paperID
stringlengths 36
36
| pwc_id
stringlengths 8
47
| arxiv_id
stringlengths 6
16
⌀ | nips_id
float64 | url_abs
stringlengths 18
329
| url_pdf
stringlengths 18
742
| title
stringlengths 8
325
| abstract
stringlengths 1
7.27k
⌀ | authors
stringlengths 2
7.06k
| published
stringlengths 10
10
⌀ | conference
stringlengths 12
47
⌀ | conference_url_abs
stringlengths 16
198
⌀ | conference_url_pdf
stringlengths 27
199
⌀ | proceeding
stringlengths 6
47
⌀ | taskID
stringlengths 7
1.44k
| areaID
stringclasses 688
values | embedding
stringlengths 9.26k
12.5k
| umap_embedding
stringlengths 29
44
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
068d65db-2012-4a5d-ac52-53f70b90f58b
|
a-cap-anticipation-captioning-with
|
2304.06602
| null |
https://arxiv.org/abs/2304.06602v1
|
https://arxiv.org/pdf/2304.06602v1.pdf
|
A-CAP: Anticipation Captioning with Commonsense Knowledge
|
Humans possess the capacity to reason about the future based on a sparse collection of visual cues acquired over time. In order to emulate this ability, we introduce a novel task called Anticipation Captioning, which generates a caption for an unseen oracle image using a sparsely temporally-ordered set of images. To tackle this new task, we propose a model called A-CAP, which incorporates commonsense knowledge into a pre-trained vision-language model, allowing it to anticipate the caption. Through both qualitative and quantitative evaluations on a customized visual storytelling dataset, A-CAP outperforms other image captioning methods and establishes a strong baseline for anticipation captioning. We also address the challenges inherent in this task.
|
['Hideki Nakayama', 'Akihiro Sugimoto', 'Quoc-An Luong', 'Duc Minh Vo']
|
2023-04-13
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Vo_A-Cap_Anticipation_Captioning_With_Commonsense_Knowledge_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Vo_A-Cap_Anticipation_Captioning_With_Commonsense_Knowledge_CVPR_2023_paper.pdf
|
cvpr-2023-1
|
['visual-storytelling']
|
['natural-language-processing']
|
[ 6.85383856e-01 5.69933593e-01 -1.66354305e-03 -5.22268891e-01
-7.17937350e-01 -6.20409667e-01 1.06493175e+00 -1.26115292e-01
-1.71660319e-01 6.67702079e-01 7.55928278e-01 -1.45177305e-01
5.16869545e-01 -3.09318602e-01 -1.27388728e+00 -5.20875938e-02
2.24916533e-01 4.35167789e-01 -1.22177057e-01 -6.16451465e-02
3.96576226e-02 -8.31132010e-02 -1.38640738e+00 7.63407111e-01
6.18519366e-01 9.17955339e-01 7.22129405e-01 6.62625968e-01
2.83892244e-01 1.32833612e+00 -1.20504871e-01 -4.64714974e-01
1.07746050e-01 -4.92875844e-01 -9.09873784e-01 4.09471035e-01
4.73834008e-01 -7.00825512e-01 -6.66300356e-01 7.31899261e-01
6.02718443e-02 1.81339592e-01 6.22189581e-01 -1.53441787e+00
-1.24911106e+00 5.37410617e-01 -1.47308663e-01 1.53805703e-01
9.36896682e-01 7.38843977e-01 1.06249666e+00 -8.35827470e-01
9.65402365e-01 1.17038405e+00 3.98469150e-01 8.87207747e-01
-1.28704512e+00 -1.05924219e-01 3.43197912e-01 3.75727326e-01
-1.05471194e+00 -6.88618302e-01 1.02614427e+00 -6.12954497e-01
7.04368889e-01 6.21026158e-02 6.83058977e-01 1.80372906e+00
-1.28100365e-01 1.24574733e+00 1.17094004e+00 -2.47854695e-01
2.58545727e-01 1.18103340e-01 -2.60796070e-01 4.81710076e-01
-1.00697920e-01 3.06945175e-01 -7.49993682e-01 1.90827116e-01
8.16249967e-01 -1.96653172e-01 -5.05880296e-01 -5.77481747e-01
-1.65924263e+00 6.12179756e-01 7.53147721e-01 1.55008901e-02
-7.54366159e-01 5.38876295e-01 7.72946775e-02 -2.37813309e-01
1.96807325e-01 7.31767833e-01 1.07755791e-02 -7.75700361e-02
-9.39236641e-01 8.88040885e-02 5.79100847e-01 9.62744653e-01
3.80492240e-01 -1.20972052e-01 -7.95957029e-01 3.02895933e-01
4.49382067e-01 6.43077672e-01 3.05156201e-01 -1.18939710e+00
6.17047906e-01 1.74570397e-01 6.02307916e-01 -8.94042790e-01
1.06996231e-01 -1.80540487e-01 -4.97110307e-01 -1.48277774e-01
9.92912054e-02 6.34916797e-02 -1.26964927e+00 2.12422228e+00
-4.86078039e-02 4.76986974e-01 3.23985249e-01 1.12086570e+00
7.88276672e-01 9.52479184e-01 2.61940747e-01 -9.49869826e-02
1.24631560e+00 -1.28987420e+00 -6.08165562e-01 -9.01929259e-01
-2.15203370e-04 -3.82151216e-01 1.24562383e+00 4.58482057e-02
-1.10343146e+00 -4.22072023e-01 -8.52156878e-01 -1.93532318e-01
-8.98580104e-02 3.38319875e-02 7.85401523e-01 -6.75868839e-02
-1.38757324e+00 1.27895981e-01 -7.02582061e-01 -4.29203331e-01
5.65621555e-01 -1.97211549e-01 -5.62926292e-01 -4.92247134e-01
-1.05106330e+00 1.01549304e+00 4.98431444e-01 2.03182608e-01
-1.61635709e+00 -5.68257928e-01 -1.36955345e+00 -1.37086464e-02
1.33144513e-01 -1.20600593e+00 1.57651711e+00 -1.14591181e+00
-1.21250403e+00 1.06066811e+00 -3.55752170e-01 -8.82158041e-01
6.46418214e-01 -3.33723575e-01 -1.81510672e-01 4.63068157e-01
3.57430637e-01 1.44676709e+00 8.71810794e-01 -1.75582743e+00
2.58069858e-02 1.53296232e-01 2.30568007e-01 3.40305477e-01
9.99815390e-02 -2.72205293e-01 -6.04893744e-01 -5.96217811e-01
-2.25151420e-01 -9.49382067e-01 -3.30650777e-01 7.19302008e-03
-5.42877316e-01 1.88793480e-01 5.82834959e-01 -7.38656580e-01
6.46451294e-01 -1.98851550e+00 1.12402052e-01 -3.75013828e-01
1.37841895e-01 7.48794302e-02 -4.96520281e-01 4.64136779e-01
-1.26399785e-01 -7.50116110e-02 -5.03856063e-01 -7.05501735e-01
5.21551445e-02 4.31015104e-01 -9.43122327e-01 1.04897823e-02
5.99785566e-01 1.43031204e+00 -1.44078207e+00 -6.30712688e-01
3.28306824e-01 5.97713292e-01 -5.23926616e-01 5.82622170e-01
-8.65112841e-01 8.16586912e-01 -3.95550936e-01 5.13378978e-01
3.85336995e-01 -8.24736774e-01 -3.39617929e-03 -1.60293728e-01
2.46213555e-01 -2.34001968e-02 -3.06263059e-01 2.18777823e+00
-4.82556224e-01 9.79657650e-01 -3.36096466e-01 -7.52231002e-01
5.23221195e-01 4.72847909e-01 2.71747887e-01 -6.43244982e-01
7.35580400e-02 -1.70637906e-01 -5.20853221e-01 -8.39397073e-01
5.10381520e-01 -2.17534915e-01 -1.60292402e-01 4.30656165e-01
1.18036997e-02 -3.94849837e-01 -1.07438251e-01 6.83862090e-01
1.13321495e+00 5.15781939e-01 6.27829060e-02 4.49364424e-01
2.43282855e-01 3.11653972e-01 2.14358464e-01 9.49109972e-01
-5.15859425e-01 1.22728467e+00 2.52501607e-01 -5.47744513e-01
-1.12090373e+00 -1.39867198e+00 4.53853756e-01 7.31593013e-01
2.48417050e-01 -1.03425466e-01 -5.38751006e-01 -6.43565297e-01
-2.33152434e-01 1.17580914e+00 -9.47854221e-01 -1.27344966e-01
-3.05001736e-01 -7.48302788e-02 5.34508042e-02 5.51775277e-01
6.31775081e-01 -1.54268277e+00 -8.52703631e-01 7.13494199e-04
-8.00881684e-01 -1.90075481e+00 -6.26173735e-01 -3.41880053e-01
-3.72893870e-01 -7.76042640e-01 -9.20724809e-01 -9.06010091e-01
8.46624196e-01 3.31515402e-01 1.45177710e+00 -2.74655938e-01
-6.52546156e-03 1.02589273e+00 -3.88977826e-01 -3.82820547e-01
-4.93272722e-01 -4.58781570e-01 -1.92795530e-01 2.40445882e-01
-9.24637169e-03 -5.31984866e-01 -6.43390477e-01 -1.03112176e-01
-9.44262326e-01 8.57542217e-01 7.40714550e-01 7.75894046e-01
6.17276251e-01 -7.33773708e-01 4.85343456e-01 -4.12521213e-01
5.07615149e-01 -6.62915707e-01 -3.16288501e-01 4.45539683e-01
-2.10211590e-01 2.62217969e-01 4.15284812e-01 -5.36333263e-01
-1.11204565e+00 7.23165452e-01 3.02764595e-01 -8.15676808e-01
-5.14141172e-02 4.98242855e-01 -1.97167583e-02 2.51761734e-01
5.80992401e-01 7.31369495e-01 -4.90235016e-02 -5.24228327e-02
1.01018918e+00 2.94068635e-01 1.43443811e+00 -4.86847341e-01
9.05611396e-01 7.10946858e-01 -2.57575214e-01 -3.23062509e-01
-1.42852366e+00 -3.00082445e-01 -4.58680630e-01 -4.95893121e-01
1.23074090e+00 -1.35297573e+00 -4.67000693e-01 4.42487635e-02
-1.75946379e+00 -5.11182129e-01 -3.56501162e-01 3.49754959e-01
-1.20101047e+00 2.29335919e-01 -2.09381834e-01 -6.94192350e-01
-1.35493428e-01 -8.81796539e-01 1.20300102e+00 1.40252575e-01
-4.19887304e-01 -9.43992198e-01 2.54390202e-02 7.26992309e-01
2.96970487e-01 7.90767550e-01 3.15845579e-01 -4.03290361e-01
-1.06481457e+00 -3.68012600e-02 -5.02431691e-01 2.97395796e-01
-3.83835226e-01 -5.10735273e-01 -1.05239046e+00 -3.87454815e-02
-6.30775001e-04 -6.68894529e-01 1.09025800e+00 3.13448161e-01
1.03304720e+00 -5.25573909e-01 -3.52594674e-01 4.22120273e-01
1.30539894e+00 -7.93507919e-02 6.90601349e-01 4.20500815e-01
6.59869552e-01 5.62553942e-01 5.87607026e-01 4.06180918e-01
8.21676314e-01 4.55069065e-01 8.23293805e-01 -4.54222336e-02
-3.03827196e-01 -9.50236559e-01 4.53417808e-01 3.64502698e-01
3.30517352e-01 -7.02929556e-01 -1.09171605e+00 1.03152752e+00
-2.14038086e+00 -1.09235322e+00 2.69327402e-01 1.69618654e+00
8.54548693e-01 -6.21171258e-02 -3.38463873e-01 -4.07202303e-01
6.30837202e-01 5.11870205e-01 -7.69711792e-01 -2.07769603e-01
-1.98564202e-01 -4.05121326e-01 1.84525907e-01 4.48632926e-01
-1.01697063e+00 1.13838315e+00 7.20915413e+00 1.07619151e-01
-9.01036620e-01 8.66357088e-02 6.22963667e-01 4.15284149e-02
-6.40379190e-01 2.52288550e-01 -8.35161060e-02 3.75308394e-01
8.05214465e-01 -2.72927135e-01 5.51246047e-01 6.30327642e-01
2.21635073e-01 -1.98325858e-01 -1.63268161e+00 1.28074765e+00
7.01970577e-01 -1.58144605e+00 5.22872925e-01 -2.52339244e-01
9.38871324e-01 1.44703537e-01 3.98773044e-01 2.61069208e-01
5.25341988e-01 -1.29471838e+00 1.00875056e+00 8.45418751e-01
7.40036607e-01 4.71712500e-02 3.99131030e-01 2.75911421e-01
-6.77487016e-01 -1.31728975e-02 9.05386955e-02 -2.66205072e-01
6.90967858e-01 3.38533342e-01 -1.22822809e+00 3.16442966e-01
2.86351115e-01 9.10309851e-01 -6.31180823e-01 1.04931748e+00
-6.36296630e-01 4.52426285e-01 -6.59571365e-02 2.98586756e-01
4.31021094e-01 2.09678888e-01 6.17337286e-01 8.71176541e-01
2.91404366e-01 3.32597435e-01 1.67664625e-02 1.28740764e+00
-1.70025006e-01 -4.66649145e-01 -8.25166047e-01 -4.35154051e-01
3.09389740e-01 8.47004950e-01 -4.38426882e-01 -4.62233990e-01
-2.09961221e-01 1.42312622e+00 2.16173917e-01 6.54085755e-01
-9.67882335e-01 1.91919789e-01 2.99789697e-01 -9.22347605e-02
3.12428892e-01 -2.93897659e-01 -5.50776832e-02 -1.37293553e+00
8.78181458e-02 -7.00137377e-01 1.74963489e-01 -1.97957134e+00
-1.04944277e+00 7.24230289e-01 -3.89051847e-02 -1.20593560e+00
-6.96810663e-01 -4.43881989e-01 -5.67847908e-01 6.35665476e-01
-1.64092278e+00 -1.66217494e+00 -6.78915858e-01 5.14067054e-01
6.22117639e-01 1.11887775e-01 5.50755560e-01 -3.43907982e-01
-1.10581309e-01 5.64930104e-02 -4.60591137e-01 -6.87067909e-03
6.68655217e-01 -1.11265063e+00 6.55238569e-01 9.86732185e-01
4.29922581e-01 2.68317878e-01 1.31063354e+00 -5.36197245e-01
-1.28263652e+00 -1.31027639e+00 9.91784811e-01 -1.14438999e+00
5.53213716e-01 -4.53342170e-01 -6.46529198e-01 1.09813988e+00
4.68768358e-01 2.43438303e-01 3.48170787e-01 -3.42852890e-01
-6.05537176e-01 3.55064481e-01 -1.00537109e+00 6.64163470e-01
1.16561627e+00 -8.95784974e-01 -1.07928181e+00 6.28106654e-01
1.24529612e+00 -3.73568654e-01 -4.09759521e-01 9.26329643e-02
4.34764802e-01 -8.42187226e-01 1.22173500e+00 -5.46127558e-01
1.15672863e+00 -2.42694139e-01 -2.51784980e-01 -1.28802657e+00
-8.48335698e-02 -8.31065178e-01 -1.80179656e-01 1.02065027e+00
3.80278647e-01 -1.85359627e-01 7.31491804e-01 7.98538148e-01
-7.44640529e-02 -2.81127930e-01 -6.34719253e-01 -8.45520020e-01
-3.85907829e-01 -5.68472862e-01 5.66470265e-01 8.64834964e-01
-2.82139964e-02 5.99968553e-01 -7.94824243e-01 2.52226859e-01
6.70373559e-01 2.10938200e-01 7.33849406e-01 -7.79832780e-01
-2.57071674e-01 7.49151558e-02 -4.19619471e-01 -1.26511514e+00
3.59587967e-01 -9.59696889e-01 5.43081403e-01 -2.03903198e+00
4.79742408e-01 1.85764357e-01 -1.74593881e-01 6.73635423e-01
-1.28123328e-01 3.54955167e-01 5.03188372e-01 3.44680011e-01
-1.19840217e+00 9.78256047e-01 1.52244115e+00 -2.83884704e-01
-3.23926359e-02 -5.38796186e-01 -8.39842021e-01 5.60194194e-01
3.10855865e-01 -2.71391630e-01 -5.96496165e-01 -8.79538059e-01
2.56271154e-01 5.05434632e-01 8.89368534e-01 -9.92242575e-01
3.10989469e-01 -3.79159063e-01 4.08156425e-01 -5.55206299e-01
6.96812689e-01 -5.71204841e-01 9.30182338e-02 1.56190723e-01
-7.16483772e-01 4.00984623e-02 1.72034040e-01 9.00259078e-01
-3.91633779e-01 2.00655758e-01 3.07034135e-01 -2.01313376e-01
-1.11320972e+00 3.19729358e-01 -9.59986374e-02 1.83545202e-01
1.25940895e+00 -1.12137087e-01 -4.14671987e-01 -9.85199153e-01
-8.53497505e-01 6.33406401e-01 6.97297394e-01 7.62563467e-01
8.74723911e-01 -1.48904574e+00 -7.81224430e-01 -4.50577252e-02
5.99588156e-01 -5.66897653e-02 2.36064494e-01 4.87417877e-01
-2.68424153e-01 6.38742149e-01 -4.14552629e-01 -6.35375977e-01
-6.90281451e-01 9.48409081e-01 2.89245006e-02 -6.02483936e-02
-6.12743258e-01 9.13721323e-01 5.70033848e-01 -5.04274806e-03
2.00975891e-02 -2.84054607e-01 -1.51544914e-01 -4.31727022e-01
5.54105163e-01 -4.45392817e-01 -6.78729177e-01 -8.19125116e-01
-2.93329000e-01 9.07335207e-02 1.61778390e-01 -6.33216143e-01
1.24090588e+00 -4.16898519e-01 2.01608986e-01 4.60369110e-01
9.61214662e-01 -4.85767573e-01 -1.88138521e+00 -2.33206853e-01
-1.19297385e-01 -4.86934572e-01 -8.20322782e-02 -1.15174365e+00
-5.05085230e-01 8.08444679e-01 1.77789435e-01 -1.69250771e-01
1.00957608e+00 3.32994252e-01 8.61162007e-01 3.40931177e-01
2.76178092e-01 -6.27811134e-01 6.63781106e-01 4.41397905e-01
1.48621714e+00 -1.74210048e+00 -3.55992496e-01 -2.24736914e-01
-1.17733836e+00 6.75907969e-01 6.01423919e-01 6.18166924e-02
1.63618580e-01 -3.86277705e-01 9.43786874e-02 -1.35619089e-01
-1.14093304e+00 -3.72494936e-01 3.89057130e-01 9.29653764e-01
-9.86624956e-02 3.13492604e-02 2.95019329e-01 6.22858942e-01
-2.52943128e-01 4.54272151e-01 7.12566316e-01 6.44896865e-01
-1.47485778e-01 -5.40578783e-01 -2.89674491e-01 -1.05903042e-03
8.27599093e-02 -1.96869329e-01 -5.90303957e-01 2.88800329e-01
-8.91821906e-02 1.01700556e+00 1.12029143e-01 -3.22226137e-01
6.15779907e-02 -2.22544977e-03 4.65473324e-01 -7.34198272e-01
-9.14863497e-03 -6.04556203e-01 6.63223788e-02 -7.55412281e-01
-4.91249382e-01 -6.27854645e-01 -9.18383837e-01 3.86927605e-01
3.28042418e-01 -1.55259455e-02 7.19021678e-01 9.88994718e-01
4.99930978e-01 4.57183748e-01 3.82420093e-01 -1.04286551e+00
-3.76578361e-01 -6.49179637e-01 2.19980758e-02 9.29226637e-01
6.01532042e-01 -4.34577793e-01 -4.33437407e-01 6.78059638e-01]
|
[10.900456428527832, 0.9940805435180664]
|
bb3af8c9-e7e2-43ef-9655-92eb46bcad40
|
learning-to-relate-to-previous-turns-in
|
2306.02553
| null |
https://arxiv.org/abs/2306.02553v1
|
https://arxiv.org/pdf/2306.02553v1.pdf
|
Learning to Relate to Previous Turns in Conversational Search
|
Conversational search allows a user to interact with a search system in multiple turns. A query is strongly dependent on the conversation context. An effective way to improve retrieval effectiveness is to expand the current query with historical queries. However, not all the previous queries are related to, and useful for expanding the current query. In this paper, we propose a new method to select relevant historical queries that are useful for the current query. To cope with the lack of labeled training data, we use a pseudo-labeling approach to annotate useful historical queries based on their impact on the retrieval results. The pseudo-labeled data are used to train a selection model. We further propose a multi-task learning framework to jointly train the selector and the retriever during fine-tuning, allowing us to mitigate the possible inconsistency between the pseudo labels and the changed retriever. Extensive experiments on four conversational search datasets demonstrate the effectiveness and broad applicability of our method compared with several strong baselines.
|
['Yang Liu', 'Peng Li', 'Yutao Zhu', 'Kelong Mao', 'Kaiyu Huang', 'Jian-Yun Nie', 'Fengran Mo']
|
2023-06-05
| null | null | null | null |
['conversational-search']
|
['natural-language-processing']
|
[ 1.05490178e-01 -2.27439731e-01 -4.81814444e-01 -5.12611628e-01
-1.31036055e+00 -8.36434841e-01 7.59127855e-01 5.46071976e-02
-5.08565426e-01 7.14932561e-01 6.15089893e-01 -1.40014244e-02
-1.91300213e-01 -5.80161393e-01 -4.46274608e-01 -4.89588916e-01
3.33006948e-01 7.93205857e-01 4.57808942e-01 -5.24311662e-01
3.48998010e-01 2.21621692e-01 -1.51101649e+00 5.95746696e-01
9.78706062e-01 6.84282601e-01 5.98520398e-01 4.24446255e-01
-2.15853482e-01 6.37420952e-01 -8.79343092e-01 -1.36000887e-01
-4.49998342e-02 -3.92999053e-01 -1.24986947e+00 -1.12942718e-01
1.10390283e-01 -3.89739275e-01 -3.73862565e-01 4.79571044e-01
5.78147829e-01 5.86460710e-01 3.02711040e-01 -1.02044463e+00
-1.70448303e-01 7.33560383e-01 -7.57861510e-02 3.68426174e-01
7.12517321e-01 -2.19046772e-01 1.31523180e+00 -8.49887550e-01
7.04869330e-01 1.33917427e+00 -2.73767877e-02 3.84793252e-01
-9.19071913e-01 -6.22608304e-01 4.70821083e-01 2.43339419e-01
-1.23418128e+00 -6.18721783e-01 8.63328576e-01 -1.12488218e-01
8.92419696e-01 6.16486430e-01 4.24167275e-01 1.04241407e+00
-2.98697025e-01 1.00789905e+00 5.94659984e-01 -5.52671373e-01
-2.87314877e-02 3.42036337e-01 2.88371801e-01 3.16344678e-01
-5.45853615e-01 -2.03290582e-01 -8.72683525e-01 -7.20679164e-01
2.01937556e-01 8.36504698e-02 -3.83683741e-01 -3.29339355e-01
-1.03359008e+00 8.18044722e-01 4.32371736e-01 4.96920675e-01
-3.53848130e-01 -6.64376020e-02 3.28553259e-01 4.31482822e-01
4.90082413e-01 9.17422831e-01 -6.16192877e-01 -2.71479636e-01
-6.13905251e-01 3.73965204e-01 9.89797533e-01 9.26207542e-01
8.46487880e-01 -8.85032177e-01 -7.67653227e-01 1.45151973e+00
6.68223351e-02 4.30403352e-01 4.95706826e-01 -1.02373147e+00
4.36791778e-01 6.06447160e-01 4.91751462e-01 -7.33458698e-01
-1.89103976e-01 -4.29687649e-01 -1.60327405e-01 -6.72976136e-01
-2.03758758e-02 1.95802763e-01 -5.55783749e-01 1.79875958e+00
2.43692383e-01 -2.66886264e-01 -1.85854957e-02 8.06723833e-01
6.95459187e-01 6.94547355e-01 -4.76876684e-02 -4.73582566e-01
1.14819992e+00 -1.30411613e+00 -7.47676134e-01 -2.43394658e-01
6.90362751e-01 -1.06733441e+00 1.41759944e+00 1.99359637e-02
-8.10967028e-01 -4.35587168e-01 -6.68617666e-01 -7.91222453e-02
-1.58856213e-01 1.32433355e-01 5.54385126e-01 7.91060925e-02
-9.10409093e-01 1.08627185e-01 -5.35890877e-01 -3.97254318e-01
-3.19563955e-01 3.34475309e-01 1.88165233e-01 -5.08877896e-02
-1.60903919e+00 8.09608459e-01 3.29869241e-01 -2.45027393e-01
-6.49128139e-01 -3.26325268e-01 -4.05668974e-01 3.54076087e-01
7.47487903e-01 -6.79051042e-01 1.85945475e+00 -5.14455974e-01
-1.37789667e+00 5.52355528e-01 -6.23842537e-01 -3.15819606e-02
2.17362151e-01 -2.50919133e-01 -1.21087685e-01 6.48760125e-02
3.38626444e-01 6.03415608e-01 5.43853700e-01 -1.25142360e+00
-1.05008137e+00 -2.14953795e-01 4.69761610e-01 7.72683620e-01
-3.63078594e-01 -6.88235238e-02 -1.40736270e+00 -4.84282792e-01
1.16864406e-02 -1.27561486e+00 6.87940512e-03 -6.32339656e-01
-3.10186088e-01 -7.93049812e-01 7.96724617e-01 -3.09902608e-01
1.66040909e+00 -2.01449418e+00 2.17319280e-01 1.42435968e-01
-1.00752555e-01 1.45541012e-01 -2.41076335e-01 7.51608312e-01
4.66393799e-01 7.23045319e-02 1.50387332e-01 -2.25322872e-01
-1.63568959e-01 -8.78704060e-03 -5.22496581e-01 -2.43642122e-01
-3.70581716e-01 9.30799663e-01 -1.07519937e+00 -6.09584510e-01
-1.03812955e-01 2.35332251e-01 -3.34695458e-01 5.43372393e-01
-5.07917762e-01 6.32474422e-01 -1.04796517e+00 5.16503870e-01
1.13898024e-01 -3.63512784e-01 1.66230381e-01 -1.63258612e-01
2.14463368e-01 7.24753737e-01 -5.63046992e-01 1.76178503e+00
-9.19029236e-01 3.98352653e-01 6.57632872e-02 -5.92716932e-01
5.75119555e-01 3.12450171e-01 5.65051317e-01 -1.06605756e+00
-3.36303592e-01 1.61484733e-01 -3.41962427e-01 -6.54824495e-01
7.24813044e-01 2.95670718e-01 -3.37347537e-01 8.95234227e-01
-2.69668370e-01 -2.14996651e-01 2.59169400e-01 3.86620343e-01
1.03530884e+00 -2.82115750e-02 5.41793965e-02 1.32119983e-01
7.09982395e-01 3.74275856e-02 3.37258548e-01 1.11883664e+00
4.60767262e-02 1.68011203e-01 2.43932799e-01 -1.53906301e-01
-5.86982548e-01 -5.23798585e-01 1.65560711e-02 2.00093079e+00
5.43710291e-01 -3.84916335e-01 -4.50384915e-01 -8.81184220e-01
-7.62864351e-02 8.59283626e-01 -2.97205120e-01 -4.86635953e-01
-7.48556316e-01 -4.86977607e-01 2.82625228e-01 6.31372184e-02
3.90619487e-01 -1.19125986e+00 -2.73490161e-01 3.04104894e-01
-9.27964687e-01 -9.91788208e-01 -1.05881405e+00 -5.66320866e-02
-5.80368638e-01 -9.17623162e-01 -5.92487514e-01 -8.73767793e-01
3.53112280e-01 8.66648018e-01 1.31938779e+00 3.48431736e-01
1.93020254e-01 5.60269654e-01 -6.11481011e-01 -7.78434856e-04
-5.07013619e-01 6.85223162e-01 -2.58747607e-01 -2.26495728e-01
4.19804335e-01 -2.77165264e-01 -7.40134954e-01 7.59721637e-01
-7.83076286e-01 -5.67212440e-02 5.81625044e-01 1.04512393e+00
3.58469516e-01 -9.45593789e-02 7.57154167e-01 -9.76220608e-01
1.23074889e+00 -3.11059952e-01 -3.42725486e-01 8.86764109e-01
-8.40973318e-01 3.61865759e-01 1.58251733e-01 -4.74839658e-01
-1.29609168e+00 -5.97753823e-02 8.56403410e-02 -4.45091128e-02
3.72931272e-01 7.03554332e-01 -1.38336867e-02 3.70458663e-02
6.18776262e-01 1.95384935e-01 -4.81851369e-01 -6.36884868e-01
4.19164687e-01 1.00928509e+00 1.50877818e-01 -5.92608452e-01
3.54436904e-01 5.27087562e-02 -6.80626988e-01 -5.06798804e-01
-1.05083811e+00 -1.09850347e+00 -2.41056934e-01 -2.31891245e-01
3.70719522e-01 -8.66775274e-01 -6.97759151e-01 1.39972612e-01
-1.11677742e+00 -1.94048434e-01 1.52238205e-01 3.94234508e-01
-2.40702048e-01 3.63124847e-01 -4.42850143e-01 -7.52559364e-01
-5.88069320e-01 -1.50297761e+00 1.35836327e+00 1.63768709e-01
-2.79612333e-01 -7.68005431e-01 1.89320549e-01 7.90101588e-01
4.27403510e-01 -5.76878607e-01 1.05922115e+00 -1.02934945e+00
-6.37882352e-01 -3.43399137e-01 -7.82032833e-02 -1.84891209e-01
3.46232831e-01 -4.14387167e-01 -9.11548674e-01 -5.43224394e-01
1.05866753e-02 -5.35810053e-01 1.01026011e+00 8.00491571e-02
1.05717432e+00 -3.42538834e-01 -8.54834795e-01 4.72429320e-02
8.11256349e-01 4.77634430e-01 1.75329953e-01 3.76050293e-01
4.07660574e-01 6.73431814e-01 1.05774748e+00 3.12166184e-01
4.82401311e-01 1.27511585e+00 -4.75998316e-03 2.15835690e-01
1.27036497e-01 -3.64565551e-01 1.19569577e-01 6.44511938e-01
4.46051568e-01 -6.40668273e-01 -7.14230359e-01 4.41647559e-01
-1.97417974e+00 -7.88543642e-01 5.03184617e-01 2.40293145e+00
1.22127986e+00 1.07627206e-01 -8.88257325e-02 -5.65864682e-01
7.30074644e-01 2.08663359e-01 -7.26957917e-01 8.90843272e-02
1.47298813e-01 -5.64946756e-02 3.01569235e-02 8.53021562e-01
-1.00439894e+00 1.16320133e+00 6.26866102e+00 7.66677856e-01
-9.84428942e-01 3.34195904e-02 4.70542371e-01 -2.86038190e-01
-4.94877100e-01 1.78200543e-01 -8.61412644e-01 2.84330636e-01
5.04315138e-01 -5.44836938e-01 6.56871974e-01 8.31162095e-01
1.18989252e-01 -2.71933913e-01 -1.22783601e+00 8.44615638e-01
2.10516483e-01 -9.57203388e-01 1.67099193e-01 -1.15425721e-01
6.21092319e-01 2.89010666e-02 -1.24119118e-01 7.90256441e-01
2.40516782e-01 -5.10583580e-01 1.05755925e-01 5.26940703e-01
4.04157102e-01 -5.85188627e-01 6.43573940e-01 5.27551055e-01
-9.84403193e-01 -3.80354226e-02 -9.26542506e-02 3.50352198e-01
7.10095018e-02 1.93284839e-01 -1.22771609e+00 3.00577790e-01
6.59798086e-01 2.58407474e-01 -5.70569634e-01 9.10390496e-01
-1.52996570e-01 3.39586288e-01 -2.91621923e-01 -3.16837996e-01
1.03517078e-01 -7.02659562e-02 6.65642977e-01 1.05736065e+00
1.54913262e-01 4.81267944e-02 5.49385607e-01 5.00662506e-01
-4.25461084e-01 4.23190057e-01 -3.73276532e-01 -6.28920272e-02
9.39706326e-01 1.11165226e+00 -3.01755279e-01 -4.52803522e-01
-3.65788758e-01 1.06313574e+00 3.53240252e-01 6.14805520e-01
-4.21617717e-01 -3.66962790e-01 3.64927948e-01 -1.54404640e-01
6.31560534e-02 1.60191700e-01 3.84954035e-01 -1.24641001e+00
4.17142659e-01 -1.17069924e+00 6.04177177e-01 -6.87621772e-01
-1.09222424e+00 6.69572234e-01 2.29802817e-01 -1.10520363e+00
-8.05107415e-01 3.86060297e-01 -2.89560735e-01 9.54212248e-01
-1.43314445e+00 -1.06964993e+00 -3.46331745e-01 3.43949378e-01
9.02077913e-01 -1.43017396e-01 8.54124546e-01 1.98673606e-01
-2.04210848e-01 5.51227152e-01 5.51482141e-02 -2.11302191e-01
1.24315107e+00 -9.67727959e-01 1.17990084e-01 3.79886627e-01
6.96635097e-02 1.00981677e+00 6.43878222e-01 -5.60507357e-01
-1.21098423e+00 -6.56428099e-01 1.15896821e+00 -3.50836456e-01
3.51997286e-01 -2.80796945e-01 -1.04976368e+00 4.90996003e-01
2.74580717e-01 -6.89786196e-01 7.69836724e-01 6.13684297e-01
-2.34014586e-01 -3.05781901e-01 -5.86320519e-01 5.95214665e-01
8.23534608e-01 -8.57444584e-01 -7.13411033e-01 7.98264742e-01
1.04370868e+00 -5.08776784e-01 -4.72680688e-01 5.47953963e-01
5.68092287e-01 -5.99225640e-01 9.39798653e-01 -3.34407657e-01
-2.71237820e-01 1.05959149e-02 1.07583143e-01 -1.38738394e+00
-1.28864542e-01 -7.19623804e-01 -2.01315824e-02 1.14834952e+00
7.32925594e-01 -3.66945624e-01 6.05304718e-01 9.29793060e-01
2.56088264e-02 -6.28673732e-01 -7.50402391e-01 -3.74798536e-01
-3.28832328e-01 -9.74227935e-02 7.06104577e-01 7.40971208e-01
3.23601216e-01 9.42434371e-01 -4.23490494e-01 -7.83490390e-02
-1.22591164e-02 7.19757497e-01 9.06983614e-01 -1.26253390e+00
-3.03993374e-01 -4.59170520e-01 4.68172967e-01 -1.68040681e+00
2.68351436e-01 -8.12328100e-01 2.50978231e-01 -1.51319170e+00
5.87642968e-01 -6.52409613e-01 -3.76114756e-01 5.28194606e-01
-6.61552131e-01 -3.58557284e-01 -4.55503948e-02 8.16683531e-01
-1.05537891e+00 6.36115789e-01 1.27300739e+00 -3.02144736e-01
-8.74110878e-01 6.47236526e-01 -6.49367988e-01 1.01902984e-01
5.61188459e-01 -5.15864372e-01 -7.47549951e-01 -3.79362077e-01
3.11361730e-01 4.09746975e-01 -1.51009247e-01 -4.16116297e-01
5.62245846e-01 -2.32272044e-01 -1.98349148e-01 -6.63667023e-01
4.65808868e-01 -6.71803355e-01 -1.36497349e-01 1.20597616e-01
-1.02753282e+00 -8.08027983e-02 -7.55033568e-02 6.46996498e-01
-5.26989937e-01 -3.33088726e-01 3.52836102e-01 -4.79061082e-02
-6.21690035e-01 2.11429641e-01 -2.47859389e-01 8.73835832e-02
5.63994169e-01 5.03714740e-01 -1.65329129e-01 -1.07220507e+00
-7.20075428e-01 8.51900160e-01 3.80243570e-01 9.49949861e-01
2.89591044e-01 -1.13951862e+00 -4.40825492e-01 -2.08340898e-01
6.47117078e-01 -2.06750676e-01 -6.29387274e-02 3.02341074e-01
1.00674331e-01 9.98030365e-01 4.50002789e-01 -4.46514547e-01
-1.34175205e+00 4.88840759e-01 3.36835057e-01 -6.37937129e-01
-1.57811597e-01 8.09938908e-01 2.44053319e-01 -4.77309078e-01
7.42125869e-01 -8.43037814e-02 -5.19783437e-01 2.34494790e-01
4.45540577e-01 4.79348935e-02 2.14818135e-01 -3.59806776e-01
-2.62682676e-01 2.29828283e-01 -5.03917992e-01 -4.82198596e-01
1.07693195e+00 -5.78696311e-01 -2.92417407e-01 5.57318151e-01
1.39177620e+00 1.35116726e-01 -7.10652411e-01 -9.07186091e-01
2.31094316e-01 -4.40298468e-01 1.56841148e-02 -1.04324818e+00
-7.94886708e-01 3.16570193e-01 4.12263364e-01 2.33095556e-01
1.22901452e+00 2.82915473e-01 9.19968605e-01 1.10895276e+00
4.94399488e-01 -1.23861933e+00 2.90615559e-01 5.41081965e-01
1.06945634e+00 -1.41685832e+00 -8.44106749e-02 -4.19480383e-01
-7.03804433e-01 9.89493489e-01 7.04793632e-01 7.08595455e-01
3.61932606e-01 -4.03566331e-01 3.16814154e-01 -3.02309006e-01
-1.06989944e+00 -3.69037747e-01 3.94048899e-01 -1.88417286e-02
5.00145793e-01 -2.57189453e-01 -5.63724339e-01 1.61837012e-01
-6.39148951e-02 -1.46587133e-01 -6.15285933e-02 1.11955178e+00
-4.49758321e-01 -1.49024820e+00 -3.39363068e-02 4.22657311e-01
-2.56195009e-01 -1.67295724e-01 -7.86786199e-01 2.84843922e-01
-4.83705163e-01 1.39582789e+00 -1.85593098e-01 -4.73579615e-01
5.21452963e-01 3.87221426e-01 -6.77082762e-02 -7.94742167e-01
-7.43425012e-01 5.08729100e-01 3.78265291e-01 -4.92793649e-01
-4.85702991e-01 -4.98866051e-01 -8.60925317e-01 1.96392864e-01
-7.96172380e-01 8.64540577e-01 4.77512896e-01 9.19090509e-01
5.87215602e-01 2.42892981e-01 1.12301135e+00 -3.64333719e-01
-6.27295494e-01 -1.18239033e+00 -1.08580917e-01 6.15235627e-01
3.49842340e-01 -6.49580121e-01 -3.51492673e-01 -2.13054150e-01]
|
[11.961304664611816, 7.713310718536377]
|
22e5f242-7aa2-414b-8235-ef6b761c5011
|
self-prompting-large-language-models-for-open
|
2212.08635
| null |
https://arxiv.org/abs/2212.08635v2
|
https://arxiv.org/pdf/2212.08635v2.pdf
|
Self-Prompting Large Language Models for Zero-Shot Open-Domain QA
|
Open-Domain Question Answering (ODQA) aims at answering factoid questions without explicitly providing specific background documents. In a zero-shot setting, this task is more challenging since no data is available to train customized models like Retriever-Readers. Recently, Large Language Models (LLMs) like GPT-3 have shown their power in zero-shot ODQA with direct prompting methods, but these methods are still far from releasing the full powerfulness of LLMs only in an implicitly invoking way. In this paper, we propose a Self-Prompting framework to explicitly utilize the massive knowledge stored in the parameters of LLMs and their strong instruction understanding abilities. Concretely, we prompt LLMs step by step to generate multiple pseudo QA pairs with background passages and explanations from scratch and then use those generated elements for in-context learning. Experimental results show our method surpasses previous SOTA methods significantly on three widely-used ODQA datasets, and even achieves comparable performance with some Retriever-Reader models fine-tuned on full training data.
|
['Hai Zhao', 'Zhuosheng Zhang', 'Junlong Li']
|
2022-12-16
| null | null | null | null |
['open-domain-question-answering']
|
['natural-language-processing']
|
[ 1.37728602e-01 4.91989285e-01 3.34416665e-02 -2.54535377e-01
-1.41536844e+00 -8.16747963e-01 6.26356602e-01 2.32272387e-01
-4.40992147e-01 7.38756895e-01 4.04712588e-01 -7.16234326e-01
-1.33817524e-01 -9.65137482e-01 -8.28790665e-01 -2.61790633e-01
4.13457960e-01 1.00860786e+00 8.84256124e-01 -1.15440559e+00
1.80102929e-01 -1.02893412e-01 -1.61745310e+00 5.67209601e-01
1.62791467e+00 5.20762742e-01 6.83925271e-01 9.01031494e-01
-8.06440055e-01 1.48171616e+00 -6.05657041e-01 -6.58393085e-01
-3.08491230e-01 -5.15646875e-01 -1.24571002e+00 -4.40650761e-01
6.39372766e-01 -6.91728115e-01 -3.47856551e-01 5.86633503e-01
6.43772423e-01 5.47963023e-01 3.85060698e-01 -7.15707362e-01
-1.38161898e+00 8.98361266e-01 -2.85567008e-02 3.00723046e-01
6.56350315e-01 3.09875488e-01 1.07986891e+00 -8.17068756e-01
4.35925215e-01 1.23501611e+00 1.60779715e-01 1.03870475e+00
-8.47184420e-01 -2.38167718e-01 4.88261506e-02 5.11242032e-01
-8.86047959e-01 -3.02289635e-01 6.36662424e-01 -8.10424984e-02
9.22744393e-01 2.72105008e-01 1.76575497e-01 1.30031443e+00
-3.02638024e-01 1.36748791e+00 1.09588289e+00 -8.27626467e-01
1.64821610e-01 5.80412820e-02 6.45317197e-01 7.23980308e-01
-2.14692414e-01 -2.12591738e-01 -5.69206297e-01 -1.16504475e-01
3.66533458e-01 -1.10245720e-01 -4.53828365e-01 -3.51399392e-01
-1.15759647e+00 1.02626717e+00 1.97977021e-01 2.29629129e-01
-2.07653210e-01 -2.40592539e-01 1.08927600e-01 7.08908141e-01
1.66585326e-01 9.22738850e-01 -6.28041327e-01 -2.70022392e-01
-4.62989986e-01 4.36793834e-01 9.16153908e-01 1.08928430e+00
6.49155676e-01 -2.98628122e-01 -8.53932261e-01 1.07024419e+00
-3.31161022e-02 6.20214462e-01 8.42826307e-01 -1.05559218e+00
6.07283354e-01 6.39552653e-01 2.35952094e-01 -3.70263070e-01
-1.61142796e-02 -2.16275558e-01 -1.17006309e-01 -3.78768682e-01
5.02751768e-01 -1.44334316e-01 -8.56787026e-01 1.61997175e+00
4.25680399e-01 1.78609639e-01 5.51868796e-01 6.98319912e-01
1.28728271e+00 9.88161266e-01 3.49555790e-01 1.59859568e-01
1.55986977e+00 -1.43479693e+00 -9.00643706e-01 -4.40375239e-01
8.87081027e-01 -5.26980877e-01 2.00892019e+00 3.86005610e-01
-1.20351028e+00 -5.85664690e-01 -8.45155239e-01 -7.35393763e-01
-3.55153084e-01 -2.62810647e-01 3.04562271e-01 5.38507223e-01
-9.83494461e-01 2.55794048e-01 -3.99234891e-01 -1.47366285e-01
1.92699730e-01 -2.13360451e-02 4.55275625e-02 -7.51102328e-01
-1.50813758e+00 9.96605098e-01 1.90693289e-01 -4.80247527e-01
-1.41665924e+00 -9.47030663e-01 -9.51676190e-01 3.19376528e-01
8.33647847e-01 -9.25530434e-01 1.85036969e+00 -4.41153884e-01
-2.08865571e+00 6.11115336e-01 6.52769506e-02 -3.70682776e-01
1.99492872e-01 -5.59710741e-01 -2.15701520e-01 2.81048805e-01
6.86785951e-02 7.58361518e-01 5.03264785e-01 -1.21302760e+00
-3.83395463e-01 -2.69068867e-01 8.67428064e-01 4.16912019e-01
-4.58428681e-01 -8.81066360e-03 -2.73031652e-01 -2.87265122e-01
-5.33863828e-02 -4.10605699e-01 -3.18028092e-01 -5.17758071e-01
1.18423235e-02 -8.18534374e-01 3.80388588e-01 -6.44284368e-01
1.27306890e+00 -1.77675796e+00 -9.08129141e-02 -3.76527846e-01
2.28259340e-01 6.99319959e-01 -7.19684422e-01 6.40213370e-01
4.33824420e-01 -2.27495492e-01 -1.37980476e-01 -2.13380344e-03
2.10303396e-01 4.42222267e-01 -7.65842438e-01 -4.84489501e-01
2.49652132e-01 1.21960509e+00 -1.57532966e+00 -5.13719738e-01
6.15168214e-02 3.85864750e-02 -7.39398956e-01 9.84304428e-01
-9.06821549e-01 3.70807737e-01 -7.30253100e-01 3.46491724e-01
1.88210353e-01 -4.41871881e-01 -4.41891588e-02 5.17865419e-01
3.27938676e-01 7.50366926e-01 -7.77068734e-01 2.18580127e+00
-8.53900611e-01 1.95093438e-01 -3.07767183e-01 -8.68811548e-01
9.63897109e-01 4.13832963e-01 -2.19330341e-01 -1.11161995e+00
-3.24264839e-02 2.00067624e-01 -7.25396350e-02 -8.92337501e-01
8.13259482e-01 1.20557733e-02 -5.37523217e-02 6.72289073e-01
4.73886698e-01 -3.57435852e-01 2.59753853e-01 7.14464068e-01
1.22049677e+00 2.23575577e-01 7.19016269e-02 -1.81967720e-01
6.70470715e-01 2.18048841e-01 5.03473952e-02 1.10362720e+00
-1.21579073e-01 4.62825716e-01 1.34629682e-01 -1.06431648e-01
-5.69283128e-01 -1.19216800e+00 2.98728436e-01 1.86332738e+00
1.80824518e-01 -4.23051387e-01 -8.89955401e-01 -9.03148353e-01
-3.55151623e-01 1.34529161e+00 -5.02125204e-01 -3.83720517e-01
-5.52797854e-01 -3.10638491e-02 4.72564280e-01 4.49000150e-01
3.69008869e-01 -1.19463801e+00 -5.61120570e-01 4.39825863e-01
-5.72818518e-01 -1.14124954e+00 -3.05131584e-01 7.58398026e-02
-8.57892096e-01 -8.14504504e-01 -9.09725308e-01 -8.17381501e-01
5.74859738e-01 5.70320547e-01 1.73854530e+00 3.12718600e-01
1.23670965e-01 6.77959144e-01 -7.56363392e-01 -4.91590142e-01
-6.07918918e-01 7.89235458e-02 -3.26573402e-01 -4.38993752e-01
6.30035996e-01 -3.82348031e-01 -4.66340750e-01 2.54555136e-01
-1.00948751e+00 1.20370947e-01 5.03690958e-01 9.50066209e-01
2.26344153e-01 -6.37897968e-01 9.40518737e-01 -1.13411498e+00
1.10595930e+00 -6.73082709e-01 -3.71914923e-01 8.41947317e-01
-2.47076467e-01 2.85799235e-01 6.40427351e-01 -5.40715635e-01
-1.51346099e+00 -5.76454937e-01 -3.13850284e-01 -1.65596128e-01
-3.48228037e-01 5.15596330e-01 -1.44929618e-01 2.49838829e-01
1.08994520e+00 3.74853402e-01 -2.53961086e-01 -6.82746589e-01
8.41314912e-01 7.58524656e-01 6.26490116e-01 -1.30284286e+00
6.79970562e-01 1.63768921e-02 -8.00130427e-01 -5.20582318e-01
-1.53980994e+00 -6.07012093e-01 -3.35145354e-01 6.36132807e-02
7.23673224e-01 -1.00904715e+00 -5.32785475e-01 1.79702118e-01
-1.16246188e+00 -7.33365655e-01 -5.16910493e-01 1.61985591e-01
-5.06670535e-01 3.22643876e-01 -7.97000766e-01 -7.76457906e-01
-3.23964477e-01 -1.03731942e+00 7.59420633e-01 5.08487046e-01
-2.93834950e-03 -1.02060103e+00 3.52135241e-01 1.08170521e+00
5.78534186e-01 -6.15262151e-01 1.20216811e+00 -1.09925723e+00
-6.19126141e-01 8.18776116e-02 1.26019016e-01 2.72637993e-01
-1.14796534e-01 -4.81036872e-01 -1.12131405e+00 1.10815950e-01
-4.60992865e-02 -1.21835613e+00 6.37149870e-01 -1.77406639e-01
1.24227083e+00 -3.61622483e-01 8.93175751e-02 -3.36936302e-02
1.02095890e+00 7.28778029e-03 5.78962564e-01 2.70823568e-01
4.74515229e-01 8.88111413e-01 8.23466122e-01 6.94854185e-04
9.38425720e-01 3.52727175e-01 1.63607165e-01 2.66843677e-01
-3.39777023e-01 -7.20233321e-01 5.55414498e-01 1.31036520e+00
1.60276443e-01 -3.36858064e-01 -9.31156933e-01 1.00542831e+00
-1.58238709e+00 -7.30308414e-01 -9.46541131e-02 1.98105478e+00
1.44223666e+00 -1.98985353e-01 -3.14351827e-01 -3.78123373e-01
1.02153540e-01 4.03398387e-02 -3.88100773e-01 -4.14840192e-01
5.38912490e-02 6.64274693e-01 -1.85924262e-01 6.42622232e-01
-4.14314151e-01 1.13627255e+00 5.74971676e+00 9.85456347e-01
-4.04570669e-01 3.42828959e-01 3.38200569e-01 2.77039230e-01
-8.02682102e-01 2.32852604e-02 -9.20804024e-01 5.64019829e-02
1.33301008e+00 -4.73802388e-02 2.75548339e-01 7.60144472e-01
-3.26149762e-01 -4.54420075e-02 -1.03564084e+00 4.86102849e-01
2.17070147e-01 -1.20468438e+00 4.79111195e-01 -5.00580430e-01
9.34448898e-01 -7.87526220e-02 4.22521383e-02 1.18955886e+00
9.47669864e-01 -8.41316462e-01 3.49921703e-01 4.09513205e-01
3.12135786e-01 -4.69684273e-01 5.80196500e-01 9.00347650e-01
-4.24707472e-01 -2.30369940e-01 -6.47100151e-01 -2.22658187e-01
1.62263304e-01 2.22376306e-02 -8.82450402e-01 6.16819084e-01
5.71622014e-01 -6.90056458e-02 -7.25527287e-01 7.66096532e-01
-7.00054288e-01 9.25224781e-01 2.52888910e-03 -4.13399994e-01
4.76987332e-01 -8.96063447e-03 1.69431135e-01 7.00135827e-01
3.83079410e-01 8.45650613e-01 1.61411554e-01 7.81936646e-01
-1.13006361e-01 3.47909302e-01 -4.42025781e-01 -1.38884813e-01
4.39024866e-01 9.68820572e-01 2.65532993e-02 -7.61378050e-01
-7.46431887e-01 9.04823124e-01 6.75713599e-01 3.06578577e-01
-5.02421081e-01 -4.24805224e-01 2.69029707e-01 3.18265408e-02
1.81395501e-01 2.11925507e-02 2.13417247e-01 -1.42750371e+00
-2.09166363e-01 -1.38626218e+00 7.69746304e-01 -1.29804289e+00
-1.54608703e+00 4.41648901e-01 -2.64931414e-02 -8.18894804e-01
-4.45827723e-01 -6.67886019e-01 -7.51741529e-01 7.27907002e-01
-1.90047526e+00 -1.00456655e+00 -2.51111507e-01 9.27551746e-01
9.80489969e-01 -1.03984617e-01 1.12130713e+00 1.22913003e-01
-2.26472661e-01 5.39105833e-01 3.87345254e-02 3.62614393e-02
9.53515410e-01 -1.51717722e+00 3.91086906e-01 7.42779791e-01
5.20597637e-01 8.43811274e-01 8.09140205e-01 -3.96847337e-01
-1.53606093e+00 -5.18352747e-01 1.16106236e+00 -1.05724609e+00
8.89135063e-01 -3.16094667e-01 -1.45966005e+00 7.28799462e-01
6.87703967e-01 -1.54253334e-01 8.66697490e-01 2.55171984e-01
-3.93165559e-01 1.52276978e-01 -7.64333367e-01 7.50948489e-01
8.35024834e-01 -5.22513330e-01 -1.68376744e+00 5.49799383e-01
1.40612495e+00 -5.83416283e-01 -6.60893142e-01 2.87734300e-01
-1.51359841e-01 -6.88237846e-01 1.12416756e+00 -1.07299423e+00
5.83887279e-01 -1.42410591e-01 -8.98333788e-02 -1.37910759e+00
7.31730312e-02 -6.82445228e-01 -4.76299167e-01 1.22910810e+00
3.85716617e-01 -3.90403986e-01 4.56911027e-01 7.10821748e-01
-5.91950536e-01 -5.90026021e-01 -4.99803722e-01 -7.01537788e-01
4.54830110e-01 -2.73849279e-01 7.95405447e-01 1.06079924e+00
2.50229955e-01 7.71915138e-01 3.71602327e-02 2.15436816e-01
3.29739630e-01 2.31672332e-01 1.01420045e+00 -1.08112276e+00
-4.93127018e-01 3.36596109e-02 4.77655500e-01 -1.74163437e+00
1.14721656e-01 -7.27051914e-01 3.41477364e-01 -1.57120371e+00
1.24623939e-01 -6.50748074e-01 -4.25242096e-01 4.25992072e-01
-8.58800471e-01 -2.51845807e-01 2.44003013e-02 -2.03478321e-01
-1.16506803e+00 7.68400550e-01 1.68215656e+00 -1.45298988e-01
-1.06689811e-01 -2.72841036e-01 -8.99878561e-01 5.44285655e-01
4.73772317e-01 -2.86788523e-01 -9.72870886e-01 -8.67618740e-01
1.71442166e-01 4.50930178e-01 1.65699691e-01 -9.02354419e-01
3.83261979e-01 -3.28964770e-01 -2.03938097e-01 -4.58546340e-01
2.11340740e-01 -3.65451872e-01 -7.64328063e-01 8.46996382e-02
-6.70840263e-01 -1.23722255e-01 2.14715138e-01 4.40473139e-01
-2.87344337e-01 -7.49857068e-01 2.83461571e-01 -3.79746914e-01
-1.06417978e+00 1.59478828e-01 -2.19121009e-01 6.47455513e-01
6.16219163e-01 2.80246109e-01 -9.13246095e-01 -6.13137186e-01
-4.88318205e-01 6.87190950e-01 5.01114316e-02 6.16773725e-01
5.83021402e-01 -1.04219675e+00 -8.48896027e-01 -1.02805421e-01
6.27001286e-01 3.35359752e-01 7.04020619e-01 4.42174196e-01
-2.19467014e-01 7.28321910e-01 -1.38617948e-01 -4.34618741e-01
-8.72258008e-01 7.97763705e-01 2.17772108e-02 -6.96086764e-01
-4.83322322e-01 1.18646288e+00 4.33817685e-01 -9.68979657e-01
1.71172202e-01 -2.71380574e-01 -5.19928575e-01 -1.87115744e-01
1.07596159e+00 -2.55391430e-02 1.36964664e-01 2.42713969e-02
3.32929879e-01 9.31078345e-02 -3.44152361e-01 -8.53294134e-02
1.13331854e+00 -2.77236938e-01 2.50497311e-01 4.23076302e-01
7.32403100e-01 1.33400261e-01 -1.14924479e+00 -7.02221870e-01
1.56619579e-01 -2.34125018e-01 -1.78404436e-01 -1.27905130e+00
-4.11457121e-01 1.28710008e+00 1.18210599e-01 -6.99517224e-03
8.28751683e-01 4.05689836e-01 1.16438782e+00 1.01562369e+00
4.50812012e-01 -8.88452172e-01 7.66063571e-01 9.24561679e-01
6.98428273e-01 -1.39267325e+00 -5.05491674e-01 -1.26718715e-01
-6.91766560e-01 8.87048781e-01 1.15538609e+00 1.68200135e-01
-1.22492239e-01 -3.89277637e-01 5.15175700e-01 -2.15290010e-01
-1.17395806e+00 -3.87128741e-01 3.68239284e-01 7.36589074e-01
4.98968065e-01 -1.42143756e-01 -1.28979981e-01 1.06243849e+00
-3.39710355e-01 -1.56760618e-01 6.56782269e-01 1.05934417e+00
-9.16617811e-01 -1.18874884e+00 -3.22357923e-01 1.82216987e-01
-3.06908756e-01 -5.00917077e-01 -1.44083217e-01 5.33190310e-01
-4.52909976e-01 1.18088806e+00 -1.99419409e-01 1.15901679e-01
4.76256758e-01 5.47962368e-01 6.10515952e-01 -1.01800418e+00
-6.61366403e-01 -6.69958532e-01 1.62160531e-01 -4.88508403e-01
-2.29454152e-02 -2.18509436e-01 -1.22510707e+00 7.37508088e-02
-3.76703322e-01 6.00129485e-01 3.04952919e-01 1.24017096e+00
3.79116446e-01 5.98676503e-01 3.09495211e-01 2.59628659e-03
-1.15051353e+00 -1.10358882e+00 -3.91959623e-02 3.43600899e-01
3.54261190e-01 -5.07037282e-01 -2.57275492e-01 -7.88267627e-02]
|
[11.248703956604004, 7.976012229919434]
|
9b7c5b98-2340-45b8-95cc-6da2a079fd99
|
cholectriplet2022-show-me-a-tool-and-tell-me
|
2302.06294
| null |
https://arxiv.org/abs/2302.06294v1
|
https://arxiv.org/pdf/2302.06294v1.pdf
|
CholecTriplet2022: Show me a tool and tell me the triplet -- an endoscopic vision challenge for surgical action triplet detection
|
Formalizing surgical activities as triplets of the used instruments, actions performed, and target anatomies is becoming a gold standard approach for surgical activity modeling. The benefit is that this formalization helps to obtain a more detailed understanding of tool-tissue interaction which can be used to develop better Artificial Intelligence assistance for image-guided surgery. Earlier efforts and the CholecTriplet challenge introduced in 2021 have put together techniques aimed at recognizing these triplets from surgical footage. Estimating also the spatial locations of the triplets would offer a more precise intraoperative context-aware decision support for computer-assisted intervention. This paper presents the CholecTriplet2022 challenge, which extends surgical action triplet modeling from recognition to detection. It includes weakly-supervised bounding box localization of every visible surgical instrument (or tool), as the key actors, and the modeling of each tool-activity in the form of <instrument, verb, target> triplet. The paper describes a baseline method and 10 new deep learning algorithms presented at the challenge to solve the task. It also provides thorough methodological comparisons of the methods, an in-depth analysis of the obtained results, their significance, and useful insights for future research directions and applications in surgery.
|
['Nicolas Padoy', 'Didier Mutter', 'Cristians Gonzalez', 'Barbara Seeliger', 'Pietro Mascagni', 'Nassir Navab', 'Lena Maier-Hein', 'Eduard Vazquez', 'Estevão Lima', 'Jan-Hinrich Nölke', 'Jaime Fonseca', 'Thuy Nuong Tran', 'Sudarshan Regmi', 'Pedro Morais', 'Patrick Godau', 'Max Berniker', 'Shrawan Kumar Thapa', 'Debdoot Sheet', 'Zhenkun Wang', 'Tobias Czempiel', 'João L. Vilaça', 'Melanie Schellenberg', 'Guo Rui', 'Ziheng Wang', 'Binod Bhattarai', 'Pranav Poudel', 'Rachana Sathish', 'Sista Raviteja', 'Han Li', 'Shuangchun Gui', 'Ege Özsoy', 'Felix Holm', 'Satoshi Kasai', 'Satoshi Kondo', 'Helena R. Torres', 'Bruno Oliveira', 'Guoyan Zheng', 'Xiaoyang Zou', 'Finn-Henri Smidt', 'Amine Yamlahi', 'Wolfgang Reiter', 'Jonas Hajek', 'Kun Yuan', 'Armine Vardazaryan', 'Deepak Alapatt', 'Aditya Murali', 'Saurav Sharma', 'Tong Yu', 'Chinedu Innocent Nwoye']
|
2023-02-13
| null | null | null | null |
['action-triplet-detection', 'action-triplet-recognition', 'surgical-tool-detection']
|
['computer-vision', 'computer-vision', 'computer-vision']
|
[ 1.59230277e-01 3.07061493e-01 -6.61856294e-01 4.45197560e-02
-9.78279650e-01 -7.16131032e-01 6.03557646e-01 2.85788298e-01
-4.42774594e-01 2.84368128e-01 5.63995123e-01 -5.27685583e-01
-5.00107408e-01 -6.10701479e-02 -5.02689481e-01 -8.21472943e-01
-3.09075862e-01 5.58423638e-01 -1.41138390e-01 5.28763458e-02
5.10140300e-01 8.95692348e-01 -1.16030705e+00 5.63125491e-01
2.15150774e-01 1.14922941e+00 3.91477853e-01 5.21906734e-01
-4.43154387e-02 9.12874460e-01 -6.03408456e-01 3.41389291e-02
3.41932148e-01 -3.24442774e-01 -8.50378931e-01 -2.04275414e-01
5.49690127e-01 -1.25608876e-01 -1.71865821e-01 6.96112573e-01
2.89418280e-01 -3.27439606e-01 7.91238606e-01 -7.42252886e-01
2.79591382e-01 6.80675089e-01 -5.81555963e-01 1.45315602e-01
8.65698978e-02 1.03346944e-01 5.99779069e-01 -7.23902583e-01
1.07263231e+00 6.65138423e-01 6.51028037e-01 5.09754002e-01
-7.82491565e-01 -5.28945446e-01 -2.45174244e-02 5.16524576e-02
-1.17714882e+00 -1.72082081e-01 7.50850379e-01 -9.41919923e-01
7.53566325e-01 5.73868692e-01 1.28339875e+00 1.13100576e+00
9.59778965e-01 9.86205876e-01 8.42211425e-01 -6.01602793e-01
2.05468349e-02 2.93681435e-02 -8.26818720e-02 1.21085727e+00
2.36042708e-01 4.43320155e-01 -5.65379381e-01 1.08898476e-01
1.30536723e+00 2.46892825e-01 -1.60193548e-01 -9.88286614e-01
-1.69550240e+00 5.13757467e-01 8.07434499e-01 7.78184593e-01
-5.84493160e-01 5.37668407e-01 6.89338565e-01 -2.71587551e-01
-9.11562983e-03 6.88297212e-01 -1.74954772e-01 -1.89819932e-01
-8.45077991e-01 -1.18417084e-01 6.22383356e-01 8.20477724e-01
2.31372982e-01 -2.73786485e-01 -3.26638758e-01 3.26022357e-01
8.13632756e-02 -3.34807247e-01 6.18411601e-01 -9.24786389e-01
1.75019577e-01 7.73603082e-01 1.17443599e-01 -7.18993843e-01
-9.94553983e-01 -7.61762440e-01 -6.32752776e-01 4.01543140e-01
3.73919368e-01 1.60020869e-02 -1.14090288e+00 9.89311099e-01
-2.74433265e-03 -2.48363633e-02 -5.13420343e-01 7.03784049e-01
8.59540701e-01 -1.61032259e-01 4.11836505e-02 -4.16854173e-02
1.54191244e+00 -1.17486322e+00 -7.01783419e-01 -4.21850413e-01
1.38742638e+00 -5.88078320e-01 8.04731548e-01 5.32965124e-01
-7.41927862e-01 -1.90314114e-01 -9.18923914e-01 -1.25279352e-01
-2.65576154e-01 8.48694623e-01 1.17588079e+00 4.25912231e-01
-7.96343803e-01 3.87468517e-01 -1.28252995e+00 -2.55079597e-01
5.57059467e-01 7.41347194e-01 -6.52582526e-01 3.19528103e-01
-4.43405569e-01 1.54964995e+00 1.71209365e-01 4.44489837e-01
-1.34779358e+00 -7.50276387e-01 -1.02200210e+00 -3.53947848e-01
5.56754112e-01 -6.79439008e-01 1.18197644e+00 -7.56103635e-01
-1.28782034e+00 1.48958993e+00 1.66648895e-01 -4.91921037e-01
6.73899412e-01 -1.93552986e-01 4.86832066e-03 -2.01296024e-02
-8.08276013e-02 4.99308795e-01 4.20630664e-01 -1.14678884e+00
-5.80358267e-01 -7.05288172e-01 1.48921221e-01 3.17848414e-01
-1.84632376e-01 -8.04617181e-02 -4.53343630e-01 -6.46999896e-01
1.90149918e-01 -1.20504987e+00 -4.59713370e-01 5.71648836e-01
-6.14031017e-01 1.15482561e-01 2.17225090e-01 -6.95226550e-01
1.37993085e+00 -2.12852669e+00 6.63193464e-01 4.14580815e-02
5.09755194e-01 -1.38139918e-01 1.83491826e-01 4.93561506e-01
-3.20034534e-01 -1.23224787e-01 1.32397935e-01 -4.79309618e-01
-5.45457184e-01 3.48691344e-01 2.31456399e-01 8.73016238e-01
-4.98500645e-01 8.29552054e-01 -7.26321101e-01 -6.72927856e-01
6.17397487e-01 1.98418573e-01 -2.65399396e-01 -4.90108877e-03
2.20524862e-01 6.80110157e-01 -3.48304451e-01 9.14088011e-01
-2.53430735e-02 1.34925216e-01 2.50461161e-01 -6.25574291e-01
-2.60588586e-01 -4.76637445e-02 -5.99424899e-01 2.36626387e+00
-1.07601154e+00 6.49703145e-01 3.70555043e-01 -7.66790211e-01
6.15997195e-01 1.61912233e-01 9.94452536e-01 -3.83668453e-01
4.81362104e-01 3.83729786e-01 2.19152644e-01 -4.00355428e-01
1.05195262e-01 -2.63312101e-01 -3.91382158e-01 -2.37062201e-01
2.29738742e-01 -3.77736568e-01 -1.25435919e-01 -3.63334678e-02
1.08737409e+00 -3.39918509e-02 9.31114197e-01 -4.65615183e-01
2.37123117e-01 3.71410757e-01 1.03073545e-01 5.63255668e-01
-2.71459669e-01 3.27902615e-01 7.41691649e-01 -8.21638763e-01
-3.51012528e-01 -8.29408169e-01 -5.37678460e-03 4.85607028e-01
2.55860895e-01 -3.05150837e-01 -4.52845305e-01 -1.11617041e+00
3.95510197e-02 4.92868513e-01 -1.64398992e+00 -2.63885736e-01
-7.49398887e-01 4.21967804e-02 1.86026916e-01 7.97876477e-01
-2.68206477e-01 -8.47358584e-01 -9.65502858e-01 -1.19933076e-01
-5.94738275e-02 -9.29105461e-01 -3.48089457e-01 6.35930419e-01
-1.12999439e+00 -1.43606520e+00 -7.64657795e-01 -9.52452600e-01
8.85396481e-01 -1.20344609e-01 8.43981028e-01 1.09036915e-01
-8.82571697e-01 4.07391101e-01 -9.12379250e-02 -7.61281788e-01
-4.38020825e-01 -4.01483439e-02 -2.36443594e-01 -1.56509116e-01
-1.47440419e-01 1.14535429e-02 -7.62436688e-01 3.01339656e-01
-5.71627140e-01 3.39852363e-01 1.08949208e+00 8.49173427e-01
4.96571392e-01 -6.41321242e-01 -4.71367776e-01 -7.78900743e-01
3.07059973e-01 -2.03747243e-01 -3.59312028e-01 2.51200885e-01
-2.40774214e-01 -5.02133034e-02 1.54009208e-01 -4.44440305e-01
-6.42591178e-01 5.06746531e-01 1.92806706e-01 -6.04487181e-01
-8.02321061e-02 6.49893939e-01 2.61517614e-01 -4.43395406e-01
9.04927015e-01 -8.44772160e-02 1.99330971e-01 -3.33993554e-01
9.62879807e-02 9.34128836e-02 5.54684639e-01 -3.33382666e-01
2.38600075e-01 6.52075529e-01 3.95391554e-01 -4.66465533e-01
-7.96385109e-01 -7.77963400e-01 -9.34501469e-01 -6.03672266e-01
7.36207902e-01 -5.61357200e-01 -6.25050545e-01 3.87088545e-02
-1.20157409e+00 -3.60431671e-01 -2.72982270e-01 6.48064792e-01
-8.45760524e-01 2.93370783e-02 -5.11590898e-01 -5.84605634e-01
-2.87748635e-01 -1.50753713e+00 1.47123647e+00 -1.28751084e-01
-5.52221239e-01 -1.33197045e+00 1.45841360e-01 3.74325305e-01
1.54878378e-01 8.13035190e-01 8.77852619e-01 -5.86405039e-01
-5.21658540e-01 -9.02268469e-01 2.35509470e-01 9.70256999e-02
1.51623368e-01 -4.42259572e-02 -3.42298687e-01 -8.00522119e-02
-1.57725036e-01 2.21383795e-01 5.15879273e-01 7.37089574e-01
1.29621708e+00 -7.44968727e-02 -9.60564673e-01 7.19150364e-01
1.31918931e+00 1.74682423e-01 3.89936358e-01 4.65101868e-01
6.42249286e-01 5.84005237e-01 8.54081690e-01 2.14557871e-01
-1.49831444e-01 1.12736714e+00 1.01380098e+00 -2.31897578e-01
-3.53687227e-01 9.45989937e-02 -1.60517339e-02 2.27930322e-01
-3.99955362e-01 2.37006947e-01 -1.43151426e+00 6.46077573e-01
-1.42137611e+00 -5.02862155e-01 2.80029401e-02 2.16531777e+00
5.04889071e-01 2.13494785e-02 -1.08417168e-01 -4.90162112e-02
1.52919233e-01 -2.24610344e-02 -2.92382479e-01 -1.51574895e-01
6.91095948e-01 1.04340658e-01 7.56263793e-01 3.21396738e-01
-9.81306851e-01 7.16753542e-01 6.38184595e+00 7.79587924e-01
-1.31592000e+00 3.55894379e-02 2.58159161e-01 -3.42465848e-01
2.71517873e-01 -1.92563802e-01 -5.01986206e-01 7.46192336e-02
4.41359341e-01 2.94976272e-02 -4.98713367e-02 9.15717363e-01
2.06757396e-01 -5.40300131e-01 -1.52791631e+00 1.13851082e+00
4.03556645e-01 -1.93217182e+00 -3.65011469e-02 2.09305570e-01
2.96388716e-01 -2.57121831e-01 2.89372937e-03 1.82059675e-01
-1.44049019e-01 -9.02694583e-01 7.62837946e-01 6.80803180e-01
9.86705303e-01 -2.10631222e-01 8.19273293e-01 4.33441609e-01
-1.11246204e+00 -5.81094444e-01 3.41630340e-01 1.41212076e-01
-3.52000110e-02 1.33911995e-02 -1.22027957e+00 6.41788542e-01
3.67360532e-01 7.20129848e-01 -3.33393544e-01 1.19057667e+00
-2.63849050e-01 -1.13779411e-01 -1.32087022e-01 -6.09908439e-03
1.22384652e-01 3.52775335e-01 5.00703275e-01 1.06148815e+00
2.97977835e-01 -1.41929284e-01 5.39903976e-02 2.48044580e-01
1.10090032e-01 1.13143012e-01 -5.38008928e-01 -1.06447265e-01
-3.03936750e-02 1.28206992e+00 -1.11626375e+00 1.56827290e-02
2.49296315e-02 8.51267338e-01 1.34556830e-01 -1.31175175e-01
-8.98055911e-01 -9.80053395e-02 5.54993808e-01 6.43547773e-01
-3.00971121e-01 -3.26061636e-01 -6.90677106e-01 -8.21058869e-01
-5.03651388e-02 -6.52934253e-01 4.16803241e-01 -8.67881298e-01
-1.20709680e-01 5.47654808e-01 7.51778930e-02 -1.76214349e+00
-3.14287931e-01 -1.09957111e+00 -4.27445084e-01 5.45806348e-01
-7.58478105e-01 -1.50447273e+00 -6.72196686e-01 3.40305716e-01
6.64102018e-01 1.25622928e-01 1.06858277e+00 -1.81979075e-01
-3.49899113e-01 3.13025504e-01 -2.26646692e-01 3.49566340e-01
5.93900561e-01 -1.05667043e+00 -3.70244831e-01 3.65105987e-01
2.85791129e-01 6.10392809e-01 5.99582613e-01 -5.81713200e-01
-1.43629932e+00 -5.49980402e-01 3.22516471e-01 -1.05036414e+00
6.94823325e-01 -2.86011994e-01 5.36536239e-02 1.05947685e+00
-1.06691197e-01 8.88486281e-02 7.26325393e-01 2.06215441e-01
1.96266368e-01 -2.27295235e-01 -8.15950513e-01 6.33659363e-01
1.18346322e+00 -1.65722564e-01 -4.89211023e-01 5.92207015e-01
3.63509841e-02 -1.08367825e+00 -9.30603921e-01 7.39124298e-01
8.02451193e-01 -1.06507373e+00 9.15766120e-01 -4.97642666e-01
5.63795507e-01 2.54756004e-01 3.88825029e-01 -1.16811860e+00
9.16241035e-02 -4.04748708e-01 -2.45333880e-01 1.32484660e-01
2.88588047e-01 -4.58584120e-03 1.11341143e+00 2.43921593e-01
-6.64115131e-01 -1.41162813e+00 -1.20374262e+00 -6.62121117e-01
-8.80158246e-02 -3.73208910e-01 -1.76925644e-01 7.14569926e-01
2.77454793e-01 -4.48403656e-01 -1.18759789e-01 -6.44888803e-02
3.10907483e-01 -1.40116061e-03 7.04744041e-01 -1.10252929e+00
-1.27459288e-01 -9.32151914e-01 -8.21124732e-01 -6.21624827e-01
-2.03197390e-01 -7.68961072e-01 1.26140848e-01 -2.03745794e+00
1.12497859e-01 -1.79811195e-01 -3.14204425e-01 5.61274529e-01
4.25007343e-01 1.09543622e-01 3.41538601e-02 3.52968812e-01
-6.97173625e-02 -3.96734700e-02 1.45910180e+00 -6.39550239e-02
-3.56726013e-02 2.33498588e-01 -3.85670543e-01 9.40414846e-01
3.93767506e-01 -5.66244185e-01 -1.22663170e-01 -4.71703619e-01
-1.19431308e-02 4.95093524e-01 3.84172559e-01 -1.12897980e+00
4.31435406e-01 -7.84121156e-02 2.72207677e-01 -5.06925762e-01
5.48872054e-01 -1.18690491e+00 2.18954772e-01 1.02547061e+00
-4.19846654e-01 -3.02884340e-01 4.30946052e-01 3.44816566e-01
-3.23067337e-01 -1.27906457e-01 6.24273956e-01 -4.43410605e-01
-5.75669110e-01 1.25797644e-01 -4.20001417e-01 -5.82638860e-01
1.64950168e+00 -5.35322070e-01 2.07658902e-01 -7.37722814e-02
-1.40565383e+00 -1.56436741e-01 3.27463627e-01 5.81034482e-01
6.51842952e-01 -8.17838967e-01 -4.75609720e-01 4.93285321e-02
3.91460538e-01 -6.11848831e-02 6.73146367e-01 1.58953190e+00
-1.02376592e+00 6.01810753e-01 -3.83664906e-01 -6.04665399e-01
-1.50413632e+00 6.54103994e-01 9.74992454e-01 -6.02001429e-01
-4.94294643e-01 1.16864061e+00 5.81265807e-01 -8.68610665e-02
6.82920814e-01 -7.17016995e-01 -3.19829285e-01 7.90283605e-02
2.64904410e-01 3.22974212e-02 2.91861802e-01 -3.51395100e-01
-6.19992495e-01 7.64971018e-01 -1.20728932e-01 1.85629964e-01
9.97300148e-01 3.89928609e-01 -5.10016382e-02 4.48217958e-01
9.37708974e-01 1.10403292e-01 -8.09084177e-01 1.66117013e-01
6.24982566e-02 -3.34595591e-01 3.97578031e-01 -1.34517002e+00
-1.03784645e+00 9.78713214e-01 6.79998100e-01 -3.53160977e-01
9.74955201e-01 3.37813109e-01 4.40770984e-02 -8.46636593e-02
8.00646067e-01 -6.01852536e-01 1.06857903e-01 7.18392134e-02
1.52415013e+00 -9.36367452e-01 5.38477972e-02 -7.34069228e-01
-5.71136177e-01 1.34158444e+00 7.14233994e-01 1.69991195e-01
6.72998488e-01 7.27613986e-01 2.78449327e-01 -5.10984838e-01
-1.72274828e-01 1.53632462e-01 6.49570525e-01 3.56843531e-01
5.30715823e-01 2.25260317e-01 -4.33900595e-01 4.50461984e-01
-3.30566652e-02 1.10803902e-01 3.11874509e-01 1.23616219e+00
-2.81965104e-03 -7.66887665e-01 -1.42990991e-01 7.12038517e-01
-3.97522897e-01 -3.16510946e-02 -4.18817669e-01 1.20661283e+00
2.12614179e-01 3.04531008e-01 -1.99487582e-01 -2.41588488e-01
6.75739586e-01 -2.46241614e-01 9.09018219e-01 -9.42068994e-01
-9.30367529e-01 5.94974086e-02 1.54669493e-01 -9.51909363e-01
-1.15536943e-01 -5.69626451e-01 -1.19017994e+00 5.05353987e-01
-3.27917755e-01 1.32938355e-01 1.09046161e+00 7.68367589e-01
1.05820790e-01 9.59575713e-01 9.32249352e-02 -1.37314320e+00
-2.35121444e-01 -9.02213514e-01 -4.21673030e-01 -4.71375287e-02
3.39696527e-01 -1.06519961e+00 -3.54478866e-01 -2.33047366e-01]
|
[14.062952995300293, -3.354719400405884]
|
a3eb2492-71f3-4aaf-a9dc-e45732f9c195
|
textless-direct-speech-to-speech-translation
|
2211.00115
| null |
https://arxiv.org/abs/2211.00115v1
|
https://arxiv.org/pdf/2211.00115v1.pdf
|
Textless Direct Speech-to-Speech Translation with Discrete Speech Representation
|
Research on speech-to-speech translation (S2ST) has progressed rapidly in recent years. Many end-to-end systems have been proposed and show advantages over conventional cascade systems, which are often composed of recognition, translation and synthesis sub-systems. However, most of the end-to-end systems still rely on intermediate textual supervision during training, which makes it infeasible to work for languages without written forms. In this work, we propose a novel model, Textless Translatotron, which is based on Translatotron 2, for training an end-to-end direct S2ST model without any textual supervision. Instead of jointly training with an auxiliary task predicting target phonemes as in Translatotron 2, the proposed model uses an auxiliary task predicting discrete speech representations which are obtained from learned or random speech quantizers. When a speech encoder pre-trained with unsupervised speech data is used for both models, the proposed model obtains translation quality nearly on-par with Translatotron 2 on the multilingual CVSS-C corpus as well as the bilingual Fisher Spanish-English corpus. On the latter, it outperforms the prior state-of-the-art textless model by +18.5 BLEU.
