id
stringlengths
14
16
text
stringlengths
29
2.31k
source
stringlengths
57
122
4449501757a2-4
headers={ "Authorization": f"Bearer {self.writer_api_key}", "Content-Type": "application/json", "Accept": "application/json", }, json={"prompt": prompt, **self._default_params}, ) text = response.text if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/writer.html
2a6dcfe3132b-0
Source code for langchain.llms.gpt4all """Wrapper for the GPT4All model.""" from functools import partial from typing import Any, Dict, List, Mapping, Optional, Set from pydantic import Extra, Field, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens [docs]class GPT4All(LLM): r"""Wrapper around GPT4All language models. To use, you should have the ``pyllamacpp`` python package installed, the pre-trained model file, and the model's config information. Example: .. code-block:: python from langchain.llms import GPT4All model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8) # Simplest invocation response = model("Once upon a time, ") """ model: str """Path to the pre-trained GPT4All model file.""" n_ctx: int = Field(512, alias="n_ctx") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(0, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv")
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/gpt4all.html
2a6dcfe3132b-1
f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" embedding: bool = Field(False, alias="embedding") """Use embedding mode only.""" n_threads: Optional[int] = Field(4, alias="n_threads") """Number of threads to use.""" n_predict: Optional[int] = 256 """The maximum number of tokens to generate.""" temp: Optional[float] = 0.8 """The temperature to use for sampling.""" top_p: Optional[float] = 0.95 """The top-p value to use for sampling.""" top_k: Optional[int] = 40 """The top-k value to use for sampling.""" echo: Optional[bool] = False """Whether to echo the prompt.""" stop: Optional[List[str]] = [] """A list of strings to stop generation when encountered.""" repeat_last_n: Optional[int] = 64 "Last n tokens to penalize" repeat_penalty: Optional[float] = 1.3 """The penalty to apply to repeated tokens.""" n_batch: int = Field(1, alias="n_batch") """Batch size
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/gpt4all.html
2a6dcfe3132b-2
n_batch: int = Field(1, alias="n_batch") """Batch size for prompt processing.""" streaming: bool = False """Whether to stream the results or not.""" client: Any = None #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @property def _default_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "seed": self.seed, "n_predict": self.n_predict, "n_threads": self.n_threads, "n_batch": self.n_batch, "repeat_last_n": self.repeat_last_n, "repeat_penalty": self.repeat_penalty, "top_k": self.top_k, "top_p": self.top_p, "temp": self.temp, } @staticmethod def _llama_param_names() -> Set[str]: """Get the identifying parameters.""" return { "seed", "n_ctx", "n_parts",
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/gpt4all.html
2a6dcfe3132b-3
"n_ctx", "n_parts", "f16_kv", "logits_all", "vocab_only", "use_mlock", "embedding", } @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in the environment.""" try: from pyllamacpp.model import Model as GPT4AllModel llama_keys = cls._llama_param_names() model_kwargs = {k: v for k, v in values.items() if k in llama_keys} values["client"] = GPT4AllModel( ggml_model=values["model"], **model_kwargs, ) except ImportError: raise ValueError( "Could not import pyllamacpp python package. " "Please install it with `pip install pyllamacpp`."
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/gpt4all.html
2a6dcfe3132b-4
`pip install pyllamacpp`." ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model": self.model, **self._default_params, **{ k: v for k, v in self.__dict__.items() if k in GPT4All._llama_param_names() }, } @property def _llm_type(self) -> str: """Return the type of llm.""" return "gpt4all" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: r"""Call out to GPT4All's generate method. Args: prompt: The prompt to pass into the model. stop: A list of strings to stop generation when encountered. Returns: The string generated by the model. Example:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/gpt4all.html
2a6dcfe3132b-5
The string generated by the model. Example: .. code-block:: python prompt = "Once upon a time, " response = model(prompt, n_predict=55) """ text_callback = partial( self.callback_manager.on_llm_new_token, verbose=self.verbose ) text = self.client.generate( prompt, new_text_callback=text_callback, **self._default_params, ) if stop is not None: text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/gpt4all.html
9072a1ef06a7-0
Source code for langchain.llms.forefrontai """Wrapper around ForefrontAI APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env [docs]class ForefrontAI(LLM): """Wrapper around ForefrontAI large language models. To use, you should have the environment variable ``FOREFRONTAI_API_KEY`` set with your API key. Example: .. code-block:: python from langchain.llms import ForefrontAI forefrontai = ForefrontAI(endpoint_url="") """ endpoint_url: str = "" """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" length: int = 256 """The maximum number of tokens to generate in the completion.""" top_p: float = 1.0 """Total probability mass of tokens to consider at each step.""" top_k: int = 40 """The number of highest probability vocabulary tokens to keep for top-k-filtering.""" repetition_penalty: int = 1 """Penalizes repeated tokens according to frequency.""" forefrontai_api_key: Optional[str] = None base_url: Optional[str] = None """Base url to use, if None decides based on model name.""" class Config:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/forefrontai.html
9072a1ef06a7-1
None decides based on model name.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" forefrontai_api_key = get_from_dict_or_env( values, "forefrontai_api_key", "FOREFRONTAI_API_KEY" ) values["forefrontai_api_key"] = forefrontai_api_key return values @property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling ForefrontAI API.""" return { "temperature": self.temperature, "length": self.length, "top_p": self.top_p, "top_k": self.top_k, "repetition_penalty": self.repetition_penalty, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"endpoint_url": self.endpoint_url}, **self._default_params} @property def _llm_type(self) -> str:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/forefrontai.html
9072a1ef06a7-2
def _llm_type(self) -> str: """Return type of llm.""" return "forefrontai" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to ForefrontAI's complete endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = ForefrontAI("Tell me a joke.") """ response = requests.post( url=self.endpoint_url, headers={ "Authorization": f"Bearer {self.forefrontai_api_key}", "Content-Type": "application/json", }, json={"text": prompt, **self._default_params}, ) response_json = response.json() text = response_json["result"][0]["completion"] if stop is not
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/forefrontai.html
9072a1ef06a7-3
response_json["result"][0]["completion"] if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/forefrontai.html
d190a3021e59-0
Source code for langchain.llms.sagemaker_endpoint """Wrapper around Sagemaker InvokeEndpoint API.""" from abc import ABC, abstractmethod from typing import Any, Dict, List, Mapping, Optional, Union from pydantic import Extra, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens class ContentHandlerBase(ABC): """A handler class to transform input from LLM to a format that SageMaker endpoint expects. Similarily, the class also handles transforming output from the SageMaker endpoint to a format that LLM class expects. """ """ Example: .. code-block:: python class ContentHandler(ContentHandlerBase): content_type = "application/json" accepts = "application/json" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps({prompt: prompt, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8"))
