context
stringlengths
0
3.56k
qa
stringlengths
27
375
The term evolution describes the changes that occur in populations of living organisms over time. Describing these changes does not address the origin of life. The two are commonly and mistakenly confused. Biological evolution likewise says nothing about cosmology, the Big Bang, or where the universe, galaxy, solar system, or Earth came from.
What process refers to the changes that occur in populations of living organisms over time? : evolution
Alkenes can react with water to form alcohols.
Alkenes can react with what to form alcohols? : water
Did you ever see workers sandblasting a building to clean it? Sand is blown onto the surface to scour away dirt and debris. Wind-blown sand has the same effect. It scours and polishes rocks and other surfaces. Wind-blown sand may carve rocks into interesting shapes. You can see an example in Figure below . This form of erosion is called abrasion. It occurs any time rough sediments are blown or dragged over surfaces. Can you think of other ways abrasion might occur?.
Wind blown sand contributes to what type of erosion? : abrasion
Bases are ionic compounds consisting of hydroxide ions and a cation. Naming and formula writing for bases follows the same guidelines as for other ionic compounds.
Bases are ionic compounds consisting of hydroxide ions and a what? : cation
Dermal tissue covers the outside of a plant in a single layer of cells called the epidermis. You can think of the epidermis as the plant’s skin. It mediates most of the interactions between a plant and its environment. Epidermal cells secrete a waxy substance called cuticle , which coats, waterproofs, and protects the above-ground parts of plants. Cuticle helps prevent water loss, abrasions, infections, and damage from toxins.
What is the waxy substance that epidermal cells secrete? : cuticle
Distance is the length of the route between two points. The distance of a race, for example, is the length of the track between the starting and finishing lines. In a 100-meter sprint, that distance is 100 meters.
What is the length of the route between two points? : distance
Chapter 46 1 Figure 46.8 According to the first law of thermodynamics, energy can neither be created nor destroyed. Eventually, all energy consumed by living systems is lost as heat or used for respiration, and the total energy output of the system must equal the energy that went into it. 3 Figure 46.17 C: Nitrification by bacteria converts nitrates (NO3−) to nitrites (NO2−). 4 D 6 B 8 A 10 D 12 D 14 B 16 A 18 A 20 C 21 Food webs show interacting groups of different species and their many interconnections with each other and the environment. Food chains are linear aspects of food webs that describe the succession of organisms consuming one another at defined trophic levels. Food webs are a more accurate representation of the structure and dynamics of an ecosystem. Food chains are easier to model and use for experimental studies. 23 Grazing food webs have a primary producer at their base, which is either a plant for terrestrial ecosystems or a phytoplankton for aquatic ecosystems. The producers pass their energy to the various trophic levels of consumers. At the base of detrital food webs are the decomposers, which pass this energy to a variety of other consumers. Detrital food webs are important for the health of many grazing food webs because they eliminate dead and decaying organic material, thus, clearing space for new organisms and removing potential causes of disease. By breaking down dead organic matter, decomposers also make mineral nutrients available to primary producers; this process is a vital link in nutrient cycling. 25 NPE measures the rate at which one trophic level can use and make biomass from what it attained in the previous level, taking into account respiration, defecation, and heat loss. Endotherms have high metabolism and generate a lot of body heat. Although this gives them advantages in their activity level in colder temperatures, these organisms are 10 times less efficient at harnessing the energy from the food they eat compared with cold-blooded animals, and thus have to eat more and more often. 27 Many factors can kill life in a lake or ocean, such as eutrophication by nutrient-rich surface runoff, oil spills, toxic waste spills, changes in climate, and the dumping of garbage into the ocean. Eutrophication is a result of nutrient-rich runoff from land using artificial fertilizers high in nitrogen and phosphorus. These nutrients cause the rapid and excessive growth of microorganisms, which deplete local dissolved oxygen and kill many fish and other aquatic organisms.
According to the first law of thermodynamics, what can neither be created nor destroyed? : energy
Most circuits have devices such as light bulbs that convert electric energy to other forms of energy. In the case of a light bulb, electricity is converted to light and thermal energy.
In the case of a light bulb, electricity is converted to light and what kind of energy? : thermal
The processes of evolution are fundamental to much of biology. Why do people have such a hard time understanding them?.
Where in relation to the home, are levels of vocs found to be higher? : indoors
Like density, the pressure of the air decreases with altitude. There is less air pressing down from above the higher up you go. Look at the bottle in Figure below . It was drained by a hiker at the top of a mountain. Then the hiker screwed the cap on the bottle and carried it down to sea level. At the lower altitude, air pressure crushed it. Can you explain why?.
Density and pressure of air decreases with what? : altitude
Energy is absorbed in the process of converting a liquid at its boiling point into a gas. As with the melting of a solid, the temperature of a boiling liquid remains constant and the input of energy goes into changing the state. The molar heat of vaporization of a substance is the heat absorbed by one mole of that substance as it is converted from a liquid to a gas. As a gas condenses to a liquid, heat is released. The molar heat of condensation of a substance is the heat released by one mole of that substance as it is converted from a gas to a liquid. Since vaporization and condensation of a given substance are the exact opposite processes, the numerical value of the molar heat of vaporization is the same as the numerical value of the molar heat of condensation, but opposite in sign. In other words, .
