id
stringlengths
14
28
title
stringclasses
18 values
content
stringlengths
2
999
contents
stringlengths
19
1.02k
Anatomy_Gray_1000
Anatomy_Gray
Three apertures in the pelvic wall communicate with the lower limb (Fig. 5.10A): the obturator canal, the greater sciatic foramen, and the lesser sciatic foramen. The obturator canal forms a passageway between the pelvic cavity and the adductor region of the thigh, and is formed in the superior aspect of the obturator foramen, between bone, a connective tissue membrane, and muscles that fill the foramen. The lesser sciatic foramen, which lies inferior to the pelvic floor, provides communication between the gluteal region and the perineum (Fig. 5.10B). The pelvic cavity also communicates directly with the perineum through a small gap between the pubic symphysis and the perineal membrane (Fig. 5.10B). The pelvic cavity projects posteriorly
Anatomy_Gray. Three apertures in the pelvic wall communicate with the lower limb (Fig. 5.10A): the obturator canal, the greater sciatic foramen, and the lesser sciatic foramen. The obturator canal forms a passageway between the pelvic cavity and the adductor region of the thigh, and is formed in the superior aspect of the obturator foramen, between bone, a connective tissue membrane, and muscles that fill the foramen. The lesser sciatic foramen, which lies inferior to the pelvic floor, provides communication between the gluteal region and the perineum (Fig. 5.10B). The pelvic cavity also communicates directly with the perineum through a small gap between the pubic symphysis and the perineal membrane (Fig. 5.10B). The pelvic cavity projects posteriorly
Anatomy_Gray_1001
Anatomy_Gray
The pelvic cavity also communicates directly with the perineum through a small gap between the pubic symphysis and the perineal membrane (Fig. 5.10B). The pelvic cavity projects posteriorly In the anatomical position, the anterior superior iliac spines and the superior edge of the pubic symphysis lie in the same vertical plane (Fig. 5.11). Consequently, the pelvic inlet is angled 50°–60° forward relative to the horizontal plane, and the pelvic cavity projects posteriorly from the abdominal cavity. Meanwhile, the urogenital part of the pelvic outlet (the pubic arch) is oriented in a nearly horizontal plane, whereas the posterior part of the outlet is positioned more vertically. The urogenital triangle of the perineum therefore faces inferiorly, while the anal triangle faces more posteriorly. Important structures cross the ureters in the pelvic cavity
Anatomy_Gray. The pelvic cavity also communicates directly with the perineum through a small gap between the pubic symphysis and the perineal membrane (Fig. 5.10B). The pelvic cavity projects posteriorly In the anatomical position, the anterior superior iliac spines and the superior edge of the pubic symphysis lie in the same vertical plane (Fig. 5.11). Consequently, the pelvic inlet is angled 50°–60° forward relative to the horizontal plane, and the pelvic cavity projects posteriorly from the abdominal cavity. Meanwhile, the urogenital part of the pelvic outlet (the pubic arch) is oriented in a nearly horizontal plane, whereas the posterior part of the outlet is positioned more vertically. The urogenital triangle of the perineum therefore faces inferiorly, while the anal triangle faces more posteriorly. Important structures cross the ureters in the pelvic cavity
Anatomy_Gray_1002
Anatomy_Gray
Important structures cross the ureters in the pelvic cavity The ureters drain the kidneys, course down the posterior abdominal wall, and cross the pelvic inlet to enter the pelvic cavity. They continue inferiorly along the lateral pelvic wall and ultimately connect with the base of the bladder. An important structure crosses the ureters in the pelvic cavity in both men and women—in women, the uterine artery crosses the ureter lateral to the cervix of the uterus (Fig. 5.12A), and in men, the ductus deferens crosses over the ureter just posterior to the bladder (Fig. 5.12B). The prostate in men and the uterus in women are anterior to the rectum In men, the prostate gland is situated immediately anterior to the rectum, just above the pelvic floor (Fig. 5.13). It can be felt by digital palpation during a rectal examination.
Anatomy_Gray. Important structures cross the ureters in the pelvic cavity The ureters drain the kidneys, course down the posterior abdominal wall, and cross the pelvic inlet to enter the pelvic cavity. They continue inferiorly along the lateral pelvic wall and ultimately connect with the base of the bladder. An important structure crosses the ureters in the pelvic cavity in both men and women—in women, the uterine artery crosses the ureter lateral to the cervix of the uterus (Fig. 5.12A), and in men, the ductus deferens crosses over the ureter just posterior to the bladder (Fig. 5.12B). The prostate in men and the uterus in women are anterior to the rectum In men, the prostate gland is situated immediately anterior to the rectum, just above the pelvic floor (Fig. 5.13). It can be felt by digital palpation during a rectal examination.
Anatomy_Gray_1003
Anatomy_Gray
In men, the prostate gland is situated immediately anterior to the rectum, just above the pelvic floor (Fig. 5.13). It can be felt by digital palpation during a rectal examination. In both sexes, the anal canal and the lower rectum also can be evaluated during a rectal examination by a clinician. In women, the cervix and lower part of the body of the uterus also are palpable. However, these structures can more easily be palpated with a bimanual examination where the index and middle fingers of a clinician’s hand are placed in the vagina and the other hand is placed on the lower anterior abdominal wall. The organs are felt between the two hands. This bimanual technique can also be used to examine the ovaries and uterine tubes. The perineum is innervated by sacral spinal
Anatomy_Gray. In men, the prostate gland is situated immediately anterior to the rectum, just above the pelvic floor (Fig. 5.13). It can be felt by digital palpation during a rectal examination. In both sexes, the anal canal and the lower rectum also can be evaluated during a rectal examination by a clinician. In women, the cervix and lower part of the body of the uterus also are palpable. However, these structures can more easily be palpated with a bimanual examination where the index and middle fingers of a clinician’s hand are placed in the vagina and the other hand is placed on the lower anterior abdominal wall. The organs are felt between the two hands. This bimanual technique can also be used to examine the ovaries and uterine tubes. The perineum is innervated by sacral spinal
Anatomy_Gray_1004
Anatomy_Gray
The perineum is innervated by sacral spinal Dermatomes of the perineum in both men and women are from spinal cord levels S3 to S5, except for the anterior regions, which tend to be innervated by spinal cord level L1 by nerves associated with the abdominal wall (Fig. 5.14). Dermatomes of L2 to S2 are predominantly in the lower limb. Most of the skeletal muscles contained in the perineum and the pelvic floor, including the external anal sphincter and external urethral sphincter, are innervated by spinal cord levels S2 to S4. Much of the somatic motor and sensory innervation of the perineum is provided by the pudendal nerve from spinal cord levels S2 to S4. Nerves are related to bone
Anatomy_Gray. The perineum is innervated by sacral spinal Dermatomes of the perineum in both men and women are from spinal cord levels S3 to S5, except for the anterior regions, which tend to be innervated by spinal cord level L1 by nerves associated with the abdominal wall (Fig. 5.14). Dermatomes of L2 to S2 are predominantly in the lower limb. Most of the skeletal muscles contained in the perineum and the pelvic floor, including the external anal sphincter and external urethral sphincter, are innervated by spinal cord levels S2 to S4. Much of the somatic motor and sensory innervation of the perineum is provided by the pudendal nerve from spinal cord levels S2 to S4. Nerves are related to bone
Anatomy_Gray_1005
Anatomy_Gray
Much of the somatic motor and sensory innervation of the perineum is provided by the pudendal nerve from spinal cord levels S2 to S4. Nerves are related to bone The pudendal nerve is the major nerve of the perineum and is directly associated with the ischial spine of the pelvis (Fig. 5.15). On each side of the body, these spines and the attached sacrospinous ligaments separate the greater sciatic foramina from the lesser sciatic foramina on the lateral pelvic wall. The pudendal nerve leaves the pelvic cavity through the greater sciatic foramen and then immediately enters the perineum inferiorly to the pelvic floor by passing around the ischial spine and through the lesser sciatic foramen (Fig. 5.15). The ischial spine can be palpated transvaginally in women and is the landmark that can be used for administering a pudendal nerve block. Parasympathetic innervation from spinal cord levels S2 to S4 controls erection
Anatomy_Gray. Much of the somatic motor and sensory innervation of the perineum is provided by the pudendal nerve from spinal cord levels S2 to S4. Nerves are related to bone The pudendal nerve is the major nerve of the perineum and is directly associated with the ischial spine of the pelvis (Fig. 5.15). On each side of the body, these spines and the attached sacrospinous ligaments separate the greater sciatic foramina from the lesser sciatic foramina on the lateral pelvic wall. The pudendal nerve leaves the pelvic cavity through the greater sciatic foramen and then immediately enters the perineum inferiorly to the pelvic floor by passing around the ischial spine and through the lesser sciatic foramen (Fig. 5.15). The ischial spine can be palpated transvaginally in women and is the landmark that can be used for administering a pudendal nerve block. Parasympathetic innervation from spinal cord levels S2 to S4 controls erection
Anatomy_Gray_1006
Anatomy_Gray
Parasympathetic innervation from spinal cord levels S2 to S4 controls erection The parasympathetic innervation from spinal cord levels S2 to S4 controls genital erection in both women and men (Fig. 5.16). On each side, preganglionic parasympathetic nerves leave the anterior rami of the sacral spinal nerves and enter the inferior hypogastric plexus (pelvic plexus) on the lateral pelvic wall. The two inferior hypogastric plexuses are inferior extensions of the abdominal prevertebral plexus that forms on the posterior abdominal wall in association with the abdominal aorta. Nerves derived from these plexuses penetrate the pelvic floor to innervate the erectile tissues of the clitoris in women and the penis in men. Muscles and fascia of the pelvic floor and perineum intersect at the perineal body
Anatomy_Gray. Parasympathetic innervation from spinal cord levels S2 to S4 controls erection The parasympathetic innervation from spinal cord levels S2 to S4 controls genital erection in both women and men (Fig. 5.16). On each side, preganglionic parasympathetic nerves leave the anterior rami of the sacral spinal nerves and enter the inferior hypogastric plexus (pelvic plexus) on the lateral pelvic wall. The two inferior hypogastric plexuses are inferior extensions of the abdominal prevertebral plexus that forms on the posterior abdominal wall in association with the abdominal aorta. Nerves derived from these plexuses penetrate the pelvic floor to innervate the erectile tissues of the clitoris in women and the penis in men. Muscles and fascia of the pelvic floor and perineum intersect at the perineal body
Anatomy_Gray_1007
Anatomy_Gray
Muscles and fascia of the pelvic floor and perineum intersect at the perineal body Structures of the pelvic floor intersect with structures in the perineum at the perineal body (Fig. 5.17). This poorly defined fibromuscular node lies at the center of the perineum, approximately midway between the two ischial tuberosities. Converging at the perineal body are: the levator ani muscles of the pelvic diaphragm, and muscles in the urogenital and anal triangles of the perineum, including the skeletal muscle sphincters associated with the urethra, vagina, and anus. The course of the urethra is different in men In women, the urethra is short and passes inferiorly from the bladder through the pelvic floor and opens directly into the perineum (Fig. 5.18A).
Anatomy_Gray. Muscles and fascia of the pelvic floor and perineum intersect at the perineal body Structures of the pelvic floor intersect with structures in the perineum at the perineal body (Fig. 5.17). This poorly defined fibromuscular node lies at the center of the perineum, approximately midway between the two ischial tuberosities. Converging at the perineal body are: the levator ani muscles of the pelvic diaphragm, and muscles in the urogenital and anal triangles of the perineum, including the skeletal muscle sphincters associated with the urethra, vagina, and anus. The course of the urethra is different in men In women, the urethra is short and passes inferiorly from the bladder through the pelvic floor and opens directly into the perineum (Fig. 5.18A).
Anatomy_Gray_1008
Anatomy_Gray
The course of the urethra is different in men In women, the urethra is short and passes inferiorly from the bladder through the pelvic floor and opens directly into the perineum (Fig. 5.18A). In men the urethra passes through the prostate before coursing through the deep perineal pouch and perineal membrane and then becomes enclosed within the erectile tissues of the penis before opening at the end of the penis (Fig. 5.18B). The penile part of the male urethra has two angles: The more important of these is a fixed angle where the urethra bends anteriorly in the root of the penis after passing through the perineal membrane. Another angle occurs distally where the unattached part of the penis curves inferiorly—when the penis is erect, this second angle disappears. It is important to consider the different courses of the urethra in men and women when catheterizing patients and when evaluating perineal injuries and pelvic pathology.
Anatomy_Gray. The course of the urethra is different in men In women, the urethra is short and passes inferiorly from the bladder through the pelvic floor and opens directly into the perineum (Fig. 5.18A). In men the urethra passes through the prostate before coursing through the deep perineal pouch and perineal membrane and then becomes enclosed within the erectile tissues of the penis before opening at the end of the penis (Fig. 5.18B). The penile part of the male urethra has two angles: The more important of these is a fixed angle where the urethra bends anteriorly in the root of the penis after passing through the perineal membrane. Another angle occurs distally where the unattached part of the penis curves inferiorly—when the penis is erect, this second angle disappears. It is important to consider the different courses of the urethra in men and women when catheterizing patients and when evaluating perineal injuries and pelvic pathology.
Anatomy_Gray_1009
Anatomy_Gray
It is important to consider the different courses of the urethra in men and women when catheterizing patients and when evaluating perineal injuries and pelvic pathology. The pelvis is the region of the body surrounded by the pelvic bones and the inferior elements of the vertebral column. It is divided into two major regions: the superior region is the false (greater) pelvis and is part of the abdominal cavity; the inferior region is the true (lesser) pelvis, which encloses the pelvic cavity. The bowl-shaped pelvic cavity is continuous above with the abdominal cavity. The rim of the pelvic cavity (the pelvic inlet) is completely encircled by bone. The pelvic floor is a fibromuscular structure separating the pelvic cavity above from the perineum below.
Anatomy_Gray. It is important to consider the different courses of the urethra in men and women when catheterizing patients and when evaluating perineal injuries and pelvic pathology. The pelvis is the region of the body surrounded by the pelvic bones and the inferior elements of the vertebral column. It is divided into two major regions: the superior region is the false (greater) pelvis and is part of the abdominal cavity; the inferior region is the true (lesser) pelvis, which encloses the pelvic cavity. The bowl-shaped pelvic cavity is continuous above with the abdominal cavity. The rim of the pelvic cavity (the pelvic inlet) is completely encircled by bone. The pelvic floor is a fibromuscular structure separating the pelvic cavity above from the perineum below.
Anatomy_Gray_1010
Anatomy_Gray
The perineum is inferior to the pelvic floor and its margin is formed by the pelvic outlet. The perineum contains: the terminal openings of the gastrointestinal and urinary systems, the external opening of the reproductive tract, and the roots of the external genitalia. The bones of the pelvis consist of the right and left pelvic (hip) bones, the sacrum, and the coccyx. The sacrum articulates superiorly with vertebra LV at the lumbosacral joint. The pelvic bones articulate posteriorly with the sacrum at the sacro-iliac joints and with each other anteriorly at the pubic symphysis. The pelvic bone is irregular in shape and has two major parts separated by an oblique line on the medial surface of the bone (Fig. 5.19A): The pelvic bone above this line represents the lateral wall of the false pelvis, which is part of the abdominal cavity. The pelvic bone below this line represents the lateral wall of the true pelvis, which contains the pelvic cavity.
Anatomy_Gray. The perineum is inferior to the pelvic floor and its margin is formed by the pelvic outlet. The perineum contains: the terminal openings of the gastrointestinal and urinary systems, the external opening of the reproductive tract, and the roots of the external genitalia. The bones of the pelvis consist of the right and left pelvic (hip) bones, the sacrum, and the coccyx. The sacrum articulates superiorly with vertebra LV at the lumbosacral joint. The pelvic bones articulate posteriorly with the sacrum at the sacro-iliac joints and with each other anteriorly at the pubic symphysis. The pelvic bone is irregular in shape and has two major parts separated by an oblique line on the medial surface of the bone (Fig. 5.19A): The pelvic bone above this line represents the lateral wall of the false pelvis, which is part of the abdominal cavity. The pelvic bone below this line represents the lateral wall of the true pelvis, which contains the pelvic cavity.
Anatomy_Gray_1011
Anatomy_Gray
The pelvic bone below this line represents the lateral wall of the true pelvis, which contains the pelvic cavity. The linea terminalis is the lower two-thirds of this line and contributes to the margin of the pelvic inlet. The lateral surface of the pelvic bone has a large articular socket, the acetabulum, which, together with the head of the femur, forms the hip joint (Fig. 5.19B). Inferior to the acetabulum is the large obturator foramen, most of which is closed by a flat connective tissue membrane, the obturator membrane. A small obturator canal remains open superiorly between the membrane and adjacent bone, providing a route of communication between the lower limb and the pelvic cavity. The posterior margin of the bone is marked by two notches separated by the ischial spine: the greater sciatic notch, and the lesser sciatic notch. The posterior margin terminates inferiorly as the large ischial tuberosity.
Anatomy_Gray. The pelvic bone below this line represents the lateral wall of the true pelvis, which contains the pelvic cavity. The linea terminalis is the lower two-thirds of this line and contributes to the margin of the pelvic inlet. The lateral surface of the pelvic bone has a large articular socket, the acetabulum, which, together with the head of the femur, forms the hip joint (Fig. 5.19B). Inferior to the acetabulum is the large obturator foramen, most of which is closed by a flat connective tissue membrane, the obturator membrane. A small obturator canal remains open superiorly between the membrane and adjacent bone, providing a route of communication between the lower limb and the pelvic cavity. The posterior margin of the bone is marked by two notches separated by the ischial spine: the greater sciatic notch, and the lesser sciatic notch. The posterior margin terminates inferiorly as the large ischial tuberosity.
