id
stringlengths 14
16
| text
stringlengths 29
2.31k
| source
stringlengths 57
122
|
---|---|---|
7e255b2afc59-9
|
chunk_ids = input_ids[start_idx:cur_idx]
return splits
[docs]class RecursiveCharacterTextSplitter(TextSplitter):
"""Implementation of splitting text that looks at characters.
Recursively tries to split by different characters to find one
that works.
"""
def __init__(self, separators: Optional[List[str]] = None, **kwargs: Any):
"""Create a new TextSplitter."""
super().__init__(**kwargs)
self._separators = separators or ["\n\n", "\n", " ", ""]
[docs] def split_text(self, text: str) -> List[str]:
"""Split incoming text and return chunks."""
final_chunks = []
# Get appropriate separator to use
separator = self._separators[-1]
for _s in self._separators:
if _s == "":
separator = _s
break
if _s in text:
separator = _s
break
# Now that we have the separator, split the text
if separator:
splits =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/text_splitter.html
|
7e255b2afc59-10
|
if separator:
splits = text.split(separator)
else:
splits = list(text)
# Now go merging things, recursively splitting longer texts.
_good_splits = []
for s in splits:
if self._length_function(s) < self._chunk_size:
_good_splits.append(s)
else:
if _good_splits:
merged_text = self._merge_splits(_good_splits, separator)
final_chunks.extend(merged_text)
_good_splits = []
other_info = self.split_text(s)
final_chunks.extend(other_info)
if _good_splits:
merged_text = self._merge_splits(_good_splits, separator)
final_chunks.extend(merged_text)
return final_chunks
[docs]class NLTKTextSplitter(TextSplitter):
"""Implementation of splitting text that looks at sentences using NLTK."""
def __init__(self, separator:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/text_splitter.html
|
7e255b2afc59-11
|
text that looks at sentences using NLTK."""
def __init__(self, separator: str = "\n\n", **kwargs: Any):
"""Initialize the NLTK splitter."""
super().__init__(**kwargs)
try:
from nltk.tokenize import sent_tokenize
self._tokenizer = sent_tokenize
except ImportError:
raise ImportError(
"NLTK is not installed, please install it with `pip install nltk`."
)
self._separator = separator
[docs] def split_text(self, text: str) -> List[str]:
"""Split incoming text and return chunks."""
# First we naively split the large input into a bunch of smaller ones.
splits = self._tokenizer(text)
return self._merge_splits(splits, self._separator)
[docs]class SpacyTextSplitter(TextSplitter):
"""Implementation of splitting text that looks at sentences using Spacy."""
def __init__(
self, separator: str = "\n\n", pipeline: str = "en_core_web_sm", **kwargs: Any
):
"""Initialize the spacy text splitter."""
super().__init__(**kwargs)
try:
import spacy
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/text_splitter.html
|
7e255b2afc59-12
|
try:
import spacy
except ImportError:
raise ImportError(
"Spacy is not installed, please install it with `pip install spacy`."
)
self._tokenizer = spacy.load(pipeline)
self._separator = separator
[docs] def split_text(self, text: str) -> List[str]:
"""Split incoming text and return chunks."""
splits = (str(s) for s in self._tokenizer(text).sents)
return self._merge_splits(splits, self._separator)
[docs]class MarkdownTextSplitter(RecursiveCharacterTextSplitter):
"""Attempts to split the text along Markdown-formatted headings."""
def __init__(self, **kwargs: Any):
"""Initialize a MarkdownTextSplitter."""
separators = [
# First, try to split along Markdown headings (starting with level 2)
"\n## ",
"\n### ",
"\n#### ",
"\n##### ",
"\n###### ",
# Note the alternative syntax for headings (below) is not handled here
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/text_splitter.html
|
7e255b2afc59-13
|
the alternative syntax for headings (below) is not handled here
# Heading level 2
# ---------------
# End of code block
"```\n\n",
# Horizontal lines
"\n\n***\n\n",
"\n\n---\n\n",
"\n\n___\n\n",
# Note that this splitter doesn't handle horizontal lines defined
# by *three or more* of ***, ---, or ___, but this is not handled
"\n\n",
"\n",
" ",
"",
]
super().__init__(separators=separators, **kwargs)
[docs]class LatexTextSplitter(RecursiveCharacterTextSplitter):
"""Attempts to split the text along Latex-formatted layout elements."""
def __init__(self, **kwargs: Any):
"""Initialize a LatexTextSplitter."""
separators = [
# First, try to split along Latex sections
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/text_splitter.html
|
7e255b2afc59-14
|
try to split along Latex sections
"\n\\chapter{",
"\n\\section{",
"\n\\subsection{",
"\n\\subsubsection{",
# Now split by environments
"\n\\begin{enumerate}",
"\n\\begin{itemize}",
"\n\\begin{description}",
"\n\\begin{list}",
"\n\\begin{quote}",
"\n\\begin{quotation}",
"\n\\begin{verse}",
"\n\\begin{verbatim}",
## Now split by math environments
"\n\\begin{align}",
"$$",
"$",
# Now split by the normal type of lines
" ",
"",
]
super().__init__(separators=separators, **kwargs)
[docs]class PythonCodeTextSplitter(RecursiveCharacterTextSplitter):
"""Attempts
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/text_splitter.html
|
7e255b2afc59-15
|
PythonCodeTextSplitter(RecursiveCharacterTextSplitter):
"""Attempts to split the text along Python syntax."""
def __init__(self, **kwargs: Any):
"""Initialize a MarkdownTextSplitter."""
separators = [
# First, try to split along class definitions
"\nclass ",
"\ndef ",
"\n\tdef ",
# Now split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
super().__init__(separators=separators, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/text_splitter.html
|
89de1ea8bdf0-0
|
Source code for langchain.embeddings.huggingface_hub
"""Wrapper around HuggingFace Hub embedding models."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
DEFAULT_REPO_ID = "sentence-transformers/all-mpnet-base-v2"
VALID_TASKS = ("feature-extraction",)
[docs]class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
"""Wrapper around HuggingFaceHub embedding models.
To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import HuggingFaceHubEmbeddings
repo_id = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceHubEmbeddings(
repo_id=repo_id,
task="feature-extraction",
huggingfacehub_api_token="my-api-key",
)
"""
client: Any #: :meta private:
repo_id: str = DEFAULT_REPO_ID
"""Model name to use."""
task: Optional[str] = "feature-extraction"
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/huggingface_hub.html
|
89de1ea8bdf0-1
|
name to use."""
task: Optional[str] = "feature-extraction"
"""Task to call the model with."""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model."""
huggingfacehub_api_token: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingfacehub_api_token = get_from_dict_or_env(
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
)
try:
from huggingface_hub.inference_api import InferenceApi
repo_id = values["repo_id"]
if not repo_id.startswith("sentence-transformers"):
raise ValueError(
"Currently only 'sentence-transformers' embedding models "
f"are supported. Got invalid 'repo_id' {repo_id}."
)
client = InferenceApi(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/huggingface_hub.html
|
89de1ea8bdf0-2
|
client = InferenceApi(
repo_id=repo_id,
token=huggingfacehub_api_token,
task=values.get("task"),
)
if client.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {client.task}, "
f"currently only {VALID_TASKS} are supported"
)
values["client"] = client
except ImportError:
raise ValueError(
"Could not import huggingface_hub python package. "
"Please install it with `pip install huggingface_hub`."
)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to HuggingFaceHub's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/huggingface_hub.html
|
89de1ea8bdf0-3
|
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
# replace newlines, which can negatively affect performance.
texts = [text.replace("\n", " ") for text in texts]
_model_kwargs = self.model_kwargs or {}
responses = self.client(inputs=texts, params=_model_kwargs)
return responses
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to HuggingFaceHub's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
response = self.embed_documents([text])[0]
return response
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/huggingface_hub.html
|
ae9c3edac526-0
|
Source code for langchain.embeddings.self_hosted
"""Running custom embedding models on self-hosted remote hardware."""
from typing import Any, Callable, List
from pydantic import Extra
from langchain.embeddings.base import Embeddings
from langchain.llms import SelfHostedPipeline
def _embed_documents(pipeline: Any, *args: Any, **kwargs: Any) -> List[List[float]]:
"""Inference function to send to the remote hardware.