Energy is absorbed in the process of converting a liquid at its boiling point into a what? : gas
The body of the simplest sponges takes the shape of a cylinder with a large central cavity, the spongocoel. Water enters the spongocoel from numerous pores in the body wall. Water flows out through a large opening called the osculum (Figure 15.9). However, sponges exhibit a diversity of body forms, which vary in the size and branching of the spongocoel, the number of osculi, and where the cells that filter food from the water are located. Sponges consist of an outer layer of flattened cells and an inner layer of cells called choanocytes separated by a jellylike substance called mesohyl. The mesohyl contains embedded amoeboid cells that secrete tiny needles called spicules or protein fibers that help give the sponge its structural strength. The cell body of the choanocyte is embedded in mesohyl but protruding into the spongocoel is a mesh-like collar surrounding a single flagellum. The beating of flagella from all choanocytes moves water through the sponge. Food particles are trapped in mucus produced by the sieve-like collar of the choanocytes and are ingested by phagocytosis. This process is called intracellular digestion. Amoebocytes take up nutrients repackaged in food vacuoles of the choanocytes and deliver them to other cells within the sponge.
The body of the simplest sponges takes the shape of a cylinder with a large central cavity, called? : spongocoel
In grazing , the predator eats part of the prey but does not usually kill it. You may have seen cows grazing on grass. The grass they eat grows back, so there is no real effect on the population. In the ocean, kelp (a type of seaweed) can regrow after being eaten by fish.
In grazing, a predator partially eats but does not kill what? : prey
Bone tissues include compact bone, spongy bone, bone marrow, and periosteum.
Bone tissues include compact bone, spongy bone, bone marrow, and? : periosteum
Tuberculosis (TB) is a common and often deadly disease caused by a genus of bacterium called Mycobacterium . Tuberculosis most commonly attacks the lungs but can also affect other parts of the body. TB is a chronic disease, but most people who become infected do not develop the full disease. Symptoms include a cough, which usually contains mucus and coughing up blood.
What type of bacteria causes the disease called tuberculosis? : mycobacterium
Energy Budgets, Reproductive Costs, and Sexual Selection in Drosophila Research into how animals allocate their energy resources for growth, maintenance, and reproduction has used a variety of experimental animal models. Some of this work has been done using the common fruit fly, Drosophila melanogaster. Studies have shown that not only does reproduction have a cost as far as how long male fruit flies live, but also fruit flies that have already mated several times have limited sperm remaining for reproduction. Fruit flies maximize their last chances at reproduction by selecting optimal mates. In a 1981 study, male fruit flies were placed in enclosures with either virgin or inseminated females. The males that mated with virgin females had shorter life spans than those in contact with the same number of inseminated females with which they were unable to mate. This effect occurred regardless of how large (indicative of their age) the males were. Thus, males that did not mate lived longer, allowing them more opportunities to find mates in the future. More recent studies, performed in 2006, show how males select the female with which they will mate and [3] how this is affected by previous matings (Figure 45.8). Males were allowed to select between smaller and larger females. Findings showed that larger females had greater fecundity, producing twice as many offspring per mating as the smaller females did. Males that had previously mated, and thus had lower supplies of sperm, were termed “resource-depleted,” while males that had not mated were termed “nonresource-depleted. ” The study showed that although non-resource-depleted males preferentially mated with larger females, this selection of partners was more pronounced in the resource-depleted males. Thus, males with depleted sperm supplies, which were limited in the number of times that they could mate before they replenished their sperm supply, selected larger, more fecund females, thus maximizing their chances for offspring. This study was one of the first to show that the physiological state of the male affected its mating behavior in a way that clearly maximizes its use of limited reproductive resources.
Studies have shown that not only does reproduction have a cost as far as how long male fruit flies live, but also fruit flies that have already mated several times have limited amounts of this? : sperm
At one time in history, it was thought that only living things were capable of synthesizing the carbon-containing compounds present in cells. For that reason, the term organic was applied to those compounds. Eventually it was proved that carbon-containing compounds could be synthesized from inorganic substances, but the term organic has remained. Currently, organic compounds are defined as covalently bonded compounds containing carbon, excluding carbonates and oxides. By this definition, compounds such as carbon dioxide (CO 2 ) and sodium carbonate (Na 2 CO 3 ) are considered to be inorganic. Organic chemistry is the study of all organic compounds.
Organic compounds are defined as covalently bonded compounds containing carbon, excluding carbonates and what else? : oxides
Immunologist The variations in peripheral proteins and carbohydrates that affect a cell’s recognition sites are of prime interest in immunology. These changes are taken into consideration in vaccine development. Many infectious diseases, such as smallpox, polio, diphtheria, and tetanus, were conquered by the use of vaccines. Immunologists are the physicians and scientists who research and develop vaccines, as well as treat and study allergies or other immune problems. Some immunologists study and treat autoimmune problems (diseases in which a person’s immune system attacks his or her own cells or tissues, such as lupus) and immunodeficiencies, whether acquired (such as acquired immunodeficiency syndrome, or AIDS) or hereditary (such as severe combined immunodeficiency, or SCID). Immunologists are called in to help treat organ transplantation patients, who must have their immune systems suppressed so that their bodies will not reject a transplanted organ. Some immunologists work to understand natural immunity and the effects of a person’s environment on it. Others work on questions about how the immune system affects diseases such as cancer. In the past, the importance of having a healthy immune system in preventing cancer was not at all understood. To work as an immunologist, a PhD or MD is required. In addition, immunologists undertake at least 2–3 years of training in an accredited program and must pass an examination given by the American Board of Allergy and Immunology. Immunologists must possess knowledge of the functions of the human body as they relate to issues beyond immunization, and knowledge of pharmacology and medical technology, such as medications, therapies, test materials, and surgical procedures.