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/sagemaker_endpoint.html
d190a3021e59-1
response_json = json.loads(output.read().decode("utf-8")) return response_json[0]["generated_text"] """ content_type: Optional[str] = "text/plain" """The MIME type of the input data passed to endpoint""" accepts: Optional[str] = "text/plain" """The MIME type of the response data returned from endpoint""" @abstractmethod def transform_input( self, prompt: Union[str, List[str]], model_kwargs: Dict ) -> bytes: """Transforms the input to a format that model can accept as the request Body. Should return bytes or seekable file like object in the format specified in the content_type request header. """ @abstractmethod def transform_output(self, output: bytes) -> Any: """Transforms the output from the model to string that the LLM class expects. """ [docs]class SagemakerEndpoint(LLM): """Wrapper around custom Sagemaker Inference Endpoints. To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/sagemaker_endpoint.html
d190a3021e59-2
If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html """ """ Example: .. code-block:: python from langchain import SagemakerEndpoint endpoint_name = ( "my-endpoint-name" ) region_name = ( "us-west-2" ) credentials_profile_name = ( "default" ) se = SagemakerEndpoint( endpoint_name=endpoint_name, region_name=region_name, credentials_profile_name=credentials_profile_name ) """ client: Any #: :meta private: endpoint_name: str = "" """The name of the
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/sagemaker_endpoint.html
d190a3021e59-3
private: endpoint_name: str = "" """The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region.""" region_name: str = "" """The aws region where the Sagemaker model is deployed, eg. `us-west-2`.""" credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ content_handler: ContentHandlerBase """The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. """ """ Example: .. code-block:: python class ContentHandler(ContentHandlerBase): content_type = "application/json" accepts = "application/json" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps({prompt: prompt, **model_kwargs}) return input_str.encode('utf-8')
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/sagemaker_endpoint.html
d190a3021e59-4
return input_str.encode('utf-8') def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8")) return response_json[0]["generated_text"] """ model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" endpoint_kwargs: Optional[Dict] = None """Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" try: import boto3 try: if values["credentials_profile_name"] is not None: session = boto3.Session(
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/sagemaker_endpoint.html
d190a3021e59-5
session = boto3.Session( profile_name=values["credentials_profile_name"] ) else: # use default credentials session = boto3.Session() values["client"] = session.client( "sagemaker-runtime", region_name=values["region_name"] ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e except ImportError: raise ValueError( "Could not import boto3 python package. "
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/sagemaker_endpoint.html
d190a3021e59-6
boto3 python package. " "Please install it with `pip install boto3`." ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"endpoint_name": self.endpoint_name}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "sagemaker_endpoint" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to Sagemaker inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = se("Tell me a joke.") """ _model_kwargs =
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/sagemaker_endpoint.html
d190a3021e59-7
""" _model_kwargs = self.model_kwargs or {} _endpoint_kwargs = self.endpoint_kwargs or {} body = self.content_handler.transform_input(prompt, _model_kwargs) content_type = self.content_handler.content_type accepts = self.content_handler.accepts # send request try: response = self.client.invoke_endpoint( EndpointName=self.endpoint_name, Body=body, ContentType=content_type, Accept=accepts, **_endpoint_kwargs, ) except Exception as e: raise ValueError(f"Error raised by inference endpoint: {e}") text = self.content_handler.transform_output(response["Body"]) if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to the sagemaker endpoint. text = enforce_stop_tokens(text, stop) return text By Harrison Chase
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/sagemaker_endpoint.html
d190a3021e59-8
stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/sagemaker_endpoint.html
bcac5afd81f9-0
Source code for langchain.llms.huggingface_pipeline """Wrapper around HuggingFace Pipeline APIs.""" import importlib.util import logging from typing import Any, List, Mapping, Optional from pydantic import Extra from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens DEFAULT_MODEL_ID = "gpt2" DEFAULT_TASK = "text-generation" VALID_TASKS = ("text2text-generation", "text-generation") logger = logging.getLogger() [docs]class HuggingFacePipeline(LLM): """Wrapper around HuggingFace Pipeline API. To use, you should have the ``transformers`` python package installed. Only supports `text-generation` and `text2text-generation` for now. Example using from_model_id: .. code-block:: python from langchain.llms import HuggingFacePipeline hf = HuggingFacePipeline.from_model_id( model_id="gpt2", task="text-generation" ) Example passing pipeline in directly: .. code-block:: python from langchain.llms import HuggingFacePipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model =
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_pipeline.html
bcac5afd81f9-1
model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) hf = HuggingFacePipeline(pipeline=pipe) """ pipeline: Any #: :meta private: model_id: str = DEFAULT_MODEL_ID """Model name to use.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] @classmethod def from_model_id( cls, model_id: str, task: str, device: int = -1, model_kwargs: Optional[dict] = None, **kwargs: Any, ) -> LLM: """Construct the pipeline object from model_id and task.""" try: from transformers import ( AutoModelForCausalLM, AutoModelForSeq2SeqLM,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_pipeline.html
bcac5afd81f9-2
AutoModelForSeq2SeqLM, AutoTokenizer, ) from transformers import pipeline as hf_pipeline except ImportError: raise ValueError( "Could not import transformers python package. " "Please install it with `pip install transformers`." ) _model_kwargs = model_kwargs or {} tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs) try: if task == "text-generation": model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs) elif task == "text2text-generation": model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs) else: raise ValueError( f"Got invalid task {task}, " f"currently only {VALID_TASKS} are supported"
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_pipeline.html
bcac5afd81f9-3
only {VALID_TASKS} are supported" ) except ImportError as e: raise ValueError( f"Could not load the {task} model due to missing dependencies." ) from e if importlib.util.find_spec("torch") is not None: import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_pipeline.html
bcac5afd81f9-4
"GPUs for execution. deviceId is -1 (default) for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) pipeline = hf_pipeline( task=task, model=model, tokenizer=tokenizer, device=device, model_kwargs=_model_kwargs, ) if pipeline.task not in VALID_TASKS: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) return cls( pipeline=pipeline, model_id=model_id, model_kwargs=_model_kwargs, **kwargs, ) @property def _identifying_params(self) -> Mapping[str, Any]:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_pipeline.html
bcac5afd81f9-5
