uuid
stringlengths 36
36
| import_dependencies
list | path
stringlengths 21
94
| type
stringclasses 2
values | link
stringlengths 98
248
| source_code
stringlengths 38
36.6k
| doc_content
stringlengths 0
27.2k
| description
stringlengths 0
885
|
---|---|---|---|---|---|---|---|
8b302b43-dc4e-4c26-bf3b-79ee8c511cb4
|
[
"json",
"tempfile",
"copy.deepcopy",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Union",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.utils.BaseMetadataCallbackHandler",
"langchain.callbacks.utils.flatten_dict",
"langchain.callbacks.utils.hash_string",
"langchain.callbacks.utils.import_pandas",
"langchain.callbacks.utils.import_spacy",
"langchain.callbacks.utils.import_textstat",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.LLMResult",
"wandb"
] |
langchain.callbacks.wandb_callback.analyze_text
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.wandb_callback.analyze_text.html#langchain.callbacks.wandb_callback.analyze_text
|
def analyze_text(
text: str,
complexity_metrics: bool = True,
visualize: bool = True,
nlp: Any = None,
output_dir: Optional[Union[str, Path]] = None,
) -> dict:
"""Analyze text using textstat and spacy.
Parameters:
text (str): The text to analyze.
complexity_metrics (bool): Whether to compute complexity metrics.
visualize (bool): Whether to visualize the text.
nlp (spacy.lang): The spacy language model to use for visualization.
output_dir (str): The directory to save the visualization files to.
Returns:
(dict): A dictionary containing the complexity metrics and visualization
files serialized in a wandb.Html element.
"""
resp = {}
textstat = import_textstat()
wandb = import_wandb()
spacy = import_spacy()
if complexity_metrics:
text_complexity_metrics = {
"flesch_reading_ease": textstat.flesch_reading_ease(text),
"flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
"smog_index": textstat.smog_index(text),
"coleman_liau_index": textstat.coleman_liau_index(text),
"automated_readability_index": textstat.automated_readability_index(text),
"dale_chall_readability_score": textstat.dale_chall_readability_score(text),
"difficult_words": textstat.difficult_words(text),
"linsear_write_formula": textstat.linsear_write_formula(text),
"gunning_fog": textstat.gunning_fog(text),
"text_standard": textstat.text_standard(text),
"fernandez_huerta": textstat.fernandez_huerta(text),
"szigriszt_pazos": textstat.szigriszt_pazos(text),
"gutierrez_polini": textstat.gutierrez_polini(text),
"crawford": textstat.crawford(text),
"gulpease_index": textstat.gulpease_index(text),
"osman": textstat.osman(text),
}
resp.update(text_complexity_metrics)
if visualize and nlp and output_dir is not None:
doc = nlp(text)
dep_out = spacy.displacy.render( # type: ignore
doc, style="dep", jupyter=False, page=True
)
dep_output_path = Path(output_dir, hash_string(f"dep-{text}") + ".html")
dep_output_path.open("w", encoding="utf-8").write(dep_out)
ent_out = spacy.displacy.render( # type: ignore
doc, style="ent", jupyter=False, page=True
)
ent_output_path = Path(output_dir, hash_string(f"ent-{text}") + ".html")
ent_output_path.open("w", encoding="utf-8").write(ent_out)
text_visualizations = {
"dependency_tree": wandb.Html(str(dep_output_path)),
"entities": wandb.Html(str(ent_output_path)),
}
resp.update(text_visualizations)
return resp
|
langchain.callbacks.wandb_callback.analyze_text¶
langchain.callbacks.wandb_callback.analyze_text(text: str, complexity_metrics: bool = True, visualize: bool = True, nlp: Any = None, output_dir: Optional[Union[str, Path]] = None) → dict[source]¶
Analyze text using textstat and spacy.
Parameters
text (str) – The text to analyze.
complexity_metrics (bool) – Whether to compute complexity metrics.
visualize (bool) – Whether to visualize the text.
nlp (spacy.lang) – The spacy language model to use for visualization.
output_dir (str) – The directory to save the visualization files to.
Returns
A dictionary containing the complexity metrics and visualizationfiles serialized in a wandb.Html element.
Return type
(dict)
|
Analyze text using textstat and spacy.
|
8478358d-5a90-4546-8d67-7d681bc29da5
|
[
"json",
"tempfile",
"copy.deepcopy",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Union",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.utils.BaseMetadataCallbackHandler",
"langchain.callbacks.utils.flatten_dict",
"langchain.callbacks.utils.hash_string",
"langchain.callbacks.utils.import_pandas",
"langchain.callbacks.utils.import_spacy",
"langchain.callbacks.utils.import_textstat",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.LLMResult",
"wandb"
] |
langchain.callbacks.wandb_callback.construct_html_from_prompt_and_generation
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.wandb_callback.construct_html_from_prompt_and_generation.html#langchain.callbacks.wandb_callback.construct_html_from_prompt_and_generation
|
def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any:
"""Construct an html element from a prompt and a generation.
Parameters:
prompt (str): The prompt.
generation (str): The generation.
Returns:
(wandb.Html): The html element."""
wandb = import_wandb()
formatted_prompt = prompt.replace("\n", "<br>")
formatted_generation = generation.replace("\n", "<br>")
return wandb.Html(
f"""
<p style="color:black;">{formatted_prompt}:</p>
<blockquote>
<p style="color:green;">
{formatted_generation}
</p>
</blockquote>
""",
inject=False,
)
|
langchain.callbacks.wandb_callback.construct_html_from_prompt_and_generation¶
langchain.callbacks.wandb_callback.construct_html_from_prompt_and_generation(prompt: str, generation: str) → Any[source]¶
Construct an html element from a prompt and a generation.
Parameters
prompt (str) – The prompt.
generation (str) – The generation.
Returns
The html element.
Return type
(wandb.Html)
|
Construct an html element from a prompt and a generation.
|
76b9401f-1de9-47b5-9594-293506748de9
|
[
"json",
"tempfile",
"copy.deepcopy",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Union",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.utils.BaseMetadataCallbackHandler",
"langchain.callbacks.utils.flatten_dict",
"langchain.callbacks.utils.hash_string",
"langchain.callbacks.utils.import_pandas",
"langchain.callbacks.utils.import_spacy",
"langchain.callbacks.utils.import_textstat",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.LLMResult",
"wandb"
] |
langchain.callbacks.wandb_callback.WandbCallbackHandler
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.wandb_callback.WandbCallbackHandler.html#langchain.callbacks.wandb_callback.WandbCallbackHandler
|
class WandbCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
"""Callback Handler that logs to Weights and Biases.
Parameters:
job_type (str): The type of job.
project (str): The project to log to.
entity (str): The entity to log to.
tags (list): The tags to log.
group (str): The group to log to.
name (str): The name of the run.
notes (str): The notes to log.
visualize (bool): Whether to visualize the run.
complexity_metrics (bool): Whether to log complexity metrics.
stream_logs (bool): Whether to stream callback actions to W&B
This handler will utilize the associated callback method called and formats
the input of each callback function with metadata regarding the state of LLM run,
and adds the response to the list of records for both the {method}_records and
action. It then logs the response using the run.log() method to Weights and Biases.
"""
def __init__(
self,
job_type: Optional[str] = None,
project: Optional[str] = "langchain_callback_demo",
entity: Optional[str] = None,
tags: Optional[Sequence] = None,
group: Optional[str] = None,
name: Optional[str] = None,
notes: Optional[str] = None,
visualize: bool = False,
complexity_metrics: bool = False,
stream_logs: bool = False,
) -> None:
"""Initialize callback handler."""
wandb = import_wandb()
import_pandas()
import_textstat()
spacy = import_spacy()
super().__init__()
self.job_type = job_type
self.project = project
self.entity = entity
self.tags = tags
self.group = group
self.name = name
self.notes = notes
self.visualize = visualize
self.complexity_metrics = complexity_metrics
self.stream_logs = stream_logs
self.temp_dir = tempfile.TemporaryDirectory()
self.run: wandb.sdk.wandb_run.Run = wandb.init( # type: ignore
job_type=self.job_type,
project=self.project,
entity=self.entity,
tags=self.tags,
group=self.group,
name=self.name,
notes=self.notes,
)
warning = (
"DEPRECATION: The `WandbCallbackHandler` will soon be deprecated in favor "
"of the `WandbTracer`. Please update your code to use the `WandbTracer` "
"instead."
)
wandb.termwarn(
warning,
repeat=False,
)
self.callback_columns: list = []
self.action_records: list = []
self.complexity_metrics = complexity_metrics
self.visualize = visualize
self.nlp = spacy.load("en_core_web_sm")
def _init_resp(self) -> Dict:
return {k: None for k in self.callback_columns}
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Run when LLM starts."""
self.step += 1
self.llm_starts += 1
self.starts += 1
resp = self._init_resp()
resp.update({"action": "on_llm_start"})
resp.update(flatten_dict(serialized))
resp.update(self.get_custom_callback_meta())
for prompt in prompts:
prompt_resp = deepcopy(resp)
prompt_resp["prompts"] = prompt
self.on_llm_start_records.append(prompt_resp)
self.action_records.append(prompt_resp)
if self.stream_logs:
self.run.log(prompt_resp)
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run when LLM generates a new token."""
self.step += 1
self.llm_streams += 1
resp = self._init_resp()
resp.update({"action": "on_llm_new_token", "token": token})
resp.update(self.get_custom_callback_meta())
self.on_llm_token_records.append(resp)
self.action_records.append(resp)
if self.stream_logs:
self.run.log(resp)
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Run when LLM ends running."""
self.step += 1
self.llm_ends += 1
self.ends += 1
resp = self._init_resp()
resp.update({"action": "on_llm_end"})
resp.update(flatten_dict(response.llm_output or {}))
resp.update(self.get_custom_callback_meta())
for generations in response.generations:
for generation in generations:
generation_resp = deepcopy(resp)
generation_resp.update(flatten_dict(generation.dict()))
generation_resp.update(
analyze_text(
generation.text,
complexity_metrics=self.complexity_metrics,
visualize=self.visualize,
nlp=self.nlp,
output_dir=self.temp_dir.name,
)
)
self.on_llm_end_records.append(generation_resp)
self.action_records.append(generation_resp)
if self.stream_logs:
self.run.log(generation_resp)
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when LLM errors."""
self.step += 1
self.errors += 1
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Run when chain starts running."""
self.step += 1
self.chain_starts += 1
self.starts += 1
resp = self._init_resp()
resp.update({"action": "on_chain_start"})
resp.update(flatten_dict(serialized))
resp.update(self.get_custom_callback_meta())
chain_input = inputs["input"]
if isinstance(chain_input, str):
input_resp = deepcopy(resp)
input_resp["input"] = chain_input
self.on_chain_start_records.append(input_resp)
self.action_records.append(input_resp)
if self.stream_logs:
self.run.log(input_resp)
elif isinstance(chain_input, list):
for inp in chain_input:
input_resp = deepcopy(resp)
input_resp.update(inp)
self.on_chain_start_records.append(input_resp)
self.action_records.append(input_resp)
if self.stream_logs:
self.run.log(input_resp)
else:
raise ValueError("Unexpected data format provided!")
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Run when chain ends running."""
self.step += 1
self.chain_ends += 1
self.ends += 1
resp = self._init_resp()
resp.update({"action": "on_chain_end", "outputs": outputs["output"]})
resp.update(self.get_custom_callback_meta())
self.on_chain_end_records.append(resp)
self.action_records.append(resp)
if self.stream_logs:
self.run.log(resp)
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when chain errors."""
self.step += 1
self.errors += 1
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> None:
"""Run when tool starts running."""
self.step += 1
self.tool_starts += 1
self.starts += 1
resp = self._init_resp()
resp.update({"action": "on_tool_start", "input_str": input_str})
resp.update(flatten_dict(serialized))
resp.update(self.get_custom_callback_meta())
self.on_tool_start_records.append(resp)
self.action_records.append(resp)
if self.stream_logs:
self.run.log(resp)
def on_tool_end(self, output: str, **kwargs: Any) -> None:
"""Run when tool ends running."""
self.step += 1
self.tool_ends += 1
self.ends += 1
resp = self._init_resp()
resp.update({"action": "on_tool_end", "output": output})
resp.update(self.get_custom_callback_meta())
self.on_tool_end_records.append(resp)
self.action_records.append(resp)
if self.stream_logs:
self.run.log(resp)
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when tool errors."""
self.step += 1
self.errors += 1
def on_text(self, text: str, **kwargs: Any) -> None:
"""
Run when agent is ending.
"""
self.step += 1
self.text_ctr += 1
resp = self._init_resp()
resp.update({"action": "on_text", "text": text})
resp.update(self.get_custom_callback_meta())
self.on_text_records.append(resp)
self.action_records.append(resp)
if self.stream_logs:
self.run.log(resp)
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Run when agent ends running."""
self.step += 1
self.agent_ends += 1
self.ends += 1
resp = self._init_resp()
resp.update(
{
"action": "on_agent_finish",
"output": finish.return_values["output"],
"log": finish.log,
}
)
resp.update(self.get_custom_callback_meta())
self.on_agent_finish_records.append(resp)
self.action_records.append(resp)
if self.stream_logs:
self.run.log(resp)
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run on agent action."""
self.step += 1
self.tool_starts += 1
self.starts += 1
resp = self._init_resp()
resp.update(
{
"action": "on_agent_action",
"tool": action.tool,
"tool_input": action.tool_input,
"log": action.log,
}
)
resp.update(self.get_custom_callback_meta())
self.on_agent_action_records.append(resp)
self.action_records.append(resp)
if self.stream_logs:
self.run.log(resp)
def _create_session_analysis_df(self) -> Any:
"""Create a dataframe with all the information from the session."""
pd = import_pandas()
on_llm_start_records_df = pd.DataFrame(self.on_llm_start_records)
on_llm_end_records_df = pd.DataFrame(self.on_llm_end_records)
llm_input_prompts_df = (
on_llm_start_records_df[["step", "prompts", "name"]]
.dropna(axis=1)
.rename({"step": "prompt_step"}, axis=1)
)
complexity_metrics_columns = []
visualizations_columns = []
if self.complexity_metrics:
complexity_metrics_columns = [
"flesch_reading_ease",
"flesch_kincaid_grade",
"smog_index",
"coleman_liau_index",
"automated_readability_index",
"dale_chall_readability_score",
"difficult_words",
"linsear_write_formula",
"gunning_fog",
"text_standard",
"fernandez_huerta",
"szigriszt_pazos",
"gutierrez_polini",
"crawford",
"gulpease_index",
"osman",
]
if self.visualize:
visualizations_columns = ["dependency_tree", "entities"]
llm_outputs_df = (
on_llm_end_records_df[
[
"step",
"text",
"token_usage_total_tokens",
"token_usage_prompt_tokens",
"token_usage_completion_tokens",
]
+ complexity_metrics_columns
+ visualizations_columns
]
.dropna(axis=1)
.rename({"step": "output_step", "text": "output"}, axis=1)
)
session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1)
session_analysis_df["chat_html"] = session_analysis_df[
["prompts", "output"]
].apply(
lambda row: construct_html_from_prompt_and_generation(
row["prompts"], row["output"]
),
axis=1,
)
return session_analysis_df
def flush_tracker(
self,
langchain_asset: Any = None,
reset: bool = True,
finish: bool = False,
job_type: Optional[str] = None,
project: Optional[str] = None,
entity: Optional[str] = None,
tags: Optional[Sequence] = None,
group: Optional[str] = None,
name: Optional[str] = None,
notes: Optional[str] = None,
visualize: Optional[bool] = None,
complexity_metrics: Optional[bool] = None,
) -> None:
"""Flush the tracker and reset the session.
Args:
langchain_asset: The langchain asset to save.
reset: Whether to reset the session.
finish: Whether to finish the run.
job_type: The job type.
project: The project.
entity: The entity.
tags: The tags.
group: The group.
name: The name.
notes: The notes.
visualize: Whether to visualize.
complexity_metrics: Whether to compute complexity metrics.
Returns:
None
"""
pd = import_pandas()
wandb = import_wandb()
action_records_table = wandb.Table(dataframe=pd.DataFrame(self.action_records))
session_analysis_table = wandb.Table(
dataframe=self._create_session_analysis_df()
)
self.run.log(
{
"action_records": action_records_table,
"session_analysis": session_analysis_table,
}
)
if langchain_asset:
langchain_asset_path = Path(self.temp_dir.name, "model.json")
model_artifact = wandb.Artifact(name="model", type="model")
model_artifact.add(action_records_table, name="action_records")
model_artifact.add(session_analysis_table, name="session_analysis")
try:
langchain_asset.save(langchain_asset_path)
model_artifact.add_file(str(langchain_asset_path))
model_artifact.metadata = load_json_to_dict(langchain_asset_path)
except ValueError:
langchain_asset.save_agent(langchain_asset_path)
model_artifact.add_file(str(langchain_asset_path))
model_artifact.metadata = load_json_to_dict(langchain_asset_path)
except NotImplementedError as e:
print("Could not save model.")
print(repr(e))
pass
self.run.log_artifact(model_artifact)
if finish or reset:
self.run.finish()
self.temp_dir.cleanup()
self.reset_callback_meta()
if reset:
self.__init__( # type: ignore
job_type=job_type if job_type else self.job_type,
project=project if project else self.project,
entity=entity if entity else self.entity,
tags=tags if tags else self.tags,
group=group if group else self.group,
name=name if name else self.name,
notes=notes if notes else self.notes,
visualize=visualize if visualize else self.visualize,
complexity_metrics=complexity_metrics
if complexity_metrics
else self.complexity_metrics,
)
|
langchain.callbacks.wandb_callback.WandbCallbackHandler¶
class langchain.callbacks.wandb_callback.WandbCallbackHandler(job_type: Optional[str] = None, project: Optional[str] = 'langchain_callback_demo', entity: Optional[str] = None, tags: Optional[Sequence] = None, group: Optional[str] = None, name: Optional[str] = None, notes: Optional[str] = None, visualize: bool = False, complexity_metrics: bool = False, stream_logs: bool = False)[source]¶
Bases: BaseMetadataCallbackHandler, BaseCallbackHandler
Callback Handler that logs to Weights and Biases.
Parameters
job_type (str) – The type of job.
project (str) – The project to log to.
entity (str) – The entity to log to.
tags (list) – The tags to log.
group (str) – The group to log to.
name (str) – The name of the run.
notes (str) – The notes to log.
visualize (bool) – Whether to visualize the run.
complexity_metrics (bool) – Whether to log complexity metrics.
stream_logs (bool) – Whether to stream callback actions to W&B
This handler will utilize the associated callback method called and formats
the input of each callback function with metadata regarding the state of LLM run,
and adds the response to the list of records for both the {method}_records and
action. It then logs the response using the run.log() method to Weights and Biases.
Initialize callback handler.
Methods
__init__([job_type, project, entity, tags, ...])
Initialize callback handler.
flush_tracker([langchain_asset, reset, ...])
Flush the tracker and reset the session.
get_custom_callback_meta()
on_agent_action(action, **kwargs)
Run on agent action.
on_agent_finish(finish, **kwargs)
Run when agent ends running.
on_chain_end(outputs, **kwargs)
Run when chain ends running.
on_chain_error(error, **kwargs)
Run when chain errors.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, **kwargs)
Run when LLM generates a new token.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, **kwargs)
Run when agent is ending.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
on_tool_start(serialized, input_str, **kwargs)
Run when tool starts running.
reset_callback_meta()
Reset the callback metadata.
Attributes
always_verbose
Whether to call verbose callbacks even if verbose is False.
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
flush_tracker(langchain_asset: Any = None, reset: bool = True, finish: bool = False, job_type: Optional[str] = None, project: Optional[str] = None, entity: Optional[str] = None, tags: Optional[Sequence] = None, group: Optional[str] = None, name: Optional[str] = None, notes: Optional[str] = None, visualize: Optional[bool] = None, complexity_metrics: Optional[bool] = None) → None[source]¶
Flush the tracker and reset the session.
Parameters
langchain_asset – The langchain asset to save.
reset – Whether to reset the session.
finish – Whether to finish the run.
job_type – The job type.
project – The project.
entity – The entity.
tags – The tags.
group – The group.
name – The name.
notes – The notes.
visualize – Whether to visualize.
complexity_metrics – Whether to compute complexity metrics.
Returns – None
get_custom_callback_meta() → Dict[str, Any]¶
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Run on agent action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Run when agent ends running.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain ends running.
on_chain_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when LLM errors.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run when LLM generates a new token.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_text(text: str, **kwargs: Any) → None[source]¶
Run when agent is ending.
on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
on_tool_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Run when tool starts running.
reset_callback_meta() → None¶
Reset the callback metadata.
property always_verbose: bool¶
Whether to call verbose callbacks even if verbose is False.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
raise_error: bool = False¶
run_inline: bool = False¶
|
Callback Handler that logs to Weights and Biases.
|
4d010d6e-7acc-4800-aa29-63a97ce3ccf6
|
[
"datetime.datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Union",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.utils.import_pandas",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.LLMResult"
] |
langchain.callbacks.arize_callback.ArizeCallbackHandler
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.arize_callback.ArizeCallbackHandler.html#langchain.callbacks.arize_callback.ArizeCallbackHandler
|
class ArizeCallbackHandler(BaseCallbackHandler):
"""Callback Handler that logs to Arize."""
def __init__(
self,
model_id: Optional[str] = None,
model_version: Optional[str] = None,
SPACE_KEY: Optional[str] = None,
API_KEY: Optional[str] = None,
) -> None:
"""Initialize callback handler."""
super().__init__()
self.model_id = model_id
self.model_version = model_version
self.space_key = SPACE_KEY
self.api_key = API_KEY
self.prompt_records: List[str] = []
self.response_records: List[str] = []
self.prediction_ids: List[str] = []
self.pred_timestamps: List[int] = []
self.response_embeddings: List[float] = []
self.prompt_embeddings: List[float] = []
self.prompt_tokens = 0
self.completion_tokens = 0
self.total_tokens = 0
self.step = 0
from arize.pandas.embeddings import EmbeddingGenerator, UseCases
from arize.pandas.logger import Client
self.generator = EmbeddingGenerator.from_use_case(
use_case=UseCases.NLP.SEQUENCE_CLASSIFICATION,
model_name="distilbert-base-uncased",
tokenizer_max_length=512,
batch_size=256,
)
self.arize_client = Client(space_key=SPACE_KEY, api_key=API_KEY)
if SPACE_KEY == "SPACE_KEY" or API_KEY == "API_KEY":
raise ValueError("❌ CHANGE SPACE AND API KEYS")
else:
print("✅ Arize client setup done! Now you can start using Arize!")
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
for prompt in prompts:
self.prompt_records.append(prompt.replace("\n", ""))
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Do nothing."""
pass
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
pd = import_pandas()
from arize.utils.types import (
EmbeddingColumnNames,
Environments,
ModelTypes,
Schema,
)
# Safe check if 'llm_output' and 'token_usage' exist
if response.llm_output and "token_usage" in response.llm_output:
self.prompt_tokens = response.llm_output["token_usage"].get(
"prompt_tokens", 0
)
self.total_tokens = response.llm_output["token_usage"].get(
"total_tokens", 0
)
self.completion_tokens = response.llm_output["token_usage"].get(
"completion_tokens", 0
)
else:
self.prompt_tokens = (
self.total_tokens
) = self.completion_tokens = 0 # assign default value
for generations in response.generations:
for generation in generations:
prompt = self.prompt_records[self.step]
self.step = self.step + 1
prompt_embedding = pd.Series(
self.generator.generate_embeddings(
text_col=pd.Series(prompt.replace("\n", " "))
).reset_index(drop=True)
)
# Assigning text to response_text instead of response
response_text = generation.text.replace("\n", " ")
response_embedding = pd.Series(
self.generator.generate_embeddings(
text_col=pd.Series(generation.text.replace("\n", " "))
).reset_index(drop=True)
)
pred_timestamp = datetime.now().timestamp()
# Define the columns and data
columns = [
"prediction_ts",
"response",
"prompt",
"response_vector",
"prompt_vector",
"prompt_token",
"completion_token",
"total_token",
]
data = [
[
pred_timestamp,
response_text,
prompt,
response_embedding[0],
prompt_embedding[0],
self.prompt_tokens,
self.total_tokens,
self.completion_tokens,
]
]
# Create the DataFrame
df = pd.DataFrame(data, columns=columns)
# Declare prompt and response columns
prompt_columns = EmbeddingColumnNames(
vector_column_name="prompt_vector", data_column_name="prompt"
)
response_columns = EmbeddingColumnNames(
vector_column_name="response_vector", data_column_name="response"
)
schema = Schema(
timestamp_column_name="prediction_ts",
tag_column_names=[
"prompt_token",
"completion_token",
"total_token",
],
prompt_column_names=prompt_columns,
response_column_names=response_columns,
)
response_from_arize = self.arize_client.log(
dataframe=df,
schema=schema,
model_id=self.model_id,
model_version=self.model_version,
model_type=ModelTypes.GENERATIVE_LLM,
environment=Environments.PRODUCTION,
)
if response_from_arize.status_code == 200:
print("✅ Successfully logged data to Arize!")
else:
print(f'❌ Logging failed "{response_from_arize.text}"')
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
pass
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
pass
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Do nothing."""
pass
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
pass
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
**kwargs: Any,
) -> None:
pass
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Do nothing."""
pass
def on_tool_end(
self,
output: str,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
pass
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
pass
def on_text(self, text: str, **kwargs: Any) -> None:
pass
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
pass
|
langchain.callbacks.arize_callback.ArizeCallbackHandler¶
class langchain.callbacks.arize_callback.ArizeCallbackHandler(model_id: Optional[str] = None, model_version: Optional[str] = None, SPACE_KEY: Optional[str] = None, API_KEY: Optional[str] = None)[source]¶
Bases: BaseCallbackHandler
Callback Handler that logs to Arize.
Initialize callback handler.
Methods
__init__([model_id, model_version, ...])
Initialize callback handler.
on_agent_action(action, **kwargs)
Do nothing.
on_agent_finish(finish, **kwargs)
Run on agent end.
on_chain_end(outputs, **kwargs)
Do nothing.
on_chain_error(error, **kwargs)
Do nothing.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Do nothing.
on_llm_new_token(token, **kwargs)
Do nothing.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, **kwargs)
Run on arbitrary text.
on_tool_end(output[, observation_prefix, ...])
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
on_tool_start(serialized, input_str, **kwargs)
Run when tool starts running.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Do nothing.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Do nothing.
on_chain_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Do nothing.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Do nothing.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Do nothing.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts running.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_text(text: str, **kwargs: Any) → None[source]¶
Run on arbitrary text.
on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶
Run when tool ends running.
on_tool_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Run when tool starts running.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
raise_error: bool = False¶
run_inline: bool = False¶
|
Callback Handler that logs to Arize.
|
d343912f-c7cc-49e3-8e7b-cf6898c1b47b
|
[
"hashlib",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.Iterable",
"typing.Tuple",
"typing.Union"
] |
langchain.callbacks.utils.import_spacy
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.utils.import_spacy.html#langchain.callbacks.utils.import_spacy
|
def import_spacy() -> Any:
"""Import the spacy python package and raise an error if it is not installed."""
try:
import spacy
except ImportError:
raise ImportError(
"This callback manager requires the `spacy` python "
"package installed. Please install it with `pip install spacy`"
)
return spacy
|
langchain.callbacks.utils.import_spacy¶
langchain.callbacks.utils.import_spacy() → Any[source]¶
Import the spacy python package and raise an error if it is not installed.
|
Import the spacy python package and raise an error if it is not installed.
|
d90c31df-a0d2-45f8-a409-8eb28dd965e1
|
[
"hashlib",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.Iterable",
"typing.Tuple",
"typing.Union",
"spacy"
] |
langchain.callbacks.utils.import_pandas
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.utils.import_pandas.html#langchain.callbacks.utils.import_pandas
|
def import_pandas() -> Any:
"""Import the pandas python package and raise an error if it is not installed."""
try:
import pandas
except ImportError:
raise ImportError(
"This callback manager requires the `pandas` python "
"package installed. Please install it with `pip install pandas`"
)
return pandas
|
langchain.callbacks.utils.import_pandas¶
langchain.callbacks.utils.import_pandas() → Any[source]¶
Import the pandas python package and raise an error if it is not installed.
|
Import the pandas python package and raise an error if it is not installed.
|
d5935d57-ba2b-41c1-81d8-645447e19fda
|
[
"hashlib",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.Iterable",
"typing.Tuple",
"typing.Union",
"spacy",
"pandas"
] |
langchain.callbacks.utils.import_textstat
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.utils.import_textstat.html#langchain.callbacks.utils.import_textstat
|
def import_textstat() -> Any:
"""Import the textstat python package and raise an error if it is not installed."""
try:
import textstat
except ImportError:
raise ImportError(
"This callback manager requires the `textstat` python "
"package installed. Please install it with `pip install textstat`"
)
return textstat
|
langchain.callbacks.utils.import_textstat¶
langchain.callbacks.utils.import_textstat() → Any[source]¶
Import the textstat python package and raise an error if it is not installed.
|
Import the textstat python package and raise an error if it is not installed.
|
06192fd7-7a8d-44ef-b431-763efc7833f2
|
[
"hashlib",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.Iterable",
"typing.Tuple",
"typing.Union",
"spacy",
"pandas",
"textstat"
] |
langchain.callbacks.utils.flatten_dict
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.utils.flatten_dict.html#langchain.callbacks.utils.flatten_dict
|
def flatten_dict(
nested_dict: Dict[str, Any], parent_key: str = "", sep: str = "_"
) -> Dict[str, Any]:
"""Flattens a nested dictionary into a flat dictionary.
Parameters:
nested_dict (dict): The nested dictionary to flatten.
parent_key (str): The prefix to prepend to the keys of the flattened dict.
sep (str): The separator to use between the parent key and the key of the
flattened dictionary.
Returns:
(dict): A flat dictionary.
"""
flat_dict = {k: v for k, v in _flatten_dict(nested_dict, parent_key, sep)}
return flat_dict
|
langchain.callbacks.utils.flatten_dict¶
langchain.callbacks.utils.flatten_dict(nested_dict: Dict[str, Any], parent_key: str = '', sep: str = '_') → Dict[str, Any][source]¶
Flattens a nested dictionary into a flat dictionary.
Parameters
nested_dict (dict) – The nested dictionary to flatten.
parent_key (str) – The prefix to prepend to the keys of the flattened dict.
sep (str) – The separator to use between the parent key and the key of the
flattened dictionary.
Returns
A flat dictionary.
Return type
(dict)
|
Flattens a nested dictionary into a flat dictionary.
|
0a8bee0a-7231-4d24-b6c8-afd92b87d66c
|
[
"hashlib",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.Iterable",
"typing.Tuple",
"typing.Union",
"spacy",
"pandas",
"textstat"
] |
langchain.callbacks.utils.hash_string
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.utils.hash_string.html#langchain.callbacks.utils.hash_string
|
def hash_string(s: str) -> str:
"""Hash a string using sha1.
Parameters:
s (str): The string to hash.
Returns:
(str): The hashed string.
"""
return hashlib.sha1(s.encode("utf-8")).hexdigest()
|
langchain.callbacks.utils.hash_string¶
langchain.callbacks.utils.hash_string(s: str) → str[source]¶
Hash a string using sha1.
Parameters
s (str) – The string to hash.
Returns
The hashed string.
Return type
(str)
|
Hash a string using sha1.
|
6c234ff7-52d2-4ae6-836f-aeda0203a474
|
[
"hashlib",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.Iterable",
"typing.Tuple",
"typing.Union",
"spacy",
"pandas",
"textstat"
] |
langchain.callbacks.utils.load_json
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.utils.load_json.html#langchain.callbacks.utils.load_json
|
def load_json(json_path: Union[str, Path]) -> str:
"""Load json file to a string.
Parameters:
json_path (str): The path to the json file.
Returns:
(str): The string representation of the json file.
"""
with open(json_path, "r") as f:
data = f.read()
return data
|
langchain.callbacks.utils.load_json¶
langchain.callbacks.utils.load_json(json_path: Union[str, Path]) → str[source]¶
Load json file to a string.
Parameters
json_path (str) – The path to the json file.
Returns
The string representation of the json file.
Return type
(str)
|
Load json file to a string.
|
7b0451e1-1441-49ef-857c-d0fcc7924a1c
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.get_openai_callback
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.get_openai_callback.html#langchain.callbacks.manager.get_openai_callback
|
@contextmanager
def get_openai_callback() -> Generator[OpenAICallbackHandler, None, None]:
"""Get the OpenAI callback handler in a context manager.
which conveniently exposes token and cost information.
Returns:
OpenAICallbackHandler: The OpenAI callback handler.
Example:
>>> with get_openai_callback() as cb:
... # Use the OpenAI callback handler
"""
cb = OpenAICallbackHandler()
openai_callback_var.set(cb)
yield cb
openai_callback_var.set(None)
|
langchain.callbacks.manager.get_openai_callback¶
langchain.callbacks.manager.get_openai_callback() → Generator[OpenAICallbackHandler, None, None][source]¶
Get the OpenAI callback handler in a context manager.
which conveniently exposes token and cost information.
Returns
The OpenAI callback handler.
Return type
OpenAICallbackHandler
Example
>>> with get_openai_callback() as cb:
...
# Use the OpenAI callback handler
|
Get the OpenAI callback handler in a context manager.
|
450741ee-aeba-4913-a12f-d57a2710907f
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.tracing_enabled
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.tracing_enabled.html#langchain.callbacks.manager.tracing_enabled
|
@contextmanager
def tracing_enabled(
session_name: str = "default",
) -> Generator[TracerSessionV1, None, None]:
"""Get the Deprecated LangChainTracer in a context manager.
Args:
session_name (str, optional): The name of the session.
Defaults to "default".
Returns:
TracerSessionV1: The LangChainTracer session.
Example:
>>> with tracing_enabled() as session:
... # Use the LangChainTracer session
"""
cb = LangChainTracerV1()
session = cast(TracerSessionV1, cb.load_session(session_name))
tracing_callback_var.set(cb)
yield session
tracing_callback_var.set(None)
|
langchain.callbacks.manager.tracing_enabled¶
langchain.callbacks.manager.tracing_enabled(session_name: str = 'default') → Generator[TracerSessionV1, None, None][source]¶
Get the Deprecated LangChainTracer in a context manager.
Parameters
session_name (str, optional) – The name of the session.
Defaults to “default”.
Returns
The LangChainTracer session.
Return type
TracerSessionV1
Example
>>> with tracing_enabled() as session:
...
# Use the LangChainTracer session
|
Get the Deprecated LangChainTracer in a context manager.
|
e982b1af-5d07-4e92-afac-99c77c0523cc
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.wandb_tracing_enabled
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.wandb_tracing_enabled.html#langchain.callbacks.manager.wandb_tracing_enabled
|
@contextmanager
def wandb_tracing_enabled(
session_name: str = "default",
) -> Generator[None, None, None]:
"""Get the WandbTracer in a context manager.
Args:
session_name (str, optional): The name of the session.
Defaults to "default".
Returns:
None
Example:
>>> with wandb_tracing_enabled() as session:
... # Use the WandbTracer session
"""
cb = WandbTracer()
wandb_tracing_callback_var.set(cb)
yield None
wandb_tracing_callback_var.set(None)
|
langchain.callbacks.manager.wandb_tracing_enabled¶
langchain.callbacks.manager.wandb_tracing_enabled(session_name: str = 'default') → Generator[None, None, None][source]¶
Get the WandbTracer in a context manager.
Parameters
session_name (str, optional) – The name of the session.
