image
imagewidth (px) 56
1.4k
| latex_formula
stringlengths 7
153
|
---|---|
\[|x+y| \geq|x|\] |
|
\[r= \sqrt{(x^{1})^{2}+(x^{2})^{2}+(x^{3})^{2}}\] |
|
\[\frac{1}x\] |
|
\[s^{imn}s^{qrs}s^{puw}s^{tvx}s_{mpq}s_{nst}s_{ruv}s_{w}\] |
|
\[y=-b^{n}+c^{n}-d^{n}\] |
|
\[a+xb+yb^{ \prime}\] |
|
\[(x^{+6})^{2}+(y^{+4})^{3}+(z^{+3})^{4}=0\] |
|
\[\sqrt[4]{-g}\] |
|
\[t_{1}(t)=-t_{2}(t)=t^{n+ \frac{1}{2}}\] |
|
\[\frac{1}{2}f_{bc}^{a}c^{b}\] |
|
\[x_{2}=x \sin \theta\] |
|
\[x+h\] |
|
\[-0.5 \leq \log r \leq 0.5\] |
|
\[c_{abc}y^{a}y^{b}y^{c}\] |
|
\[x-y\] |
|
\[\frac{1+ \sqrt{5}}{2}\] |
|
\[\int f(x)dx\] |
|
\[\frac{7}{1440} \sqrt{30}\] |
|
\[\int_{- \infty}^{ \infty}dx^{1}\] |
|
\[\frac{h}{2} \log h\] |
|
\[\sqrt{B_{ \infty}}\] |
|
\[(y_{3}^{5})^{4}=y_{1}^{5}y_{2}^{5}y_{4}^{5}y_{5}^{5}e^{-c_{2}}\] |
|
\[E=E_{E}+ \frac{1}{2}E_{C}\] |
|
\[R_{ab}R^{ab}- \frac{1}{3}R^{2}\] |
|
\[\frac{1}6n(n+1)(n+2)\] |
|
\[\cos 4 \alpha=-1\] |
|
\[-a \leq x_{1} \leq a\] |
|
\[x^{2j+1}+ix^{2j+2}\] |
|
\[\frac{u_{1}+u_{2}+1}{u_{1}u_{2}}\] |
|
\[T_{c}\] |
|
\[\frac{n}{k+n+1}\] |
|
\[p_{y}=p_{y}(y)\] |
|
\[x^{0}x^{1}x^{2}x^{3}\] |
|
\[\sqrt{y} \log y\] |
|
\[\int \sqrt{g}R=8 \pi\] |
|
\[\infty \times \infty\] |
|
\[\sum_{i}H_{i}H_{ii}=0\] |
|
\[\log \cos \theta\] |
|
\[a_{0}= \frac{1}{mv} \sqrt{ \frac{6}{11}}\] |
|
\[B_{n}= \frac{n}{n-2}B_{n-1}\] |
|
\[\sum_{i}d_{i}=d\] |
|
\[0 \div 4\] |
|
\[r=k \sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}\] |
|
\[\beta= \log(2 \sqrt{ \pi})=1.27\] |
|
\[\sum_{a}n_{a}\] |
|
\[- \frac{1}{24}+ \frac{a}{4}(1-a)\] |
|
\[w_{3}\] |
|
\[\int \sqrt{g}R^{2}\] |
|
\[yx=qxy\] |
|
\[z_{ab}=z_{a}-z_{b}\] |
|
\[x_{1}= \frac{x}{z}\] |
|
\[208=b_{0}+b_{2}+b_{3}+b_{4}+b_{5}+b_{7}\] |
|
\[\{- \frac{1}{2}y,- \frac{ \sqrt{3}}{2}y,y^{2}, \frac{5}{12}y^{2} \}\] |
|
\[x^{0}x^{1}x^{2}x^{3}x^{4}x^{5}\] |
|
\[\sin \theta=1\] |
|
\[A_{o^{ \prime}o^{ \prime}c}\] |
|
\[\sqrt{t}= \sqrt{x-4}\] |
|
\[X^{7}+iX^{8}\] |
|
\[\frac{l+m}{ \sqrt{1+ \alpha^{2}}}\] |
|
\[\sqrt{ \frac{11}{10}}\] |
|
\[\int C_{4}\] |
|
\[\sum_{a}X_{a}\] |
|
\[\int(a+b)= \int a+ \int b\] |
|
\[[a] \times[b]\] |
|
\[L_{t}(dx^{ \mu}e_{ \mu}^{a}(x))=L_{t}(dx^{ \mu})e_{ \mu}^{a}(x)+dx^{ \mu}L_{t}e_{ \mu}^{a}(x)\] |
|
\[f(x)=c \frac{1-e^{-x}}{1+e^{-x}}\] |
|
\[8 \times 8 \times 28\] |
|
\[8,393398582\] |
|
\[\Delta^{-1}= \int_{0}^{1}dxx^{ \Delta-1}\] |
|
\[\sum_{i}H_{i}H_{i}\] |
|
\[a_{bc}^{a}=a_{cb}^{a}\] |
|
\[y=2 \sin \frac{ \theta}{2}\] |
|
\[x_{ii+1}=x_{i}-x_{i+1}\] |
|
\[\sin(k_{n}x)\] |
|
\[z_{3}- \frac{1}{2} \leq z_{8} \leq z_{3}+ \frac{1}{2}\] |
|
\[\infty+ \infty\] |
|
\[\sqrt{3+ \sqrt{3}}\] |
|
\[(z-x)^{2}=1+u^{2}+v^{2}-2u-2v-2uv\] |
|
\[g= \frac{ \sqrt{1-Ar^{2}}}{a^{3}r^{2} \sin \theta}\] |
|
\[1- \sqrt{1+ \sqrt{E}}\] |
|
\[\sqrt{7}+1\] |
|
\[p(n)= \sin \frac{n \pi}{k+2r-2}\] |
|
\[4=1+1+1+1\] |
|
\[R_{i}x_{i}=-x_{i}R_{i}\] |
|
\[48!/(17!31!)\] |
|
\[\int a(x)d^{2}x= \int b(x)d^{2}x=0\] |
|
\[y \neq ax\] |
|
\[- \log E\] |
|
\[\sum 1= \infty\] |
|
\[\sum_{l}x^{(l)}\] |
|
\[\frac{527}{72(k+12)}+ \frac{1}{72k}\] |
|
\[x= \frac{x_{1}+x_{2}}{2}\] |
|
\[f(x,y)=x(1-x)+y(1-y)-xy\] |
|
\[1 \div 10\] |
|
\[\int H_{3}\] |
|
\[Y \times Y\] |
|
\[+c.c\] |
|
\[X_{9}(X_{2}X_{7}-X_{3}X_{6})\] |
|
\[\frac{n(n-1)}{2}- \frac{(n-2)(n-3)}{2}=2n-3\] |
|
\[ds^{2}=e^{2f}(dr^{2}+dz^{2}-dt^{2})+ \frac{e^{2g}}{y^{2}}(dx^{2}+dy^{2})\] |