What is the term for physicians and scientists who research and develop vaccines and treat and study conditions ranging from allergies to aids? : immunologists
One way to prevent corrosion is to protect the surface of the metal. Covering the surface of the metal object with paint or oil will prevent corrosion by not allowing oxygen to contact it. Unfortunately, scratches in the paint or wearing off of the oil will allow the corrosion to begin. Corrosion-sensitive metals can also be coated with another metal that is resistant to corrosion. A “tin can” is actually made of iron coated with a thin layer of tin which protects the iron.
Protecting the surface of metal prevents what? : corrosion
The Mucosal Immune Response Mucosal tissues are major barriers to the entry of pathogens into the body. The IgA (and sometimes IgM) antibodies in mucus and other secretions can bind to the pathogen, and in the cases of many viruses and bacteria, neutralize them. Neutralization is the process of coating a pathogen with antibodies, making it physically impossible for the pathogen to bind to receptors. Neutralization, which occurs in the blood, lymph, and other body fluids and secretions, protects the body constantly. Neutralizing antibodies are the basis for the disease protection offered by vaccines. Vaccinations for diseases that commonly enter the body via mucous membranes, such as influenza, are usually formulated to enhance IgA production. Immune responses in some mucosal tissues such as the Peyer’s patches (see Figure 21.11) in the small intestine take up particulate antigens by specialized cells known as microfold or M cells (Figure 21.27). These cells allow the body to sample potential pathogens from the intestinal lumen. Dendritic cells then take the antigen to the regional lymph nodes, where an immune response is mounted.
What type of tissues are major barriers to the entry of pathogens into the body? : mucosal
Most protists consist of a single cell. Some are multicellular but they lack specialized cells.
Trash that gets into fresh and saltwater waterways is called what type of debris? : aquatic
Complex Tissue Structure As multicellular organisms, animals differ from plants and fungi because their cells don’t have cell walls, their cells may be embedded in an extracellular matrix (such as bone, skin, or connective tissue), and their cells have unique structures for intercellular communication (such as gap junctions). In addition, animals possess unique tissues, absent in fungi and plants, which allow coordination (nerve tissue) of motility (muscle tissue). Animals are also characterized by specialized connective tissues that provide structural support for cells and organs. This connective tissue constitutes the extracellular surroundings of cells and is made up of organic and inorganic materials. In vertebrates, bone tissue is a type of connective tissue that supports the entire body structure. The complex bodies and activities of vertebrates demand such supportive tissues. Epithelial tissues cover, line, protect, and secrete. Epithelial tissues include the epidermis of the integument, the lining of the digestive tract and trachea, and make up the ducts of the liver and glands of advanced animals. The animal kingdom is divided into Parazoa (sponges) and Eumetazoa (all other animals). As very simple animals, the organisms in group Parazoa (“beside animal”) do not contain true specialized tissues; although they do possess specialized cells that perform different functions, those cells are not organized into tissues. These organisms are considered animals since they lack the ability to make their own food. Animals with true tissues are in the group Eumetazoa (“true animals”). When we think of animals, we usually think of Eumetazoans, since most animals fall into this category. The different types of tissues in true animals are responsible for carrying out specific functions for the organism. This differentiation and specialization of tissues is part of what allows for such incredible animal diversity. For example, the evolution of nerve tissues and muscle tissues has resulted in animals’ unique ability to rapidly sense and respond to changes.
In vertebrates, what tissue is a type of connective tissue that supports the entire body structure? : bone
Allergies occur when the immune system makes an inflammatory response to a harmless antigen. An antigen that causes an allergy is called an allergen.
What occurs when the immune system makes an inflammatory response to a harmless antigen? : allergies
The curie (Ci) is one measure of the rate of decay (named after Pierre and Marie Curie). One curie is equivalent to 3.7 × 10 10 disintegrations per second. Since this is obviously a large and unwieldy number, radiation is often expressed in millicuries or microcuries (still very large numbers). Another measure is the becquerel (Bq) , named after Henri Becquerel. The becquerel is defined as an activity of one disintegration/second. Both of these units are concerned with the disintegration rate of the radioactive isotope and give no indication of dosage to the target material.
The curie (ci) is one measure of the rate of what? : decay
A species is a unique type of organism. Members of a species can interbreed and produce offspring that can breed (they are fertile). Organisms that are not in the same species cannot do this. Examples of species include humans, lions, and redwood trees. Can you name other examples?.
A unique type of organism is also known as what? : species
Minerals are chemical elements that are essential for body processes. They include calcium, which helps form strong bones and teeth, and potassium, which is needed for normal nerve and muscle function. Good sources of minerals include leafy, green vegetables, whole grains, milk, and meats.
What chemical element helps forms strong bones and teeth in humans? : calcium
Solubility There is usually a limit to how much solute will dissolve in a given amount of solvent. This limit is called the solubility of the solute. Some solutes have a very small solubility, while other solutes are soluble in all proportions. Table 9.2 "Solubilities of Various Solutes in Water at 25°C (Except as Noted)" lists the solubilities of various solutes in water. Solubilities vary with temperature, so Table 9.2 "Solubilities of Various Solutes in Water at 25°C (Except as Noted)" includes the temperature at which the solubility was determined. Table 9.2 Solubilities of Various Solutes in Water at 25°C (Except as Noted).
