id
stringlengths
11
15
task
stringlengths
37
1.12k
answer
int64
0
997
__index_level_0__
int64
0
931
AIME-2014-II-1
Abe can paint the room in 15 hours, Bea can paint 50 percent faster than Abe, and Coe can paint twice as fast as Abe. Abe begins to paint the room and works alone for the first hour and a half. Then Bea joins Abe, and they work together until half the room is painted. Then Coe joins Abe and Bea, and they work together until the entire room is painted. Find the number of minutes after Abe begins for the three of them to finish painting the room.
334
635
AIME-2014-II-2
Arnold is studying the prevalence of three health risk factors, denoted by A, B, and C, within a population of men. For each of the three factors, the probability that a randomly selected man in the population has only this risk factor (and none of the others) is 0.1. For any two of the three factors, the probability that a randomly selected man has exactly these two risk factors (but not the third) is 0.14. The probability that a randomly selected man has all three risk factors, given that he has A and B is $\frac{1}{3}$ . The probability that a man has none of the three risk factors given that he does not have risk factor A is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p+q$ .
76
636
AIME-2014-II-4
The repeating decimals $0.abab\overline{ab}$ and $0.abcabc\overline{abc}$ satisfy $0.abab\overline{ab}+0.abcabc\overline{abc}=\frac{33}{37},$ where $a$ , $b$ , and $c$ are (not necessarily distinct) digits. Find the three digit number $abc$ .
447
638
AIME-2014-II-5
Real numbers $r$ and $s$ are roots of $p(x)=x^3+ax+b$ , and $r+4$ and $s-3$ are roots of $q(x)=x^3+ax+b+240$ . Find the sum of all possible values of $|b|$ .
420
639
AIME-2014-II-6
Charles has two six-sided dice. One of the die is fair, and the other die is biased so that it comes up six with probability $\frac{2}{3}$ and each of the other five sides has probability $\frac{1}{15}$ . Charles chooses one of the two dice at random and rolls it three times. Given that the first two rolls are both sixes, the probability that the third roll will also be a six is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p+q$ .
167
640
AIME-2014-II-7
Let $f(x)=(x^2+3x+2)^{\cos(\pi x)}$ . Find the sum of all positive integers $n$ for which $\left |\sum_{k=1}^n\log_{10}f(k)\right|=1.$
21
641
AIME-2014-II-8
Circle $C$ with radius 2 has diameter $\overline{AB}$ . Circle $D$ is internally tangent to circle $C$ at $A$ . Circle $E$ is internally tangent to circle $C$ , externally tangent to circle $D$ , and tangent to $\overline{AB}$ . The radius of circle $D$ is three times the radius of circle $E$ , and can be written in the form $\sqrt{m}-n$ , where $m$ and $n$ are positive integers. Find $m+n$ .
254
642
AIME-2014-II-9
Ten chairs are arranged in a circle. Find the number of subsets of this set of chairs that contain at least three adjacent chairs.
581
643
AIME-2014-II-10
Let $z$ be a complex number with $|z|=2014$ . Let $P$ be the polygon in the complex plane whose vertices are $z$ and every $w$ such that $\frac{1}{z+w}=\frac{1}{z}+\frac{1}{w}$ . Then the area enclosed by $P$ can be written in the form $n\sqrt{3}$ , where $n$ is an integer. Find the remainder when $n$ is divided by $1000$ .
147
644
AIME-2014-II-11
In $\triangle RED$ , $\measuredangle DRE=75^{\circ}$ and $\measuredangle RED=45^{\circ}$ . $RD=1$ . Let $M$ be the midpoint of segment $\overline{RD}$ . Point $C$ lies on side $\overline{ED}$ such that $\overline{RC}\perp\overline{EM}$ . Extend segment $\overline{DE}$ through $E$ to point $A$ such that $CA=AR$ . Then $AE=\frac{a-\sqrt{b}}{c}$ , where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer. Find $a+b+c$ .
56
645
AIME-2014-II-12
Suppose that the angles of $\triangle ABC$ satisfy $\cos(3A)+\cos(3B)+\cos(3C)=1$ . Two sides of the triangle have lengths 10 and 13. There is a positive integer $m$ so that the maximum possible length for the remaining side of $\triangle ABC$ is $\sqrt{m}$ . Find $m$ .