|
['Chung-Cheng Chiu', 'Ye Jia', 'Xinjian Li']
|
2022-10-31
| null | null | null | null |
['speech-to-speech-translation']
|
['speech']
|
[ 3.28194618e-01 1.25412136e-01 -3.39099139e-01 -4.58457500e-01
-1.37961483e+00 -3.84572804e-01 7.30401993e-01 -3.81954938e-01
-5.03903925e-01 6.61691606e-01 1.94968686e-01 -7.99966872e-01
8.34040225e-01 -2.24187687e-01 -7.46610701e-01 -4.91589874e-01
7.48076022e-01 7.45906591e-01 4.10417002e-03 -4.73144084e-01
-3.22640121e-01 -1.52468801e-01 -8.34735155e-01 5.10405242e-01
1.14175618e+00 8.50254655e-01 5.84210992e-01 6.45555913e-01
-4.66409177e-02 6.76892400e-01 -4.77474093e-01 -7.71446407e-01
1.17660932e-01 -1.01428998e+00 -4.76278692e-01 -2.22657043e-02
3.41766804e-01 -2.77366102e-01 -5.47188580e-01 1.13003373e+00
7.72595704e-01 -3.50232087e-02 6.61296725e-01 -8.36483538e-01
-9.05243933e-01 9.54454958e-01 -1.67224973e-01 8.63534659e-02
5.40012754e-02 3.01478487e-02 1.05531633e+00 -1.52148557e+00
4.24924672e-01 1.53101671e+00 3.14576805e-01 7.40235627e-01
-1.06634498e+00 -7.33628929e-01 3.71206589e-02 1.13357984e-01
-1.25687611e+00 -1.14037323e+00 5.63689053e-01 -1.35606349e-01
1.34162652e+00 8.29719603e-02 1.58220321e-01 1.37932372e+00
1.29600570e-01 1.18125784e+00 1.02429914e+00 -6.84133232e-01
9.52617377e-02 3.87536824e-01 -4.06414211e-01 6.29066467e-01
-3.58732313e-01 2.88265675e-01 -6.93223357e-01 2.81474143e-01
4.13455427e-01 -2.13167757e-01 -1.85248569e-01 2.32861742e-01
-1.37063289e+00 8.06257784e-01 1.19313180e-01 2.74493992e-01
-1.50736526e-01 -8.11191574e-02 5.80023110e-01 7.38314867e-01
8.72210979e-01 -1.09915324e-01 -5.37819624e-01 -1.85200199e-01
-1.26827490e+00 -2.46867537e-01 6.86814845e-01 1.31365085e+00
4.42989349e-01 4.89204586e-01 -2.83906430e-01 1.05377960e+00
4.84275877e-01 1.16778612e+00 1.03168380e+00 -3.42528492e-01
1.17729282e+00 1.97914302e-01 -1.51520863e-01 -1.56130418e-01
1.42737970e-01 -6.93901658e-01 -9.14012849e-01 -3.00687134e-01
-2.37584542e-02 -4.32460457e-01 -1.09452200e+00 1.57691073e+00
5.05679883e-02 -3.85194868e-02 5.73102117e-01 8.58283639e-01
7.74466991e-01 1.24514937e+00 -1.89326212e-01 -2.80535072e-01
1.14711416e+00 -1.69637990e+00 -1.01047504e+00 -4.79548812e-01
8.31557572e-01 -1.24005055e+00 1.32483745e+00 2.64632463e-01
-1.30330753e+00 -7.60250568e-01 -1.10346222e+00 -2.99285084e-01
-1.12349883e-01 7.65603602e-01 -1.47179469e-01 5.21346569e-01
-1.18057394e+00 3.14912438e-01 -1.18940294e+00 -2.95915544e-01
-1.47307053e-01 2.26305827e-01 -1.79531440e-01 2.41977852e-02
-1.36563826e+00 1.16747034e+00 1.37156621e-01 7.78296292e-02
-1.10168183e+00 -9.68347043e-02 -9.23963904e-01 1.72974959e-01
2.49679565e-01 -6.41228795e-01 1.82442307e+00 -1.25981188e+00
-2.37110996e+00 4.97569591e-01 -5.96706152e-01 -4.75102752e-01
5.39759159e-01 -3.59087765e-01 -6.15661740e-01 4.78022994e-04
1.23522006e-01 4.43349540e-01 9.35750663e-01 -7.38209367e-01
-6.29613221e-01 -1.92037776e-01 -4.78652686e-01 5.84404230e-01
-3.38742703e-01 4.77342188e-01 -5.04750311e-01 -9.39569056e-01
-1.64972886e-01 -1.03187346e+00 -1.17850989e-01 -3.01709145e-01
-5.58033347e-01 -3.06365222e-01 8.26909721e-01 -9.79075372e-01
1.19112933e+00 -2.11020684e+00 3.96572620e-01 -3.47580999e-01
-4.98933613e-01 6.21891737e-01 -3.10931891e-01 6.79773033e-01
1.10117644e-01 -1.03361115e-01 -2.88446844e-01 -1.01993930e+00
4.88531739e-02 1.14030518e-01 -4.57553327e-01 3.26145470e-01
4.57468748e-01 8.99125159e-01 -8.47595811e-01 -3.77255738e-01
2.18507409e-01 5.15176654e-01 -3.40552598e-01 4.04740185e-01
-2.55720496e-01 4.63749826e-01 -3.19913447e-01 5.57746589e-01
2.65618384e-01 -8.90977159e-02 1.88310996e-01 4.07462418e-01
-1.52033225e-01 1.05774820e+00 -4.61991370e-01 1.88629436e+00
-9.02013004e-01 5.37303269e-01 -1.73836891e-02 -9.86640394e-01
1.04913306e+00 9.71255660e-01 -1.39032543e-01 -7.76884735e-01
2.36938998e-01 8.02077591e-01 -6.26011193e-02 -2.41709217e-01
3.29589158e-01 -4.02878106e-01 -8.08254927e-02 3.33805263e-01
4.52034742e-01 -3.55783790e-01 -4.89940904e-02 -1.29011488e-02
7.04470098e-01 2.57396370e-01 1.31631434e-01 9.63420719e-02
6.76192403e-01 -3.32702929e-03 5.05356967e-01 2.78957278e-01
-2.72362158e-02 7.33035982e-01 -4.44769636e-02 1.08518206e-01
-1.19064844e+00 -1.00509775e+00 2.25359634e-01 1.15358710e+00
-2.35890727e-02 -4.54046458e-01 -9.80167687e-01 -8.25973451e-01
-4.54765677e-01 8.55472744e-01 5.53473197e-02 -1.15469120e-01
-7.64223278e-01 -3.96742493e-01 8.24269354e-01 4.03433055e-01
5.48841715e-01 -8.60065103e-01 2.63162374e-01 5.68028092e-01
-7.04003572e-01 -1.43954098e+00 -1.02880883e+00 2.94241935e-01
-9.24805701e-01 -2.15782493e-01 -1.08300078e+00 -1.19752657e+00
3.88739616e-01 2.68791229e-01 9.00461674e-01 -3.76819372e-01
6.45447791e-01 -5.59352279e-01 -5.63221097e-01 -2.23343760e-01
-9.72884953e-01 5.59634447e-01 1.76869035e-01 6.43394291e-02
3.40326935e-01 -2.99379975e-01 -2.56940275e-01 4.39602256e-01
-5.46181083e-01 2.74808466e-01 9.38745797e-01 1.23269808e+00
5.93029737e-01 -5.35389185e-01 7.13933170e-01 -6.34179950e-01
4.17319536e-01 -3.71424228e-01 -5.14268637e-01 4.26310331e-01
-6.47000909e-01 2.56964236e-01 1.11860204e+00 -4.76634771e-01
-1.09451413e+00 1.80104777e-01 -5.49052298e-01 -5.81401408e-01
1.40144646e-01 5.30461192e-01 -3.76676559e-01 3.75572622e-01
5.62777698e-01 5.77921331e-01 -8.48368779e-02 -7.01071084e-01
4.50622320e-01 1.48034680e+00 5.37070751e-01 -1.78544596e-01
7.46465087e-01 -1.60653368e-01 -6.26028478e-01 -7.56574929e-01
-7.24849761e-01 -3.30111444e-01 -5.54874837e-01 2.80589372e-01
8.01308811e-01 -1.39754438e+00 -1.06531076e-01 4.67971444e-01
-1.44519925e+00 -4.65104550e-01 8.31373781e-02 8.92700076e-01
-6.52996540e-01 2.06080467e-01 -8.96810234e-01 -6.46105707e-01
-6.53761804e-01 -1.54110694e+00 1.38930488e+00 -2.35042259e-01
6.75013959e-02 -9.08926547e-01 -3.56559688e-03 5.17531455e-01
6.22267842e-01 -4.93925601e-01 5.45295417e-01 -6.96903825e-01
-3.92650217e-01 -7.76041299e-02 1.23152360e-01 8.66094947e-01
2.02997997e-01 -2.76811093e-01 -9.14408505e-01 -5.31445801e-01
5.04047647e-02 -4.92644519e-01 7.97362447e-01 1.47896828e-02
4.47049230e-01 -5.19696653e-01 -4.98228930e-02 6.09680772e-01
1.07904792e+00 3.41734916e-01 2.95468628e-01 -9.99681577e-02
4.95793700e-01 3.57206345e-01 6.01338565e-01 -1.72873158e-02
5.77883124e-01 8.91508996e-01 -3.97415226e-03 -3.53611916e-01
-4.50111985e-01 -6.75312579e-01 1.25189626e+00 1.90002310e+00
3.92584771e-01 -6.27116442e-01 -7.14529216e-01 4.71315205e-01
-1.75278246e+00 -6.06397152e-01 8.95174667e-02 1.96798432e+00
1.13246930e+00 1.00745983e-01 -7.68966526e-02 1.93145289e-03
8.27557802e-01 1.21978112e-01 -5.50266325e-01 -5.34395635e-01
-9.87473428e-02 2.86872745e-01 4.15094823e-01 7.85798967e-01
-8.73308599e-01 1.58220232e+00 5.54083681e+00 1.08764303e+00
-1.52828717e+00 6.01433933e-01 6.18111134e-01 9.54246968e-02
-1.94071248e-01 2.01504529e-01 -1.01956415e+00 4.83623356e-01
1.49067962e+00 -5.67755327e-02 5.61299205e-01 7.65354872e-01
5.03495693e-01 4.80546623e-01 -1.14009142e+00 8.78422379e-01
2.01540485e-01 -8.82368147e-01 1.55762851e-01 -3.00830275e-01
7.46923864e-01 4.40718383e-01 2.12326214e-01 5.23781240e-01
4.46206212e-01 -8.78035486e-01 1.10001969e+00 -3.32045220e-02
1.39602649e+00 -6.36597335e-01 7.65360057e-01 6.42732680e-01
-1.00356090e+00 2.80342609e-01 -3.06043386e-01 6.35046959e-02
3.96281630e-01 3.52282614e-01 -1.13950872e+00 7.15857565e-01
1.59903184e-01 7.16701865e-01 -8.00243020e-02 4.92212862e-01
-6.86419249e-01 1.24578440e+00 -2.39669427e-01 -1.53260559e-01
5.30570507e-01 -1.36113256e-01 3.59651506e-01 1.45672238e+00
6.41705275e-01 -3.10132742e-01 2.61266142e-01 4.02804345e-01
-2.81435132e-01 4.08438832e-01 -3.85741293e-01 -3.30652267e-01
5.13152480e-01 7.83402085e-01 -3.36286128e-01 -7.71035850e-01
-6.86166465e-01 1.45700955e+00 2.40271628e-01 4.85838354e-01
-5.99940181e-01 -5.68356574e-01 3.99169415e-01 -1.19015373e-01
3.48599434e-01 -3.90948504e-01 -1.29399329e-01 -1.56686199e+00
1.51973262e-01 -1.29261410e+00 -1.40531853e-01 -6.47693396e-01
-1.10194778e+00 1.18936110e+00 -5.40800154e-01 -1.42878616e+00
-6.81206465e-01 -3.26758057e-01 -3.44489813e-01 1.27014899e+00
-1.70214260e+00 -1.42197776e+00 3.55846465e-01 6.28403306e-01
1.18925488e+00 -4.71959919e-01 7.72920787e-01 4.51514006e-01
-6.55624747e-01 1.00502348e+00 5.50596893e-01 2.54030555e-01
1.06171000e+00 -9.62955713e-01 9.92477775e-01 1.10444355e+00
3.44151944e-01 3.95101666e-01 5.15825272e-01 -5.79007030e-01
-1.23203528e+00 -1.34299922e+00 1.61632752e+00 -1.82679817e-01
6.08570576e-01 -7.75248766e-01 -5.38092256e-01 7.12645352e-01
6.28113031e-01 1.89823247e-02 3.36287886e-01 -2.76563138e-01
-1.68114290e-01 -1.56315431e-01 -6.91107154e-01 6.24333084e-01
1.06787133e+00 -8.97467971e-01 -6.14380717e-01 3.93566430e-01
1.15945709e+00 -5.59331596e-01 -5.01866579e-01 2.06368953e-01
2.70399511e-01 -3.29088330e-01 4.82774228e-01 -4.59864944e-01
3.59274477e-01 -2.16527879e-01 -3.64432752e-01 -1.81739378e+00
3.08007970e-02 -1.03250194e+00 1.06441811e-01 1.09261549e+00
8.56522202e-01 -6.19179070e-01 3.96193355e-01 -2.83645689e-01
-7.92301357e-01 -5.55614054e-01 -1.18494248e+00 -1.10184598e+00
2.90471166e-01 -1.42990053e-01 4.82711673e-01 7.86166131e-01
1.41738445e-01 1.07607543e+00 -6.17414296e-01 8.61814842e-02
1.96301386e-01 -6.64224103e-02 6.77181661e-01 -6.28302038e-01
-5.42998195e-01 -2.81798184e-01 -3.14912423e-02 -1.86167848e+00
2.40899652e-01 -1.26058316e+00 4.00994062e-01 -1.37902057e+00
-1.36846229e-01 -2.65584767e-01 -7.29948208e-02 6.09210312e-01
-2.67187119e-01 2.09188119e-01 1.77543357e-01 3.03160071e-01
-2.45921716e-01 1.18492854e+00 1.40124869e+00 -2.30992183e-01
-1.59047216e-01 1.30540431e-01 -4.50929224e-01 3.24267566e-01
7.35950947e-01 -5.91788650e-01 -4.74092066e-01 -8.66405666e-01
-2.65574247e-01 6.04142487e-01 -2.77179480e-01 -8.05276096e-01
1.86894387e-01 3.71184722e-02 -6.46743849e-02 -7.19227195e-01
5.03829002e-01 -5.19905925e-01 -1.85841009e-01 3.77433985e-01
-4.67383653e-01 3.65994483e-01 -1.71469569e-01 2.32639030e-01
-7.31415570e-01 -2.33140215e-02 7.90517926e-01 -8.25450476e-03
-5.97189851e-02 2.62998343e-01 -5.70759177e-01 4.31304686e-02
5.14230430e-01 3.03041875e-01 -2.48361245e-01 -5.30640364e-01
-6.69305384e-01 5.55755123e-02 2.33624816e-01 6.93573654e-01
5.48191011e-01 -1.43003976e+00 -1.16470385e+00 3.58498991e-01
2.99999937e-02 -1.22603446e-01 -2.29228228e-01 7.17901468e-01
-2.60047346e-01 7.30894506e-01 2.92324722e-01 -5.92844844e-01
-1.00259006e+00 4.16220874e-01 2.29951546e-01 -2.74974734e-01
-3.42927814e-01 8.42685580e-01 1.70743525e-01 -6.40927255e-01
1.78522259e-01 -5.72013855e-01 2.82120168e-01 -3.26606423e-01
2.93872178e-01 8.26078467e-03 4.65832859e-01 -9.42679524e-01
-2.39734828e-01 2.51089692e-01 -2.27940306e-01 -7.69083023e-01
1.12959063e+00 -4.05265689e-01 2.88972318e-01 5.34325480e-01
1.21509850e+00 3.20624523e-02 -1.11052680e+00 -6.76466882e-01
2.55712811e-02 -9.71481204e-02 9.73391831e-02 -9.32925165e-01
-9.73274231e-01 1.47812510e+00 3.17473978e-01 -3.35570484e-01
9.74610507e-01 -1.64066985e-01 1.38257253e+00 4.75112587e-01
3.27139705e-01 -1.12675238e+00 4.80600186e-02 9.99425292e-01
8.90679121e-01 -1.36844575e+00 -6.76043332e-01 -2.98151940e-01
-8.28932464e-01 9.89206910e-01 2.87384242e-01 5.98926768e-02
4.23996091e-01 3.08380067e-01 4.84414697e-01 5.32277644e-01
-1.16687751e+00 -1.61858857e-01 2.54935861e-01 2.86370307e-01
7.29551017e-01 2.53739089e-01 -2.95848697e-01 5.21305978e-01
-5.28112948e-01 -7.74988309e-02 2.12674394e-01 5.69254756e-01
-4.41669226e-01 -1.44741404e+00 -1.30122647e-01 -1.84676982e-02
-5.42406261e-01 -6.81268334e-01 -4.28356677e-01 3.31883758e-01
-1.68668404e-01 1.40362215e+00 -2.02627316e-01 -5.55041671e-01
3.03175211e-01 2.31357694e-01 1.84992343e-01 -8.62281144e-01
-6.80155635e-01 5.37698567e-01 3.79790097e-01 -3.54067951e-01
-5.53397723e-02 -5.81495047e-01 -1.04452777e+00 -9.71042588e-02
-7.09754705e-01 3.10376704e-01 1.01666057e+00 1.00667357e+00
2.88761020e-01 3.38033050e-01 9.78175879e-01 -6.42075002e-01
-1.05351186e+00 -1.44392872e+00 -1.67542458e-01 -1.32272080e-01
6.25611961e-01 -3.11391115e-01 -2.55726904e-01 2.60806888e-01]
|
[14.517621994018555, 7.15815544128418]
|
f1a48bd4-66f5-4647-b33c-1f823783192b
|
measuring-and-modeling-the-motor-system-with
|
2103.11775
| null |
https://arxiv.org/abs/2103.11775v1
|
https://arxiv.org/pdf/2103.11775v1.pdf
|
Measuring and modeling the motor system with machine learning
|
The utility of machine learning in understanding the motor system is promising a revolution in how to collect, measure, and analyze data. The field of movement science already elegantly incorporates theory and engineering principles to guide experimental work, and in this review we discuss the growing use of machine learning: from pose estimation, kinematic analyses, dimensionality reduction, and closed-loop feedback, to its use in understanding neural correlates and untangling sensorimotor systems. We also give our perspective on new avenues where markerless motion capture combined with biomechanical modeling and neural networks could be a new platform for hypothesis-driven research.
|
['Mackenzie W. Mathis', 'Alexander Mathis', 'Alessandro Marin Vargas', 'Sébastien B. Hausmann']
|
2021-03-22
| null | null | null | null |
['markerless-motion-capture']
|
['computer-vision']
|
[ 9.01549682e-02 -1.62857711e-01 -9.23147440e-01 1.67324111e-01
-3.47126514e-01 -4.38678116e-01 3.07677805e-01 -2.44555265e-01
-9.94638145e-01 7.89014399e-01 4.40386027e-01 -3.11647832e-01
-3.50977719e-01 -2.34890372e-01 -6.35638177e-01 -3.37239057e-01
-4.35844541e-01 9.62949917e-02 1.61320284e-01 -5.13195336e-01
4.36919093e-01 6.42727554e-01 -1.26911128e+00 -1.06359124e-01
4.30054396e-01 2.95150667e-01 4.95415390e-01 6.45535588e-01
6.17297351e-01 4.47490007e-01 -9.85142887e-02 1.54377997e-01
1.05382174e-01 -4.24775869e-01 -5.28375626e-01 -2.63521135e-01
3.28186303e-01 -3.89280498e-01 -5.36326110e-01 5.05362511e-01
8.23955297e-01 4.72203463e-01 5.32909453e-01 -9.81977344e-01
-4.06737775e-01 2.80155480e-01 -2.65028208e-01 5.55828989e-01
4.18060839e-01 5.51943898e-01 5.23103178e-01 -4.27181840e-01
7.97542334e-01 1.02054667e+00 6.68066561e-01 7.39482880e-01
-1.17448080e+00 -3.20813388e-01 -1.22087151e-01 6.14609420e-01
-7.48738170e-01 -5.77148736e-01 7.80206561e-01 -8.52633536e-01
9.81935084e-01 1.54399559e-01 1.29463267e+00 1.20012522e+00
8.16644371e-01 9.33481872e-01 8.60882699e-01 -3.95976871e-01
4.12859768e-02 -6.22013032e-01 3.63320895e-02 4.84551221e-01
4.46870387e-01 7.26446331e-01 -7.42783606e-01 1.59253657e-01
1.17992604e+00 -6.22827634e-02 -1.81568325e-01 -6.26571774e-01
-1.36345816e+00 5.62114954e-01 3.94814432e-01 2.92264938e-01
-5.33796966e-01 6.10205889e-01 5.76124251e-01 1.06721684e-01
-2.54500717e-01 1.00843787e+00 -6.80729568e-01 -7.84637868e-01
-6.18165195e-01 6.64196908e-01 1.59431398e-01 3.96002144e-01
-6.63085803e-02 3.12628210e-01 3.98999721e-01 7.03235567e-01
1.72702044e-01 3.70184720e-01 6.77492201e-01 -1.50961375e+00
3.62135112e-01 5.29951870e-01 -8.55064765e-02 -7.77880728e-01
-1.13518381e+00 1.25127332e-03 -9.61818248e-02 8.49061906e-01
5.21951556e-01 -4.14765030e-01 -5.26442468e-01 1.46590805e+00
1.33428797e-01 -3.74228776e-01 -5.58549702e-01 1.11825216e+00
6.70524761e-02 -2.84118265e-01 2.46062323e-01 4.62256186e-02
8.47628772e-01 -4.72675711e-01 -4.82802063e-01 -4.66408849e-01
8.40065241e-01 -3.25248599e-01 8.89665365e-01 5.30770659e-01
-1.18053198e+00 -4.01553243e-01 -1.00776207e+00 -2.22035378e-01
-3.02037388e-01 3.13008308e-01 8.60133469e-01 3.12401921e-01
-3.99126112e-01 1.05111933e+00 -1.80982590e+00 -6.04141772e-01
2.14037910e-01 6.59271240e-01 -7.45720327e-01 6.44744039e-01
-9.69506085e-01 1.77972746e+00 2.40088597e-01 3.22728157e-01
-3.14429432e-01 -5.53367913e-01 -9.05186355e-01 -7.21949756e-01
1.07420765e-01 -1.09993565e+00 9.09665823e-01 5.32063730e-02
-1.62887836e+00 6.97818458e-01 1.09711073e-01 -3.60722065e-01
2.89109975e-01 -7.72902548e-01 -7.58985728e-02 1.87442586e-01
-1.61926135e-01 5.54028332e-01 4.20640767e-01 -4.62616235e-01
-2.89056599e-01 -7.18676329e-01 -2.98163712e-01 1.81224763e-01
1.52342126e-01 -1.08606525e-01 3.01175177e-01 -5.44077933e-01
2.28089735e-01 -1.15474308e+00 -3.03378612e-01 3.86173189e-01
-5.09933122e-02 1.07621893e-01 3.46630037e-01 -5.52757204e-01
8.95420671e-01 -1.53014350e+00 7.27120459e-01 4.31706710e-03
1.95165589e-01 3.97481531e-01 2.39428014e-01 6.29316568e-01
-3.44448723e-02 -2.19315529e-01 1.43416017e-01 5.82347989e-01
-3.61537814e-01 8.42135325e-02 1.61407769e-01 6.73729897e-01
-4.99779508e-02 1.23507762e+00 -1.06050575e+00 -6.37414902e-02
1.10419798e+00 1.75972328e-01 -4.31003153e-01 -1.40904203e-01
8.73792171e-02 8.37001026e-01 -3.73684049e-01 6.88485920e-01
-2.74899542e-01 2.30334848e-01 3.32149833e-01 -3.31008732e-01
-3.65346760e-01 1.49426520e-01 -8.59073818e-01 1.84537280e+00
-2.06315488e-01 1.04727626e+00 1.87170040e-02 -1.08718050e+00
4.61582184e-01 1.35974884e-01 7.21198499e-01 -6.31635725e-01
6.09535575e-01 3.16356689e-01 5.30410051e-01 -9.78226900e-01
1.60005003e-01 -1.47023737e-01 7.17382208e-02 2.06551492e-01
1.64960012e-01 5.81982471e-02 1.08732782e-01 -5.98087251e-01
1.06255472e+00 1.00734973e+00 4.83278692e-01 -2.11324599e-02
1.66925251e-01 4.28126007e-01 7.38962665e-02 2.43164495e-01
-5.96296966e-01 9.46407467e-02 -2.67503738e-01 -2.61844158e-01
-1.09014952e+00 -1.32000625e+00 9.36957225e-02 1.03434682e+00
-9.55877453e-02 -5.54119013e-02 -5.96675217e-01 3.94740701e-01
5.02561331e-01 1.90346256e-01 -5.10864377e-01 -7.12527454e-01
-1.04588139e+00 -3.40095460e-01 3.97401869e-01 9.97654080e-01
-1.26472428e-01 -1.04834557e+00 -1.11131442e+00 3.28876317e-01
4.54962887e-02 -7.81965435e-01 1.48567542e-01 8.91313180e-02
-1.20440280e+00 -1.60369575e+00 -6.02286577e-01 -8.44552577e-01
1.01852149e-01 2.68024534e-01 1.72035128e-01 -1.70823887e-01
-5.28918207e-01 4.03751045e-01 -2.01380566e-01 -3.35419595e-01
-1.31613985e-01 1.11209199e-01 6.09493494e-01 -1.17305434e+00
3.08852494e-01 -9.32050586e-01 -6.62170410e-01 2.59131283e-01
-3.93560618e-01 7.55496509e-03 8.59186947e-01 6.37047827e-01
4.76041973e-01 -6.12593949e-01 4.85663354e-01 -1.38427000e-02
8.89871001e-01 -2.94491440e-01 -1.32565573e-01 -9.20134261e-02
-4.27073866e-01 -1.59465730e-01 3.04163545e-01 -4.29328531e-01
-7.54924834e-01 1.83943495e-01 -4.16035712e-01 5.73323183e-02
-2.20370620e-01 4.51049328e-01 2.51719773e-01 -4.41799849e-01
9.81627882e-01 1.17234573e-01 6.46578491e-01 -5.24679482e-01
7.91838288e-01 3.61878723e-01 9.61460114e-01 -5.33895075e-01
3.90116572e-01 6.66949451e-01 3.83932382e-01 -9.87065613e-01
-8.17200020e-02 -4.91848886e-01 -1.12722135e+00 -5.57385266e-01
6.46917105e-01 -4.49583113e-01 -1.11486244e+00 2.90223211e-01
-7.20377147e-01 -7.21753240e-01 -7.72156566e-02 1.56366956e+00
-1.52618444e+00 2.06730306e-01 -6.64968073e-01 -7.81964898e-01
-9.62407812e-02 -1.05351830e+00 1.00775766e+00 -2.02891440e-03
-1.05128884e+00 -8.01133931e-01 6.33382022e-01 3.57834756e-01
1.03477150e-01 5.76567590e-01 7.35923350e-01 -1.16162017e-01
-1.05533414e-01 -5.58045805e-01 5.81889749e-01 1.35049418e-01
2.41476119e-01 -8.95321816e-02 -3.03202718e-01 -1.22735776e-01
-2.36966103e-01 -4.05141056e-01 4.50773686e-01 8.33849967e-01
7.02712476e-01 2.72733957e-01 -5.47700524e-01 2.71138459e-01
1.05809724e+00 1.44794360e-01 4.57395464e-01 8.10553849e-01
6.33506119e-01 8.42015326e-01 4.98719633e-01 -8.06370601e-02
1.67040601e-01 8.82760465e-01 4.84527424e-02 2.55065650e-01
-3.31631839e-01 -3.41064334e-01 1.67991132e-01 8.37731421e-01
-6.40620053e-01 5.95571876e-01 -7.08211660e-01 3.37560922e-01
-1.81006932e+00 -1.15963781e+00 -2.22470418e-01 1.96790779e+00
4.84654009e-01 1.91392407e-01 6.20882869e-01 2.86673993e-01
4.92368162e-01 -3.31761688e-01 -8.07341158e-01 -1.75624773e-01
2.89419651e-01 1.74375623e-01 6.12949371e-01 4.03150290e-01
-6.22651696e-01 7.39969194e-01 8.45245171e+00 3.59358102e-01
-1.14073491e+00 -2.79510826e-01 -5.86592317e-01 -4.42170471e-01
2.05415249e-01 -2.30669051e-01 -4.49631631e-01 4.83654380e-01
9.22401607e-01 -2.36132324e-01 3.34549725e-01 7.46909320e-01
9.14065182e-01 -4.09084439e-01 -1.27752149e+00 4.63055164e-01
-2.82634348e-01 -1.50041521e+00 -4.84744340e-01 1.53459609e-01
3.38301182e-01 5.06091833e-01 -7.29497373e-02 -1.86303928e-02
-2.36071214e-01 -6.06837869e-01 6.02384329e-01 8.04312289e-01
3.71571809e-01 -1.21125892e-01 2.32375428e-01 5.70507407e-01
-1.08232808e+00 -2.69233137e-01 -1.46926403e-01 -7.48333871e-01
4.10510421e-01 -5.02781235e-02 -2.86805987e-01 5.92649691e-02
2.02698767e-01 7.00044692e-01 -1.24762774e-01 1.32395995e+00
-3.11364114e-01 2.59035558e-01 -3.47392261e-01 -3.97268564e-01
-1.41060010e-01 -3.49972048e-03 9.63729203e-01 7.56654620e-01
-2.89414346e-01 -1.80013373e-01 -1.12368107e-01 7.01986611e-01
7.43744910e-01 -9.54667404e-02 -7.88459420e-01 -1.54308662e-01
2.04246104e-01 8.64165902e-01 -5.43265224e-01 2.53849119e-01
-1.74990401e-01 7.11298585e-01 3.76739949e-01 2.26475447e-01
-4.34694171e-01 -4.82410073e-01 9.08645391e-01 7.56377876e-02
-2.36381471e-01 -1.11514628e+00 -4.69133765e-01 -9.41597342e-01
2.76877671e-01 -4.91522431e-01 1.21824779e-02 -7.48437524e-01
-8.14723432e-01 -4.98171657e-01 4.44568247e-01 -1.35281861e+00
-9.08420801e-01 -1.06557310e+00 -4.43162918e-01 5.48353374e-01
-9.74499881e-01 -5.60633063e-01 2.93166608e-01 1.02962449e-01
4.51336861e-01 1.77256599e-01 8.58903050e-01 1.63599148e-01
-4.57193583e-01 1.10999040e-01 3.75364631e-01 9.09563452e-02
4.63786304e-01 -9.64903116e-01 4.24574524e-01 2.86223471e-01
2.56193951e-02 1.08327842e+00 8.66158187e-01 -6.65315986e-01
-1.78680551e+00 -3.63417178e-01 2.56173134e-01 -8.25716138e-01
9.64099944e-01 1.00332461e-02 -3.66739720e-01 7.70601392e-01
-4.60035503e-01 -4.30937827e-01 8.80533576e-01 2.68285759e-02
3.17111462e-01 1.79769903e-01 -8.07130158e-01 1.10529709e+00
1.02016509e+00 -3.99490982e-01 -1.29342782e+00 2.68031061e-01
1.58461630e-01 -5.49693286e-01 -9.98444796e-01 2.85530865e-01
1.72962928e+00 -3.38446319e-01 1.01801181e+00 -1.20630443e+00
3.66239429e-01 -1.20530866e-01 2.99614698e-01 -1.47196186e+00
-4.83230591e-01 -4.92035180e-01 -2.86977381e-01 1.35919109e-01
1.57107532e-01 -3.37916553e-01 1.17352307e+00 6.02458060e-01
-2.86877751e-01 -9.64086592e-01 -1.09092820e+00 -1.10078681e+00
4.18452233e-01 -7.96907246e-01 -9.85305160e-02 3.30056071e-01
1.13196933e+00 -8.28882605e-02 -4.09421861e-01 -5.20439029e-01
4.95455474e-01 -1.31166533e-01 8.84843171e-01 -9.40373480e-01
-2.12496042e-01 -7.27083564e-01 -1.08934653e+00 -8.70997190e-01
-6.23096153e-02 -7.03774691e-01 5.16731665e-02 -1.76693726e+00
-3.29992026e-01 3.66085857e-01 3.34469751e-02 8.04641917e-02
8.76119956e-02 1.46735191e-01 1.25360563e-01 1.97345942e-01
6.44281283e-02 2.73346275e-01 1.54308629e+00 3.67803842e-01
-4.09537494e-01 9.03920978e-02 -4.95718569e-01 9.99300539e-01
1.12914968e+00 -3.39236468e-01 -3.10355783e-01 -3.27104837e-01
6.47910759e-02 -9.35206115e-02 4.93156582e-01 -1.14733279e+00
1.92838222e-01 -3.82751107e-01 5.99574625e-01 -3.21403593e-01
2.63094932e-01 -6.74913585e-01 1.07204489e-01 8.89606833e-01
-5.21438062e-01 -9.81523693e-02 2.15349957e-01 4.57493246e-01
3.06667507e-01 1.93939477e-01 4.49268788e-01 -2.25935876e-01
-1.21154428e+00 -8.18706229e-02 -9.01801288e-01 -2.50414610e-02
1.11778283e+00 -8.54639590e-01 -2.95786858e-01 7.72826448e-02
-1.30084240e+00 3.67398947e-01 3.51591736e-01 6.82649672e-01
5.85810065e-01 -1.49202037e+00 -1.26971737e-01 1.19449511e-01
1.13666453e-03 -8.91371429e-01 4.04624313e-01 1.16709924e+00
-4.15879667e-01 8.49449396e-01 -1.00979030e+00 -3.32510680e-01
-9.46725607e-01 2.01806948e-01 2.83050358e-01 3.77070874e-01
-7.99743772e-01 3.31306815e-01 -4.63155538e-01 -3.54468614e-01
1.10586267e-02 -2.23656341e-01 -3.31891596e-01 -5.75207472e-01
2.05387861e-01 1.00010121e+00 -4.93885763e-02 -5.37569702e-01
-3.75063539e-01 7.07606971e-01 4.43515986e-01 -2.82874674e-01
1.26549590e+00 -1.76092550e-01 1.03198968e-01 9.30256903e-01
9.90074515e-01 -3.48343879e-01 -1.16728437e+00 3.05125386e-01
8.31296742e-02 -3.04311484e-01 -1.10732123e-01 -7.94212580e-01
-5.38546383e-01 9.42544699e-01 7.87141681e-01 -3.70084882e-01
6.68475211e-01 -5.13094254e-02 9.19205844e-01 5.03120840e-01
5.86658478e-01 -1.66513836e+00 -1.55151531e-01 9.22701657e-02
1.02143502e+00 -1.06553459e+00 3.05026114e-01 -1.22677170e-01
-1.85507596e-01 1.16932094e+00 6.13699615e-01 -7.77462423e-01
9.53301370e-01 2.51409322e-01 -1.32622480e-01 -2.35830069e-01
-3.55614930e-01 -4.22196716e-01 6.26593888e-01 1.11206615e+00
6.48375154e-01 3.11182559e-01 -9.23656881e-01 4.76186633e-01
-4.71857339e-01 7.53524423e-01 2.38432497e-01 1.43653059e+00
-7.64636219e-01 -1.22748673e+00 -2.47166112e-01 7.14524448e-01
-2.48684093e-01 4.00548428e-01 -4.46350038e-01 1.30269241e+00
1.07224002e-01 6.94119036e-01 -2.57126749e-01 -7.81872571e-01
8.29535782e-01 2.47882828e-02 1.31577122e+00 -7.40556717e-01
-2.76190132e-01 1.02805495e-01 1.96475685e-01 -1.01328707e+00
-4.82259661e-01 -9.59088147e-01 -1.44337380e+00 -2.06568763e-01
-3.43870223e-01 -4.10779953e-01 9.05254364e-01 1.12696099e+00
1.00836851e-01 4.53059703e-01 -1.59643561e-01 -1.17621577e+00
-4.73395973e-01 -9.46868002e-01 -6.06331646e-01 -2.01648042e-01
3.36024016e-01 -1.32692206e+00 -3.66557128e-04 -1.37195745e-02]
|
[6.949415683746338, 0.06248697638511658]
|
c2735268-09ac-4a32-aee2-db767bbf9d42
|
controllable-continuous-gaze-redirection
|
2010.04513
| null |
https://arxiv.org/abs/2010.04513v1
|
https://arxiv.org/pdf/2010.04513v1.pdf
|
Controllable Continuous Gaze Redirection
|
In this work, we present interpGaze, a novel framework for controllable gaze redirection that achieves both precise redirection and continuous interpolation. Given two gaze images with different attributes, our goal is to redirect the eye gaze of one person into any gaze direction depicted in the reference image or to generate continuous intermediate results. To accomplish this, we design a model including three cooperative components: an encoder, a controller and a decoder. The encoder maps images into a well-disentangled and hierarchically-organized latent space. The controller adjusts the magnitudes of latent vectors to the desired strength of corresponding attributes by altering a control vector. The decoder converts the desired representations from the attribute space to the image space. To facilitate covering the full space of gaze directions, we introduce a high-quality gaze image dataset with a large range of directions, which also benefits researchers in related areas. Extensive experimental validation and comparisons to several baseline methods show that the proposed interpGaze outperforms state-of-the-art methods in terms of image quality and redirection precision.
|
['Wensen Feng', 'Jing-Hao Xue', 'Yujiu Yang', 'Weihao Xia']
|
2020-10-09
| null | null | null | null |
['gaze-redirection']
|
['computer-vision']
|
[ 3.85604143e-01 8.96709040e-02 -3.01927447e-01 -6.72976017e-01
-2.76846915e-01 -3.23305458e-01 4.08053517e-01 -7.73581505e-01
2.38583405e-02 5.72218299e-01 3.41267318e-01 -1.18908323e-02
-4.19294052e-02 -3.81823689e-01 -5.80972254e-01 -8.62650990e-01
2.72877663e-01 -6.97880751e-03 -6.40305653e-02 -4.99324948e-02
5.66263378e-01 4.24102359e-02 -2.07858253e+00 3.54242362e-02
1.00485647e+00 9.89076436e-01 2.08245233e-01 5.37393928e-01
3.07793409e-01 6.77906752e-01 -2.98008174e-01 -2.62723923e-01
1.50139838e-01 -5.39511621e-01 -5.86338580e-01 1.87166601e-01
7.28825092e-01 -3.27126086e-01 -3.67773287e-02 1.11920905e+00
4.83251184e-01 -1.45830020e-01 6.98779166e-01 -1.63071239e+00
-1.40159941e+00 1.22183859e-01 -9.06463504e-01 -3.69643569e-02
6.92187786e-01 4.30371106e-01 8.77590358e-01 -7.56114662e-01
4.95505691e-01 1.35784709e+00 5.55375069e-02 8.45451415e-01
-1.53095448e+00 -1.17877102e+00 2.94202149e-01 1.82006299e-01
-1.30691147e+00 -7.87862420e-01 7.17097580e-01 -6.72678769e-01
4.23047811e-01 3.93026859e-01 4.64596391e-01 1.17116809e+00
9.96377468e-02 5.65075636e-01 1.35622382e+00 -4.41393703e-01
-1.31987661e-01 3.37381572e-01 -2.69180331e-02 6.53074145e-01
8.80517736e-02 1.74957097e-01 -9.51369762e-01 2.33962044e-01
8.74597907e-01 7.36665651e-02 -7.75158048e-01 -7.56587565e-01
-1.34734607e+00 4.85434026e-01 8.17090094e-01 -2.77989209e-01
-3.80570352e-01 7.95702413e-02 -3.71024907e-01 2.96801209e-01
3.60508800e-01 5.46879888e-01 1.33603632e-01 -7.17453733e-02
-7.38066077e-01 1.07615530e-01 2.75704890e-01 1.19470024e+00
7.58157909e-01 -2.13384405e-01 -5.94104588e-01 4.91984367e-01
7.17101038e-01 7.21080065e-01 2.71228641e-01 -1.08895898e+00
5.76432467e-01 7.68517792e-01 4.17336226e-01 -9.83471572e-01
-1.21895922e-03 2.59129871e-02 -6.84151888e-01 5.78957200e-01
2.56394625e-01 -6.55721594e-03 -8.39387298e-01 2.09957099e+00
3.34484965e-01 5.40697295e-03 -2.51664519e-01 1.33543372e+00
5.90412855e-01 6.22930825e-01 8.64007995e-02 -3.11526477e-01
1.51591837e+00 -1.01179981e+00 -1.12548745e+00 -3.01666558e-01
-4.55183461e-02 -6.27700925e-01 1.75902665e+00 1.82639539e-01
-1.28487051e+00 -5.98835886e-01 -1.04813528e+00 -4.43334907e-01
-2.57963091e-02 4.83599871e-01 4.04854298e-01 5.74478686e-01
-1.49843299e+00 1.14561453e-01 -6.03036821e-01 -1.59881413e-01
5.10757387e-01 5.16611993e-01 -3.32786709e-01 2.61769742e-01
-1.02258086e+00 6.06199801e-01 -2.31725350e-01 -5.47140650e-02
-5.75938940e-01 -5.28421521e-01 -8.99306118e-01 2.24823326e-01
2.75603265e-01 -9.81530011e-01 1.19655037e+00 -1.00568342e+00
-1.88020945e+00 1.09564769e+00 -7.04769135e-01 1.48680255e-01
3.61430645e-01 -3.01175714e-01 -2.38609493e-01 -1.25010967e-01
2.20252573e-01 1.05508184e+00 1.43722832e+00 -1.35496962e+00
-6.92494154e-01 -6.25305474e-01 1.99834585e-01 6.33542478e-01
-5.84709704e-01 -2.07925178e-02 -7.86602199e-01 -3.48993719e-01
-7.97446445e-02 -1.13214529e+00 3.63879174e-01 2.07707047e-01
-7.86399901e-01 -2.87741274e-01 6.97543085e-01 -5.48243336e-02
1.62210810e+00 -2.21772623e+00 7.71331668e-01 -9.30847675e-02
8.56391311e-01 -3.10969502e-01 5.96231446e-02 -7.28756981e-03
-3.45252216e-01 1.22064114e-01 2.56818444e-01 -7.50310898e-01
-3.26899476e-02 -3.05065095e-01 -4.11155283e-01 5.11067331e-01
6.74731061e-02 9.34757531e-01 -8.18653941e-01 -4.23844159e-01
-1.34215485e-02 4.64771152e-01 -4.72424567e-01 5.89294791e-01
1.52375758e-01 5.73875725e-01 -3.94413203e-01 5.14372349e-01
5.83260715e-01 -7.68869460e-01 -1.09276675e-01 -2.01345190e-01
-3.18120629e-01 4.24828708e-01 -6.99734271e-01 1.43629968e+00
-1.77154616e-01 9.41535354e-01 -2.17722893e-01 6.94236979e-02
8.17448497e-01 9.77633893e-02 5.12894690e-02 -7.82173276e-01
1.71548650e-01 -3.95557016e-01 -1.56682044e-01 -6.13564014e-01
6.82842433e-01 2.56977290e-01 7.74287879e-02 7.43020773e-01
-1.42309085e-01 3.11459035e-01 -1.02917710e-02 3.07130069e-02
3.61427814e-01 2.31610686e-01 1.59442782e-01 -2.66659468e-01
5.39051116e-01 -4.84603018e-01 2.64060140e-01 3.36493850e-01
-3.63671392e-01 6.99940741e-01 8.36504638e-01 -1.03839979e-01
-8.93790424e-01 -1.18443382e+00 -8.04030448e-02 1.40700722e+00
6.76652133e-01 -3.14511150e-01 -9.91704464e-01 -5.18745482e-01
-1.68841437e-01 6.84642255e-01 -1.21535492e+00 -3.40106219e-01
-3.28315198e-01 -3.37647974e-01 6.88771158e-02 2.30945528e-01
6.34411216e-01 -1.01333857e+00 -7.44663656e-01 -7.31922865e-01
-3.90264302e-01 -5.19375682e-01 -1.05825007e+00 -6.64934099e-01
-4.73566324e-01 -1.04096377e+00 -8.06014955e-01 -6.86586678e-01
9.99249160e-01 6.56461358e-01 9.74676311e-01 -1.93004817e-01
2.10239068e-01 8.86869729e-02 3.61207835e-02 -1.94290161e-01
-8.05698708e-02 1.57346338e-01 9.11433101e-02 4.21124518e-01
5.42219698e-01 -2.35109612e-01 -1.00060213e+00 6.41348660e-01
-5.53351760e-01 6.19523585e-01 3.59230191e-01 6.63958788e-01
4.51335281e-01 -6.98557258e-01 1.60996884e-01 -7.88428962e-01
1.09632075e+00 -2.90376723e-01 -8.16224873e-01 3.76438111e-01
-1.00287771e+00 2.71595418e-01 1.11815333e-01 -5.08276224e-01
-1.12553203e+00 -9.21296254e-02 5.33986628e-01 -5.72140574e-01
-2.22722348e-02 -4.28183489e-02 -3.35114956e-01 1.95294127e-01
8.47931564e-01 1.26630127e-01 2.15569288e-01 -1.97507873e-01
6.28389597e-01 8.80507648e-01 4.91777152e-01 -3.53333205e-02
6.78669870e-01 3.71942848e-01 -1.95125341e-01 -2.10847273e-01
-8.30779612e-01 -8.79810154e-02 -6.51140928e-01 -3.97353083e-01
9.29413319e-01 -9.13473368e-01 -1.29254150e+00 5.48034012e-01
-8.55573475e-01 -2.99740076e-01 -6.58554137e-02 1.86106652e-01
-6.89076185e-01 -2.36658707e-01 -9.98781770e-02 -5.58029890e-01
-2.59425074e-01 -1.61243021e+00 1.39000750e+00 7.77704656e-01
-2.43063554e-01 -6.17880821e-01 3.62867117e-02 1.50655672e-01
4.62216914e-01 -8.59599560e-02 6.61575079e-01 1.66142344e-01
-9.57596421e-01 1.80092141e-01 -3.97394270e-01 -1.62049681e-01
5.27718961e-01 1.60282075e-01 -1.05109191e+00 -3.25201750e-01
-3.84972803e-02 -3.47857863e-01 5.77816546e-01 4.64123428e-01
1.15460336e+00 -3.81965876e-01 -6.23954237e-01 1.07315433e+00
8.96309674e-01 9.35311392e-02 7.71822631e-01 5.31533599e-01
8.32367539e-01 6.85212612e-01 5.58197737e-01 1.45099446e-01
8.36921632e-01 8.36082160e-01 4.74516541e-01 -1.60218049e-02
-1.63395911e-01 -4.45450842e-01 2.50817060e-01 2.03470871e-01
-1.83079287e-01 -4.04665679e-01 -6.56696618e-01 3.04423094e-01
-1.68163836e+00 -9.54974651e-01 1.94466989e-02 2.38373852e+00
1.08075178e+00 -1.10064439e-01 9.76046249e-02 -1.51683033e-01
8.12949300e-01 2.08127469e-01 -8.90633047e-01 1.97122153e-02
1.94246218e-01 -5.59616208e-01 2.33050734e-01 5.46415150e-01
-9.14008200e-01 9.02625203e-01 6.72240829e+00 2.71879524e-01
-1.51462567e+00 -1.88366488e-01 5.47221005e-01 -4.58793491e-01
-4.34235841e-01 -2.03001276e-01 -8.44354749e-01 8.04885507e-01
6.55541956e-01 -2.46858701e-01 6.95474565e-01 5.91986716e-01
3.37625504e-01 3.03929392e-02 -1.25608408e+00 1.26264799e+00
2.98760533e-01 -1.15182304e+00 -5.08082025e-02 2.15437308e-01
5.26106060e-01 -3.25322658e-01 9.69342172e-01 -1.11766629e-01
4.59367707e-02 -1.14981520e+00 7.96590149e-01 9.71512675e-01
1.57424200e+00 -3.87073487e-01 -1.96008906e-02 6.07990250e-02
-7.28150427e-01 -5.69956973e-02 1.21105108e-02 4.89777280e-03
1.00573257e-01 -2.57306874e-01 -6.53034747e-01 -5.02017662e-02
8.75739396e-01 8.82213175e-01 -8.23797524e-01 6.95885181e-01
-7.09195435e-01 3.52686524e-01 8.41217637e-02 1.27727995e-02
-2.24929377e-01 -2.85379231e-01 5.27980864e-01 4.88580763e-01
2.10580274e-01 6.33668974e-02 -5.85831106e-01 1.25288475e+00
-2.01846421e-01 -2.61356145e-01 -5.60175776e-01 1.47026926e-01
8.27430964e-01 1.10862648e+00 -5.51065318e-02 -2.05275893e-01
-1.17021024e-01 1.13737869e+00 3.93021464e-01 7.59349704e-01
-8.50776792e-01 -4.96616215e-01 1.08596599e+00 3.20368737e-01
-5.32876849e-02 1.02143191e-01 -4.56421942e-01 -1.25070846e+00
-1.47125170e-01 -7.48439908e-01 4.27250043e-02 -1.46136320e+00
-9.99743521e-01 9.96820152e-01 1.01014063e-01 -1.48417151e+00
-5.14293253e-01 -2.38334805e-01 -3.66846949e-01 1.39723146e+00
-1.55053365e+00 -1.12694728e+00 -9.46074724e-01 8.90678883e-01
3.56336653e-01 -2.15316162e-01 6.45132720e-01 -2.88610384e-02
-8.01640809e-01 9.37218368e-01 -1.10048905e-01 -1.90905049e-01
1.12825418e+00 -1.33292675e+00 4.49948519e-01 7.79589415e-01
-2.34365582e-01 1.03556991e+00 8.17236245e-01 -3.54717642e-01
-1.16428411e+00 -7.34949946e-01 9.18599308e-01 -7.02723622e-01
2.91245520e-01 -5.91632962e-01 -7.93121934e-01 9.64872420e-01
5.46286941e-01 -2.19622448e-01 6.01245642e-01 7.12811276e-02
-3.65055144e-01 -2.19429657e-01 -8.11378002e-01 1.04120469e+00
1.10244656e+00 -5.98711312e-01 -5.17471433e-01 -1.09080113e-01
7.31012642e-01 -6.54200137e-01 -2.87907660e-01 8.96294117e-02
7.57023275e-01 -1.28838074e+00 9.35964406e-01 -5.82824826e-01
6.18094087e-01 -4.21255112e-01 3.08508545e-01 -1.35779989e+00
-6.49901628e-01 -8.93843830e-01 -2.46707991e-01 1.07695115e+00
1.62009954e-01 -6.89150512e-01 6.08954489e-01 9.22185719e-01
3.71102840e-01 -7.27017164e-01 -4.51439977e-01 -3.48599702e-02
-4.35369313e-01 9.54682678e-02 1.01097918e+00 6.14075065e-01
1.72636822e-01 7.39285767e-01 -7.17321038e-01 2.54325718e-01
6.85782433e-01 4.37739849e-01 1.01754451e+00 -9.29840326e-01
9.76251438e-02 -5.16973376e-01 -3.24669987e-01 -1.62724996e+00
-6.75535947e-02 -3.64497721e-01 -5.62900230e-02 -1.09495854e+00
2.19845235e-01 -3.58759344e-01 -1.93312168e-01 4.65396136e-01
-6.17714226e-01 3.25294316e-01 1.66479930e-01 7.89131701e-01
-6.29572690e-01 6.80781126e-01 1.62176883e+00 1.45552635e-01
-4.52562213e-01 1.08037226e-01 -1.31870949e+00 4.96867865e-01
4.48607296e-01 -3.62910599e-01 -8.75206292e-01 -6.42913818e-01
3.69521320e-01 1.27644926e-01 2.79727101e-01 -4.94578391e-01
3.63178819e-01 -3.53650719e-01 3.20142984e-01 -4.00890589e-01
4.86632377e-01 -5.61219215e-01 -1.74408278e-03 -7.77773783e-02
-7.61649251e-01 1.95006683e-01 -2.00030729e-01 5.62018871e-01
-9.37572122e-02 3.82383406e-01 7.49394894e-01 5.39369702e-01
-3.50913942e-01 3.58787358e-01 1.09602235e-01 -2.02024654e-01
1.18001413e+00 -4.35649723e-01 -5.28130472e-01 -7.72767961e-01
-5.12433887e-01 4.40397054e-01 9.96395290e-01 8.85364830e-01
7.25138605e-01 -1.44015849e+00 -4.09504741e-01 7.67308533e-01
3.87409449e-01 -1.52120277e-01 2.02840135e-01 8.53672922e-01
-1.46485463e-01 4.52623397e-01 -5.64887345e-01 -8.66647482e-01
-1.37926745e+00 6.30322814e-01 3.18194032e-01 4.02861089e-01
-2.22394124e-01 9.34137344e-01 8.09600890e-01 6.33310899e-02
2.05035254e-01 -1.54558569e-01 -7.49372721e-01 -5.53994961e-02
8.22296739e-01 1.92914769e-01 -4.53143209e-01 -9.07449424e-01
-2.30823502e-01 6.76872492e-01 -9.39973667e-02 -1.07801054e-02
9.33650792e-01 -9.04585004e-01 -5.21790050e-02 4.85442638e-01
1.06651294e+00 1.34481490e-01 -1.82401383e+00 -9.97813940e-02
-5.13167739e-01 -1.06969380e+00 -4.41723764e-02 -8.24274600e-01
-1.06789672e+00 9.89253461e-01 8.46507013e-01 2.90480554e-01
1.55529737e+00 1.39250487e-01 2.52872586e-01 -1.40624300e-01
1.62959367e-01 -3.75813514e-01 2.34542117e-01 2.56356653e-02
1.02872777e+00 -1.31931937e+00 -2.02022120e-01 -3.02126735e-01
-1.18713605e+00 7.63743937e-01 8.83305788e-01 1.36629874e-02
4.61862475e-01 -1.07145444e-01 3.19013178e-01 -3.90958697e-01
-1.02623284e+00 -1.75215706e-01 7.89529741e-01 6.56979978e-01
3.96236926e-01 -1.47170320e-01 8.39736238e-02 3.56833667e-01
-4.13874805e-01 2.29043722e-01 4.54565525e-01 2.81329989e-01
-2.51626283e-01 -8.39469254e-01 -4.38192159e-01 2.37329364e-01
-1.68208912e-01 -1.53870471e-02 -2.76209414e-01 6.48006678e-01
-8.08015540e-02 9.20531392e-01 3.07375163e-01 -4.52128977e-01
2.96053171e-01 -2.06394464e-01 3.71689051e-01 -5.07532418e-01
1.85581390e-02 1.60486028e-01 -4.03627217e-01 -8.83760929e-01
-4.93442386e-01 -6.89672828e-01 -8.10041845e-01 -2.63631403e-01
-3.44096869e-01 -1.63203508e-01 3.38020265e-01 5.47327936e-01
8.03841472e-01 5.12484670e-01 8.00954342e-01 -1.02036595e+00
-4.54344213e-01 -1.02980459e+00 -3.94202173e-01 5.38729250e-01
7.59756148e-01 -1.04243636e+00 -2.34100088e-01 4.94891465e-01]
|
[14.054010391235352, 0.014761364087462425]
|
5a7c10f9-776b-4c59-a509-50915047b04e
|
design-process-is-a-reinforcement-learning
|
2211.03136
| null |
https://arxiv.org/abs/2211.03136v1
|
https://arxiv.org/pdf/2211.03136v1.pdf
|
Design Process is a Reinforcement Learning Problem
|
While reinforcement learning has been used widely in research during the past few years, it found fewer real-world applications than supervised learning due to some weaknesses that the RL algorithms suffer from, such as performance degradation in transitioning from the simulator to the real world. Here, we argue the design process is a reinforcement learning problem and can potentially be a proper application for RL algorithms as it is an offline process and conventionally is done in CAD software - a sort of simulator. This creates opportunities for using RL methods and, at the same time, raises challenges. While the design processes are so diverse, here we focus on the space layout planning (SLP), frame it as an RL problem under the Markov Decision Process, and use PPO to address the layout design problem. To do so, we developed an environment named RLDesigner, to simulate the SLP. The RLDesigner is an OpenAI Gym compatible environment that can be easily customized to define a diverse range of design scenarios. We publicly share the environment to encourage both RL and architecture communities to use it for testing different RL algorithms or in their design practice. The codes are available in the following GitHub repository https://github.com/ RezaKakooee/rldesigner/tree/Second_Paper
|
['Benjamin Dillunberger', 'Reza kakooee']
|
2022-11-06
| null | null | null | null |
['layout-design']
|
['computer-vision']
|
[-3.10724258e-01 7.80696794e-02 -2.08664641e-01 -9.79301855e-02
-4.97361869e-01 -7.26216674e-01 2.03240305e-01 -2.29431540e-01
9.39765275e-02 7.94226170e-01 -3.42640765e-02 -8.19938004e-01
-2.20732823e-01 -8.44728351e-01 -4.61345464e-01 -5.07572532e-01
-2.16856048e-01 5.52312613e-01 3.00157100e-01 -2.84327090e-01
2.98295408e-01 6.50214791e-01 -1.61139035e+00 4.78206836e-02
4.65064883e-01 4.30345774e-01 3.47768009e-01 6.16228461e-01
1.78824719e-02 7.52775908e-01 -6.67253196e-01 3.32233042e-01
3.07898134e-01 -5.48950791e-01 -8.38021040e-01 -9.00553390e-02
-3.03310841e-01 -2.88614213e-01 -2.30047330e-01 4.02220279e-01
9.32418108e-01 -3.31828184e-02 2.56439745e-01 -1.54591060e+00
1.74668953e-01 6.21480703e-01 -3.57482970e-01 -1.71913698e-01
7.18298376e-01 5.52941978e-01 7.23727047e-01 -3.67444247e-01
5.23643672e-01 1.15166724e+00 4.59979028e-01 2.59982914e-01
-1.16027546e+00 -8.83041203e-01 8.96251053e-02 9.83430967e-02
-1.31582320e+00 -2.21291393e-01 9.29495752e-01 -3.45157951e-01
9.76591527e-01 1.41126439e-01 7.68028677e-01 1.39990973e+00
3.72346193e-01 1.08250093e+00 1.19405174e+00 -4.94768918e-01
9.19266284e-01 -1.31204411e-01 -3.16774249e-01 6.65269196e-01
6.30096570e-02 5.57622790e-01 -4.43020985e-02 7.74484128e-02
9.73342776e-01 -4.33444977e-01 1.22832350e-01 -7.60826528e-01
-1.04340017e+00 7.70244300e-01 1.87277198e-01 3.16702157e-01
-8.12035352e-02 4.72289354e-01 2.92573333e-01 4.68250901e-01
-3.33773911e-01 7.27083623e-01 -4.95104253e-01 -5.28555036e-01
-8.23170304e-01 6.14855409e-01 1.20299709e+00 9.81329620e-01
6.88883007e-01 1.33093625e-01 1.54527083e-01 6.33215189e-01
5.06353676e-01 1.47852868e-01 1.65075243e-01 -1.12284374e+00
7.83772394e-02 3.35775912e-01 2.12749064e-01 -7.31764913e-01
-5.66387713e-01 -3.04528266e-01 -4.72480595e-01 6.84304893e-01
3.30176502e-01 -5.65578520e-01 -5.44221044e-01 1.42533624e+00
3.06101590e-01 -8.26379582e-02 -1.55060798e-01 7.52845824e-01
4.54277635e-01 7.17496395e-01 -7.18044415e-02 -4.67911586e-02
8.20594311e-01 -9.65631247e-01 -5.96665919e-01 -4.41001862e-01
7.33917713e-01 -9.32554066e-01 1.12276566e+00 7.59267032e-01
-1.04459548e+00 -5.19704521e-01 -1.43085992e+00 6.82118177e-01
-4.58294183e-01 -5.81386648e-02 8.68880630e-01 7.70381451e-01
-1.14101565e+00 8.28893185e-01 -9.35038567e-01 -6.29278481e-01
1.82633460e-01 4.87521440e-01 2.78096825e-01 -1.56114802e-01
-1.03549314e+00 9.93363261e-01 1.81262851e-01 -1.04053915e-01
-9.95441437e-01 -5.32430172e-01 -7.64410853e-01 -2.02210963e-01
8.02821457e-01 -4.14667785e-01 1.69532156e+00 -7.20344961e-01
-1.99760425e+00 1.44400388e-01 4.73008692e-01 1.23635344e-01
6.89614832e-01 -9.03067663e-02 -5.24924338e-01 -5.02224445e-01
7.07240496e-03 4.24241513e-01 4.60580945e-01 -1.24372065e+00
-4.31620926e-01 1.20522372e-01 1.75241783e-01 3.64724509e-02
5.28826773e-01 -2.76387095e-01 -2.22877890e-01 -4.44226384e-01
-2.10593224e-01 -1.05712819e+00 -5.00629008e-01 -3.08444351e-01
-2.10969329e-01 -6.69818446e-02 8.83980751e-01 -3.27346385e-01
1.45517755e+00 -2.00190234e+00 -9.94930491e-02 2.46690735e-01
-4.05740350e-01 1.44419700e-01 -1.65767640e-01 1.22561121e+00
-6.97253421e-02 9.21727046e-02 -2.33200509e-02 2.02616915e-01
2.10825190e-01 3.28301162e-01 -7.63828680e-02 3.54862452e-01
2.67138090e-02 6.94013357e-01 -1.19841182e+00 -2.37907007e-01
5.54374099e-01 7.64163770e-03 -5.57001054e-01 1.32510871e-01
-4.27391112e-01 5.80764890e-01 -7.02483535e-01 5.58869362e-01
4.69092429e-01 -5.76294847e-02 5.55929542e-01 2.00925291e-01
-3.53507608e-01 2.62849718e-01 -1.75511646e+00 1.93791699e+00
-7.88910449e-01 4.60999966e-01 -1.08377889e-01 -8.70861828e-01
9.34103429e-01 2.15158209e-01 4.96861011e-01 -8.64337623e-01
2.23635569e-01 2.68167317e-01 1.83874875e-01 -4.36232448e-01
2.37974912e-01 1.40859291e-01 -3.86317432e-01 8.92779410e-01
-1.56303093e-01 -6.78968549e-01 3.12300116e-01 -1.77555382e-01
1.54861450e+00 7.68964410e-01 4.13406372e-01 -2.50163257e-01
2.89183766e-01 1.16980530e-01 5.67281008e-01 6.67476833e-01
-5.38473278e-02 3.00484478e-01 4.85415846e-01 -3.15501392e-01
-1.01461446e+00 -1.02703440e+00 3.23503129e-02 7.00588524e-01
1.25701785e-01 -5.22178352e-01 -4.38061178e-01 -6.32741809e-01
-1.03570543e-01 1.10274982e+00 -5.55264167e-02 -6.38788268e-02
-5.16192496e-01 -1.82103410e-01 2.98616588e-01 4.30440247e-01
5.07385194e-01 -1.62123752e+00 -1.00199687e+00 4.49697554e-01
4.02045101e-01 -7.68844604e-01 -5.66786639e-02 4.01111364e-01
-6.41525269e-01 -1.00208652e+00 -3.51227641e-01 -8.08212817e-01
3.29107612e-01 -1.72261268e-01 1.17398286e+00 1.91781744e-01
-5.27432144e-01 6.01227701e-01 -5.72052717e-01 -2.61402398e-01
-7.11372197e-01 2.48936892e-01 -2.38594472e-01 -7.38638043e-01
-1.79008812e-01 -7.77784169e-01 -5.22525370e-01 6.94845796e-01
-7.70220160e-01 2.16302574e-01 7.08908081e-01 5.91037095e-01
2.33712062e-01 5.50301850e-01 6.38597548e-01 -6.68270886e-01
7.09953249e-01 -3.96601826e-01 -9.80809093e-01 6.19661622e-02
-6.39367163e-01 2.74280339e-01 5.71336806e-01 -3.06361377e-01
-7.53282845e-01 1.22223340e-01 -3.94912779e-01 7.28905201e-02
-4.88971263e-01 5.80373168e-01 -3.97715151e-01 9.68621522e-02
3.78803015e-01 -2.78736353e-01 3.58697437e-02 -2.16988623e-01
1.88537717e-01 5.77189445e-01 -3.30780983e-01 -7.77968884e-01
9.70381439e-01 -5.69792315e-02 -1.15042619e-01 -6.48580909e-01
-3.44274670e-01 -6.33799732e-02 -2.37969831e-01 -5.25732160e-01
4.26813185e-01 -4.10465509e-01 -8.30468357e-01 1.00906998e-01
-6.99331701e-01 -1.25644553e+00 -3.94337952e-01 1.63415924e-01
-8.73913825e-01 -4.42394204e-02 -2.83328503e-01 -8.33075762e-01
1.47060335e-01 -1.48241222e+00 7.01627672e-01 3.93687516e-01
-6.28462493e-01 -9.22913730e-01 3.58962893e-01 -7.96798542e-02
4.89131540e-01 3.96329075e-01 1.02110493e+00 -1.49005026e-01
-6.94885969e-01 -5.36220260e-02 2.71726578e-01 3.47391255e-02
1.52661785e-01 2.65007913e-01 -7.50100136e-01 -3.57727110e-01
-4.00387943e-01 -4.46818650e-01 4.49773017e-03 2.85048962e-01
1.16397393e+00 5.96234389e-03 -3.40277672e-01 5.49472980e-02
1.50943851e+00 5.74026585e-01 9.12263870e-01 5.97664475e-01
1.64479524e-01 4.90798324e-01 9.57278311e-01 6.54003739e-01
2.92836845e-01 8.41350436e-01 3.94604504e-01 -1.56318516e-01
5.41801900e-02 -5.17139494e-01 6.28667474e-01 8.14815938e-01
4.90619749e-01 -1.74921349e-01 -1.15660059e+00 2.24542409e-01
-2.08115530e+00 -7.63274729e-01 2.29253232e-01 2.21497416e+00
5.53483963e-01 3.90993506e-01 2.68864304e-01 2.45600864e-01
2.83606261e-01 6.92443773e-02 -5.24889410e-01 -7.89147139e-01
3.23568970e-01 5.36734283e-01 3.68952483e-01 3.53766590e-01
-6.66249871e-01 9.48320925e-01 6.23371363e+00 8.68273735e-01
-1.10148263e+00 -2.25527719e-01 4.59765315e-01 1.28932372e-01
-1.55227333e-01 5.05154133e-01 -3.79057080e-01 3.52696210e-01
1.06545341e+00 -7.02069551e-02 6.78468525e-01 9.95707750e-01
6.75704360e-01 -6.29432261e-01 -1.28697109e+00 7.90876567e-01
-4.94943351e-01 -1.30637372e+00 -5.67273200e-01 2.03859523e-01
4.99829769e-01 -1.67285442e-01 -1.33248210e-01 7.46414900e-01
7.64614820e-01 -1.21732831e+00 7.22128272e-01 1.93260953e-01
4.26573366e-01 -9.95305181e-01 4.84728396e-01 3.92424345e-01
-1.15533614e+00 -1.23856977e-01 7.95281678e-02 -2.87608504e-01
2.26268008e-01 3.52718741e-01 -9.76762652e-01 5.85356712e-01
5.39140165e-01 5.27164221e-01 -5.55474460e-01 1.43193662e+00
-3.79895717e-01 5.42198837e-01 -1.31541163e-01 -3.34987015e-01
2.25030705e-01 -1.86798424e-01 2.59916574e-01 7.99145639e-01
3.06127310e-01 -3.49169523e-01 4.80304003e-01 8.69536161e-01
5.70854962e-01 -7.02052265e-02 -6.18147075e-01 -5.36365286e-02
4.66101736e-01 1.32917774e+00 -1.06731415e+00 4.23879027e-01
-2.73154020e-01 6.62761867e-01 -7.93864205e-02 4.60756719e-01
-1.10598171e+00 -3.30914557e-01 4.38308358e-01 3.02373022e-01
3.31729919e-01 -5.18949568e-01 -1.09590374e-01 -5.00799835e-01
-2.17147157e-01 -1.18281877e+00 1.42550180e-02 -9.08496499e-01
-9.15758491e-01 2.13440508e-01 2.05936715e-01 -1.33727455e+00
-2.93305606e-01 -6.08201265e-01 -6.39847398e-01 3.95529836e-01
-1.19886398e+00 -7.41931379e-01 -1.69189140e-01 1.14429623e-01
7.61677980e-01 -1.07831143e-01 8.58022630e-01 3.00346911e-01
-7.88187623e-01 2.60795742e-01 -9.17659476e-02 -1.84828728e-01
5.98077774e-01 -1.13960230e+00 4.25940275e-01 2.91687727e-01
-6.64695501e-02 2.82807380e-01 1.01825607e+00 -6.40065610e-01
-1.68194675e+00 -7.98195660e-01 1.32674560e-01 -1.75896719e-01
7.46345758e-01 -4.12077934e-01 -3.97951692e-01 4.88230586e-01
4.67720449e-01 -4.02109206e-01 6.17444396e-01 1.83349662e-03
2.92254269e-01 7.00381473e-02 -9.84458387e-01 9.26844537e-01
9.50076520e-01 -6.42260760e-02 -1.26233995e-01 1.74464211e-01
3.96460086e-01 -4.32620168e-01 -8.32938910e-01 3.37856382e-01
5.18609226e-01 -1.04602933e+00 6.68365359e-01 -2.53232066e-02
2.34494373e-01 -7.03672707e-01 5.77118546e-02 -1.31946445e+00
-2.10679844e-01 -8.64869356e-01 2.19266675e-02 1.41100073e+00
6.29224002e-01 -5.82936645e-01 8.95326018e-01 2.41931066e-01
2.35089865e-02 -9.56019878e-01 -6.56789422e-01 -9.28581297e-01
5.97866811e-03 -6.77253842e-01 6.55056894e-01 5.92227399e-01
5.07131591e-02 3.67479384e-01 -1.24055073e-01 2.10116785e-02
2.63386548e-01 1.44058645e-01 9.13593650e-01 -9.15162683e-01
-7.85941303e-01 -5.03665149e-01 -3.75013836e-02 -8.06208909e-01
6.21243976e-02 -6.83063388e-01 1.97018743e-01 -1.64084101e+00
-4.69347358e-01 -9.20921206e-01 8.72204155e-02 4.06725734e-01
6.38194561e-01 -4.77614701e-01 1.53011903e-01 -8.56802836e-02
-6.63676679e-01 5.39010823e-01 1.31336439e+00 1.13976091e-01
-5.91773868e-01 2.40992785e-01 -4.31285232e-01 5.46540380e-01
1.03042364e+00 -3.36823642e-01 -6.01192474e-01 -8.20867643e-02
5.25873899e-01 2.89192080e-01 9.85384211e-02 -1.51951265e+00
4.91810367e-02 -3.21913630e-01 2.77617186e-01 -6.28152609e-01
2.97391675e-02 -9.28399920e-01 4.56261843e-01 6.09709322e-01
-1.99270353e-01 3.41752946e-01 6.03052974e-01 2.49562830e-01
2.06736311e-01 -3.52636456e-01 5.97076714e-01 -1.54873163e-01
-8.36086452e-01 -1.14358611e-01 -8.99113238e-01 3.32013853e-02
1.28131473e+00 -2.46717349e-01 -6.79922625e-02 -4.69222099e-01
-6.23333991e-01 5.61320007e-01 7.09426284e-01 5.35431206e-01
3.66518915e-01 -1.12664461e+00 -8.47974718e-02 1.83986500e-01
-5.26446849e-02 -2.50934940e-02 7.07274750e-02 6.59527838e-01
-8.15531611e-01 9.06017721e-02 -4.22863901e-01 -4.43879098e-01
-6.91646993e-01 4.22402710e-01 3.31683993e-01 -5.67380130e-01
-6.70798898e-01 2.34303862e-01 -3.40048283e-01 -6.84938848e-01
2.40756676e-01 -2.42877379e-01 1.56020850e-01 -9.60684493e-02
1.14772126e-01 2.70798713e-01 1.16800904e-01 1.88572302e-01
-3.71549636e-01 2.84426868e-01 2.14834496e-01 -3.88187826e-01
1.49620879e+00 4.37579937e-02 3.25198472e-01 6.98503256e-01
6.10617161e-01 -2.50694633e-01 -1.21672738e+00 3.95048410e-01
3.71002734e-01 -2.00925574e-01 1.67689070e-01 -9.91636813e-01
-9.02376592e-01 4.46346909e-01 8.75471294e-01 1.33116901e-01
9.59995389e-01 -1.36943385e-01 4.39824462e-01 2.02998072e-01
9.01939929e-01 -1.44568515e+00 3.63769233e-01 4.70565677e-01
9.26829040e-01 -7.29054570e-01 1.06970631e-01 -1.60031855e-01
-7.42060423e-01 1.13721120e+00 6.81265116e-01 -4.05411065e-01
7.97079623e-01 7.33826578e-01 -8.07615519e-02 -3.15572582e-02
-7.32942164e-01 -2.65374184e-01 -4.04080659e-01 5.82791269e-01
4.85955596e-01 1.47751374e-02 -1.09671853e-01 3.19771439e-01
-3.04060906e-01 4.45198983e-01 7.25568593e-01 1.53364646e+00
-1.44515917e-01 -1.99253368e+00 -3.25944483e-01 2.26810187e-01
2.26008296e-01 4.20356929e-01 -2.12329865e-01 1.18286109e+00
-6.38953149e-02 9.50090468e-01 -2.43288681e-01 -4.90648270e-01
4.58471686e-01 -1.59756690e-01 6.96428657e-01 -7.44402766e-01
-6.58034205e-01 1.04027271e-01 3.87139827e-01 -8.34514916e-01
-1.31025976e-02 -7.45311260e-01 -1.27964830e+00 -3.64918351e-01
4.48100083e-02 8.46442431e-02 6.60451233e-01 8.61336827e-01
2.98912585e-01 9.00839150e-01 5.88140249e-01 -9.69177723e-01
-2.56115526e-01 -4.52961743e-01 -5.26031673e-01 -2.99051970e-01
-1.13679014e-01 -9.74952102e-01 -1.09854214e-01 -6.06156588e-01]
|
[4.174316883087158, 1.6894373893737793]
|
ded8b1b5-9ad3-4f43-9c08-3bb653c069f5
|
mixnerf-modeling-a-ray-with-mixture-density
|
2302.08788
| null |
https://arxiv.org/abs/2302.08788v2
|
https://arxiv.org/pdf/2302.08788v2.pdf
|
MixNeRF: Modeling a Ray with Mixture Density for Novel View Synthesis from Sparse Inputs
|
Neural Radiance Field (NeRF) has broken new ground in the novel view synthesis due to its simple concept and state-of-the-art quality. However, it suffers from severe performance degradation unless trained with a dense set of images with different camera poses, which hinders its practical applications. Although previous methods addressing this problem achieved promising results, they relied heavily on the additional training resources, which goes against the philosophy of sparse-input novel-view synthesis pursuing the training efficiency. In this work, we propose MixNeRF, an effective training strategy for novel view synthesis from sparse inputs by modeling a ray with a mixture density model. Our MixNeRF estimates the joint distribution of RGB colors along the ray samples by modeling it with mixture of distributions. We also propose a new task of ray depth estimation as a useful training objective, which is highly correlated with 3D scene geometry. Moreover, we remodel the colors with regenerated blending weights based on the estimated ray depth and further improves the robustness for colors and viewpoints. Our MixNeRF outperforms other state-of-the-art methods in various standard benchmarks with superior efficiency of training and inference.