The limit to how much solute will dissolve in a given amount of solvent is called what? : solubility
Science is based on the analysis of observations made either through our senses or by using special equipment. Science therefore cannot explain anything about the natural world that is beyond what is observable. The term supernatural refers to entities, events, or powers regarded as being beyond nature, in that such things cannot be explained by scientific means. They are not measurable or observable in the same way the natural world is, and are therefore considered to be outside the realm of scientific examination.
What term refers to entities, events or powers regarded as being beyond nature, and cannot be explained by scientific means? : supernatural
Wetlands Wetlands are environments in which the soil is either permanently or periodically saturated with water. Wetlands are different from lakes and ponds because wetlands exhibit a near continuous cover of emergent vegetation. Emergent vegetation consists of wetland plants that are rooted in the soil but have portions of leaves, stems, and flowers extending above the water’s surface. There are several types of wetlands including marshes, swamps, bogs, mudflats, and salt marshes (Figure 20.33).
Wetlands are environments in which the soil is either permanently or periodically saturated with what? : water
When the ground absorbs the water and it settles below the surface it is called what? : groundwater
Some metabolic pathways release what by breaking down complex molecules to simpler compounds? : energy
Archaeans are now known to live just about everywhere on Earth. They are important decomposers. Many live in close relationships with other organisms. They are generally harmless and often beneficial.
Which important decomposers are known to live just about anywhere on earth? : archeans
The scientific method is not a step by step, linear process. It is a way of learning about the world through the application of knowledge. Scientists must be able to have an idea of what the answer to an investigation should be. In order for scientists to make educated guesses about the answers, they will base their guesses on previous knowledge, with the notion of extending that knowledge. Scientists will often make an observation and then form a hypothesis to explain why a phenomenon occurred. They use all of their knowledge and a bit of imagination in their journey of discovery.
In the scientific method, what is the initial, unproven explanation for why something is occurring? : hypothesis
All atoms of the same element have the same number of protons, but some may have different numbers of neutrons. For example, all carbon atoms have six protons, and most have six neutrons as well. But some carbon atoms have seven or eight neutrons instead of the usual six. Atoms of the same element that differ in their numbers of neutrons are called isotopes . Many isotopes occur naturally. Usually one or two isotopes of an element are the most stable and common. Different isotopes of an element generally have the same physical and chemical properties. That’s because they have the same numbers of protons and electrons. For a video explanation of isotopes, go to this URL:.
What is the name of an element with a different number of neutrons? : isotope
6.6 The cytoskeleton is a network of fibers that organizes structures and activities in the cell.
What is the network of fibers that organizes structures and activities in the cell called? : cytoskeleton
When gas molecules bump into things, it creates pressure. Pressure is greater when gas molecules occupy a smaller space, because greater crowding results in more collisions. This explains why decreasing the volume of a gas increases its pressure.
Decreasing the volume of a gas and keeping everything else the same will cause its pressure to change in what way? : increase
What evolutionary strategy enables substantial activity during sleep for some animals? : adaptation
The cells of the blastocyst form an inner cell mass and an outer cell layer, as shown in Figure below . The inner cell mass is called the embryoblast. These cells will soon develop into an embryo. The outer cell layer is called the trophoblast. These cells will develop into other structures needed to support and nourish the embryo.
The cells of the blastocyst form an inner cell mass called the what? : embryoblast
All musical instruments create sound by causing matter to vibrate. The vibrations start sound waves moving through the air.
How do all musical instruments create sound? : vibration
A major advantage of aerobic respiration is the amount of energy it releases. Without oxygen, organisms can split glucose into just two molecules of pyruvate. This releases only enough energy to make two ATP molecules. With oxygen, organisms can break down glucose all the way to carbon dioxide. This releases enough energy to produce up to 38 ATP molecules. Thus, aerobic respiration releases much more energy than anaerobic respiration.
What type of respiration has the advantage of releasing more energy? : aerobic
When amino acids bind together, they form a long chain called a polypeptide . A protein consists of one or more polypeptide chains. A protein may have up to four levels of structure. The lowest level, a protein’s primary structure, is its sequence of amino acids. Higher levels of protein structure are described in Figure below . The complex structures of different proteins give them unique properties, which they need to carry out their various jobs in living organisms. You can learn more about protein structure by watching the animation at the following link: http://www. stolaf. edu/people/giannini/flashanimat/proteins/protein%20structure. swf .
When amino acids bind together, they form a long chain called what, which is an essential component of protein? : polypeptide
Two of the three domains—Bacteria and Archaea—are prokaryotic, meaning that they lack both a nucleus and true membrane-bound organelles. However, they are now considered, on the basis of membrane structure and rRNA, to be as different from each other as they are from the third domain, the Eukarya. Prokaryotes were the first inhabitants on Earth, perhaps appearing approximately 3.9 billion years ago. Today they are ubiquitous—inhabiting the harshest environments on the planet, from boiling hot springs to permanently frozen environments in Antarctica, as well as more benign environments such as compost heaps, soils, ocean waters, and the guts of animals (including humans). The Eukarya include the familiar kingdoms of animals, plants, and fungi. They also include a diverse group of kingdoms formerly grouped together as protists.
Organisms that lack both a nucleus and membrane-bound organelles are known as what, in general? : prokaryotic
Solubility is a specific amount of solute that can dissolve in a given amount of solvent.