399
646
AIME-2014-II-13
Ten adults enter a room, remove their shoes, and toss their shoes into a pile. Later, a child randomly pairs each left shoe with a right shoe without regard to which shoes belong together. The probability that for every positive integer $k<5$ , no collection of $k$ pairs made by the child contains the shoes from exactly $k$ of the adults is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
28
647
AIME-2014-II-14
In $\triangle ABC$ , $AB=10$ , $\measuredangle A=30^{\circ}$ , and $\measuredangle C=45^{\circ}$ . Let $H$ , $D$ , and $M$ be points on line $\overline{BC}$ such that $AH\perp BC$ , $\measuredangle BAD=\measuredangle CAD$ , and $BM=CM$ . Point $N$ is the midpoint of segment $HM$ , and point $P$ is on ray $AD$ such that $PN\perp BC$ . Then $AP^2=\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
77
648
AIME-2014-II-15
For any integer $k\geq 1$ , let $p(k)$ be the smallest prime which does not divide $k$ . Define the integer function $X(k)$ to be the product of all primes less than $p(k)$ if $p(k)>2$ , and $X(k)=1$ if $p(k)=2$ . Let $\{x_n\}$ be the sequence defined by $x_0=1$ , and $x_{n+1}X(x_n)=x_np(x_n)$ for $n\geq 0$ . Find the smallest positive integer $t$ such that $x_t=2090$ .
149
649
AIME-2015-I-1
The expressions $A$ = $1 \times 2 + 3 \times 4 + 5 \times 6 + \cdots + 37 \times 38 + 39$ and $B$ = $1 + 2 \times 3 + 4 \times 5 + \cdots + 36 \times 37 + 38 \times 39$ are obtained by writing multiplication and addition operators in an alternating pattern between successive integers. Find the positive difference between integers $A$ and $B$ .
722
650
AIME-2015-I-2
The nine delegates to the Economic Cooperation Conference include $2$ officials from Mexico, $3$ officials from Canada, and $4$ officials from the United States. During the opening session, three of the delegates fall asleep. Assuming that the three sleepers were determined randomly, the probability that exactly two of the sleepers are from the same country is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
139
651
AIME-2015-I-3
There is a prime number $p$ such that $16p+1$ is the cube of a positive integer. Find $p$ .
307
652
AIME-2015-I-4
Point $B$ lies on line segment $\overline{AC}$ with $AB=16$ and $BC=4$ . Points $D$ and $E$ lie on the same side of line $AC$ forming equilateral triangles $\triangle ABD$ and $\triangle BCE$ . Let $M$ be the midpoint of $\overline{AE}$ , and $N$ be the midpoint of $\overline{CD}$ . The area of $\triangle BMN$ is $x$ . Find $x^2$ .
507
653
AIME-2015-I-5
In a drawer Sandy has $5$ pairs of socks, each pair a different color. On Monday, Sandy selects two individual socks at random from the $10$ socks in the drawer. On Tuesday Sandy selects $2$ of the remaining $8$ socks at random, and on Wednesday two of the remaining $6$ socks at random. The probability that Wednesday is the first day Sandy selects matching socks is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
341
654
AIME-2015-I-8
For positive integer $n$ , let $s(n)$ denote the sum of the digits of $n$ . Find the smallest positive integer satisfying $s(n) = s(n+864) = 20$ .
695
657
AIME-2015-I-9
Let $S$ be the set of all ordered triple of integers $(a_1,a_2,a_3)$ with $1 \le a_1,a_2,a_3 \le 10$ . Each ordered triple in $S$ generates a sequence according to the rule $a_n=a_{n-1}\cdot | a_{n-2}-a_{n-3} |$ for all $n\ge 4$ . Find the number of such sequences for which $a_n=0$ for some $n$ .
494
658
AIME-2015-I-10
Let $f(x)$ be a third-degree polynomial with real coefficients satisfying \[|f(1)|=|f(2)|=|f(3)|=|f(5)|=|f(6)|=|f(7)|=12.\] Find $|f(0)|$ .
72
659
AIME-2015-I-11
Triangle $ABC$ has positive integer side lengths with $AB=AC$ . Let $I$ be the intersection of the bisectors of $\angle B$ and $\angle C$ . Suppose $BI=8$ . Find the smallest possible perimeter of $\triangle ABC$ .
108
660
AIME-2015-I-12
Consider all 1000-element subsets of the set $\{ 1, 2, 3, ... , 2015 \}$ . From each such subset choose the least element. The arithmetic mean of all of these least elements is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p + q$ .
431
661
AIME-2015-I-13
With all angles measured in degrees, the product $\prod_{k=1}^{45} \csc^2(2k-1)^\circ=m^n$ , where $m$ and $n$ are integers greater than 1. Find $m+n$ .
