code
stringlengths
17
6.64M
def main(): parser = argparse.ArgumentParser() parser.add_argument('--mode', default='glove') parser.add_argument('--name') args = parser.parse_args() args = parser.parse_args() train = spider.SpiderDataset(paths=('data/spider-20190205/train_spider.json', 'data/spider-20190205/train_others.json'), tables_paths=('data/spider-20190205/tables.json',), db_path='data/spider-20190205/database') dev = spider.SpiderDataset(paths=('data/spider-20190205/dev.json',), tables_paths=('data/spider-20190205/tables.json',), db_path='data/spider-20190205/database') if (args.mode == 'glove'): embedder = pretrained_embeddings.GloVe((args.name or '42B')) elif (args.mode == 'bpemb'): embedder = pretrained_embeddings.BPEmb(dim=100, vocab_size=int((args.name or 10000))) (t_g_present, t_g_missing) = count_glove(train, embedder) (d_g_present, d_g_missing) = count_glove(dev, embedder) import IPython IPython.embed()
def main(): parser = argparse.ArgumentParser() parser.add_argument('--config', required=True) parser.add_argument('--config-args') args = parser.parse_args() if args.config_args: config = json.loads(_jsonnet.evaluate_file(args.config, tla_codes={'args': args.config_args})) else: config = json.loads(_jsonnet.evaluate_file(args.config)) train_data = registry.construct('dataset', config['data']['train']) grammar = registry.construct('grammar', config['model']['decoder_preproc']['grammar']) base_grammar = registry.construct('grammar', config['model']['decoder_preproc']['grammar']['base_grammar']) for (i, item) in enumerate(tqdm.tqdm(train_data, dynamic_ncols=True)): parsed = grammar.parse(item.code, 'train') orig_parsed = base_grammar.parse(item.orig['orig'], 'train') canonicalized_orig_code = base_grammar.unparse(base_grammar.parse(item.orig['orig'], 'train'), item) unparsed = grammar.unparse(parsed, item) if (canonicalized_orig_code != unparsed): print('Original tree:') pprint.pprint(orig_parsed) print('Rewritten tree:') pprint.pprint(parsed) print('Reconstructed tree:') pprint.pprint(grammar._expand_templates(parsed)) print('Original code:') print(canonicalized_orig_code) print('Reconstructed code:') print(unparsed) import IPython IPython.embed() break
def main(): parser = argparse.ArgumentParser() parser.add_argument('--config', required=True) parser.add_argument('--config-args') parser.add_argument('--output', required=True) args = parser.parse_args() if args.config_args: config = json.loads(_jsonnet.evaluate_file(args.config, tla_codes={'args': args.config_args})) else: config = json.loads(_jsonnet.evaluate_file(args.config)) os.makedirs(args.output, exist_ok=True) gold = open(os.path.join(args.output, 'gold.txt'), 'w') predicted = open(os.path.join(args.output, 'predicted.txt'), 'w') train_data = registry.construct('dataset', config['data']['train']) grammar = registry.construct('grammar', config['model']['decoder_preproc']['grammar']) evaluator = evaluation.Evaluator('data/spider-20190205/database', evaluation.build_foreign_key_map_from_json('data/spider-20190205/tables.json'), 'match') for (i, item) in enumerate(tqdm.tqdm(train_data, dynamic_ncols=True)): parsed = grammar.parse(item.code, 'train') sql = grammar.unparse(parsed, item) evaluator.evaluate_one(item.schema.db_id, item.orig['query'].replace('\t', ' '), sql) gold.write('{}\t{}\n'.format(item.orig['query'].replace('\t', ' '), item.schema.db_id)) predicted.write('{}\n'.format(sql))
class IdentitySet(collections.abc.MutableSet): def __init__(self, iterable=()): self.map = {id(x): x for x in iterable} def __contains__(self, value): return (id(value) in self.map) def __iter__(self): return self.map.values() def __len__(self): return len(self.map) def add(self, value): self.map[id(value)] = value def discard(self, value): self.map.pop(id(value))
@attr.s class TypeInfo(): name = attr.ib() base_name = attr.ib() predecessor_name = attr.ib() predecessor_triple = attr.ib() unset_fields = attr.ib() preset_fields = attr.ib() preset_seq_elem_counts = attr.ib(factory=(lambda : collections.Counter()))
@attr.s(frozen=True) class Primitive(): value = attr.ib()
class TreeBPE(): def __init__(self, grammar): self.grammar = grammar self.ast_wrapper = grammar.ast_wrapper self.type_infos = {k: TypeInfo(name=k, base_name=k, predecessor_name=k, predecessor_triple=None, unset_fields=collections.OrderedDict(((field.name, field) for field in v.fields)), preset_fields={}) for (k, v) in self.ast_wrapper.singular_types.items()} self.type_graph = networkx.DiGraph() for k in self.ast_wrapper.singular_types: self.type_graph.add_node(k) self.created_types = [] self.pre_iteration_counts = [] self.iterations_finished = 0 def run_iteration(self, trees): (triple_occurrences, node_type_counts) = self.count_triples(trees) self.pre_iteration_counts.append(node_type_counts) (most_freq_triple, most_freq_occurrences) = max(triple_occurrences.items(), key=(lambda kv: len(kv[1]))) if (len(most_freq_occurrences) == 1): raise Exception('No more work to do!') (existing_type_name, field_name, field_info) = most_freq_triple tuple_name = (field_name if isinstance(field_name, tuple) else (field_name,)) existing_type = self.type_infos[existing_type_name] existing_field = existing_type.unset_fields[field_name] promoted_fields = [] promoted_seq_elem_counts = collections.Counter() promoted_preset_fields = {} if (isinstance(field_info, Primitive) or (field_info is None)): pass else: for (is_preset, (field_field_name, field_field)) in itertools.chain(zip(itertools.repeat(False), self.type_infos[field_info].unset_fields.items()), zip(itertools.repeat(True), self.type_infos[field_info].preset_fields.items())): if isinstance(field_field_name, tuple): field_field_tuple_name = field_field_name else: field_field_tuple_name = (field_field_name,) if existing_field.seq: suffix = ((existing_type.preset_seq_elem_counts[tuple_name],) + field_field_tuple_name) else: suffix = field_field_tuple_name new_name = (tuple_name + suffix) if isinstance(field_field, asdl.Field): new_field = asdl.Field(type=field_field.type, name=new_name, seq=field_field.seq, opt=field_field.opt) else: new_field = field_field if is_preset: promoted_preset_fields[new_name] = new_field else: promoted_fields.append((field_field, new_field)) seq_elem_count = self.type_infos[field_info].preset_seq_elem_counts[field_field_tuple_name] if seq_elem_count: promoted_seq_elem_counts[new_name] = seq_elem_count new_preset_fields = {**existing_type.preset_fields, **promoted_preset_fields} new_preset_seq_elem_counts = (existing_type.preset_seq_elem_counts + promoted_seq_elem_counts) if (existing_field.seq and (field_info is not None)): new_preset_fields[(tuple_name + (new_preset_seq_elem_counts[tuple_name],))] = field_info new_preset_seq_elem_counts[tuple_name] += 1 else: new_preset_fields[tuple_name] = field_info new_unset_fields = {**{f.name: f for (old_field, f) in promoted_fields}, **existing_type.unset_fields} if ((field_info is None) or (not existing_field.seq)): del new_unset_fields[field_name] new_type = TypeInfo(name='Type{:04d}_{}'.format(self.iterations_finished, existing_type.base_name), base_name=existing_type.base_name, predecessor_name=existing_type.name, predecessor_triple=most_freq_triple, unset_fields=new_unset_fields, preset_fields=new_preset_fields, preset_seq_elem_counts=new_preset_seq_elem_counts) self.type_infos[new_type.name] = new_type self.created_types.append(new_type) self.type_graph.add_edge(new_type.name, existing_type.name) self.iterations_finished += 1 discarded = IdentitySet() for occ in most_freq_occurrences: if (occ in discarded): continue occ['_type'] = new_type.name def delete_obsoleted_field(): if existing_field.seq: del occ[field_name][0] if (not occ[field_name]): del occ[field_name] else: del occ[field_name] if isinstance(field_info, Primitive): delete_obsoleted_field() elif (field_info is None): pass else: if existing_field.seq: value_to_promote = occ[field_name][0] else: value_to_promote = occ[field_name] delete_obsoleted_field() discarded.add(value_to_promote) for (old_field, new_field) in promoted_fields: if (old_field.name not in value_to_promote): assert (old_field.opt or old_field.seq) continue occ[new_field.name] = value_to_promote[old_field.name] assert occ[new_field.name] def finish(self, trees): (_, node_type_counts) = self.count_triples(trees) self.pre_iteration_counts.append(node_type_counts) def count_triples(self, trees): triple_occurrences = collections.defaultdict(list) node_type_counts = collections.Counter() for tree in trees: queue = collections.deque([tree]) while queue: node = queue.pop() node_type_counts[node['_type']] += 1 for (field_name, field) in self.type_infos[node['_type']].unset_fields.items(): if (field_name in node): field_value = node[field_name] is_primitive = (field.type in self.ast_wrapper.primitive_types) if field.seq: relevant_value = field_value[0] if (not is_primitive): queue.extend(field_value) else: relevant_value = field_value if (not is_primitive): queue.append(field_value) if is_primitive: field_info = Primitive(relevant_value) else: field_info = relevant_value['_type'] else: assert (field.seq or field.opt) field_info = None triple_occurrences[(node['_type'], field_name, field_info)].append(node) for field_name in self.type_infos[node['_type']].preset_fields: assert (field_name not in node) return (triple_occurrences, node_type_counts) def visualize(self, root_type: TypeInfo): result = io.StringIO() def print_type(this_type, parent_lasts, field_prefix): def print_child(s, last, parent_lasts): for parent_last in parent_lasts: if parent_last: result.write(' ') else: result.write('│ ') if last: result.write('└─') else: result.write('├─') print(s, file=result) if parent_lasts: print_child(this_type.base_name, parent_lasts[(- 1)], parent_lasts[:(- 1)]) else: print(this_type.base_name, file=result) fields = self.type_infos[this_type.base_name].unset_fields for (i, field) in enumerate(fields.values()): last_field = ((i + 1) == len(fields)) print_child('{} [{}]{}'.format(field.name, field.type, ('?' if field.opt else ('*' if field.seq else ''))), last_field, parent_lasts) field_path = (field_prefix + (field.name,)) parent_lasts_for_field = (parent_lasts + (last_field,)) if (field.opt and (field_path in root_type.preset_fields) and (root_type.preset_fields[field_path] is None)): pass elif field.seq: if (field_path in root_type.preset_fields): assert (root_type.preset_fields[field_path] is None) seq_complete = True else: seq_complete = False preset_count = root_type.preset_seq_elem_counts[field_path] for i in range(preset_count): last_seq_elem = (seq_complete and ((i + 1) == preset_count)) seq_elem_path = (field_path + (i,)) field_value = root_type.preset_fields[seq_elem_path] if isinstance(field_value, Primitive): print_child(repr(field_value.value), last_seq_elem, parent_lasts_for_seq) else: print_type(self.type_infos[field_value], (parent_lasts_for_field + (last_seq_elem,)), seq_elem_path) if (not seq_complete): print_child('??', True, parent_lasts_for_field) elif (field_path not in root_type.preset_fields): print_child('??', True, parent_lasts_for_field) else: field_value = root_type.preset_fields[field_path] if isinstance(field_value, Primitive): print_child(repr(field_value.value), True, parent_lasts_for_field) else: print_type(self.type_infos[field_value], (parent_lasts_for_field + (True,)), field_path) print_type(root_type, (), ()) return result.getvalue()
def main(): parser = argparse.ArgumentParser() parser.add_argument('--config', required=True) parser.add_argument('--config-args') parser.add_argument('--section', default='train') parser.add_argument('--num-iters', type=int, default=100) parser.add_argument('--vis-out') args = parser.parse_args() if args.config_args: config = json.loads(_jsonnet.evaluate_file(args.config, tla_codes={'args': args.config_args})) else: config = json.loads(_jsonnet.evaluate_file(args.config)) model_preproc = registry.instantiate(registry.lookup('model', config['model']).Preproc, config['model']) model_preproc.load() preproc_data = model_preproc.dataset(args.section) all_trees = [dec.tree for (enc, dec) in preproc_data] tree_bpe = TreeBPE(model_preproc.dec_preproc.grammar) for i in tqdm.tqdm(range(args.num_iters), dynamic_ncols=True): tree_bpe.run_iteration(all_trees) tree_bpe.finish(all_trees) print('Finished') if args.vis_out: f = open(args.vis_out, 'w') f.write("# Documentation\n#\n# Idiom trees are printed like this:\n# NodeType\n# ├─field1 [field1_type]\n# ├─field2 [field2_type]?\n# └─field3 [field3_type]*\n# ? indicates the field is optional.\n# * indicates the field is sequential.\n#\n# If a field has a known primitive value, it is written like this:\n# └─field3 [str]\n# └─'value'\n#\n# If a field has a known type for its value, it is written like this:\n# └─field3 [field3_type]\n# └─Field3NodeType\n# └─...\n#\n# If a field:\n# - does not have a known value, or\n# - is sequential and the idiom allows for further entries at the end\n# it is written like this:\n# └─field3 [field3_type]\n# └─??\n# \n# If a field:\n# - is optional and known to lack a value, or\n# - is sequential and the idiom does not allow for further entries at the end\n# then there is no ??.\n\nInitial node type frequency:\n") for (k, v) in tree_bpe.pre_iteration_counts[0].most_common(): print('- {}: {}'.format(k, v), file=f) print(file=f) for (i, type_info) in enumerate(tree_bpe.created_types): print('# Idiom {} [{}]'.format(i, type_info.name), file=f) print('# Descended from {} by setting {} to {}'.format(*type_info.predecessor_triple), file=f) print('# Frequency at creation: {}'.format(tree_bpe.pre_iteration_counts[(i + 1)][type_info.name]), file=f) print(tree_bpe.visualize(type_info), file=f) f.close() else: import IPython IPython.embed()
class ASTWrapperVisitor(asdl.VisitorBase): 'Used by ASTWrapper to collect information.\n\n - put constructors in one place.\n - checks that all fields have names.\n - get all optional fields.\n ' def __init__(self): super(ASTWrapperVisitor, self).__init__() self.constructors = {} self.sum_types = {} self.product_types = {} self.fieldless_constructors = {} def visitModule(self, mod): for dfn in mod.dfns: self.visit(dfn) def visitType(self, type_): self.visit(type_.value, str(type_.name)) def visitSum(self, sum_, name): self.sum_types[name] = sum_ for t in sum_.types: self.visit(t, name) def visitConstructor(self, cons, _name): assert (cons.name not in self.constructors) self.constructors[cons.name] = cons if (not cons.fields): self.fieldless_constructors[cons.name] = cons for f in cons.fields: self.visit(f, cons.name) def visitField(self, field, name): if (field.name is None): raise ValueError('Field of type {} in {} lacks name'.format(field.type, name)) def visitProduct(self, prod, name): self.product_types[name] = prod for f in prod.fields: self.visit(f, name)
class FilterType(): def __init__(self, typ): self.typ = typ def __call__(self, x): return isinstance(x, self.typ)
def is_singleton(x): return ((x is True) or (x is False) or (x is None))