Anatomy_Gray_1012
Anatomy_Gray
The posterior margin terminates inferiorly as the large ischial tuberosity. The irregular anterior margin of the pelvic bone is marked by the anterior superior iliac spine, the anterior inferior iliac spine, and the pubic tubercle. Components of the pelvic bone Each pelvic bone is formed by three elements: the ilium, pubis, and ischium. At birth, these bones are connected by cartilage in the area of the acetabulum; later, at between 16 and 18 years of age, they fuse into a single bone (Fig. 5.20). Of the three components of the pelvic bone, the ilium is the most superior in position. The ilium is separated into upper and lower parts by a ridge on the medial surface (Fig. 5.21A).
Anatomy_Gray. The posterior margin terminates inferiorly as the large ischial tuberosity. The irregular anterior margin of the pelvic bone is marked by the anterior superior iliac spine, the anterior inferior iliac spine, and the pubic tubercle. Components of the pelvic bone Each pelvic bone is formed by three elements: the ilium, pubis, and ischium. At birth, these bones are connected by cartilage in the area of the acetabulum; later, at between 16 and 18 years of age, they fuse into a single bone (Fig. 5.20). Of the three components of the pelvic bone, the ilium is the most superior in position. The ilium is separated into upper and lower parts by a ridge on the medial surface (Fig. 5.21A).
Anatomy_Gray_1013
Anatomy_Gray
Of the three components of the pelvic bone, the ilium is the most superior in position. The ilium is separated into upper and lower parts by a ridge on the medial surface (Fig. 5.21A). Posteriorly, the ridge is sharp and lies immediately superior to the surface of the bone that articulates with the sacrum. This sacral surface has a large L-shaped facet for articulating with the sacrum and an expanded, posterior roughened area for the attachment of the strong ligaments that support the sacro-iliac joint (Fig. 5.21). Anteriorly, the ridge separating the upper and lower parts of the ilium is rounded and termed the arcuate line. The arcuate line forms part of the linea terminalis and the pelvic brim. The portion of the ilium lying inferiorly to the arcuate line is the pelvic part of the ilium and contributes to the wall of the lesser or true pelvis.
Anatomy_Gray. Of the three components of the pelvic bone, the ilium is the most superior in position. The ilium is separated into upper and lower parts by a ridge on the medial surface (Fig. 5.21A). Posteriorly, the ridge is sharp and lies immediately superior to the surface of the bone that articulates with the sacrum. This sacral surface has a large L-shaped facet for articulating with the sacrum and an expanded, posterior roughened area for the attachment of the strong ligaments that support the sacro-iliac joint (Fig. 5.21). Anteriorly, the ridge separating the upper and lower parts of the ilium is rounded and termed the arcuate line. The arcuate line forms part of the linea terminalis and the pelvic brim. The portion of the ilium lying inferiorly to the arcuate line is the pelvic part of the ilium and contributes to the wall of the lesser or true pelvis.
Anatomy_Gray_1014
Anatomy_Gray
The portion of the ilium lying inferiorly to the arcuate line is the pelvic part of the ilium and contributes to the wall of the lesser or true pelvis. The upper part of the ilium expands to form a flat, fan-shaped “wing,” which provides bony support for the lower abdomen, or false pelvis. This part of the ilium provides attachment for muscles functionally associated with the lower limb. The anteromedial surface of the wing is concave and forms the iliac fossa. The external (gluteal) surface of the wing is marked by lines and roughenings and is related to the gluteal region of the lower limb (Fig. 5.21B). The entire superior margin of the ilium is thickened to form a prominent crest (the iliac crest), which is the site of attachment for muscles and fascia of the abdomen, back, and lower limb and terminates anteriorly as the anterior superior iliac spine and posteriorly as the posterior superior iliac spine.
Anatomy_Gray. The portion of the ilium lying inferiorly to the arcuate line is the pelvic part of the ilium and contributes to the wall of the lesser or true pelvis. The upper part of the ilium expands to form a flat, fan-shaped “wing,” which provides bony support for the lower abdomen, or false pelvis. This part of the ilium provides attachment for muscles functionally associated with the lower limb. The anteromedial surface of the wing is concave and forms the iliac fossa. The external (gluteal) surface of the wing is marked by lines and roughenings and is related to the gluteal region of the lower limb (Fig. 5.21B). The entire superior margin of the ilium is thickened to form a prominent crest (the iliac crest), which is the site of attachment for muscles and fascia of the abdomen, back, and lower limb and terminates anteriorly as the anterior superior iliac spine and posteriorly as the posterior superior iliac spine.
Anatomy_Gray_1015
Anatomy_Gray
A prominent tubercle, the tuberculum of the iliac crest, projects laterally near the anterior end of the crest; the posterior end of the crest thickens to form the iliac tuberosity. Inferior to the anterior superior iliac spine of the crest, on the anterior margin of the ilium, is a rounded protuberance called the anterior inferior iliac spine. This structure serves as the point of attachment for the rectus femoris muscle of the anterior compartment of the thigh and the iliofemoral ligament associated with the hip joint. A less prominent posterior inferior iliac spine occurs along the posterior border of the sacral surface of the ilium, where the bone angles forward to form the superior margin of the greater sciatic notch. The anterior and inferior part of the pelvic bone is the pubis (Fig. 5.21). It has a body and two arms (rami).
Anatomy_Gray. A prominent tubercle, the tuberculum of the iliac crest, projects laterally near the anterior end of the crest; the posterior end of the crest thickens to form the iliac tuberosity. Inferior to the anterior superior iliac spine of the crest, on the anterior margin of the ilium, is a rounded protuberance called the anterior inferior iliac spine. This structure serves as the point of attachment for the rectus femoris muscle of the anterior compartment of the thigh and the iliofemoral ligament associated with the hip joint. A less prominent posterior inferior iliac spine occurs along the posterior border of the sacral surface of the ilium, where the bone angles forward to form the superior margin of the greater sciatic notch. The anterior and inferior part of the pelvic bone is the pubis (Fig. 5.21). It has a body and two arms (rami).
Anatomy_Gray_1016
Anatomy_Gray
The anterior and inferior part of the pelvic bone is the pubis (Fig. 5.21). It has a body and two arms (rami). The body is flattened dorsoventrally and articulates with the body of the pubic bone on the other side at the pubic symphysis. The body has a rounded pubic crest on its superior surface that ends laterally as the prominent pubic tubercle. The superior pubic ramus projects posterolaterally from the body and joins with the ilium and ischium at its base, which is positioned toward the acetabulum. The sharp superior margin of this triangular surface is termed the pecten pubis (pectineal line), which forms part of the linea terminalis of the pelvic bone and the pelvic inlet. Anteriorly, this line is continuous with the pubic crest, which also is part of the linea terminalis and pelvic inlet. The superior pubic ramus is marked on its inferior surface by the obturator groove, which forms the upper margin of the obturator canal.
Anatomy_Gray. The anterior and inferior part of the pelvic bone is the pubis (Fig. 5.21). It has a body and two arms (rami). The body is flattened dorsoventrally and articulates with the body of the pubic bone on the other side at the pubic symphysis. The body has a rounded pubic crest on its superior surface that ends laterally as the prominent pubic tubercle. The superior pubic ramus projects posterolaterally from the body and joins with the ilium and ischium at its base, which is positioned toward the acetabulum. The sharp superior margin of this triangular surface is termed the pecten pubis (pectineal line), which forms part of the linea terminalis of the pelvic bone and the pelvic inlet. Anteriorly, this line is continuous with the pubic crest, which also is part of the linea terminalis and pelvic inlet. The superior pubic ramus is marked on its inferior surface by the obturator groove, which forms the upper margin of the obturator canal.
Anatomy_Gray_1017
Anatomy_Gray
The inferior ramus projects laterally and inferiorly to join with the ramus of the ischium. The ischium is the posterior and inferior part of the pelvic bone (Fig. 5.21). It has: a large body that projects superiorly to join with the ilium and the superior ramus of the pubis, and a ramus that projects anteriorly to join with the inferior ramus of the pubis. The posterior margin of the bone is marked by a prominent ischial spine that separates the lesser sciatic notch, below, from the greater sciatic notch, above. The most prominent feature of the ischium is a large tuberosity (the ischial tuberosity) on the posteroinferior aspect of the bone. This tuberosity is an important site for the attachment of lower limb muscles and for supporting the body when sitting.
Anatomy_Gray. The inferior ramus projects laterally and inferiorly to join with the ramus of the ischium. The ischium is the posterior and inferior part of the pelvic bone (Fig. 5.21). It has: a large body that projects superiorly to join with the ilium and the superior ramus of the pubis, and a ramus that projects anteriorly to join with the inferior ramus of the pubis. The posterior margin of the bone is marked by a prominent ischial spine that separates the lesser sciatic notch, below, from the greater sciatic notch, above. The most prominent feature of the ischium is a large tuberosity (the ischial tuberosity) on the posteroinferior aspect of the bone. This tuberosity is an important site for the attachment of lower limb muscles and for supporting the body when sitting.
Anatomy_Gray_1018
Anatomy_Gray
The sacrum, which has the appearance of an inverted triangle, is formed by the fusion of the five sacral vertebrae (Fig. 5.22). The base of the sacrum articulates with vertebra LV, and its apex articulates with the coccyx. Each of the lateral surfaces of the bone bears a large L-shaped facet for articulation with the ilium of the pelvic bone. Posterior to the facet is a large roughened area for the attachment of ligaments that support the sacro-iliac joint. The superior surface of the sacrum is characterized by the superior aspect of the body of vertebra SI and is flanked on each side by an expanded wing-like transverse process termed the ala. The anterior edge of the vertebral body projects forward as the promontory. The anterior surface of the sacrum is concave; the posterior surface is convex. Because the transverse processes of adjacent sacral vertebrae fuse lateral to the position of the intervertebral foramina and lateral to the bifurcation of spinal nerves into posterior and
Anatomy_Gray. The sacrum, which has the appearance of an inverted triangle, is formed by the fusion of the five sacral vertebrae (Fig. 5.22). The base of the sacrum articulates with vertebra LV, and its apex articulates with the coccyx. Each of the lateral surfaces of the bone bears a large L-shaped facet for articulation with the ilium of the pelvic bone. Posterior to the facet is a large roughened area for the attachment of ligaments that support the sacro-iliac joint. The superior surface of the sacrum is characterized by the superior aspect of the body of vertebra SI and is flanked on each side by an expanded wing-like transverse process termed the ala. The anterior edge of the vertebral body projects forward as the promontory. The anterior surface of the sacrum is concave; the posterior surface is convex. Because the transverse processes of adjacent sacral vertebrae fuse lateral to the position of the intervertebral foramina and lateral to the bifurcation of spinal nerves into posterior and
Anatomy_Gray_1019
Anatomy_Gray
is convex. Because the transverse processes of adjacent sacral vertebrae fuse lateral to the position of the intervertebral foramina and lateral to the bifurcation of spinal nerves into posterior and anterior rami, the posterior and anterior rami of spinal nerves S1 to S4 emerge from the sacrum through separate foramina. There are four pairs of anterior sacral foramina on the anterior surface of the sacrum for anterior rami, and four pairs of posterior sacral foramina on the posterior surface for the posterior rami. The sacral canal is a continuation of the vertebral canal that terminates as the sacral hiatus.
Anatomy_Gray. is convex. Because the transverse processes of adjacent sacral vertebrae fuse lateral to the position of the intervertebral foramina and lateral to the bifurcation of spinal nerves into posterior and anterior rami, the posterior and anterior rami of spinal nerves S1 to S4 emerge from the sacrum through separate foramina. There are four pairs of anterior sacral foramina on the anterior surface of the sacrum for anterior rami, and four pairs of posterior sacral foramina on the posterior surface for the posterior rami. The sacral canal is a continuation of the vertebral canal that terminates as the sacral hiatus.
Anatomy_Gray_1020
Anatomy_Gray
The small terminal part of the vertebral column is the coccyx, which consists of four fused coccygeal vertebrae (Fig. 5.22) and, like the sacrum, has the shape of an inverted triangle. The base of the coccyx is directed superiorly. The superior surface bears a facet for articulation with the sacrum and two horns, or cornua, one on each side, that project upward to articulate or fuse with similar downward-projecting cornua from the sacrum. These processes are modified superior and inferior articular processes that are present on other vertebrae. Each lateral surface of the coccyx has a small rudimentary transverse process, extending from the first coccygeal vertebra. Vertebral arches are absent from coccygeal vertebrae; therefore no bony vertebral canal is present in the coccyx.
Anatomy_Gray. The small terminal part of the vertebral column is the coccyx, which consists of four fused coccygeal vertebrae (Fig. 5.22) and, like the sacrum, has the shape of an inverted triangle. The base of the coccyx is directed superiorly. The superior surface bears a facet for articulation with the sacrum and two horns, or cornua, one on each side, that project upward to articulate or fuse with similar downward-projecting cornua from the sacrum. These processes are modified superior and inferior articular processes that are present on other vertebrae. Each lateral surface of the coccyx has a small rudimentary transverse process, extending from the first coccygeal vertebra. Vertebral arches are absent from coccygeal vertebrae; therefore no bony vertebral canal is present in the coccyx.
Anatomy_Gray_1021
Anatomy_Gray
The sacrum articulates superiorly with the lumbar part of the vertebral column. The lumbosacral joints are formed between vertebra LV and the sacrum and consist of: the two zygapophysial joints, which occur between adjacent inferior and superior articular processes, and an intervertebral disc that joins the bodies of vertebrae LV and SI (Fig. 5.23A). These joints are similar to those between other vertebrae, with the exception that the sacrum is angled posteriorly on vertebra LV. As a result, the anterior part of the intervertebral disc between the two bones is thicker than the posterior part. The lumbosacral joints are reinforced by strong iliolumbar and lumbosacral ligaments that extend from the expanded transverse processes of vertebra LV to the ilium and the sacrum, respectively (Fig. 5.23B).
Anatomy_Gray. The sacrum articulates superiorly with the lumbar part of the vertebral column. The lumbosacral joints are formed between vertebra LV and the sacrum and consist of: the two zygapophysial joints, which occur between adjacent inferior and superior articular processes, and an intervertebral disc that joins the bodies of vertebrae LV and SI (Fig. 5.23A). These joints are similar to those between other vertebrae, with the exception that the sacrum is angled posteriorly on vertebra LV. As a result, the anterior part of the intervertebral disc between the two bones is thicker than the posterior part. The lumbosacral joints are reinforced by strong iliolumbar and lumbosacral ligaments that extend from the expanded transverse processes of vertebra LV to the ilium and the sacrum, respectively (Fig. 5.23B).
Anatomy_Gray_1022
Anatomy_Gray
The sacro-iliac joints transmit forces from the lower limbs to the vertebral column. They are synovial joints between the L-shaped articular facets on the lateral surfaces of the sacrum and similar facets on the iliac parts of the pelvic bones (Fig. 5.24A). The joint surfaces have an irregular contour and interlock to resist movement. The joints often become fibrous with age and may become completely ossified.
Anatomy_Gray. The sacro-iliac joints transmit forces from the lower limbs to the vertebral column. They are synovial joints between the L-shaped articular facets on the lateral surfaces of the sacrum and similar facets on the iliac parts of the pelvic bones (Fig. 5.24A). The joint surfaces have an irregular contour and interlock to resist movement. The joints often become fibrous with age and may become completely ossified.
Anatomy_Gray_1023
Anatomy_Gray
Each sacro-iliac joint is stabilized by three ligaments: the anterior sacro-iliac ligament, which is a thickening of the fibrous membrane of the joint capsule and runs anteriorly and inferiorly to the joint (Fig. 5.24B); the interosseous sacro-iliac ligament, which is the largest, strongest ligament of the three, and is positioned immediately posterosuperior to the joint and attaches to adjacent expansive roughened areas on the ilium and sacrum, thereby filling the gap between the two bones (Fig. 5.24A,C); and the posterior sacro-iliac ligament, which covers the interosseous sacro-iliac ligament (Fig. 5.24C).
Anatomy_Gray. Each sacro-iliac joint is stabilized by three ligaments: the anterior sacro-iliac ligament, which is a thickening of the fibrous membrane of the joint capsule and runs anteriorly and inferiorly to the joint (Fig. 5.24B); the interosseous sacro-iliac ligament, which is the largest, strongest ligament of the three, and is positioned immediately posterosuperior to the joint and attaches to adjacent expansive roughened areas on the ilium and sacrum, thereby filling the gap between the two bones (Fig. 5.24A,C); and the posterior sacro-iliac ligament, which covers the interosseous sacro-iliac ligament (Fig. 5.24C).
Anatomy_Gray_1024
Anatomy_Gray
The pubic symphysis lies anteriorly between the adjacent surfaces of the pubic bones (Fig. 5.25). Each of the joint’s surfaces is covered by hyaline cartilage and is linked across the midline to adjacent surfaces by fibrocartilage. The joint is surrounded by interwoven layers of collagen fibers and the two major ligaments associated with it are: the superior pubic ligament, located above the joint, and the inferior pubic ligament, located below it. In the anatomical position, the pelvis is oriented so that the front edge of the top of the pubic symphysis and the anterior superior iliac spines lie in the same vertical plane (Fig. 5.26). As a consequence, the pelvic inlet, which marks the entrance to the pelvic cavity, is tilted to face anteriorly, and the bodies of the pubic bones and the pubic arch are positioned in a nearly horizontal plane facing the ground.
Anatomy_Gray. The pubic symphysis lies anteriorly between the adjacent surfaces of the pubic bones (Fig. 5.25). Each of the joint’s surfaces is covered by hyaline cartilage and is linked across the midline to adjacent surfaces by fibrocartilage. The joint is surrounded by interwoven layers of collagen fibers and the two major ligaments associated with it are: the superior pubic ligament, located above the joint, and the inferior pubic ligament, located below it. In the anatomical position, the pelvis is oriented so that the front edge of the top of the pubic symphysis and the anterior superior iliac spines lie in the same vertical plane (Fig. 5.26). As a consequence, the pelvic inlet, which marks the entrance to the pelvic cavity, is tilted to face anteriorly, and the bodies of the pubic bones and the pubic arch are positioned in a nearly horizontal plane facing the ground.