|
['Nojun Kwak', 'Yeonjin Chang', 'Donghoon Han', 'Seunghyeon Seo']
|
2023-02-17
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Seo_MixNeRF_Modeling_a_Ray_With_Mixture_Density_for_Novel_View_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Seo_MixNeRF_Modeling_a_Ray_With_Mixture_Density_for_Novel_View_CVPR_2023_paper.pdf
|
cvpr-2023-1
|
['philosophy']
|
['miscellaneous']
|
[ 5.79523556e-02 -5.59687257e-01 3.28507572e-02 -4.12956834e-01
-6.55558527e-01 -4.23862934e-01 5.85223556e-01 -6.70359612e-01
-1.27485484e-01 5.54493964e-01 3.04274797e-01 2.04897132e-02
5.25281839e-02 -1.03687763e+00 -8.93012464e-01 -1.04512787e+00
5.46211421e-01 2.03319103e-01 1.14681326e-01 -2.93339342e-01
1.94134802e-01 5.35958886e-01 -1.56743014e+00 2.07160234e-01
8.95385325e-01 8.98579895e-01 3.35010886e-01 6.57528043e-01
-9.87315103e-02 8.64653766e-01 -4.78432178e-01 -5.33531725e-01
5.76891303e-01 -4.88481462e-01 -7.43866116e-02 1.05059175e-02
6.21671081e-01 -6.94923222e-01 -7.06378162e-01 1.06591141e+00
6.35933697e-01 3.76489013e-01 6.41758859e-01 -1.11631143e+00
-8.35260034e-01 2.25926965e-01 -8.26263964e-01 -2.21388400e-01
1.38263181e-01 1.08393036e-01 7.59983063e-01 -9.91166115e-01
4.03878182e-01 1.15559304e+00 5.27591646e-01 6.43815577e-01
-9.55854714e-01 -7.82676220e-01 3.28815937e-01 1.85121581e-01
-1.22100604e+00 -2.94667780e-01 1.08519232e+00 -1.58033758e-01
6.91905439e-01 2.37374574e-01 6.37332976e-01 1.21718240e+00
7.83998743e-02 7.33665764e-01 1.26762533e+00 -1.39200196e-01
1.87215015e-01 7.81043842e-02 -4.44960743e-01 8.31219196e-01
5.10744974e-02 3.10005248e-01 -5.57333827e-01 1.06839634e-01
1.08914912e+00 2.74586976e-01 -6.14340842e-01 -3.86185795e-01
-1.23464537e+00 6.76094472e-01 6.88235164e-01 -5.86917028e-02
-1.20945171e-01 2.92164147e-01 -5.97393923e-02 -1.05517797e-01
6.02871239e-01 1.79172859e-01 -4.19589877e-01 2.23900363e-01
-7.82510281e-01 7.77730197e-02 4.31189269e-01 9.63482261e-01
7.51074791e-01 4.44231689e-01 -4.70653661e-02 1.09173989e+00
5.76416790e-01 8.43013108e-01 1.45874977e-01 -1.13139975e+00
4.28516746e-01 5.45099258e-01 -2.79337764e-02 -9.47420418e-01
-2.10361883e-01 -7.50765979e-01 -1.23805225e+00 5.45380414e-01
4.05051887e-01 1.23043898e-02 -1.10205460e+00 1.70992327e+00
3.96728873e-01 2.54705220e-01 1.17140815e-01 1.03190041e+00
9.07499254e-01 1.08218837e+00 -5.31773329e-01 1.31513262e-02
1.07869554e+00 -1.32277393e+00 -5.60218275e-01 -1.50915563e-01
-1.15295082e-01 -9.34519053e-01 1.11656260e+00 8.99962187e-01
-1.19563496e+00 -6.92340374e-01 -1.00404108e+00 -2.53021389e-01
-1.61928654e-01 1.80628523e-01 8.87003899e-01 6.65357232e-01
-8.76113355e-01 3.88536513e-01 -5.19288659e-01 -7.21549764e-02
3.67276102e-01 -4.98596393e-02 -2.13034645e-01 -6.87569261e-01
-7.89633155e-01 6.68879271e-01 1.94725282e-02 3.08171481e-01
-9.87026334e-01 -6.99619591e-01 -7.58862317e-01 4.91764098e-02
4.94621366e-01 -1.18578744e+00 9.34299052e-01 -6.84233487e-01
-1.98956144e+00 3.50637943e-01 3.13281268e-02 2.03874141e-01
4.92933154e-01 -3.04375917e-01 -4.82472271e-01 1.67089507e-01
-1.95453465e-01 6.39847517e-01 1.16328931e+00 -1.73069680e+00
-5.25608480e-01 -3.13667208e-01 1.84306219e-01 3.43656719e-01
-1.86690405e-01 -5.15477777e-01 -7.79015005e-01 -8.89057100e-01
4.36475158e-01 -7.02153444e-01 -1.67493075e-01 2.77827263e-01
-2.14492694e-01 2.24719539e-01 6.26419127e-01 -4.76224959e-01
8.93308759e-01 -2.13547659e+00 3.00721735e-01 1.48403242e-01
2.44105116e-01 -1.22336987e-02 -7.16562718e-02 2.48678386e-01
7.96313807e-02 -2.61561483e-01 -2.98722625e-01 -4.11241233e-01
-5.28699569e-02 2.75011241e-01 -3.67683113e-01 4.76976722e-01
-1.12041660e-01 4.81491685e-01 -1.02944100e+00 -1.68897212e-01
5.65702140e-01 8.25287640e-01 -7.35981226e-01 4.27799016e-01
-2.50392616e-01 6.26544476e-01 -2.06788123e-01 6.86063945e-01
1.07305968e+00 -3.27016741e-01 -2.26531103e-01 -7.21316397e-01
-6.43814206e-02 -2.46230811e-01 -1.21687436e+00 2.04701805e+00
-7.03366518e-01 3.35889608e-01 -1.59881294e-01 -6.73240721e-01
1.08418000e+00 -4.69198786e-02 3.95977616e-01 -7.26912975e-01
1.51380733e-01 1.01201162e-01 -3.28611732e-01 -4.80873793e-01
5.39071381e-01 -2.58542210e-01 2.36288264e-01 2.65921921e-01
3.25062498e-02 -4.70458716e-01 -1.36214018e-01 1.15110144e-01
6.38598919e-01 6.79382324e-01 9.74858999e-02 1.34420782e-01
4.56613630e-01 -4.83738333e-01 5.81764340e-01 5.61699450e-01
3.18785012e-01 1.06364512e+00 9.24144164e-02 -3.26281697e-01
-9.44587469e-01 -1.41421628e+00 -6.62442818e-02 7.91374922e-01
3.39931428e-01 -1.66429147e-01 -6.20805621e-01 -5.89224160e-01
-2.40764424e-01 8.10638964e-01 -4.14284706e-01 -9.79911834e-02
-5.05767941e-01 -9.87276256e-01 1.67725116e-01 4.06042725e-01
8.33126962e-01 -4.85094339e-01 -5.37040055e-01 -2.16901265e-02
-3.03729802e-01 -1.25052798e+00 -3.48625511e-01 -5.29399849e-02
-8.37663472e-01 -1.06440413e+00 -1.06751239e+00 -3.34201664e-01
7.87850916e-01 7.49594867e-01 1.20182860e+00 -2.16717005e-01
-7.61926025e-02 4.61598724e-01 -3.12599987e-01 -2.45713010e-01
-2.22839952e-01 -3.44867110e-01 -2.19150037e-01 2.45435372e-01
-1.71696484e-01 -7.13569939e-01 -1.09839082e+00 3.54845703e-01
-1.14596665e+00 5.54009020e-01 6.61585152e-01 8.82015467e-01
5.60201645e-01 1.05777346e-01 1.36370659e-01 -8.59198809e-01
-2.15146393e-02 -4.08230901e-01 -6.84815526e-01 3.38006079e-01
-5.79608798e-01 1.22612640e-01 7.29536355e-01 -2.01512650e-01
-1.45263934e+00 -1.52214408e-01 -3.62731367e-01 -5.81977963e-01
2.84538860e-03 9.46004987e-02 -2.59308428e-01 -1.80425346e-01
4.68119353e-01 2.29231581e-01 -2.01842532e-01 -4.54939574e-01
6.45118535e-01 2.10140347e-01 6.49816155e-01 -6.12689734e-01
1.06299973e+00 8.86738241e-01 2.47081876e-01 -7.34306455e-01
-1.03582442e+00 -3.71139199e-01 -2.20960632e-01 -4.38846886e-01
8.97660792e-01 -1.09646773e+00 -6.61312401e-01 7.79522181e-01
-1.04564524e+00 -2.90533841e-01 -9.66554210e-02 6.79267049e-01
-4.48889285e-01 4.12597775e-01 -4.26990747e-01 -7.71891594e-01
-1.44444615e-01 -1.16455746e+00 1.10794067e+00 3.40882212e-01
5.98388076e-01 -8.68202329e-01 3.38914394e-02 4.41131204e-01
3.36093515e-01 3.95282269e-01 9.13526952e-01 5.07084429e-01
-1.07151830e+00 1.48081049e-01 -4.78201598e-01 6.66666210e-01
1.23129368e-01 1.15915209e-01 -1.30719626e+00 -2.93376744e-01
1.94974154e-01 -9.49558243e-02 1.04934645e+00 5.22011578e-01
1.42216957e+00 -3.93625759e-02 3.45583409e-02 1.32734740e+00
1.92177725e+00 1.49356991e-01 8.12215149e-01 2.44795114e-01
9.83576298e-01 4.46304977e-01 3.11785966e-01 5.87154925e-01
4.88936841e-01 5.29190540e-01 8.34384918e-01 -3.50311339e-01
-2.77413040e-01 -2.52715588e-01 2.72981584e-01 8.83990228e-01
-3.77089530e-01 -6.43207073e-01 -4.32814270e-01 1.16511643e-01
-1.73173630e+00 -9.35958147e-01 -9.63304490e-02 2.07813382e+00
4.32183951e-01 4.06193286e-02 -2.00306177e-01 4.78705093e-02
3.29775393e-01 4.80991274e-01 -7.08382130e-01 7.23700002e-02
-3.44361991e-01 2.54437774e-01 5.70672035e-01 2.89594978e-01
-6.14308655e-01 6.31867945e-01 5.76451540e+00 7.32686877e-01
-1.10206795e+00 1.10059880e-01 6.58868492e-01 -2.14013770e-01
-7.83497155e-01 -1.41600639e-01 -8.06879044e-01 3.61376911e-01
1.78387061e-01 4.79435027e-01 7.69839287e-01 6.15979671e-01
2.99534369e-02 -2.87040949e-01 -7.96273112e-01 1.32715952e+00
5.65229297e-01 -1.22810519e+00 2.09945202e-01 -2.09876195e-01
1.18609250e+00 1.58161148e-01 3.69342387e-01 1.54768169e-01
3.00194681e-01 -7.51061022e-01 7.95900822e-01 8.05370152e-01
7.82283008e-01 -7.00600445e-01 4.84624773e-01 1.97525084e-01
-1.02363253e+00 -1.47487342e-01 -4.70351309e-01 1.67200685e-01
2.65093356e-01 7.51515925e-01 -2.39663363e-01 8.72195899e-01
8.35745871e-01 8.64021122e-01 -4.79619503e-01 9.80939627e-01
-3.86692673e-01 3.48549902e-01 -2.73597628e-01 2.09899500e-01
2.63147950e-01 -5.44664860e-01 3.80366236e-01 7.48142421e-01
6.11978173e-01 6.91924170e-02 -3.53527032e-02 9.90408063e-01
-6.69290274e-02 -1.42309487e-01 -5.05056381e-01 3.58422428e-01
1.50113314e-01 1.34306526e+00 -6.61204398e-01 -2.04920664e-01
-7.13411450e-01 9.74078059e-01 1.35345921e-01 7.64177322e-01
-9.81584013e-01 -1.20632663e-01 4.85353798e-01 4.29262407e-02
3.15272242e-01 -3.43006849e-01 -1.39132738e-01 -1.45230901e+00
-1.41003532e-02 -8.71897042e-01 1.56918243e-01 -1.23026526e+00
-1.47871375e+00 6.80654287e-01 1.37047857e-01 -1.51367629e+00
4.81409132e-02 -8.48739803e-01 -5.04415035e-01 7.41301656e-01
-2.06665301e+00 -1.25557232e+00 -8.26641381e-01 8.29862475e-01
6.32189631e-01 -1.88341364e-01 5.95957339e-01 4.57148343e-01
-5.19587934e-01 4.75257307e-01 4.08435583e-01 -1.40273169e-01
9.09907937e-01 -1.17337465e+00 3.88141245e-01 8.80880237e-01
1.19059741e-01 3.54233563e-01 5.29222667e-01 -1.75001934e-01
-1.55974960e+00 -1.01823831e+00 4.64586727e-02 -2.43735939e-01
2.75590539e-01 -3.52806807e-01 -6.66413128e-01 3.23377818e-01
1.76778585e-01 1.42829612e-01 5.93486607e-01 -1.67212039e-01
-5.09100020e-01 -4.49355364e-01 -9.92854178e-01 7.17760801e-01
1.16523373e+00 -3.38670045e-01 -1.88515916e-01 2.05422372e-01
6.73266709e-01 -6.22869372e-01 -6.97902918e-01 5.27991652e-01
5.96310973e-01 -1.49541318e+00 1.26852655e+00 -1.81092713e-02
6.47033036e-01 -5.89893103e-01 -6.25465989e-01 -1.45702970e+00
-3.62571329e-01 -3.08891445e-01 -2.65804559e-01 1.07945597e+00
-2.41228030e-03 -6.42987370e-01 6.60625815e-01 1.42376751e-01
-3.39706153e-01 -8.41301382e-01 -4.62983519e-01 -4.61967021e-01
-1.63696215e-01 -5.05734444e-01 7.34919965e-01 7.32952237e-01
-8.69809806e-01 3.80039811e-01 -6.11694098e-01 3.17332983e-01
9.46329951e-01 1.87579349e-01 1.02184641e+00 -9.08907235e-01
-7.56996393e-01 -3.63477707e-01 4.22820188e-02 -1.36943364e+00
-9.10953060e-02 -6.50209486e-01 1.25385717e-01 -1.75753915e+00
1.79052144e-01 -4.83932167e-01 -2.07535744e-01 -8.94541070e-02
-2.36098692e-01 4.38263535e-01 1.76227197e-01 1.87056437e-02
-3.77160072e-01 8.50104988e-01 1.67122829e+00 -1.35288671e-01
-4.80972650e-03 -7.08589032e-02 -6.84407353e-01 8.70095730e-01
6.29910290e-01 -2.59943664e-01 -7.09674060e-01 -9.16334867e-01
6.83234990e-01 1.85688078e-01 4.79389429e-01 -1.14954615e+00
7.55088851e-02 -2.71716505e-01 6.63611948e-01 -9.29190636e-01
7.19400406e-01 -1.03816152e+00 2.97247827e-01 1.29470199e-01
4.34318930e-02 2.68618781e-02 -5.66531047e-02 7.85802901e-01
-8.69574323e-02 -2.54360020e-01 9.29538190e-01 -4.55669224e-01
-7.73821652e-01 5.65361738e-01 1.80937182e-02 1.25411144e-02
7.36044109e-01 -3.85623157e-01 -4.04271305e-01 -3.98666263e-01
-2.48407006e-01 -1.03264444e-01 5.94881117e-01 2.98343241e-01
9.12346303e-01 -1.40224314e+00 -6.97037518e-01 5.56172132e-01
1.96643054e-01 4.47649896e-01 6.00747287e-01 4.81498867e-01
-6.87318087e-01 -3.19651783e-01 -1.88754916e-01 -6.92283511e-01
-8.35052609e-01 5.85267365e-01 2.78936654e-01 -4.33756458e-03
-7.68357277e-01 9.07295167e-01 6.45183802e-01 -4.79669273e-01
3.02244008e-01 -3.95448536e-01 -5.47601506e-02 -3.10301095e-01
4.45652455e-01 4.99082059e-01 -1.30750254e-01 -3.91757160e-01
5.41628040e-02 9.53003824e-01 1.74064532e-01 -2.09555682e-02
1.49368799e+00 -2.04882145e-01 -4.94730808e-02 4.85943049e-01
1.18191695e+00 1.81867242e-01 -1.60681558e+00 -2.96723723e-01
-8.17027271e-01 -9.81440783e-01 3.37357581e-01 -8.07908058e-01
-1.41149056e+00 9.52435017e-01 5.94377458e-01 -2.54595011e-01
1.38487828e+00 -3.58480304e-01 1.01658010e+00 3.77564102e-01
4.69482064e-01 -8.43496323e-01 4.66100544e-01 3.95632833e-01
7.11809993e-01 -1.36799741e+00 2.20332697e-01 -4.02130723e-01
-4.19309855e-01 1.29484189e+00 6.20419621e-01 -2.13065431e-01
6.74788177e-01 1.84853777e-01 1.80535704e-01 -7.41256326e-02
-4.32311416e-01 1.10845175e-02 3.90652239e-01 6.43148661e-01
2.15898171e-01 -1.53200880e-01 3.10875684e-01 1.70671850e-01
-1.25104085e-01 -1.37151629e-01 4.52239931e-01 4.64618087e-01
-3.01040381e-01 -8.01616073e-01 -5.31130731e-01 2.45416075e-01
-2.55433887e-01 -2.19449639e-01 1.97851747e-01 7.14709699e-01
2.96419621e-01 6.88828707e-01 -9.81751010e-02 -3.43156755e-01
3.72082949e-01 -4.60107118e-01 8.80130112e-01 -4.00444478e-01
-2.51938105e-01 2.87815809e-01 -3.40604335e-01 -5.67459285e-01
-6.23859823e-01 -4.16221470e-01 -8.57212901e-01 -4.50620353e-01
-3.60467136e-01 -1.78323776e-01 7.93876350e-01 6.64438069e-01
8.84979032e-03 8.94143403e-01 9.95570362e-01 -9.99452293e-01
-4.71645176e-01 -5.72040617e-01 -6.08844697e-01 3.08045954e-01
3.92225921e-01 -7.26144373e-01 -4.20063585e-01 -1.40207767e-01]
|
[9.716585159301758, -2.8491177558898926]
|
545706e8-5885-4f1f-8561-68b229f45e54
|
grammatical-error-detection-based-on-machine
| null | null |
https://aclanthology.org/W16-4918
|
https://aclanthology.org/W16-4918.pdf
|
Grammatical Error Detection Based on Machine Learning for Mandarin as Second Language Learning
|
Mandarin is not simple language for foreigner. Even using Mandarin as the mother tongue, they have to spend more time to learn when they were child. The following issues are the reason why causes learning problem. First, the word is envolved by Hieroglyphic. So a character can express meanings independently, but become a word has another semantic. Second, the Mandarin{'}s grammars have flexible rule and special usage. Therefore, the common grammatical errors can classify to missing, redundant, selection and disorder. In this paper, we proposed the structure of the Recurrent Neural Networks using Long Short-term memory (RNN-LSTM). It can detect the error type from the foreign learner writing. The features based on the word vector and part-of-speech vector. In the test data found that our method in the detection level of recall better than the others, even as high as 0.9755. That is because we give the possibility of greater choice in detecting errors.
|
['Chan-Kun Yeh', 'Tsung-Wei Hsu', 'Jui-Feng Yeh']
|
2016-12-01
| null | null | null |
ws-2016-12
|
['grammatical-error-detection']
|
['natural-language-processing']
|
[-1.87073052e-01 -1.95665926e-01 -5.72683811e-02 -2.42084846e-01
-2.33300939e-01 -3.56409192e-01 6.06281720e-02 -1.81891650e-01
-5.43754041e-01 9.04037833e-01 2.36812234e-01 -3.73930991e-01
3.34254727e-02 -8.42881620e-01 -7.20631003e-01 -5.85840046e-01
2.87291497e-01 1.53978437e-01 2.81334370e-01 -5.53595722e-01
5.57496011e-01 1.84633449e-01 -1.68146861e+00 3.75440925e-01
1.17108810e+00 6.80745959e-01 8.92569721e-01 1.89488187e-01
-7.70303786e-01 1.16489339e+00 -1.04712832e+00 -1.40931875e-01
-1.76447064e-01 -7.47244298e-01 -7.05968380e-01 -3.31773043e-01
7.64412852e-03 -2.90236861e-01 -1.55958831e-01 1.43308151e+00
5.14563680e-01 1.21200964e-01 5.67171216e-01 -5.80911517e-01
-1.17511559e+00 1.04553461e+00 -9.68035161e-02 4.05095339e-01
4.82641637e-01 -2.56863415e-01 3.88988644e-01 -9.92676318e-01
4.57089067e-01 1.41188085e+00 7.73085117e-01 8.56726646e-01
-4.93947506e-01 -9.09709990e-01 1.97610185e-01 1.94806382e-01
-1.33320951e+00 -4.97269541e-01 4.90460634e-01 -3.41521591e-01
1.33413386e+00 2.22949428e-04 7.10525215e-01 1.17117560e+00
7.53186047e-01 7.09322929e-01 1.26225865e+00 -8.83861601e-01
-2.37867162e-01 2.13368773e-01 6.39322162e-01 8.04872453e-01
3.81175160e-01 1.27927676e-01 -6.65456653e-01 3.98777992e-01
6.66683257e-01 2.97041953e-01 -2.21995994e-01 8.44346881e-01
-8.16052556e-01 7.03033745e-01 -1.38987526e-01 9.78716612e-01
-1.33471221e-01 -1.12151429e-01 2.03236863e-01 8.98849308e-01
1.00348905e-01 1.01847105e-01 -6.28008366e-01 -2.84155279e-01
-7.56086171e-01 -1.18280597e-01 5.33147991e-01 1.08036625e+00
4.12377834e-01 4.00601029e-01 7.11219087e-02 1.15642405e+00
5.81677020e-01 6.12690330e-01 1.42202687e+00 -2.25817010e-01
2.10205793e-01 4.93065476e-01 -5.48911989e-01 -8.21876466e-01
-1.87109515e-01 -4.02816325e-01 -5.59042156e-01 3.12387347e-01
1.94131896e-01 -3.05072069e-01 -1.13976240e+00 1.75415766e+00
-2.72240192e-01 -3.22500527e-01 1.52573243e-01 5.40754735e-01
1.14965761e+00 8.74316216e-01 8.55339617e-02 -5.59134603e-01
1.20445585e+00 -9.00633872e-01 -1.55328429e+00 -2.14067981e-01
8.05838645e-01 -1.11670220e+00 1.03510714e+00 6.01081669e-01
-1.14111435e+00 -5.77310503e-01 -1.20377314e+00 -2.38131583e-02
-7.44103372e-01 2.36759987e-02 2.60246307e-01 7.59128749e-01
-8.68219137e-01 8.67365062e-01 -5.75041294e-01 -4.95156169e-01
-3.19611520e-01 3.01200390e-01 -2.53648341e-01 2.65467852e-01
-1.49366772e+00 1.27601779e+00 7.36314952e-01 7.09849149e-02
-4.19132650e-01 -8.11337829e-02 -6.96353555e-01 -2.92146266e-01
-6.15149699e-02 1.00969903e-01 1.14696491e+00 -1.28464019e+00
-1.43234503e+00 6.88995421e-01 -3.08615208e-01 -2.83635315e-02
9.92648900e-02 -1.50397167e-01 -1.03265738e+00 -4.51582432e-01
1.58982441e-01 1.40009895e-01 6.85348213e-01 -5.55537641e-01
-7.82462120e-01 -5.08727372e-01 -6.11855805e-01 -1.51058566e-02
-1.94615155e-01 5.49183547e-01 -4.26526042e-03 -1.05873585e+00
6.10688567e-01 -5.98692656e-01 4.05725777e-01 -6.30148351e-01
-7.41175096e-03 -8.11749041e-01 7.69993663e-01 -1.17057431e+00
1.91898096e+00 -2.30890632e+00 -2.12499574e-01 1.84956849e-01
-2.63774693e-01 4.11827832e-01 2.66981542e-01 3.61128628e-01
-1.22443393e-01 5.26606917e-01 -1.41612506e-02 3.50733787e-01
-3.07947636e-01 4.84860778e-01 -6.28840998e-02 -9.24554374e-03
-1.78426621e-03 4.91331518e-01 -5.93325496e-01 -7.39219904e-01
-2.36100480e-01 3.08612972e-01 1.42464377e-02 1.15771540e-01
7.83571526e-02 9.42135081e-02 -4.73485827e-01 7.22743034e-01
5.08631289e-01 1.67989746e-01 1.18953958e-02 2.84035951e-01
-3.65593642e-01 6.27018809e-01 -1.27337372e+00 1.57838917e+00
-2.43417934e-01 6.13766670e-01 -3.59280080e-01 -5.91821194e-01
1.19628751e+00 6.66874290e-01 -2.69878119e-01 -9.38976526e-01
2.05099553e-01 7.89974153e-01 3.46867681e-01 -9.62424457e-01
2.48404264e-01 -2.19806224e-01 2.95088351e-01 4.04597372e-01
1.02025241e-01 3.66559714e-01 1.48122266e-01 -2.75560379e-01
9.38482046e-01 2.50111222e-01 2.41494417e-01 -4.23794687e-01
5.29918075e-01 -2.68978387e-01 9.07568157e-01 5.74106395e-01
1.11660652e-01 2.56022990e-01 9.55171362e-02 -4.03684884e-01
-5.70106685e-01 -8.33662093e-01 -3.53789985e-01 1.19539344e+00
-3.42882574e-01 -1.09897241e-01 -7.88455963e-01 -5.19645512e-01
-1.97263211e-01 9.06754375e-01 -1.59304753e-01 -1.99651569e-01
-8.42024982e-01 -3.68017375e-01 6.90266311e-01 2.98660576e-01
5.52613795e-01 -1.73668361e+00 -2.27384776e-01 6.01381481e-01
7.07272440e-02 -4.82878029e-01 -3.44703376e-01 4.50702757e-01
-8.97716284e-01 -7.65289664e-01 -5.11012912e-01 -1.49437869e+00
6.01670563e-01 -2.03398034e-01 8.30792844e-01 6.82397008e-01
1.29184917e-01 -3.47842693e-01 -5.78766346e-01 -5.04930913e-01
-6.29025698e-01 7.27006719e-02 1.99392125e-01 -6.09298348e-01
9.20530558e-01 -5.85742950e-01 1.94650501e-01 -1.43746257e-01
-6.45710289e-01 -2.36416951e-01 6.84028327e-01 7.38328397e-01
2.83283532e-01 1.33221343e-01 7.16755688e-01 -8.90681088e-01
9.24152434e-01 -3.27181190e-01 -3.19942921e-01 4.58177567e-01
-1.00115895e+00 3.85285854e-01 5.88999093e-01 -4.00864065e-01
-1.13912332e+00 -3.86940569e-01 -5.02365589e-01 3.73539589e-02
-1.46818385e-01 5.10881603e-01 -1.68332338e-01 -9.63863507e-02
3.80965590e-01 3.90616655e-01 4.16072831e-02 -9.45970893e-01
-4.33395147e-01 1.06587827e+00 2.59917155e-02 -4.75658417e-01
2.16816515e-01 -6.54928863e-01 -4.72124368e-01 -9.16149378e-01
-5.27314365e-01 9.53553617e-02 -4.02120113e-01 -1.45357430e-01
8.61585557e-01 -7.27576017e-01 -4.49704379e-01 7.26506233e-01
-1.60245407e+00 7.41120130e-02 1.15646996e-01 7.70725012e-01
-3.46698724e-02 1.72867239e-01 -1.13765550e+00 -9.81115460e-01
-2.68813699e-01 -1.14753687e+00 2.60789692e-01 3.56177092e-01
-2.56711781e-01 -8.15470695e-01 -8.09081122e-02 -8.74550194e-02
4.23746139e-01 -2.02494338e-01 1.22694266e+00 -9.47259724e-01
-3.12158048e-01 2.20555797e-01 2.58316696e-01 7.17544794e-01
1.53272286e-01 1.07073076e-01 -7.55575657e-01 -1.28820643e-01
4.23107862e-01 -9.20112431e-02 9.05685365e-01 2.33312190e-01
8.88575435e-01 -4.32617158e-01 -9.18993875e-02 4.97151554e-01
1.43547726e+00 1.10000765e+00 6.22138679e-01 2.90509045e-01
5.26296735e-01 5.50004900e-01 5.09804249e-01 -1.87247738e-01
-8.44221860e-02 1.38678133e-01 -4.05504256e-01 5.30583858e-01
-3.12664628e-01 -4.83535141e-01 8.54427278e-01 1.81747258e+00
-1.88887671e-01 -9.51664969e-02 -9.85331833e-01 4.79895979e-01
-1.59523201e+00 -9.66395557e-01 -3.94699007e-01 2.09143686e+00
1.18411350e+00 2.45832279e-01 -4.10110205e-01 3.39107364e-01
1.00936794e+00 -6.91101104e-02 -1.38923988e-01 -8.81158412e-01
-3.74869287e-01 4.90507007e-01 4.52102423e-01 6.62370503e-01
-3.50571424e-01 1.31409025e+00 6.72530937e+00 1.11870730e+00
-1.24014628e+00 3.31646949e-01 2.02554256e-01 1.50465906e-01
-4.29221213e-01 -1.72425881e-01 -1.24634242e+00 9.40974891e-01
9.91010308e-01 2.14330126e-02 4.63515639e-01 4.90847200e-01
-1.33726010e-02 -9.85460654e-02 -7.89040685e-01 1.03792405e+00
3.30559701e-01 -8.77962053e-01 1.97277114e-01 -1.60522535e-01
3.93041879e-01 -1.37799367e-01 -1.07523993e-01 5.16836584e-01
1.89166348e-02 -1.22074294e+00 7.29218721e-01 7.76943445e-01
6.15512371e-01 -8.19732666e-01 7.79406905e-01 5.07249177e-01
-7.49300838e-01 2.00188637e-01 -7.12250292e-01 -4.79765803e-01
-3.31162989e-01 4.35344696e-01 -4.40498590e-01 7.34412894e-02
6.45947456e-01 5.49640357e-01 -5.49554646e-01 6.20282650e-01
-3.36110204e-01 7.44396865e-01 -2.93979466e-01 -6.62773907e-01
1.17714263e-01 -1.71117902e-01 4.41032857e-01 1.13129461e+00
8.50923419e-01 7.75279552e-02 -2.37253234e-02 6.05381310e-01
6.16163276e-02 6.13424063e-01 -8.85093987e-01 -1.57749310e-01
7.49112368e-01 4.87766951e-01 -3.06531042e-01 -1.58706501e-01
-4.27720845e-01 8.79050076e-01 4.45759416e-01 2.98158795e-01
-3.89998347e-01 -7.88904071e-01 1.55137300e-01 -1.67666599e-02
4.25162837e-02 1.64197106e-02 -2.01903805e-01 -9.29022670e-01
2.58366168e-01 -1.03401017e+00 1.59951374e-01 -6.07865214e-01
-1.18773997e+00 5.50740063e-01 -4.34666902e-01 -7.42750227e-01
-2.90371329e-01 -9.91827726e-01 -6.66786790e-01 1.12951446e+00
-1.18834388e+00 -7.77091980e-01 3.43580544e-01 5.53716898e-01
8.78125370e-01 -8.08685005e-01 9.74119604e-01 5.20259619e-01
-7.24877298e-01 6.83487236e-01 1.09052435e-01 4.59683001e-01
7.04875886e-01 -8.30151260e-01 -1.60739303e-01 9.08070743e-01
-2.09659096e-02 9.01966751e-01 5.04433155e-01 -9.97455239e-01
-9.67425048e-01 -4.89705414e-01 1.66226447e+00 -1.70675844e-01
2.68000126e-01 9.40172002e-02 -9.61290836e-01 9.44805682e-01
3.63782108e-01 -5.22454798e-01 6.04531407e-01 1.14178449e-01
7.62043595e-02 -9.92614552e-02 -1.06744993e+00 5.51653266e-01
1.00250661e+00 -4.92063493e-01 -1.22506464e+00 3.12568992e-01
1.05513477e+00 -3.69215161e-02 -6.11103117e-01 2.64051318e-01
5.01689851e-01 -1.03249800e+00 2.40055025e-01 -6.24023497e-01
3.07608008e-01 -1.22929350e-01 -1.86043352e-01 -1.13791406e+00
-4.86977756e-01 -5.35980225e-01 3.15398425e-01 1.48300922e+00
8.87840092e-01 -7.27556288e-01 2.57199258e-01 3.57101589e-01
-3.70259196e-01 -6.06293678e-01 -8.77015293e-01 -8.82280231e-01
2.61435390e-01 -3.85881692e-01 7.98227370e-01 1.19113684e+00
1.32577926e-01 4.85818297e-01 -4.17717397e-01 -2.72493333e-01
1.26784936e-01 -4.89679098e-01 -1.28278583e-01 -1.24345326e+00
-1.43252090e-01 -3.80583823e-01 -2.89855272e-01 -9.30912316e-01
3.02571267e-01 -9.10679340e-01 -1.22355238e-01 -1.26216090e+00
-2.91669220e-01 -3.37901235e-01 -6.67506695e-01 6.23444080e-01
-1.21018231e-01 -3.99779886e-01 6.33950578e-03 1.17942512e-01
-7.31859282e-02 2.03583792e-01 1.19574726e+00 5.67587391e-02
-2.62174100e-01 -1.01632975e-01 -4.30407405e-01 9.57579076e-01
1.04337645e+00 -7.51293540e-01 -1.02312520e-01 -8.02294195e-01
6.25430524e-01 1.87148377e-01 -4.57543403e-01 -1.02402043e+00
3.89432281e-01 -6.94052279e-02 5.78836679e-01 -7.03327239e-01
-1.11878753e-01 -9.28043723e-01 1.07459202e-01 8.25456977e-01
-1.76015973e-01 6.73844457e-01 6.05228320e-02 4.48926464e-02
-2.42552996e-01 -1.16391551e+00 5.66334724e-01 -5.97313583e-01
-9.26897287e-01 -1.53414354e-01 -7.99915910e-01 1.34805515e-01
7.51887739e-01 -3.53426158e-01 -5.76643012e-02 -1.33229747e-01
-6.27487183e-01 -8.20662528e-02 1.49137959e-01 5.59915900e-01
7.32386768e-01 -1.41883671e+00 -5.84277034e-01 7.59880364e-01
-1.92713231e-01 -3.73091668e-01 -1.05770156e-01 3.85117263e-01
-8.67211819e-01 2.65121192e-01 -4.08460706e-01 -1.29036620e-01
-1.28365338e+00 3.70812178e-01 3.96925896e-01 1.02183640e-01
-4.83662814e-01 9.45180774e-01 -2.88947076e-01 -4.71251577e-01
4.02951926e-01 -3.86819959e-01 -6.89152956e-01 1.55772651e-02
5.37671030e-01 3.86845529e-01 6.27344027e-02 -6.82371199e-01
-3.19027841e-01 6.14851952e-01 -2.35521540e-01 -1.85412467e-01
1.02635980e+00 -2.21420173e-02 -7.28963792e-01 1.13437235e+00
1.04551327e+00 4.03692871e-01 -4.08827290e-02 -8.88024941e-02
3.42521071e-01 -2.93642133e-01 -1.40234113e-01 -9.54660177e-01
-7.52922356e-01 7.67652333e-01 7.89460719e-01 2.26614520e-01
7.07093179e-01 -3.10395271e-01 9.90695417e-01 7.48173118e-01
4.24784541e-01 -1.68211520e+00 -4.66629803e-01 1.16891766e+00
6.16764069e-01 -1.10177183e+00 -5.07490575e-01 -3.32267806e-02
-3.91795337e-01 1.38093388e+00 6.97629094e-01 -2.16340795e-01
8.95250797e-01 2.29906037e-01 3.68548602e-01 -1.24561764e-01
-7.40135252e-01 4.91127223e-02 1.06452130e-01 3.79846722e-01
1.23290455e+00 3.45443599e-02 -1.14745665e+00 8.84413600e-01
-6.12947583e-01 -2.26400331e-01 4.25435752e-01 9.70621169e-01
-9.84209716e-01 -1.42645955e+00 -5.78752697e-01 4.82152224e-01
-9.43035960e-01 -3.32191497e-01 -2.32295915e-01 5.79219580e-01
7.32541621e-01 1.21882021e+00 1.08506426e-01 -3.53424489e-01
2.53972113e-01 7.23443449e-01 4.07493293e-01 -6.97724283e-01
-8.99806380e-01 -1.18317297e-02 -6.34494051e-02 -2.58013815e-01
-2.48410061e-01 -3.67150784e-01 -1.66466618e+00 -3.10374439e-01
-4.87832487e-01 4.18817103e-01 6.72782660e-01 1.18125105e+00
-2.22858921e-01 4.89393532e-01 3.24645013e-01 3.98693383e-01
-4.63556260e-01 -1.33752108e+00 -8.31044972e-01 2.98367262e-01
2.80032367e-01 -4.35761482e-01 -5.14491856e-01 -2.29031578e-01]
|
[11.006808280944824, 10.77342700958252]
|
83f92a54-a87c-4e77-bd31-cba082a00bed
|
hierarchically-fusing-long-and-short-term
|
2304.02089
| null |
https://arxiv.org/abs/2304.02089v1
|
https://arxiv.org/pdf/2304.02089v1.pdf
|
Hierarchically Fusing Long and Short-Term User Interests for Click-Through Rate Prediction in Product Search
|
Estimating Click-Through Rate (CTR) is a vital yet challenging task in personalized product search. However, existing CTR methods still struggle in the product search settings due to the following three challenges including how to more effectively extract users' short-term interests with respect to multiple aspects, how to extract and fuse users' long-term interest with short-term interests, how to address the entangling characteristic of long and short-term interests. To resolve these challenges, in this paper, we propose a new approach named Hierarchical Interests Fusing Network (HIFN), which consists of four basic modules namely Short-term Interests Extractor (SIE), Long-term Interests Extractor (LIE), Interests Fusion Module (IFM) and Interests Disentanglement Module (IDM). Specifically, SIE is proposed to extract user's short-term interests by integrating three fundamental interests encoders within it namely query-dependent, target-dependent and causal-dependent interest encoder, respectively, followed by delivering the resultant representation to the module LIE, where it can effectively capture user long-term interests by devising an attention mechanism with respect to the short-term interests from SIE module. In IFM, the achieved long and short-term interests are further fused in an adaptive manner, followed by concatenating it with original raw context features for the final prediction result. Last but not least, considering the entangling characteristic of long and short-term interests, IDM further devises a self-supervised framework to disentangle long and short-term interests. Extensive offline and online evaluations on a real-world e-commerce platform demonstrate the superiority of HIFN over state-of-the-art methods.
|
['Qi Rao', 'Jing Zhang', 'Hong Wen', 'Qijie Shen']
|
2023-04-04
| null | null | null | null |
['click-through-rate-prediction']
|
['miscellaneous']
|
[ 8.36042091e-02 -1.23042285e-01 -6.92407966e-01 -5.77847958e-01
-7.37164319e-01 -3.82963777e-01 8.49878132e-01 -1.53292179e-01
-2.91387647e-01 4.89332616e-01 7.07734764e-01 -8.29697326e-02
-5.03521681e-01 -7.70983040e-01 -3.93570930e-01 -3.47072810e-01
-4.72811945e-02 2.66997397e-01 2.22633481e-02 -4.04479802e-01
3.37133318e-01 8.55827332e-02 -1.85304952e+00 2.31478870e-01
1.24050438e+00 1.36623216e+00 3.22753668e-01 3.57348144e-01
-2.36645833e-01 7.41024315e-01 -2.61157751e-01 -3.58793795e-01
7.84739181e-02 -2.40779236e-01 -7.81300187e-01 -2.32102677e-01
3.36554162e-02 -4.52431560e-01 -4.17050302e-01 6.08255088e-01
6.20534897e-01 3.51253331e-01 3.94233912e-01 -1.13408947e+00
-8.52855980e-01 6.28541350e-01 -4.93011177e-01 1.05281256e-01
4.41454113e-01 3.48027088e-02 1.53047085e+00 -8.65093946e-01
5.08964598e-01 1.13540030e+00 8.57714266e-02 1.41270429e-01
-8.50897133e-01 -7.84507275e-01 6.30347908e-01 1.59708679e-01
-1.03003812e+00 -2.30325624e-01 8.06977928e-01 -2.62798488e-01
7.72795022e-01 4.73874837e-01 5.87924540e-01 1.30460751e+00
4.47965190e-02 1.34964573e+00 7.45382309e-01 -1.71344746e-02
-1.14410669e-01 4.87694055e-01 4.56914991e-01 1.27132729e-01
-1.83026984e-01 4.30486351e-01 -4.59681869e-01 -2.49358535e-01
5.62521815e-01 2.16516137e-01 -2.40976021e-01 -1.95818067e-01
-9.92411375e-01 1.07885563e+00 4.78015691e-01 6.23240948e-01
-5.52170992e-01 -2.80692935e-01 1.68427378e-01 1.71157435e-01
5.37807703e-01 2.94677436e-01 -7.54126728e-01 7.31482264e-03
-9.57647860e-01 2.51419753e-01 9.19650555e-01 1.37085593e+00
6.32123828e-01 -4.45531934e-01 -7.16354609e-01 8.68320346e-01
6.35234177e-01 2.82636676e-02 9.02548134e-01 -5.08915603e-01
3.67999226e-01 4.98525023e-01 2.03435555e-01 -1.06112123e+00
5.16655436e-03 -1.26308572e+00 -7.44230688e-01 -4.00177002e-01
-2.74045646e-01 5.57840392e-02 -6.56835318e-01 1.82037318e+00
2.36429647e-01 -2.79041640e-02 -1.29391357e-01 9.25407350e-01
1.04608154e+00 6.29451931e-01 3.40202719e-01 -4.08485532e-01
1.49640346e+00 -1.24115038e+00 -7.15169668e-01 -3.36167008e-01
3.07901025e-01 -6.75565243e-01 1.04440534e+00 1.68676615e-01
-1.15259457e+00 -8.36666048e-01 -9.07944322e-01 -3.82874161e-01
-5.26574850e-01 2.89446563e-01 7.44356871e-01 4.80453409e-02
-5.19302905e-01 3.68557334e-01 -4.44439463e-02 -1.18902639e-01
3.04969072e-01 5.32369614e-01 2.04721972e-01 1.58851698e-01
-1.80250931e+00 5.29914200e-01 2.22562313e-01 1.44625828e-01
-5.64245522e-01 -1.05101001e+00 -7.79976547e-01 4.65003431e-01
6.33750141e-01 -7.40681648e-01 1.27548122e+00 -6.71924293e-01
-1.16289949e+00 3.89981389e-01 -4.37585831e-01 -4.34303768e-02
4.43744510e-01 -2.14685649e-01 -9.24015880e-01 -3.91480893e-01
3.18196774e-01 3.78730804e-01 5.97719252e-01 -1.14794731e+00
-1.17680001e+00 -5.17542958e-01 1.61073223e-01 4.22134757e-01
-5.71105242e-01 -8.55858997e-02 -8.55651855e-01 -6.31016731e-01
-2.43076921e-01 -3.91780823e-01 -1.35267705e-01 -3.26463431e-01
-3.01674336e-01 -6.23788893e-01 7.88870990e-01 -5.90847313e-01
1.71247780e+00 -2.02887940e+00 7.26497546e-02 7.82003105e-02
4.03414160e-01 5.06189406e-01 -2.28376657e-01 3.28957140e-01
5.97710423e-02 5.20435497e-02 4.85348731e-01 -2.67351151e-01
3.98826510e-01 -7.55640790e-02 -2.59218782e-01 -2.04434440e-01
-5.69768101e-02 1.29231668e+00 -1.05574524e+00 -6.53484881e-01
2.76251823e-01 4.50250179e-01 -4.77391154e-01 3.37137371e-01
-3.48420382e-01 3.60410154e-01 -1.14509928e+00 6.20739162e-01
7.00073183e-01 -4.67423797e-01 -1.16569720e-01 -3.30649585e-01
-3.37325692e-01 3.90879542e-01 -9.03757453e-01 1.46861458e+00
-9.24949884e-01 3.57856825e-02 6.19332753e-02 -7.16012180e-01
7.64509618e-01 2.38974184e-01 7.11987913e-01 -1.06678319e+00
2.24503398e-01 1.46613508e-01 -5.84516346e-01 -6.66169643e-01
7.17470288e-01 1.15848102e-01 -1.69272810e-01 5.17395914e-01
1.82592034e-01 6.48291290e-01 7.41455853e-02 2.30918095e-01
7.49791145e-01 2.25707874e-01 3.99820149e-01 1.56788379e-02
8.51406455e-01 -2.18273520e-01 3.93614739e-01 6.94689870e-01
-2.16157436e-01 4.13533896e-01 1.20599248e-01 -4.88605164e-02
-5.31436026e-01 -7.57376552e-01 4.21398431e-02 1.61288631e+00
3.75634074e-01 -4.30488020e-01 -7.29862675e-02 -1.09299839e+00
2.89875977e-02 8.87712598e-01 -5.24437904e-01 -2.18270630e-01
-4.06653792e-01 -3.64967555e-01 -2.19198484e-02 3.95663917e-01
4.79874372e-01 -1.27715278e+00 -1.60835773e-01 3.25686067e-01
-5.30404925e-01 -8.44790339e-01 -1.14933169e+00 8.56527984e-02
-4.78519231e-01 -7.90594041e-01 -1.02178729e+00 -6.72597289e-01
1.18734770e-01 5.14550030e-01 1.24993265e+00 -1.57183602e-01
-1.55585751e-01 6.87322989e-02 -4.21023846e-01 -1.44527078e-01
2.17058077e-01 3.15446794e-01 -5.18783927e-01 1.64189264e-01
7.07740009e-01 -6.82554185e-01 -1.10277379e+00 6.80800617e-01
-8.09585154e-01 -1.06441766e-01 9.48938370e-01 7.90490270e-01
4.22943562e-01 2.90829148e-02 8.38660777e-01 -8.31246614e-01
9.05851603e-01 -1.04841971e+00 -3.82846981e-01 5.31178296e-01
-1.01509619e+00 -1.79779399e-02 6.02476597e-01 -5.22230089e-01
-1.36641085e+00 -2.71763980e-01 -3.04885298e-01 -2.16284603e-01
2.32095793e-02 6.51919961e-01 -4.57750350e-01 3.52460593e-01
2.57385552e-01 3.66782665e-01 -3.03627610e-01 -5.97067177e-01
7.07098961e-01 1.14177930e+00 2.55509347e-01 -1.86282873e-01
3.87262106e-01 4.51467037e-02 -6.26184344e-01 -4.33547616e-01
-1.11947882e+00 -1.13722384e+00 -2.37918854e-01 -1.13560185e-01
6.61385655e-01 -9.77870345e-01 -1.06742907e+00 2.42122468e-02
-8.34828258e-01 5.37751615e-01 -4.29666102e-01 5.70635259e-01
-4.61204648e-01 2.91127890e-01 -4.56787586e-01 -7.97054410e-01
-6.84929311e-01 -1.03550601e+00 1.13549352e+00 5.75834334e-01
-4.11449075e-02 -1.07637012e+00 -1.73703551e-01 6.62509441e-01
6.67648077e-01 -2.23698705e-01 8.50865424e-01 -9.72294986e-01
-4.81522262e-01 -2.60736644e-01 -5.25371909e-01 1.79964051e-01
1.62076190e-01 -6.57320857e-01 -9.88702416e-01 -1.96001068e-01
2.42176324e-01 -1.61449715e-01 9.10374343e-01 3.51940125e-01
9.56653833e-01 -5.23833156e-01 -4.94449675e-01 3.54195744e-01
1.28855956e+00 2.16980115e-01 5.18229246e-01 1.84031650e-01
4.66547221e-01 6.09607100e-01 1.11865532e+00 6.13991916e-01
6.97378278e-01 8.70949805e-01 4.41436499e-01 -1.14665084e-01
7.47611225e-02 -5.05904615e-01 1.97277933e-01 6.27776682e-01
-1.34301735e-02 -4.30615813e-01 2.81792045e-01 3.08209538e-01
-2.04648972e+00 -1.00080585e+00 1.69517830e-01 2.31300092e+00
7.56467462e-01 -5.82663491e-02 1.75376102e-01 -3.49124342e-01
6.31533384e-01 5.09450614e-01 -8.24572802e-01 -5.53226955e-02
2.06512854e-01 5.84606640e-02 1.31288007e-01 2.86665380e-01
-1.00271606e+00 6.87215447e-01 4.93427992e+00 1.25369048e+00
-8.18189859e-01 2.98253242e-02 4.94857073e-01 -1.41738299e-02
-7.66804099e-01 -5.68410493e-02 -1.04805326e+00 5.34038603e-01
5.43560565e-01 -5.07421315e-01 3.64930630e-01 1.02388561e+00
3.17295223e-01 3.27332050e-01 -9.89846826e-01 7.10864007e-01
1.04695491e-01 -8.13975751e-01 -4.47368547e-02 3.66426259e-01
4.57223266e-01 -2.53216177e-01 1.18588112e-01 8.67777050e-01
3.02754968e-01 -7.04051852e-01 4.02702212e-01 6.35960996e-01
6.88160658e-01 -5.78093350e-01 6.89608514e-01 5.69343269e-01
-1.62206709e+00 -3.12640458e-01 -1.59617424e-01 5.21308780e-01
4.54699874e-01 7.74730086e-01 -2.74598897e-01 1.01151574e+00
3.69561225e-01 1.05716813e+00 -2.01884851e-01 8.01632822e-01
5.68718016e-02 1.50352150e-01 -2.10915178e-01 -8.10986683e-02
3.69592965e-01 -2.13175535e-01 4.80700910e-01 1.03722763e+00
6.16637528e-01 1.60145894e-01 3.80273610e-02 1.18642080e+00
-1.14110008e-01 2.08341435e-01 -1.37617737e-01 -3.11121494e-01
1.53975025e-01 1.63519549e+00 -4.46834881e-03 -4.03145105e-01
-5.43979466e-01 1.01327038e+00 3.66627015e-02 5.16017377e-01
-1.01907873e+00 -3.67658198e-01 4.10092920e-01 2.68602550e-01
4.39516455e-01 3.82502973e-01 2.00211897e-01 -1.35069466e+00
1.65603027e-01 -7.54704833e-01 5.85310936e-01 -6.75459683e-01
-1.34516001e+00 6.42821133e-01 4.39067185e-03 -1.33840168e+00
-3.95142913e-01 5.45018911e-02 -7.08145142e-01 1.38474727e+00
-1.92431498e+00 -1.55630887e+00 -4.15098786e-01 6.86936915e-01
9.57866013e-01 1.36363190e-02 5.26135325e-01 4.86013860e-01
-2.22696692e-01 7.64965415e-01 -1.46893606e-01 -4.45293903e-01
5.56071877e-01 -8.77834439e-01 1.19934388e-01 2.23811105e-01
-1.10535085e-01 8.66486192e-01 3.87792945e-01 -6.01183593e-01
-1.25664914e+00 -1.13259065e+00 1.57808137e+00 1.59973234e-01
4.33681965e-01 -2.86095560e-01 -5.93425095e-01 6.07030451e-01
1.07673578e-01 -3.33914049e-02 7.30190635e-01 4.97772515e-01
-2.04495594e-01 -1.64869782e-02 -1.00413275e+00 4.71610636e-01
1.12295163e+00 -4.31350529e-01 -5.11819720e-01 2.50618696e-01
9.45591331e-01 9.20299664e-02 -8.45160007e-01 5.25072396e-01
9.71522927e-01 -1.06014502e+00 1.28814220e+00 -5.84335148e-01
6.39533043e-01 1.21398620e-01 -6.66714385e-02 -1.09272408e+00
-7.05255032e-01 -5.05474985e-01 -4.71013248e-01 1.55448461e+00
3.91413242e-01 -6.60956383e-01 8.09637904e-01 4.55123186e-01
2.03780793e-02 -1.07813036e+00 -4.81919736e-01 -4.21358764e-01
-2.74115860e-01 -1.84526414e-01 7.82397509e-01 7.54709959e-01
4.00580689e-02 7.43278086e-01 -6.19117141e-01 -1.64575875e-01
4.97779012e-01 6.45481050e-01 2.01071322e-01 -1.28441417e+00
-5.55042267e-01 -5.00318766e-01 2.47889832e-01 -1.72540283e+00
-3.18017378e-02 -8.11116099e-01 -1.69388220e-01 -1.54389274e+00
5.11962116e-01 -7.19673097e-01 -7.01601207e-01 7.67200217e-02
-2.41448104e-01 -2.43181661e-01 1.99431926e-01 2.37199724e-01
-8.97510707e-01 8.27170670e-01 1.54704273e+00 -1.17654659e-01
-4.81158048e-01 7.00034261e-01 -1.28999412e+00 2.96941727e-01
4.53384399e-01 -2.52818931e-02 -7.36553371e-01 5.46326265e-02
6.24209829e-02 3.59732598e-01 3.65051739e-02 -4.83633131e-01
3.44635725e-01 -1.65764779e-01 4.05423850e-01 -9.50796485e-01
3.01654845e-01 -8.57247829e-01 1.97072737e-02 1.49240242e-02
-8.24276626e-01 -4.53743815e-01 -2.79293507e-01 7.66451955e-01
-3.74985218e-01 -2.45252445e-01 2.41878688e-01 -3.12423736e-01
-6.56214654e-01 6.08720362e-01 3.42626199e-02 2.37362627e-02
9.02623892e-01 -4.16232646e-02 -2.47547105e-01 -6.25493824e-01
-9.33449447e-01 8.07874143e-01 -3.15453291e-01 9.50923145e-01
3.47169280e-01 -1.46642494e+00 -4.88861710e-01 3.70698571e-01
2.69989550e-01 -3.26683015e-01 6.98406577e-01 7.84446776e-01
6.55501068e-01 9.47748601e-01 3.18801463e-01 -2.09197685e-01
-1.28455377e+00 9.20319378e-01 -1.43657744e-01 -1.05696607e+00
9.19770896e-02 7.76262045e-01 5.33370018e-01 -4.18276399e-01
2.37162903e-01 -7.74488300e-02 -8.20013702e-01 4.68070954e-01
4.50233251e-01 3.64507586e-01 -1.42754897e-01 -7.79783905e-01
-8.52300599e-02 6.67689323e-01 -4.76219267e-01 1.16810046e-01
1.14745319e+00 -7.01311231e-01 3.45052421e-01 6.68505207e-02
1.66158128e+00 -1.55203342e-01 -9.27815020e-01 -5.56442082e-01
-3.11732829e-01 -4.95486706e-01 2.93095887e-01 -1.04365957e+00
-1.21224737e+00 7.27885067e-01 3.87412101e-01 3.30660611e-01
1.42072165e+00 2.35485524e-01 1.19520175e+00 -2.06821948e-01
3.87685359e-01 -1.05917096e+00 -7.01602623e-02 2.57262617e-01
9.09893394e-01 -1.18644845e+00 -1.02060936e-01 -5.63774347e-01
-6.55075788e-01 6.81693792e-01 4.31670964e-01 3.21440250e-01
9.93160009e-01 -2.15785995e-01 -3.84184480e-01 -2.54462838e-01
-8.68531168e-01 -5.18850565e-01 8.02510500e-01 2.00991064e-01
5.37849486e-01 -2.08094731e-01 -6.74958050e-01 1.12977242e+00
-9.31396894e-03 5.05471468e-01 -2.97538489e-01 9.03402686e-01
-3.20227683e-01 -1.27652335e+00 3.64308268e-01 6.99775338e-01
-4.90616858e-01 -2.85941482e-01 1.18987123e-02 5.90315402e-01
3.10228109e-01 1.16763294e+00 -2.07864404e-01 -6.59793735e-01
4.73192990e-01 -2.09564775e-01 -6.24182262e-02 -3.37782562e-01
-9.01318312e-01 6.18281662e-01 1.04125604e-01 -8.54765177e-01
-2.53974646e-01 -3.99520040e-01 -7.94004083e-01 -6.84846342e-02
-7.77736306e-01 4.48919386e-01 5.69512188e-01 9.17701483e-01
7.73752272e-01 5.93008101e-01 1.05819333e+00 -6.29348993e-01
-9.24017072e-01 -1.05387461e+00 -7.15562642e-01 5.42229533e-01
2.72691518e-01 -6.00173891e-01 -6.32346690e-01 -2.98215449e-01]
|
[10.16010856628418, 5.576891899108887]
|
9f612edc-6e97-4345-9ae2-10cb6923ea54
|
indoor-sound-source-localization-with
|
1712.07814
| null |
http://arxiv.org/abs/1712.07814v1
|
http://arxiv.org/pdf/1712.07814v1.pdf
|
Indoor Sound Source Localization with Probabilistic Neural Network
|
It is known that adverse environments such as high reverberation and low
signal-to-noise ratio (SNR) pose a great challenge to indoor sound source
localization. To address this challenge, in this paper, we propose a sound
source localization algorithm based on probabilistic neural network, namely
Generalized cross correlation Classification Algorithm (GCA). Experimental
results for adverse environments with high reverberation time T60 up to 600ms
and low SNR such as -10dB show that, the average azimuth angle error and
elevation angle error by GCA are only 4.6 degrees and 3.1 degrees respectively.