class ASTWrapper(object): 'Provides helper methods on the ASDL AST.' default_primitive_type_checkers = {'identifier': FilterType(str), 'int': FilterType(int), 'string': FilterType(str), 'bytes': FilterType(bytes), 'object': FilterType(object), 'singleton': is_singleton} def __init__(self, ast_def, custom_primitive_type_checkers={}): self.ast_def = ast_def visitor = ASTWrapperVisitor() visitor.visit(ast_def) self.constructors = visitor.constructors self.sum_types = visitor.sum_types self.product_types = visitor.product_types self.seq_fragment_constructors = {} self.primitive_type_checkers = {**self.default_primitive_type_checkers, **custom_primitive_type_checkers} self.custom_primitive_types = set(custom_primitive_type_checkers.keys()) self.primitive_types = set(self.primitive_type_checkers.keys()) self.singular_types = {} self.singular_types.update(self.constructors) self.singular_types.update(self.product_types) self.sum_type_vocabs = {name: sorted((t.name for t in sum_type.types)) for (name, sum_type) in self.sum_types.items()} self.constructor_to_sum_type = {constructor.name: name for (name, sum_type) in self.sum_types.items() for constructor in sum_type.types} self.seq_fragment_constructor_to_sum_type = {constructor.name: name for (name, sum_type) in self.sum_types.items() for constructor in sum_type.types} self.fieldless_constructors = sorted(visitor.fieldless_constructors.keys()) @property def types(self): return self.ast_def.types @property def root_type(self): return self._root_type def add_sum_type(self, name, sum_type): assert (name not in self.sum_types) self.sum_types[name] = sum_type self.types[name] = sum_type for type_ in sum_type.types: self._add_constructor(name, type_) def add_constructors_to_sum_type(self, sum_type_name, constructors): for constructor in constructors: self._add_constructor(sum_type_name, constructor) self.sum_types[sum_type_name].types += constructors def remove_product_type(self, product_type_name): self.singular_types.pop(product_type_name) self.product_types.pop(product_type_name) self.types.pop(product_type_name) def add_seq_fragment_type(self, sum_type_name, constructors): for constructor in constructors: self._add_constructor(sum_type_name, constructor) sum_type = self.sum_types[sum_type_name] if (not hasattr(sum_type, 'seq_fragment_types')): sum_type.seq_fragment_types = [] sum_type.seq_fragment_types += constructors def _add_constructor(self, sum_type_name, constructor): assert (constructor.name not in self.constructors) self.constructors[constructor.name] = constructor assert (constructor.name not in self.singular_types) self.singular_types[constructor.name] = constructor assert (constructor.name not in self.constructor_to_sum_type) self.constructor_to_sum_type[constructor.name] = sum_type_name if (not constructor.fields): self.fieldless_constructors.append(constructor.name) self.fieldless_constructors.sort() def verify_ast(self, node, expected_type=None, field_path=(), is_seq=False): 'Checks that `node` conforms to the current ASDL.' if (node is None): raise ValueError('node is None. path: {}'.format(field_path)) if (not isinstance(node, dict)): raise ValueError('node is type {}. path: {}'.format(type(node), field_path)) node_type = node['_type'] if (expected_type is not None): sum_product = self.types[expected_type] if isinstance(sum_product, asdl.Product): if (node_type != expected_type): raise ValueError('Expected type {}, but instead saw {}. path: {}'.format(expected_type, node_type, field_path)) elif isinstance(sum_product, asdl.Sum): possible_names = [t.name for t in sum_product.types] if is_seq: possible_names += [t.name for t in getattr(sum_product, 'seq_fragment_types', [])] if (node_type not in possible_names): raise ValueError('Expected one of {}, but instead saw {}. path: {}'.format(', '.join(possible_names), node_type, field_path)) else: raise ValueError('Unexpected type in ASDL: {}'.format(sum_product)) if (node_type in self.types): sum_product = self.types[node_type] if isinstance(sum_product, asdl.Sum): raise ValueError('sum type {} not allowed as node type. path: {}'.format(node_type, field_path)) fields_to_check = sum_product.fields elif (node_type in self.constructors): fields_to_check = self.constructors[node_type].fields else: raise ValueError('Unknown node_type {}. path: {}'.format(node_type, field_path)) for field in fields_to_check: if (field.name not in node): if (field.opt or field.seq): continue raise ValueError('required field {} is missing. path: {}'.format(field.name, field_path)) if (field.seq and (field.name in node) and (not isinstance(node[field.name], (list, tuple)))): raise ValueError('sequential field {} is not sequence. path: {}'.format(field.name, field_path)) items = (node.get(field.name, ()) if field.seq else (node.get(field.name),)) if (field.type in self.primitive_type_checkers): check = self.primitive_type_checkers[field.type] else: check = (lambda n: self.verify_ast(n, field.type, (field_path + (field.name,)), is_seq=field.seq)) for item in items: assert check(item) return True def find_all_descendants_of_type(self, tree, type, descend_pred=(lambda field: True)): queue = [tree] while queue: node = queue.pop() if (not isinstance(node, dict)): continue for field_info in self.singular_types[node['_type']].fields: if (field_info.opt and (field_info.name not in node)): continue if (not descend_pred(field_info)): continue if field_info.seq: values = node.get(field_info.name, []) else: values = [node[field_info.name]] if (field_info.type == type): for value in values: (yield value) else: queue.extend(values)
@attr.s class HoleValuePlaceholder(): id = attr.ib() field_name = attr.ib() type = attr.ib() is_seq = attr.ib() is_opt = attr.ib()
@attr.s class Hypothesis(): inference_state = attr.ib() next_choices = attr.ib() score = attr.ib(default=0) choice_history = attr.ib(factory=list) score_history = attr.ib(factory=list)
def beam_search(model, orig_item, preproc_item, beam_size, max_steps, visualize_flag=False): (inference_state, next_choices) = model.begin_inference(orig_item, preproc_item) beam = [Hypothesis(inference_state, next_choices)] finished = [] for step in range(max_steps): if visualize_flag: print('step:') print(step) if (len(finished) == beam_size): break candidates = [] for hyp in beam: candidates += [(hyp, choice, choice_score.item(), (hyp.score + choice_score.item())) for (choice, choice_score) in hyp.next_choices] candidates.sort(key=operator.itemgetter(3), reverse=True) candidates = candidates[:(beam_size - len(finished))] beam = [] for (hyp, choice, choice_score, cum_score) in candidates: inference_state = hyp.inference_state.clone() next_choices = inference_state.step(choice) if (next_choices is None): finished.append(Hypothesis(inference_state, None, cum_score, (hyp.choice_history + [choice]), (hyp.score_history + [choice_score]))) else: beam.append(Hypothesis(inference_state, next_choices, cum_score, (hyp.choice_history + [choice]), (hyp.score_history + [choice_score]))) finished.sort(key=operator.attrgetter('score'), reverse=True) return finished
class Barrier(object): def __init__(self, parties, action=(lambda : None)): self._parties = parties self._action = action self._cond = asyncio.Condition() self._count = 0 async def wait(self): self._count += 1 with (await self._cond): if self._maybe_release(): return (await self._cond.wait()) async def deregister(self): self._parties -= 1 with (await self._cond): self._maybe_release() @property def empty(self): return (self._parties == 0) @property def n_waiting(self): return self._count @property def parties(self): return self._parties def _maybe_release(self): if (self._count == self._parties): self._cond.notify_all() self._count = 0 self._action() return True return False
@attr.s class ResultHandle(object): coro = attr.ib() node = attr.ib() all_results = attr.ib() accessor = attr.ib(default=(lambda x: x)) def __await__(self): result = self.all_results.get(self.node) if (result is None): (yield from self.coro().__await__()) result = self.all_results[self.node] return self.accessor(result) def with_shape(self, *shape): copied = copy.copy(self) copied.shape = shape return copied def split(self, num_splits): result = [] for i in range(num_splits): copied = copy.copy(self) copied.accessor = (lambda x, i=i: self.accessor(x)[i]) result.append(copied) return tuple(result)
@attr.s(frozen=True, cmp=False, hash=False) class BatchKey(object): callable = attr.ib() args = attr.ib() kwargs = attr.ib() def __attrs_post_init__(self): if isinstance(self.callable, functools.partial): callable_exp = (self.callable.func, self.callable.args, tuple(((k, v) for (k, v) in sorted(self.callable.keywords.items())))) else: callable_exp = (self.callable, (), ()) self.__dict__['_callable_exp'] = callable_exp self.__dict__['_hash'] = hash((callable_exp, self.args, self.kwargs)) def __eq__(self, other): if (not isinstance(other, BatchKey)): return False return ((self._callable_exp == other._callable_exp) and (self.args == other.args) and (self.kwargs == other.kwargs)) def __hash__(self): return self._hash
@attr.s(cmp=False) class Node(object): args = attr.ib() kwargs = attr.ib() batch_key = attr.ib() depth = attr.ib(default=0) outgoing = attr.ib(default=attr.Factory(list)) num_incoming = attr.ib(default=0)
class StreamingMean(object): def __init__(self): self.value = None self.count = 0.0 def add(self, value): if (not self.count): self.value = value else: self.value *= (self.count / (self.count + 1)) self.value += (value / (self.count + 1)) self.count += 1
class TorchBatcher(object): def __init__(self): self.barrier = None self._reset() def _reset(self): self.enqueued_nodes = [] self.results = {} self.mean_depth_by_key = collections.defaultdict(StreamingMean) def __call__(self, callable, *args, **kwargs): batch_key = self._batch_key(callable, *args, **kwargs) node = Node(args, kwargs, batch_key) for arg in itertools.chain(args, kwargs.values()): if isinstance(arg, ResultHandle): node.num_incoming += 1 node.depth = max(node.depth, (arg.node.depth + 1)) arg.node.outgoing.append(node) self.enqueued_nodes.append(node) self.mean_depth_by_key[batch_key].add(node.depth) coro = ResultHandle(self.barrier.wait, node, self.results) return coro async def _wrap_deregister(self, coroutine): result = (await coroutine) (await self.barrier.deregister()) return result def run(self, coroutines): self.barrier = barrier.Barrier(len(coroutines), self._compute) loop = asyncio.get_event_loop() return loop.run_until_complete(asyncio.gather(*(self._wrap_deregister(c) for c in coroutines))) def _compute(self): agenda = collections.defaultdict(list) while (self.enqueued_nodes or agenda): remaining_nodes = [] while self.enqueued_nodes: node = self.enqueued_nodes.pop() if (node.num_incoming == 0): agenda[node.batch_key].append(node) else: remaining_nodes.append(node) self.enqueued_nodes = remaining_nodes batch_key = min(agenda, key=(lambda k: self.mean_depth_by_key[k].value)) nodes = agenda[batch_key] args = [self._stack([self._to_value(node.args[i]) for node in nodes]) for i in range(len(batch_key.args))] kwargs = {k: self._stack([self._to_value(node.kwargs[k]) for node in nodes]) for (k, shape) in batch_key.kwargs} results = self._unstack(batch_key.callable(*args, **kwargs)) for (node, result) in zip(nodes, results): self.results[node] = result for next_node in node.outgoing: next_node.num_incoming -= 1 del agenda[batch_key] self._reset() def _batch_key(self, callable, *args, **kwargs): return BatchKey(callable, tuple((self._batch_key_single(arg) for arg in args)), tuple(((k, self._batch_key_single(v)) for (k, v) in sorted(kwargs.items())))) def _to_value(self, handle_or_value): if isinstance(handle_or_value, ResultHandle): return handle_or_value.accessor(self.results[handle_or_value.node]) return handle_or_value def _stack(self, items): return torch.stack(items) def _unstack(self, stacked): if isinstance(stacked, tuple): return zip(*([piece.squeeze(0) for piece in stacked_elem.split(1)] for stacked_elem in stacked)) return [piece.squeeze(0) for piece in stacked.split(1)] def _batch_key_single(self, arg): return arg.shape
class TorchNoOpBatcher(TorchBatcher): async def __call__(self, callable, *args, **kwargs): args = [self._noop_stack(arg) for arg in args] kwargs = {k: self._noop_stack(arg) for (k, arg) in kwargs.items()} return self._noop_unstack(callable(*args, **kwargs)) def _noop_stack(self, item): return torch.unsqueeze(item, 0) def _noop_unstack(self, stacked): return torch.squeeze(stacked, 0)
def test_streaming_mean(): m = batcher.StreamingMean() values = list(range(10, 20)) for (i, value) in enumerate(values): m.add(value) assert (m.value == np.mean(values[:(i + 1)]))
def test_simple_linear(): batch_size = 32 linear = unittest.mock.Mock(wraps=torch.nn.Linear(8, 16)) inp = torch.autograd.Variable(torch.rand(batch_size, 8)) batcher = torch_batcher.TorchBatcher() async def process(item): result = (await batcher(linear, item)) return result results = batcher.run([process(inp[i]) for i in range(batch_size)]) assert (linear.call_count == 1) for i in range(batch_size): single_result = linear(inp[i:(i + 1)]).squeeze(0) assert (results[i].data.numpy() == pytest.approx(single_result.data.numpy(), abs=1e-06))
def test_simple_linear_defer(): batch_size = 4 linear = unittest.mock.Mock(wraps=torch.nn.Linear(8, 16)) inp = torch.autograd.Variable(torch.rand(batch_size, 8)) batcher = torch_batcher.TorchBatcher() async def process(item1, item2): result1 = batcher(linear, item1) result2 = batcher(linear, item2) return ((await result1), (await result2)) results = batcher.run([process(inp[i], inp[(i + 1)]) for i in range(0, batch_size, 2)]) assert (linear.call_count == 1) results = [r for pair in results for r in pair] for i in range(batch_size): single_result = linear(inp[i:(i + 1)]).squeeze(0) assert (results[i].data.numpy() == pytest.approx(single_result.data.numpy(), abs=1e-06))
def test_multi_stage(): batch_size = 32 linear = unittest.mock.Mock(wraps=torch.nn.Linear(8, 8)) inp = torch.autograd.Variable(torch.rand(batch_size, 8)) batcher = torch_batcher.TorchBatcher() async def process(item, iters): for iter in range(iters): item = (await batcher(linear, item)) return item results = batcher.run([process(inp[i], ((i + 1) // 4)) for i in range(batch_size)]) assert (linear.call_count == (32 // 4)) for i in range(batch_size): row = inp[i:(i + 1)] for iter in range(((i + 1) // 4)): row = linear(row) single_result = row.squeeze(0) assert (results[i].data.numpy() == pytest.approx(single_result.data.numpy(), abs=1e-06))
def test_multi_stage_deferred(): batch_size = 32 linear = unittest.mock.Mock(wraps=torch.nn.Linear(8, 8)) inp = torch.autograd.Variable(torch.rand(batch_size, 8)) batcher = torch_batcher.TorchBatcher() async def process(item, iters): for iter in range(iters): item = batcher(linear, item).with_shape(8) if iters: return (await item) return item results = batcher.run([process(inp[i], ((i + 1) // 4)) for i in range(batch_size)]) assert (linear.call_count == (32 // 4)) for i in range(batch_size): row = inp[i:(i + 1)] for iter in range(((i + 1) // 4)): row = linear(row) single_result = row.squeeze(0) assert (results[i].data.numpy() == pytest.approx(single_result.data.numpy(), abs=1e-06))