91
662
AIME-2015-I-14
For each integer $n \ge 2$ , let $A(n)$ be the area of the region in the coordinate plane defined by the inequalities $1\le x \le n$ and $0\le y \le x \left\lfloor \sqrt x \right\rfloor$ , where $\left\lfloor \sqrt x \right\rfloor$ is the greatest integer not exceeding $\sqrt x$ . Find the number of values of $n$ with $2\le n \le 1000$ for which $A(n)$ is an integer.
483
663
AIME-2015-II-1
Let $N$ be the least positive integer that is both $22$ percent less than one integer and $16$ percent greater than another integer. Find the remainder when $N$ is divided by $1000$ .
131
665
AIME-2015-II-2
In a new school, $40$ percent of the students are freshmen, $30$ percent are sophomores, $20$ percent are juniors, and $10$ percent are seniors. All freshmen are required to take Latin, and $80$ percent of sophomores, $50$ percent of the juniors, and $20$ percent of the seniors elect to take Latin. The probability that a randomly chosen Latin student is a sophomore is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
25
666
AIME-2015-II-3
Let $m$ be the least positive integer divisible by $17$ whose digits sum to $17$ . Find $m$ .
476
667
AIME-2015-II-4
In an isosceles trapezoid, the parallel bases have lengths $\log 3$ and $\log 192$ , and the altitude to these bases has length $\log 16$ . The perimeter of the trapezoid can be written in the form $\log 2^p 3^q$ , where $p$ and $q$ are positive integers. Find $p + q$ .
18
668
AIME-2015-II-5
Two unit squares are selected at random without replacement from an $n \times n$ grid of unit squares. Find the least positive integer $n$ such that the probability that the two selected unit squares are horizontally or vertically adjacent is less than $\frac{1}{2015}$ .
90
669
AIME-2015-II-6
Steve says to Jon, "I am thinking of a polynomial whose roots are all positive integers. The polynomial has the form $P(x) = 2x^3-2ax^2+(a^2-81)x-c$ for some positive integers $a$ and $c$ . Can you tell me the values of $a$ and $c$ ?" After some calculations, Jon says, "There is more than one such polynomial." Steve says, "You're right. Here is the value of $a$ ." He writes down a positive integer and asks, "Can you tell me the value of $c$ ?" Jon says, "There are still two possible values of $c$ ." Find the sum of the two possible values of $c$ .
440
670
AIME-2015-II-7
Triangle $ABC$ has side lengths $AB = 12$ , $BC = 25$ , and $CA = 17$ . Rectangle $PQRS$ has vertex $P$ on $\overline{AB}$ , vertex $Q$ on $\overline{AC}$ , and vertices $R$ and $S$ on $\overline{BC}$ . In terms of the side length $PQ = w$ , the area of $PQRS$ can be expressed as the quadratic polynomial \[\text{Area}(PQRS) = \alpha w - \beta \cdot w^2.\] Then the coefficient $\beta = \frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
161
671
AIME-2015-II-8
Let $a$ and $b$ be positive integers satisfying $\frac{ab+1}{a+b} < \frac{3}{2}$ . The maximum possible value of $\frac{a^3b^3+1}{a^3+b^3}$ is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p+q$ .
36
672
AIME-2015-II-10
Call a permutation $a_1, a_2, \ldots, a_n$ of the integers $1, 2, \ldots, n$ quasi-increasing if $a_k \leq a_{k+1} + 2$ for each $1 \leq k \leq n-1$ . For example, $53421$ and $14253$ are quasi-increasing permutations of the integers $1, 2, 3, 4, 5$ , but $45123$ is not. Find the number of quasi-increasing permutations of the integers $1, 2, \ldots, 7$ .
486
674
AIME-2015-II-11
The circumcircle of acute $\triangle ABC$ has center $O$ . The line passing through point $O$ perpendicular to $\overline{OB}$ intersects lines $AB$ and $BC$ at $P$ and $Q$ , respectively. Also $AB=5$ , $BC=4$ , $BQ=4.5$ , and $BP=\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
23
675
AIME-2015-II-12
There are $2^{10} = 1024$ possible $10$ -letter strings in which each letter is either an A or a B. Find the number of such strings that do not have more than $3$ adjacent letters that are identical.
548
676
AIME-2015-II-13
Define the sequence $a_1, a_2, a_3, \ldots$ by $a_n = \sum\limits_{k=1}^n \sin{k}$ , where $k$ represents radian measure. Find the index of the 100th term for which $a_n < 0$ .
628
677
AIME-2015-II-14
Let $x$ and $y$ be real numbers satisfying $x^4y^5+y^4x^5=810$ and $x^3y^6+y^3x^6=945$ . Evaluate $2x^3+(xy)^3+2y^3$ .