Compared with three recently published algorithms, GCA has increased the
success rate on direction of arrival estimation significantly with good
robustness to environmental changes. These results show that the proposed GCA
can localize accurately and robustly for diverse indoor applications where the
site acoustic features can be studied prior to the localization stage.
|
['Susanto Rahardja', 'Jiajia Chen', 'Yingxiang Sun', 'Chau Yuen']
|
2017-12-21
| null | null | null | null |
['direction-of-arrival-estimation']
|
['audio']
|
[ 3.22545110e-03 -7.98017740e-01 7.48681664e-01 -1.81829497e-01
-1.14052987e+00 -5.97017407e-01 1.31393358e-01 1.01740912e-01
-3.99524361e-01 8.99951756e-01 4.44221273e-02 -5.62126756e-01
-5.23566723e-01 -6.96632087e-01 -3.44340265e-01 -1.05071878e+00
-5.16116023e-01 -2.41474643e-01 1.86778829e-01 1.59058809e-01
1.13776475e-01 4.05356824e-01 -1.58524776e+00 -3.44224006e-01
8.30288708e-01 1.16226959e+00 4.45951998e-01 9.29781616e-01
2.68074065e-01 2.36120477e-01 -1.24552059e+00 4.16050673e-01
1.95079148e-02 -1.33690983e-01 1.39362095e-02 -9.36500192e-01
1.13786690e-01 1.21704876e-01 5.70733547e-02 9.77163553e-01
1.31947398e+00 5.41002512e-01 4.07154590e-01 -1.04372394e+00
-6.12732321e-02 5.36621034e-01 -3.11792344e-01 5.69142222e-01
4.12026823e-01 -4.87129986e-01 3.81784976e-01 -7.89166927e-01
-2.61688650e-01 7.43670583e-01 1.17227507e+00 7.09942207e-02
-5.55679739e-01 -1.08588779e+00 -3.04834515e-01 1.71131685e-01
-1.74610090e+00 -5.03627717e-01 8.34930062e-01 -1.03941537e-01
7.67444670e-01 5.86789131e-01 1.02660984e-01 8.09395194e-01
1.86895311e-01 -3.73460650e-02 1.48870850e+00 -6.23952508e-01
4.37911659e-01 -1.65942565e-01 -1.76176161e-01 4.08829570e-01
3.56350839e-01 8.88569802e-02 -5.46387970e-01 -2.20827445e-01
3.37905705e-01 -3.75981808e-01 -4.74838436e-01 2.91373581e-01
-1.13539040e+00 1.85660213e-01 4.94562447e-01 6.89389825e-01
-1.82070166e-01 2.63078183e-01 5.25934547e-02 -1.16475737e-02
1.40798852e-01 4.69156891e-01 -5.39929092e-01 -3.09373677e-01
-6.16414309e-01 -8.14308375e-02 1.03766298e+00 7.80525744e-01
3.93289775e-01 4.20080155e-01 2.61182904e-01 1.12255549e+00
6.83511019e-01 1.25058699e+00 4.36449081e-01 -4.60349709e-01
3.98297787e-01 -5.75966895e-01 2.55884141e-01 -1.49500263e+00
-6.48118496e-01 -1.38198924e+00 -8.98616731e-01 1.92180686e-02
3.36376697e-01 -4.72196877e-01 -7.37647653e-01 1.65394640e+00
2.90184200e-01 5.11750281e-01 3.99513274e-01 6.79749608e-01
7.98060596e-01 7.48627961e-01 -1.82260767e-01 -2.80750602e-01
9.71361637e-01 -7.15769172e-01 -9.01213229e-01 -2.83783168e-01
1.12979986e-01 -1.34201705e+00 6.23894989e-01 5.20691454e-01
-6.29543960e-01 -6.90339684e-01 -1.26306403e+00 8.82324278e-01
-4.64239150e-01 -7.51859881e-03 2.22579017e-01 1.38036215e+00
-9.69044924e-01 1.81758314e-01 -7.76088119e-01 -4.52138530e-03
-1.98730454e-01 2.34280929e-01 -1.51344523e-01 -1.49746388e-01
-1.21929562e+00 4.37731057e-01 -2.06798211e-01 6.14612222e-01
-6.82746232e-01 -5.58754027e-01 -6.10855997e-01 -1.23685054e-01
-6.81200325e-02 -3.13024104e-01 1.32764864e+00 -2.07840577e-01
-1.51152122e+00 -2.99519509e-01 -4.09531474e-01 -1.19267806e-01
9.17529389e-02 -3.50673527e-01 -1.27954829e+00 -1.79788589e-01
3.11113179e-01 -4.70794290e-01 3.82092714e-01 -1.47330439e+00
-7.10725844e-01 -1.19732030e-01 -4.55065459e-01 1.82248935e-01
2.80825025e-03 2.24657968e-01 1.77704971e-02 -5.00090480e-01
8.30787838e-01 -6.52526081e-01 -3.09697658e-01 -6.17759168e-01
-3.10564041e-01 3.01237367e-02 5.74382067e-01 -6.93553805e-01
1.19111466e+00 -1.98133492e+00 -8.75528455e-01 5.75482726e-01
-4.79800671e-01 1.84836537e-01 2.32500583e-01 3.22004229e-01
-1.05696209e-01 -1.36677757e-01 -9.49302390e-02 -2.52075970e-01
-1.87277898e-01 -1.90132380e-01 -8.12140666e-03 5.53821802e-01
-4.64362592e-01 3.09379073e-03 -1.15383673e+00 -1.44614622e-01
2.05609724e-01 8.87136519e-01 -2.10077673e-01 2.20037863e-01
9.06201184e-01 7.08372355e-01 -4.18969929e-01 7.52613008e-01
1.06133318e+00 4.29929435e-01 -4.01945412e-01 -1.19837694e-01
-5.79346538e-01 3.02622348e-01 -1.72118056e+00 1.21208024e+00
-1.14922953e+00 8.42608988e-01 3.99920315e-01 -4.38811749e-01
1.13314700e+00 5.07995188e-01 3.26889567e-02 -5.89119494e-01
1.94877669e-01 5.84295332e-01 2.98938770e-02 -5.04007041e-01
2.10781604e-01 -1.93010420e-01 4.79655117e-02 2.46183902e-01
-2.00164229e-01 6.97471797e-02 -4.77217495e-01 -3.18147987e-01
1.01571834e+00 -2.14667335e-01 2.72175252e-01 -2.70636439e-01
8.12003672e-01 -7.57203341e-01 6.55958772e-01 9.87850368e-01
-2.92414248e-01 6.23604059e-01 -6.85192823e-01 2.04368129e-01
-3.50909501e-01 -1.12970448e+00 -2.84319758e-01 7.93515503e-01
6.63376153e-02 -1.08549602e-01 -6.36743963e-01 -8.29477608e-02
-4.64874983e-01 5.87605298e-01 4.31130119e-02 2.02767104e-01
-7.21333504e-01 -8.71163785e-01 7.80984402e-01 4.89779621e-01
9.88314629e-01 -5.71279407e-01 -1.52692825e-01 2.80479312e-01
-2.67680407e-01 -1.10835195e+00 -1.63517997e-01 4.33417976e-01
-1.99334532e-01 -5.25539219e-01 -4.97470856e-01 -9.65368986e-01
6.81270778e-01 7.08785892e-01 7.99515367e-01 -2.14620650e-01
-1.71213433e-01 4.65319991e-01 -4.83605802e-01 -8.10233891e-01
-5.39069287e-02 -3.54437470e-01 5.48361063e-01 4.21495037e-03
-2.21063554e-01 -1.08945084e+00 -7.86891997e-01 6.37076259e-01
-2.63995945e-01 -6.90334558e-01 6.12759650e-01 4.51449364e-01
3.37039560e-01 9.75442827e-01 8.87442291e-01 -6.77598342e-02
6.59058154e-01 -5.44421196e-01 -5.15016615e-01 1.87120941e-02
-5.56182683e-01 -6.07003510e-01 8.93429756e-01 -1.74452394e-01
-1.35673165e+00 -8.58890191e-02 -4.97961879e-01 3.04512203e-01
-6.84478164e-01 4.57057953e-01 -4.90942478e-01 -4.04851615e-01
6.96787119e-01 4.15217370e-01 -6.69986606e-01 -6.47730827e-01
-1.20699100e-01 1.12955356e+00 6.86484277e-01 -3.32989275e-01
1.22274172e+00 2.39839613e-01 1.82884380e-01 -1.10213292e+00
-3.79343957e-01 -7.74532735e-01 -2.31607795e-01 -1.66010767e-01
6.68936729e-01 -1.04490507e+00 -5.79877794e-01 6.55201912e-01
-8.84717286e-01 8.78817588e-02 6.68705046e-01 1.20164394e+00
-9.63547677e-02 2.84463108e-01 -1.61155269e-01 -1.53194821e+00
-4.12410229e-01 -1.00860214e+00 3.68285537e-01 4.80761409e-01
3.38870585e-02 -9.67414320e-01 -3.65715437e-02 2.46080592e-01
1.01159358e+00 1.55763343e-01 1.70240417e-01 -3.57755750e-01
-4.19794053e-01 -3.08615059e-01 1.61881492e-01 4.16394800e-01
4.88771737e-01 -5.28382540e-01 -1.25797379e+00 -1.37643099e-01
3.10849965e-01 2.68896937e-01 1.70770109e-01 5.65409958e-01
9.20407712e-01 -1.44854307e-01 -3.03034514e-01 6.81610644e-01
1.57255042e+00 8.87349367e-01 3.98980677e-01 4.43834513e-01
4.49754894e-01 1.58943981e-01 7.56550074e-01 2.86627233e-01
4.13246490e-02 2.96222717e-01 3.48112494e-01 -6.59673512e-02
-2.83864498e-01 -3.04946095e-01 2.04121452e-02 1.28488791e+00
1.15388319e-01 -5.63134253e-01 -9.31368709e-01 5.10721564e-01
-1.09379566e+00 -6.34285152e-01 -5.65836012e-01 2.22479677e+00
5.68811953e-01 -9.15210098e-02 -5.23897529e-01 6.13154292e-01
6.31097138e-01 2.66391128e-01 2.47363076e-01 -1.97148532e-01
-2.64258180e-02 4.58735317e-01 8.18828762e-01 9.10071313e-01
-1.08037126e+00 4.03351724e-01 6.01042223e+00 8.78196895e-01
-1.21551216e+00 2.50960082e-01 2.21401379e-01 4.23128217e-01
4.02183533e-02 -2.83118725e-01 -7.65458405e-01 5.47070205e-01
1.07631218e+00 2.21687928e-01 3.38902712e-01 9.13260996e-01
3.05608720e-01 -2.80245632e-01 -3.50120008e-01 1.15758586e+00
2.02254355e-01 -6.00845397e-01 -7.34852791e-01 -3.88606489e-01
6.28230035e-01 9.13643651e-03 4.72926259e-01 1.81616426e-01
1.82949919e-02 -1.00128996e+00 3.36641431e-01 4.37088281e-01
5.13337731e-01 -9.28792655e-01 1.03808582e+00 3.09213519e-01
-1.46586096e+00 -2.02892106e-02 -2.24696010e-01 -2.46324629e-01
2.35115767e-01 8.22450399e-01 -1.31655979e+00 7.77571380e-01
1.03820550e+00 -8.79956633e-02 -3.12346607e-01 1.79422367e+00
-4.73212928e-01 1.10759568e+00 -7.37483323e-01 -3.95992279e-01
3.75213884e-02 2.31514066e-01 6.79920316e-01 1.26617634e+00
1.02624094e+00 6.54081255e-02 -1.15691632e-01 1.35462642e-01
3.30410421e-01 1.90794289e-01 -4.17483091e-01 7.75748193e-01
8.86948645e-01 1.07936442e+00 -6.63049638e-01 2.75921106e-01
-5.11184521e-02 5.63921511e-01 -7.32795358e-01 7.98273206e-01
-8.18215787e-01 -1.02396083e+00 2.66982764e-01 -3.29422325e-01
3.15521866e-01 -5.76789916e-01 -2.02243596e-01 -2.46230111e-01
3.00341416e-02 -4.54176217e-01 -1.36942491e-01 -8.75904262e-01
-9.15982902e-01 8.17690611e-01 -2.15160608e-01 -1.32374251e+00
5.04886955e-02 -4.58029419e-01 -8.22770774e-01 1.09699214e+00
-1.61465526e+00 -8.63379776e-01 -4.70993668e-01 4.55891937e-01
3.03614736e-01 -2.29228169e-01 1.01957977e+00 7.06571460e-01
-5.29855788e-01 7.29468644e-01 7.05708086e-01 -2.70602088e-02
7.00243711e-01 -1.17429805e+00 1.32155791e-01 1.02400577e+00
2.14346591e-02 9.11274910e-01 1.08311391e+00 -3.98677528e-01
-1.12640893e+00 -1.11227405e+00 9.40827250e-01 -2.58314669e-01
5.07138729e-01 -4.59099114e-01 -4.43702608e-01 7.26190284e-02
2.14275062e-01 2.87179053e-01 1.01088476e+00 2.17870206e-01
-1.82970732e-01 -6.26771867e-01 -1.21925223e+00 1.54061988e-01
7.63337791e-01 -4.28247839e-01 -2.13695690e-01 3.14591765e-01
3.65530223e-01 -2.71871746e-01 -7.12857723e-01 4.31090504e-01
5.25915980e-01 -9.10951555e-01 1.15999150e+00 4.94724482e-01
-5.30740678e-01 -8.96019995e-01 -7.02767432e-01 -1.41078520e+00
-3.45482588e-01 -6.98171973e-01 2.63431877e-01 1.64670968e+00
5.49713492e-01 -1.04199553e+00 2.82669902e-01 -1.81925073e-01
-2.97485083e-01 -4.31857139e-01 -1.38310671e+00 -9.95928943e-01
-3.07102859e-01 -9.20883715e-01 6.74614370e-01 6.84648812e-01
-4.79548812e-01 1.06181830e-01 -3.11745912e-01 1.24208379e+00
7.67842948e-01 -2.11343214e-01 5.22981167e-01 -1.02475750e+00
-2.77255177e-01 1.07352056e-01 -3.05577010e-01 -1.07550943e+00
-2.52118438e-01 -4.24221754e-01 7.05905974e-01 -1.67588091e+00
-5.18277228e-01 -1.03666782e+00 -9.89976645e-01 8.63635466e-02
-1.67313263e-01 4.93177891e-01 -3.82230461e-01 -3.52600873e-01
-4.39600021e-01 3.24138999e-01 6.53162122e-01 1.29266456e-01
-1.49108872e-01 6.91612124e-01 -5.08128524e-01 9.01550293e-01
9.43152428e-01 -6.84882939e-01 -4.66849685e-01 -5.73019743e-01
1.46943986e-01 3.59214470e-03 7.34072998e-02 -1.84621668e+00
5.56907475e-01 1.11583717e-01 4.64238524e-01 -8.15135360e-01
3.20245862e-01 -1.00124347e+00 1.98577985e-01 3.35964113e-01
2.04909623e-01 -1.03412271e-01 1.41141325e-01 8.40104163e-01
-3.28716576e-01 -1.40872225e-01 5.48205256e-01 1.33984193e-01
-4.94019836e-01 -2.49898911e-01 -5.55682600e-01 -4.56806272e-01
7.13640869e-01 -9.21040624e-02 -2.05022261e-01 -7.81369627e-01
-3.17221493e-01 -3.16866457e-01 -3.34160745e-01 2.10163653e-01
4.99985069e-01 -1.30478883e+00 -3.74025613e-01 1.98049635e-01
-1.83920875e-01 -1.35416642e-01 5.70950210e-01 8.23154092e-01
-4.90100235e-01 6.87349379e-01 2.55162925e-01 -5.95737815e-01
-1.52711856e+00 5.97265922e-02 6.33914232e-01 2.94895589e-01
-8.37566704e-03 1.34788239e+00 -1.85766980e-01 -5.06503642e-01
4.42290038e-01 -3.76337647e-01 -3.70116591e-01 -4.62141067e-01
6.53895974e-01 6.51279986e-01 2.60287404e-01 -8.45541656e-01
-6.99486732e-01 9.08265769e-01 6.33375049e-01 -3.83443624e-01
1.00208008e+00 -3.94767284e-01 -5.11208996e-02 4.31244493e-01
1.43009818e+00 1.11813045e+00 -6.50421202e-01 2.86657806e-03
-2.62544632e-01 -7.48892486e-01 3.26189309e-01 -1.32526755e+00
-5.80715239e-01 7.42407143e-01 1.30560267e+00 1.68049291e-01
1.32065475e+00 -2.26914003e-01 6.62637115e-01 5.53573191e-01
7.79123366e-01 -8.56608748e-01 -1.31022424e-01 5.56011856e-01
6.75412416e-01 -9.23322320e-01 -1.80300012e-01 -2.78130770e-01
1.09158494e-01 8.46410692e-01 4.08447951e-01 2.28629455e-01
9.62811708e-01 5.13224125e-01 6.12115562e-01 5.03062606e-01
5.34162391e-03 1.66289788e-02 8.48217458e-02 9.65570688e-01
3.80345464e-01 1.01409808e-01 1.54591715e-02 6.91639721e-01
-8.16322923e-01 -6.12362742e-01 2.10887447e-01 1.05057371e+00
-7.11945176e-01 -9.47138488e-01 -1.05891693e+00 -7.09487051e-02
-8.91582489e-01 -2.13223189e-01 3.85032028e-01 3.14570963e-01
3.32350254e-01 1.77055550e+00 -1.24976255e-01 -5.64232290e-01
5.13555646e-01 -7.53709078e-02 2.47212984e-02 -1.70996726e-01
-2.99819946e-01 4.53944474e-01 2.94952273e-01 -2.27854162e-01
-4.65031862e-01 -5.05398750e-01 -1.29872465e+00 2.07543612e-01
-6.42023146e-01 8.56931806e-01 1.38711679e+00 6.18500113e-01
1.93595335e-01 9.55351233e-01 1.03899169e+00 -4.14809078e-01
-9.01833922e-02 -1.12930048e+00 -7.08332181e-01 -4.12396699e-01
8.30666244e-01 -5.51835299e-01 -9.25339580e-01 -4.04303998e-01]
|
[15.182759284973145, 5.710694789886475]
|
64d07c76-3263-4a20-b651-912cbdc62908
|
ominacs-online-ml-based-iot-network-attack
|
2302.09225
| null |
https://arxiv.org/abs/2302.09225v2
|
https://arxiv.org/pdf/2302.09225v2.pdf
|
OMINACS: Online ML-Based IoT Network Attack Detection and Classification System
|
Several Machine Learning (ML) methodologies have been proposed to improve security in Internet Of Things (IoT) networks and reduce the damage caused by the action of malicious agents. However, detecting and classifying attacks with high accuracy and precision is still a major challenge. This paper proposes an online attack detection and network traffic classification system, which combines stream Machine Learning, Deep Learning, and Ensemble Learning technique. Using multiple stages of data analysis, the system can detect the presence of malicious traffic flows and classify them according to the type of attack they represent. Furthermore, we show how to implement this system both in an IoT network and from an ML point of view. The system was evaluated in three IoT network security datasets, in which it obtained accuracy and precision above 90% with a reduced false alarm rate.
|
['Antônio Abelém', 'Diego Abreu']
|
2023-02-18
| null | null | null | null |
['traffic-classification']
|
['miscellaneous']
|
[ 1.05189867e-02 -5.78456283e-01 -2.21464187e-01 -2.33771130e-02
-4.54245508e-03 -5.00699282e-01 5.59587479e-01 4.68825281e-01
-2.43896008e-01 4.15830195e-01 -3.06613266e-01 -7.50315964e-01
-1.67227224e-01 -1.32986116e+00 -1.35365343e-02 -5.95262349e-01
-1.20820897e-02 3.36895794e-01 4.22827423e-01 5.45520103e-03
3.34900588e-01 7.64418960e-01 -1.39019775e+00 5.79067349e-01
3.54436219e-01 1.62045634e+00 -6.81809425e-01 7.56442606e-01
-2.85778522e-01 1.06536090e+00 -9.27713335e-01 -4.97613549e-01
4.37569231e-01 4.28039469e-02 -5.32494843e-01 -3.91620904e-01
-5.97093068e-02 -2.32073531e-01 -5.06968081e-01 8.88515055e-01
5.59116125e-01 -4.57470477e-01 4.22252119e-01 -1.65199995e+00
5.92694879e-02 8.16947460e-01 -3.34180623e-01 6.28040195e-01
9.91986021e-02 2.12992683e-01 5.64121664e-01 -2.36275777e-01
-1.31406009e-01 1.12830448e+00 4.94231343e-01 4.25037146e-01
-8.21536303e-01 -1.16718864e+00 -1.31214842e-01 5.00607729e-01
-8.09736729e-01 -2.28618041e-01 7.82927334e-01 -4.61302847e-01
8.38045835e-01 -2.92554889e-02 4.54424709e-01 1.13025486e+00
5.36243379e-01 4.31561530e-01 7.34779835e-01 -5.57958856e-02
4.33334440e-01 1.69881418e-01 4.42779452e-01 5.05511045e-01
5.42062581e-01 3.26355994e-01 1.85588494e-01 -1.93884507e-01
1.20216161e-01 6.02449417e-01 6.19992912e-01 2.46091679e-01
-7.25634575e-01 8.72515500e-01 4.66340065e-01 4.63590652e-01
-6.10411108e-01 -2.87742894e-02 9.55427051e-01 5.27121842e-01
3.19591701e-01 -1.26496464e-01 -9.48449910e-01 1.98770966e-03
-4.95745122e-01 -5.85275173e-01 9.97172594e-01 2.11042568e-01
3.59488726e-01 5.93797386e-01 3.08628172e-01 2.57862031e-01
4.23216909e-01 7.73341477e-01 4.32140023e-01 -4.14382398e-01
3.53144228e-01 9.81757045e-01 -4.72593188e-01 -1.13095164e+00
-5.66296577e-01 -3.19891781e-01 -1.12704539e+00 3.35471720e-01
6.20251298e-02 -5.20911336e-01 -6.52226508e-01 1.08445585e+00
3.46671879e-01 6.93598688e-01 1.84967384e-01 -1.20883241e-01
5.78631401e-01 7.91633964e-01 6.22207344e-01 -2.41001278e-01
1.31894255e+00 -1.68510407e-01 -4.74459261e-01 1.02598831e-01
6.32471621e-01 -4.77685034e-01 2.45738253e-01 6.09782696e-01
-5.32895386e-01 -5.87404788e-01 -8.28119814e-01 7.36197531e-01
-9.03986692e-01 -2.25279078e-01 5.29697955e-01 1.33605087e+00
-3.42411935e-01 4.12337780e-01 -6.38236642e-01 -2.94119298e-01
7.59820938e-01 7.25004792e-01 1.15302205e-01 2.99992710e-01
-1.12714756e+00 6.15330875e-01 5.85398495e-01 -3.12279910e-01
-9.41436589e-01 -5.47510982e-01 -4.22935575e-01 8.03106129e-02
-2.52993442e-02 -3.20651382e-01 8.03167343e-01 -6.55270338e-01
-1.28178501e+00 2.23194391e-01 2.95948863e-01 -7.97109067e-01
1.08825043e-01 6.94750920e-02 -1.16323924e+00 8.19875225e-02
-3.37576598e-01 5.05021140e-02 1.00288081e+00 -7.75739253e-01
-9.20037568e-01 -4.91920769e-01 7.83536136e-02 -7.14991212e-01
-6.29633546e-01 2.43739069e-01 7.33765900e-01 -1.75076082e-01
-2.61681527e-01 -6.14133537e-01 -2.06828769e-02 -4.13810879e-01
-1.42596766e-01 -5.45227587e-01 1.90500844e+00 -3.79020989e-01
1.18672204e+00 -1.96060681e+00 -6.33569241e-01 5.36228955e-01
2.31975019e-01 1.17734563e+00 1.35435194e-01 4.12897050e-01
-1.63125962e-01 4.51341689e-01 2.62835771e-01 2.93449074e-01
-3.37341964e-01 2.31045887e-01 -4.68729138e-01 2.33391821e-01
5.64452000e-02 5.06953359e-01 -7.24635184e-01 -2.11756647e-01
8.01594198e-01 5.25122643e-01 -2.90363371e-01 1.93089232e-01
-1.71425283e-01 5.05759895e-01 -6.68424487e-01 7.72165239e-01
5.10493219e-01 -9.37086567e-02 1.46265805e-01 -5.98351419e-01
8.95984322e-02 1.77678600e-01 -1.16151154e+00 2.71768898e-01
-8.27276468e-01 4.12314981e-01 -3.16449910e-01 -1.24328911e+00
1.07460856e+00 6.27307177e-01 9.70317304e-01 -8.22837353e-01
7.64410079e-01 5.88725433e-02 2.12624967e-01 -7.04742610e-01
-4.11075056e-01 1.15703821e-01 -1.03653096e-01 8.42770457e-01
-1.00979321e-01 6.75445259e-01 1.82931319e-01 -1.68282147e-02
1.40908813e+00 -7.93487191e-01 3.72493654e-01 2.41376340e-01
1.12735856e+00 -3.73008251e-01 3.62416774e-01 7.33529270e-01
-5.78908265e-01 -6.92070484e-01 2.76607573e-01 -1.09558821e+00
-7.25311756e-01 -1.05807114e+00 4.59820516e-02 9.75467563e-01
2.87261195e-02 -6.83858097e-02 -2.67402023e-01 -1.17226696e+00
-1.12115256e-01 4.52117205e-01 -2.46440157e-01 -4.61598933e-01
-7.32512116e-01 -9.53683376e-01 8.46370816e-01 3.49448472e-01
9.41935480e-01 -1.36656082e+00 -5.91265500e-01 1.50427118e-01
1.02372088e-01 -1.33800340e+00 2.89395779e-01 1.13350086e-01
-8.26532185e-01 -1.60384774e+00 5.93477070e-01 -6.96683645e-01
3.58707368e-01 2.20636249e-01 8.96697819e-01 3.06598037e-01
-4.12261099e-01 2.83231795e-01 -4.89533931e-01 -8.30683053e-01
-8.53354156e-01 1.15845695e-01 2.03378603e-01 3.33048284e-01
7.25974560e-01 -6.26459897e-01 -4.55343038e-01 4.00137931e-01
-9.43873644e-01 -9.32272613e-01 5.57097554e-01 1.12564303e-01
-1.18212976e-01 8.74784648e-01 1.00947881e+00 -7.71573007e-01
6.15138769e-01 -9.61747468e-01 -7.60360599e-01 3.55533659e-02
-7.31240511e-01 -9.93733108e-02 9.31313455e-01 -5.40766954e-01
-5.59602380e-01 -1.92017972e-01 -4.44612443e-01 -9.07446891e-02
-4.23569113e-01 -1.00338914e-01 -1.96300775e-01 -2.53797710e-01
5.74073911e-01 2.90035445e-04 -1.25327632e-01 -1.80866018e-01
-2.80342698e-02 1.07664824e+00 -1.12049319e-01 -7.96563998e-02
9.89757895e-01 5.42237282e-01 2.91722983e-01 -9.03111517e-01
-7.57424712e-01 -4.08781707e-01 -5.36395907e-01 -4.24433738e-01
8.20811808e-01 -5.64764559e-01 -1.34921455e+00 7.01341391e-01
-9.88114476e-01 9.25431699e-02 -1.54446706e-01 4.28218126e-01
2.19439521e-01 2.75541365e-01 -7.74190366e-01 -1.04456460e+00
-8.15435648e-01 -9.78916228e-01 5.13781071e-01 1.12338491e-01
5.44083379e-02 -1.14085197e+00 -1.33960024e-01 1.47313640e-01
7.21698105e-01 2.66743809e-01 9.70256746e-01 -1.26967013e+00
-3.07242453e-01 -6.58518851e-01 -3.13183278e-01 5.46695292e-01
3.44157845e-01 2.82011986e-01 -7.38107979e-01 -2.74382621e-01
2.88683385e-01 -2.34634429e-02 5.13565004e-01 1.04276516e-01
1.26135802e+00 -6.89641178e-01 -2.29721963e-01 4.16764170e-01
1.48991668e+00 8.62412453e-01 7.77984321e-01 3.02603602e-01
5.02680719e-01 3.67811620e-01 2.74009760e-02 4.68953520e-01
-5.39456680e-03 1.45608485e-01 8.51481736e-01 3.55544716e-01
9.91194993e-02 -4.00069021e-02 5.61157405e-01 4.88086760e-01
3.69381279e-01 -5.45137048e-01 -8.48941922e-01 -2.24067941e-02
-1.43354261e+00 -1.44339144e+00 -2.07659468e-01 1.80432558e+00
-7.08712116e-02 5.29637277e-01 6.51430368e-01 1.11392546e+00
7.58051932e-01 7.78143927e-02 -4.81099576e-01 -7.15984285e-01
2.93507636e-01 4.99691486e-01 4.99907762e-01 2.54598379e-01
-1.34512460e+00 5.63076437e-01 6.11472464e+00 5.37939548e-01
-1.52777755e+00 1.74882576e-01 5.85022092e-01 3.59054178e-01
4.82563585e-01 -5.00503063e-01 -7.13555455e-01 8.72802913e-01
1.61580098e+00 1.68222517e-01 2.34143347e-01 8.75961602e-01
2.92034537e-01 5.09205103e-01 -5.39969206e-01 8.31972063e-01
-2.43951887e-01 -1.09022796e+00 2.49115601e-01 3.70657891e-02
2.55005211e-01 2.59931505e-01 2.56183185e-02 3.44804555e-01
4.75314766e-01 -7.65437365e-01 3.05349194e-02 2.50444293e-01
2.07292676e-01 -1.01928520e+00 1.12822390e+00 3.89007390e-01
-1.31991196e+00 -9.84742165e-01 9.39920247e-02 -2.06070334e-01
1.18817315e-02 6.63114309e-01 -9.05230582e-01 4.06139076e-01
6.37615561e-01 7.07751334e-01 -4.90698218e-01 9.10655141e-01
-1.24583416e-01 9.35774386e-01 -3.22952807e-01 -4.09255683e-01
-4.63883393e-02 1.80900484e-01 3.13709795e-01 1.14174271e+00
1.66315228e-01 3.43933925e-02 3.93385887e-01 4.72051688e-02
-1.02787003e-01 -1.60939515e-01 -6.40146375e-01 1.86935782e-01
5.48597515e-01 1.42093873e+00 -7.97450721e-01 -3.32553953e-01
-3.30328166e-01 1.63367391e-01 -3.80653322e-01 -1.57366082e-01
-8.78467798e-01 -3.67416352e-01 5.26480556e-01 1.39443219e-01
2.19328970e-01 1.59646049e-02 -5.67112386e-01 -9.02453005e-01
-4.61094767e-01 -7.35165417e-01 7.94635117e-01 -2.06533939e-01
-1.46927524e+00 6.92284584e-01 -2.34510973e-01 -1.39302278e+00
4.51126648e-03 -8.58395815e-01 -9.51158524e-01 2.02598050e-02
-1.17258847e+00 -9.60043788e-01 -2.66219229e-01 9.15091991e-01
3.49566877e-01 -6.79759622e-01 7.21732438e-01 7.71309137e-01
-8.85856152e-01 4.03431803e-01 -2.91491240e-01 6.64610565e-01
-1.25971407e-01 -7.73597360e-01 9.40592214e-02 9.09925222e-01
1.00232139e-01 6.67585805e-02 2.90739238e-01 -6.29895210e-01
-1.09701657e+00 -1.46768868e+00 5.65085471e-01 -3.67246687e-01
7.74548113e-01 -5.27657978e-02 -5.31039178e-01 5.70393622e-01
-2.30077673e-02 1.80587977e-01 7.52709687e-01 -3.56544822e-01
-6.88973963e-01 -8.10313761e-01 -1.87624967e+00 1.67379826e-01
3.85994285e-01 -3.54486346e-01 -2.33255461e-01 2.50111699e-01
3.99722040e-01 6.08867288e-01 -8.27826798e-01 6.11592650e-01
5.79285979e-01 -8.74830604e-01 1.15621722e+00 -6.94379032e-01
-3.47697020e-01 -3.25201094e-01 -2.09792759e-02 -8.91005874e-01
-1.50197148e-01 -3.16816777e-01 -6.99498892e-01 1.30233276e+00
1.82362929e-01 -8.85984004e-01 7.64082968e-01 -5.42194284e-02
4.59220707e-01 -3.55125070e-01 -8.16964626e-01 -5.90447366e-01
-1.91602170e-01 -6.20979130e-01 7.28026330e-01 7.24660218e-01
-2.64996290e-01 6.20069861e-01 -2.93136597e-01 4.43263561e-01
8.33565056e-01 -4.70583469e-01 6.05494261e-01 -1.86289012e+00
3.41559291e-01 -4.73693371e-01 -9.25940871e-01 -1.76229388e-01
5.50551042e-02 -7.15501428e-01 -7.27244020e-01 -1.05901730e+00
-3.07045698e-01 -4.31451350e-01 -7.47162998e-01 5.01253963e-01
4.78391528e-01 3.49527627e-01 1.01154493e-02 1.57046705e-01
-6.35760128e-01 -1.71408895e-02 2.27269977e-01 -4.52544481e-01
-8.05346221e-02 6.28714144e-01 -4.15064543e-01 8.43791127e-01
1.47350073e+00 -6.77303374e-01 -3.26917529e-01 -2.15253472e-01
5.66298433e-04 -1.31622851e-01 4.17546332e-01 -1.34071326e+00
2.75924683e-01 -2.43223347e-02 5.42708993e-01 -7.79575706e-01
-7.93714672e-02 -1.38517487e+00 1.15349807e-01 1.27383780e+00
-6.99935853e-02 3.23199689e-01 6.23363890e-02 6.14191055e-01
1.80814967e-01 7.06497654e-02 1.12812579e+00 -1.32198036e-02
-5.52758753e-01 6.63065493e-01 -5.72836459e-01 -2.96918780e-01
1.42670822e+00 3.26661766e-02 -4.83216107e-01 -2.12186664e-01
-5.81821084e-01 -2.08594263e-01 -3.19018304e-01 4.26946431e-01
6.68275595e-01 -1.08193159e+00 -4.74895179e-01 6.07208371e-01
-1.04167633e-01 -7.80202925e-01 -6.07994832e-02 4.17791188e-01
-4.99414265e-01 2.81425446e-01 -3.16875368e-01 -4.02503133e-01
-1.32646406e+00 9.38733637e-01 4.38422322e-01 -5.32702744e-01
-2.84216911e-01 1.12883583e-01 -8.41622829e-01 -2.80655205e-01
4.90830779e-01 9.75033119e-02 -6.70997262e-01 9.71688777e-02
8.51859570e-01 9.15316403e-01 3.47373486e-01 -5.85838437e-01
-5.40853202e-01 4.75706160e-01 4.08577248e-02 4.79537576e-01
1.14481688e+00 8.65617916e-02 -1.23403065e-01 2.37303525e-02
1.25095201e+00 -1.02691725e-01 -3.96104246e-01 -9.05736387e-02
3.48885059e-01 -2.25304738e-01 4.06215228e-02 -8.79490912e-01
-1.57036901e+00 1.01049829e+00 1.13578773e+00 1.13129449e+00
1.25784075e+00 -3.47050458e-01 1.28221560e+00 5.17895401e-01
3.20175081e-01 -6.35951221e-01 3.44273090e-01 5.93391538e-01
-2.12622806e-01 -1.26320827e+00 -2.30150074e-01 -1.78844288e-01
-1.38490852e-02 1.42907083e+00 6.05555832e-01 -3.96076024e-01
1.51690352e+00 4.84094352e-01 -3.53555963e-03 -2.17666715e-01
-7.57446408e-01 -1.99487522e-01 -3.28449607e-01 8.46156359e-01
-9.30420905e-02 6.34902194e-02 -4.41591348e-03 3.17784995e-02
1.15235820e-01 -1.24616725e-02 4.08805668e-01 8.36042404e-01
-7.44144499e-01 -1.18457222e+00 -2.39521876e-01 6.81474805e-01
-9.36991811e-01 1.98883608e-01 -1.75998911e-01 4.43002254e-01
4.33614403e-01 1.60117519e+00 1.71930969e-01 -1.04826343e+00
1.65365636e-01 -4.24389616e-02 -1.24963172e-01 -2.14372665e-01
-8.94054353e-01 -6.04215682e-01 -1.33906424e-01 -4.03539300e-01
-3.78550857e-01 -2.28429884e-01 -9.76811647e-01 -7.31009662e-01
-1.47286594e-01 1.32106483e-01 8.31914604e-01 1.13468957e+00
3.73336375e-01 6.95166767e-01 1.41535294e+00 -2.00980559e-01
-2.70113826e-01 -7.60856509e-01 -1.98046967e-01 4.70433533e-01
2.90616482e-01 -4.01716858e-01 -6.68079257e-01 -3.00934285e-01]
|
[5.207535743713379, 7.193223476409912]
|
efd7dd0f-4529-48bf-9ccc-cd9ad547b6b9
|
instancemotseg-real-time-instance-motion
|
2008.07008
| null |
https://arxiv.org/abs/2008.07008v4
|
https://arxiv.org/pdf/2008.07008v4.pdf
|
Monocular Instance Motion Segmentation for Autonomous Driving: KITTI InstanceMotSeg Dataset and Multi-task Baseline
|
Moving object segmentation is a crucial task for autonomous vehicles as it can be used to segment objects in a class agnostic manner based on their motion cues. It enables the detection of unseen objects during training (e.g., moose or a construction truck) based on their motion and independent of their appearance. Although pixel-wise motion segmentation has been studied in autonomous driving literature, it has been rarely addressed at the instance level, which would help separate connected segments of moving objects leading to better trajectory planning. As the main issue is the lack of large public datasets, we create a new InstanceMotSeg dataset comprising of 12.9K samples improving upon our KITTIMoSeg dataset. In addition to providing instance level annotations, we have added 4 additional classes which is crucial for studying class agnostic motion segmentation. We adapt YOLACT and implement a motion-based class agnostic instance segmentation model which would act as a baseline for the dataset. We also extend it to an efficient multi-task model which additionally provides semantic instance segmentation sharing the encoder. The model then learns separate prototype coefficients within the class agnostic and semantic heads providing two independent paths of object detection for redundant safety. To obtain real-time performance, we study different efficient encoders and obtain 39 fps on a Titan Xp GPU using MobileNetV2 with an improvement of 10% mAP relative to the baseline. Our model improves the previous state of the art motion segmentation method by 3.3%. The dataset and qualitative results video are shared in our website at https://sites.google.com/view/instancemotseg/.
|
['Ahmad El-Sallab', 'Muhammad Helmi', 'Waleed Hamdy', 'Senthil Yogamani', 'Eslam Mohamed', 'Hazem Rashed', 'Mennatullah Siam', 'Mahmoud Ewaisha']
|
2020-08-16
| null | null | null | null |
['motion-segmentation']
|
['computer-vision']
|
[ 2.21973322e-02 1.89049855e-01 -5.39215624e-01 -3.17537725e-01
-8.12077582e-01 -7.97450662e-01 4.54724967e-01 -1.10144891e-01
-6.80544913e-01 4.27161872e-01 -3.46444309e-01 -5.03114760e-01
2.60829151e-01 -7.95317471e-01 -1.16998947e+00 -6.25910342e-01
4.81059328e-02 6.64210021e-01 1.09922194e+00 -2.47493714e-01
2.13460937e-01 4.15371865e-01 -1.71491182e+00 3.59601229e-01
8.37670207e-01 9.71850216e-01 4.58016664e-01 8.58307421e-01
-2.06404878e-03 4.72142220e-01 -3.27493936e-01 -1.20660134e-01
6.79738522e-01 6.61954880e-02 -1.01416576e+00 1.06296875e-01
6.70921326e-01 -4.57520366e-01 -2.39694253e-01 8.75182271e-01
2.08470285e-01 2.07695499e-01 4.48767006e-01 -1.57899737e+00
1.58126764e-02 3.37991983e-01 -6.69027328e-01 3.61827105e-01
-2.60474294e-01 5.01112521e-01 7.55638957e-01 -5.46305776e-01
7.21231163e-01 1.02483475e+00 5.28628826e-01 6.58616662e-01
-9.32772219e-01 -7.39783823e-01 3.61445427e-01 5.21787703e-01
-1.13745284e+00 -4.95057374e-01 5.45736790e-01 -4.56524223e-01
9.58946586e-01 1.01720639e-01 5.30341625e-01 1.00818837e+00
8.33369642e-02 1.13079858e+00 6.46727860e-01 1.11415386e-01
3.19465935e-01 1.89581349e-01 3.34440410e-01 7.69641280e-01
2.67812282e-01 1.11029670e-01 -1.37815326e-02 4.19358641e-01
3.59450907e-01 -1.61557838e-01 -9.87752154e-03 -5.87033093e-01
-1.11815476e+00 8.99691999e-01 6.04262769e-01 -3.12818587e-02
-2.38668956e-02 6.08237386e-01 4.32168484e-01 -1.36729270e-01
1.98916465e-01 -1.83955699e-01 -7.14804173e-01 -2.19611987e-01
-9.96105909e-01 3.69888365e-01 6.21442378e-01 1.18628335e+00
1.11879468e+00 9.54859927e-02 -1.00150384e-01 4.51506734e-01
3.05619478e-01 6.17803574e-01 3.99611592e-01 -1.29162478e+00
5.69280684e-01 6.14387155e-01 1.52869914e-02 -6.04226649e-01
-5.09860456e-01 -3.19261312e-01 -2.12337062e-01 4.95151639e-01
6.21297181e-01 -1.81633815e-01 -1.38453603e+00 1.46200776e+00
6.04899883e-01 4.62296993e-01 4.43264917e-02 1.04196286e+00
9.21275556e-01 6.41021252e-01 1.00632533e-01 4.54105943e-01
1.57733810e+00 -1.55592561e+00 -3.15756738e-01 -6.80067599e-01
1.05057812e+00 -3.63541991e-01 8.78154993e-01 2.56430447e-01
-6.59541965e-01 -5.84834099e-01 -1.09713900e+00 -2.11730018e-01
-5.76354802e-01 1.95490360e-01 8.09658110e-01 8.71358633e-01
-9.65962291e-01 5.11191487e-01 -1.20031762e+00 -3.24623883e-01
7.79744267e-01 3.89391810e-01 -2.77340412e-01 3.24352868e-02
-8.46775532e-01 7.60671675e-01 6.29950762e-01 -1.55430555e-01
-1.01891899e+00 -6.45119548e-01 -9.78529811e-01 -3.29539418e-01
6.45089388e-01 -5.62480986e-01 1.29786682e+00 -1.01800478e+00
-1.20815623e+00 7.16968417e-01 -2.96067685e-01 -7.81111419e-01
8.33328128e-01 -1.37465164e-01 -2.07396805e-01 3.44640821e-01
4.02550548e-01 1.33504665e+00 9.22546089e-01 -1.29210043e+00
-1.19884598e+00 -1.17102548e-01 2.35184550e-01 -3.20327398e-03
2.20135659e-01 -4.08792585e-01 -9.38107550e-01 -3.60052049e-01
-5.75514510e-02 -1.32643270e+00 -3.01010370e-01 -3.81277427e-02
-3.87503803e-01 9.32833552e-03 1.44887900e+00 -4.82000738e-01
7.98144579e-01 -2.12952042e+00 -2.06757426e-01 -8.20182487e-02
5.86324334e-02 2.96428055e-01 -2.02748939e-01 -2.21838295e-01
1.83610380e-01 1.43708035e-01 -5.67472517e-01 -4.44010884e-01
-1.35202035e-01 4.02051181e-01 1.10806130e-01 4.65705901e-01
3.74612689e-01 1.16799092e+00 -8.76435280e-01 -4.62058008e-01
3.79170835e-01 2.54289508e-01 -6.17499828e-01 -2.97942698e-01
-2.86732018e-01 3.80433291e-01 -5.02459049e-01 8.38233113e-01
8.29764187e-01 -3.42452154e-02 -2.69710809e-01 -1.83058858e-01
-1.24277718e-01 -6.61534220e-02 -1.17663515e+00 1.61299229e+00
-2.83118427e-01 8.31921697e-01 8.88493657e-02 -1.05058324e+00
4.73429590e-01 -6.03056047e-03 4.34342414e-01 -6.48503363e-01
1.49855658e-01 2.49183029e-01 1.01684794e-01 -4.17890966e-01
9.63485658e-01 2.06302240e-01 -1.54235736e-01 9.47737508e-03
-5.69657907e-02 -1.04072131e-01 4.34728265e-01 3.12139302e-01
1.12559044e+00 4.44065213e-01 -2.85960525e-01 -3.81463051e-01
3.07927310e-01 7.33519137e-01 5.83885252e-01 6.22801125e-01
-5.50851643e-01 7.46868253e-01 1.72405094e-01 -3.20972562e-01
-8.74622226e-01 -8.94741237e-01 -2.84366488e-01 8.77648056e-01
7.28792727e-01 -1.51195064e-01 -7.73417652e-01 -8.81389916e-01
9.91660878e-02 6.85626090e-01 -5.08982539e-01 3.94196361e-02
-7.20598042e-01 -7.38686264e-01 4.98494506e-01 8.03129137e-01
7.16342926e-01 -8.34929407e-01 -9.40073729e-01 2.29021728e-01
-1.52104601e-01 -1.52889132e+00 -2.90312648e-01 3.03432852e-01
-7.66599715e-01 -1.15158594e+00 -4.45324063e-01 -5.85497677e-01
4.39929098e-01 6.26498520e-01 9.37378466e-01 -1.43363494e-02
-3.25657785e-01 3.69219869e-01 -3.59130234e-01 -4.35701877e-01
-3.86329263e-01 3.38866383e-01 -1.52205274e-01 2.88796145e-02
2.87305146e-01 -1.37914509e-01 -9.89708185e-01 5.29745579e-01
-8.20755422e-01 1.39689982e-01 4.55532074e-01 3.14484119e-01
5.69943190e-01 -1.42795175e-01 4.10194784e-01 -9.00946856e-01
-2.43828073e-01 -6.93489730e-01 -7.99677193e-01 -2.82861710e-01
-4.01371121e-01 -1.81011250e-03 3.70023340e-01 -3.53289723e-01
-7.79733181e-01 5.66367805e-01 -1.43617213e-01 -4.63024646e-01
-4.65064377e-01 -5.36461212e-02 -8.20541680e-02 -2.36508414e-01
4.69128519e-01 -5.11934720e-02 -1.29012719e-01 -1.07258208e-01
5.39873302e-01 4.39573139e-01 6.01338863e-01 -4.15555894e-01
7.98777342e-01 8.43155146e-01 -1.06428629e-02 -9.07428265e-01
-3.78330469e-01 -9.40836966e-01 -5.42293847e-01 -3.20506096e-01
1.22265172e+00 -1.12243283e+00 -6.13181651e-01 2.92007297e-01
-1.03209567e+00 -8.62459421e-01 -1.60020262e-01 3.00971299e-01
-6.33263111e-01 2.91105479e-01 -3.80331129e-01 -5.82387567e-01
5.62106434e-05 -1.57996011e+00 1.37342036e+00 2.29163051e-01
1.21261263e-02 -8.81358922e-01 -4.08888191e-01 6.30032599e-01
2.10686460e-01 2.40914837e-01 3.73875916e-01 -5.56565881e-01
-1.18949509e+00 -9.57707241e-02 -2.26223126e-01 6.29024208e-02
-2.23591283e-01 7.50625953e-02 -1.18770325e+00 -1.71912268e-01
-4.46300447e-01 -4.73478809e-02 1.32962143e+00 4.97545093e-01
1.02022898e+00 2.14194693e-02 -7.38389015e-01 8.47591877e-01
1.49078274e+00 2.94199407e-01 6.77710533e-01 7.75377810e-01
1.05317485e+00 5.37980378e-01 7.38237679e-01 2.58415341e-02
5.94358027e-01 7.91179419e-01 7.36569047e-01 -2.59603299e-02
-2.32794344e-01 1.17642485e-01 3.73476714e-01 2.17420995e-01
-2.89229825e-02 -3.84896785e-01 -9.72379267e-01 9.68652368e-01
-2.00345540e+00 -8.06821465e-01 -7.31741846e-01 1.97916949e+00
2.53961951e-01 3.45642179e-01 3.76309603e-01 1.07400492e-01
5.18842161e-01 1.17673844e-01 -6.22725070e-01 -4.23349142e-01
2.98010949e-02 1.72749013e-02 1.24664414e+00 5.32256305e-01
-1.38689911e+00 1.27137887e+00 4.55256367e+00 1.04279268e+00
-1.04293835e+00 2.58382112e-01 6.65908217e-01 -9.95815024e-02
-3.12847123e-02 1.51539847e-01 -1.34259069e+00 5.82618475e-01
9.95756686e-01 1.04260132e-01 -3.34004052e-02 1.03099728e+00
3.43330264e-01 -5.01260519e-01 -9.20766652e-01 7.45819569e-01
-2.57642835e-01 -1.29657006e+00 -1.71145558e-01 5.50014935e-02
7.18338549e-01 4.89081979e-01 -9.75208357e-02 4.75480199e-01
1.21926896e-01 -7.73424327e-01 1.03803504e+00 1.05229996e-01
3.72265309e-01 -7.60794818e-01 6.05108857e-01 4.32794124e-01
-1.46256268e+00 3.08745615e-02 -2.15807900e-01 1.99786678e-01
4.24723864e-01 2.05288529e-01 -8.66567612e-01 6.13759816e-01
8.28882217e-01 6.00403130e-01 -7.27688372e-01 1.09325337e+00
-4.88008186e-02 7.13319480e-01 -5.28933644e-01 2.57709980e-01
7.09142029e-01 -1.44014969e-01 6.70571506e-01 1.18858612e+00
2.45148867e-01 -1.19395673e-01 3.95593762e-01 7.43377686e-01
1.61701307e-01 -2.52935797e-01 -3.90296280e-01 2.32825980e-01
2.40661487e-01 1.49343145e+00 -1.25778282e+00 -4.70020086e-01
-4.45575595e-01 1.17188787e+00 -5.98198660e-02 3.53363216e-01
-1.16393614e+00 -3.29838902e-01 8.81801009e-01 2.53257096e-01
7.88484037e-01 -3.33979756e-01 -2.72940308e-01 -8.38860452e-01
4.22277264e-02 -4.12655473e-01 1.26080602e-01 -3.99299502e-01
-5.66835105e-01 4.14605230e-01 6.87288791e-02 -1.19955719e+00
-2.40466893e-01 -7.84565508e-01 -5.75587273e-01 5.07450700e-01
-1.76581764e+00 -1.10072541e+00 -6.29823744e-01 3.17603707e-01
9.02968943e-01 2.06705689e-01 1.67347640e-01 4.43426698e-01
-6.48834407e-01 4.77095753e-01 -1.11125447e-01 5.15919365e-02
4.18401033e-01 -1.16554129e+00 6.78626001e-01 1.00771713e+00
-6.67814687e-02 4.35505615e-04 6.46621764e-01 -6.47660911e-01
-1.28222120e+00 -1.68211925e+00 2.96525806e-01 -9.07151997e-01
5.49139917e-01 -3.56152654e-01 -9.68904257e-01 6.78255320e-01
-1.25800252e-01 3.78280133e-01 5.82703017e-02 -5.74967444e-01
8.75434130e-02 6.05539382e-02 -1.02285469e+00 5.09473145e-01
1.24253583e+00 -2.90498827e-02 -1.81928009e-01 1.94951773e-01
9.01115954e-01 -6.94939435e-01 -3.97876143e-01 5.87845445e-01
3.86219174e-01 -9.77316856e-01 9.81954873e-01 -3.27035815e-01
3.48533839e-01 -7.16450751e-01 -1.04347635e-02 -9.48200405e-01
-1.00107864e-01 -2.48414561e-01 -1.56089634e-01 9.89793122e-01
5.66838324e-01 -6.19311273e-01 1.21339238e+00 5.79254270e-01
-5.92284858e-01 -5.95877886e-01 -9.14705813e-01 -1.07526898e+00
3.45517285e-02 -9.75268841e-01 3.59284937e-01 6.70015574e-01
-5.68526864e-01 1.12830743e-01 -5.40269278e-02 4.23457682e-01
4.55299973e-01 1.02270380e-01 1.07622790e+00 -8.13466847e-01
-2.97401905e-01 -5.78586876e-01 -6.83323443e-01 -1.30406678e+00
1.77708864e-01 -1.01642931e+00 2.81692237e-01 -1.59849036e+00
-1.28868409e-02 -5.51703036e-01 1.04950048e-01 5.64831376e-01
-1.31813884e-01 6.59848154e-01 1.82324067e-01 2.91517358e-02
-7.23954499e-01 2.72101343e-01 1.08508062e+00 -2.86498696e-01
-3.48956376e-01 1.09026588e-01 -3.13592821e-01 6.69750810e-01
1.02938735e+00 -4.94255096e-01 -4.14803147e-01 -3.18899274e-01
-2.06627995e-01 -1.76906079e-01 7.05477476e-01 -1.19140780e+00
1.56070858e-01 2.32296381e-02 4.95468378e-02 -7.34124541e-01
4.51679379e-01 -7.43533432e-01 9.66052115e-02 5.91756225e-01
2.63210624e-01 -1.01324379e-01 7.18757212e-01 6.96953416e-01
1.01901460e-02 -3.54790598e-01 7.92698026e-01 -1.53828248e-01
-1.59682131e+00 4.85172808e-01 -5.51252007e-01 1.00495331e-01
1.25262690e+00 -7.15431213e-01 -4.88968283e-01 -1.08722702e-01
-4.84700203e-01 5.68718612e-01 5.98659217e-01 6.57172322e-01
3.07515979e-01 -9.96056676e-01 -4.67945069e-01 -2.04176269e-02
3.04044873e-01 3.59485507e-01 2.69931734e-01 9.77252841e-01
-7.80275881e-01 4.72731739e-01 -9.81724113e-02 -1.02950525e+00
-1.16094553e+00 4.40043271e-01 3.31525296e-01 3.67458016e-01
-8.13193023e-01 6.68534458e-01 5.19793868e-01 -3.28606486e-01
-7.56242573e-02 -7.33858168e-01 -1.65362403e-01 -1.29851773e-02
3.54635686e-01 5.19017875e-01 2.18665302e-01 -9.25433636e-01
-5.65447450e-01 6.08701646e-01 5.38756922e-02 6.38502603e-03
9.49456751e-01 -1.49115145e-01 4.83289063e-01 3.08967739e-01
1.27064657e+00 -1.50910199e-01 -1.73581147e+00 3.82978827e-01
1.02168255e-01 -3.76543194e-01 1.53825447e-01 -4.58005399e-01
-1.27768207e+00 8.15194964e-01 8.23049068e-01 1.15099605e-02
7.68203139e-01 1.39013335e-01 9.89236355e-01 1.73003823e-01
5.36984384e-01 -1.06680834e+00 -1.62354589e-01 5.01155019e-01
2.64192432e-01 -1.70039880e+00 -3.02628696e-01 -6.44956827e-01
-5.55977762e-01 9.18444514e-01 8.01430702e-01 -7.55655840e-02
2.16627866e-01 3.18626523e-01 1.10093959e-01 -6.75832108e-02
-4.03833985e-01 -7.05421805e-01 3.28202218e-01 6.56817615e-01
-1.61155090e-02 8.08241591e-02 -1.81247160e-01 4.72176820e-01
-1.32516190e-01 -2.19495341e-01 5.36387801e-01 9.66113746e-01
-5.69447994e-01 -9.36064303e-01 -1.94407687e-01 3.39562804e-01
-3.39830488e-01 1.21570624e-01 5.95051199e-02 1.01350152e+00
3.36963713e-01 9.65290010e-01 2.29123950e-01 -3.40849817e-01
2.39450157e-01 -8.95295441e-02 2.37296179e-01 -5.26980340e-01
-3.36226881e-01 -2.11939499e-01 3.10045660e-01 -8.56499612e-01
-3.67084265e-01 -6.34979188e-01 -1.71893668e+00 -1.31591126e-01
-2.65576065e-01 -1.29283831e-01 8.67532790e-01 9.42360759e-01
4.77692634e-01 6.56238914e-01 1.94744796e-01 -1.32776654e+00
6.88824877e-02 -4.24760252e-01 -1.85801238e-01 3.45221639e-01
3.64821583e-01 -6.90994620e-01 -3.29934210e-01 1.04140885e-01]
|
[8.189046859741211, -1.4365565776824951]
|
148f2f14-0a5d-44ff-b232-24ceb248e84e
|
rrf102-meeting-the-trec-covid-challenge-with
|
2010.002
| null |
https://arxiv.org/abs/2010.00200v1
|
https://arxiv.org/pdf/2010.00200v1.pdf
|
RRF102: Meeting the TREC-COVID Challenge with a 100+ Runs Ensemble
|
In this paper, we report the results of our participation in the TREC-COVID challenge. To meet the challenge of building a search engine for rapidly evolving biomedical collection, we propose a simple yet effective weighted hierarchical rank fusion approach, that ensembles together 102 runs from (a) lexical and semantic retrieval systems, (b) pre-trained and fine-tuned BERT rankers, and (c) relevance feedback runs. Our ablation studies demonstrate the contributions of each of these systems to the overall ensemble. The submitted ensemble runs achieved state-of-the-art performance in rounds 4 and 5 of the TREC-COVID challenge.
|
['Ryan Mcdonald', 'Michael Bendersky', 'Honglei Zhuang', 'Keith Hall', 'Shuguang Han', 'Ji Ma']
|
2020-10-01
| null | null | null | null |
['semantic-retrieval']
|
['natural-language-processing']
|
[ 1.92012697e-01 -2.53833890e-01 6.80494383e-02 -4.09446090e-01
-1.70321655e+00 -6.93091631e-01 8.66233051e-01 4.17283416e-01
-1.02228773e+00 8.78559530e-01 6.73445225e-01 -2.29436353e-01
-6.02209508e-01 3.78457978e-02 -1.49296923e-02 -4.55363899e-01
-3.37874830e-01 9.81153548e-01 5.98228633e-01 -5.66456616e-01
2.25834742e-01 1.97549835e-01 -1.33440518e+00 8.12789917e-01
6.86900795e-01 7.39067376e-01 -6.39329627e-02 8.98688853e-01
3.77995342e-01 4.02505636e-01 -4.74568963e-01 -4.31080967e-01
-1.42945454e-01 3.53046991e-02 -8.95888925e-01 -8.54221225e-01
6.10561185e-02 -2.87198890e-02 -2.99993992e-01 7.11120784e-01
8.92385066e-01 2.28731856e-01 7.66863942e-01 -5.58230877e-01
-1.25625253e-01 7.12567687e-01 -2.64686048e-01 6.40169621e-01
5.76392770e-01 -9.14410278e-02 1.06441414e+00 -1.06746829e+00
9.78282630e-01 1.08112848e+00 5.57357132e-01 4.66481894e-01
-1.13638830e+00 -6.70555353e-01 -4.21788804e-02 2.75117420e-02
-1.53874791e+00 -6.58607781e-01 2.66796704e-02 -5.46733379e-01
1.20463026e+00 3.43889713e-01 2.67964542e-01 1.07299960e+00
3.77686471e-01 4.43190515e-01 8.98557782e-01 -2.19049871e-01
2.69087911e-01 -1.32339180e-01 6.91961825e-01 3.20399433e-01
2.61009932e-01 1.61649153e-01 -6.07568562e-01 -1.19202173e+00
-1.18971303e-01 -2.56601423e-01 -2.52808064e-01 2.46326983e-01
-1.22592068e+00 7.93049514e-01 1.40744880e-01 5.12517214e-01
-5.26023448e-01 9.90863219e-02 5.60007930e-01 2.77399242e-01
6.61219418e-01 8.75349045e-01 -6.55559897e-01 -1.08167574e-01
-1.20577204e+00 5.13795495e-01 7.67222583e-01 5.76277614e-01
-5.44483997e-02 -7.47066081e-01 -7.09276795e-01 9.21196282e-01
3.03740621e-01 5.80235004e-01 5.79386115e-01 -6.91319108e-01
1.20398782e-01 1.89932540e-01 2.73322344e-01 -6.41741812e-01
-7.72221088e-01 -5.42022049e-01 -3.09568137e-01 -5.14334559e-01
-1.05984434e-01 -1.67039372e-02 -1.44740605e+00 1.62405252e+00
5.22790365e-02 1.04255769e-02 -2.17928435e-03 7.27670133e-01
1.03565490e+00 2.01937929e-01 4.97676402e-01 -1.73196808e-01
1.82919610e+00 -6.19010806e-01 -9.58526433e-01 2.22931653e-02
5.88655055e-01 -9.98890102e-01 1.26792550e-01 4.60631430e-01
-1.31199610e+00 -1.65946379e-01 -1.03341115e+00 1.20111182e-01
-6.23485029e-01 -1.67360902e-01 4.03963149e-01 5.17839551e-01
-1.45776558e+00 4.86057401e-01 -7.22462893e-01 -3.26889366e-01
-5.39017022e-02 4.51498330e-01 -3.81815135e-01 -2.70931005e-01
-1.77416229e+00 1.19133151e+00 4.48679477e-01 1.01952486e-01
-9.63636518e-01 -5.96819758e-01 -3.61152709e-01 -1.40113190e-01
3.01351726e-01 -7.77749002e-01 1.11182511e+00 1.06454328e-01
-8.46689403e-01 8.26628029e-01 -2.49726966e-01 -2.68162876e-01
3.57108444e-01 -5.31169474e-01 -6.76980376e-01 3.51030856e-01
2.59271383e-01 5.27029216e-01 2.93390721e-01 -7.79493988e-01
-6.99020863e-01 -4.22956645e-01 -4.39266145e-01 3.42015386e-01
9.02726278e-02 6.34423912e-01 -9.25036192e-01 -5.55055618e-01
-3.22316028e-02 -1.07534599e+00 -4.91743565e-01 -7.88141787e-01
-2.39171371e-01 -7.43648350e-01 1.51977837e-01 -8.59790266e-01
1.58796227e+00 -2.00201845e+00 1.16069958e-01 6.39699757e-01
4.54994977e-01 3.17367643e-01 -2.97391355e-01 5.16305566e-01
-8.07464197e-02 4.56542820e-01 4.08961117e-01 -2.82748550e-01
-2.09205925e-01 -1.85690910e-01 -1.40045911e-01 3.10794324e-01
3.39099169e-02 8.44415247e-01 -1.21871805e+00 -7.52190650e-01
-2.85342932e-01 4.06003475e-01 -3.30324501e-01 -1.32737204e-01
5.76551184e-02 2.62605578e-01 -8.07200730e-01 6.50765657e-01
2.12087870e-01 -5.07325530e-01 4.06319708e-01 -1.48317382e-01
1.37992576e-01 5.03772914e-01 -5.83751023e-01 1.93440092e+00
3.61076653e-01 1.13858812e-01 -8.24831501e-02 -4.46196049e-01
3.10370654e-01 6.51306748e-01 6.80758476e-01 -5.14300227e-01
-3.09278015e-02 5.45437574e-01 2.05977168e-03 -1.41356006e-01
8.76677513e-01 1.87909100e-02 -5.53730726e-01 5.41042209e-01
3.81157577e-01 -1.78957619e-02 4.50532049e-01 6.90568507e-01
1.55407572e+00 -2.30513021e-01 4.54549223e-01 -6.10533953e-01
4.51270968e-01 1.33191114e-02 5.66569805e-01 1.28554475e+00
-2.85663396e-01 7.56804109e-01 1.17438763e-01 -3.89126867e-01
-8.44466805e-01 -9.44130003e-01 -4.22576606e-01 1.37346041e+00
-2.60335296e-01 -8.49598885e-01 -4.32518721e-01 -5.98281980e-01
-3.57264765e-02 3.51006538e-01 -8.63950014e-01 -1.66887805e-01
-4.40927505e-01 -8.27496588e-01 1.06916988e+00 3.18605572e-01
-1.91669986e-01 -7.56313503e-01 -2.79589802e-01 3.65185797e-01
-6.40424728e-01 -9.97410357e-01 -6.85003042e-01 3.44877779e-01
-5.31472862e-01 -1.07570982e+00 -9.71138299e-01 -2.43798167e-01
1.81759909e-01 1.05248734e-01 1.19248569e+00 1.69008970e-01
-3.25464666e-01 5.04393697e-01 -5.72386384e-01 -5.54552376e-01
-1.52755111e-01 4.30730373e-01 2.91114241e-01 -6.60712540e-01
4.64178085e-01 1.25443190e-01 -8.69264901e-01 4.90254045e-01
-7.20454931e-01 -4.04712230e-01 4.51434642e-01 9.74602640e-01
5.25377333e-01 -3.08334827e-01 4.82465237e-01 -9.50987399e-01
1.12059534e+00 -4.45620239e-01 -2.88461119e-01 7.27332532e-01
-9.88248348e-01 1.31516203e-01 -3.77674162e-01 -9.71981585e-02
-7.34868169e-01 -9.05626491e-02 -7.60860071e-02 -2.01160274e-02
5.24323523e-01 9.72114503e-01 5.43965459e-01 4.76942323e-02
1.02963614e+00 -7.95315132e-02 -2.70527333e-01 -4.79898572e-01
3.75344098e-01 8.12075019e-01 5.27555585e-01 -6.89369380e-01
5.94573438e-01 7.59227052e-02 -2.71913856e-01 -4.17929292e-01
-8.98211300e-01 -1.04552996e+00 -2.37101570e-01 -1.30053490e-01
1.10242999e+00 -1.32345819e+00 -3.71531337e-01 1.61888823e-01
-1.15845692e+00 1.17512509e-01 1.07657909e-01 5.35267413e-01
-3.82520519e-02 2.17760324e-01 -7.62276709e-01 -6.17486656e-01
-8.64553392e-01 -1.19289243e+00 1.39645457e+00 1.38191402e-01
-5.63549042e-01 -7.66215205e-01 7.17501760e-01 5.15900731e-01
6.35193169e-01 -4.17496078e-03 5.57364881e-01 -1.33006799e+00
8.16075802e-02 -7.12275922e-01 -1.09148338e-01 -9.87757817e-02
-1.79685667e-01 -2.42806450e-01 -1.04056454e+00 -5.76903462e-01
-5.30723095e-01 -5.86529374e-01 1.23472273e+00 3.35613221e-01
7.93212116e-01 2.75283933e-01 -7.47734725e-01 6.50604740e-02
1.06364048e+00 2.28061646e-01 6.09039366e-01 1.11415334e-01
-1.84829235e-02 3.93185705e-01 5.95668018e-01 2.33408615e-01
2.05911607e-01 7.77842224e-01 -2.83539891e-01 7.87228420e-02
2.16427878e-01 1.27763703e-01 -1.83148026e-01 8.75192225e-01
-5.16944766e-01 -2.13145345e-01 -1.19796014e+00 4.29468662e-01
-1.97285271e+00 -7.47032940e-01 2.69771278e-01 2.09779358e+00
1.17884624e+00 2.35059023e-01 -8.77925977e-02 -4.46466148e-01
4.66884285e-01 -7.54783303e-02 -2.69454807e-01 -1.19846068e-01
-1.86322436e-01 5.24103224e-01 4.80881363e-01 4.23193753e-01
-1.29409432e+00 8.19968760e-01 8.53361988e+00 1.02443767e+00
-5.84400952e-01 2.78731912e-01 3.77948791e-01 -3.78744841e-01
-2.21168369e-01 -2.28091657e-01 -8.79161775e-01 1.84219822e-01
1.42644346e+00 -4.49290752e-01 3.25463474e-01 5.06849051e-01
-2.12169766e-01 -3.37108709e-02 -8.61384213e-01 6.25797629e-01
1.68919668e-01 -1.18734443e+00 -1.24713674e-01 2.83318549e-01
6.81963563e-01 7.12718785e-01 -1.28125235e-01 5.73215663e-01
9.29571927e-01 -1.14259577e+00 3.09739411e-01 7.65198886e-01
9.79264975e-01 -2.34616265e-01 1.26128495e+00 -4.34269793e-02
-8.81309688e-01 4.59800251e-02 -1.50800779e-01 7.40908146e-01
2.38975212e-01 7.45867729e-01 -7.04995811e-01 1.01654506e+00
8.42561066e-01 3.66052091e-01 -7.52342343e-01 1.17945898e+00
7.37300515e-02 5.39118350e-01 -4.91250455e-01 -6.01951703e-02
2.44369641e-01 7.20615149e-01 6.12090588e-01 1.55484080e+00
1.16821937e-01 5.09544551e-01 2.80439794e-01 1.67798683e-01
-1.21194132e-01 1.79351482e-03 -2.32378617e-01 -2.29285419e-01
5.39118588e-01 1.22264767e+00 -6.08312905e-01 -6.57191336e-01
1.67904094e-01 4.82899904e-01 2.73055673e-01 4.49107736e-01
-4.86507744e-01 -3.82778227e-01 4.13318127e-01 -2.98850179e-01
1.68551564e-01 2.50531942e-01 2.62139402e-02 -1.01967716e+00
-3.78547490e-01 -9.96989906e-01 1.11931312e+00 -7.19160676e-01
-1.36412382e+00 1.00091457e+00 2.25482225e-01 -8.99518013e-01
-4.41707283e-01 -3.38671565e-01 -1.09642684e-01 1.24313343e+00
-1.20803952e+00 -6.14871979e-01 9.79366228e-02 4.65408683e-01
1.04110986e-01 -4.43966657e-01 1.12602746e+00 3.39508384e-01
-1.15419671e-01 6.15250111e-01 3.05520713e-01 -1.20289385e-01
1.22275090e+00 -1.12566245e+00 2.81240940e-01 3.77116948e-01
-3.12139034e-01 1.40422261e+00 7.38421142e-01 -9.40093994e-01
-9.28407192e-01 -7.00497031e-01 1.26321220e+00 -8.19574654e-01
5.99816024e-01 -1.41089037e-01 -7.43293822e-01 3.52145344e-01
1.05807222e-01 -3.10951173e-01 1.01302850e+00 8.36684823e-01
-3.90396655e-01 1.24574825e-01 -9.74528551e-01 2.46805534e-01
7.41279423e-01 -7.65112460e-01 -9.89060402e-01 4.41507608e-01
5.90651751e-01 -3.58860999e-01 -1.04084337e+00 8.10904562e-01
1.05646169e+00 -3.10411811e-01 1.15936875e+00 -1.10315132e+00
2.16142282e-01 -2.03555524e-01 -1.87031135e-01 -1.22043610e+00
-7.30254412e-01 -5.38183331e-01 1.75448880e-01 5.23101389e-01
7.60306120e-01 -3.51593077e-01 2.17831418e-01 7.65485764e-01
-7.82895461e-02 -4.89315718e-01 -1.03689599e+00 -4.59010214e-01
1.79618746e-01 -1.89460903e-01 2.11662307e-01 6.56633556e-01
2.90657461e-01 5.30330896e-01 -3.77372533e-01 -3.05850476e-01
4.78811592e-01 -5.34184277e-01 1.84475213e-01 -1.49261796e+00
-3.08558553e-01 -4.32299346e-01 -2.26242006e-01 -5.44582605e-01
-4.32550371e-01 -8.99758279e-01 3.71455580e-01 -1.51147342e+00
7.75788903e-01 -2.74156272e-01 -1.15656364e+00 4.75860476e-01
-6.68771684e-01 3.36584955e-01 -5.74976765e-02 5.87882936e-01
-1.36901057e+00 -3.35535444e-02 6.90387785e-01 -6.01756386e-02
-2.04098038e-02 -3.40296328e-01 -1.04569376e+00 1.61174893e-01
3.30906332e-01 -7.20372796e-01 -3.29890579e-01 -2.65393645e-01
6.18987322e-01 2.27243796e-01 -1.61347851e-01 -5.02331376e-01
6.16785347e-01 2.23380715e-01 4.95724022e-01 -9.19820607e-01
3.28270733e-01 -2.04236001e-01 2.86428064e-01 6.34300590e-01
-6.51322484e-01 1.73151717e-01 2.93705821e-01 7.04533279e-01
-1.32653728e-01 -2.56042331e-02 3.49390090e-01 -2.05609456e-01
-3.10037017e-01 9.37460922e-04 -5.52678823e-01 5.26763424e-02
4.60702568e-01 3.32966357e-01 -7.28775620e-01 -2.47283861e-01
-1.03859949e+00 8.92627001e-01 -9.01044235e-02 4.14259017e-01
4.55040723e-01 -1.05164146e+00 -1.10826433e+00 -3.12556624e-01
5.15841484e-01 -4.97077584e-01 3.64147514e-01 9.99674499e-01
-2.43020132e-01 1.05532813e+00 1.67215005e-01 -5.04974961e-01
-1.51328337e+00 2.70844519e-01 1.07215054e-01 -1.27789652e+00
-3.37274581e-01 7.95607269e-01 5.85458726e-02 -4.20490175e-01
2.55440414e-01 2.29432449e-01 -4.54516053e-01 2.10127637e-01
1.11457169e+00 2.91664768e-02 4.12795365e-01 -1.52327344e-01
-8.30852926e-01 2.99406260e-01 -7.07973182e-01 -6.64381325e-01
1.14336681e+00 5.58549166e-02 -2.37739999e-02 2.17828467e-01
9.98438418e-01 -2.61058658e-01 -1.05945691e-01 -4.86013532e-01
4.50087965e-01 1.91315144e-01 3.16576988e-01 -1.47368026e+00
-2.69278318e-01 2.04453319e-01 7.32099414e-01 -7.56581500e-02
8.70049119e-01 1.19352534e-01 5.10222197e-01 6.28099561e-01
4.86989737e-01 -1.25717926e+00 -2.24112242e-01 6.53626502e-01
7.04019725e-01 -1.05320656e+00 4.90507901e-01 1.91986952e-02
-5.87214410e-01 7.34778523e-01 -1.92049071e-01 2.54329413e-01
9.90654647e-01 1.42150506e-01 -2.23204121e-02 -7.30400801e-01
-1.45736647e+00 -2.42978722e-01 9.14713442e-01 7.14927241e-02
6.75799370e-01 7.19491467e-02 -1.07198691e+00 7.06316710e-01
1.80307359e-01 2.92864352e-01 -1.50038719e-01 1.06044161e+00
-4.17374492e-01 -1.06948817e+00 -1.64203152e-01 7.38705277e-01
-9.09893274e-01 -4.37440515e-01 -5.69503784e-01 4.56201524e-01
-3.38488251e-01 1.12683320e+00 -4.23188150e-01 -5.90493739e-01
3.95339310e-01 3.88537049e-01 1.69311851e-01 -4.23109412e-01
-9.56983209e-01 5.87666988e-01 6.01486683e-01 -7.64174700e-01
-3.55411410e-01 -7.96848297e-01 -8.42616618e-01 3.31436731e-02
-4.31869566e-01 8.14956665e-01 7.58957267e-01 7.43094027e-01
3.73181015e-01 6.10180020e-01 3.20485175e-01 -3.69683146e-01
-8.64041090e-01 -1.36995375e+00 -4.63954896e-01 3.91391397e-01
1.86171860e-01 -7.15322196e-01 -3.57309163e-01 -3.45471621e-01]
|
[8.823161125183105, 8.613633155822754]
|
7b798cbd-c90f-4869-9770-261c1c4ba3e0
|
classification-of-us-supreme-court-cases
|
2304.08649
| null |
https://arxiv.org/abs/2304.08649v2
|
https://arxiv.org/pdf/2304.08649v2.pdf
|
Classification of US Supreme Court Cases using BERT-Based Techniques
|
Models based on bidirectional encoder representations from transformers (BERT) produce state of the art (SOTA) results on many natural language processing (NLP) tasks such as named entity recognition (NER), part-of-speech (POS) tagging etc. An interesting phenomenon occurs when classifying long documents such as those from the US supreme court where BERT-based models can be considered difficult to use on a first-pass or out-of-the-box basis. In this paper, we experiment with several BERT-based classification techniques for US supreme court decisions or supreme court database (SCDB) and compare them with the previous SOTA results. We then compare our results specifically with SOTA models for long documents. We compare our results for two classification tasks: (1) a broad classification task with 15 categories and (2) a fine-grained classification task with 279 categories. Our best result produces an accuracy of 80\% on the 15 broad categories and 60\% on the fine-grained 279 categories which marks an improvement of 8\% and 28\% respectively from previously reported SOTA results.
