image
imagewidth (px)
65
845
latex_formula
stringlengths
6
152
\[(125)-(135)+(735)-(725)-(1246)-(73)\]
\[x= \cos Lt\]
\[\lim_{k \rightarrow 0}R_{k}=0\]
\[z= \tan \mu\]
\[\tan \beta=80\]
\[|x|=|y|= \sqrt{|z|}\]
\[2 \sin^{2}x=(1- \cos 2x)\]
\[-x-a\]
\[X-X\]
\[x_{new}=c^{ \frac{1}{2}}x\]
\[\sum p_{i}\]
\[r= \sqrt{(x^{1})^{2}+(x^{2})^{2}}\]
\[2^{p-5}-( \frac{1}{2}-2^{p-5})=2^{p-4}- \frac{1}{2}\]
\[f_{rat}= \frac{x-1}{x+1}\]
\[f(y)=y^{ \frac{1}{n-2}}\]
\[C=-m \cos a\]
\[Exp\]
\[- \frac{1}{4}+x\]
\[x^{n}-ax^{s}+b=0\]
\[\tan \alpha \tan \theta^{ \prime}=-1\]
\[- \frac{11-z+5z^{2}+z^{3}}{16}\]
\[\alpha N_{f}= \alpha( \sum_{I=1}^{9}v_{I} \gamma_{I}+ \sum_{i=1}^{3} \frac{i \mu x^{i}}{4} \{ \gamma_{i}, \gamma_{123} \})+ \alpha^{2} \mu^{2}/4^{2}\]
\[y^{2}=y^{a}y^{a}\]
\[\beta= \sin \alpha\]
\[a=i( \frac{l-1}{2 \beta}- \frac{k-1}{2} \beta)\]
\[8+ \frac{8 \times 7}{2}=36\]
\[\sqrt[c]{ \cos(x)}\]
\[k_{v}(x,y)=x^{11}y+11x^{6}y^{6}-xy^{11}\]
\[f \sin \alpha\]
\[f_{xx}+f_{yy} \neq 0\]
\[\frac{cdz}{z-P_{1}}- \frac{cdz}{z-P_{2}}+f(z)dz\]
\[\beta= \cos \alpha\]
\[4n= \frac{2n \times 2n}{n}\]
\[4 \sum k_{a}\]
\[n \times 3\]
\[y^{2}=x^{2}(x+a)\]
\[t-x\]
\[\sin^{2}u\]
\[\int dB\]
\[g(x)= \beta_{ab}x^{a}x^{b}\]
\[\frac{4}{5}\]
\[t \times t\]
\[\int \sqrt{h(b)}db\]
\[M= \sqrt{ \frac{2}{c}}\]
\[- \frac{1}{2 \sqrt{3}}\]
\[j_{2}=-( \frac{n}{2}+1)-( \frac{m}{2}+ \frac{1}{2})b^{-2}\]
\[0 \leq \alpha \leq \sqrt{ \frac{c}{12}}\]
\[\sum_{k=1}^{p}i_{k}+ \sum_{k=1}^{q}j_{k}\]
\[c= \pi( \sqrt{2(5- \sqrt{5})}+ \sqrt{2(5+ \sqrt{5})})\]
\[a=b^{-1}c-b^{-1}ab\]
\[x_{ab}=x_{a}-x_{b}\]
\[\lim_{r \rightarrow \infty}w(r)=0\]
\[(2001)4373-4394\]
\[x^{n+1}+y^{2}+z^{2}\]
\[\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\]
\[dx_{1,3}^{2}=-(dx^{0})^{2}+(dx^{1})^{2}+(dx^{2})^{2}+(dx^{3})^{2}\]
\[T(x)=iu \sin(x)\]
\[y=x_{8}+ix_{9}\]
\[v_{2}v_{3}-v_{1}v_{4}=1\]
\[u_{i}=f_{i}^{2} \tan \theta\]
\[-(x-x_{0})=x_{0}-x\]
\[\sqrt{4m}\]
\[z= \frac{1}{ \sqrt{2}}(x^{1}+ix^{2})\]
\[x \leq z\]
\[\sin( \theta)\]
\[n \sqrt[n]{2}\]
\[20 \div 30\]
\[\cos(X)\]
\[x_{j}^{2}+x_{j}=x_{j}(x_{j}+1)\]
\[\frac{1}{ \sqrt{N}}\]
\[(1+0)+(1+0)+(0+0)\]
\[9-n\]
\[\sum_{a}n_{a}\]
\[\sum_{a=2}^{5}(dx^{a})^{2}\]
\[\frac{ \infty}{ \infty}\]
\[x= \frac{2 \pi}{ \sqrt{2}}(n+ \frac{1}{2})\]
\[\sum_{i=2}^{n}i= \frac{n^{2}+n-2}{2}\]
\[v= \sqrt{v_{3}^{2}+v_{4}^{2}+v_{5}^{2}}\]
\[\sum m_{B}^{2}- \sum m_{F}^{2}=0\]
\[[a^{x}b,a^{y}b]=a^{2(x-y)}\]
\[\frac{1}{64}(n+2)(3n^{2}+22n+40)\]
\[\lim_{N \rightarrow \infty}T^{N \times N}=T\]
\[x^{1} \ldots x^{5}\]
\[\pm \frac{25}{96} \frac{ \sqrt{ \pi}}{R^{3}}\]
\[(00)\]
\[\frac{7}{4}\]
\[mnt^{n}(n-1+mnt^{n})\]
\[x(t)=x_{0}+x_{1}t+x_{2}t^{2}+ \ldots\]
\[x^{3},x^{4},x^{5},x^{7},x^{8},x^{9}\]
\[C_{0}= \frac{3}{2g^{2}}- \frac{5}{2g^{2}} \log 2+ \frac{3}{g^{2}} \log g\]
\[r= \sqrt{x^{m}x^{m}}\]
\[C_{f}=-i \sin \pi \alpha\]
\[y^{2}=4x^{3}+Ax+B\]
\[(k+k+n) \times(k+k+n)\]
\[n^{2}(-1+2n^{2})+(1-4n^{2})(n^{2}+n)\]
\[x^{5}-x^{8}\]
\[z=x+ \sqrt{x^{2}-1}\]
\[\sin \theta \leq 1\]
\[\frac{n(2n-1)(2n+1)}{3}\]
\[- \frac{1}{192}\]