model_space=model_space, session=session, **kwargs) else: raise Exception(('cannot understand controller type: %s' % controller_type)) print(('controller = %s' % controller_type)) return controller
def get_model_space(arg): from .architect.modelSpace import ModelSpace if (type(arg) is str): if (arg == 'Default ANN'): from .bootstrap.dense_skipcon_space import get_model_space as ms_ann model_space = ms_ann(3) elif (arg == 'Default 1D-CNN'): from .bootstrap.simple_conv1d_space import get_state_space as ms_cnn model_space = ms_cnn() else: raise Exception(('cannot understand string model_space arg: %s' % arg)) elif (type(arg) in (dict, list)): model_space = ModelSpace.from_dict(arg) elif isinstance(arg, ModelSpace): model_space = arg else: raise Exception(('cannot understand non-string model_space arg: %s' % arg)) return model_space
def get_manager(manager_type, model_fn, reward_fn, data_dict, session, *args, **kwargs): data_dict = load_data_dict(data_dict) if ((manager_type == 'General') or (manager_type == 'GeneralManager')): from .architect.manager import GeneralManager manager = GeneralManager(*args, model_fn=model_fn, reward_fn=reward_fn, train_data=data_dict['train_data'], validation_data=data_dict['validation_data'], **kwargs) elif ((manager_type == 'EnasManager') or (manager_type == 'Enas')): from .architect.manager import EnasManager manager = EnasManager(*args, model_fn=model_fn, reward_fn=reward_fn, train_data=data_dict['train_data'], validation_data=data_dict['validation_data'], session=session, **kwargs) elif ((manager_type == 'Mock') or (manager_type == 'MockManager')): from .bootstrap.mock_manager import MockManager manager = MockManager(*args, model_fn=model_fn, reward_fn=reward_fn, **kwargs) elif ((manager_type == 'Distributed') or (manager_type == 'DistributedManager')): from .architect.manager import DistributedGeneralManager train_data_kwargs = kwargs.pop('train_data_kwargs', None) validate_data_kwargs = kwargs.pop('validate_data_kwargs', None) devices = kwargs.pop('devices', None) manager = DistributedGeneralManager(*args, devices=devices, train_data_kwargs=train_data_kwargs, validate_data_kwargs=validate_data_kwargs, model_fn=model_fn, reward_fn=reward_fn, train_data=data_dict['train_data'], validation_data=data_dict['validation_data'], **kwargs) else: raise Exception(('cannot understand manager type: %s' % manager_type)) print(('manager = %s' % manager_type)) return manager
def get_modeler(model_fn_type, model_space, session, *args, **kwargs): from .architect.modelSpace import State if ((model_fn_type == 'DAG') or (model_fn_type == 'DAGModelBuilder')): from .modeler import DAGModelBuilder assert (('inputs_op' in kwargs) and ('outputs_op' in kwargs)) inp_op_list = kwargs.pop('inputs_op') inputs_op = [(State(**x) if (not isinstance(x, State)) else x) for x in inp_op_list] out_op_list = kwargs.pop('outputs_op') output_op = [(State(**x) if (not isinstance(x, State)) else x) for x in out_op_list] model_fn = DAGModelBuilder(*args, model_space=model_space, num_layers=len(model_space), inputs_op=inputs_op, output_op=output_op, session=session, **kwargs) elif ((model_fn_type == 'Enas') or (model_fn_type == 'EnasAnnModelBuilder')): from .modeler import EnasAnnModelBuilder inp_op_list = kwargs.pop('inputs_op') inputs_op = [(State(**x) if (not isinstance(x, State)) else x) for x in inp_op_list] out_op_list = kwargs.pop('outputs_op') output_op = [(State(**x) if (not isinstance(x, State)) else x) for x in out_op_list] model_fn = EnasAnnModelBuilder(*args, model_space=model_space, num_layers=len(model_space), inputs_op=inputs_op, output_op=output_op, session=session, **kwargs) elif (model_fn_type == 'EnasCnnModelBuilder'): from .modeler import EnasCnnModelBuilder inp_op_list = kwargs.pop('inputs_op') inputs_op = [(State(**x) if (not isinstance(x, State)) else x) for x in inp_op_list] out_op_list = kwargs.pop('outputs_op') output_op = [(State(**x) if (not isinstance(x, State)) else x) for x in out_op_list] controller = kwargs.pop('controller') model_fn = EnasCnnModelBuilder(*args, model_space=model_space, num_layers=len(model_space), inputs_op=inputs_op, output_op=output_op, session=session, controller=controller, **kwargs) elif (model_fn_type == 'KerasModelBuilder'): from .modeler import KerasModelBuilder inp_op_list = kwargs.pop('inputs_op') inputs_op = [(State(**x) if (not isinstance(x, State)) else x) for x in inp_op_list] assert (len(inputs_op) == 1), 'KerasModelBuilder only accepts one input; try KerasMultiIOModelBuilder for multiple inputs' out_op_list = kwargs.pop('outputs_op') output_op = [(State(**x) if (not isinstance(x, State)) else