Anatomy_Gray_1025
Anatomy_Gray
The pelvises of women and men differ in a number of ways, many of which have to do with the passing of a baby through a woman’s pelvic cavity during childbirth. The pelvic inlet in women is circular (Fig. 5.27A) compared with the heart-shaped pelvic inlet (Fig. 5.27B) in men. The more circular shape is partly caused by the less distinct promontory and broader alae in women. The angle formed by the two arms of the pubic arch is larger in women (80°–85°) than it is in men (50°–60°). The ischial spines generally do not project as far medially into the pelvic cavity in women as they do in men. The true pelvis is cylindrical and has an inlet, a wall, and an outlet. The inlet is open, whereas the pelvic floor closes the outlet and separates the pelvic cavity, above, from the perineum, below.
Anatomy_Gray. The pelvises of women and men differ in a number of ways, many of which have to do with the passing of a baby through a woman’s pelvic cavity during childbirth. The pelvic inlet in women is circular (Fig. 5.27A) compared with the heart-shaped pelvic inlet (Fig. 5.27B) in men. The more circular shape is partly caused by the less distinct promontory and broader alae in women. The angle formed by the two arms of the pubic arch is larger in women (80°–85°) than it is in men (50°–60°). The ischial spines generally do not project as far medially into the pelvic cavity in women as they do in men. The true pelvis is cylindrical and has an inlet, a wall, and an outlet. The inlet is open, whereas the pelvic floor closes the outlet and separates the pelvic cavity, above, from the perineum, below.
Anatomy_Gray_1026
Anatomy_Gray
The pelvic inlet is the circular opening between the abdominal cavity and the pelvic cavity through which structures traverse between the abdomen and pelvic cavity. It is completely surrounded by bones and joints (Fig. 5.28). The promontory of the sacrum protrudes into the inlet, forming its posterior margin in the midline. On either side of the promontory, the margin is formed by the alae of the sacrum. The margin of the pelvic inlet then crosses the sacro-iliac joint and continues along the linea terminalis (i.e., the arcuate line, the pecten pubis or pectineal line, and the pubic crest) to the pubic symphysis. The walls of the pelvic cavity consist of the sacrum, the coccyx, the pelvic bones inferior to the linea terminalis, two ligaments, and two muscles. Ligaments of the pelvic wall
Anatomy_Gray. The pelvic inlet is the circular opening between the abdominal cavity and the pelvic cavity through which structures traverse between the abdomen and pelvic cavity. It is completely surrounded by bones and joints (Fig. 5.28). The promontory of the sacrum protrudes into the inlet, forming its posterior margin in the midline. On either side of the promontory, the margin is formed by the alae of the sacrum. The margin of the pelvic inlet then crosses the sacro-iliac joint and continues along the linea terminalis (i.e., the arcuate line, the pecten pubis or pectineal line, and the pubic crest) to the pubic symphysis. The walls of the pelvic cavity consist of the sacrum, the coccyx, the pelvic bones inferior to the linea terminalis, two ligaments, and two muscles. Ligaments of the pelvic wall
Anatomy_Gray_1027
Anatomy_Gray
The walls of the pelvic cavity consist of the sacrum, the coccyx, the pelvic bones inferior to the linea terminalis, two ligaments, and two muscles. Ligaments of the pelvic wall The sacrospinous and sacrotuberous ligaments (Fig. 5.29A) are major components of the lateral pelvic walls that help define the apertures between the pelvic cavity and adjacent regions through which structures pass. The smaller of the two, the sacrospinous ligament, is triangular, with its apex attached to the ischial spine and its base attached to the related margins of the sacrum and the coccyx. The sacrotuberous ligament is also triangular and is superficial to the sacrospinous ligament. Its base has a broad attachment that extends from the posterior superior iliac spine of the pelvic bone, along the dorsal aspect and the lateral margin of the sacrum, and onto the dorsolateral surface of the coccyx. Laterally, the apex of the ligament is attached to the medial margin of the ischial tuberosity.
Anatomy_Gray. The walls of the pelvic cavity consist of the sacrum, the coccyx, the pelvic bones inferior to the linea terminalis, two ligaments, and two muscles. Ligaments of the pelvic wall The sacrospinous and sacrotuberous ligaments (Fig. 5.29A) are major components of the lateral pelvic walls that help define the apertures between the pelvic cavity and adjacent regions through which structures pass. The smaller of the two, the sacrospinous ligament, is triangular, with its apex attached to the ischial spine and its base attached to the related margins of the sacrum and the coccyx. The sacrotuberous ligament is also triangular and is superficial to the sacrospinous ligament. Its base has a broad attachment that extends from the posterior superior iliac spine of the pelvic bone, along the dorsal aspect and the lateral margin of the sacrum, and onto the dorsolateral surface of the coccyx. Laterally, the apex of the ligament is attached to the medial margin of the ischial tuberosity.
Anatomy_Gray_1028
Anatomy_Gray
These ligaments stabilize the sacrum on the pelvic bones by resisting the upward tilting of the inferior aspect of the sacrum (Fig. 5.29B). They also convert the greater and lesser sciatic notches of the pelvic bone into foramina (Fig. 5.29A,B). The greater sciatic foramen lies superior to the sacrospinous ligament and the ischial spine. The lesser sciatic foramen lies inferior to the ischial spine and sacrospinous ligament between the sacrospinous and sacrotuberous ligaments. Muscles of the pelvic wall Two muscles, the obturator internus and the piriformis, contribute to the lateral walls of the pelvic cavity. These muscles originate in the pelvic cavity but attach peripherally to the femur. The obturator internus is a flat, fan-shaped muscle that originates from the deep surface of the obturator membrane and from associated regions of the pelvic bone that surround the obturator foramen (Fig. 5.30 and Table 5.1).
Anatomy_Gray. These ligaments stabilize the sacrum on the pelvic bones by resisting the upward tilting of the inferior aspect of the sacrum (Fig. 5.29B). They also convert the greater and lesser sciatic notches of the pelvic bone into foramina (Fig. 5.29A,B). The greater sciatic foramen lies superior to the sacrospinous ligament and the ischial spine. The lesser sciatic foramen lies inferior to the ischial spine and sacrospinous ligament between the sacrospinous and sacrotuberous ligaments. Muscles of the pelvic wall Two muscles, the obturator internus and the piriformis, contribute to the lateral walls of the pelvic cavity. These muscles originate in the pelvic cavity but attach peripherally to the femur. The obturator internus is a flat, fan-shaped muscle that originates from the deep surface of the obturator membrane and from associated regions of the pelvic bone that surround the obturator foramen (Fig. 5.30 and Table 5.1).
Anatomy_Gray_1029
Anatomy_Gray
The muscle fibers of the obturator internus converge to form a tendon that leaves the pelvic cavity through the lesser sciatic foramen, makes a 90° bend around the ischium between the ischial spine and ischial tuberosity, and then passes posterior to the hip joint to insert on the greater trochanter of the femur. The obturator internus forms a large part of the anterolateral wall of the pelvic cavity. The piriformis is triangular and originates in the bridges of bone between the four anterior sacral foramina. It passes laterally through the greater sciatic foramen, crosses the posterosuperior aspect of the hip joint, and inserts on the greater trochanter of the femur above the insertion of the obturator internus muscle (Fig. 5.30 and Table 5.1).
Anatomy_Gray. The muscle fibers of the obturator internus converge to form a tendon that leaves the pelvic cavity through the lesser sciatic foramen, makes a 90° bend around the ischium between the ischial spine and ischial tuberosity, and then passes posterior to the hip joint to insert on the greater trochanter of the femur. The obturator internus forms a large part of the anterolateral wall of the pelvic cavity. The piriformis is triangular and originates in the bridges of bone between the four anterior sacral foramina. It passes laterally through the greater sciatic foramen, crosses the posterosuperior aspect of the hip joint, and inserts on the greater trochanter of the femur above the insertion of the obturator internus muscle (Fig. 5.30 and Table 5.1).
Anatomy_Gray_1030
Anatomy_Gray
A large part of the posterolateral wall of the pelvic cavity is formed by the piriformis. In addition, this muscle separates the greater sciatic foramen into two regions, one above the muscle and one below. Vessels and nerves coursing between the pelvic cavity and the gluteal region pass through these two regions. Apertures in the pelvic wall Each lateral pelvic wall has three major apertures through which structures pass between the pelvic cavity and other regions: the obturator canal, the greater sciatic foramen, and the lesser sciatic foramen. At the top of the obturator foramen is the obturator canal, which is bordered by the obturator membrane, the associated obturator muscles, and the superior pubic ramus (Fig. 5.31). The obturator nerve and vessels pass from the pelvic cavity to the thigh through this canal.
Anatomy_Gray. A large part of the posterolateral wall of the pelvic cavity is formed by the piriformis. In addition, this muscle separates the greater sciatic foramen into two regions, one above the muscle and one below. Vessels and nerves coursing between the pelvic cavity and the gluteal region pass through these two regions. Apertures in the pelvic wall Each lateral pelvic wall has three major apertures through which structures pass between the pelvic cavity and other regions: the obturator canal, the greater sciatic foramen, and the lesser sciatic foramen. At the top of the obturator foramen is the obturator canal, which is bordered by the obturator membrane, the associated obturator muscles, and the superior pubic ramus (Fig. 5.31). The obturator nerve and vessels pass from the pelvic cavity to the thigh through this canal.
Anatomy_Gray_1031
Anatomy_Gray
The greater sciatic foramen is a major route of communication between the pelvic cavity and the lower limb (Fig. 5.31). It is formed by the greater sciatic notch in the pelvic bone, the sacrotuberous and the sacrospinous ligaments, and the spine of the ischium. The piriformis muscle passes through the greater sciatic foramen, dividing it into two parts. The superior gluteal nerves and vessels pass through the foramen above the piriformis. Passing through the foramen below the piriformis are the inferior gluteal nerves and vessels, the sciatic nerve, the pudendal nerve, the internal pudendal vessels, the posterior femoral cutaneous nerves, and the nerves to the obturator internus and quadratus femoris muscles. The lesser sciatic foramen is formed by the lesser sciatic notch of the pelvic bone, the ischial spine, the sacrospinous ligament, and the sacrotuberous ligament (Fig. 5.31).
Anatomy_Gray. The greater sciatic foramen is a major route of communication between the pelvic cavity and the lower limb (Fig. 5.31). It is formed by the greater sciatic notch in the pelvic bone, the sacrotuberous and the sacrospinous ligaments, and the spine of the ischium. The piriformis muscle passes through the greater sciatic foramen, dividing it into two parts. The superior gluteal nerves and vessels pass through the foramen above the piriformis. Passing through the foramen below the piriformis are the inferior gluteal nerves and vessels, the sciatic nerve, the pudendal nerve, the internal pudendal vessels, the posterior femoral cutaneous nerves, and the nerves to the obturator internus and quadratus femoris muscles. The lesser sciatic foramen is formed by the lesser sciatic notch of the pelvic bone, the ischial spine, the sacrospinous ligament, and the sacrotuberous ligament (Fig. 5.31).
Anatomy_Gray_1032
Anatomy_Gray
The lesser sciatic foramen is formed by the lesser sciatic notch of the pelvic bone, the ischial spine, the sacrospinous ligament, and the sacrotuberous ligament (Fig. 5.31). The tendon of the obturator internus muscle passes through this foramen to enter the gluteal region of the lower limb. Because the lesser sciatic foramen is positioned below the attachment of the pelvic floor, it acts as a route of communication between the perineum and the gluteal region. The pudendal nerve and internal pudendal vessels pass between the pelvic cavity (above the pelvic floor) and the perineum (below the pelvic floor), by first passing out of the pelvic cavity through the greater sciatic foramen and then looping around the ischial spine and sacrospinous ligament to pass through the lesser sciatic foramen to enter the perineum. The nerve to obturator internus follows a similar course.
Anatomy_Gray. The lesser sciatic foramen is formed by the lesser sciatic notch of the pelvic bone, the ischial spine, the sacrospinous ligament, and the sacrotuberous ligament (Fig. 5.31). The tendon of the obturator internus muscle passes through this foramen to enter the gluteal region of the lower limb. Because the lesser sciatic foramen is positioned below the attachment of the pelvic floor, it acts as a route of communication between the perineum and the gluteal region. The pudendal nerve and internal pudendal vessels pass between the pelvic cavity (above the pelvic floor) and the perineum (below the pelvic floor), by first passing out of the pelvic cavity through the greater sciatic foramen and then looping around the ischial spine and sacrospinous ligament to pass through the lesser sciatic foramen to enter the perineum. The nerve to obturator internus follows a similar course.
Anatomy_Gray_1033
Anatomy_Gray
The pelvic outlet is diamond shaped, with the anterior part of the diamond defined predominantly by bone and the posterior part mainly by ligaments (Fig. 5.32). In the midline anteriorly, the boundary of the pelvic outlet is the pubic symphysis. Extending laterally and posteriorly, the boundary on each side is the inferior border of the body of the pubis, the inferior ramus of the pubis, the ramus of the ischium, and the ischial tuberosity. Together, the elements on both sides form the pubic arch. From the ischial tuberosities, the boundaries continue posteriorly and medially along the sacrotuberous ligament on both sides to the coccyx. Terminal parts of the urinary and gastrointestinal tracts and the vagina pass through the pelvic outlet. The area enclosed by the boundaries of the pelvic outlet and below the pelvic floor is the perineum.
Anatomy_Gray. The pelvic outlet is diamond shaped, with the anterior part of the diamond defined predominantly by bone and the posterior part mainly by ligaments (Fig. 5.32). In the midline anteriorly, the boundary of the pelvic outlet is the pubic symphysis. Extending laterally and posteriorly, the boundary on each side is the inferior border of the body of the pubis, the inferior ramus of the pubis, the ramus of the ischium, and the ischial tuberosity. Together, the elements on both sides form the pubic arch. From the ischial tuberosities, the boundaries continue posteriorly and medially along the sacrotuberous ligament on both sides to the coccyx. Terminal parts of the urinary and gastrointestinal tracts and the vagina pass through the pelvic outlet. The area enclosed by the boundaries of the pelvic outlet and below the pelvic floor is the perineum.
Anatomy_Gray_1034
Anatomy_Gray
The area enclosed by the boundaries of the pelvic outlet and below the pelvic floor is the perineum. The pelvic floor is formed by the pelvic diaphragm and, in the anterior midline, the perineal membrane and the muscles in the deep perineal pouch. The pelvic diaphragm is formed by the levator ani and the coccygeus muscles from both sides. The pelvic floor separates the pelvic cavity, above, from the perineum, below. The pelvic diaphragm The pelvic diaphragm is the muscular part of the pelvic floor. Shaped like a bowl or funnel and attached superiorly to the pelvic walls, it consists of the levator ani and the coccygeus muscles (Fig. 5.34 and Table 5.2).
Anatomy_Gray. The area enclosed by the boundaries of the pelvic outlet and below the pelvic floor is the perineum. The pelvic floor is formed by the pelvic diaphragm and, in the anterior midline, the perineal membrane and the muscles in the deep perineal pouch. The pelvic diaphragm is formed by the levator ani and the coccygeus muscles from both sides. The pelvic floor separates the pelvic cavity, above, from the perineum, below. The pelvic diaphragm The pelvic diaphragm is the muscular part of the pelvic floor. Shaped like a bowl or funnel and attached superiorly to the pelvic walls, it consists of the levator ani and the coccygeus muscles (Fig. 5.34 and Table 5.2).
Anatomy_Gray_1035
Anatomy_Gray
The pelvic diaphragm’s circular line of attachment to the cylindrical pelvic wall passes, on each side, between the greater sciatic foramen and the lesser sciatic foramen. Thus: the greater sciatic foramen is situated above the level of the pelvic floor and is a route of communication between the pelvic cavity and the gluteal region of the lower limb; and the lesser sciatic foramen is situated below the pelvic floor, providing a route of communication between the gluteal region of the lower limb and the perineum. The two levator ani muscles originate from each side of the pelvic wall, course medially and inferiorly, and join together in the midline. The attachment to the pelvic wall follows the circular contour of the wall and includes: the posterior aspect of the body of the pubic bone, a linear thickening called the tendinous arch, in the fascia covering the obturator internus muscle, and the spine of the ischium.
Anatomy_Gray. The pelvic diaphragm’s circular line of attachment to the cylindrical pelvic wall passes, on each side, between the greater sciatic foramen and the lesser sciatic foramen. Thus: the greater sciatic foramen is situated above the level of the pelvic floor and is a route of communication between the pelvic cavity and the gluteal region of the lower limb; and the lesser sciatic foramen is situated below the pelvic floor, providing a route of communication between the gluteal region of the lower limb and the perineum. The two levator ani muscles originate from each side of the pelvic wall, course medially and inferiorly, and join together in the midline. The attachment to the pelvic wall follows the circular contour of the wall and includes: the posterior aspect of the body of the pubic bone, a linear thickening called the tendinous arch, in the fascia covering the obturator internus muscle, and the spine of the ischium.
Anatomy_Gray_1036
Anatomy_Gray
At the midline, the muscles blend together posterior to the vagina in women and around the anal aperture in both sexes. Posterior to the anal aperture, the muscles come together as a ligament or raphe called the anococcygeal ligament (anococcygeal body) and attaches to the coccyx. Anteriorly, the muscles are separated by a U-shaped defect or gap termed the urogenital hiatus. The margins of this hiatus merge with the walls of the associated viscera and with muscles in the deep perineal pouch below. The hiatus allows the urethra (in both men and women), and the vagina (in women), to pass through the pelvic diaphragm (Fig. 5.34). The levator ani muscles are divided into at least three collections of muscle fibers, based on site of origin and relationship to viscera in the midline: the pubococcygeus, the puborectalis, and the iliococcygeus muscles.