|
['John E. Ortega', 'Adam Meyers', 'Shubham Vatsal']
|
2023-04-17
| null | null | null | null |
['part-of-speech-tagging']
|
['natural-language-processing']
|
[-9.04061273e-02 9.76898894e-02 -8.73509496e-02 -5.76258957e-01
-1.09000039e+00 -7.62591660e-01 1.03782785e+00 5.67624092e-01
-7.52967775e-01 1.08733356e+00 5.89931011e-01 -9.58909929e-01
-2.58008510e-01 -9.88148212e-01 -4.38217342e-01 -3.00086021e-01
1.24769087e-03 7.10081518e-01 2.13143393e-01 -3.10299337e-01
3.71522605e-01 8.10204923e-01 -1.14341962e+00 7.16368556e-01
5.50004959e-01 8.35600317e-01 -1.40842125e-01 8.53258908e-01
-6.61350191e-01 1.03895569e+00 -5.90902150e-01 -8.68607759e-01
2.92377651e-01 -1.39911994e-01 -1.26752305e+00 -6.47338390e-01
4.85046804e-01 2.11177737e-01 -7.81181306e-02 9.18088377e-01
5.24689257e-01 2.08254829e-01 1.00236726e+00 -8.99965525e-01
-7.64098942e-01 8.86368454e-01 -3.32195014e-01 5.84555686e-01
3.33068043e-01 -4.38911766e-01 1.25637376e+00 -9.08470511e-01
8.14750016e-01 1.17429399e+00 8.25345993e-01 4.42703307e-01
-8.78777981e-01 -7.94614077e-01 8.96640867e-03 3.67578298e-01
-1.30494320e+00 -4.34093922e-01 2.36991525e-01 -6.77109241e-01
1.50542831e+00 7.70948604e-02 4.46494184e-02 8.05497229e-01
5.90707302e-01 5.08393586e-01 1.31240630e+00 -6.61699712e-01
1.45558208e-01 5.74360453e-02 6.57284200e-01 4.73473877e-01
3.10034275e-01 -1.56284273e-02 -6.47706687e-02 -2.02235907e-01
5.02549589e-01 -2.53491133e-01 2.69875228e-01 1.85339227e-01
-1.20436025e+00 8.63010705e-01 2.95365125e-01 1.10147715e+00
-5.65219164e-01 2.08802130e-02 5.54130435e-01 3.77234936e-01
2.67069101e-01 5.53181112e-01 -6.85352802e-01 -4.63735998e-01
-9.66187179e-01 1.05420999e-01 9.94987190e-01 1.02616596e+00
4.71635938e-01 -9.23423916e-02 -3.13313782e-01 1.08828902e+00
4.97260652e-02 3.68746966e-01 5.47186196e-01 -4.19808686e-01
8.45958948e-01 3.28206301e-01 2.20034167e-01 -5.60635388e-01
-4.01223719e-01 -3.92192662e-01 -9.41495836e-01 -1.71672311e-02
4.33986247e-01 -1.82747960e-01 -1.22982085e+00 1.47879708e+00
-2.69158840e-01 -2.24076480e-01 3.41016859e-01 3.30533117e-01
9.42621171e-01 1.06440651e+00 6.58163965e-01 -1.73010841e-01
1.57117593e+00 -7.26184428e-01 -7.15290546e-01 -7.92816281e-03
8.67184281e-01 -7.81178474e-01 3.78633261e-01 2.45355427e-01
-8.48062813e-01 -6.26512527e-01 -6.34096801e-01 -1.40698418e-01
-9.42934811e-01 3.40601504e-01 6.29559338e-01 7.20076144e-01
-1.08450174e+00 6.09451890e-01 -5.70651948e-01 -7.16279447e-01
3.06897491e-01 2.77081430e-01 -6.37769938e-01 1.26956761e-01
-1.27470791e+00 1.35927773e+00 5.12215674e-01 -1.26516670e-01
-6.15295291e-01 -3.30119163e-01 -8.34408998e-01 2.83469826e-01
6.60204515e-02 -2.08966479e-01 1.15536392e+00 -3.66620332e-01
-1.16786909e+00 1.06056070e+00 -2.30797723e-01 -7.02440381e-01
1.51782349e-01 -1.68885812e-01 -9.63140965e-01 -1.85745671e-01
4.72339958e-01 6.41061008e-01 9.01451781e-02 -6.92647696e-01
-9.83337402e-01 -1.95145547e-01 1.10687882e-01 -2.44766593e-01
-1.47024298e-03 4.31915849e-01 3.03430617e-01 -6.42348409e-01
-2.40632340e-01 -7.96952188e-01 -1.05149411e-01 -6.20196462e-01
-4.17878747e-01 -6.92409933e-01 2.44127050e-01 -8.32675517e-01
1.45799434e+00 -1.91554546e+00 -2.10229471e-01 -5.57469502e-02
-2.22674727e-01 4.40920085e-01 -1.73419520e-01 7.58376122e-01
-6.37454510e-01 4.86766040e-01 3.23723741e-02 -6.02986515e-02
1.71113387e-01 1.70357525e-01 -4.08809662e-01 1.54586390e-01
8.62121210e-02 7.42742717e-01 -7.40940154e-01 -4.96016920e-01
-1.05869537e-02 -2.86498442e-02 -2.00481787e-01 6.38424158e-02
4.68347937e-01 1.70101114e-02 -4.11979735e-01 6.29298270e-01
3.95742178e-01 8.06431398e-02 -3.14426385e-02 1.23873577e-02
-3.93651009e-01 7.03847587e-01 -8.69046628e-01 1.39810121e+00
-7.72155464e-01 7.55360544e-01 -2.74615079e-01 -1.12744737e+00
1.14069092e+00 6.16548717e-01 2.35119723e-02 -5.97023606e-01
9.23325270e-02 3.41440856e-01 3.02077174e-01 -1.84730783e-01
6.94143832e-01 -6.49731278e-01 -4.21211928e-01 1.88700691e-01
3.79059076e-01 1.90869734e-01 4.98259068e-01 1.49357719e-02
1.45684123e+00 -1.73296869e-01 8.77236307e-01 -5.88479459e-01
5.88442385e-01 1.31536841e-01 6.63655400e-01 8.42679560e-01
-2.61022627e-01 4.07841474e-01 6.46902978e-01 -7.06280947e-01
-1.22879672e+00 -8.64621282e-01 -4.56167907e-01 9.36437547e-01
-4.22684878e-01 -3.49297225e-01 -4.05533433e-01 -1.03811884e+00
-1.82310432e-01 1.10008764e+00 -6.94867849e-01 3.22995275e-01
-5.04727721e-01 -6.53089523e-01 9.72099423e-01 8.74677896e-01
6.09953821e-01 -1.30085528e+00 -1.79866686e-01 4.94189769e-01
7.78592676e-02 -1.20098555e+00 7.67759830e-02 6.56655371e-01
-6.40637577e-01 -8.58567595e-01 -7.65951514e-01 -8.88228714e-01
1.84301704e-01 -5.04319847e-01 1.04019332e+00 -5.45567393e-01
9.58060473e-02 -5.34171984e-02 -6.61876321e-01 -4.72793311e-01
-5.87372184e-01 2.84633100e-01 4.70737517e-02 -2.64964283e-01
7.19523489e-01 -2.93289989e-01 1.09478332e-01 1.13114081e-01
-7.86870301e-01 -2.58154720e-01 8.20454895e-01 9.93166924e-01
1.17427267e-01 7.83318933e-03 8.96762431e-01 -1.23702419e+00
7.23678112e-01 -5.23263752e-01 -4.57833499e-01 4.68019098e-01
-5.28565764e-01 1.01689093e-01 7.10554957e-01 -1.49139911e-01
-1.17734563e+00 -1.40707090e-01 -8.18676829e-01 -2.06111521e-02
-5.98520219e-01 5.62138557e-01 7.36665353e-02 3.82435828e-01
7.22283304e-01 1.91919848e-01 -8.09375286e-01 -6.91957474e-01
1.15056634e-01 1.23528671e+00 3.07979226e-01 -6.06724024e-01
4.59712178e-01 -8.17753375e-03 -1.74552768e-01 -6.32305562e-01
-9.49133396e-01 -7.13075876e-01 -8.92173469e-01 2.08885446e-01
1.31248975e+00 -8.37248921e-01 -2.62537092e-01 2.55993038e-01
-1.42424071e+00 -1.03292666e-01 -2.22284451e-01 6.05375826e-01
-2.75451809e-01 2.60402203e-01 -7.60673702e-01 -8.91631544e-01
-3.61447692e-01 -8.83302271e-01 1.03801107e+00 7.50516132e-02
-3.71425331e-01 -1.03904915e+00 3.16184670e-01 3.68492395e-01
2.13224620e-01 5.43227084e-02 1.29292357e+00 -1.16428471e+00
2.33250186e-01 -4.60533082e-01 -2.91056216e-01 5.37208915e-01
-1.08053284e-02 -3.78433138e-01 -9.03710723e-01 -5.22844233e-02
-4.94724929e-01 1.20032974e-01 7.23401904e-01 5.37521802e-02
7.70797849e-01 3.41873728e-02 -4.77738857e-01 1.67745873e-02
1.44088471e+00 8.07056904e-01 8.94801438e-01 4.82508689e-01
3.43883038e-01 2.76054680e-01 5.86864352e-01 2.24528089e-01
2.28439882e-01 5.94151616e-01 -1.52818590e-01 2.55403101e-01
-1.05671003e-01 -2.32569486e-01 2.52379686e-01 8.51916432e-01
-2.26303592e-01 -5.71229637e-01 -1.38671088e+00 1.02103853e+00
-1.62269688e+00 -1.12950981e+00 -1.49480194e-01 1.98959386e+00
6.64711952e-01 2.12602407e-01 -1.72710449e-01 1.50732145e-01
9.89069045e-01 7.89018869e-02 1.45066425e-01 -1.25580096e+00
1.96758136e-01 5.89229524e-01 4.61223453e-01 3.82009923e-01
-1.31325269e+00 9.99860823e-01 6.53516817e+00 9.52637553e-01
-9.42204297e-01 2.62694925e-01 6.91113472e-01 5.01243114e-01
-5.36627732e-02 2.99125835e-02 -1.23540747e+00 5.18929124e-01
1.50692809e+00 -5.61683215e-02 -1.24842271e-01 8.66491795e-01
-2.74461210e-01 9.23655853e-02 -1.25583589e+00 9.91193354e-01
-1.28436387e-01 -1.45496130e+00 1.62278876e-01 2.42011085e-01
6.52451098e-01 1.69019997e-01 -5.86115599e-01 9.33115423e-01
5.63942432e-01 -1.15046906e+00 6.48095846e-01 4.92475927e-01
9.13461864e-01 -6.90165162e-01 1.28890979e+00 4.81414258e-01
-1.15566397e+00 -1.62067011e-01 -6.36621118e-01 -1.24582469e-01
2.92020202e-01 6.71708524e-01 -8.81522059e-01 7.87024558e-01
7.10422754e-01 5.70127249e-01 -3.32828075e-01 9.20313358e-01
-2.11955115e-01 7.84282029e-01 -1.95152789e-01 -3.78518432e-01
6.92492187e-01 4.80318479e-02 3.46324623e-01 1.85994220e+00
3.95544916e-01 3.97164077e-01 -2.05098510e-01 3.90683681e-01
-1.65125415e-01 2.40069434e-01 -7.30961621e-01 -1.78681910e-01
4.12800103e-01 1.01565278e+00 -6.98504984e-01 -7.33523607e-01
-3.69887620e-01 6.45900428e-01 4.43758368e-01 5.31754792e-02
-6.35889828e-01 -8.26659024e-01 2.65066385e-01 -8.98406550e-04
5.50357819e-01 -5.14299273e-02 -3.13213617e-02 -1.25352442e+00
-2.67717808e-01 -4.66989636e-01 6.34754121e-01 -7.48399317e-01
-1.53623819e+00 1.08311152e+00 1.80961967e-01 -1.13428569e+00
-3.96732241e-01 -8.56892347e-01 -5.60896754e-01 8.83161545e-01
-1.43417656e+00 -1.11521780e+00 3.41897666e-01 2.77609706e-01
4.47741121e-01 -5.16309023e-01 1.14329553e+00 5.74796915e-01
-2.68368810e-01 3.84500474e-01 1.90918818e-01 7.28304684e-01
5.82723796e-01 -1.47351801e+00 2.33132973e-01 8.14935088e-01
3.77050817e-01 7.01036870e-01 3.32371294e-01 -4.75944191e-01
-6.89319909e-01 -1.12048686e+00 1.98735309e+00 -5.47015488e-01
6.48122489e-01 -3.27278674e-01 -5.91841757e-01 8.87662113e-01
3.65020007e-01 3.52480486e-02 8.97663593e-01 5.78584671e-01
-4.22187626e-01 -1.10373199e-01 -1.27037466e+00 1.63726643e-01
8.63534451e-01 -5.76494157e-01 -1.33826029e+00 2.64356792e-01
1.55351460e-01 -6.80272281e-02 -1.15626538e+00 1.99562848e-01
5.10526538e-01 -7.93033421e-01 6.05424821e-01 -9.35314655e-01
5.92870295e-01 -2.46157721e-01 -3.22352052e-01 -1.28895772e+00
-6.67570949e-01 -8.12468380e-02 5.92337847e-01 1.50382280e+00
7.19266593e-01 -7.01085865e-01 3.17769557e-01 3.04015309e-01
-2.90803522e-01 -5.66251397e-01 -1.25658047e+00 -8.98938179e-01
5.66755474e-01 -6.44574344e-01 5.19335091e-01 1.03098607e+00
8.49742740e-02 6.73441648e-01 -1.64198384e-01 1.82993896e-02
1.76320732e-01 1.35633856e-01 2.63381511e-01 -1.28927004e+00
1.35068791e-02 -2.83693105e-01 -9.02402103e-01 -7.02445328e-01
2.41676450e-01 -9.40497041e-01 -4.82854154e-03 -1.82445550e+00
2.21871033e-01 -5.98915696e-01 -5.10618269e-01 9.25974369e-01
2.18918279e-01 8.00908431e-02 3.06496829e-01 5.58598638e-02
-4.81949627e-01 2.08506789e-02 7.29050219e-01 -1.31720379e-01
3.72464985e-01 -6.49355650e-02 -6.87291920e-01 5.43994963e-01
4.40313697e-01 -6.98826432e-01 1.02219731e-01 -3.99274230e-01
2.65933633e-01 3.44282091e-01 -2.10398566e-02 -1.04421020e+00
1.01873070e-01 9.30522978e-02 4.25006896e-01 -6.64452314e-01
1.36300758e-01 -7.07732201e-01 -1.15775093e-02 4.46207404e-01
-4.94540066e-01 2.07653821e-01 2.66421944e-01 3.81140113e-01
-6.37568176e-01 -6.15336597e-01 7.97887206e-01 -2.82029003e-01
-9.55627501e-01 -3.82183939e-02 -6.21363521e-01 -4.81561385e-02
9.91315842e-01 1.19977975e-02 -4.07399565e-01 -3.03019524e-01
-1.13027775e+00 -7.89203197e-02 -1.72194600e-01 4.75211293e-01
8.26233476e-02 -1.27117813e+00 -9.01404619e-01 -1.18726157e-01
8.07960480e-02 -4.07523274e-01 -7.61034191e-02 5.71095586e-01
-6.85402632e-01 1.10521829e+00 -3.29645962e-01 -1.19246781e-01
-1.18254697e+00 4.99632627e-01 1.33452788e-01 -9.41330910e-01
-3.43804866e-01 7.05796242e-01 1.50989667e-01 -5.47752023e-01
-1.51888937e-01 -6.87871754e-01 -7.16884315e-01 3.80894065e-01
4.54758614e-01 3.94063354e-01 3.66120934e-01 -7.31246054e-01
-7.42880344e-01 4.87491041e-01 -2.26445153e-01 -8.34909603e-02
1.59907770e+00 2.84192592e-01 -6.65266216e-02 5.34966350e-01
1.12197220e+00 8.05451944e-02 -2.66130537e-01 -4.39262763e-02
2.96606541e-01 -1.54062301e-01 4.76103239e-02 -1.12391984e+00
-5.77027798e-01 1.15121317e+00 5.18138051e-01 5.43344438e-01
7.64067411e-01 -9.88759100e-02 6.80736423e-01 7.54764378e-01
7.01280236e-01 -9.33568120e-01 -7.97011137e-01 9.39150095e-01
8.45342875e-01 -8.74666691e-01 -1.00393042e-01 -2.49091819e-01
-8.12166274e-01 1.19758868e+00 7.67995119e-02 -3.17072570e-01
8.34711611e-01 2.70423591e-01 7.52063543e-02 -4.18430008e-02
-8.73829246e-01 -2.37925708e-01 2.00638101e-01 3.86027813e-01
7.62985170e-01 1.57229528e-01 -7.82187462e-01 7.18107998e-01
-2.06989691e-01 -1.06982850e-02 5.83631516e-01 9.68622923e-01
-4.08361763e-01 -1.33021045e+00 -2.10240036e-01 5.88849187e-01
-9.40659940e-01 -4.30073738e-01 -2.99433827e-01 8.56787026e-01
3.73459280e-01 8.08450758e-01 8.05956051e-02 -2.29285181e-01
4.20578003e-01 6.03770554e-01 1.77463293e-01 -9.82557714e-01
-8.31107736e-01 -2.65344560e-01 7.75194585e-01 -1.44899622e-01
-5.04769862e-01 -8.64889205e-01 -1.08883739e+00 -1.75073951e-01
-3.54477525e-01 6.58552706e-01 7.49469042e-01 1.16321445e+00
2.89369732e-01 4.51485217e-01 2.59963244e-01 -4.11599785e-01
-5.09539127e-01 -1.41793120e+00 -8.74711514e-01 3.35029155e-01
-1.49480132e-02 -6.08403087e-01 -9.40202549e-02 2.17289850e-03]
|
[9.8367919921875, 9.649561882019043]
|
d5018a6f-e3fc-4294-bd70-bc285e1984b2
|
bitiimt-a-bilingual-text-infilling-method-for
| null | null |
https://aclanthology.org/2022.acl-long.138
|
https://aclanthology.org/2022.acl-long.138.pdf
|
BiTIIMT: A Bilingual Text-infilling Method for Interactive Machine Translation
|
Interactive neural machine translation (INMT) is able to guarantee high-quality translations by taking human interactions into account. Existing IMT systems relying on lexical constrained decoding (LCD) enable humans to translate in a flexible translation order beyond the left-to-right. However, they typically suffer from two significant limitations in translation efficiency and quality due to the reliance on LCD. In this work, we propose a novel BiTIIMT system, Bilingual Text-Infilling for Interactive Neural Machine Translation. The key idea to BiTIIMT is Bilingual Text-infilling (BiTI) which aims to fill missing segments in a manually revised translation for a given source sentence. We propose a simple yet effective solution by casting this task as a sequence-to-sequence task. In this way, our system performs decoding without explicit constraints and makes full use of revised words for better translation prediction. Experiment results show that BiTiIMT performs significantly better and faster than state-of-the-art LCD-based IMT on three translation tasks.
|
['Jiajun Chen', 'Shuming Shi', 'ShuJian Huang', 'Qu Cui', 'Guoping Huang', 'Lemao Liu', 'Yanling Xiao']
| null | null | null | null |
acl-2022-5
|
['text-infilling']
|
['natural-language-processing']
|
[ 5.89174688e-01 5.22451755e-03 -3.18952292e-01 -5.06045341e-01
-1.03612578e+00 -6.33046269e-01 5.89464247e-01 -3.88965160e-01
-4.06420648e-01 8.96454751e-01 2.98449337e-01 -1.02845597e+00
4.77632016e-01 -4.74479795e-01 -1.00724828e+00 -2.21277550e-01
6.13351583e-01 7.70603061e-01 -1.43228635e-01 -4.97719198e-01
4.10950221e-02 -2.86400970e-02 -7.99335122e-01 6.63265526e-01
1.38970602e+00 3.56155753e-01 5.78500092e-01 3.09047580e-01
-3.72573882e-01 9.15955901e-02 -4.36404586e-01 -7.81563878e-01
4.35446918e-01 -1.01623678e+00 -7.37840354e-01 -9.95201617e-02
1.68027863e-01 -3.90375286e-01 1.01663157e-01 8.38312984e-01
6.89280510e-01 -3.82245511e-01 5.20317316e-01 -7.69394875e-01
-9.50746775e-01 1.11324441e+00 -3.96821171e-01 -1.11546606e-01
3.70618016e-01 4.51802239e-02 9.63090897e-01 -1.41697609e+00
7.55577981e-01 1.18600857e+00 4.50604767e-01 7.11974859e-01
-1.36332333e+00 -4.47735548e-01 9.49203670e-02 7.85361324e-03
-1.18117762e+00 -5.08371830e-01 3.19974035e-01 -2.44700834e-01
1.33652103e+00 5.69529653e-01 6.37745917e-01 1.07749212e+00
4.42210555e-01 8.36629391e-01 1.04800797e+00 -7.16757953e-01
1.52020473e-02 7.63513194e-03 -2.42318064e-01 4.47766364e-01
5.95183298e-02 -1.00859389e-01 -6.90682530e-01 1.94097802e-01
7.18133807e-01 -3.10909718e-01 -3.43225688e-01 8.47074389e-02
-1.81969547e+00 5.62187612e-01 2.29954660e-01 4.57710803e-01
-3.18403691e-01 -1.75829798e-01 5.67653000e-01 7.54871249e-01
7.14685321e-01 3.75054002e-01 -6.06917024e-01 -2.53636688e-01
-9.76327002e-01 -5.60789332e-02 6.97083831e-01 1.29946125e+00
5.68630576e-01 -1.16794951e-01 -3.91052604e-01 8.99187684e-01
5.22272103e-02 6.84647143e-01 6.17133081e-01 -3.01228732e-01
1.11198592e+00 5.31372190e-01 2.25381888e-02 -5.58669627e-01
-3.55218500e-02 -5.58229089e-01 -9.28664923e-01 -2.37241045e-01
1.97777852e-01 -2.21988291e-01 -9.28032935e-01 1.65315413e+00
1.17067896e-01 -5.74679554e-01 2.33237818e-02 1.09533906e+00
3.99808884e-01 9.06519592e-01 -3.72496396e-01 -4.74010766e-01
1.06567574e+00 -1.28470445e+00 -8.91420782e-01 -4.49768066e-01
9.37793911e-01 -1.09746468e+00 1.37562644e+00 1.64904758e-01
-1.25475860e+00 -4.46887136e-01 -1.04430032e+00 -2.13444844e-01
-8.92956406e-02 5.50423801e-01 3.45452636e-01 4.56371218e-01
-1.10842955e+00 5.80633581e-01 -8.29483390e-01 -4.59438115e-01
-1.03276566e-01 4.69441682e-01 -4.29173768e-01 -4.82264608e-02
-1.25240886e+00 1.19832814e+00 2.04396412e-01 4.42269057e-01
-4.46885884e-01 -1.26095325e-01 -6.90842628e-01 -1.22934610e-01
2.53488570e-01 -9.95590866e-01 1.51890075e+00 -1.36073458e+00
-1.92707837e+00 6.97348118e-01 -6.18907928e-01 -3.64949435e-01
1.03419423e+00 -4.78862345e-01 -1.60483532e-02 -2.65127361e-01
2.10103631e-01 6.94838703e-01 6.01327896e-01 -8.59908342e-01
-3.21537733e-01 -1.12364084e-01 -3.68365467e-01 4.70301479e-01
-2.72108823e-01 3.54030252e-01 -8.36857259e-01 -8.22802484e-01
2.92634070e-01 -1.10653806e+00 -1.93383694e-01 -2.10993811e-01
-6.61936343e-01 -4.76590022e-02 3.99998277e-01 -1.07112455e+00
1.40013826e+00 -1.61770034e+00 7.01140463e-01 -1.86988920e-01
-1.95643619e-01 5.59494913e-01 -3.83805722e-01 8.48588645e-01
2.61226833e-01 2.20004469e-01 -4.58587348e-01 -6.01182461e-01
8.54570940e-02 2.53780127e-01 -1.99339584e-01 9.45444629e-02
2.12922201e-01 1.37945294e+00 -6.15326822e-01 -4.66828406e-01
-1.06377080e-01 2.31040388e-01 -5.57320654e-01 1.79991812e-01
-4.35129702e-01 7.84004450e-01 -1.43705994e-01 5.10914981e-01
5.45871139e-01 2.50313394e-02 4.82946783e-01 1.48638085e-01
-3.26083690e-01 7.83382893e-01 -5.10140359e-01 2.05038333e+00
-6.08433783e-01 6.80730641e-01 -1.44319922e-01 -6.43739223e-01
9.33462143e-01 4.54622030e-01 -1.11309126e-01 -9.81349885e-01
1.69549674e-01 7.92791069e-01 1.91878214e-01 -2.49035224e-01
6.27427220e-01 -1.40163358e-02 5.48112877e-02 8.32393885e-01
-1.78820774e-01 4.28878888e-02 1.41967103e-01 2.06154902e-02
7.11892307e-01 6.63093388e-01 3.03097516e-01 -2.64094442e-01
3.20890427e-01 6.90791309e-02 7.47646034e-01 5.45375049e-01
2.06328750e-01 6.78369522e-01 1.55331135e-01 -5.06179929e-01
-1.46120417e+00 -6.16600096e-01 3.79137367e-01 9.77953911e-01
-1.13771901e-01 -3.84183496e-01 -1.19616544e+00 -6.96009755e-01
-5.11935234e-01 7.63287544e-01 -2.67806977e-01 4.24726531e-02
-1.19507957e+00 -6.27208531e-01 4.46106225e-01 3.44994664e-01
4.67587590e-01 -9.71358180e-01 -3.54211420e-01 4.46134210e-01
-8.67699564e-01 -1.01101601e+00 -1.07711947e+00 1.15775533e-01
-1.05190992e+00 -2.59920865e-01 -1.12065637e+00 -1.11302590e+00
8.57755303e-01 3.57723653e-01 1.18580735e+00 1.42884731e-01
3.08323920e-01 -5.90807676e-01 -4.43480343e-01 -1.74686573e-02
-8.10081959e-01 6.83198035e-01 1.18900001e-01 -1.65927216e-01
1.97906390e-01 -5.80190539e-01 -4.24153656e-01 6.99332595e-01
-6.71587646e-01 1.01232183e+00 1.09238100e+00 9.46387172e-01
6.05619311e-01 -7.71528602e-01 4.67852652e-01 -8.36520970e-01
8.75863969e-01 -4.71594334e-02 -3.32436144e-01 6.14948928e-01
-6.94991052e-01 1.45113379e-01 7.62628853e-01 -6.24694884e-01
-8.66902709e-01 -5.22880480e-02 -2.44418234e-01 4.15625423e-03
3.19883406e-01 5.63811481e-01 -3.47846359e-01 2.79430538e-01
6.68497920e-01 6.49675131e-01 -1.85607731e-01 -6.06295109e-01
3.91143441e-01 9.23766971e-01 2.93190837e-01 -5.24604023e-01
7.21506715e-01 -2.85952359e-01 -3.86124015e-01 -2.41963550e-01
-3.18341702e-01 1.77662686e-01 -1.03405643e+00 -5.72768636e-02
6.08454049e-01 -7.57306099e-01 -2.65350103e-01 3.78606170e-01
-1.46498358e+00 -5.19301176e-01 3.38760316e-01 4.52040225e-01
-5.27277887e-01 3.08266014e-01 -8.38964999e-01 -5.42670071e-01
-9.26694810e-01 -1.48475921e+00 1.10593677e+00 -3.12239289e-01
-3.62704486e-01 -5.64902663e-01 -1.38107717e-01 4.67593580e-01
5.89040220e-01 -1.59886047e-01 1.01925015e+00 -5.20915151e-01
-7.30262399e-01 2.40839366e-02 -2.06066102e-01 2.49236673e-01
1.53454781e-01 -3.60056818e-01 -2.33444467e-01 -3.27727169e-01
-9.17719156e-02 -1.11580186e-01 6.70046866e-01 1.92868081e-03
4.12504643e-01 -6.53233051e-01 -2.07639143e-01 5.97167552e-01
1.14257634e+00 1.30994022e-01 5.28781772e-01 4.59875882e-01
7.49377668e-01 4.50621158e-01 7.32777953e-01 -3.98509093e-02
4.13768321e-01 1.11485505e+00 6.42822236e-02 -2.11577713e-01
-1.69862866e-01 -5.28385699e-01 7.66563594e-01 1.49147379e+00
4.51790262e-03 -5.08910179e-01 -9.19502676e-01 4.75042611e-01
-2.12461257e+00 -3.71423751e-01 -2.17518449e-01 2.18706822e+00
1.34487355e+00 1.74945593e-01 -1.80717170e-01 -1.18451327e-01
8.75100076e-01 -2.55192041e-01 -4.19621944e-01 -8.09566975e-01
-1.18065767e-01 -9.44213197e-02 4.28721458e-01 6.53916776e-01
-5.04286945e-01 1.45741391e+00 5.61139107e+00 8.48482847e-01
-1.24096954e+00 2.69523144e-01 5.22251189e-01 -2.26392690e-03
-5.52507222e-01 4.93592732e-02 -7.80531883e-01 4.24381703e-01
9.58970070e-01 1.10313542e-01 7.87202358e-01 2.81027049e-01
4.48990136e-01 1.14316709e-01 -1.26213741e+00 7.73043275e-01
-5.95546328e-03 -1.25355887e+00 5.02373278e-01 1.64528385e-01
7.17817843e-01 -1.61058456e-02 -1.47788167e-01 1.76475853e-01
-1.16482496e-01 -8.42251122e-01 1.05872273e+00 2.18423292e-01
1.21342707e+00 -5.87474346e-01 6.90702319e-01 8.22737038e-01
-7.72226989e-01 3.48162264e-01 -3.43357384e-01 -1.82359517e-01
4.26264942e-01 5.46204209e-01 -1.02093971e+00 7.28338599e-01
1.81433588e-01 5.33946335e-01 -1.61997870e-01 5.40216446e-01
-5.87341964e-01 6.90432012e-01 -1.07756205e-01 -2.18023106e-01
2.22047120e-01 -4.60534781e-01 5.49868166e-01 1.37521541e+00
6.83412850e-01 -2.01132342e-01 1.71133265e-01 7.64930665e-01
-2.66542137e-01 5.56871235e-01 -5.27121603e-01 -2.11449429e-01
3.30259770e-01 8.08176041e-01 -6.32684529e-01 -3.26216966e-01
-2.59835005e-01 1.79016888e+00 4.40546989e-01 3.16325307e-01
-7.80171275e-01 -2.72671908e-01 4.47565407e-01 -3.62619036e-03
2.60897309e-01 -5.76027751e-01 -5.06243169e-01 -1.42076397e+00
4.99578595e-01 -1.33168018e+00 -3.91026795e-01 -6.96293354e-01
-7.61826813e-01 1.13340604e+00 -3.54061007e-01 -1.46534181e+00
-4.01200861e-01 -3.00933063e-01 -2.44423941e-01 1.18601096e+00
-1.16922665e+00 -1.55457139e+00 3.34817648e-01 2.59581327e-01
1.01659393e+00 -6.99383542e-02 8.62194538e-01 4.37899202e-01
-5.68111122e-01 9.03575838e-01 1.72379524e-01 1.23706423e-01
9.16182816e-01 -9.70718980e-01 1.32006979e+00 1.19124281e+00
2.54367143e-01 8.94752860e-01 6.48785114e-01 -9.81278539e-01
-1.49789214e+00 -1.12621534e+00 1.76887822e+00 -3.64297241e-01
1.59999251e-01 -8.24057281e-01 -6.86385036e-01 7.36550272e-01
5.45440793e-01 -6.60928726e-01 5.63929260e-01 -4.17792983e-02
-1.99385285e-01 1.24195144e-01 -7.60857224e-01 1.04672313e+00
1.34313512e+00 -4.60285574e-01 -5.01432776e-01 4.28656667e-01
1.21756089e+00 -5.92743158e-01 -4.19408470e-01 3.36374104e-01
6.26100779e-01 -7.10449457e-01 4.89375710e-01 -4.07980084e-01
6.88702881e-01 -3.39501560e-01 -9.77172777e-02 -1.60774577e+00
-1.47962958e-01 -1.10923481e+00 1.72159910e-01 1.05455327e+00
9.69364166e-01 -6.93213224e-01 3.40442300e-01 2.34329894e-01
-4.72467929e-01 -9.13850248e-01 -9.82790709e-01 -7.88565576e-01
2.03191057e-01 -2.98589528e-01 7.55790472e-01 7.96419442e-01
1.95196912e-01 7.55439997e-01 -8.87020409e-01 -1.25490442e-01
1.40866324e-01 2.40268946e-01 8.17141235e-01 -7.31265843e-01
-3.94286156e-01 -3.57365400e-01 2.74459809e-01 -1.56713390e+00
-1.27140835e-01 -1.08458054e+00 2.30865553e-01 -1.83149481e+00
2.52105296e-01 -1.41730040e-01 2.29808986e-01 5.69806814e-01
-2.79114634e-01 5.16336083e-01 3.06101501e-01 6.28073454e-01
-2.85697043e-01 5.91636062e-01 1.58602047e+00 -6.31390512e-02
-3.35456073e-01 -4.71361168e-02 -4.94975030e-01 1.34143978e-01
9.94557381e-01 -5.69367409e-01 -1.91560522e-01 -1.24695349e+00
4.36829150e-01 2.58954346e-01 -3.17904323e-01 -4.91736025e-01
9.80657563e-02 -1.33841306e-01 1.38218522e-01 -7.14229763e-01
1.02009997e-01 -5.57178319e-01 1.84064329e-01 5.06647229e-01
-5.04358590e-01 5.74438155e-01 1.16370514e-01 1.31045476e-01
-1.15060531e-01 6.41899928e-02 3.42135638e-01 -2.82748550e-01
-1.03804536e-01 -3.49098654e-03 -5.66114485e-01 -3.38432491e-01
5.58746874e-01 -1.03308283e-01 -2.02379018e-01 -3.71662170e-01
-3.64387035e-01 1.46987125e-01 5.99601567e-01 5.94413102e-01
4.61667031e-01 -1.35723412e+00 -1.00140023e+00 2.65554339e-01
8.55582207e-02 -1.72785163e-01 -3.02468061e-01 9.79604423e-01
-6.50619864e-01 7.94077992e-01 -1.89759895e-01 -5.26588857e-01
-1.25973201e+00 3.00538868e-01 2.39185229e-01 -3.49807471e-01
-6.91467166e-01 6.93139613e-01 -3.89500745e-02 -9.23736274e-01
1.30174115e-01 -4.56265599e-01 3.73445570e-01 -3.28132302e-01
4.29105580e-01 -4.15596925e-02 3.79136384e-01 -6.40074015e-01
-1.01437382e-01 4.48395789e-01 -3.02981257e-01 -6.85065508e-01
1.03582501e+00 -4.56264287e-01 -3.74333113e-01 2.67896116e-01
8.10934126e-01 5.39673902e-02 -8.59726489e-01 -4.61853981e-01
6.10769093e-02 -3.63945693e-01 -3.19325179e-01 -1.37517679e+00
-6.57322764e-01 1.00561130e+00 1.38131276e-01 -3.99164528e-01
1.09826458e+00 -4.27507073e-01 1.45481908e+00 5.55276632e-01
5.90224504e-01 -9.63486493e-01 -3.36793602e-01 7.38000333e-01
1.08329582e+00 -1.13737059e+00 -3.36799890e-01 -3.77817392e-01
-6.71989918e-01 1.08896685e+00 4.93337959e-01 4.70052063e-01
-1.42924443e-01 -1.58488583e-02 4.92014885e-01 5.38082480e-01
-8.47102582e-01 5.89903966e-02 4.29728270e-01 2.94516087e-01
8.00973713e-01 2.32332006e-01 -1.03644443e+00 4.07274961e-01
-2.99404860e-01 -3.60227772e-03 1.98183447e-01 8.75078559e-01
-3.74972910e-01 -1.70653725e+00 -2.53284901e-01 -4.70681069e-03
-3.97084504e-01 -5.70398331e-01 -8.00380528e-01 3.63189548e-01
-3.66843045e-02 9.96834517e-01 -3.03621143e-01 -6.44668043e-01
2.09075525e-01 2.98800290e-01 4.06239510e-01 -6.76363587e-01
-9.30832028e-01 3.74581367e-01 2.42599994e-01 -5.26565015e-01
2.00742781e-02 -6.09384060e-01 -1.00738680e+00 -2.95002580e-01
-4.30292368e-01 1.51430070e-01 1.02598453e+00 1.06599772e+00
5.93800247e-01 3.65673572e-01 5.24398685e-01 -9.15758371e-01
-5.40163696e-01 -1.32941055e+00 2.24598587e-01 -3.46913002e-02
2.39440948e-01 7.77781159e-02 1.46959782e-01 3.84640344e-03]
|
[11.683707237243652, 10.270033836364746]
|
1b37ad41-57b9-43f5-9b50-df59154ccb9e
|
distribution-aligned-feature-clustering-for
|
2301.06685
| null |
https://arxiv.org/abs/2301.06685v1
|
https://arxiv.org/pdf/2301.06685v1.pdf
|
Distribution Aligned Feature Clustering for Zero-Shot Sketch-Based Image Retrieval
|
Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR) is a challenging cross-modal retrieval task. In prior arts, the retrieval is conducted by sorting the distance between the query sketch and each image in the gallery. However, the domain gap and the zero-shot setting make neural networks hard to generalize. This paper tackles the challenges from a new perspective: utilizing gallery image features. We propose a Cluster-then-Retrieve (ClusterRetri) method that performs clustering on the gallery images and uses the cluster centroids as proxies for retrieval. Furthermore, a distribution alignment loss is proposed to align the image and sketch features with a common Gaussian distribution, reducing the domain gap. Despite its simplicity, our proposed method outperforms the state-of-the-art methods by a large margin on popular datasets, e.g., up to 31% and 39% relative improvement of mAP@all on the Sketchy and TU-Berlin datasets.
|
['Huimin Ma', 'Jiansheng Chen', 'Fangzheng Zhao', 'Kun Song', 'Yuchen Wu']
|
2023-01-17
| null | null | null | null |
['sketch-based-image-retrieval']
|
['computer-vision']
|
[-4.01680730e-02 -6.47819221e-01 -5.33115804e-01 -2.12660730e-01
-1.50192046e+00 -8.10405016e-01 9.40916896e-01 -8.59447867e-02
-2.41093189e-01 3.13531369e-01 1.06946230e-02 3.63816172e-01
-4.48100269e-01 -4.60702151e-01 -6.60749257e-01 -7.02487111e-01
3.68513912e-01 6.41534805e-01 3.60998847e-02 -3.71798314e-02
5.94530582e-01 4.33466375e-01 -1.67051029e+00 2.13286921e-01
6.17358565e-01 1.19632125e+00 2.84728765e-01 3.57237667e-01
-1.77817732e-01 3.44457656e-01 -5.17949820e-01 -5.70471346e-01
4.75255698e-01 -9.47650671e-02 -4.41561371e-01 2.62704911e-03
1.03764439e+00 -5.84782362e-01 -8.68037760e-01 9.85304236e-01
6.76358283e-01 4.35281247e-01 9.89082813e-01 -1.52208495e+00
-1.13911450e+00 3.32502633e-01 -7.62305140e-01 -3.45494092e-01
2.08169192e-01 -2.64810562e-01 1.28461647e+00 -1.27267849e+00
1.02779090e+00 1.27658999e+00 2.73842782e-01 4.88219917e-01
-1.15593910e+00 -9.92342949e-01 8.97174776e-02 3.73157114e-01
-2.10839939e+00 -4.45092767e-01 9.33380067e-01 -3.98983121e-01
3.39431286e-01 1.70210630e-01 1.92246303e-01 1.08051109e+00
-4.26688731e-01 1.22849023e+00 6.41511559e-01 -3.05839151e-01
1.79775119e-01 4.79052030e-02 1.28875542e-02 4.77077723e-01
9.71236452e-02 -3.00848067e-01 -7.11717725e-01 -2.59883076e-01
7.35273778e-01 6.05170190e-01 -1.22188389e-01 -7.77735353e-01
-1.19033861e+00 8.60130250e-01 5.96782744e-01 3.48879129e-01
-2.20458090e-01 4.35523003e-01 3.82952243e-01 1.89100951e-01
3.79402965e-01 3.07527542e-01 4.88499962e-02 1.94342181e-01
-1.55970216e+00 3.74896079e-01 5.30690730e-01 1.28382409e+00
7.99105287e-01 -3.46196860e-01 -5.77161312e-01 1.34912229e+00
1.47196665e-01 6.36865318e-01 2.74872839e-01 -9.97748077e-01
4.37717438e-01 4.48393881e-01 8.94218162e-02 -1.17468953e+00
4.20125157e-01 -2.63659097e-02 -8.48246694e-01 -1.23835079e-01
4.55455154e-01 5.03763974e-01 -1.11363626e+00 1.64479578e+00
-7.78756738e-02 3.48542690e-01 -2.73201734e-01 1.20631194e+00
1.04569364e+00 5.15891969e-01 1.45206824e-02 1.88044995e-01
1.11774349e+00 -1.15869236e+00 -6.59937501e-01 3.81236188e-02
-1.53734647e-02 -9.79592383e-01 1.26096463e+00 3.33118141e-01
-9.90912795e-01 -4.58397299e-01 -1.20841193e+00 -2.86849320e-01
-6.47928178e-01 5.67177296e-01 4.46271688e-01 3.13340634e-01
-8.94174993e-01 7.90186048e-01 -4.24136609e-01 -5.52009344e-01
5.16971946e-01 5.75655624e-02 -4.75750625e-01 -6.77343845e-01
-8.50305498e-01 3.49824637e-01 1.68301985e-01 -4.73203450e-01
-9.59751666e-01 -1.02935088e+00 -4.96253818e-01 2.15940520e-01
4.64949012e-01 -4.24397409e-01 7.77093053e-01 -6.15435958e-01
-1.22806561e+00 1.09689629e+00 -1.51838260e-02 -1.51916146e-01
6.34565473e-01 -3.19897979e-01 -1.20337322e-01 4.93090719e-01
1.59096330e-01 1.01635396e+00 1.17532110e+00 -1.48976290e+00
-3.21947217e-01 -4.22667861e-01 -2.12837160e-01 2.44297877e-01
-4.87355292e-01 -2.69880921e-01 -1.44894719e+00 -9.99321222e-01
1.64010450e-01 -1.09706843e+00 1.99727312e-01 5.02586782e-01
-2.53292382e-01 -4.53374207e-01 8.96576703e-01 -5.06896138e-01
1.30639195e+00 -2.33033681e+00 2.21525207e-01 2.95062155e-01
2.57475942e-01 1.45870224e-01 -3.79663587e-01 7.03690350e-01
1.81308046e-01 -3.46900187e-02 -7.91676790e-02 -6.03492975e-01
4.91673946e-01 6.06527925e-02 -6.46501184e-01 5.42705238e-01
-1.53411940e-01 9.77441132e-01 -7.82826066e-01 -7.01646388e-01
2.51696050e-01 5.03013194e-01 -4.12743866e-01 1.15227312e-01
-4.30286936e-02 -3.49258073e-02 -1.64750084e-01 9.28313792e-01
8.37113500e-01 -3.58261108e-01 9.46642458e-02 -2.45523334e-01
3.52337599e-01 -3.42946410e-01 -1.10555351e+00 2.43699479e+00
-2.47561440e-01 7.97459602e-01 5.82552925e-02 -8.34311366e-01
1.05162609e+00 8.74656588e-02 6.87250555e-01 -7.68797517e-01
-1.55787811e-01 2.42069140e-01 -6.02157295e-01 1.88867934e-02
8.90882969e-01 8.36637467e-02 -4.11534131e-01 6.55935645e-01
3.27145875e-01 2.55507347e-03 2.67105341e-01 5.99786878e-01
7.16117084e-01 1.10310420e-01 -2.41712749e-01 -2.57537335e-01
2.54383266e-01 -2.71640301e-01 1.38410866e-01 1.06344521e+00
-5.19909412e-02 1.11976194e+00 5.24077304e-02 -3.68598014e-01
-1.16813576e+00 -1.46013749e+00 2.98427325e-02 1.43457747e+00
6.86079085e-01 -5.19309938e-01 -5.75477898e-01 -4.10934180e-01
3.66809577e-01 3.79522830e-01 -5.98631382e-01 -3.08550090e-01
-2.92611599e-01 -1.59768283e-01 7.00627208e-01 3.66600156e-01
4.25280988e-01 -7.43962109e-01 -2.07281262e-02 -6.84464872e-02
-3.43480796e-01 -9.93551672e-01 -8.39821398e-01 -4.14026678e-01
-4.62310284e-01 -1.00194860e+00 -1.38645732e+00 -7.86027789e-01
6.38010085e-01 7.76269436e-01 1.08950698e+00 2.49490857e-01
-6.95470393e-01 6.30322814e-01 -3.38250577e-01 2.70102285e-02
2.09445015e-01 2.49098852e-01 -3.78220081e-02 1.70242384e-01
4.69580114e-01 -5.05048931e-01 -1.01980150e+00 4.85071808e-01
-1.07718420e+00 -3.25371504e-01 6.33859217e-01 9.04121399e-01
7.08488941e-01 -2.83048421e-01 5.54138839e-01 -3.77940267e-01
7.05937505e-01 -4.35413063e-01 -4.29262966e-01 7.58561373e-01
-5.79125464e-01 8.52276385e-02 3.19558918e-01 -8.10409963e-01
-6.69940531e-01 1.00737184e-01 5.92734754e-01 -1.34501803e+00
5.45720458e-02 -1.19707047e-03 -8.34784806e-02 -1.61500409e-01
5.38513541e-01 3.67255747e-01 -2.55749538e-03 -5.38031995e-01
8.52734327e-01 6.86319172e-01 7.19278753e-01 -9.44859385e-01
9.40258861e-01 6.30361855e-01 -2.33052239e-01 -7.91094422e-01
-5.96051574e-01 -9.10906255e-01 -5.78909993e-01 -1.75170377e-01
6.22151971e-01 -1.11770725e+00 -6.87109470e-01 1.94248646e-01
-8.53044033e-01 -1.15265334e-02 -8.46040770e-02 2.03947440e-01
-6.08698726e-01 5.31534255e-01 -5.33152223e-01 -7.74494946e-01
-6.70907617e-01 -1.03173959e+00 1.54236639e+00 1.00227430e-01
2.68463399e-02 -4.71168905e-01 -1.08518213e-01 2.42647320e-01
3.71817052e-01 4.98142578e-02 7.63476849e-01 -5.81269383e-01
-9.70796406e-01 -4.01866168e-01 -7.18673706e-01 -1.91787316e-03
-7.62176439e-02 4.99520972e-02 -9.27130580e-01 -5.26235759e-01
-7.38767564e-01 -5.37725568e-01 1.19522738e+00 2.35875621e-01
1.32918966e+00 -1.78431138e-01 -5.07053077e-01 5.32520831e-01
1.67110324e+00 -8.68221968e-02 7.04017818e-01 -1.41897956e-02
5.75169683e-01 3.05006415e-01 8.24451685e-01 5.52359700e-01
1.56313911e-01 8.37191343e-01 1.18730269e-01 1.40498459e-01
-3.62862945e-01 -5.70985079e-01 -1.01112366e-01 4.62306052e-01
2.45665610e-01 -1.91634953e-01 -6.33557379e-01 9.64208126e-01
-2.03750229e+00 -9.65485156e-01 5.41519761e-01 2.49988365e+00
7.06571400e-01 -3.19305927e-01 4.45759296e-02 -1.35094747e-01
9.29888070e-01 3.79723400e-01 -5.38475573e-01 2.47370824e-01
-1.07428543e-01 1.74112439e-01 4.15990472e-01 2.42598176e-01
-1.25234652e+00 1.23569012e+00 5.66707182e+00 1.69374835e+00
-1.01991880e+00 2.12030020e-03 4.47923690e-01 -3.97146106e-01
-5.30304722e-02 -1.30844608e-01 -6.79338276e-01 4.68263865e-01
2.54622310e-01 -2.27119118e-01 8.81102085e-01 9.08769011e-01
-5.79445362e-01 3.33709531e-02 -1.19649804e+00 1.54744923e+00
5.32452941e-01 -1.43785465e+00 3.91288131e-01 4.52752113e-02
9.10370409e-01 -4.72772717e-02 3.65978032e-01 3.95630598e-01
2.09610760e-01 -9.70508873e-01 6.59059346e-01 8.46037090e-01
1.21703446e+00 -8.83329749e-01 1.55804113e-01 5.95804974e-02
-1.31779027e+00 5.59557118e-02 -6.07659519e-01 5.11768758e-01
-1.79749191e-01 1.72352925e-01 -3.91787857e-01 6.22774780e-01
7.05762684e-01 7.87597835e-01 -5.82259297e-01 1.05645025e+00
2.24856362e-01 1.28364608e-01 -3.57481718e-01 8.04711878e-02
3.34275007e-01 -3.40912908e-01 4.39109176e-01 1.12870753e+00
4.72272217e-01 -1.76174983e-01 2.79013395e-01 1.01711679e+00
-5.38635731e-01 6.84168860e-02 -7.49271631e-01 -1.61722228e-01
8.44555199e-01 1.38820279e+00 -5.94701946e-01 -5.46613753e-01
-9.84014245e-04 1.26997411e+00 3.33757132e-01 5.87261975e-01
-6.60978198e-01 -6.58061504e-01 7.27234960e-01 9.32557359e-02
6.01956069e-01 -2.84776520e-02 -6.52023554e-02 -1.07489002e+00
1.34996057e-01 -5.21997154e-01 4.23421204e-01 -7.73526073e-01
-1.72063923e+00 2.29708284e-01 5.87433800e-02 -1.51068103e+00
-1.53703034e-01 -2.81978786e-01 -4.30439591e-01 5.91631651e-01
-1.46589649e+00 -1.45533586e+00 -3.70607346e-01 8.24595690e-01
6.40244484e-01 -5.71037233e-01 7.18710363e-01 7.28846669e-01
-2.16062024e-01 1.11146581e+00 6.36024654e-01 3.54082108e-01
1.30117917e+00 -9.82328117e-01 1.61403030e-01 2.75053382e-01
4.19541180e-01 8.20337594e-01 3.05316001e-01 -4.84474391e-01
-1.62907016e+00 -1.03989136e+00 5.04913747e-01 -3.72875631e-01
6.64466381e-01 -6.07863963e-01 -8.21507990e-01 2.53498167e-01
1.92584842e-01 1.90406308e-01 4.77824003e-01 -9.11576971e-02
-1.00599802e+00 -2.74093121e-01 -1.07983243e+00 7.25739479e-01
1.02815306e+00 -8.62378001e-01 -2.94081807e-01 3.94678921e-01
5.31538308e-01 -1.22314207e-01 -1.00261700e+00 2.37627197e-02
1.00961590e+00 -5.02951026e-01 1.52029049e+00 -3.48175168e-01
5.86472213e-01 -2.47428074e-01 -5.92096329e-01 -9.08247173e-01
-2.58437127e-01 -5.51694274e-01 -2.99188606e-02 1.42351282e+00
-6.48965165e-02 -5.61080612e-02 8.10032129e-01 4.34643567e-01
4.06541407e-01 -4.49244589e-01 -8.88724029e-01 -9.28419530e-01
1.71205327e-01 -3.36947702e-02 5.23845494e-01 9.62988257e-01
-2.36711696e-01 2.36491069e-01 -6.35648847e-01 -2.22356170e-01
1.02038431e+00 5.64284801e-01 9.23899293e-01 -1.34441388e+00
6.52012303e-02 -8.11115980e-01 -2.97606021e-01 -1.18320882e+00
3.33140463e-01 -1.03653240e+00 3.25112455e-02 -1.34913266e+00
4.05252039e-01 -6.25422120e-01 -4.32128131e-01 2.36610457e-01
-8.84282067e-02 6.16800010e-01 6.64570153e-01 6.49333358e-01
-1.21061230e+00 6.38035536e-01 9.95682061e-01 -6.10215664e-01
1.02619365e-01 -3.95073980e-01 -5.08469403e-01 2.33568460e-01
4.86887246e-01 -3.96730810e-01 -2.87242144e-01 -3.81359607e-01
-1.56732500e-01 -5.11401333e-02 4.67242450e-01 -9.97258246e-01
6.51808143e-01 1.11935519e-01 4.38096404e-01 -1.07878816e+00
7.70131230e-01 -9.07567084e-01 5.72160855e-02 -1.69075690e-02
-5.07839501e-01 -2.38081679e-01 -4.23550121e-02 9.38436866e-01
-2.38132358e-01 -2.19825134e-02 5.55293083e-01 -1.08886352e-02
-6.44298136e-01 5.61638653e-01 2.24826559e-01 3.20939906e-02
8.85386109e-01 -1.87103227e-01 -4.82643157e-01 -5.46233594e-01
-4.08402801e-01 2.55387664e-01 5.90241730e-01 7.68704295e-01
8.02577496e-01 -1.82417333e+00 -6.93677604e-01 8.07327628e-02
6.98543966e-01 -3.22911441e-01 4.77491260e-01 5.15919030e-01
-2.48746663e-01 5.20696580e-01 -1.80844322e-01 -6.89600408e-01
-1.25576925e+00 8.44944835e-01 -1.06777117e-01 -1.32481724e-01
-6.35259926e-01 6.91927075e-01 3.14336687e-01 -3.94293129e-01
7.03997850e-01 3.79972428e-01 1.90241158e-01 2.62229472e-01
5.96376300e-01 3.67810965e-01 -1.47846073e-01 -5.64894676e-01
-2.20128387e-01 9.15288627e-01 -2.68958807e-01 -2.38964632e-01
1.26757061e+00 -2.88169924e-02 -3.94969992e-02 3.29767138e-01
1.58781683e+00 -2.79278040e-01 -1.24910581e+00 -7.26220608e-01
-5.55624142e-02 -8.20643842e-01 -7.16194361e-02 -7.23365009e-01
-1.29701138e+00 9.23830926e-01 6.47334576e-01 -2.04291910e-01
8.33480239e-01 2.31623009e-01 9.31440830e-01 6.41308606e-01
3.65850836e-01 -1.39791858e+00 4.09323722e-01 5.46818078e-02
1.09030664e+00 -1.28963315e+00 1.01042740e-01 -5.83944097e-03
-6.77498639e-01 8.06611419e-01 3.10477734e-01 -6.67424738e-01
5.71925581e-01 -2.77294517e-01 -2.03413755e-01 -2.52113700e-01
-5.00759125e-01 -1.72096074e-01 6.35286331e-01 3.87393057e-01
-2.27168482e-02 3.26566733e-02 -2.45017350e-01 4.45646763e-01
2.15517163e-01 -6.07843101e-02 -1.60210550e-01 6.99175715e-01
-3.08170855e-01 -1.01081097e+00 -4.35143799e-01 4.06344384e-01
-2.63359666e-01 -1.39698252e-01 -6.69655919e-01 8.30537617e-01
-3.49079847e-01 8.27771962e-01 1.33201525e-01 -3.91648501e-01
8.16738456e-02 1.16146713e-01 4.81022179e-01 -1.21864133e-01
-2.48476580e-01 2.90733099e-01 -5.10866225e-01 -6.01534724e-01
-2.44887531e-01 -3.29768658e-01 -8.38337958e-01 -3.90012711e-01
-3.10360819e-01 1.48367630e-02 7.50850439e-01 5.00278294e-01
5.87163508e-01 2.51642559e-02 6.46808386e-01 -1.05607259e+00
-5.39931059e-01 -8.71871531e-01 -7.51286268e-01 7.94078290e-01
6.26373217e-02 -9.02742743e-01 -2.71573812e-01 -4.33579460e-02]
|
[11.590350151062012, 0.6940599083900452]
|
0c4a531a-e181-410d-aae5-679e036127dc
|
f-siamese-tracker-a-frustum-based-double
|
2010.1151
| null |
https://arxiv.org/abs/2010.11510v1
|
https://arxiv.org/pdf/2010.11510v1.pdf
|
F-Siamese Tracker: A Frustum-based Double Siamese Network for 3D Single Object Tracking
|
This paper presents F-Siamese Tracker, a novel approach for single object tracking prominently characterized by more robustly integrating 2D and 3D information to reduce redundant search space. A main challenge in 3D single object tracking is how to reduce search space for generating appropriate 3D candidates. Instead of solely relying on 3D proposals, firstly, our method leverages the Siamese network applied on RGB images to produce 2D region proposals which are then extruded into 3D viewing frustums. Besides, we perform an online accuracy validation on the 3D frustum to generate refined point cloud searching space, which can be embedded directly into the existing 3D tracking backbone. For efficiency, our approach gains better performance with fewer candidates by reducing search space. In addition, benefited from introducing the online accuracy validation, for occasional cases with strong occlusions or very sparse points, our approach can still achieve high precision, even when the 2D Siamese tracker loses the target. This approach allows us to set a new state-of-the-art in 3D single object tracking by a significant margin on a sparse outdoor dataset (KITTI tracking). Moreover, experiments on 2D single object tracking show that our framework boosts 2D tracking performance as well.
