image
imagewidth (px)
56
1.4k
latex_formula
stringlengths
7
153
\[|x+y| \geq|x|\]
\[r= \sqrt{(x^{1})^{2}+(x^{2})^{2}+(x^{3})^{2}}\]
\[\frac{1}x\]
\[s^{imn}s^{qrs}s^{puw}s^{tvx}s_{mpq}s_{nst}s_{ruv}s_{w}\]
\[y=-b^{n}+c^{n}-d^{n}\]
\[a+xb+yb^{ \prime}\]
\[(x^{+6})^{2}+(y^{+4})^{3}+(z^{+3})^{4}=0\]
\[\sqrt[4]{-g}\]
\[t_{1}(t)=-t_{2}(t)=t^{n+ \frac{1}{2}}\]
\[\frac{1}{2}f_{bc}^{a}c^{b}\]
\[x_{2}=x \sin \theta\]
\[x+h\]
\[-0.5 \leq \log r \leq 0.5\]
\[c_{abc}y^{a}y^{b}y^{c}\]
\[x-y\]
\[\frac{1+ \sqrt{5}}{2}\]
\[\int f(x)dx\]
\[\frac{7}{1440} \sqrt{30}\]
\[\int_{- \infty}^{ \infty}dx^{1}\]
\[\frac{h}{2} \log h\]
\[\sqrt{B_{ \infty}}\]
\[(y_{3}^{5})^{4}=y_{1}^{5}y_{2}^{5}y_{4}^{5}y_{5}^{5}e^{-c_{2}}\]
\[E=E_{E}+ \frac{1}{2}E_{C}\]
\[R_{ab}R^{ab}- \frac{1}{3}R^{2}\]
\[\frac{1}6n(n+1)(n+2)\]
\[\cos 4 \alpha=-1\]
\[-a \leq x_{1} \leq a\]
\[x^{2j+1}+ix^{2j+2}\]
\[\frac{u_{1}+u_{2}+1}{u_{1}u_{2}}\]
\[T_{c}\]
\[\frac{n}{k+n+1}\]
\[p_{y}=p_{y}(y)\]
\[x^{0}x^{1}x^{2}x^{3}\]
\[\sqrt{y} \log y\]
\[\int \sqrt{g}R=8 \pi\]
\[\infty \times \infty\]
\[\sum_{i}H_{i}H_{ii}=0\]
\[\log \cos \theta\]
\[a_{0}= \frac{1}{mv} \sqrt{ \frac{6}{11}}\]
\[B_{n}= \frac{n}{n-2}B_{n-1}\]
\[\sum_{i}d_{i}=d\]
\[0 \div 4\]
\[r=k \sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}\]
\[\beta= \log(2 \sqrt{ \pi})=1.27\]
\[\sum_{a}n_{a}\]
\[- \frac{1}{24}+ \frac{a}{4}(1-a)\]
\[w_{3}\]
\[\int \sqrt{g}R^{2}\]
\[yx=qxy\]
\[z_{ab}=z_{a}-z_{b}\]
\[x_{1}= \frac{x}{z}\]
\[208=b_{0}+b_{2}+b_{3}+b_{4}+b_{5}+b_{7}\]
\[\{- \frac{1}{2}y,- \frac{ \sqrt{3}}{2}y,y^{2}, \frac{5}{12}y^{2} \}\]
\[x^{0}x^{1}x^{2}x^{3}x^{4}x^{5}\]
\[\sin \theta=1\]
\[A_{o^{ \prime}o^{ \prime}c}\]
\[\sqrt{t}= \sqrt{x-4}\]
\[X^{7}+iX^{8}\]
\[\frac{l+m}{ \sqrt{1+ \alpha^{2}}}\]
\[\sqrt{ \frac{11}{10}}\]
\[\int C_{4}\]
\[\sum_{a}X_{a}\]
\[\int(a+b)= \int a+ \int b\]
\[[a] \times[b]\]
\[L_{t}(dx^{ \mu}e_{ \mu}^{a}(x))=L_{t}(dx^{ \mu})e_{ \mu}^{a}(x)+dx^{ \mu}L_{t}e_{ \mu}^{a}(x)\]
\[f(x)=c \frac{1-e^{-x}}{1+e^{-x}}\]
\[8 \times 8 \times 28\]
\[8,393398582\]
\[\Delta^{-1}= \int_{0}^{1}dxx^{ \Delta-1}\]
\[\sum_{i}H_{i}H_{i}\]
\[a_{bc}^{a}=a_{cb}^{a}\]
\[y=2 \sin \frac{ \theta}{2}\]
\[x_{ii+1}=x_{i}-x_{i+1}\]
\[\sin(k_{n}x)\]
\[z_{3}- \frac{1}{2} \leq z_{8} \leq z_{3}+ \frac{1}{2}\]
\[\infty+ \infty\]
\[\sqrt{3+ \sqrt{3}}\]
\[(z-x)^{2}=1+u^{2}+v^{2}-2u-2v-2uv\]
\[g= \frac{ \sqrt{1-Ar^{2}}}{a^{3}r^{2} \sin \theta}\]
\[1- \sqrt{1+ \sqrt{E}}\]
\[\sqrt{7}+1\]
\[p(n)= \sin \frac{n \pi}{k+2r-2}\]
\[4=1+1+1+1\]
\[R_{i}x_{i}=-x_{i}R_{i}\]
\[48!/(17!31!)\]
\[\int a(x)d^{2}x= \int b(x)d^{2}x=0\]
\[y \neq ax\]
\[- \log E\]
\[\sum 1= \infty\]
\[\sum_{l}x^{(l)}\]
\[\frac{527}{72(k+12)}+ \frac{1}{72k}\]
\[x= \frac{x_{1}+x_{2}}{2}\]
\[f(x,y)=x(1-x)+y(1-y)-xy\]
\[1 \div 10\]
\[\int H_{3}\]
\[Y \times Y\]
\[+c.c\]
\[X_{9}(X_{2}X_{7}-X_{3}X_{6})\]
\[\frac{n(n-1)}{2}- \frac{(n-2)(n-3)}{2}=2n-3\]
\[ds^{2}=e^{2f}(dr^{2}+dz^{2}-dt^{2})+ \frac{e^{2g}}{y^{2}}(dx^{2}+dy^{2})\]