Accepts a sentence_transformer model_id and
returns a list of embeddings for each document in the batch.
"""
return pipeline(*args, **kwargs)
[docs]class SelfHostedEmbeddings(SelfHostedPipeline, Embeddings):
"""Runs custom embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another
cloud like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example using a model load function:
.. code-block:: python
from langchain.embeddings import SelfHostedEmbeddings
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import runhouse as rh
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
def get_pipeline():
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/self_hosted.html
|
ae9c3edac526-1
|
def get_pipeline():
model_id = "facebook/bart-large"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
return pipeline("feature-extraction", model=model, tokenizer=tokenizer)
embeddings = SelfHostedEmbeddings(
model_load_fn=get_pipeline,
hardware=gpu
model_reqs=["./", "torch", "transformers"],
)
Example passing in a pipeline path:
.. code-block:: python
from langchain.embeddings import SelfHostedHFEmbeddings
import runhouse as rh
from transformers import pipeline
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
pipeline = pipeline(model="bert-base-uncased", task="feature-extraction")
rh.blob(pickle.dumps(pipeline),
path="models/pipeline.pkl").save().to(gpu,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/self_hosted.html
|
ae9c3edac526-2
|
path="models/pipeline.pkl").save().to(gpu, path="models")
embeddings = SelfHostedHFEmbeddings.from_pipeline(
pipeline="models/pipeline.pkl",
hardware=gpu,
model_reqs=["./", "torch", "transformers"],
)
"""
inference_fn: Callable = _embed_documents
"""Inference function to extract the embeddings on the remote hardware."""
inference_kwargs: Any = None
"""Any kwargs to pass to the model's inference function."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.s
Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = self.client(self.pipeline_ref, texts)
if not isinstance(embeddings, list):
return embeddings.tolist()
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/self_hosted.html
|
ae9c3edac526-3
|
return embeddings.tolist()
return embeddings
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embeddings = self.client(self.pipeline_ref, text)
if not isinstance(embeddings, list):
return embeddings.tolist()
return embeddings
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/self_hosted.html
|
9e11476ee078-0
|
Source code for langchain.embeddings.sagemaker_endpoint
"""Wrapper around Sagemaker InvokeEndpoint API."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.embeddings.base import Embeddings
from langchain.llms.sagemaker_endpoint import ContentHandlerBase
[docs]class SagemakerEndpointEmbeddings(BaseModel, Embeddings):
"""Wrapper around custom Sagemaker Inference Endpoints.
To use, you must supply the endpoint name from your deployed
Sagemaker model & the region where it is deployed.
To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to
access the Sagemaker endpoint.
See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
"""
"""
Example:
.. code-block:: python
from langchain.embeddings import SagemakerEndpointEmbeddings
endpoint_name = (
"my-endpoint-name"
)
region_name = (
"us-west-2"
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
|
9e11476ee078-1
|
"us-west-2"
)
credentials_profile_name = (
"default"
)
se = SagemakerEndpointEmbeddings(
endpoint_name=endpoint_name,
region_name=region_name,
credentials_profile_name=credentials_profile_name
)
"""
client: Any #: :meta private:
endpoint_name: str = ""
"""The name of the endpoint from the deployed Sagemaker model.
Must be unique within an AWS Region."""
region_name: str = ""
"""The aws region where the Sagemaker model is deployed, eg. `us-west-2`."""
credentials_profile_name: Optional[str] = None
"""The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
has either access keys or role information specified.
If not specified, the default credential profile or, if on an EC2 instance,
credentials from IMDS will be used.
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
"""
content_handler: ContentHandlerBase
"""The content handler class that provides an input and
output transform functions to handle formats between LLM
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
|
9e11476ee078-2
|
an input and
output transform functions to handle formats between LLM
and the endpoint.
"""
"""
Example:
.. code-block:: python
from langchain.llms.sagemaker_endpoint import ContentHandlerBase
class ContentHandler(ContentHandlerBase):
content_type = "application/json"
accepts = "application/json"
def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes:
input_str = json.dumps({prompt: prompt, **model_kwargs})
return input_str.encode('utf-8')
def transform_output(self, output: bytes) -> str:
response_json = json.loads(output.read().decode("utf-8"))
return response_json[0]["generated_text"]
"""
model_kwargs: Optional[Dict] = None
"""Key word arguments to pass to the model."""
endpoint_kwargs: Optional[Dict] = None
"""Optional attributes passed to the invoke_endpoint
function. See
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
|
9e11476ee078-3
|
None
"""Optional attributes passed to the invoke_endpoint
function. See `boto3`_. docs for more info.
.. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html>
"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that AWS credentials to and python package exists in environment."""
try:
import boto3
try:
if values["credentials_profile_name"] is not None:
session = boto3.Session(
profile_name=values["credentials_profile_name"]
)
else:
# use default credentials
session = boto3.Session()
values["client"] = session.client(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
|
9e11476ee078-4
|
"sagemaker-runtime", region_name=values["region_name"]
)
except Exception as e:
raise ValueError(
"Could not load credentials to authenticate with AWS client. "
"Please check that credentials in the specified "
"profile name are valid."
) from e
except ImportError:
raise ValueError(
"Could not import boto3 python package. "
"Please install it with `pip install boto3`."
)
return values
def _embedding_func(self, texts: List[str]) -> List[float]:
"""Call out to SageMaker Inference embedding endpoint."""
# replace newlines, which can negatively affect performance.
texts = list(map(lambda x: x.replace("\n", " "), texts))
_model_kwargs = self.model_kwargs or {}
_endpoint_kwargs = self.endpoint_kwargs or {}
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
|
9e11476ee078-5
|
_endpoint_kwargs = self.endpoint_kwargs or {}
body = self.content_handler.transform_input(texts, _model_kwargs)
content_type = self.content_handler.content_type
accepts = self.content_handler.accepts
# send request
try:
response = self.client.invoke_endpoint(
EndpointName=self.endpoint_name,
Body=body,
ContentType=content_type,
Accept=accepts,
**_endpoint_kwargs,
)
except Exception as e:
raise ValueError(f"Error raised by inference endpoint: {e}")
return self.content_handler.transform_output(response["Body"])
[docs] def embed_documents(
self, texts: List[str], chunk_size: int = 64
) -> List[List[float]]:
"""Compute doc embeddings using a SageMaker Inference Endpoint.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size defines how many input texts will
be grouped together as
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
|
9e11476ee078-6
|
be grouped together as request. If None, will use the
chunk size specified by the class.
Returns:
List of embeddings, one for each text.
"""
results = []
_chunk_size = len(texts) if chunk_size > len(texts) else chunk_size
for i in range(0, len(texts), _chunk_size):
response = self._embedding_func(texts[i : i + _chunk_size])
results.append(response)
return results
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a SageMaker inference endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self._embedding_func([text])
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
|
d04568bafccf-0
|
Source code for langchain.embeddings.tensorflow_hub
"""Wrapper around TensorflowHub embedding models."""
from typing import Any, List
from pydantic import BaseModel, Extra
from langchain.embeddings.base import Embeddings
DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
[docs]class TensorflowHubEmbeddings(BaseModel, Embeddings):
"""Wrapper around tensorflow_hub embedding models.
To use, you should have the ``tensorflow_text`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import TensorflowHubEmbeddings
url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
tf = TensorflowHubEmbeddings(model_url=url)
"""
embed: Any #: :meta private:
model_url: str = DEFAULT_MODEL_URL
"""Model name to use."""
def __init__(self, **kwargs: Any):
"""Initialize the tensorflow_hub and tensorflow_text."""
super().__init__(**kwargs)
try:
import tensorflow_hub
import tensorflow_text # noqa
self.embed = tensorflow_hub.load(self.model_url)
except ImportError as e:
raise ValueError(
"Could not import some python packages."