def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_id": self.model_id}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: return "huggingface_pipeline" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: response = self.pipeline(prompt) if self.pipeline.task == "text-generation": # Text generation return includes the starter text. text = response[0]["generated_text"][len(prompt) :] elif self.pipeline.task == "text2text-generation": text = response[0]["generated_text"] else: raise ValueError( f"Got invalid task {self.pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_pipeline.html
bcac5afd81f9-6
way to enforce # stop tokens when making calls to huggingface_hub. text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_pipeline.html
0aa287032d61-0
Source code for langchain.llms.stochasticai """Wrapper around StochasticAI APIs.""" import logging import time from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, Field, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class StochasticAI(LLM): """Wrapper around StochasticAI large language models. To use, you should have the environment variable ``STOCHASTICAI_API_KEY`` set with your API key. Example: .. code-block:: python from langchain.llms import StochasticAI stochasticai = StochasticAI(api_url="") """ api_url: str = "" """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" stochasticai_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra =
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/stochasticai.html
0aa287032d61-1
for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" stochasticai_api_key = get_from_dict_or_env( values, "stochasticai_api_key", "STOCHASTICAI_API_KEY" ) values["stochasticai_api_key"] = stochasticai_api_key return values @property def _identifying_params(self)
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/stochasticai.html
0aa287032d61-2
return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"endpoint_url": self.api_url}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "stochasticai" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to StochasticAI's complete endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = StochasticAI("Tell me a joke.") """ params = self.model_kwargs or {} response_post = requests.post( url=self.api_url, json={"prompt": prompt, "params": params},
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/stochasticai.html
0aa287032d61-3
prompt, "params": params}, headers={ "apiKey": f"{self.stochasticai_api_key}", "Accept": "application/json", "Content-Type": "application/json", }, ) response_post.raise_for_status() response_post_json = response_post.json() completed = False while not completed: response_get = requests.get( url=response_post_json["data"]["responseUrl"], headers={ "apiKey": f"{self.stochasticai_api_key}", "Accept": "application/json", "Content-Type": "application/json", }, ) response_get.raise_for_status() response_get_json = response_get.json()["data"] text = response_get_json.get("completion")
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/stochasticai.html
0aa287032d61-4
text = response_get_json.get("completion") completed = text is not None time.sleep(0.5) text = text[0] if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/stochasticai.html
8fcf8bbaef07-0
Source code for langchain.llms.self_hosted_hugging_face """Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware.""" import importlib.util import logging from typing import Any, Callable, List, Mapping, Optional from pydantic import Extra from langchain.llms.self_hosted import SelfHostedPipeline from langchain.llms.utils import enforce_stop_tokens DEFAULT_MODEL_ID = "gpt2" DEFAULT_TASK = "text-generation" VALID_TASKS = ("text2text-generation", "text-generation") logger = logging.getLogger() def _generate_text( pipeline: Any, prompt: str, *args: Any, stop: Optional[List[str]] = None, **kwargs: Any, ) -> str: """Inference function to send to the remote hardware. Accepts a Hugging Face pipeline (or more likely, a key pointing to such a pipeline on the cluster's object store) and returns generated text. """ response = pipeline(prompt, *args, **kwargs) if pipeline.task == "text-generation": # Text generation return includes the starter text. text = response[0]["generated_text"][len(prompt) :] elif pipeline.task == "text2text-generation": text = response[0]["generated_text"] else: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) if stop is not None:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html
8fcf8bbaef07-1
) if stop is not None: text = enforce_stop_tokens(text, stop) return text def _load_transformer( model_id: str = DEFAULT_MODEL_ID, task: str = DEFAULT_TASK, device: int = 0, model_kwargs: Optional[dict] = None, ) -> Any: """Inference function to send to the remote hardware. Accepts a huggingface model_id and returns a pipeline for the task. """ from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer from transformers import pipeline as hf_pipeline _model_kwargs = model_kwargs or {} tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs) try: if task == "text-generation": model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs) elif task == "text2text-generation": model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs) else: raise ValueError( f"Got invalid task {task}, " f"currently only {VALID_TASKS} are supported" ) except ImportError as e: raise ValueError(
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html
8fcf8bbaef07-2
e: raise ValueError( f"Could not load the {task} model due to missing dependencies." ) from e if importlib.util.find_spec("torch") is not None: import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) pipeline = hf_pipeline( task=task, model=model,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html
8fcf8bbaef07-3
task=task, model=model, tokenizer=tokenizer, device=device, model_kwargs=_model_kwargs, ) if pipeline.task not in VALID_TASKS: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) return pipeline [docs]class SelfHostedHuggingFaceLLM(SelfHostedPipeline): """Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Only supports `text-generation` and `text2text-generation` for now. Example using from_model_id: .. code-block:: python from langchain.llms import SelfHostedHuggingFaceLLM import runhouse as rh gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") hf = SelfHostedHuggingFaceLLM(
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html
8fcf8bbaef07-4
= SelfHostedHuggingFaceLLM( model_id="google/flan-t5-large", task="text2text-generation", hardware=gpu ) Example passing fn that generates a pipeline (bc the pipeline is not serializable): .. code-block:: python from langchain.llms import SelfHostedHuggingFaceLLM from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import runhouse as rh def get_pipeline(): model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer ) return pipe hf = SelfHostedHuggingFaceLLM( model_load_fn=get_pipeline, model_id="gpt2",
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html
8fcf8bbaef07-5
model_load_fn=get_pipeline, model_id="gpt2", hardware=gpu) """ model_id: str = DEFAULT_MODEL_ID """Hugging Face model_id to load the model.""" task: str = DEFAULT_TASK """Hugging Face task (either "text-generation" or "text2text-generation").""" device: int = 0 """Device to use for inference. -1 for CPU, 0 for GPU, 1 for second GPU, etc.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" hardware: Any """Remote hardware to send the inference function to.""" model_reqs: List[str] = ["./", "transformers", "torch"] """Requirements to install on hardware to inference the model.""" model_load_fn: Callable = _load_transformer """Function to load the model remotely on the server.""" inference_fn: Callable = _generate_text #: :meta private: """Inference function to send to the remote hardware.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def __init__(self, **kwargs: Any): """Construct the pipeline remotely using an auxiliary function. The load function needs to be importable to be imported and run on the server, i.e. in a module and not a REPL or closure. Then, initialize the remote inference function. """