def test_multi_stage_and_modules(): batch_size = 32 linears = [unittest.mock.Mock(wraps=torch.nn.Linear(8, 8)) for _ in range(5)] inp = torch.autograd.Variable(torch.rand(batch_size, 8)) batcher = torch_batcher.TorchBatcher() async def process(i, item, iters): for iter in range(iters): item = (await batcher(linears[((i + iter) % len(linears))], item)) return item results = batcher.run([process(i, inp[i], ((i + 1) // 4)) for i in range(batch_size)]) for i in range(len(linears)): assert (linears[i].call_count <= 8) for i in range(batch_size): row = inp[i:(i + 1)] for iter in range(((i + 1) // 4)): row = linears[((i + iter) % len(linears))](row) single_result = row.squeeze(0) assert (results[i].data.numpy() == pytest.approx(single_result.data.numpy(), abs=1e-06))
def test_multi_args(): batch_size = 32 add = unittest.mock.Mock(wraps=torch.nn.Bilinear(1, 1, 1)) inp = torch.autograd.Variable(torch.arange(batch_size).view((- 1), 1)) batcher = torch_batcher.TorchBatcher() async def process(item, iters): for iter in range(iters): item = (await batcher(add, item, input2=item)) return item results = batcher.run([process(inp[i], ((i + 1) // 8)) for i in range(batch_size)]) assert (add.call_count == 4) for i in range(batch_size): row = inp[i:(i + 1)] for iter in range(((i + 1) // 8)): row = add(row, row) single_result = row.squeeze(0) assert (results[i].data.numpy() == pytest.approx(single_result.data.numpy(), abs=1e-06))
def test_multi_args_deferred(): batch_size = 32 add = unittest.mock.Mock(wraps=torch.nn.Bilinear(1, 1, 1)) inp = torch.autograd.Variable(torch.arange(batch_size).view((- 1), 1)) batcher = torch_batcher.TorchBatcher() async def process(item, iters): for iter in range(iters): item = batcher(add, item, input2=item).with_shape(1) if iters: return (await item) else: return item results = batcher.run([process(inp[i], ((i + 1) // 8)) for i in range(batch_size)]) assert (add.call_count == 4) for i in range(batch_size): row = inp[i:(i + 1)] for iter in range(((i + 1) // 8)): row = add(row, row) single_result = row.squeeze(0) assert (results[i].data.numpy() == pytest.approx(single_result.data.numpy(), abs=1e-06))
def test_multi_args_mixed_deferred(): batch_size = 6 add = unittest.mock.Mock(wraps=torch.nn.Bilinear(1, 1, 1)) inp = torch.autograd.Variable(torch.arange(batch_size).view((- 1), 1)) double = (lambda x: (x * 2)) sum = (lambda *args: torch.sum(torch.cat(args, dim=1), dim=1)) batcher = torch_batcher.TorchBatcher() async def process(item, iters): to_sum = [] for iter in range(iters): item = batcher(add, item, input2=item).with_shape(1) to_sum.append(batcher(double, item).with_shape(1)) item = (await item) return (item, (await batcher(sum, *to_sum))) num_iters = [1, 1, 2, 2, 3, 3] results = batcher.run([process(inp[i], num_iters[i]) for i in range(batch_size)]) assert (add.call_count == 3) for i in range(batch_size): row = inp[i:(i + 1)] to_sum = [] for iter in range(num_iters[i]): row = add(row, row) to_sum.append(double(row)) single_result1 = row.squeeze(0) single_result2 = sum(*to_sum) assert (results[i][0].data.numpy() == pytest.approx(single_result1.data.numpy(), abs=1e-06)) assert (results[i][1].data.numpy() == pytest.approx(single_result2.data.numpy(), abs=1e-06))
def test_multi_shape(): sizes = [((i // 4) + 1) for i in range(32)] random.seed(32) random.shuffle(sizes) inps = [] for size in sizes: inps.append(torch.rand(size)) with unittest.mock.patch('torch.exp', wraps=torch.exp) as mock: batcher = torch_batcher.TorchBatcher() async def process(item): return (await batcher(torch.exp, item)) results = batcher.run([process(inp) for inp in inps]) assert (mock.call_count == 8) for (inp, result) in zip(inps, results): assert (torch.exp(inp).numpy() == pytest.approx(result.numpy()))
def test_partial_softmax(): import functools batch_size = 32 inp = torch.autograd.Variable(torch.rand(batch_size, 8)) torch_softmax = functools.partial(unittest.mock.Mock(wraps=torch.nn.functional.softmax), dim=(- 1)) batcher = torch_batcher.TorchBatcher() async def process(item): return (await batcher(torch_softmax, item)) results = batcher.run([process(inp[i]) for i in range(batch_size)]) assert (torch_softmax.func.call_count == 1) for i in range(batch_size): single_result = torch_softmax(inp[i:(i + 1)]).squeeze(0) assert (results[i].data.numpy() == pytest.approx(single_result.data.numpy(), abs=1e-06))
def test_partial_max(): import functools batch_size = 3 inp = torch.autograd.Variable(torch.rand(batch_size, 8)) torch_max = functools.partial(unittest.mock.Mock(wraps=torch.max), dim=(- 1)) torch_get = (lambda x, i: x[(range(x.shape[0]), i.view((- 1)))]) double = (lambda x: (x * 2)) batcher = torch_batcher.TorchBatcher() async def process(item): (max_value, max_idx) = batcher(torch_max, item).split(2) max_idx = max_idx.with_shape(1) doubled_idx = batcher(double, max_idx) max_value2 = batcher(torch_get, item, max_idx) max_value = (await max_value) max_idx = (await max_idx) doubled_idx = (await doubled_idx) max_value2 = (await max_value2) assert (max_value.data[0] == max_value2.data[0]) (max_value3, _) = batcher(torch_max, item).split(2) max_value3 = (await max_value3) assert (max_value.data[0] == max_value3.data[0]) return (max_value, max_idx, doubled_idx) results = batcher.run([process(inp[i]) for i in range(batch_size)]) assert (torch_max.func.call_count == 2) for i in range(batch_size): (max_value, max_idx) = torch_max(inp[i]) doubled_idx = double(max_idx) assert (results[i][0].data.numpy() == pytest.approx(max_value.data.numpy(), abs=1e-06)) assert (results[i][1].data.numpy() == pytest.approx(max_idx.data.numpy(), abs=1e-06)) assert (results[i][2].data.numpy() == pytest.approx(doubled_idx.data.numpy(), abs=1e-06))
@attr.s class DjangoItem(): text = attr.ib() code = attr.ib() str_map = attr.ib()
@registry.register('dataset', 'django') class DjangoDataset(torch.utils.data.Dataset): def __init__(self, path, limit=None): self.path = path self.examples = [] for line in itertools.islice(open(self.path), limit): example = json.loads(line) self.examples.append(DjangoItem(text=example['text']['tokens'], code=example['orig'], str_map=example['text']['str_map'])) def __len__(self): return len(self.examples) def __getitem__(self, idx): return self.examples[idx] @attr.s class Metrics(): dataset = attr.ib() exact_match = attr.ib(factory=list) def add(self, item, inferred_code, obsolete_gold_code=None): if (obsolete_gold_code is None): try: gold_code = astor.to_source(ast.parse(item.code)) except ParseError: return else: gold_code = obsolete_gold_code exact_match = (gold_code == inferred_code) self.exact_match.append(exact_match) def finalize(self): return collections.OrderedDict((('exact match', (sum(self.exact_match) / len(self.exact_match))),))
@attr.s class HearthstoneItem(): text = attr.ib() code = attr.ib()
@registry.register('dataset', 'hearthstone') class HearthstoneDataset(torch.utils.data.Dataset): def __init__(self, path, limit=None): self.path = path self.examples = [] for example in itertools.islice(zip(open((self.path + '.in')), open((self.path + '.out'))), limit): processed = self._process(example) if (processed is not None): self.examples.append(processed) def __len__(self): return len(self.examples) def __getitem__(self, idx): return self.examples[idx] def _process(self, example): (text, code) = example code = '\n'.join(code.split(LINE_SEP)) text = re.sub('<.*?>', '', text) orig_tokens = nltk.word_tokenize(text) tokens = ['<name>'] for token in orig_tokens: if (token == 'NAME_END'): tokens += ['</name>', '<atk>'] elif (token == 'ATK_END'): tokens += ['</atk>', '<def>'] elif (token == 'DEF_END'): tokens += ['</def>', '<cost>'] elif (token == 'COST_END'): tokens += ['</cost>', '<dur>'] elif (token == 'DUR_END'): tokens += ['</dur>', '<type>'] elif (token == 'TYPE_END'): tokens += ['</type>', '<player-cls>'] elif (token == 'PLAYER_CLS_END'): tokens += ['</player-cls>', '<race>'] elif (token == 'RACE_END'): tokens += ['</race>', '<rarity>'] elif (token == 'RARITY_END'): tokens += ['</rarity>'] else: tokens += [token] return HearthstoneItem(text=tokens, code=code) @attr.s class Metrics(): dataset = attr.ib() exact_match = attr.ib(factory=list) sentence_bleu_scores = attr.ib(factory=list) gold_codes = attr.ib(factory=list) inferred_codes = attr.ib(factory=list) smoothing_function = nltk.translate.bleu_score.SmoothingFunction().method3 def add(self, item, inferred_code, obsolete_gold_code=None): if (obsolete_gold_code is None): try: gold_code = astor.to_source(ast.parse(item.code)) except ParseError: return else: gold_code = obsolete_gold_code if (inferred_code is None): inferred_code = '' exact_match = (gold_code == inferred_code) gold_tokens_for_bleu = tokenize_for_bleu_eval(gold_code) inferred_tokens_for_bleu = tokenize_for_bleu_eval(inferred_code) ngram_weights = ([0.25] * min(4, len(inferred_tokens_for_bleu))) bleu_score = nltk.translate.bleu_score.sentence_bleu((gold_tokens_for_bleu,), inferred_tokens_for_bleu, weights=ngram_weights, smoothing_function=self.smoothing_function) self.exact_match.append(exact_match) self.sentence_bleu_scores.append(bleu_score) self.gold_codes.append((gold_tokens_for_bleu,)) self.inferred_codes.append(inferred_tokens_for_bleu) def finalize(self): return collections.OrderedDict((('exact match', (sum(self.exact_match) / len(self.exact_match))), ('sentence BLEU', (sum(self.sentence_bleu_scores) / len(self.sentence_bleu_scores))), ('corpus BLEU', nltk.translate.bleu_score.corpus_bleu(self.gold_codes, self.inferred_codes, smoothing_function=self.smoothing_function))))
def tokenize_for_bleu_eval(code): code = re.sub('([^A-Za-z0-9_])', ' \\1 ', code) code = re.sub('([a-z])([A-Z])', '\\1 \\2', code) code = re.sub('\\s+', ' ', code) code = code.replace('"', '`') code = code.replace("'", '`') tokens = [t for t in code.split(' ') if t] return tokens
@attr.s class IdiomAstItem(): text = attr.ib() code = attr.ib() orig = attr.ib() str_map = attr.ib()
@registry.register('dataset', 'idiom_ast') class IdiomAstDataset(torch.utils.data.Dataset): def __init__(self, path, limit=None): self.path = path self.examples = [] for line in itertools.islice(open(self.path), limit): example = json.loads(line) if isinstance(example['text'], dict): self.examples.append(IdiomAstItem(text=example['text']['tokens'], code=example['rewritten_ast'], orig=example, str_map=example['text']['str_map'])) else: self.examples.append(IdiomAstItem(text=example['text'], code=example['rewritten_ast'], orig=example, str_map=None)) def __len__(self): return len(self.examples) def __getitem__(self, idx): return self.examples[idx]
@attr.s class SpiderItem(): text = attr.ib() code = attr.ib() schema = attr.ib() orig = attr.ib() orig_schema = attr.ib()
@attr.s class Column(): id = attr.ib() table = attr.ib() name = attr.ib() unsplit_name = attr.ib() orig_name = attr.ib() type = attr.ib() foreign_key_for = attr.ib(default=None)
@attr.s class Table(): id = attr.ib() name = attr.ib() unsplit_name = attr.ib() orig_name = attr.ib() columns = attr.ib(factory=list) primary_keys = attr.ib(factory=list)
@attr.s class Schema(): db_id = attr.ib() tables = attr.ib() columns = attr.ib() foreign_key_graph = attr.ib() orig = attr.ib()
def load_tables(paths): schemas = {} eval_foreign_key_maps = {} for path in paths: schema_dicts = json.load(open(path)) for schema_dict in schema_dicts: tables = tuple((Table(id=i, name=name.split(), unsplit_name=name, orig_name=orig_name) for (i, (name, orig_name)) in enumerate(zip(schema_dict['table_names'], schema_dict['table_names_original'])))) columns = tuple((Column(id=i, table=(tables[table_id] if (table_id >= 0) else None), name=col_name.split(), unsplit_name=col_name, orig_name=orig_col_name, type=col_type) for (i, ((table_id, col_name), (_, orig_col_name), col_type)) in enumerate(zip(schema_dict['column_names'], schema_dict['column_names_original'], schema_dict['column_types'])))) for column in columns: if column.table: column.table.columns.append(column) for column_id in schema_dict['primary_keys']: column = columns[column_id] column.table.primary_keys.append(column) foreign_key_graph = nx.DiGraph() for (source_column_id, dest_column_id) in schema_dict['foreign_keys']: source_column = columns[source_column_id] dest_column = columns[dest_column_id] source_column.foreign_key_for = dest_column foreign_key_graph.add_edge(source_column.table.id, dest_column.table.id, columns=(source_column_id, dest_column_id)) foreign_key_graph.add_edge(dest_column.table.id, source_column.table.id, columns=(dest_column_id, source_column_id)) db_id = schema_dict['db_id'] assert (db_id not in schemas) schemas[db_id] = Schema(db_id, tables, columns, foreign_key_graph, schema_dict) eval_foreign_key_maps[db_id] = evaluation.build_foreign_key_map(schema_dict) return (schemas, eval_foreign_key_maps)
@registry.register('dataset', 'spider') class SpiderDataset(torch.utils.data.Dataset): def __init__(self, paths, tables_paths, db_path, limit=None): self.paths = paths self.db_path = db_path self.examples = [] (self.schemas, self.eval_foreign_key_maps) = load_tables(tables_paths) for path in paths: raw_data = json.load(open(path)) for entry in raw_data: item = SpiderItem(text=entry['question_toks'], code=entry['sql'], schema=self.schemas[entry['db_id']], orig=entry, orig_schema=self.schemas[entry['db_id']].orig) self.examples.append(item) def __len__(self): return len(self.examples) def __getitem__(self, idx): return self.examples[idx] class Metrics(): def __init__(self, dataset): self.dataset = dataset self.foreign_key_maps = {db_id: evaluation.build_foreign_key_map(schema.orig) for (db_id, schema) in self.dataset.schemas.items()} self.evaluator = evaluation.Evaluator(self.dataset.db_path, self.foreign_key_maps, 'match') self.results = [] def add(self, item, inferred_code): self.results.append(self.evaluator.evaluate_one(item.schema.db_id, item.orig['query'], inferred_code)) def evaluate_all(self, idx, item, inferred_codes): beams = [self.evaluator.evaluate_one(item.schema.db_id, item.orig['query'], inferred_code) for inferred_code in inferred_codes] return (idx, beams) def finalize(self): self.evaluator.finalize() return {'per_item': self.results, 'total_scores': self.evaluator.scores}
@registry.register('dataset', 'spider_idiom_ast') class SpiderIdiomAstDataset(torch.utils.data.Dataset): def __init__(self, paths, tables_paths, db_path, limit=None): self.paths = paths self.db_path = db_path self.examples = [] (self.schemas, self.eval_foreign_key_maps) = load_tables(tables_paths) for path in paths: for line in open(path): entry = json.loads(line) item = SpiderItem(text=entry['orig']['question_toks'], code=entry['rewritten_ast'], schema=self.schemas[entry['orig']['db_id']], orig=entry['orig'], orig_schema=self.schemas[entry['orig']['db_id']].orig) self.examples.append(item) def __len__(self): return len(self.examples) def __getitem__(self, idx): return self.examples[idx] Metrics = SpiderDataset.Metrics
class HoleType(enum.Enum): ReplaceSelf = 1 AddChild = 2
class MissingValue(): pass
@attr.s class SeqField(): type_name = attr.ib() field = attr.ib()