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/tensorflow_hub.html
|
d04568bafccf-1
|
"Could not import some python packages." "Please install them."
) from e
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a TensorflowHub embedding model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = self.embed(texts).numpy()
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a TensorflowHub embedding model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding = self.embed(text).numpy()[0]
return embedding.tolist()
By Harrison Chase
© Copyright 2023, Harrison Chase.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/tensorflow_hub.html
|
d04568bafccf-2
|
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/tensorflow_hub.html
|
2bfe8ee3921c-0
|
Source code for langchain.embeddings.self_hosted_hugging_face
"""Wrapper around HuggingFace embedding models for self-hosted remote hardware."""
import importlib
import logging
from typing import Any, Callable, List, Optional
from langchain.embeddings.self_hosted import SelfHostedEmbeddings
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
"Represent the question for retrieving supporting documents: "
)
logger = logging.getLogger(__name__)
def _embed_documents(client: Any, *args: Any, **kwargs: Any) -> List[List[float]]:
"""Inference function to send to the remote hardware.
Accepts a sentence_transformer model_id and
returns a list of embeddings for each document in the batch.
"""
return client.encode(*args, **kwargs)
def load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) -> Any:
"""Load the embedding model."""
if not instruct:
import sentence_transformers
client = sentence_transformers.SentenceTransformer(model_id)
else:
from InstructorEmbedding import INSTRUCTOR
client = INSTRUCTOR(model_id)
if importlib.util.find_spec("torch") is not None:
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
|
2bfe8ee3921c-1
|
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
client = client.to(device)
return client
[docs]class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings):
"""Runs sentence_transformers embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another cloud
like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
|
2bfe8ee3921c-2
|
you should have the ``runhouse`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import SelfHostedHuggingFaceEmbeddings
import runhouse as rh
model_name = "sentence-transformers/all-mpnet-base-v2"
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu)
"""
client: Any #: :meta private:
model_id: str = DEFAULT_MODEL_NAME
"""Model name to use."""
model_reqs: List[str] = ["./", "sentence_transformers", "torch"]
"""Requirements to install on hardware to inference the model."""
hardware: Any
"""Remote hardware to send the inference function to."""
model_load_fn: Callable = load_embedding_model
"""Function to load the model remotely on the server."""
load_fn_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model load function."""
inference_fn: Callable = _embed_documents
"""Inference function to extract the embeddings."""
def __init__(self, **kwargs: Any):
"""Initialize the remote inference function."""
load_fn_kwargs = kwargs.pop("load_fn_kwargs", {})
load_fn_kwargs["model_id"] =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
|
2bfe8ee3921c-3
|
{})
load_fn_kwargs["model_id"] = load_fn_kwargs.get("model_id", DEFAULT_MODEL_NAME)
load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", False)
load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0)
super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs)
[docs]class SelfHostedHuggingFaceInstructEmbeddings(SelfHostedHuggingFaceEmbeddings):
"""Runs InstructorEmbedding embedding models on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another
cloud like Paperspace, Coreweave, etc.).
To use, you should have the ``runhouse`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import SelfHostedHuggingFaceInstructEmbeddings
import runhouse as rh
model_name = "hkunlp/instructor-large"
gpu = rh.cluster(name='rh-a10x', instance_type='A100:1')
hf = SelfHostedHuggingFaceInstructEmbeddings(
model_name=model_name, hardware=gpu)
"""
model_id: str =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
|
2bfe8ee3921c-4
|
hardware=gpu)
"""
model_id: str = DEFAULT_INSTRUCT_MODEL
"""Model name to use."""
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
"""Instruction to use for embedding documents."""
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
"""Instruction to use for embedding query."""
model_reqs: List[str] = ["./", "InstructorEmbedding", "torch"]
"""Requirements to install on hardware to inference the model."""
def __init__(self, **kwargs: Any):
"""Initialize the remote inference function."""
load_fn_kwargs = kwargs.pop("load_fn_kwargs", {})
load_fn_kwargs["model_id"] = load_fn_kwargs.get(
"model_id", DEFAULT_INSTRUCT_MODEL
)
load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", True)
load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0)
super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs)
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace instruct model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = []
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
|
2bfe8ee3921c-5
|
"""
instruction_pairs = []
for text in texts:
instruction_pairs.append([self.embed_instruction, text])
embeddings = self.client(self.pipeline_ref, instruction_pairs)
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace instruct model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = [self.query_instruction, text]
embedding = self.client(self.pipeline_ref, [instruction_pair])[0]
return embedding.tolist()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
|
6c118eb549eb-0
|
Source code for langchain.embeddings.cohere
"""Wrapper around Cohere embedding models."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
[docs]class CohereEmbeddings(BaseModel, Embeddings):
"""Wrapper around Cohere embedding models.
To use, you should have the ``cohere`` python package installed, and the
environment variable ``COHERE_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import CohereEmbeddings
cohere = CohereEmbeddings(model="medium", cohere_api_key="my-api-key")
"""
client: Any #: :meta private:
model: str = "large"
"""Model name to use."""
truncate: Optional[str] = None
"""Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")"""
cohere_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
cohere_api_key = get_from_dict_or_env(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/cohere.html
|
6c118eb549eb-1
|
= get_from_dict_or_env(
values, "cohere_api_key", "COHERE_API_KEY"
)
try:
import cohere
values["client"] = cohere.Client(cohere_api_key)
except ImportError:
raise ValueError(
"Could not import cohere python package. "
"Please install it with `pip install cohere`."
)
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Cohere's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = self.client.embed(
model=self.model, texts=texts, truncate=self.truncate
).embeddings
return [list(map(float, e)) for e in embeddings]
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to Cohere's embedding endpoint.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/cohere.html
|
6c118eb549eb-2
|
"""Call out to Cohere's embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embedding = self.client.embed(
model=self.model, texts=[text], truncate=self.truncate
).embeddings[0]
return list(map(float, embedding))
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/cohere.html
|
008dc647a574-0
|
Source code for langchain.embeddings.aleph_alpha
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, root_validator
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
[docs]class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings):
"""
Wrapper for Aleph Alpha's Asymmetric Embeddings
AA provides you with an endpoint to embed a document and a query.
The models were optimized to make the embeddings of documents and
the query for a document as similar as possible.
To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/
Example:
.. code-block:: python
from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding
embeddings = AlephAlphaSymmetricSemanticEmbedding()
document = "This is a content of the document"
query = "What is the content of the document?"
doc_result = embeddings.embed_documents([document])
query_result = embeddings.embed_query(query)
"""
client: Any #: :meta private:
model: Optional[str] = "luminous-base"
"""Model name to use."""
hosting: Optional[str] = "https://api.aleph-alpha.com"
"""Optional parameter that specifies which datacenters may process the request."""
normalize: Optional[bool] = True
"""Should returned
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/aleph_alpha.html
|
008dc647a574-1
|
request."""
normalize: Optional[bool] = True
"""Should returned embeddings be normalized"""
compress_to_size: Optional[int] = 128
"""Should the returned embeddings come back as an original 5120-dim vector,
or should it be compressed to 128-dim."""
contextual_control_threshold: Optional[int] = None
"""Attention control parameters only apply to those tokens that have
explicitly been set in the request."""
control_log_additive: Optional[bool] = True
"""Apply controls on prompt items by adding the log(control_factor)
to attention scores."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
aleph_alpha_api_key = get_from_dict_or_env(
values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY"
)
try:
from aleph_alpha_client import Client
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please install it with `pip install aleph_alpha_client`."
