image
imagewidth (px) 65
845
| latex_formula
stringlengths 6
152
|
---|---|
\[\log(z \log z)\] |
|
\[\sum_{k}f_{k}= \sum_{k}h_{k}=1\] |
|
\[h_{xx}=-h_{yy} \neq 0\] |
|
\[6 \sqrt{3}\] |
|
\[-4( \gamma+ \log 4)+b+ \frac{4B \pi^{2} \sqrt{1-x}}{ \sqrt{1+3x}}\] |
|
\[x^{3}x^{4}x^{5}\] |
|
\[zy^{2}=4x^{3}-g_{2}z^{2}x-g_{3}z^{3}\] |
|
\[2a_{1}+2a_{2}+2a_{3}+2a_{4}+2a_{5}+2a_{6}\] |
|
\[k_{a} \neq k_{b} \neq k_{c}\] |
|
\[1- \sum \alpha_{i}\] |
|
\[AA\] |
|
\[F=c+ \alpha x^{2}+ \beta y^{2}+ \gamma x^{2}y^{2}\] |
|
\[x^{3}x^{4}x^{5}\] |
|
\[\frac{i}{k+i}=1- \frac{k}{k+i}\] |
|
\[y \geq 0\] |
|
\[b_{n}= \lim_{ \alpha \rightarrow 0}b_{n- \alpha}\] |
|
\[a= \sqrt{ \frac{5}{6}}\] |
|
\[\frac{+1}{ \sqrt{2}}\] |
|
\[\frac{x_{n}^{i}}{y_{n}^{b}}\] |
|
\[foranyroot\] |
|
\[(001000000)\] |
|
\[\sqrt{mn}\] |
|
\[\frac{25}{96} \frac{ \sqrt{ \pi}}{R^{3}}\] |
|
\[r_{c}= \sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}\] |
|
\[P= \int dz \sqrt{G_{ij}d \phi^{i}/dzd \phi^{j}/dz}\] |
|
\[\frac{1}{3!1!}\] |
|
\[\cos(zv)/ \sin(z)\] |
|
\[X_{9}(X_{2}X_{7}-X_{3}X_{6})\] |
|
\[2 \pi( \sin \theta_{1}+ \sin \theta_{2})\] |
|
\[x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\] |
|
\[\alpha \rightarrow \frac{ \alpha}{2} \sqrt{ \frac{5}{3}}\] |
|
\[\int d^{d}x \sqrt{g}\] |
|
\[g_{n}(x)=a_{n}x^{2}+b_{n}x+c_{n}\] |
|
\[\frac{1}{ \sqrt{2}}\] |
|
\[M \rightarrow \frac{M}{ \sqrt{c}}\] |
|
\[H_{aa}=H_{xx}+H_{yy}\] |
|
\[a(t)= \sin(Ht)\] |
|
\[(2.4.9)-(2.4.10)\] |
|
\[x^{2}+y^{2}+z^{k+1}\] |
|
\[\int x^{m}(a+bx^{n})^{p}dx\] |
|
\[56_{c}+8_{v}+56_{v}+8_{c}\] |
|
\[\tan( \theta/2) \sin^{2}( \theta/2)\] |
|
\[- \frac{1}{24}+ \frac{1}{16}= \frac{1}{48}\] |
|
\[\sum_{i}b^{i}(x_{1}-x_{2})^{i}=0\] |
|
\[\sqrt{1+z^{2}}\] |
|
\[x=a(t-t_{0})^{-1}+p(t-t_{0})^{r-1}\] |
|
\[\frac{6}{ \sqrt{60}}\] |
|
\[\frac{n}{2}+ \frac{5}{2}\] |
|
\[(n+1) \times(n+1) \times \ldots \times(n+1)\] |
|
\[1+ \sqrt{1+m^{2}+q^{2}}\] |
|
\[x_{k+1}x_{k}-x_{k}x_{k+1}=0\] |
|
\[x^{4}-x^{5}\] |
|
\[f^{-1}f=ff^{-1}=1\] |
|
\[X=L \cos(s) \cos(t)\] |
|
\[\frac{1}{2} \leq x \leq \frac{3}{2}\] |
|
\[C= \frac{1}{32}+ \frac{1}{96} \log 2\] |
|
\[x=- \log(1-y)\] |
|
\[0=e^{-u}+e^{u-v-t}+e^{-v}+1\] |
|
\[a=4( \frac{1}{4}- \frac{3}{8})\] |
|
\[\sin^{2}F\] |
|
\[\beta= \sqrt{1+b}\] |
|
\[F(X)= \sqrt[3]{1+X}\] |
|
\[z= \frac{1}{ \sqrt{2}}(x^{1}+ix^{2})\] |
|
\[(a-b)-(k-b-c) \times(a-b)=(a-k+c) \times(a-b)\] |
|
\[\frac{n}{ \sqrt{a_{1}b_{1}}} \leq 1\] |
|
\[1 \ldots k\] |
|
\[(x,y)=M( \cos( \alpha), \sin( \alpha))\] |
|
\[x \frac{P(-x)}{(xP(x))^{2}}\] |
|
\[2 \pi \sin \alpha\] |
|
\[3 \times 3 \times 3+10 \times 3+3\] |
|
\[24-4-2(3+3+2)=4\] |
|
\[\frac{777}{400}\] |
|
\[\sin^{2} \theta \leq 1\] |
|
\[3 \times 3+r-3\] |
|
\[z \geq \frac{9}{8}\] |
|
\[\frac{ \pi}{2}+n \pi\] |
|
\[n \times n\] |
|
\[2f-e_{1}-e_{3}+2e_{6}+e_{7}+2e_{9}\] |
|
\[[ab]=ab-ba\] |
|
\[\frac{(2n-2)(2n-2)}{n-1}+4=4n\] |
|
\[\frac{d}{dy}(y \frac{dw}{dy})-2w(w^{2}-1)=0\] |
|
\[(x^{1})^{2}+(x^{2})^{2}+ \ldots+(x^{n+1})^{2}=1\] |
|
\[\sin(kr)\] |
|
\[\lim_{z \rightarrow \infty}zs(z)< \infty\] |
|
\[[3][3][4]\] |
|
\[\sum q_{i}=- \frac{1}{4}\] |
|
\[\sin( \pi x)\] |
|
\[T= \lim_{u \rightarrow \infty}uz\] |
|
\[e^{-iu/2}(a_{1}+ia_{2})=x_{1}+ix_{2}=e^{iu/2}(b_{1}+ib_{2})\] |
|
\[c \rightarrow c+da\] |
|
\[x^{4} \ldots x^{9}\] |
|
\[\int c_{z}\] |
|
\[-2x^{-1}+ \frac{1}{2}(1+x^{-2})=0\] |
|
\[2 \sin^{2} \alpha=1- \cos 2 \alpha\] |
|
\[ap= \sin(aE)v\] |
|
\[n+7\] |
|
\[\sqrt{-M}\] |
|
\[E^{ \prime}=E_{1}+E_{2}-E_{3}\] |
|
\[A_{i}\] |
|
\[\frac{-4}{ \sqrt{360}}\] |