Anatomy_Gray. At the midline, the muscles blend together posterior to the vagina in women and around the anal aperture in both sexes. Posterior to the anal aperture, the muscles come together as a ligament or raphe called the anococcygeal ligament (anococcygeal body) and attaches to the coccyx. Anteriorly, the muscles are separated by a U-shaped defect or gap termed the urogenital hiatus. The margins of this hiatus merge with the walls of the associated viscera and with muscles in the deep perineal pouch below. The hiatus allows the urethra (in both men and women), and the vagina (in women), to pass through the pelvic diaphragm (Fig. 5.34). The levator ani muscles are divided into at least three collections of muscle fibers, based on site of origin and relationship to viscera in the midline: the pubococcygeus, the puborectalis, and the iliococcygeus muscles.
Anatomy_Gray_1037
Anatomy_Gray
The pubococcygeus originates from the body of the pubis and courses posteriorly to attach along the midline as far back as the coccyx. This part of the muscle is further subdivided on the basis of association with structures in the midline into the puboprostaticus (levator prostatae), the pubovaginalis, and the puboanalis muscles. A second major collection of muscle fibers, the puborectalis portion of the levator ani muscles, originates, in association with the pubococcygeus muscle, from the pubis and passes inferiorly on each side to form a sling around the terminal part of the gastrointestinal tract. This muscular sling maintains an angle or flexure, called the perineal flexure, at the anorectal junction. This angle functions as part of the mechanism that keeps the end of the gastrointestinal system closed.
Anatomy_Gray. The pubococcygeus originates from the body of the pubis and courses posteriorly to attach along the midline as far back as the coccyx. This part of the muscle is further subdivided on the basis of association with structures in the midline into the puboprostaticus (levator prostatae), the pubovaginalis, and the puboanalis muscles. A second major collection of muscle fibers, the puborectalis portion of the levator ani muscles, originates, in association with the pubococcygeus muscle, from the pubis and passes inferiorly on each side to form a sling around the terminal part of the gastrointestinal tract. This muscular sling maintains an angle or flexure, called the perineal flexure, at the anorectal junction. This angle functions as part of the mechanism that keeps the end of the gastrointestinal system closed.
Anatomy_Gray_1038
Anatomy_Gray
The final part of the levator ani muscle is the iliococcygeus. This part of the muscle originates from the fascia that covers the obturator internus muscle. It joins the same muscle on the other side in the midline to form a ligament or raphe that extends from the anal aperture to the coccyx. The levator ani muscles help support the pelvic viscera and maintain closure of the rectum and vagina. They are innervated directly by branches from the anterior ramus of S4 and by branches of the pudendal nerve (S2 to S4). The two coccygeus muscles, one on each side, are triangular and overlie the sacrospinous ligaments; together they complete the posterior part of the pelvic diaphragm (Fig. 5.34 and Table 5.2). They are attached, by their apices, to the tips of the ischial spines and, by their bases, to the lateral margins of the coccyx and adjacent margins of the sacrum.
Anatomy_Gray. The final part of the levator ani muscle is the iliococcygeus. This part of the muscle originates from the fascia that covers the obturator internus muscle. It joins the same muscle on the other side in the midline to form a ligament or raphe that extends from the anal aperture to the coccyx. The levator ani muscles help support the pelvic viscera and maintain closure of the rectum and vagina. They are innervated directly by branches from the anterior ramus of S4 and by branches of the pudendal nerve (S2 to S4). The two coccygeus muscles, one on each side, are triangular and overlie the sacrospinous ligaments; together they complete the posterior part of the pelvic diaphragm (Fig. 5.34 and Table 5.2). They are attached, by their apices, to the tips of the ischial spines and, by their bases, to the lateral margins of the coccyx and adjacent margins of the sacrum.
Anatomy_Gray_1039
Anatomy_Gray
The coccygeus muscles are innervated by branches from the anterior rami of S3 and S4 and participate in supporting the posterior aspect of the pelvic floor. The perineal membrane and deep The perineal membrane is a thick fascial, triangular structure attached to the bony framework of the pubic arch (Fig. 5.36A). It is oriented in the horizontal plane and has a free posterior margin. Anteriorly, there is a small gap (blue arrow in Fig. 5.36A) between the membrane and the inferior pubic ligament (a ligament associated with the pubic symphysis). The perineal membrane is related above to a thin space called the deep perineal pouch (deep perineal space) (Fig. 5.36B), which contains a layer of skeletal muscle and various neurovascular elements.
Anatomy_Gray. The coccygeus muscles are innervated by branches from the anterior rami of S3 and S4 and participate in supporting the posterior aspect of the pelvic floor. The perineal membrane and deep The perineal membrane is a thick fascial, triangular structure attached to the bony framework of the pubic arch (Fig. 5.36A). It is oriented in the horizontal plane and has a free posterior margin. Anteriorly, there is a small gap (blue arrow in Fig. 5.36A) between the membrane and the inferior pubic ligament (a ligament associated with the pubic symphysis). The perineal membrane is related above to a thin space called the deep perineal pouch (deep perineal space) (Fig. 5.36B), which contains a layer of skeletal muscle and various neurovascular elements.
Anatomy_Gray_1040
Anatomy_Gray
The deep perineal pouch is open above and is not separated from more superior structures by a distinct layer of fascia. The parts of the perineal membrane and structures in the deep perineal pouch, enclosed by the urogenital hiatus above, therefore contribute to the pelvic floor and support elements of the urogenital system in the pelvic cavity, even though the perineal membrane and deep perineal pouch are usually considered parts of the perineum. The perineal membrane and adjacent pubic arch provide attachment for the roots of the external genitalia and the muscles associated with them (Fig. 5.36C). The urethra penetrates vertically through a circular hiatus in the perineal membrane as it passes from the pelvic cavity, above, to the perineum, below. In women, the vagina also passes through a hiatus in the perineal membrane just posterior to the urethral hiatus.
Anatomy_Gray. The deep perineal pouch is open above and is not separated from more superior structures by a distinct layer of fascia. The parts of the perineal membrane and structures in the deep perineal pouch, enclosed by the urogenital hiatus above, therefore contribute to the pelvic floor and support elements of the urogenital system in the pelvic cavity, even though the perineal membrane and deep perineal pouch are usually considered parts of the perineum. The perineal membrane and adjacent pubic arch provide attachment for the roots of the external genitalia and the muscles associated with them (Fig. 5.36C). The urethra penetrates vertically through a circular hiatus in the perineal membrane as it passes from the pelvic cavity, above, to the perineum, below. In women, the vagina also passes through a hiatus in the perineal membrane just posterior to the urethral hiatus.
Anatomy_Gray_1041
Anatomy_Gray
Within the deep perineal pouch, a sheet of skeletal muscle functions as a sphincter, mainly for the urethra, and as a stabilizer of the posterior edge of the perineal membrane (Fig. 5.37 and Table 5.3). Anteriorly, a group of muscle fibers surround the urethra and collectively form the external urethral sphincter. Two additional groups of muscle fibers are associated with the urethra and vagina in women. One group forms the sphincter urethrovaginalis, which surrounds the urethra and vagina as a unit. The second group forms the compressor urethrae, on each side, which originate from the ischiopubic rami and meet anterior to the urethra. Together with the external urethral sphincter, the sphincter urethrovaginalis and compressor urethrae facilitate closing of the urethra.
Anatomy_Gray. Within the deep perineal pouch, a sheet of skeletal muscle functions as a sphincter, mainly for the urethra, and as a stabilizer of the posterior edge of the perineal membrane (Fig. 5.37 and Table 5.3). Anteriorly, a group of muscle fibers surround the urethra and collectively form the external urethral sphincter. Two additional groups of muscle fibers are associated with the urethra and vagina in women. One group forms the sphincter urethrovaginalis, which surrounds the urethra and vagina as a unit. The second group forms the compressor urethrae, on each side, which originate from the ischiopubic rami and meet anterior to the urethra. Together with the external urethral sphincter, the sphincter urethrovaginalis and compressor urethrae facilitate closing of the urethra.
Anatomy_Gray_1042
Anatomy_Gray
In both men and women, a deep transverse perineal muscle on each side parallels the free margin of the perineal membrane and joins with its partner at the midline. These muscles are thought to stabilize the position of the perineal body, which is a midline structure along the posterior edge of the perineal membrane. The perineal body is an ill-defined but important connective tissue structure into which muscles of the pelvic floor and the perineum attach (Fig. 5.38). It is positioned in the midline along the posterior border of the perineal membrane, to which it attaches. The posterior end of the urogenital hiatus in the levator ani muscles is also connected to it.
Anatomy_Gray. In both men and women, a deep transverse perineal muscle on each side parallels the free margin of the perineal membrane and joins with its partner at the midline. These muscles are thought to stabilize the position of the perineal body, which is a midline structure along the posterior edge of the perineal membrane. The perineal body is an ill-defined but important connective tissue structure into which muscles of the pelvic floor and the perineum attach (Fig. 5.38). It is positioned in the midline along the posterior border of the perineal membrane, to which it attaches. The posterior end of the urogenital hiatus in the levator ani muscles is also connected to it.
Anatomy_Gray_1043
Anatomy_Gray
The deep transverse perineal muscles intersect at the perineal body; in women, the sphincter urethrovaginalis also attaches to the perineal body. Other muscles that connect to the perineal body include the external anal sphincter, the superficial transverse perineal muscles, and the bulbospongiosus muscles of the perineum. The pelvic viscera include parts of the gastrointestinal system, the urinary system, and the reproductive system. The viscera are arranged in the midline, from front to back; the neurovascular supply is through branches that pass medially from vessels and nerves associated with the pelvic walls. Pelvic parts of the gastrointestinal system consist mainly of the rectum and the anal canal, although the terminal part of the sigmoid colon is also in the pelvic cavity (Fig. 5.39).
Anatomy_Gray. The deep transverse perineal muscles intersect at the perineal body; in women, the sphincter urethrovaginalis also attaches to the perineal body. Other muscles that connect to the perineal body include the external anal sphincter, the superficial transverse perineal muscles, and the bulbospongiosus muscles of the perineum. The pelvic viscera include parts of the gastrointestinal system, the urinary system, and the reproductive system. The viscera are arranged in the midline, from front to back; the neurovascular supply is through branches that pass medially from vessels and nerves associated with the pelvic walls. Pelvic parts of the gastrointestinal system consist mainly of the rectum and the anal canal, although the terminal part of the sigmoid colon is also in the pelvic cavity (Fig. 5.39).
Anatomy_Gray_1044
Anatomy_Gray
Pelvic parts of the gastrointestinal system consist mainly of the rectum and the anal canal, although the terminal part of the sigmoid colon is also in the pelvic cavity (Fig. 5.39). The rectum is continuous: above, with the sigmoid colon at about the level of vertebra SIII, and below, with the anal canal as this structure penetrates the pelvic floor and passes through the perineum to end as the anus. The rectum, the most posterior element of the pelvic viscera, is immediately anterior to and follows the concave contour of the sacrum. The anorectal junction is pulled forward (perineal flexure) by the action of the puborectalis part of the levator ani muscle, so the anal canal moves in a posterior direction as it passes inferiorly through the pelvic floor.
Anatomy_Gray. Pelvic parts of the gastrointestinal system consist mainly of the rectum and the anal canal, although the terminal part of the sigmoid colon is also in the pelvic cavity (Fig. 5.39). The rectum is continuous: above, with the sigmoid colon at about the level of vertebra SIII, and below, with the anal canal as this structure penetrates the pelvic floor and passes through the perineum to end as the anus. The rectum, the most posterior element of the pelvic viscera, is immediately anterior to and follows the concave contour of the sacrum. The anorectal junction is pulled forward (perineal flexure) by the action of the puborectalis part of the levator ani muscle, so the anal canal moves in a posterior direction as it passes inferiorly through the pelvic floor.
Anatomy_Gray_1045
Anatomy_Gray
In addition to conforming to the general curvature of the sacrum in the anteroposterior plane, the rectum has three lateral curvatures; the upper and lower curvatures to the right and the middle curvature to the left. The lower part of the rectum is expanded to form the rectal ampulla. Finally, unlike the colon, the rectum lacks distinct taeniae coli muscles, omental appendices, and sacculations (haustra of the colon). The anal canal begins at the terminal end of the rectal ampulla where it narrows at the pelvic floor. It terminates as the anus after passing through the perineum. As it passes through the pelvic floor, the anal canal is surrounded along its entire length by the internal and external anal sphincters, which normally keep it closed.
Anatomy_Gray. In addition to conforming to the general curvature of the sacrum in the anteroposterior plane, the rectum has three lateral curvatures; the upper and lower curvatures to the right and the middle curvature to the left. The lower part of the rectum is expanded to form the rectal ampulla. Finally, unlike the colon, the rectum lacks distinct taeniae coli muscles, omental appendices, and sacculations (haustra of the colon). The anal canal begins at the terminal end of the rectal ampulla where it narrows at the pelvic floor. It terminates as the anus after passing through the perineum. As it passes through the pelvic floor, the anal canal is surrounded along its entire length by the internal and external anal sphincters, which normally keep it closed.
Anatomy_Gray_1046
Anatomy_Gray
The lining of the anal canal bears a number of characteristic structural features that reflect the approximate position of the anococcygeal membrane in the fetus (which closes the terminal end of the developing gastrointestinal system in the fetus) and the transition from gastrointestinal mucosa to skin in the adult (Fig. 5.39B). The upper part of the anal canal is lined by mucosa similar to that lining the rectum and is distinguished by a number of longitudinally oriented folds known as anal columns, which are united inferiorly by crescentic folds termed anal valves. Superior to each valve is a depression termed an anal sinus. The anal valves together form a circle around the anal canal at a location known as the pectinate line, which marks the approximate position of the anal membrane in the fetus.
Anatomy_Gray. The lining of the anal canal bears a number of characteristic structural features that reflect the approximate position of the anococcygeal membrane in the fetus (which closes the terminal end of the developing gastrointestinal system in the fetus) and the transition from gastrointestinal mucosa to skin in the adult (Fig. 5.39B). The upper part of the anal canal is lined by mucosa similar to that lining the rectum and is distinguished by a number of longitudinally oriented folds known as anal columns, which are united inferiorly by crescentic folds termed anal valves. Superior to each valve is a depression termed an anal sinus. The anal valves together form a circle around the anal canal at a location known as the pectinate line, which marks the approximate position of the anal membrane in the fetus.
Anatomy_Gray_1047
Anatomy_Gray
Inferior to the pectinate line is a transition zone known as the anal pecten, which is lined by nonkeratinized stratified squamous epithelium. The anal pecten ends inferiorly at the anocutaneous line (“white line”), or where the lining of the anal canal becomes true skin. Given the position of the colon and rectum in the abdominopelvic cavity and its proximity to other organs, it is extremely important to accurately stage colorectal tumors: a tumor in the pelvis, for example, could invade the uterus or bladder. Assessing whether spread has occurred may involve ultrasound scanning, computed tomography, and magnetic resonance imaging. The pelvic parts of the urinary system consist of the terminal parts of the ureters, the bladder, and the proximal part of the urethra (Fig. 5.40).
Anatomy_Gray. Inferior to the pectinate line is a transition zone known as the anal pecten, which is lined by nonkeratinized stratified squamous epithelium. The anal pecten ends inferiorly at the anocutaneous line (“white line”), or where the lining of the anal canal becomes true skin. Given the position of the colon and rectum in the abdominopelvic cavity and its proximity to other organs, it is extremely important to accurately stage colorectal tumors: a tumor in the pelvis, for example, could invade the uterus or bladder. Assessing whether spread has occurred may involve ultrasound scanning, computed tomography, and magnetic resonance imaging. The pelvic parts of the urinary system consist of the terminal parts of the ureters, the bladder, and the proximal part of the urethra (Fig. 5.40).
Anatomy_Gray_1048
Anatomy_Gray
The pelvic parts of the urinary system consist of the terminal parts of the ureters, the bladder, and the proximal part of the urethra (Fig. 5.40). The ureters enter the pelvic cavity from the abdomen by passing through the pelvic inlet. On each side, the ureter crosses the pelvic inlet and enters the pelvic cavity in the area anterior to the bifurcation of the common iliac artery. From this point, it continues along the pelvic wall and floor to join the base of the bladder. In the pelvis, the ureter is crossed by: the ductus deferens in men, and the uterine artery in women. The bladder is the most anterior element of the pelvic viscera. Although it is entirely situated in the pelvic cavity when empty, it expands superiorly into the abdominal cavity when full (Fig. 5.40). The empty bladder is shaped like a three-sided pyramid that has tipped over to lie on one of its margins (Fig. 5.41A). It has an apex, a base, a superior surface, and two inferolateral surfaces.
Anatomy_Gray. The pelvic parts of the urinary system consist of the terminal parts of the ureters, the bladder, and the proximal part of the urethra (Fig. 5.40). The ureters enter the pelvic cavity from the abdomen by passing through the pelvic inlet. On each side, the ureter crosses the pelvic inlet and enters the pelvic cavity in the area anterior to the bifurcation of the common iliac artery. From this point, it continues along the pelvic wall and floor to join the base of the bladder. In the pelvis, the ureter is crossed by: the ductus deferens in men, and the uterine artery in women. The bladder is the most anterior element of the pelvic viscera. Although it is entirely situated in the pelvic cavity when empty, it expands superiorly into the abdominal cavity when full (Fig. 5.40). The empty bladder is shaped like a three-sided pyramid that has tipped over to lie on one of its margins (Fig. 5.41A). It has an apex, a base, a superior surface, and two inferolateral surfaces.