89
678
AIME-2016-I-1
For $-1<r<1$ , let $S(r)$ denote the sum of the geometric series \[12+12r+12r^2+12r^3+\cdots .\] Let $a$ between $-1$ and $1$ satisfy $S(a)S(-a)=2016$ . Find $S(a)+S(-a)$ .
336
680
AIME-2016-I-2
Two dice appear to be normal dice with their faces numbered from $1$ to $6$ , but each die is weighted so that the probability of rolling the number $k$ is directly proportional to $k$ . The probability of rolling a $7$ with this pair of dice is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
71
681
AIME-2016-I-4
A right prism with height $h$ has bases that are regular hexagons with sides of length $12$ . A vertex $A$ of the prism and its three adjacent vertices are the vertices of a triangular pyramid. The dihedral angle (the angle between the two planes) formed by the face of the pyramid that lies in a base of the prism and the face of the pyramid that does not contain $A$ measures $60^\circ$ . Find $h^2$ .
108
683
AIME-2016-I-5
Anh read a book. On the first day she read $n$ pages in $t$ minutes, where $n$ and $t$ are positive integers. On the second day Anh read $n + 1$ pages in $t + 1$ minutes. Each day thereafter Anh read one more page than she read on the previous day, and it took her one more minute than on the previous day until she completely read the $374$ page book. It took her a total of $319$ minutes to read the book. Find $n + t$ .
53
684
AIME-2016-I-6
In $\triangle ABC$ let $I$ be the center of the inscribed circle, and let the bisector of $\angle ACB$ intersect $\overline{AB}$ at $L$ . The line through $C$ and $L$ intersects the circumscribed circle of $\triangle ABC$ at the two points $C$ and $D$ . If $LI=2$ and $LD=3$ , then $IC= \frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p+q$ .
13
685
AIME-2016-I-7
For integers $a$ and $b$ consider the complex number \[\frac{\sqrt{ab+2016}}{ab+100}-\left(\frac{\sqrt{|a+b|}}{ab+100}\right)i.\] Find the number of ordered pairs of integers $(a,b)$ such that this complex number is a real number.
103
686
AIME-2016-I-8
For a permutation $p = (a_1,a_2,\ldots,a_9)$ of the digits $1,2,\ldots,9$ , let $s(p)$ denote the sum of the three $3$ -digit numbers $a_1a_2a_3$ , $a_4a_5a_6$ , and $a_7a_8a_9$ . Let $m$ be the minimum value of $s(p)$ subject to the condition that the units digit of $s(p)$ is $0$ . Let $n$ denote the number of permutations $p$ with $s(p) = m$ . Find $|m - n|$ .
162
687
AIME-2016-I-9
Triangle $ABC$ has $AB=40,AC=31,$ and $\sin{A}=\frac{1}{5}$ . This triangle is inscribed in rectangle $AQRS$ with $B$ on $\overline{QR}$ and $C$ on $\overline{RS}$ . Find the maximum possible area of $AQRS$ .
744
688
AIME-2016-I-10
A strictly increasing sequence of positive integers $a_1$ , $a_2$ , $a_3$ , $\cdots$ has the property that for every positive integer $k$ , the subsequence $a_{2k-1}$ , $a_{2k}$ , $a_{2k+1}$ is geometric and the subsequence $a_{2k}$ , $a_{2k+1}$ , $a_{2k+2}$ is arithmetic. Suppose that $a_{13} = 2016$ . Find $a_1$ .
504
689
AIME-2016-I-11
Let $P(x)$ be a nonzero polynomial such that $(x-1)P(x+1)=(x+2)P(x)$ for every real $x$ , and $\left(P(2)\right)^2 = P(3)$ . Then $P(\tfrac72)=\tfrac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$ .
109
690
AIME-2016-I-12
Find the least positive integer $m$ such that $m^2 - m + 11$ is a product of at least four not necessarily distinct primes.
132
691
AIME-2016-I-13
Freddy the frog is jumping around the coordinate plane searching for a river, which lies on the horizontal line $y = 24$ . A fence is located at the horizontal line $y = 0$ . On each jump Freddy randomly chooses a direction parallel to one of the coordinate axes and moves one unit in that direction. When he is at a point where $y=0$ , with equal likelihoods he chooses one of three directions where he either jumps parallel to the fence or jumps away from the fence, but he never chooses the direction that would have him cross over the fence to where $y < 0$ . Freddy starts his search at the point $(0, 21)$ and will stop once he reaches a point on the river. Find the expected number of jumps it will take Freddy to reach the river.