x) for x in out_op_list] assert (len(output_op) == 1), 'KerasModelBuilder only accepts one output; try KerasMultiIOModelBuilder for multiple outputs' model_fn = KerasModelBuilder(*args, inputs=inputs_op[0], outputs=output_op[0], model_space=model_space, **kwargs) elif (model_fn_type == 'KerasMultiIOModelBuilder'): from .modeler import KerasMultiIOModelBuilder inp_op_list = kwargs.pop('inputs_op') inputs_op = [(State(**x) if (not isinstance(x, State)) else x) for x in inp_op_list] out_op_list = kwargs.pop('outputs_op') output_op = [(State(**x) if (not isinstance(x, State)) else x) for x in out_op_list] model_fn = KerasMultiIOModelBuilder(*args, model_space=model_space, inputs_op=inputs_op, output_op=output_op, session=session, **kwargs) elif (model_fn_type == 'KerasBranchModelBuilder'): from .modeler import KerasBranchModelBuilder inp_op_list = kwargs.pop('inputs_op') inputs_op = [(State(**x) if (not isinstance(x, State)) else x) for x in inp_op_list] out_op_list = kwargs.pop('outputs_op') output_op = [(State(**x) if (not isinstance(x, State)) else x) for x in out_op_list] assert (len(output_op) == 1) model_fn = KerasBranchModelBuilder(*args, model_space=model_space, inputs_op=inputs_op, output_op=output_op[0], **kwargs) else: raise Exception(('cannot understand model_builder type: %s' % model_fn_type)) print(('modeler = %s' % model_fn_type)) return model_fn
def get_reward_fn(reward_fn_type, knowledge_fn, *args, **kwargs): if (reward_fn_type == 'KnowledgeReward'): from .architect.reward import KnowledgeReward reward_fn = KnowledgeReward(knowledge_fn, *args, **kwargs) elif (reward_fn_type == 'LossReward'): from .architect.reward import LossReward assert (knowledge_fn is None), ('Incompatability: LossReward must have knownledge_fn=None; got %s' % knowledge_fn) reward_fn = LossReward(*args, **kwargs) elif (reward_fn_type == 'Mock_Reward'): from .architect.reward import MockReward reward_fn = MockReward(*args, **kwargs) elif (reward_fn_type == 'LossAucReward'): from .architect.reward import LossAucReward reward_fn = LossAucReward(*args, knowledge_function=knowledge_fn, **kwargs) else: raise Exception(('cannot understand reward_fn type: %s' % reward_fn_type)) print(('reward = %s' % reward_fn_type)) return reward_fn
def get_knowledge_fn(knowledge_fn_type, knowledge_data_dict, *args, **kwargs): if (knowledge_data_dict is not None): knowledge_data_dict = load_data_dict(knowledge_data_dict) if ((knowledge_fn_type == 'ght') or (knowledge_fn_type == 'GraphHierarchyTree')): from .objective import GraphHierarchyTree k_fn = GraphHierarchyTree(*args, **kwargs) elif ((knowledge_fn_type == 'ghtal') or (knowledge_fn_type == 'GraphHierarchyTreeAuxLoss')): from .objective import GraphHierarchyTreeAuxLoss k_fn = GraphHierarchyTreeAuxLoss(*args, **kwargs) elif (knowledge_fn_type == 'Motif'): from .objective import MotifKLDivergence k_fn = MotifKLDivergence(*args, **kwargs) elif (knowledge_fn_type == 'AuxilaryAcc'): from .objective import AuxilaryAcc k_fn = AuxilaryAcc(*args, **kwargs) elif ((knowledge_fn_type == 'None') or (knowledge_fn_type == 'zero')): k_fn = None else: raise Exception(('cannot understand knowledge_fn type: %s' % knowledge_fn_type)) if (k_fn is not None): if hasattr(k_fn, 'knowledge_encoder'): k_fn.knowledge_encoder(**knowledge_data_dict) print(('knowledge = %s' % knowledge_fn_type)) return k_fn
def get_model_and_io_nodes(model_space_arg): import json import ast def eval_shape(d_): for j in range(len(d_)): if (('shape' in d_[j]) and (type(d_[j]['shape']) is str)): d_[j]['shape'] = ast.literal_eval(d_[j]['shape']) return d_ if os.path.isfile(model_space_arg): with open(model_space_arg, 'r') as f: d = json.load(f) model_space = d['model_space'] d['input_states'] = eval_shape(d['input_states']) input_states = d['input_states'] d['output_state'] = eval_shape([d['output_state']])[0] output_state = d['output_state'] return (model_space, input_states, output_state) else: raise Exception(('cannot open file: %s' % model_space_arg))