Defaults to “default”.
Returns
None
Example
>>> with wandb_tracing_enabled() as session:
...
# Use the WandbTracer session
|
Get the WandbTracer in a context manager.
|
b2ba986e-acac-438b-bdea-466e97cd3793
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.tracing_v2_enabled
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.tracing_v2_enabled.html#langchain.callbacks.manager.tracing_v2_enabled
|
@contextmanager
def tracing_v2_enabled(
project_name: Optional[str] = None,
*,
example_id: Optional[Union[str, UUID]] = None,
tags: Optional[List[str]] = None,
) -> Generator[None, None, None]:
"""Instruct LangChain to log all runs in context to LangSmith.
Args:
project_name (str, optional): The name of the project.
Defaults to "default".
example_id (str or UUID, optional): The ID of the example.
Defaults to None.
tags (List[str], optional): The tags to add to the run.
Defaults to None.
Returns:
None
Example:
>>> with tracing_v2_enabled():
... # LangChain code will automatically be traced
"""
if isinstance(example_id, str):
example_id = UUID(example_id)
cb = LangChainTracer(
example_id=example_id,
project_name=project_name,
tags=tags,
)
tracing_v2_callback_var.set(cb)
yield
tracing_v2_callback_var.set(None)
|
langchain.callbacks.manager.tracing_v2_enabled¶
langchain.callbacks.manager.tracing_v2_enabled(project_name: Optional[str] = None, *, example_id: Optional[Union[UUID, str]] = None, tags: Optional[List[str]] = None) → Generator[None, None, None][source]¶
Instruct LangChain to log all runs in context to LangSmith.
Parameters
project_name (str, optional) – The name of the project.
Defaults to “default”.
example_id (str or UUID, optional) – The ID of the example.
Defaults to None.
tags (List[str], optional) – The tags to add to the run.
Defaults to None.
Returns
None
Example
>>> with tracing_v2_enabled():
...
# LangChain code will automatically be traced
|
Instruct LangChain to log all runs in context to LangSmith.
|
2d2e2b94-cb82-4640-a659-1364e8c567f1
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.trace_as_chain_group
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.trace_as_chain_group.html#langchain.callbacks.manager.trace_as_chain_group
|
@contextmanager
def trace_as_chain_group(
group_name: str,
*,
project_name: Optional[str] = None,
example_id: Optional[Union[str, UUID]] = None,
tags: Optional[List[str]] = None,
) -> Generator[CallbackManager, None, None]:
"""Get a callback manager for a chain group in a context manager.
Useful for grouping different calls together as a single run even if
they aren't composed in a single chain.
Args:
group_name (str): The name of the chain group.
project_name (str, optional): The name of the project.
Defaults to None.
example_id (str or UUID, optional): The ID of the example.
Defaults to None.
tags (List[str], optional): The inheritable tags to apply to all runs.
Defaults to None.
Returns:
CallbackManager: The callback manager for the chain group.
Example:
>>> with trace_as_chain_group("group_name") as manager:
... # Use the callback manager for the chain group
... llm.predict("Foo", callbacks=manager)
"""
cb = LangChainTracer(
project_name=project_name,
example_id=example_id,
)
cm = CallbackManager.configure(
inheritable_callbacks=[cb],
inheritable_tags=tags,
)
run_manager = cm.on_chain_start({"name": group_name}, {})
yield run_manager.get_child()
run_manager.on_chain_end({})
|
langchain.callbacks.manager.trace_as_chain_group¶
langchain.callbacks.manager.trace_as_chain_group(group_name: str, *, project_name: Optional[str] = None, example_id: Optional[Union[UUID, str]] = None, tags: Optional[List[str]] = None) → Generator[CallbackManager, None, None][source]¶
Get a callback manager for a chain group in a context manager.
Useful for grouping different calls together as a single run even if
they aren’t composed in a single chain.
Parameters
group_name (str) – The name of the chain group.
project_name (str, optional) – The name of the project.
Defaults to None.
example_id (str or UUID, optional) – The ID of the example.
Defaults to None.
tags (List[str], optional) – The inheritable tags to apply to all runs.
Defaults to None.
Returns
The callback manager for the chain group.
Return type
CallbackManager
Example
>>> with trace_as_chain_group("group_name") as manager:
...
# Use the callback manager for the chain group
...
llm.predict("Foo", callbacks=manager)
|
Get a callback manager for a chain group in a context manager.
|
5cfb71c5-b03d-47ed-af4b-1ecdc6af8c72
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.BaseRunManager
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.BaseRunManager.html#langchain.callbacks.manager.BaseRunManager
|
class BaseRunManager(RunManagerMixin):
"""Base class for run manager (a bound callback manager)."""
def __init__(
self,
*,
run_id: UUID,
handlers: List[BaseCallbackHandler],
inheritable_handlers: List[BaseCallbackHandler],
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
inheritable_tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
inheritable_metadata: Optional[Dict[str, Any]] = None,
) -> None:
"""Initialize the run manager.
Args:
run_id (UUID): The ID of the run.
handlers (List[BaseCallbackHandler]): The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]):
The list of inheritable handlers.
parent_run_id (UUID, optional): The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]): The list of tags.
inheritable_tags (Optional[List[str]]): The list of inheritable tags.
metadata (Optional[Dict[str, Any]]): The metadata.
inheritable_metadata (Optional[Dict[str, Any]]): The inheritable metadata.
"""
self.run_id = run_id
self.handlers = handlers
self.inheritable_handlers = inheritable_handlers
self.parent_run_id = parent_run_id
self.tags = tags or []
self.inheritable_tags = inheritable_tags or []
self.metadata = metadata or {}
self.inheritable_metadata = inheritable_metadata or {}
@classmethod
def get_noop_manager(cls: Type[BRM]) -> BRM:
"""Return a manager that doesn't perform any operations.
Returns:
BaseRunManager: The noop manager.
"""
return cls(
run_id=uuid4(),
handlers=[],
inheritable_handlers=[],
tags=[],
inheritable_tags=[],
metadata={},
inheritable_metadata={},
)
|
langchain.callbacks.manager.BaseRunManager¶
class langchain.callbacks.manager.BaseRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: RunManagerMixin
Base class for run manager (a bound callback manager).
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
classmethod get_noop_manager() → BRM[source]¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
|
Base class for run manager (a bound callback manager).
|
742bc084-e434-4e18-87c3-09f65d3ecb32
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.RunManager
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.RunManager.html#langchain.callbacks.manager.RunManager
|
class RunManager(BaseRunManager):
"""Sync Run Manager."""
def on_text(
self,
text: str,
**kwargs: Any,
) -> Any:
"""Run when text is received.
Args:
text (str): The received text.
Returns:
Any: The result of the callback.
"""
_handle_event(
self.handlers,
"on_text",
None,
text,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
|
langchain.callbacks.manager.RunManager¶
class langchain.callbacks.manager.RunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: BaseRunManager
Sync Run Manager.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_text(text, **kwargs)
Run when text is received.
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
on_text(text: str, **kwargs: Any) → Any[source]¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
|
Sync Run Manager.
|
dcd9318c-5ba3-4f57-9f9c-20f04198f56c
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.ParentRunManager
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.ParentRunManager.html#langchain.callbacks.manager.ParentRunManager
|
class ParentRunManager(RunManager):
"""Sync Parent Run Manager."""
def get_child(self, tag: Optional[str] = None) -> CallbackManager:
"""Get a child callback manager.
Args:
tag (str, optional): The tag for the child callback manager.
Defaults to None.
Returns:
CallbackManager: The child callback manager.
"""
manager = CallbackManager(handlers=[], parent_run_id=self.run_id)
manager.set_handlers(self.inheritable_handlers)
manager.add_tags(self.inheritable_tags)
manager.add_metadata(self.inheritable_metadata)
if tag is not None:
manager.add_tags([tag], False)
return manager
|
langchain.callbacks.manager.ParentRunManager¶
class langchain.callbacks.manager.ParentRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: RunManager
Sync Parent Run Manager.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_child([tag])
Get a child callback manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_text(text, **kwargs)
Run when text is received.
get_child(tag: Optional[str] = None) → CallbackManager[source]¶
Get a child callback manager.
Parameters
tag (str, optional) – The tag for the child callback manager.
Defaults to None.
Returns
The child callback manager.
Return type
CallbackManager
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
|
Sync Parent Run Manager.
|
6e25a554-5a1e-42e9-a257-1c9dcb596067
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.AsyncRunManager
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncRunManager.html#langchain.callbacks.manager.AsyncRunManager
|
class AsyncRunManager(BaseRunManager):
"""Async Run Manager."""
async def on_text(
self,
text: str,
**kwargs: Any,
) -> Any:
"""Run when text is received.
Args:
text (str): The received text.
Returns:
Any: The result of the callback.
"""
await _ahandle_event(
self.handlers,
"on_text",
None,
text,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
|
langchain.callbacks.manager.AsyncRunManager¶
class langchain.callbacks.manager.AsyncRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: BaseRunManager
Async Run Manager.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_text(text, **kwargs)
Run when text is received.
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
async on_text(text: str, **kwargs: Any) → Any[source]¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
|
Async Run Manager.
|
d4f5ace7-7bf2-4c6d-b759-d871dd78d620
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.AsyncParentRunManager
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncParentRunManager.html#langchain.callbacks.manager.AsyncParentRunManager
|
class AsyncParentRunManager(AsyncRunManager):
"""Async Parent Run Manager."""
def get_child(self, tag: Optional[str] = None) -> AsyncCallbackManager:
"""Get a child callback manager.
Args:
tag (str, optional): The tag for the child callback manager.
Defaults to None.
Returns:
AsyncCallbackManager: The child callback manager.
"""
manager = AsyncCallbackManager(handlers=[], parent_run_id=self.run_id)
manager.set_handlers(self.inheritable_handlers)
manager.add_tags(self.inheritable_tags)
manager.add_metadata(self.inheritable_metadata)
if tag is not None:
manager.add_tags([tag], False)
return manager
|
langchain.callbacks.manager.AsyncParentRunManager¶
class langchain.callbacks.manager.AsyncParentRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: AsyncRunManager
Async Parent Run Manager.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_child([tag])
Get a child callback manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_text(text, **kwargs)
Run when text is received.
get_child(tag: Optional[str] = None) → AsyncCallbackManager[source]¶
Get a child callback manager.
Parameters
tag (str, optional) – The tag for the child callback manager.
Defaults to None.
Returns
The child callback manager.
Return type
AsyncCallbackManager
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
async on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
|
Async Parent Run Manager.
|
cc7c5e5a-56c6-4629-997a-7b6789041af5
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.CallbackManagerForLLMRun
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForLLMRun.html#langchain.callbacks.manager.CallbackManagerForLLMRun
|
class CallbackManagerForLLMRun(RunManager, LLMManagerMixin):
"""Callback manager for LLM run."""
def on_llm_new_token(
self,
token: str,
**kwargs: Any,
) -> None:
"""Run when LLM generates a new token.
Args:
token (str): The new token.
"""
_handle_event(
self.handlers,
"on_llm_new_token",
"ignore_llm",
token=token,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Run when LLM ends running.
Args:
response (LLMResult): The LLM result.
"""
_handle_event(
self.handlers,
"on_llm_end",
"ignore_llm",
response,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
def on_llm_error(
self,
error: Union[Exception, KeyboardInterrupt],
**kwargs: Any,
) -> None:
"""Run when LLM errors.
Args:
error (Exception or KeyboardInterrupt): The error.
"""
_handle_event(
self.handlers,
"on_llm_error",
"ignore_llm",
error,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
|
langchain.callbacks.manager.CallbackManagerForLLMRun¶
class langchain.callbacks.manager.CallbackManagerForLLMRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: RunManager, LLMManagerMixin
Callback manager for LLM run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, **kwargs)
Run when LLM generates a new token.
on_text(text, **kwargs)
Run when text is received.
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
Parameters
response (LLMResult) – The LLM result.
on_llm_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when LLM errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run when LLM generates a new token.
Parameters
token (str) – The new token.
on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
|
Callback manager for LLM run.
|
b1bf6a5b-bd0b-4f57-b07e-26df3fb50b0d
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.AsyncCallbackManagerForLLMRun
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManagerForLLMRun.html#langchain.callbacks.manager.AsyncCallbackManagerForLLMRun
|
class AsyncCallbackManagerForLLMRun(AsyncRunManager, LLMManagerMixin):
"""Async callback manager for LLM run."""
async def on_llm_new_token(
self,
token: str,
**kwargs: Any,
) -> None:
"""Run when LLM generates a new token.
Args:
token (str): The new token.
"""
await _ahandle_event(
self.handlers,
"on_llm_new_token",
"ignore_llm",
token,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Run when LLM ends running.
Args:
response (LLMResult): The LLM result.
"""
await _ahandle_event(
self.handlers,
"on_llm_end",
"ignore_llm",
response,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
async def on_llm_error(
self,
error: Union[Exception, KeyboardInterrupt],
**kwargs: Any,
) -> None:
"""Run when LLM errors.
Args:
error (Exception or KeyboardInterrupt): The error.
"""
await _ahandle_event(
self.handlers,
"on_llm_error",
"ignore_llm",
error,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
|
langchain.callbacks.manager.AsyncCallbackManagerForLLMRun¶
class langchain.callbacks.manager.AsyncCallbackManagerForLLMRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: AsyncRunManager, LLMManagerMixin
Async callback manager for LLM run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, **kwargs)
Run when LLM generates a new token.
on_text(text, **kwargs)
Run when text is received.
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
async on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
Parameters
response (LLMResult) – The LLM result.
async on_llm_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when LLM errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
async on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run when LLM generates a new token.
Parameters
token (str) – The new token.
async on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
|
Async callback manager for LLM run.
|
927f34b8-5608-4a7d-8a01-446c3283c6e7
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.CallbackManagerForChainRun
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForChainRun.html#langchain.callbacks.manager.CallbackManagerForChainRun
|
class CallbackManagerForChainRun(ParentRunManager, ChainManagerMixin):
"""Callback manager for chain run."""
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Run when chain ends running.
Args:
outputs (Dict[str, Any]): The outputs of the chain.
"""
_handle_event(
self.handlers,
"on_chain_end",
"ignore_chain",
outputs,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
def on_chain_error(
self,
error: Union[Exception, KeyboardInterrupt],
**kwargs: Any,
) -> None:
"""Run when chain errors.
Args:
error (Exception or KeyboardInterrupt): The error.
"""
_handle_event(
self.handlers,
"on_chain_error",
"ignore_chain",
error,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run when agent action is received.
Args:
action (AgentAction): The agent action.
Returns:
Any: The result of the callback.
"""
_handle_event(
self.handlers,
"on_agent_action",
"ignore_agent",
action,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any:
"""Run when agent finish is received.
Args:
finish (AgentFinish): The agent finish.
Returns:
Any: The result of the callback.
"""
_handle_event(
self.handlers,
"on_agent_finish",
"ignore_agent",
finish,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
|
langchain.callbacks.manager.CallbackManagerForChainRun¶
class langchain.callbacks.manager.CallbackManagerForChainRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: ParentRunManager, ChainManagerMixin
Callback manager for chain run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_child([tag])
Get a child callback manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_agent_action(action, **kwargs)
Run when agent action is received.
on_agent_finish(finish, **kwargs)
Run when agent finish is received.
on_chain_end(outputs, **kwargs)
Run when chain ends running.
on_chain_error(error, **kwargs)
Run when chain errors.
on_text(text, **kwargs)
Run when text is received.
get_child(tag: Optional[str] = None) → CallbackManager¶
Get a child callback manager.
Parameters
tag (str, optional) – The tag for the child callback manager.
Defaults to None.
Returns
The child callback manager.
Return type
CallbackManager
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Run when agent action is received.
Parameters
action (AgentAction) – The agent action.
Returns
The result of the callback.
Return type
Any
on_agent_finish(finish: AgentFinish, **kwargs: Any) → Any[source]¶
Run when agent finish is received.
Parameters
finish (AgentFinish) – The agent finish.
Returns
The result of the callback.
Return type
Any
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain ends running.
Parameters
outputs (Dict[str, Any]) – The outputs of the chain.
on_chain_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when chain errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
|
Callback manager for chain run.
|
9fef017d-91b5-4564-836a-936f6dc8abd7
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.AsyncCallbackManagerForChainRun
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManagerForChainRun.html#langchain.callbacks.manager.AsyncCallbackManagerForChainRun
|
class AsyncCallbackManagerForChainRun(AsyncParentRunManager, ChainManagerMixin):
"""Async callback manager for chain run."""
async def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Run when chain ends running.
Args:
outputs (Dict[str, Any]): The outputs of the chain.
"""
await _ahandle_event(
self.handlers,
"on_chain_end",
"ignore_chain",
outputs,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
async def on_chain_error(
self,
error: Union[Exception, KeyboardInterrupt],
**kwargs: Any,
) -> None:
"""Run when chain errors.
Args:
error (Exception or KeyboardInterrupt): The error.
"""
await _ahandle_event(
self.handlers,
"on_chain_error",
"ignore_chain",
error,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
async def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run when agent action is received.
Args:
action (AgentAction): The agent action.
Returns:
Any: The result of the callback.
"""
await _ahandle_event(
self.handlers,
"on_agent_action",
"ignore_agent",
action,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
async def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any:
"""Run when agent finish is received.
Args:
finish (AgentFinish): The agent finish.
Returns:
Any: The result of the callback.
"""
await _ahandle_event(
self.handlers,
"on_agent_finish",
"ignore_agent",
finish,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
|
langchain.callbacks.manager.AsyncCallbackManagerForChainRun¶
class langchain.callbacks.manager.AsyncCallbackManagerForChainRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: AsyncParentRunManager, ChainManagerMixin
Async callback manager for chain run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_child([tag])
Get a child callback manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_agent_action(action, **kwargs)
Run when agent action is received.
on_agent_finish(finish, **kwargs)
Run when agent finish is received.
on_chain_end(outputs, **kwargs)
Run when chain ends running.
on_chain_error(error, **kwargs)
Run when chain errors.
on_text(text, **kwargs)
Run when text is received.
get_child(tag: Optional[str] = None) → AsyncCallbackManager¶
Get a child callback manager.
Parameters
tag (str, optional) – The tag for the child callback manager.
Defaults to None.
Returns
The child callback manager.
Return type
AsyncCallbackManager
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
async on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Run when agent action is received.
Parameters
action (AgentAction) – The agent action.
Returns
The result of the callback.
Return type
Any
async on_agent_finish(finish: AgentFinish, **kwargs: Any) → Any[source]¶
Run when agent finish is received.
Parameters
finish (AgentFinish) – The agent finish.
Returns
The result of the callback.
Return type
Any
async on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain ends running.
Parameters
outputs (Dict[str, Any]) – The outputs of the chain.
async on_chain_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when chain errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
async on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
|
Async callback manager for chain run.
|
ad6912e3-dc2d-45f6-aa17-6c2bff7bf8f4
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.CallbackManagerForToolRun
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForToolRun.html#langchain.callbacks.manager.CallbackManagerForToolRun
|
class CallbackManagerForToolRun(ParentRunManager, ToolManagerMixin):
"""Callback manager for tool run."""
def on_tool_end(
self,
output: str,
**kwargs: Any,
) -> None:
"""Run when tool ends running.
Args:
output (str): The output of the tool.
"""
_handle_event(
self.handlers,
"on_tool_end",
"ignore_agent",
output,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
def on_tool_error(
self,
error: Union[Exception, KeyboardInterrupt],
**kwargs: Any,
) -> None:
"""Run when tool errors.
Args:
error (Exception or KeyboardInterrupt): The error.
"""
_handle_event(
self.handlers,
"on_tool_error",
"ignore_agent",
error,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
|
langchain.callbacks.manager.CallbackManagerForToolRun¶
class langchain.callbacks.manager.CallbackManagerForToolRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: ParentRunManager, ToolManagerMixin
Callback manager for tool run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_child([tag])
Get a child callback manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_text(text, **kwargs)
Run when text is received.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
get_child(tag: Optional[str] = None) → CallbackManager¶
Get a child callback manager.
Parameters
tag (str, optional) – The tag for the child callback manager.
Defaults to None.
Returns
The child callback manager.
Return type
CallbackManager
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
Parameters
output (str) – The output of the tool.
on_tool_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when tool errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
|
Callback manager for tool run.
|
e56206bc-76da-4f1f-bf88-8039b9c46a7c
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.AsyncCallbackManagerForToolRun
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManagerForToolRun.html#langchain.callbacks.manager.AsyncCallbackManagerForToolRun
|
class AsyncCallbackManagerForToolRun(AsyncParentRunManager, ToolManagerMixin):
"""Async callback manager for tool run."""
async def on_tool_end(self, output: str, **kwargs: Any) -> None:
"""Run when tool ends running.
Args:
output (str): The output of the tool.
"""
await _ahandle_event(
self.handlers,
"on_tool_end",
"ignore_agent",
output,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
async def on_tool_error(
self,
error: Union[Exception, KeyboardInterrupt],
**kwargs: Any,
) -> None:
"""Run when tool errors.
Args:
error (Exception or KeyboardInterrupt): The error.
"""
await _ahandle_event(
self.handlers,
"on_tool_error",
"ignore_agent",
error,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
|
langchain.callbacks.manager.AsyncCallbackManagerForToolRun¶
class langchain.callbacks.manager.AsyncCallbackManagerForToolRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: AsyncParentRunManager, ToolManagerMixin
Async callback manager for tool run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_child([tag])
Get a child callback manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_text(text, **kwargs)
Run when text is received.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
get_child(tag: Optional[str] = None) → AsyncCallbackManager¶
Get a child callback manager.
Parameters
tag (str, optional) – The tag for the child callback manager.
Defaults to None.
Returns
The child callback manager.
Return type
AsyncCallbackManager
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
async on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
async on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
Parameters
output (str) – The output of the tool.
async on_tool_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when tool errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
|
Async callback manager for tool run.
|
3e88ed4b-3b85-4604-a272-3ba7de7d6788
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.CallbackManagerForRetrieverRun
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForRetrieverRun.html#langchain.callbacks.manager.CallbackManagerForRetrieverRun
|
class CallbackManagerForRetrieverRun(ParentRunManager, RetrieverManagerMixin):
"""Callback manager for retriever run."""
def on_retriever_end(
self,
documents: Sequence[Document],
**kwargs: Any,
) -> None:
"""Run when retriever ends running."""
_handle_event(
self.handlers,
"on_retriever_end",
"ignore_retriever",
documents,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
def on_retriever_error(
self,
error: Union[Exception, KeyboardInterrupt],
**kwargs: Any,
) -> None:
"""Run when retriever errors."""
_handle_event(
self.handlers,
"on_retriever_error",
"ignore_retriever",
error,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
|
langchain.callbacks.manager.CallbackManagerForRetrieverRun¶
class langchain.callbacks.manager.CallbackManagerForRetrieverRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: ParentRunManager, RetrieverManagerMixin
Callback manager for retriever run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_child([tag])
Get a child callback manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_retriever_end(documents, **kwargs)
Run when retriever ends running.
on_retriever_error(error, **kwargs)
Run when retriever errors.
on_text(text, **kwargs)
Run when text is received.
get_child(tag: Optional[str] = None) → CallbackManager¶
Get a child callback manager.
Parameters
tag (str, optional) – The tag for the child callback manager.
Defaults to None.
Returns
The child callback manager.
Return type
CallbackManager
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
on_retriever_end(documents: Sequence[Document], **kwargs: Any) → None[source]¶
Run when retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when retriever errors.
on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
|
Callback manager for retriever run.
|
6af9e03b-da52-4373-a86f-946823b39017
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.AsyncCallbackManagerForRetrieverRun
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManagerForRetrieverRun.html#langchain.callbacks.manager.AsyncCallbackManagerForRetrieverRun
|
class AsyncCallbackManagerForRetrieverRun(
AsyncParentRunManager,
RetrieverManagerMixin,
):
"""Async callback manager for retriever run."""
async def on_retriever_end(
self, documents: Sequence[Document], **kwargs: Any
) -> None:
"""Run when retriever ends running."""
await _ahandle_event(
self.handlers,
"on_retriever_end",
"ignore_retriever",
documents,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
async def on_retriever_error(
self,
error: Union[Exception, KeyboardInterrupt],
**kwargs: Any,
) -> None:
"""Run when retriever errors."""
await _ahandle_event(
self.handlers,
"on_retriever_error",
"ignore_retriever",
error,
run_id=self.run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
**kwargs,
)
|
langchain.callbacks.manager.AsyncCallbackManagerForRetrieverRun¶
class langchain.callbacks.manager.AsyncCallbackManagerForRetrieverRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: AsyncParentRunManager, RetrieverManagerMixin
Async callback manager for retriever run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_child([tag])
Get a child callback manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_retriever_end(documents, **kwargs)
Run when retriever ends running.
on_retriever_error(error, **kwargs)
Run when retriever errors.
on_text(text, **kwargs)
Run when text is received.
get_child(tag: Optional[str] = None) → AsyncCallbackManager¶
Get a child callback manager.
Parameters
tag (str, optional) – The tag for the child callback manager.
Defaults to None.
Returns
The child callback manager.
Return type
AsyncCallbackManager
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
async on_retriever_end(documents: Sequence[Document], **kwargs: Any) → None[source]¶
Run when retriever ends running.
async on_retriever_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when retriever errors.
async on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
|
Async callback manager for retriever run.
|
4f89232c-7757-4fab-a045-483671a5f1fe
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.CallbackManager
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManager.html#langchain.callbacks.manager.CallbackManager
|
class CallbackManager(BaseCallbackManager):
"""Callback manager that can be used to handle callbacks from langchain."""
def on_llm_start(
self,
serialized: Dict[str, Any],
prompts: List[str],
**kwargs: Any,
) -> List[CallbackManagerForLLMRun]:
"""Run when LLM starts running.
Args:
serialized (Dict[str, Any]): The serialized LLM.
prompts (List[str]): The list of prompts.
run_id (UUID, optional): The ID of the run. Defaults to None.
Returns:
List[CallbackManagerForLLMRun]: A callback manager for each
prompt as an LLM run.
"""
managers = []
for prompt in prompts:
run_id_ = uuid4()
_handle_event(
self.handlers,
"on_llm_start",
"ignore_llm",
serialized,
[prompt],
run_id=run_id_,
parent_run_id=self.parent_run_id,
tags=self.tags,
metadata=self.metadata,
**kwargs,
)
managers.append(
CallbackManagerForLLMRun(
run_id=run_id_,
handlers=self.handlers,
inheritable_handlers=self.inheritable_handlers,
parent_run_id=self.parent_run_id,
tags=self.tags,
inheritable_tags=self.inheritable_tags,
metadata=self.metadata,
inheritable_metadata=self.inheritable_metadata,
)
)
return managers
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
**kwargs: Any,
) -> List[CallbackManagerForLLMRun]:
"""Run when LLM starts running.
Args:
serialized (Dict[str, Any]): The serialized LLM.
messages (List[List[BaseMessage]]): The list of messages.
run_id (UUID, optional): The ID of the run. Defaults to None.
Returns:
List[CallbackManagerForLLMRun]: A callback manager for each
list of messages as an LLM run.
"""
managers = []
for message_list in messages:
run_id_ = uuid4()
_handle_event(
self.handlers,
"on_chat_model_start",
"ignore_chat_model",
serialized,
[message_list],
run_id=run_id_,
parent_run_id=self.parent_run_id,
tags=self.tags,
metadata=self.metadata,
**kwargs,
)
managers.append(
CallbackManagerForLLMRun(
run_id=run_id_,
handlers=self.handlers,
inheritable_handlers=self.inheritable_handlers,
parent_run_id=self.parent_run_id,
tags=self.tags,
inheritable_tags=self.inheritable_tags,
metadata=self.metadata,
inheritable_metadata=self.inheritable_metadata,
)
)
return managers
def on_chain_start(
self,
serialized: Dict[str, Any],
inputs: Dict[str, Any],
run_id: Optional[UUID] = None,
**kwargs: Any,
) -> CallbackManagerForChainRun:
"""Run when chain starts running.
Args:
serialized (Dict[str, Any]): The serialized chain.
inputs (Dict[str, Any]): The inputs to the chain.
run_id (UUID, optional): The ID of the run. Defaults to None.
Returns:
CallbackManagerForChainRun: The callback manager for the chain run.
"""
if run_id is None:
run_id = uuid4()
_handle_event(
self.handlers,
"on_chain_start",
"ignore_chain",
serialized,
inputs,
run_id=run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
metadata=self.metadata,
**kwargs,
)
return CallbackManagerForChainRun(
run_id=run_id,
handlers=self.handlers,
inheritable_handlers=self.inheritable_handlers,
parent_run_id=self.parent_run_id,
tags=self.tags,
inheritable_tags=self.inheritable_tags,
metadata=self.metadata,
inheritable_metadata=self.inheritable_metadata,
)
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
run_id: Optional[UUID] = None,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> CallbackManagerForToolRun:
"""Run when tool starts running.
Args:
serialized (Dict[str, Any]): The serialized tool.
input_str (str): The input to the tool.
run_id (UUID, optional): The ID of the run. Defaults to None.
parent_run_id (UUID, optional): The ID of the parent run. Defaults to None.
Returns:
CallbackManagerForToolRun: The callback manager for the tool run.
"""
if run_id is None:
run_id = uuid4()
_handle_event(
self.handlers,
"on_tool_start",
"ignore_agent",
serialized,
input_str,
run_id=run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
metadata=self.metadata,
**kwargs,
)
return CallbackManagerForToolRun(
run_id=run_id,
handlers=self.handlers,
inheritable_handlers=self.inheritable_handlers,
parent_run_id=self.parent_run_id,
tags=self.tags,
inheritable_tags=self.inheritable_tags,
metadata=self.metadata,
inheritable_metadata=self.inheritable_metadata,
)
def on_retriever_start(
self,
serialized: Dict[str, Any],
query: str,
run_id: Optional[UUID] = None,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> CallbackManagerForRetrieverRun:
"""Run when retriever starts running."""
if run_id is None:
run_id = uuid4()
_handle_event(
self.handlers,
"on_retriever_start",
"ignore_retriever",
serialized,
query,
run_id=run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
metadata=self.metadata,
**kwargs,
)
return CallbackManagerForRetrieverRun(
run_id=run_id,
handlers=self.handlers,
inheritable_handlers=self.inheritable_handlers,
parent_run_id=self.parent_run_id,
tags=self.tags,
inheritable_tags=self.inheritable_tags,
metadata=self.metadata,
inheritable_metadata=self.inheritable_metadata,
)
@classmethod
def configure(
cls,
inheritable_callbacks: Callbacks = None,
local_callbacks: Callbacks = None,
verbose: bool = False,
inheritable_tags: Optional[List[str]] = None,
local_tags: Optional[List[str]] = None,
inheritable_metadata: Optional[Dict[str, Any]] = None,
local_metadata: Optional[Dict[str, Any]] = None,
) -> CallbackManager:
"""Configure the callback manager.
Args:
inheritable_callbacks (Optional[Callbacks], optional): The inheritable
callbacks. Defaults to None.
local_callbacks (Optional[Callbacks], optional): The local callbacks.
Defaults to None.
verbose (bool, optional): Whether to enable verbose mode. Defaults to False.
inheritable_tags (Optional[List[str]], optional): The inheritable tags.
Defaults to None.
local_tags (Optional[List[str]], optional): The local tags.
Defaults to None.
inheritable_metadata (Optional[Dict[str, Any]], optional): The inheritable
metadata. Defaults to None.
local_metadata (Optional[Dict[str, Any]], optional): The local metadata.
Defaults to None.
Returns:
CallbackManager: The configured callback manager.
"""
return _configure(
cls,
inheritable_callbacks,
local_callbacks,
verbose,
inheritable_tags,
local_tags,
inheritable_metadata,
local_metadata,
)
|
langchain.callbacks.manager.CallbackManager¶
class langchain.callbacks.manager.CallbackManager(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: BaseCallbackManager
Callback manager that can be used to handle callbacks from langchain.
Initialize callback manager.
Methods
__init__(handlers[, inheritable_handlers, ...])
Initialize callback manager.
add_handler(handler[, inherit])
Add a handler to the callback manager.
add_metadata(metadata[, inherit])
add_tags(tags[, inherit])
configure([inheritable_callbacks, ...])
Configure the callback manager.
on_chain_start(serialized, inputs[, run_id])
Run when chain starts running.
on_chat_model_start(serialized, messages, ...)
Run when LLM starts running.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_start(serialized, query[, ...])
Run when retriever starts running.
on_tool_start(serialized, input_str[, ...])
Run when tool starts running.
remove_handler(handler)
Remove a handler from the callback manager.
remove_metadata(keys)
remove_tags(tags)
set_handler(handler[, inherit])
Set handler as the only handler on the callback manager.
set_handlers(handlers[, inherit])
Set handlers as the only handlers on the callback manager.
Attributes
is_async
Whether the callback manager is async.
add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
Add a handler to the callback manager.
add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶
add_tags(tags: List[str], inherit: bool = True) → None¶
classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → CallbackManager[source]¶
Configure the callback manager.
Parameters
inheritable_callbacks (Optional[Callbacks], optional) – The inheritable
callbacks. Defaults to None.
local_callbacks (Optional[Callbacks], optional) – The local callbacks.
Defaults to None.
verbose (bool, optional) – Whether to enable verbose mode. Defaults to False.
inheritable_tags (Optional[List[str]], optional) – The inheritable tags.
Defaults to None.
local_tags (Optional[List[str]], optional) – The local tags.
Defaults to None.
inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable
metadata. Defaults to None.
local_metadata (Optional[Dict[str, Any]], optional) – The local metadata.
Defaults to None.
Returns
The configured callback manager.
Return type
CallbackManager
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForChainRun[source]¶
Run when chain starts running.
Parameters
serialized (Dict[str, Any]) – The serialized chain.
inputs (Dict[str, Any]) – The inputs to the chain.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
The callback manager for the chain run.
Return type
CallbackManagerForChainRun
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → List[CallbackManagerForLLMRun][source]¶
Run when LLM starts running.
Parameters
serialized (Dict[str, Any]) – The serialized LLM.
messages (List[List[BaseMessage]]) – The list of messages.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
A callback manager for eachlist of messages as an LLM run.
Return type
List[CallbackManagerForLLMRun]
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → List[CallbackManagerForLLMRun][source]¶
Run when LLM starts running.
Parameters
serialized (Dict[str, Any]) – The serialized LLM.
prompts (List[str]) – The list of prompts.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
A callback manager for eachprompt as an LLM run.
Return type
List[CallbackManagerForLLMRun]
on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForRetrieverRun[source]¶
Run when retriever starts running.
on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForToolRun[source]¶
Run when tool starts running.
Parameters
serialized (Dict[str, Any]) – The serialized tool.
input_str (str) – The input to the tool.
run_id (UUID, optional) – The ID of the run. Defaults to None.
parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None.
Returns
The callback manager for the tool run.
Return type
CallbackManagerForToolRun
remove_handler(handler: BaseCallbackHandler) → None¶
Remove a handler from the callback manager.
remove_metadata(keys: List[str]) → None¶
remove_tags(tags: List[str]) → None¶
set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
Set handler as the only handler on the callback manager.
set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶
Set handlers as the only handlers on the callback manager.
property is_async: bool¶
Whether the callback manager is async.
|
Callback manager that can be used to handle callbacks from langchain.
|
7d606bdd-666a-489b-958c-e9e39e295b63
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.AsyncCallbackManager
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManager.html#langchain.callbacks.manager.AsyncCallbackManager
|
class AsyncCallbackManager(BaseCallbackManager):
"""Async callback manager that can be used to handle callbacks from LangChain."""