273
692
AIME-2016-I-14
Centered at each lattice point in the coordinate plane are a circle radius $\frac{1}{10}$ and a square with sides of length $\frac{1}{5}$ whose sides are parallel to the coordinate axes. The line segment from $(0,0)$ to $(1001, 429)$ intersects $m$ of the squares and $n$ of the circles. Find $m + n$ .
574
693
AIME-2016-I-15
Circles $\omega_1$ and $\omega_2$ intersect at points $X$ and $Y$ . Line $\ell$ is tangent to $\omega_1$ and $\omega_2$ at $A$ and $B$ , respectively, with line $AB$ closer to point $X$ than to $Y$ . Circle $\omega$ passes through $A$ and $B$ intersecting $\omega_1$ again at $D \neq A$ and intersecting $\omega_2$ again at $C \neq B$ . The three points $C$ , $Y$ , $D$ are collinear, $XC = 67$ , $XY = 47$ , and $XD = 37$ . Find $AB^2$ .
270
694
AIME-2016-II-1
Initially Alex, Betty, and Charlie had a total of $444$ peanuts. Charlie had the most peanuts, and Alex had the least. The three numbers of peanuts that each person had formed a geometric progression. Alex eats $5$ of his peanuts, Betty eats $9$ of her peanuts, and Charlie eats $25$ of his peanuts. Now the three numbers of peanuts each person has forms an arithmetic progression. Find the number of peanuts Alex had initially.
108
695
AIME-2016-II-2
There is a $40\%$ chance of rain on Saturday and a $30\%$ chance of rain on Sunday. However, it is twice as likely to rain on Sunday if it rains on Saturday than if it does not rain on Saturday. The probability that it rains at least one day this weekend is $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a+b$ .
107
696
AIME-2016-II-3
Let $x,y,$ and $z$ be real numbers satisfying the system \begin{align*} \log_2(xyz-3+\log_5 x)&=5,\\ \log_3(xyz-3+\log_5 y)&=4,\\ \log_4(xyz-3+\log_5 z)&=4. \end{align*} Find the value of $|\log_5 x|+|\log_5 y|+|\log_5 z|$ .
265
697
AIME-2016-II-4
An $a \times b \times c$ rectangular box is built from $a \cdot b \cdot c$ unit cubes. Each unit cube is colored red, green, or yellow. Each of the $a$ layers of size $1 \times b \times c$ parallel to the $(b \times c)$ faces of the box contains exactly $9$ red cubes, exactly $12$ green cubes, and some yellow cubes. Each of the $b$ layers of size $a \times 1 \times c$ parallel to the $(a \times c)$ faces of the box contains exactly $20$ green cubes, exactly $25$ yellow cubes, and some red cubes. Find the smallest possible volume of the box.
180
698
AIME-2016-II-5
Triangle $ABC_0$ has a right angle at $C_0$ . Its side lengths are pairwise relatively prime positive integers, and its perimeter is $p$ . Let $C_1$ be the foot of the altitude to $\overline{AB}$ , and for $n \geq 2$ , let $C_n$ be the foot of the altitude to $\overline{C_{n-2}B}$ in $\triangle C_{n-2}C_{n-1}B$ . The sum $\sum_{n=2}^\infty C_{n-2}C_{n-1} = 6p$ . Find $p$ .
182
699
AIME-2016-II-6
For polynomial $P(x)=1-\dfrac{1}{3}x+\dfrac{1}{6}x^{2}$ , define $Q(x)=P(x)P(x^{3})P(x^{5})P(x^{7})P(x^{9})=\sum_{i=0}^{50} a_ix^{i}$ . Then $\sum_{i=0}^{50} |a_i|=\dfrac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
275
700
AIME-2016-II-7
Squares $ABCD$ and $EFGH$ have a common center and $\overline{AB} || \overline{EF}$ . The area of $ABCD$ is 2016, and the area of $EFGH$ is a smaller positive integer. Square $IJKL$ is constructed so that each of its vertices lies on a side of $ABCD$ and each vertex of $EFGH$ lies on a side of $IJKL$ . Find the difference between the largest and smallest positive integer values for the area of $IJKL$ .
840
701
AIME-2016-II-8
Find the number of sets $\{a,b,c\}$ of three distinct positive integers with the property that the product of $a,b,$ and $c$ is equal to the product of $11,21,31,41,51,$ and $61$ .