What is the name for a specific amount of solute that can dissolve in a given amount of solvent? : solubility
Freshwater below Earth’s surface is called groundwater . The water infiltrates, or seeps down into, the ground from the surface. How does this happen? And where does the water go?.
What is freshwater below the earth's surface called? : groundwater
People protect areas that might flood with dams. In dire situations, they use sandbags ( Figure below ). Dams are usually very effective, but high water levels sometimes cause a dam to break. In that case, flooding can be catastrophic. Flood waters can also overflow a dam. People may line a river bank with levees to protect against floods. These are high walls that keep the stream within its banks during floods. Flood protection in one location sometimes causes problems elsewhere. For example, a levee in one location may just force the high water upstream or downstream. This will lead to flooding in a different location. Sometimes water gets so high that the river must be allowed to flood.
What do people build to protect areas from floods? : dams
A mudflow is the sudden flow of mud down a slope because of gravity. Mudflows occur where the soil is mostly clay. Like landslides, mudflows usually occur when the soil is wet. Wet clay forms very slippery mud that slides easily. Mudflows follow river channels, washing out bridges, trees, and homes that are in their path.
What's it called when there's a sudden flow of mud? : mudflow
Food is chewed evenly during mastication Moisten and lubricate the lining of the mouth and pharynx.
Food chewed evenly during mastication moisten and lubricate the lining of the mouth and this? : pharynx
Every split second that sunlight hits that leaf, photosynthesis is initiated, bringing energy into the ecosystem. It could be said that this is one of the most important - if not the absolutely most important - biochemical reactions. And it all starts with the leaf.
Photosynthesis is initiated by what hitting plants? : sunlight
Syndesmosis A syndesmosis (“fastened with a band”) is a type of fibrous joint in which two parallel bones are united to each other by fibrous connective tissue. The gap between the bones may be narrow, with the bones joined by ligaments, or the gap may be wide and filled in by a broad sheet of connective tissue called an interosseous membrane. In the forearm, the wide gap between the shaft portions of the radius and ulna bones are strongly united by an interosseous membrane (see Figure 9.5b). Similarly, in the leg, the shafts of the tibia and fibula are also united by an interosseous membrane. In addition, at the distal tibiofibular joint, the articulating surfaces of the bones lack cartilage and the narrow gap between the bones is anchored by fibrous connective tissue and ligaments on both the anterior and posterior aspects of the joint. Together, the interosseous membrane and these ligaments form the tibiofibular syndesmosis. The syndesmoses found in the forearm and leg serve to unite parallel bones and prevent their separation. However, a syndesmosis does not prevent all movement between the bones, and thus this type of fibrous joint is functionally classified as an amphiarthrosis. In the leg, the syndesmosis between the tibia and fibula strongly unites the bones, allows for little movement, and firmly locks the talus bone in place between the tibia and fibula at the ankle joint. This provides strength and stability to the leg and ankle, which are important during weight bearing. In the forearm, the interosseous membrane is flexible enough to allow for rotation of the radius bone during forearm movements. Thus in contrast to the stability provided by the tibiofibular syndesmosis, the flexibility of the antebrachial interosseous membrane allows for the much greater mobility of the forearm. The interosseous membranes of the leg and forearm also provide areas for muscle attachment. Damage to a syndesmotic joint, which usually results from a fracture of the bone with an accompanying tear of the interosseous membrane, will produce pain, loss of stability of the bones, and may damage the muscles attached to the interosseous membrane. If the fracture site is not properly immobilized with a cast or splint, contractile activity by these muscles can cause improper alignment of the broken bones during healing.
Name the fibrous joint in which two parallel bones are united to each other by fibrous connective tissue. : syndesmosis
Two traits are used to define the mammal class. They are fur or hair and mammary glands in females.
What types of glands do only female mammals have? : mammary
The weather map pictured below ( Figure above ) shows air pressure. The lines on the map connect places that have the same air pressure. Air pressure is measured in a unit called the millibar. Isobars are the lines that connect the points with the same air pressure. The map also shows low- and high-pressure centers and fronts. Find the cold front on the map. This cold front is likely to move toward the northeast over the next couple of days. How could you use this information to predict what the weather will be on the East Coast?.
What is the unit used to measure air pressure? : millibar
The atmosphere is a big part of the water cycle. What do you think would happen to Earth’s water without it?.
What is the upper-most atmosphere known as? : thermosphere
Agamogenesis is any form of reproduction that does not involve a male gamete. These include are parthenogenesis and apomixis. Parthenogenesis is a form of asexual reproduction where growth and development of embryos occur without fertilization. Parthenogenesis occurs naturally in aphids, rotifers, nematodes and some other invertebrates, as well as in many plants and certain lizards, such as the Komodo dragon. Apomixis is asexual reproduction, without fertilization, in plants.
Reproduction that doesn't involve a male gamete is also known as what? : agamogenesis
Life science is the study of life and living organisms. Life science is also called biology.
What is another term for life science? : biology
For a bacteria, many aspects of gene regulation are due to the presence or absence of certain nutrients. In prokaryotes, repressors bind to regions called operators that are generally located immediately downstream from the promoter. Activators bind to the upstream portion of the promoter.
In prokaryotes, what are the regions called that repressors bind to? : operators
Lipids play several important roles in the body. Triglycerides are stored in fat cells until the body needs to break them down for chemical energy. These stored triglycerides also help insulate the body against extreme temperatures and cushion organs against physical jostling. Phospholipids and cholesterol are important constituents of the cell membrane. These compounds provide structural integrity to the cell wall, since they are not water-soluble. Other steroids are used as chemical messengers in the body, and the fat-soluble vitamins serve a variety of other functions.