@registry.register('grammar', 'idiom_ast') class IdiomAstGrammar(): def __init__(self, base_grammar, template_file, root_type=None, all_sections_rewritten=False): self.base_grammar = registry.construct('grammar', base_grammar) self.templates = json.load(open(template_file)) self.all_sections_rewritten = all_sections_rewritten self.pointers = self.base_grammar.pointers self.ast_wrapper = copy.deepcopy(self.base_grammar.ast_wrapper) self.base_ast_wrapper = self.base_grammar.ast_wrapper self.root_type = self.base_grammar.root_type if (base_grammar['name'] == 'python'): self.root_type = 'mod' singular_types_with_single_seq_field = set((name for (name, type_info) in self.ast_wrapper.singular_types.items() if ((len(type_info.fields) == 1) and type_info.fields[0].seq))) seq_fields = {'{}-{}'.format(name, field.name): SeqField(name, field) for (name, type_info) in self.ast_wrapper.singular_types.items() for field in type_info.fields if field.seq} templates_by_head_type = collections.defaultdict(list) for template in self.templates: head_type = template['idiom'][0] if (head_type in singular_types_with_single_seq_field): field = self.ast_wrapper.singular_types[head_type].fields[0] templates_by_head_type[field.type].append((template, SeqField(head_type, field))) templates_by_head_type[head_type].append((template, None)) elif (head_type in seq_fields): seq_field = seq_fields[head_type] templates_by_head_type[seq_field.field.type].append((template, seq_field)) else: templates_by_head_type[head_type].append((template, None)) types_to_replace = {} for (head_type, templates) in templates_by_head_type.items(): (constructors, seq_fragment_constructors) = ([], []) for (template, seq_field) in templates: if seq_field: if (head_type in self.ast_wrapper.product_types): seq_type = '{}_plus_templates'.format(head_type) else: seq_type = head_type seq_fragment_constructors.append(self._template_to_constructor(template, '_{}_seq'.format(seq_type), seq_field)) else: constructors.append(self._template_to_constructor(template, '', seq_field)) if (head_type in self.ast_wrapper.constructors): assert constructors assert (not seq_fragment_constructors) self.ast_wrapper.add_constructors_to_sum_type(self.ast_wrapper.constructor_to_sum_type[head_type], constructors) elif (head_type in self.ast_wrapper.sum_types): assert (not constructors) assert seq_fragment_constructors self.ast_wrapper.add_seq_fragment_type(head_type, seq_fragment_constructors) elif (head_type in self.ast_wrapper.product_types): orig_prod_type = self.ast_wrapper.product_types[head_type] new_constructor_for_prod_type = asdl.Constructor(name=head_type, fields=orig_prod_type.fields) self.ast_wrapper.remove_product_type(head_type) name = '{}_plus_templates'.format(head_type) self.ast_wrapper.add_sum_type(name, asdl.Sum(types=(constructors + [new_constructor_for_prod_type]))) self.ast_wrapper.add_seq_fragment_type(name, seq_fragment_constructors) types_to_replace[head_type] = name elif (head_type in self.ast_wrapper.primitive_types): raise NotImplementedError('built-in type as head type of idiom unsupported: {}'.format(head_type)) else: raise NotImplementedError('Unable to handle head type of idiom: {}'.format(head_type)) for constructor_or_product in self.ast_wrapper.singular_types.values(): for field in constructor_or_product.fields: if (field.type in types_to_replace): field.type = types_to_replace[field.type] self.templates_containing_placeholders = {} for (name, constructor) in self.ast_wrapper.singular_types.items(): if (not hasattr(constructor, 'template')): continue hole_values = {} for field in constructor.fields: hole_id = self.get_hole_id(field.name) placeholder = ast_util.HoleValuePlaceholder(id=hole_id, field_name=field.name, type=field.type, is_seq=field.seq, is_opt=field.opt) if field.seq: hole_values[hole_id] = [placeholder] else: hole_values[hole_id] = placeholder self.templates_containing_placeholders[name] = constructor.template(hole_values) if (root_type is not None): if isinstance(root_type, (list, tuple)): for choice in root_type: if ((choice in self.ast_wrapper.singular_types) or (choice in self.ast_wrapper.sum_types)): self.root_type = choice break else: self.root_type = root_type def parse(self, code, section): if (self.all_sections_rewritten or (section == 'train')): return self.convert_idiom_ast(code, template_id=None)() else: return self.base_grammar.parse(code, section) def unparse(self, tree, item): expanded_tree = self._expand_templates(tree) self.base_ast_wrapper.verify_ast(expanded_tree) return self.base_grammar.unparse(expanded_tree, item) def tokenize_field_value(self, field_value): return self.base_grammar.tokenize_field_value(field_value) @classmethod def get_hole_id(cls, field): m = re.match('^hole(\\d+)$', field) if (not m): raise ValueError('Unexpected field name: {}'.format(field)) return int(m.group(1)) def _expand_templates(self, tree): if (not isinstance(tree, dict)): return tree node_type = tree['_type'] constructor = self.ast_wrapper.constructors.get(node_type) expanded_fields = {} for (field, value) in tree.items(): if (field == '_type'): continue if isinstance(value, (list, tuple)): result = [] for item in value: converted = self._expand_templates(item) if (isinstance(item, dict) and re.match('^Template\\d+_.*_seq$', item['_type'])): item_type_info = self.ast_wrapper.constructors[converted['_type']] assert (len(item_type_info.fields) == 1) assert item_type_info.fields[0].seq result += converted.get(item_type_info.fields[0].name, []) else: result.append(converted) expanded_fields[field] = result else: expanded_fields[field] = self._expand_templates(value) if ((constructor is None) or (not hasattr(constructor, 'template'))): return {'_type': node_type, **expanded_fields} template = constructor.template hole_values = {} for (field, expanded_value) in expanded_fields.items(): hole_id = self.get_hole_id(field) hole_values[hole_id] = expanded_value return template(hole_values) def _template_to_constructor(self, template_dict, suffix, seq_field): hole_node_types = {} stack = [(None, template_dict['idiom'], None)] while stack: (parent, node, child_index) = stack.pop() (node_type, ref_symbols, hole_id, children) = node if (hole_id is not None): assert (hole_id not in hole_node_types) hyphenated_node_type = None unhyphenated_node_type = None hole_type_str = template_dict['holes'][hole_id]['type'] if (hole_type_str == 'AddChild'): node_type_for_field_type = node_type elif (hole_type_str == 'ReplaceSelf'): if ('-' in node_type): node_type_for_field_type = node_type else: node_type_for_field_type = parent[0] field_info = self._get_field_info_from_name(node_type_for_field_type) if (field_info.seq and (hole_type_str == 'ReplaceSelf') and ('-' not in node_type)): assert (child_index in (0, 1)) seq = (child_index == 1) else: seq = field_info.seq hole_node_types[hole_id] = (field_info.type, seq, field_info.opt) stack += [(node, child, i) for (i, child) in enumerate(children)] fields = [] for hole in template_dict['holes']: i = hole['id'] (field_type, seq, opt) = hole_node_types[i] field = asdl.Field(type=field_type, name='hole{}'.format(i), seq=seq, opt=opt) field.hole_type = HoleType[hole['type']] fields.append(field) constructor = asdl.Constructor('Template{}{}'.format(template_dict['id'], suffix), fields) constructor.template = self.convert_idiom_ast(template_dict['idiom'], template_id=template_dict['id'], seq_field=seq_field) return constructor def _get_field_info_from_name(self, node_type): if ('-' in node_type): (type_name, field_name) = node_type.split('-') type_info = self.ast_wrapper.singular_types[type_name] (field_info,) = [field for field in type_info.fields if (field.name == field_name)] else: type_info = self.ast_wrapper.singular_types[node_type] assert (len(type_info.fields) == 1) field_info = type_info.fields[0] return field_info @classmethod def _node_type(cls, node): if isinstance(node[0], dict): if ('nt' in node[0]): return node[0]['nt'] elif ('template_id' in node[0]): return 'Template{}'.format(node[0]['template_id']) else: return node[0] def convert_idiom_ast(self, idiom_ast, template_id=None, seq_fragment_type=None, seq_field=None): if (template_id is not None): (node_type, ref_symbols, hole, children) = idiom_ast else: (node_type, ref_symbols, children) = idiom_ast is_template_node = False extra_types = [] if isinstance(node_type, dict): if seq_fragment_type: suffix = '_{}_seq'.format(seq_fragment_type) else: suffix = '' if ('template_id' in node_type): node_type = 'Template{}{}'.format(node_type['template_id'], suffix) is_template_node = True elif (('nt' in node_type) and ('mt' in node_type)): extra_types = ['Template{}{}'.format(i, suffix) for i in node_type['mt']] node_type = node_type['nt'] if (seq_field is None): field_infos = self.ast_wrapper.singular_types[node_type].fields else: field_infos = [seq_field.field] children_to_convert = [] if is_template_node: assert (len(children) == len(field_infos)) for (field, child) in zip(field_infos, children): if ((field.hole_type == HoleType.ReplaceSelf) and field.seq): children_to_convert.append((field, child)) else: assert (not field.seq) dummy_node = list(idiom_ast) dummy_node[0] = '{}-{}'.format(node_type, field.name) dummy_node[(- 1)] = [child] children_to_convert.append((field, dummy_node)) else: fields_by_name = {f.name: f for f in field_infos} if (len(field_infos) == 0): pass elif (len(field_infos) == 1): children_to_convert.append((field_infos[0], idiom_ast)) else: prefix_len = (len(node_type) + 1) for child in children: field_name = self._node_type(child)[prefix_len:] children_to_convert.append((fields_by_name[field_name], child)) assert (set((field.name for (field, _) in children_to_convert)) == set((field.name for field in field_infos))) def result_creator(hole_values={}): if ((template_id is not None) and (hole is not None) and (self.templates[template_id]['holes'][hole]['type'] == 'ReplaceSelf')): return hole_values.get(hole, MissingValue) result = {} for (field, child_node) in children_to_convert: if (field.type in self.ast_wrapper.primitive_types): convert = (lambda node: (lambda hole_values: self.convert_builtin_type(field.type, self._node_type(node)))) else: convert = functools.partial(self.convert_idiom_ast, template_id=template_id) if field.seq: value = [] while True: if ((template_id is not None) and (child_node[2] is not None)): hole_value = hole_values.get(child_node[2], []) assert isinstance(hole_value, list) value += hole_value assert (len(child_node[(- 1)]) == 0) break (child_type, child_children) = (child_node[0], child_node[(- 1)]) if (isinstance(child_type, dict) and ('template_id' in child_type)): value.append(convert(child_node, seq_fragment_type=(field.type if field.seq else None))(hole_values)) break if (len(child_children) == 1): assert (self._node_type(child_children[0]) == 'End') break elif (len(child_children) == 2): value.append(convert(child_children[0])(hole_values)) child_node = child_children[1] else: raise ValueError('Unexpected number of children: {}'.format(len(child_children))) present = bool(value) elif field.opt: if ((template_id is not None) and (child_node[2] is not None)): assert (len(child_node[(- 1)]) == 0) present = (child_node[2] in hole_values) value = hole_values.get(child_node[2]) else: assert (len(child_node[(- 1)]) == 1) if (self._node_type(child_node[(- 1)][0]) == 'Null'): value = None present = False else: value = convert(child_node[(- 1)][0])(hole_values) present = (value is not MissingValue) elif ((template_id is not None) and (child_node[2] is not None)): assert (len(child_node[(- 1)]) == 0) value = hole_values[child_node[2]] present = True else: assert (len(child_node[(- 1)]) == 1) value = convert(child_node[(- 1)][0])(hole_values) present = True if present: result[field.name] = value result['_type'] = node_type result['_extra_types'] = extra_types return result return result_creator def convert_builtin_type(self, field_type, value): if ((field_type == 'singleton') and (value == 'Null')): return None return value
def split_string_whitespace_and_camelcase(s): split_space = s.split(' ') result = [] for token in split_space: if token: camelcase_split_token = re.sub('([a-z])([A-Z])', '\\1\ue012\\2', token).split('\ue012') result.extend(camelcase_split_token) result.append(' ') return result[:(- 1)]
@registry.register('grammar', 'python') class PythonGrammar(): ast_wrapper = ast_util.ASTWrapper(asdl.parse(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'Python.asdl'))) root_type = 'Module' pointers = set() @classmethod def parse(cls, code, section): try: py_ast = ast.parse(code) return cls.from_native_ast(py_ast) except SyntaxError: return None @classmethod def unparse(cls, tree, item): ast_tree = cls.to_native_ast(tree) return astor.to_source(ast_tree) @classmethod def tokenize_field_value(cls, field_value): if isinstance(field_value, bytes): field_value = field_value.encode('latin1') else: field_value = str(field_value) return split_string_whitespace_and_camelcase(field_value) @classmethod def from_native_ast(cls, node): if (not isinstance(node, ast.AST)): return node node_type = node.__class__.__name__ field_infos = {f.name: f for f in cls.ast_wrapper.singular_types[node_type].fields} result = {'_type': node_type} for (field, value) in ast.iter_fields(node): if (field in PYTHON_AST_FIELD_BLACKLIST.get(node_type, set())): continue field_info = field_infos[field] if (field_info.opt and (value is None)): continue if isinstance(value, (list, tuple)): assert field_info.seq if value: result[field] = [cls.from_native_ast(v) for v in value] else: result[field] = cls.from_native_ast(value) return result @classmethod def to_native_ast(cls, node): if isinstance(node, (list, tuple)): return [cls.to_native_ast(item) for item in node] elif (not isinstance(node, dict)): return node result = getattr(ast, node['_type'])() type_info = cls.ast_wrapper.singular_types[node['_type']] for field_info in type_info.fields: if field_info.seq: value = node.get(field_info.name, []) elif field_info.opt: value = node.get(field_info.name, None) else: value = node[field_info.name] setattr(result, field_info.name, cls.to_native_ast(value)) return result
def bimap(first, second): return ({f: s for (f, s) in zip(first, second)}, {s: f for (f, s) in zip(first, second)})
def filter_nones(d): return {k: v for (k, v) in d.items() if ((v is not None) and (v != []))}
def join(iterable, delimiter): it = iter(iterable) (yield next(it)) for x in it: (yield delimiter) (yield x)
def intersperse(delimiter, seq): return itertools.islice(itertools.chain.from_iterable(zip(itertools.repeat(delimiter), seq)), 1, None)