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html
8fcf8bbaef07-6
Then, initialize the remote inference function. """ load_fn_kwargs = { "model_id": kwargs.get("model_id", DEFAULT_MODEL_ID), "task": kwargs.get("task", DEFAULT_TASK), "device": kwargs.get("device", 0), "model_kwargs": kwargs.get("model_kwargs", None), } super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_id": self.model_id}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: return "selfhosted_huggingface_pipeline" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: return self.client(pipeline=self.pipeline_ref, prompt=prompt, stop=stop) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/self_hosted_hugging_face.html
a5a9e5ed4e19-0
Source code for langchain.llms.cohere """Wrapper around Cohere APIs.""" import logging from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class Cohere(LLM): """Wrapper around Cohere large language models. To use, you should have the ``cohere`` python package installed, and the environment variable ``COHERE_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.llms import Cohere cohere = Cohere(model="gptd-instruct-tft", cohere_api_key="my-api-key") """ client: Any #: :meta private: model: Optional[str] = None """Model name to use.""" max_tokens: int = 256 """Denotes the number of tokens to predict per generation.""" temperature: float = 0.75 """A non-negative float that tunes the degree of randomness in generation.""" k: int = 0 """Number of most likely tokens to consider at each step.""" p: int = 1 """Total probability mass of tokens to consider at each step.""" frequency_penalty: float = 0.0 """Penalizes repeated tokens according to frequency. Between 0 and
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/cohere.html
a5a9e5ed4e19-1
"""Penalizes repeated tokens according to frequency. Between 0 and 1.""" presence_penalty: float = 0.0 """Penalizes repeated tokens. Between 0 and 1.""" truncate: Optional[str] = None """Specify how the client handles inputs longer than the maximum token length: Truncate from START, END or NONE""" cohere_api_key: Optional[str] = None stop: Optional[List[str]] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY" ) try: import cohere values["client"] = cohere.Client(cohere_api_key) except ImportError: raise ValueError( "Could not import cohere python package. " "Please install it with `pip install cohere`." ) return values @property def
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/cohere.html
a5a9e5ed4e19-2
return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Cohere API.""" return { "max_tokens": self.max_tokens, "temperature": self.temperature, "k": self.k, "p": self.p, "frequency_penalty": self.frequency_penalty, "presence_penalty": self.presence_penalty, "truncate": self.truncate, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "cohere" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to Cohere's generate endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/cohere.html
a5a9e5ed4e19-3
list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = cohere("Tell me a joke.") """ params = self._default_params if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: params["stop_sequences"] = self.stop else: params["stop_sequences"] = stop response = self.client.generate(model=self.model, prompt=prompt, **params) text = response.generations[0].text # If stop tokens are provided, Cohere's endpoint returns them. # In order to make this consistent with other endpoints, we strip them. if stop is not None or self.stop is not None: text = enforce_stop_tokens(text, params["stop_sequences"]) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/cohere.html
3afbbd05951e-0
Source code for langchain.llms.aleph_alpha """Wrapper around Aleph Alpha APIs.""" from typing import Any, Dict, List, Optional, Sequence from pydantic import Extra, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env [docs]class AlephAlpha(LLM): """Wrapper around Aleph Alpha large language models. To use, you should have the ``aleph_alpha_client`` python package installed, and the environment variable ``ALEPH_ALPHA_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Parameters are explained more in depth here: https://github.com/Aleph-Alpha/aleph-alpha-client/blob/c14b7dd2b4325c7da0d6a119f6e76385800e097b/aleph_alpha_client/completion.py#L10 Example: .. code-block:: python from langchain.llms import AlephAlpha alpeh_alpha = AlephAlpha(aleph_alpha_api_key="my-api-key") """ client: Any #: :meta private: model: Optional[str] = "luminous-base" """Model name to use.""" maximum_tokens: int = 64 """The maximum number of tokens to be generated.""" temperature: float = 0.0 """A non-negative float that tunes the degree of randomness in generation.""" top_k: int = 0 """Number of
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/aleph_alpha.html
3afbbd05951e-1
in generation.""" top_k: int = 0 """Number of most likely tokens to consider at each step.""" top_p: float = 0.0 """Total probability mass of tokens to consider at each step.""" presence_penalty: float = 0.0 """Penalizes repeated tokens.""" frequency_penalty: float = 0.0 """Penalizes repeated tokens according to frequency.""" repetition_penalties_include_prompt: Optional[bool] = False """Flag deciding whether presence penalty or frequency penalty are updated from the prompt.""" use_multiplicative_presence_penalty: Optional[bool] = False """Flag deciding whether presence penalty is applied multiplicatively (True) or additively (False).""" penalty_bias: Optional[str] = None """Penalty bias for the completion.""" penalty_exceptions: Optional[List[str]] = None """List of strings that may be generated without penalty, regardless of other penalty settings""" penalty_exceptions_include_stop_sequences: Optional[bool] = None """Should stop_sequences be included in penalty_exceptions.""" best_of: Optional[int] = None """returns the one with the "best of" results (highest log probability per token) """ n: int = 1 """How many completions to generate for each prompt.""" logit_bias: Optional[Dict[int, float]] = None """The logit bias allows to influence the likelihood of generating tokens.""" log_probs: Optional[int] = None """Number of top log probabilities to be returned for
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/aleph_alpha.html
3afbbd05951e-2
Optional[int] = None """Number of top log probabilities to be returned for each generated token.""" tokens: Optional[bool] = False """return tokens of completion.""" disable_optimizations: Optional[bool] = False minimum_tokens: Optional[int] = 0 """Generate at least this number of tokens.""" echo: bool = False """Echo the prompt in the completion.""" use_multiplicative_frequency_penalty: bool = False sequence_penalty: float = 0.0 sequence_penalty_min_length: int = 2 use_multiplicative_sequence_penalty: bool = False completion_bias_inclusion: Optional[Sequence[str]] = None completion_bias_inclusion_first_token_only: bool = False completion_bias_exclusion: Optional[Sequence[str]] = None completion_bias_exclusion_first_token_only: bool = False """Only consider the first token for the completion_bias_exclusion.""" contextual_control_threshold: Optional[float] = None """If set to None, attention control parameters only apply to those tokens that have explicitly been set in the request. If set to a non-None value, control parameters are also applied to similar tokens. """ control_log_additive: Optional[bool] = True """True: apply control by adding the log(control_factor) to attention scores. False: (attention_scores - - attention_scores.min(-1)) * control_factor """ repetition_penalties_include_completion: bool = True """Flag deciding whether presence penalty or frequency penalty are updated from the completion."""