)
values["client"] = Client(token=aleph_alpha_api_key)
return values
[docs]
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/aleph_alpha.html
|
008dc647a574-2
|
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Aleph Alpha's asymmetric Document endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
try:
from aleph_alpha_client import (
Prompt,
SemanticEmbeddingRequest,
SemanticRepresentation,
)
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please install it with `pip install aleph_alpha_client`."
)
document_embeddings = []
for text in texts:
document_params = {
"prompt": Prompt.from_text(text),
"representation": SemanticRepresentation.Document,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/aleph_alpha.html
|
008dc647a574-3
|
SemanticRepresentation.Document,
"compress_to_size": self.compress_to_size,
"normalize": self.normalize,
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
}
document_request = SemanticEmbeddingRequest(**document_params)
document_response = self.client.semantic_embed(
request=document_request, model=self.model
)
document_embeddings.append(document_response.embedding)
return document_embeddings
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to Aleph Alpha's asymmetric, query embedding endpoint
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
try:
from aleph_alpha_client import (
Prompt,
SemanticEmbeddingRequest,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/aleph_alpha.html
|
008dc647a574-4
|
SemanticEmbeddingRequest,
SemanticRepresentation,
)
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please install it with `pip install aleph_alpha_client`."
)
symmetric_params = {
"prompt": Prompt.from_text(text),
"representation": SemanticRepresentation.Query,
"compress_to_size": self.compress_to_size,
"normalize": self.normalize,
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
}
symmetric_request = SemanticEmbeddingRequest(**symmetric_params)
symmetric_response = self.client.semantic_embed(
request=symmetric_request, model=self.model
)
return symmetric_response.embedding
[docs]class AlephAlphaSymmetricSemanticEmbedding(AlephAlphaAsymmetricSemanticEmbedding):
"""The symmetric version of the Aleph Alpha's semantic embeddings.
The main difference is that here, both the documents and
queries are
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/aleph_alpha.html
|
008dc647a574-5
|
The main difference is that here, both the documents and
queries are embedded with a SemanticRepresentation.Symmetric
Example:
.. code-block:: python
from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding
embeddings = AlephAlphaAsymmetricSemanticEmbedding()
text = "This is a test text"
doc_result = embeddings.embed_documents([text])
query_result = embeddings.embed_query(text)
"""
def _embed(self, text: str) -> List[float]:
try:
from aleph_alpha_client import (
Prompt,
SemanticEmbeddingRequest,
SemanticRepresentation,
)
except ImportError:
raise ValueError(
"Could not import aleph_alpha_client python package. "
"Please install it with `pip install aleph_alpha_client`."
)
query_params = {
"prompt": Prompt.from_text(text),
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/aleph_alpha.html
|
008dc647a574-6
|
"prompt": Prompt.from_text(text),
"representation": SemanticRepresentation.Symmetric,
"compress_to_size": self.compress_to_size,
"normalize": self.normalize,
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
}
query_request = SemanticEmbeddingRequest(**query_params)
query_response = self.client.semantic_embed(
request=query_request, model=self.model
)
return query_response.embedding
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Aleph Alpha's Document endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
document_embeddings = []
for text in texts:
document_embeddings.append(self._embed(text))
return document_embeddings
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out to Aleph Alpha's asymmetric, query embedding endpoint
Args:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/aleph_alpha.html
|
008dc647a574-7
|
Aleph Alpha's asymmetric, query embedding endpoint
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self._embed(text)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/aleph_alpha.html
|
7636ef739f28-0
|
Source code for langchain.embeddings.huggingface
"""Wrapper around HuggingFace embedding models."""
from typing import Any, List
from pydantic import BaseModel, Extra
from langchain.embeddings.base import Embeddings
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
DEFAULT_QUERY_INSTRUCTION = (
"Represent the question for retrieving supporting documents: "
)
[docs]class HuggingFaceEmbeddings(BaseModel, Embeddings):
"""Wrapper around sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceEmbeddings(model_name=model_name)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_MODEL_NAME
"""Model name to use."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
self.client = sentence_transformers.SentenceTransformer(self.model_name)
except ImportError:
raise ValueError(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/huggingface.html
|
7636ef739f28-1
|
except ImportError:
raise ValueError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence_transformers`."
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = self.client.encode(texts)
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/huggingface.html
|
7636ef739f28-2
|
text = text.replace("\n", " ")
embedding = self.client.encode(text)
return embedding.tolist()
[docs]class HuggingFaceInstructEmbeddings(BaseModel, Embeddings):
"""Wrapper around sentence_transformers embedding models.
To use, you should have the ``sentence_transformers``
and ``InstructorEmbedding`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-large"
hf = HuggingFaceInstructEmbeddings(model_name=model_name)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_INSTRUCT_MODEL
"""Model name to use."""
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
"""Instruction to use for embedding documents."""
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
"""Instruction to use for embedding query."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
from InstructorEmbedding import INSTRUCTOR
self.client = INSTRUCTOR(self.model_name)
except ImportError as e:
raise ValueError("Dependencies for InstructorEmbedding not found.") from e
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/huggingface.html
|
7636ef739f28-3
|
raise ValueError("Dependencies for InstructorEmbedding not found.") from e
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace instruct model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
instruction_pairs = [[self.embed_instruction, text] for text in texts]
embeddings = self.client.encode(instruction_pairs)
return embeddings.tolist()
[docs] def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace instruct model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = [self.query_instruction, text]
embedding = self.client.encode([instruction_pair])[0]
return embedding.tolist()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/huggingface.html
|
fa14d9eda46f-0
|
Source code for langchain.embeddings.fake
from typing import List
import numpy as np
from pydantic import BaseModel
from langchain.embeddings.base import Embeddings
[docs]class FakeEmbeddings(Embeddings, BaseModel):
size: int
def _get_embedding(self) -> List[float]:
return list(np.random.normal(size=self.size))
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
return [self._get_embedding() for _ in texts]
[docs] def embed_query(self, text: str) -> List[float]:
return self._get_embedding()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/fake.html
|
8a3bcd2b36af-0
|
Source code for langchain.embeddings.llamacpp
"""Wrapper around llama.cpp embedding models."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.embeddings.base import Embeddings
[docs]class LlamaCppEmbeddings(BaseModel, Embeddings):
"""Wrapper around llama.cpp embedding models.
To use, you should have the llama-cpp-python library installed, and provide the
path to the Llama model as a named parameter to the constructor.
Check out: https://github.com/abetlen/llama-cpp-python
Example:
.. code-block:: python
from langchain.embeddings import LlamaCppEmbeddings
llama = LlamaCppEmbeddings(model_path="/path/to/model.bin")
"""
client: Any #: :meta private:
model_path: str
n_ctx: int = Field(512, alias="n_ctx")
"""Token context window."""
n_parts: int = Field(-1, alias="n_parts")
"""Number of parts to split the model into.
If -1, the number of parts is automatically determined."""
seed: int = Field(-1, alias="seed")
"""Seed. If -1, a random seed is used."""
f16_kv: bool = Field(False, alias="f16_kv")
"""Use half-precision for key/value cache."""
logits_all: bool = Field(False, alias="logits_all")
"""Return logits for all tokens, not just the last token."""
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/llamacpp.html
|
8a3bcd2b36af-1
|
"""Return logits for all tokens, not just the last token."""
vocab_only: bool = Field(False, alias="vocab_only")
"""Only load the vocabulary, no weights."""
use_mlock: bool = Field(False, alias="use_mlock")
"""Force system to keep model in RAM."""
n_threads: Optional[int] = Field(None, alias="n_threads")
"""Number of threads to use. If None, the number
of threads is automatically determined."""
n_batch: Optional[int] = Field(8, alias="n_batch")
"""Number of tokens to process in parallel.