@registry.register('grammar', 'spider') class SpiderLanguage(): root_type = 'sql' def __init__(self, output_from=False, use_table_pointer=False, include_literals=True, include_columns=True): custom_primitive_type_checkers = {} self.pointers = set() if use_table_pointer: custom_primitive_type_checkers['table'] = ast_util.FilterType(int) self.pointers.add('table') if include_columns: custom_primitive_type_checkers['column'] = ast_util.FilterType(int) self.pointers.add('column') self.ast_wrapper = ast_util.ASTWrapper(asdl.parse(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'Spider.asdl')), custom_primitive_type_checkers=custom_primitive_type_checkers) self.output_from = output_from self.include_literals = include_literals self.include_columns = include_columns if (not self.output_from): sql_fields = self.ast_wrapper.product_types['sql'].fields assert (sql_fields[1].name == 'from') del sql_fields[1] if (not use_table_pointer): self.ast_wrapper.singular_types['Table'].fields[0].type = 'int' if (not include_literals): sql_fields = self.ast_wrapper.singular_types['sql'].fields for field in sql_fields: if (field.name == 'limit'): field.opt = False field.type = 'singleton' if (not include_columns): col_unit_fields = self.ast_wrapper.singular_types['col_unit'].fields assert (col_unit_fields[1].name == 'col_id') del col_unit_fields[1] def parse(self, code, section): return self.parse_sql(code) def unparse(self, tree, item): unparser = SpiderUnparser(self.ast_wrapper, item.schema) return unparser.unparse_sql(tree) @classmethod def tokenize_field_value(cls, field_value): if isinstance(field_value, bytes): field_value_str = field_value.encode('latin1') elif isinstance(field_value, str): field_value_str = field_value else: field_value_str = str(field_value) if ((field_value_str[0] == '"') and (field_value_str[(- 1)] == '"')): field_value_str = field_value_str[1:(- 1)] return [field_value_str] def parse_val(self, val): if isinstance(val, str): if (not self.include_literals): return {'_type': 'Terminal'} return {'_type': 'String', 's': val} elif isinstance(val, list): return {'_type': 'ColUnit', 'c': self.parse_col_unit(val)} elif isinstance(val, float): if (not self.include_literals): return {'_type': 'Terminal'} return {'_type': 'Number', 'f': val} elif isinstance(val, dict): return {'_type': 'ValSql', 's': self.parse_sql(val)} else: raise ValueError(val) def parse_col_unit(self, col_unit): (agg_id, col_id, is_distinct) = col_unit result = {'_type': 'col_unit', 'agg_id': {'_type': self.AGG_TYPES_F[agg_id]}, 'is_distinct': is_distinct} if self.include_columns: result['col_id'] = col_id return result def parse_val_unit(self, val_unit): (unit_op, col_unit1, col_unit2) = val_unit result = {'_type': self.UNIT_TYPES_F[unit_op], 'col_unit1': self.parse_col_unit(col_unit1)} if (unit_op != 0): result['col_unit2'] = self.parse_col_unit(col_unit2) return result def parse_table_unit(self, table_unit): (table_type, value) = table_unit if (table_type == 'sql'): return {'_type': 'TableUnitSql', 's': self.parse_sql(value)} elif (table_type == 'table_unit'): return {'_type': 'Table', 'table_id': value} else: raise ValueError(table_type) def parse_cond(self, cond, optional=False): if (optional and (not cond)): return None if (len(cond) > 1): return {'_type': self.LOGIC_OPERATORS_F[cond[1]], 'left': self.parse_cond(cond[:1]), 'right': self.parse_cond(cond[2:])} ((not_op, op_id, val_unit, val1, val2),) = cond result = {'_type': self.COND_TYPES_F[op_id], 'val_unit': self.parse_val_unit(val_unit), 'val1': self.parse_val(val1)} if (op_id == 1): result['val2'] = self.parse_val(val2) if not_op: result = {'_type': 'Not', 'c': result} return result def parse_sql(self, sql, optional=False): if (optional and (sql is None)): return None return filter_nones({'_type': 'sql', 'select': self.parse_select(sql['select']), 'where': self.parse_cond(sql['where'], optional=True), 'group_by': [self.parse_col_unit(u) for u in sql['groupBy']], 'order_by': self.parse_order_by(sql['orderBy']), 'having': self.parse_cond(sql['having'], optional=True), 'limit': (sql['limit'] if self.include_literals else (sql['limit'] is not None)), 'intersect': self.parse_sql(sql['intersect'], optional=True), 'except': self.parse_sql(sql['except'], optional=True), 'union': self.parse_sql(sql['union'], optional=True), **({'from': self.parse_from(sql['from'])} if self.output_from else {})}) def parse_select(self, select): (is_distinct, aggs) = select return {'_type': 'select', 'is_distinct': is_distinct, 'aggs': [self.parse_agg(agg) for agg in aggs]} def parse_agg(self, agg): (agg_id, val_unit) = agg return {'_type': 'agg', 'agg_id': {'_type': self.AGG_TYPES_F[agg_id]}, 'val_unit': self.parse_val_unit(val_unit)} def parse_from(self, from_): return filter_nones({'_type': 'from', 'table_units': [self.parse_table_unit(u) for u in from_['table_units']], 'conds': self.parse_cond(from_['conds'], optional=True)}) def parse_order_by(self, order_by): if (not order_by): return None (order, val_units) = order_by return {'_type': 'order_by', 'order': {'_type': self.ORDERS_F[order]}, 'val_units': [self.parse_val_unit(v) for v in val_units]} (COND_TYPES_F, COND_TYPES_B) = bimap(range(1, 10), ('Between', 'Eq', 'Gt', 'Lt', 'Ge', 'Le', 'Ne', 'In', 'Like')) (UNIT_TYPES_F, UNIT_TYPES_B) = bimap(range(5), ('Column', 'Minus', 'Plus', 'Times', 'Divide')) (AGG_TYPES_F, AGG_TYPES_B) = bimap(range(6), ('NoneAggOp', 'Max', 'Min', 'Count', 'Sum', 'Avg')) (ORDERS_F, ORDERS_B) = bimap(('asc', 'desc'), ('Asc', 'Desc')) (LOGIC_OPERATORS_F, LOGIC_OPERATORS_B) = bimap(('and', 'or'), ('And', 'Or'))
@attr.s class SpiderUnparser(): ast_wrapper = attr.ib() schema = attr.ib() UNIT_TYPES_B = {'Minus': '-', 'Plus': '+', 'Times': '*', 'Divide': '/'} COND_TYPES_B = {'Between': 'BETWEEN', 'Eq': '=', 'Gt': '>', 'Lt': '<', 'Ge': '>=', 'Le': '<=', 'Ne': '!=', 'In': 'IN', 'Like': 'LIKE'} @classmethod def conjoin_conds(cls, conds): if (not conds): return None if (len(conds) == 1): return conds[0] return {'_type': 'And', 'left': conds[0], 'right': cls.conjoin_conds(conds[1:])} @classmethod def linearize_cond(cls, cond): if (cond['_type'] in ('And', 'Or')): (conds, keywords) = cls.linearize_cond(cond['right']) return (([cond['left']] + conds), ([cond['_type']] + keywords)) else: return ([cond], []) def unparse_val(self, val): if (val['_type'] == 'Terminal'): return "'terminal'" if (val['_type'] == 'String'): return val['s'] if (val['_type'] == 'ColUnit'): return self.unparse_col_unit(val['c']) if (val['_type'] == 'Number'): return str(val['f']) if (val['_type'] == 'ValSql'): return '({})'.format(self.unparse_sql(val['s'])) def unparse_col_unit(self, col_unit): if ('col_id' in col_unit): column = self.schema.columns[col_unit['col_id']] if (column.table is None): column_name = column.orig_name else: column_name = '{}.{}'.format(column.table.orig_name, column.orig_name) else: column_name = 'some_col' if col_unit['is_distinct']: column_name = 'DISTINCT {}'.format(column_name) agg_type = col_unit['agg_id']['_type'] if (agg_type == 'NoneAggOp'): return column_name else: return '{}({})'.format(agg_type, column_name) def unparse_val_unit(self, val_unit): if (val_unit['_type'] == 'Column'): return self.unparse_col_unit(val_unit['col_unit1']) col1 = self.unparse_col_unit(val_unit['col_unit1']) col2 = self.unparse_col_unit(val_unit['col_unit2']) return '{} {} {}'.format(col1, self.UNIT_TYPES_B[val_unit['_type']], col2) def unparse_cond(self, cond, negated=False): if (cond['_type'] == 'And'): assert (not negated) return '{} AND {}'.format(self.unparse_cond(cond['left']), self.unparse_cond(cond['right'])) elif (cond['_type'] == 'Or'): assert (not negated) return '{} OR {}'.format(self.unparse_cond(cond['left']), self.unparse_cond(cond['right'])) elif (cond['_type'] == 'Not'): return self.unparse_cond(cond['c'], negated=True) elif (cond['_type'] == 'Between'): tokens = [self.unparse_val_unit(cond['val_unit'])] if negated: tokens.append('NOT') tokens += ['BETWEEN', self.unparse_val(cond['val1']), 'AND', self.unparse_val(cond['val2'])] return ' '.join(tokens) tokens = [self.unparse_val_unit(cond['val_unit'])] if negated: tokens.append('NOT') tokens += [self.COND_TYPES_B[cond['_type']], self.unparse_val(cond['val1'])] return ' '.join(tokens) def unparse_sql(self, tree): if ('from' not in tree): tree = dict(tree) candidate_column_ids = set(self.ast_wrapper.find_all_descendants_of_type(tree, 'column', (lambda field: (field.type != 'sql')))) candidate_columns = [self.schema.columns[i] for i in candidate_column_ids] all_from_table_ids = set((column.table.id for column in candidate_columns if (column.table is not None))) if (not all_from_table_ids): all_from_table_ids = {0} covered_tables = set() candidate_table_ids = sorted(all_from_table_ids) start_table_id = candidate_table_ids[0] conds = [] for table_id in candidate_table_ids[1:]: if (table_id in covered_tables): continue try: path = nx.shortest_path(self.schema.foreign_key_graph, source=start_table_id, target=table_id) except (nx.NetworkXNoPath, nx.NodeNotFound): covered_tables.add(table_id) continue for (source_table_id, target_table_id) in zip(path, path[1:]): if (target_table_id in covered_tables): continue all_from_table_ids.add(target_table_id) (col1, col2) = self.schema.foreign_key_graph[source_table_id][target_table_id]['columns'] conds.append({'_type': 'Eq', 'val_unit': {'_type': 'Column', 'col_unit1': {'_type': 'col_unit', 'agg_id': {'_type': 'NoneAggOp'}, 'col_id': col1, 'is_distinct': False}}, 'val1': {'_type': 'ColUnit', 'c': {'_type': 'col_unit', 'agg_id': {'_type': 'NoneAggOp'}, 'col_id': col2, 'is_distinct': False}}}) table_units = [{'_type': 'Table', 'table_id': i} for i in sorted(all_from_table_ids)] tree['from'] = {'_type': 'from', 'table_units': table_units} cond_node = self.conjoin_conds(conds) if (cond_node is not None): tree['from']['conds'] = cond_node result = [self.unparse_select(tree['select']), self.unparse_from(tree['from'])] if ('where' in tree): result += ['WHERE', self.unparse_cond(tree['where'])] if ('group_by' in tree): result += ['GROUP BY', ', '.join((self.unparse_col_unit(c) for c in tree['group_by']))] if ('having' in tree): result += ['HAVING', self.unparse_cond(tree['having'])] if ('order_by' in tree): result.append(self.unparse_order_by(tree['order_by'])) if ('limit' in tree): if isinstance(tree['limit'], bool): if tree['limit']: result += ['LIMIT', '1'] else: result += ['LIMIT', str(tree['limit'])] if ('intersect' in tree): result += ['INTERSECT', self.unparse_sql(tree['intersect'])] if ('except' in tree): result += ['EXCEPT', self.unparse_sql(tree['except'])] if ('union' in tree): result += ['UNION', self.unparse_sql(tree['union'])] return ' '.join(result) def unparse_select(self, select): tokens = ['SELECT'] if select['is_distinct']: tokens.append('DISTINCT') tokens.append(', '.join((self.unparse_agg(agg) for agg in select.get('aggs', [])))) return ' '.join(tokens) def unparse_agg(self, agg): unparsed_val_unit = self.unparse_val_unit(agg['val_unit']) agg_type = agg['agg_id']['_type'] if (agg_type == 'NoneAggOp'): return unparsed_val_unit else: return '{}({})'.format(agg_type, unparsed_val_unit) def unparse_from(self, from_): if ('conds' in from_): (all_conds, keywords) = self.linearize_cond(from_['conds']) else: (all_conds, keywords) = ([], []) assert all(((keyword == 'And') for keyword in keywords)) cond_indices_by_table = collections.defaultdict(set) tables_involved_by_cond_idx = collections.defaultdict(set) for (i, cond) in enumerate(all_conds): for column in self.ast_wrapper.find_all_descendants_of_type(cond, 'column'): table = self.schema.columns[column].table if (table is None): continue cond_indices_by_table[table.id].add(i) tables_involved_by_cond_idx[i].add(table.id) output_table_ids = set() output_cond_indices = set() tokens = ['FROM'] for (i, table_unit) in enumerate(from_.get('table_units', [])): if (i > 0): tokens += ['JOIN'] if (table_unit['_type'] == 'TableUnitSql'): tokens.append('({})'.format(self.unparse_sql(table_unit['s']))) elif (table_unit['_type'] == 'Table'): table_id = table_unit['table_id'] tokens += [self.schema.tables[table_id].orig_name] output_table_ids.add(table_id) conds_to_output = [] for cond_idx in sorted(cond_indices_by_table[table_id]): if (cond_idx in output_cond_indices): continue if (tables_involved_by_cond_idx[cond_idx] <= output_table_ids): conds_to_output.append(all_conds[cond_idx]) output_cond_indices.add(cond_idx) if conds_to_output: tokens += ['ON'] tokens += list(intersperse('AND', (self.unparse_cond(cond) for cond in conds_to_output))) return ' '.join(tokens) def unparse_order_by(self, order_by): return 'ORDER BY {} {}'.format(', '.join((self.unparse_val_unit(v) for v in order_by['val_units'])), order_by['order']['_type'])
class AbstractPreproc(metaclass=abc.ABCMeta): "Used for preprocessing data according to the model's liking.\n\n Some tasks normally performed here:\n - Constructing a vocabulary from the training data\n - Transforming the items in some way, such as\n - Parsing the AST\n - \n - Loading and providing the pre-processed data to the model\n\n TODO:\n - Allow transforming items in a streaming fashion without loading all of them into memory first\n " @abc.abstractmethod def validate_item(self, item, section): 'Checks whether item can be successfully preprocessed.\n \n Returns a boolean and an arbitrary object.' pass @abc.abstractmethod def add_item(self, item, section, validation_info): 'Add an item to be preprocessed.' pass @abc.abstractmethod def clear_items(self): 'Clear the preprocessed items' pass @abc.abstractmethod def save(self): 'Marks that all of the items have been preprocessed. Save state to disk.\n\n Used in preprocess.py, after reading all of the data.' pass @abc.abstractmethod def load(self): 'Load state from disk.' pass @abc.abstractmethod def dataset(self, section): 'Returns a torch.data.utils.Dataset instance.' pass
def maybe_mask(attn, attn_mask): if (attn_mask is not None): assert all((((a == 1) or (b == 1) or (a == b)) for (a, b) in zip(attn.shape[::(- 1)], attn_mask.shape[::(- 1)]))), 'Attention mask shape {} should be broadcastable with attention shape {}'.format(attn_mask.shape, attn.shape) attn.data.masked_fill_(attn_mask, (- float('inf')))
class Attention(torch.nn.Module): def __init__(self, pointer): super().__init__() self.pointer = pointer self.softmax = torch.nn.Softmax(dim=(- 1)) def forward(self, query, values, attn_mask=None): attn_logits = self.pointer(query, values, attn_mask) attn = self.softmax(attn_logits) output = torch.bmm(attn.unsqueeze(1), values) output = output.squeeze(1) return (output, attn)
@registry.register('pointer', 'sdp') class ScaledDotProductPointer(torch.nn.Module): def __init__(self, query_size, key_size): super().__init__() self.query_proj = torch.nn.Linear(query_size, key_size) self.temp = np.power(key_size, 0.5) def forward(self, query, keys, attn_mask=None): proj_query = self.query_proj(query).unsqueeze(2) attn_logits = (torch.bmm(keys, proj_query).squeeze(2) / self.temp) maybe_mask(attn_logits, attn_mask) return attn_logits
@registry.register('attention', 'sdp') class ScaledDotProductAttention(Attention): def __init__(self, query_size, value_size): super().__init__(ScaledDotProductPointer(query_size, value_size))
@registry.register('pointer', 'bahdanau') class BahdanauPointer(torch.nn.Module): def __init__(self, query_size, key_size, proj_size): super().__init__() self.compute_scores = torch.nn.Sequential(torch.nn.Linear((query_size + key_size), proj_size), torch.nn.Tanh(), torch.nn.Linear(proj_size, 1)) def forward(self, query: torch.Tensor, keys: torch.Tensor, attn_mask=None): query_expanded = query.unsqueeze(1).expand((- 1), keys.shape[1], (- 1)) attn_logits = self.compute_scores(torch.cat((query_expanded, keys), dim=2)) attn_logits = attn_logits.squeeze(2) maybe_mask(attn_logits, attn_mask) return attn_logits