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/aleph_alpha.html
3afbbd05951e-3
deciding whether presence penalty or frequency penalty are updated from the completion.""" raw_completion: bool = False """Force the raw completion of the model to be returned.""" aleph_alpha_api_key: Optional[str] = None """API key for Aleph Alpha API.""" stop_sequences: Optional[List[str]] = None """Stop sequences to use.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" aleph_alpha_api_key = get_from_dict_or_env( values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY" ) try: import aleph_alpha_client values["client"] = aleph_alpha_client.Client(token=aleph_alpha_api_key) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) return values @property def _default_params(self) -> Dict[str, Any]:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/aleph_alpha.html
3afbbd05951e-4
@property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling the Aleph Alpha API.""" return { "maximum_tokens": self.maximum_tokens, "temperature": self.temperature, "top_k": self.top_k, "top_p": self.top_p, "presence_penalty": self.presence_penalty, "frequency_penalty": self.frequency_penalty, "n": self.n, "repetition_penalties_include_prompt": self.repetition_penalties_include_prompt, # noqa: E501 "use_multiplicative_presence_penalty": self.use_multiplicative_presence_penalty, # noqa: E501 "penalty_bias": self.penalty_bias, "penalty_exceptions": self.penalty_exceptions, "penalty_exceptions_include_stop_sequences": self.penalty_exceptions_include_stop_sequences, # noqa: E501 "best_of": self.best_of, "logit_bias": self.logit_bias, "log_probs": self.log_probs, "tokens": self.tokens,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/aleph_alpha.html
3afbbd05951e-5
"tokens": self.tokens, "disable_optimizations": self.disable_optimizations, "minimum_tokens": self.minimum_tokens, "echo": self.echo, "use_multiplicative_frequency_penalty": self.use_multiplicative_frequency_penalty, # noqa: E501 "sequence_penalty": self.sequence_penalty, "sequence_penalty_min_length": self.sequence_penalty_min_length, "use_multiplicative_sequence_penalty": self.use_multiplicative_sequence_penalty, # noqa: E501 "completion_bias_inclusion": self.completion_bias_inclusion, "completion_bias_inclusion_first_token_only": self.completion_bias_inclusion_first_token_only, # noqa: E501 "completion_bias_exclusion": self.completion_bias_exclusion, "completion_bias_exclusion_first_token_only": self.completion_bias_exclusion_first_token_only, # noqa: E501 "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, "repetition_penalties_include_completion": self.repetition_penalties_include_completion, # noqa: E501 "raw_completion":
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/aleph_alpha.html
3afbbd05951e-6
noqa: E501 "raw_completion": self.raw_completion, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "alpeh_alpha" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to Aleph Alpha's completion endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = alpeh_alpha("Tell me a joke.") """ from aleph_alpha_client import CompletionRequest, Prompt params = self._default_params if self.stop_sequences is not None and stop is not None: raise ValueError(
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/aleph_alpha.html
3afbbd05951e-7
raise ValueError( "stop sequences found in both the input and default params." ) elif self.stop_sequences is not None: params["stop_sequences"] = self.stop_sequences else: params["stop_sequences"] = stop request = CompletionRequest(prompt=Prompt.from_text(prompt), **params) response = self.client.complete(model=self.model, request=request) text = response.completions[0].completion # If stop tokens are provided, Aleph Alpha's endpoint returns them. # In order to make this consistent with other endpoints, we strip them. if stop is not None or self.stop_sequences is not None: text = enforce_stop_tokens(text, params["stop_sequences"]) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/aleph_alpha.html
246abd0160a2-0
Source code for langchain.llms.deepinfra """Wrapper around DeepInfra APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env DEFAULT_MODEL_ID = "google/flan-t5-xl" [docs]class DeepInfra(LLM): """Wrapper around DeepInfra deployed models. To use, you should have the ``requests`` python package installed, and the environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Only supports `text-generation` and `text2text-generation` for now. Example: .. code-block:: python from langchain.llms import DeepInfra di = DeepInfra(model_id="google/flan-t5-xl", deepinfra_api_token="my-api-key") """ model_id: str = DEFAULT_MODEL_ID model_kwargs: Optional[dict] = None deepinfra_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/deepinfra.html
246abd0160a2-1
values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" deepinfra_api_token = get_from_dict_or_env( values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN" ) values["deepinfra_api_token"] = deepinfra_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_id": self.model_id}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "deepinfra" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to DeepInfra's inference API endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/deepinfra.html
246abd0160a2-2
.. code-block:: python response = di("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} res = requests.post( f"https://api.deepinfra.com/v1/inference/{self.model_id}", headers={ "Authorization": f"bearer {self.deepinfra_api_token}", "Content-Type": "application/json", }, json={"input": prompt, **_model_kwargs}, ) if res.status_code != 200: raise ValueError("Error raised by inference API") text = res.json()[0]["generated_text"] if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/deepinfra.html
971b3a05b6c6-0
Source code for langchain.llms.ai21 """Wrapper around AI21 APIs.""" from typing import Any, Dict, List, Optional import requests from pydantic import BaseModel, Extra, root_validator from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env class AI21PenaltyData(BaseModel): """Parameters for AI21 penalty data.""" scale: int = 0 applyToWhitespaces: bool = True applyToPunctuations: bool = True applyToNumbers: bool = True applyToStopwords: bool = True applyToEmojis: bool = True [docs]class AI21(LLM): """Wrapper around AI21 large language models. To use, you should have the environment variable ``AI21_API_KEY`` set with your API key. Example: .. code-block:: python from langchain.llms import AI21 ai21 = AI21(model="j2-jumbo-instruct") """ model: str = "j2-jumbo-instruct" """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" maxTokens: int = 256 """The maximum number of tokens to generate in the completion.""" minTokens: int = 0 """The minimum number of tokens to generate in the completion.""" topP: float = 1.0 """Total probability mass of tokens to consider at each step."""
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/ai21.html
971b3a05b6c6-1
"""Total probability mass of tokens to consider at each step.""" presencePenalty: AI21PenaltyData = AI21PenaltyData() """Penalizes repeated tokens.""" countPenalty: AI21PenaltyData = AI21PenaltyData() """Penalizes repeated tokens according to count.""" frequencyPenalty: AI21PenaltyData = AI21PenaltyData() """Penalizes repeated tokens according to frequency.""" numResults: int = 1 """How many completions to generate for each prompt.""" logitBias: Optional[Dict[str, float]] = None """Adjust the probability of specific tokens being generated.""" ai21_api_key: Optional[str] = None stop: Optional[List[str]] = None base_url: Optional[str] = None """Base url to use, if None decides based on model name.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" ai21_api_key = get_from_dict_or_env(values, "ai21_api_key", "AI21_API_KEY") values["ai21_api_key"] = ai21_api_key return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling AI21 API.""" return {
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/ai21.html
971b3a05b6c6-2
"""Get the default parameters for calling AI21 API.""" return { "temperature": self.temperature, "maxTokens": self.maxTokens, "minTokens": self.minTokens, "topP": self.topP, "presencePenalty": self.presencePenalty.dict(), "countPenalty": self.countPenalty.dict(), "frequencyPenalty": self.frequencyPenalty.dict(), "numResults": self.numResults, "logitBias": self.logitBias, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "ai21" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to AI21's complete endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/ai21.html
971b3a05b6c6-3
model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = ai21("Tell me a joke.") """ if self.stop is not None and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop is not None: stop = self.stop elif stop is None: stop = [] if self.base_url is not None: base_url = self.base_url else: if self.model in ("j1-grande-instruct",): base_url = "https://api.ai21.com/studio/v1/experimental" else: base_url = "https://api.ai21.com/studio/v1" response = requests.post( url=f"{base_url}/{self.model}/complete",