Should be a number between 1 and n_ctx."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that llama-cpp-python library is installed."""
model_path = values["model_path"]
n_ctx = values["n_ctx"]
n_parts = values["n_parts"]
seed = values["seed"]
f16_kv = values["f16_kv"]
logits_all = values["logits_all"]
vocab_only = values["vocab_only"]
use_mlock = values["use_mlock"]
n_threads = values["n_threads"]
n_batch = values["n_batch"]
try:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/llamacpp.html
|
8a3bcd2b36af-2
|
n_batch = values["n_batch"]
try:
from llama_cpp import Llama
values["client"] = Llama(
model_path=model_path,
n_ctx=n_ctx,
n_parts=n_parts,
seed=seed,
f16_kv=f16_kv,
logits_all=logits_all,
vocab_only=vocab_only,
use_mlock=use_mlock,
n_threads=n_threads,
n_batch=n_batch,
embedding=True,
)
except ImportError:
raise ModuleNotFoundError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/llamacpp.html
|
8a3bcd2b36af-3
|
"use this embedding model: pip install llama-cpp-python"
)
except Exception:
raise NameError(f"Could not load Llama model from path: {model_path}")
return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of documents using the Llama model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = [self.client.embed(text) for text in texts]
return [list(map(float, e)) for e in embeddings]
[docs] def embed_query(self, text: str) -> List[float]:
"""Embed a query using the Llama model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embedding = self.client.embed(text)
return list(map(float, embedding))
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/llamacpp.html
|
67934e92938a-0
|
Source code for langchain.embeddings.openai
"""Wrapper around OpenAI embedding models."""
from __future__ import annotations
import logging
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Set,
Tuple,
Union,
)
import numpy as np
from pydantic import BaseModel, Extra, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
|
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/openai.html
|
67934e92938a-1
|
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
def _embed_with_retry(**kwargs: Any) -> Any:
return embeddings.client.create(**kwargs)
return _embed_with_retry(**kwargs)
[docs]class OpenAIEmbeddings(BaseModel, Embeddings):
"""Wrapper around OpenAI embedding models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import OpenAIEmbeddings
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
In order to use the library with Microsoft Azure endpoints, you need to set
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and optionally and
API_VERSION.
The OPENAI_API_TYPE must be set to 'azure' and the others correspond to
the properties of your endpoint.
In addition, the deployment
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/openai.html
|
67934e92938a-2
|
correspond to
the properties of your endpoint.
In addition, the deployment name must be passed as the model parameter.
Example:
.. code-block:: python
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="your-embeddings-deployment-name")
text = "This is a test query."
query_result = embeddings.embed_query(text)
"""
client: Any #: :meta private:
model: str = "text-embedding-ada-002"
# TODO: deprecate these two in favor of model
# https://community.openai.com/t/api-update-engines-models/18597
# https://github.com/openai/openai-python/issues/132
document_model_name: str = "text-embedding-ada-002"
query_model_name: str = "text-embedding-ada-002"
embedding_ctx_length: int = 8191
openai_api_key: Optional[str] = None
openai_organization: Optional[str] = None
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/openai.html
|
67934e92938a-3
|
= None
openai_organization: Optional[str] = None
allowed_special: Union[Literal["all"], Set[str]] = set()
disallowed_special: Union[Literal["all"], Set[str], Tuple[()]] = "all"
chunk_size: int = 1000
"""Maximum number of texts to embed in each batch"""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
# TODO: deprecate this
@root_validator(pre=True)
def get_model_names(cls, values: Dict) -> Dict:
# model_name is for first generation, and model is for second generation.
# Both are not allowed together.
if "model_name" in values and "model" in values:
raise ValueError(
"Both `model_name` and `model` were provided, "
"but only one should be."
)
"""Get model names from just old model name."""
if "model_name" in values:
if "document_model_name" in values:
raise ValueError(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/openai.html
|
67934e92938a-4
|
raise ValueError(
"Both `model_name` and `document_model_name` were provided, "
"but only one should be."
)
if "query_model_name" in values:
raise ValueError(
"Both `model_name` and `query_model_name` were provided, "
"but only one should be."
)
model_name = values.pop("model_name")
values["document_model_name"] = f"text-search-{model_name}-doc-001"
values["query_model_name"] = f"text-search-{model_name}-query-001"
# Set document/query model names from model parameter.
if "model" in values:
if "document_model_name" in values:
raise ValueError(
"Both `model` and `document_model_name` were provided, "
"but only one
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/openai.html
|
67934e92938a-5
|
"but only one should be."
)
if "query_model_name" in values:
raise ValueError(
"Both `model` and `query_model_name` were provided, "
"but only one should be."
)
model = values.get("model")
values["document_model_name"] = model
values["query_model_name"] = model
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
openai_organization = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/openai.html
|
67934e92938a-6
|
default="",
)
try:
import openai
openai.api_key = openai_api_key
if openai_organization:
openai.organization = openai_organization
values["client"] = openai.Embedding
except ImportError:
raise ValueError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
def _get_len_safe_embeddings(
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for i in range(len(texts))]
try:
import tiktoken
tokens = []
indices = []
encoding =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/openai.html
|
67934e92938a-7
|
indices = []
encoding = tiktoken.model.encoding_for_model(self.document_model_name)
for i, text in enumerate(texts):
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens += [token[j : j + self.embedding_ctx_length]]
indices += [i]
batched_embeddings = []
_chunk_size = chunk_size or self.chunk_size
for i in range(0, len(tokens), _chunk_size):
response = embed_with_retry(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/openai.html
|
67934e92938a-8
|
self,
input=tokens[i : i + _chunk_size],
engine=self.document_model_name,
)
batched_embeddings += [r["embedding"] for r in response["data"]]
results: List[List[List[float]]] = [[] for i in range(len(texts))]
lens: List[List[int]] = [[] for i in range(len(texts))]
for i in range(len(indices)):
results[indices[i]].append(batched_embeddings[i])
lens[indices[i]].append(len(batched_embeddings[i]))
for i in range(len(texts)):
average = np.average(results[i], axis=0, weights=lens[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
except ImportError:
raise ValueError(
"Could not import tiktoken python package. "
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/openai.html
|
67934e92938a-9
|
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
def _embedding_func(self, text: str, *, engine: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint."""
# handle large input text
if self.embedding_ctx_length > 0:
return self._get_len_safe_embeddings([text], engine=engine)[0]
else:
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
return embed_with_retry(self, input=[text], engine=engine)["data"][0][
"embedding"
]
[docs] def embed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/openai.html
|
67934e92938a-10
|
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# handle batches of large input text
if self.embedding_ctx_length > 0:
return self._get_len_safe_embeddings(texts, engine=self.document_model_name)
else:
results = []
_chunk_size = chunk_size or self.chunk_size
for i in range(0, len(texts), _chunk_size):
response = embed_with_retry(
self,
input=texts[i : i + _chunk_size],
engine=self.document_model_name,
)
results += [r["embedding"] for r in response["data"]]
return results
[docs] def embed_query(self, text: str) -> List[float]:
"""Call out
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/openai.html
|
67934e92938a-11
|
text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embedding = self._embedding_func(text, engine=self.query_model_name)
return embedding
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/embeddings/openai.html
|
7511ea94be90-0
|
Source code for langchain.agents.initialize
"""Load agent."""
from typing import Any, Optional, Sequence
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_types import AgentType
from langchain.agents.loading import AGENT_TO_CLASS, load_agent
from langchain.callbacks.base import BaseCallbackManager
from langchain.schema import BaseLanguageModel
from langchain.tools.base import BaseTool
[docs]def initialize_agent(
tools: Sequence[BaseTool],
llm: BaseLanguageModel,
agent: Optional[AgentType] = None,
callback_manager: Optional[BaseCallbackManager] = None,
agent_path: Optional[str] = None,
agent_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Load an agent executor given tools and LLM.