@registry.register('attention', 'bahdanau') class BahdanauAttention(Attention): def __init__(self, query_size, value_size, proj_size): super().__init__(BahdanauPointer(query_size, value_size, proj_size))
class MultiHeadedAttention(torch.nn.Module): def __init__(self, h, query_size, value_size, dropout=0.1): super().__init__() assert ((query_size % h) == 0) assert ((value_size % h) == 0) self.d_k = (value_size // h) self.h = h self.linears = torch.nn.ModuleList([torch.nn.Linear(query_size, value_size), torch.nn.Linear(value_size, value_size), torch.nn.Linear(value_size, value_size), torch.nn.Linear(value_size, value_size)]) self.attn = None self.dropout = torch.nn.Dropout(p=dropout) def forward(self, query, values, attn_mask=None): 'Implements Figure 2' if (attn_mask is not None): attn_mask = attn_mask.unsqueeze(1) nbatches = query.size(0) (query, keys, values) = [l(x).view(nbatches, (- 1), self.h, self.d_k).transpose(1, 2) for (l, x) in zip(self.linears, (query, values, values))] (x, self.attn) = transformer.attention(query, keys, values, mask=attn_mask, dropout=self.dropout) x = x.transpose(1, 2).contiguous().view(nbatches, (- 1), (self.h * self.d_k)) x = x.squeeze(1) return (self.linears[(- 1)](x), self.attn)
class ZippedDataset(torch.utils.data.Dataset): def __init__(self, *components): assert (len(components) >= 1) lengths = [len(c) for c in components] assert all(((lengths[0] == other) for other in lengths[1:])), "Lengths don't match: {}".format(lengths) self.components = components def __getitem__(self, idx): return tuple((c[idx] for c in self.components)) def __len__(self): return len(self.components[0])
@registry.register('model', 'EncDec') class EncDecModel(torch.nn.Module): class Preproc(abstract_preproc.AbstractPreproc): def __init__(self, encoder, decoder, encoder_preproc, decoder_preproc): super().__init__() self.enc_preproc = registry.lookup('encoder', encoder['name']).Preproc(**encoder_preproc) self.dec_preproc = registry.lookup('decoder', decoder['name']).Preproc(**decoder_preproc) def validate_item(self, item, section): (enc_result, enc_info) = self.enc_preproc.validate_item(item, section) (dec_result, dec_info) = self.dec_preproc.validate_item(item, section) return ((enc_result and dec_result), (enc_info, dec_info)) def add_item(self, item, section, validation_info): (enc_info, dec_info) = validation_info self.enc_preproc.add_item(item, section, enc_info) self.dec_preproc.add_item(item, section, dec_info) def clear_items(self): self.enc_preproc.clear_items() self.dec_preproc.clear_items() def save(self): self.enc_preproc.save() self.dec_preproc.save() def load(self): self.enc_preproc.load() self.dec_preproc.load() def dataset(self, section): return ZippedDataset(self.enc_preproc.dataset(section), self.dec_preproc.dataset(section)) def __init__(self, preproc, device, encoder, decoder): super().__init__() self.preproc = preproc self.encoder = registry.construct('encoder', encoder, device=device, preproc=preproc.enc_preproc) self.decoder = registry.construct('decoder', decoder, device=device, preproc=preproc.dec_preproc) self.decoder.visualize_flag = False if getattr(self.encoder, 'batched'): self.compute_loss = self._compute_loss_enc_batched else: self.compute_loss = self._compute_loss_unbatched def _compute_loss_enc_batched(self, batch, debug=False): losses = [] enc_states = self.encoder([enc_input for (enc_input, dec_output) in batch]) for (enc_state, (enc_input, dec_output)) in zip(enc_states, batch): loss = self.decoder.compute_loss(enc_input, dec_output, enc_state, debug) losses.append(loss) if debug: return losses else: return torch.mean(torch.stack(losses, dim=0), dim=0) def _compute_loss_enc_batched2(self, batch, debug=False): losses = [] for (enc_input, dec_output) in batch: (enc_state,) = self.encoder([enc_input]) loss = self.decoder.compute_loss(enc_input, dec_output, enc_state, debug) losses.append(loss) if debug: return losses else: return torch.mean(torch.stack(losses, dim=0), dim=0) def _compute_loss_unbatched(self, batch, debug=False): losses = [] for (enc_input, dec_output) in batch: enc_state = self.encoder(enc_input) loss = self.decoder.compute_loss(enc_input, dec_output, enc_state, debug) losses.append(loss) if debug: return losses else: return torch.mean(torch.stack(losses, dim=0), dim=0) def eval_on_batch(self, batch): mean_loss = self.compute_loss(batch).item() batch_size = len(batch) result = {'loss': (mean_loss * batch_size), 'total': batch_size} return result def begin_inference(self, orig_item, preproc_item): (enc_input, _) = preproc_item if self.visualize_flag: print('question:') print(enc_input['question']) print('columns:') print(enc_input['columns']) print('tables:') print(enc_input['tables']) if getattr(self.encoder, 'batched'): (enc_state,) = self.encoder([enc_input]) else: enc_state = self.encoder(enc_input) return self.decoder.begin_inference(enc_state, orig_item)
class IdiomPreproc(abstract_preproc.AbstractPreproc): def __init__(self, grammar, save_path, censor_pointers): self.save_path = save_path self.censor_pointers = censor_pointers self.grammar = registry.construct('grammar', grammar) self.ast_wrapper = self.grammar.ast_wrapper self.items = collections.defaultdict(list) def validate_item(self, item, section): parsed = self.grammar.parse(item.code, section) if parsed: self.ast_wrapper.verify_ast(parsed) return (True, parsed) return ((section != 'train'), None) def add_item(self, item, section, validation_info): converted = AstConverter(self.grammar, self.censor_pointers).convert(validation_info) self.items[section].append({'text': item.text, 'ast': converted, 'orig': item.orig}) def clear_items(self): self.items.clear() def save(self): os.makedirs(self.save_path, exist_ok=True) for section in self.items: with open(os.path.join(self.save_path, '{}.jsonl'.format(section)), 'w') as f: for item in self.items[section]: f.write((json.dumps(item) + '\n')) expected_children = {'Null': [], 'End': []} field_name_nodes = [] binarizers = [] literals = [] single_child = [] for (name, type_) in self.ast_wrapper.singular_types.items(): expected_children[name] = ['{}-{}'.format(name, field.name) for field in type_.fields] field_name_nodes.extend(('{}-{}'.format(name, field.name) for field in type_.fields)) for field in type_.fields: if (len(type_.fields) == 1): field_name = name else: field_name = '{}-{}'.format(name, field.name) if field.seq: binarizers.append(field_name) else: single_child.append(field_name) if (field.type in {'identifier', 'int', 'string', 'bytes', 'object', 'singleton'}): literals.append(field_name) if (field.type in self.grammar.pointers): literals.append(field_name) with open(os.path.join(self.save_path, 'grammar.json'), 'w') as f: json.dump({'expected_children': expected_children, 'field_name_nodes': field_name_nodes, 'binarizers': binarizers, 'literals': literals, 'single_child': single_child}, f, indent=2, sort_keys=True) def load(self): raise NotImplementedError def dataset(self, section): raise NotImplementedError
class AstConverter(): def __init__(self, grammar, censor_pointers): self.grammar = grammar self.ast_wrapper = grammar.ast_wrapper self.symbols = {} self.split_constants = False self.preserve_terminal_types = True self.censor_pointers = censor_pointers def convert(self, node): if (not isinstance(node, dict)): if (self.split_constants and isinstance(node, str)): return [TreeNode(piece, [], []) for piece in node.split(' ')] if self.preserve_terminal_types: return TreeNode(node, [], []) return TreeNode(repr(node), [], []) node_type = node['_type'] children = [] fields_for_type = self.ast_wrapper.singular_types[node_type].fields for field in fields_for_type: field_node = node.get(field.name) if (field.type in self.grammar.pointers): ref_getter = functools.partial(self.pointer_ref_getter, field.type) else: ref_getter = (lambda value: []) if (len(fields_for_type) == 1): field_tree_node_name = node_type else: field_tree_node_name = '{}-{}'.format(node_type, field.name) if field.seq: field_tree_node = self.make_binarized_list(ref_getter, field_tree_node_name, field.type, (field_node or [])) else: if (field.opt and (field_node is None)): child = TreeNode('Null', [], []) refs = [] else: if (self.censor_pointers and (field.type in self.grammar.pointers)): child = None else: child = self.convert(field_node) refs = ref_getter(field_node) if (child is None): child_list = [] elif isinstance(child, list): child_list = child else: child_list = [child] field_tree_node = TreeNode(field_tree_node_name, refs, child_list) children.append(field_tree_node) if (len(children) == 1): return children[0] else: return TreeNode(node_type, [], children) def pointer_ref_getter(self, pointer_type, pointer_value): symbol = (pointer_type, pointer_value) symbol_id = self.symbols.get(symbol) if (symbol_id is None): symbol_id = self.symbols[symbol] = len(self.symbols) return [symbol_id] def make_binarized_list(self, ref_getter, node_name, elem_type, elems): root = tree_node = TreeNode(node_name, [], []) for elem in elems: new_tree_node = TreeNode(node_name, [], []) if (self.censor_pointers and (elem_type in self.grammar.pointers)): raise NotImplementedError else: elem_tree_node = self.convert(elem) tree_node.children.extend([elem_tree_node, new_tree_node]) tree_node.refs.extend(ref_getter(elem)) tree_node = new_tree_node tree_node.children.append(TreeNode('End', [], [])) return root
@registry.register('model', 'IdiomMiner') class IdiomMinerModel(): 'A dummy model for housing IdiomPreproc.' Preproc = IdiomPreproc
class RecurrentDropoutLSTMCell(RNNCellBase): def __init__(self, input_size, hidden_size, dropout=0.0): super(RecurrentDropoutLSTMCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.dropout = dropout self.W_i = Parameter(torch.Tensor(hidden_size, input_size)) self.U_i = Parameter(torch.Tensor(hidden_size, hidden_size)) self.W_f = Parameter(torch.Tensor(hidden_size, input_size)) self.U_f = Parameter(torch.Tensor(hidden_size, hidden_size)) self.W_c = Parameter(torch.Tensor(hidden_size, input_size)) self.U_c = Parameter(torch.Tensor(hidden_size, hidden_size)) self.W_o = Parameter(torch.Tensor(hidden_size, input_size)) self.U_o = Parameter(torch.Tensor(hidden_size, hidden_size)) self.bias_ih = Parameter(torch.Tensor((4 * hidden_size))) self.bias_hh = Parameter(torch.Tensor((4 * hidden_size))) self._input_dropout_mask = self._h_dropout_mask = None self.reset_parameters() def reset_parameters(self): init.orthogonal_(self.W_i) init.orthogonal_(self.U_i) init.orthogonal_(self.W_f) init.orthogonal_(self.U_f) init.orthogonal_(self.W_c) init.orthogonal_(self.U_c) init.orthogonal_(self.W_o) init.orthogonal_(self.U_o) self.bias_ih.data.fill_(0.0) self.bias_ih.data[self.hidden_size:(2 * self.hidden_size)].fill_(1.0) self.bias_hh.data.fill_(0.0) def set_dropout_masks(self, batch_size): if self.dropout: if self.training: new_tensor = self.W_i.data.new self._input_dropout_mask = Variable(torch.bernoulli(new_tensor(4, batch_size, self.input_size).fill_((1 - self.dropout))), requires_grad=False) self._h_dropout_mask = Variable(torch.bernoulli(new_tensor(4, batch_size, self.hidden_size).fill_((1 - self.dropout))), requires_grad=False) else: self._input_dropout_mask = self._h_dropout_mask = ([(1.0 - self.dropout)] * 4) else: self._input_dropout_mask = self._h_dropout_mask = ([1.0] * 4) def forward(self, input, hidden_state): def get_mask_slice(mask, idx): if isinstance(mask, list): return mask[idx] else: return mask[idx][:input.size(0)] (h_tm1, c_tm1) = hidden_state xi_t = F.linear((input * get_mask_slice(self._input_dropout_mask, 0)), self.W_i) xf_t = F.linear((input * get_mask_slice(self._input_dropout_mask, 1)), self.W_f) xc_t = F.linear((input * get_mask_slice(self._input_dropout_mask, 2)), self.W_c) xo_t = F.linear((input * get_mask_slice(self._input_dropout_mask, 3)), self.W_o) hi_t = F.linear((h_tm1 * get_mask_slice(self._h_dropout_mask, 0)), self.U_i) hf_t = F.linear((h_tm1 * get_mask_slice(self._h_dropout_mask, 1)), self.U_f) hc_t = F.linear((h_tm1 * get_mask_slice(self._h_dropout_mask, 2)), self.U_c) ho_t = F.linear((h_tm1 * get_mask_slice(self._h_dropout_mask, 3)), self.U_o) if input.is_cuda: igates = torch.cat([xi_t, xf_t, xc_t, xo_t], dim=(- 1)) hgates = torch.cat([hi_t, hf_t, hc_t, ho_t], dim=(- 1)) state = fusedBackend.LSTMFused.apply return state(igates, hgates, c_tm1, self.bias_ih, self.bias_hh) else: i_t = torch.sigmoid((((xi_t + self.bias_ih[:self.hidden_size]) + hi_t) + self.bias_hh[:self.hidden_size])) f_t = torch.sigmoid((((xf_t + self.bias_ih[self.hidden_size:(2 * self.hidden_size)]) + hf_t) + self.bias_hh[self.hidden_size:(2 * self.hidden_size)])) c_t = ((f_t * c_tm1) + (i_t * torch.tanh((((xc_t + self.bias_ih[(2 * self.hidden_size):(3 * self.hidden_size)]) + hc_t) + self.bias_hh[(2 * self.hidden_size):(3 * self.hidden_size)])))) o_t = torch.sigmoid((((xo_t + self.bias_ih[(3 * self.hidden_size):(4 * self.hidden_size)]) + ho_t) + self.bias_hh[(3 * self.hidden_size):(4 * self.hidden_size)])) h_t = (o_t * torch.tanh(c_t)) return (h_t, c_t)
class ParentFeedingLSTMCell(RNNCellBase): def __init__(self, input_size, hidden_size): super(ParentFeedingLSTMCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.W_i = Parameter(torch.Tensor(hidden_size, input_size)) self.U_i = Parameter(torch.Tensor(hidden_size, hidden_size)) self.U_i_p = Parameter(torch.Tensor(hidden_size, hidden_size)) self.b_i = Parameter(torch.Tensor(hidden_size)) self.W_f = Parameter(torch.Tensor(hidden_size, input_size)) self.U_f = Parameter(torch.Tensor(hidden_size, hidden_size)) self.U_f_p = Parameter(torch.Tensor(hidden_size, hidden_size)) self.b_f = Parameter(torch.Tensor(hidden_size)) self.b_f_p = Parameter(torch.Tensor(hidden_size)) self.W_c = Parameter(torch.Tensor(hidden_size, input_size)) self.U_c = Parameter(torch.Tensor(hidden_size, hidden_size)) self.U_c_p = Parameter(torch.Tensor(hidden_size, hidden_size)) self.b_c = Parameter(torch.Tensor(hidden_size)) self.W_o = Parameter(torch.Tensor(hidden_size, input_size)) self.U_o = Parameter(torch.Tensor(hidden_size, hidden_size)) self.U_o_p = Parameter(torch.Tensor(hidden_size, hidden_size)) self.b_o = Parameter(torch.Tensor(hidden_size)) self.reset_parameters() def reset_parameters(self): init.orthogonal(self.W_i) init.orthogonal(self.U_i) init.orthogonal(self.U_i_p) init.orthogonal(self.W_f) init.orthogonal(self.U_f) init.orthogonal(self.U_f_p) init.orthogonal(self.W_c) init.orthogonal(self.U_c) init.orthogonal(self.U_c_p) init.orthogonal(self.W_o) init.orthogonal(self.U_o) init.orthogonal(self.U_o_p) self.b_i.data.fill_(0.0) self.b_c.data.fill_(0.0) self.b_o.data.fill_(0.0) self.b_f.data.fill_(1.0) self.b_f_p.data.fill_(1.0) def forward(self, input, hidden_states): (h_tm1, c_tm1, h_tm1_p, c_tm1_p) = hidden_states i_t = torch.sigmoid((((F.linear(input, self.W_i) + F.linear(h_tm1, self.U_i)) + F.linear(h_tm1_p, self.U_i_p)) + self.b_i)) xf_t = F.linear(input, self.W_f) f_t = torch.sigmoid(((xf_t + F.linear(h_tm1, self.U_f)) + self.b_f)) f_t_p = torch.sigmoid(((xf_t + F.linear(h_tm1_p, self.U_f_p)) + self.b_f_p)) xc_t = (((F.linear(input, self.W_c) + F.linear(h_tm1, self.U_c)) + F.linear(h_tm1_p, self.U_c_p)) + self.b_c) c_t = (((f_t * c_tm1) + (f_t_p * c_tm1_p)) + (i_t * torch.tanh(xc_t))) o_t = torch.sigmoid((((F.linear(input, self.W_o) + F.linear(h_tm1, self.U_o)) + F.linear(h_tm1_p, self.U_o_p)) + self.b_o)) h_t = (o_t * torch.tanh(c_t)) return (h_t, c_t)