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/ai21.html
971b3a05b6c6-4
headers={"Authorization": f"Bearer {self.ai21_api_key}"}, json={"prompt": prompt, "stopSequences": stop, **self._default_params}, ) if response.status_code != 200: optional_detail = response.json().get("error") raise ValueError( f"AI21 /complete call failed with status code {response.status_code}." f" Details: {optional_detail}" ) response_json = response.json() return response_json["completions"][0]["data"]["text"] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/ai21.html
751374151eb2-0
Source code for langchain.llms.nlpcloud """Wrapper around NLPCloud APIs.""" from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, root_validator from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env [docs]class NLPCloud(LLM): """Wrapper around NLPCloud large language models. To use, you should have the ``nlpcloud`` python package installed, and the environment variable ``NLPCLOUD_API_KEY`` set with your API key. Example: .. code-block:: python from langchain.llms import NLPCloud nlpcloud = NLPCloud(model="gpt-neox-20b") """ client: Any #: :meta private: model_name: str = "finetuned-gpt-neox-20b" """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" min_length: int = 1 """The minimum number of tokens to generate in the completion.""" max_length: int = 256 """The maximum number of tokens to generate in the completion.""" length_no_input: bool = True """Whether min_length and max_length should include the length of the input.""" remove_input: bool = True """Remove input text from API response""" remove_end_sequence: bool = True """Whether or not to remove the end sequence token.""" bad_words: List[str] = []
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/nlpcloud.html
751374151eb2-1
to remove the end sequence token.""" bad_words: List[str] = [] """List of tokens not allowed to be generated.""" top_p: int = 1 """Total probability mass of tokens to consider at each step.""" top_k: int = 50 """The number of highest probability tokens to keep for top-k filtering.""" repetition_penalty: float = 1.0 """Penalizes repeated tokens. 1.0 means no penalty.""" length_penalty: float = 1.0 """Exponential penalty to the length.""" do_sample: bool = True """Whether to use sampling (True) or greedy decoding.""" num_beams: int = 1 """Number of beams for beam search.""" early_stopping: bool = False """Whether to stop beam search at num_beams sentences.""" num_return_sequences: int = 1 """How many completions to generate for each prompt.""" nlpcloud_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" nlpcloud_api_key = get_from_dict_or_env( values, "nlpcloud_api_key", "NLPCLOUD_API_KEY" ) try:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/nlpcloud.html
751374151eb2-2
) try: import nlpcloud values["client"] = nlpcloud.Client( values["model_name"], nlpcloud_api_key, gpu=True, lang="en" ) except ImportError: raise ValueError( "Could not import nlpcloud python package. " "Please install it with `pip install nlpcloud`." ) return values @property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling NLPCloud API.""" return { "temperature": self.temperature, "min_length": self.min_length, "max_length": self.max_length, "length_no_input": self.length_no_input, "remove_input": self.remove_input, "remove_end_sequence": self.remove_end_sequence, "bad_words": self.bad_words, "top_p": self.top_p,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/nlpcloud.html
751374151eb2-3
"top_p": self.top_p, "top_k": self.top_k, "repetition_penalty": self.repetition_penalty, "length_penalty": self.length_penalty, "do_sample": self.do_sample, "num_beams": self.num_beams, "early_stopping": self.early_stopping, "num_return_sequences": self.num_return_sequences, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "nlpcloud" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call out to NLPCloud's create endpoint. Args: prompt: The prompt to pass into the model. stop: Not supported by this interface (pass in init method) Returns: The string generated by the model.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/nlpcloud.html
751374151eb2-4
The string generated by the model. Example: .. code-block:: python response = nlpcloud("Tell me a joke.") """ if stop and len(stop) > 1: raise ValueError( "NLPCloud only supports a single stop sequence per generation." "Pass in a list of length 1." ) elif stop and len(stop) == 1: end_sequence = stop[0] else: end_sequence = None response = self.client.generation( prompt, end_sequence=end_sequence, **self._default_params ) return response["generated_text"] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/nlpcloud.html
9007509d5654-0
Source code for langchain.llms.bananadev """Wrapper around Banana API.""" import logging from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, Field, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class Banana(LLM): """Wrapper around Banana large language models. To use, you should have the ``banana-dev`` python package installed, and the environment variable ``BANANA_API_KEY`` set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import Banana banana = Banana(model_key="") """ model_key: str = "" """model endpoint to use""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" banana_api_key: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names =
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/bananadev.html
9007509d5654-1
from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" banana_api_key = get_from_dict_or_env( values, "banana_api_key", "BANANA_API_KEY" ) values["banana_api_key"] = banana_api_key return
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/bananadev.html
9007509d5654-2
values["banana_api_key"] = banana_api_key return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_key": self.model_key}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "banana" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call to Banana endpoint.""" try: import banana_dev as banana except ImportError: raise ValueError( "Could not import banana-dev python package. " "Please install it with `pip install banana-dev`." ) params = self.model_kwargs or {} api_key = self.banana_api_key model_key = self.model_key model_inputs = { # a json specific to your model. "prompt": prompt,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/bananadev.html
9007509d5654-3
to your model. "prompt": prompt, **params, } response = banana.run(api_key, model_key, model_inputs) try: text = response["modelOutputs"][0]["output"] except (KeyError, TypeError): returned = response["modelOutputs"][0] raise ValueError( "Response should be of schema: {'output': 'text'}." f"\nResponse was: {returned}" "\nTo fix this:" "\n- fork the source repo of the Banana model" "\n- modify app.py to return the above schema" "\n- deploy that as a custom repo" ) if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/bananadev.html
9007509d5654-4
stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/bananadev.html
b651dd6b2fbb-0
Source code for langchain.llms.cerebriumai """Wrapper around CerebriumAI API.""" import logging from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, Field, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class CerebriumAI(LLM): """Wrapper around CerebriumAI large language models. To use, you should have the ``cerebrium`` python package installed, and the environment variable ``CEREBRIUMAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import CerebriumAI cerebrium = CerebriumAI(endpoint_url="") """ endpoint_url: str = "" """model endpoint to use""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" cerebriumai_api_key: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/cerebriumai.html
b651dd6b2fbb-1
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" cerebriumai_api_key = get_from_dict_or_env( values, "cerebriumai_api_key",
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/cerebriumai.html
b651dd6b2fbb-2
values, "cerebriumai_api_key", "CEREBRIUMAI_API_KEY" ) values["cerebriumai_api_key"] = cerebriumai_api_key return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"endpoint_url": self.endpoint_url}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "cerebriumai" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call to CerebriumAI endpoint.""" try: from cerebrium import model_api_request except ImportError: raise ValueError( "Could not import cerebrium python package. " "Please install it with `pip install cerebrium`." ) params = self.model_kwargs or {} response = model_api_request(
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/cerebriumai.html
b651dd6b2fbb-3
params = self.model_kwargs or {} response = model_api_request( self.endpoint_url, {"prompt": prompt, **params}, self.cerebriumai_api_key ) text = response["data"]["result"] if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/cerebriumai.html
6a8ab0e22a04-0