Args:
tools: List of tools this agent has access to.
llm: Language model to use as the agent.
agent: Agent type to use. If None and agent_path is also None, will default to
AgentType.ZERO_SHOT_REACT_DESCRIPTION.
callback_manager: CallbackManager to use. Global callback manager is used if
not provided. Defaults to None.
agent_path: Path to serialized agent to use.
agent_kwargs: Additional key word arguments to pass to the underlying agent
**kwargs: Additional key word arguments passed to the agent executor
Returns:
An agent executor
"""
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/initialize.html
|
7511ea94be90-1
|
Returns:
An agent executor
"""
if agent is None and agent_path is None:
agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION
if agent is not None and agent_path is not None:
raise ValueError(
"Both `agent` and `agent_path` are specified, "
"but at most only one should be."
)
if agent is not None:
if agent not in AGENT_TO_CLASS:
raise ValueError(
f"Got unknown agent type: {agent}. "
f"Valid types are: {AGENT_TO_CLASS.keys()}."
)
agent_cls = AGENT_TO_CLASS[agent]
agent_kwargs = agent_kwargs or {}
agent_obj = agent_cls.from_llm_and_tools(
llm, tools, callback_manager=callback_manager, **agent_kwargs
)
elif agent_path is not None:
agent_obj = load_agent(
agent_path, llm=llm, tools=tools, callback_manager=callback_manager
)
else:
raise ValueError(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/initialize.html
|
7511ea94be90-2
|
else:
raise ValueError(
"Somehow both `agent` and `agent_path` are None, "
"this should never happen."
)
return AgentExecutor.from_agent_and_tools(
agent=agent_obj,
tools=tools,
callback_manager=callback_manager,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/initialize.html
|
7e3a22920c34-0
|
Source code for langchain.agents.agent
"""Chain that takes in an input and produces an action and action input."""
from __future__ import annotations
import asyncio
import json
import logging
import time
from abc import abstractmethod
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import yaml
from pydantic import BaseModel, root_validator
from langchain.agents.tools import InvalidTool
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.input import get_color_mapping
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import (
AgentAction,
AgentFinish,
BaseLanguageModel,
BaseMessage,
BaseOutputParser,
)
from langchain.tools.base import BaseTool
from langchain.utilities.asyncio import asyncio_timeout
logger = logging.getLogger()
[docs]class BaseSingleActionAgent(BaseModel):
"""Base Agent class."""
@property
def return_values(self) -> List[str]:
"""Return values of the agent."""
return ["output"]
[docs] def get_allowed_tools(self) -> Optional[List[str]]:
return None
[docs] @abstractmethod
def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-1
|
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
[docs] @abstractmethod
async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
@property
@abstractmethod
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
[docs] def return_stopped_response(
self,
early_stopping_method: str,
intermediate_steps: List[Tuple[AgentAction, str]],
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-2
|
intermediate_steps: List[Tuple[AgentAction, str]],
**kwargs: Any,
) -> AgentFinish:
"""Return response when agent has been stopped due to max iterations."""
if early_stopping_method == "force":
# `force` just returns a constant string
return AgentFinish(
{"output": "Agent stopped due to iteration limit or time limit."}, ""
)
else:
raise ValueError(
f"Got unsupported early_stopping_method `{early_stopping_method}`"
)
[docs] @classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
**kwargs: Any,
) -> BaseSingleActionAgent:
raise NotImplementedError
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
raise NotImplementedError
[docs] def dict(self, **kwargs: Any) -> Dict:
"""Return dictionary representation of agent."""
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-3
|
Any) -> Dict:
"""Return dictionary representation of agent."""
_dict = super().dict()
_dict["_type"] = self._agent_type
return _dict
[docs] def save(self, file_path: Union[Path, str]) -> None:
"""Save the agent.
Args:
file_path: Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path="path/agent.yaml")
"""
# Convert file to Path object.
if isinstance(file_path, str):
save_path = Path(file_path)
else:
save_path = file_path
directory_path = save_path.parent
directory_path.mkdir(parents=True, exist_ok=True)
# Fetch dictionary to save
agent_dict = self.dict()
if save_path.suffix == ".json":
with open(file_path, "w") as f:
json.dump(agent_dict, f, indent=4)
elif
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-4
|
json.dump(agent_dict, f, indent=4)
elif save_path.suffix == ".yaml":
with open(file_path, "w") as f:
yaml.dump(agent_dict, f, default_flow_style=False)
else:
raise ValueError(f"{save_path} must be json or yaml")
[docs] def tool_run_logging_kwargs(self) -> Dict:
return {}
[docs]class BaseMultiActionAgent(BaseModel):
"""Base Agent class."""
@property
def return_values(self) -> List[str]:
"""Return values of the agent."""
return ["output"]
[docs] def get_allowed_tools(self) -> Optional[List[str]]:
return None
[docs] @abstractmethod
def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[List[AgentAction], AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Actions specifying what tool to use.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-5
|
Actions specifying what tool to use.
"""
[docs] @abstractmethod
async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[List[AgentAction], AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Actions specifying what tool to use.
"""
@property
@abstractmethod
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
[docs] def return_stopped_response(
self,
early_stopping_method: str,
intermediate_steps: List[Tuple[AgentAction, str]],
**kwargs: Any,
) -> AgentFinish:
"""Return response when agent has been stopped due to max iterations."""
if early_stopping_method == "force":
# `force` just returns a constant string
return
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-6
|
just returns a constant string
return AgentFinish({"output": "Agent stopped due to max iterations."}, "")
else:
raise ValueError(
f"Got unsupported early_stopping_method `{early_stopping_method}`"
)
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
raise NotImplementedError
[docs] def dict(self, **kwargs: Any) -> Dict:
"""Return dictionary representation of agent."""
_dict = super().dict()
_dict["_type"] = self._agent_type
return _dict
[docs] def save(self, file_path: Union[Path, str]) -> None:
"""Save the agent.
Args:
file_path: Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path="path/agent.yaml")
"""
# Convert file to Path object.
if isinstance(file_path, str):
save_path = Path(file_path)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-7
|
save_path = Path(file_path)
else:
save_path = file_path
directory_path = save_path.parent
directory_path.mkdir(parents=True, exist_ok=True)
# Fetch dictionary to save
agent_dict = self.dict()
if save_path.suffix == ".json":
with open(file_path, "w") as f:
json.dump(agent_dict, f, indent=4)
elif save_path.suffix == ".yaml":
with open(file_path, "w") as f:
yaml.dump(agent_dict, f, default_flow_style=False)
else:
raise ValueError(f"{save_path} must be json or yaml")
[docs] def tool_run_logging_kwargs(self) -> Dict:
return {}
[docs]class AgentOutputParser(BaseOutputParser):
[docs] @abstractmethod
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
"""Parse text into agent action/finish."""
[docs]class LLMSingleActionAgent(BaseSingleActionAgent):
llm_chain: LLMChain
output_parser: AgentOutputParser
stop: List[str]
@property
def
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-8
|
stop: List[str]
@property
def input_keys(self) -> List[str]:
return list(set(self.llm_chain.input_keys) - {"intermediate_steps"})
[docs] def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
output = self.llm_chain.run(
intermediate_steps=intermediate_steps, stop=self.stop, **kwargs
)
return self.output_parser.parse(output)
[docs] async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-9
|
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
output = await self.llm_chain.arun(
intermediate_steps=intermediate_steps, stop=self.stop, **kwargs
)
return self.output_parser.parse(output)
[docs] def tool_run_logging_kwargs(self) -> Dict:
return {
"llm_prefix": "",
"observation_prefix": "" if len(self.stop) == 0 else self.stop[0],
}
[docs]class Agent(BaseSingleActionAgent):
"""Class responsible for calling the language model and deciding the action.
This is driven by an LLMChain. The prompt in the LLMChain MUST include
a variable called "agent_scratchpad" where the agent can put its
intermediary work.
"""
llm_chain: LLMChain
allowed_tools: Optional[List[str]] = None
[docs] def get_allowed_tools(self) -> Optional[List[str]]:
return self.allowed_tools
@property
def return_values(self) -> List[str]:
return ["output"]
@abstractmethod
def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-10
|
_extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
"""Extract tool and tool input from llm output."""
def _fix_text(self, text: str) -> str:
"""Fix the text."""
raise ValueError("fix_text not implemented for this agent.")