@property
def is_async(self) -> bool:
"""Return whether the handler is async."""
return True
async def on_llm_start(
self,
serialized: Dict[str, Any],
prompts: List[str],
**kwargs: Any,
) -> List[AsyncCallbackManagerForLLMRun]:
"""Run when LLM starts running.
Args:
serialized (Dict[str, Any]): The serialized LLM.
prompts (List[str]): The list of prompts.
run_id (UUID, optional): The ID of the run. Defaults to None.
Returns:
List[AsyncCallbackManagerForLLMRun]: The list of async
callback managers, one for each LLM Run corresponding
to each prompt.
"""
tasks = []
managers = []
for prompt in prompts:
run_id_ = uuid4()
tasks.append(
_ahandle_event(
self.handlers,
"on_llm_start",
"ignore_llm",
serialized,
[prompt],
run_id=run_id_,
parent_run_id=self.parent_run_id,
tags=self.tags,
metadata=self.metadata,
**kwargs,
)
)
managers.append(
AsyncCallbackManagerForLLMRun(
run_id=run_id_,
handlers=self.handlers,
inheritable_handlers=self.inheritable_handlers,
parent_run_id=self.parent_run_id,
tags=self.tags,
inheritable_tags=self.inheritable_tags,
metadata=self.metadata,
inheritable_metadata=self.inheritable_metadata,
)
)
await asyncio.gather(*tasks)
return managers
async def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
**kwargs: Any,
) -> Any:
"""Run when LLM starts running.
Args:
serialized (Dict[str, Any]): The serialized LLM.
messages (List[List[BaseMessage]]): The list of messages.
run_id (UUID, optional): The ID of the run. Defaults to None.
Returns:
List[AsyncCallbackManagerForLLMRun]: The list of
async callback managers, one for each LLM Run
corresponding to each inner message list.
"""
tasks = []
managers = []
for message_list in messages:
run_id_ = uuid4()
tasks.append(
_ahandle_event(
self.handlers,
"on_chat_model_start",
"ignore_chat_model",
serialized,
[message_list],
run_id=run_id_,
parent_run_id=self.parent_run_id,
tags=self.tags,
metadata=self.metadata,
**kwargs,
)
)
managers.append(
AsyncCallbackManagerForLLMRun(
run_id=run_id_,
handlers=self.handlers,
inheritable_handlers=self.inheritable_handlers,
parent_run_id=self.parent_run_id,
tags=self.tags,
inheritable_tags=self.inheritable_tags,
metadata=self.metadata,
inheritable_metadata=self.inheritable_metadata,
)
)
await asyncio.gather(*tasks)
return managers
async def on_chain_start(
self,
serialized: Dict[str, Any],
inputs: Dict[str, Any],
run_id: Optional[UUID] = None,
**kwargs: Any,
) -> AsyncCallbackManagerForChainRun:
"""Run when chain starts running.
Args:
serialized (Dict[str, Any]): The serialized chain.
inputs (Dict[str, Any]): The inputs to the chain.
run_id (UUID, optional): The ID of the run. Defaults to None.
Returns:
AsyncCallbackManagerForChainRun: The async callback manager
for the chain run.
"""
if run_id is None:
run_id = uuid4()
await _ahandle_event(
self.handlers,
"on_chain_start",
"ignore_chain",
serialized,
inputs,
run_id=run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
metadata=self.metadata,
**kwargs,
)
return AsyncCallbackManagerForChainRun(
run_id=run_id,
handlers=self.handlers,
inheritable_handlers=self.inheritable_handlers,
parent_run_id=self.parent_run_id,
tags=self.tags,
inheritable_tags=self.inheritable_tags,
metadata=self.metadata,
inheritable_metadata=self.inheritable_metadata,
)
async def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
run_id: Optional[UUID] = None,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> AsyncCallbackManagerForToolRun:
"""Run when tool starts running.
Args:
serialized (Dict[str, Any]): The serialized tool.
input_str (str): The input to the tool.
run_id (UUID, optional): The ID of the run. Defaults to None.
parent_run_id (UUID, optional): The ID of the parent run.
Defaults to None.
Returns:
AsyncCallbackManagerForToolRun: The async callback manager
for the tool run.
"""
if run_id is None:
run_id = uuid4()
await _ahandle_event(
self.handlers,
"on_tool_start",
"ignore_agent",
serialized,
input_str,
run_id=run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
metadata=self.metadata,
**kwargs,
)
return AsyncCallbackManagerForToolRun(
run_id=run_id,
handlers=self.handlers,
inheritable_handlers=self.inheritable_handlers,
parent_run_id=self.parent_run_id,
tags=self.tags,
inheritable_tags=self.inheritable_tags,
metadata=self.metadata,
inheritable_metadata=self.inheritable_metadata,
)
async def on_retriever_start(
self,
serialized: Dict[str, Any],
query: str,
run_id: Optional[UUID] = None,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> AsyncCallbackManagerForRetrieverRun:
"""Run when retriever starts running."""
if run_id is None:
run_id = uuid4()
await _ahandle_event(
self.handlers,
"on_retriever_start",
"ignore_retriever",
serialized,
query,
run_id=run_id,
parent_run_id=self.parent_run_id,
tags=self.tags,
metadata=self.metadata,
**kwargs,
)
return AsyncCallbackManagerForRetrieverRun(
run_id=run_id,
handlers=self.handlers,
inheritable_handlers=self.inheritable_handlers,
parent_run_id=self.parent_run_id,
tags=self.tags,
inheritable_tags=self.inheritable_tags,
metadata=self.metadata,
inheritable_metadata=self.inheritable_metadata,
)
@classmethod
def configure(
cls,
inheritable_callbacks: Callbacks = None,
local_callbacks: Callbacks = None,
verbose: bool = False,
inheritable_tags: Optional[List[str]] = None,
local_tags: Optional[List[str]] = None,
inheritable_metadata: Optional[Dict[str, Any]] = None,
local_metadata: Optional[Dict[str, Any]] = None,
) -> AsyncCallbackManager:
"""Configure the async callback manager.
Args:
inheritable_callbacks (Optional[Callbacks], optional): The inheritable
callbacks. Defaults to None.
local_callbacks (Optional[Callbacks], optional): The local callbacks.
Defaults to None.
verbose (bool, optional): Whether to enable verbose mode. Defaults to False.
inheritable_tags (Optional[List[str]], optional): The inheritable tags.
Defaults to None.
local_tags (Optional[List[str]], optional): The local tags.
Defaults to None.
inheritable_metadata (Optional[Dict[str, Any]], optional): The inheritable
metadata. Defaults to None.
local_metadata (Optional[Dict[str, Any]], optional): The local metadata.
Defaults to None.
Returns:
AsyncCallbackManager: The configured async callback manager.
"""
return _configure(
cls,
inheritable_callbacks,
local_callbacks,
verbose,
inheritable_tags,
local_tags,
inheritable_metadata,
local_metadata,
)
|
langchain.callbacks.manager.AsyncCallbackManager¶
class langchain.callbacks.manager.AsyncCallbackManager(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Bases: BaseCallbackManager
Async callback manager that can be used to handle callbacks from LangChain.
Initialize callback manager.
Methods
__init__(handlers[, inheritable_handlers, ...])
Initialize callback manager.
add_handler(handler[, inherit])
Add a handler to the callback manager.
add_metadata(metadata[, inherit])
add_tags(tags[, inherit])
configure([inheritable_callbacks, ...])
Configure the async callback manager.
on_chain_start(serialized, inputs[, run_id])
Run when chain starts running.
on_chat_model_start(serialized, messages, ...)
Run when LLM starts running.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_start(serialized, query[, ...])
Run when retriever starts running.
on_tool_start(serialized, input_str[, ...])
Run when tool starts running.
remove_handler(handler)
Remove a handler from the callback manager.
remove_metadata(keys)
remove_tags(tags)
set_handler(handler[, inherit])
Set handler as the only handler on the callback manager.
set_handlers(handlers[, inherit])
Set handlers as the only handlers on the callback manager.
Attributes
is_async
Return whether the handler is async.
add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
Add a handler to the callback manager.
add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶
add_tags(tags: List[str], inherit: bool = True) → None¶
classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → AsyncCallbackManager[source]¶
Configure the async callback manager.
Parameters
inheritable_callbacks (Optional[Callbacks], optional) – The inheritable
callbacks. Defaults to None.
local_callbacks (Optional[Callbacks], optional) – The local callbacks.
Defaults to None.
verbose (bool, optional) – Whether to enable verbose mode. Defaults to False.
inheritable_tags (Optional[List[str]], optional) – The inheritable tags.
Defaults to None.
local_tags (Optional[List[str]], optional) – The local tags.
Defaults to None.
inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable
metadata. Defaults to None.
local_metadata (Optional[Dict[str, Any]], optional) – The local metadata.
Defaults to None.
Returns
The configured async callback manager.
Return type
AsyncCallbackManager
async on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForChainRun[source]¶
Run when chain starts running.
Parameters
serialized (Dict[str, Any]) – The serialized chain.
inputs (Dict[str, Any]) – The inputs to the chain.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
The async callback managerfor the chain run.
Return type
AsyncCallbackManagerForChainRun
async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → Any[source]¶
Run when LLM starts running.
Parameters
serialized (Dict[str, Any]) – The serialized LLM.
messages (List[List[BaseMessage]]) – The list of messages.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
The list ofasync callback managers, one for each LLM Run
corresponding to each inner
message list.
Return type
List[AsyncCallbackManagerForLLMRun]
async on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → List[AsyncCallbackManagerForLLMRun][source]¶
Run when LLM starts running.
Parameters
serialized (Dict[str, Any]) – The serialized LLM.
prompts (List[str]) – The list of prompts.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
The list of asynccallback managers, one for each LLM Run corresponding
to each prompt.
Return type
List[AsyncCallbackManagerForLLMRun]
async on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForRetrieverRun[source]¶
Run when retriever starts running.
async on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForToolRun[source]¶
Run when tool starts running.
Parameters
serialized (Dict[str, Any]) – The serialized tool.
input_str (str) – The input to the tool.
run_id (UUID, optional) – The ID of the run. Defaults to None.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
Returns
The async callback managerfor the tool run.
Return type
AsyncCallbackManagerForToolRun
remove_handler(handler: BaseCallbackHandler) → None¶
Remove a handler from the callback manager.
remove_metadata(keys: List[str]) → None¶
remove_tags(tags: List[str]) → None¶
set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
Set handler as the only handler on the callback manager.
set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶
Set handlers as the only handlers on the callback manager.
property is_async: bool¶
Return whether the handler is async.
|
Async callback manager that can be used to handle callbacks from LangChain.
|
c2f6ea80-a248-4458-b543-8407a97f61bb
|
[
"__future__.annotations",
"asyncio",
"functools",
"logging",
"os",
"contextlib.asynccontextmanager",
"contextlib.contextmanager",
"contextvars.ContextVar",
"typing.Any",
"typing.AsyncGenerator",
"typing.Dict",
"typing.Generator",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Type",
"typing.TypeVar",
"typing.Union",
"typing.cast",
"uuid.UUID",
"uuid.uuid4",
"langchain",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.base.ChainManagerMixin",
"langchain.callbacks.base.LLMManagerMixin",
"langchain.callbacks.base.RetrieverManagerMixin",
"langchain.callbacks.base.RunManagerMixin",
"langchain.callbacks.base.ToolManagerMixin",
"langchain.callbacks.openai_info.OpenAICallbackHandler",
"langchain.callbacks.stdout.StdOutCallbackHandler",
"langchain.callbacks.tracers.langchain.LangChainTracer",
"langchain.callbacks.tracers.langchain_v1.LangChainTracerV1",
"langchain.callbacks.tracers.langchain_v1.TracerSessionV1",
"langchain.callbacks.tracers.stdout.ConsoleCallbackHandler",
"langchain.callbacks.tracers.wandb.WandbTracer",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.Document",
"langchain.schema.LLMResult",
"langchain.schema.messages.BaseMessage",
"langchain.schema.messages.get_buffer_string"
] |
langchain.callbacks.manager.env_var_is_set
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.env_var_is_set.html#langchain.callbacks.manager.env_var_is_set
|
def env_var_is_set(env_var: str) -> bool:
"""Check if an environment variable is set.
Args:
env_var (str): The name of the environment variable.
Returns:
bool: True if the environment variable is set, False otherwise.
"""
return env_var in os.environ and os.environ[env_var] not in (
"",
"0",
"false",
"False",
)
|
langchain.callbacks.manager.env_var_is_set¶
langchain.callbacks.manager.env_var_is_set(env_var: str) → bool[source]¶
Check if an environment variable is set.
Parameters
env_var (str) – The name of the environment variable.
Returns
True if the environment variable is set, False otherwise.
Return type
bool
|
Check if an environment variable is set.
|
0934a1f2-7040-4654-b090-9fd58adafe28
|
[
"random",
"string",
"tempfile",
"traceback",
"copy.deepcopy",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Union",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.utils.BaseMetadataCallbackHandler",
"langchain.callbacks.utils.flatten_dict",
"langchain.callbacks.utils.hash_string",
"langchain.callbacks.utils.import_pandas",
"langchain.callbacks.utils.import_spacy",
"langchain.callbacks.utils.import_textstat",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.LLMResult",
"langchain.utils.get_from_dict_or_env"
] |
langchain.callbacks.mlflow_callback.import_mlflow
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.mlflow_callback.import_mlflow.html#langchain.callbacks.mlflow_callback.import_mlflow
|
def import_mlflow() -> Any:
"""Import the mlflow python package and raise an error if it is not installed."""
try:
import mlflow
except ImportError:
raise ImportError(
"To use the mlflow callback manager you need to have the `mlflow` python "
"package installed. Please install it with `pip install mlflow>=2.3.0`"
)
return mlflow
|
langchain.callbacks.mlflow_callback.import_mlflow¶
langchain.callbacks.mlflow_callback.import_mlflow() → Any[source]¶
Import the mlflow python package and raise an error if it is not installed.
|
Import the mlflow python package and raise an error if it is not installed.
|
1cd12f61-ebb9-42cb-9801-baebbf404a20
|
[
"random",
"string",
"tempfile",
"traceback",
"copy.deepcopy",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Union",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.utils.BaseMetadataCallbackHandler",
"langchain.callbacks.utils.flatten_dict",
"langchain.callbacks.utils.hash_string",
"langchain.callbacks.utils.import_pandas",
"langchain.callbacks.utils.import_spacy",
"langchain.callbacks.utils.import_textstat",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.LLMResult",
"langchain.utils.get_from_dict_or_env",
"mlflow"
] |
langchain.callbacks.mlflow_callback.analyze_text
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.mlflow_callback.analyze_text.html#langchain.callbacks.mlflow_callback.analyze_text
|
def analyze_text(
text: str,
nlp: Any = None,
) -> dict:
"""Analyze text using textstat and spacy.
Parameters:
text (str): The text to analyze.
nlp (spacy.lang): The spacy language model to use for visualization.
Returns:
(dict): A dictionary containing the complexity metrics and visualization
files serialized to HTML string.
"""
resp: Dict[str, Any] = {}
textstat = import_textstat()
spacy = import_spacy()
text_complexity_metrics = {
"flesch_reading_ease": textstat.flesch_reading_ease(text),
"flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
"smog_index": textstat.smog_index(text),
"coleman_liau_index": textstat.coleman_liau_index(text),
"automated_readability_index": textstat.automated_readability_index(text),
"dale_chall_readability_score": textstat.dale_chall_readability_score(text),
"difficult_words": textstat.difficult_words(text),
"linsear_write_formula": textstat.linsear_write_formula(text),
"gunning_fog": textstat.gunning_fog(text),
# "text_standard": textstat.text_standard(text),
"fernandez_huerta": textstat.fernandez_huerta(text),
"szigriszt_pazos": textstat.szigriszt_pazos(text),
"gutierrez_polini": textstat.gutierrez_polini(text),
"crawford": textstat.crawford(text),
"gulpease_index": textstat.gulpease_index(text),
"osman": textstat.osman(text),
}
resp.update({"text_complexity_metrics": text_complexity_metrics})
resp.update(text_complexity_metrics)
if nlp is not None:
doc = nlp(text)
dep_out = spacy.displacy.render( # type: ignore
doc, style="dep", jupyter=False, page=True
)
ent_out = spacy.displacy.render( # type: ignore
doc, style="ent", jupyter=False, page=True
)
text_visualizations = {
"dependency_tree": dep_out,
"entities": ent_out,
}
resp.update(text_visualizations)
return resp
|
langchain.callbacks.mlflow_callback.analyze_text¶
langchain.callbacks.mlflow_callback.analyze_text(text: str, nlp: Any = None) → dict[source]¶
Analyze text using textstat and spacy.
Parameters
text (str) – The text to analyze.
nlp (spacy.lang) – The spacy language model to use for visualization.
Returns
A dictionary containing the complexity metrics and visualizationfiles serialized to
HTML string.
Return type
(dict)
|
Analyze text using textstat and spacy.
|
735a14d8-b08a-433d-a63b-3ef5183febe6
|
[
"random",
"string",
"tempfile",
"traceback",
"copy.deepcopy",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Union",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.utils.BaseMetadataCallbackHandler",
"langchain.callbacks.utils.flatten_dict",
"langchain.callbacks.utils.hash_string",
"langchain.callbacks.utils.import_pandas",
"langchain.callbacks.utils.import_spacy",
"langchain.callbacks.utils.import_textstat",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.LLMResult",
"langchain.utils.get_from_dict_or_env",
"mlflow"
] |
langchain.callbacks.mlflow_callback.construct_html_from_prompt_and_generation
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.mlflow_callback.construct_html_from_prompt_and_generation.html#langchain.callbacks.mlflow_callback.construct_html_from_prompt_and_generation
|
def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any:
"""Construct an html element from a prompt and a generation.
Parameters:
prompt (str): The prompt.
generation (str): The generation.
Returns:
(str): The html string."""
formatted_prompt = prompt.replace("\n", "<br>")
formatted_generation = generation.replace("\n", "<br>")
return f"""
<p style="color:black;">{formatted_prompt}:</p>
<blockquote>
<p style="color:green;">
{formatted_generation}
</p>
</blockquote>
"""
|
langchain.callbacks.mlflow_callback.construct_html_from_prompt_and_generation¶
langchain.callbacks.mlflow_callback.construct_html_from_prompt_and_generation(prompt: str, generation: str) → Any[source]¶
Construct an html element from a prompt and a generation.
Parameters
prompt (str) – The prompt.
generation (str) – The generation.
Returns
The html string.
Return type
(str)
|
Construct an html element from a prompt and a generation.
|
497d9735-7dc0-4087-83ca-f79cf8d6c20a
|
[
"random",
"string",
"tempfile",
"traceback",
"copy.deepcopy",
"pathlib.Path",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Union",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.utils.BaseMetadataCallbackHandler",
"langchain.callbacks.utils.flatten_dict",
"langchain.callbacks.utils.hash_string",
"langchain.callbacks.utils.import_pandas",
"langchain.callbacks.utils.import_spacy",
"langchain.callbacks.utils.import_textstat",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.LLMResult",
"langchain.utils.get_from_dict_or_env",
"mlflow"
] |
langchain.callbacks.mlflow_callback.MlflowCallbackHandler
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.mlflow_callback.MlflowCallbackHandler.html#langchain.callbacks.mlflow_callback.MlflowCallbackHandler
|
class MlflowCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
"""Callback Handler that logs metrics and artifacts to mlflow server.
Parameters:
name (str): Name of the run.
experiment (str): Name of the experiment.
tags (dict): Tags to be attached for the run.
tracking_uri (str): MLflow tracking server uri.
This handler will utilize the associated callback method called and formats
the input of each callback function with metadata regarding the state of LLM run,
and adds the response to the list of records for both the {method}_records and
action. It then logs the response to mlflow server.
"""
def __init__(
self,
name: Optional[str] = "langchainrun-%",
experiment: Optional[str] = "langchain",
tags: Optional[Dict] = {},
tracking_uri: Optional[str] = None,
) -> None:
"""Initialize callback handler."""
import_pandas()
import_textstat()
import_mlflow()
spacy = import_spacy()
super().__init__()
self.name = name
self.experiment = experiment
self.tags = tags
self.tracking_uri = tracking_uri
self.temp_dir = tempfile.TemporaryDirectory()
self.mlflg = MlflowLogger(
tracking_uri=self.tracking_uri,
experiment_name=self.experiment,
run_name=self.name,
run_tags=self.tags,
)
self.action_records: list = []
self.nlp = spacy.load("en_core_web_sm")
self.metrics = {
"step": 0,
"starts": 0,
"ends": 0,
"errors": 0,
"text_ctr": 0,
"chain_starts": 0,
"chain_ends": 0,
"llm_starts": 0,
"llm_ends": 0,
"llm_streams": 0,
"tool_starts": 0,
"tool_ends": 0,
"agent_ends": 0,
}
self.records: Dict[str, Any] = {
"on_llm_start_records": [],
"on_llm_token_records": [],
"on_llm_end_records": [],
"on_chain_start_records": [],
"on_chain_end_records": [],
"on_tool_start_records": [],
"on_tool_end_records": [],
"on_text_records": [],
"on_agent_finish_records": [],
"on_agent_action_records": [],
"action_records": [],
}
def _reset(self) -> None:
for k, v in self.metrics.items():
self.metrics[k] = 0
for k, v in self.records.items():
self.records[k] = []
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Run when LLM starts."""
self.metrics["step"] += 1
self.metrics["llm_starts"] += 1
self.metrics["starts"] += 1
llm_starts = self.metrics["llm_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_start"})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
for idx, prompt in enumerate(prompts):
prompt_resp = deepcopy(resp)
prompt_resp["prompt"] = prompt
self.records["on_llm_start_records"].append(prompt_resp)
self.records["action_records"].append(prompt_resp)
self.mlflg.jsonf(prompt_resp, f"llm_start_{llm_starts}_prompt_{idx}")
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run when LLM generates a new token."""
self.metrics["step"] += 1
self.metrics["llm_streams"] += 1
llm_streams = self.metrics["llm_streams"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_new_token", "token": token})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_llm_token_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"llm_new_tokens_{llm_streams}")
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Run when LLM ends running."""
self.metrics["step"] += 1
self.metrics["llm_ends"] += 1
self.metrics["ends"] += 1
llm_ends = self.metrics["llm_ends"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_llm_end"})
resp.update(flatten_dict(response.llm_output or {}))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
for generations in response.generations:
for idx, generation in enumerate(generations):
generation_resp = deepcopy(resp)
generation_resp.update(flatten_dict(generation.dict()))
generation_resp.update(
analyze_text(
generation.text,
nlp=self.nlp,
)
)
complexity_metrics: Dict[str, float] = generation_resp.pop("text_complexity_metrics") # type: ignore # noqa: E501
self.mlflg.metrics(
complexity_metrics,
step=self.metrics["step"],
)
self.records["on_llm_end_records"].append(generation_resp)
self.records["action_records"].append(generation_resp)
self.mlflg.jsonf(resp, f"llm_end_{llm_ends}_generation_{idx}")
dependency_tree = generation_resp["dependency_tree"]
entities = generation_resp["entities"]
self.mlflg.html(dependency_tree, "dep-" + hash_string(generation.text))
self.mlflg.html(entities, "ent-" + hash_string(generation.text))
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when LLM errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Run when chain starts running."""
self.metrics["step"] += 1
self.metrics["chain_starts"] += 1
self.metrics["starts"] += 1
chain_starts = self.metrics["chain_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_chain_start"})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
chain_input = ",".join([f"{k}={v}" for k, v in inputs.items()])
input_resp = deepcopy(resp)
input_resp["inputs"] = chain_input
self.records["on_chain_start_records"].append(input_resp)
self.records["action_records"].append(input_resp)
self.mlflg.jsonf(input_resp, f"chain_start_{chain_starts}")
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Run when chain ends running."""
self.metrics["step"] += 1
self.metrics["chain_ends"] += 1
self.metrics["ends"] += 1
chain_ends = self.metrics["chain_ends"]
resp: Dict[str, Any] = {}
chain_output = ",".join([f"{k}={v}" for k, v in outputs.items()])
resp.update({"action": "on_chain_end", "outputs": chain_output})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_chain_end_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"chain_end_{chain_ends}")
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when chain errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> None:
"""Run when tool starts running."""
self.metrics["step"] += 1
self.metrics["tool_starts"] += 1
self.metrics["starts"] += 1
tool_starts = self.metrics["tool_starts"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_tool_start", "input_str": input_str})
resp.update(flatten_dict(serialized))
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_tool_start_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"tool_start_{tool_starts}")
def on_tool_end(self, output: str, **kwargs: Any) -> None:
"""Run when tool ends running."""
self.metrics["step"] += 1
self.metrics["tool_ends"] += 1
self.metrics["ends"] += 1
tool_ends = self.metrics["tool_ends"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_tool_end", "output": output})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_tool_end_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"tool_end_{tool_ends}")
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when tool errors."""
self.metrics["step"] += 1
self.metrics["errors"] += 1
def on_text(self, text: str, **kwargs: Any) -> None:
"""
Run when agent is ending.
"""
self.metrics["step"] += 1
self.metrics["text_ctr"] += 1
text_ctr = self.metrics["text_ctr"]
resp: Dict[str, Any] = {}
resp.update({"action": "on_text", "text": text})
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_text_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"on_text_{text_ctr}")
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Run when agent ends running."""
self.metrics["step"] += 1
self.metrics["agent_ends"] += 1
self.metrics["ends"] += 1
agent_ends = self.metrics["agent_ends"]
resp: Dict[str, Any] = {}
resp.update(
{
"action": "on_agent_finish",
"output": finish.return_values["output"],
"log": finish.log,
}
)
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_agent_finish_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"agent_finish_{agent_ends}")
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run on agent action."""
self.metrics["step"] += 1
self.metrics["tool_starts"] += 1
self.metrics["starts"] += 1
tool_starts = self.metrics["tool_starts"]
resp: Dict[str, Any] = {}
resp.update(
{
"action": "on_agent_action",
"tool": action.tool,
"tool_input": action.tool_input,
"log": action.log,
}
)
resp.update(self.metrics)
self.mlflg.metrics(self.metrics, step=self.metrics["step"])
self.records["on_agent_action_records"].append(resp)
self.records["action_records"].append(resp)
self.mlflg.jsonf(resp, f"agent_action_{tool_starts}")
def _create_session_analysis_df(self) -> Any:
"""Create a dataframe with all the information from the session."""
pd = import_pandas()
on_llm_start_records_df = pd.DataFrame(self.records["on_llm_start_records"])
on_llm_end_records_df = pd.DataFrame(self.records["on_llm_end_records"])
llm_input_columns = ["step", "prompt"]
if "name" in on_llm_start_records_df.columns:
llm_input_columns.append("name")
elif "id" in on_llm_start_records_df.columns:
# id is llm class's full import path. For example:
# ["langchain", "llms", "openai", "AzureOpenAI"]
on_llm_start_records_df["name"] = on_llm_start_records_df["id"].apply(
lambda id_: id_[-1]
)
llm_input_columns.append("name")
llm_input_prompts_df = (
on_llm_start_records_df[llm_input_columns]
.dropna(axis=1)
.rename({"step": "prompt_step"}, axis=1)
)
complexity_metrics_columns = []
visualizations_columns = []
complexity_metrics_columns = [
"flesch_reading_ease",
"flesch_kincaid_grade",
"smog_index",
"coleman_liau_index",
"automated_readability_index",
"dale_chall_readability_score",
"difficult_words",
"linsear_write_formula",
"gunning_fog",
# "text_standard",
"fernandez_huerta",
"szigriszt_pazos",
"gutierrez_polini",
"crawford",
"gulpease_index",
"osman",
]
visualizations_columns = ["dependency_tree", "entities"]
llm_outputs_df = (
on_llm_end_records_df[
[
"step",
"text",
"token_usage_total_tokens",
"token_usage_prompt_tokens",
"token_usage_completion_tokens",
]
+ complexity_metrics_columns
+ visualizations_columns
]
.dropna(axis=1)
.rename({"step": "output_step", "text": "output"}, axis=1)
)
session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1)
session_analysis_df["chat_html"] = session_analysis_df[
["prompt", "output"]
].apply(
lambda row: construct_html_from_prompt_and_generation(
row["prompt"], row["output"]
),
axis=1,
)
return session_analysis_df
def flush_tracker(self, langchain_asset: Any = None, finish: bool = False) -> None:
pd = import_pandas()
self.mlflg.table("action_records", pd.DataFrame(self.records["action_records"]))
session_analysis_df = self._create_session_analysis_df()
chat_html = session_analysis_df.pop("chat_html")
chat_html = chat_html.replace("\n", "", regex=True)
self.mlflg.table("session_analysis", pd.DataFrame(session_analysis_df))
self.mlflg.html("".join(chat_html.tolist()), "chat_html")
if langchain_asset:
# To avoid circular import error
# mlflow only supports LLMChain asset
if "langchain.chains.llm.LLMChain" in str(type(langchain_asset)):
self.mlflg.langchain_artifact(langchain_asset)
else:
langchain_asset_path = str(Path(self.temp_dir.name, "model.json"))
try:
langchain_asset.save(langchain_asset_path)
self.mlflg.artifact(langchain_asset_path)
except ValueError:
try:
langchain_asset.save_agent(langchain_asset_path)
self.mlflg.artifact(langchain_asset_path)
except AttributeError:
print("Could not save model.")
traceback.print_exc()
pass
except NotImplementedError:
print("Could not save model.")
traceback.print_exc()
pass
except NotImplementedError:
print("Could not save model.")
traceback.print_exc()
pass
if finish:
self.mlflg.finish_run()
self._reset()
|
langchain.callbacks.mlflow_callback.MlflowCallbackHandler¶
class langchain.callbacks.mlflow_callback.MlflowCallbackHandler(name: Optional[str] = 'langchainrun-%', experiment: Optional[str] = 'langchain', tags: Optional[Dict] = {}, tracking_uri: Optional[str] = None)[source]¶
Bases: BaseMetadataCallbackHandler, BaseCallbackHandler
Callback Handler that logs metrics and artifacts to mlflow server.
Parameters
name (str) – Name of the run.
experiment (str) – Name of the experiment.
tags (dict) – Tags to be attached for the run.
tracking_uri (str) – MLflow tracking server uri.
This handler will utilize the associated callback method called and formats
the input of each callback function with metadata regarding the state of LLM run,
and adds the response to the list of records for both the {method}_records and
action. It then logs the response to mlflow server.
Initialize callback handler.
Methods
__init__([name, experiment, tags, tracking_uri])
Initialize callback handler.
flush_tracker([langchain_asset, finish])
get_custom_callback_meta()
on_agent_action(action, **kwargs)
Run on agent action.
on_agent_finish(finish, **kwargs)
Run when agent ends running.
on_chain_end(outputs, **kwargs)
Run when chain ends running.
on_chain_error(error, **kwargs)
Run when chain errors.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, **kwargs)
Run when LLM generates a new token.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, **kwargs)
Run when agent is ending.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
on_tool_start(serialized, input_str, **kwargs)
Run when tool starts running.
reset_callback_meta()
Reset the callback metadata.
Attributes
always_verbose
Whether to call verbose callbacks even if verbose is False.
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
flush_tracker(langchain_asset: Any = None, finish: bool = False) → None[source]¶
get_custom_callback_meta() → Dict[str, Any]¶
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Run on agent action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Run when agent ends running.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain ends running.
on_chain_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when LLM errors.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run when LLM generates a new token.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_text(text: str, **kwargs: Any) → None[source]¶
Run when agent is ending.
on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
on_tool_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Run when tool starts running.
reset_callback_meta() → None¶
Reset the callback metadata.
property always_verbose: bool¶
Whether to call verbose callbacks even if verbose is False.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
raise_error: bool = False¶
run_inline: bool = False¶
|
Callback Handler that logs metrics and artifacts to mlflow server.
|
33fe7421-d71f-4ed2-a8be-ae884f06a6f1
|
[
"__future__.annotations",
"enum.Enum",
"typing.TYPE_CHECKING",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.NamedTuple",
"typing.Optional",
"streamlit.delta_generator.DeltaGenerator",
"streamlit.type_util.SupportsStr"
] |
langchain.callbacks.streamlit.mutable_expander.ChildType
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streamlit.mutable_expander.ChildType.html#langchain.callbacks.streamlit.mutable_expander.ChildType
|
class ChildType(Enum):
"""The enumerator of the child type."""
MARKDOWN = "MARKDOWN"
EXCEPTION = "EXCEPTION"
|
langchain.callbacks.streamlit.mutable_expander.ChildType¶
class langchain.callbacks.streamlit.mutable_expander.ChildType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶
Bases: Enum
The enumerator of the child type.
Attributes
MARKDOWN
EXCEPTION
EXCEPTION = 'EXCEPTION'¶
MARKDOWN = 'MARKDOWN'¶
|
The enumerator of the child type.
|
354c5bd9-1576-4f83-8f98-d687ffa37131
|
[
"__future__.annotations",
"enum.Enum",
"typing.TYPE_CHECKING",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.NamedTuple",
"typing.Optional",
"streamlit.delta_generator.DeltaGenerator",
"streamlit.type_util.SupportsStr"
] |
langchain.callbacks.streamlit.mutable_expander.ChildRecord
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streamlit.mutable_expander.ChildRecord.html#langchain.callbacks.streamlit.mutable_expander.ChildRecord
|
class ChildRecord(NamedTuple):
"""The child record as a NamedTuple."""
type: ChildType
kwargs: Dict[str, Any]
dg: DeltaGenerator
|
langchain.callbacks.streamlit.mutable_expander.ChildRecord¶
class langchain.callbacks.streamlit.mutable_expander.ChildRecord(type: ChildType, kwargs: Dict[str, Any], dg: DeltaGenerator)[source]¶
Bases: NamedTuple
The child record as a NamedTuple.
Create new instance of ChildRecord(type, kwargs, dg)
Methods
__init__()
count(value, /)
Return number of occurrences of value.
index(value[, start, stop])
Return first index of value.
Attributes
dg
Alias for field number 2
kwargs
Alias for field number 1
type
Alias for field number 0
count(value, /)¶
Return number of occurrences of value.
index(value, start=0, stop=9223372036854775807, /)¶
Return first index of value.
Raises ValueError if the value is not present.
dg: DeltaGenerator¶
Alias for field number 2
kwargs: Dict[str, Any]¶
Alias for field number 1
type: ChildType¶
Alias for field number 0
|
The child record as a NamedTuple.
|
9bda9b45-6dbc-40c8-a7b2-2a97323db235
|
[
"__future__.annotations",
"enum.Enum",
"typing.TYPE_CHECKING",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.NamedTuple",
"typing.Optional",
"typing.Union",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.streamlit.mutable_expander.MutableExpander",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.LLMResult",
"streamlit.delta_generator.DeltaGenerator"
] |
langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState.html#langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState
|
class LLMThoughtState(Enum):
"""Enumerator of the LLMThought state."""
# The LLM is thinking about what to do next. We don't know which tool we'll run.
THINKING = "THINKING"
# The LLM has decided to run a tool. We don't have results from the tool yet.
RUNNING_TOOL = "RUNNING_TOOL"
# We have results from the tool.
COMPLETE = "COMPLETE"
|
langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState¶
class langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶
Bases: Enum
Enumerator of the LLMThought state.