class LSTM(nn.Module): def __init__(self, input_size, hidden_size, bidirectional=False, dropout=0.0, cell_factory=RecurrentDropoutLSTMCell): super(LSTM, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.bidirectional = bidirectional self.dropout = dropout self.cell_factory = cell_factory num_directions = (2 if bidirectional else 1) self.lstm_cells = [] for direction in range(num_directions): cell = cell_factory(input_size, hidden_size, dropout=dropout) self.lstm_cells.append(cell) suffix = ('_reverse' if (direction == 1) else '') cell_name = 'cell{}'.format(suffix) self.add_module(cell_name, cell) def forward(self, input, hidden_state=None): is_packed = isinstance(input, PackedSequence) if is_packed: (input, batch_sizes) = input max_batch_size = batch_sizes[0] else: batch_sizes = None max_batch_size = input.size(1) for cell in self.lstm_cells: cell.set_dropout_masks(max_batch_size) if (hidden_state is None): num_directions = (2 if self.bidirectional else 1) hx = input.new_zeros(num_directions, max_batch_size, self.hidden_size, requires_grad=False) hidden_state = (hx, hx) rec_factory = (variable_recurrent_factory if is_packed else Recurrent) if self.bidirectional: layer = (rec_factory(self.cell), rec_factory(self.cell_reverse, reverse=True)) else: layer = (rec_factory(self.cell),) func = StackedRNN(layer, num_layers=1, lstm=True, dropout=0.0, train=self.training) (next_hidden, output) = func(input, hidden_state, weight=[[], []], batch_sizes=batch_sizes) if is_packed: output = PackedSequence(output, batch_sizes) return (output, next_hidden)
@attr.s class NL2CodeEncoderState(): state = attr.ib() memory = attr.ib() words = attr.ib() def find_word_occurrences(self, word): return [i for (i, w) in enumerate(self.words) if (w == word)]
@registry.register('encoder', 'NL2Code') class NL2CodeEncoder(torch.nn.Module): batched = False class Preproc(abstract_preproc.AbstractPreproc): def __init__(self, save_path, min_freq=3, max_count=5000): self.vocab_path = os.path.join(save_path, 'enc_vocab.json') self.data_dir = os.path.join(save_path, 'enc') self.vocab_builder = vocab.VocabBuilder(min_freq, max_count) self.init_items() self.vocab = None def init_items(self): self.texts = {'train': [], 'val': [], 'test': []} def validate_item(self, item, section): return (True, None) def add_item(self, item, section, validation_info): if (section == 'train'): for token in item.text: self.vocab_builder.add_word(token) self.texts[section].append(item.text) def clear_items(self): self.init_items() def preprocess_item(self, item, validation_info): return item.text def save(self): os.makedirs(self.data_dir, exist_ok=True) self.vocab = self.vocab_builder.finish() self.vocab.save(self.vocab_path) for (section, texts) in self.texts.items(): with open(os.path.join(self.data_dir, (section + '.jsonl')), 'w') as f: for text in texts: f.write((json.dumps(text) + '\n')) def load(self): self.vocab = vocab.Vocab.load(self.vocab_path) def dataset(self, section): return [json.loads(line) for line in open(os.path.join(self.data_dir, (section + '.jsonl')))] def __init__(self, device, preproc, word_emb_size=128, recurrent_size=256, dropout=0.0): super().__init__() self._device = device self.desc_vocab = preproc.vocab self.word_emb_size = word_emb_size self.recurrent_size = recurrent_size assert ((self.recurrent_size % 2) == 0) self.desc_embedding = torch.nn.Embedding(num_embeddings=len(self.desc_vocab), embedding_dim=self.word_emb_size) self.encoder = lstm.LSTM(input_size=self.word_emb_size, hidden_size=(self.recurrent_size // 2), bidirectional=True, dropout=dropout) def forward(self, desc_words): desc_indices = torch.tensor(self.desc_vocab.indices(desc_words), device=self._device).unsqueeze(0) desc_emb = self.desc_embedding(desc_indices) desc_emb = desc_emb.transpose(0, 1) (outputs, state) = self.encoder(desc_emb) return NL2CodeEncoderState(state=state, memory=outputs.transpose(0, 1), words=desc_words)
class TemplateTraversalType(enum.Enum): DEFAULT = 0 CHILDREN_APPLY = 1 LIST_LENGTH_APPLY = 2
@attr.s(frozen=True) class TemplateTraversalState(): node = attr.ib() parent_field_type = attr.ib() type = attr.ib(default=TemplateTraversalType.DEFAULT)
@attr.s(frozen=True) class TemplateActionProvider(): model = attr.ib() queue = attr.ib() buffer = attr.ib(factory=pyrsistent.pdeque) last_returned = attr.ib(default=None) @classmethod def build(cls, model, tree, parent_field_type): return cls(model, pyrsistent.pdeque([TemplateTraversalState(tree, parent_field_type)])) @property def finished(self): return ((not self.queue) and (not self.buffer)) def step(self, last_choice): queue = self.queue buffer = self.buffer def rv(): return (buffer.left, TemplateActionProvider(self.model, queue, buffer.popleft(), buffer.left)) if buffer: if (not isinstance(self.last_returned, ast_util.HoleValuePlaceholder)): assert ((last_choice == self.last_returned) or (isinstance(self.last_returned, tuple) and (last_choice in self.last_returned))) return rv() to_return = False while queue: item = queue.right node = item.node parent_field_type = item.parent_field_type queue = queue.pop() to_return = False result_finished = False new_last_choice = None if ((item.type == TemplateTraversalType.DEFAULT) and isinstance(node, (list, tuple))): hvps = [elem for elem in node if isinstance(elem, ast_util.HoleValuePlaceholder)] num_seq_hvps = sum((hvp.is_seq for hvp in hvps)) assert (num_seq_hvps in (0, 1)) node_type = (parent_field_type + '*') if num_seq_hvps: allowed_lengths = [l for l in self.model.preproc.seq_lengths[node_type] if (l >= (len(node) - 1))] rule_indices = tuple((self.model.rules_index[(node_type, length)] for length in allowed_lengths)) else: rule = (node_type, len(node)) rule_indices = (self.model.rules_index[rule],) if (len(rule_indices) == 1): buffer = buffer.append(rule_indices[0]) new_last_choice = rule_indices[0] else: to_return = True buffer = buffer.append(rule_indices) queue = queue.append(TemplateTraversalState(type=TemplateTraversalType.LIST_LENGTH_APPLY, node=node, parent_field_type=parent_field_type)) result_finished = True elif ((item.type == TemplateTraversalType.LIST_LENGTH_APPLY) and isinstance(node, (list, tuple))): (list_type, num_children) = self.model.preproc.all_rules[last_choice] assert (list_type == (parent_field_type + '*')) assert (num_children > 0) if (num_children < len(node)): assert isinstance(node[(- 1)], ast_util.HoleValuePlaceholder) assert node[(- 1)].is_seq assert ((num_children + 1) == len(node)) node = node[:(- 1)] elif (len(node) < num_children): assert isinstance(node[(- 1)], ast_util.HoleValuePlaceholder) assert node[(- 1)].is_seq node = (node + ([node[(- 1)]] * (num_children - len(node)))) if (self.model.preproc.use_seq_elem_rules and (parent_field_type in self.model.ast_wrapper.sum_types)): parent_field_type += '_seq_elem' for (i, elem) in reversed(list(enumerate(node))): queue = queue.append(TemplateTraversalState(node=elem, parent_field_type=parent_field_type)) result_finished = True elif isinstance(node, ast_util.HoleValuePlaceholder): buffer = buffer.append(node) result_finished = True elif (parent_field_type in self.model.preproc.grammar.pointers): assert isinstance(node, int) buffer = buffer.append(node) result_finished = True elif (parent_field_type in self.model.ast_wrapper.primitive_types): field_type = type(node).__name__ field_value_split = (self.model.preproc.grammar.tokenize_field_value(node) + [vocab.EOS]) buffer = buffer.extend(field_value_split) result_finished = True if result_finished: if to_return: return rv() else: last_choice = new_last_choice continue type_info = self.model.ast_wrapper.singular_types[node['_type']] if (item.type == TemplateTraversalType.CHILDREN_APPLY): (node_type, children_presence) = self.model.preproc.all_rules[last_choice] assert (node_type == node['_type']) for (field_info, present) in reversed(list(zip(type_info.fields, children_presence))): if present: assert (field_info.name in node) elif (field_info.name not in node): continue else: field_value = node[field_info.name] if isinstance(field_value, ast_util.HoleValuePlaceholder): assert field_value.is_opt elif isinstance(field_value, list): assert (len(field_value) == 1) assert isinstance(field_value[0], ast_util.HoleValuePlaceholder) assert field_value[0].is_seq else: raise ValueError(field_value) continue field_value = node[field_info.name] queue = queue.append(TemplateTraversalState(node=field_value, parent_field_type=field_info.type)) last_choice = new_last_choice continue if (parent_field_type in self.model.preproc.sum_type_constructors): rule = (parent_field_type, type_info.name) rule_idx = self.model.rules_index[rule] assert (not node.get('_extra_types', ())) buffer = buffer.append(rule_idx) if type_info.fields: present = decoder.get_field_presence_info(self.model.ast_wrapper, node, type_info.fields) hvp_present = False presence_values = [] for (i, field_info) in enumerate(type_info.fields): if (field_info.name not in node): presence_values.append((False,)) continue field_value = node[field_info.name] if (isinstance(field_value, ast_util.HoleValuePlaceholder) or (isinstance(field_value, list) and (len(field_value) == 1) and isinstance(field_value[0], ast_util.HoleValuePlaceholder))): presence = tuple(set((info[i] for info in self.model.preproc.field_presence_infos[node['_type']]))) presence_values.append(presence) hvp_present = True else: presence_values.append((present[i],)) if hvp_present: rule_indices = tuple((rule_idx for rule_idx in (self.model.rules_index.get((node['_type'], p)) for p in itertools.product(*presence_values)) if (rule_idx is not None))) if (len(rule_indices) == 1): buffer = buffer.append(rule_indices[0]) new_last_choice = rule_indices[0] else: to_return = True buffer = buffer.append(rule_indices) else: rule = (node['_type'], tuple(present)) rule_idx = self.model.rules_index[rule] buffer = buffer.append(rule_idx) new_last_choice = rule_idx queue = queue.append(TemplateTraversalState(type=TemplateTraversalType.CHILDREN_APPLY, node=node, parent_field_type=parent_field_type)) if to_return: return rv() else: last_choice = new_last_choice continue return rv()
@attr.s class SpiderEncoderState(): state = attr.ib() memory = attr.ib() question_memory = attr.ib() schema_memory = attr.ib() words = attr.ib() pointer_memories = attr.ib() pointer_maps = attr.ib() def find_word_occurrences(self, word): return [i for (i, w) in enumerate(self.words) if (w == word)]
@attr.s class PreprocessedSchema(): column_names = attr.ib(factory=list) table_names = attr.ib(factory=list) table_bounds = attr.ib(factory=list) column_to_table = attr.ib(factory=dict) table_to_columns = attr.ib(factory=dict) foreign_keys = attr.ib(factory=dict) foreign_keys_tables = attr.ib(factory=(lambda : collections.defaultdict(set))) primary_keys = attr.ib(factory=list)
class SpiderEncoderV2Preproc(abstract_preproc.AbstractPreproc): def __init__(self, save_path, min_freq=3, max_count=5000, include_table_name_in_column=True, word_emb=None, count_tokens_in_word_emb_for_vocab=False): if (word_emb is None): self.word_emb = None else: self.word_emb = registry.construct('word_emb', word_emb) self.data_dir = os.path.join(save_path, 'enc') self.include_table_name_in_column = include_table_name_in_column self.count_tokens_in_word_emb_for_vocab = count_tokens_in_word_emb_for_vocab self.init_texts() self.vocab_builder = vocab.VocabBuilder(min_freq, max_count) self.vocab_path = os.path.join(save_path, 'enc_vocab.json') self.vocab = None self.counted_db_ids = set() self.preprocessed_schemas = {} def init_texts(self): self.texts = {'train': [], 'val': [], 'test': []} def validate_item(self, item, section): return (True, None) def add_item(self, item, section, validation_info): preprocessed = self.preprocess_item(item, validation_info) self.texts[section].append(preprocessed) if (section == 'train'): if (item.schema.db_id in self.counted_db_ids): to_count = preprocessed['question'] else: self.counted_db_ids.add(item.schema.db_id) to_count = itertools.chain(preprocessed['question'], *preprocessed['columns'], *preprocessed['tables']) for token in to_count: count_token = ((self.word_emb is None) or self.count_tokens_in_word_emb_for_vocab or (self.word_emb.lookup(token) is None)) if count_token: self.vocab_builder.add_word(token) def clear_items(self): self.init_texts() def preprocess_item(self, item, validation_info): if self.word_emb: question = self.word_emb.tokenize(item.orig['question']) else: question = item.text preproc_schema = self._preprocess_schema(item.schema) return {'question': question, 'db_id': item.schema.db_id, 'columns': preproc_schema.column_names, 'tables': preproc_schema.table_names, 'table_bounds': preproc_schema.table_bounds, 'column_to_table': preproc_schema.column_to_table, 'table_to_columns': preproc_schema.table_to_columns, 'foreign_keys': preproc_schema.foreign_keys, 'foreign_keys_tables': preproc_schema.foreign_keys_tables, 'primary_keys': preproc_schema.primary_keys} def _preprocess_schema(self, schema): if (schema.db_id in self.preprocessed_schemas): return self.preprocessed_schemas[schema.db_id] result = self._preprocess_schema_uncached(schema) self.preprocessed_schemas[schema.db_id] = result return result def _preprocess_schema_uncached(self, schema): r = PreprocessedSchema() last_table_id = None for (i, column) in enumerate(schema.columns): column_name = (['<type: {}>'.format(column.type)] + self._tokenize(column.name, column.unsplit_name)) if self.include_table_name_in_column: if (column.table is None): table_name = ['<any-table>'] else: table_name = self._tokenize(column.table.name, column.table.unsplit_name) column_name += (['<table-sep>'] + table_name) r.column_names.append(column_name) table_id = (None if (column.table is None) else column.table.id) r.column_to_table[str(i)] = table_id if (table_id is not None): columns = r.table_to_columns.setdefault(str(table_id), []) columns.append(i) if (last_table_id != table_id): r.table_bounds.append(i) last_table_id = table_id if (column.foreign_key_for is not None): r.foreign_keys[str(column.id)] = column.foreign_key_for.id r.foreign_keys_tables[str(column.table.id)].add(column.foreign_key_for.table.id) r.table_bounds.append(len(schema.columns)) assert (len(r.table_bounds) == (len(schema.tables) + 1)) for (i, table) in enumerate(schema.tables): r.table_names.append(self._tokenize(table.name, table.unsplit_name)) r.foreign_keys_tables = serialization.to_dict_with_sorted_values(r.foreign_keys_tables) r.primary_keys = [column.id for column in table.primary_keys for table in schema.tables] return r def _tokenize(self, presplit, unsplit): if self.word_emb: return self.word_emb.tokenize(unsplit) return presplit def save(self): os.makedirs(self.data_dir, exist_ok=True) self.vocab = self.vocab_builder.finish() self.vocab.save(self.vocab_path) for (section, texts) in self.texts.items(): with open(os.path.join(self.data_dir, (section + '.jsonl')), 'w') as f: for text in texts: f.write((json.dumps(text) + '\n')) def load(self): self.vocab = vocab.Vocab.load(self.vocab_path) def dataset(self, section): return [json.loads(line) for line in open(os.path.join(self.data_dir, (section + '.jsonl')))]