728
702
AIME-2016-II-9
The sequences of positive integers $1,a_2, a_3,...$ and $1,b_2, b_3,...$ are an increasing arithmetic sequence and an increasing geometric sequence, respectively. Let $c_n=a_n+b_n$ . There is an integer $k$ such that $c_{k-1}=100$ and $c_{k+1}=1000$ . Find $c_k$ .
262
703
AIME-2016-II-10
Triangle $ABC$ is inscribed in circle $\omega$ . Points $P$ and $Q$ are on side $\overline{AB}$ with $AP<AQ$ . Rays $CP$ and $CQ$ meet $\omega$ again at $S$ and $T$ (other than $C$ ), respectively. If $AP=4,PQ=3,QB=6,BT=5,$ and $AS=7$ , then $ST=\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
43
704
AIME-2016-II-11
For positive integers $N$ and $k$ , define $N$ to be $k$ -nice if there exists a positive integer $a$ such that $a^{k}$ has exactly $N$ positive divisors. Find the number of positive integers less than $1000$ that are neither $7$ -nice nor $8$ -nice.
749
705
AIME-2016-II-13
Beatrix is going to place six rooks on a $6 \times 6$ chessboard where both the rows and columns are labeled $1$ to $6$ ; the rooks are placed so that no two rooks are in the same row or the same column. The value of a square is the sum of its row number and column number. The score of an arrangement of rooks is the least value of any occupied square. The average score over all valid configurations is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p+q$ .
371
707
AIME-2016-II-14
Equilateral $\triangle ABC$ has side length $600$ . Points $P$ and $Q$ lie outside the plane of $\triangle ABC$ and are on opposite sides of the plane. Furthermore, $PA=PB=PC$ , and $QA=QB=QC$ , and the planes of $\triangle PAB$ and $\triangle QAB$ form a $120^{\circ}$ dihedral angle (the angle between the two planes). There is a point $O$ whose distance from each of $A,B,C,P,$ and $Q$ is $d$ . Find $d$ .
450
708
AIME-2016-II-15
For $1 \leq i \leq 215$ let $a_i = \dfrac{1}{2^{i}}$ and $a_{216} = \dfrac{1}{2^{215}}$ . Let $x_1, x_2, ..., x_{216}$ be positive real numbers such that $\sum_{i=1}^{216} x_i=1$ and $\sum_{1 \leq i < j \leq 216} x_ix_j = \dfrac{107}{215} + \sum_{i=1}^{216} \dfrac{a_i x_i^{2}}{2(1-a_i)}$ . The maximum possible value of $x_2=\dfrac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
863
709
AIME-2017-I-1
Fifteen distinct points are designated on $\triangle ABC$ : the 3 vertices $A$ , $B$ , and $C$ ; $3$ other points on side $\overline{AB}$ ; $4$ other points on side $\overline{BC}$ ; and $5$ other points on side $\overline{CA}$ . Find the number of triangles with positive area whose vertices are among these $15$ points.
390
710
AIME-2017-I-2
When each of $702$ , $787$ , and $855$ is divided by the positive integer $m$ , the remainder is always the positive integer $r$ . When each of $412$ , $722$ , and $815$ is divided by the positive integer $n$ , the remainder is always the positive integer $s \neq r$ . Find $m+n+r+s$ .
62
711
AIME-2017-I-3
For a positive integer $n$ , let $d_n$ be the units digit of $1 + 2 + \dots + n$ . Find the remainder when \[\sum_{n=1}^{2017} d_n\] is divided by $1000$ .
69
712
AIME-2017-I-4
A pyramid has a triangular base with side lengths $20$ , $20$ , and $24$ . The three edges of the pyramid from the three corners of the base to the fourth vertex of the pyramid all have length $25$ . The volume of the pyramid is $m\sqrt{n}$ , where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$ .
803
713
AIME-2017-I-5
A rational number written in base eight is $\underline{a} \underline{b} . \underline{c} \underline{d}$ , where all digits are nonzero. The same number in base twelve is $\underline{b} \underline{b} . \underline{b} \underline{a}$ . Find the base-ten number $\underline{a} \underline{b} \underline{c}$ .
321
714
AIME-2017-I-6
A circle circumscribes an isosceles triangle whose two congruent angles have degree measure $x$ . Two points are chosen independently and uniformly at random on the circle, and a chord is drawn between them. The probability that the chord intersects the triangle is $\frac{14}{25}$ . Find the difference between the largest and smallest possible values of $x$ .