Attributes
THINKING
RUNNING_TOOL
COMPLETE
COMPLETE = 'COMPLETE'¶
RUNNING_TOOL = 'RUNNING_TOOL'¶
THINKING = 'THINKING'¶
|
Enumerator of the LLMThought state.
|
576aafcb-f961-46ad-a0db-606df498b3d8
|
[
"__future__.annotations",
"enum.Enum",
"typing.TYPE_CHECKING",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.NamedTuple",
"typing.Optional",
"typing.Union",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.streamlit.mutable_expander.MutableExpander",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.LLMResult",
"streamlit.delta_generator.DeltaGenerator"
] |
langchain.callbacks.streamlit.streamlit_callback_handler.ToolRecord
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streamlit.streamlit_callback_handler.ToolRecord.html#langchain.callbacks.streamlit.streamlit_callback_handler.ToolRecord
|
class ToolRecord(NamedTuple):
"""The tool record as a NamedTuple."""
name: str
input_str: str
|
langchain.callbacks.streamlit.streamlit_callback_handler.ToolRecord¶
class langchain.callbacks.streamlit.streamlit_callback_handler.ToolRecord(name: str, input_str: str)[source]¶
Bases: NamedTuple
The tool record as a NamedTuple.
Create new instance of ToolRecord(name, input_str)
Methods
__init__()
count(value, /)
Return number of occurrences of value.
index(value[, start, stop])
Return first index of value.
Attributes
input_str
Alias for field number 1
name
Alias for field number 0
count(value, /)¶
Return number of occurrences of value.
index(value, start=0, stop=9223372036854775807, /)¶
Return first index of value.
Raises ValueError if the value is not present.
input_str: str¶
Alias for field number 1
name: str¶
Alias for field number 0
|
The tool record as a NamedTuple.
|
8d5e483f-39c1-46cf-81ae-d80ff80f3fa2
|
[
"__future__.annotations",
"enum.Enum",
"typing.TYPE_CHECKING",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.NamedTuple",
"typing.Optional",
"typing.Union",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.streamlit.mutable_expander.MutableExpander",
"langchain.schema.AgentAction",
"langchain.schema.AgentFinish",
"langchain.schema.LLMResult",
"streamlit.delta_generator.DeltaGenerator"
] |
langchain.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler.html#langchain.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler
|
class StreamlitCallbackHandler(BaseCallbackHandler):
"""A callback handler that writes to a Streamlit app."""
def __init__(
self,
parent_container: DeltaGenerator,
*,
max_thought_containers: int = 4,
expand_new_thoughts: bool = True,
collapse_completed_thoughts: bool = True,
thought_labeler: Optional[LLMThoughtLabeler] = None,
):
"""Create a StreamlitCallbackHandler instance.
Parameters
----------
parent_container
The `st.container` that will contain all the Streamlit elements that the
Handler creates.
max_thought_containers
The max number of completed LLM thought containers to show at once. When
this threshold is reached, a new thought will cause the oldest thoughts to
be collapsed into a "History" expander. Defaults to 4.
expand_new_thoughts
Each LLM "thought" gets its own `st.expander`. This param controls whether
that expander is expanded by default. Defaults to True.
collapse_completed_thoughts
If True, LLM thought expanders will be collapsed when completed.
Defaults to True.
thought_labeler
An optional custom LLMThoughtLabeler instance. If unspecified, the handler
will use the default thought labeling logic. Defaults to None.
"""
self._parent_container = parent_container
self._history_parent = parent_container.container()
self._history_container: Optional[MutableExpander] = None
self._current_thought: Optional[LLMThought] = None
self._completed_thoughts: List[LLMThought] = []
self._max_thought_containers = max(max_thought_containers, 1)
self._expand_new_thoughts = expand_new_thoughts
self._collapse_completed_thoughts = collapse_completed_thoughts
self._thought_labeler = thought_labeler or LLMThoughtLabeler()
def _require_current_thought(self) -> LLMThought:
"""Return our current LLMThought. Raise an error if we have no current
thought.
"""
if self._current_thought is None:
raise RuntimeError("Current LLMThought is unexpectedly None!")
return self._current_thought
def _get_last_completed_thought(self) -> Optional[LLMThought]:
"""Return our most recent completed LLMThought, or None if we don't have one."""
if len(self._completed_thoughts) > 0:
return self._completed_thoughts[len(self._completed_thoughts) - 1]
return None
@property
def _num_thought_containers(self) -> int:
"""The number of 'thought containers' we're currently showing: the
number of completed thought containers, the history container (if it exists),
and the current thought container (if it exists).
"""
count = len(self._completed_thoughts)
if self._history_container is not None:
count += 1
if self._current_thought is not None:
count += 1
return count
def _complete_current_thought(self, final_label: Optional[str] = None) -> None:
"""Complete the current thought, optionally assigning it a new label.
Add it to our _completed_thoughts list.
"""
thought = self._require_current_thought()
thought.complete(final_label)
self._completed_thoughts.append(thought)
self._current_thought = None
def _prune_old_thought_containers(self) -> None:
"""If we have too many thoughts onscreen, move older thoughts to the
'history container.'
"""
while (
self._num_thought_containers > self._max_thought_containers
and len(self._completed_thoughts) > 0
):
# Create our history container if it doesn't exist, and if
# max_thought_containers is > 1. (if max_thought_containers is 1, we don't
# have room to show history.)
if self._history_container is None and self._max_thought_containers > 1:
self._history_container = MutableExpander(
self._history_parent,
label=self._thought_labeler.get_history_label(),
expanded=False,
)
oldest_thought = self._completed_thoughts.pop(0)
if self._history_container is not None:
self._history_container.markdown(oldest_thought.container.label)
self._history_container.append_copy(oldest_thought.container)
oldest_thought.clear()
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
if self._current_thought is None:
self._current_thought = LLMThought(
parent_container=self._parent_container,
expanded=self._expand_new_thoughts,
collapse_on_complete=self._collapse_completed_thoughts,
labeler=self._thought_labeler,
)
self._current_thought.on_llm_start(serialized, prompts)
# We don't prune_old_thought_containers here, because our container won't
# be visible until it has a child.
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
self._require_current_thought().on_llm_new_token(token, **kwargs)
self._prune_old_thought_containers()
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
self._require_current_thought().on_llm_end(response, **kwargs)
self._prune_old_thought_containers()
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
self._require_current_thought().on_llm_error(error, **kwargs)
self._prune_old_thought_containers()
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> None:
self._require_current_thought().on_tool_start(serialized, input_str, **kwargs)
self._prune_old_thought_containers()
def on_tool_end(
self,
output: str,
color: Optional[str] = None,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
self._require_current_thought().on_tool_end(
output, color, observation_prefix, llm_prefix, **kwargs
)
self._complete_current_thought()
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
self._require_current_thought().on_tool_error(error, **kwargs)
self._prune_old_thought_containers()
def on_text(
self,
text: str,
color: Optional[str] = None,
end: str = "",
**kwargs: Any,
) -> None:
pass
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
pass
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
pass
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
pass
def on_agent_action(
self, action: AgentAction, color: Optional[str] = None, **kwargs: Any
) -> Any:
self._require_current_thought().on_agent_action(action, color, **kwargs)
self._prune_old_thought_containers()
def on_agent_finish(
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
) -> None:
if self._current_thought is not None:
self._current_thought.complete(
self._thought_labeler.get_final_agent_thought_label()
)
self._current_thought = None
|
langchain.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler¶
class langchain.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler(parent_container: DeltaGenerator, *, max_thought_containers: int = 4, expand_new_thoughts: bool = True, collapse_completed_thoughts: bool = True, thought_labeler: Optional[LLMThoughtLabeler] = None)[source]¶
Bases: BaseCallbackHandler
A callback handler that writes to a Streamlit app.
Create a StreamlitCallbackHandler instance.
Parameters
parent_container – The st.container that will contain all the Streamlit elements that the
Handler creates.
max_thought_containers – The max number of completed LLM thought containers to show at once. When
this threshold is reached, a new thought will cause the oldest thoughts to
be collapsed into a “History” expander. Defaults to 4.
expand_new_thoughts – Each LLM “thought” gets its own st.expander. This param controls whether
that expander is expanded by default. Defaults to True.
collapse_completed_thoughts – If True, LLM thought expanders will be collapsed when completed.
Defaults to True.
thought_labeler – An optional custom LLMThoughtLabeler instance. If unspecified, the handler
will use the default thought labeling logic. Defaults to None.
Methods
__init__(parent_container, *[, ...])
Create a StreamlitCallbackHandler instance.
on_agent_action(action[, color])
Run on agent action.
on_agent_finish(finish[, color])
Run on agent end.
on_chain_end(outputs, **kwargs)
Run when chain ends running.
on_chain_error(error, **kwargs)
Run when chain errors.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, **kwargs)
Run on new LLM token.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text[, color, end])
Run on arbitrary text.
on_tool_end(output[, color, ...])
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
on_tool_start(serialized, input_str, **kwargs)
Run when tool starts running.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
on_agent_action(action: AgentAction, color: Optional[str] = None, **kwargs: Any) → Any[source]¶
Run on agent action.
on_agent_finish(finish: AgentFinish, color: Optional[str] = None, **kwargs: Any) → None[source]¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain ends running.
on_chain_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when LLM errors.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts running.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_text(text: str, color: Optional[str] = None, end: str = '', **kwargs: Any) → None[source]¶
Run on arbitrary text.
on_tool_end(output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶
Run when tool ends running.
on_tool_error(error: Union[Exception, KeyboardInterrupt], **kwargs: Any) → None[source]¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Run when tool starts running.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
raise_error: bool = False¶
run_inline: bool = False¶
|
A callback handler that writes to a Streamlit app.
|
f99096fb-59fd-4aad-8c91-fb3631ffdd81
|
[
"__future__.annotations",
"typing.TYPE_CHECKING",
"typing.Optional",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler",
"langchain.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler",
"streamlit.delta_generator.DeltaGenerator"
] |
langchain.callbacks.streamlit.__init__.StreamlitCallbackHandler
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streamlit.__init__.StreamlitCallbackHandler.html#langchain.callbacks.streamlit.__init__.StreamlitCallbackHandler
|
def StreamlitCallbackHandler(
parent_container: DeltaGenerator,
*,
max_thought_containers: int = 4,
expand_new_thoughts: bool = True,
collapse_completed_thoughts: bool = True,
thought_labeler: Optional[LLMThoughtLabeler] = None,
) -> BaseCallbackHandler:
"""Construct a new StreamlitCallbackHandler. This CallbackHandler is geared towards
use with a LangChain Agent; it displays the Agent's LLM and tool-usage "thoughts"
inside a series of Streamlit expanders.
Parameters
----------
parent_container
The `st.container` that will contain all the Streamlit elements that the
Handler creates.
max_thought_containers
The max number of completed LLM thought containers to show at once. When this
threshold is reached, a new thought will cause the oldest thoughts to be
collapsed into a "History" expander. Defaults to 4.
expand_new_thoughts
Each LLM "thought" gets its own `st.expander`. This param controls whether that
expander is expanded by default. Defaults to True.
collapse_completed_thoughts
If True, LLM thought expanders will be collapsed when completed.
Defaults to True.
thought_labeler
An optional custom LLMThoughtLabeler instance. If unspecified, the handler
will use the default thought labeling logic. Defaults to None.
Returns
-------
A new StreamlitCallbackHandler instance.
Note that this is an "auto-updating" API: if the installed version of Streamlit
has a more recent StreamlitCallbackHandler implementation, an instance of that class
will be used.
"""
# If we're using a version of Streamlit that implements StreamlitCallbackHandler,
# delegate to it instead of using our built-in handler. The official handler is
# guaranteed to support the same set of kwargs.
try:
from streamlit.external.langchain import (
StreamlitCallbackHandler as OfficialStreamlitCallbackHandler, # type: ignore # noqa: 501
)
return OfficialStreamlitCallbackHandler(
parent_container,
max_thought_containers=max_thought_containers,
expand_new_thoughts=expand_new_thoughts,
collapse_completed_thoughts=collapse_completed_thoughts,
thought_labeler=thought_labeler,
)
except ImportError:
return _InternalStreamlitCallbackHandler(
parent_container,
max_thought_containers=max_thought_containers,
expand_new_thoughts=expand_new_thoughts,
collapse_completed_thoughts=collapse_completed_thoughts,
thought_labeler=thought_labeler,
)
|
langchain.callbacks.streamlit.__init__.StreamlitCallbackHandler¶
langchain.callbacks.streamlit.__init__.StreamlitCallbackHandler(parent_container: DeltaGenerator, *, max_thought_containers: int = 4, expand_new_thoughts: bool = True, collapse_completed_thoughts: bool = True, thought_labeler: Optional[LLMThoughtLabeler] = None) → BaseCallbackHandler[source]¶
Construct a new StreamlitCallbackHandler. This CallbackHandler is geared towards
use with a LangChain Agent; it displays the Agent’s LLM and tool-usage “thoughts”
inside a series of Streamlit expanders.
Parameters
parent_container – The st.container that will contain all the Streamlit elements that the
Handler creates.
max_thought_containers – The max number of completed LLM thought containers to show at once. When this
threshold is reached, a new thought will cause the oldest thoughts to be
collapsed into a “History” expander. Defaults to 4.
expand_new_thoughts – Each LLM “thought” gets its own st.expander. This param controls whether that
expander is expanded by default. Defaults to True.
collapse_completed_thoughts – If True, LLM thought expanders will be collapsed when completed.
Defaults to True.
thought_labeler – An optional custom LLMThoughtLabeler instance. If unspecified, the handler
will use the default thought labeling logic. Defaults to None.
Returns
A new StreamlitCallbackHandler instance.
Note that this is an “auto-updating” API (if the installed version of Streamlit)
has a more recent StreamlitCallbackHandler implementation, an instance of that class
will be used.
|
Construct a new StreamlitCallbackHandler.
|
3623b7e0-a8d2-408e-9bf0-7bd95a807240
|
[
"logging",
"concurrent.futures.Future",
"concurrent.futures.ThreadPoolExecutor",
"concurrent.futures.wait",
"typing.Any",
"typing.Optional",
"typing.Sequence",
"typing.Set",
"typing.Union",
"uuid.UUID",
"langchainplus_sdk.LangChainPlusClient",
"langchainplus_sdk.RunEvaluator",
"langchain.callbacks.manager.tracing_v2_enabled",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.Run"
] |
langchain.callbacks.tracers.evaluation.EvaluatorCallbackHandler
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.evaluation.EvaluatorCallbackHandler.html#langchain.callbacks.tracers.evaluation.EvaluatorCallbackHandler
|
class EvaluatorCallbackHandler(BaseTracer):
"""A tracer that runs a run evaluator whenever a run is persisted.
Parameters
----------
evaluators : Sequence[RunEvaluator]
The run evaluators to apply to all top level runs.
max_workers : int, optional
The maximum number of worker threads to use for running the evaluators.
If not specified, it will default to the number of evaluators.
client : LangChainPlusClient, optional
The LangChainPlusClient instance to use for evaluating the runs.
If not specified, a new instance will be created.
example_id : Union[UUID, str], optional
The example ID to be associated with the runs.
project_name : str, optional
The LangSmith project name to be organize eval chain runs under.
Attributes
----------
example_id : Union[UUID, None]
The example ID associated with the runs.
client : LangChainPlusClient
The LangChainPlusClient instance used for evaluating the runs.
evaluators : Sequence[RunEvaluator]
The sequence of run evaluators to be executed.
executor : ThreadPoolExecutor
The thread pool executor used for running the evaluators.
futures : Set[Future]
The set of futures representing the running evaluators.
skip_unfinished : bool
Whether to skip runs that are not finished or raised
an error.
project_name : Optional[str]
The LangSmith project name to be organize eval chain runs under.
"""
name = "evaluator_callback_handler"
def __init__(
self,
evaluators: Sequence[RunEvaluator],
max_workers: Optional[int] = None,
client: Optional[LangChainPlusClient] = None,
example_id: Optional[Union[UUID, str]] = None,
skip_unfinished: bool = True,
project_name: Optional[str] = None,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.example_id = (
UUID(example_id) if isinstance(example_id, str) else example_id
)
self.client = client or LangChainPlusClient()
self.evaluators = evaluators
self.executor = ThreadPoolExecutor(
max_workers=max(max_workers or len(evaluators), 1)
)
self.futures: Set[Future] = set()
self.skip_unfinished = skip_unfinished
self.project_name = project_name
def _evaluate_in_project(self, run: Run, evaluator: RunEvaluator) -> None:
"""Evaluate the run in the project.
Parameters
----------
run : Run
The run to be evaluated.
evaluator : RunEvaluator
The evaluator to use for evaluating the run.
"""
try:
if self.project_name is None:
self.client.evaluate_run(run, evaluator)
with tracing_v2_enabled(project_name=self.project_name, tags=["eval"]):
self.client.evaluate_run(run, evaluator)
except Exception as e:
logger.error(
f"Error evaluating run {run.id} with "
f"{evaluator.__class__.__name__}: {e}",
exc_info=True,
)
raise e
def _persist_run(self, run: Run) -> None:
"""Run the evaluator on the run.
Parameters
----------
run : Run
The run to be evaluated.
"""
if self.skip_unfinished and not run.outputs:
logger.debug(f"Skipping unfinished run {run.id}")
return
run_ = run.copy()
run_.reference_example_id = self.example_id
for evaluator in self.evaluators:
self.futures.add(
self.executor.submit(self._evaluate_in_project, run_, evaluator)
)
def wait_for_futures(self) -> None:
"""Wait for all futures to complete."""
futures = list(self.futures)
wait(futures)
for future in futures:
self.futures.remove(future)
|
langchain.callbacks.tracers.evaluation.EvaluatorCallbackHandler¶
class langchain.callbacks.tracers.evaluation.EvaluatorCallbackHandler(evaluators: Sequence[RunEvaluator], max_workers: Optional[int] = None, client: Optional[Client] = None, example_id: Optional[Union[UUID, str]] = None, skip_unfinished: bool = True, project_name: Optional[str] = None, **kwargs: Any)[source]¶
Bases: BaseTracer
A tracer that runs a run evaluator whenever a run is persisted.
Parameters
evaluators (Sequence[RunEvaluator]) – The run evaluators to apply to all top level runs.
max_workers (int, optional) – The maximum number of worker threads to use for running the evaluators.
If not specified, it will default to the number of evaluators.
client (LangSmith Client, optional) – The LangSmith client instance to use for evaluating the runs.
If not specified, a new instance will be created.
example_id (Union[UUID, str], optional) – The example ID to be associated with the runs.
project_name (str, optional) – The LangSmith project name to be organize eval chain runs under.
example_id¶
The example ID associated with the runs.
Type
Union[UUID, None]
client¶
The LangSmith client instance used for evaluating the runs.
Type
Client
evaluators¶
The sequence of run evaluators to be executed.
Type
Sequence[RunEvaluator]
executor¶
The thread pool executor used for running the evaluators.
Type
ThreadPoolExecutor
futures¶
The set of futures representing the running evaluators.
Type
Set[Future]
skip_unfinished¶
Whether to skip runs that are not finished or raised
an error.
Type
bool
project_name¶
The LangSmith project name to be organize eval chain runs under.
Type
Optional[str]
Methods
__init__(evaluators[, max_workers, client, ...])
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id, **kwargs)
End a trace for a chain run.
on_chain_error(error, *, run_id, **kwargs)
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *, run_id[, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
wait_for_futures()
Wait for all futures to complete.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
name
raise_error
run_inline
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a chain run.
on_chain_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for an LLM run.
on_llm_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run when Retriever starts running.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a tool run.
on_tool_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a tool run.
wait_for_futures() → None[source]¶
Wait for all futures to complete.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
name = 'evaluator_callback_handler'¶
raise_error: bool = False¶
run_inline: bool = False¶
run_map: Dict[str, Run]¶
|
A tracer that runs a run evaluator whenever a run is persisted.
|
26051f93-6ff8-43ff-aabd-597c22934bf9
|
[
"__future__.annotations",
"json",
"typing.TYPE_CHECKING",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Tuple",
"typing.TypedDict",
"typing.Union",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.Run",
"langchain.callbacks.tracers.schemas.RunTypeEnum",
"wandb.Settings",
"wandb.sdk.data_types.trace_tree.Span",
"wandb.sdk.lib.paths.StrPath",
"wandb.wandb_run.Run"
] |
langchain.callbacks.tracers.wandb.WandbRunArgs
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.wandb.WandbRunArgs.html#langchain.callbacks.tracers.wandb.WandbRunArgs
|
class WandbRunArgs(TypedDict):
"""Arguments for the WandbTracer."""
job_type: Optional[str]
dir: Optional[StrPath]
config: Union[Dict, str, None]
project: Optional[str]
entity: Optional[str]
reinit: Optional[bool]
tags: Optional[Sequence]
group: Optional[str]
name: Optional[str]
notes: Optional[str]
magic: Optional[Union[dict, str, bool]]
config_exclude_keys: Optional[List[str]]
config_include_keys: Optional[List[str]]
anonymous: Optional[str]
mode: Optional[str]
allow_val_change: Optional[bool]
resume: Optional[Union[bool, str]]
force: Optional[bool]
tensorboard: Optional[bool]
sync_tensorboard: Optional[bool]
monitor_gym: Optional[bool]
save_code: Optional[bool]
id: Optional[str]
settings: Union[WBSettings, Dict[str, Any], None]
|
langchain.callbacks.tracers.wandb.WandbRunArgs¶
class langchain.callbacks.tracers.wandb.WandbRunArgs[source]¶
Bases: TypedDict
Arguments for the WandbTracer.
Methods
__init__(*args, **kwargs)
clear()
copy()
fromkeys([value])
Create a new dictionary with keys from iterable and values set to value.
get(key[, default])
Return the value for key if key is in the dictionary, else default.
items()
keys()
pop(k[,d])
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem()
Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default])
Insert key with a value of default if key is not in the dictionary.
update([E, ]**F)
If E is present and has a .keys() method, then does:
for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does:
for k, v in E: D[k] = v In either case, this is followed by: for k in F:
D[k] = F[k]
values()
Attributes
job_type
dir
config
project
entity
reinit
tags
group
name
notes
magic
config_exclude_keys
config_include_keys
anonymous
mode
allow_val_change
resume
force
tensorboard
sync_tensorboard
monitor_gym
save_code
id
settings
clear() → None. Remove all items from D.¶
copy() → a shallow copy of D¶
fromkeys(value=None, /)¶
Create a new dictionary with keys from iterable and values set to value.
get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
items() → a set-like object providing a view on D's items¶
keys() → a set-like object providing a view on D's keys¶
pop(k[, d]) → v, remove specified key and return the corresponding value.¶
If the key is not found, return the default if given; otherwise,
raise a KeyError.
popitem()¶
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
setdefault(key, default=None, /)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update([E, ]**F) → None. Update D from dict/iterable E and F.¶
If E is present and has a .keys() method, then does:
for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does:
for k, v in E: D[k] = v
In either case, this is followed by: for k in F:
D[k] = F[k]
values() → an object providing a view on D's values¶
allow_val_change: Optional[bool]¶
anonymous: Optional[str]¶
config: Union[Dict, str, None]¶
config_exclude_keys: Optional[List[str]]¶
config_include_keys: Optional[List[str]]¶
dir: Optional[StrPath]¶
entity: Optional[str]¶
force: Optional[bool]¶
group: Optional[str]¶
id: Optional[str]¶
job_type: Optional[str]¶
magic: Optional[Union[dict, str, bool]]¶
mode: Optional[str]¶
monitor_gym: Optional[bool]¶
name: Optional[str]¶
notes: Optional[str]¶
project: Optional[str]¶
reinit: Optional[bool]¶
resume: Optional[Union[bool, str]]¶
save_code: Optional[bool]¶
settings: Union[WBSettings, Dict[str, Any], None]¶
sync_tensorboard: Optional[bool]¶
tags: Optional[Sequence]¶
tensorboard: Optional[bool]¶
|
Arguments for the WandbTracer.
|
5ba94549-8198-456d-b42e-bcc2b1e56d18
|
[
"__future__.annotations",
"json",
"typing.TYPE_CHECKING",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Tuple",
"typing.TypedDict",
"typing.Union",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.Run",
"langchain.callbacks.tracers.schemas.RunTypeEnum",
"wandb.Settings",
"wandb.sdk.data_types.trace_tree.Span",
"wandb.sdk.lib.paths.StrPath",
"wandb.wandb_run.Run"
] |
langchain.callbacks.tracers.wandb.WandbTracer
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.wandb.WandbTracer.html#langchain.callbacks.tracers.wandb.WandbTracer
|
class WandbTracer(BaseTracer):
"""Callback Handler that logs to Weights and Biases.
This handler will log the model architecture and run traces to Weights and Biases.
This will ensure that all LangChain activity is logged to W&B.
"""
_run: Optional[WBRun] = None
_run_args: Optional[WandbRunArgs] = None
def __init__(self, run_args: Optional[WandbRunArgs] = None, **kwargs: Any) -> None:
"""Initializes the WandbTracer.
Parameters:
run_args: (dict, optional) Arguments to pass to `wandb.init()`. If not
provided, `wandb.init()` will be called with no arguments. Please
refer to the `wandb.init` for more details.
To use W&B to monitor all LangChain activity, add this tracer like any other
LangChain callback:
```
from wandb.integration.langchain import WandbTracer
tracer = WandbTracer()
chain = LLMChain(llm, callbacks=[tracer])
# ...end of notebook / script:
tracer.finish()
```
"""
super().__init__(**kwargs)
try:
import wandb
from wandb.sdk.data_types import trace_tree
except ImportError as e:
raise ImportError(
"Could not import wandb python package."
"Please install it with `pip install -U wandb`."
) from e
self._wandb = wandb
self._trace_tree = trace_tree
self._run_args = run_args
self._ensure_run(should_print_url=(wandb.run is None))
self.run_processor = RunProcessor(self._wandb, self._trace_tree)
def finish(self) -> None:
"""Waits for all asynchronous processes to finish and data to upload.
Proxy for `wandb.finish()`.
"""
self._wandb.finish()
def _log_trace_from_run(self, run: Run) -> None:
"""Logs a LangChain Run to W*B as a W&B Trace."""
self._ensure_run()
root_span = self.run_processor.process_span(run)
model_dict = self.run_processor.process_model(run)
if root_span is None:
return
model_trace = self._trace_tree.WBTraceTree(
root_span=root_span,
model_dict=model_dict,
)
if self._wandb.run is not None:
self._wandb.run.log({"langchain_trace": model_trace})
def _ensure_run(self, should_print_url: bool = False) -> None:
"""Ensures an active W&B run exists.
If not, will start a new run with the provided run_args.
"""
if self._wandb.run is None:
# Make a shallow copy of the run args, so we don't modify the original
run_args = self._run_args or {} # type: ignore
run_args: dict = {**run_args} # type: ignore
# Prefer to run in silent mode since W&B has a lot of output
# which can be undesirable when dealing with text-based models.
if "settings" not in run_args: # type: ignore
run_args["settings"] = {"silent": True} # type: ignore
# Start the run and add the stream table
self._wandb.init(**run_args)
if self._wandb.run is not None:
if should_print_url:
run_url = self._wandb.run.settings.run_url
self._wandb.termlog(
f"Streaming LangChain activity to W&B at {run_url}\n"
"`WandbTracer` is currently in beta.\n"
"Please report any issues to "
"https://github.com/wandb/wandb/issues with the tag "
"`langchain`."
)
self._wandb.run._label(repo="langchain")
def _persist_run(self, run: "Run") -> None:
"""Persist a run."""
self._log_trace_from_run(run)
|
langchain.callbacks.tracers.wandb.WandbTracer¶
class langchain.callbacks.tracers.wandb.WandbTracer(run_args: Optional[WandbRunArgs] = None, **kwargs: Any)[source]¶
Bases: BaseTracer
Callback Handler that logs to Weights and Biases.
This handler will log the model architecture and run traces to Weights and Biases.
This will ensure that all LangChain activity is logged to W&B.
Initializes the WandbTracer.
Parameters
run_args – (dict, optional) Arguments to pass to wandb.init(). If not
provided, wandb.init() will be called with no arguments. Please
refer to the wandb.init for more details.
To use W&B to monitor all LangChain activity, add this tracer like any other
LangChain callback:
```
from wandb.integration.langchain import WandbTracer
tracer = WandbTracer()
chain = LLMChain(llm, callbacks=[tracer])
# …end of notebook / script:
tracer.finish()
```
Methods
__init__([run_args])
Initializes the WandbTracer.
finish()
Waits for all asynchronous processes to finish and data to upload.
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id, **kwargs)
End a trace for a chain run.
on_chain_error(error, *, run_id, **kwargs)
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *, run_id[, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
finish() → None[source]¶
Waits for all asynchronous processes to finish and data to upload.
Proxy for wandb.finish().
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a chain run.
on_chain_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for an LLM run.
on_llm_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run when Retriever starts running.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a tool run.
on_tool_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a tool run.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
raise_error: bool = False¶
run_inline: bool = False¶
run_map: Dict[str, Run]¶
|
Callback Handler that logs to Weights and Biases.
|
bff5a30f-3c8f-4cb9-96a4-9760813524fb
|
[
"__future__.annotations",
"datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"uuid.UUID",
"langchainplus_sdk.schemas.RunBase",
"langchainplus_sdk.schemas.RunTypeEnum",
"pydantic.BaseModel",
"pydantic.Field",
"pydantic.root_validator",
"langchain.schema.LLMResult"
] |
langchain.callbacks.tracers.schemas.TracerSessionV1Base
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionV1Base.html#langchain.callbacks.tracers.schemas.TracerSessionV1Base
|
class TracerSessionV1Base(BaseModel):
"""Base class for TracerSessionV1."""
start_time: datetime.datetime = Field(default_factory=datetime.datetime.utcnow)
name: Optional[str] = None
extra: Optional[Dict[str, Any]] = None
|
langchain.callbacks.tracers.schemas.TracerSessionV1Base¶
class langchain.callbacks.tracers.schemas.TracerSessionV1Base(*, start_time: datetime = None, name: Optional[str] = None, extra: Optional[Dict[str, Any]] = None)[source]¶
Bases: BaseModel
Base class for TracerSessionV1.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param extra: Optional[Dict[str, Any]] = None¶
param name: Optional[str] = None¶
param start_time: datetime.datetime [Optional]¶
|
Base class for TracerSessionV1.
|
38ea4373-b3eb-448c-8c30-84510eb323ef
|
[
"__future__.annotations",
"datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"uuid.UUID",
"langchainplus_sdk.schemas.RunBase",
"langchainplus_sdk.schemas.RunTypeEnum",
"pydantic.BaseModel",
"pydantic.Field",
"pydantic.root_validator",
"langchain.schema.LLMResult"
] |
langchain.callbacks.tracers.schemas.TracerSessionV1Create
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionV1Create.html#langchain.callbacks.tracers.schemas.TracerSessionV1Create
|
class TracerSessionV1Create(TracerSessionV1Base):
"""Create class for TracerSessionV1."""
|
langchain.callbacks.tracers.schemas.TracerSessionV1Create¶
class langchain.callbacks.tracers.schemas.TracerSessionV1Create(*, start_time: datetime = None, name: Optional[str] = None, extra: Optional[Dict[str, Any]] = None)[source]¶
Bases: TracerSessionV1Base
Create class for TracerSessionV1.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param extra: Optional[Dict[str, Any]] = None¶
param name: Optional[str] = None¶
param start_time: datetime.datetime [Optional]¶
|
Create class for TracerSessionV1.
|
6bd74e49-d5ea-449c-9333-2a64378150f4
|
[
"__future__.annotations",
"datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"uuid.UUID",
"langchainplus_sdk.schemas.RunBase",
"langchainplus_sdk.schemas.RunTypeEnum",
"pydantic.BaseModel",
"pydantic.Field",
"pydantic.root_validator",
"langchain.schema.LLMResult"
] |
langchain.callbacks.tracers.schemas.TracerSessionV1
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionV1.html#langchain.callbacks.tracers.schemas.TracerSessionV1
|
class TracerSessionV1(TracerSessionV1Base):
"""TracerSessionV1 schema."""
id: int
|
langchain.callbacks.tracers.schemas.TracerSessionV1¶
class langchain.callbacks.tracers.schemas.TracerSessionV1(*, start_time: datetime = None, name: Optional[str] = None, extra: Optional[Dict[str, Any]] = None, id: int)[source]¶
Bases: TracerSessionV1Base
TracerSessionV1 schema.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param extra: Optional[Dict[str, Any]] = None¶
param id: int [Required]¶
param name: Optional[str] = None¶
param start_time: datetime.datetime [Optional]¶
|
TracerSessionV1 schema.
|
a91bcc0b-4c10-4a6c-8a3c-b89a63fab54d
|
[
"__future__.annotations",
"datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"uuid.UUID",
"langchainplus_sdk.schemas.RunBase",
"langchainplus_sdk.schemas.RunTypeEnum",
"pydantic.BaseModel",
"pydantic.Field",
"pydantic.root_validator",
"langchain.schema.LLMResult"
] |
langchain.callbacks.tracers.schemas.TracerSessionBase
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSessionBase.html#langchain.callbacks.tracers.schemas.TracerSessionBase
|
class TracerSessionBase(TracerSessionV1Base):
"""A creation class for TracerSession."""
tenant_id: UUID
|
langchain.callbacks.tracers.schemas.TracerSessionBase¶
class langchain.callbacks.tracers.schemas.TracerSessionBase(*, start_time: datetime = None, name: Optional[str] = None, extra: Optional[Dict[str, Any]] = None, tenant_id: UUID)[source]¶
Bases: TracerSessionV1Base
A creation class for TracerSession.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param extra: Optional[Dict[str, Any]] = None¶
param name: Optional[str] = None¶
param start_time: datetime.datetime [Optional]¶
param tenant_id: uuid.UUID [Required]¶
|
A creation class for TracerSession.
|
ee5e417e-743b-4761-81f3-26b0e05d0859
|
[
"__future__.annotations",
"datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"uuid.UUID",
"langchainplus_sdk.schemas.RunBase",
"langchainplus_sdk.schemas.RunTypeEnum",
"pydantic.BaseModel",
"pydantic.Field",
"pydantic.root_validator",
"langchain.schema.LLMResult"
] |
langchain.callbacks.tracers.schemas.TracerSession
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.TracerSession.html#langchain.callbacks.tracers.schemas.TracerSession
|
class TracerSession(TracerSessionBase):
"""TracerSessionV1 schema for the V2 API."""
id: UUID
|
langchain.callbacks.tracers.schemas.TracerSession¶
class langchain.callbacks.tracers.schemas.TracerSession(*, start_time: datetime = None, name: Optional[str] = None, extra: Optional[Dict[str, Any]] = None, tenant_id: UUID, id: UUID)[source]¶
Bases: TracerSessionBase
TracerSessionV1 schema for the V2 API.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param extra: Optional[Dict[str, Any]] = None¶
param id: uuid.UUID [Required]¶
param name: Optional[str] = None¶
param start_time: datetime.datetime [Optional]¶
param tenant_id: uuid.UUID [Required]¶
|
TracerSessionV1 schema for the V2 API.
|
683357de-6fe7-4c79-a75f-591e63d1e668
|
[
"__future__.annotations",
"datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"uuid.UUID",
"langchainplus_sdk.schemas.RunBase",
"langchainplus_sdk.schemas.RunTypeEnum",
"pydantic.BaseModel",
"pydantic.Field",
"pydantic.root_validator",
"langchain.schema.LLMResult"
] |
langchain.callbacks.tracers.schemas.BaseRun
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.BaseRun.html#langchain.callbacks.tracers.schemas.BaseRun
|
class BaseRun(BaseModel):
"""Base class for Run."""