Anatomy_Gray_1049
Anatomy_Gray
The empty bladder is shaped like a three-sided pyramid that has tipped over to lie on one of its margins (Fig. 5.41A). It has an apex, a base, a superior surface, and two inferolateral surfaces. The apex of the bladder is directed toward the top of the pubic symphysis; a structure known as the median umbilical ligament (a remnant of the embryological urachus that contributes to the formation of the bladder) continues from it superiorly up the anterior abdominal wall to the umbilicus.
Anatomy_Gray. The empty bladder is shaped like a three-sided pyramid that has tipped over to lie on one of its margins (Fig. 5.41A). It has an apex, a base, a superior surface, and two inferolateral surfaces. The apex of the bladder is directed toward the top of the pubic symphysis; a structure known as the median umbilical ligament (a remnant of the embryological urachus that contributes to the formation of the bladder) continues from it superiorly up the anterior abdominal wall to the umbilicus.
Anatomy_Gray_1050
Anatomy_Gray
The base of the bladder is shaped like an inverted triangle and faces posteroinferiorly. The two ureters enter the bladder at each of the upper corners of the base, and the urethra drains inferiorly from the lower corner of the base. Inside, the mucosal lining on the base of the bladder is smooth and firmly attached to the underlying smooth muscle coat of the wall—unlike elsewhere in the bladder where the mucosa is folded and loosely attached to the wall. The smooth triangular area between the openings of the ureters and urethra on the inside of the bladder is known as the trigone (Fig. 5.41B). The inferolateral surfaces of the bladder are cradled between the levator ani muscles of the pelvic diaphragm and the adjacent obturator internus muscles above the attachment of the pelvic diaphragm. The superior surface is slightly domed when the bladder is empty; it balloons upward as the bladder fills. Neck of bladder
Anatomy_Gray. The base of the bladder is shaped like an inverted triangle and faces posteroinferiorly. The two ureters enter the bladder at each of the upper corners of the base, and the urethra drains inferiorly from the lower corner of the base. Inside, the mucosal lining on the base of the bladder is smooth and firmly attached to the underlying smooth muscle coat of the wall—unlike elsewhere in the bladder where the mucosa is folded and loosely attached to the wall. The smooth triangular area between the openings of the ureters and urethra on the inside of the bladder is known as the trigone (Fig. 5.41B). The inferolateral surfaces of the bladder are cradled between the levator ani muscles of the pelvic diaphragm and the adjacent obturator internus muscles above the attachment of the pelvic diaphragm. The superior surface is slightly domed when the bladder is empty; it balloons upward as the bladder fills. Neck of bladder
Anatomy_Gray_1051
Anatomy_Gray
Neck of bladder The neck of the bladder surrounds the origin of the urethra at the point where the two inferolateral surfaces and the base intersect. The neck is the most inferior part of the bladder and also the most “fixed” part. It is anchored into position by a pair of tough fibromuscular bands, which connect the neck and pelvic part of the urethra to the posteroinferior aspect of each pubic bone. In women, these fibromuscular bands are termed pubovesical ligaments (Fig. 5.42A). Together with the perineal membrane and associated muscles, the levator ani muscles, and the pubic bones, these ligaments help support the bladder. In men, the paired fibromuscular bands are known as puboprostatic ligaments because they blend with the fibrous capsule of the prostate, which surrounds the neck of the bladder and adjacent part of the urethra (Fig. 5.42B).
Anatomy_Gray. Neck of bladder The neck of the bladder surrounds the origin of the urethra at the point where the two inferolateral surfaces and the base intersect. The neck is the most inferior part of the bladder and also the most “fixed” part. It is anchored into position by a pair of tough fibromuscular bands, which connect the neck and pelvic part of the urethra to the posteroinferior aspect of each pubic bone. In women, these fibromuscular bands are termed pubovesical ligaments (Fig. 5.42A). Together with the perineal membrane and associated muscles, the levator ani muscles, and the pubic bones, these ligaments help support the bladder. In men, the paired fibromuscular bands are known as puboprostatic ligaments because they blend with the fibrous capsule of the prostate, which surrounds the neck of the bladder and adjacent part of the urethra (Fig. 5.42B).
Anatomy_Gray_1052
Anatomy_Gray
Although the bladder is considered to be pelvic in the adult, it has a higher position in children. At birth, the bladder is almost entirely abdominal; the urethra begins approximately at the upper margin of the pubic symphysis. With age, the bladder descends until after puberty when it assumes the adult position. The urethra begins at the base of the bladder and ends with an external opening in the perineum. The paths taken by the urethra differ significantly in women and men. In women, the urethra is short, being about 4 cm long. It travels a slightly curved course as it passes inferiorly through the pelvic floor into the perineum, where it passes through the deep perineal pouch and perineal membrane before opening in the vestibule that lies between the labia minora (Fig. 5.45A).
Anatomy_Gray. Although the bladder is considered to be pelvic in the adult, it has a higher position in children. At birth, the bladder is almost entirely abdominal; the urethra begins approximately at the upper margin of the pubic symphysis. With age, the bladder descends until after puberty when it assumes the adult position. The urethra begins at the base of the bladder and ends with an external opening in the perineum. The paths taken by the urethra differ significantly in women and men. In women, the urethra is short, being about 4 cm long. It travels a slightly curved course as it passes inferiorly through the pelvic floor into the perineum, where it passes through the deep perineal pouch and perineal membrane before opening in the vestibule that lies between the labia minora (Fig. 5.45A).
Anatomy_Gray_1053
Anatomy_Gray
The urethral opening is anterior to the vaginal opening in the vestibule. The inferior aspect of the urethra is bound to the anterior surface of the vagina. Two small para- urethral mucous glands (Skene’s glands) are associated with the lower end of the urethra. Each drains via a duct that opens onto the lateral margin of the external urethral orifice. In men, the urethra is long, about 20 cm, and bends twice along its course (Fig. 5.45B). Beginning at the base of the bladder and passing inferiorly through the prostate, it passes through the deep perineal pouch and perineal membrane and immediately enters the root of the penis. As the urethra exits the deep perineal pouch, it bends forward to course anteriorly in the root of the penis. When the penis is flaccid, the urethra makes another bend, this time inferiorly, when passing from the root to the body of the penis. During erection, the bend between the root and body of the penis disappears.
Anatomy_Gray. The urethral opening is anterior to the vaginal opening in the vestibule. The inferior aspect of the urethra is bound to the anterior surface of the vagina. Two small para- urethral mucous glands (Skene’s glands) are associated with the lower end of the urethra. Each drains via a duct that opens onto the lateral margin of the external urethral orifice. In men, the urethra is long, about 20 cm, and bends twice along its course (Fig. 5.45B). Beginning at the base of the bladder and passing inferiorly through the prostate, it passes through the deep perineal pouch and perineal membrane and immediately enters the root of the penis. As the urethra exits the deep perineal pouch, it bends forward to course anteriorly in the root of the penis. When the penis is flaccid, the urethra makes another bend, this time inferiorly, when passing from the root to the body of the penis. During erection, the bend between the root and body of the penis disappears.
Anatomy_Gray_1054
Anatomy_Gray
The urethra in men is divided into preprostatic, prostatic, membranous, and spongy parts. Preprostatic part. The preprostatic part of the urethra is about 1 cm long, extends from the base of the bladder to the prostate, and is associated with a circular cuff of smooth muscle fibers (the internal urethral sphincter). Contraction of this sphincter prevents retrograde movement of semen into the bladder during ejaculation. Prostatic part. The prostatic part of the urethra (Fig. 5.45C) is 3 to 4 cm long and is surrounded by the prostate. In this region, the lumen of the urethra is marked by a longitudinal midline fold of mucosa (the urethral crest). The depression on each side of the crest is the prostatic sinus; the ducts of the prostate empty into these two sinuses.
Anatomy_Gray. The urethra in men is divided into preprostatic, prostatic, membranous, and spongy parts. Preprostatic part. The preprostatic part of the urethra is about 1 cm long, extends from the base of the bladder to the prostate, and is associated with a circular cuff of smooth muscle fibers (the internal urethral sphincter). Contraction of this sphincter prevents retrograde movement of semen into the bladder during ejaculation. Prostatic part. The prostatic part of the urethra (Fig. 5.45C) is 3 to 4 cm long and is surrounded by the prostate. In this region, the lumen of the urethra is marked by a longitudinal midline fold of mucosa (the urethral crest). The depression on each side of the crest is the prostatic sinus; the ducts of the prostate empty into these two sinuses.
Anatomy_Gray_1055
Anatomy_Gray
Midway along its length, the urethral crest is enlarged to form a somewhat circular elevation (the seminal colliculus). In men, the seminal colliculus is used to determine the position of the prostate gland during transurethral transection of the prostate. A small blind-ended pouch—the prostatic utricle (thought to be the homologue of the uterus in women)—opens onto the center of the seminal colliculus. On each side of the prostatic utricle is the opening of the ejaculatory duct of the male reproductive system. Therefore the connection between the urinary and reproductive tracts in men occurs in the prostatic part of the urethra. Membranous part. The membranous part of the urethra is narrow and passes through the deep perineal pouch (Fig. 5.45B). During its transit through this pouch, the urethra, in both men and women, is surrounded by skeletal muscle of the external urethral sphincter.
Anatomy_Gray. Midway along its length, the urethral crest is enlarged to form a somewhat circular elevation (the seminal colliculus). In men, the seminal colliculus is used to determine the position of the prostate gland during transurethral transection of the prostate. A small blind-ended pouch—the prostatic utricle (thought to be the homologue of the uterus in women)—opens onto the center of the seminal colliculus. On each side of the prostatic utricle is the opening of the ejaculatory duct of the male reproductive system. Therefore the connection between the urinary and reproductive tracts in men occurs in the prostatic part of the urethra. Membranous part. The membranous part of the urethra is narrow and passes through the deep perineal pouch (Fig. 5.45B). During its transit through this pouch, the urethra, in both men and women, is surrounded by skeletal muscle of the external urethral sphincter.
Anatomy_Gray_1056
Anatomy_Gray
Spongy urethra. The spongy urethra is surrounded by erectile tissue (the corpus spongiosum) of the penis. It is enlarged to form a bulb at the base of the penis and again at the end of the penis to form the navicular fossa (Fig. 5.45B). The two bulbo-urethral glands in the deep perineal pouch are part of the male reproductive system and open into the bulb of the spongy urethra. The external urethral orifice is the sagittal slit at the end of the penis. The reproductive system in men has components in the abdomen, pelvis, and perineum (Fig. 5.47A). The major components are a testis, epididymis, ductus deferens, and ejaculatory duct on each side, and the urethra and penis in the midline. In addition, three types of accessory glands are associated with the system: a single prostate, a pair of seminal vesicles, and a pair of bulbo-urethral glands.
Anatomy_Gray. Spongy urethra. The spongy urethra is surrounded by erectile tissue (the corpus spongiosum) of the penis. It is enlarged to form a bulb at the base of the penis and again at the end of the penis to form the navicular fossa (Fig. 5.45B). The two bulbo-urethral glands in the deep perineal pouch are part of the male reproductive system and open into the bulb of the spongy urethra. The external urethral orifice is the sagittal slit at the end of the penis. The reproductive system in men has components in the abdomen, pelvis, and perineum (Fig. 5.47A). The major components are a testis, epididymis, ductus deferens, and ejaculatory duct on each side, and the urethra and penis in the midline. In addition, three types of accessory glands are associated with the system: a single prostate, a pair of seminal vesicles, and a pair of bulbo-urethral glands.
Anatomy_Gray_1057
Anatomy_Gray
The design of the reproductive system in men is basically a series of ducts and tubules. The arrangement of parts and linkage to the urinary tract reflects its embryological development. The testes originally develop high on the posterior abdominal wall and then descend, normally before birth, through the inguinal canal in the anterior abdominal wall and into the scrotum of the perineum. During descent, the testes carry their vessels, lymphatics, and nerves, as well as their principal drainage ducts, the ductus deferens (vas deferens) with them. The lymph drainage of the testes is therefore to the lateral aortic or lumbar nodes and pre-aortic nodes in the abdomen, and not to the inguinal or pelvic lymph nodes.
Anatomy_Gray. The design of the reproductive system in men is basically a series of ducts and tubules. The arrangement of parts and linkage to the urinary tract reflects its embryological development. The testes originally develop high on the posterior abdominal wall and then descend, normally before birth, through the inguinal canal in the anterior abdominal wall and into the scrotum of the perineum. During descent, the testes carry their vessels, lymphatics, and nerves, as well as their principal drainage ducts, the ductus deferens (vas deferens) with them. The lymph drainage of the testes is therefore to the lateral aortic or lumbar nodes and pre-aortic nodes in the abdomen, and not to the inguinal or pelvic lymph nodes.
Anatomy_Gray_1058
Anatomy_Gray
Each ellipsoid-shaped testis is enclosed within the end of an elongated musculofascial pouch, which is continuous with the anterior abdominal wall and projects into the scrotum. The spermatic cord is the tube-shaped connection between the pouch in the scrotum and the abdominal wall. The sides and anterior aspect of the testis are covered by a closed sac of peritoneum (the tunica vaginalis), which originally connected to the abdominal cavity. Normally after testicular descent, the connection closes, leaving a fibrous remnant.
Anatomy_Gray. Each ellipsoid-shaped testis is enclosed within the end of an elongated musculofascial pouch, which is continuous with the anterior abdominal wall and projects into the scrotum. The spermatic cord is the tube-shaped connection between the pouch in the scrotum and the abdominal wall. The sides and anterior aspect of the testis are covered by a closed sac of peritoneum (the tunica vaginalis), which originally connected to the abdominal cavity. Normally after testicular descent, the connection closes, leaving a fibrous remnant.
Anatomy_Gray_1059
Anatomy_Gray
Each testis (Fig. 5.47B) is composed of seminiferous tubules and interstitial tissue surrounded by a thick connective tissue capsule (the tunica albuginea). Spermatozoa are produced by the seminiferous tubules. The 400 to 600 highly coiled seminiferous tubules are modified at each end to become straight tubules, which connect to a collecting chamber (the rete testis) in a thick, vertically oriented linear wedge of connective tissue (the mediastinum testis), projecting from the capsule into the posterior aspect of the gonad. Approximately 12 to 20 efferent ductules originate from the upper end of the rete testis, penetrate the capsule, and connect with the epididymis.
Anatomy_Gray. Each testis (Fig. 5.47B) is composed of seminiferous tubules and interstitial tissue surrounded by a thick connective tissue capsule (the tunica albuginea). Spermatozoa are produced by the seminiferous tubules. The 400 to 600 highly coiled seminiferous tubules are modified at each end to become straight tubules, which connect to a collecting chamber (the rete testis) in a thick, vertically oriented linear wedge of connective tissue (the mediastinum testis), projecting from the capsule into the posterior aspect of the gonad. Approximately 12 to 20 efferent ductules originate from the upper end of the rete testis, penetrate the capsule, and connect with the epididymis.
Anatomy_Gray_1060
Anatomy_Gray
The epididymis courses along the posterolateral side of the testis (Fig. 5.47B). It has two distinct components: the efferent ductules, which form an enlarged coiled mass that sits on the posterior superior pole of the testis and forms the head of the epididymis; and the true epididymis, which is a single, long coiled duct into which the efferent ductules all drain, and which continues inferiorly along the posterolateral margin of the testis as the body of the epididymis and enlarges to form the tail of the epididymis at the inferior pole of the testis. During passage through the epididymis, spermatozoa acquire the ability to move and fertilize an egg. The epididymis also stores spermatozoa until ejaculation. The end of the epididymis is continuous with the ductus deferens.
Anatomy_Gray. The epididymis courses along the posterolateral side of the testis (Fig. 5.47B). It has two distinct components: the efferent ductules, which form an enlarged coiled mass that sits on the posterior superior pole of the testis and forms the head of the epididymis; and the true epididymis, which is a single, long coiled duct into which the efferent ductules all drain, and which continues inferiorly along the posterolateral margin of the testis as the body of the epididymis and enlarges to form the tail of the epididymis at the inferior pole of the testis. During passage through the epididymis, spermatozoa acquire the ability to move and fertilize an egg. The epididymis also stores spermatozoa until ejaculation. The end of the epididymis is continuous with the ductus deferens.
Anatomy_Gray_1061
Anatomy_Gray
The ductus deferens is a long muscular duct that transports spermatozoa from the tail of the epididymis in the scrotum to the ejaculatory duct in the pelvic cavity (Fig. 5.47A). It ascends in the scrotum as a component of the spermatic cord and passes through the inguinal canal in the anterior abdominal wall. After passing through the deep inguinal ring, the ductus deferens bends medially around the lateral side of the inferior epigastric artery and crosses the external iliac artery and the external iliac vein at the pelvic inlet to enter the pelvic cavity. The duct descends medially on the pelvic wall, deep to the peritoneum, and crosses the ureter posterior to the bladder. It continues inferomedially along the base of the bladder, anterior to the rectum, almost to the midline, where it is joined by the duct of the seminal vesicle to form the ejaculatory duct.
Anatomy_Gray. The ductus deferens is a long muscular duct that transports spermatozoa from the tail of the epididymis in the scrotum to the ejaculatory duct in the pelvic cavity (Fig. 5.47A). It ascends in the scrotum as a component of the spermatic cord and passes through the inguinal canal in the anterior abdominal wall. After passing through the deep inguinal ring, the ductus deferens bends medially around the lateral side of the inferior epigastric artery and crosses the external iliac artery and the external iliac vein at the pelvic inlet to enter the pelvic cavity. The duct descends medially on the pelvic wall, deep to the peritoneum, and crosses the ureter posterior to the bladder. It continues inferomedially along the base of the bladder, anterior to the rectum, almost to the midline, where it is joined by the duct of the seminal vesicle to form the ejaculatory duct.