Source code for langchain.llms.petals """Wrapper around Petals API.""" import logging from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, Field, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class Petals(LLM): """Wrapper around Petals Bloom models. To use, you should have the ``petals`` python package installed, and the environment variable ``HUGGINGFACE_API_KEY`` set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import petals petals = Petals() """ client: Any """The client to use for the API calls.""" tokenizer: Any """The tokenizer to use for the API calls.""" model_name: str = "bigscience/bloom-petals" """The model to use.""" temperature: float = 0.7 """What sampling temperature to use""" max_new_tokens: int = 256 """The maximum number of new tokens to generate in the completion.""" top_p: float = 0.9 """The cumulative probability for top-p sampling.""" top_k: Optional[int] = None """The number of highest probability vocabulary tokens
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/petals.html
6a8ab0e22a04-1
Optional[int] = None """The number of highest probability vocabulary tokens to keep for top-k-filtering.""" do_sample: bool = True """Whether or not to use sampling; use greedy decoding otherwise.""" max_length: Optional[int] = None """The maximum length of the sequence to be generated.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" huggingface_api_key: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""WARNING! {field_name} is not default parameter.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/petals.html
6a8ab0e22a04-2
f"""WARNING! {field_name} is not default parameter. {field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingface_api_key = get_from_dict_or_env( values, "huggingface_api_key", "HUGGINGFACE_API_KEY" ) try: from petals import DistributedBloomForCausalLM from transformers import BloomTokenizerFast model_name = values["model_name"] values["tokenizer"] = BloomTokenizerFast.from_pretrained(model_name) values["client"] = DistributedBloomForCausalLM.from_pretrained(model_name) values["huggingface_api_key"] = huggingface_api_key except ImportError:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/petals.html
6a8ab0e22a04-3
= huggingface_api_key except ImportError: raise ValueError( "Could not import transformers or petals python package." "Please install with `pip install -U transformers petals`." ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Petals API.""" normal_params = { "temperature": self.temperature, "max_new_tokens": self.max_new_tokens, "top_p": self.top_p, "top_k": self.top_k, "do_sample": self.do_sample, "max_length": self.max_length, } return {**normal_params, **self.model_kwargs} @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "petals"
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/petals.html
6a8ab0e22a04-4
"""Return type of llm.""" return "petals" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call the Petals API.""" params = self._default_params inputs = self.tokenizer(prompt, return_tensors="pt")["input_ids"] outputs = self.client.generate(inputs, **params) text = self.tokenizer.decode(outputs[0]) if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/petals.html
f4b05c8f6608-0
Source code for langchain.llms.llamacpp """Wrapper around llama.cpp.""" import logging from typing import Any, Dict, List, Optional from pydantic import Field, root_validator from langchain.llms.base import LLM logger = logging.getLogger(__name__) [docs]class LlamaCpp(LLM): """Wrapper around the llama.cpp model. To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor. Check out: https://github.com/abetlen/llama-cpp-python Example: .. code-block:: python from langchain.llms import LlamaCppEmbeddings llm = LlamaCppEmbeddings(model_path="/path/to/llama/model") """ client: Any #: :meta private: model_path: str """The path to the Llama model file.""" n_ctx: int = Field(512, alias="n_ctx") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(-1, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/llamacpp.html
f4b05c8f6608-1
logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" n_threads: Optional[int] = Field(None, alias="n_threads") """Number of threads to use. If None, the number of threads is automatically determined.""" n_batch: Optional[int] = Field(8, alias="n_batch") """Number of tokens to process in parallel. Should be a number between 1 and n_ctx.""" suffix: Optional[str] = Field(None) """A suffix to append to the generated text. If None, no suffix is appended.""" max_tokens: Optional[int] = 256 """The maximum number of tokens to generate.""" temperature: Optional[float] = 0.8 """The temperature to use for sampling.""" top_p: Optional[float] = 0.95 """The top-p value to use for sampling.""" logprobs: Optional[int] = Field(None) """The number of logprobs to return. If None, no logprobs are returned.""" echo: Optional[bool] = False """Whether to echo the prompt.""" stop: Optional[List[str]] = [] """A list of strings to stop generation when encountered.""" repeat_penalty: Optional[float] = 1.1 """The penalty to apply to repeated tokens."""
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/llamacpp.html
f4b05c8f6608-2
= 1.1 """The penalty to apply to repeated tokens.""" top_k: Optional[int] = 40 """The top-k value to use for sampling.""" last_n_tokens_size: Optional[int] = 64 """The number of tokens to look back when applying the repeat_penalty.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that llama-cpp-python library is installed.""" model_path = values["model_path"] n_ctx = values["n_ctx"] n_parts = values["n_parts"] seed = values["seed"] f16_kv = values["f16_kv"] logits_all = values["logits_all"] vocab_only = values["vocab_only"] use_mlock = values["use_mlock"] n_threads = values["n_threads"] n_batch = values["n_batch"] last_n_tokens_size = values["last_n_tokens_size"] try: from llama_cpp import Llama values["client"] = Llama( model_path=model_path, n_ctx=n_ctx, n_parts=n_parts,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/llamacpp.html
f4b05c8f6608-3
n_parts=n_parts, seed=seed, f16_kv=f16_kv, logits_all=logits_all, vocab_only=vocab_only, use_mlock=use_mlock, n_threads=n_threads, n_batch=n_batch, last_n_tokens_size=last_n_tokens_size, ) except ImportError: raise ModuleNotFoundError( "Could not import llama-cpp-python library. " "Please install the llama-cpp-python library to " "use this embedding model: pip install llama-cpp-python" ) except Exception: raise NameError(f"Could not load Llama model from path: {model_path}") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/llamacpp.html
f4b05c8f6608-4
-> Dict[str, Any]: """Get the default parameters for calling llama_cpp.""" return { "suffix": self.suffix, "max_tokens": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, "logprobs": self.logprobs, "echo": self.echo, "stop_sequences": self.stop, "repeat_penalty": self.repeat_penalty, "top_k": self.top_k, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model_path": self.model_path}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "llama.cpp" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call the Llama model and return the output. Args: prompt: The prompt to use for generation. stop: A list of strings
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/llamacpp.html
f4b05c8f6608-5
for generation. stop: A list of strings to stop generation when encountered. Returns: The generated text. Example: .. code-block:: python from langchain.llms import LlamaCppEmbeddings llm = LlamaCppEmbeddings(model_path="/path/to/local/llama/model.bin") llm("This is a prompt.") """ params = self._default_params if self.stop and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop: params["stop_sequences"] = self.stop elif stop: params["stop_sequences"] = stop else: params["stop_sequences"] = [] """Call the Llama model and return the output.""" text = self.client( prompt=prompt, max_tokens=params["max_tokens"], temperature=params["temperature"],
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/llamacpp.html
f4b05c8f6608-6
temperature=params["temperature"], top_p=params["top_p"], logprobs=params["logprobs"], echo=params["echo"], stop=params["stop_sequences"], repeat_penalty=params["repeat_penalty"], top_k=params["top_k"], ) return text["choices"][0]["text"] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/llamacpp.html
aa9e14aed2c7-0
Source code for langchain.llms.gooseai """Wrapper around GooseAI API.""" import logging from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, Field, root_validator from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class GooseAI(LLM): """Wrapper around OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``GOOSEAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import GooseAI gooseai = GooseAI(model_name="gpt-neo-20b") """ client: Any model_name: str = "gpt-neo-20b" """Model name to use""" temperature: float = 0.7 """What sampling temperature to use""" max_tokens: int = 256 """The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size.""" top_p: float = 1 """Total probability mass of tokens to consider at each step.""" min_tokens: int = 1 """The minimum number of tokens to generate in the completion."""