What play several important roles in the human body? : lipids
Force is a vector, or a measure that has both size and direction. For example, Colton pushes on the ground in the opposite direction that the scooter moves, so that’s the direction of the force he is applies. He can give the scooter a strong push or a weak push. That’s the size of the force. Like other vectors, a force can be represented with an arrow. You can see some examples in the Figure below . The length of each arrow represents the strength of the force, and the way the arrow points represents the direction of the force.
What is a measure that has both size and direction? : vector
Some unstable acids decompose to produce nonmetal oxides and water. Carbonic acid decomposes easily at room temperature into carbon dioxide and water.
Carbonic acid decomposes easily at room temperature into carbon dioxide and what else? : water
In earthworms, the skin serves as what type of organ? : respiratory
Catalytic converters are used on motor vehicles. They break down pollutants in exhaust to non-toxic compounds. For example, they change nitrogen oxides to harmless nitrogen and oxygen gases.
Catalytic converters used on motor vehicles break down pollutants in what, yielding non-toxic compounds? : exhaust
Processing of filtrate in the proximal tubule helps maintain what level in body fluid? : ph
Large viruses were once parasitic cells inside bigger host cells. Over time, genes needed to survive and reproduce outside host cells were lost.
Large viruses began as what type of cells inside bigger host cells? : parasitic
Frogs The frog order also includes toads. Unlike other amphibians, frogs and toads lack a tail by adulthood. Their back legs are also longer because they are specialized for jumping. Frogs can jump as far as 20 times their body length. That’s like you jumping more than the length of a basketball court! red-eyed tree frog.
Frogs and toads have long back legs which are specialized for what action? : jumping
Darwin proposed the theory of evolution by natural selection. Evolution is a change in the inherited traits of organisms over time. Natural selection is the process by which living things with beneficial traits produce more offspring, so their traits become more common over time.
What is the term for a change in the inherited traits of organisms over time? : evolution
Viruses are not affected by antibiotics. Several viral diseases can be treated with antiviral drugs or prevented with vaccines.
What type of diseases do antibiotics not affect? : viruses
Reptiles typically reproduce sexually and lay eggs.
How do reptiles typically reproduce? : sexually
All organisms must adapt to their environment in order to survive. This is true whether they live in water or on land. Most environments are not as extreme as the deep ocean where tube worms live. But they all have conditions that require adaptations. In this chapter, you will read about a wide variety of environments and the organisms that live in them.
All organisms must adapt to what in order to survive? : environment
Carbohydrates are biochemical compounds that include sugars, starches, and cellulose. They contain carbon, hydrogen, and oxygen, and they are used mainly for energy by living things.
Biochemical compounds that include sugars, starches, and cellulose are examples of what? : carbohydrates
When an insect egg hatches, a larva emerges. The larva eats and grows and then enters the pupa stage. The pupa is immobile and may be encased in a cocoon . During the pupa stage, the insect goes through metamorphosis . Tissues and appendages of the larva break down and reorganize into the adult form. How did such an incredible transformation evolve? Metamorphosis is actually very advantageous. It allows functions to be divided between life stages. Each stage can evolve adaptations to suit it for its specific functions without affecting the adaptations of the other stage.
What emerges from an insect egg? : larva
Today, scientists think that electrons truly are fundamental particles that cannot be broken down into smaller, simpler particles. They are a type of fundamental particles called leptons. Protons and neutrons, on the other hand, are no longer thought to be fundamental particles. Instead, they are now thought to consist of smaller, simpler particles of matter called quarks. Scientists theorize that leptons and quarks are held together by yet another type of fundamental particles called bosons. All three types of fundamental particles—leptons, quarks, and bosons—are described below. The following Figure below shows the variety of particles of each type.
What can protons and neutrons be broken down into? : quarks
Puberty is the stage of life when a child becomes sexually mature. Puberty lasts from about 10 to 16 years of age in girls and from about 12 to 18 years of age in boys. In both girls and boys, puberty begins when the pituitary gland signals the gonads (ovaries or testes) to start secreting sex hormones (estrogen in girls, testosterone in boys). Sex hormones, in turn, cause many other changes to take place.
What is the name of the stage of life when a child becomes sexually mature? : puberty
The cerebrum is divided down the middle from the front to the back of the head. The two halves of the cerebrum are called the right and left hemispheres. The two hemispheres are very similar but not identical. They are connected to each other by a thick bundle of axons deep within the brain. These axons allow the two hemispheres to communicate with each other. Did you know that the right hemisphere of the cerebrum controls the left side of the body, and vice versa? This can happen because of the connections between the two hemispheres.
What part of the brain is divided from front to back into the left and right hemispheres? : cerebrum
http://zonalandeducation. com/mstm/physics/mechanics/vectors/introduction/introductionVectors. html.
Because their cells are arranged in bundles, the appearance of skeletal and cardiac muscles is described as what? : striated
Although renewable, soil takes a very long to form—up to hundreds of millions of years. So, for human purposes, soil is a nonrenewable resource. It is also constantly depleted of nutrients through careless use and eroded by wind and water. For example, misuse of soil caused a huge amount of it to simply blow away in the 1930s during the Dust Bowl (see Figure below ). Soil must be used wisely to preserve it for the future. Conservation practices include contour plowing and terracing. Both reduce soil erosion. Soil also must be protected from toxic wastes.