Anatomy_Gray_1062
Anatomy_Gray
Between the ureter and ejaculatory duct, the ductus deferens expands to form the ampulla of the ductus deferens. The ejaculatory duct penetrates through the prostate gland to connect with the prostatic urethra. Each seminal vesicle is an accessory gland of the male reproductive system that develops as a blind-ended tubular outgrowth from the ductus deferens (Fig. 5.47A). The tube is coiled with numerous pocket-like outgrowths and is encapsulated by connective tissue to form an elongate structure situated between the bladder and rectum. The seminal vesicle is immediately lateral to and follows the course of the ductus deferens at the base of the bladder. The duct of the seminal vesicle joins the ductus deferens to form the ejaculatory duct (Fig. 5.48). Secretions from the seminal vesicle contribute significantly to the volume of the ejaculate (semen).
Anatomy_Gray. Between the ureter and ejaculatory duct, the ductus deferens expands to form the ampulla of the ductus deferens. The ejaculatory duct penetrates through the prostate gland to connect with the prostatic urethra. Each seminal vesicle is an accessory gland of the male reproductive system that develops as a blind-ended tubular outgrowth from the ductus deferens (Fig. 5.47A). The tube is coiled with numerous pocket-like outgrowths and is encapsulated by connective tissue to form an elongate structure situated between the bladder and rectum. The seminal vesicle is immediately lateral to and follows the course of the ductus deferens at the base of the bladder. The duct of the seminal vesicle joins the ductus deferens to form the ejaculatory duct (Fig. 5.48). Secretions from the seminal vesicle contribute significantly to the volume of the ejaculate (semen).
Anatomy_Gray_1063
Anatomy_Gray
The prostate is an unpaired accessory structure of the male reproductive system that surrounds the urethra in the pelvic cavity (Figs. 5.47A and 5.48). It lies immediately inferior to the bladder, posterior to the pubic symphysis, and anterior to the rectum. The prostate is shaped like an inverted rounded cone with a larger base, which is continuous above with the neck of the bladder, and a narrower apex, which rests below on the pelvic floor. The inferolateral surfaces of the prostate are in contact with the levator ani muscles that together cradle the prostate between them. The prostate develops as 30 to 40 individual complex glands, which grow from the urethral epithelium into the surrounding wall of the urethra. Collectively, these glands enlarge the wall of the urethra into what is known as the prostate; however, the individual glands retain their own ducts, which empty independently into the prostatic sinuses on the posterior aspect of the urethral lumen (see Fig. 5.45C).
Anatomy_Gray. The prostate is an unpaired accessory structure of the male reproductive system that surrounds the urethra in the pelvic cavity (Figs. 5.47A and 5.48). It lies immediately inferior to the bladder, posterior to the pubic symphysis, and anterior to the rectum. The prostate is shaped like an inverted rounded cone with a larger base, which is continuous above with the neck of the bladder, and a narrower apex, which rests below on the pelvic floor. The inferolateral surfaces of the prostate are in contact with the levator ani muscles that together cradle the prostate between them. The prostate develops as 30 to 40 individual complex glands, which grow from the urethral epithelium into the surrounding wall of the urethra. Collectively, these glands enlarge the wall of the urethra into what is known as the prostate; however, the individual glands retain their own ducts, which empty independently into the prostatic sinuses on the posterior aspect of the urethral lumen (see Fig. 5.45C).
Anatomy_Gray_1064
Anatomy_Gray
Secretions from the prostate, together with secretions from the seminal vesicles, contribute to the formation of semen during ejaculation. The ejaculatory ducts pass almost vertically in an anteroinferior direction through the posterior aspect of the prostate to open into the prostatic urethra. The bulbo-urethral glands (see Fig. 5.47A), one on each side, are small, pea-shaped mucous glands situated within the deep perineal pouch. They are lateral to the membranous part of the urethra. The duct from each gland passes inferomedially through the perineal membrane, to open into the bulb of the spongy urethra at the root of the penis. Together with small glands positioned along the length of the spongy urethra, the bulbo-urethral glands contribute to lubrication of the urethra and the pre-ejaculatory emission from the penis.
Anatomy_Gray. Secretions from the prostate, together with secretions from the seminal vesicles, contribute to the formation of semen during ejaculation. The ejaculatory ducts pass almost vertically in an anteroinferior direction through the posterior aspect of the prostate to open into the prostatic urethra. The bulbo-urethral glands (see Fig. 5.47A), one on each side, are small, pea-shaped mucous glands situated within the deep perineal pouch. They are lateral to the membranous part of the urethra. The duct from each gland passes inferomedially through the perineal membrane, to open into the bulb of the spongy urethra at the root of the penis. Together with small glands positioned along the length of the spongy urethra, the bulbo-urethral glands contribute to lubrication of the urethra and the pre-ejaculatory emission from the penis.
Anatomy_Gray_1065
Anatomy_Gray
Together with small glands positioned along the length of the spongy urethra, the bulbo-urethral glands contribute to lubrication of the urethra and the pre-ejaculatory emission from the penis. The reproductive tract in women is contained mainly in the pelvic cavity and perineum, although during pregnancy, the uterus expands into the abdominal cavity. Major components of the system consist of: an ovary on each side, and a uterus, vagina, and clitoris in the midline (Fig. 5.50). In addition, a pair of accessory glands (the greater vestibular glands) are associated with the tract. Like the testes in men, the ovaries develop high on the posterior abdominal wall and then descend before birth, bringing with them their vessels, lymphatics, and nerves. Unlike the testes, the ovaries do not migrate through the inguinal canal into the perineum, but stop short and assume a position on the lateral wall of the pelvic cavity (Fig. 5.51).
Anatomy_Gray. Together with small glands positioned along the length of the spongy urethra, the bulbo-urethral glands contribute to lubrication of the urethra and the pre-ejaculatory emission from the penis. The reproductive tract in women is contained mainly in the pelvic cavity and perineum, although during pregnancy, the uterus expands into the abdominal cavity. Major components of the system consist of: an ovary on each side, and a uterus, vagina, and clitoris in the midline (Fig. 5.50). In addition, a pair of accessory glands (the greater vestibular glands) are associated with the tract. Like the testes in men, the ovaries develop high on the posterior abdominal wall and then descend before birth, bringing with them their vessels, lymphatics, and nerves. Unlike the testes, the ovaries do not migrate through the inguinal canal into the perineum, but stop short and assume a position on the lateral wall of the pelvic cavity (Fig. 5.51).
Anatomy_Gray_1066
Anatomy_Gray
The ovaries are the sites of egg production (oogenesis). Mature eggs are ovulated into the peritoneal cavity and normally directed into the adjacent openings of the uterine tubes by cilia on the ends of the uterine tubes. The ovaries lie adjacent to the lateral pelvic wall just inferior to the pelvic inlet. Each of the two almond-shaped ovaries is about 3 cm long and is suspended by a mesentery (the mesovarium) that is a posterior extension of the broad ligament. The uterus is a thick-walled muscular organ in the midline between the bladder and rectum (see Fig. 5.51). It consists of a body and a cervix, and inferiorly it joins the vagina (Fig. 5.53). Superiorly, uterine tubes project laterally from the uterus and open into the peritoneal cavity immediately adjacent to the ovaries.
Anatomy_Gray. The ovaries are the sites of egg production (oogenesis). Mature eggs are ovulated into the peritoneal cavity and normally directed into the adjacent openings of the uterine tubes by cilia on the ends of the uterine tubes. The ovaries lie adjacent to the lateral pelvic wall just inferior to the pelvic inlet. Each of the two almond-shaped ovaries is about 3 cm long and is suspended by a mesentery (the mesovarium) that is a posterior extension of the broad ligament. The uterus is a thick-walled muscular organ in the midline between the bladder and rectum (see Fig. 5.51). It consists of a body and a cervix, and inferiorly it joins the vagina (Fig. 5.53). Superiorly, uterine tubes project laterally from the uterus and open into the peritoneal cavity immediately adjacent to the ovaries.
Anatomy_Gray_1067
Anatomy_Gray
The body of the uterus is flattened anteroposteriorly and, above the level of origin of the uterine tubes (Fig. 5.53), has a rounded superior end (fundus of the uterus). The cavity of the body of the uterus is a narrow slit, when viewed laterally, and is shaped like an inverted triangle, when viewed anteriorly. Each of the superior corners of the cavity is continuous with the lumen of a uterine tube; the inferior corner is continuous with the central canal of the cervix. Implantation of the blastocyst normally occurs in the body of the uterus. During pregnancy, the uterus dramatically expands superiorly into the abdominal cavity.
Anatomy_Gray. The body of the uterus is flattened anteroposteriorly and, above the level of origin of the uterine tubes (Fig. 5.53), has a rounded superior end (fundus of the uterus). The cavity of the body of the uterus is a narrow slit, when viewed laterally, and is shaped like an inverted triangle, when viewed anteriorly. Each of the superior corners of the cavity is continuous with the lumen of a uterine tube; the inferior corner is continuous with the central canal of the cervix. Implantation of the blastocyst normally occurs in the body of the uterus. During pregnancy, the uterus dramatically expands superiorly into the abdominal cavity.
Anatomy_Gray_1068
Anatomy_Gray
Implantation of the blastocyst normally occurs in the body of the uterus. During pregnancy, the uterus dramatically expands superiorly into the abdominal cavity. The uterine tubes extend from each side of the superior end of the body of the uterus to the lateral pelvic wall and are enclosed within the upper margins of the mesosalpinx portions of the broad ligaments (see p. 477). Because the ovaries are suspended from the posterior aspect of the broad ligaments, the uterine tubes pass superiorly over, and terminate laterally to, the ovaries.
Anatomy_Gray. Implantation of the blastocyst normally occurs in the body of the uterus. During pregnancy, the uterus dramatically expands superiorly into the abdominal cavity. The uterine tubes extend from each side of the superior end of the body of the uterus to the lateral pelvic wall and are enclosed within the upper margins of the mesosalpinx portions of the broad ligaments (see p. 477). Because the ovaries are suspended from the posterior aspect of the broad ligaments, the uterine tubes pass superiorly over, and terminate laterally to, the ovaries.
Anatomy_Gray_1069
Anatomy_Gray
Each uterine tube has an expanded trumpet-shaped end (the infundibulum), which curves around the superolateral pole of the related ovary (Fig. 5.54). The margin of the infundibulum is rimmed with small finger-like projections termed fimbriae. The lumen of the uterine tube opens into the peritoneal cavity at the narrowed end of the infundibulum. Medial to the infundibulum, the tube expands to form the ampulla and then narrows to form the isthmus, before joining with the body of the uterus. The fimbriated infundibulum facilitates the collection of ovulated eggs from the ovary. Fertilization normally occurs in the ampulla.
Anatomy_Gray. Each uterine tube has an expanded trumpet-shaped end (the infundibulum), which curves around the superolateral pole of the related ovary (Fig. 5.54). The margin of the infundibulum is rimmed with small finger-like projections termed fimbriae. The lumen of the uterine tube opens into the peritoneal cavity at the narrowed end of the infundibulum. Medial to the infundibulum, the tube expands to form the ampulla and then narrows to form the isthmus, before joining with the body of the uterus. The fimbriated infundibulum facilitates the collection of ovulated eggs from the ovary. Fertilization normally occurs in the ampulla.
Anatomy_Gray_1070
Anatomy_Gray
The fimbriated infundibulum facilitates the collection of ovulated eggs from the ovary. Fertilization normally occurs in the ampulla. The cervix forms the inferior part of the uterus and is shaped like a short, broad cylinder with a narrow central channel. The body of the uterus normally arches forward (anteflexed on the cervix) over the superior surface of the emptied bladder (Fig. 5.55A). In addition, the cervix is angled forward (anteverted) on the vagina so that the inferior end of the cervix projects into the upper anterior aspect of the vagina. Because the end of the cervix is dome shaped, it bulges into the vagina, and a gutter, or fornix, is formed around the margin of the cervix where it joins the vaginal wall (Fig. 5.55B). The tubular central canal of the cervix opens, below, as the external os, into the vaginal cavity and, above, as the internal os, into the uterine cavity.
Anatomy_Gray. The fimbriated infundibulum facilitates the collection of ovulated eggs from the ovary. Fertilization normally occurs in the ampulla. The cervix forms the inferior part of the uterus and is shaped like a short, broad cylinder with a narrow central channel. The body of the uterus normally arches forward (anteflexed on the cervix) over the superior surface of the emptied bladder (Fig. 5.55A). In addition, the cervix is angled forward (anteverted) on the vagina so that the inferior end of the cervix projects into the upper anterior aspect of the vagina. Because the end of the cervix is dome shaped, it bulges into the vagina, and a gutter, or fornix, is formed around the margin of the cervix where it joins the vaginal wall (Fig. 5.55B). The tubular central canal of the cervix opens, below, as the external os, into the vaginal cavity and, above, as the internal os, into the uterine cavity.
Anatomy_Gray_1071
Anatomy_Gray
The vagina is the copulatory organ in women. It is a distensible fibromuscular tube that extends from the perineum through the pelvic floor and into the pelvic cavity (Fig. 5.57A). The internal end of the canal is enlarged to form a region called the vaginal vault. The anterior wall of the vagina is related to the base of the bladder and to the urethra; in fact, the urethra is embedded in, or fused to, the anterior vaginal wall. Posteriorly, the vagina is related principally to the rectum. Inferiorly, the vagina opens into the vestibule of the perineum immediately posterior to the external opening of the urethra. From its external opening (the introitus), the vagina courses posterosuperiorly through the perineal membrane and into the pelvic cavity, where it is attached by its anterior wall to the circular margin of the cervix.
Anatomy_Gray. The vagina is the copulatory organ in women. It is a distensible fibromuscular tube that extends from the perineum through the pelvic floor and into the pelvic cavity (Fig. 5.57A). The internal end of the canal is enlarged to form a region called the vaginal vault. The anterior wall of the vagina is related to the base of the bladder and to the urethra; in fact, the urethra is embedded in, or fused to, the anterior vaginal wall. Posteriorly, the vagina is related principally to the rectum. Inferiorly, the vagina opens into the vestibule of the perineum immediately posterior to the external opening of the urethra. From its external opening (the introitus), the vagina courses posterosuperiorly through the perineal membrane and into the pelvic cavity, where it is attached by its anterior wall to the circular margin of the cervix.
Anatomy_Gray_1072
Anatomy_Gray
The vaginal fornix is the recess formed between the margin of the cervix and the vaginal wall. Based on position, the fornix is subdivided into a posterior fornix, an anterior fornix, and two lateral fornices (Fig. 5.57A and see Fig. 5.55). The vaginal canal is normally collapsed so that the anterior wall is in contact with the posterior wall. By using a speculum to open the vaginal canal, a physician can see the domed inferior end of the cervix, the vaginal fornices, and the external os of the cervical canal in a patient (Fig. 5.57B). During intercourse, semen is deposited in the vaginal vault. Spermatozoa make their way into the external os of the cervical canal, pass through the cervical canal into the uterine cavity, and then continue through the uterine cavity into the uterine tubes where fertilization normally occurs in the ampulla.
Anatomy_Gray. The vaginal fornix is the recess formed between the margin of the cervix and the vaginal wall. Based on position, the fornix is subdivided into a posterior fornix, an anterior fornix, and two lateral fornices (Fig. 5.57A and see Fig. 5.55). The vaginal canal is normally collapsed so that the anterior wall is in contact with the posterior wall. By using a speculum to open the vaginal canal, a physician can see the domed inferior end of the cervix, the vaginal fornices, and the external os of the cervical canal in a patient (Fig. 5.57B). During intercourse, semen is deposited in the vaginal vault. Spermatozoa make their way into the external os of the cervical canal, pass through the cervical canal into the uterine cavity, and then continue through the uterine cavity into the uterine tubes where fertilization normally occurs in the ampulla.
Anatomy_Gray_1073
Anatomy_Gray
Fascia in the pelvic cavity lines the pelvic walls, surrounds the bases of the pelvic viscera, and forms sheaths around blood vessels and nerves that course medially from the pelvic walls to reach the viscera in the midline. This pelvic fascia is a continuation of the extraperitoneal connective tissue layer found in the abdomen.
Anatomy_Gray. Fascia in the pelvic cavity lines the pelvic walls, surrounds the bases of the pelvic viscera, and forms sheaths around blood vessels and nerves that course medially from the pelvic walls to reach the viscera in the midline. This pelvic fascia is a continuation of the extraperitoneal connective tissue layer found in the abdomen.
Anatomy_Gray_1074
Anatomy_Gray
In women, a rectovaginal septum separates the posterior surface of the vagina from the rectum (Fig. 5.58A). Condensations of fascia form ligaments that extend from the cervix to the anterior (pubocervical ligament), lateral (transverse cervical or cardinal ligament), and posterior (uterosacral ligament) pelvic walls (Fig. 5.58A). These ligaments, together with the perineal membrane, the levator ani muscles, and the perineal body, are thought to stabilize the uterus in the pelvic cavity. The most important of these ligaments are the transverse cervical or cardinal ligaments, which extend laterally from each side of the cervix and vaginal vault to the related pelvic wall.
Anatomy_Gray. In women, a rectovaginal septum separates the posterior surface of the vagina from the rectum (Fig. 5.58A). Condensations of fascia form ligaments that extend from the cervix to the anterior (pubocervical ligament), lateral (transverse cervical or cardinal ligament), and posterior (uterosacral ligament) pelvic walls (Fig. 5.58A). These ligaments, together with the perineal membrane, the levator ani muscles, and the perineal body, are thought to stabilize the uterus in the pelvic cavity. The most important of these ligaments are the transverse cervical or cardinal ligaments, which extend laterally from each side of the cervix and vaginal vault to the related pelvic wall.