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/gooseai.html
aa9e14aed2c7-1
"""The minimum number of tokens to generate in the completion.""" frequency_penalty: float = 0 """Penalizes repeated tokens according to frequency.""" presence_penalty: float = 0 """Penalizes repeated tokens.""" n: int = 1 """How many completions to generate for each prompt.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict) """Adjust the probability of specific tokens being generated.""" gooseai_api_key: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.ignore @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning(
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/gooseai.html
aa9e14aed2c7-2
logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" gooseai_api_key = get_from_dict_or_env( values, "gooseai_api_key", "GOOSEAI_API_KEY" ) try: import openai openai.api_key = gooseai_api_key openai.api_base = "https://api.goose.ai/v1" values["client"] = openai.Completion except ImportError: raise ValueError(
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/gooseai.html
aa9e14aed2c7-3
raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`." ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling GooseAI API.""" normal_params = { "temperature": self.temperature, "max_tokens": self.max_tokens, "top_p": self.top_p, "min_tokens": self.min_tokens, "frequency_penalty": self.frequency_penalty, "presence_penalty": self.presence_penalty, "n": self.n, "logit_bias": self.logit_bias, } return {**normal_params, **self.model_kwargs} @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm."""
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/gooseai.html
aa9e14aed2c7-4
-> str: """Return type of llm.""" return "gooseai" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call the GooseAI API.""" params = self._default_params if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop response = self.client.create(engine=self.model_name, prompt=prompt, **params) text = response.choices[0].text return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/gooseai.html
fc9f7914a641-0
Source code for langchain.llms.modal """Wrapper around Modal API.""" import logging from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, Field, root_validator from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens logger = logging.getLogger(__name__) [docs]class Modal(LLM): """Wrapper around Modal large language models. To use, you should have the ``modal-client`` python package installed. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import Modal modal = Modal(endpoint_url="") """ endpoint_url: str = "" """model endpoint to use""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values):
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/modal.html
fc9f7914a641-1
{}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"endpoint_url": self.endpoint_url}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "modal" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/modal.html
fc9f7914a641-2
str, stop: Optional[List[str]] = None) -> str: """Call to Modal endpoint.""" params = self.model_kwargs or {} response = requests.post( url=self.endpoint_url, headers={ "Content-Type": "application/json", }, json={"prompt": prompt, **params}, ) try: if prompt in response.json()["prompt"]: response_json = response.json() except KeyError: raise ValueError("LangChain requires 'prompt' key in response.") text = response_json["prompt"] if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/modal.html
3f3f9f4e9a2b-0
Source code for langchain.llms.promptlayer_openai """PromptLayer wrapper.""" import datetime from typing import List, Optional from langchain.llms import OpenAI, OpenAIChat from langchain.schema import LLMResult [docs]class PromptLayerOpenAI(OpenAI): """Wrapper around OpenAI large language models. To use, you should have the ``openai`` and ``promptlayer`` python package installed, and the environment variable ``OPENAI_API_KEY`` and ``PROMPTLAYER_API_KEY`` set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAI LLM can also be passed here. The PromptLayerOpenAI LLM adds two optional parameters: ``pl_tags``: List of strings to tag the request with. ``return_pl_id``: If True, the PromptLayer request ID will be returned in the ``generation_info`` field of the ``Generation`` object. Example: .. code-block:: python from langchain.llms import PromptLayerOpenAI openai = PromptLayerOpenAI(model_name="text-davinci-003") """ pl_tags: Optional[List[str]] return_pl_id: Optional[bool] = False def _generate( self, prompts: List[str], stop: Optional[List[str]] = None ) -> LLMResult:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/promptlayer_openai.html
3f3f9f4e9a2b-1
stop: Optional[List[str]] = None ) -> LLMResult: """Call OpenAI generate and then call PromptLayer API to log the request.""" from promptlayer.utils import get_api_key, promptlayer_api_request request_start_time = datetime.datetime.now().timestamp() generated_responses = super()._generate(prompts, stop) request_end_time = datetime.datetime.now().timestamp() for i in range(len(prompts)): prompt = prompts[i] generation = generated_responses.generations[i][0] resp = { "text": generation.text, "llm_output": generated_responses.llm_output, } pl_request_id = promptlayer_api_request( "langchain.PromptLayerOpenAI", "langchain", [prompt], self._identifying_params, self.pl_tags, resp, request_start_time,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/promptlayer_openai.html
3f3f9f4e9a2b-2
request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None ) -> LLMResult: from promptlayer.utils import get_api_key, promptlayer_api_request_async request_start_time = datetime.datetime.now().timestamp() generated_responses = await super()._agenerate(prompts, stop) request_end_time = datetime.datetime.now().timestamp() for i in range(len(prompts)): prompt = prompts[i] generation =
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/promptlayer_openai.html
3f3f9f4e9a2b-3
prompt = prompts[i] generation = generated_responses.generations[i][0] resp = { "text": generation.text, "llm_output": generated_responses.llm_output, } pl_request_id = await promptlayer_api_request_async( "langchain.PromptLayerOpenAI.async", "langchain", [prompt], self._identifying_params, self.pl_tags, resp, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance(
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/promptlayer_openai.html
3f3f9f4e9a2b-4
generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses [docs]class PromptLayerOpenAIChat(OpenAIChat): """Wrapper around OpenAI large language models. To use, you should have the ``openai`` and ``promptlayer`` python package installed, and the environment variable ``OPENAI_API_KEY`` and ``PROMPTLAYER_API_KEY`` set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAIChat LLM can also be passed here. The PromptLayerOpenAIChat adds two optional parameters: ``pl_tags``: List of strings to tag the request with. ``return_pl_id``: If True, the PromptLayer request ID will be returned in the ``generation_info`` field of the ``Generation`` object. Example: .. code-block:: python from langchain.llms import PromptLayerOpenAIChat openaichat = PromptLayerOpenAIChat(model_name="gpt-3.5-turbo")
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/promptlayer_openai.html
3f3f9f4e9a2b-5
= PromptLayerOpenAIChat(model_name="gpt-3.5-turbo") """ pl_tags: Optional[List[str]] return_pl_id: Optional[bool] = False def _generate( self, prompts: List[str], stop: Optional[List[str]] = None ) -> LLMResult: """Call OpenAI generate and then call PromptLayer API to log the request.""" from promptlayer.utils import get_api_key, promptlayer_api_request request_start_time = datetime.datetime.now().timestamp() generated_responses = super()._generate(prompts, stop) request_end_time = datetime.datetime.now().timestamp() for i in range(len(prompts)): prompt = prompts[i] generation = generated_responses.generations[i][0] resp = { "text": generation.text, "llm_output": generated_responses.llm_output, } pl_request_id = promptlayer_api_request( "langchain.PromptLayerOpenAIChat", "langchain", [prompt],
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/promptlayer_openai.html
3f3f9f4e9a2b-6
[prompt], self._identifying_params, self.pl_tags, resp, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None ) -> LLMResult: from promptlayer.utils import get_api_key, promptlayer_api_request_async request_start_time = datetime.datetime.now().timestamp() generated_responses = await
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/promptlayer_openai.html