@property
def _stop(self) -> List[str]:
return [
f"\n{self.observation_prefix.rstrip()}",
f"\n\t{self.observation_prefix.rstrip()}",
]
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> Union[str, List[BaseMessage]]:
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
return thoughts
def _get_next_action(self, full_inputs: Dict[str, str]) -> AgentAction:
full_output = self.llm_chain.predict(**full_inputs)
parsed_output = self._extract_tool_and_input(full_output)
while parsed_output is None:
full_output =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-11
|
while parsed_output is None:
full_output = self._fix_text(full_output)
full_inputs["agent_scratchpad"] += full_output
output = self.llm_chain.predict(**full_inputs)
full_output += output
parsed_output = self._extract_tool_and_input(full_output)
return AgentAction(
tool=parsed_output[0], tool_input=parsed_output[1], log=full_output
)
async def _aget_next_action(self, full_inputs: Dict[str, str]) -> AgentAction:
full_output = await self.llm_chain.apredict(**full_inputs)
parsed_output = self._extract_tool_and_input(full_output)
while parsed_output is None:
full_output = self._fix_text(full_output)
full_inputs["agent_scratchpad"] += full_output
output = await self.llm_chain.apredict(**full_inputs)
full_output += output
parsed_output = self._extract_tool_and_input(full_output)
return AgentAction(
tool=parsed_output[0], tool_input=parsed_output[1], log=full_output
)
[docs]
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-12
|
log=full_output
)
[docs] def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
action = self._get_next_action(full_inputs)
if action.tool == self.finish_tool_name:
return AgentFinish({"output": action.tool_input}, action.log)
return action
[docs] async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-13
|
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
action = await self._aget_next_action(full_inputs)
if action.tool == self.finish_tool_name:
return AgentFinish({"output": action.tool_input}, action.log)
return action
[docs] def get_full_inputs(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Dict[str, Any]:
"""Create the full inputs for the LLMChain from intermediate steps."""
thoughts = self._construct_scratchpad(intermediate_steps)
new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop}
full_inputs = {**kwargs, **new_inputs}
return full_inputs
@property
def finish_tool_name(self) -> str:
"""Name of the tool to use to finish the chain."""
return "Final Answer"
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-14
|
:meta private:
"""
return list(set(self.llm_chain.input_keys) - {"agent_scratchpad"})
@root_validator()
def validate_prompt(cls, values: Dict) -> Dict:
"""Validate that prompt matches format."""
prompt = values["llm_chain"].prompt
if "agent_scratchpad" not in prompt.input_variables:
logger.warning(
"`agent_scratchpad` should be a variable in prompt.input_variables."
" Did not find it, so adding it at the end."
)
prompt.input_variables.append("agent_scratchpad")
if isinstance(prompt, PromptTemplate):
prompt.template += "\n{agent_scratchpad}"
elif isinstance(prompt, FewShotPromptTemplate):
prompt.suffix += "\n{agent_scratchpad}"
else:
raise ValueError(f"Got unexpected prompt type {type(prompt)}")
return values
@property
@abstractmethod
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
@property
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-15
|
"""Prefix to append the observation with."""
@property
@abstractmethod
def llm_prefix(self) -> str:
"""Prefix to append the LLM call with."""
[docs] @classmethod
@abstractmethod
def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
"""Create a prompt for this class."""
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
"""Validate that appropriate tools are passed in."""
pass
[docs] @classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
llm_chain = LLMChain(
llm=llm,
prompt=cls.create_prompt(tools),
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
return cls(llm_chain=llm_chain, allowed_tools=tool_names,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-16
|
return cls(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
[docs] def return_stopped_response(
self,
early_stopping_method: str,
intermediate_steps: List[Tuple[AgentAction, str]],
**kwargs: Any,
) -> AgentFinish:
"""Return response when agent has been stopped due to max iterations."""
if early_stopping_method == "force":
# `force` just returns a constant string
return AgentFinish(
{"output": "Agent stopped due to iteration limit or time limit."}, ""
)
elif early_stopping_method == "generate":
# Generate does one final forward pass
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += (
f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
)
# Adding to the previous steps, we now tell the LLM to make a final
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-17
|
# Adding to the previous steps, we now tell the LLM to make a final pred
thoughts += (
"\n\nI now need to return a final answer based on the previous steps:"
)
new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop}
full_inputs = {**kwargs, **new_inputs}
full_output = self.llm_chain.predict(**full_inputs)
# We try to extract a final answer
parsed_output = self._extract_tool_and_input(full_output)
if parsed_output is None:
# If we cannot extract, we just return the full output
return AgentFinish({"output": full_output}, full_output)
tool, tool_input = parsed_output
if tool == self.finish_tool_name:
# If we can extract, we send the correct stuff
return AgentFinish({"output": tool_input}, full_output)
else:
# If we can extract, but the tool is not
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-18
|
# If we can extract, but the tool is not the final tool,
# we just return the full output
return AgentFinish({"output": full_output}, full_output)
else:
raise ValueError(
"early_stopping_method should be one of `force` or `generate`, "
f"got {early_stopping_method}"
)
[docs] def tool_run_logging_kwargs(self) -> Dict:
return {
"llm_prefix": self.llm_prefix,
"observation_prefix": self.observation_prefix,
}
[docs]class AgentExecutor(Chain):
"""Consists of an agent using tools."""
agent: Union[BaseSingleActionAgent, BaseMultiActionAgent]
tools: Sequence[BaseTool]
return_intermediate_steps: bool = False
max_iterations: Optional[int] = 15
max_execution_time: Optional[float] = None
early_stopping_method: str = "force"
[docs] @classmethod
def from_agent_and_tools(
cls,
agent: Union[BaseSingleActionAgent, BaseMultiActionAgent],
tools: Sequence[BaseTool],
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-19
|
BaseMultiActionAgent],
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Create from agent and tools."""
return cls(
agent=agent, tools=tools, callback_manager=callback_manager, **kwargs
)
@root_validator()
def validate_tools(cls, values: Dict) -> Dict:
"""Validate that tools are compatible with agent."""
agent = values["agent"]
tools = values["tools"]
allowed_tools = agent.get_allowed_tools()
if allowed_tools is not None:
if set(allowed_tools) != set([tool.name for tool in tools]):
raise ValueError(
f"Allowed tools ({allowed_tools}) different than "
f"provided tools ({[tool.name for tool in tools]})"
)
return values
@root_validator()
def validate_return_direct_tool(cls, values: Dict) -> Dict:
"""Validate that tools are compatible with agent."""
agent = values["agent"]
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-20
|
are compatible with agent."""
agent = values["agent"]
tools = values["tools"]
if isinstance(agent, BaseMultiActionAgent):
for tool in tools:
if tool.return_direct:
raise ValueError(
"Tools that have `return_direct=True` are not allowed "
"in multi-action agents"
)
return values
[docs] def save(self, file_path: Union[Path, str]) -> None:
"""Raise error - saving not supported for Agent Executors."""
raise ValueError(
"Saving not supported for agent executors. "
"If you are trying to save the agent, please use the "
"`.save_agent(...)`"
)
[docs] def save_agent(self, file_path: Union[Path, str]) -> None:
"""Save the underlying agent."""
return self.agent.save(file_path)
@property
def input_keys(self) -> List[str]:
"""Return the
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-21
|
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return self.agent.input_keys
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if self.return_intermediate_steps:
return self.agent.return_values + ["intermediate_steps"]
else:
return self.agent.return_values
[docs] def lookup_tool(self, name: str) -> BaseTool:
"""Lookup tool by name."""