What resource is considered nonrewable for human purposes, because it takes so long to form and is depleted by farming and other activities? : soil
Linnaeus published his classification system in the 1700s. Since then, many new species have been discovered. The biochemistry of many organisms has also become known. Eventually, scientists realized that Linnaeus’s system of classification needed revision.
What scientist created the modern system for classifying organisms? : linnaeus
The density of air varies from place to place. Air density depends on several factors. One is temperature. Like other materials, warm air is less dense than cool air. Since warmer molecules have more energy, they are more active. The molecules bounce off each other and spread apart. Another factor that affects the density of air is altitude.
Since warmer molecules have more energy, they are more what? : active
Insects produce useful substances, such as honey, wax, lacquer, and silk.
Which type of animal creates useful substances such as honey, wax, lacquer, and silk? : insects
f 2 = v w / λ 2 = v w / 2L = 2 f 1 . Similarly, f 3 = 3 f 1 , and so on. All of these frequencies can be changed by adjusting the tension in the string. The greater the tension, the greater v w is and the higher the frequencies. This observation is familiar to anyone who has ever observed a string instrument being tuned. We will see in later chapters that standing waves are crucial to many resonance phenomena, such as in sounding boxes on string instruments.
Stringed instruments can help show the relationship between tension and what in strings? : frequencies
There are 44 autosomes and 2 sex chromosomes in the human genome, for a total of 46 chromosomes (23 pairs). Sex chromosomes specify an organism's genetic sex. Humans can have two different sex chromosomes, one called X and the other Y. Normal females possess two X chromosomes and normal males one X and one Y. An autosome is any chromosome other than a sex chromosome. The Figure below shows a representation of the 24 different human chromosomes. Figure below shows a karyotype of the human genome. A karyotype depicts, usually in a photograph, the chromosomal complement of an individual, including the number of chromosomes and any large chromosomal abnormalities. Karyotypes use chromosomes from the metaphase stage of mitosis.
Ectotherms undergo a variety of changes at the cellular level to acclimatize to shifts in what? : temperature
Convex lenses are thicker in the middle than at the edges. They cause rays of light to converge, or meet, at a point called the focus (F). Convex lenses form either real or virtual images. It depends on how close an object is to the lens relative to the focus. Figure below shows how a convex lens works. You can also interact with an animated convex lens at the URL below. An example of a convex lens is a hand lens.
Convex lenses are thicker in the middle than at the edges so they cause rays of light to converge, or meet, at a point called what? : focus
Magnesium carbonate, aluminum hydroxide, and sodium bicarbonate are commonly used as antacids. Give the empirical formulas and determine the molar masses of these compounds. Based on their formulas, suggest another compound that might be an effective antacid. ♦ Nickel(II) acetate, lead(II) phosphate, zinc nitrate, and beryllium oxide have all been reported to induce cancers in experimental animals.
What are magnesium carbonate, aluminum hydroxide, and sodium bicarbonate commonly used as? : antacids
Bases often have a bitter taste and are found in foods less frequently than acids. Many bases, like soaps, are slippery to the touch.
What type of taste do bases normally have? : bitter
Homeostasis, or the maintenance of constant conditions in the body, is a fundamental property of all living things. In the human body, the substances that participate in chemical reactions must remain within narrows ranges of concentration. Too much or too little of a single substance can disrupt your bodily functions. Because metabolism relies on reactions that are all interconnected, any disruption might affect multiple organs or even organ systems. Water is the most ubiquitous substance in the chemical reactions of life. The interactions of various aqueous solutions—solutions in which water is the solvent—are continuously monitored and adjusted by a large suite of interconnected feedback systems in your body. Understanding the ways in which the body maintains these critical balances is key to understanding good health.
The maintenance of constant conditions in the body is also known as what? : homeostasis
Ligaments are made of tough protein fibers and connect bones to each other. Your bones, cartilage, and ligaments make up your skeletal system .
What is the term for tough protein fibers that connects bones to each other? : ligaments
Cecum The first part of the large intestine is the cecum, a sac-like structure that is suspended inferior to the ileocecal valve. It is about 6 cm (2.4 in) long, receives the contents of the ileum, and continues the absorption of water and salts. The appendix (or vermiform appendix) is a winding tube that attaches to the cecum. Although the 7.6-cm (3-in) long appendix contains lymphoid tissue, suggesting an immunologic function, this organ is generally considered vestigial. However, at least one recent report postulates a survival advantage conferred by the appendix: In diarrheal illness, the appendix may serve as a bacterial reservoir to repopulate the enteric bacteria for those surviving the initial phases of the illness. Moreover, its twisted anatomy provides a haven for the accumulation and multiplication of enteric bacteria. The mesoappendix, the mesentery of the appendix, tethers it to the mesentery of the ileum.
What is the first part of the large intestine called? : cecum
in a one-liter container (Figure 22.15). In this case, the force exerted by the movement of the gas molecules against the walls of the two-liter container is lower than the force exerted by the gas molecules in the one-liter container. Therefore, the pressure is lower in the two-liter container and higher in the one-liter container. At a constant temperature, changing the volume occupied by the gas changes the pressure, as does changing the number of gas molecules. Boyle’s law describes the relationship between volume and pressure in a gas at a constant temperature. Boyle discovered that the pressure of a gas is inversely proportional to its volume: If volume increases, pressure decreases. Likewise, if volume decreases, pressure increases. Pressure and volume are inversely related (P = k/V). Therefore, the pressure in the one-liter container (one-half the volume of the two-liter container) would be twice the pressure in the two-liter container. Boyle’s law is expressed by the following formula:.