|
['Wanlong Li', 'Feng Wen', 'Yong liu', 'Chujuan Zhang', 'Xin Kong', 'Jinhao Cui', 'Hao Zou']
|
2020-10-22
| null | null | null | null |
['3d-single-object-tracking']
|
['computer-vision']
|
[-2.95043707e-01 -1.96450204e-01 -1.69890940e-01 2.97966599e-01
-8.83296132e-01 -9.17015612e-01 4.89214540e-01 -4.11575511e-02
-4.55763578e-01 2.67855018e-01 -4.45621550e-01 -6.15528338e-02
3.61221880e-02 -3.73098820e-01 -8.12862635e-01 -5.66721559e-01
-1.02306642e-01 7.72167087e-01 9.59814787e-01 -1.07718602e-01
-4.45086509e-04 1.12605929e+00 -1.49759531e+00 -5.90845108e-01
6.33012176e-01 1.19199800e+00 5.96729666e-02 4.74582851e-01
-5.70468828e-02 8.23495612e-02 -6.33369029e-01 -2.62656927e-01
9.21043515e-01 7.85212517e-02 5.33419028e-02 2.27427319e-01
9.56226826e-01 -4.59123552e-01 -2.02157170e-01 1.09809351e+00
4.37882721e-01 -4.69795465e-02 3.04924309e-01 -1.32326305e+00
-9.61417556e-02 7.55437389e-02 -8.24088097e-01 9.18674469e-03
4.20150757e-01 5.98722517e-01 6.17327869e-01 -1.11335337e+00
7.46946156e-01 1.31089902e+00 1.07511139e+00 4.86235976e-01
-1.26924133e+00 -8.96531045e-01 3.22724283e-01 -3.94031107e-01
-1.51843047e+00 -1.89092055e-01 8.43961239e-01 -3.31321537e-01
7.73406863e-01 2.57490456e-01 1.07390547e+00 7.09370494e-01
-2.20923740e-02 6.64888501e-01 7.64462709e-01 -1.33757919e-01
-1.09275151e-03 3.27326059e-02 -2.75100451e-02 6.32916331e-01
8.05405319e-01 5.43425679e-01 -4.59763438e-01 -2.21589148e-01
8.03143382e-01 1.84224755e-01 -1.86265618e-01 -1.16333187e+00
-1.34282470e+00 6.22638226e-01 8.33851933e-01 -1.05617195e-01
-2.33713508e-01 2.53520668e-01 6.52797148e-02 -5.68071455e-02
4.31825817e-01 2.67808557e-01 -1.72621042e-01 -2.53708148e-03
-1.14174533e+00 5.21952748e-01 4.54242289e-01 1.29293895e+00
6.90067172e-01 1.29827261e-01 -2.10142002e-01 1.61236674e-01
6.31982803e-01 1.25014389e+00 -9.40113664e-02 -1.00208616e+00
4.32188690e-01 8.20310295e-01 5.35758197e-01 -8.86174917e-01
-4.69972432e-01 -7.64374852e-01 -3.83248031e-01 8.40950549e-01
5.45001149e-01 7.57039562e-02 -9.16834116e-01 1.47398353e+00
1.00827992e+00 1.05869815e-01 -1.85103253e-01 1.27864945e+00
4.68100488e-01 1.83527768e-01 -2.32849076e-01 4.27097641e-02
1.28193867e+00 -7.39800334e-01 -3.12621623e-01 -2.19612941e-01
5.53583324e-01 -7.76933551e-01 4.19312477e-01 1.02224432e-01
-1.14140654e+00 -6.38112485e-01 -9.94556546e-01 1.16597161e-01
-1.36410177e-01 1.93006665e-01 3.78817141e-01 6.99990630e-01
-9.48262811e-01 4.02175128e-01 -1.07930481e+00 -4.25661772e-01
5.54400265e-01 6.88658237e-01 -3.14780921e-01 1.91562977e-02
-6.50475979e-01 1.05120540e+00 4.32811916e-01 7.62052536e-02
-7.83909917e-01 -1.02496707e+00 -7.26131022e-01 -1.52314156e-01
7.48293936e-01 -8.67694974e-01 1.05714452e+00 -1.64830595e-01
-1.36683106e+00 7.67063856e-01 -1.69275224e-01 -6.84181809e-01
8.60485733e-01 -3.44720840e-01 5.07566594e-02 9.78635326e-02
1.18950635e-01 8.27823281e-01 9.80184972e-01 -1.33848977e+00
-7.59808302e-01 -7.37021565e-01 -1.31608814e-01 3.48841548e-01
3.29401717e-02 -2.16434687e-01 -9.34871316e-01 -5.00299096e-01
4.93003249e-01 -1.37740088e+00 -3.84509802e-01 7.99468040e-01
-1.77274317e-01 -1.86110809e-01 1.18882632e+00 -1.48031831e-01
7.10787177e-01 -2.19279194e+00 4.82458062e-03 3.15928310e-01
4.37140316e-01 3.39054406e-01 7.18194693e-02 -1.04581363e-01
4.30619955e-01 -2.65067011e-01 1.26163542e-01 -5.60903728e-01
1.57994226e-01 1.11395856e-02 -2.87655383e-01 8.14959526e-01
4.06950593e-01 1.05580664e+00 -8.93588543e-01 -4.98853683e-01
4.20815825e-01 6.19553030e-01 -5.49402893e-01 -5.33920825e-02
-3.02602291e-01 3.76694381e-01 -6.85029745e-01 9.21440184e-01
1.04544795e+00 -3.35053414e-01 -2.53206909e-01 -2.29917988e-01
-4.35367137e-01 4.65267301e-02 -1.44713962e+00 1.76747060e+00
1.23594403e-02 3.02119225e-01 2.28996068e-01 -3.27563465e-01
9.89047050e-01 -1.13141708e-01 7.30835557e-01 -3.65121782e-01
1.38589337e-01 3.50862890e-01 -2.28070796e-01 3.04001153e-01
5.74060321e-01 2.43773133e-01 -6.03397191e-02 2.46563643e-01
-1.96285546e-01 -3.70149046e-01 -1.47809703e-02 2.05808461e-01
1.01948190e+00 7.49275386e-01 6.33574426e-02 -1.34634767e-02
4.08080399e-01 6.12995863e-01 6.64648414e-01 7.37584949e-01
-5.41731954e-01 4.29880202e-01 -1.37484193e-01 -2.38781691e-01
-9.21313703e-01 -1.16228604e+00 -1.18749708e-01 3.86381954e-01
6.74466848e-01 -3.48603606e-01 -2.79443234e-01 -8.11219692e-01
6.60364032e-01 1.39937133e-01 -3.39603454e-01 -5.35320751e-02
-7.96987176e-01 -3.34844649e-01 3.99525106e-01 4.48759735e-01
2.08852708e-01 -2.86066771e-01 -1.12014747e+00 1.90784827e-01
2.02810794e-01 -1.23006403e+00 -4.59682524e-01 2.21817881e-01
-1.25317538e+00 -1.01845753e+00 -7.99754381e-01 -2.85621405e-01
5.55353642e-01 9.24591124e-01 8.03949833e-01 4.42344546e-02
-2.17119008e-01 5.35166323e-01 -1.79884106e-01 -4.40805912e-01
-2.20602289e-01 -1.21052377e-01 3.79729003e-01 -3.55060071e-01
2.55779415e-01 -1.06260829e-01 -5.28854072e-01 5.52269042e-01
-2.67529279e-01 -2.77985930e-01 5.11659384e-01 3.63890350e-01
8.98525417e-01 -1.60416394e-01 -1.42047256e-01 -1.94551840e-01
-2.46042624e-01 -1.33323390e-02 -1.44718015e+00 -5.23366928e-02
-5.08108497e-01 5.51486760e-02 1.68981761e-01 -7.22416282e-01
-6.68348908e-01 6.45725310e-01 3.08473885e-01 -1.24461079e+00
1.84689537e-01 -2.37113014e-01 1.19551480e-01 -8.09016943e-01
6.47612035e-01 4.62568887e-02 3.26250374e-01 -6.35851383e-01
3.67350012e-01 1.33968532e-01 5.14813185e-01 -2.87253737e-01
1.73314810e+00 9.04585660e-01 3.95764351e-01 -4.56953436e-01
-7.71523476e-01 -6.75423682e-01 -7.93523908e-01 -4.79677141e-01
8.08129251e-01 -1.20148933e+00 -1.04634702e+00 1.00819737e-01
-1.02644813e+00 1.02458738e-01 -5.27229786e-01 6.62454963e-01
-2.91543126e-01 4.28380132e-01 -1.56793445e-01 -1.08388138e+00
-2.38588154e-01 -1.18210554e+00 1.59890079e+00 2.25062549e-01
6.69139177e-02 -6.33087993e-01 3.37653160e-02 1.26145601e-01
2.71485388e-01 3.38058710e-01 2.07015127e-02 -5.16462505e-01
-1.28927946e+00 -4.76752579e-01 -2.07054138e-01 -3.22076738e-01
-1.00520328e-01 2.18742155e-02 -7.34940529e-01 -6.67252064e-01
-1.14943534e-01 -4.92117405e-02 6.74101770e-01 3.23150039e-01
5.36177754e-01 2.93029189e-01 -8.33472550e-01 7.13269949e-01
1.23739004e+00 -6.15343973e-02 -5.86701110e-02 3.89682055e-01
7.00788379e-01 1.59249812e-01 1.21257579e+00 3.37982655e-01
3.15186918e-01 1.15893412e+00 8.24268460e-01 -6.04965352e-02
-5.55571437e-01 -2.87197053e-01 3.64138484e-01 3.48074913e-01
-7.09078163e-02 2.48930573e-01 -8.42088401e-01 2.59258509e-01
-1.83880877e+00 -7.77065396e-01 -3.63691598e-01 2.45911360e+00
3.82789016e-01 5.17126441e-01 3.97250235e-01 -1.51385367e-01
6.88946962e-01 -1.00623757e-01 -8.35010111e-01 7.30053782e-01
-4.97107506e-02 -4.04404849e-02 9.04528439e-01 3.43913704e-01
-1.11392212e+00 1.04588175e+00 5.79516220e+00 7.09394455e-01
-9.86285329e-01 4.34634201e-02 -3.40503663e-01 -4.37258303e-01
9.89089981e-02 2.13533789e-01 -1.76040626e+00 3.84586215e-01
5.38032889e-01 2.10930500e-02 5.98881319e-02 1.06675982e+00
5.03936484e-02 -1.04378052e-01 -8.81411433e-01 1.07467747e+00
-3.51923183e-02 -1.38940907e+00 -1.78649500e-01 3.00332725e-01
5.35039723e-01 3.20671380e-01 -4.74697165e-03 2.55615801e-01
3.31237257e-01 -2.86382526e-01 1.00551200e+00 1.73874319e-01
4.95863169e-01 -4.67011631e-01 3.80738735e-01 4.70231086e-01
-1.61792231e+00 4.32790965e-02 -4.10800934e-01 3.29382271e-01
1.46614224e-01 5.02437949e-01 -9.63977098e-01 7.65745997e-01
8.77304912e-01 6.65504515e-01 -6.85885787e-01 1.59295177e+00
-2.22424138e-02 2.69919746e-02 -1.06589198e+00 -2.06777230e-02
2.74204969e-01 4.02018391e-02 1.16386306e+00 7.58047223e-01
4.94977504e-01 -7.90217966e-02 5.56798458e-01 9.00347054e-01
1.37069046e-01 -3.74260813e-01 -6.59459770e-01 4.27308798e-01
7.10500121e-01 1.27387834e+00 -8.53294253e-01 -2.81576425e-01
-2.06178814e-01 4.83415842e-01 1.76073223e-01 1.01110339e-01
-1.12866902e+00 2.06974298e-02 6.76395655e-01 2.37844184e-01
8.70790243e-01 -5.92489481e-01 -6.53662756e-02 -1.12938809e+00
1.19389966e-01 -5.46813011e-01 2.16578692e-01 -6.66709781e-01
-1.06511307e+00 5.02038836e-01 2.53252219e-02 -1.92588973e+00
-1.13927133e-01 -6.48197234e-01 -1.52308822e-01 7.92594552e-01
-1.61022496e+00 -1.28964567e+00 -4.31408644e-01 6.00074172e-01
3.39796066e-01 1.05112895e-01 1.67835504e-01 3.43957573e-01
-2.68490553e-01 4.35309827e-01 -1.94028378e-01 -6.92883804e-02
7.32049882e-01 -1.01172447e+00 4.43155468e-01 9.64865804e-01
2.50430763e-01 5.69228351e-01 6.15872860e-01 -1.02311075e+00
-1.89458704e+00 -1.15154576e+00 4.67395663e-01 -9.17464614e-01
6.84120893e-01 -5.15362501e-01 -7.00404644e-01 5.39407849e-01
-5.39466083e-01 4.49424654e-01 1.41084611e-01 -1.45337403e-01
-2.72774071e-01 -1.02225825e-01 -1.11857748e+00 5.31679988e-01
1.32635438e+00 -2.35095415e-02 -4.30617034e-01 3.48494172e-01
8.84042621e-01 -1.04672360e+00 -8.76498222e-01 5.75604141e-01
4.89049196e-01 -6.78712904e-01 1.33624578e+00 -1.00284129e-01
-6.94759667e-01 -1.15907693e+00 -1.84630156e-02 -8.35791707e-01
-2.35276371e-01 -7.55886614e-01 -6.57338679e-01 7.66542554e-01
8.00455511e-02 -4.23529744e-01 1.19522011e+00 4.83031482e-01
-1.39645755e-01 -3.60063285e-01 -1.29408634e+00 -1.32707918e+00
-3.99227858e-01 -4.45102185e-01 5.33063650e-01 4.76683497e-01
-6.87838435e-01 1.74245704e-02 -6.81701601e-02 5.68330765e-01
1.40808332e+00 5.07799983e-01 1.37881601e+00 -1.63030005e+00
-5.83319589e-02 -4.10962939e-01 -5.22921562e-01 -1.53510845e+00
-1.50170878e-01 -8.95753562e-01 1.41484246e-01 -9.95549679e-01
-1.52015418e-01 -7.88986683e-01 2.83106826e-02 4.42759186e-01
-1.49209857e-01 6.35017037e-01 8.79462123e-01 5.95384836e-01
-7.35971630e-01 7.16770887e-01 1.26990008e+00 -3.63819301e-02
-3.19900393e-01 2.89721251e-01 -2.39229381e-01 5.70123613e-01
2.73705125e-01 -7.72097826e-01 1.16864137e-01 -4.45177138e-01
-1.46114334e-01 -4.55726683e-02 8.52395773e-01 -1.34409332e+00
5.04923105e-01 1.08431183e-01 6.45791233e-01 -1.40191293e+00
7.62574434e-01 -1.39902484e+00 3.21748197e-01 8.09477866e-01
3.01543772e-01 9.27365758e-03 4.43749845e-01 6.87708735e-01
1.06500171e-01 -4.95350268e-03 8.13767195e-01 2.95487195e-02
-6.16804659e-01 5.73783398e-01 1.27666250e-01 -2.70342410e-01
1.27389956e+00 -7.33058810e-01 -1.35368109e-01 1.20973364e-01
-6.49975657e-01 4.62334692e-01 9.19159472e-01 4.27915394e-01
3.99983019e-01 -1.57759190e+00 -3.87441278e-01 2.33324736e-01
-5.62645914e-03 3.16376269e-01 -8.28644633e-02 1.18967700e+00
-2.57309854e-01 5.62236369e-01 -1.71326119e-02 -1.43337059e+00
-1.31588042e+00 6.61774874e-01 2.34956339e-01 -2.59927601e-01
-9.32636619e-01 6.66734457e-01 -4.91142944e-02 -2.55667388e-01
3.85260254e-01 -4.86989379e-01 2.85584092e-01 -5.10562211e-02
3.21413815e-01 2.27732629e-01 3.86583284e-02 -7.12020397e-01
-7.53891945e-01 1.09334135e+00 3.87315527e-02 1.54655902e-02
1.17646217e+00 -8.99468064e-02 3.83221030e-01 1.17372118e-01
7.79243946e-01 1.99179411e-01 -1.82923973e+00 -2.49792665e-01
7.03905299e-02 -7.94148088e-01 3.01785730e-02 -4.19091076e-01
-1.00596380e+00 5.16721725e-01 8.68303061e-01 1.18983909e-01
6.96559787e-01 1.54372245e-01 7.63392448e-01 4.10366029e-01
5.82763195e-01 -6.26593411e-01 5.08514754e-02 4.77971792e-01
5.58921099e-01 -1.32429087e+00 3.42900097e-01 -4.83469129e-01
-2.10150480e-01 1.03258753e+00 6.59732819e-01 -3.88515294e-01
3.36388826e-01 4.39785898e-01 -2.38421485e-02 -3.06049079e-01
-2.87102193e-01 -5.12632251e-01 4.88587707e-01 6.79563284e-01
-2.07386315e-01 -5.08516252e-01 3.13423038e-01 6.77197725e-02
-3.82739790e-02 -2.67514050e-01 -7.28112087e-03 1.02650201e+00
-6.15679741e-01 -9.50213909e-01 -9.62093115e-01 6.17648177e-02
-1.61587503e-02 3.73272032e-01 -2.68682480e-01 1.29620171e+00
-6.30912632e-02 4.78925705e-01 1.38387680e-01 -1.28205970e-01
6.02048934e-01 -2.63277560e-01 7.28460431e-01 -4.07537043e-01
-6.99927747e-01 4.67213184e-01 -3.04580897e-01 -9.17840362e-01
-5.17456174e-01 -8.01807165e-01 -1.33786821e+00 -7.85866380e-02
-7.08014727e-01 -1.88565981e-02 8.59398365e-01 6.17685318e-01
5.83812654e-01 2.40440056e-01 3.52986336e-01 -1.40523481e+00
-8.26784313e-01 -3.65932316e-01 -1.52347267e-01 1.84281737e-01
5.77503741e-01 -1.20787132e+00 -3.06747198e-01 -4.14473653e-01]
|
[6.634721755981445, -2.2930946350097656]
|
59f77d95-c897-404f-8086-39458f28ce64
|
breast-cancer-detection-using-artificial
|
2203.04308
| null |
https://arxiv.org/abs/2203.04308v1
|
https://arxiv.org/pdf/2203.04308v1.pdf
|
Breast cancer detection using artificial intelligence techniques: A systematic literature review
|
Cancer is one of the most dangerous diseases to humans, and yet no permanent cure has been developed for it. Breast cancer is one of the most common cancer types. According to the National Breast Cancer foundation, in 2020 alone, more than 276,000 new cases of invasive breast cancer and more than 48,000 non-invasive cases were diagnosed in the US. To put these figures in perspective, 64% of these cases are diagnosed early in the disease's cycle, giving patients a 99% chance of survival. Artificial intelligence and machine learning have been used effectively in detection and treatment of several dangerous diseases, helping in early diagnosis and treatment, and thus increasing the patient's chance of survival. Deep learning has been designed to analyze the most important features affecting detection and treatment of serious diseases. For example, breast cancer can be detected using genes or histopathological imaging. Analysis at the genetic level is very expensive, so histopathological imaging is the most common approach used to detect breast cancer. In this research work, we systematically reviewed previous work done on detection and treatment of breast cancer using genetic sequencing or histopathological imaging with the help of deep learning and machine learning. We also provide recommendations to researchers who will work in this field
|
['Omar Elgendy', 'Yaman Afadar', 'Qassim Nasir', 'Manar Abu Talib', 'Ali Bou Nassif']
|
2022-03-08
| null | null | null | null |
['breast-cancer-detection', 'breast-cancer-detection']
|
['knowledge-base', 'medical']
|
[ 2.64752775e-01 3.33093047e-01 -8.01281691e-01 -2.41021007e-01
-5.77205420e-01 -1.04454540e-01 2.71611009e-02 7.12180436e-01
-5.10034204e-01 6.14708662e-01 1.44855872e-01 -6.39885783e-01
-2.83406992e-02 -9.40032601e-01 -1.83990479e-01 -9.66165721e-01
4.51500863e-02 6.77341163e-01 -8.85239616e-02 -1.52012020e-01
-1.07625894e-01 7.04227567e-01 -1.11631298e+00 3.78505021e-01
7.80311227e-01 9.14309382e-01 1.94007382e-01 7.23439336e-01
-2.52641797e-01 4.72157657e-01 -2.57444113e-01 -4.77669477e-01
-1.84781998e-01 -5.47131896e-01 -6.50101721e-01 -3.80436093e-01
-2.54880100e-01 -2.96098858e-01 -1.26109853e-01 1.00361311e+00
5.82108080e-01 -7.44042516e-01 5.91320574e-01 -6.85455203e-01
-8.13524425e-02 4.36462998e-01 -7.84236908e-01 -5.32205589e-02
5.18484712e-02 3.50298546e-02 5.47891796e-01 -3.71853352e-01
5.55190742e-01 1.01622415e+00 6.14819467e-01 9.30259764e-01
-9.01399434e-01 -4.27628189e-01 -8.14963758e-01 4.45524156e-01
-9.82756436e-01 -4.13561463e-01 3.05267066e-01 -3.62252206e-01
4.97903496e-01 4.60606933e-01 9.72280979e-01 5.46823084e-01
7.94682920e-01 5.56313694e-01 7.17331469e-01 -6.53339267e-01
2.27646247e-01 -1.42839979e-02 -7.07493350e-02 8.30084205e-01
5.39415896e-01 2.39610240e-01 4.51244414e-03 -2.25195616e-01
2.99217612e-01 3.28842789e-01 8.28867629e-02 4.58012857e-02
-7.90651202e-01 9.84713793e-01 4.50519711e-01 6.87261879e-01
-1.22029707e-01 1.60713211e-01 7.14009166e-01 -2.62184907e-02
7.40703642e-02 2.51007862e-02 -2.62628704e-01 5.08365519e-02
-4.60532784e-01 -3.17746490e-01 3.81352216e-01 3.42328064e-02
3.01570594e-01 -3.74336243e-01 7.18684942e-02 7.70943642e-01
3.00883204e-01 4.10653561e-01 9.26830530e-01 -6.31303847e-01
-3.52979809e-01 1.02345169e+00 -3.59687716e-01 -1.06415880e+00
-9.03303623e-01 -3.67190957e-01 -1.36999285e+00 -2.54238881e-02
3.99757683e-01 -1.53573295e-02 -9.64214802e-01 1.32208812e+00
2.81613559e-01 -1.38509154e-01 1.44575626e-01 6.01392329e-01
6.55659914e-01 3.46897274e-01 2.29497239e-01 -2.37747967e-01
1.62251556e+00 -3.47593695e-01 -7.17997551e-01 -1.65929735e-01
1.13883674e+00 -2.18760997e-01 2.95635134e-01 3.50415468e-01
-6.20664179e-01 -1.75857365e-01 -8.91907334e-01 5.03941290e-02
-3.70367140e-01 2.49883026e-01 1.15540719e+00 1.02613926e+00
-8.02078605e-01 1.49645895e-01 -1.18104339e+00 -8.92875612e-01
6.93608344e-01 3.62851590e-01 -6.29050255e-01 -5.75603366e-01
-1.05365551e+00 8.89510572e-01 4.60425526e-01 8.55499937e-04
-8.72696340e-01 -6.10648870e-01 -5.13376951e-01 -1.47201777e-01
1.43055722e-01 -7.27588236e-01 9.05700326e-01 -6.00851834e-01
-9.24727798e-01 1.38228238e+00 -4.79106098e-01 -3.87968302e-01
1.03054635e-01 3.01606536e-01 -3.27856243e-01 5.01831695e-02
7.28390086e-03 6.16651595e-01 5.70733659e-02 -3.81548047e-01
-1.09522438e+00 -9.46299553e-01 -4.45813179e-01 -2.71618605e-01
-5.62359273e-01 2.01968148e-01 -4.55264717e-01 -2.10517108e-01
2.06875931e-02 -8.77834320e-01 -5.15212119e-01 2.48135686e-01
-1.63272053e-01 -3.08487087e-01 6.76276624e-01 -8.80984247e-01
9.07186270e-01 -2.25829601e+00 7.05955774e-02 4.35546637e-02
3.15497875e-01 4.76737499e-01 1.59279391e-01 1.84789747e-01
5.93924411e-02 5.42857051e-01 7.94902036e-04 5.19025922e-01
-3.90685797e-01 1.74502969e-01 5.67123234e-01 5.46937287e-01
2.97102660e-01 9.23609674e-01 -9.73463058e-01 -1.95188761e-01
8.16451609e-02 5.00854254e-01 -1.92013085e-01 -1.83665946e-01
-9.32894349e-02 4.85394984e-01 -4.77704883e-01 9.37015712e-01
5.16210437e-01 -2.12315112e-01 6.66263700e-01 1.64927706e-01
4.94069397e-01 -2.12320462e-01 -3.18926334e-01 1.07601035e+00
-8.59414265e-02 6.29933774e-01 -3.57438661e-02 -1.25655937e+00
8.50273311e-01 2.89597452e-01 5.73141575e-01 -8.31148148e-01
1.46018595e-01 4.57703531e-01 5.49127758e-01 -8.19505990e-01
-4.08267111e-01 -3.08651775e-01 1.50266424e-01 2.36872695e-02
-5.20381153e-01 9.30222645e-02 3.37544799e-01 -1.99048948e-02
1.56266975e+00 -6.93369687e-01 6.48053229e-01 8.79311636e-02
5.11236727e-01 2.23145351e-01 9.40469980e-01 3.35325062e-01
-2.36988097e-01 4.40307669e-02 8.13341022e-01 -6.94858909e-01
-8.58132184e-01 -6.20915473e-01 -4.39216942e-01 5.65022707e-01
-2.53182948e-01 1.50588453e-01 -5.09875476e-01 -4.12320912e-01
2.30291143e-01 4.63303477e-01 -6.41925991e-01 -4.93367195e-01
-2.51176387e-01 -1.20299876e+00 7.02689469e-01 3.37868869e-01
6.75227404e-01 -6.46371841e-01 -4.90664124e-01 2.84969389e-01
6.65075481e-02 -5.45465469e-01 4.47449952e-01 2.19322920e-01
-1.05134833e+00 -1.47482729e+00 -9.07229424e-01 -8.91751289e-01
7.71590173e-01 -1.13664076e-01 5.44481158e-01 5.07176459e-01
-1.28807604e+00 -2.63929874e-01 -2.90425599e-01 -6.97800100e-01
-9.60339367e-01 -1.82102725e-01 -7.82120898e-02 -2.61043310e-01
7.31713355e-01 -4.72623482e-02 -5.29180944e-01 2.12339442e-02
-7.76233077e-01 6.90730512e-02 1.09588587e+00 9.26864207e-01
4.44870353e-01 7.41409481e-01 6.11476064e-01 -1.00660408e+00
1.53951257e-01 -5.27697444e-01 -3.72718632e-01 1.18860632e-01
-3.63573343e-01 -3.39101046e-01 2.17872784e-01 1.08724155e-01
-7.16505289e-01 2.00251862e-01 -4.08314437e-01 3.51192504e-01
-3.02468181e-01 9.01880503e-01 -4.30634730e-02 6.32294342e-02
4.95125055e-01 -2.67501082e-02 4.34924275e-01 -1.66346788e-01
-5.76776385e-01 6.67308867e-01 3.32830757e-01 2.85499275e-01
1.33185193e-01 4.53644663e-01 5.62406540e-01 -1.00549304e+00
-5.92722893e-01 -5.11607885e-01 -2.34385863e-01 -3.22857648e-01
1.01474345e+00 -6.76165581e-01 -9.09707904e-01 8.85200560e-01
-6.78141356e-01 -1.84348226e-01 2.70101249e-01 5.45660853e-01
8.31169449e-03 3.74534354e-02 -7.82229781e-01 -6.00860298e-01
-3.15074891e-01 -9.04422939e-01 8.43116581e-01 3.86623263e-01
-1.90179601e-01 -1.06589448e+00 3.14244926e-02 4.37913597e-01
4.71933722e-01 6.00360274e-01 1.61011493e+00 -3.96592200e-01
6.49522096e-02 -8.10812294e-01 -3.53869706e-01 1.28086612e-01
5.10619521e-01 1.84321910e-01 -6.38110161e-01 -2.60953754e-01
-2.46867850e-01 -2.02661827e-01 9.66254234e-01 7.12455809e-01
1.07804310e+00 5.95477745e-02 -1.27746129e+00 4.22459662e-01
1.46260941e+00 7.85350025e-01 9.27299321e-01 2.44821459e-01
2.24882558e-01 6.41715169e-01 6.55383527e-01 1.92829579e-01
-2.76918057e-03 3.39344054e-01 6.19888365e-01 -3.15789968e-01
-9.52976495e-02 4.94503379e-02 -1.49444509e-02 2.00667247e-01
-8.06958601e-02 -2.77359188e-01 -1.33867013e+00 3.84185672e-01
-1.18656397e+00 -9.63471174e-01 -3.74777079e-01 2.09724808e+00
8.15971434e-01 8.63271579e-02 -2.06229270e-01 3.86474997e-01
7.05190420e-01 -7.47685909e-01 -6.07457578e-01 -4.52479810e-01
5.35554513e-02 2.79629026e-02 4.60196376e-01 4.25160117e-02
-7.46204853e-01 3.88573349e-01 6.63422012e+00 6.63188338e-01
-1.55528569e+00 -1.69351459e-01 1.30663228e+00 1.88024551e-01
7.00079277e-02 -2.20672548e-01 -7.78671861e-01 4.57980633e-01
8.18828762e-01 -1.44921228e-01 -3.02519321e-01 6.29313290e-01
4.73907411e-01 -7.04135656e-01 -9.71124589e-01 7.23732650e-01
-2.67033637e-01 -1.45712948e+00 -3.61012578e-01 5.00634432e-01
3.84894311e-01 -2.48498321e-01 -1.59311578e-01 1.03360549e-01
1.54420346e-01 -1.21803188e+00 -2.32311472e-01 6.90765738e-01
1.07028496e+00 -8.33015859e-01 1.40820587e+00 4.60108966e-01
-4.25522447e-01 -3.38314354e-01 -3.07040751e-01 7.22999051e-02
-1.69798627e-01 1.13611948e+00 -1.36416125e+00 2.34728336e-01
7.89329648e-01 3.38379949e-01 -5.12340546e-01 1.15539622e+00
-8.89139697e-02 7.41359830e-01 -3.12220752e-01 -3.44851673e-01
-1.39755398e-01 2.52316684e-01 7.36869499e-02 7.78892219e-01
5.68211496e-01 2.51916528e-01 -4.87017669e-02 2.70819396e-01
1.53011605e-01 9.45934281e-03 -2.92994201e-01 -4.79993999e-01
3.03026557e-01 1.15883005e+00 -8.10671389e-01 -1.61665946e-01
-2.55464792e-01 7.64685810e-01 -3.34624946e-02 -2.70904630e-01
-4.75525469e-01 -4.54701841e-01 3.62605810e-01 2.24447280e-01
-3.06819946e-01 4.61053282e-01 -1.55060485e-01 -3.34473997e-01
-5.08015633e-01 -8.53349745e-01 5.34134388e-01 -3.50254744e-01
-8.06082845e-01 -1.04792699e-01 -4.65233237e-01 -5.19632876e-01
-2.65562624e-01 -8.69681060e-01 -5.96000135e-01 6.59356773e-01
-1.28238297e+00 -9.10010695e-01 -2.28787348e-01 -1.31442428e-01
2.19762847e-01 -1.78042382e-01 1.20678222e+00 1.96089119e-01
-8.83785546e-01 5.84009469e-01 4.22749013e-01 1.70711577e-01
6.89042747e-01 -9.43217099e-01 -3.11664701e-01 3.30874212e-02
-9.65134740e-01 2.00836152e-01 3.68747056e-01 -7.09303021e-01
-1.67915630e+00 -9.10788178e-01 1.00001943e+00 3.01565528e-01
3.39414686e-01 6.96790814e-02 -4.60800052e-01 3.00427020e-01
-2.07101554e-01 -1.65652320e-01 1.02663565e+00 -8.20225030e-02
2.90189028e-01 -3.37268800e-01 -1.46602762e+00 4.53136295e-01
2.60312915e-01 2.65208390e-02 1.44205019e-01 6.14781201e-01
1.43984780e-01 -2.13994369e-01 -9.65605974e-01 7.90092587e-01
7.48524785e-01 -1.03687394e+00 5.38348973e-01 -3.12033594e-01
5.60713053e-01 -8.95790234e-02 1.91986054e-01 -1.11152589e+00
-5.38586974e-01 -1.12442197e-02 4.37711775e-01 1.00869608e+00
3.88199776e-01 -5.55021942e-01 1.20236409e+00 5.07070422e-01
2.22955849e-02 -1.01725531e+00 -7.69657850e-01 -3.72066677e-01
6.16082326e-02 -4.55435589e-02 3.53999853e-01 8.56763244e-01
1.22012287e-01 -8.83302838e-02 2.47564599e-01 -2.04333931e-01
3.94426882e-01 -5.64887881e-01 5.56880891e-01 -1.29821599e+00
-9.49978083e-02 -6.01978004e-01 -1.02191222e+00 -2.61207297e-02
-3.00806940e-01 -8.94807160e-01 -3.72186840e-01 -1.73100233e+00
8.35781038e-01 -4.37834620e-01 -1.47048026e-01 8.28169584e-01
-1.30259961e-01 2.69222081e-01 -4.53583896e-01 -1.56531423e-01
2.63225079e-01 -2.19183117e-01 1.10886896e+00 -5.14775336e-01
1.19833939e-01 3.51072438e-02 -8.24703455e-01 7.18208730e-01
1.09382105e+00 -2.85058856e-01 1.39550611e-01 -1.50504351e-01
4.28427070e-01 3.23193073e-01 1.87946022e-01 -9.98579383e-01
4.61827219e-02 -4.82897639e-01 8.54374945e-01 -5.48173904e-01
1.13904022e-01 -7.50047982e-01 4.94120747e-01 1.49655950e+00
-1.41387612e-01 -6.91850185e-01 3.90980214e-01 3.77255768e-01
-1.85290188e-01 -5.20002663e-01 8.46451879e-01 -1.00492418e-01
-7.72117436e-01 -1.37105735e-03 -8.62868845e-01 -6.74840033e-01
1.67414594e+00 -2.12853268e-01 -3.26536924e-01 -1.47752866e-01
-7.27181852e-01 3.13588977e-01 3.90145361e-01 1.88566890e-04
4.36164290e-01 -1.09518909e+00 -1.02808917e+00 6.88995887e-03
2.85169780e-01 -2.46325880e-01 4.66234565e-01 1.18956792e+00
-1.05192661e+00 6.28889143e-01 -1.71552554e-01 -5.86143196e-01
-1.51680970e+00 6.90222979e-01 3.20399612e-01 -3.76541257e-01
-3.68901819e-01 9.82598901e-01 -3.42519060e-02 -3.98675352e-02
2.99023271e-01 1.60400689e-01 -3.72016996e-01 -2.83934250e-02
8.55744839e-01 3.56415182e-01 1.61621720e-01 -1.60120666e-01
-3.13819230e-01 3.27362835e-01 -4.62963909e-01 3.47883284e-01
1.15971243e+00 2.80925453e-01 -6.65989459e-01 1.29122749e-01
1.17243230e+00 -1.54430479e-01 -1.12346292e-01 3.26579601e-01
7.06449747e-02 -2.12541476e-01 3.06419909e-01 -1.01008785e+00
-1.22506821e+00 8.57682884e-01 1.04381073e+00 2.30022117e-01
1.35003662e+00 9.82057825e-02 6.86954498e-01 2.81421751e-01
3.86754632e-01 -7.43869603e-01 -2.89739460e-01 7.45262904e-03
4.28532809e-01 -1.30976844e+00 -1.92082580e-02 -5.28279424e-01
-2.16614548e-02 1.39696240e+00 2.63214588e-01 2.34067857e-01
5.46049297e-01 4.62023348e-01 6.51812479e-02 -1.25186041e-01
-8.68336797e-01 1.56666830e-01 -3.74144822e-01 6.09278321e-01
8.72583568e-01 3.72742742e-01 -8.17018330e-01 4.03763324e-01
1.32405892e-01 3.51953596e-01 1.24633670e-01 9.57653642e-01
-8.80687237e-01 -1.27913070e+00 -4.49751705e-01 1.01624930e+00
-7.98693717e-01 2.42086470e-01 -6.98335230e-01 5.77747166e-01
1.70636073e-01 8.42364490e-01 1.04650646e-01 -1.27024472e-01
-1.78600743e-01 7.93065727e-02 3.88757616e-01 -3.59017611e-01
-7.31461197e-02 -3.40833254e-02 1.44202501e-01 -2.49549493e-01
-2.07447931e-01 -5.51138818e-01 -1.57331085e+00 -4.30801511e-01
-3.21090460e-01 -1.33464159e-02 1.07882476e+00 8.11496317e-01
2.51121223e-01 6.78773284e-01 4.22534794e-01 -2.68597126e-01
-1.27779156e-01 -8.21304858e-01 -7.92321324e-01 -1.43018588e-01
-5.63782901e-02 -3.09631556e-01 -9.19326693e-02 3.17142457e-02]
|
[15.2711763381958, -2.834515333175659]
|
d2f3a3ec-5e46-4423-ab0c-c266534c52d4
|
improving-rouge-for-timeline-summarization
| null | null |
https://aclanthology.org/E17-2046
|
https://aclanthology.org/E17-2046.pdf
|
Improving ROUGE for Timeline Summarization
|
Current evaluation metrics for timeline summarization either ignore the temporal aspect of the task or require strict date matching. We introduce variants of ROUGE that allow alignment of daily summaries via temporal distance or semantic similarity. We argue for the suitability of these variants in a theoretical analysis and demonstrate it in a battery of task-specific tests.
|
['Katja Markert', 'Sebastian Martschat']
|
2017-04-01
| null | null | null |
eacl-2017-4
|
['timeline-summarization']
|
['natural-language-processing']
|
[-8.20564292e-03 -1.28527030e-01 -4.70364481e-01 -5.88821769e-01
-7.74666727e-01 -8.73648584e-01 1.21887589e+00 6.86571836e-01
-4.45464909e-01 8.06446552e-01 1.00173652e+00 -3.04072589e-01
-6.45519614e-01 -4.80386764e-01 -1.26621962e-01 -8.04757923e-02
-5.66392004e-01 2.98755467e-01 3.68840575e-01 -3.19040388e-01
7.94549644e-01 2.28604108e-01 -1.41412544e+00 2.06363618e-01
1.06297827e+00 8.01144600e-01 -1.06242165e-01 8.77192020e-01
-2.14009643e-01 6.12942159e-01 -1.17383611e+00 -2.44273946e-01
-7.32046515e-02 -4.90987867e-01 -9.43735003e-01 -1.44386053e-01
4.88637596e-01 -2.41420344e-01 -4.53275770e-01 6.08595788e-01
5.33889771e-01 6.22574508e-01 7.31707215e-01 -1.34009171e+00
-4.29506868e-01 5.04349411e-01 -2.86912590e-01 9.97963071e-01
9.72498298e-01 -3.13260019e-01 1.38045108e+00 -3.76505047e-01
8.69140267e-01 9.84412253e-01 9.38929439e-01 5.13458662e-02
-1.11385834e+00 6.77109584e-02 2.57565796e-01 2.01532394e-01
-8.46663773e-01 -5.99865198e-01 7.29689062e-01 -3.72036487e-01
1.51377451e+00 7.00864792e-01 3.56874198e-01 8.63256216e-01
3.28203708e-01 7.81581223e-01 8.26147377e-01 -8.13425034e-02
2.46648699e-01 -3.36989015e-01 7.56342649e-01 8.42659175e-03
3.80819976e-01 -1.99496880e-01 -5.60307384e-01 -4.68566000e-01
2.78275967e-01 -2.45997876e-01 -3.36392373e-01 -9.90912467e-02
-1.51518095e+00 7.57934093e-01 1.48867786e-01 5.33754051e-01
-4.86458749e-01 -4.60436428e-03 1.01086926e+00 4.99403089e-01
8.86741281e-01 8.77072155e-01 -2.33550310e-01 -4.95861560e-01
-1.48425746e+00 4.95440066e-01 9.81551766e-01 1.11591673e+00
9.97136980e-02 -3.39353308e-02 -5.38064480e-01 6.15156174e-01
-2.65898198e-01 -2.31636106e-03 7.55538642e-01 -9.52171206e-01
5.94850540e-01 2.73203492e-01 3.98304224e-01 -1.11642909e+00
-6.32323384e-01 -3.49267483e-01 -3.04755628e-01 -6.30775928e-01
1.92480922e-01 7.97187090e-02 -4.79175568e-01 1.55826128e+00
-4.70016673e-02 2.05265835e-01 1.27306342e-01 4.46055621e-01
8.02928984e-01 6.70719862e-01 -2.08035344e-03 -9.33396280e-01
1.05746305e+00 -1.01591694e+00 -1.03579760e+00 -6.50299713e-02
7.46522009e-01 -8.15979600e-01 1.21012127e+00 1.21471591e-01
-1.32050705e+00 -2.69671440e-01 -1.21523583e+00 -1.06338121e-01
-3.81235331e-01 -1.49856761e-01 7.19612658e-01 4.04756010e-01
-1.18392062e+00 1.06491268e+00 -6.51787639e-01 -8.19655776e-01
-2.69827098e-01 -9.89895463e-02 -2.30626203e-02 3.41645926e-01
-1.24690604e+00 8.85915399e-01 4.12692815e-01 -4.97976393e-01
-7.74271414e-02 -6.17383659e-01 -7.98470795e-01 9.73999500e-02
-5.23743629e-02 -8.17525923e-01 1.68041027e+00 -3.09118062e-01
-9.14510608e-01 6.72563970e-01 -2.95409322e-01 -6.95515275e-01
6.11417174e-01 -4.07495141e-01 -7.53023982e-01 3.92778754e-01
3.28773171e-01 1.33952290e-01 4.10168022e-01 -6.54171348e-01
-7.92317092e-01 6.89312741e-02 1.08650602e-01 4.59103644e-01
-3.38966757e-01 3.36521983e-01 -1.71885312e-01 -1.11814034e+00
-1.16635039e-01 -5.84786117e-01 -4.45239097e-02 -8.04723501e-01
-2.41782665e-01 -6.79276288e-01 7.88730204e-01 -6.52832389e-01
1.96520448e+00 -1.93415260e+00 -1.35816723e-01 -1.55897617e-01
4.27664630e-02 -1.08337589e-01 -1.23651505e-01 1.07087183e+00
-6.52750060e-02 2.58342683e-01 -1.50319368e-01 -3.57643217e-01
1.13981463e-01 -1.44781366e-01 -6.65847301e-01 5.45398176e-01
-1.86175242e-01 9.25110936e-01 -1.09685278e+00 -5.49108624e-01
1.95434736e-03 -1.62848204e-01 -3.35910916e-01 -3.49407904e-02
-2.05126479e-01 -1.81484818e-01 -4.39322591e-01 2.59206414e-01
1.55197151e-04 -3.31617892e-01 -5.08274995e-02 -1.14967553e-02
-4.44625765e-01 1.06146920e+00 -7.04856038e-01 1.78739548e+00
-1.27019405e-01 9.18342352e-01 -3.71171653e-01 -7.45672107e-01
6.37889028e-01 3.40176135e-01 7.57884324e-01 -7.19558597e-01
-2.54575014e-01 1.59355819e-01 -3.05050135e-01 -2.73430198e-01
1.18400419e+00 2.01441780e-01 -5.10729373e-01 8.07459950e-01
-1.97965786e-01 -2.83595771e-01 5.85488796e-01 4.55484599e-01
1.27059102e+00 -4.01390903e-02 6.40880048e-01 -5.32829225e-01
2.08703026e-01 4.30756420e-01 2.35151723e-01 9.64322925e-01
-3.19700181e-01 6.93887651e-01 4.32622820e-01 -3.14174026e-01
-1.23927188e+00 -9.55213964e-01 -2.02149734e-01 1.01720810e+00
4.57523279e-02 -9.48136508e-01 -4.61477041e-01 -7.55563438e-01
5.83316311e-02 1.36984813e+00 -4.73700166e-01 -3.44240405e-02
-6.14638448e-01 -8.72022808e-01 5.43833315e-01 4.56954032e-01
-8.91897604e-02 -8.39595437e-01 -8.73299658e-01 3.32395226e-01
-4.37761068e-01 -9.32538390e-01 -8.46880198e-01 -7.32324943e-02
-1.11688864e+00 -9.46731329e-01 -5.53785741e-01 -3.12007576e-01
-2.95968354e-02 7.32235312e-01 1.36819732e+00 -1.47845879e-01
1.21623196e-01 9.08180594e-01 -4.76956367e-01 -2.42494747e-01
-2.04601690e-01 4.35003191e-01 2.58714318e-01 -6.64550304e-01
4.62238580e-01 -7.51876056e-01 -6.06358290e-01 2.89985627e-01
-8.06210220e-01 -2.94135749e-01 3.01081594e-02 4.52051759e-01
9.72102806e-02 -1.29581884e-01 1.02930212e+00 -6.33236647e-01
1.45629871e+00 -7.02180147e-01 -8.48202631e-02 3.15551579e-01
-8.45850348e-01 -1.54578686e-01 4.43007529e-01 -2.85209358e-01
-7.44544983e-01 -7.88615465e-01 1.37157276e-01 -1.53988115e-02
2.00152755e-01 8.11374724e-01 3.65948141e-01 5.20997465e-01
7.15588033e-01 3.74618739e-01 -2.17746824e-01 -4.18296069e-01
2.52476126e-01 4.70721871e-01 8.29349935e-01 -5.19879580e-01
5.63819051e-01 4.07192111e-01 -3.79530638e-01 -8.05738509e-01
-8.01186204e-01 -9.07048166e-01 -3.79643768e-01 -2.76693851e-01
5.23527145e-01 -7.22570479e-01 -3.52883697e-01 -4.34428453e-02
-1.18495953e+00 -4.47965488e-02 -5.25833905e-01 7.06992745e-01
-8.81313145e-01 6.09313309e-01 -5.65380991e-01 -4.48151261e-01
-4.02194619e-01 -5.01322448e-01 9.16676521e-01 -3.84643488e-02
-8.98711741e-01 -1.31601572e+00 3.60975116e-01 -2.70148903e-01
5.99240005e-01 3.83225650e-01 8.27211976e-01 -1.23871255e+00
4.94699255e-02 -5.97474039e-01 -1.70418188e-01 -1.51423618e-01
3.61562252e-01 2.53389835e-01 -6.21468008e-01 -2.37426594e-01
9.81526151e-02 1.27758816e-01 1.10139585e+00 5.89680254e-01
7.69658029e-01 -5.23652375e-01 -4.24639702e-01 2.02739000e-01
1.18498445e+00 1.50249153e-01 4.59137917e-01 5.45828402e-01
3.48056972e-01 8.57060671e-01 8.19191754e-01 5.89306295e-01
6.30123734e-01 7.87349343e-01 -1.36547565e-01 2.76750833e-01
-2.22272854e-02 -3.08926761e-01 2.72566199e-01 1.19639969e+00
9.36241224e-02 -5.61031997e-01 -7.32692659e-01 9.88011062e-01
-2.08354878e+00 -1.21461332e+00 -1.99585155e-01 2.19568682e+00
6.82707667e-01 3.53479534e-01 6.10737026e-01 1.38101384e-01
7.63859451e-01 7.59219885e-01 -1.29103646e-01 -6.60813630e-01
-2.03845888e-01 -3.24677467e-01 4.16288644e-01 4.52415466e-01
-1.05615246e+00 6.42918050e-01 8.33538723e+00 7.02898443e-01
-7.21911073e-01 1.09583102e-02 2.49299631e-01 -3.71284425e-01
-5.69466412e-01 -3.84808592e-02 -5.51188588e-01 4.85386401e-01
1.20343447e+00 -9.45791662e-01 8.78537372e-02 6.26195908e-01
4.40194488e-01 -1.89086124e-01 -1.52393138e+00 6.93936825e-01
1.94908857e-01 -1.35630739e+00 -1.10014386e-01 -1.93770140e-01
6.92414880e-01 7.31894420e-03 -2.94484943e-01 1.31229401e-01
2.12254778e-01 -6.36990428e-01 6.61198854e-01 5.65293968e-01
4.21177834e-01 -5.02041936e-01 4.18488055e-01 7.72170871e-02
-9.51786757e-01 9.68998969e-02 -1.77097946e-01 -2.20336765e-01
5.56088507e-01 4.61433053e-01 -6.95515335e-01 9.11217213e-01
4.50649589e-01 1.02847064e+00 -6.87274158e-01 1.28676200e+00
1.39187232e-01 7.06284165e-01 -3.44635755e-01 -1.65181533e-02
5.19962847e-01 -8.62876847e-02 1.20417607e+00 1.61897695e+00
3.99782389e-01 -2.04530686e-01 9.06465873e-02 1.22641437e-01
3.17295462e-01 2.60775954e-01 -8.11540425e-01 -1.07708946e-01
7.02756405e-01 7.23903477e-01 -8.52507949e-01 -4.70202625e-01
-3.78412753e-01 7.06372976e-01 6.28381893e-02 1.94110528e-01
-6.35282218e-01 -6.21399045e-01 5.90156198e-01 -3.64007521e-03
1.61473662e-01 -5.04665554e-01 -4.84149873e-01 -1.15573800e+00
3.33336949e-01 -3.97044390e-01 8.73493016e-01 -6.37048662e-01
-1.20784318e+00 5.04596889e-01 5.93507767e-01 -1.50054479e+00
-6.41054094e-01 1.92093864e-01 -1.00241375e+00 3.98813635e-01
-1.26442075e+00 -5.36384463e-01 -2.64724791e-01 2.10067958e-01
8.07711005e-01 1.35303847e-02 6.00715876e-01 1.94516465e-01
-4.28071380e-01 3.46931815e-01 2.84854203e-01 -4.53954160e-01
9.39446688e-01 -1.54647505e+00 8.59765887e-01 8.49271655e-01
-1.33763347e-02 6.55160844e-01 1.45624876e+00 -6.63904965e-01
-9.26781178e-01 -9.04322505e-01 1.64020252e+00 -6.64568305e-01
9.18119729e-01 9.93677080e-02 -8.63049686e-01 6.32760227e-01
5.06169260e-01 -6.73756182e-01 6.23941422e-01 2.28741214e-01
-2.67219096e-01 1.34014353e-01 -8.71048570e-01 5.26277781e-01
1.19850087e+00 -3.54060054e-01 -1.17682481e+00 6.29644692e-01
1.02308464e+00 -7.73214251e-02 -1.09038866e+00 3.30675542e-01
5.01207530e-01 -9.66089189e-01 8.47891510e-01 -7.63955712e-01
5.30313194e-01 -1.93260223e-01 -1.86169669e-01 -1.38291454e+00
-2.21775383e-01 -8.59384239e-01 -1.57220662e-01 1.32292891e+00
2.02126458e-01 -6.89822733e-01 2.46148914e-01 4.87226397e-01
-5.39719224e-01 -1.79136530e-01 -8.36840034e-01 -1.28419840e+00
-1.28855905e-03 -3.21702212e-01 6.65627182e-01 1.10867965e+00
6.55974925e-01 4.21029896e-01 -2.54792720e-01 -3.43977928e-01
2.93297619e-01 1.19160227e-01 4.73324239e-01 -1.39101946e+00
3.98499370e-02 -1.01448810e+00 -3.29217374e-01 -1.03218889e+00
6.54278100e-02 -5.68602622e-01 -1.33593574e-01 -1.84364438e+00
-7.40099549e-02 -7.13128224e-02 -2.28297412e-01 -4.38019633e-02
-2.04764470e-01 -1.43030852e-01 -3.05508282e-02 6.84441388e-01
-1.08291602e+00 6.00230575e-01 6.26508296e-01 -3.32377441e-02
-4.14775103e-01 1.58121392e-01 -7.52424359e-01 3.42842191e-01
8.18834305e-01 -4.03731614e-01 -7.81216323e-01 -3.69202405e-01
3.00649673e-01 3.54681581e-01 8.00732449e-02 -9.23693359e-01
3.65969688e-01 -2.02642456e-01 -2.24088073e-01 -8.03877950e-01
-4.95818723e-03 -4.56710279e-01 4.10756208e-02 2.03521162e-01
-6.69267237e-01 7.21903205e-01 1.82407320e-01 8.32792461e-01
-4.37082827e-01 -1.14693753e-01 2.35845044e-01 1.93271950e-01
-6.04826629e-01 -1.61213771e-01 -3.18669856e-01 1.86028466e-01
1.07165396e+00 -5.18661261e-01 -6.11221850e-01 -7.33910501e-01
-4.76141930e-01 4.16227132e-01 5.78124285e-01 6.78180397e-01
2.15043128e-01 -1.30779982e+00 -8.11365247e-01 -6.12708569e-01
3.18059891e-01 -5.75539351e-01 6.44422472e-02 1.14033532e+00
-3.08230698e-01 8.33488762e-01 -4.61151190e-02 -4.71579611e-01
-1.08882117e+00 7.32585311e-01 2.11101212e-02 -4.82920021e-01
-8.61634731e-01 1.98020592e-01 -5.91689013e-02 8.35355297e-02
2.32638463e-01 -2.18649834e-01 -4.48686510e-01 6.14386976e-01
6.52617931e-01 6.40748858e-01 2.83693969e-01 -4.93533909e-01
-4.92628008e-01 8.85512233e-02 -1.19869798e-01 -2.75347561e-01
1.33462560e+00 -4.77932990e-01 -9.19324830e-02 8.39618742e-01
1.03954184e+00 2.71956921e-02 -7.74581432e-01 -2.91646808e-01
6.73566997e-01 -2.99771994e-01 -1.51789099e-01 -5.34731925e-01
-2.01028988e-01 2.32830167e-01 -1.42003834e-01 9.75293279e-01
1.13250411e+00 -8.22248459e-02 7.43156254e-01 3.44649762e-01
-3.54394205e-02 -1.19448757e+00 -1.35158956e-01 6.49654567e-01
1.05353904e+00 -6.93956971e-01 3.90482694e-01 -6.78115562e-02
-5.95268905e-01 1.03958857e+00 1.03700161e-01 -2.18226269e-01
4.17954445e-01 -8.36678371e-02 -2.80035973e-01 -2.96197802e-01
-1.08232522e+00 -4.40489799e-02 4.81822461e-01 3.45440090e-01
7.61190534e-01 -6.94046840e-02 -1.23520517e+00 4.34996665e-01
-6.27381027e-01 -3.61791253e-01 6.85034811e-01 1.01182437e+00
-5.33650398e-01 -6.21030450e-01 5.15860692e-02 6.95750892e-01
-4.84879673e-01 -2.67725978e-02 -5.80173552e-01 7.69543409e-01
-9.00111139e-01 1.23905730e+00 3.00497949e-01 -2.16572002e-01
5.02443433e-01 2.69188911e-01 2.23160759e-01 -5.25477052e-01
-7.33709991e-01 1.35975510e-01 7.41174519e-01 -4.65441704e-01
-6.21432424e-01 -1.06523907e+00 -7.26232111e-01 -4.86099690e-01
-7.23476112e-02 6.06523156e-01 5.66950798e-01 9.22544003e-01
4.15425301e-01 5.54091156e-01 7.76364565e-01 -6.26751125e-01
-5.86939275e-01 -1.21176374e+00 -3.94845843e-01 4.63370949e-01
3.92232925e-01 -5.17575383e-01 -4.17607069e-01 -1.25300825e-01]
|
[12.503496170043945, 9.482003211975098]
|
73cef685-5956-4837-85e2-cd7dc285e699
|
a-high-fidelity-synthetic-face-framework-for
|
2007.08364
| null |
https://arxiv.org/abs/2007.08364v1
|
https://arxiv.org/pdf/2007.08364v1.pdf
|
A high fidelity synthetic face framework for computer vision
|
Analysis of faces is one of the core applications of computer vision, with tasks ranging from landmark alignment, head pose estimation, expression recognition, and face recognition among others. However, building reliable methods requires time-consuming data collection and often even more time-consuming manual annotation, which can be unreliable. In our work we propose synthesizing such facial data, including ground truth annotations that would be almost impossible to acquire through manual annotation at the consistency and scale possible through use of synthetic data. We use a parametric face model together with hand crafted assets which enable us to generate training data with unprecedented quality and diversity (varying shape, texture, expression, pose, lighting, and hair).
|
['Tadas Baltrusaitis', 'Thomas J. Cashman', 'Marek Kowalski', 'Virginia Estellers', 'Erroll Wood', 'Sebastian Dziadzio', 'Jamie Shotton', 'Charlie Hewitt', 'Matthew Johnson']
|
2020-07-16
| null | null | null | null |
['head-pose-estimation']
|
['computer-vision']
|
[ 2.61713862e-01 2.99441218e-01 3.57700497e-01 -6.25774801e-01
-6.14966631e-01 -6.64921820e-01 7.36772835e-01 -9.89426151e-02
-1.67594358e-01 7.28079736e-01 -1.17204100e-01 1.49544939e-01
3.65203954e-02 -2.89160192e-01 -4.13001478e-01 -6.30718768e-01
6.78723454e-02 6.97613716e-01 -1.54303685e-01 -1.76050097e-01
-7.46880546e-02 8.84037912e-01 -1.85369802e+00 -2.91159689e-01
4.30294096e-01 1.07084334e+00 -3.27116013e-01 3.72170240e-01
9.18094143e-02 1.62299752e-01 -3.75702381e-01 -6.52671635e-01
2.98974872e-01 -2.43249580e-01 -4.40155149e-01 6.03740692e-01
6.87037528e-01 -1.30279079e-01 1.68752924e-01 8.58951271e-01
4.31937993e-01 -1.07954005e-02 5.22194266e-01 -1.26230490e+00
-1.99808076e-01 -8.65762979e-02 -7.03528404e-01 -4.80930477e-01
5.27550459e-01 -5.56005910e-02 4.83895987e-01 -8.89129758e-01
6.98051095e-01 1.22253072e+00 6.99377477e-01 7.80567765e-01
-1.30531168e+00 -5.92351556e-01 -1.39417768e-01 -1.37870014e-01
-1.53110528e+00 -9.56214547e-01 7.44073033e-01 -3.59487355e-01
1.35467723e-01 3.16311687e-01 6.96420789e-01 1.20108497e+00
-4.21140701e-01 4.15279090e-01 1.26417816e+00 -5.46536505e-01
2.95026511e-01 1.94802359e-01 -3.96852940e-01 9.62778628e-01
-2.06276793e-02 -1.98438987e-01 -5.47626734e-01 -1.62588626e-01
8.34472001e-01 -3.00679058e-01 -2.58160770e-01 -5.22397399e-01
-1.01017749e+00 5.30289233e-01 -4.31576595e-02 -5.67520894e-02
-2.28432745e-01 7.14949891e-03 1.31193504e-01 2.48430595e-01
4.04837459e-01 3.74619693e-01 -5.07735968e-01 -4.35591228e-02
-1.07786322e+00 1.32724524e-01 7.17854559e-01 1.07886755e+00
8.06903124e-01 1.59816876e-01 2.37945095e-01 8.87525916e-01
2.28662074e-01 6.85503840e-01 4.31791097e-01 -1.11570835e+00
-2.06700861e-01 4.34873790e-01 1.32290825e-01 -1.17839456e+00
-5.87068200e-01 5.81181329e-03 -7.54139960e-01 2.93651760e-01
6.76630378e-01 -1.22213818e-01 -7.79598355e-01 1.71684599e+00
6.51612341e-01 5.82699738e-02 -3.40787828e-01 6.99019790e-01
6.82129323e-01 -9.69364494e-02 -1.76081117e-02 -4.78796482e-01
1.26660562e+00 -4.46416497e-01 -5.98158419e-01 -1.58506006e-01
2.76739120e-01 -8.46337855e-01 8.78431618e-01 5.51913261e-01
-8.23560774e-01 -2.64732182e-01 -8.71533573e-01 8.83133411e-02
-1.24951839e-01 2.15777695e-01 8.02050710e-01 8.84793222e-01
-9.86083329e-01 3.37648898e-01 -7.09331572e-01 -2.91769564e-01
3.66517216e-01 6.54976726e-01 -1.12322986e+00 1.88956946e-01
-5.56090295e-01 8.93973291e-01 -1.42448753e-01 3.20733279e-01
-4.25596595e-01 -3.93415064e-01 -9.94735360e-01 -4.08758014e-01
4.60948259e-01 -3.94566208e-01 1.24009931e+00 -1.21610594e+00
-1.69956815e+00 1.15326607e+00 -2.77657777e-01 9.05569829e-03
5.43821275e-01 9.75189731e-02 -6.84377775e-02 -1.32356957e-01
-2.35110357e-01 8.16108763e-01 1.17709982e+00 -1.14603317e+00
9.57984850e-02 -8.54452908e-01 -5.21893084e-01 -1.58811837e-01
-2.28840321e-01 2.35927165e-01 -4.92716521e-01 -3.22966874e-01
2.63194203e-01 -1.11926925e+00 -2.50248760e-02 4.35723096e-01
-2.52854586e-01 1.37260541e-01 7.53614068e-01 -9.41803873e-01
5.42298734e-01 -2.05337739e+00 1.79031268e-01 4.60176468e-01
1.84116393e-01 1.40325144e-01 -5.44677041e-02 -1.61342680e-01
-1.16974292e-02 -1.24378942e-01 -1.24226250e-01 -6.58696592e-01
1.86055437e-01 2.06216380e-01 -9.14783478e-02 6.16097987e-01
3.27971697e-01 7.67945528e-01 -5.80289662e-01 -7.29919314e-01
1.25883833e-01 7.64043629e-01 -5.43303907e-01 5.38258255e-02
-2.45060027e-01 8.71965289e-01 -2.70972043e-01 9.81119037e-01
4.63708222e-01 1.06444992e-01 3.66000384e-01 -7.99496844e-02
6.24737367e-02 -3.04581851e-01 -1.35944104e+00 1.43999195e+00
-6.30461752e-01 7.36397922e-01 4.19499010e-01 -6.80510044e-01
1.20849264e+00 4.08032000e-01 5.82328320e-01 -4.04087186e-01
4.72624749e-01 1.25009418e-01 -1.59977227e-01 -3.88137221e-01
2.79429883e-01 -1.68848217e-01 9.33229625e-02 3.99938077e-01
1.32764041e-01 -4.20497924e-01 -1.58459216e-01 -4.02999043e-01
6.80095971e-01 1.50494188e-01 2.20187813e-01 -1.46205410e-01
5.50615609e-01 -4.53334033e-01 4.32115555e-01 -8.34706798e-02
-1.64568588e-01 7.84143448e-01 4.90293652e-01 -5.03909230e-01
-1.23468816e+00 -7.40463316e-01 -3.76129508e-01 9.10457373e-01
-4.25790071e-01 -1.25230014e-01 -1.06809092e+00 -4.83936727e-01
-1.27537563e-01 6.39803633e-02 -6.51408792e-01 1.03959188e-01
-4.19863582e-01 -6.45096838e-01 4.92900491e-01 3.20051998e-01
3.14342469e-01 -8.88032556e-01 -4.58822787e-01 -5.26255593e-02
1.09777763e-01 -1.22278428e+00 -3.05371255e-01 -1.98866144e-01
-5.34385085e-01 -9.81923699e-01 -5.21507204e-01 -4.96320873e-01
1.09871209e+00 -3.12258482e-01 9.18193698e-01 2.57966667e-01
-5.74521184e-01 4.14467543e-01 -1.14895385e-02 -6.44649148e-01
-1.15823701e-01 -2.61682302e-01 3.23830634e-01 4.48968560e-01
1.25900477e-01 -7.18896210e-01 -3.15763831e-01 4.21093136e-01
-7.39944816e-01 -1.64809525e-02 2.92418510e-01 7.62834489e-01
7.19266355e-01 -2.45860398e-01 4.92851526e-01 -5.81708372e-01
3.43766570e-01 9.22588482e-02 -8.10734928e-01 3.78349066e-01
-2.58229733e-01 -8.27329606e-02 3.12852442e-01 -3.97724122e-01
-8.48609746e-01 5.84683001e-01 -1.25934213e-01 -4.27281588e-01
-3.38985860e-01 -1.16253775e-02 -4.73084360e-01 -5.07603407e-01
7.43331075e-01 9.60256159e-02 4.09026861e-01 -4.02216494e-01
4.10423934e-01 5.90130568e-01 6.59418404e-01 -6.34970188e-01
7.00583458e-01 5.77483237e-01 4.82000560e-01 -1.15061045e+00
-6.89370334e-01 1.31118521e-01 -1.25085080e+00 -2.78560072e-01
5.19911468e-01 -4.82778251e-01 -7.13043332e-01 4.93180543e-01
-9.72291768e-01 -1.70204818e-01 2.18123849e-02 2.35048637e-01
-5.70259571e-01 2.68081993e-01 7.95253143e-02 -7.64586091e-01
-1.94042116e-01 -1.02485728e+00 1.38300300e+00 1.48297489e-01
-4.67673272e-01 -8.63343596e-01 -1.74815059e-01 4.82856035e-01
2.96600550e-01 6.25306189e-01 5.21417499e-01 -3.11283439e-01
-4.39830542e-01 -5.28235137e-01 -9.93531644e-02 1.74597919e-01
2.24276945e-01 4.52971667e-01 -1.17429304e+00 -1.86032102e-01
-2.15033308e-01 -6.16388381e-01 1.84194773e-01 1.30462825e-01
1.23374426e+00 -2.74496824e-01 -2.28275076e-01 7.16954470e-01
8.89361262e-01 -1.43042564e-01 5.44360697e-01 -7.40116760e-02
5.53933978e-01 9.46241558e-01 4.38506484e-01 4.68921691e-01
2.22446352e-01 1.10375845e+00 1.61196008e-01 1.06325768e-01
-5.49671873e-02 -5.17122112e-02 -8.91572312e-02 2.41174608e-01
-4.01313066e-01 2.61112511e-01 -9.52912927e-01 2.18270227e-01
-1.43410027e+00 -7.84859955e-01 2.24934727e-01 2.27998471e+00
9.17274535e-01 -4.35077637e-01 2.44732156e-01 3.55204582e-01
4.06984627e-01 -3.79377395e-01 -2.46621117e-01 -1.76444054e-01
1.69939250e-01 3.98067802e-01 1.58143401e-01 4.57048416e-01
-9.56237555e-01 7.48671174e-01 6.86173820e+00 2.89544046e-01
-1.47720098e+00 -1.52944386e-01 6.61329865e-01 -1.39225587e-01
-2.58177012e-01 -3.75682205e-01 -7.79814243e-01 3.27680975e-01
6.78449154e-01 8.98301229e-02 6.36774600e-01 8.17884684e-01
1.12186037e-01 -1.51115786e-02 -1.15786183e+00 1.30476010e+00
3.43059957e-01 -8.70975971e-01 -2.61773735e-01 5.74787818e-02
5.34189522e-01 -5.23622870e-01 -9.35564097e-03 -7.87712559e-02
-3.10271177e-02 -1.24445748e+00 7.08929956e-01 5.41867495e-01
1.02208221e+00 -6.68847978e-01 4.27842051e-01 2.15532675e-01
-7.90496290e-01 1.38829157e-01 -7.29284212e-02 1.35456443e-01
-8.43197107e-02 5.01187861e-01 -8.87802601e-01 1.27480507e-01
4.17310804e-01 1.08534738e-01 -5.97728610e-01 7.62741864e-01
-2.09215179e-01 2.41531044e-01 -7.28155136e-01 8.88535902e-02
-4.42775220e-01 -2.71184623e-01 2.82636285e-01 7.59916127e-01
4.42234546e-01 4.90990141e-03 2.02603698e-01 4.91975844e-01
-2.15510920e-01 2.40914866e-01 -7.24257112e-01 8.25138986e-02
4.50183213e-01 1.55078828e+00 -7.63455451e-01 5.88626862e-02
-2.42610276e-01 7.80805647e-01 2.14853704e-01 -3.44283469e-02
-5.95576823e-01 2.20891312e-02 7.25420475e-01 2.82792389e-01
1.06409127e-02 -4.74035203e-01 -2.08825588e-01 -1.10134220e+00
2.06637740e-01 -9.02761281e-01 -8.90479907e-02 -5.09237468e-01
-1.01956928e+00 8.47422481e-01 -9.75531992e-03 -8.35519612e-01
-6.83380008e-01 -7.21121311e-01 -3.76901358e-01 6.38607800e-01
-1.02087057e+00 -1.43634570e+00 -5.19912541e-01 5.38482785e-01
1.01130888e-01 -2.68408030e-01 1.14100015e+00 2.83370048e-01
-6.32193863e-01 9.50338781e-01 -3.66923213e-01 5.11661097e-02
6.47362530e-01 -8.71499360e-01 1.03376828e-01 2.95089334e-01
3.75889003e-01 5.02492487e-01 6.90780997e-01 -3.09135109e-01
-1.44147301e+00 -8.64031494e-01 7.08488166e-01 -5.11142850e-01
4.78028059e-01 -5.41521549e-01 -6.75134003e-01 5.79715610e-01
-4.08806294e-01 2.64644891e-01 6.81295931e-01 2.94863999e-01
-4.37802106e-01 -2.23189458e-01 -1.33832443e+00 5.70094705e-01
8.18905652e-01 -5.80705702e-01 -1.40869290e-01 3.48904133e-01
-6.10215850e-02 -4.19527054e-01 -7.23222196e-01 4.22964036e-01
9.33195710e-01 -7.08450675e-01 8.82847607e-01 -3.43653589e-01
-1.88624635e-01 -4.04548526e-01 -9.72276777e-02 -1.02462018e+00
1.08786367e-01 -6.41565859e-01 3.25750947e-01 1.36890280e+00
3.83330315e-01 -3.57765585e-01 9.76580381e-01 1.08353758e+00
3.13710243e-01 -5.65207481e-01 -9.93344665e-01 -5.78406274e-01
-3.96080375e-01 -4.09246355e-01 8.60677719e-01 9.99475300e-01
-9.94860977e-02 1.96971118e-01 -3.82331282e-01 2.37036427e-03
6.45615757e-01 1.85682550e-02 1.03918719e+00 -1.48186600e+00
-1.56929627e-01 -2.50404477e-01 -7.14145362e-01 -2.84411252e-01
4.89263952e-01 -7.33275592e-01 8.61875117e-02 -9.73844707e-01
-7.66657740e-02 -5.51699102e-01 4.18504447e-01 8.84792268e-01
2.42411301e-01 7.59131074e-01 -9.07328427e-02 -1.13395646e-01
-2.78974980e-01 4.27884251e-01 1.13749814e+00 8.89023319e-02
-2.82511394e-02 1.54972542e-02 -5.29507995e-01 1.13237059e+00
5.98827183e-01 -7.98010677e-02 -3.06815594e-01 -3.69299263e-01
8.26559216e-02 6.29234985e-02 4.51551706e-01 -9.28947926e-01
-6.59217909e-02 -1.83771610e-01 6.65908277e-01 6.03571571e-02
7.57649899e-01 -9.25205946e-01 4.47490424e-01 3.43106426e-02
-4.31595892e-02 -9.37150195e-02 1.20059282e-01 2.26863921e-01
-1.06232800e-01 -1.41687244e-01 8.62178028e-01 -1.98422685e-01
-4.76756901e-01 4.31144834e-01 1.49105683e-01 -3.18386942e-01
1.11080682e+00 -1.24389388e-01 1.26906127e-01 -5.73378861e-01
-7.61324108e-01 -2.52674103e-01 8.52514446e-01 2.75098950e-01
4.81627554e-01 -1.29124677e+00 -6.96456552e-01 7.00403273e-01
-7.46980833e-04 3.15412395e-02 -6.82762489e-02 7.87032545e-01
-3.76864552e-01 5.80173880e-02 -4.06586409e-01 -6.46373272e-01
-1.68971765e+00 3.06405753e-01 3.34368110e-01 3.05822730e-01
-1.93669245e-01 7.93376148e-01 -2.32727930e-01 -5.41698933e-01
1.76745817e-01 2.14615002e-01 -1.08705908e-01 2.25579381e-01
5.94598591e-01 2.19469607e-01 2.60191202e-01 -8.92719269e-01
-3.57414514e-01 8.59774172e-01 3.04044515e-01 -7.77104571e-02
1.16333723e+00 6.89499006e-02 -3.69237930e-01 3.11279185e-02
7.95061707e-01 1.29942387e-01 -1.11013556e+00 4.72895242e-02
3.81136462e-02 -6.22608006e-01 1.62245277e-02 -4.58694637e-01
-1.05239642e+00 8.65585506e-01 3.58036727e-01 -1.32160515e-01
1.17399418e+00 -2.48918049e-02 4.74229544e-01 4.71297234e-01
7.23545849e-01 -1.04027152e+00 -8.77254531e-02 2.23307163e-01
1.03751314e+00 -1.32198858e+00 6.59969226e-02 -4.67089862e-01
-3.51792336e-01 1.10245228e+00 4.79180604e-01 2.94899255e-01
7.22915113e-01 4.77434009e-01 1.62864938e-01 -8.38342533e-02
-6.20537639e-01 -7.89829865e-02 4.43564922e-01 7.54044592e-01
4.56987053e-01 6.72618374e-02 -5.07101826e-02 3.04520965e-01
-5.17481089e-01 -1.72341187e-02 2.00474858e-01 7.63270915e-01
-2.45709598e-01 -1.38572204e+00 -5.54827332e-01 3.06500286e-01
-4.70771462e-01 2.92533100e-01 -5.62040031e-01 5.75564802e-01
2.24190056e-01 6.07490063e-01 -4.19781357e-03 -2.94750720e-01
2.15244204e-01 3.89331281e-01 9.61011291e-01 -4.45460171e-01
-2.15470847e-02 1.40625253e-01 1.71908095e-01 -3.23106676e-01
-3.83220196e-01 -8.46490979e-01 -1.06421518e+00 -2.91630030e-01
-2.37018064e-01 -2.14068189e-01 1.12890446e+00 9.09891844e-01
1.26447827e-01 -7.66508654e-02 6.69460893e-01 -1.09382737e+00
-4.11480248e-01 -9.55005586e-01 -5.79022646e-01 5.08731127e-01
2.74009734e-01 -8.63037467e-01 -1.14570312e-01 4.19815183e-01]
|
[13.3320951461792, 0.16273164749145508]
|
39ac33f1-3201-4a36-abbe-7d0ba46ddfbd
|
a-deep-neural-architecture-for-harmonizing-3
|
2303.00175
| null |
https://arxiv.org/abs/2303.00175v2
|
https://arxiv.org/pdf/2303.00175v2.pdf
|
A Deep Neural Architecture for Harmonizing 3-D Input Data Analysis and Decision Making in Medical Imaging
|
Harmonizing the analysis of data, especially of 3-D image volumes, consisting of different number of slices and annotated per volume, is a significant problem in training and using deep neural networks in various applications, including medical imaging. Moreover, unifying the decision making of the networks over different input datasets is crucial for the generation of rich data-driven knowledge and for trusted usage in the applications. This paper presents a new deep neural architecture, named RACNet, which includes routing and feature alignment steps and effectively handles different input lengths and single annotations of the 3-D image inputs, whilst providing highly accurate decisions. In addition, through latent variable extraction from the trained RACNet, a set of anchors are generated providing further insight on the network's decision making. These can be used to enrich and unify data-driven knowledge extracted from different datasets. An extensive experimental study illustrates the above developments, focusing on COVID-19 diagnosis through analysis of 3-D chest CT scans from databases generated in different countries and medical centers.