def gui_mapper(var_dict): wd = var_dict['wd'] train_data = DataToParse(var_dict['train_data']) val_data = DataToParse(var_dict['validation_data']) (model_space, input_states, output_state) = get_model_and_io_nodes(var_dict['model_space']) model_compile_dict = {'optimizer': var_dict['optimizer'], 'loss': var_dict['child_loss'], 'metrics': [x.strip() for x in var_dict['child_metrics'].strip('[]').split(',') if len(x.strip())]} knowledge_params = eval(var_dict['knowledge_specific_settings']) assert (type(knowledge_params) is dict), ('Error in parsing `knowledge_specific settings`, must be a dict:\n %s' % knowledge_params) knowledge_data = DataToParse(var_dict['knowledge_data']).unpack() type_dict = {'controller_type': var_dict['controller_type'], 'model_fn_type': var_dict['model_builder'], 'knowledge_fn_type': var_dict['knowledge_fn'], 'reward_fn_type': var_dict['reward_fn'], 'manager_type': var_dict['manager_type'], 'env_type': var_dict['env_type']} specs = {'controller': {'use_ppo_loss': (var_dict['optim_method'] == 'PPO'), 'num_input_blocks': len(input_states), 'lstm_size': int(var_dict['lstm_size']), 'lstm_num_layers': int(var_dict['lstm_layers']), 'kl_threshold': float(var_dict['kl_cutoff']), 'train_pi_iter': int(var_dict['ctrl_epoch']), 'lr_init': float(var_dict['ctrl_lr']), 'buffer_size': int(var_dict['ctrl_buffer_size']), 'batch_size': int(var_dict['ctrl_batch_size'])}, 'model_space': model_space, 'model_builder': {'input_states': input_states, 'output_state': output_state, 'model_compile_dict': model_compile_dict, 'dag_func': var_dict['dag_func']}, 'knowledge_fn': {'params': knowledge_params, 'data': knowledge_data}, 'reward_fn': {'Lambda': float(var_dict['knowledge_weight']), 'knowledge_c': (None if (var_dict['knowledge_c'] == 'None') else float(var_dict['knowledge_c'])), 'loss_c': (None if (var_dict['loss_c'] == 'None') else float(var_dict['loss_c']))}, 'manager': {'params': {'working_dir': wd, 'model_compile_dict': model_compile_dict, 'post_processing_fn': var_dict['postprocessing_fn'], 'epochs': int(var_dict['child_epochs']), 'verbose': int(var_dict['manager_verbosity']), 'child_batchsize': int(var_dict['child_batch_size'])}, 'data': {'train_data': train_data, 'validation_data': val_data}}, 'train_env': {'max_episode': int(var_dict['total_steps']), 'max_step_per_ep': int(var_dict['samples_per_step']), 'should_plot': True, 'working_dir': wd, 'squeezed_action': True}} return (type_dict, specs)
def load_images(wd, frame): global images_, captions_ pngs = sorted([x for x in os.listdir(wd) if x.endswith('png')]) images_ = [os.path.join(wd, x) for x in pngs] captions_ = [x.split('.')[0] for x in pngs] if (len(pngs) == 0): messagebox.showinfo('Warning', 'Load failed. No figures found.') return for g in GALLERY_SHOW_TYPES: images_type_indices[g] = [] for i in range(len(captions_)): if captions_[i].startswith(GALLERY_SHOWTYPE_STARTSWTIH[g]): images_type_indices[g].append(i) move(0, frame)
def move(delta, frame): global current, images_, images_type_indices gallery_type = frame.gallery_showtype.get() if (not (0 <= (current + delta) < len(images_type_indices[gallery_type]))): if (len(images_type_indices[gallery_type]) == 0): frame.gallery_showtype.set(GALLERY_SHOW_TYPES[0]) else: current = ((- 1) if ((current + delta) >= len(images_type_indices[gallery_type])) else len(images_type_indices[gallery_type])) current += delta image = Image.open(images_[images_type_indices[gallery_type][current]]).resize(GALLERY_SIZE, Image.ANTIALIAS) photo = ImageTk.PhotoImage(image) page_count = ('Figure %i / %i :' % ((current + 1), len(images_type_indices[gallery_type]))) frame.demo_label['text'] = ((page_count + ' ') + captions_[images_type_indices[gallery_type][current]]) frame.demo_label['image'] = photo frame.demo_label.photo = photo
class EvaluateTab(tk.Frame): def __init__(self, parent, controller, global_wd, global_thread_spawner=None, prev_=None, next_=None): tk.Frame.__init__(self, master=parent, bg=BODY_COLOR) self.global_wd = global_wd self.global_thread_spawner = global_thread_spawner self._create_header(controller, prev_, next_) self._create_left_column() self._create_gallery_column() self.animation_register = [] self.has_run = False def _create_header(self, controller, prev_, next_): self.header = tk.Frame(master=self, width=800, height=20, bg=BODY_COLOR) self.header.grid(row=0, columnspan=5, sticky='nw') button2 = tk.Button(self.header, text='Discover ->', command=(lambda : controller.show_frame(next_)), bg=BTN_BG) button2.grid(row=0, column=2, sticky='w') button1 = tk.Button(self.header, text='<- Train', command=(lambda : controller.show_frame(prev_)), bg=BTN_BG) button1.grid(row=0, column=1, sticky='w') def _create_left_column(self): self.left_column = tk.Frame(master=self, width=300, height=600, bg=SIDEBAR_COLOR) self.left_column.grid(row=1, column=0, columnspan=2, sticky='nw') self.left_column.rowconfigure(0, weight=1) label = tk.Label(self.left_column, text='Gallery', font=LARGE_FONT, bg=BODY_COLOR, justify=tk.CENTER) label.grid(row=0, columnspan=2, sticky='ew') button1 = tk.Button(self.left_column, text='Load', command=(lambda : load_images(os.path.join(self.global_wd.get()), self)), bg=BTN_BG) button1.grid(row=6, column=0, columnspan=2, sticky='we') button2 = tk.Button(self.left_column, text='<--', command=(lambda : move((- 1), self)), bg=BTN_BG) button2.grid(row=7, column=0, columnspan=1, sticky='we') button3 = tk.Button(self.left_column, text='-->', command=(lambda : move((+ 1), self)), bg=BTN_BG) button3.grid(row=7, column=1, columnspan=1, sticky='we') sep = ttk.Separator(master=self.left_column, orient=tk.HORIZONTAL) sep.grid(row=8, columnspan=2, sticky='ew', pady=10) self.gallery_showtype = tk.StringVar(self.left_column) self.gallery_showtype.set(GALLERY_SHOW_TYPES[0]) popupMenu = tk.OptionMenu(self.left_column, self.gallery_showtype, *GALLERY_SHOW_TYPES, command=self._popup_menu_move) popupMenu.config(bg=BODY_COLOR) tk.Label(self.left_column, text='Gallery show type:', bg=BODY_COLOR).grid(row=9, columnspan=2, sticky='w') popupMenu.grid(row=10, columnspan=2) def _popup_menu_move(self, *args): global current current = 0 move(0, self) def _create_gallery_column(self): self.right_column = tk.Frame(master=self, width=500, height=600, bg=BODY_COLOR) self.right_column.grid(row=1, column=2, columnspan=3, sticky='nswe') label = tk.Label(self.right_column, compound=tk.TOP, font=LARGE_FONT, bg=BODY_COLOR) label.grid(row=0, sticky='nsew') self.demo_label = label
def parse_layout(master): frames = [] var_dict = {} for tab_name in PARAMS_LAYOUT: f = tk.Frame(master=master, bg=BODY_COLOR) f.grid_columnconfigure([0, 1, 2, 3], minsize=100) for (k, v) in PARAMS_LAYOUT[tab_name].items(): try: (str_var, widget, btn_var) = create_widget(v['value'], f) if ((type(widget) is tk.Text) and ('default' in v)): widget.insert('end', v['default']) widget.grid(**v['wpos']) except Exception as e: raise Exception(('%s\n caused by (%s, %s)' % (e, k, v))) if (str_var is not None): var_dict[k] = (str_var, btn_var) label = tk.Label(f, text=(k + ': '), bg=BODY_COLOR) label.grid(**v['lpos']) frames.append(f) return (frames, var_dict)
def pretty_print_dict(d): print(('-' * 80)) for (k, v) in d.items(): print(k, ' = ', v)
class InitializeTab(tk.Frame): def __init__(self, parent, controller, global_wd, global_thread_spawner=None, prev_=None, next_=None): tk.Frame.__init__(self, parent, bg=BODY_COLOR) self.global_wd = global_wd self.var_dict = {'wd': (global_wd, 0)} self.animation_register = [] self.param_tab_cont = 0 self._create_header(controller, prev_, next_) self._create_left_column() self._create_right_column() def _create_header(self, controller, prev_, next_): self.header = tk.Frame(master=self, width=800, height=20, bg=BODY_COLOR) self.header.grid(row=0, columnspan=5, sticky='nw') button2 = tk.Button(self.header, text='Train ->', command=(lambda : controller.show_frame(next_)), bg=BTN_BG) button2.grid(row=0, column=2, sticky='w') button1 = tk.Button(self.header, text='<- Home', command=(lambda : controller.show_frame(prev_)), bg=BTN_BG) button1.grid(row=0, column=1, sticky='w') def _create_left_column(self): self.left_column = tk.Frame(master=self, width=300, height=600, bg=SIDEBAR_COLOR) self.left_column.grid(row=1, column=0, columnspan=2, sticky='nw') self.left_column.rowconfigure(0, weight=1) label = tk.Label(self.left_column, text='Configuration', font=LARGE_FONT, bg=BODY_COLOR, justify=tk.CENTER) label.grid(row=0, columnspan=2, sticky='ew') button0 = tk.Button(self.left_column, text='Load', command=self.load, bg=BTN_BG) button0.grid(row=2, column=0, columnspan=1, sticky='we') button1 = tk.Button(self.left_column, text='Save', command=self.save, bg=BTN_BG) button1.grid(row=2, column=1, columnspan=1, sticky='we') button2 = tk.Button(self.left_column, text='<--', command=(lambda : self.move((- 1))), bg=BTN_BG) button2.grid(row=3, column=0, columnspan=1, sticky='we') button3 = tk.Button(self.left_column, text='-->', command=(lambda : self.move((+ 1))), bg=BTN_BG) button3.grid(row=3, column=1, columnspan=1, sticky='we') sep = ttk.Separator(master=self.left_column, orient=tk.HORIZONTAL) sep.grid(row=6, columnspan=2, sticky='ew', pady=10) self.params_showtype = tk.StringVar(self.left_column) self.params_showtype.set(PARAMS_SHOW_TYPES[0]) showtype_to_index = {PARAMS_SHOW_TYPES[i]: i for i in range(len(PARAMS_SHOW_TYPES))} popupMenu = tk.OptionMenu(self.left_column, self.params_showtype, *PARAMS_SHOW_TYPES, command=(lambda x: self.move(delta=(showtype_to_index[self.params_showtype.get()] - self.param_tab_cont)))) popupMenu.config(bg=BODY_COLOR) tk.Label(self.left_column, text='Parameters:', bg=BODY_COLOR).grid(row=7, columnspan=2, sticky='w') popupMenu.grid(row=8, columnspan=2) def _create_right_column(self): self.right_column = tk.Frame(master=self, width=500, height=600, bg=BODY_COLOR) self.right_column.grid(row=1, column=2, columnspan=3, sticky='nw') (self.frames, var_dict) = parse_layout(self.right_column) self.var_dict.update(var_dict) _ = list(map((lambda x: x.grid(row=0, column=0, sticky='nesw')), self.frames)) self.frames[0].tkraise() def parse_vars(self, verbose=0): var_dict = {} for (k, v) in self.var_dict.items(): if (type(v[0]) is tk.StringVar): v_ = v[0].get() elif (type(v[0]) is tk.Text): v_ = v[0].get(1.0, 'end-1c') else: raise Exception(('Error in parse_vars: %s, %s' % (k, v))) var_dict[k] = v_ if verbose: pretty_print_dict(var_dict) return var_dict def move(self, delta): self.param_tab_cont += delta if (self.param_tab_cont >= len(self.frames)): self.param_tab_cont = 0 if (self.param_tab_cont < 0): self.param_tab_cont = (len(self.frames) - 1) self.frames[self.param_tab_cont].tkraise() def preset(self): (types, specs) = gui_mapper(self.parse_vars(verbose=0)) pretty_print_dict(types) pretty_print_dict(specs) def save(self): var_dict = self.parse_vars(verbose=0) param_fp = os.path.join(self.global_wd.get(), 'param_config.json') if os.path.isfile(param_fp): is_overwrite = tk.messagebox.askquestion('File exists', 'Are you sure you want to overwrite the parameter file?', icon='warning') if (is_overwrite != 'yes'): return with open(param_fp, 'w', newline='\n') as f: json.dump(var_dict, f, indent=4) def load(self, fp=None): if (fp is None): fp = filedialog.askopenfilename(initialdir=self.global_wd.get()) if (not len(fp)): fp = os.path.join(self.global_wd.get(), 'param_config.json') print(fp) if (not os.path.isfile(fp)): return with open(fp, 'r') as f: var_dict = json.load(f) for (k, v) in var_dict.items(): if (k == 'wd'): continue if (type(self.var_dict[k][0]) is tk.StringVar): self.var_dict[k][0].set(v) self.var_dict[k][(- 1)].set(os.path.basename(v)[:15]) elif (type(self.var_dict[k][0]) is tk.Text): self.var_dict[k][0].delete(1.0, 'end') self.var_dict[k][0].insert('end', v) return
class AmberApp(tk.Tk): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.geometry('800x600+500+100') self.resizable(0, 0) self.style = ttk.Style() self.grid_columnconfigure(0, weight=1) self.grid_rowconfigure(0, weight=1) self.global_wd = None self.title('Amber - Main') def _connect_global_wd(self, wd): self.global_wd = wd def _enter(self): assert (self.global_wd is not None), 'must connect to a global var `wd` before enter' self.welcome_window = welcome_page(master=self, global_wd=self.global_wd) self.withdraw() def _create_tabs(self): self.tc = TabController(master=self) self.tc.grid(row=0, column=0, sticky='nsew') self.animation_register = [] for tab in self.tc.tabs: try: self.animation_register.extend(self.tc.tabs[tab].animation_register) except Exception as e: print(('error: %s' % e)) pass
class TabController(tk.Frame): def __init__(self, master, global_wd, global_thread_spawner, *args, **kwargs): super().__init__(*args, master=master, **kwargs) self.global_wd = global_wd self.global_thread_spawner = global_thread_spawner container = tk.Frame(master=self, width=800, height=750, bg=BODY_COLOR) container.grid(row=1, sticky='nsew') container.grid_propagate(0) self.tabs = {} page_links = {InitializeTab: {'prev': None, 'next': TrainTab}, TrainTab: {'prev': InitializeTab, 'next': EvaluateTab}, EvaluateTab: {'prev': TrainTab, 'next': None}} self.tab_list = [InitializeTab, TrainTab, EvaluateTab] for F in self.tab_list: frame = F(parent=container, controller=self, global_wd=self.global_wd, global_thread_spawner=self.global_thread_spawner, prev_=page_links[F]['prev'], next_=page_links[F]['next']) frame.config({'bg': BODY_COLOR}) self.tabs[F] = frame frame.grid(row=0, column=0, sticky='nsew') self._create_menu() self.tabs[TrainTab].init_page = self.tabs[InitializeTab] self._register_animations() self.show_frame(InitializeTab) def _create_menu(self): self.header = tk.Frame(master=self, width=800, height=50, bg=MENU_COLOR) self.header.grid(row=0, sticky='nwe') self.header.grid_columnconfigure([0, 1, 2], weight=1) self.header.grid_propagate(0) img_list = [resource_filename('amber.resources', ('GUI/' + x)) for x in ('init.png', 'run.png', 'eval.png')] canvas_list = [] image_list = [] text_ = ['Initialize', 'Train', 'Evaluate'] for i in range(len(img_list)): assert os.path.isfile(img_list[i]) canvas = tk.Canvas(self.header, width=150, height=50, bd=0, highlightthickness=0, bg=MENU_COLOR) image = Image.open(img_list[i]).resize((40, 40), Image.ANTIALIAS) img = ImageTk.PhotoImage(image) image_list.append(img) canvas.create_image((5, 5), anchor='nw', image=img) canvas.create_text((60, 20), anchor='nw', font=LARGE_FONT, text=text_[i]) canvas_list.append(canvas) canvas.grid(row=0, column=i, sticky='we') self.canvases = {self.tab_list[i]: canvas_list[i] for i in range(len(self.tab_list))} self.image_list = image_list def _register_animations(self): self.animation_register = [] for F in self.tabs: for (f, animate) in self.tabs[F].animation_register: self.animation_register.append((f, animate)) def show_frame(self, cont): frame = self.tabs[cont] frame.tkraise() for t in self.canvases: canvas = self.canvases[t] if (canvas == self.canvases[cont]): canvas.config(bg=BODY_COLOR) else: canvas.config(bg=MENU_COLOR)