uuid: str
parent_uuid: Optional[str] = None
start_time: datetime.datetime = Field(default_factory=datetime.datetime.utcnow)
end_time: datetime.datetime = Field(default_factory=datetime.datetime.utcnow)
extra: Optional[Dict[str, Any]] = None
execution_order: int
child_execution_order: int
serialized: Dict[str, Any]
session_id: int
error: Optional[str] = None
|
langchain.callbacks.tracers.schemas.BaseRun¶
class langchain.callbacks.tracers.schemas.BaseRun(*, uuid: str, parent_uuid: Optional[str] = None, start_time: datetime = None, end_time: datetime = None, extra: Optional[Dict[str, Any]] = None, execution_order: int, child_execution_order: int, serialized: Dict[str, Any], session_id: int, error: Optional[str] = None)[source]¶
Bases: BaseModel
Base class for Run.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param child_execution_order: int [Required]¶
param end_time: datetime.datetime [Optional]¶
param error: Optional[str] = None¶
param execution_order: int [Required]¶
param extra: Optional[Dict[str, Any]] = None¶
param parent_uuid: Optional[str] = None¶
param serialized: Dict[str, Any] [Required]¶
param session_id: int [Required]¶
param start_time: datetime.datetime [Optional]¶
param uuid: str [Required]¶
|
Base class for Run.
|
05045801-aea9-42b3-8dfb-f28c2a400255
|
[
"__future__.annotations",
"datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"uuid.UUID",
"langchainplus_sdk.schemas.RunBase",
"langchainplus_sdk.schemas.RunTypeEnum",
"pydantic.BaseModel",
"pydantic.Field",
"pydantic.root_validator",
"langchain.schema.LLMResult"
] |
langchain.callbacks.tracers.schemas.LLMRun
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.LLMRun.html#langchain.callbacks.tracers.schemas.LLMRun
|
class LLMRun(BaseRun):
"""Class for LLMRun."""
prompts: List[str]
response: Optional[LLMResult] = None
|
langchain.callbacks.tracers.schemas.LLMRun¶
class langchain.callbacks.tracers.schemas.LLMRun(*, uuid: str, parent_uuid: Optional[str] = None, start_time: datetime = None, end_time: datetime = None, extra: Optional[Dict[str, Any]] = None, execution_order: int, child_execution_order: int, serialized: Dict[str, Any], session_id: int, error: Optional[str] = None, prompts: List[str], response: Optional[LLMResult] = None)[source]¶
Bases: BaseRun
Class for LLMRun.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param child_execution_order: int [Required]¶
param end_time: datetime.datetime [Optional]¶
param error: Optional[str] = None¶
param execution_order: int [Required]¶
param extra: Optional[Dict[str, Any]] = None¶
param parent_uuid: Optional[str] = None¶
param prompts: List[str] [Required]¶
param response: Optional[langchain.schema.output.LLMResult] = None¶
param serialized: Dict[str, Any] [Required]¶
param session_id: int [Required]¶
param start_time: datetime.datetime [Optional]¶
param uuid: str [Required]¶
|
Class for LLMRun.
|
9aeb9165-33c3-4da0-b9e5-560cc997a2c1
|
[
"__future__.annotations",
"datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"uuid.UUID",
"langchainplus_sdk.schemas.RunBase",
"langchainplus_sdk.schemas.RunTypeEnum",
"pydantic.BaseModel",
"pydantic.Field",
"pydantic.root_validator",
"langchain.schema.LLMResult"
] |
langchain.callbacks.tracers.schemas.ChainRun
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.ChainRun.html#langchain.callbacks.tracers.schemas.ChainRun
|
class ChainRun(BaseRun):
"""Class for ChainRun."""
inputs: Dict[str, Any]
outputs: Optional[Dict[str, Any]] = None
child_llm_runs: List[LLMRun] = Field(default_factory=list)
child_chain_runs: List[ChainRun] = Field(default_factory=list)
child_tool_runs: List[ToolRun] = Field(default_factory=list)
|
langchain.callbacks.tracers.schemas.ChainRun¶
class langchain.callbacks.tracers.schemas.ChainRun(*, uuid: str, parent_uuid: Optional[str] = None, start_time: datetime = None, end_time: datetime = None, extra: Optional[Dict[str, Any]] = None, execution_order: int, child_execution_order: int, serialized: Dict[str, Any], session_id: int, error: Optional[str] = None, inputs: Dict[str, Any], outputs: Optional[Dict[str, Any]] = None, child_llm_runs: List[LLMRun] = None, child_chain_runs: List[ChainRun] = None, child_tool_runs: List[ToolRun] = None)[source]¶
Bases: BaseRun
Class for ChainRun.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param child_chain_runs: List[langchain.callbacks.tracers.schemas.ChainRun] [Optional]¶
param child_execution_order: int [Required]¶
param child_llm_runs: List[langchain.callbacks.tracers.schemas.LLMRun] [Optional]¶
param child_tool_runs: List[langchain.callbacks.tracers.schemas.ToolRun] [Optional]¶
param end_time: datetime.datetime [Optional]¶
param error: Optional[str] = None¶
param execution_order: int [Required]¶
param extra: Optional[Dict[str, Any]] = None¶
param inputs: Dict[str, Any] [Required]¶
param outputs: Optional[Dict[str, Any]] = None¶
param parent_uuid: Optional[str] = None¶
param serialized: Dict[str, Any] [Required]¶
param session_id: int [Required]¶
param start_time: datetime.datetime [Optional]¶
param uuid: str [Required]¶
|
Class for ChainRun.
|
2074a539-0666-463a-b000-2e9b987cf8b3
|
[
"__future__.annotations",
"datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"uuid.UUID",
"langchainplus_sdk.schemas.RunBase",
"langchainplus_sdk.schemas.RunTypeEnum",
"pydantic.BaseModel",
"pydantic.Field",
"pydantic.root_validator",
"langchain.schema.LLMResult"
] |
langchain.callbacks.tracers.schemas.ToolRun
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.ToolRun.html#langchain.callbacks.tracers.schemas.ToolRun
|
class ToolRun(BaseRun):
"""Class for ToolRun."""
tool_input: str
output: Optional[str] = None
action: str
child_llm_runs: List[LLMRun] = Field(default_factory=list)
child_chain_runs: List[ChainRun] = Field(default_factory=list)
child_tool_runs: List[ToolRun] = Field(default_factory=list)
|
langchain.callbacks.tracers.schemas.ToolRun¶
class langchain.callbacks.tracers.schemas.ToolRun(*, uuid: str, parent_uuid: Optional[str] = None, start_time: datetime = None, end_time: datetime = None, extra: Optional[Dict[str, Any]] = None, execution_order: int, child_execution_order: int, serialized: Dict[str, Any], session_id: int, error: Optional[str] = None, tool_input: str, output: Optional[str] = None, action: str, child_llm_runs: List[LLMRun] = None, child_chain_runs: List[ChainRun] = None, child_tool_runs: List[ToolRun] = None)[source]¶
Bases: BaseRun
Class for ToolRun.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param action: str [Required]¶
param child_chain_runs: List[langchain.callbacks.tracers.schemas.ChainRun] [Optional]¶
param child_execution_order: int [Required]¶
param child_llm_runs: List[langchain.callbacks.tracers.schemas.LLMRun] [Optional]¶
param child_tool_runs: List[langchain.callbacks.tracers.schemas.ToolRun] [Optional]¶
param end_time: datetime.datetime [Optional]¶
param error: Optional[str] = None¶
param execution_order: int [Required]¶
param extra: Optional[Dict[str, Any]] = None¶
param output: Optional[str] = None¶
param parent_uuid: Optional[str] = None¶
param serialized: Dict[str, Any] [Required]¶
param session_id: int [Required]¶
param start_time: datetime.datetime [Optional]¶
param tool_input: str [Required]¶
param uuid: str [Required]¶
|
Class for ToolRun.
|
3f1ceaf6-df5e-46fd-a378-dfbb94592852
|
[
"__future__.annotations",
"datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"uuid.UUID",
"langchainplus_sdk.schemas.RunBase",
"langchainplus_sdk.schemas.RunTypeEnum",
"pydantic.BaseModel",
"pydantic.Field",
"pydantic.root_validator",
"langchain.schema.LLMResult"
] |
langchain.callbacks.tracers.schemas.Run
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.Run.html#langchain.callbacks.tracers.schemas.Run
|
class Run(BaseRunV2):
"""Run schema for the V2 API in the Tracer."""
execution_order: int
child_execution_order: int
child_runs: List[Run] = Field(default_factory=list)
tags: Optional[List[str]] = Field(default_factory=list)
@root_validator(pre=True)
def assign_name(cls, values: dict) -> dict:
"""Assign name to the run."""
if values.get("name") is None:
if "name" in values["serialized"]:
values["name"] = values["serialized"]["name"]
elif "id" in values["serialized"]:
values["name"] = values["serialized"]["id"][-1]
return values
|
langchain.callbacks.tracers.schemas.Run¶
class langchain.callbacks.tracers.schemas.Run(*, id: UUID, name: str, start_time: datetime, run_type: Union[RunTypeEnum, str], end_time: Optional[datetime] = None, extra: Optional[dict] = None, error: Optional[str] = None, serialized: Optional[dict] = None, events: Optional[List[Dict]] = None, inputs: dict, outputs: Optional[dict] = None, reference_example_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, execution_order: int, child_execution_order: int, child_runs: List[Run] = None)[source]¶
Bases: RunBase
Run schema for the V2 API in the Tracer.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param child_execution_order: int [Required]¶
param child_runs: List[Run] [Optional]¶
param end_time: Optional[datetime] = None¶
param error: Optional[str] = None¶
param events: Optional[List[Dict]] = None¶
param execution_order: int [Required]¶
param extra: Optional[dict] = None¶
param id: UUID [Required]¶
param inputs: dict [Required]¶
param name: str [Required]¶
param outputs: Optional[dict] = None¶
param parent_run_id: Optional[UUID] = None¶
param reference_example_id: Optional[UUID] = None¶
param run_type: Union[RunTypeEnum, str] [Required]¶
param serialized: Optional[dict] = None¶
param start_time: datetime [Required]¶
param tags: Optional[List[str]] [Optional]¶
validator assign_name » all fields[source]¶
Assign name to the run.
|
Run schema for the V2 API in the Tracer.
|
c392e4e0-8504-45d6-a160-6fb35d67d00c
|
[
"__future__.annotations",
"logging",
"os",
"typing.Any",
"typing.Dict",
"typing.Optional",
"typing.Union",
"requests",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.ChainRun",
"langchain.callbacks.tracers.schemas.LLMRun",
"langchain.callbacks.tracers.schemas.Run",
"langchain.callbacks.tracers.schemas.ToolRun",
"langchain.callbacks.tracers.schemas.TracerSession",
"langchain.callbacks.tracers.schemas.TracerSessionV1",
"langchain.callbacks.tracers.schemas.TracerSessionV1Base",
"langchain.schema.messages.get_buffer_string",
"langchain.utils.raise_for_status_with_text"
] |
langchain.callbacks.tracers.langchain_v1.get_headers
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain_v1.get_headers.html#langchain.callbacks.tracers.langchain_v1.get_headers
|
def get_headers() -> Dict[str, Any]:
"""Get the headers for the LangChain API."""
headers: Dict[str, Any] = {"Content-Type": "application/json"}
if os.getenv("LANGCHAIN_API_KEY"):
headers["x-api-key"] = os.getenv("LANGCHAIN_API_KEY")
return headers
|
langchain.callbacks.tracers.langchain_v1.get_headers¶
langchain.callbacks.tracers.langchain_v1.get_headers() → Dict[str, Any][source]¶
Get the headers for the LangChain API.
|
Get the headers for the LangChain API.
|
bc3d8c3d-d713-4435-a561-df954f682a31
|
[
"__future__.annotations",
"logging",
"os",
"typing.Any",
"typing.Dict",
"typing.Optional",
"typing.Union",
"requests",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.ChainRun",
"langchain.callbacks.tracers.schemas.LLMRun",
"langchain.callbacks.tracers.schemas.Run",
"langchain.callbacks.tracers.schemas.ToolRun",
"langchain.callbacks.tracers.schemas.TracerSession",
"langchain.callbacks.tracers.schemas.TracerSessionV1",
"langchain.callbacks.tracers.schemas.TracerSessionV1Base",
"langchain.schema.messages.get_buffer_string",
"langchain.utils.raise_for_status_with_text"
] |
langchain.callbacks.tracers.langchain_v1.LangChainTracerV1
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain_v1.LangChainTracerV1.html#langchain.callbacks.tracers.langchain_v1.LangChainTracerV1
|
class LangChainTracerV1(BaseTracer):
"""An implementation of the SharedTracer that POSTS to the langchain endpoint."""
def __init__(self, **kwargs: Any) -> None:
"""Initialize the LangChain tracer."""
super().__init__(**kwargs)
self.session: Optional[TracerSessionV1] = None
self._endpoint = _get_endpoint()
self._headers = get_headers()
def _convert_to_v1_run(self, run: Run) -> Union[LLMRun, ChainRun, ToolRun]:
session = self.session or self.load_default_session()
if not isinstance(session, TracerSessionV1):
raise ValueError(
"LangChainTracerV1 is not compatible with"
f" session of type {type(session)}"
)
if run.run_type == "llm":
if "prompts" in run.inputs:
prompts = run.inputs["prompts"]
elif "messages" in run.inputs:
prompts = [get_buffer_string(batch) for batch in run.inputs["messages"]]
else:
raise ValueError("No prompts found in LLM run inputs")
return LLMRun(
uuid=str(run.id) if run.id else None,
parent_uuid=str(run.parent_run_id) if run.parent_run_id else None,
start_time=run.start_time,
end_time=run.end_time,
extra=run.extra,
execution_order=run.execution_order,
child_execution_order=run.child_execution_order,
serialized=run.serialized,
session_id=session.id,
error=run.error,
prompts=prompts,
response=run.outputs if run.outputs else None,
)
if run.run_type == "chain":
child_runs = [self._convert_to_v1_run(run) for run in run.child_runs]
return ChainRun(
uuid=str(run.id) if run.id else None,
parent_uuid=str(run.parent_run_id) if run.parent_run_id else None,
start_time=run.start_time,
end_time=run.end_time,
execution_order=run.execution_order,
child_execution_order=run.child_execution_order,
serialized=run.serialized,
session_id=session.id,
inputs=run.inputs,
outputs=run.outputs,
error=run.error,
extra=run.extra,
child_llm_runs=[run for run in child_runs if isinstance(run, LLMRun)],
child_chain_runs=[
run for run in child_runs if isinstance(run, ChainRun)
],
child_tool_runs=[run for run in child_runs if isinstance(run, ToolRun)],
)
if run.run_type == "tool":
child_runs = [self._convert_to_v1_run(run) for run in run.child_runs]
return ToolRun(
uuid=str(run.id) if run.id else None,
parent_uuid=str(run.parent_run_id) if run.parent_run_id else None,
start_time=run.start_time,
end_time=run.end_time,
execution_order=run.execution_order,
child_execution_order=run.child_execution_order,
serialized=run.serialized,
session_id=session.id,
action=str(run.serialized),
tool_input=run.inputs.get("input", ""),
output=None if run.outputs is None else run.outputs.get("output"),
error=run.error,
extra=run.extra,
child_chain_runs=[
run for run in child_runs if isinstance(run, ChainRun)
],
child_tool_runs=[run for run in child_runs if isinstance(run, ToolRun)],
child_llm_runs=[run for run in child_runs if isinstance(run, LLMRun)],
)
raise ValueError(f"Unknown run type: {run.run_type}")
def _persist_run(self, run: Union[Run, LLMRun, ChainRun, ToolRun]) -> None:
"""Persist a run."""
if isinstance(run, Run):
v1_run = self._convert_to_v1_run(run)
else:
v1_run = run
if isinstance(v1_run, LLMRun):
endpoint = f"{self._endpoint}/llm-runs"
elif isinstance(v1_run, ChainRun):
endpoint = f"{self._endpoint}/chain-runs"
else:
endpoint = f"{self._endpoint}/tool-runs"
try:
response = requests.post(
endpoint,
data=v1_run.json(),
headers=self._headers,
)
raise_for_status_with_text(response)
except Exception as e:
logging.warning(f"Failed to persist run: {e}")
def _persist_session(
self, session_create: TracerSessionV1Base
) -> Union[TracerSessionV1, TracerSession]:
"""Persist a session."""
try:
r = requests.post(
f"{self._endpoint}/sessions",
data=session_create.json(),
headers=self._headers,
)
session = TracerSessionV1(id=r.json()["id"], **session_create.dict())
except Exception as e:
logging.warning(f"Failed to create session, using default session: {e}")
session = TracerSessionV1(id=1, **session_create.dict())
return session
def _load_session(self, session_name: Optional[str] = None) -> TracerSessionV1:
"""Load a session from the tracer."""
try:
url = f"{self._endpoint}/sessions"
if session_name:
url += f"?name={session_name}"
r = requests.get(url, headers=self._headers)
tracer_session = TracerSessionV1(**r.json()[0])
except Exception as e:
session_type = "default" if not session_name else session_name
logging.warning(
f"Failed to load {session_type} session, using empty session: {e}"
)
tracer_session = TracerSessionV1(id=1)
self.session = tracer_session
return tracer_session
def load_session(self, session_name: str) -> Union[TracerSessionV1, TracerSession]:
"""Load a session with the given name from the tracer."""
return self._load_session(session_name)
def load_default_session(self) -> Union[TracerSessionV1, TracerSession]:
"""Load the default tracing session and set it as the Tracer's session."""
return self._load_session("default")
|
langchain.callbacks.tracers.langchain_v1.LangChainTracerV1¶
class langchain.callbacks.tracers.langchain_v1.LangChainTracerV1(**kwargs: Any)[source]¶
Bases: BaseTracer
An implementation of the SharedTracer that POSTS to the langchain endpoint.
Initialize the LangChain tracer.
Methods
__init__(**kwargs)
Initialize the LangChain tracer.
load_default_session()
Load the default tracing session and set it as the Tracer's session.
load_session(session_name)
Load a session with the given name from the tracer.
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id, **kwargs)
End a trace for a chain run.
on_chain_error(error, *, run_id, **kwargs)
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *, run_id[, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
load_default_session() → Union[TracerSessionV1, TracerSession][source]¶
Load the default tracing session and set it as the Tracer’s session.
load_session(session_name: str) → Union[TracerSessionV1, TracerSession][source]¶
Load a session with the given name from the tracer.
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a chain run.
on_chain_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for an LLM run.
on_llm_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run when Retriever starts running.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a tool run.
on_tool_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a tool run.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
raise_error: bool = False¶
run_inline: bool = False¶
run_map: Dict[str, langchain.callbacks.tracers.schemas.Run]¶
|
An implementation of the SharedTracer that POSTS to the langchain endpoint.
|
16246f5e-4fa9-4f95-9674-dcdc5e62b7dd
|
[
"json",
"typing.Any",
"typing.Callable",
"typing.List",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.Run",
"langchain.input.get_bolded_text",
"langchain.input.get_colored_text"
] |
langchain.callbacks.tracers.stdout.try_json_stringify
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.stdout.try_json_stringify.html#langchain.callbacks.tracers.stdout.try_json_stringify
|
def try_json_stringify(obj: Any, fallback: str) -> str:
"""
Try to stringify an object to JSON.
Args:
obj: Object to stringify.
fallback: Fallback string to return if the object cannot be stringified.
Returns:
A JSON string if the object can be stringified, otherwise the fallback string.
"""
try:
return json.dumps(obj, indent=2, ensure_ascii=False)
except Exception:
return fallback
|
langchain.callbacks.tracers.stdout.try_json_stringify¶
langchain.callbacks.tracers.stdout.try_json_stringify(obj: Any, fallback: str) → str[source]¶
Try to stringify an object to JSON.
:param obj: Object to stringify.
:param fallback: Fallback string to return if the object cannot be stringified.
Returns
A JSON string if the object can be stringified, otherwise the fallback string.
|
Try to stringify an object to JSON.
|
11814734-a6c3-47b0-acbc-4c0749c385c6
|
[
"json",
"typing.Any",
"typing.Callable",
"typing.List",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.Run",
"langchain.input.get_bolded_text",
"langchain.input.get_colored_text"
] |
langchain.callbacks.tracers.stdout.elapsed
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.stdout.elapsed.html#langchain.callbacks.tracers.stdout.elapsed
|
def elapsed(run: Any) -> str:
"""Get the elapsed time of a run.
Args:
run: any object with a start_time and end_time attribute.
Returns:
A string with the elapsed time in seconds or
milliseconds if time is less than a second.
"""
elapsed_time = run.end_time - run.start_time
milliseconds = elapsed_time.total_seconds() * 1000
if milliseconds < 1000:
return f"{milliseconds}ms"
return f"{(milliseconds / 1000):.2f}s"
|
langchain.callbacks.tracers.stdout.elapsed¶
langchain.callbacks.tracers.stdout.elapsed(run: Any) → str[source]¶
Get the elapsed time of a run.
Parameters
run – any object with a start_time and end_time attribute.
Returns
A string with the elapsed time in seconds ormilliseconds if time is less than a second.
|
Get the elapsed time of a run.
|
8caac097-336f-4475-9bbb-96779b901374
|
[
"json",
"typing.Any",
"typing.Callable",
"typing.List",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.Run",
"langchain.input.get_bolded_text",
"langchain.input.get_colored_text"
] |
langchain.callbacks.tracers.stdout.FunctionCallbackHandler
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.stdout.FunctionCallbackHandler.html#langchain.callbacks.tracers.stdout.FunctionCallbackHandler
|
class FunctionCallbackHandler(BaseTracer):
"""Tracer that calls a function with a single str parameter."""
name = "function_callback_handler"
def __init__(self, function: Callable[[str], None], **kwargs: Any) -> None:
super().__init__(**kwargs)
self.function_callback = function
def _persist_run(self, run: Run) -> None:
pass
def get_parents(self, run: Run) -> List[Run]:
parents = []
current_run = run
while current_run.parent_run_id:
parent = self.run_map.get(str(current_run.parent_run_id))
if parent:
parents.append(parent)
current_run = parent
else:
break
return parents
def get_breadcrumbs(self, run: Run) -> str:
parents = self.get_parents(run)[::-1]
string = " > ".join(
f"{parent.execution_order}:{parent.run_type}:{parent.name}"
if i != len(parents) - 1
else f"{parent.execution_order}:{parent.run_type}:{parent.name}"
for i, parent in enumerate(parents + [run])
)
return string
# logging methods
def _on_chain_start(self, run: Run) -> None:
crumbs = self.get_breadcrumbs(run)
self.function_callback(
f"{get_colored_text('[chain/start]', color='green')} "
+ get_bolded_text(f"[{crumbs}] Entering Chain run with input:\n")
+ f"{try_json_stringify(run.inputs, '[inputs]')}"
)
def _on_chain_end(self, run: Run) -> None:
crumbs = self.get_breadcrumbs(run)
self.function_callback(
f"{get_colored_text('[chain/end]', color='blue')} "
+ get_bolded_text(
f"[{crumbs}] [{elapsed(run)}] Exiting Chain run with output:\n"
)
+ f"{try_json_stringify(run.outputs, '[outputs]')}"
)
def _on_chain_error(self, run: Run) -> None:
crumbs = self.get_breadcrumbs(run)
self.function_callback(
f"{get_colored_text('[chain/error]', color='red')} "
+ get_bolded_text(
f"[{crumbs}] [{elapsed(run)}] Chain run errored with error:\n"
)
+ f"{try_json_stringify(run.error, '[error]')}"
)
def _on_llm_start(self, run: Run) -> None:
crumbs = self.get_breadcrumbs(run)
inputs = (
{"prompts": [p.strip() for p in run.inputs["prompts"]]}
if "prompts" in run.inputs
else run.inputs
)
self.function_callback(
f"{get_colored_text('[llm/start]', color='green')} "
+ get_bolded_text(f"[{crumbs}] Entering LLM run with input:\n")
+ f"{try_json_stringify(inputs, '[inputs]')}"
)
def _on_llm_end(self, run: Run) -> None:
crumbs = self.get_breadcrumbs(run)
self.function_callback(
f"{get_colored_text('[llm/end]', color='blue')} "
+ get_bolded_text(
f"[{crumbs}] [{elapsed(run)}] Exiting LLM run with output:\n"
)
+ f"{try_json_stringify(run.outputs, '[response]')}"
)
def _on_llm_error(self, run: Run) -> None:
crumbs = self.get_breadcrumbs(run)
self.function_callback(
f"{get_colored_text('[llm/error]', color='red')} "
+ get_bolded_text(
f"[{crumbs}] [{elapsed(run)}] LLM run errored with error:\n"
)
+ f"{try_json_stringify(run.error, '[error]')}"
)
def _on_tool_start(self, run: Run) -> None:
crumbs = self.get_breadcrumbs(run)
self.function_callback(
f'{get_colored_text("[tool/start]", color="green")} '
+ get_bolded_text(f"[{crumbs}] Entering Tool run with input:\n")
+ f'"{run.inputs["input"].strip()}"'
)
def _on_tool_end(self, run: Run) -> None:
crumbs = self.get_breadcrumbs(run)
if run.outputs:
self.function_callback(
f'{get_colored_text("[tool/end]", color="blue")} '
+ get_bolded_text(
f"[{crumbs}] [{elapsed(run)}] Exiting Tool run with output:\n"
)
+ f'"{run.outputs["output"].strip()}"'
)
def _on_tool_error(self, run: Run) -> None:
crumbs = self.get_breadcrumbs(run)
self.function_callback(
f"{get_colored_text('[tool/error]', color='red')} "
+ get_bolded_text(f"[{crumbs}] [{elapsed(run)}] ")
+ f"Tool run errored with error:\n"
f"{run.error}"
)
|
langchain.callbacks.tracers.stdout.FunctionCallbackHandler¶
class langchain.callbacks.tracers.stdout.FunctionCallbackHandler(function: Callable[[str], None], **kwargs: Any)[source]¶
Bases: BaseTracer
Tracer that calls a function with a single str parameter.
Methods
__init__(function, **kwargs)
get_breadcrumbs(run)
get_parents(run)
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id, **kwargs)
End a trace for a chain run.
on_chain_error(error, *, run_id, **kwargs)
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *, run_id[, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
name
raise_error
run_inline
get_breadcrumbs(run: Run) → str[source]¶
get_parents(run: Run) → List[Run][source]¶
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a chain run.
on_chain_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for an LLM run.
on_llm_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run when Retriever starts running.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a tool run.
on_tool_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a tool run.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
name = 'function_callback_handler'¶
raise_error: bool = False¶
run_inline: bool = False¶
run_map: Dict[str, Run]¶
|
Tracer that calls a function with a single str parameter.
|
be8f38bd-9500-405a-9842-3b44a5e16d8b
|
[
"json",
"typing.Any",
"typing.Callable",
"typing.List",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.Run",
"langchain.input.get_bolded_text",
"langchain.input.get_colored_text"
] |
langchain.callbacks.tracers.stdout.ConsoleCallbackHandler
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.stdout.ConsoleCallbackHandler.html#langchain.callbacks.tracers.stdout.ConsoleCallbackHandler
|
class ConsoleCallbackHandler(FunctionCallbackHandler):
"""Tracer that prints to the console."""
name = "console_callback_handler"
def __init__(self, **kwargs: Any) -> None:
super().__init__(function=print, **kwargs)
|
langchain.callbacks.tracers.stdout.ConsoleCallbackHandler¶
class langchain.callbacks.tracers.stdout.ConsoleCallbackHandler(**kwargs: Any)[source]¶
Bases: FunctionCallbackHandler
Tracer that prints to the console.
Methods
__init__(**kwargs)
get_breadcrumbs(run)
get_parents(run)
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id, **kwargs)
End a trace for a chain run.
on_chain_error(error, *, run_id, **kwargs)
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *, run_id[, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
name
raise_error
run_inline
get_breadcrumbs(run: Run) → str¶
get_parents(run: Run) → List[Run]¶
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a chain run.
on_chain_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for an LLM run.
on_llm_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run when Retriever starts running.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a tool run.
on_tool_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a tool run.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
name = 'console_callback_handler'¶
raise_error: bool = False¶
run_inline: bool = False¶
run_map: Dict[str, Run]¶
|
Tracer that prints to the console.
|
8e06f7b6-98eb-43b0-878d-c4077d815d22
|
[
"typing.Any",
"typing.List",
"typing.Optional",
"typing.Union",
"uuid.UUID",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.Run"
] |
langchain.callbacks.tracers.run_collector.RunCollectorCallbackHandler
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.run_collector.RunCollectorCallbackHandler.html#langchain.callbacks.tracers.run_collector.RunCollectorCallbackHandler
|
class RunCollectorCallbackHandler(BaseTracer):
"""
A tracer that collects all nested runs in a list.
This tracer is useful for inspection and evaluation purposes.
Parameters
----------
example_id : Optional[Union[UUID, str]], default=None
The ID of the example being traced. It can be either a UUID or a string.
"""
name = "run-collector_callback_handler"
def __init__(
self, example_id: Optional[Union[UUID, str]] = None, **kwargs: Any
) -> None:
"""
Initialize the RunCollectorCallbackHandler.
Parameters
----------
example_id : Optional[Union[UUID, str]], default=None
The ID of the example being traced. It can be either a UUID or a string.
"""
super().__init__(**kwargs)
self.example_id = (
UUID(example_id) if isinstance(example_id, str) else example_id
)
self.traced_runs: List[Run] = []
def _persist_run(self, run: Run) -> None:
"""
Persist a run by adding it to the traced_runs list.
Parameters
----------
run : Run
The run to be persisted.
"""
run_ = run.copy()
run_.reference_example_id = self.example_id
self.traced_runs.append(run_)
|
langchain.callbacks.tracers.run_collector.RunCollectorCallbackHandler¶
class langchain.callbacks.tracers.run_collector.RunCollectorCallbackHandler(example_id: Optional[Union[UUID, str]] = None, **kwargs: Any)[source]¶
Bases: BaseTracer
A tracer that collects all nested runs in a list.
This tracer is useful for inspection and evaluation purposes.
Parameters
example_id (Optional[Union[UUID, str]], default=None) – The ID of the example being traced. It can be either a UUID or a string.
Initialize the RunCollectorCallbackHandler.
Parameters
example_id (Optional[Union[UUID, str]], default=None) – The ID of the example being traced. It can be either a UUID or a string.
Methods
__init__([example_id])
Initialize the RunCollectorCallbackHandler.
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id, **kwargs)
End a trace for a chain run.
on_chain_error(error, *, run_id, **kwargs)
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *, run_id[, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
name
raise_error
run_inline
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a chain run.
on_chain_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for an LLM run.
on_llm_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run when Retriever starts running.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a tool run.
on_tool_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a tool run.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
name = 'run-collector_callback_handler'¶
raise_error: bool = False¶
run_inline: bool = False¶
run_map: Dict[str, Run]¶
|
A tracer that collects all nested runs in a list.
|
db2b9fa1-7dea-4de9-a108-56dc45cc3501
|
[
"__future__.annotations",
"logging",
"os",
"concurrent.futures.Future",
"concurrent.futures.ThreadPoolExecutor",
"concurrent.futures.wait",
"datetime.datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Set",
"typing.Union",
"uuid.UUID",
"langchainplus_sdk.LangChainPlusClient",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.Run",
"langchain.callbacks.tracers.schemas.RunTypeEnum",
"langchain.callbacks.tracers.schemas.TracerSession",
"langchain.env.get_runtime_environment",
"langchain.load.dump.dumpd",
"langchain.schema.messages.BaseMessage"
] |
langchain.callbacks.tracers.langchain.log_error_once
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain.log_error_once.html#langchain.callbacks.tracers.langchain.log_error_once
|
def log_error_once(method: str, exception: Exception) -> None:
"""Log an error once."""
global _LOGGED
if (method, type(exception)) in _LOGGED:
return
_LOGGED.add((method, type(exception)))
logger.error(exception)
|
langchain.callbacks.tracers.langchain.log_error_once¶
langchain.callbacks.tracers.langchain.log_error_once(method: str, exception: Exception) → None[source]¶
Log an error once.
|
Log an error once.
|
88151b8b-d600-4a80-9125-bb4a14f328ac
|
[
"__future__.annotations",
"logging",
"os",
"concurrent.futures.Future",
"concurrent.futures.ThreadPoolExecutor",
"concurrent.futures.wait",
"datetime.datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Set",
"typing.Union",
"uuid.UUID",
"langchainplus_sdk.LangChainPlusClient",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.Run",
"langchain.callbacks.tracers.schemas.RunTypeEnum",
"langchain.callbacks.tracers.schemas.TracerSession",
"langchain.env.get_runtime_environment",
"langchain.load.dump.dumpd",
"langchain.schema.messages.BaseMessage"
] |
langchain.callbacks.tracers.langchain.wait_for_all_tracers
|
Function
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain.wait_for_all_tracers.html#langchain.callbacks.tracers.langchain.wait_for_all_tracers
|
def wait_for_all_tracers() -> None:
"""Wait for all tracers to finish."""
global _TRACERS
for tracer in _TRACERS:
tracer.wait_for_futures()
|
langchain.callbacks.tracers.langchain.wait_for_all_tracers¶
langchain.callbacks.tracers.langchain.wait_for_all_tracers() → None[source]¶
Wait for all tracers to finish.
|
Wait for all tracers to finish.
|
83cf6de8-dcd7-437f-bdfb-01db51ef58e6
|
[
"__future__.annotations",
"logging",
"os",
"concurrent.futures.Future",
"concurrent.futures.ThreadPoolExecutor",
"concurrent.futures.wait",
"datetime.datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Set",
"typing.Union",
"uuid.UUID",
"langchainplus_sdk.LangChainPlusClient",
"langchain.callbacks.tracers.base.BaseTracer",
"langchain.callbacks.tracers.schemas.Run",
"langchain.callbacks.tracers.schemas.RunTypeEnum",
"langchain.callbacks.tracers.schemas.TracerSession",
"langchain.env.get_runtime_environment",
"langchain.load.dump.dumpd",
"langchain.schema.messages.BaseMessage"
] |
langchain.callbacks.tracers.langchain.LangChainTracer
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain.LangChainTracer.html#langchain.callbacks.tracers.langchain.LangChainTracer
|
class LangChainTracer(BaseTracer):
"""An implementation of the SharedTracer that POSTS to the langchain endpoint."""
def __init__(
self,
example_id: Optional[Union[UUID, str]] = None,
project_name: Optional[str] = None,
client: Optional[LangChainPlusClient] = None,
tags: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Initialize the LangChain tracer."""
super().__init__(**kwargs)
self.session: Optional[TracerSession] = None
self.example_id = (
UUID(example_id) if isinstance(example_id, str) else example_id
)
self.project_name = project_name or os.getenv(
"LANGCHAIN_PROJECT", os.getenv("LANGCHAIN_SESSION", "default")
)
# set max_workers to 1 to process tasks in order
self.executor = ThreadPoolExecutor(max_workers=1)
self.client = client or LangChainPlusClient()
self._futures: Set[Future] = set()
self.tags = tags or []
global _TRACERS
_TRACERS.append(self)
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
*,
run_id: UUID,
tags: Optional[List[str]] = None,
parent_run_id: Optional[UUID] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
"""Start a trace for an LLM run."""
parent_run_id_ = str(parent_run_id) if parent_run_id else None
execution_order = self._get_execution_order(parent_run_id_)
start_time = datetime.utcnow()
if metadata:
kwargs.update({"metadata": metadata})
chat_model_run = Run(
id=run_id,
parent_run_id=parent_run_id,
serialized=serialized,
inputs={"messages": [[dumpd(msg) for msg in batch] for batch in messages]},
extra=kwargs,
events=[{"name": "start", "time": start_time}],
start_time=start_time,
execution_order=execution_order,
child_execution_order=execution_order,
run_type=RunTypeEnum.llm,
tags=tags,
)
self._start_trace(chat_model_run)
self._on_chat_model_start(chat_model_run)
def _persist_run(self, run: Run) -> None:
"""The Langchain Tracer uses Post/Patch rather than persist."""
def _get_tags(self, run: Run) -> List[str]:
"""Get combined tags for a run."""
tags = set(run.tags or [])
tags.update(self.tags or [])
return list(tags)
def _persist_run_single(self, run: Run) -> None:
"""Persist a run."""
run_dict = run.dict(exclude={"child_runs"})
run_dict["tags"] = self._get_tags(run)
extra = run_dict.get("extra", {})
extra["runtime"] = get_runtime_environment()
run_dict["extra"] = extra
try:
self.client.create_run(**run_dict, project_name=self.project_name)
except Exception as e:
# Errors are swallowed by the thread executor so we need to log them here
log_error_once("post", e)
raise
def _update_run_single(self, run: Run) -> None:
"""Update a run."""
try:
run_dict = run.dict()
run_dict["tags"] = self._get_tags(run)
self.client.update_run(run.id, **run_dict)
except Exception as e:
# Errors are swallowed by the thread executor so we need to log them here
log_error_once("patch", e)
raise
def _on_llm_start(self, run: Run) -> None:
"""Persist an LLM run."""
if run.parent_run_id is None:
run.reference_example_id = self.example_id
self._futures.add(
self.executor.submit(self._persist_run_single, run.copy(deep=True))
)
def _on_chat_model_start(self, run: Run) -> None:
"""Persist an LLM run."""
if run.parent_run_id is None:
run.reference_example_id = self.example_id
self._futures.add(
self.executor.submit(self._persist_run_single, run.copy(deep=True))
)
def _on_llm_end(self, run: Run) -> None:
"""Process the LLM Run."""
self._futures.add(
self.executor.submit(self._update_run_single, run.copy(deep=True))
)
def _on_llm_error(self, run: Run) -> None:
"""Process the LLM Run upon error."""
self._futures.add(
self.executor.submit(self._update_run_single, run.copy(deep=True))
)
def _on_chain_start(self, run: Run) -> None:
"""Process the Chain Run upon start."""
if run.parent_run_id is None:
run.reference_example_id = self.example_id
self._futures.add(
self.executor.submit(self._persist_run_single, run.copy(deep=True))
)
def _on_chain_end(self, run: Run) -> None:
"""Process the Chain Run."""
self._futures.add(
self.executor.submit(self._update_run_single, run.copy(deep=True))
)
def _on_chain_error(self, run: Run) -> None:
"""Process the Chain Run upon error."""
self._futures.add(
self.executor.submit(self._update_run_single, run.copy(deep=True))
)
def _on_tool_start(self, run: Run) -> None:
"""Process the Tool Run upon start."""
if run.parent_run_id is None:
run.reference_example_id = self.example_id
self._futures.add(
self.executor.submit(self._persist_run_single, run.copy(deep=True))
)
def _on_tool_end(self, run: Run) -> None:
"""Process the Tool Run."""
self._futures.add(
self.executor.submit(self._update_run_single, run.copy(deep=True))
)
def _on_tool_error(self, run: Run) -> None:
"""Process the Tool Run upon error."""
self._futures.add(
self.executor.submit(self._update_run_single, run.copy(deep=True))
)
def _on_retriever_start(self, run: Run) -> None:
"""Process the Retriever Run upon start."""
if run.parent_run_id is None:
run.reference_example_id = self.example_id
self._futures.add(
self.executor.submit(self._persist_run_single, run.copy(deep=True))
)
def _on_retriever_end(self, run: Run) -> None:
"""Process the Retriever Run."""
self._futures.add(
self.executor.submit(self._update_run_single, run.copy(deep=True))
)
def _on_retriever_error(self, run: Run) -> None:
"""Process the Retriever Run upon error."""
self._futures.add(
self.executor.submit(self._update_run_single, run.copy(deep=True))
)
def wait_for_futures(self) -> None:
"""Wait for the given futures to complete."""
futures = list(self._futures)
wait(futures)
for future in futures:
self._futures.remove(future)
|
langchain.callbacks.tracers.langchain.LangChainTracer¶
class langchain.callbacks.tracers.langchain.LangChainTracer(example_id: Optional[Union[UUID, str]] = None, project_name: Optional[str] = None, client: Optional[Client] = None, tags: Optional[List[str]] = None, **kwargs: Any)[source]¶
Bases: BaseTracer
An implementation of the SharedTracer that POSTS to the langchain endpoint.