|
['Stefanos Kollias', 'Anastasios Arsenos', 'Dimitrios Kollias']
|
2023-03-01
| null | null | null | null |
['covid-19-detection']
|
['medical']
|
[ 2.53532261e-01 1.40328750e-01 -2.66295373e-01 -9.23908472e-01
-6.50594592e-01 -4.29345667e-01 6.99918196e-02 5.68858683e-01
-4.67824996e-01 6.57628298e-01 8.72228146e-02 -5.00913918e-01
-5.13494492e-01 -6.72042131e-01 -2.81244636e-01 -8.10983658e-01
-2.98414677e-01 9.04896617e-01 1.00029435e-03 1.17803842e-01
-1.61582217e-01 9.36515152e-01 -1.02975035e+00 4.85873520e-01
4.27276909e-01 1.20789146e+00 3.22669953e-01 5.91258645e-01
-1.97124302e-01 7.23873258e-01 -6.32605195e-01 -3.42970043e-01
1.63221940e-01 4.64391476e-03 -9.02735949e-01 5.92087135e-02
2.01023728e-01 -3.56512874e-01 -3.20011601e-02 7.37914383e-01
7.46394455e-01 -1.59947947e-01 7.70429015e-01 -8.76863778e-01
-2.93290555e-01 7.43199468e-01 -1.67557806e-01 5.33324957e-01
-3.73451978e-01 3.30081396e-02 7.19801009e-01 -5.03644228e-01
7.11487532e-01 9.20167387e-01 6.22840464e-01 3.11552942e-01
-9.24927354e-01 -5.56297660e-01 -2.17389986e-01 9.63679478e-02
-1.16909003e+00 -5.95027581e-02 7.41152346e-01 -8.83592069e-01
6.89181983e-01 1.83919564e-01 5.98560274e-01 1.05309761e+00
3.97452027e-01 5.88769853e-01 9.40137625e-01 -2.03736812e-01
-1.26830386e-02 1.61790818e-01 2.90198565e-01 7.16404021e-01
2.80605495e-01 -1.02527991e-01 -2.30835691e-01 -4.28665690e-02
9.52749789e-01 1.67182669e-01 -1.65861055e-01 -5.72350264e-01
-1.36077476e+00 9.28674459e-01 5.78469872e-01 4.98963416e-01
-5.96342742e-01 -1.39076322e-01 7.53906965e-01 6.85571879e-02
2.85798788e-01 5.38981855e-01 -5.73522508e-01 3.11557263e-01
-8.93916368e-01 3.48151475e-02 4.36094880e-01 7.87103057e-01
3.42514813e-01 -4.03336473e-02 -4.42165077e-01 5.58045506e-01
2.24172518e-01 2.10528225e-01 7.04793811e-01 -4.53245521e-01
6.38846636e-01 8.34400713e-01 -2.51994252e-01 -1.08742142e+00
-1.13138688e+00 -9.51070428e-01 -1.34794545e+00 1.74017221e-01
3.06776673e-01 -2.42973328e-01 -1.21757555e+00 1.53921425e+00
2.65764505e-01 -2.12262094e-01 1.15156874e-01 9.12121773e-01
1.07468975e+00 -4.75484394e-02 1.16179720e-01 -1.40654683e-01
1.47234428e+00 -6.93400502e-01 -7.45176673e-01 -4.85421605e-02
7.71444023e-01 -4.83492345e-01 4.87353295e-01 3.39104056e-01
-9.68390882e-01 -7.60677338e-01 -1.24770474e+00 -1.46859095e-01
-4.33504879e-01 2.81575412e-01 4.46404606e-01 2.96066076e-01
-9.30110991e-01 5.43328643e-01 -8.30656707e-01 9.45444033e-02
8.27670991e-01 7.11008489e-01 -4.78007853e-01 1.23533010e-01
-1.23373866e+00 9.33843613e-01 5.45517564e-01 3.67477626e-01
-8.86943817e-01 -7.11814165e-01 -6.48738444e-01 -9.41693485e-02
4.35758591e-01 -8.14450622e-01 1.10667062e+00 -7.99038053e-01
-9.34081376e-01 1.09795868e+00 2.83250004e-01 -6.85433924e-01
7.33801425e-01 -1.86379738e-02 -3.70953292e-01 8.81210044e-02
1.09289542e-01 5.40226817e-01 8.78691137e-01 -1.04507875e+00
-4.48846996e-01 -6.86291635e-01 -2.38553450e-01 1.52461380e-01
-1.29667884e-02 -8.68647844e-02 -5.12605846e-01 -6.54847980e-01
1.77910328e-01 -8.06880355e-01 -6.40194654e-01 -1.05652444e-01
-6.11182570e-01 7.31182843e-02 5.90631247e-01 -8.02498817e-01
1.01841486e+00 -2.07071161e+00 4.07060921e-01 5.49824953e-01
9.43962514e-01 1.21420532e-01 2.67136782e-01 -2.72481263e-01
-4.36261833e-01 1.20171733e-01 -5.24367213e-01 -3.33126515e-01
-3.60571682e-01 4.04266536e-01 1.39197215e-01 4.95481461e-01
2.78461725e-01 8.57970119e-01 -6.17750287e-01 -7.45267868e-01
3.34742427e-01 3.35470706e-01 -1.91602170e-01 3.96878541e-01
-6.29817694e-02 8.39795828e-01 -6.16627932e-01 4.17193115e-01
5.04640341e-01 -6.26471579e-01 2.89240897e-01 -4.74754602e-01
1.85613781e-01 1.27180619e-02 -9.95960295e-01 1.86043751e+00
-5.42365670e-01 6.32397294e-01 -8.41147453e-02 -1.11998332e+00
9.73429322e-01 5.36845565e-01 9.57820058e-01 -6.89378321e-01
6.73978806e-01 2.35723093e-01 1.75521687e-01 -8.00359070e-01
3.78829211e-01 -5.69460914e-02 -1.40865818e-01 5.87574065e-01
2.66630948e-01 -1.36507312e-02 2.78265655e-01 -1.77744836e-01
7.48290718e-01 -5.08470416e-01 3.23540539e-01 -1.81383461e-01
7.05463409e-01 4.94795246e-03 4.94992077e-01 5.08980036e-01
-1.82981715e-01 5.90868294e-01 5.35112321e-01 -9.53177333e-01
-1.20779252e+00 -8.90677333e-01 -6.00732207e-01 5.11612654e-01
-1.75749481e-01 -2.35197861e-02 -4.51753467e-01 -9.71902490e-01
-6.23313040e-02 3.56132656e-01 -1.02745974e+00 8.30861628e-02
-6.84219062e-01 -8.64116132e-01 4.82364208e-01 8.68578970e-01
2.91377306e-01 -1.01862991e+00 -1.06760859e+00 2.63032854e-01
-8.36081505e-02 -1.18134260e+00 -3.19824758e-04 7.14524627e-01
-1.11777604e+00 -1.28601384e+00 -6.55878782e-01 -6.39732301e-01
8.23888183e-01 -2.40134731e-01 1.54326427e+00 1.53869957e-01
-5.08276045e-01 -8.11720937e-02 -3.33689839e-01 -6.36995733e-01
-5.60251236e-01 5.35279810e-01 -1.71100140e-01 -1.73793390e-01
2.17551231e-01 -3.37823063e-01 -4.67440575e-01 2.76582181e-01
-1.14493334e+00 3.03520471e-01 7.35621452e-01 8.97053480e-01
8.44654143e-01 -7.49795511e-02 4.48405772e-01 -1.19648707e+00
5.89095891e-01 -7.15566695e-01 -6.14693224e-01 3.22240323e-01
-4.91972446e-01 3.52689147e-01 5.10152757e-01 -1.27962381e-02
-8.19397092e-01 6.73390627e-02 -3.30972940e-01 -4.72979367e-01
-2.61530399e-01 6.81607366e-01 4.25152518e-02 2.30911553e-01
7.35463262e-01 -2.21685782e-01 1.64266586e-01 -5.22371233e-01
2.72162616e-01 6.48316920e-01 5.44254303e-01 -1.93475574e-01
4.10775244e-01 4.33681846e-01 3.56897712e-01 -3.05173904e-01
-8.07031274e-01 -3.74193996e-01 -1.35033333e+00 -1.91201586e-02
1.30345416e+00 -5.76444030e-01 -3.85632813e-01 3.91569346e-01
-1.04318738e+00 -1.47816047e-01 -4.41686571e-01 6.42522395e-01
-3.84890527e-01 -1.31837696e-01 -3.42899024e-01 -1.58522949e-01
-6.61226511e-01 -1.73656607e+00 7.55464852e-01 2.13703617e-01
-3.07571948e-01 -1.13362873e+00 1.04152754e-01 3.61810029e-01
3.31735104e-01 4.59872603e-01 1.40379095e+00 -1.07183695e+00
-4.97023284e-01 -1.33012548e-01 -3.66058469e-01 3.76288831e-01
2.86737144e-01 -1.05030924e-01 -9.00495648e-01 -9.26612765e-02
-1.17143644e-02 -2.45773971e-01 5.23411632e-01 6.74566150e-01
1.58037198e+00 5.75541444e-02 -2.86953896e-01 9.21294272e-01
1.32920098e+00 1.93244353e-01 1.97530106e-01 3.93009543e-01
7.33222961e-01 5.43554008e-01 2.94752210e-01 3.57919097e-01
1.98711291e-01 6.21013224e-01 6.80662870e-01 -6.89481735e-01
-8.61451477e-02 5.24008155e-01 -4.66631949e-01 9.08115804e-01
-2.58711297e-02 -1.73642054e-01 -1.28985977e+00 5.58988690e-01
-1.59555995e+00 -5.11992514e-01 -8.74569267e-02 1.88597131e+00
7.26977289e-01 4.60398123e-02 -2.20773697e-01 2.09145218e-01
6.36772156e-01 9.97690037e-02 -8.36064458e-01 -4.95907754e-01
-8.76309797e-02 3.83220464e-01 6.63119376e-01 1.01427265e-01
-1.20355749e+00 2.94444531e-01 6.26245356e+00 5.04257739e-01
-1.51143563e+00 2.13853687e-01 9.95536923e-01 -9.63762179e-02
-3.87144275e-02 -8.05326879e-01 -5.86465001e-01 1.40542954e-01
8.51739943e-01 -5.45030870e-02 -2.53773719e-01 7.71393657e-01
1.01139396e-01 6.41257465e-02 -1.24036419e+00 9.43377733e-01
4.41372395e-02 -1.74712372e+00 6.50741160e-02 -7.57443905e-02
6.72530472e-01 3.58976156e-01 1.87205389e-01 -7.86274821e-02
2.80102134e-01 -1.25100410e+00 4.11124051e-01 5.73759675e-01
9.88371134e-01 -6.99220061e-01 1.28774238e+00 7.35011930e-03
-9.45951760e-01 -3.98163199e-02 -4.22042198e-02 6.20566905e-01
1.61644563e-01 6.12315357e-01 -1.41444540e+00 9.57527399e-01
7.65501738e-01 5.43277681e-01 -6.61266029e-01 8.15443575e-01
-1.51898652e-01 2.16419160e-01 -9.58898067e-02 3.77135426e-01
2.20972836e-01 2.40314156e-01 3.64195466e-01 1.13036776e+00
1.37311861e-01 -1.11278608e-01 9.79925245e-02 7.21746206e-01
-2.62662321e-01 1.98024720e-01 -4.88404572e-01 1.61752701e-01
4.96630110e-02 1.42038083e+00 -8.93762946e-01 -4.06097084e-01
-1.90748796e-01 3.95544380e-01 2.24108398e-01 -2.29482763e-02
-8.66379499e-01 -5.55797294e-02 3.95448238e-01 -6.15668576e-03
1.61370859e-01 -2.55867988e-01 -5.99089503e-01 -7.14968562e-01
-1.09124199e-01 -7.44136810e-01 6.25231385e-01 -6.29107475e-01
-1.24040413e+00 1.28836954e+00 1.30032867e-01 -1.21806705e+00
-5.63255072e-01 -8.13791573e-01 -3.16441745e-01 1.02382696e+00
-1.54130888e+00 -9.83236909e-01 -6.93984926e-01 7.64005244e-01
4.55697209e-01 -3.48054886e-01 7.78679013e-01 5.53899646e-01
-6.40208602e-01 6.15606308e-01 1.63578898e-01 5.75708687e-01
6.52841270e-01 -1.19320178e+00 2.39122897e-01 5.76103568e-01
2.09277961e-02 2.87420243e-01 2.94181317e-01 -4.92736042e-01
-8.89720201e-01 -1.23173261e+00 4.41107899e-01 -3.01281840e-01
3.17947388e-01 1.21289462e-01 -9.43254352e-01 5.26058257e-01
-1.82665810e-02 1.32464424e-01 1.14041793e+00 -7.37790891e-04
1.18621625e-01 -1.08155638e-01 -1.19155312e+00 2.09623426e-01
6.00115836e-01 -3.05219203e-01 -4.97873425e-01 2.80092657e-01
7.25452483e-01 -8.67454648e-01 -1.12572312e+00 7.33377039e-01
4.11325812e-01 -8.67844641e-01 9.92234468e-01 -8.67147028e-01
5.58755040e-01 -2.99236588e-02 -6.57192171e-02 -1.20692539e+00
-2.60276496e-01 1.84708282e-01 5.72584830e-02 7.14318514e-01
5.53034544e-01 -2.30699226e-01 8.06520343e-01 5.74533343e-01
-3.63880217e-01 -1.14754558e+00 -9.72591758e-01 -1.54300109e-01
7.23828971e-02 -6.11361623e-01 8.45211565e-01 1.00653183e+00
-7.82506645e-01 1.25664890e-01 -4.68615852e-02 2.49223232e-01
4.40483302e-01 6.49439842e-02 6.34672880e-01 -1.29683483e+00
-7.50182196e-02 -3.78253430e-01 -5.41264713e-01 -4.39017773e-01
-9.70097855e-02 -1.18494904e+00 -1.32930458e-01 -1.54900241e+00
1.14462361e-01 -9.27510858e-01 -5.25685489e-01 4.97787118e-01
1.07471190e-01 2.29950175e-01 4.81360964e-02 2.76464403e-01
-2.09154755e-01 1.81214914e-01 1.50278842e+00 -1.64739102e-01
-1.82524279e-01 1.82291329e-01 -4.44212288e-01 8.81220758e-01
8.28044355e-01 -6.04578257e-01 -3.92122775e-01 -7.64303207e-01
2.04217061e-01 2.70644248e-01 3.51958930e-01 -9.80560541e-01
1.77642018e-01 -1.43191908e-02 6.77488446e-01 -1.03471911e+00
7.21850842e-02 -1.14880741e+00 1.89123631e-01 4.46334481e-01
-4.61645126e-01 3.66646439e-01 2.72743255e-01 1.61886394e-01
-2.82115638e-01 -2.85444587e-01 7.68160820e-01 -3.66596520e-01
-5.56100368e-01 7.22129762e-01 -6.78939298e-02 2.71655489e-02
1.15245771e+00 -1.74085513e-01 2.40076743e-02 1.64909825e-01
-1.17884254e+00 2.33205497e-01 -7.44710490e-02 3.59394670e-01
5.47961831e-01 -1.17580092e+00 -7.49649167e-01 5.46833932e-01
7.98891783e-02 7.18956411e-01 5.86204171e-01 9.13215935e-01
-6.67110085e-01 5.13732791e-01 -6.26889169e-01 -1.12110436e+00
-1.35271597e+00 3.75384301e-01 6.12420499e-01 -9.04675841e-01
-4.81107026e-01 8.14026713e-01 5.28405048e-02 -3.73782665e-01
2.32743263e-01 -6.13583028e-01 -5.30936658e-01 4.46411669e-01
2.56028533e-01 -6.65132627e-02 5.31257629e-01 -5.93911111e-01
-2.67952383e-01 3.82978618e-01 -3.42088044e-01 1.73301160e-01
1.62255657e+00 1.58933047e-02 7.33922571e-02 4.21923697e-01
1.18903315e+00 -3.16949069e-01 -9.85896766e-01 -5.23302972e-01
-1.54209480e-01 -1.84949383e-01 1.90440878e-01 -7.40624964e-01
-1.61731839e+00 1.12631345e+00 8.83867681e-01 -1.35326058e-01
1.16822457e+00 4.12468240e-02 4.67281967e-01 2.99825549e-01
1.01289019e-01 -8.84685814e-01 2.35035196e-02 2.68089324e-01
7.67431557e-01 -1.36392272e+00 1.23708695e-01 1.47926565e-02
-6.62532091e-01 1.43465447e+00 5.46158373e-01 2.05740795e-01
7.25764930e-01 3.44706386e-01 3.75214219e-01 -5.99054098e-01
-3.85180682e-01 1.44192353e-01 4.74002868e-01 4.80909348e-01
3.30670953e-01 8.48429576e-02 4.04203385e-02 8.40103447e-01
-2.69729644e-01 9.01582167e-02 3.50056857e-01 8.17223310e-01
4.26884890e-02 -1.17207074e+00 -3.26868743e-01 7.16180921e-01
-7.25086093e-01 2.97165234e-02 1.37223285e-02 8.86358857e-01
5.42410612e-01 2.82029182e-01 1.54063761e-01 -2.63007581e-01
1.02535099e-01 -1.59942135e-01 2.78040975e-01 -6.10545218e-01
-7.63741255e-01 -2.64958590e-01 -1.22958504e-01 -2.63589084e-01
-5.38919210e-01 -3.53342056e-01 -1.36339879e+00 1.33274525e-01
-2.04538658e-01 9.69781131e-02 8.80793035e-01 1.10788238e+00
1.83483750e-01 1.22247720e+00 5.57166040e-01 -6.65363848e-01
-3.98419052e-01 -8.05903554e-01 -3.17440778e-01 4.65993673e-01
5.69956541e-01 -7.96550155e-01 9.25550833e-02 2.24248230e-01]
|
[14.798783302307129, -2.271860122680664]
|
faec938a-e1d1-489f-a76d-3fb768375665
|
move2hear-active-audio-visual-source
|
2105.07142
| null |
https://arxiv.org/abs/2105.07142v2
|
https://arxiv.org/pdf/2105.07142v2.pdf
|
Move2Hear: Active Audio-Visual Source Separation
|
We introduce the active audio-visual source separation problem, where an agent must move intelligently in order to better isolate the sounds coming from an object of interest in its environment. The agent hears multiple audio sources simultaneously (e.g., a person speaking down the hall in a noisy household) and it must use its eyes and ears to automatically separate out the sounds originating from a target object within a limited time budget. Towards this goal, we introduce a reinforcement learning approach that trains movement policies controlling the agent's camera and microphone placement over time, guided by the improvement in predicted audio separation quality. We demonstrate our approach in scenarios motivated by both augmented reality (system is already co-located with the target object) and mobile robotics (agent begins arbitrarily far from the target object). Using state-of-the-art realistic audio-visual simulations in 3D environments, we demonstrate our model's ability to find minimal movement sequences with maximal payoff for audio source separation. Project: http://vision.cs.utexas.edu/projects/move2hear.
|
['Kristen Grauman', 'Ziad Al-Halah', 'Sagnik Majumder']
|
2021-05-15
| null |
http://openaccess.thecvf.com//content/ICCV2021/html/Majumder_Move2Hear_Active_Audio-Visual_Source_Separation_ICCV_2021_paper.html
|
http://openaccess.thecvf.com//content/ICCV2021/papers/Majumder_Move2Hear_Active_Audio-Visual_Source_Separation_ICCV_2021_paper.pdf
|
iccv-2021-1
|
['audio-source-separation']
|
['audio']
|
[ 3.22025210e-01 2.26225868e-01 4.45919275e-01 2.69104421e-01
-1.30785906e+00 -8.73955786e-01 2.67230690e-01 1.79896399e-01
-4.88320917e-01 4.23477739e-01 1.57173917e-01 1.00455374e-01
-2.22901657e-01 -2.54784137e-01 -6.86171293e-01 -9.48613524e-01
-4.50750560e-01 4.54639018e-01 2.30525017e-01 -7.54513545e-03
2.39845380e-01 5.05985677e-01 -1.79514229e+00 -2.98779439e-02
3.65699053e-01 5.80164015e-01 8.82424355e-01 1.66199064e+00
4.54994678e-01 1.09482253e+00 -7.78126240e-01 4.99703377e-01
4.07821357e-01 -5.72710931e-01 -5.81279933e-01 3.38313043e-01
-1.40796136e-02 -2.46388391e-01 -5.98482080e-02 9.91586804e-01
7.82305896e-01 4.23816174e-01 3.53146791e-01 -1.77504539e+00
-1.73398778e-01 6.01064980e-01 -7.47584820e-01 2.83759892e-01
7.39834607e-01 5.39570451e-01 8.56790721e-01 -6.00088239e-01
3.42813820e-01 1.16237867e+00 2.39931554e-01 6.41080737e-01
-1.15731370e+00 -3.70492041e-01 4.06859398e-01 1.70843333e-01
-1.18599343e+00 -9.71813500e-01 8.84213984e-01 -4.91381913e-01
9.80595291e-01 4.80358243e-01 8.63628864e-01 9.07502174e-01
-2.40991771e-01 9.17587221e-01 3.75713527e-01 -6.77147448e-01
6.80779457e-01 1.32474467e-01 -4.55196559e-01 3.94491136e-01
-3.66090685e-01 4.07628804e-01 -7.56938756e-01 -3.91664833e-01
5.94719529e-01 -5.11087179e-01 -4.62895066e-01 -7.69694209e-01
-1.41418314e+00 4.64368641e-01 1.12844616e-01 1.63706645e-01
-6.03115976e-01 5.11442840e-01 -1.86317891e-01 2.03188539e-01
-2.52367724e-02 5.97334802e-01 -1.07950479e-01 -4.86405373e-01
-6.40240550e-01 2.61413991e-01 5.72296441e-01 8.17558825e-01
2.18126431e-01 1.90929279e-01 3.59171033e-01 7.68403828e-01
7.07950950e-01 5.26207805e-01 1.08471878e-01 -1.69887054e+00
2.78420061e-01 7.54944384e-02 6.74493432e-01 -7.06907928e-01
-2.57987231e-01 -7.70751536e-02 -1.62241623e-01 1.00648558e+00
4.57310528e-01 -5.30567884e-01 -4.78102297e-01 1.79219294e+00
6.18757546e-01 6.81640744e-01 2.68595189e-01 1.18583965e+00
3.92904222e-01 8.44894230e-01 -2.01975480e-01 -5.79543769e-01
7.59469569e-01 -9.31792080e-01 -4.61071640e-01 -5.29564619e-01
3.28572035e-01 -7.06138670e-01 7.72142529e-01 7.07335055e-01
-1.50405180e+00 -4.83998775e-01 -1.01103699e+00 5.64805269e-01
1.81469724e-01 -1.32469818e-01 7.09848106e-02 3.16009104e-01
-1.10600579e+00 2.05584392e-01 -1.19923019e+00 -4.44055408e-01
-1.06507502e-02 2.83813983e-01 -6.43281192e-02 3.30048442e-01
-5.97007096e-01 5.04214704e-01 -1.49834543e-01 3.62390615e-02
-1.59952545e+00 -4.13375229e-01 -6.23660147e-01 7.04893023e-02
5.45734465e-01 -6.46990061e-01 1.98237729e+00 -1.41498530e+00
-1.69794750e+00 4.15909857e-01 1.93498015e-01 -4.19190347e-01
5.92958868e-01 -2.62339085e-01 -1.66251928e-01 4.44072247e-01
1.30459160e-01 7.35743344e-01 9.28570688e-01 -1.82453871e+00
-1.19568968e+00 -4.75605607e-01 1.36616692e-01 8.84490132e-01
7.74103105e-02 1.82634652e-01 -2.02946559e-01 -3.66019398e-01
-1.56643718e-01 -9.63320911e-01 -3.92729014e-01 8.24647844e-02
-1.91984653e-01 1.30376801e-01 7.39654183e-01 -2.86877245e-01
6.14089847e-01 -2.26226568e+00 4.35432404e-01 7.70432502e-02
7.89164379e-02 -6.55804947e-02 -3.73127967e-01 4.35915351e-01
1.22620881e-01 -4.02912885e-01 -8.84599835e-02 -6.77143276e-01
-3.59566957e-02 -5.93199283e-02 -3.12688112e-01 5.57686627e-01
-2.88175702e-01 1.25737026e-01 -1.19782293e+00 -3.92349064e-01
1.92789927e-01 5.39081931e-01 -6.90664530e-01 4.34110552e-01
-1.14523187e-01 6.79938555e-01 -3.46537471e-01 4.65706676e-01
2.41444767e-01 6.79904744e-02 -1.03331199e-02 6.55252576e-01
-2.56851554e-01 -6.90130368e-02 -1.76427007e+00 1.69491923e+00
-4.04255897e-01 6.42739296e-01 9.77852941e-01 -7.06246495e-01
5.21542311e-01 4.64044422e-01 7.74220765e-01 -3.68173778e-01
6.68777004e-02 -1.76215246e-02 1.09971268e-02 -6.55218184e-01
5.77992618e-01 1.78595722e-01 1.30928457e-01 5.14066756e-01
-2.12237880e-01 -3.43827754e-01 -2.79970560e-02 3.01125288e-01
1.26007509e+00 -2.65813665e-03 9.25088152e-02 2.43445009e-01
1.37345538e-01 4.69563343e-02 3.67451042e-01 9.77973402e-01
-6.13005459e-01 4.69117761e-01 1.98538937e-02 3.39874417e-01
-6.80797577e-01 -1.27331734e+00 6.19899035e-01 1.41661549e+00
5.78050196e-01 -6.23475164e-02 -7.24571943e-01 -2.40277499e-01
-3.07340354e-01 7.85002291e-01 -3.66391629e-01 -6.87858388e-02
-5.38151383e-01 -5.61276339e-02 4.39433515e-01 4.01556522e-01
4.55663092e-02 -1.23017490e+00 -1.43925786e+00 4.47084993e-01
-2.81506091e-01 -6.81192756e-01 -3.49937588e-01 3.54940832e-01
-4.06719357e-01 -9.75873590e-01 -7.36969948e-01 -7.68690169e-01
4.51473713e-01 6.42459214e-01 7.76832402e-01 -2.38660365e-01
-4.23563898e-01 1.25270629e+00 -3.00584674e-01 -6.90245211e-01
-5.23745179e-01 -6.42053604e-01 1.21658206e-01 -2.54222341e-02
-1.51073828e-01 -4.25132334e-01 -4.93084192e-01 2.92665929e-01
-4.35279936e-01 -1.35003656e-01 1.47477705e-02 3.29811990e-01
3.94293129e-01 3.49346399e-01 3.26534361e-01 2.75143057e-01
5.97289622e-01 -4.59432185e-01 -8.39483559e-01 9.39814225e-02
3.90919477e-01 -5.75041711e-01 2.50593841e-01 -8.19188595e-01
-8.85188520e-01 6.70623302e-01 4.02851701e-01 -3.68845731e-01
-5.41767061e-01 1.31792563e-03 -2.55950242e-01 2.66647160e-01
7.89500952e-01 4.22242880e-02 -1.28088728e-01 -2.22596303e-01
2.49631435e-01 7.24365652e-01 7.33162582e-01 -3.13691914e-01
5.80280423e-01 5.01289904e-01 -3.97874713e-01 -1.10606432e+00
-2.46885449e-01 -5.10268211e-01 -3.72913778e-01 -8.68523121e-01
7.55073249e-01 -8.99018526e-01 -1.11824715e+00 5.05359411e-01
-1.28893602e+00 -7.66105950e-01 -4.61220801e-01 8.17424595e-01
-1.06466794e+00 -4.40699905e-02 -3.08082532e-02 -1.54970098e+00
1.90727636e-01 -1.16595399e+00 1.16687894e+00 3.89765024e-01
-3.64327967e-01 -5.51788807e-01 5.15882730e-01 3.41563553e-01
-7.25041702e-02 3.97921503e-02 3.30610931e-01 -3.66512537e-01
-7.54689753e-01 2.63438702e-01 4.79209393e-01 2.16481425e-02
1.60139710e-01 2.11487517e-01 -1.22264123e+00 -3.80973577e-01
8.24771896e-02 -1.88991114e-01 4.20741498e-01 7.22736895e-01
5.09499252e-01 -3.43592525e-01 -3.82030845e-01 6.89397519e-03
1.04609895e+00 9.18619275e-01 1.08124465e-01 4.45330352e-01
2.70949274e-01 6.96393371e-01 8.03980887e-01 7.67479777e-01
1.72584996e-01 7.76734352e-01 9.32060480e-01 3.43114585e-02
9.12156105e-02 -6.65803775e-02 6.62053287e-01 2.56008536e-01
1.80027202e-01 -6.21087670e-01 -8.49814296e-01 8.13768387e-01
-1.97770894e+00 -1.06779873e+00 2.21637577e-01 2.22882724e+00
3.15824240e-01 1.81832016e-01 5.19251347e-01 4.47474062e-01
9.09292877e-01 -2.12979242e-01 -6.51432633e-01 -1.39748022e-01
3.57060969e-01 -4.72542971e-01 1.48077026e-01 1.12608290e+00
-9.08290148e-01 5.54515243e-01 5.58031130e+00 2.98673868e-01
-8.48341584e-01 -1.36946350e-01 9.57839414e-02 -7.04891026e-01
1.18809186e-01 -1.12511203e-01 -4.25350487e-01 2.48511001e-01
6.81936562e-01 -2.61042386e-01 9.00813818e-01 7.78087914e-01
5.25358081e-01 -5.51019669e-01 -1.35021710e+00 1.07480025e+00
9.81157050e-02 -8.75234723e-01 -6.94950998e-01 7.72853494e-02
3.12802196e-01 -3.16449404e-02 1.69987783e-01 -4.15016562e-02
8.06848705e-01 -6.67282462e-01 1.34830058e+00 4.05679077e-01
3.91953625e-02 -8.83493543e-01 -1.11987136e-01 8.32974792e-01
-1.17426586e+00 -5.59333980e-01 1.31624535e-01 -1.46213815e-01
4.97612953e-01 -3.88072878e-02 -1.27457547e+00 -4.79595698e-02
8.81295323e-01 1.05970308e-01 -1.90124094e-01 1.49671316e+00
-1.85750023e-01 3.49412978e-01 -5.43981850e-01 -3.83255184e-02
1.26533240e-01 1.07921548e-01 1.40977836e+00 7.92557478e-01
5.02147615e-01 2.42452487e-01 4.18516040e-01 6.45469725e-01
3.26557517e-01 -1.73976794e-01 -7.25534558e-01 1.98085010e-01
7.21770287e-01 9.52589333e-01 -9.31797206e-01 -1.01361416e-01
-7.48921093e-03 8.49283099e-01 -9.33967158e-02 5.75910330e-01
-1.00036931e+00 -4.76415217e-01 7.91716993e-01 -7.09329545e-02
3.08288872e-01 -2.99891263e-01 1.59526914e-01 -5.04431605e-01
-1.81093514e-01 -8.53947997e-01 3.05114478e-01 -1.47358692e+00
-6.16157651e-01 5.37918091e-01 -2.54477650e-01 -1.38257694e+00
-4.49557632e-01 -4.23945114e-02 -5.13309240e-01 5.19024372e-01
-8.60296607e-01 -5.96587300e-01 -2.53049195e-01 5.99661231e-01
8.98810089e-01 -1.97128668e-01 6.51938438e-01 4.04354259e-02
-2.78672636e-01 -3.27277817e-02 1.54053271e-02 -8.81414637e-02
5.39147437e-01 -1.25989759e+00 1.31326303e-01 8.81498992e-01
4.94573802e-01 -1.43011753e-02 1.18468094e+00 -4.08443600e-01
-1.38377476e+00 -6.98389947e-01 3.16655457e-01 -4.16170388e-01
6.98957920e-01 -3.66819084e-01 -4.41693813e-01 6.48223162e-01
2.54205167e-01 -1.65862307e-01 5.15781760e-01 -5.65124333e-01
2.28021875e-01 4.62687062e-03 -1.19363725e+00 7.74872422e-01
8.13925862e-01 -2.86934733e-01 -6.11016989e-01 1.03760906e-01
5.92735112e-01 -4.16378319e-01 7.25331977e-02 -4.76495475e-02
4.34525400e-01 -9.89512444e-01 1.02784073e+00 -4.26608860e-01
-8.67881998e-02 -5.26279867e-01 -2.99778759e-01 -1.62898159e+00
-3.32688242e-01 -1.03913188e+00 -2.26803839e-01 1.14927137e+00
3.23904783e-01 -2.01359853e-01 6.89901173e-01 2.61199236e-01
-3.58784758e-02 4.03642692e-02 -1.23412538e+00 -5.96018910e-01
-3.96888286e-01 -6.83301389e-01 2.66089231e-01 4.55092013e-01
2.68080592e-01 3.50088090e-01 -2.92053878e-01 8.93313289e-01
7.18978524e-01 -1.73619628e-01 8.42027426e-01 -1.05381060e+00
-6.45268202e-01 -4.65986937e-01 -2.59676099e-01 -1.17441380e+00
4.81272563e-02 -2.60011554e-01 6.68682814e-01 -1.56705916e+00
-1.62816867e-01 -3.52921695e-01 -1.09509930e-01 2.81011045e-01
2.77469099e-01 -7.99682662e-02 4.82313901e-01 -4.04119827e-02
-7.74567604e-01 4.51944053e-01 1.02915597e+00 -3.11118037e-01
-7.53134727e-01 3.76334697e-01 -5.72481573e-01 1.02117622e+00
7.39543259e-01 -5.28850973e-01 -6.42013490e-01 -6.30998909e-01
2.77018666e-01 9.22834277e-01 5.93308330e-01 -1.17426312e+00
6.11338019e-01 -3.46085221e-01 1.37874931e-01 -4.10542279e-01
9.50389743e-01 -1.26218879e+00 1.02453776e-01 4.34777170e-01
-7.34105051e-01 -1.50503526e-02 2.80395120e-01 8.37113798e-01
1.75522476e-01 -3.43482018e-01 7.96436846e-01 -2.23106593e-01
-4.74563122e-01 -2.62684554e-01 -1.16618967e+00 1.27011724e-02
1.33202410e+00 -2.52611578e-01 -2.25292191e-01 -7.92898595e-01
-1.22489607e+00 4.67201650e-01 3.02212954e-01 6.34679198e-01
7.25571036e-01 -1.15402031e+00 -4.93727684e-01 3.55007239e-02
-5.71525618e-02 -1.85480155e-02 1.97816908e-01 6.22028828e-01
-2.94422448e-01 -1.23585477e-01 -5.69537133e-02 -9.55445945e-01
-1.96835589e+00 7.28869081e-01 5.07538736e-01 3.23185861e-01
-3.98406029e-01 1.07989717e+00 2.55128741e-01 -1.50901809e-01
8.50485921e-01 -3.48022878e-01 -1.84328794e-01 7.71259964e-02
7.41461694e-01 8.60166252e-01 -2.12060064e-01 -6.32455468e-01
-3.66756678e-01 3.75100881e-01 5.01065135e-01 -9.43791270e-01
1.37785506e+00 -6.62464142e-01 4.17555094e-01 6.74127638e-01
8.28927457e-01 2.71339715e-01 -1.60309267e+00 5.92313521e-02
-2.89121419e-01 -5.41815162e-01 1.48774266e-01 -8.10907960e-01
-8.11501145e-01 7.17374384e-01 8.17175150e-01 7.08544016e-01
1.08857667e+00 2.30858088e-01 2.24301055e-01 4.11686480e-01
6.26644909e-01 -1.14212751e+00 7.29197800e-01 2.05324352e-01
1.03773081e+00 -7.50224233e-01 -4.73690420e-01 -4.21471111e-02
-9.59342599e-01 7.80323684e-01 5.97998023e-01 3.64582278e-02
3.77242297e-01 8.00480366e-01 4.40701306e-01 2.82452945e-02
-8.72846365e-01 -2.67449111e-01 -3.94176960e-01 1.02754247e+00
-2.50280142e-01 2.47391104e-03 9.60761845e-01 1.72273830e-01
-1.99110955e-01 -3.04546058e-01 9.17083859e-01 1.25362039e+00
-1.07379305e+00 -3.88843417e-01 -9.79988754e-01 -3.78733426e-01
-1.24301568e-01 3.69417280e-01 -6.01521015e-01 3.30336720e-01
4.58033150e-03 1.47450769e+00 1.94614112e-01 -2.96268016e-02
3.97913605e-01 -2.06570789e-01 6.92395926e-01 -5.80313921e-01
-3.67620558e-01 8.82894933e-01 -8.81095156e-02 -4.58280206e-01
-6.63497150e-01 -9.53178048e-01 -1.55758321e+00 2.18717784e-01
-2.46207818e-01 3.45038533e-01 5.89925230e-01 5.26370585e-01
2.01784328e-01 7.47913897e-01 9.40393567e-01 -1.30732191e+00
-2.81688720e-01 -5.73903561e-01 -6.73651934e-01 -2.91917771e-01
1.00204432e+00 -5.09146690e-01 -6.49039149e-01 3.57737422e-01]
|
[4.290910243988037, 0.9776192903518677]
|
171e4250-f51f-468c-b44b-1311d5fce6fa
|
a-few-shot-sequential-approach-for-object
|
2007.01899
| null |
https://arxiv.org/abs/2007.01899v2
|
https://arxiv.org/pdf/2007.01899v2.pdf
|
A Few-Shot Sequential Approach for Object Counting
|
In this work, we address the problem of few-shot multi-class object counting with point-level annotations. The proposed technique leverages a class agnostic attention mechanism that sequentially attends to objects in the image and extracts their relevant features. This process is employed on an adapted prototypical-based few-shot approach that uses the extracted features to classify each one either as one of the classes present in the support set images or as background. The proposed technique is trained on point-level annotations and uses a novel loss function that disentangles class-dependent and class-agnostic aspects of the model to help with the task of few-shot object counting. We present our results on a variety of object-counting/detection datasets, including FSOD and MS COCO. In addition, we introduce a new dataset that is specifically designed for weakly supervised multi-class object counting/detection and contains considerably different classes and distribution of number of classes/instances per image compared to the existing datasets. We demonstrate the robustness of our approach by testing our system on a totally different distribution of classes from what it has been trained on.
|
['Negar Rostamzadeh', 'Pegah Kamousi', 'Negin Sokhandan', 'Eniola Alese', 'Alejandro Posada']
|
2020-07-03
| null | null | null | null |
['object-counting']
|
['computer-vision']
|
[ 5.81526041e-01 -2.63874114e-01 -1.60030320e-01 -2.90187776e-01
-8.47871423e-01 -3.66330147e-01 8.42098773e-01 6.61763430e-01
-9.30634856e-01 5.13113976e-01 -3.04982901e-01 1.43551022e-01
4.75616455e-02 -7.97805071e-01 -6.10122502e-01 -5.84929764e-01
2.15420216e-01 7.30711818e-01 8.71824503e-01 1.88830987e-01
6.01532757e-01 4.76761431e-01 -2.05219650e+00 4.84245926e-01
2.12760210e-01 9.12338853e-01 2.53642172e-01 1.09709430e+00
-1.39720514e-01 1.31408834e+00 -7.19562650e-01 -4.53329742e-01
3.01118284e-01 -1.49356902e-01 -7.40866959e-01 1.56563193e-01
1.05038655e+00 -2.34397978e-01 -5.30364364e-02 1.09780896e+00
4.03082639e-01 1.68947518e-01 1.12092328e+00 -1.12287498e+00
-1.41838104e-01 -6.89429492e-02 -9.58871305e-01 1.03263497e+00
-2.56979540e-02 2.14744985e-01 8.92212391e-01 -9.73056734e-01
4.02107477e-01 1.14589775e+00 6.22774541e-01 5.03370464e-01
-1.18128645e+00 -6.57591581e-01 -1.97213650e-01 8.75534043e-02
-1.34284496e+00 -4.24156755e-01 4.08173352e-01 -7.50949800e-01
7.98077106e-01 2.50303615e-02 4.70673621e-01 8.29577029e-01
6.24923036e-02 7.67003357e-01 1.08888435e+00 -8.10819209e-01
4.33972090e-01 3.20419580e-01 7.19152510e-01 8.17206264e-01
6.89255297e-01 -4.43486795e-02 -4.15346444e-01 -3.80073071e-01
4.66910809e-01 2.16461077e-01 3.52946162e-01 -5.83098888e-01
-9.47051764e-01 9.57797706e-01 1.47124872e-01 4.37345654e-01
-1.16589069e-01 2.58189946e-01 5.94700396e-01 -3.40126276e-01
5.36017239e-01 9.92728993e-02 -2.61234760e-01 1.61575377e-01
-1.03850389e+00 2.18828410e-01 7.69742370e-01 1.03392100e+00
7.40881085e-01 -4.02222574e-01 -8.43206823e-01 8.10558200e-01
1.92659441e-03 1.32554755e-01 3.97869319e-01 -8.22727144e-01
4.06545639e-01 7.64335752e-01 2.27397621e-01 -8.81927252e-01
-2.18686759e-01 -2.25105420e-01 -2.96905637e-01 3.58113199e-01
5.03898740e-01 2.23114073e-01 -1.08149338e+00 1.47043300e+00
5.98836303e-01 2.93436140e-01 -2.82383144e-01 5.28475821e-01
8.44720840e-01 2.48424813e-01 4.00145620e-01 -3.97191532e-02
1.68127418e+00 -9.31124628e-01 -3.62220287e-01 -3.14416140e-01
3.88754427e-01 -4.53501076e-01 9.99350607e-01 5.69229051e-02
-9.89792347e-01 -4.66543853e-01 -1.16757452e+00 -6.87883124e-02
-6.80317581e-01 2.38182217e-01 5.81040978e-01 8.25144231e-01
-4.19136345e-01 5.24862289e-01 -6.97475255e-01 -4.79195267e-01
9.18314993e-01 1.21627949e-01 -7.47104660e-02 -1.34930015e-01
-5.51361144e-01 1.01401758e+00 8.23044956e-01 -5.96255779e-01
-9.50297117e-01 -4.13694113e-01 -8.42876971e-01 2.82783955e-01
5.52638412e-01 -5.05152941e-01 1.35123217e+00 -6.62216783e-01
-9.13002789e-01 1.40270245e+00 -1.59767523e-01 -3.37628156e-01
5.75043142e-01 6.30387366e-02 -1.32032245e-01 3.73147100e-01
7.29963124e-01 4.80187386e-01 9.52576697e-01 -1.13871884e+00
-1.12220812e+00 -4.93625790e-01 8.47540125e-02 -1.63862452e-01
-2.78132886e-01 3.54926258e-01 -3.01972687e-01 -3.82462949e-01
-3.21905285e-01 -5.90905190e-01 -2.83559524e-02 1.47108257e-01
-2.52943218e-01 -2.61740416e-01 7.95290411e-01 1.04475960e-01
9.62281823e-01 -1.98761809e+00 -2.51459002e-01 -2.34775826e-01
2.78796315e-01 3.62881362e-01 7.63909146e-03 2.55706728e-01
5.82408644e-02 -1.76812679e-01 -4.00917411e-01 -4.96944457e-01
-2.80011326e-01 2.51022786e-01 4.40491177e-02 6.97619200e-01
5.80149531e-01 6.19063675e-01 -1.17218196e+00 -1.09327447e+00
3.25438589e-01 2.41553381e-01 -3.66945952e-01 5.19367531e-02
-2.00392306e-01 1.81389824e-01 -2.91464806e-01 8.55161905e-01
6.51988983e-01 -3.71133864e-01 -2.37616017e-01 -3.43669578e-02
-1.32348210e-01 -4.01692927e-01 -1.29134464e+00 1.28733969e+00
-3.61904025e-01 3.95494610e-01 -4.03142214e-01 -8.89019430e-01
5.08157432e-01 9.13689733e-02 2.28880078e-01 -3.93082201e-01
3.84894311e-01 1.90103292e-01 -7.67898709e-02 -4.81397182e-01
6.18879557e-01 -2.79492348e-01 -1.00797065e-01 4.61122990e-01
6.07760191e-01 -9.00273696e-02 8.61330152e-01 3.05618405e-01
1.35051560e+00 -7.95666873e-02 1.01615250e+00 -2.80097187e-01
4.59509403e-01 1.20153576e-01 3.86272401e-01 1.26816976e+00
-5.70271611e-01 6.81397140e-01 4.20155048e-01 -4.45382535e-01
-1.16999733e+00 -7.60997951e-01 -3.56303126e-01 1.49500179e+00
-2.61343420e-02 -1.03493772e-01 -5.78373611e-01 -8.32677305e-01
-2.81179929e-03 7.61477649e-01 -1.02348697e+00 -5.06922454e-02
-3.63413393e-01 -9.70610082e-01 5.94554901e-01 5.92021048e-01
2.78661191e-01 -9.85026777e-01 -1.20220423e+00 1.16668306e-01
1.25796884e-01 -1.13884246e+00 -3.04494888e-01 5.17186940e-01
-5.50489306e-01 -1.63272429e+00 -6.43205881e-01 -5.25959492e-01
6.00340545e-01 4.33355331e-01 1.30730200e+00 6.26117662e-02
-9.52508271e-01 6.50915325e-01 -2.73664653e-01 -9.20146048e-01
-2.61718482e-01 -1.43903509e-01 -2.21097648e-01 1.93731785e-01
7.33417988e-01 -1.42392918e-01 -4.60930109e-01 1.22567236e-01
-9.71040845e-01 -5.38822412e-01 4.04263169e-01 8.29574585e-01
4.55023289e-01 -1.06852725e-01 4.90089864e-01 -1.18283808e+00
1.61041930e-01 -6.66255355e-01 -6.24372661e-01 2.24648759e-01
-2.96097640e-02 -1.08106457e-01 3.73821616e-01 -6.28756106e-01
-9.25437689e-01 4.30704653e-01 4.72516388e-01 -4.95959133e-01
-2.47437224e-01 -2.07028031e-01 2.06495374e-01 -1.81349680e-01
8.69052410e-01 1.04589984e-01 -5.81568420e-01 -3.40614229e-01
2.45327905e-01 5.77303886e-01 5.79130054e-01 -4.70648557e-01
6.56335235e-01 9.00532901e-01 1.81103319e-01 -9.28348362e-01
-1.46517360e+00 -1.21279478e+00 -9.09722865e-01 -1.52891561e-01
1.01811099e+00 -8.05075705e-01 -5.93254924e-01 4.34716970e-01
-1.35997963e+00 7.96330199e-02 -5.54736853e-01 2.72055954e-01
-6.35854125e-01 2.64495254e-01 -5.12826979e-01 -1.27708650e+00
-2.20621333e-01 -7.23109603e-01 1.46558821e+00 3.01397592e-01
1.98808722e-02 -6.62283421e-01 3.01003516e-01 2.12365061e-01
1.04164168e-01 3.06345642e-01 7.90241718e-01 -1.09927917e+00
-4.63462144e-01 -7.89022982e-01 -4.44181681e-01 2.62630671e-01
-1.63924664e-01 8.94435961e-03 -1.34460104e+00 -2.63433099e-01
8.65781829e-02 -6.64094806e-01 1.20894623e+00 2.55485356e-01
1.25054896e+00 1.10786088e-01 -3.80230755e-01 1.41976833e-01
1.75882423e+00 -1.18991502e-01 3.08308810e-01 3.61207932e-01
4.99155849e-01 3.61714631e-01 7.65266478e-01 5.24403453e-01
1.22985527e-01 5.49124420e-01 5.71009278e-01 1.69345841e-01
-2.89186575e-02 -1.09494053e-01 -2.03695491e-01 1.28405422e-01
-2.75450230e-01 -2.60216266e-01 -8.12362790e-01 7.07116485e-01
-1.82765567e+00 -1.35416782e+00 -9.11829025e-02 2.19421649e+00
5.70814252e-01 2.41599947e-01 4.33142930e-01 2.96574414e-01
1.11519980e+00 1.85712621e-01 -2.93996006e-01 -1.98964849e-01
1.12934098e-01 5.03620327e-01 6.35439157e-01 1.33026585e-01
-1.49881983e+00 6.50567293e-01 5.95718765e+00 1.02571166e+00
-5.45417368e-01 4.13906306e-01 5.13342559e-01 -2.41621897e-01
8.59967649e-01 -1.29148588e-01 -1.19804180e+00 4.37415630e-01
6.43201947e-01 -1.43591702e-01 -1.14010513e-01 1.10724139e+00
-3.22569877e-01 -5.55274487e-01 -1.35754764e+00 7.83062518e-01
4.50766474e-01 -1.15630853e+00 -5.91015033e-02 -2.43739039e-01
5.73662877e-01 -6.09312281e-02 -2.45363340e-01 4.89531666e-01
1.55679300e-01 -7.76169479e-01 8.81387115e-01 4.55283046e-01
8.32911730e-01 -6.08796120e-01 7.53169179e-01 7.12675214e-01
-1.28155398e+00 -4.14092094e-01 -5.20519674e-01 -2.63615459e-01
-2.08943665e-01 3.16259593e-01 -7.76713610e-01 1.82192177e-01
6.28915310e-01 3.88168007e-01 -9.36707616e-01 1.32638454e+00
1.38566390e-01 2.89740711e-01 -2.22626075e-01 -1.17463246e-01
1.90421760e-01 3.23939472e-01 3.88621360e-01 1.63820076e+00
-1.20366858e-02 1.67507857e-01 2.50608385e-01 8.10275435e-01
4.80893813e-03 -2.02519563e-03 -7.40217865e-01 1.75182790e-01
3.34450275e-01 1.52884269e+00 -1.26686990e+00 -7.90597796e-01
-6.64795697e-01 6.85850322e-01 6.57284558e-01 -1.72010735e-01
-8.89445722e-01 -5.68133831e-01 -3.94703746e-02 1.54715359e-01
6.82714880e-01 2.43640810e-01 1.99325811e-02 -1.18645942e+00
-2.00239897e-01 -3.46294791e-01 7.79831946e-01 -4.86479312e-01
-1.56661618e+00 2.33223766e-01 3.02312434e-01 -1.15041351e+00
-4.59933765e-02 -7.52315938e-01 -9.20586884e-01 5.22326529e-01
-1.42593825e+00 -1.24964130e+00 -3.82966995e-01 4.41151261e-01
6.81377888e-01 -1.23106524e-01 7.09004641e-01 4.64419633e-01
-4.76468384e-01 3.45456451e-01 -8.73908475e-02 2.61178166e-01
4.57920730e-01 -1.31636918e+00 6.81878403e-02 7.13890553e-01
1.76778570e-01 3.77081692e-01 5.82787275e-01 -4.54574138e-01
-6.85076296e-01 -1.38713312e+00 7.42013335e-01 -9.15277600e-01
5.82600355e-01 -3.89333278e-01 -7.83875287e-01 6.62639558e-01
-2.75255799e-01 7.28125513e-01 6.08623147e-01 -3.15466076e-01
-4.07387555e-01 3.54502648e-01 -1.57871842e+00 1.15886956e-01
9.01022613e-01 -3.48381281e-01 -7.85773218e-01 5.10559618e-01
3.42995852e-01 -1.06022149e-01 -2.92684704e-01 2.73042113e-01
3.83724153e-01 -1.09048903e+00 1.06530762e+00 -7.78702676e-01
6.02917910e-01 -1.84048668e-01 -4.70275372e-01 -6.63855076e-01
-4.17265207e-01 2.22836792e-01 -3.74051809e-01 1.07467902e+00
-6.48374185e-02 -2.74907917e-01 7.24029660e-01 9.48774517e-02
1.83041006e-01 -4.48599666e-01 -1.08103216e+00 -8.74630451e-01
-7.41081163e-02 -1.49592802e-01 1.19827576e-01 7.51737654e-01
-3.56810182e-01 6.36515141e-01 -1.65950626e-01 4.64926176e-02
9.47264671e-01 1.25420988e-01 7.78909683e-01 -1.44270647e+00
-4.44774300e-01 -2.39421621e-01 -8.49315822e-01 -2.62575120e-01
-6.63829520e-02 -8.66366565e-01 9.59807262e-02 -1.04662812e+00
1.11642456e+00 -1.41167730e-01 -2.36256585e-01 3.29517424e-01
-3.10365707e-01 6.08970881e-01 3.24182034e-01 1.35968938e-01
-1.06277430e+00 1.06766388e-01 7.93126285e-01 -2.09209040e-01
2.42698699e-01 2.57831633e-01 -2.79715985e-01 1.14730465e+00
4.30326194e-01 -8.71467710e-01 9.38759819e-02 6.02005608e-02
-1.22948661e-01 -1.04697989e-02 7.61683643e-01 -1.31686926e+00
2.08201557e-01 -4.95144129e-02 4.91305768e-01 -7.18257368e-01
5.17153025e-01 -6.84873164e-01 -4.41671968e-01 6.24863923e-01
-2.73468226e-01 -4.27170932e-01 1.71931803e-01 1.02223730e+00
1.47277430e-01 -7.88220584e-01 1.39128554e+00 -6.24727547e-01
-6.66338444e-01 2.25783437e-01 -1.42285049e-01 3.35219800e-01
1.37787294e+00 -3.83388400e-01 -2.92872220e-01 2.75466472e-01
-7.19577849e-01 -4.51175496e-02 4.18704838e-01 3.03325318e-02
1.86836749e-01 -1.23252451e+00 -6.36225164e-01 -8.48211125e-02
7.88224220e-01 -1.07552692e-01 -3.70259508e-02 5.79365015e-01
-2.88193077e-01 3.03051621e-01 -2.29286522e-01 -8.29328775e-01
-1.42562294e+00 8.58815432e-01 2.89571404e-01 -4.32747543e-01
-4.66326654e-01 7.25298047e-01 2.11752340e-01 -3.62603813e-01
1.74402833e-01 -1.06533274e-01 -4.29256648e-01 3.24966043e-01
7.02850223e-01 7.64672339e-01 4.74452302e-02 -6.82749808e-01
-4.09426898e-01 4.67285037e-01 -1.94211856e-01 1.47353783e-01
1.32871258e+00 2.76470721e-01 1.94007576e-01 1.00152636e+00
1.08981669e+00 -1.26601294e-01 -1.10814416e+00 -3.84573996e-01
3.42574865e-01 -7.70266473e-01 -1.69625968e-01 -5.94534457e-01
-6.31951988e-01 9.24341500e-01 7.28428245e-01 1.17105626e-01
6.12528026e-01 2.64432460e-01 2.01086298e-01 3.74590188e-01
4.65380132e-01 -1.18437600e+00 4.88958746e-01 4.65337127e-01
2.91158557e-01 -1.79642212e+00 1.29331574e-01 -2.96415448e-01
-3.08519781e-01 9.45480824e-01 6.78589940e-01 -3.16016197e-01
2.98804790e-01 1.80940524e-01 -5.48639476e-01 -6.58726335e-01
-5.51659286e-01 -5.85700691e-01 1.56981677e-01 5.83702862e-01
3.65692794e-01 -1.26011834e-01 -2.14530975e-01 3.76496136e-01
5.15234649e-01 1.90953210e-01 6.57956541e-01 1.34238994e+00
-8.64596426e-01 -4.01571095e-01 -5.11197090e-01 8.91813338e-01
-5.87564528e-01 3.74515913e-02 -3.17060113e-01 8.94343674e-01
3.83734345e-01 7.21397221e-01 1.93094686e-01 3.32004160e-01
3.01290244e-01 1.26427770e-01 7.94350445e-01 -1.28998220e+00
-4.13705289e-01 -4.36323673e-01 -1.27304554e-01 -3.36304188e-01
-6.17948711e-01 -7.12023556e-01 -9.04223263e-01 7.45935068e-02
-7.96454012e-01 -3.09272796e-01 4.34255868e-01 8.91430736e-01
-2.41324350e-01 5.38809419e-01 3.32470566e-01 -1.22862780e+00
-7.12182879e-01 -9.96035337e-01 -7.05515921e-01 4.96073365e-01
3.88538808e-01 -1.09879911e+00 -4.14485633e-01 -1.27045438e-01]
|
[9.037787437438965, 0.5627545714378357]
|
2933ca2b-5a4e-4ac5-8d62-d12baae78deb
|
the-missing-data-encoder-cross-channel-image
|
1905.01861
| null |
https://arxiv.org/abs/1905.01861v1
|
https://arxiv.org/pdf/1905.01861v1.pdf
|
The Missing Data Encoder: Cross-Channel Image Completion\\with Hide-And-Seek Adversarial Network
|
Image completion is the problem of generating whole images from fragments only. It encompasses inpainting (generating a patch given its surrounding), reverse inpainting/extrapolation (generating the periphery given the central patch) as well as colorization (generating one or several channels given other ones). In this paper, we employ a deep network to perform image completion, with adversarial training as well as perceptual and completion losses, and call it the ``missing data encoder'' (MDE). We consider several configurations based on how the seed fragments are chosen. We show that training MDE for ``random extrapolation and colorization'' (MDE-REC), i.e. using random channel-independent fragments, allows a better capture of the image semantics and geometry. MDE training makes use of a novel ``hide-and-seek'' adversarial loss, where the discriminator seeks the original non-masked regions, while the generator tries to hide them. We validate our models both qualitatively and quantitatively on several datasets, showing their interest for image completion, unsupervised representation learning as well as face occlusion handling.
|
['Matthieu Cord', 'Patrick Perez', 'Arnaud Dapogny']
|
2019-05-06
| null | null | null | null |
['occlusion-handling']
|
['computer-vision']
|
[ 5.80285251e-01 4.54580963e-01 3.58134329e-01 -2.41190985e-01
-9.01108623e-01 -7.17281163e-01 7.17590570e-01 -1.65072992e-01
-2.36492306e-01 7.30461836e-01 2.22424716e-02 2.91411448e-02
3.93951893e-01 -8.72266710e-01 -1.30986607e+00 -9.68155444e-01
-8.83224159e-02 4.23861951e-01 -1.57048792e-01 -1.44415066e-01
-7.86972195e-02 7.51363695e-01 -1.47991514e+00 5.11177778e-01
7.06988454e-01 9.93505299e-01 7.82131031e-02 7.51217902e-01
1.71710044e-01 8.61007810e-01 -7.40228534e-01 -6.22814119e-01
5.39846778e-01 -5.97425282e-01 -5.93918025e-01 4.56509471e-01
5.33168614e-01 -5.61907887e-01 -2.16267645e-01 7.38101244e-01
3.86066437e-01 -7.08940104e-02 7.64384389e-01 -1.23920166e+00
-9.35845971e-01 2.76043057e-01 -7.44500577e-01 -4.65785205e-01
5.14113545e-01 3.45215052e-01 6.62909746e-01 -9.82140422e-01
9.43102896e-01 1.21155369e+00 6.21238649e-01 8.15818310e-01
-1.90920389e+00 -4.45243895e-01 -2.06623703e-01 -2.92044133e-01
-1.40461075e+00 -7.08531439e-01 9.26537275e-01 -4.32165712e-01
4.18184638e-01 3.81853372e-01 4.24655497e-01 1.07278705e+00
1.08796030e-01 7.86597192e-01 1.31675279e+00 -6.75407350e-01
3.60724330e-01 1.16142280e-01 -7.14033425e-01 5.85154772e-01
-1.11078247e-01 4.79039013e-01 -2.19438210e-01 -1.23802945e-01
9.97640073e-01 -4.79374193e-02 -4.02513057e-01 -5.24870276e-01
-8.26063752e-01 8.11914802e-01 6.05195165e-01 -1.98694348e-01
-5.22899568e-01 3.65642190e-01 3.56277078e-02 3.78480941e-01
4.34962392e-01 3.42669755e-01 -8.07465166e-02 4.70561624e-01
-1.13480568e+00 5.69352269e-01 6.12309873e-01 9.62160408e-01
1.31252015e+00 1.19144119e-01 -3.00409734e-01 9.07701731e-01
-9.52787995e-02 3.68943989e-01 -6.45376295e-02 -1.20838332e+00
3.80301356e-01 1.57575056e-01 3.23446542e-01 -7.32344866e-01
-2.73355078e-02 -2.21438602e-01 -9.15376842e-01 8.77024114e-01
5.20197213e-01 -4.52832222e-01 -1.19446552e+00 2.09983253e+00
2.91960329e-01 -3.01788971e-02 -4.64826599e-02 8.54930043e-01
4.15361941e-01 5.94878435e-01 -7.64779449e-02 -1.05680071e-01
1.18593299e+00 -7.19991088e-01 -4.42791224e-01 -2.52824366e-01
1.69336647e-01 -9.44832504e-01 8.21503758e-01 5.07109404e-01
-1.63620949e+00 -6.18406594e-01 -8.12717915e-01 -3.41748178e-01
-2.87589341e-01 2.80771494e-01 4.22311336e-01 4.55763012e-01
-1.40182519e+00 7.64559686e-01 -5.72148740e-01 4.51333262e-02
8.08229744e-01 3.36540699e-01 -7.97802687e-01 -2.99748391e-01
-1.01385117e+00 4.98724669e-01 -1.27953589e-01 1.40193403e-01
-1.24102211e+00 -6.67376339e-01 -8.80009949e-01 -3.32029462e-02
7.90051185e-03 -7.63080299e-01 7.93736756e-01 -1.66231477e+00
-1.26734793e+00 1.16214919e+00 1.64516419e-02 -4.00903195e-01
8.94868791e-01 7.95964226e-02 -8.04713368e-02 3.53206068e-01
1.55936778e-01 1.26673603e+00 1.44075346e+00 -1.71287465e+00
-1.55499294e-01 -2.52081335e-01 7.21343979e-02 -3.69695909e-02
1.70076117e-01 -1.22715749e-01 -5.01423001e-01 -1.06320500e+00
-1.62698790e-01 -9.08237636e-01 -2.17639446e-01 5.10910034e-01
-5.75319231e-01 3.50558728e-01 6.96395457e-01 -1.12861431e+00
7.70367563e-01 -2.29534960e+00 4.20852661e-01 2.27833122e-01
2.36215711e-01 9.05346498e-03 -4.24338192e-01 6.76259041e-01
-5.48184514e-01 2.54242271e-02 -7.12396443e-01 -8.64040494e-01
-1.26268104e-01 2.86952406e-01 -4.10532713e-01 5.67653179e-01
6.73689723e-01 8.35356236e-01 -5.75404942e-01 -1.45499513e-01
1.65189594e-01 8.34647536e-01 -8.56932759e-01 3.99536192e-01
-4.30720508e-01 6.85607255e-01 -6.81074560e-02 4.95715111e-01
1.18427944e+00 9.44347233e-02 -6.48521818e-03 -2.50834078e-01
-2.25117803e-02 -1.54309586e-01 -1.15837193e+00 1.77985597e+00
-6.17312908e-01 6.42141044e-01 4.84394640e-01 -7.55345762e-01
7.63681829e-01 2.47109219e-01 3.52308810e-01 -6.54785991e-01
-8.43368992e-02 1.61104918e-01 -3.14140528e-01 -2.53922850e-01
3.34011286e-01 -2.78868169e-01 2.03690544e-01 6.60801649e-01
-2.71896273e-02 -1.29801959e-01 -5.41140586e-02 3.84466827e-01
1.07821381e+00 2.89076567e-01 -3.38822268e-02 -8.72963890e-02
3.23723525e-01 -2.92496383e-01 3.27301741e-01 4.51217890e-01
1.83365554e-01 1.29134309e+00 9.02660608e-01 -3.10761899e-01
-1.42801118e+00 -1.22171068e+00 2.22044755e-02 6.88481212e-01
-6.30849227e-02 -3.01024597e-02 -1.19171166e+00 -5.50810397e-01
1.27462432e-01 6.39253318e-01 -1.13032365e+00 -1.65655583e-01
-7.37179697e-01 -3.09895992e-01 4.02770877e-01 2.97637403e-01
3.84942979e-01 -1.30066848e+00 -4.64811385e-01 6.40517324e-02
-1.22328170e-01 -7.12327778e-01 -6.32718801e-01 3.02440137e-01
-6.14934266e-01 -9.62418377e-01 -1.04721212e+00 -7.76797712e-01
1.08665752e+00 6.33891076e-02 1.24908793e+00 2.47669503e-01
-5.19116163e-01 1.97425529e-01 -2.77093798e-01 5.18441014e-03
-5.78356981e-01 -2.89095789e-01 -3.69573832e-01 5.30615270e-01
-4.21472818e-01 -8.87725055e-01 -9.30750430e-01 -2.91618262e-03
-1.48418939e+00 2.08571598e-01 7.35285223e-01 9.75542128e-01
6.25186443e-01 -9.36357230e-02 2.25691587e-01 -1.17496693e+00
4.70796853e-01 -3.35680425e-01 -4.62943822e-01 1.88710585e-01
-2.55107880e-01 1.85835630e-01 8.18861544e-01 -3.53278786e-01
-9.82355535e-01 2.63525933e-01 -2.89300710e-01 -7.97476172e-01
-2.42104873e-01 -1.12942047e-01 -4.38750058e-01 -1.89042702e-01
7.02299654e-01 3.74790192e-01 1.76452652e-01 -5.65254271e-01
7.20220566e-01 1.62432984e-01 7.53613532e-01 -7.58077860e-01
9.65222836e-01 7.88928151e-01 2.27750465e-02 -4.75058794e-01
-2.50485718e-01 1.90101579e-01 -5.86543500e-01 -9.82606709e-02
8.20582092e-01 -8.81987929e-01 -5.54665923e-01 4.00439918e-01
-1.35965061e+00 -5.02520680e-01 -7.63508797e-01 -1.17446870e-01
-6.61716223e-01 1.55155703e-01 -6.71107292e-01 -5.97948968e-01
-1.29925966e-01 -1.24049211e+00 1.44586766e+00 -3.47312726e-02
4.86010984e-02 -7.79426634e-01 -8.11029673e-02 1.35863051e-01
3.36526424e-01 8.43908489e-01 8.35128069e-01 -1.46918017e-02
-8.25708091e-01 -1.15316018e-01 -3.39055568e-01 6.68503881e-01
5.92645034e-02 1.33935511e-02 -1.17757308e+00 -4.67737585e-01
-3.55509557e-02 -4.49066699e-01 1.06030035e+00 2.76605785e-01
1.19340026e+00 -6.78178608e-01 -1.16503656e-01 8.61235142e-01
1.66477096e+00 -1.42455893e-02 1.22259498e+00 -1.16864197e-01
7.41446435e-01 8.23203564e-01 1.23060741e-01 4.96898264e-01
1.22765321e-02 6.91777885e-01 6.89961851e-01 -4.92942870e-01
-4.74056780e-01 -4.69825208e-01 3.49236190e-01 5.88316377e-03
-7.65161216e-02 -1.87158272e-01 -3.63067895e-01 4.05437291e-01
-1.36361063e+00 -9.31042016e-01 2.84974843e-01 2.32220888e+00
1.00140548e+00 -1.77902654e-01 1.77765191e-01 6.89338446e-02
8.01468253e-01 1.63794786e-01 -4.42747504e-01 -5.00365376e-01
-2.76732177e-01 7.78948307e-01 4.00389433e-01 8.99240553e-01
-1.01307261e+00 8.03085566e-01 5.47983408e+00 1.01932788e+00
-1.16937745e+00 1.97884530e-01 1.08002377e+00 1.85663715e-01
-6.29032195e-01 2.04199165e-01 -3.24883223e-01 5.80866337e-01
3.85317713e-01 5.88796616e-01 9.47082579e-01 5.96423447e-01
6.85948879e-02 -1.61328688e-01 -1.15788627e+00 8.49101782e-01
1.45657048e-01 -1.48263764e+00 3.08511883e-01 1.35590792e-01
9.53149319e-01 -5.21977723e-01 1.99301600e-01 -1.27428383e-01
2.75070071e-01 -1.16052616e+00 1.18439519e+00 6.44860983e-01
1.24119318e+00 -8.43354881e-01 1.31092265e-01 7.20473900e-02
-9.46503520e-01 1.47339225e-01 -2.15583742e-01 2.20978066e-01
7.03349710e-02 6.31712258e-01 -4.92118955e-01 4.98410761e-01
2.84122556e-01 4.25306797e-01 -5.19731104e-01 5.69848061e-01
-3.89718235e-01 1.97128639e-01 -2.32820854e-01 7.68041432e-01
-8.13402236e-02 -4.28398848e-01 4.65976804e-01 1.02469909e+00
1.70451984e-01 -1.68101832e-01 -7.30008855e-02 1.38284683e+00
-3.63323241e-01 -1.37357563e-01 -5.15785217e-01 2.72405356e-01
2.62897819e-01 1.22161126e+00 -7.75910199e-01 -1.68976888e-01
-1.32854566e-01 1.50280631e+00 3.85196269e-01 6.29591942e-01
-9.01296020e-01 -4.88603950e-01 5.09722710e-01 4.65479523e-01
5.25036156e-01 7.47375339e-02 -2.39322037e-01 -8.32404375e-01
1.41392767e-01 -7.94868827e-01 3.89045221e-04 -1.01197064e+00
-1.17974508e+00 7.96619058e-01 -1.77689448e-01 -1.28428555e+00
-3.25738579e-01 -3.31767321e-01 -7.59600520e-01 1.04342961e+00
-1.50809729e+00 -1.40874004e+00 -2.31828064e-01 7.41082489e-01
2.24135950e-01 9.50599238e-02 6.20399654e-01 5.08069098e-01
-3.71664196e-01 8.17379773e-01 -1.20181600e-02 1.38494298e-01
6.58913016e-01 -1.12727261e+00 3.47450972e-01 8.23058546e-01
-7.84652308e-03 4.21165466e-01 7.53800273e-01 -4.00753111e-01
-1.30540979e+00 -1.33193433e+00 6.79302871e-01 -1.73958585e-01
-2.16624476e-02 -6.89670861e-01 -7.86158860e-01 7.30379581e-01
3.18416953e-01 1.32637158e-01 1.05377659e-01 -6.36767387e-01
-5.18520534e-01 -2.75410622e-01 -1.43884134e+00 6.54555738e-01
7.97745943e-01 -5.42976916e-01 5.93391173e-02 4.21625763e-01
6.19151533e-01 -3.38245362e-01 -5.97132087e-01 9.73580107e-02
5.64329863e-01 -1.41732335e+00 1.14769125e+00 -2.98881650e-01
8.47149909e-01 -2.79304177e-01 -5.07890284e-02 -1.22857523e+00
-1.92451715e-01 -8.94814372e-01 1.93331182e-01 1.24801755e+00
3.04788321e-01 -4.46332574e-01 8.62543285e-01 4.31002736e-01
-1.67049423e-01 -8.31450105e-01 -8.58576715e-01 -5.11664033e-01
2.74097085e-01 -2.26466522e-01 7.98778653e-01 6.64075077e-01
-6.86592817e-01 -9.36965421e-02 -6.13086820e-01 1.08816393e-01
5.91632485e-01 1.35197774e-01 8.10624361e-01 -6.48505330e-01
-5.16364574e-01 -2.13558882e-01 -7.52037764e-02 -9.59931374e-01
-6.26367405e-02 -6.51845634e-01 9.23135877e-02 -1.10809875e+00
-2.23846976e-02 -5.60916245e-01 2.99445271e-01 4.87104237e-01
-2.32703574e-02 7.30046928e-01 1.44824967e-01 2.69884229e-01
-7.61385933e-02 5.14272153e-01 1.57912230e+00 -1.61726341e-01
-3.81496781e-03 -7.98026323e-02 -7.48798251e-01 3.84295255e-01
4.96032834e-01 -4.19835061e-01 -1.96917996e-01 -5.56944132e-01
1.65221080e-01 2.91572511e-01 7.75421143e-01 -9.34309244e-01
-7.59522691e-02 8.01504031e-02 7.93647707e-01 -9.86268893e-02
6.51732981e-01 -6.85980558e-01 5.96144676e-01 2.72695839e-01
-2.93107003e-01 -1.55125223e-02 1.16456129e-01 4.12410378e-01
-2.12369189e-01 -1.13560155e-01 1.23215342e+00 -2.58554101e-01
-3.27580363e-01 3.45506996e-01 -1.69491470e-02 3.14380415e-02
9.58610415e-01 -3.46630156e-01 -8.58185068e-03 -6.46649718e-01
-9.70272005e-01 -2.82558233e-01 9.29796875e-01 -4.44725603e-02
7.30213463e-01 -1.46797967e+00 -7.97753930e-01 8.18935037e-01
-1.00722574e-01 1.67888537e-01 4.51598436e-01 5.29763877e-01
-9.77817595e-01 -4.25190516e-02 -1.94338202e-01 -4.16528821e-01
-8.75409305e-01 7.86888123e-01 2.85971791e-01 -2.56483942e-01
-5.50709486e-01 9.45491374e-01 6.56537235e-01 -1.77002847e-01
2.31446505e-01 -8.17188621e-02 3.53576720e-01 -8.01223442e-02
3.60118985e-01 1.82969302e-01 -2.35174950e-02 -5.84598839e-01
2.00417917e-03 5.20374238e-01 1.23915086e-02 -3.78268242e-01
1.18673313e+00 -4.47327755e-02 -4.04457301e-01 -1.94815964e-01
1.38691163e+00 2.45482862e-01 -1.74354994e+00 1.10257968e-01
-5.47527432e-01 -6.79824591e-01 -2.93645054e-01 -7.99855649e-01
-1.40742290e+00 9.80718315e-01 5.05473077e-01 8.71690065e-02
1.48395717e+00 -1.22257352e-01 7.18727589e-01 -3.81299883e-01
2.15645775e-01 -7.57452250e-01 1.45588174e-01 -1.00361286e-02
1.41602278e+00 -8.75483751e-01 -8.24662447e-02 -5.25165677e-01
-5.23901284e-01 9.22840297e-01 3.60349894e-01 -5.71340322e-01
6.63999498e-01 1.94633082e-01 -5.03882356e-02 -3.11327558e-02
-5.49998701e-01 1.37217040e-03 3.73270325e-02 6.90409243e-01
1.96874514e-01 6.06650859e-02 1.81707297e-03 1.57891616e-01
-1.12318181e-01 -1.32772416e-01 4.41942185e-01 6.89162135e-01
1.07251853e-01 -1.45075953e+00 -6.35515451e-01 1.89730510e-01
-2.82792002e-01 -1.48072749e-01 -4.72769797e-01 7.93412209e-01
7.26847231e-01 6.63637817e-01 1.30924195e-01 -1.61947668e-01
1.57840550e-01 -2.33093575e-01 6.96776927e-01 -6.49446785e-01
-4.87510204e-01 2.74623811e-01 -1.79743424e-01 -6.47137463e-01
-1.01475410e-01 -5.90209544e-01 -9.58582520e-01 -4.14983600e-01
-4.64053592e-03 2.41812784e-02 5.39685667e-01 5.84503353e-01
4.48096842e-01 4.50102895e-01 1.04037690e+00 -1.19664860e+00
-3.72053921e-01 -7.32752144e-01 -8.37007582e-01 7.99478829e-01
5.95596731e-01 -4.34353709e-01 -3.35810989e-01 3.84111136e-01]
|
[11.798995971679688, -0.6073986291885376]
|
7ea7b4d1-90f2-409a-a70b-8f8beda2377b
|
risk-perspective-exploration-in
|
2206.1417
| null |
https://arxiv.org/abs/2206.14170v2
|
https://arxiv.org/pdf/2206.14170v2.pdf
|
Risk Perspective Exploration in Distributional Reinforcement Learning
|
Distributional reinforcement learning demonstrates state-of-the-art performance in continuous and discrete control settings with the features of variance and risk, which can be used to explore. However, the exploration method employing the risk property is hard to find, although numerous exploration methods in Distributional RL employ the variance of return distribution per action. In this paper, we present risk scheduling approaches that explore risk levels and optimistic behaviors from a risk perspective. We demonstrate the performance enhancement of the DMIX algorithm using risk scheduling in a multi-agent setting with comprehensive experiments.