Anatomy_Gray_1075
Anatomy_Gray
In men, a condensation of fascia around the anterior and lateral region of the prostate (prostatic fascia) contains and surrounds the prostatic plexus of veins and is continuous posteriorly with the rectovesical septum, which separates the posterior surface of the prostate and base of the bladder from the rectum (Fig. 5.58B). The peritoneum of the pelvis is continuous at the pelvic inlet with the peritoneum of the abdomen. In the pelvis, the peritoneum drapes over the pelvic viscera in the midline, forming: pouches between adjacent viscera, and folds and ligaments between viscera and pelvic walls.
Anatomy_Gray. In men, a condensation of fascia around the anterior and lateral region of the prostate (prostatic fascia) contains and surrounds the prostatic plexus of veins and is continuous posteriorly with the rectovesical septum, which separates the posterior surface of the prostate and base of the bladder from the rectum (Fig. 5.58B). The peritoneum of the pelvis is continuous at the pelvic inlet with the peritoneum of the abdomen. In the pelvis, the peritoneum drapes over the pelvic viscera in the midline, forming: pouches between adjacent viscera, and folds and ligaments between viscera and pelvic walls.
Anatomy_Gray_1076
Anatomy_Gray
Anteriorly, median and medial umbilical folds of peritoneum cover the embryological remnants of the urachus and umbilical arteries, respectively (Fig. 5.59). These folds ascend out of the pelvis and onto the anterior abdominal wall. Posteriorly, peritoneum drapes over the anterior and lateral aspects of the upper third of the rectum, but only the anterior surface of the middle third of the rectum is covered by peritoneum; the lower third of the rectum is not covered at all.
Anatomy_Gray. Anteriorly, median and medial umbilical folds of peritoneum cover the embryological remnants of the urachus and umbilical arteries, respectively (Fig. 5.59). These folds ascend out of the pelvis and onto the anterior abdominal wall. Posteriorly, peritoneum drapes over the anterior and lateral aspects of the upper third of the rectum, but only the anterior surface of the middle third of the rectum is covered by peritoneum; the lower third of the rectum is not covered at all.
Anatomy_Gray_1077
Anatomy_Gray
In women, the uterus lies between the bladder and rectum, and the uterine tubes extend from the superior aspect of the uterus to the lateral pelvic walls (Fig. 5.59A). As a consequence, a shallow vesico-uterine pouch occurs anteriorly, between the bladder and uterus, and a deep recto-uterine pouch (pouch of Douglas) occurs posteriorly, between the uterus and rectum. In addition, a large fold of peritoneum (the broad ligament), with a uterine tube enclosed in its superior margin and an ovary attached posteriorly, is located on each side of the uterus and extends to the lateral pelvic walls.
Anatomy_Gray. In women, the uterus lies between the bladder and rectum, and the uterine tubes extend from the superior aspect of the uterus to the lateral pelvic walls (Fig. 5.59A). As a consequence, a shallow vesico-uterine pouch occurs anteriorly, between the bladder and uterus, and a deep recto-uterine pouch (pouch of Douglas) occurs posteriorly, between the uterus and rectum. In addition, a large fold of peritoneum (the broad ligament), with a uterine tube enclosed in its superior margin and an ovary attached posteriorly, is located on each side of the uterus and extends to the lateral pelvic walls.
Anatomy_Gray_1078
Anatomy_Gray
In the midline, the peritoneum descends over the posterior surface of the uterus and cervix and onto the vaginal wall adjacent to the posterior vaginal fornix. It then reflects onto the anterior and lateral walls of the rectum. The deep pouch of peritoneum formed between the anterior surface of the rectum and posterior surfaces of the uterus, cervix, and vagina is the recto-uterine pouch. A sharp sickle-shaped ridge of peritoneum (recto-uterine fold) occurs on each side near the base of the recto-uterine pouch. The recto-uterine folds overlie the uterosacral ligaments, which are condensations of pelvic fascia that extend from the cervix to the posterolateral pelvic walls.
Anatomy_Gray. In the midline, the peritoneum descends over the posterior surface of the uterus and cervix and onto the vaginal wall adjacent to the posterior vaginal fornix. It then reflects onto the anterior and lateral walls of the rectum. The deep pouch of peritoneum formed between the anterior surface of the rectum and posterior surfaces of the uterus, cervix, and vagina is the recto-uterine pouch. A sharp sickle-shaped ridge of peritoneum (recto-uterine fold) occurs on each side near the base of the recto-uterine pouch. The recto-uterine folds overlie the uterosacral ligaments, which are condensations of pelvic fascia that extend from the cervix to the posterolateral pelvic walls.
Anatomy_Gray_1079
Anatomy_Gray
The broad ligament is a sheet-like fold of peritoneum, oriented in the coronal plane that runs from the lateral pelvic wall to the uterus, and encloses the uterine tube in its superior margin and suspends the ovary from its posterior aspect (Fig. 5.59A). The uterine arteries cross the ureters at the base of the broad ligaments, and the ligament of the ovary and round ligament of the uterus are enclosed within the parts of the broad ligament related to the ovary and uterus, respectively. The broad ligament has three parts: the mesometrium, the largest part of the broad ligament, which extends from the lateral pelvic walls to the body of the uterus; the mesosalpinx, the most superior part of the broad ligament, which suspends the uterine tube in the pelvic cavity; and the mesovarium, a posterior extension of the broad ligament, which attaches to the ovary.
Anatomy_Gray. The broad ligament is a sheet-like fold of peritoneum, oriented in the coronal plane that runs from the lateral pelvic wall to the uterus, and encloses the uterine tube in its superior margin and suspends the ovary from its posterior aspect (Fig. 5.59A). The uterine arteries cross the ureters at the base of the broad ligaments, and the ligament of the ovary and round ligament of the uterus are enclosed within the parts of the broad ligament related to the ovary and uterus, respectively. The broad ligament has three parts: the mesometrium, the largest part of the broad ligament, which extends from the lateral pelvic walls to the body of the uterus; the mesosalpinx, the most superior part of the broad ligament, which suspends the uterine tube in the pelvic cavity; and the mesovarium, a posterior extension of the broad ligament, which attaches to the ovary.
Anatomy_Gray_1080
Anatomy_Gray
The peritoneum of the mesovarium is continuous with the ovarian surface (germinal) epithelium (see Fig. 5.59A insert). The ovaries are positioned with their long axis in the vertical plane. The ovarian vessels, nerves, and lymphatics enter the superior pole of the ovary from a lateral position and are covered by another raised fold of peritoneum, which with the structures it contains forms the suspensory ligament of the ovary (infundibulopelvic ligament).
Anatomy_Gray. The peritoneum of the mesovarium is continuous with the ovarian surface (germinal) epithelium (see Fig. 5.59A insert). The ovaries are positioned with their long axis in the vertical plane. The ovarian vessels, nerves, and lymphatics enter the superior pole of the ovary from a lateral position and are covered by another raised fold of peritoneum, which with the structures it contains forms the suspensory ligament of the ovary (infundibulopelvic ligament).
Anatomy_Gray_1081
Anatomy_Gray
The inferior pole of the ovary is attached to a fibromuscular band of tissue (the ligament of the ovary), which courses medially in the margin of the mesovarium to the uterus and then continues anterolaterally as the round ligament of the uterus (Fig. 5.59A). The round ligament of the uterus passes over the pelvic inlet to reach the deep inguinal ring and then courses through the inguinal canal to end in connective tissue related to the labium majus in the perineum. Both the ligament of the ovary and the round ligament of the uterus are remnants of the gubernaculum, which attaches the gonad to the labioscrotal swellings in the embryo. In men, the visceral peritoneum drapes over the top of the bladder onto the superior poles of the seminal vesicles and then reflects onto the anterior and lateral surfaces of the rectum (Fig. 5.59B). A rectovesical pouch occurs between the bladder and rectum.
Anatomy_Gray. The inferior pole of the ovary is attached to a fibromuscular band of tissue (the ligament of the ovary), which courses medially in the margin of the mesovarium to the uterus and then continues anterolaterally as the round ligament of the uterus (Fig. 5.59A). The round ligament of the uterus passes over the pelvic inlet to reach the deep inguinal ring and then courses through the inguinal canal to end in connective tissue related to the labium majus in the perineum. Both the ligament of the ovary and the round ligament of the uterus are remnants of the gubernaculum, which attaches the gonad to the labioscrotal swellings in the embryo. In men, the visceral peritoneum drapes over the top of the bladder onto the superior poles of the seminal vesicles and then reflects onto the anterior and lateral surfaces of the rectum (Fig. 5.59B). A rectovesical pouch occurs between the bladder and rectum.
Anatomy_Gray_1082
Anatomy_Gray
The sacral and coccygeal plexuses are situated on the posterolateral wall of the pelvic cavity and generally occur in the plane between the muscles and blood vessels. They are formed by the ventral rami of S1 to Co, with a significant contribution from L4 and L5, which enter the pelvis from the lumbar plexus (Fig. 5.60). Nerves from these mainly somatic plexuses contribute to the innervation of the lower limb and muscles of the pelvis and perineum. Cutaneous branches supply skin over the medial side of the foot, the posterior aspect of the lower limb, and most of the perineum.
Anatomy_Gray. The sacral and coccygeal plexuses are situated on the posterolateral wall of the pelvic cavity and generally occur in the plane between the muscles and blood vessels. They are formed by the ventral rami of S1 to Co, with a significant contribution from L4 and L5, which enter the pelvis from the lumbar plexus (Fig. 5.60). Nerves from these mainly somatic plexuses contribute to the innervation of the lower limb and muscles of the pelvis and perineum. Cutaneous branches supply skin over the medial side of the foot, the posterior aspect of the lower limb, and most of the perineum.
Anatomy_Gray_1083
Anatomy_Gray
The sacral plexus on each side is formed by the anterior rami of S1 to S4, and the lumbosacral trunk (L4 and L5) (Fig. 5.61). The plexus is formed in relation to the anterior surface of the piriformis muscle, which is part of the posterolateral pelvic wall. Sacral contributions to the plexus pass out of the anterior sacral foramina and course laterally and inferiorly on the pelvic wall. The lumbosacral trunk, consisting of part of the anterior ramus of L4 and all of the anterior ramus of L5, courses vertically into the pelvic cavity from the abdomen by passing immediately anterior to the sacro-iliac joint.
Anatomy_Gray. The sacral plexus on each side is formed by the anterior rami of S1 to S4, and the lumbosacral trunk (L4 and L5) (Fig. 5.61). The plexus is formed in relation to the anterior surface of the piriformis muscle, which is part of the posterolateral pelvic wall. Sacral contributions to the plexus pass out of the anterior sacral foramina and course laterally and inferiorly on the pelvic wall. The lumbosacral trunk, consisting of part of the anterior ramus of L4 and all of the anterior ramus of L5, courses vertically into the pelvic cavity from the abdomen by passing immediately anterior to the sacro-iliac joint.
Anatomy_Gray_1084
Anatomy_Gray
Gray rami communicantes from ganglia of the sympathetic trunk connect with each of the anterior rami and carry postganglionic sympathetic fibers destined for the periphery to the somatic nerves (Fig. 5.62). In addition, special visceral nerves (pelvic splanchnic nerves) originating from S2 to S4 deliver preganglionic parasympathetic fibers to the pelvic part of the prevertebral plexus (Figs. 5.60 and 5.61). Each anterior ramus has ventral and dorsal divisions that combine with similar divisions from other levels to form terminal nerves (Fig. 5.61). The anterior ramus of S4 has only a ventral division. Branches of the sacral plexus include the sciatic nerve and gluteal nerves, which are major nerves of the lower limb, and the pudendal nerve, which is the nerve of the perineum (Table 5.4). Numerous smaller branches supply the pelvic wall, floor, and lower limb.
Anatomy_Gray. Gray rami communicantes from ganglia of the sympathetic trunk connect with each of the anterior rami and carry postganglionic sympathetic fibers destined for the periphery to the somatic nerves (Fig. 5.62). In addition, special visceral nerves (pelvic splanchnic nerves) originating from S2 to S4 deliver preganglionic parasympathetic fibers to the pelvic part of the prevertebral plexus (Figs. 5.60 and 5.61). Each anterior ramus has ventral and dorsal divisions that combine with similar divisions from other levels to form terminal nerves (Fig. 5.61). The anterior ramus of S4 has only a ventral division. Branches of the sacral plexus include the sciatic nerve and gluteal nerves, which are major nerves of the lower limb, and the pudendal nerve, which is the nerve of the perineum (Table 5.4). Numerous smaller branches supply the pelvic wall, floor, and lower limb.
Anatomy_Gray_1085
Anatomy_Gray
Most nerves originating from the sacral plexus leave the pelvic cavity by passing through the greater sciatic foramen inferior to the piriformis muscle, and enter the gluteal region of the lower limb. Other nerves leave the pelvic cavity using different routes; a few nerves do not leave the pelvic cavity and course directly into the muscles in the pelvic cavity. Finally, two nerves that leave the pelvic cavity through the greater sciatic foramen loop around the ischial spine and sacrospinous ligament and pass medially through the lesser sciatic foramen to supply structures in the perineum and lateral pelvic wall.
Anatomy_Gray. Most nerves originating from the sacral plexus leave the pelvic cavity by passing through the greater sciatic foramen inferior to the piriformis muscle, and enter the gluteal region of the lower limb. Other nerves leave the pelvic cavity using different routes; a few nerves do not leave the pelvic cavity and course directly into the muscles in the pelvic cavity. Finally, two nerves that leave the pelvic cavity through the greater sciatic foramen loop around the ischial spine and sacrospinous ligament and pass medially through the lesser sciatic foramen to supply structures in the perineum and lateral pelvic wall.
Anatomy_Gray_1086
Anatomy_Gray
Sciatic nerve. The sciatic nerve is the largest nerve of the body and carries contributions from L4 to S3 (Figs. 5.60 and 5.61). It: forms on the anterior surface of the piriformis muscle and leaves the pelvic cavity through the greater sciatic foramen inferior to the piriformis; passes through the gluteal region into the thigh, where it divides into its two major branches, the common fibular nerve (common peroneal nerve) and the tibial nerve—dorsal divisions of L4, L5, S1, and S2 are carried in the common fibular part of the nerve and the ventral divisions of L4, L5, S1, S2, and S3 are carried in the tibial part; innervates muscles in the posterior compartment of the thigh and muscles in the leg and foot; and carries sensory fibers from the skin of the foot and lateral leg.
Anatomy_Gray. Sciatic nerve. The sciatic nerve is the largest nerve of the body and carries contributions from L4 to S3 (Figs. 5.60 and 5.61). It: forms on the anterior surface of the piriformis muscle and leaves the pelvic cavity through the greater sciatic foramen inferior to the piriformis; passes through the gluteal region into the thigh, where it divides into its two major branches, the common fibular nerve (common peroneal nerve) and the tibial nerve—dorsal divisions of L4, L5, S1, and S2 are carried in the common fibular part of the nerve and the ventral divisions of L4, L5, S1, S2, and S3 are carried in the tibial part; innervates muscles in the posterior compartment of the thigh and muscles in the leg and foot; and carries sensory fibers from the skin of the foot and lateral leg.
Anatomy_Gray_1087
Anatomy_Gray
Pudendal nerve. The pudendal nerve forms anteriorly to the lower part of the piriformis muscle from ventral divisions of S2 to S4 (Figs. 5.60 and 5.61). It: leaves the pelvic cavity through the greater sciatic foramen, inferior to the piriformis muscle, and enters the gluteal region; courses into the perineum by immediately passing around the sacrospinous ligament, where the ligament joins the ischial spine, and through the lesser sciatic foramen (this course takes the nerve out of the pelvic cavity, around the peripheral attachment of the pelvic floor, and into the perineum); is accompanied throughout its course by the internal pudendal vessels; and innervates skin and skeletal muscles of the perineum, including the external anal and external urethral sphincters.
Anatomy_Gray. Pudendal nerve. The pudendal nerve forms anteriorly to the lower part of the piriformis muscle from ventral divisions of S2 to S4 (Figs. 5.60 and 5.61). It: leaves the pelvic cavity through the greater sciatic foramen, inferior to the piriformis muscle, and enters the gluteal region; courses into the perineum by immediately passing around the sacrospinous ligament, where the ligament joins the ischial spine, and through the lesser sciatic foramen (this course takes the nerve out of the pelvic cavity, around the peripheral attachment of the pelvic floor, and into the perineum); is accompanied throughout its course by the internal pudendal vessels; and innervates skin and skeletal muscles of the perineum, including the external anal and external urethral sphincters.
Anatomy_Gray_1088
Anatomy_Gray
Other branches of the sacral plexus. Other branches of the sacral plexus include: motor branches to muscles of the gluteal region, pelvic wall, and pelvic floor (superior and inferior gluteal nerves, nerve to obturator internus and superior gemellus, nerve to quadratus femoris and inferior gemellus, nerve to piriformis, nerves to levator ani); and sensory nerves to skin over the inferior gluteal region and posterior aspects of the thigh and upper leg (perforating cutaneous nerve and posterior cutaneous nerve of the thigh) (Figs. 5.60 and 5.61). The superior gluteal nerve, formed by branches from the dorsal divisions of L4 to S1, leaves the pelvic cavity through the greater sciatic foramen superior to the piriformis muscle and supplies muscles in the gluteal region—gluteus medius, gluteus minimus, and tensor fasciae latae (tensor of fascia lata) muscles.