48
715
AIME-2017-I-7
For nonnegative integers $a$ and $b$ with $a + b \leq 6$ , let $T(a, b) = \binom{6}{a} \binom{6}{b} \binom{6}{a + b}$ . Let $S$ denote the sum of all $T(a, b)$ , where $a$ and $b$ are nonnegative integers with $a + b \leq 6$ . Find the remainder when $S$ is divided by $1000$ .
564
716
AIME-2017-I-8
Two real numbers $a$ and $b$ are chosen independently and uniformly at random from the interval $(0, 75)$ . Let $O$ and $P$ be two points on the plane with $OP = 200$ . Let $Q$ and $R$ be on the same side of line $OP$ such that the degree measures of $\angle POQ$ and $\angle POR$ are $a$ and $b$ respectively, and $\angle OQP$ and $\angle ORP$ are both right angles. The probability that $QR \leq 100$ is equal to $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$ .
41
717
AIME-2017-I-9
Let $a_{10} = 10$ , and for each positive integer $n >10$ let $a_n = 100a_{n - 1} + n$ . Find the least positive $n > 10$ such that $a_n$ is a multiple of $99$ .
45
718
AIME-2017-I-10
Let $z_1 = 18 + 83i$ , $z_2 = 18 + 39i,$ and $z_3 = 78 + 99i,$ where $i = \sqrt{-1}$ . Let $z$ be the unique complex number with the properties that $\frac{z_3 - z_1}{z_2 - z_1} \cdot \frac{z - z_2}{z - z_3}$ is a real number and the imaginary part of $z$ is the greatest possible. Find the real part of $z$ .
56
719
AIME-2017-I-11
Consider arrangements of the $9$ numbers $1, 2, 3, \dots, 9$ in a $3 \times 3$ array. For each such arrangement, let $a_1$ , $a_2$ , and $a_3$ be the medians of the numbers in rows $1$ , $2$ , and $3$ respectively, and let $m$ be the median of $\{a_1, a_2, a_3\}$ . Let $Q$ be the number of arrangements for which $m = 5$ . Find the remainder when $Q$ is divided by $1000$ .
360
720
AIME-2017-I-12
Call a set $S$ product-free if there do not exist $a, b, c \in S$ (not necessarily distinct) such that $a b = c$ . For example, the empty set and the set $\{16, 20\}$ are product-free, whereas the sets $\{4, 16\}$ and $\{2, 8, 16\}$ are not product-free. Find the number of product-free subsets of the set $\{1, 2, 3, 4, \ldots, 7, 8, 9, 10\}$ .
252
721
AIME-2017-I-13
For every $m \geq 2$ , let $Q(m)$ be the least positive integer with the following property: For every $n \geq Q(m)$ , there is always a perfect cube $k^3$ in the range $n < k^3 \leq mn$ . Find the remainder when \[\sum_{m = 2}^{2017} Q(m)\] is divided by $1000$ .
59
722
AIME-2017-I-14
Let $a > 1$ and $x > 1$ satisfy $\log_a(\log_a(\log_a 2) + \log_a 24 - 128) = 128$ and $\log_a(\log_a x) = 256$ . Find the remainder when $x$ is divided by $1000$ .
896
723
AIME-2017-II-1
Find the number of subsets of $\{1, 2, 3, 4, 5, 6, 7, 8\}$ that are subsets of neither $\{1, 2, 3, 4, 5\}$ nor $\{4, 5, 6, 7, 8\}$ .
196
725
AIME-2017-II-2
Teams $T_1$ , $T_2$ , $T_3$ , and $T_4$ are in the playoffs. In the semifinal matches, $T_1$ plays $T_4$ , and $T_2$ plays $T_3$ . The winners of those two matches will play each other in the final match to determine the champion. When $T_i$ plays $T_j$ , the probability that $T_i$ wins is $\frac{i}{i+j}$ , and the outcomes of all the matches are independent. The probability that $T_4$ will be the champion is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p+q$ .
781
726
AIME-2017-II-3
A triangle has vertices $A(0,0)$ , $B(12,0)$ , and $C(8,10)$ . The probability that a randomly chosen point inside the triangle is closer to vertex $B$ than to either vertex $A$ or vertex $C$ can be written as $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p+q$ .
409
727
AIME-2017-II-4
Find the number of positive integers less than or equal to $2017$ whose base-three representation contains no digit equal to $0$ .
222
728
AIME-2017-II-5
A set contains four numbers. The six pairwise sums of distinct elements of the set, in no particular order, are $189$ , $320$ , $287$ , $234$ , $x$ , and $y$ . Find the greatest possible value of $x+y$ .
791
729
AIME-2017-II-6
Find the sum of all positive integers $n$ such that $\sqrt{n^2+85n+2017}$ is an integer.