@registry.register('encoder', 'spiderv2') class SpiderEncoderV2(torch.nn.Module): batched = True Preproc = SpiderEncoderV2Preproc def __init__(self, device, preproc, word_emb_size=128, recurrent_size=256, dropout=0.0, question_encoder=('emb', 'bilstm'), column_encoder=('emb', 'bilstm'), table_encoder=('emb', 'bilstm'), update_config={}, include_in_memory=('question', 'column', 'table'), batch_encs_update=True): super().__init__() self._device = device self.preproc = preproc self.vocab = preproc.vocab self.word_emb_size = word_emb_size self.recurrent_size = recurrent_size assert ((self.recurrent_size % 2) == 0) self.include_in_memory = set(include_in_memory) self.dropout = dropout self.question_encoder = self._build_modules(question_encoder) self.column_encoder = self._build_modules(column_encoder) self.table_encoder = self._build_modules(table_encoder) update_modules = {'relational_transformer': spider_enc_modules.RelationalTransformerUpdate, 'none': spider_enc_modules.NoOpUpdate} self.encs_update = registry.instantiate(update_modules[update_config['name']], update_config, device=self._device, hidden_size=recurrent_size) self.batch_encs_update = batch_encs_update def _build_modules(self, module_types): module_builder = {'emb': (lambda : spider_enc_modules.LookupEmbeddings(self._device, self.vocab, self.preproc.word_emb, self.word_emb_size)), 'linear': (lambda : spider_enc_modules.EmbLinear(input_size=self.word_emb_size, output_size=self.word_emb_size)), 'bilstm': (lambda : spider_enc_modules.BiLSTM(input_size=self.word_emb_size, output_size=self.recurrent_size, dropout=self.dropout, summarize=False)), 'bilstm-native': (lambda : spider_enc_modules.BiLSTM(input_size=self.word_emb_size, output_size=self.recurrent_size, dropout=self.dropout, summarize=False, use_native=True)), 'bilstm-summarize': (lambda : spider_enc_modules.BiLSTM(input_size=self.word_emb_size, output_size=self.recurrent_size, dropout=self.dropout, summarize=True)), 'bilstm-native-summarize': (lambda : spider_enc_modules.BiLSTM(input_size=self.word_emb_size, output_size=self.recurrent_size, dropout=self.dropout, summarize=True, use_native=True))} modules = [] for module_type in module_types: modules.append(module_builder[module_type]()) return torch.nn.Sequential(*modules) def forward_unbatched(self, desc): (q_enc, (_, _)) = self.question_encoder([desc['question']]) (c_enc, c_boundaries) = self.column_encoder(desc['columns']) column_pointer_maps = {i: list(range(left, right)) for (i, (left, right)) in enumerate(zip(c_boundaries, c_boundaries[1:]))} (t_enc, t_boundaries) = self.table_encoder(desc['tables']) c_enc_length = c_enc.shape[0] table_pointer_maps = {i: ([idx for col in desc['table_to_columns'][str(i)] for idx in column_pointer_maps[col]] + list(range((left + c_enc_length), (right + c_enc_length)))) for (i, (left, right)) in enumerate(zip(t_boundaries, t_boundaries[1:]))} (q_enc_new, c_enc_new, t_enc_new) = self.encs_update(desc, q_enc, c_enc, c_boundaries, t_enc, t_boundaries) memory = [] if ('question' in self.include_in_memory): memory.append(q_enc_new) if ('column' in self.include_in_memory): memory.append(c_enc_new) if ('table' in self.include_in_memory): memory.append(t_enc_new) memory = torch.cat(memory, dim=1) return SpiderEncoderState(state=None, memory=memory, words=desc['question'], pointer_memories={'column': c_enc_new, 'table': torch.cat((c_enc_new, t_enc_new), dim=1)}, pointer_maps={'column': column_pointer_maps, 'table': table_pointer_maps}) def forward(self, descs): (q_enc, _) = self.question_encoder([[desc['question']] for desc in descs]) (c_enc, c_boundaries) = self.column_encoder([desc['columns'] for desc in descs]) column_pointer_maps = [{i: list(range(left, right)) for (i, (left, right)) in enumerate(zip(c_boundaries_for_item, c_boundaries_for_item[1:]))} for (batch_idx, c_boundaries_for_item) in enumerate(c_boundaries)] (t_enc, t_boundaries) = self.table_encoder([desc['tables'] for desc in descs]) c_enc_lengths = list(c_enc.orig_lengths()) table_pointer_maps = [{i: ([idx for col in desc['table_to_columns'][str(i)] for idx in column_pointer_maps[batch_idx][col]] + list(range((left + c_enc_lengths[batch_idx]), (right + c_enc_lengths[batch_idx])))) for (i, (left, right)) in enumerate(zip(t_boundaries_for_item, t_boundaries_for_item[1:]))} for (batch_idx, (desc, t_boundaries_for_item)) in enumerate(zip(descs, t_boundaries))] if self.batch_encs_update: (q_enc_new, c_enc_new, t_enc_new) = self.encs_update(descs, q_enc, c_enc, c_boundaries, t_enc, t_boundaries) result = [] for (batch_idx, desc) in enumerate(descs): if self.batch_encs_update: q_enc_new_item = q_enc_new.select(batch_idx).unsqueeze(0) c_enc_new_item = c_enc_new.select(batch_idx).unsqueeze(0) t_enc_new_item = t_enc_new.select(batch_idx).unsqueeze(0) else: (q_enc_new_item, c_enc_new_item, t_enc_new_item) = self.encs_update.forward_unbatched(desc, q_enc.select(batch_idx).unsqueeze(1), c_enc.select(batch_idx).unsqueeze(1), c_boundaries[batch_idx], t_enc.select(batch_idx).unsqueeze(1), t_boundaries[batch_idx]) memory = [] if ('question' in self.include_in_memory): memory.append(q_enc_new_item) if ('column' in self.include_in_memory): memory.append(c_enc_new_item) if ('table' in self.include_in_memory): memory.append(t_enc_new_item) memory = torch.cat(memory, dim=1) result.append(SpiderEncoderState(state=None, memory=memory, question_memory=q_enc_new_item, schema_memory=torch.cat((c_enc_new_item, t_enc_new_item), dim=1), words=desc['question'], pointer_memories={'column': c_enc_new_item, 'table': torch.cat((c_enc_new_item, t_enc_new_item), dim=1)}, pointer_maps={'column': column_pointer_maps[batch_idx], 'table': table_pointer_maps[batch_idx]})) return result
def relative_attention_logits(query, key, relation): qk_matmul = torch.matmul(query, key.transpose((- 2), (- 1))) q_t = query.permute(0, 2, 1, 3) r_t = relation.transpose((- 2), (- 1)) q_tr_t_matmul = torch.matmul(q_t, r_t) q_tr_tmatmul_t = q_tr_t_matmul.permute(0, 2, 1, 3) return ((qk_matmul + q_tr_tmatmul_t) / math.sqrt(query.shape[(- 1)]))
def relative_attention_values(weight, value, relation): wv_matmul = torch.matmul(weight, value) w_t = weight.permute(0, 2, 1, 3) w_tr_matmul = torch.matmul(w_t, relation) w_tr_matmul_t = w_tr_matmul.permute(0, 2, 1, 3) return (wv_matmul + w_tr_matmul_t)
def clones(module_fn, N): return nn.ModuleList([module_fn() for _ in range(N)])
def attention(query, key, value, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size((- 1)) scores = (torch.matmul(query, key.transpose((- 2), (- 1))) / math.sqrt(d_k)) if (mask is not None): scores = scores.masked_fill((mask == 0), (- 1000000000.0)) p_attn = F.softmax(scores, dim=(- 1)) if (dropout is not None): p_attn = dropout(p_attn) return (torch.matmul(p_attn, value), scores.squeeze(1).squeeze(1))
class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): 'Take in model size and number of heads.' super(MultiHeadedAttention, self).__init__() assert ((d_model % h) == 0) self.d_k = (d_model // h) self.h = h self.linears = clones((lambda : nn.Linear(d_model, d_model)), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): 'Implements Figure 2' if (mask is not None): mask = mask.unsqueeze(1) nbatches = query.size(0) (query, key, value) = [l(x).view(nbatches, (- 1), self.h, self.d_k).transpose(1, 2) for (l, x) in zip(self.linears, (query, key, value))] (x, self.attn) = attention(query, key, value, mask=mask, dropout=self.dropout) x = x.transpose(1, 2).contiguous().view(nbatches, (- 1), (self.h * self.d_k)) if (query.dim() == 3): x = x.squeeze(1) return self.linears[(- 1)](x)
def attention_with_relations(query, key, value, relation_k, relation_v, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size((- 1)) scores = relative_attention_logits(query, key, relation_k) if (mask is not None): scores = scores.masked_fill((mask == 0), (- 1000000000.0)) p_attn = F.softmax(scores, dim=(- 1)) if (dropout is not None): p_attn = dropout(p_attn) return (relative_attention_values(p_attn, value, relation_v), p_attn)
class MultiHeadedAttentionWithRelations(nn.Module): def __init__(self, h, d_model, dropout=0.1): 'Take in model size and number of heads.' super(MultiHeadedAttentionWithRelations, self).__init__() assert ((d_model % h) == 0) self.d_k = (d_model // h) self.h = h self.linears = clones((lambda : nn.Linear(d_model, d_model)), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, relation_k, relation_v, mask=None): if (mask is not None): mask = mask.unsqueeze(1) nbatches = query.size(0) (query, key, value) = [l(x).view(nbatches, (- 1), self.h, self.d_k).transpose(1, 2) for (l, x) in zip(self.linears, (query, key, value))] (x, self.attn) = attention_with_relations(query, key, value, relation_k, relation_v, mask=mask, dropout=self.dropout) x = x.transpose(1, 2).contiguous().view(nbatches, (- 1), (self.h * self.d_k)) return self.linears[(- 1)](x)
class Encoder(nn.Module): 'Core encoder is a stack of N layers' def __init__(self, layer, layer_size, N, tie_layers=False): super(Encoder, self).__init__() if tie_layers: self.layer = layer() self.layers = [self.layer for _ in range(N)] else: self.layers = clones(layer, N) self.norm = nn.LayerNorm(layer_size) def forward(self, x, relation, mask): 'Pass the input (and mask) through each layer in turn.' for layer in self.layers: x = layer(x, relation, mask) return self.norm(x)
class SublayerConnection(nn.Module): '\n A residual connection followed by a layer norm.\n Note for code simplicity the norm is first as opposed to last.\n ' def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = nn.LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): 'Apply residual connection to any sublayer with the same size.' return (x + self.dropout(sublayer(self.norm(x))))
class EncoderLayer(nn.Module): 'Encoder is made up of self-attn and feed forward (defined below)' def __init__(self, size, self_attn, feed_forward, num_relation_kinds, dropout): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones((lambda : SublayerConnection(size, dropout)), 2) self.size = size self.relation_k_emb = nn.Embedding(num_relation_kinds, self.self_attn.d_k) self.relation_v_emb = nn.Embedding(num_relation_kinds, self.self_attn.d_k) def forward(self, x, relation, mask): 'Follow Figure 1 (left) for connections.' relation_k = self.relation_k_emb(relation) relation_v = self.relation_v_emb(relation) x = self.sublayer[0](x, (lambda x: self.self_attn(x, x, x, relation_k, relation_v, mask))) return self.sublayer[1](x, self.feed_forward)
class PositionwiseFeedForward(nn.Module): 'Implements FFN equation.' def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x))))
@registry.register('lr_scheduler', 'warmup_polynomial') @attr.s class WarmupPolynomialLRScheduler(): optimizer = attr.ib() num_warmup_steps = attr.ib() start_lr = attr.ib() end_lr = attr.ib() decay_steps = attr.ib() power = attr.ib() def update_lr(self, current_step): if (current_step < self.num_warmup_steps): warmup_frac_done = (current_step / self.num_warmup_steps) new_lr = (self.start_lr * warmup_frac_done) else: new_lr = (((self.start_lr - self.end_lr) * ((1 - ((current_step - self.num_warmup_steps) / self.decay_steps)) ** self.power)) + self.end_lr) for param_group in self.optimizer.param_groups: param_group['lr'] = new_lr
@registry.register('lr_scheduler', 'warmup_cosine') @attr.s class WarmupCosineLRScheduler(): optimizer = attr.ib() num_warmup_steps = attr.ib() start_lr = attr.ib() end_lr = attr.ib() decay_steps = attr.ib() def update_lr(self, current_step): if (current_step < self.num_warmup_steps): warmup_frac_done = (current_step / self.num_warmup_steps) new_lr = (self.start_lr * warmup_frac_done) else: new_lr = ((((self.start_lr - self.end_lr) * 0.5) * (1 + math.cos(((math.pi * (current_step - self.num_warmup_steps)) / self.decay_steps)))) + self.end_lr) for param_group in self.optimizer.param_groups: param_group['lr'] = new_lr
@registry.register('lr_scheduler', 'noop') class NoOpLRScheduler(): def __init__(self, optimizer): pass def update_lr(self, current_step): pass
@registry.register('optimizer', 'adamw') class AdamW(torch.optim.Optimizer): 'Implements Adam algorithm.\n It has been proposed in `Adam: A Method for Stochastic Optimization`_.\n Arguments:\n params (iterable): iterable of parameters to optimize or dicts defining\n parameter groups\n lr (float, optional): learning rate (default: 1e-3)\n betas (Tuple[float, float], optional): coefficients used for computing\n running averages of gradient and its square (default: (0.9, 0.999))\n eps (float, optional): term added to the denominator to improve\n numerical stability (default: 1e-8)\n weight_decay (float, optional): weight decay (L2 penalty) (default: 0)\n amsgrad (boolean, optional): whether to use the AMSGrad variant of this\n algorithm from the paper `On the Convergence of Adam and Beyond`_\n .. _Adam\\: A Method for Stochastic Optimization:\n https://arxiv.org/abs/1412.6980\n .. _On the Convergence of Adam and Beyond:\n https://openreview.net/forum?id=ryQu7f-RZ\n\n **Modified to implement AdamW, see https://arxiv.org/pdf/1711.05101v3.pdf**\n ' def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False): if (not (0.0 <= lr)): raise ValueError('Invalid learning rate: {}'.format(lr)) if (not (0.0 <= eps)): raise ValueError('Invalid epsilon value: {}'.format(eps)) if (not (0.0 <= betas[0] < 1.0)): raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) if (not (0.0 <= betas[1] < 1.0)): raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(AdamW, self).__init__(params, defaults) def __setstate__(self, state): super(AdamW, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure=None): 'Performs a single optimization step.\n Arguments:\n closure (callable, optional): A closure that reevaluates the model\n and returns the loss.\n ' loss = None if (closure is not None): loss = closure() for group in self.param_groups: for p in group['params']: if (p.grad is None): continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') amsgrad = group['amsgrad'] state = self.state[p] if (len(state) == 0): state['step'] = 0 state['exp_avg'] = torch.zeros_like(p.data) state['exp_avg_sq'] = torch.zeros_like(p.data) if amsgrad: state['max_exp_avg_sq'] = torch.zeros_like(p.data) (exp_avg, exp_avg_sq) = (state['exp_avg'], state['exp_avg_sq']) if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] (beta1, beta2) = group['betas'] state['step'] += 1 exp_avg.mul_(beta1).add_((1 - beta1), grad) exp_avg_sq.mul_(beta2).addcmul_((1 - beta2), grad, grad) if amsgrad: torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = (1 - (beta1 ** state['step'])) bias_correction2 = (1 - (beta2 ** state['step'])) step_size = ((group['lr'] * math.sqrt(bias_correction2)) / bias_correction1) update = (exp_avg / denom) if (group['weight_decay'] != 0): update += (group['weight_decay'] * p.data) p.data.add_(((- step_size) * update)) return loss