def beautify_status_update(tab): var_dict = tab.var_dict def colorify(p, widget=None): if (p is None): color = 'grey' elif (p < 30): color = 'green' elif (30 <= p < 70): color = 'orange' elif (70 <= p < 100): color = 'red' else: color = 'black' if (widget is None): return color else: widget.config({'fg': color}) def get_cpu_usage(): p = psutil.cpu_percent() var_dict['cpu_status'][0].set(p) colorify(p, var_dict['cpu_status'][2]) def get_ram(): d = psutil.virtual_memory()._asdict() (usage, p) = (d['used'], d['percent']) usage = round((usage / (1024.0 ** 3)), 1) var_dict['ram'][0].set(('%iG; %s' % (usage, p))) colorify(p, var_dict['ram'][2]) def get_gpu_usage(): if NUM_GPUS: new_q = gpustat.GPUStatCollection.new_query().jsonify() var_dict['gpu_status'][0].delete(1.0, tk.END) color_list = [] for gpu_d in new_q['gpus']: s = '{index}: {util}; {mem_used}/{mem_total}g \n'.format(index=gpu_d['index'], util=gpu_d['utilization.gpu'], mem_used=round((gpu_d['memory.used'] / 1024.0), 1), mem_total=round((gpu_d['memory.total'] / 1024.0), 1)) color_list.append(colorify(gpu_d['utilization.gpu'])) var_dict['gpu_status'][0].insert(tk.END, s) for i in range(len(color_list)): color = color_list[i] var_dict['gpu_status'][0].tag_add(i, ('%i.0' % (i + 1)), ('%i.end' % (i + 1))) var_dict['gpu_status'][0].tag_config(i, foreground=color) def get_run_status(): if (tab.bn is None): var_dict['run_status'][0].set('Waiting') p = None elif (tab.bn.poll() is None): var_dict['run_status'][0].set('Running') p = 30 elif (tab.bn.poll() == 0): var_dict['run_status'][0].set('Finished') p = 0 elif (tab.bn.poll() == 1): var_dict['run_status'][0].set('Stopped') p = 90 else: var_dict['run_status'][0].set(('Code:%s' % tab.bn.poll())) p = (- 1) colorify(p, var_dict['run_status'][2]) func_map = {'cpu_status': get_cpu_usage, 'run_status': get_run_status, 'ram': get_ram, 'gpu_status': get_gpu_usage} return func_map
class TrainTab(tk.Frame): def __init__(self, parent, controller, global_wd, global_thread_spawner=None, prev_=None, next_=None): tk.Frame.__init__(self, master=parent, bg=BODY_COLOR) self.global_wd = global_wd self.global_thread_spawner = global_thread_spawner self.init_page = None self.bn = None self.var_dict = {} self._create_header(controller, prev_, next_) self._create_left_column() self._create_demo_column() self.animation_register = [(f, self._animate_r_bias)] self.has_run = False self.status_bar_fn_map = beautify_status_update(self) self._update_status() def _create_header(self, controller, prev_, next_): self.header = tk.Frame(master=self, width=800, height=20, bg=BODY_COLOR) self.header.grid(row=0, columnspan=5, sticky='nw') button2 = tk.Button(self.header, text='Evaluate ->', command=(lambda : controller.show_frame(next_)), bg=BTN_BG) button2.grid(row=0, column=2, sticky='w') button1 = tk.Button(self.header, text='<- Initialize', command=(lambda : controller.show_frame(prev_)), bg=BTN_BG) button1.grid(row=0, column=1, sticky='w') def _create_left_column(self): '\n TODO:\n - integrate with gpustat for monitoring GPU usage\n - update labels with dynamic statistics, e.g. entropy, loss/knowledge, learning rate, etc.\n Returns:\n None\n ' self.left_column = tk.Frame(master=self, width=300, height=600, bg=SIDEBAR_COLOR) self.left_column.grid(row=1, column=0, columnspan=2, sticky='nw') self.left_column.grid_rowconfigure(0, weight=1) label = tk.Label(self.left_column, text='Train', font=LARGE_FONT, bg=BODY_COLOR, justify=tk.CENTER) label.grid(row=0, column=0, columnspan=2, sticky='we') button1 = tk.Button(self.left_column, text='Build', command=self._build, bg=BTN_BG) button1.grid(row=6, column=0, columnspan=2, sticky='we') button2 = tk.Button(self.left_column, text='Run', command=self._run, bg=BTN_BG) button2.grid(row=7, column=0, columnspan=2, sticky='we') button3 = tk.Button(self.left_column, text='Stop', command=self._stop, bg=BTN_BG) button3.grid(row=8, column=0, columnspan=2, sticky='we') status_bar = tk.Frame(master=self.left_column, width=300, bg=BODY_COLOR) status_bar.grid(row=9, column=0, columnspan=2, sticky='nwe') var_dict = {} for (k, v) in