195
730
AIME-2017-II-7
Find the number of integer values of $k$ in the closed interval $[-500,500]$ for which the equation $\log(kx)=2\log(x+2)$ has exactly one real solution.
501
731
AIME-2017-II-8
Find the number of positive integers $n$ less than $2017$ such that \[1+n+\frac{n^2}{2!}+\frac{n^3}{3!}+\frac{n^4}{4!}+\frac{n^5}{5!}+\frac{n^6}{6!}\] is an integer.
134
732
AIME-2017-II-9
A special deck of cards contains $49$ cards, each labeled with a number from $1$ to $7$ and colored with one of seven colors. Each number-color combination appears on exactly one card. Sharon will select a set of eight cards from the deck at random. Given that she gets at least one card of each color and at least one card with each number, the probability that Sharon can discard one of her cards and $\textit{still}$ have at least one card of each color and at least one card with each number is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p+q$ .
13
733
AIME-2017-II-10
Rectangle $ABCD$ has side lengths $AB=84$ and $AD=42$ . Point $M$ is the midpoint of $\overline{AD}$ , point $N$ is the trisection point of $\overline{AB}$ closer to $A$ , and point $O$ is the intersection of $\overline{CM}$ and $\overline{DN}$ . Point $P$ lies on the quadrilateral $BCON$ , and $\overline{BP}$ bisects the area of $BCON$ . Find the area of $\triangle CDP$ .
546
734
AIME-2017-II-11
Five towns are connected by a system of roads. There is exactly one road connecting each pair of towns. Find the number of ways there are to make all the roads one-way in such a way that it is still possible to get from any town to any other town using the roads (possibly passing through other towns on the way).
544
735
AIME-2017-II-13
For each integer $n\geq3$ , let $f(n)$ be the number of $3$ -element subsets of the vertices of a regular $n$ -gon that are the vertices of an isosceles triangle (including equilateral triangles). Find the sum of all values of $n$ such that $f(n+1)=f(n)+78$ .
245
737
AIME-2017-II-14
A $10\times10\times10$ grid of points consists of all points in space of the form $(i,j,k)$ , where $i$ , $j$ , and $k$ are integers between $1$ and $10$ , inclusive. Find the number of different lines that contain exactly $8$ of these points.
168
738
AIME-2017-II-15
Tetrahedron $ABCD$ has $AD=BC=28$ , $AC=BD=44$ , and $AB=CD=52$ . For any point $X$ in space, define $f(X)=AX+BX+CX+DX$ . The least possible value of $f(X)$ can be expressed as $m\sqrt{n}$ , where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$ .
682
739
AIME-2018-I-1
Let $S$ be the number of ordered pairs of integers $(a,b)$ with $1 \leq a \leq 100$ and $b \geq 0$ such that the polynomial $x^2+ax+b$ can be factored into the product of two (not necessarily distinct) linear factors with integer coefficients. Find the remainder when $S$ is divided by $1000$ .
600
740
AIME-2018-I-2
The number $n$ can be written in base $14$ as $\underline{a}\text{ }\underline{b}\text{ }\underline{c}$ , can be written in base $15$ as $\underline{a}\text{ }\underline{c}\text{ }\underline{b}$ , and can be written in base $6$ as $\underline{a}\text{ }\underline{c}\text{ }\underline{a}\text{ }\underline{c}\text{ }$ , where $a > 0$ . Find the base- $10$ representation of $n$ .
925
741
AIME-2018-I-3
Kathy has $5$ red cards and $5$ green cards. She shuffles the $10$ cards and lays out $5$ of the cards in a row in a random order. She will be happy if and only if all the red cards laid out are adjacent and all the green cards laid out are adjacent. For example, card orders RRGGG, GGGGR, or RRRRR will make Kathy happy, but RRRGR will not. The probability that Kathy will be happy is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$ .
157
742
AIME-2018-I-4
In $\triangle ABC, AB = AC = 10$ and $BC = 12$ . Point $D$ lies strictly between $A$ and $B$ on $\overline{AB}$ and point $E$ lies strictly between $A$ and $C$ on $\overline{AC}$ so that $AD = DE = EC$ . Then $AD$ can be expressed in the form $\dfrac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p+q$ .
289
743
AIME-2018-I-5
For each ordered pair of real numbers $(x,y)$ satisfying \[\log_2(2x+y) = \log_4(x^2+xy+7y^2)\] there is a real number $K$ such that \[\log_3(3x+y) = \log_9(3x^2+4xy+Ky^2).\] Find the product of all possible values of $K$ .
189
744