return {tool.name: tool for tool in self.tools}[name]
def _should_continue(self, iterations: int, time_elapsed: float) -> bool:
if self.max_iterations is not None and iterations >= self.max_iterations:
return False
if (
self.max_execution_time is not None
and time_elapsed >= self.max_execution_time
):
return False
return True
def _return(self, output: AgentFinish, intermediate_steps: list) -> Dict[str, Any]:
self.callback_manager.on_agent_finish(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-22
|
self.callback_manager.on_agent_finish(
output, color="green", verbose=self.verbose
)
final_output = output.return_values
if self.return_intermediate_steps:
final_output["intermediate_steps"] = intermediate_steps
return final_output
async def _areturn(
self, output: AgentFinish, intermediate_steps: list
) -> Dict[str, Any]:
if self.callback_manager.is_async:
await self.callback_manager.on_agent_finish(
output, color="green", verbose=self.verbose
)
else:
self.callback_manager.on_agent_finish(
output, color="green", verbose=self.verbose
)
final_output = output.return_values
if self.return_intermediate_steps:
final_output["intermediate_steps"] = intermediate_steps
return final_output
def _take_next_step(
self,
name_to_tool_map: Dict[str, BaseTool],
color_mapping: Dict[str, str],
inputs: Dict[str,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-23
|
color_mapping: Dict[str, str],
inputs: Dict[str, str],
intermediate_steps: List[Tuple[AgentAction, str]],
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
"""Take a single step in the thought-action-observation loop.
Override this to take control of how the agent makes and acts on choices.
"""
# Call the LLM to see what to do.
output = self.agent.plan(intermediate_steps, **inputs)
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
return output
actions: List[AgentAction]
if isinstance(output, AgentAction):
actions = [output]
else:
actions = output
result = []
for agent_action in actions:
self.callback_manager.on_agent_action(
agent_action, verbose=self.verbose, color="green"
)
# Otherwise we lookup the tool
if agent_action.tool in name_to_tool_map:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-24
|
name_to_tool_map:
tool = name_to_tool_map[agent_action.tool]
return_direct = tool.return_direct
color = color_mapping[agent_action.tool]
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
if return_direct:
tool_run_kwargs["llm_prefix"] = ""
# We then call the tool on the tool input to get an observation
observation = tool.run(
agent_action.tool_input,
verbose=self.verbose,
color=color,
**tool_run_kwargs,
)
else:
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
observation = InvalidTool().run(
agent_action.tool,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-25
|
agent_action.tool,
verbose=self.verbose,
color=None,
**tool_run_kwargs,
)
result.append((agent_action, observation))
return result
async def _atake_next_step(
self,
name_to_tool_map: Dict[str, BaseTool],
color_mapping: Dict[str, str],
inputs: Dict[str, str],
intermediate_steps: List[Tuple[AgentAction, str]],
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
"""Take a single step in the thought-action-observation loop.
Override this to take control of how the agent makes and acts on choices.
"""
# Call the LLM to see what to do.
output = await self.agent.aplan(intermediate_steps, **inputs)
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
return output
actions: List[AgentAction]
if isinstance(output,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-26
|
actions: List[AgentAction]
if isinstance(output, AgentAction):
actions = [output]
else:
actions = output
async def _aperform_agent_action(
agent_action: AgentAction,
) -> Tuple[AgentAction, str]:
if self.callback_manager.is_async:
await self.callback_manager.on_agent_action(
agent_action, verbose=self.verbose, color="green"
)
else:
self.callback_manager.on_agent_action(
agent_action, verbose=self.verbose, color="green"
)
# Otherwise we lookup the tool
if agent_action.tool in name_to_tool_map:
tool = name_to_tool_map[agent_action.tool]
return_direct = tool.return_direct
color = color_mapping[agent_action.tool]
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-27
|
color = color_mapping[agent_action.tool]
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
if return_direct:
tool_run_kwargs["llm_prefix"] = ""
# We then call the tool on the tool input to get an observation
observation = await tool.arun(
agent_action.tool_input,
verbose=self.verbose,
color=color,
**tool_run_kwargs,
)
else:
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
observation = await InvalidTool().arun(
agent_action.tool,
verbose=self.verbose,
color=None,
**tool_run_kwargs,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-28
|
**tool_run_kwargs,
)
return agent_action, observation
# Use asyncio.gather to run multiple tool.arun() calls concurrently
result = await asyncio.gather(
*[_aperform_agent_action(agent_action) for agent_action in actions]
)
return list(result)
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
"""Run text through and get agent response."""
# Construct a mapping of tool name to tool for easy lookup
name_to_tool_map = {tool.name: tool for tool in self.tools}
# We construct a mapping from each tool to a color, used for logging.
color_mapping = get_color_mapping(
[tool.name for tool in self.tools], excluded_colors=["green"]
)
intermediate_steps: List[Tuple[AgentAction, str]] = []
# Let's start tracking the number of iterations and time elapsed
iterations = 0
time_elapsed = 0.0
start_time = time.time()
# We now enter the agent loop (until it returns something).
while self._should_continue(iterations,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-29
|
it returns something).
while self._should_continue(iterations, time_elapsed):
next_step_output = self._take_next_step(
name_to_tool_map, color_mapping, inputs, intermediate_steps
)
if isinstance(next_step_output, AgentFinish):
return self._return(next_step_output, intermediate_steps)
intermediate_steps.extend(next_step_output)
if len(next_step_output) == 1:
next_step_action = next_step_output[0]
# See if tool should return directly
tool_return = self._get_tool_return(next_step_action)
if tool_return is not None:
return self._return(tool_return, intermediate_steps)
iterations += 1
time_elapsed = time.time() - start_time
output = self.agent.return_stopped_response(
self.early_stopping_method, intermediate_steps, **inputs
)
return self._return(output, intermediate_steps)
async def
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-30
|
return self._return(output, intermediate_steps)
async def _acall(self, inputs: Dict[str, str]) -> Dict[str, str]:
"""Run text through and get agent response."""
# Construct a mapping of tool name to tool for easy lookup
name_to_tool_map = {tool.name: tool for tool in self.tools}
# We construct a mapping from each tool to a color, used for logging.
color_mapping = get_color_mapping(
[tool.name for tool in self.tools], excluded_colors=["green"]
)
intermediate_steps: List[Tuple[AgentAction, str]] = []
# Let's start tracking the number of iterations and time elapsed
iterations = 0
time_elapsed = 0.0
start_time = time.time()
# We now enter the agent loop (until it returns something).
async with asyncio_timeout(self.max_execution_time):
try:
while self._should_continue(iterations, time_elapsed):
next_step_output = await self._atake_next_step(
name_to_tool_map, color_mapping, inputs, intermediate_steps
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-31
|
color_mapping, inputs, intermediate_steps
)
if isinstance(next_step_output, AgentFinish):
return await self._areturn(next_step_output, intermediate_steps)
intermediate_steps.extend(next_step_output)
if len(next_step_output) == 1:
next_step_action = next_step_output[0]
# See if tool should return directly
tool_return = self._get_tool_return(next_step_action)
if tool_return is not None:
return await self._areturn(tool_return, intermediate_steps)
iterations += 1
time_elapsed = time.time() - start_time
output = self.agent.return_stopped_response(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-32
|
output = self.agent.return_stopped_response(
self.early_stopping_method, intermediate_steps, **inputs
)
return await self._areturn(output, intermediate_steps)
except TimeoutError:
# stop early when interrupted by the async timeout
output = self.agent.return_stopped_response(
self.early_stopping_method, intermediate_steps, **inputs
)
return await self._areturn(output, intermediate_steps)
def _get_tool_return(
self, next_step_output: Tuple[AgentAction, str]
) -> Optional[AgentFinish]:
"""Check if the tool is a returning tool."""
agent_action, observation = next_step_output
name_to_tool_map = {tool.name: tool for tool in self.tools}
# Invalid tools won't be in the map, so we return False.
if agent_action.tool in name_to_tool_map:
if name_to_tool_map[agent_action.tool].return_direct:
return
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
7e3a22920c34-33
|
return AgentFinish(
{self.agent.return_values[0]: observation},
"",
)
return None
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.