Initialize the LangChain tracer.
Methods
__init__([example_id, project_name, client, ...])
Initialize the LangChain tracer.
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id, **kwargs)
End a trace for a chain run.
on_chain_error(error, *, run_id, **kwargs)
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Start a trace for an LLM run.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *, run_id[, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
wait_for_futures()
Wait for the given futures to complete.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a chain run.
on_chain_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Start a trace for an LLM run.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for an LLM run.
on_llm_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Run when Retriever starts running.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → None¶
End a trace for a tool run.
on_tool_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None¶
Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶
Start a trace for a tool run.
wait_for_futures() → None[source]¶
Wait for the given futures to complete.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
raise_error: bool = False¶
run_inline: bool = False¶
run_map: Dict[str, langchain.callbacks.tracers.schemas.Run]¶
|
An implementation of the SharedTracer that POSTS to the langchain endpoint.
|
14812019-12e7-4165-85fc-250026755ca5
|
[
"__future__.annotations",
"logging",
"abc.ABC",
"abc.abstractmethod",
"datetime.datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Union",
"typing.cast",
"uuid.UUID",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.tracers.schemas.Run",
"langchain.callbacks.tracers.schemas.RunTypeEnum",
"langchain.load.dump.dumpd",
"langchain.schema.document.Document",
"langchain.schema.output.ChatGeneration",
"langchain.schema.output.LLMResult"
] |
langchain.callbacks.tracers.base.TracerException
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.base.TracerException.html#langchain.callbacks.tracers.base.TracerException
|
class TracerException(Exception):
"""Base class for exceptions in tracers module."""
|
langchain.callbacks.tracers.base.TracerException¶
class langchain.callbacks.tracers.base.TracerException[source]¶
Bases: Exception
Base class for exceptions in tracers module.
add_note()¶
Exception.add_note(note) –
add a note to the exception
with_traceback()¶
Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.
args¶
|
Base class for exceptions in tracers module.
|
0fdd4bb5-7b6e-4821-a8e0-5f3db432cdfd
|
[
"__future__.annotations",
"logging",
"abc.ABC",
"abc.abstractmethod",
"datetime.datetime",
"typing.Any",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Sequence",
"typing.Union",
"typing.cast",
"uuid.UUID",
"langchain.callbacks.base.BaseCallbackHandler",
"langchain.callbacks.tracers.schemas.Run",
"langchain.callbacks.tracers.schemas.RunTypeEnum",
"langchain.load.dump.dumpd",
"langchain.schema.document.Document",
"langchain.schema.output.ChatGeneration",
"langchain.schema.output.LLMResult"
] |
langchain.callbacks.tracers.base.BaseTracer
|
Class
|
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.base.BaseTracer.html#langchain.callbacks.tracers.base.BaseTracer
|
class BaseTracer(BaseCallbackHandler, ABC):
"""Base interface for tracers."""
def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.run_map: Dict[str, Run] = {}
@staticmethod
def _add_child_run(
parent_run: Run,
child_run: Run,
) -> None:
"""Add child run to a chain run or tool run."""
parent_run.child_runs.append(child_run)
@abstractmethod
def _persist_run(self, run: Run) -> None:
"""Persist a run."""
def _start_trace(self, run: Run) -> None:
"""Start a trace for a run."""
if run.parent_run_id:
parent_run = self.run_map[str(run.parent_run_id)]
if parent_run:
self._add_child_run(parent_run, run)
else:
logger.debug(f"Parent run with UUID {run.parent_run_id} not found.")
self.run_map[str(run.id)] = run
def _end_trace(self, run: Run) -> None:
"""End a trace for a run."""
if not run.parent_run_id:
self._persist_run(run)
else:
parent_run = self.run_map.get(str(run.parent_run_id))
if parent_run is None:
logger.debug(f"Parent run with UUID {run.parent_run_id} not found.")
elif (
run.child_execution_order is not None
and parent_run.child_execution_order is not None
and run.child_execution_order > parent_run.child_execution_order
):
parent_run.child_execution_order = run.child_execution_order
self.run_map.pop(str(run.id))
def _get_execution_order(self, parent_run_id: Optional[str] = None) -> int:
"""Get the execution order for a run."""
if parent_run_id is None:
return 1
parent_run = self.run_map.get(parent_run_id)
if parent_run is None:
logger.debug(f"Parent run with UUID {parent_run_id} not found.")
return 1
if parent_run.child_execution_order is None:
raise TracerException(
f"Parent run with UUID {parent_run_id} has no child execution order."
)
return parent_run.child_execution_order + 1
def on_llm_start(
self,
serialized: Dict[str, Any],
prompts: List[str],
*,
run_id: UUID,
tags: Optional[List[str]] = None,
parent_run_id: Optional[UUID] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
"""Start a trace for an LLM run."""
parent_run_id_ = str(parent_run_id) if parent_run_id else None
execution_order = self._get_execution_order(parent_run_id_)
start_time = datetime.utcnow()
if metadata:
kwargs.update({"metadata": metadata})
llm_run = Run(
id=run_id,
parent_run_id=parent_run_id,
serialized=serialized,
inputs={"prompts": prompts},
extra=kwargs,
events=[{"name": "start", "time": start_time}],
start_time=start_time,
execution_order=execution_order,
child_execution_order=execution_order,
run_type=RunTypeEnum.llm,
tags=tags or [],
)
self._start_trace(llm_run)
self._on_llm_start(llm_run)
def on_llm_new_token(
self,
token: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
if not run_id:
raise TracerException("No run_id provided for on_llm_new_token callback.")
run_id_ = str(run_id)
llm_run = self.run_map.get(run_id_)
if llm_run is None or llm_run.run_type != RunTypeEnum.llm:
raise TracerException("No LLM Run found to be traced")
llm_run.events.append(
{
"name": "new_token",
"time": datetime.utcnow(),
"kwargs": {"token": token},
},
)
def on_llm_end(self, response: LLMResult, *, run_id: UUID, **kwargs: Any) -> None:
"""End a trace for an LLM run."""
if not run_id:
raise TracerException("No run_id provided for on_llm_end callback.")
run_id_ = str(run_id)
llm_run = self.run_map.get(run_id_)
if llm_run is None or llm_run.run_type != RunTypeEnum.llm:
raise TracerException("No LLM Run found to be traced")
llm_run.outputs = response.dict()
for i, generations in enumerate(response.generations):
for j, generation in enumerate(generations):
output_generation = llm_run.outputs["generations"][i][j]
if "message" in output_generation:
output_generation["message"] = dumpd(
cast(ChatGeneration, generation).message
)
llm_run.end_time = datetime.utcnow()
llm_run.events.append({"name": "end", "time": llm_run.end_time})
self._end_trace(llm_run)
self._on_llm_end(llm_run)
def on_llm_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
**kwargs: Any,
) -> None:
"""Handle an error for an LLM run."""
if not run_id:
raise TracerException("No run_id provided for on_llm_error callback.")
run_id_ = str(run_id)
llm_run = self.run_map.get(run_id_)
if llm_run is None or llm_run.run_type != RunTypeEnum.llm:
raise TracerException("No LLM Run found to be traced")
llm_run.error = repr(error)
llm_run.end_time = datetime.utcnow()
llm_run.events.append({"name": "error", "time": llm_run.end_time})
self._end_trace(llm_run)
self._on_chain_error(llm_run)
def on_chain_start(
self,
serialized: Dict[str, Any],
inputs: Dict[str, Any],
*,
run_id: UUID,
tags: Optional[List[str]] = None,
parent_run_id: Optional[UUID] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
"""Start a trace for a chain run."""
parent_run_id_ = str(parent_run_id) if parent_run_id else None
execution_order = self._get_execution_order(parent_run_id_)
start_time = datetime.utcnow()
if metadata:
kwargs.update({"metadata": metadata})
chain_run = Run(
id=run_id,
parent_run_id=parent_run_id,
serialized=serialized,
inputs=inputs,
extra=kwargs,
events=[{"name": "start", "time": start_time}],
start_time=start_time,
execution_order=execution_order,
child_execution_order=execution_order,
child_runs=[],
run_type=RunTypeEnum.chain,
tags=tags or [],
)
self._start_trace(chain_run)
self._on_chain_start(chain_run)
def on_chain_end(
self, outputs: Dict[str, Any], *, run_id: UUID, **kwargs: Any
) -> None:
"""End a trace for a chain run."""
if not run_id:
raise TracerException("No run_id provided for on_chain_end callback.")
chain_run = self.run_map.get(str(run_id))
if chain_run is None or chain_run.run_type != RunTypeEnum.chain:
raise TracerException("No chain Run found to be traced")
chain_run.outputs = outputs
chain_run.end_time = datetime.utcnow()
chain_run.events.append({"name": "end", "time": chain_run.end_time})
self._end_trace(chain_run)
self._on_chain_end(chain_run)
def on_chain_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
**kwargs: Any,
) -> None:
"""Handle an error for a chain run."""
if not run_id:
raise TracerException("No run_id provided for on_chain_error callback.")
chain_run = self.run_map.get(str(run_id))
if chain_run is None or chain_run.run_type != RunTypeEnum.chain:
raise TracerException("No chain Run found to be traced")
chain_run.error = repr(error)
chain_run.end_time = datetime.utcnow()
chain_run.events.append({"name": "error", "time": chain_run.end_time})
self._end_trace(chain_run)
self._on_chain_error(chain_run)
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
*,
run_id: UUID,
tags: Optional[List[str]] = None,
parent_run_id: Optional[UUID] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
"""Start a trace for a tool run."""
parent_run_id_ = str(parent_run_id) if parent_run_id else None
execution_order = self._get_execution_order(parent_run_id_)
start_time = datetime.utcnow()
if metadata:
kwargs.update({"metadata": metadata})
tool_run = Run(
id=run_id,
parent_run_id=parent_run_id,
serialized=serialized,
inputs={"input": input_str},
extra=kwargs,
events=[{"name": "start", "time": start_time}],
start_time=start_time,
execution_order=execution_order,
child_execution_order=execution_order,
child_runs=[],
run_type=RunTypeEnum.tool,
tags=tags or [],
)
self._start_trace(tool_run)
self._on_tool_start(tool_run)
def on_tool_end(self, output: str, *, run_id: UUID, **kwargs: Any) -> None:
"""End a trace for a tool run."""
if not run_id:
raise TracerException("No run_id provided for on_tool_end callback.")
tool_run = self.run_map.get(str(run_id))
if tool_run is None or tool_run.run_type != RunTypeEnum.tool:
raise TracerException("No tool Run found to be traced")
tool_run.outputs = {"output": output}
tool_run.end_time = datetime.utcnow()
tool_run.events.append({"name": "end", "time": tool_run.end_time})
self._end_trace(tool_run)
self._on_tool_end(tool_run)
def on_tool_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
**kwargs: Any,
) -> None:
"""Handle an error for a tool run."""
if not run_id:
raise TracerException("No run_id provided for on_tool_error callback.")
tool_run = self.run_map.get(str(run_id))
if tool_run is None or tool_run.run_type != RunTypeEnum.tool:
raise TracerException("No tool Run found to be traced")
tool_run.error = repr(error)
tool_run.end_time = datetime.utcnow()
tool_run.events.append({"name": "error", "time": tool_run.end_time})
self._end_trace(tool_run)
self._on_tool_error(tool_run)
def on_retriever_start(
self,
serialized: Dict[str, Any],
query: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
"""Run when Retriever starts running."""
parent_run_id_ = str(parent_run_id) if parent_run_id else None
execution_order = self._get_execution_order(parent_run_id_)
start_time = datetime.utcnow()
if metadata:
kwargs.update({"metadata": metadata})
retrieval_run = Run(
id=run_id,
name="Retriever",
parent_run_id=parent_run_id,
serialized=serialized,
inputs={"query": query},
extra=kwargs,
events=[{"name": "start", "time": start_time}],
start_time=start_time,
execution_order=execution_order,
child_execution_order=execution_order,
child_runs=[],
run_type=RunTypeEnum.retriever,
)
self._start_trace(retrieval_run)
self._on_retriever_start(retrieval_run)
def on_retriever_error(
self,
error: Union[Exception, KeyboardInterrupt],
*,
run_id: UUID,
**kwargs: Any,
) -> None:
"""Run when Retriever errors."""
if not run_id:
raise TracerException("No run_id provided for on_retriever_error callback.")
retrieval_run = self.run_map.get(str(run_id))
if retrieval_run is None or retrieval_run.run_type != RunTypeEnum.retriever:
raise TracerException("No retriever Run found to be traced")
retrieval_run.error = repr(error)
retrieval_run.end_time = datetime.utcnow()
retrieval_run.events.append({"name": "error", "time": retrieval_run.end_time})
self._end_trace(retrieval_run)
self._on_retriever_error(retrieval_run)
def on_retriever_end(
self, documents: Sequence[Document], *, run_id: UUID, **kwargs: Any
) -> None:
"""Run when Retriever ends running."""
if not run_id:
raise TracerException("No run_id provided for on_retriever_end callback.")
retrieval_run = self.run_map.get(str(run_id))
if retrieval_run is None or retrieval_run.run_type != RunTypeEnum.retriever:
raise TracerException("No retriever Run found to be traced")
retrieval_run.outputs = {"documents": documents}
retrieval_run.end_time = datetime.utcnow()
retrieval_run.events.append({"name": "end", "time": retrieval_run.end_time})
self._end_trace(retrieval_run)
self._on_retriever_end(retrieval_run)
def __deepcopy__(self, memo: dict) -> BaseTracer:
"""Deepcopy the tracer."""
return self
def __copy__(self) -> BaseTracer:
"""Copy the tracer."""
return self
def _on_llm_start(self, run: Run) -> None:
"""Process the LLM Run upon start."""
def _on_llm_end(self, run: Run) -> None:
"""Process the LLM Run."""
def _on_llm_error(self, run: Run) -> None:
"""Process the LLM Run upon error."""
def _on_chain_start(self, run: Run) -> None:
"""Process the Chain Run upon start."""
def _on_chain_end(self, run: Run) -> None:
"""Process the Chain Run."""
def _on_chain_error(self, run: Run) -> None:
"""Process the Chain Run upon error."""
def _on_tool_start(self, run: Run) -> None:
"""Process the Tool Run upon start."""
def _on_tool_end(self, run: Run) -> None:
"""Process the Tool Run."""
def _on_tool_error(self, run: Run) -> None:
"""Process the Tool Run upon error."""
def _on_chat_model_start(self, run: Run) -> None:
"""Process the Chat Model Run upon start."""
def _on_retriever_start(self, run: Run) -> None:
"""Process the Retriever Run upon start."""
def _on_retriever_end(self, run: Run) -> None:
"""Process the Retriever Run."""
def _on_retriever_error(self, run: Run) -> None:
"""Process the Retriever Run upon error."""
|
langchain.callbacks.tracers.base.BaseTracer¶
class langchain.callbacks.tracers.base.BaseTracer(**kwargs: Any)[source]¶
Bases: BaseCallbackHandler, ABC
Base interface for tracers.
Methods
__init__(**kwargs)
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id, **kwargs)
End a trace for a chain run.
on_chain_error(error, *, run_id, **kwargs)
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *, run_id[, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
raise_error
run_inline
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, **kwargs: Any) → None[source]¶
End a trace for a chain run.
on_chain_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None[source]¶
Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → None[source]¶
End a trace for an LLM run.
on_llm_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None[source]¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None[source]¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → None[source]¶
Run when Retriever ends running.
on_retriever_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None[source]¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Run when Retriever starts running.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → None[source]¶
End a trace for a tool run.
on_tool_error(error: Union[Exception, KeyboardInterrupt], *, run_id: UUID, **kwargs: Any) → None[source]¶
Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Start a trace for a tool run.
property ignore_agent: bool¶
Whether to ignore agent callbacks.
property ignore_chain: bool¶
Whether to ignore chain callbacks.
property ignore_chat_model: bool¶
Whether to ignore chat model callbacks.
property ignore_llm: bool¶
Whether to ignore LLM callbacks.
property ignore_retriever: bool¶
Whether to ignore retriever callbacks.
raise_error: bool = False¶
run_inline: bool = False¶
|
Base interface for tracers.
|
6f6ee550-cc8f-4df4-891f-4ebbc54e66bc
|
[
"typing.Optional",
"requests",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool"
] |
langchain.tools.ifttt.IFTTTWebhook
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.ifttt.IFTTTWebhook.html#langchain.tools.ifttt.IFTTTWebhook
|
class IFTTTWebhook(BaseTool):
"""IFTTT Webhook.
Args:
name: name of the tool
description: description of the tool
url: url to hit with the json event.
"""
url: str
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
body = {"this": tool_input}
response = requests.post(self.url, data=body)
return response.text
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
raise NotImplementedError("Not implemented.")
|
langchain.tools.ifttt.IFTTTWebhook¶
class langchain.tools.ifttt.IFTTTWebhook(*, name: str, description: str, args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, url: str)[source]¶
Bases: BaseTool
IFTTT Webhook.
Parameters
name – name of the tool
description – description of the tool
url – url to hit with the json event.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str [Required]¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str [Required]¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param url: str [Required]¶
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
IFTTT Webhook.
|
1f51b8e9-dde1-431e-a12f-4c791a8ce566
|
[
"__future__.annotations",
"json",
"typing.Optional",
"typing.Type",
"requests",
"yaml",
"pydantic.BaseModel",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool"
] |
langchain.tools.plugin.ApiConfig
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.plugin.ApiConfig.html#langchain.tools.plugin.ApiConfig
|
class ApiConfig(BaseModel):
type: str
url: str
has_user_authentication: Optional[bool] = False
|
langchain.tools.plugin.ApiConfig¶
class langchain.tools.plugin.ApiConfig(*, type: str, url: str, has_user_authentication: Optional[bool] = False)[source]¶
Bases: BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param has_user_authentication: Optional[bool] = False¶
param type: str [Required]¶
param url: str [Required]¶
|
Create a new model by parsing and validating input data from keyword arguments.
|
1c97069f-70d0-4d7b-bb96-3be8abe9c4bd
|
[
"__future__.annotations",
"json",
"typing.Optional",
"typing.Type",
"requests",
"yaml",
"pydantic.BaseModel",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool"
] |
langchain.tools.plugin.AIPlugin
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.plugin.AIPlugin.html#langchain.tools.plugin.AIPlugin
|
class AIPlugin(BaseModel):
"""AI Plugin Definition."""
schema_version: str
name_for_model: str
name_for_human: str
description_for_model: str
description_for_human: str
auth: Optional[dict] = None
api: ApiConfig
logo_url: Optional[str]
contact_email: Optional[str]
legal_info_url: Optional[str]
@classmethod
def from_url(cls, url: str) -> AIPlugin:
"""Instantiate AIPlugin from a URL."""
response = requests.get(url).json()
return cls(**response)
|
langchain.tools.plugin.AIPlugin¶
class langchain.tools.plugin.AIPlugin(*, schema_version: str, name_for_model: str, name_for_human: str, description_for_model: str, description_for_human: str, auth: Optional[dict] = None, api: ApiConfig, logo_url: Optional[str] = None, contact_email: Optional[str] = None, legal_info_url: Optional[str] = None)[source]¶
Bases: BaseModel
AI Plugin Definition.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api: langchain.tools.plugin.ApiConfig [Required]¶
param auth: Optional[dict] = None¶
param contact_email: Optional[str] = None¶
param description_for_human: str [Required]¶
param description_for_model: str [Required]¶
param legal_info_url: Optional[str] = None¶
param logo_url: Optional[str] = None¶
param name_for_human: str [Required]¶
param name_for_model: str [Required]¶
param schema_version: str [Required]¶
classmethod from_url(url: str) → AIPlugin[source]¶
Instantiate AIPlugin from a URL.
|
AI Plugin Definition.
|
f9ba20ad-aea1-47f1-a8bc-c1299a75a44f
|
[
"__future__.annotations",
"json",
"typing.Optional",
"typing.Type",
"requests",
"yaml",
"pydantic.BaseModel",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool"
] |
langchain.tools.plugin.marshal_spec
|
Function
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.plugin.marshal_spec.html#langchain.tools.plugin.marshal_spec
|
def marshal_spec(txt: str) -> dict:
"""Convert the yaml or json serialized spec to a dict.
Args:
txt: The yaml or json serialized spec.
Returns:
dict: The spec as a dict.
"""
try:
return json.loads(txt)
except json.JSONDecodeError:
return yaml.safe_load(txt)
|
langchain.tools.plugin.marshal_spec¶
langchain.tools.plugin.marshal_spec(txt: str) → dict[source]¶
Convert the yaml or json serialized spec to a dict.
Parameters
txt – The yaml or json serialized spec.
Returns
The spec as a dict.
Return type
dict
|
Convert the yaml or json serialized spec to a dict.
|
06a89d48-a3bd-434e-ae98-0ad6775b538e
|
[
"__future__.annotations",
"json",
"typing.Optional",
"typing.Type",
"requests",
"yaml",
"pydantic.BaseModel",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool"
] |
langchain.tools.plugin.AIPluginToolSchema
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.plugin.AIPluginToolSchema.html#langchain.tools.plugin.AIPluginToolSchema
|
class AIPluginToolSchema(BaseModel):
"""AIPLuginToolSchema."""
tool_input: Optional[str] = ""
|
langchain.tools.plugin.AIPluginToolSchema¶
class langchain.tools.plugin.AIPluginToolSchema(*, tool_input: Optional[str] = '')[source]¶
Bases: BaseModel
AIPLuginToolSchema.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param tool_input: Optional[str] = ''¶
|
AIPLuginToolSchema.
|
5a2ecf2c-304d-48a6-be29-fdf5eba62d37
|
[
"__future__.annotations",
"json",
"typing.Optional",
"typing.Type",
"requests",
"yaml",
"pydantic.BaseModel",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool"
] |
langchain.tools.plugin.AIPluginTool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.plugin.AIPluginTool.html#langchain.tools.plugin.AIPluginTool
|
class AIPluginTool(BaseTool):
plugin: AIPlugin
api_spec: str
args_schema: Type[AIPluginToolSchema] = AIPluginToolSchema
@classmethod
def from_plugin_url(cls, url: str) -> AIPluginTool:
plugin = AIPlugin.from_url(url)
description = (
f"Call this tool to get the OpenAPI spec (and usage guide) "
f"for interacting with the {plugin.name_for_human} API. "
f"You should only call this ONCE! What is the "
f"{plugin.name_for_human} API useful for? "
) + plugin.description_for_human
open_api_spec_str = requests.get(plugin.api.url).text
open_api_spec = marshal_spec(open_api_spec_str)
api_spec = (
f"Usage Guide: {plugin.description_for_model}\n\n"
f"OpenAPI Spec: {open_api_spec}"
)
return cls(
name=plugin.name_for_model,
description=description,
plugin=plugin,
api_spec=api_spec,
)
def _run(
self,
tool_input: Optional[str] = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.api_spec
async def _arun(
self,
tool_input: Optional[str] = None,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
return self.api_spec
|
langchain.tools.plugin.AIPluginTool¶
class langchain.tools.plugin.AIPluginTool(*, name: str, description: str, args_schema: ~typing.Type[~langchain.tools.plugin.AIPluginToolSchema] = <class 'langchain.tools.plugin.AIPluginToolSchema'>, return_direct: bool = False, verbose: bool = False, callbacks: ~typing.Optional[~typing.Union[~typing.List[~langchain.callbacks.base.BaseCallbackHandler], ~langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: ~typing.Optional[~langchain.callbacks.base.BaseCallbackManager] = None, tags: ~typing.Optional[~typing.List[str]] = None, metadata: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, handle_tool_error: ~typing.Optional[~typing.Union[bool, str, ~typing.Callable[[~langchain.tools.base.ToolException], str]]] = False, plugin: ~langchain.tools.plugin.AIPlugin, api_spec: str)[source]¶
Bases: BaseTool
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_spec: str [Required]¶
param args_schema: Type[AIPluginToolSchema] = <class 'langchain.tools.plugin.AIPluginToolSchema'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str [Required]¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str [Required]¶
The unique name of the tool that clearly communicates its purpose.
param plugin: AIPlugin [Required]¶
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
classmethod from_plugin_url(url: str) → AIPluginTool[source]¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Create a new model by parsing and validating input data from keyword arguments.
|
e181f8c7-b50e-4971-b844-7959c4238543
|
[
"__future__.annotations",
"warnings",
"abc.ABC",
"abc.abstractmethod",
"inspect.signature",
"typing.Any",
"typing.Awaitable",
"typing.Callable",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Tuple",
"typing.Type",
"typing.Union",
"pydantic.BaseModel",
"pydantic.Extra",
"pydantic.Field",
"pydantic.create_model",
"pydantic.root_validator",
"pydantic.validate_arguments",
"pydantic.main.ModelMetaclass",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManager",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.callbacks.manager.Callbacks"
] |
langchain.tools.base.SchemaAnnotationError
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.base.SchemaAnnotationError.html#langchain.tools.base.SchemaAnnotationError
|
class SchemaAnnotationError(TypeError):
"""Raised when 'args_schema' is missing or has an incorrect type annotation."""
|
langchain.tools.base.SchemaAnnotationError¶
class langchain.tools.base.SchemaAnnotationError[source]¶
Bases: TypeError
Raised when ‘args_schema’ is missing or has an incorrect type annotation.
add_note()¶
Exception.add_note(note) –
add a note to the exception
with_traceback()¶
Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.
args¶
|
Raised when 'args_schema' is missing or has an incorrect type annotation.
|
2b631696-d772-4335-8f37-e6776feb4bc4
|
[
"__future__.annotations",
"warnings",
"abc.ABC",
"abc.abstractmethod",
"inspect.signature",
"typing.Any",
"typing.Awaitable",
"typing.Callable",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Tuple",
"typing.Type",
"typing.Union",
"pydantic.BaseModel",
"pydantic.Extra",
"pydantic.Field",
"pydantic.create_model",
"pydantic.root_validator",
"pydantic.validate_arguments",
"pydantic.main.ModelMetaclass",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManager",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.callbacks.manager.Callbacks"
] |
langchain.tools.base.ToolMetaclass
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.base.ToolMetaclass.html#langchain.tools.base.ToolMetaclass
|
class ToolMetaclass(ModelMetaclass):
"""Metaclass for BaseTool to ensure the provided args_schema
doesn't silently ignored."""
def __new__(
cls: Type[ToolMetaclass], name: str, bases: Tuple[Type, ...], dct: dict
) -> ToolMetaclass:
"""Create the definition of the new tool class."""
schema_type: Optional[Type[BaseModel]] = dct.get("args_schema")
if schema_type is not None:
schema_annotations = dct.get("__annotations__", {})
args_schema_type = schema_annotations.get("args_schema", None)
if args_schema_type is None or args_schema_type == BaseModel:
# Throw errors for common mis-annotations.
# TODO: Use get_args / get_origin and fully
# specify valid annotations.
typehint_mandate = """
class ChildTool(BaseTool):
...
args_schema: Type[BaseModel] = SchemaClass
..."""
raise SchemaAnnotationError(
f"Tool definition for {name} must include valid type annotations"
f" for argument 'args_schema' to behave as expected.\n"
f"Expected annotation of 'Type[BaseModel]'"
f" but got '{args_schema_type}'.\n"
f"Expected class looks like:\n"
f"{typehint_mandate}"
)
# Pass through to Pydantic's metaclass
return super().__new__(cls, name, bases, dct)
|
langchain.tools.base.ToolMetaclass¶
class langchain.tools.base.ToolMetaclass(name: str, bases: Tuple[Type, ...], dct: dict)[source]¶
Bases: ModelMetaclass
Metaclass for BaseTool to ensure the provided args_schema
doesn’t silently ignored.
Create the definition of the new tool class.
Methods
__init__(*args, **kwargs)
mro()
Return a type's method resolution order.
register(subclass)
Register a virtual subclass of an ABC.
__call__(*args, **kwargs)¶
Call self as a function.
mro()¶
Return a type’s method resolution order.
register(subclass)¶
Register a virtual subclass of an ABC.
Returns the subclass, to allow usage as a class decorator.
|
Metaclass for BaseTool to ensure the provided args_schema
|
50078ead-38a0-41be-9c22-b8202a16a62f
|
[
"__future__.annotations",
"warnings",
"abc.ABC",
"abc.abstractmethod",
"inspect.signature",
"typing.Any",
"typing.Awaitable",
"typing.Callable",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Tuple",
"typing.Type",
"typing.Union",
"pydantic.BaseModel",
"pydantic.Extra",
"pydantic.Field",
"pydantic.create_model",
"pydantic.root_validator",
"pydantic.validate_arguments",
"pydantic.main.ModelMetaclass",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManager",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.callbacks.manager.Callbacks"
] |
langchain.tools.base.create_schema_from_function
|
Function
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.base.create_schema_from_function.html#langchain.tools.base.create_schema_from_function
|
def create_schema_from_function(
model_name: str,
func: Callable,
) -> Type[BaseModel]:
"""Create a pydantic schema from a function's signature.
Args:
model_name: Name to assign to the generated pydandic schema
func: Function to generate the schema from
Returns:
A pydantic model with the same arguments as the function
"""
# https://docs.pydantic.dev/latest/usage/validation_decorator/
validated = validate_arguments(func, config=_SchemaConfig) # type: ignore
inferred_model = validated.model # type: ignore
if "run_manager" in inferred_model.__fields__:
del inferred_model.__fields__["run_manager"]
if "callbacks" in inferred_model.__fields__:
del inferred_model.__fields__["callbacks"]
# Pydantic adds placeholder virtual fields we need to strip
valid_properties = _get_filtered_args(inferred_model, func)
return _create_subset_model(
f"{model_name}Schema", inferred_model, list(valid_properties)
)
|
langchain.tools.base.create_schema_from_function¶
langchain.tools.base.create_schema_from_function(model_name: str, func: Callable) → Type[BaseModel][source]¶
Create a pydantic schema from a function’s signature.
:param model_name: Name to assign to the generated pydandic schema
:param func: Function to generate the schema from
Returns
A pydantic model with the same arguments as the function
|
Create a pydantic schema from a function's signature.
|
adca598e-7bcc-4368-a649-2607b98471a3
|
[
"__future__.annotations",
"warnings",
"abc.ABC",
"abc.abstractmethod",
"inspect.signature",
"typing.Any",
"typing.Awaitable",
"typing.Callable",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Tuple",
"typing.Type",
"typing.Union",
"pydantic.BaseModel",
"pydantic.Extra",
"pydantic.Field",
"pydantic.create_model",
"pydantic.root_validator",
"pydantic.validate_arguments",
"pydantic.main.ModelMetaclass",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManager",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.callbacks.manager.Callbacks"
] |
langchain.tools.base.ToolException
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.base.ToolException.html#langchain.tools.base.ToolException
|
class ToolException(Exception):
"""An optional exception that tool throws when execution error occurs.
When this exception is thrown, the agent will not stop working,
but will handle the exception according to the handle_tool_error
variable of the tool, and the processing result will be returned
to the agent as observation, and printed in red on the console.