Anatomy_Gray. Other branches of the sacral plexus. Other branches of the sacral plexus include: motor branches to muscles of the gluteal region, pelvic wall, and pelvic floor (superior and inferior gluteal nerves, nerve to obturator internus and superior gemellus, nerve to quadratus femoris and inferior gemellus, nerve to piriformis, nerves to levator ani); and sensory nerves to skin over the inferior gluteal region and posterior aspects of the thigh and upper leg (perforating cutaneous nerve and posterior cutaneous nerve of the thigh) (Figs. 5.60 and 5.61). The superior gluteal nerve, formed by branches from the dorsal divisions of L4 to S1, leaves the pelvic cavity through the greater sciatic foramen superior to the piriformis muscle and supplies muscles in the gluteal region—gluteus medius, gluteus minimus, and tensor fasciae latae (tensor of fascia lata) muscles.
Anatomy_Gray_1089
Anatomy_Gray
The inferior gluteal nerve, formed by branches from the dorsal divisions of L5 to S2, leaves the pelvic cavity through the greater sciatic foramen inferior to the piriformis muscle and supplies the gluteus maximus, the largest muscle in the gluteal region. Both superior and inferior gluteal nerves are accompanied by corresponding arteries. The nerve to the obturator internus and the associated superior gemellus muscle originates from the ventral divisions of L5 to S2 and leaves the pelvic cavity through the greater sciatic foramen inferior to the piriformis muscle. Like the pudendal nerve, it passes around the ischial spine and through the lesser sciatic foramen to enter the perineum and supply the obturator internus muscle from the medial side of the muscle, inferior to the attachment of the levator ani muscle.
Anatomy_Gray. The inferior gluteal nerve, formed by branches from the dorsal divisions of L5 to S2, leaves the pelvic cavity through the greater sciatic foramen inferior to the piriformis muscle and supplies the gluteus maximus, the largest muscle in the gluteal region. Both superior and inferior gluteal nerves are accompanied by corresponding arteries. The nerve to the obturator internus and the associated superior gemellus muscle originates from the ventral divisions of L5 to S2 and leaves the pelvic cavity through the greater sciatic foramen inferior to the piriformis muscle. Like the pudendal nerve, it passes around the ischial spine and through the lesser sciatic foramen to enter the perineum and supply the obturator internus muscle from the medial side of the muscle, inferior to the attachment of the levator ani muscle.
Anatomy_Gray_1090
Anatomy_Gray
The nerve to the quadratus femoris muscle and the inferior gemellus muscle, and the posterior cutaneous nerve of the thigh (posterior femoral cutaneous nerve) also leave the pelvic cavity through the greater sciatic foramen inferior to the piriformis muscle and course to muscles and skin, respectively, in the lower limb. Unlike most of the other nerves originating from the sacral plexus, which leave the pelvic cavity through the greater sciatic foramen either above or below the piriformis muscle, the perforating cutaneous nerve leaves the pelvic cavity by penetrating directly through the sacrotuberous ligament and then courses to skin over the inferior aspect of the buttocks. The nerve to the piriformis and a number of small nerves to the levator ani and coccygeus muscles originate from the sacral plexus and pass directly into their target muscles without leaving the pelvic cavity.
Anatomy_Gray. The nerve to the quadratus femoris muscle and the inferior gemellus muscle, and the posterior cutaneous nerve of the thigh (posterior femoral cutaneous nerve) also leave the pelvic cavity through the greater sciatic foramen inferior to the piriformis muscle and course to muscles and skin, respectively, in the lower limb. Unlike most of the other nerves originating from the sacral plexus, which leave the pelvic cavity through the greater sciatic foramen either above or below the piriformis muscle, the perforating cutaneous nerve leaves the pelvic cavity by penetrating directly through the sacrotuberous ligament and then courses to skin over the inferior aspect of the buttocks. The nerve to the piriformis and a number of small nerves to the levator ani and coccygeus muscles originate from the sacral plexus and pass directly into their target muscles without leaving the pelvic cavity.
Anatomy_Gray_1091
Anatomy_Gray
The obturator nerve (L2 to L4) is a branch of the lumbar plexus. It passes inferiorly along the posterior abdominal wall within the psoas muscle, emerges from the medial surface of the psoas, passes posteriorly to the common iliac artery and medially to the internal iliac artery at the pelvic inlet, and then courses along the lateral pelvic wall. It leaves the pelvic cavity by traveling through the obturator canal and supplies the adductor region of the thigh. The small coccygeal plexus has a minor contribution from S4 and is formed mainly by the anterior rami of S5 and Co, which originate inferiorly to the pelvic floor. They penetrate the coccygeus muscle to enter the pelvic cavity and join with the anterior ramus of S4 to form a single trunk, from which small anococcygeal nerves originate (Table 5.4). These nerves penetrate the muscle and the overlying sacrospinous and sacrotuberous ligaments and pass superficially to innervate skin in the anal triangle of the perineum.
Anatomy_Gray. The obturator nerve (L2 to L4) is a branch of the lumbar plexus. It passes inferiorly along the posterior abdominal wall within the psoas muscle, emerges from the medial surface of the psoas, passes posteriorly to the common iliac artery and medially to the internal iliac artery at the pelvic inlet, and then courses along the lateral pelvic wall. It leaves the pelvic cavity by traveling through the obturator canal and supplies the adductor region of the thigh. The small coccygeal plexus has a minor contribution from S4 and is formed mainly by the anterior rami of S5 and Co, which originate inferiorly to the pelvic floor. They penetrate the coccygeus muscle to enter the pelvic cavity and join with the anterior ramus of S4 to form a single trunk, from which small anococcygeal nerves originate (Table 5.4). These nerves penetrate the muscle and the overlying sacrospinous and sacrotuberous ligaments and pass superficially to innervate skin in the anal triangle of the perineum.
Anatomy_Gray_1092
Anatomy_Gray
The paravertebral part of the visceral nervous system is represented in the pelvis by the inferior ends of the sympathetic trunks (Fig. 5.63A). Each trunk enters the pelvic cavity from the abdomen by passing over the ala of the sacrum medially to the lumbosacral trunks and posteriorly to the iliac vessels. The trunks course inferiorly along the anterior surface of the sacrum, where they are positioned medially to the anterior sacral foramina. Four ganglia occur along each trunk. Anteriorly to the coccyx, the two trunks join to form a single small terminal ganglion (the ganglion impar). The principal function of the sympathetic trunks in the pelvis is to deliver postganglionic sympathetic fibers to the anterior rami of sacral nerves for distribution to the periphery, mainly to parts of the lower limb and perineum. This is accomplished by gray rami communicantes, which connect the trunks to the sacral anterior rami.
Anatomy_Gray. The paravertebral part of the visceral nervous system is represented in the pelvis by the inferior ends of the sympathetic trunks (Fig. 5.63A). Each trunk enters the pelvic cavity from the abdomen by passing over the ala of the sacrum medially to the lumbosacral trunks and posteriorly to the iliac vessels. The trunks course inferiorly along the anterior surface of the sacrum, where they are positioned medially to the anterior sacral foramina. Four ganglia occur along each trunk. Anteriorly to the coccyx, the two trunks join to form a single small terminal ganglion (the ganglion impar). The principal function of the sympathetic trunks in the pelvis is to deliver postganglionic sympathetic fibers to the anterior rami of sacral nerves for distribution to the periphery, mainly to parts of the lower limb and perineum. This is accomplished by gray rami communicantes, which connect the trunks to the sacral anterior rami.
Anatomy_Gray_1093
Anatomy_Gray
In addition to gray rami communicantes, other branches (the sacral splanchnic nerves) join and contribute to the pelvic part of the prevertebral plexus associated with innervating pelvic viscera (Fig. 5.63A). Pelvic extensions of the prevertebral plexus The pelvic parts of the prevertebral plexus carry sympathetic, parasympathetic, and visceral afferent fibers (Fig. 5.63A). Pelvic parts of the plexus are associated with innervating pelvic viscera and erectile tissues of the perineum. The prevertebral plexus enters the pelvis as two hypogastric nerves, one on each side, that cross the pelvic inlet medially to the internal iliac vessels (Fig. 5.63A). The hypogastric nerves are formed by the separation of the fibers in the superior hypogastric plexus, into right and left bundles. The superior hypogastric plexus is situated anterior to vertebra LV between the promontory of the sacrum and the bifurcation of the aorta.
Anatomy_Gray. In addition to gray rami communicantes, other branches (the sacral splanchnic nerves) join and contribute to the pelvic part of the prevertebral plexus associated with innervating pelvic viscera (Fig. 5.63A). Pelvic extensions of the prevertebral plexus The pelvic parts of the prevertebral plexus carry sympathetic, parasympathetic, and visceral afferent fibers (Fig. 5.63A). Pelvic parts of the plexus are associated with innervating pelvic viscera and erectile tissues of the perineum. The prevertebral plexus enters the pelvis as two hypogastric nerves, one on each side, that cross the pelvic inlet medially to the internal iliac vessels (Fig. 5.63A). The hypogastric nerves are formed by the separation of the fibers in the superior hypogastric plexus, into right and left bundles. The superior hypogastric plexus is situated anterior to vertebra LV between the promontory of the sacrum and the bifurcation of the aorta.
Anatomy_Gray_1094
Anatomy_Gray
When the hypogastric nerves are joined by pelvic splanchnic nerves carrying preganglionic parasympathetic fibers from S2 to S4, the pelvic plexuses (inferior hypogastric plexuses) are formed (Fig. 5.63). The inferior hypogastric plexuses, one on each side, course in an inferior direction around the pelvic walls, medially to major vessels and somatic nerves. They give origin to the following subsidiary plexuses, which innervate the pelvic viscera: the rectal plexus, the uterovaginal plexus, the prostatic plexus, and the vesical plexus. Terminal branches of the inferior hypogastric plexuses penetrate and pass through the deep perineal pouch and innervate erectile tissues of the penis and the clitoris in the perineum (Fig. 5.63B). In men, these nerves, called cavernous nerves, are extensions of the prostatic plexus. The pattern of distribution of similar nerves in women is not entirely clear, but they are likely extensions of the uterovaginal plexus.
Anatomy_Gray. When the hypogastric nerves are joined by pelvic splanchnic nerves carrying preganglionic parasympathetic fibers from S2 to S4, the pelvic plexuses (inferior hypogastric plexuses) are formed (Fig. 5.63). The inferior hypogastric plexuses, one on each side, course in an inferior direction around the pelvic walls, medially to major vessels and somatic nerves. They give origin to the following subsidiary plexuses, which innervate the pelvic viscera: the rectal plexus, the uterovaginal plexus, the prostatic plexus, and the vesical plexus. Terminal branches of the inferior hypogastric plexuses penetrate and pass through the deep perineal pouch and innervate erectile tissues of the penis and the clitoris in the perineum (Fig. 5.63B). In men, these nerves, called cavernous nerves, are extensions of the prostatic plexus. The pattern of distribution of similar nerves in women is not entirely clear, but they are likely extensions of the uterovaginal plexus.
Anatomy_Gray_1095
Anatomy_Gray
Sympathetic fibers enter the inferior hypogastric plexuses from the hypogastric nerves and from branches (sacral splanchnic nerves) of the upper sacral parts of the sympathetic trunks (Fig. 5.63A). Ultimately, these nerves are derived from preganglionic fibers that leave the spinal cord in the anterior roots, mainly of T10 to L2. These fibers: innervate blood vessels, cause contraction of smooth muscle in the internal urethral sphincter in men and the internal anal sphincters in both men and women, cause smooth muscle contraction associated with the reproductive tract and with the accessory glands of the reproductive system, and are important in moving secretions from the epididymis and associated glands into the urethra to form semen during ejaculation.
Anatomy_Gray. Sympathetic fibers enter the inferior hypogastric plexuses from the hypogastric nerves and from branches (sacral splanchnic nerves) of the upper sacral parts of the sympathetic trunks (Fig. 5.63A). Ultimately, these nerves are derived from preganglionic fibers that leave the spinal cord in the anterior roots, mainly of T10 to L2. These fibers: innervate blood vessels, cause contraction of smooth muscle in the internal urethral sphincter in men and the internal anal sphincters in both men and women, cause smooth muscle contraction associated with the reproductive tract and with the accessory glands of the reproductive system, and are important in moving secretions from the epididymis and associated glands into the urethra to form semen during ejaculation.
Anatomy_Gray_1096
Anatomy_Gray
Parasympathetic fibers enter the pelvic plexus in pelvic splanchnic nerves that originate from spinal cord levels S2 to S4 (Fig. 5.63A). They: are generally vasodilatory, stimulate bladder contraction, stimulate erection, and modulate activity of the enteric nervous system of the colon distal to the left colic flexure (in addition to pelvic viscera, some of the fibers from the pelvic plexus course superiorly in the prevertebral plexus, or as separate nerves, and pass into the inferior mesenteric plexus of the abdomen). Visceral afferent fibers follow the course of the sympathetic and parasympathetic fibers to the spinal cord. Afferent fibers that enter the cord in lower thoracic levels and lumbar levels with sympathetic fibers generally carry pain; however, pain fibers from the cervix and some pain fibers from the bladder and urethra may accompany parasympathetic nerves to sacral levels of the spinal cord.
Anatomy_Gray. Parasympathetic fibers enter the pelvic plexus in pelvic splanchnic nerves that originate from spinal cord levels S2 to S4 (Fig. 5.63A). They: are generally vasodilatory, stimulate bladder contraction, stimulate erection, and modulate activity of the enteric nervous system of the colon distal to the left colic flexure (in addition to pelvic viscera, some of the fibers from the pelvic plexus course superiorly in the prevertebral plexus, or as separate nerves, and pass into the inferior mesenteric plexus of the abdomen). Visceral afferent fibers follow the course of the sympathetic and parasympathetic fibers to the spinal cord. Afferent fibers that enter the cord in lower thoracic levels and lumbar levels with sympathetic fibers generally carry pain; however, pain fibers from the cervix and some pain fibers from the bladder and urethra may accompany parasympathetic nerves to sacral levels of the spinal cord.
Anatomy_Gray_1097
Anatomy_Gray
The major artery of the pelvis and perineum is the internal iliac artery on each side (Fig. 5.64). In addition to providing a blood supply to most of the pelvic viscera, pelvic walls and floor, and structures in the perineum, including erectile tissues of the clitoris and the penis, this artery gives rise to branches that follow nerves into the gluteal region of the lower limb. Other vessels that originate in the abdomen and contribute to the supply of pelvic structures include the median sacral artery and, in women, the ovarian arteries.
Anatomy_Gray. The major artery of the pelvis and perineum is the internal iliac artery on each side (Fig. 5.64). In addition to providing a blood supply to most of the pelvic viscera, pelvic walls and floor, and structures in the perineum, including erectile tissues of the clitoris and the penis, this artery gives rise to branches that follow nerves into the gluteal region of the lower limb. Other vessels that originate in the abdomen and contribute to the supply of pelvic structures include the median sacral artery and, in women, the ovarian arteries.
Anatomy_Gray_1098
Anatomy_Gray
The internal iliac artery originates from the common iliac artery on each side, approximately at the level of the intervertebral disc between LV and SI, and lies anteromedial to the sacro-iliac joint (Fig. 5.64). The vessel courses inferiorly over the pelvic inlet and then divides into anterior and posterior trunks at the level of the superior border of the greater sciatic foramen. Branches from the posterior trunk contribute to the supply of the lower posterior abdominal wall, the posterior pelvic wall, and the gluteal region. Branches from the anterior trunk supply the pelvic viscera, the perineum, the gluteal region, the adductor region of the thigh, and, in the fetus, the placenta. Branches of the posterior trunk of the internal iliac artery are the iliolumbar artery, the lateral sacral artery, and the superior gluteal artery (Fig. 5.64).
Anatomy_Gray. The internal iliac artery originates from the common iliac artery on each side, approximately at the level of the intervertebral disc between LV and SI, and lies anteromedial to the sacro-iliac joint (Fig. 5.64). The vessel courses inferiorly over the pelvic inlet and then divides into anterior and posterior trunks at the level of the superior border of the greater sciatic foramen. Branches from the posterior trunk contribute to the supply of the lower posterior abdominal wall, the posterior pelvic wall, and the gluteal region. Branches from the anterior trunk supply the pelvic viscera, the perineum, the gluteal region, the adductor region of the thigh, and, in the fetus, the placenta. Branches of the posterior trunk of the internal iliac artery are the iliolumbar artery, the lateral sacral artery, and the superior gluteal artery (Fig. 5.64).
Anatomy_Gray_1099
Anatomy_Gray
Branches of the posterior trunk of the internal iliac artery are the iliolumbar artery, the lateral sacral artery, and the superior gluteal artery (Fig. 5.64). The iliolumbar artery ascends laterally back out of the pelvic inlet and divides into a lumbar branch and an iliac branch. The lumbar branch contributes to the supply of the posterior abdominal wall, psoas and quadratus lumborum muscles, and cauda equina, via a small spinal branch that passes through the intervertebral foramen between LV and SI. The iliac branch passes laterally into the iliac fossa to supply muscle and bone. The lateral sacral arteries, usually two, originate from the posterior division of the internal iliac artery and course medially and inferiorly along the posterior pelvic wall. They give rise to branches that pass into the anterior sacral foramina to supply related bone and soft tissues, structures in the vertebral (sacral) canal, and skin and muscle posterior to the sacrum.
Anatomy_Gray. Branches of the posterior trunk of the internal iliac artery are the iliolumbar artery, the lateral sacral artery, and the superior gluteal artery (Fig. 5.64). The iliolumbar artery ascends laterally back out of the pelvic inlet and divides into a lumbar branch and an iliac branch. The lumbar branch contributes to the supply of the posterior abdominal wall, psoas and quadratus lumborum muscles, and cauda equina, via a small spinal branch that passes through the intervertebral foramen between LV and SI. The iliac branch passes laterally into the iliac fossa to supply muscle and bone. The lateral sacral arteries, usually two, originate from the posterior division of the internal iliac artery and course medially and inferiorly along the posterior pelvic wall. They give rise to branches that pass into the anterior sacral foramina to supply related bone and soft tissues, structures in the vertebral (sacral) canal, and skin and muscle posterior to the sacrum.