STATUS_BAR_LAYOUT.items(): (str_var, widget, btn_var) = create_widget(v['value'], status_bar) widget.grid(**v['wpos']) if (str_var is not None): var_dict[k] = (str_var, btn_var, widget) label = tk.Label(status_bar, text=(k + ': '), bg=BODY_COLOR) label.grid(**v['lpos']) if ('default' in v): if (type(str_var) is tk.Text): str_var.delete(1.0, 'end') str_var.insert(1.0, v['default']) else: str_var.set(v['default']) self.var_dict.update(var_dict) def _create_demo_column(self): self.right_column = tk.Frame(master=self, width=500, height=600, bg=BODY_COLOR) self.right_column.grid(row=1, column=2, columnspan=3, sticky='nswe') canvas = FigureCanvasTkAgg(f, self.right_column) canvas.draw() canvas.get_tk_widget().grid(row=0, column=0, columnspan=3, rowspan=1, sticky='nswe', padx=5, pady=5) def _animate_r_bias(self, i): a.clear() a.set_xlim((0, 50)) a.set_title('Reward Moving Baseline') try: xList = [] yList = [] with open(os.path.join(self.global_wd.get(), 'buffers.txt'), 'r') as fh: for line in fh: if (not line.startswith('Episode')): continue ele = line.strip().split('\t') x = ele[0].split(':')[1] y = ele[2].split(':')[1] xList.append(float(x)) yList.append(float(y)) a.plot(xList, yList) a.set_xlim((0, (np.ceil((max(xList) / 50)) * 50))) except FileNotFoundError: pass def _update_status(self): for (k, v) in self.var_dict.items(): if (k in self.status_bar_fn_map): self.status_bar_fn_map[k]() self.after(REFRESH_INTERVAL, self._update_status) def _build(self): try: var_dict = self.init_page.parse_vars(self.init_page) except Exception as e: messagebox.showinfo('Error', 'Build was unsuccessful. See command-line output for details.') print(('Failed build caused by %s' % e)) return (types, specs) = gui_mapper(var_dict) fn = os.path.join(self.global_wd.get(), 'bionas_config.pkl') with open(fn, 'wb') as f: pickle.dump({'types': types, 'specs': specs}, f) def _run(self): fn = os.path.join(self.global_wd.get(), 'bionas_config.pkl') if (not os.path.isfile(fn)): messagebox.showinfo('Error', 'BioNAS has not been built; did you click on Build?') return if self.has_run: messagebox.showinfo('Error', 'BioNAS has already been running in background.. please wait') else: self.has_run = True cmd = ['python', '-c', ("import pickle;from BioNAS import BioNAS;d=pickle.load(open('%s','rb'));bn=BioNAS(**d);bn.run()" % fn)] self.bn = self.global_thread_spawner(cmd) def _stop(self): if (not os.path.isfile(os.path.join(self.global_wd.get(), 'bionas_config.pkl'))): messagebox.showinfo('Error', 'BioNAS has not been built; did you click on Build?') return if (not self.has_run): messagebox.showinfo('Error', 'BioNAS is not running') elif (self.bn.poll() is None): self.bn.send_signal(signal.SIGINT) elif (self.bn.poll() == 0): messagebox.showinfo('Info', 'BioNAS finished running') self.has_run = False self.bn = None else: self.has_run = False if (not self.bn.poll()): self.bn.kill() messagebox.showinfo('Info', 'BioNAS subprocess killed')
class welcome_page(tk.Toplevel): def __init__(self, master, global_wd, *args, **kwargs): super().__init__(master=master) self.geometry('600x400+500+100') self.title('BioNAS - Welcome') self.grid_rowconfigure(0, weight=1) self.grid_columnconfigure(0, weight=1) self.grid_propagate(0) self.wd = global_wd self.frame = tk.Frame(master=self, width=600, height=400, bg=BODY_COLOR) self.frame.grid(sticky='nsew') self.frame.grid_propagate(0) self.create_left_column() self.create_right_column() def create_left_column(self): self.left_column = tk.Frame(master=self.frame, width=150, height=400, bg=MENU_COLOR) self.left_column.grid(row=0, column=0, sticky='w') self.left_column.grid_propagate(0) self.left_column.grid_columnconfigure(0, weight=1) button4 = tk.Button(master=self.left_column, text='Quit', command=self._quit, bg=BTN_BG, width=8) button4.grid(row=0) button2 = tk.Button(master=self.left_column, text='Browse', command=self._ask_folder, bg=BTN_BG, width=8) button2.grid(row=1) button3 = tk.Button(master=self.left_column, text='Open', command=self._confirm, bg=BTN_BG, width=8) button3.grid(row=2) sep = ttk.Separator(master=self.left_column, orient=tk.HORIZONTAL) sep.grid(row=3, sticky='ew', pady=10) lbl1 = tk.Label(master=self.left_column, text='Working Directory:', fg='white', bg=self.left_column['bg']) lbl1.grid(row=4, pady=10) lbl2 = tk.Label(master=self.left_column, textvariable=self.wd, fg='white', bg=self.left_column['bg'], justify=tk.LEFT) lbl2.grid(row=5, sticky='we') def _ask_folder(self): filename = filedialog.askdirectory() self.wd.set(filename) print(filename) def _confirm(self): wd_now = self.wd.get() if ((wd_now == 'None') or (not os.path.isdir(wd_now))): print('bad