"""
pass
|
langchain.tools.base.ToolException¶
class langchain.tools.base.ToolException[source]¶
Bases: Exception
An optional exception that tool throws when execution error occurs.
When this exception is thrown, the agent will not stop working,
but will handle the exception according to the handle_tool_error
variable of the tool, and the processing result will be returned
to the agent as observation, and printed in red on the console.
add_note()¶
Exception.add_note(note) –
add a note to the exception
with_traceback()¶
Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.
args¶
|
An optional exception that tool throws when execution error occurs.
|
17f4130c-e024-4c7c-92ea-99d5aaa78441
|
[
"__future__.annotations",
"warnings",
"abc.ABC",
"abc.abstractmethod",
"inspect.signature",
"typing.Any",
"typing.Awaitable",
"typing.Callable",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Tuple",
"typing.Type",
"typing.Union",
"pydantic.BaseModel",
"pydantic.Extra",
"pydantic.Field",
"pydantic.create_model",
"pydantic.root_validator",
"pydantic.validate_arguments",
"pydantic.main.ModelMetaclass",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManager",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.callbacks.manager.Callbacks"
] |
langchain.tools.base.BaseTool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.base.BaseTool.html#langchain.tools.base.BaseTool
|
class BaseTool(ABC, BaseModel, metaclass=ToolMetaclass):
"""Interface LangChain tools must implement."""
name: str
"""The unique name of the tool that clearly communicates its purpose."""
description: str
"""Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
"""
args_schema: Optional[Type[BaseModel]] = None
"""Pydantic model class to validate and parse the tool's input arguments."""
return_direct: bool = False
"""Whether to return the tool's output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
"""
verbose: bool = False
"""Whether to log the tool's progress."""
callbacks: Callbacks = Field(default=None, exclude=True)
"""Callbacks to be called during tool execution."""
callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True)
"""Deprecated. Please use callbacks instead."""
tags: Optional[List[str]] = None
"""Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in `callbacks`.
You can use these to eg identify a specific instance of a tool with its use case.
"""
metadata: Optional[Dict[str, Any]] = None
"""Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in `callbacks`.
You can use these to eg identify a specific instance of a tool with its use case.
"""
handle_tool_error: Optional[
Union[bool, str, Callable[[ToolException], str]]
] = False
"""Handle the content of the ToolException thrown."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def is_single_input(self) -> bool:
"""Whether the tool only accepts a single input."""
keys = {k for k in self.args if k != "kwargs"}
return len(keys) == 1
@property
def args(self) -> dict:
if self.args_schema is not None:
return self.args_schema.schema()["properties"]
else:
schema = create_schema_from_function(self.name, self._run)
return schema.schema()["properties"]
def _parse_input(
self,
tool_input: Union[str, Dict],
) -> Union[str, Dict[str, Any]]:
"""Convert tool input to pydantic model."""
input_args = self.args_schema
if isinstance(tool_input, str):
if input_args is not None:
key_ = next(iter(input_args.__fields__.keys()))
input_args.validate({key_: tool_input})
return tool_input
else:
if input_args is not None:
result = input_args.parse_obj(tool_input)
return {k: v for k, v in result.dict().items() if k in tool_input}
return tool_input
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
"""Raise deprecation warning if callback_manager is used."""
if values.get("callback_manager") is not None:
warnings.warn(
"callback_manager is deprecated. Please use callbacks instead.",
DeprecationWarning,
)
values["callbacks"] = values.pop("callback_manager", None)
return values
@abstractmethod
def _run(
self,
*args: Any,
**kwargs: Any,
) -> Any:
"""Use the tool.
Add run_manager: Optional[CallbackManagerForToolRun] = None
to child implementations to enable tracing,
"""
@abstractmethod
async def _arun(
self,
*args: Any,
**kwargs: Any,
) -> Any:
"""Use the tool asynchronously.
Add run_manager: Optional[AsyncCallbackManagerForToolRun] = None
to child implementations to enable tracing,
"""
def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
# For backwards compatibility, if run_input is a string,
# pass as a positional argument.
if isinstance(tool_input, str):
return (tool_input,), {}
else:
return (), tool_input
def run(
self,
tool_input: Union[str, Dict],
verbose: Optional[bool] = None,
start_color: Optional[str] = "green",
color: Optional[str] = "green",
callbacks: Callbacks = None,
*,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Any:
"""Run the tool."""
parsed_input = self._parse_input(tool_input)
if not self.verbose and verbose is not None:
verbose_ = verbose
else:
verbose_ = self.verbose
callback_manager = CallbackManager.configure(
callbacks,
self.callbacks,
verbose_,
tags,
self.tags,
metadata,
self.metadata,
)
# TODO: maybe also pass through run_manager is _run supports kwargs
new_arg_supported = signature(self._run).parameters.get("run_manager")
run_manager = callback_manager.on_tool_start(
{"name": self.name, "description": self.description},
tool_input if isinstance(tool_input, str) else str(tool_input),
color=start_color,
**kwargs,
)
try:
tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)
observation = (
self._run(*tool_args, run_manager=run_manager, **tool_kwargs)
if new_arg_supported
else self._run(*tool_args, **tool_kwargs)
)
except ToolException as e:
if not self.handle_tool_error:
run_manager.on_tool_error(e)
raise e
elif isinstance(self.handle_tool_error, bool):
if e.args:
observation = e.args[0]
else:
observation = "Tool execution error"
elif isinstance(self.handle_tool_error, str):
observation = self.handle_tool_error
elif callable(self.handle_tool_error):
observation = self.handle_tool_error(e)
else:
raise ValueError(
f"Got unexpected type of `handle_tool_error`. Expected bool, str "
f"or callable. Received: {self.handle_tool_error}"
)
run_manager.on_tool_end(
str(observation), color="red", name=self.name, **kwargs
)
return observation
except (Exception, KeyboardInterrupt) as e:
run_manager.on_tool_error(e)
raise e
else:
run_manager.on_tool_end(
str(observation), color=color, name=self.name, **kwargs
)
return observation
async def arun(
self,
tool_input: Union[str, Dict],
verbose: Optional[bool] = None,
start_color: Optional[str] = "green",
color: Optional[str] = "green",
callbacks: Callbacks = None,
*,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Any:
"""Run the tool asynchronously."""
parsed_input = self._parse_input(tool_input)
if not self.verbose and verbose is not None:
verbose_ = verbose
else:
verbose_ = self.verbose
callback_manager = AsyncCallbackManager.configure(
callbacks,
self.callbacks,
verbose_,
tags,
self.tags,
metadata,
self.metadata,
)
new_arg_supported = signature(self._arun).parameters.get("run_manager")
run_manager = await callback_manager.on_tool_start(
{"name": self.name, "description": self.description},
tool_input if isinstance(tool_input, str) else str(tool_input),
color=start_color,
**kwargs,
)
try:
# We then call the tool on the tool input to get an observation
tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input)
observation = (
await self._arun(*tool_args, run_manager=run_manager, **tool_kwargs)
if new_arg_supported
else await self._arun(*tool_args, **tool_kwargs)
)
except ToolException as e:
if not self.handle_tool_error:
await run_manager.on_tool_error(e)
raise e
elif isinstance(self.handle_tool_error, bool):
if e.args:
observation = e.args[0]
else:
observation = "Tool execution error"
elif isinstance(self.handle_tool_error, str):
observation = self.handle_tool_error
elif callable(self.handle_tool_error):
observation = self.handle_tool_error(e)
else:
raise ValueError(
f"Got unexpected type of `handle_tool_error`. Expected bool, str "
f"or callable. Received: {self.handle_tool_error}"
)
await run_manager.on_tool_end(
str(observation), color="red", name=self.name, **kwargs
)
return observation
except (Exception, KeyboardInterrupt) as e:
await run_manager.on_tool_error(e)
raise e
else:
await run_manager.on_tool_end(
str(observation), color=color, name=self.name, **kwargs
)
return observation
def __call__(self, tool_input: str, callbacks: Callbacks = None) -> str:
"""Make tool callable."""
return self.run(tool_input, callbacks=callbacks)
|
langchain.tools.base.BaseTool¶
class langchain.tools.base.BaseTool(*, name: str, description: str, args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False)[source]¶
Bases: ABC, BaseModel
Interface LangChain tools must implement.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[pydantic.main.BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None¶
Callbacks to be called during tool execution.
param description: str [Required]¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[langchain.tools.base.ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str [Required]¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str[source]¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶
Run the tool asynchronously.
validator raise_deprecation » all fields[source]¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config[source]¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Interface LangChain tools must implement.
|
3d8fc5cd-d35a-4f24-83b5-54a79911ef26
|
[
"__future__.annotations",
"warnings",
"abc.ABC",
"abc.abstractmethod",
"inspect.signature",
"typing.Any",
"typing.Awaitable",
"typing.Callable",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Tuple",
"typing.Type",
"typing.Union",
"pydantic.BaseModel",
"pydantic.Extra",
"pydantic.Field",
"pydantic.create_model",
"pydantic.root_validator",
"pydantic.validate_arguments",
"pydantic.main.ModelMetaclass",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManager",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.callbacks.manager.Callbacks"
] |
langchain.tools.base.Tool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.base.Tool.html#langchain.tools.base.Tool
|
class Tool(BaseTool):
"""Tool that takes in function or coroutine directly."""
description: str = ""
func: Callable[..., str]
"""The function to run when the tool is called."""
coroutine: Optional[Callable[..., Awaitable[str]]] = None
"""The asynchronous version of the function."""
@property
def args(self) -> dict:
"""The tool's input arguments."""
if self.args_schema is not None:
return self.args_schema.schema()["properties"]
# For backwards compatibility, if the function signature is ambiguous,
# assume it takes a single string input.
return {"tool_input": {"type": "string"}}
def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
"""Convert tool input to pydantic model."""
args, kwargs = super()._to_args_and_kwargs(tool_input)
# For backwards compatibility. The tool must be run with a single input
all_args = list(args) + list(kwargs.values())
if len(all_args) != 1:
raise ToolException(
f"Too many arguments to single-input tool {self.name}."
f" Args: {all_args}"
)
return tuple(all_args), {}
def _run(
self,
*args: Any,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool."""
new_argument_supported = signature(self.func).parameters.get("callbacks")
return (
self.func(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else self.func(*args, **kwargs)
)
async def _arun(
self,
*args: Any,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool asynchronously."""
if self.coroutine:
new_argument_supported = signature(self.coroutine).parameters.get(
"callbacks"
)
return (
await self.coroutine(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else await self.coroutine(*args, **kwargs)
)
raise NotImplementedError("Tool does not support async")
# TODO: this is for backwards compatibility, remove in future
def __init__(
self, name: str, func: Callable, description: str, **kwargs: Any
) -> None:
"""Initialize tool."""
super(Tool, self).__init__(
name=name, func=func, description=description, **kwargs
)
@classmethod
def from_function(
cls,
func: Callable,
name: str, # We keep these required to support backwards compatibility
description: str,
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
**kwargs: Any,
) -> Tool:
"""Initialize tool from a function."""
return cls(
name=name,
func=func,
description=description,
return_direct=return_direct,
args_schema=args_schema,
**kwargs,
)
|
langchain.tools.base.Tool¶
class langchain.tools.base.Tool(name: str, func: Callable, description: str, *, args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, coroutine: Optional[Callable[[...], Awaitable[str]]] = None)[source]¶
Bases: BaseTool
Tool that takes in function or coroutine directly.
Initialize tool.
param args_schema: Optional[Type[pydantic.main.BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None¶
Callbacks to be called during tool execution.
param coroutine: Optional[Callable[[...], Awaitable[str]]] = None¶
The asynchronous version of the function.
param description: str = ''¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param func: Callable[[...], str] [Required]¶
The function to run when the tool is called.
param handle_tool_error: Optional[Union[bool, str, Callable[[langchain.tools.base.ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str [Required]¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
classmethod from_function(func: Callable, name: str, description: str, return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, **kwargs: Any) → Tool[source]¶
Initialize tool from a function.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
The tool’s input arguments.
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Tool that takes in function or coroutine directly.
|
e6ca7065-1283-4730-adc3-4585b664ed1f
|
[
"__future__.annotations",
"warnings",
"abc.ABC",
"abc.abstractmethod",
"inspect.signature",
"typing.Any",
"typing.Awaitable",
"typing.Callable",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Tuple",
"typing.Type",
"typing.Union",
"pydantic.BaseModel",
"pydantic.Extra",
"pydantic.Field",
"pydantic.create_model",
"pydantic.root_validator",
"pydantic.validate_arguments",
"pydantic.main.ModelMetaclass",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManager",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.callbacks.manager.Callbacks"
] |
langchain.tools.base.StructuredTool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.base.StructuredTool.html#langchain.tools.base.StructuredTool
|
class StructuredTool(BaseTool):
"""Tool that can operate on any number of inputs."""
description: str = ""
args_schema: Type[BaseModel] = Field(..., description="The tool schema.")
"""The input arguments' schema."""
func: Callable[..., Any]
"""The function to run when the tool is called."""
coroutine: Optional[Callable[..., Awaitable[Any]]] = None
"""The asynchronous version of the function."""
@property
def args(self) -> dict:
"""The tool's input arguments."""
return self.args_schema.schema()["properties"]
def _run(
self,
*args: Any,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool."""
new_argument_supported = signature(self.func).parameters.get("callbacks")
return (
self.func(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else self.func(*args, **kwargs)
)
async def _arun(
self,
*args: Any,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Use the tool asynchronously."""
if self.coroutine:
new_argument_supported = signature(self.coroutine).parameters.get(
"callbacks"
)
return (
await self.coroutine(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else await self.coroutine(*args, **kwargs)
)
raise NotImplementedError("Tool does not support async")
@classmethod
def from_function(
cls,
func: Callable,
name: Optional[str] = None,
description: Optional[str] = None,
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
infer_schema: bool = True,
**kwargs: Any,
) -> StructuredTool:
"""Create tool from a given function.
A classmethod that helps to create a tool from a function.
Args:
func: The function from which to create a tool
name: The name of the tool. Defaults to the function name
description: The description of the tool. Defaults to the function docstring
return_direct: Whether to return the result directly or as a callback
args_schema: The schema of the tool's input arguments
infer_schema: Whether to infer the schema from the function's signature
**kwargs: Additional arguments to pass to the tool
Returns:
The tool
Examples:
... code-block:: python
def add(a: int, b: int) -> int:
\"\"\"Add two numbers\"\"\"
return a + b
tool = StructuredTool.from_function(add)
tool.run(1, 2) # 3
"""
name = name or func.__name__
description = description or func.__doc__
assert (
description is not None
), "Function must have a docstring if description not provided."
# Description example:
# search_api(query: str) - Searches the API for the query.
description = f"{name}{signature(func)} - {description.strip()}"
_args_schema = args_schema
if _args_schema is None and infer_schema:
_args_schema = create_schema_from_function(f"{name}Schema", func)
return cls(
name=name,
func=func,
args_schema=_args_schema,
description=description,
return_direct=return_direct,
**kwargs,
)
|
langchain.tools.base.StructuredTool¶
class langchain.tools.base.StructuredTool(*, name: str, description: str = '', args_schema: Type[BaseModel], return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, func: Callable[[...], Any], coroutine: Optional[Callable[[...], Awaitable[Any]]] = None)[source]¶
Bases: BaseTool
Tool that can operate on any number of inputs.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Type[pydantic.main.BaseModel] [Required]¶
The input arguments’ schema.
The tool schema.
param callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None¶
Callbacks to be called during tool execution.
param coroutine: Optional[Callable[[...], Awaitable[Any]]] = None¶
The asynchronous version of the function.
param description: str = ''¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param func: Callable[[...], Any] [Required]¶
The function to run when the tool is called.
param handle_tool_error: Optional[Union[bool, str, Callable[[langchain.tools.base.ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str [Required]¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
classmethod from_function(func: Callable, name: Optional[str] = None, description: Optional[str] = None, return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, infer_schema: bool = True, **kwargs: Any) → StructuredTool[source]¶
Create tool from a given function.
A classmethod that helps to create a tool from a function.
Parameters
func – The function from which to create a tool
name – The name of the tool. Defaults to the function name
description – The description of the tool. Defaults to the function docstring
return_direct – Whether to return the result directly or as a callback
args_schema – The schema of the tool’s input arguments
infer_schema – Whether to infer the schema from the function’s signature
**kwargs – Additional arguments to pass to the tool
Returns
The tool
Examples
… code-block:: python
def add(a: int, b: int) -> int:“””Add two numbers”””
return a + b
tool = StructuredTool.from_function(add)
tool.run(1, 2) # 3
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
The tool’s input arguments.
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Tool that can operate on any number of inputs.
|
7d083ad0-ace6-4dc2-b14b-837f55dba960
|
[
"__future__.annotations",
"warnings",
"abc.ABC",
"abc.abstractmethod",
"inspect.signature",
"typing.Any",
"typing.Awaitable",
"typing.Callable",
"typing.Dict",
"typing.List",
"typing.Optional",
"typing.Tuple",
"typing.Type",
"typing.Union",
"pydantic.BaseModel",
"pydantic.Extra",
"pydantic.Field",
"pydantic.create_model",
"pydantic.root_validator",
"pydantic.validate_arguments",
"pydantic.main.ModelMetaclass",
"langchain.callbacks.base.BaseCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManager",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManager",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.callbacks.manager.Callbacks"
] |
langchain.tools.base.tool
|
Function
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.base.tool.html#langchain.tools.base.tool
|
def tool(
*args: Union[str, Callable],
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
infer_schema: bool = True,
) -> Callable:
"""Make tools out of functions, can be used with or without arguments.
Args:
*args: The arguments to the tool.
return_direct: Whether to return directly from the tool rather
than continuing the agent loop.
args_schema: optional argument schema for user to specify
infer_schema: Whether to infer the schema of the arguments from
the function's signature. This also makes the resultant tool
accept a dictionary input to its `run()` function.
Requires:
- Function must be of type (str) -> str
- Function must have a docstring
Examples:
.. code-block:: python
@tool
def search_api(query: str) -> str:
# Searches the API for the query.
return
@tool("search", return_direct=True)
def search_api(query: str) -> str:
# Searches the API for the query.
return
"""
def _make_with_name(tool_name: str) -> Callable:
def _make_tool(func: Callable) -> BaseTool:
if infer_schema or args_schema is not None:
return StructuredTool.from_function(
func,
name=tool_name,
return_direct=return_direct,
args_schema=args_schema,
infer_schema=infer_schema,
)
# If someone doesn't want a schema applied, we must treat it as
# a simple string->string function
assert func.__doc__ is not None, "Function must have a docstring"
return Tool(
name=tool_name,
func=func,
description=f"{tool_name} tool",
return_direct=return_direct,
)
return _make_tool
if len(args) == 1 and isinstance(args[0], str):
# if the argument is a string, then we use the string as the tool name
# Example usage: @tool("search", return_direct=True)
return _make_with_name(args[0])
elif len(args) == 1 and callable(args[0]):
# if the argument is a function, then we use the function name as the tool name
# Example usage: @tool
return _make_with_name(args[0].__name__)(args[0])
elif len(args) == 0:
# if there are no arguments, then we use the function name as the tool name
# Example usage: @tool(return_direct=True)
def _partial(func: Callable[[str], str]) -> BaseTool:
return _make_with_name(func.__name__)(func)
return _partial
else:
raise ValueError("Too many arguments for tool decorator")
|
langchain.tools.base.tool¶
langchain.tools.base.tool(*args: Union[str, Callable], return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, infer_schema: bool = True) → Callable[source]¶
Make tools out of functions, can be used with or without arguments.
Parameters
*args – The arguments to the tool.
return_direct – Whether to return directly from the tool rather
than continuing the agent loop.
args_schema – optional argument schema for user to specify
infer_schema – Whether to infer the schema of the arguments from
the function’s signature. This also makes the resultant tool
accept a dictionary input to its run() function.
Requires:
Function must be of type (str) -> str
Function must have a docstring
Examples
@tool
def search_api(query: str) -> str:
# Searches the API for the query.
return
@tool("search", return_direct=True)
def search_api(query: str) -> str:
# Searches the API for the query.
return
|
Make tools out of functions, can be used with or without arguments.
|
29ed928c-767f-475e-8018-05f4e5ad847d
|
[
"typing.TypedDict",
"langchain.tools.BaseTool",
"langchain.tools.StructuredTool"
] |
langchain.tools.convert_to_openai.FunctionDescription
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.convert_to_openai.FunctionDescription.html#langchain.tools.convert_to_openai.FunctionDescription
|
class FunctionDescription(TypedDict):
"""Representation of a callable function to the OpenAI API."""
name: str
"""The name of the function."""
description: str
"""A description of the function."""
parameters: dict
"""The parameters of the function."""
|
langchain.tools.convert_to_openai.FunctionDescription¶
class langchain.tools.convert_to_openai.FunctionDescription[source]¶
Bases: TypedDict
Representation of a callable function to the OpenAI API.
Methods
__init__(*args, **kwargs)
clear()
copy()
fromkeys([value])
Create a new dictionary with keys from iterable and values set to value.
get(key[, default])
Return the value for key if key is in the dictionary, else default.
items()
keys()
pop(k[,d])
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem()
Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default])
Insert key with a value of default if key is not in the dictionary.
update([E, ]**F)
If E is present and has a .keys() method, then does:
for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does:
for k, v in E: D[k] = v In either case, this is followed by: for k in F:
D[k] = F[k]
values()
Attributes
name
The name of the function.
description
A description of the function.
parameters
The parameters of the function.
clear() → None. Remove all items from D.¶
copy() → a shallow copy of D¶
fromkeys(value=None, /)¶
Create a new dictionary with keys from iterable and values set to value.
get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
items() → a set-like object providing a view on D's items¶
keys() → a set-like object providing a view on D's keys¶
pop(k[, d]) → v, remove specified key and return the corresponding value.¶
If the key is not found, return the default if given; otherwise,
raise a KeyError.
popitem()¶
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
setdefault(key, default=None, /)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update([E, ]**F) → None. Update D from dict/iterable E and F.¶
If E is present and has a .keys() method, then does:
for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does:
for k, v in E: D[k] = v
In either case, this is followed by: for k in F:
D[k] = F[k]
values() → an object providing a view on D's values¶
description: str¶
A description of the function.
name: str¶
The name of the function.
parameters: dict¶
The parameters of the function.
|
Representation of a callable function to the OpenAI API.
|
c3e24186-fa4e-4c14-be23-58e20fd1fa56
|
[
"typing.TypedDict",
"langchain.tools.BaseTool",
"langchain.tools.StructuredTool"
] |
langchain.tools.convert_to_openai.format_tool_to_openai_function
|
Function
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.convert_to_openai.format_tool_to_openai_function.html#langchain.tools.convert_to_openai.format_tool_to_openai_function
|
def format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription:
"""Format tool into the OpenAI function API."""
if isinstance(tool, StructuredTool):
schema_ = tool.args_schema.schema()
# Bug with required missing for structured tools.
required = sorted(schema_["properties"]) # BUG WORKAROUND
return {
"name": tool.name,
"description": tool.description,
"parameters": {
"type": "object",
"properties": schema_["properties"],
"required": required,
},
}
else:
if tool.args_schema:
parameters = tool.args_schema.schema()
else:
parameters = {
# This is a hack to get around the fact that some tools
# do not expose an args_schema, and expect an argument
# which is a string.
# And Open AI does not support an array type for the
# parameters.
"properties": {
"__arg1": {"title": "__arg1", "type": "string"},
},
"required": ["__arg1"],
"type": "object",
}
return {
"name": tool.name,
"description": tool.description,
"parameters": parameters,
}
|
langchain.tools.convert_to_openai.format_tool_to_openai_function¶
langchain.tools.convert_to_openai.format_tool_to_openai_function(tool: BaseTool) → FunctionDescription[source]¶
Format tool into the OpenAI function API.
|
Format tool into the OpenAI function API.
|
4da8df8f-d31e-48d5-beb7-840f73e40c74
|
[
"ast",
"asyncio",
"re",
"sys",
"contextlib.redirect_stdout",
"io.StringIO",
"typing.Any",
"typing.Dict",
"typing.Optional",
"pydantic.Field",
"pydantic.root_validator",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool",
"langchain.utilities.PythonREPL"
] |
langchain.tools.python.tool.sanitize_input
|
Function
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.python.tool.sanitize_input.html#langchain.tools.python.tool.sanitize_input
|
def sanitize_input(query: str) -> str:
"""Sanitize input to the python REPL.
Remove whitespace, backtick & python (if llm mistakes python console as terminal)
Args:
query: The query to sanitize
Returns:
str: The sanitized query
"""
# Removes `, whitespace & python from start
query = re.sub(r"^(\s|`)*(?i:python)?\s*", "", query)
# Removes whitespace & ` from end
query = re.sub(r"(\s|`)*$", "", query)
return query
|
langchain.tools.python.tool.sanitize_input¶
langchain.tools.python.tool.sanitize_input(query: str) → str[source]¶
Sanitize input to the python REPL.
Remove whitespace, backtick & python (if llm mistakes python console as terminal)
Parameters
query – The query to sanitize
Returns
The sanitized query
Return type
str
|
Sanitize input to the python REPL.
|
fbb1075a-99de-4754-9d04-f3cc04dd6337
|
[
"ast",
"asyncio",
"re",
"sys",
"contextlib.redirect_stdout",
"io.StringIO",
"typing.Any",
"typing.Dict",
"typing.Optional",
"pydantic.Field",
"pydantic.root_validator",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool",
"langchain.utilities.PythonREPL"
] |
langchain.tools.python.tool.PythonREPLTool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.python.tool.PythonREPLTool.html#langchain.tools.python.tool.PythonREPLTool
|
class PythonREPLTool(BaseTool):
"""A tool for running python code in a REPL."""
name = "Python_REPL"
description = (
"A Python shell. Use this to execute python commands. "
"Input should be a valid python command. "
"If you want to see the output of a value, you should print it out "
"with `print(...)`."
)
python_repl: PythonREPL = Field(default_factory=_get_default_python_repl)
sanitize_input: bool = True
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> Any:
"""Use the tool."""
if self.sanitize_input:
query = sanitize_input(query)
return self.python_repl.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> Any:
"""Use the tool asynchronously."""
if self.sanitize_input:
query = sanitize_input(query)
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(None, self.run, query)
return result
|
langchain.tools.python.tool.PythonREPLTool¶
class langchain.tools.python.tool.PythonREPLTool(*, name: str = 'Python_REPL', description: str = 'A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, python_repl: PythonREPL = None, sanitize_input: bool = True)[source]¶
Bases: BaseTool
A tool for running python code in a REPL.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'Python_REPL'¶
The unique name of the tool that clearly communicates its purpose.
param python_repl: langchain.utilities.python.PythonREPL [Optional]¶
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param sanitize_input: bool = True¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
A tool for running python code in a REPL.
|
26d14314-2ef7-469d-852f-fc5aed1e0ea3
|
[
"ast",
"asyncio",
"re",
"sys",
"contextlib.redirect_stdout",
"io.StringIO",
"typing.Any",
"typing.Dict",
"typing.Optional",
"pydantic.Field",
"pydantic.root_validator",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool",
"langchain.utilities.PythonREPL"
] |
langchain.tools.python.tool.PythonAstREPLTool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.python.tool.PythonAstREPLTool.html#langchain.tools.python.tool.PythonAstREPLTool
|
class PythonAstREPLTool(BaseTool):
"""A tool for running python code in a REPL."""
name = "python_repl_ast"
description = (
"A Python shell. Use this to execute python commands. "
"Input should be a valid python command. "
"When using this tool, sometimes output is abbreviated - "
"make sure it does not look abbreviated before using it in your answer."
)
globals: Optional[Dict] = Field(default_factory=dict)
locals: Optional[Dict] = Field(default_factory=dict)
sanitize_input: bool = True
@root_validator(pre=True)
def validate_python_version(cls, values: Dict) -> Dict:
"""Validate valid python version."""
if sys.version_info < (3, 9):
raise ValueError(
"This tool relies on Python 3.9 or higher "
"(as it uses new functionality in the `ast` module, "
f"you have Python version: {sys.version}"
)
return values
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
try:
if self.sanitize_input:
query = sanitize_input(query)
tree = ast.parse(query)
module = ast.Module(tree.body[:-1], type_ignores=[])
exec(ast.unparse(module), self.globals, self.locals) # type: ignore
module_end = ast.Module(tree.body[-1:], type_ignores=[])
module_end_str = ast.unparse(module_end) # type: ignore
io_buffer = StringIO()
try:
with redirect_stdout(io_buffer):
ret = eval(module_end_str, self.globals, self.locals)
if ret is None:
return io_buffer.getvalue()
else:
return ret
except Exception:
with redirect_stdout(io_buffer):
exec(module_end_str, self.globals, self.locals)
return io_buffer.getvalue()
except Exception as e:
return "{}: {}".format(type(e).__name__, str(e))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("PythonReplTool does not support async")
|
langchain.tools.python.tool.PythonAstREPLTool¶
class langchain.tools.python.tool.PythonAstREPLTool(*, name: str = 'python_repl_ast', description: str = 'A Python shell. Use this to execute python commands. Input should be a valid python command. When using this tool, sometimes output is abbreviated - make sure it does not look abbreviated before using it in your answer.', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, globals: Optional[Dict] = None, locals: Optional[Dict] = None, sanitize_input: bool = True)[source]¶
Bases: BaseTool
A tool for running python code in a REPL.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'A Python shell. Use this to execute python commands. Input should be a valid python command. When using this tool, sometimes output is abbreviated - make sure it does not look abbreviated before using it in your answer.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param globals: Optional[Dict] [Optional]¶
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param locals: Optional[Dict] [Optional]¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'python_repl_ast'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param sanitize_input: bool = True¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
validator validate_python_version » all fields[source]¶
Validate valid python version.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
A tool for running python code in a REPL.
|
de668fdd-31dd-42e0-8ad2-b081fec3cf9d
|
[
"typing.Optional",
"pydantic.BaseModel",
"pydantic.Field",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool",
"langchain.utilities.scenexplain.SceneXplainAPIWrapper"
] |
langchain.tools.scenexplain.tool.SceneXplainInput
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.scenexplain.tool.SceneXplainInput.html#langchain.tools.scenexplain.tool.SceneXplainInput
|
class SceneXplainInput(BaseModel):
"""Input for SceneXplain."""
query: str = Field(..., description="The link to the image to explain")
|
langchain.tools.scenexplain.tool.SceneXplainInput¶
class langchain.tools.scenexplain.tool.SceneXplainInput(*, query: str)[source]¶
Bases: BaseModel
Input for SceneXplain.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param query: str [Required]¶
The link to the image to explain
|
Input for SceneXplain.
|
99877561-a80e-4b2c-b017-7131575c6cee
|
[
"typing.Optional",
"pydantic.BaseModel",
"pydantic.Field",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool",
"langchain.utilities.scenexplain.SceneXplainAPIWrapper"
] |
langchain.tools.scenexplain.tool.SceneXplainTool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.scenexplain.tool.SceneXplainTool.html#langchain.tools.scenexplain.tool.SceneXplainTool
|
class SceneXplainTool(BaseTool):
"""Tool that adds the capability to explain images."""
name = "image_explainer"
description = (
"An Image Captioning Tool: Use this tool to generate a detailed caption "
"for an image. The input can be an image file of any format, and "
"the output will be a text description that covers every detail of the image."
)
api_wrapper: SceneXplainAPIWrapper = Field(default_factory=SceneXplainAPIWrapper)
def _run(
self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the tool."""
return self.api_wrapper.run(query)
async def _arun(
self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("SceneXplainTool does not support async")
|
langchain.tools.scenexplain.tool.SceneXplainTool¶
class langchain.tools.scenexplain.tool.SceneXplainTool(*, name: str = 'image_explainer', description: str = 'An Image Captioning Tool: Use this tool to generate a detailed caption for an image. The input can be an image file of any format, and the output will be a text description that covers every detail of the image.', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, api_wrapper: SceneXplainAPIWrapper = None)[source]¶
Bases: BaseTool
Tool that adds the capability to explain images.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_wrapper: langchain.utilities.scenexplain.SceneXplainAPIWrapper [Optional]¶
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'An Image Captioning Tool: Use this tool to generate a detailed caption for an image. The input can be an image file of any format, and the output will be a text description that covers every detail of the image.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'image_explainer'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Tool that adds the capability to explain images.
|
bf6ef509-231d-4d4f-8be2-ed6d0d5e18ba
|
[
"typing.Optional",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool",
"langchain.utilities.bing_search.BingSearchAPIWrapper"
] |
langchain.tools.bing_search.tool.BingSearchRun
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.bing_search.tool.BingSearchRun.html#langchain.tools.bing_search.tool.BingSearchRun
|
class BingSearchRun(BaseTool):
"""Tool that adds the capability to query the Bing search API."""
name = "bing_search"
description = (
"A wrapper around Bing Search. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query."
