image
imagewidth (px) 65
845
| latex_formula
stringlengths 6
152
|
---|---|
\[(125)-(135)+(735)-(725)-(1246)-(73)\] |
|
\[x= \cos Lt\] |
|
\[\lim_{k \rightarrow 0}R_{k}=0\] |
|
\[z= \tan \mu\] |
|
\[\tan \beta=80\] |
|
\[|x|=|y|= \sqrt{|z|}\] |
|
\[2 \sin^{2}x=(1- \cos 2x)\] |
|
\[-x-a\] |
|
\[X-X\] |
|
\[x_{new}=c^{ \frac{1}{2}}x\] |
|
\[\sum p_{i}\] |
|
\[r= \sqrt{(x^{1})^{2}+(x^{2})^{2}}\] |
|
\[2^{p-5}-( \frac{1}{2}-2^{p-5})=2^{p-4}- \frac{1}{2}\] |
|
\[f_{rat}= \frac{x-1}{x+1}\] |
|
\[f(y)=y^{ \frac{1}{n-2}}\] |
|
\[C=-m \cos a\] |
|
\[Exp\] |
|
\[- \frac{1}{4}+x\] |
|
\[x^{n}-ax^{s}+b=0\] |
|
\[\tan \alpha \tan \theta^{ \prime}=-1\] |
|
\[- \frac{11-z+5z^{2}+z^{3}}{16}\] |
|
\[\alpha N_{f}= \alpha( \sum_{I=1}^{9}v_{I} \gamma_{I}+ \sum_{i=1}^{3} \frac{i \mu x^{i}}{4} \{ \gamma_{i}, \gamma_{123} \})+ \alpha^{2} \mu^{2}/4^{2}\] |
|
\[y^{2}=y^{a}y^{a}\] |
|
\[\beta= \sin \alpha\] |
|
\[a=i( \frac{l-1}{2 \beta}- \frac{k-1}{2} \beta)\] |
|
\[8+ \frac{8 \times 7}{2}=36\] |
|
\[\sqrt[c]{ \cos(x)}\] |
|
\[k_{v}(x,y)=x^{11}y+11x^{6}y^{6}-xy^{11}\] |
|
\[f \sin \alpha\] |
|
\[f_{xx}+f_{yy} \neq 0\] |
|
\[\frac{cdz}{z-P_{1}}- \frac{cdz}{z-P_{2}}+f(z)dz\] |
|
\[\beta= \cos \alpha\] |
|
\[4n= \frac{2n \times 2n}{n}\] |
|
\[4 \sum k_{a}\] |
|
\[n \times 3\] |
|
\[y^{2}=x^{2}(x+a)\] |
|
\[t-x\] |
|
\[\sin^{2}u\] |
|
\[\int dB\] |
|
\[g(x)= \beta_{ab}x^{a}x^{b}\] |
|
\[\frac{4}{5}\] |
|
\[t \times t\] |
|
\[\int \sqrt{h(b)}db\] |
|
\[M= \sqrt{ \frac{2}{c}}\] |
|
\[- \frac{1}{2 \sqrt{3}}\] |
|
\[j_{2}=-( \frac{n}{2}+1)-( \frac{m}{2}+ \frac{1}{2})b^{-2}\] |
|
\[0 \leq \alpha \leq \sqrt{ \frac{c}{12}}\] |
|
\[\sum_{k=1}^{p}i_{k}+ \sum_{k=1}^{q}j_{k}\] |
|
\[c= \pi( \sqrt{2(5- \sqrt{5})}+ \sqrt{2(5+ \sqrt{5})})\] |
|
\[a=b^{-1}c-b^{-1}ab\] |
|
\[x_{ab}=x_{a}-x_{b}\] |
|
\[\lim_{r \rightarrow \infty}w(r)=0\] |
|
\[(2001)4373-4394\] |
|
\[x^{n+1}+y^{2}+z^{2}\] |
|
\[\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\] |
|
\[dx_{1,3}^{2}=-(dx^{0})^{2}+(dx^{1})^{2}+(dx^{2})^{2}+(dx^{3})^{2}\] |
|
\[T(x)=iu \sin(x)\] |
|
\[y=x_{8}+ix_{9}\] |
|
\[v_{2}v_{3}-v_{1}v_{4}=1\] |
|
\[u_{i}=f_{i}^{2} \tan \theta\] |
|
\[-(x-x_{0})=x_{0}-x\] |
|
\[\sqrt{4m}\] |
|
\[z= \frac{1}{ \sqrt{2}}(x^{1}+ix^{2})\] |
|
\[x \leq z\] |
|
\[\sin( \theta)\] |
|
\[n \sqrt[n]{2}\] |
|
\[20 \div 30\] |
|
\[\cos(X)\] |
|
\[x_{j}^{2}+x_{j}=x_{j}(x_{j}+1)\] |
|
\[\frac{1}{ \sqrt{N}}\] |
|
\[(1+0)+(1+0)+(0+0)\] |
|
\[9-n\] |
|
\[\sum_{a}n_{a}\] |
|
\[\sum_{a=2}^{5}(dx^{a})^{2}\] |
|
\[\frac{ \infty}{ \infty}\] |
|
\[x= \frac{2 \pi}{ \sqrt{2}}(n+ \frac{1}{2})\] |
|
\[\sum_{i=2}^{n}i= \frac{n^{2}+n-2}{2}\] |
|
\[v= \sqrt{v_{3}^{2}+v_{4}^{2}+v_{5}^{2}}\] |
|
\[\sum m_{B}^{2}- \sum m_{F}^{2}=0\] |
|
\[[a^{x}b,a^{y}b]=a^{2(x-y)}\] |
|
\[\frac{1}{64}(n+2)(3n^{2}+22n+40)\] |
|
\[\lim_{N \rightarrow \infty}T^{N \times N}=T\] |
|
\[x^{1} \ldots x^{5}\] |
|
\[\pm \frac{25}{96} \frac{ \sqrt{ \pi}}{R^{3}}\] |
|
\[(00)\] |
|
\[\frac{7}{4}\] |
|
\[mnt^{n}(n-1+mnt^{n})\] |
|
\[x(t)=x_{0}+x_{1}t+x_{2}t^{2}+ \ldots\] |
|
\[x^{3},x^{4},x^{5},x^{7},x^{8},x^{9}\] |
|
\[C_{0}= \frac{3}{2g^{2}}- \frac{5}{2g^{2}} \log 2+ \frac{3}{g^{2}} \log g\] |
|
\[r= \sqrt{x^{m}x^{m}}\] |
|
\[C_{f}=-i \sin \pi \alpha\] |
|
\[y^{2}=4x^{3}+Ax+B\] |
|
\[(k+k+n) \times(k+k+n)\] |
|
\[n^{2}(-1+2n^{2})+(1-4n^{2})(n^{2}+n)\] |
|
\[x^{5}-x^{8}\] |
|
\[z=x+ \sqrt{x^{2}-1}\] |
|
\[\sin \theta \leq 1\] |
|
\[\frac{n(2n-1)(2n+1)}{3}\] |
|
\[- \frac{1}{192}\] |