Boyle discovered that what property of a gas is inversely proportional to its volume? : pressure
Mollusks have a hard outer shell. There is a layer of tissue called the mantle between the shell and the body.
What is the layer of tissue between the body and shell called? : mantle
Roots are covered with thin-walled dermal cells and tiny root hairs. These features are well suited to absorb water and dissolved minerals from the soil.
Well suited to absorb water and dissolved minerals from the soil, thin-walled dermal cells and tiny hairs cover what basic plant structures? : roots
The Heart The heart is a complex muscle that consists of two pumps: one that pumps blood through pulmonary circulation to the lungs, and the other that pumps blood through systemic circulation to the rest of the body’s tissues (and the heart itself). The heart is asymmetrical, with the left side being larger than the right side, correlating with the different sizes of the pulmonary and systemic circuits (Figure 16.10). In humans, the heart is about the size of a clenched fist; it is divided into four chambers: two atria and two ventricles. There is one atrium and one ventricle on the right side and one atrium and one ventricle on the left side. The right atrium receives deoxygenated blood from the systemic circulation through the major veins: the superior vena cava, which drains blood from the head and from the veins that come from the arms, as well as the inferior vena cava, which drains blood from the veins that come from the lower organs and the legs. This deoxygenated blood then passes to the right ventricle through the tricuspid valve, which prevents the backflow of blood. After it is filled, the right ventricle contracts, pumping the blood to the lungs for reoxygenation. The left atrium receives the oxygen-rich blood from the lungs. This blood passes through the bicuspid valve to the left ventricle where the blood is pumped into the aorta. The aorta is the major artery of the body, taking oxygenated blood to the organs and muscles of the body. This pattern of pumping is referred to as double circulation and is found in all mammals. (Figure 16.10).
What is the major artery of the body, taking oxygenated blood to the organs and muscles of the body? : aorta
Lung cancer is a disease in which the cells found in the lungs grow out of control. The growing mass of cells can form a tumor that pushes into nearby tissues. The tumor will affect how these tissues work. Lung cancer is the most common cause of cancer-related death in men, and the second most common in women. It is responsible for 1.3 million deaths worldwide every year ( Figure below ). The most common symptoms are shortness of breath, coughing (including coughing up blood), and weight loss. The most common cause of lung cancer is exposure to tobacco smoke.
What do you call a growing mass of cancerous cells that pushes into nearby tissues? : tumor
Potassium Potassium is the major intracellular cation. It helps establish the resting membrane potential in neurons and muscle fibers after membrane depolarization and action potentials. In contrast to sodium, potassium has very little effect on osmotic.
What is the major intracellular cation? : potassium
Protein A large part of protein digestion takes place in the stomach. The enzyme pepsin plays an important role in the digestion of proteins by breaking down the intact protein to peptides, which are short chains of four to nine amino acids. In the duodenum, other enzymes— trypsin, elastase, and chymotrypsin—act on the peptides reducing them to smaller peptides. Trypsin elastase, carboxypeptidase, and chymotrypsin are produced by the pancreas and released into the duodenum where they act on the chyme. Further breakdown of peptides to single amino acids is aided by enzymes called peptidases (those that break down peptides). Specifically, carboxypeptidase, dipeptidase, and aminopeptidase play important roles in reducing the peptides to free amino acids. The amino acids are absorbed into the bloodstream through the small intestines. The steps in protein digestion are summarized in Figure 34.17 and Table 34.6.
The enzyme pepsin plays an important role in the digestion of proteins by breaking down intact protein to what short-chain amino acids? : peptides
Terrestrial ecosystems, also known for their diversity, are grouped into large categories called biomes. A biome is a largescale community of organisms, primarily defined on land by the dominant plant types that exist in geographic regions of the planet with similar climatic conditions. Examples of biomes include tropical rainforests, savannas, deserts, grasslands, temperate forests, and tundras. Grouping these ecosystems into just a few biome categories obscures the great diversity of the individual ecosystems within them. For example, the saguaro cacti (Carnegiea gigantean) and other plant life in the Sonoran Desert, in the United States, are relatively diverse compared with the desolate rocky desert of Boa Vista, an island off the coast of Western Africa (Figure 20.3).
Terrestrial ecosystems, also known for their diversity, are grouped into large categories called what? : biomes
The modern day formulation of gun powder is called black powder. It is still commonly used today. Its formulation is still quite similar to what was used in 9 th century China. Black powder is considered a low explosive. It is a mixture that burns quickly, but the resulting shock wave travels at subsonic speeds. The speed at which it burns is dependent on the accessibility of oxygen atoms to the carbon source. In contrast, high explosives like nitroglycerin detonate instead of burning, creating shock waves that are supersonic (faster than the speed of sound).
High explosives create shock waves that exceed the speed of sound, a phenomenon that goes by what term? : supersonic
An organ is a structure composed of two or more types of tissues that work together to do a specific task. Most modern plants have several organs that help them survive and reproduce in a variety of habitats. Major organs of most plants include roots, stems, and leaves. These and other plant organs generally contain all three major tissue types.
What do you call a structure composed of two or more types of tissues that work together to do a specific task? : organ