)
api_wrapper: BingSearchAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return self.api_wrapper.run(query)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("BingSearchRun does not support async")
|
langchain.tools.bing_search.tool.BingSearchRun¶
class langchain.tools.bing_search.tool.BingSearchRun(*, name: str = 'bing_search', description: str = 'A wrapper around Bing Search. Useful for when you need to answer questions about current events. Input should be a search query.', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, api_wrapper: BingSearchAPIWrapper)[source]¶
Bases: BaseTool
Tool that adds the capability to query the Bing search API.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_wrapper: langchain.utilities.bing_search.BingSearchAPIWrapper [Required]¶
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'A wrapper around Bing Search. Useful for when you need to answer questions about current events. Input should be a search query.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'bing_search'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Tool that adds the capability to query the Bing search API.
|
44d7b04d-b92f-46f3-bf4f-8d7c3ce70a41
|
[
"typing.Optional",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool",
"langchain.utilities.bing_search.BingSearchAPIWrapper"
] |
langchain.tools.bing_search.tool.BingSearchResults
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.bing_search.tool.BingSearchResults.html#langchain.tools.bing_search.tool.BingSearchResults
|
class BingSearchResults(BaseTool):
"""Tool that has capability to query the Bing Search API and get back json."""
name = "Bing Search Results JSON"
description = (
"A wrapper around Bing Search. "
"Useful for when you need to answer questions about current events. "
"Input should be a search query. Output is a JSON array of the query results"
)
num_results: int = 4
api_wrapper: BingSearchAPIWrapper
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
return str(self.api_wrapper.results(query, self.num_results))
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("BingSearchResults does not support async")
|
langchain.tools.bing_search.tool.BingSearchResults¶
class langchain.tools.bing_search.tool.BingSearchResults(*, name: str = 'Bing Search Results JSON', description: str = 'A wrapper around Bing Search. Useful for when you need to answer questions about current events. Input should be a search query. Output is a JSON array of the query results', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, num_results: int = 4, api_wrapper: BingSearchAPIWrapper)[source]¶
Bases: BaseTool
Tool that has capability to query the Bing Search API and get back json.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_wrapper: langchain.utilities.bing_search.BingSearchAPIWrapper [Required]¶
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'A wrapper around Bing Search. Useful for when you need to answer questions about current events. Input should be a search query. Output is a JSON array of the query results'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'Bing Search Results JSON'¶
The unique name of the tool that clearly communicates its purpose.
param num_results: int = 4¶
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Tool that has capability to query the Bing Search API and get back json.
|
52385334-4df0-4e27-a135-b793bae61bc4
|
[
"json",
"typing.Optional",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.BaseTool"
] |
langchain.tools.youtube.search.YouTubeSearchTool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.youtube.search.YouTubeSearchTool.html#langchain.tools.youtube.search.YouTubeSearchTool
|
class YouTubeSearchTool(BaseTool):
name = "youtube_search"
description = (
"search for youtube videos associated with a person. "
"the input to this tool should be a comma separated list, "
"the first part contains a person name and the second a "
"number that is the maximum number of video results "
"to return aka num_results. the second part is optional"
)
def _search(self, person: str, num_results: int) -> str:
from youtube_search import YoutubeSearch
results = YoutubeSearch(person, num_results).to_json()
data = json.loads(results)
url_suffix_list = [video["url_suffix"] for video in data["videos"]]
return str(url_suffix_list)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
values = query.split(",")
person = values[0]
if len(values) > 1:
num_results = int(values[1])
else:
num_results = 2
return self._search(person, num_results)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("YouTubeSearchTool does not yet support async")
|
langchain.tools.youtube.search.YouTubeSearchTool¶
class langchain.tools.youtube.search.YouTubeSearchTool(*, name: str = 'youtube_search', description: str = 'search for youtube videos associated with a person. the input to this tool should be a comma separated list, the first part contains a person name and the second a number that is the maximum number of video results to return aka num_results. the second part is optional', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False)[source]¶
Bases: BaseTool
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'search for youtube videos associated with a person. the input to this tool should be a comma separated list, the first part contains a person name and the second a number that is the maximum number of video results to return aka num_results. the second part is optional'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'youtube_search'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Create a new model by parsing and validating input data from keyword arguments.
|
7bc3e1b3-a4aa-4070-8673-9d0bf885ae69
|
[
"typing.Any",
"typing.Dict",
"typing.Optional",
"pydantic.Field",
"pydantic.root_validator",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool",
"langchain.tools.zapier.prompt.BASE_ZAPIER_TOOL_PROMPT",
"langchain.utilities.zapier.ZapierNLAWrapper"
] |
langchain.tools.zapier.tool.ZapierNLARunAction
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.zapier.tool.ZapierNLARunAction.html#langchain.tools.zapier.tool.ZapierNLARunAction
|
class ZapierNLARunAction(BaseTool):
"""
Args:
action_id: a specific action ID (from list actions) of the action to execute
(the set api_key must be associated with the action owner)
instructions: a natural language instruction string for using the action
(eg. "get the latest email from Mike Knoop" for "Gmail: find email" action)
params: a dict, optional. Any params provided will *override* AI guesses
from `instructions` (see "understanding the AI guessing flow" here:
https://nla.zapier.com/docs/using-the-api#ai-guessing)
"""
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
action_id: str
params: Optional[dict] = None
base_prompt: str = BASE_ZAPIER_TOOL_PROMPT
zapier_description: str
params_schema: Dict[str, str] = Field(default_factory=dict)
name = ""
description = ""
@root_validator
def set_name_description(cls, values: Dict[str, Any]) -> Dict[str, Any]:
zapier_description = values["zapier_description"]
params_schema = values["params_schema"]
if "instructions" in params_schema:
del params_schema["instructions"]
# Ensure base prompt (if overridden) contains necessary input fields
necessary_fields = {"{zapier_description}", "{params}"}
if not all(field in values["base_prompt"] for field in necessary_fields):
raise ValueError(
"Your custom base Zapier prompt must contain input fields for "
"{zapier_description} and {params}."
)
values["name"] = zapier_description
values["description"] = values["base_prompt"].format(
zapier_description=zapier_description,
params=str(list(params_schema.keys())),
)
return values
def _run(
self, instructions: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
return self.api_wrapper.run_as_str(self.action_id, instructions, self.params)
async def _arun(
self,
instructions: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
return await self.api_wrapper.arun_as_str(
self.action_id,
instructions,
self.params,
)
|
langchain.tools.zapier.tool.ZapierNLARunAction¶
class langchain.tools.zapier.tool.ZapierNLARunAction(*, name: str = '', description: str = '', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, api_wrapper: ZapierNLAWrapper = None, action_id: str, params: Optional[dict] = None, base_prompt: str = 'A wrapper around Zapier NLA actions. The input to this tool is a natural language instruction, for example "get the latest email from my bank" or "send a slack message to the #general channel". Each tool will have params associated with it that are specified as a list. You MUST take into account the params when creating the instruction. For example, if the params are [\'Message_Text\', \'Channel\'], your instruction should be something like \'send a slack message to the #general channel with the text hello world\'. Another example: if the params are [\'Calendar\', \'Search_Term\'], your instruction should be something like \'find the meeting in my personal calendar at 3pm\'. Do not make up params, they will be explicitly specified in the tool description. If you do not have enough information to fill in the params, just say \'not enough information provided in the instruction, missing <param>\'. If you get a none or null response, STOP EXECUTION, do not try to another tool!This tool specifically used for: {zapier_description}, and has params: {params}', zapier_description: str, params_schema: Dict[str, str] = None)[source]¶
Bases: BaseTool
Executes an action that is identified by action_id, must be exposed(enabled) by the current user (associated with the set api_key). Change
your exposed actions here: https://nla.zapier.com/demo/start/
The return JSON is guaranteed to be less than ~500 words (350
tokens) making it safe to inject into the prompt of another LLM
call.
Parameters
action_id – a specific action ID (from list actions) of the action to execute
(the set api_key must be associated with the action owner)
instructions – a natural language instruction string for using the action
(eg. “get the latest email from Mike Knoop” for “Gmail: find email” action)
params – a dict, optional. Any params provided will override AI guesses
from instructions (see “understanding the AI guessing flow” here:
https://nla.zapier.com/docs/using-the-api#ai-guessing)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param action_id: str [Required]¶
param api_wrapper: langchain.utilities.zapier.ZapierNLAWrapper [Optional]¶
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param base_prompt: str = 'A wrapper around Zapier NLA actions. The input to this tool is a natural language instruction, for example "get the latest email from my bank" or "send a slack message to the #general channel". Each tool will have params associated with it that are specified as a list. You MUST take into account the params when creating the instruction. For example, if the params are [\'Message_Text\', \'Channel\'], your instruction should be something like \'send a slack message to the #general channel with the text hello world\'. Another example: if the params are [\'Calendar\', \'Search_Term\'], your instruction should be something like \'find the meeting in my personal calendar at 3pm\'. Do not make up params, they will be explicitly specified in the tool description. If you do not have enough information to fill in the params, just say \'not enough information provided in the instruction, missing <param>\'. If you get a none or null response, STOP EXECUTION, do not try to another tool!This tool specifically used for: {zapier_description}, and has params: {params}'¶
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = ''¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = ''¶
The unique name of the tool that clearly communicates its purpose.
param params: Optional[dict] = None¶
param params_schema: Dict[str, str] [Optional]¶
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
param zapier_description: str [Required]¶
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
validator set_name_description » all fields[source]¶
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Executes an action that is identified by action_id, must be exposed
|
14a57f7a-780c-4bc9-9399-190d2b5abc91
|
[
"typing.Any",
"typing.Dict",
"typing.Optional",
"pydantic.Field",
"pydantic.root_validator",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.base.BaseTool",
"langchain.tools.zapier.prompt.BASE_ZAPIER_TOOL_PROMPT",
"langchain.utilities.zapier.ZapierNLAWrapper"
] |
langchain.tools.zapier.tool.ZapierNLAListActions
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.zapier.tool.ZapierNLAListActions.html#langchain.tools.zapier.tool.ZapierNLAListActions
|
class ZapierNLAListActions(BaseTool):
"""
Args:
None
"""
name = "ZapierNLA_list_actions"
description = BASE_ZAPIER_TOOL_PROMPT + (
"This tool returns a list of the user's exposed actions."
)
api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper)
def _run(
self,
_: str = "",
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
return self.api_wrapper.list_as_str()
async def _arun(
self,
_: str = "",
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the Zapier NLA tool to return a list of all exposed user actions."""
return await self.api_wrapper.alist_as_str()
|
langchain.tools.zapier.tool.ZapierNLAListActions¶
class langchain.tools.zapier.tool.ZapierNLAListActions(*, name: str = 'ZapierNLA_list_actions', description: str = 'A wrapper around Zapier NLA actions. The input to this tool is a natural language instruction, for example "get the latest email from my bank" or "send a slack message to the #general channel". Each tool will have params associated with it that are specified as a list. You MUST take into account the params when creating the instruction. For example, if the params are [\'Message_Text\', \'Channel\'], your instruction should be something like \'send a slack message to the #general channel with the text hello world\'. Another example: if the params are [\'Calendar\', \'Search_Term\'], your instruction should be something like \'find the meeting in my personal calendar at 3pm\'. Do not make up params, they will be explicitly specified in the tool description. If you do not have enough information to fill in the params, just say \'not enough information provided in the instruction, missing <param>\'. If you get a none or null response, STOP EXECUTION, do not try to another tool!This tool specifically used for: {zapier_description}, and has params: {params}This tool returns a list of the user\'s exposed actions.', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, api_wrapper: ZapierNLAWrapper = None)[source]¶
Bases: BaseTool
Returns a list of all exposed (enabled) actions associated withcurrent user (associated with the set api_key). Change your exposed
actions here: https://nla.zapier.com/demo/start/
The return list can be empty if no actions exposed. Else will contain
a list of action objects:
[{“id”: str,
“description”: str,
“params”: Dict[str, str]
}]
params will always contain an instructions key, the only required
param. All others optional and if provided will override any AI guesses
(see “understanding the AI guessing flow” here:
https://nla.zapier.com/docs/using-the-api#ai-guessing)
Parameters
None –
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_wrapper: langchain.utilities.zapier.ZapierNLAWrapper [Optional]¶
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'A wrapper around Zapier NLA actions. The input to this tool is a natural language instruction, for example "get the latest email from my bank" or "send a slack message to the #general channel". Each tool will have params associated with it that are specified as a list. You MUST take into account the params when creating the instruction. For example, if the params are [\'Message_Text\', \'Channel\'], your instruction should be something like \'send a slack message to the #general channel with the text hello world\'. Another example: if the params are [\'Calendar\', \'Search_Term\'], your instruction should be something like \'find the meeting in my personal calendar at 3pm\'. Do not make up params, they will be explicitly specified in the tool description. If you do not have enough information to fill in the params, just say \'not enough information provided in the instruction, missing <param>\'. If you get a none or null response, STOP EXECUTION, do not try to another tool!This tool specifically used for: {zapier_description}, and has params: {params}This tool returns a list of the user\'s exposed actions.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'ZapierNLA_list_actions'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Returns a list of all exposed (enabled) actions associated with
|
01dc2655-fc26-4ce1-9654-de9c7e259415
|
[
"logging",
"time.perf_counter",
"typing.Any",
"typing.Dict",
"typing.Optional",
"typing.Tuple",
"pydantic.Field",
"pydantic.validator",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.chains.llm.LLMChain",
"langchain.chat_models.openai._import_tiktoken",
"langchain.tools.base.BaseTool",
"langchain.tools.powerbi.prompt.BAD_REQUEST_RESPONSE",
"langchain.tools.powerbi.prompt.DEFAULT_FEWSHOT_EXAMPLES",
"langchain.tools.powerbi.prompt.RETRY_RESPONSE",
"langchain.utilities.powerbi.PowerBIDataset",
"langchain.utilities.powerbi.json_to_md"
] |
langchain.tools.powerbi.tool.QueryPowerBITool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.powerbi.tool.QueryPowerBITool.html#langchain.tools.powerbi.tool.QueryPowerBITool
|
class QueryPowerBITool(BaseTool):
"""Tool for querying a Power BI Dataset."""
name = "query_powerbi"
description = """
Input to this tool is a detailed question about the dataset, output is a result from the dataset. It will try to answer the question using the dataset, and if it cannot, it will ask for clarification.
Example Input: "How many rows are in table1?"
""" # noqa: E501
llm_chain: LLMChain
powerbi: PowerBIDataset = Field(exclude=True)
examples: Optional[str] = DEFAULT_FEWSHOT_EXAMPLES
session_cache: Dict[str, Any] = Field(default_factory=dict, exclude=True)
max_iterations: int = 5
output_token_limit: int = 4000
tiktoken_model_name: Optional[str] = None # "cl100k_base"
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@validator("llm_chain")
def validate_llm_chain_input_variables( # pylint: disable=E0213
cls, llm_chain: LLMChain
) -> LLMChain:
"""Make sure the LLM chain has the correct input variables."""
for var in llm_chain.prompt.input_variables:
if var not in ["tool_input", "tables", "schemas", "examples"]:
raise ValueError(
"LLM chain for QueryPowerBITool must have input variables ['tool_input', 'tables', 'schemas', 'examples'], found %s", # noqa: C0301 E501 # pylint: disable=C0301
llm_chain.prompt.input_variables,
)
return llm_chain
def _check_cache(self, tool_input: str) -> Optional[str]:
"""Check if the input is present in the cache.
If the value is a bad request, overwrite with the escalated version,
if not present return None."""
if tool_input not in self.session_cache:
return None
return self.session_cache[tool_input]
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Execute the query, return the results or an error message."""
if cache := self._check_cache(tool_input):
logger.debug("Found cached result for %s: %s", tool_input, cache)
return cache
try:
logger.info("Running PBI Query Tool with input: %s", tool_input)
query = self.llm_chain.predict(
tool_input=tool_input,
tables=self.powerbi.get_table_names(),
schemas=self.powerbi.get_schemas(),
examples=self.examples,
)
except Exception as exc: # pylint: disable=broad-except
self.session_cache[tool_input] = f"Error on call to LLM: {exc}"
return self.session_cache[tool_input]
if query == "I cannot answer this":
self.session_cache[tool_input] = query
return self.session_cache[tool_input]
logger.info("PBI Query:\n%s", query)
start_time = perf_counter()
pbi_result = self.powerbi.run(command=query)
end_time = perf_counter()
logger.debug("PBI Result: %s", pbi_result)
logger.debug(f"PBI Query duration: {end_time - start_time:0.6f}")
result, error = self._parse_output(pbi_result)
if error is not None and "TokenExpired" in error:
self.session_cache[
tool_input
] = "Authentication token expired or invalid, please try reauthenticate."
return self.session_cache[tool_input]
iterations = kwargs.get("iterations", 0)
if error and iterations < self.max_iterations:
return self._run(
tool_input=RETRY_RESPONSE.format(
tool_input=tool_input, query=query, error=error
),
run_manager=run_manager,
iterations=iterations + 1,
)
self.session_cache[tool_input] = (
result if result else BAD_REQUEST_RESPONSE.format(error=error)
)
return self.session_cache[tool_input]
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> str:
"""Execute the query, return the results or an error message."""
if cache := self._check_cache(tool_input):
logger.debug("Found cached result for %s: %s", tool_input, cache)
return f"{cache}, from cache, you have already asked this question."
try:
logger.info("Running PBI Query Tool with input: %s", tool_input)
query = await self.llm_chain.apredict(
tool_input=tool_input,
tables=self.powerbi.get_table_names(),
schemas=self.powerbi.get_schemas(),
examples=self.examples,
)
except Exception as exc: # pylint: disable=broad-except
self.session_cache[tool_input] = f"Error on call to LLM: {exc}"
return self.session_cache[tool_input]
if query == "I cannot answer this":
self.session_cache[tool_input] = query
return self.session_cache[tool_input]
logger.info("PBI Query: %s", query)
start_time = perf_counter()
pbi_result = await self.powerbi.arun(command=query)
end_time = perf_counter()
logger.debug("PBI Result: %s", pbi_result)
logger.debug(f"PBI Query duration: {end_time - start_time:0.6f}")
result, error = self._parse_output(pbi_result)
if error is not None and ("TokenExpired" in error or "TokenError" in error):
self.session_cache[
tool_input
] = "Authentication token expired or invalid, please try to reauthenticate or check the scope of the credential." # noqa: E501
return self.session_cache[tool_input]
iterations = kwargs.get("iterations", 0)
if error and iterations < self.max_iterations:
return await self._arun(
tool_input=RETRY_RESPONSE.format(
tool_input=tool_input, query=query, error=error
),
run_manager=run_manager,
iterations=iterations + 1,
)
self.session_cache[tool_input] = (
result if result else BAD_REQUEST_RESPONSE.format(error=error)
)
return self.session_cache[tool_input]
def _parse_output(
self, pbi_result: Dict[str, Any]
) -> Tuple[Optional[str], Optional[Any]]:
"""Parse the output of the query to a markdown table."""
if "results" in pbi_result:
rows = pbi_result["results"][0]["tables"][0]["rows"]
if len(rows) == 0:
logger.info("0 records in result, query was valid.")
return (
None,
"0 rows returned, this might be correct, but please validate if all filter values were correct?", # noqa: E501
)
result = json_to_md(rows)
too_long, length = self._result_too_large(result)
if too_long:
return (
f"Result too large, please try to be more specific or use the `TOPN` function. The result is {length} tokens long, the limit is {self.output_token_limit} tokens.", # noqa: E501
None,
)
return result, None
if "error" in pbi_result:
if (
"pbi.error" in pbi_result["error"]
and "details" in pbi_result["error"]["pbi.error"]
):
return None, pbi_result["error"]["pbi.error"]["details"][0]["detail"]
return None, pbi_result["error"]
return None, pbi_result
def _result_too_large(self, result: str) -> Tuple[bool, int]:
"""Tokenize the output of the query."""
if self.tiktoken_model_name:
tiktoken_ = _import_tiktoken()
encoding = tiktoken_.encoding_for_model(self.tiktoken_model_name)
length = len(encoding.encode(result))
logger.info("Result length: %s", length)
return length > self.output_token_limit, length
return False, 0
|
langchain.tools.powerbi.tool.QueryPowerBITool¶
class langchain.tools.powerbi.tool.QueryPowerBITool(*, name: str = 'query_powerbi', description: str = '\n Input to this tool is a detailed question about the dataset, output is a result from the dataset. It will try to answer the question using the dataset, and if it cannot, it will ask for clarification.\n\n Example Input: "How many rows are in table1?"\n ', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, llm_chain: LLMChain, powerbi: PowerBIDataset, examples: Optional[str] = '\nQuestion: How many rows are in the table <table>?\nDAX: EVALUATE ROW("Number of rows", COUNTROWS(<table>))\n----\nQuestion: How many rows are in the table <table> where <column> is not empty?\nDAX: EVALUATE ROW("Number of rows", COUNTROWS(FILTER(<table>, <table>[<column>] <> "")))\n----\nQuestion: What was the average of <column> in <table>?\nDAX: EVALUATE ROW("Average", AVERAGE(<table>[<column>]))\n----\n', session_cache: Dict[str, Any] = None, max_iterations: int = 5, output_token_limit: int = 4000, tiktoken_model_name: Optional[str] = None)[source]¶
Bases: BaseTool
Tool for querying a Power BI Dataset.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = '\n Input to this tool is a detailed question about the dataset, output is a result from the dataset. It will try to answer the question using the dataset, and if it cannot, it will ask for clarification.\n\n Example Input: "How many rows are in table1?"\n '¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param examples: Optional[str] = '\nQuestion: How many rows are in the table <table>?\nDAX: EVALUATE ROW("Number of rows", COUNTROWS(<table>))\n----\nQuestion: How many rows are in the table <table> where <column> is not empty?\nDAX: EVALUATE ROW("Number of rows", COUNTROWS(FILTER(<table>, <table>[<column>] <> "")))\n----\nQuestion: What was the average of <column> in <table>?\nDAX: EVALUATE ROW("Average", AVERAGE(<table>[<column>]))\n----\n'¶
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param llm_chain: langchain.chains.llm.LLMChain [Required]¶
param max_iterations: int = 5¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'query_powerbi'¶
The unique name of the tool that clearly communicates its purpose.
param output_token_limit: int = 4000¶
param powerbi: langchain.utilities.powerbi.PowerBIDataset [Required]¶
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param session_cache: Dict[str, Any] [Optional]¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param tiktoken_model_name: Optional[str] = None¶
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
validator validate_llm_chain_input_variables » llm_chain[source]¶
Make sure the LLM chain has the correct input variables.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config[source]¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
|
Tool for querying a Power BI Dataset.
|
710a059e-7f30-4b6d-8b24-4ff09a5e2bf9
|
[
"logging",
"time.perf_counter",
"typing.Any",
"typing.Dict",
"typing.Optional",
"typing.Tuple",
"pydantic.Field",
"pydantic.validator",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.chains.llm.LLMChain",
"langchain.chat_models.openai._import_tiktoken",
"langchain.tools.base.BaseTool",
"langchain.tools.powerbi.prompt.BAD_REQUEST_RESPONSE",
"langchain.tools.powerbi.prompt.DEFAULT_FEWSHOT_EXAMPLES",
"langchain.tools.powerbi.prompt.RETRY_RESPONSE",
"langchain.utilities.powerbi.PowerBIDataset",
"langchain.utilities.powerbi.json_to_md"
] |
langchain.tools.powerbi.tool.InfoPowerBITool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.powerbi.tool.InfoPowerBITool.html#langchain.tools.powerbi.tool.InfoPowerBITool
|
class InfoPowerBITool(BaseTool):
"""Tool for getting metadata about a PowerBI Dataset."""
name = "schema_powerbi"
description = """
Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
Be sure that the tables actually exist by calling list_tables_powerbi first!
Example Input: "table1, table2, table3"
""" # noqa: E501
powerbi: PowerBIDataset = Field(exclude=True)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _run(
self,
tool_input: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the schema for tables in a comma-separated list."""
return self.powerbi.get_table_info(tool_input.split(", "))
async def _arun(
self,
tool_input: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
return await self.powerbi.aget_table_info(tool_input.split(", "))
|
langchain.tools.powerbi.tool.InfoPowerBITool¶
class langchain.tools.powerbi.tool.InfoPowerBITool(*, name: str = 'schema_powerbi', description: str = '\n Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.\n Be sure that the tables actually exist by calling list_tables_powerbi first!\n\n Example Input: "table1, table2, table3"\n ', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, powerbi: PowerBIDataset)[source]¶
Bases: BaseTool
Tool for getting metadata about a PowerBI Dataset.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = '\n Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.\n Be sure that the tables actually exist by calling list_tables_powerbi first!\n\n Example Input: "table1, table2, table3"\n '¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'schema_powerbi'¶
The unique name of the tool that clearly communicates its purpose.
param powerbi: langchain.utilities.powerbi.PowerBIDataset [Required]¶
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config[source]¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
|
Tool for getting metadata about a PowerBI Dataset.
|
57dce085-11a5-401a-b714-b14a12bbcdec
|
[
"logging",
"time.perf_counter",
"typing.Any",
"typing.Dict",
"typing.Optional",
"typing.Tuple",
"pydantic.Field",
"pydantic.validator",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.chains.llm.LLMChain",
"langchain.chat_models.openai._import_tiktoken",
"langchain.tools.base.BaseTool",
"langchain.tools.powerbi.prompt.BAD_REQUEST_RESPONSE",
"langchain.tools.powerbi.prompt.DEFAULT_FEWSHOT_EXAMPLES",
"langchain.tools.powerbi.prompt.RETRY_RESPONSE",
"langchain.utilities.powerbi.PowerBIDataset",
"langchain.utilities.powerbi.json_to_md"
] |
langchain.tools.powerbi.tool.ListPowerBITool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.powerbi.tool.ListPowerBITool.html#langchain.tools.powerbi.tool.ListPowerBITool
|
class ListPowerBITool(BaseTool):
"""Tool for getting tables names."""
name = "list_tables_powerbi"
description = "Input is an empty string, output is a comma separated list of tables in the database." # noqa: E501 # pylint: disable=C0301
powerbi: PowerBIDataset = Field(exclude=True)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _run(
self,
tool_input: Optional[str] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Get the names of the tables."""
return ", ".join(self.powerbi.get_table_names())
async def _arun(
self,
tool_input: Optional[str] = None,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Get the names of the tables."""
return ", ".join(self.powerbi.get_table_names())
|
langchain.tools.powerbi.tool.ListPowerBITool¶
class langchain.tools.powerbi.tool.ListPowerBITool(*, name: str = 'list_tables_powerbi', description: str = 'Input is an empty string, output is a comma separated list of tables in the database.', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, powerbi: PowerBIDataset)[source]¶
Bases: BaseTool
Tool for getting tables names.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Input is an empty string, output is a comma separated list of tables in the database.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'list_tables_powerbi'¶
The unique name of the tool that clearly communicates its purpose.
param powerbi: langchain.utilities.powerbi.PowerBIDataset [Required]¶
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config[source]¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
|
Tool for getting tables names.
|
5d28a31a-9f84-4918-91c0-644e25c92215
|
[
"__future__.annotations",
"json",
"typing.TYPE_CHECKING",
"typing.Any",
"typing.Optional",
"typing.Type",
"pydantic.BaseModel",
"pydantic.Field",
"pydantic.root_validator",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.playwright.base.BaseBrowserTool",
"langchain.tools.playwright.utils.aget_current_page",
"langchain.tools.playwright.utils.get_current_page"
] |
langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput.html#langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput
|
class ExtractHyperlinksToolInput(BaseModel):
"""Input for ExtractHyperlinksTool."""
absolute_urls: bool = Field(
default=False,
description="Return absolute URLs instead of relative URLs",
)
|
langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput¶
class langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput(*, absolute_urls: bool = False)[source]¶
Bases: BaseModel
Input for ExtractHyperlinksTool.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param absolute_urls: bool = False¶
Return absolute URLs instead of relative URLs
|
Input for ExtractHyperlinksTool.
|
59d0ca56-df6c-4f65-95fd-e6c2031efcac
|
[
"__future__.annotations",
"json",
"typing.TYPE_CHECKING",
"typing.Any",
"typing.Optional",
"typing.Type",
"pydantic.BaseModel",
"pydantic.Field",
"pydantic.root_validator",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.playwright.base.BaseBrowserTool",
"langchain.tools.playwright.utils.aget_current_page",
"langchain.tools.playwright.utils.get_current_page"
] |
langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksTool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksTool.html#langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksTool
|
class ExtractHyperlinksTool(BaseBrowserTool):
"""Extract all hyperlinks on the page."""
name: str = "extract_hyperlinks"
description: str = "Extract all hyperlinks on the current webpage"
args_schema: Type[BaseModel] = ExtractHyperlinksToolInput
@root_validator
def check_bs_import(cls, values: dict) -> dict:
"""Check that the arguments are valid."""
try:
from bs4 import BeautifulSoup # noqa: F401
except ImportError:
raise ValueError(
"The 'beautifulsoup4' package is required to use this tool."
" Please install it with 'pip install beautifulsoup4'."
)
return values
@staticmethod
def scrape_page(page: Any, html_content: str, absolute_urls: bool) -> str:
from urllib.parse import urljoin
from bs4 import BeautifulSoup
# Parse the HTML content with BeautifulSoup
soup = BeautifulSoup(html_content, "lxml")
# Find all the anchor elements and extract their href attributes
anchors = soup.find_all("a")
if absolute_urls:
base_url = page.url
links = [urljoin(base_url, anchor.get("href", "")) for anchor in anchors]
else:
links = [anchor.get("href", "") for anchor in anchors]
# Return the list of links as a JSON string
return json.dumps(links)
def _run(
self,
absolute_urls: bool = False,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
html_content = page.content()
return self.scrape_page(page, html_content, absolute_urls)
async def _arun(
self,
absolute_urls: bool = False,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
html_content = await page.content()
return self.scrape_page(page, html_content, absolute_urls)
|
langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksTool¶
class langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksTool(*, name: str = 'extract_hyperlinks', description: str = 'Extract all hyperlinks on the current webpage', args_schema: ~typing.Type[~pydantic.main.BaseModel] = <class 'langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput'>, return_direct: bool = False, verbose: bool = False, callbacks: ~typing.Optional[~typing.Union[~typing.List[~langchain.callbacks.base.BaseCallbackHandler], ~langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: ~typing.Optional[~langchain.callbacks.base.BaseCallbackManager] = None, tags: ~typing.Optional[~typing.List[str]] = None, metadata: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, handle_tool_error: ~typing.Optional[~typing.Union[bool, str, ~typing.Callable[[~langchain.tools.base.ToolException], str]]] = False, sync_browser: Optional['SyncBrowser'] = None, async_browser: Optional['AsyncBrowser'] = None)[source]¶
Bases: BaseBrowserTool
Extract all hyperlinks on the page.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Type[BaseModel] = <class 'langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param async_browser: Optional['AsyncBrowser'] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Extract all hyperlinks on the current webpage'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'extract_hyperlinks'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param sync_browser: Optional['SyncBrowser'] = None¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator check_bs_import » all fields[source]¶
Check that the arguments are valid.
classmethod from_browser(sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None) → BaseBrowserTool¶
Instantiate the tool.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
static scrape_page(page: Any, html_content: str, absolute_urls: bool) → str[source]¶
validator validate_browser_provided » all fields¶
Check that the arguments are valid.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Extract all hyperlinks on the page.
|
33d405b2-7406-4c3a-8b70-d2d7020f88d8
|
[
"__future__.annotations",
"typing.Optional",
"typing.Type",
"pydantic.BaseModel",
"pydantic.root_validator",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.playwright.base.BaseBrowserTool",
"langchain.tools.playwright.utils.aget_current_page",
"langchain.tools.playwright.utils.get_current_page"
] |
langchain.tools.playwright.extract_text.ExtractTextTool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.extract_text.ExtractTextTool.html#langchain.tools.playwright.extract_text.ExtractTextTool
|
class ExtractTextTool(BaseBrowserTool):
name: str = "extract_text"
description: str = "Extract all the text on the current webpage"
args_schema: Type[BaseModel] = BaseModel
@root_validator
def check_acheck_bs_importrgs(cls, values: dict) -> dict:
"""Check that the arguments are valid."""
try:
from bs4 import BeautifulSoup # noqa: F401
except ImportError:
raise ValueError(
"The 'beautifulsoup4' package is required to use this tool."
" Please install it with 'pip install beautifulsoup4'."
)
return values
def _run(self, run_manager: Optional[CallbackManagerForToolRun] = None) -> str:
"""Use the tool."""
# Use Beautiful Soup since it's faster than looping through the elements
from bs4 import BeautifulSoup
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
html_content = page.content()
# Parse the HTML content with BeautifulSoup
soup = BeautifulSoup(html_content, "lxml")
return " ".join(text for text in soup.stripped_strings)
async def _arun(
self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
# Use Beautiful Soup since it's faster than looping through the elements
from bs4 import BeautifulSoup
page = await aget_current_page(self.async_browser)
html_content = await page.content()
# Parse the HTML content with BeautifulSoup
soup = BeautifulSoup(html_content, "lxml")
return " ".join(text for text in soup.stripped_strings)
|
langchain.tools.playwright.extract_text.ExtractTextTool¶
class langchain.tools.playwright.extract_text.ExtractTextTool(*, name: str = 'extract_text', description: str = 'Extract all the text on the current webpage', args_schema: ~typing.Type[~pydantic.main.BaseModel] = <class 'pydantic.main.BaseModel'>, return_direct: bool = False, verbose: bool = False, callbacks: ~typing.Optional[~typing.Union[~typing.List[~langchain.callbacks.base.BaseCallbackHandler], ~langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: ~typing.Optional[~langchain.callbacks.base.BaseCallbackManager] = None, tags: ~typing.Optional[~typing.List[str]] = None, metadata: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, handle_tool_error: ~typing.Optional[~typing.Union[bool, str, ~typing.Callable[[~langchain.tools.base.ToolException], str]]] = False, sync_browser: Optional['SyncBrowser'] = None, async_browser: Optional['AsyncBrowser'] = None)[source]¶
Bases: BaseBrowserTool
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Type[BaseModel] = <class 'pydantic.main.BaseModel'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param async_browser: Optional['AsyncBrowser'] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Extract all the text on the current webpage'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'extract_text'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param sync_browser: Optional['SyncBrowser'] = None¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator check_acheck_bs_importrgs » all fields[source]¶
Check that the arguments are valid.
classmethod from_browser(sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None) → BaseBrowserTool¶
Instantiate the tool.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
validator validate_browser_provided » all fields¶
Check that the arguments are valid.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Create a new model by parsing and validating input data from keyword arguments.
|
d267e6df-3144-4d2a-9e33-ed8f20b06aa1
|
[
"__future__.annotations",
"typing.Optional",
"typing.Type",
"pydantic.BaseModel",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.playwright.base.BaseBrowserTool",
"langchain.tools.playwright.utils.aget_current_page",
"langchain.tools.playwright.utils.get_current_page"
] |
langchain.tools.playwright.current_page.CurrentWebPageTool
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.current_page.CurrentWebPageTool.html#langchain.tools.playwright.current_page.CurrentWebPageTool
|
class CurrentWebPageTool(BaseBrowserTool):
name: str = "current_webpage"
description: str = "Returns the URL of the current page"
args_schema: Type[BaseModel] = BaseModel
def _run(
self,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.sync_browser is None:
raise ValueError(f"Synchronous browser not provided to {self.name}")
page = get_current_page(self.sync_browser)
return str(page.url)
async def _arun(
self,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
if self.async_browser is None:
raise ValueError(f"Asynchronous browser not provided to {self.name}")
page = await aget_current_page(self.async_browser)
return str(page.url)
|
langchain.tools.playwright.current_page.CurrentWebPageTool¶
class langchain.tools.playwright.current_page.CurrentWebPageTool(*, name: str = 'current_webpage', description: str = 'Returns the URL of the current page', args_schema: ~typing.Type[~pydantic.main.BaseModel] = <class 'pydantic.main.BaseModel'>, return_direct: bool = False, verbose: bool = False, callbacks: ~typing.Optional[~typing.Union[~typing.List[~langchain.callbacks.base.BaseCallbackHandler], ~langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: ~typing.Optional[~langchain.callbacks.base.BaseCallbackManager] = None, tags: ~typing.Optional[~typing.List[str]] = None, metadata: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, handle_tool_error: ~typing.Optional[~typing.Union[bool, str, ~typing.Callable[[~langchain.tools.base.ToolException], str]]] = False, sync_browser: Optional['SyncBrowser'] = None, async_browser: Optional['AsyncBrowser'] = None)[source]¶
Bases: BaseBrowserTool
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Type[BaseModel] = <class 'pydantic.main.BaseModel'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param async_browser: Optional['AsyncBrowser'] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Returns the URL of the current page'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'current_webpage'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param sync_browser: Optional['SyncBrowser'] = None¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
classmethod from_browser(sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None) → BaseBrowserTool¶
Instantiate the tool.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
validator validate_browser_provided » all fields¶
Check that the arguments are valid.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
Create a new model by parsing and validating input data from keyword arguments.
|
3d8a7db0-de2f-41fc-8ced-b97fc2daa5d4
|
[
"__future__.annotations",
"typing.Optional",
"typing.Type",
"pydantic.BaseModel",
"pydantic.Field",
"langchain.callbacks.manager.AsyncCallbackManagerForToolRun",
"langchain.callbacks.manager.CallbackManagerForToolRun",
"langchain.tools.playwright.base.BaseBrowserTool",
"langchain.tools.playwright.utils.aget_current_page",
"langchain.tools.playwright.utils.get_current_page"
] |
langchain.tools.playwright.navigate.NavigateToolInput
|
Class
|
https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.navigate.NavigateToolInput.html#langchain.tools.playwright.navigate.NavigateToolInput
|
class NavigateToolInput(BaseModel):
"""Input for NavigateToolInput."""
url: str = Field(..., description="url to navigate to")
|
langchain.tools.playwright.navigate.NavigateToolInput¶
class langchain.tools.playwright.navigate.NavigateToolInput(*, url: str)[source]¶
Bases: BaseModel
Input for NavigateToolInput.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param url: str [Required]¶
url to navigate to
|
Input for NavigateToolInput.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.