directory') messagebox.showinfo('I/O Error', ('Bad working directory: %s' % wd_now)) else: self.master.title(('BioNAS - Main - %s' % wd_now)) self.master.deiconify() self.destroy() def _quit(self): self.master.quit() self.master.destroy() def create_right_column(self): self.right_column = tk.Frame(master=self.frame, width=450, height=400, bg='white') self.right_column.grid(row=0, column=1, sticky='nswe') self.right_column.pack_propagate(0) logo_label = tk.Label(self.right_column, text=LOGO['ascii'], justify=tk.LEFT, font=LOGO['font'], fg=LOGO['color'], bg=self.right_column['bg']) logo_label.grid(row=0, sticky='we', padx=10, pady=10) label = tk.Label(self.right_column, text=WELCOME_MSG, font=LARGE_FONT, justify=tk.LEFT, fg='black', bg=self.right_column['bg']) label.grid(row=1, sticky='nswe', padx=10, pady=10)
class LabelSeparator(tk.Frame): def __init__(self, parent, text='', width='', *args): tk.Frame.__init__(self, parent, *args, bg=BODY_COLOR) self.grid_columnconfigure(0, weight=1) self.grid_rowconfigure(0, weight=1) self.separator = ttk.Separator(self, orient=tk.HORIZONTAL) self.separator.grid(row=0, column=0, sticky='ew') self.label = tk.Label(self, text=text, bg=BODY_COLOR) self.label.grid(row=0, column=0)
def create_widget(arg, master): if ((type(arg) is list) and (len(arg) > 0)): str_var = tk.StringVar(master) str_var.set(arg[0]) btn_var = tk.StringVar(master) btn_var.set(arg[0]) def set_fp(x): if (btn_var.get() == 'Custom..'): fp = filedialog.askopenfilename() str_var.set(fp) btn_var.set(os.path.basename(fp)[:15]) else: str_var.set(btn_var.get()) pop = tk.OptionMenu(master, btn_var, *arg, command=set_fp) pop.config(width=10, bg=BODY_COLOR, justify=tk.LEFT) return (str_var, pop, btn_var) elif ((type(arg) is str) and arg.startswith('[') and arg.endswith(']')): (w, h) = arg.strip('[]').split(',') str_var = tk.Text(master, width=int(w), height=int(h), bg=TEXT_BG) return (str_var, str_var, str_var) elif ((type(arg) is str) and arg.startswith('{') and arg.endswith('}')): (w, h) = arg.strip('{}').split(',') assert (int(h) == 1), 'tk.Entry widget only has height=1' str_var = tk.StringVar(master, value='') widget = tk.Entry(master, width=int(w), textvariable=str_var, state='readonly', bg=TEXT_BG) return (str_var, widget, str_var) elif ((type(arg) is str) and arg.startswith('--')): sep = LabelSeparator(parent=master, text=arg.strip('-')) return (None, sep, None) elif ((type(arg) is str) and (arg == 'Custom..')): str_var = tk.StringVar(master, value='None') btn_txt_var = tk.StringVar(master, value='Choose..') def set_text(): fp = filedialog.askopenfilename() str_var.set(fp) btn_txt_var.set(os.path.basename(fp)[:15]) btn = tk.Button(master, textvariable=btn_txt_var, command=set_text, bg=BTN_BG) return (str_var, btn, btn_txt_var) else: raise Exception(('Failed to create widget: %s' % arg))
def load_full_model(modelPath): model = load_model(modelPath, custom_objects=custom_objects) return model
def get_models_from_hist_by_load(hist_idx, hist): model_dict = {} for idx in hist_idx: model_dict[idx] = load_full_model(('%s/weights/trial_%i/full_bestmodel.h5' % (hist.iloc[idx].dir, hist.iloc[idx].ID))) return model_dict
def get_best_model(state_space, controller, working_directory): 'Given a controller and a state_space, find the best model states in its\n state space\n\n Returns:\n dict: a dict of conditions for selected best model(s)\n ' return
def get_hist_index_by_conditions(condition_dict, hist, complementary=False): 'Get a set of indices for models that satisfy certain\n conditions from a hist file\n ' sign_dict = {'==': (lambda x, y: (x == y)), '>': (lambda x, y: (x > y)), '<': (lambda x, y: (x < y)), '>=': (lambda x, y: (x >= y)), '<=': (lambda x, y: (x <= y)), '!=': (lambda x, y: (x != y))} condition_bool = [] for cond in condition_dict: condition_bool.append(sign_dict[condition_dict[cond][0]](hist[cond], condition_dict[cond][1])) if complementary: subset = np.where((~ np.all(np.array(condition_bool), axis=0)))[0] else: subset = np.where(np.all(np.array(condition_bool), axis=0))[0] return subset
def get_models_from_hist(hist_idx, hist, input_state, output_state, state_space, model_compile_dict): 'Given a set of indcies, build a dictionary of\n models from history file\n ' model_dict = {} for idx in hist_idx: model_state_str = [hist.iloc[idx][('L%i' % (i + 1))] for i in range((hist.shape[1] - 5))] model_dict[idx] = model_fn.build_sequential_model_from_string(model_state_str, input_state, output_state, state_space, model_compile_dict) model_dict[idx].load_weights(('%s/weights/trial_%i/bestmodel.h5' % (hist.iloc[idx].dir, hist.iloc[idx].ID))) return model_dict