|
['Se-Young Yun', 'Joonkee Kim', 'Jihwan Oh']
|
2022-06-28
| null | null | null | null |
['distributional-reinforcement-learning']
|
['methodology']
|
[-3.88774693e-01 1.88002810e-01 -8.23761225e-01 -1.51762828e-01
-1.12571704e+00 -3.12562197e-01 5.64837396e-01 1.76383302e-01
-7.25428700e-01 1.30289114e+00 5.22231795e-02 -3.77450228e-01
-7.72643149e-01 -9.20522690e-01 -3.74669045e-01 -9.82570410e-01
-8.78509641e-01 5.91407835e-01 -3.85807902e-01 -1.58330202e-01
3.04288924e-01 7.39004761e-02 -1.27992845e+00 -4.73712057e-01
1.03590178e+00 1.16373241e+00 2.43294537e-01 2.60089427e-01
1.40220433e-01 8.35567653e-01 -7.97470033e-01 3.52450386e-02
4.04729664e-01 -2.56002903e-01 -3.77754211e-01 -3.91716272e-01
-4.51436937e-01 -6.00002170e-01 3.33401933e-02 1.12617636e+00
7.26946533e-01 6.11512005e-01 6.05401814e-01 -1.48979330e+00
-4.56274301e-01 1.07229388e+00 -1.02877462e+00 1.63150057e-01
2.95676500e-01 3.88799906e-01 1.07286060e+00 -2.07855493e-01
2.91622162e-01 1.61377084e+00 1.06919244e-01 4.93802994e-01
-1.26269507e+00 -7.51616180e-01 4.93838400e-01 -3.37424390e-02
-8.98865938e-01 2.15163440e-01 5.30563653e-01 -8.36869702e-02
9.75841403e-01 -6.54991269e-02 7.25629628e-01 1.15690506e+00
7.45148420e-01 9.46551263e-01 1.76867127e+00 -3.26205671e-01
9.27255750e-01 -1.05178818e-01 -3.33070189e-01 4.34510410e-01
4.30823922e-01 1.08024597e+00 -3.73209447e-01 -4.61100310e-01
6.09002888e-01 -1.26023263e-01 2.50476360e-01 -4.56209272e-01
-6.77325308e-01 1.41383910e+00 1.00599401e-01 -4.31697071e-01
-8.34639728e-01 6.77180886e-01 4.26048845e-01 4.80320513e-01
4.32945818e-01 7.69543052e-01 -2.20644325e-01 -6.31121099e-01
-5.93110979e-01 6.49864972e-01 7.95910478e-01 8.40963304e-01
2.78440803e-01 4.47934389e-01 -6.51272297e-01 4.21682298e-01
4.97756988e-01 6.55656993e-01 2.18755081e-01 -1.31530392e+00
4.92505878e-01 8.18062723e-02 4.51980531e-01 -4.00948554e-01
-4.41133648e-01 -3.93351555e-01 -4.29599941e-01 1.08058858e+00
1.75717190e-01 -7.47342467e-01 -5.93026519e-01 1.94132209e+00
3.68706882e-01 -1.91235557e-01 3.81419480e-01 6.69224739e-01
-1.23073474e-01 4.68341768e-01 2.52514124e-01 -8.59332860e-01
9.65799034e-01 -9.05956984e-01 -1.09418321e+00 -1.67994335e-01
3.47070426e-01 -1.15428187e-01 1.30382967e+00 6.41991377e-01
-1.42902744e+00 1.08415060e-01 -9.90980804e-01 7.99240530e-01
-6.37881923e-03 -3.92682403e-01 7.89754272e-01 7.20724761e-01
-8.09968114e-01 8.32891524e-01 -9.88497615e-01 1.57822877e-01
4.69785005e-01 1.58741236e-01 6.36726141e-01 4.17330772e-01
-1.20084047e+00 1.08077300e+00 3.93773526e-01 -3.71426493e-01
-1.63087034e+00 -5.80161989e-01 -7.25549281e-01 8.34825858e-02
1.16991448e+00 -3.47660214e-01 1.64760542e+00 -3.49846572e-01
-2.16407013e+00 -7.40030110e-02 5.90984106e-01 -9.01315272e-01
8.34699392e-01 -4.34845626e-01 3.29363309e-02 1.25294134e-01
-1.55901420e-03 1.96459189e-01 8.30026627e-01 -9.40383196e-01
-6.62058055e-01 -1.01001829e-01 2.41319731e-01 5.41866243e-01
-1.53531209e-01 -1.29603967e-01 5.12584865e-01 -7.21582830e-01
-6.73829794e-01 -8.22796822e-01 -8.45264256e-01 -4.80789125e-01
-3.38607848e-01 -4.43000257e-01 2.74679273e-01 -5.65667711e-02
1.44381940e+00 -1.85064650e+00 1.81336820e-01 3.67507458e-01
-2.86074523e-02 -3.34323019e-01 -3.07915173e-02 5.71090877e-01
3.57967705e-01 2.90183812e-01 -8.70586839e-03 -1.07092619e-01
7.06001639e-01 1.98326498e-01 -5.38203597e-01 3.86988640e-01
-1.64541185e-01 7.54731297e-01 -1.16631269e+00 -2.60152340e-01
2.58442014e-02 -1.81488022e-01 -4.56890702e-01 5.46467423e-01
-6.05399251e-01 -4.33560461e-02 -9.07736242e-01 6.79097295e-01
3.94882977e-01 9.60649401e-02 2.27660924e-01 6.49164736e-01
-2.24566638e-01 7.11831972e-02 -1.14547586e+00 1.28321016e+00
-4.19196665e-01 3.95478942e-02 1.41163871e-01 -6.46044552e-01
7.95103490e-01 6.23462833e-02 6.35054648e-01 -7.75796294e-01
7.96668753e-02 5.37249967e-02 -3.81707884e-02 -4.93106022e-02
5.80803633e-01 -3.32697690e-01 -4.50723678e-01 1.10536027e+00
-3.35478485e-01 -2.78237522e-01 1.84138581e-01 -8.81830677e-02
1.00308013e+00 2.63171256e-01 5.74313581e-01 -6.45651877e-01
-3.25112224e-01 -1.83136553e-01 4.99585211e-01 1.23364401e+00
-5.13836920e-01 -4.27957505e-01 1.07554281e+00 -9.36635807e-02
-5.77441871e-01 -1.36312962e+00 -6.29621744e-02 1.29661822e+00
8.47721249e-02 -2.23671839e-01 -5.10860562e-01 -7.90329635e-01
4.48298663e-01 1.34448302e+00 -8.93184543e-01 -3.36975902e-01
-1.99581921e-01 -7.29579806e-01 3.45190972e-01 5.99604726e-01
2.23790050e-01 -1.30192709e+00 -1.43440759e+00 2.19766676e-01
5.20251811e-01 -3.19941610e-01 -3.35305035e-01 6.42181635e-01
-7.43225813e-01 -8.65928411e-01 -5.60518622e-01 -1.18439961e-02
1.75169721e-01 -2.59353608e-01 1.12434053e+00 -5.23868859e-01
-1.07723430e-01 6.34685218e-01 -1.16163708e-01 -9.01387811e-01
-1.65239751e-01 -1.78509369e-01 3.95835310e-01 -7.61162937e-01
-3.80503014e-02 -3.48340005e-01 -7.61975646e-01 1.70528039e-01
-6.63369477e-01 -5.09497941e-01 4.03398961e-01 9.90985692e-01
8.43984365e-01 3.33343774e-01 1.07626593e+00 -4.37529147e-01
1.36905313e+00 -6.55194879e-01 -1.14352679e+00 2.90620476e-01
-1.16141737e+00 4.35601920e-01 3.29750270e-01 -7.22131670e-01
-1.32283676e+00 -4.90692765e-01 3.73647839e-01 -3.31031650e-01
3.67953062e-01 6.94559097e-01 1.92766249e-01 2.40276605e-01
4.81743187e-01 -1.41968325e-01 2.11533189e-01 -1.13357760e-01
4.50376600e-01 1.71544805e-01 -2.31345057e-01 -1.14558351e+00
3.70596677e-01 5.27065396e-02 2.75487721e-01 -2.68347949e-01
-8.19388688e-01 2.22481683e-01 3.51816326e-01 -2.99382746e-01
6.76300466e-01 -7.28472590e-01 -1.28264344e+00 -2.32418440e-02
-3.23441118e-01 -8.11700821e-01 -9.34615374e-01 6.21503353e-01
-1.40053844e+00 -6.43108711e-02 -4.77802515e-01 -1.51669812e+00
-3.96643549e-01 -1.30473399e+00 6.95890963e-01 4.01784152e-01
9.97397751e-02 -9.87984359e-01 3.53321224e-01 -4.80834484e-01
6.17167592e-01 5.18228650e-01 7.98452795e-01 -4.65811610e-01
-5.24342477e-01 3.60336304e-01 4.06721175e-01 -7.25454167e-02
-2.41204929e-02 -4.02809352e-01 -4.51587558e-01 -7.05478072e-01
1.75405905e-01 -9.27702785e-01 6.91540599e-01 8.17686856e-01
1.23189998e+00 -6.99545503e-01 -1.40132383e-01 5.04860818e-01
1.39736211e+00 6.42156780e-01 2.55869955e-01 8.80949557e-01
-1.54930651e-01 4.71641332e-01 1.44567287e+00 1.36363435e+00
2.16240674e-01 4.36859131e-01 7.88582385e-01 3.72658163e-01
8.78701866e-01 -3.30824822e-01 6.46083355e-01 -9.07325447e-02
1.23509146e-01 -2.18211457e-01 -7.50150740e-01 9.21914130e-02
-2.06304240e+00 -1.17942095e+00 8.96186590e-01 2.35757709e+00
1.17755687e+00 3.89643162e-01 4.66861904e-01 -4.75129008e-01
4.61207896e-01 1.53615490e-01 -1.12999356e+00 -8.71332407e-01
1.44581929e-01 -2.57709958e-02 6.82290077e-01 4.11877841e-01
-8.58499646e-01 7.89769650e-01 7.78292751e+00 1.14855552e+00
-5.42917073e-01 -7.16459528e-02 8.94983411e-01 -7.60497093e-01
-4.24729615e-01 -1.98260799e-01 -8.25128794e-01 3.51334393e-01
1.05254591e+00 -8.15775812e-01 8.12927485e-01 1.24402189e+00
3.32733095e-01 -5.16571999e-01 -1.17006063e+00 6.85469270e-01
-5.69046497e-01 -9.69489515e-01 -4.14397568e-01 3.89828742e-01
9.35293615e-01 -7.78585523e-02 5.48338234e-01 8.11239123e-01
1.04582381e+00 -1.36996841e+00 7.76357889e-01 5.85114717e-01
5.72864830e-01 -1.43980479e+00 5.03138840e-01 3.44952911e-01
-8.14051330e-01 -6.28038645e-01 -3.21170181e-01 -6.86775669e-02
3.41147393e-01 2.99280852e-01 -4.87164915e-01 2.28446379e-01
6.34160876e-01 1.87848985e-01 6.02917336e-02 7.81151354e-01
-3.59334111e-01 4.55099612e-01 -3.91151160e-01 -6.47953272e-01
7.80348778e-01 -5.09232819e-01 6.34091496e-01 6.77325726e-01
4.42324132e-01 -5.12617528e-02 7.61643350e-01 1.14554799e+00
3.41965288e-01 -7.47130513e-02 -6.37476087e-01 -2.11832240e-01
6.75202072e-01 9.55101490e-01 -4.69145387e-01 -1.11261301e-01
1.39453590e-01 1.83947638e-01 4.58048403e-01 3.83788377e-01
-1.02296710e+00 -3.64524990e-01 7.96016753e-01 -4.80929315e-01
2.21091241e-01 -2.17050284e-01 -1.83807001e-01 -4.29464906e-01
-1.63193479e-01 -9.55937505e-01 7.03533232e-01 -1.70454517e-01
-1.43974137e+00 3.27888161e-01 5.80626070e-01 -9.94083941e-01
-7.48224914e-01 -4.29415852e-01 -6.80390358e-01 6.54886484e-01
-1.50706911e+00 -4.11831677e-01 3.40628147e-01 3.07538718e-01
4.94345486e-01 -4.78745639e-01 4.97271508e-01 -5.62513351e-01
-5.60225725e-01 6.53424561e-01 6.32008672e-01 -6.78604245e-01
4.69311833e-01 -1.73372436e+00 -1.52710259e-01 1.19958542e-01
-5.06608248e-01 3.21719468e-01 8.20876122e-01 -8.23664725e-01
-1.71961200e+00 -7.94407189e-01 -3.34581226e-01 2.95985173e-02
9.76854861e-01 1.08744493e-02 -3.25002521e-01 4.71633554e-01
5.20228386e-01 -3.39428306e-01 4.78488177e-01 2.98565567e-01
1.18367225e-01 1.46419406e-01 -1.33915865e+00 9.40030277e-01
7.54001558e-01 -1.00563452e-01 -4.68225509e-01 2.03375861e-01
1.00597751e+00 -5.13820112e-01 -9.64288116e-01 2.80479103e-01
3.62968802e-01 -7.23715842e-01 8.84532690e-01 -5.94408870e-01
1.56655058e-01 2.98569709e-01 -2.18800277e-01 -1.85118186e+00
-1.64900005e-01 -1.22789276e+00 -6.08663440e-01 1.01194656e+00
2.93317854e-01 -7.92531729e-01 5.19339800e-01 5.12578607e-01
1.55375034e-01 -1.25649321e+00 -1.26522183e+00 -1.35869479e+00
5.52950561e-01 -2.27876753e-01 6.85360432e-01 3.60875130e-01
4.42485064e-01 -5.01435846e-02 -4.31738436e-01 -2.85616219e-01
1.15428996e+00 2.57078618e-01 1.53573349e-01 -5.62239885e-01
-5.39969504e-01 -8.31004739e-01 3.91559988e-01 -5.13990402e-01
4.36633795e-01 -4.10957873e-01 2.04241067e-01 -1.28420651e+00
1.23187229e-01 -5.41685939e-01 -6.67532563e-01 2.91019082e-01
-1.85468659e-01 -7.93485522e-01 3.21024597e-01 -7.26288706e-02
-9.46216822e-01 1.43875659e+00 1.18481302e+00 -1.25602335e-01
-5.69847524e-01 1.14539653e-01 -6.08543813e-01 6.42861664e-01
1.28011107e+00 -5.85506439e-01 -8.45487893e-01 7.78204724e-02
3.53640229e-01 5.90538442e-01 -1.69060994e-02 -5.92960477e-01
-1.20085381e-01 -1.04709399e+00 6.94537610e-02 -6.57485902e-01
2.30027646e-01 -5.43267310e-01 -1.49578914e-01 7.96243072e-01
-8.26015592e-01 6.09604359e-01 2.46076092e-01 9.88429725e-01
2.00800806e-01 -3.09386522e-01 7.64509380e-01 -2.05278307e-01
-4.30454016e-01 3.88957232e-01 -5.16345084e-01 6.20573401e-01
1.50977921e+00 2.69933730e-01 -4.17604357e-01 -5.63991547e-01
-3.87691617e-01 9.03372109e-01 1.50533736e-01 1.05316535e-01
7.65997171e-01 -1.39609134e+00 -5.20742714e-01 -3.71695131e-01
-2.11261511e-01 -2.51616985e-01 1.49840824e-02 6.25411928e-01
1.16432704e-01 2.10000664e-01 -3.45552325e-01 -2.08678469e-01
-4.63205069e-01 8.64690125e-01 4.34665799e-01 -8.96056831e-01
-5.01439452e-01 3.12642068e-01 1.15560576e-01 -1.79977924e-01
7.52085149e-01 -2.56545037e-01 7.54753174e-03 2.82888919e-01
7.25357056e-01 8.07817638e-01 -6.13587379e-01 4.58742470e-01
-2.54433990e-01 6.44183308e-02 1.13684013e-01 -8.03557694e-01
1.32087398e+00 -1.37357801e-01 2.89827198e-01 5.05142748e-01
5.07132769e-01 -3.84059876e-01 -1.89697492e+00 -3.03578451e-02
3.40094179e-01 -5.28243065e-01 3.14376444e-01 -1.12013435e+00
-7.78498232e-01 5.29208004e-01 7.53730237e-01 2.62975723e-01
9.21584129e-01 -2.91372448e-01 3.37566048e-01 5.08397400e-01
8.31325829e-01 -1.72514522e+00 3.58199090e-01 5.59049129e-01
1.02179348e+00 -1.13224840e+00 1.63649812e-01 4.89393055e-01
-1.30359113e+00 8.33535016e-01 7.97626615e-01 -3.23565036e-01
7.70039141e-01 6.41712844e-01 -1.71106011e-01 -1.31801322e-01
-1.31800985e+00 -2.29996964e-01 -1.53787985e-01 6.93881869e-01
2.12778840e-02 4.58560973e-01 -4.70274329e-01 6.05154812e-01
-6.00853702e-03 -2.85699695e-01 5.36585689e-01 1.27331710e+00
-5.66561520e-01 -1.00049663e+00 -2.34662130e-01 4.84292626e-01
-5.51050782e-01 3.81588377e-02 1.66659325e-01 8.17123055e-01
-6.96924448e-01 9.80425417e-01 -2.57072821e-02 1.12020290e-02
1.99094549e-01 -3.84186149e-01 4.83469069e-01 -3.79234165e-01
-6.49635553e-01 2.24008948e-01 1.88621864e-01 -1.00240290e+00
-1.56240478e-01 -7.56953597e-01 -1.41744590e+00 -1.82898670e-01
-1.56111687e-01 3.59994233e-01 4.93838102e-01 6.37428641e-01
2.37957671e-01 5.83448231e-01 9.40128028e-01 -6.41613901e-01
-1.92075467e+00 -7.68792331e-01 -1.13084459e+00 -1.77699134e-01
3.44420165e-01 -1.24374723e+00 -3.68261307e-01 -9.75114584e-01]
|
[4.150386810302734, 2.5610995292663574]
|
5f3da63f-86a0-4f45-9505-40e5d45de9cc
|
marginalized-average-attentional-network-for-1
|
1905.08586
| null |
https://arxiv.org/abs/1905.08586v1
|
https://arxiv.org/pdf/1905.08586v1.pdf
|
Marginalized Average Attentional Network for Weakly-Supervised Learning
|
In weakly-supervised temporal action localization, previous works have failed to locate dense and integral regions for each entire action due to the overestimation of the most salient regions. To alleviate this issue, we propose a marginalized average attentional network (MAAN) to suppress the dominant response of the most salient regions in a principled manner. The MAAN employs a novel marginalized average aggregation (MAA) module and learns a set of latent discriminative probabilities in an end-to-end fashion. MAA samples multiple subsets from the video snippet features according to a set of latent discriminative probabilities and takes the expectation over all the averaged subset features. Theoretically, we prove that the MAA module with learned latent discriminative probabilities successfully reduces the difference in responses between the most salient regions and the others. Therefore, MAAN is able to generate better class activation sequences and identify dense and integral action regions in the videos. Moreover, we propose a fast algorithm to reduce the complexity of constructing MAA from O($2^T$) to O($T^2$). Extensive experiments on two large-scale video datasets show that our MAAN achieves superior performance on weakly-supervised temporal action localization
|
['Dit-yan Yeung', 'Ivor W. Tsang', 'Yueming Lyu', 'Yuan Yuan', 'Xi Shen']
|
2019-05-21
|
marginalized-average-attentional-network-for
|
https://openreview.net/forum?id=HkljioCcFQ
|
https://openreview.net/pdf?id=HkljioCcFQ
|
iclr-2019-5
|
['weakly-supervised-action-localization', 'weakly-supervised-temporal-action']
|
['computer-vision', 'computer-vision']
|
[ 3.67815465e-01 -8.21223706e-02 -4.42130208e-01 -1.74618959e-01
-9.47002709e-01 -1.57385454e-01 2.45395049e-01 -3.40165824e-01
-4.28019434e-01 5.14313161e-01 4.44041640e-01 3.16743582e-01
-2.88343191e-01 -4.48302329e-01 -9.54738736e-01 -1.06614614e+00
-2.27722958e-01 1.68254420e-01 6.84395015e-01 1.59637466e-01
1.82032228e-01 1.18712105e-01 -1.58044696e+00 6.16324902e-01
8.99243772e-01 1.13036454e+00 3.94488811e-01 2.41348326e-01
1.95668980e-01 1.08826387e+00 -3.80766690e-01 1.75834328e-01
3.63074899e-01 -8.90152991e-01 -5.77471137e-01 2.52331227e-01
5.88374376e-01 -3.09407532e-01 -2.86330283e-01 1.09855974e+00
4.20377672e-01 4.77785051e-01 5.38521588e-01 -1.10139823e+00
-2.68625170e-01 6.66955590e-01 -8.35426211e-01 4.99135137e-01
1.36322767e-01 1.81734890e-01 1.06059623e+00 -1.12444854e+00
5.22590339e-01 1.32553720e+00 2.69146115e-01 4.48252648e-01
-1.35604918e+00 -6.09431982e-01 6.63664877e-01 4.23576862e-01
-1.55946720e+00 -3.40914011e-01 8.19347322e-01 -1.78329393e-01
7.17553079e-01 1.38006315e-01 6.04496717e-01 9.50789332e-01
1.65044088e-02 1.41000104e+00 9.11443889e-01 -2.81207293e-01
3.49881619e-01 -1.56845778e-01 -1.61662459e-01 9.12204146e-01
-2.79823929e-01 -3.06391031e-01 -9.53824997e-01 -1.32662788e-01
9.49601710e-01 2.25555599e-01 -3.74583215e-01 -6.42298758e-01
-1.31132472e+00 6.71549082e-01 3.33738685e-01 4.83609915e-01
-6.20598674e-01 2.76675344e-01 2.82440871e-01 -2.79053152e-02
4.86623794e-01 1.41977623e-01 -3.69617581e-01 -1.64461762e-01
-8.54431629e-01 1.05797946e-01 1.31944641e-01 7.12464035e-01
8.79671693e-01 -2.33557653e-02 -5.39284229e-01 8.24832916e-01
-1.29955962e-01 4.96024787e-01 4.15230960e-01 -1.30972028e+00
4.55799788e-01 6.78256571e-01 2.60508418e-01 -1.09733772e+00
-1.56095705e-03 -4.18207914e-01 -5.62890053e-01 5.36646061e-02
5.32988727e-01 1.11369252e-01 -6.84666157e-01 2.03084135e+00
3.30157340e-01 2.03929543e-01 -4.30810064e-01 1.11677766e+00
3.10146250e-02 4.33559716e-01 3.10360163e-01 -4.41528857e-01
9.31455910e-01 -1.15518749e+00 -6.34195924e-01 -3.65582615e-01
7.00379670e-01 -3.79118741e-01 1.33885705e+00 2.16756672e-01
-1.21061015e+00 -6.76055551e-01 -5.98925829e-01 1.59375459e-01
7.00679645e-02 5.06658852e-01 6.44539058e-01 8.81750584e-02
-8.67383182e-01 6.37337387e-01 -8.68665874e-01 -2.06000611e-01
8.47781658e-01 2.43694261e-01 -3.91894579e-01 -1.14651375e-01
-8.66222858e-01 4.45196629e-01 2.96440601e-01 1.91627830e-01
-1.28640580e+00 -4.80146050e-01 -8.00288320e-01 1.76301435e-01
9.15312707e-01 -4.61829782e-01 9.10837412e-01 -1.48438060e+00
-1.19205105e+00 3.25915188e-01 -5.17037034e-01 -5.78732491e-01
3.97013813e-01 -4.19729322e-01 1.24923930e-01 5.79867005e-01
3.98961544e-01 9.76969123e-01 1.07780313e+00 -8.06914032e-01
-9.50277746e-01 -3.01026076e-01 -2.62890421e-02 3.34977269e-01
-5.57481229e-01 -1.73436046e-01 -4.36037064e-01 -7.89166868e-01
2.19356179e-01 -7.76195705e-01 -2.93562502e-01 7.51530826e-02
-1.17580451e-01 -4.96084511e-01 6.86998188e-01 -4.35887694e-01
1.29759467e+00 -2.49366307e+00 3.92380446e-01 8.38868544e-02
1.65079802e-01 4.98496788e-03 -2.37803385e-01 -6.16818629e-02
-3.98560837e-02 -2.93409914e-01 -1.70176506e-01 -2.48671681e-01
-1.30367965e-01 2.19624057e-01 -3.66507858e-01 4.92790759e-01
8.50185379e-02 8.08770001e-01 -1.17767453e+00 -7.52617061e-01
3.64197165e-01 2.51222968e-01 -5.89550853e-01 1.04457483e-01
-2.99032122e-01 4.14420784e-01 -7.12247729e-01 7.52590477e-01
4.07269061e-01 -1.84284642e-01 1.15414411e-01 -1.81951717e-01
-2.92186625e-02 4.90603745e-02 -9.98952448e-01 1.92429388e+00
-1.76381543e-01 4.19576555e-01 7.01788440e-02 -1.08593595e+00
5.55736005e-01 1.27780631e-01 8.94144237e-01 -7.40430415e-01
7.41063207e-02 1.85376301e-01 -1.79117531e-01 -5.05244017e-01
1.62213206e-01 -5.95164485e-02 -1.62356734e-01 4.54709589e-01
1.13086797e-01 6.12181127e-01 2.86601394e-01 3.43297720e-01
1.26666141e+00 3.98631692e-01 1.09599628e-01 -2.04099253e-01
6.29637957e-01 -9.89991426e-02 9.37749505e-01 9.12909567e-01
-7.57753670e-01 4.47218001e-01 5.83544016e-01 -4.68104631e-01
-6.11097634e-01 -1.20569742e+00 3.35134417e-01 1.52141273e+00
2.44563475e-01 -3.20552975e-01 -8.68927479e-01 -1.17644608e+00
-2.20376387e-01 5.88359833e-01 -8.11791778e-01 -3.92123640e-01
-7.52031207e-01 -3.57445300e-01 1.62554346e-02 7.72529662e-01
5.32423735e-01 -1.33354974e+00 -6.73907042e-01 1.69355497e-01
-4.90527332e-01 -1.00167775e+00 -9.63074684e-01 2.06239223e-01
-8.86556149e-01 -9.06978965e-01 -7.49837160e-01 -7.82970726e-01
1.02248788e+00 6.00086272e-01 7.26080418e-01 -4.35616553e-01
-1.23395734e-01 3.21424752e-01 -3.76341045e-01 8.19867700e-02
1.25849634e-01 -1.52696177e-01 1.65959239e-01 3.92035097e-01
5.80700219e-01 -5.78632414e-01 -8.09600115e-01 5.93786716e-01
-7.52252758e-01 1.85908955e-02 8.27544332e-01 7.24792957e-01
9.64753270e-01 2.40663216e-01 3.82129699e-01 -4.94324416e-01
-8.61931592e-03 -2.88834631e-01 -3.77163351e-01 1.98279738e-01
-1.63739726e-01 1.70512706e-01 6.10839069e-01 -6.69085264e-01
-9.44506407e-01 4.51896429e-01 3.48355889e-01 -9.58445072e-01
-1.17847644e-01 1.69912934e-01 -1.67297214e-01 2.24326923e-01
4.91829067e-01 5.50651610e-01 -3.96522693e-02 -3.23904455e-01
2.91385055e-01 1.02174215e-01 4.38795537e-01 -4.61233109e-01
5.89969635e-01 8.29101086e-01 -7.82335848e-02 -5.17215729e-01
-1.21621764e+00 -5.42663872e-01 -6.81122720e-01 -5.41523159e-01
8.83691549e-01 -9.39750791e-01 -5.06878078e-01 2.17236102e-01
-6.93513870e-01 -4.09523100e-01 -6.26314700e-01 7.03619003e-01
-7.64126956e-01 5.23723245e-01 -2.89530724e-01 -7.92548716e-01
-9.51821655e-02 -1.10963869e+00 1.12838304e+00 1.40595570e-01
-2.77641505e-01 -4.00756449e-01 -7.13175684e-02 3.39061350e-01
1.14794753e-01 1.61253083e-02 8.07937026e-01 -2.72457778e-01
-7.95787394e-01 -1.28319070e-01 -5.42970784e-02 4.13212866e-01
1.86977655e-01 -4.84291941e-01 -7.35170245e-01 -2.12566674e-01
-7.96184316e-02 -4.00777727e-01 1.22207844e+00 8.55451345e-01
1.33927524e+00 -2.22761482e-01 -4.55486089e-01 2.20694929e-01
1.00688851e+00 1.43315375e-01 5.96745670e-01 2.63119116e-02
6.52288735e-01 5.24634004e-01 1.11812866e+00 4.68743354e-01
-1.74984410e-01 8.03730965e-01 4.46824878e-01 -1.18583674e-02
-2.64950041e-02 -3.35272193e-01 9.15380597e-01 3.38262022e-01
-9.82893184e-02 9.53594670e-02 -1.71174169e-01 8.32207680e-01
-2.15860438e+00 -1.23302341e+00 2.46116325e-01 2.34348297e+00
7.74542451e-01 2.80500114e-01 4.92403597e-01 -8.11618418e-02
7.68513560e-01 3.08863610e-01 -5.22246003e-01 1.22457072e-01
-1.44182801e-01 1.29570693e-01 3.48268151e-01 2.84330249e-01
-1.29716122e+00 1.11313760e+00 5.77941942e+00 1.38300872e+00
-7.50916421e-01 2.65050232e-01 6.51854098e-01 -6.53671622e-01
-1.28481954e-01 4.16831747e-02 -6.21290088e-01 5.15864789e-01
5.46182573e-01 1.29157826e-01 3.49762648e-01 1.14033628e+00
5.81657469e-01 -4.50997025e-01 -1.07444215e+00 8.31682265e-01
1.69965252e-01 -1.04597867e+00 1.67841330e-01 -5.68330772e-02
7.83959210e-01 -1.26824737e-01 1.07593030e-01 3.62146080e-01
1.31029084e-01 -5.47313452e-01 9.67221618e-01 5.49267709e-01
4.43689167e-01 -7.98123479e-01 4.66403365e-01 4.05950576e-01
-1.30103576e+00 -4.15467769e-01 -4.30038244e-01 -3.29288580e-02
6.97439313e-02 5.64497292e-01 -4.75989163e-01 6.98525533e-02
8.59022200e-01 8.70218217e-01 -4.77689743e-01 7.51878798e-01
-3.03458840e-01 4.37383145e-01 -3.26999277e-01 4.82868254e-02
3.71862084e-01 -2.00665653e-01 6.75555170e-01 8.27781796e-01
9.58096385e-02 7.87061602e-02 3.91189635e-01 7.87662745e-01
1.92420334e-01 8.43710676e-02 -4.30831403e-01 -6.45873472e-02
1.87023148e-01 1.10857606e+00 -8.76585901e-01 -4.08983648e-01
-3.55299383e-01 1.13856637e+00 4.11716759e-01 4.34720308e-01
-1.07537746e+00 -8.55656415e-02 4.22555566e-01 2.58248985e-01
7.02684104e-01 1.23744877e-03 1.14492394e-01 -1.20102477e+00
2.32760221e-01 -7.49335170e-01 6.96725845e-01 -7.45859921e-01
-9.43792045e-01 3.06853354e-01 4.74630482e-02 -1.52680647e+00
-8.35566968e-02 -2.04722524e-01 -3.61724466e-01 4.29528087e-01
-1.06770027e+00 -7.93565810e-01 -2.74114341e-01 7.91318536e-01
9.90504205e-01 2.98927873e-02 5.49556017e-01 2.83342481e-01
-7.51061618e-01 5.06069183e-01 -2.43762001e-01 -9.14001837e-04
6.60492182e-01 -1.06583548e+00 -4.01052147e-01 1.05306041e+00
1.92660198e-01 4.87434745e-01 5.79957187e-01 -5.39206862e-01
-9.35443223e-01 -1.13443685e+00 6.92278624e-01 -2.72002339e-01
4.33207095e-01 -2.83306390e-01 -7.01010704e-01 6.13396108e-01
1.69234890e-02 2.29852259e-01 4.09038872e-01 -1.59755856e-01
-1.88803464e-01 -4.77370977e-01 -7.72221982e-01 7.26988375e-01
1.29945850e+00 -4.70488489e-01 -3.54421437e-01 3.59745681e-01
3.87599915e-01 1.72434263e-02 -5.33035159e-01 4.54893470e-01
5.83093405e-01 -1.09438717e+00 8.29035103e-01 -2.66926348e-01
4.18574601e-01 -5.31124413e-01 -1.04816876e-01 -8.92822683e-01
-5.67189395e-01 -4.76886034e-01 -3.15641761e-01 8.40203524e-01
2.24135563e-01 -2.51570910e-01 8.33473325e-01 1.98613018e-01
-1.67096525e-01 -8.37899923e-01 -1.14916492e+00 -6.55777276e-01
-5.15770257e-01 -4.02318299e-01 -3.14129554e-02 5.64038932e-01
-8.21201131e-02 1.13975108e-01 -5.63436687e-01 3.37377377e-02
6.18085802e-01 4.02842611e-01 5.57654917e-01 -6.01472199e-01
-5.54998457e-01 -3.87560904e-01 -3.19815069e-01 -1.45570803e+00
1.56193241e-01 -5.54972410e-01 3.79648536e-01 -1.10383070e+00
6.61878049e-01 -9.92552415e-02 -7.89881110e-01 6.78622544e-01
-2.81699389e-01 1.97997376e-01 -1.14660166e-01 3.33399028e-01
-1.22488725e+00 6.94604874e-01 1.27283251e+00 -2.29215130e-01
-2.14352652e-01 3.66157526e-03 -4.67732221e-01 9.16643381e-01
3.98930460e-01 -6.71691775e-01 -5.13720274e-01 -2.31674567e-01
-2.18887761e-01 -1.04264922e-01 4.08941567e-01 -1.02260745e+00
1.78876356e-03 -3.46735120e-01 5.58628440e-01 -8.44529808e-01
3.05701733e-01 -6.72331274e-01 -3.10181707e-01 3.90972555e-01
-6.10350668e-01 -5.12322783e-01 -1.49184644e-01 8.26885760e-01
-2.64986485e-01 1.55408829e-01 9.18172002e-01 -2.62070060e-01
-9.30509210e-01 3.71609658e-01 -4.04950917e-01 -1.21664733e-01
1.27057242e+00 -2.81359494e-01 2.78131161e-02 -2.94500947e-01
-9.50722277e-01 1.71678707e-01 2.23887026e-01 2.82049030e-01
6.92311287e-01 -1.35684156e+00 -3.18464220e-01 2.87119508e-01
3.48472148e-02 -9.85435620e-02 6.97468102e-01 1.31353962e+00
5.74014895e-02 3.90059859e-01 -1.61208138e-01 -7.87659109e-01
-1.28111959e+00 6.60966039e-01 3.23475689e-01 -3.41433227e-01
-6.41600609e-01 9.96535540e-01 7.24778473e-01 3.98948580e-01
3.90399784e-01 -3.51884007e-01 -1.77569509e-01 -5.33415042e-02
5.96602142e-01 3.59832913e-01 -4.99229670e-01 -6.83791518e-01
-5.15434921e-01 4.58224207e-01 -1.36232406e-01 -4.22467701e-02
1.28573370e+00 -1.21247485e-01 9.58680883e-02 3.23720098e-01
1.12185526e+00 -3.50891948e-02 -1.81882250e+00 -2.37195492e-01
-2.60859787e-01 -8.31142843e-01 7.65564665e-02 -2.87267327e-01
-1.21952546e+00 5.47706842e-01 5.68141401e-01 -1.12533621e-01
1.52189970e+00 2.85770088e-01 7.56922185e-01 1.59021914e-01
4.25013572e-01 -1.40010774e+00 5.99029541e-01 1.64645836e-01
7.21356928e-01 -9.07811940e-01 -7.20365569e-02 -4.15090948e-01
-8.59447300e-01 7.13706136e-01 8.64371538e-01 -2.88460344e-01
3.73473793e-01 -1.05242699e-01 -2.44923845e-01 -1.67225510e-01
-8.09125960e-01 -3.78441662e-01 1.44937083e-01 3.85455221e-01
2.48200856e-02 -9.27747190e-02 -4.63538080e-01 4.64592695e-01
5.49039960e-01 6.62736446e-02 6.71800971e-02 1.02934659e+00
-6.42355740e-01 -8.16457748e-01 -1.73222959e-01 2.50826538e-01
-3.37921262e-01 9.07239020e-02 -2.34816551e-01 5.47150075e-01
3.98306996e-01 6.70090616e-01 1.57472894e-01 -3.77615899e-01
2.45854661e-01 8.15996453e-02 5.13999760e-01 -4.99377549e-01
-1.05811104e-01 7.05074191e-01 -2.61643797e-01 -1.04787791e+00
-8.04888606e-01 -8.41380775e-01 -1.29740965e+00 1.80723235e-01
-3.70792329e-01 1.59251720e-01 -1.17398396e-01 1.03468347e+00
4.20775473e-01 4.36330825e-01 7.81718194e-01 -8.02467406e-01
-4.88670319e-01 -1.00740433e+00 -7.09470749e-01 6.20164990e-01
7.65198693e-02 -9.07751501e-01 -4.50308412e-01 7.64383599e-02]
|
[8.50052547454834, 0.6609737277030945]
|
9a594cd8-98da-4887-a97f-8e6b33c60d8f
|
visualization-and-interpretation-of-latent
|
1903.1157
| null |
http://arxiv.org/abs/1903.11570v1
|
http://arxiv.org/pdf/1903.11570v1.pdf
|
Visualization and Interpretation of Latent Spaces for Controlling Expressive Speech Synthesis through Audio Analysis
|
The field of Text-to-Speech has experienced huge improvements last years
benefiting from deep learning techniques. Producing realistic speech becomes
possible now. As a consequence, the research on the control of the
expressiveness, allowing to generate speech in different styles or manners, has
attracted increasing attention lately. Systems able to control style have been
developed and show impressive results. However the control parameters often
consist of latent variables and remain complex to interpret. In this paper, we
analyze and compare different latent spaces and obtain an interpretation of
their influence on expressive speech. This will enable the possibility to build
controllable speech synthesis systems with an understandable behaviour.
|
['Thierry Dutoit', 'Noé Tits', 'Kevin El Haddad', 'Fengna Wang', 'Vincent Pagel']
|
2019-03-27
| null | null | null | null |
['learning-network-representations', 'emotional-speech-synthesis', 'expressive-speech-synthesis']
|
['methodology', 'speech', 'speech']
|
[ 3.16085108e-02 3.54011178e-01 -1.28510550e-01 -4.61064786e-01
-2.48085290e-01 -4.34004664e-01 9.98260617e-01 4.81952392e-02
-8.58586356e-02 6.91586852e-01 1.79621905e-01 -8.20767358e-02
-2.11140290e-01 -8.33287418e-01 -4.20972884e-01 -9.44271684e-01
1.55016541e-01 5.61930358e-01 3.89055698e-04 -4.12282467e-01
-4.56153452e-02 7.30241060e-01 -1.95849562e+00 4.96318012e-01
7.16509938e-01 5.42468548e-01 4.47445035e-01 8.27089846e-01
-3.14636797e-01 5.99137545e-01 -9.09926772e-01 -7.87330270e-02
-7.11376742e-02 -5.26347816e-01 -4.42004353e-01 5.61843067e-02
2.08406858e-02 1.20488681e-01 -5.84605597e-02 9.76143181e-01
4.77498978e-01 -8.76866430e-02 6.75029933e-01 -1.14377749e+00
-5.51783621e-01 1.07580662e+00 3.02016824e-01 -1.67235836e-01
4.33602035e-01 1.19436368e-01 9.09502745e-01 -3.81507576e-01
6.82381868e-01 1.41369689e+00 2.83338930e-02 9.12142634e-01
-1.61144495e+00 -4.93529022e-01 -1.62861541e-01 3.60424250e-01
-1.15326452e+00 -7.19641387e-01 8.59504998e-01 -4.40294415e-01
8.66004705e-01 5.86237550e-01 7.64588296e-01 1.73744571e+00
-1.53264984e-01 8.45470726e-01 1.26584578e+00 -7.33968854e-01
2.89310098e-01 4.93843615e-01 -3.54894876e-01 1.95445657e-01
1.94073264e-02 1.38354138e-01 -4.12079632e-01 4.61021781e-01
4.77745116e-01 -5.62906027e-01 -3.37391526e-01 -3.80220860e-01
-9.79332268e-01 9.36326265e-01 7.14899972e-02 9.45360661e-01
-1.90157637e-01 1.14458397e-01 4.42732751e-01 4.24986124e-01
2.19902396e-01 6.81288123e-01 -3.75798672e-01 -5.03450096e-01
-9.91778076e-01 3.73942405e-01 1.02730429e+00 9.24230993e-01
3.72229457e-01 5.50899625e-01 -1.66176885e-01 9.28953052e-01
2.04710260e-01 5.83944261e-01 7.94742346e-01 -7.80891776e-01
4.51547056e-01 5.86997509e-01 7.23415613e-02 -9.75996017e-01
-4.79348898e-01 -4.30971235e-01 -1.05646765e+00 4.72451746e-01
3.67064953e-01 -2.00812191e-01 -7.42274821e-01 1.53159797e+00
-8.64929557e-02 -4.31824207e-01 1.81367874e-01 7.10259914e-01
2.96904802e-01 9.65534210e-01 3.10510881e-02 -2.18118921e-01
8.46589565e-01 -6.40268743e-01 -1.35604429e+00 3.51017192e-02
4.61098313e-01 -8.38943005e-01 1.30009151e+00 6.45180166e-01
-1.10838449e+00 -7.46805429e-01 -1.20465958e+00 1.65619433e-01
-6.87068522e-01 3.73398572e-01 3.85403067e-01 8.97401512e-01
-1.20899642e+00 8.05061519e-01 -6.94153368e-01 -9.51752365e-02
-2.06767507e-02 4.36161548e-01 -2.90043116e-01 7.24139869e-01
-1.40720117e+00 9.99858320e-01 7.13963866e-01 1.43415883e-01
-5.84803402e-01 -3.66149127e-01 -6.53275788e-01 2.79382706e-01
3.05243075e-01 -6.10803187e-01 1.31154048e+00 -1.26269615e+00
-2.40448284e+00 6.40092134e-01 2.13606045e-01 -6.44405365e-01
8.80445004e-01 -8.40023383e-02 -5.08639872e-01 -2.30032459e-01
-4.01145220e-01 6.40891135e-01 1.21491528e+00 -1.08880424e+00
-3.74884278e-01 -3.20360400e-02 -5.64774945e-02 -2.66580731e-01
-6.64385974e-01 -9.90373492e-02 -9.20531973e-02 -8.15146327e-01
-2.14584827e-01 -1.11946094e+00 -7.04877451e-02 -3.66105735e-01
-5.82704067e-01 -1.17585011e-01 7.80679047e-01 -2.15735525e-01
1.14801311e+00 -1.92118382e+00 1.07284117e+00 -8.26673806e-02
-9.27306525e-03 5.27622402e-01 1.14620171e-01 4.88288283e-01
-1.86049640e-01 3.50526989e-01 5.45968749e-02 -6.97264731e-01
1.97979569e-01 4.34222490e-01 -4.33355421e-01 9.78707895e-02
1.13939710e-01 5.28277874e-01 -4.71760303e-01 -4.17075157e-01
7.49929368e-01 6.28631830e-01 -5.62524974e-01 4.27069277e-01
-7.20080018e-01 5.09998322e-01 -4.72704500e-01 3.93747278e-02
1.77391380e-01 1.81690916e-01 1.64515138e-01 5.21228611e-02
-5.85433602e-01 6.18160404e-02 -9.28489268e-01 1.25716126e+00
-9.46399450e-01 8.71764183e-01 1.38664663e-01 -9.78731453e-01
1.22840714e+00 5.59659779e-01 2.52644300e-01 -7.00334370e-01
4.48403537e-01 3.11928630e-01 6.80008158e-02 -5.50620258e-01
4.13056046e-01 -3.20240408e-01 4.17830423e-02 -7.91202858e-02
-6.61942810e-02 -6.18523180e-01 3.80899549e-01 -4.08438325e-01
5.34246385e-01 -3.78269032e-02 9.35930759e-02 -2.19484016e-01
9.98309970e-01 -4.85817820e-01 4.84760851e-02 2.89085239e-01
2.30577186e-01 3.95653486e-01 7.94894338e-01 -2.89201111e-01
-1.28228855e+00 -8.06241989e-01 -1.45027667e-01 7.46072114e-01
-4.25440371e-01 -3.11291069e-01 -1.06056786e+00 -4.93115224e-02
-3.05690199e-01 1.01287222e+00 -5.24877131e-01 -2.23815978e-01
-6.75162375e-01 -2.52557456e-01 5.87681890e-01 2.78208047e-01
1.38867840e-01 -1.40092933e+00 -5.63339114e-01 2.42318645e-01
5.03734462e-02 -1.17963874e+00 1.84018210e-01 3.19854677e-01
-8.24843049e-01 -3.07895452e-01 -1.02451515e+00 -4.35548693e-01
6.44436777e-02 -4.90551084e-01 9.72662508e-01 -1.55933321e-01
-4.95107584e-02 5.57054840e-02 -6.39469028e-01 -5.50875008e-01
-1.31408489e+00 6.42530322e-01 1.54550925e-01 2.00187221e-01
-2.66237140e-01 -7.51942992e-01 1.45746823e-02 1.16534658e-01
-1.27489460e+00 4.76504058e-01 4.98221159e-01 5.00694990e-01
4.02957410e-01 -1.97167069e-01 5.30885220e-01 -8.03080976e-01
9.06745732e-01 -6.85496479e-02 -1.02211618e+00 1.12036876e-01
-5.58720767e-01 6.37758493e-01 1.21731818e+00 -4.47549582e-01
-1.12504613e+00 -1.42234610e-03 -5.72024286e-01 -4.87187594e-01
-6.05359077e-01 1.78640276e-01 -6.54341161e-01 4.12108302e-01
4.97292161e-01 1.68743283e-01 -1.79374307e-01 -4.32086498e-01
6.04203403e-01 9.29121137e-01 -2.46954393e-02 -4.28597212e-01
8.13338995e-01 1.14401512e-01 5.60132340e-02 -1.48246694e+00
-3.56362164e-01 9.22673121e-02 -5.61638176e-01 -3.31282496e-01
1.03373134e+00 -4.02644962e-01 -4.78581548e-01 5.36014676e-01
-1.42572880e+00 -6.17177725e-01 -5.13669252e-01 2.94635028e-01
-9.69341934e-01 -2.14024894e-02 -4.59406942e-01 -8.34430456e-01
-1.72366917e-01 -1.58204925e+00 1.08607924e+00 1.35122970e-01
-4.41656023e-01 -9.42225158e-01 8.17537978e-02 8.81635770e-02
6.56311750e-01 5.74451350e-02 1.00216985e+00 -2.91390002e-01
-6.89774036e-01 1.10268891e-02 2.16369718e-01 5.42881787e-01
1.17516533e-01 3.94324452e-01 -1.01269364e+00 7.07948208e-03
-2.86338851e-04 2.31170356e-02 4.53591496e-01 3.55497330e-01
1.18513632e+00 -3.16237211e-01 -9.62109566e-02 5.93735516e-01
9.52433288e-01 2.12750837e-01 6.09504402e-01 2.59029657e-01
3.65601957e-01 7.55515933e-01 3.32827002e-01 5.03318608e-01
-3.20025891e-01 1.32194483e+00 3.90372247e-01 9.47423726e-02
-2.71764070e-01 -9.98389497e-02 4.36902076e-01 1.10782146e+00
-1.34473875e-01 -6.62105143e-01 -7.89360821e-01 1.63976327e-01
-1.51598549e+00 -1.00556362e+00 -9.92074534e-02 1.86718476e+00
7.18144357e-01 3.67049098e-01 -5.58874151e-03 5.61019421e-01
5.95561683e-01 4.16409999e-01 -1.64740771e-01 -9.59817290e-01
-2.61769146e-01 1.58824503e-01 1.59508705e-01 6.72634363e-01
-7.59612203e-01 1.09601855e+00 5.98719406e+00 9.11721647e-01
-1.64533114e+00 -2.48732954e-01 4.96528327e-01 -8.53778198e-02
-6.44699693e-01 -3.81503314e-01 -8.82758260e-01 4.28075314e-01
1.26908743e+00 -1.65457785e-01 5.15021920e-01 8.42552722e-01
6.96851134e-01 3.47299218e-01 -1.06961083e+00 9.96764779e-01
-9.00788158e-02 -1.26035440e+00 4.58858401e-01 1.52769755e-03
5.94156682e-01 -3.41310531e-01 3.45314085e-01 3.07395309e-01
-2.97488123e-01 -1.11276603e+00 1.10586834e+00 7.69096553e-01
7.25948393e-01 -8.26957166e-01 4.98152196e-01 5.76559782e-01
-7.74391472e-01 -2.47486457e-01 -1.42532095e-01 -7.49832541e-02
2.63673991e-01 5.59600234e-01 -8.45804632e-01 1.67594641e-01
4.15226549e-01 2.90344715e-01 -4.71852392e-01 5.91088355e-01
-5.08754015e-01 5.89930952e-01 -7.78355002e-02 -7.41071820e-01
1.54355422e-01 -3.24350595e-01 9.46387768e-01 1.14587760e+00
5.34129918e-01 -4.27707881e-01 -2.09279060e-01 1.19633949e+00
1.28530934e-01 4.05749470e-01 -7.27969766e-01 -5.88268638e-01
5.21966070e-02 9.86298323e-01 -6.25864863e-01 -2.71091968e-01
5.76686338e-02 9.26929474e-01 1.93461865e-01 1.50254861e-01
-8.41315091e-01 -1.69367909e-01 7.28426635e-01 3.73581201e-01
1.88403711e-01 -5.59230983e-01 -2.25203022e-01 -9.75501716e-01
-1.63309738e-01 -1.00825083e+00 -3.70952129e-01 -7.81035841e-01
-5.97650707e-01 1.04777205e+00 3.03131729e-01 -8.80919874e-01
-7.55297959e-01 -7.41257787e-01 -2.14178130e-01 8.52098346e-01
-1.12080705e+00 -8.56592715e-01 -5.95825799e-02 2.96228349e-01
9.65426028e-01 -3.78241390e-01 1.08166921e+00 2.51945198e-01
-6.10361040e-01 4.65145797e-01 3.12949866e-02 -3.06220800e-01
3.56399179e-01 -1.38565981e+00 1.95908651e-01 4.98945415e-01
3.40481669e-01 4.02836949e-01 1.32384896e+00 -1.88408375e-01
-1.20067561e+00 -6.22565031e-01 9.43066418e-01 -4.76718955e-02
6.15263760e-01 -5.44698417e-01 -6.59700990e-01 2.50963777e-01
5.35762906e-01 -5.26118577e-01 3.25232208e-01 1.37796357e-01
-3.79919261e-02 -3.16394895e-01 -6.18186653e-01 8.83381188e-01
7.19180524e-01 -4.96702790e-01 -4.51526135e-01 1.03013031e-01
8.44449639e-01 -2.24478424e-01 -6.41926110e-01 2.61324555e-01
3.74986410e-01 -1.36975169e+00 8.24417233e-01 -3.95212114e-01
2.27399930e-01 -3.84098478e-02 5.59559241e-02 -1.64167106e+00
2.09342204e-02 -8.20759714e-01 6.79489747e-02 1.21948981e+00
5.14141560e-01 -3.53308618e-01 7.38362908e-01 3.89630139e-01
-1.62885725e-01 -3.91315728e-01 -8.91487420e-01 -7.99997628e-01
1.35712028e-01 -4.90877330e-01 7.08344221e-01 6.35688841e-01
-1.16601840e-01 5.18104434e-01 -4.61365700e-01 -2.54591051e-02
9.67972204e-02 1.60886690e-01 7.57416964e-01 -1.21078420e+00
-4.14559752e-01 -9.12598193e-01 -4.28967565e-01 -7.47088909e-01
4.90228146e-01 -6.59478724e-01 -1.39400568e-02 -1.03445852e+00
-6.29766703e-01 -3.26224685e-01 8.68264064e-02 1.76528782e-01
2.13193282e-01 -2.24075317e-01 4.45753455e-01 -2.17886850e-01
-1.59454226e-01 8.36044669e-01 1.29752588e+00 -1.53157204e-01
-3.86549443e-01 2.50985086e-01 2.90445779e-02 7.25822508e-01
1.39884114e+00 -3.05167228e-01 -5.24998605e-01 -2.55355895e-01
4.58401531e-01 3.04171771e-01 -1.01230919e-01 -1.39378595e+00
-1.20121643e-01 -7.17734247e-02 1.00022957e-01 -3.50328714e-01
5.82187176e-01 -9.65000629e-01 3.90615284e-01 4.07789022e-01
-7.85613477e-01 -2.62691714e-02 1.60699174e-01 1.60722509e-01
-5.01357734e-01 -4.74037707e-01 9.19720232e-01 6.96131513e-02
-2.90783972e-01 2.01103115e-03 -8.20745170e-01 -3.43783259e-01
9.85133410e-01 -4.85810861e-02 3.89252841e-01 -5.05501807e-01
-1.11588442e+00 -3.35861892e-01 2.73516476e-01 8.28349590e-01
2.87047893e-01 -1.09894848e+00 -6.13360524e-01 4.23309594e-01
-5.60626425e-02 -4.56513107e-01 2.92715579e-01 3.27538967e-01
-5.95564008e-01 7.80363441e-01 -3.79442364e-01 -5.86247265e-01
-1.35880148e+00 6.94444776e-01 4.34523821e-01 -2.28617668e-01
-3.19902122e-01 4.76613343e-01 -3.07313919e-01 -2.38833934e-01
3.21481556e-01 -6.25526488e-01 -5.69047809e-01 3.66287708e-01
3.21122855e-01 4.44186360e-01 -1.68660656e-02 -5.88219583e-01
9.82686728e-02 3.95630479e-01 3.94153595e-01 -3.28225791e-01
1.31679249e+00 6.82651773e-02 1.10751994e-01 7.21988976e-01
1.15268970e+00 2.55612642e-01 -9.92380083e-01 5.71021020e-01
1.93107396e-01 -1.81678191e-01 1.63444102e-01 -4.70141441e-01
-9.56772566e-01 1.24436808e+00 6.77786410e-01 8.82335901e-01
9.17388558e-01 -1.93536624e-01 4.67296749e-01 3.38545144e-01
3.43614727e-01 -1.16599059e+00 -6.92467690e-02 5.02385378e-01
1.40255547e+00 -8.74113321e-01 -4.81384724e-01 -2.78624237e-01
-4.12108243e-01 1.52537167e+00 1.44343138e-01 2.70296723e-01
4.44839299e-01 7.09211230e-01 2.49656856e-01 1.89259604e-01
-6.28698289e-01 -1.88836694e-01 1.85995504e-01 5.15108407e-01
7.49267220e-01 4.14613158e-01 -3.87850940e-01 2.91314483e-01
-6.47652090e-01 2.41063740e-02 3.70184541e-01 1.44301370e-01
-3.60838354e-01 -1.89036107e+00 -4.80614930e-01 -3.85133713e-03
-2.44987041e-01 2.21755028e-01 -5.37776887e-01 8.03415477e-01
1.95763022e-01 9.62253630e-01 -3.03713858e-01 -2.71100968e-01
6.29507899e-01 2.09229946e-01 4.91615027e-01 -5.23535073e-01
-4.42357719e-01 4.00547273e-02 2.12373778e-01 -3.94163907e-01
-2.90420234e-01 -6.58452213e-01 -1.13611698e+00 -6.65703192e-02
-2.33501315e-01 3.04723829e-01 9.78371680e-01 7.96918511e-01
8.72768611e-02 9.15229201e-01 5.34467101e-01 -1.00579000e+00
-6.12579465e-01 -1.13633883e+00 -4.79654729e-01 2.38694161e-01
2.82877177e-01 -6.51986778e-01 -3.88023078e-01 2.24597864e-02]
|
[15.028047561645508, 6.327342510223389]
|
305d9cbd-bd7f-4441-8827-1a8afad13105
|
private-meeting-summarization-without
|
2305.15894
| null |
https://arxiv.org/abs/2305.15894v1
|
https://arxiv.org/pdf/2305.15894v1.pdf
|
Private Meeting Summarization Without Performance Loss
|
Meeting summarization has an enormous business potential, but in addition to being a hard problem, roll-out is challenged by privacy concerns. We explore the problem of meeting summarization under differential privacy constraints and find, to our surprise, that while differential privacy leads to slightly lower performance on in-sample data, differential privacy improves performance when evaluated on unseen meeting types. Since meeting summarization systems will encounter a great variety of meeting types in practical employment scenarios, this observation makes safe meeting summarization seem much more feasible. We perform extensive error analysis and identify potential risks in meeting summarization under differential privacy, including a faithfulness analysis.
|
['Anders Søgaard', 'Seolhwa Lee']
|
2023-05-25
| null | null | null | null |
['meeting-summarization']
|
['natural-language-processing']
|
[ 3.27989399e-01 6.26736820e-01 -8.30591172e-02 -4.83486116e-01
-1.44405150e+00 -7.21864045e-01 3.45708609e-01 6.92419827e-01
-3.70229840e-01 1.02726960e+00 7.92152226e-01 -3.30552459e-01
-8.70121047e-02 -4.88042057e-01 -4.72423136e-01 -4.48593736e-01
-3.38983864e-01 5.88835180e-01 -2.37287283e-01 -3.84306125e-02
2.66795844e-01 9.57060903e-02 -1.02109301e+00 3.27710450e-01
9.44799423e-01 5.32969356e-01 -7.07928181e-01 7.55615056e-01
2.99960852e-01 7.66831338e-02 -1.06092477e+00 -7.91672647e-01
7.40799963e-01 -2.15680182e-01 -8.90152514e-01 2.38236010e-01
6.07943714e-01 -4.03832138e-01 -4.31537390e-01 8.22605669e-01
7.46518433e-01 1.57018602e-01 7.14952350e-01 -1.26835227e+00
-3.64956856e-01 7.73048520e-01 -8.82237077e-01 1.42511576e-01
9.24487233e-01 2.37891078e-02 1.40638113e+00 -4.67245013e-01
4.15005326e-01 8.88641357e-01 7.68399477e-01 4.69386637e-01
-1.37507272e+00 -7.05354452e-01 1.84670001e-01 -6.48045838e-01
-1.57403409e+00 -8.79238009e-01 1.40836209e-01 -7.32011199e-02
8.29404354e-01 1.02704859e+00 4.88218963e-01 9.19810653e-01
2.61010587e-01 1.11907136e+00 4.68639135e-01 -9.89569277e-02
3.72820377e-01 2.21697986e-01 3.60170305e-01 2.00702399e-01
1.16376150e+00 -4.76328492e-01 -6.99580193e-01 -1.01925957e+00
8.13498646e-02 1.34765416e-01 -6.57864749e-01 -1.79054171e-01
-1.23398769e+00 5.97837329e-01 -2.43775025e-01 -8.06754604e-02
-1.76170766e-01 3.74522842e-02 4.62738752e-01 5.29170990e-01
5.32806218e-01 6.57889009e-01 -4.05993879e-01 3.16997617e-03
-1.16924989e+00 6.29284441e-01 1.54050899e+00 1.51270556e+00
5.09406269e-01 -3.37495953e-01 -4.74303216e-01 4.56076384e-01
-1.88781098e-01 3.40855658e-01 2.06807047e-01 -8.92198443e-01
9.64618564e-01 3.38723063e-01 3.62314761e-01 -1.17110360e+00
-3.48031253e-01 -2.41587877e-01 -1.10486817e+00 -4.56171215e-01
5.41339517e-01 -6.93623781e-01 -1.35786593e-01 1.67867160e+00
-1.30747974e-01 -4.00279760e-02 2.29055732e-01 3.65925014e-01
7.63428152e-01 5.37330389e-01 -3.23356956e-01 -7.97039330e-01
1.30041409e+00 -4.72804427e-01 -8.82755160e-01 -3.65877688e-01
8.08469176e-01 -4.17375714e-01 3.78006011e-01 2.93357998e-01
-1.37703431e+00 4.06280994e-01 -8.96190941e-01 1.60812676e-01
2.02248096e-01 -5.69558322e-01 8.24336469e-01 9.22821224e-01
-1.23476028e+00 2.51574874e-01 -6.48943722e-01 -8.13578486e-01
4.07827973e-01 6.56900764e-01 -6.40787005e-01 8.12546443e-03
-9.44711924e-01 4.79363054e-01 6.83504939e-02 -1.09823294e-01
-1.48047343e-01 -6.88905239e-01 -1.01235032e+00 2.76948601e-01
5.59372246e-01 -1.15853143e+00 1.21831369e+00 -3.54428828e-01
-1.04249954e+00 8.76811624e-01 -5.51284313e-01 -9.05112386e-01
9.84858036e-01 -1.71494484e-01 -1.27013505e-01 -2.85087526e-01
1.76815391e-02 2.48960316e-01 2.94970393e-01 -1.15151894e+00
-5.71040511e-01 -4.28876281e-01 -2.56523460e-01 6.28489792e-01
-5.41673064e-01 -1.82813674e-01 -3.13382983e-01 -4.84926522e-01
9.27393511e-02 -8.70619297e-01 -6.91104412e-01 -5.79220653e-01
-1.02097178e+00 1.15303859e-01 3.69623005e-01 -6.34990513e-01
1.63528502e+00 -2.11324978e+00 -3.68098021e-01 5.34365654e-01
4.60279822e-01 -5.15194237e-02 2.13392481e-01 7.73971081e-01
1.96408063e-01 6.44742250e-01 -2.95016915e-01 -6.77403092e-01
-3.81823480e-02 -3.52175951e-01 -1.77260488e-01 7.11649418e-01
-1.01431817e-01 7.36789584e-01 -6.07143879e-01 -3.18978429e-01
-2.59704471e-01 -2.27889881e-01 -9.04561758e-01 -3.56518105e-02
1.34768665e-01 6.68559819e-02 -6.23260558e-01 5.35971045e-01
8.81419420e-01 -1.22701839e-01 3.91425192e-01 5.51128745e-01
1.38597637e-01 9.86127108e-02 -1.30276358e+00 1.24929845e+00
8.09070021e-02 5.84074736e-01 4.40099746e-01 -7.18458891e-01
9.10334945e-01 3.62365425e-01 6.38022006e-01 1.16679929e-01
1.17047407e-01 6.18482530e-02 -1.84036776e-01 -3.20715666e-01
1.23127294e+00 -1.45549178e-01 -7.56482065e-01 6.65540040e-01
-6.65984452e-01 -2.10911304e-01 -3.38015705e-01 4.39808220e-01
1.58400416e+00 -9.52820957e-01 6.06630445e-01 -4.26005661e-01
-7.86735043e-02 -1.12548545e-02 8.15150142e-01 1.01621008e+00
-4.83711451e-01 1.11799979e+00 5.72321534e-01 -2.33553723e-01
-6.84144795e-01 -7.40352988e-01 -7.14536160e-02 4.23814893e-01
1.29440844e-01 -7.12158203e-01 -7.71131873e-01 -5.67310512e-01
4.04839039e-01 7.94882417e-01 -3.81385922e-01 -1.20040998e-01
-2.14769065e-01 -1.00583410e+00 6.58959687e-01 1.43825039e-01
3.43920648e-01 -4.05232489e-01 -3.24623227e-01 5.87843098e-02
-1.68090552e-01 -1.06061196e+00 -1.05291235e+00 3.57469320e-02
-7.90642202e-01 -8.24750960e-01 -7.23819733e-01 -6.74363136e-01
6.44156218e-01 6.44711494e-01 1.10835874e+00 -7.34288692e-02
-2.83731222e-01 6.64671659e-01 1.54756144e-01 -9.02230501e-01
-2.53778577e-01 4.49441195e-01 2.08455727e-01 3.11786048e-02
6.73078775e-01 -4.98488754e-01 -6.93461537e-01 4.91850488e-02
-6.38342500e-01 -4.54042017e-01 2.37351090e-01 5.43431044e-01
2.24131033e-01 -6.76354095e-02 7.42203653e-01 -1.36666548e+00
1.04615653e+00 -6.43796027e-01 -2.63065755e-01 1.69029012e-01
-3.46527487e-01 -3.11839521e-01 1.98820263e-01 1.97947621e-02
-9.60771561e-01 2.30414644e-02 2.40537405e-01 2.01503158e-01
6.64228797e-02 3.30403030e-01 -3.18170607e-01 3.80757213e-01
7.84868538e-01 -1.38162030e-02 1.96498960e-01 1.25316521e-02
-1.09206311e-01 8.82091999e-01 2.65896112e-01 -2.68461466e-01
6.98225260e-01 5.64769626e-01 -3.23851675e-01 -1.29797959e+00
-6.34778857e-01 -7.38244891e-01 -6.17915764e-02 3.25304985e-01
5.71672618e-01 -1.22964954e+00 -1.13910294e+00 5.69001958e-02
-8.94289553e-01 3.17720547e-02 -4.31816518e-01 1.78851441e-01
-5.60634136e-01 7.09125519e-01 -4.31642056e-01 -1.00981247e+00
-4.46078241e-01 -5.68045616e-01 9.20092821e-01 5.26213050e-02
-1.10235953e+00 -8.89771342e-01 -7.60902017e-02 4.52407479e-01
1.19835973e-01 4.70956713e-01 3.86434644e-01 -1.54388642e+00
-7.22975254e-01 -8.27818632e-01 1.28193736e-01 -8.09433758e-02
1.78802669e-01 -1.01528957e-01 -8.66985083e-01 -7.30502367e-01
4.33106534e-02 -2.90318020e-03 8.17366123e-01 6.89770222e-01
1.14021719e+00 -6.91268981e-01 -5.61143756e-01 5.12650430e-01
1.11692309e+00 -1.40968129e-01 4.17308182e-01 9.83281359e-02
2.30270013e-01 7.20707178e-01 6.51276231e-01 1.16494393e+00
4.89103079e-01 3.69056165e-01 1.36525296e-02 -1.72768943e-02
7.02632546e-01 -2.05928862e-01 2.49255329e-01 5.06644964e-01
3.84273052e-01 -6.56455874e-01 -9.34392393e-01 5.87821364e-01
-2.04744291e+00 -1.08535790e+00 -2.69639820e-01 2.76688838e+00
7.22398877e-01 2.00648367e-01 2.99459338e-01 -8.90696421e-02
8.25950980e-01 2.73638189e-01 -4.75425303e-01 -5.90834081e-01
-4.88610685e-01 -3.83314431e-01 1.00500858e+00 3.92600834e-01
-8.19755554e-01 4.21887398e-01 7.96916294e+00 4.29853201e-01
-3.12952787e-01 -3.71865690e-01 1.11316657e+00 -4.33698028e-01
-7.73060560e-01 -1.05188027e-01 -8.84674311e-01 2.12571472e-01
8.70968163e-01 -1.08119297e+00 -3.61815691e-02 5.54550767e-01
1.52307481e-01 -2.30955094e-01 -1.68047643e+00 9.63010430e-01
6.03952929e-02 -1.51863658e+00 9.84286517e-02 3.79215479e-01
1.04297340e+00 -1.57773077e-01 -4.00654785e-03 1.22485310e-01
6.96009099e-01 -1.03059423e+00 1.40905589e-01 6.18666634e-02
6.77750528e-01 -9.61353779e-01 8.73494089e-01 6.28059745e-01
-7.23017454e-01 -6.77314447e-03 -4.33185399e-01 -2.37772599e-01
1.14415921e-01 7.14234352e-01 -1.00566924e+00 6.82846427e-01
4.30228949e-01 4.34123427e-01 -2.34823018e-01 1.26064110e+00
5.36144376e-01 4.92078960e-01 -5.52955031e-01 -1.31875321e-01
-1.27151698e-01 -1.67951025e-02 9.18063283e-01 1.39679158e+00
4.69857007e-01 4.41668719e-01 2.42673635e-01 7.09225610e-02
-3.08430642e-01 2.75903791e-01 -1.18259358e+00 4.76649590e-02
8.47892404e-01 7.14192152e-01 -1.97606072e-01 -1.49640739e-01
-2.96472520e-01 9.48106945e-01 -7.02442043e-03 4.33480054e-01
-4.11169231e-01 -3.48936915e-01 9.11816955e-01 2.98324525e-01
-1.93291530e-01 -7.12240338e-02 -6.51272714e-01 -1.28379130e+00
1.01092994e-01 -8.07993948e-01 8.98683667e-01 -2.71265134e-02
-1.18038344e+00 6.91312253e-02 7.81825781e-02 -1.19500065e+00
-1.72157779e-01 1.34974986e-01 -8.38268399e-01 6.07810020e-01
-8.80148053e-01 -4.84794468e-01 -5.28706759e-02 2.61022300e-01
3.68276238e-01 -5.34772649e-02 8.79337668e-01 2.90550739e-02
-6.33147299e-01 1.33682323e+00 3.95173967e-01 -4.71537448e-02
9.51045930e-01 -1.05129719e+00 6.08128309e-01 6.26145184e-01
-8.54746401e-02 7.06758738e-01 1.18792772e+00 -5.89826286e-01
-1.65583897e+00 -9.12013531e-01 1.21291184e+00 -6.80097401e-01
3.68007541e-01 -4.74439502e-01 -8.34222436e-01 1.17843223e+00
3.58272344e-01 -5.45006931e-01 1.05657327e+00 4.92122084e-01
2.01680716e-02 5.25185801e-02 -1.37319279e+00 1.05141401e+00
1.10291719e+00 -2.10528582e-01 -6.24618888e-01 4.73355144e-01
7.67554224e-01 -3.88313651e-01 -6.63521230e-01 1.60725608e-01
2.20080808e-01 -8.42553973e-01 5.41955471e-01 -4.32851762e-01
4.84533533e-02 1.03394926e-01 -9.36975107e-02 -1.15013719e+00
-1.20705351e-01 -1.62033319e+00 2.93751329e-01 1.55035436e+00
8.20759416e-01 -8.19452405e-01 1.39084947e+00 1.62370777e+00
1.87945381e-01 -3.40427697e-01 -8.96724701e-01 -6.93191528e-01
4.72328290e-02 -1.71398804e-01 5.38282156e-01 9.94913459e-01
7.37601161e-01 3.17375124e-01 -5.52960634e-01 3.03846359e-01
5.87751508e-01 -1.88784897e-01 1.14571476e+00 -1.18426418e+00
-2.15068251e-01 -3.26006055e-01 -3.16282660e-01 -1.07804716e+00
1.35554373e-01 -7.40238070e-01 5.42273298e-02 -1.61337006e+00
5.14794588e-01 -2.57131279e-01 4.47212756e-02 7.02575743e-02
-1.56411767e-01 -1.01583198e-01 -1.10644087e-01 -1.35121401e-02
-9.33189154e-01 3.69097799e-01 8.52741539e-01 -2.28046596e-01
-4.75339055e-01 6.83642447e-01 -1.35009217e+00 5.72370052e-01
7.08885550e-01 -2.83500403e-01 -2.81553149e-01 -2.00736195e-01
3.13710839e-01 5.17937660e-01 -1.88863844e-01 -7.18514740e-01
5.09814382e-01 -1.73646450e-01 -7.81570673e-02 -6.13583088e-01
2.72220969e-01 -7.79504895e-01 2.88231313e-01 4.40743327e-01
-6.49969399e-01 1.16052497e-02 2.63789088e-01 1.13439846e+00
-2.02787697e-01 -1.04996465e-01 2.38321498e-01 -5.66121675e-02
1.26222253e-01 4.61811602e-01 -6.26432478e-01 4.99629915e-01
1.27973986e+00 -8.23901176e-01 -8.66047740e-02 -1.09378576e+00
-5.16074359e-01 9.66610730e-01 8.53696704e-01 -8.03270862e-02
4.27741349e-01 -8.64822030e-01 -1.04230928e+00 7.47653916e-02
4.13953006e-01 3.97924781e-01 3.36035967e-01 6.63998842e-01
-1.51040331e-01 2.92828679e-02 4.36740160e-01 -3.53207558e-01
-1.65091991e+00 3.15719932e-01 -8.31458569e-02 -2.90178239e-01
-7.85104752e-01 1.05876887e+00 4.54071462e-01 -1.10140331e-01
6.63695991e-01 -1.38795570e-01 2.63209134e-01 2.20656037e-01
6.93931818e-01 4.19948399e-01 1.80823393e-02 -1.45642638e-01
-4.68041241e-01 -7.48442337e-02 -4.65373695e-01 -5.04659936e-02
1.21442497e+00 -3.50371182e-01 1.17249712e-01 2.92499393e-01
1.15769398e+00 6.26482606e-01 -9.68469620e-01 -2.33677432e-01
3.27780098e-01 -5.89408398e-01 -6.02074683e-01 -1.95173889e-01
-5.94722509e-01 2.94810772e-01 -3.40787947e-01 6.48603857e-01
8.44360054e-01 -2.66018629e-01 7.64408588e-01 7.57359028e-01
5.25926471e-01 -9.28343177e-01 -4.05574948e-01 2.88994730e-01
7.67572880e-01 -1.46027851e+00 5.41721821e-01 -5.50412774e-01
-1.01036596e+00 5.77187717e-01 3.70382249e-01 -3.41966860e-02
6.32545710e-01 4.72196639e-01 -3.21133554e-01 3.14273313e-02
-1.07829344e+00 6.10526204e-01 -2.01929510e-01 5.42174697e-01
3.84819537e-01 2.23912716e-01 -4.04953897e-01 7.04578280e-01
-4.12483394e-01 -3.18018079e-01 1.10109639e+00 9.04175639e-01
-2.99990714e-01 -8.75576258e-01 -4.08823431e-01 8.97407115e-01
-8.88876200e-01 -7.50734955e-02 -7.57211924e-01 7.48395622e-01
-7.55826354e-01 1.18420184e+00 2.29789078e-01 -2.93454647e-01
5.54234207e-01 -1.71709672e-01 -1.12529278e-01 -9.20319676e-01
-1.15701127e+00 -2.47933269e-01 7.03526080e-01 -3.38684410e-01
1.61735952e-01 -1.29030144e+00 -1.07074893e+00 -1.05660319e+00
-3.31164777e-01 4.82482910e-01 3.80182713e-02 5.64109206e-01
6.06728196e-01 1.77090406e-01 6.51150465e-01 -3.36827844e-01
-1.10788703e+00 -4.95181859e-01 -8.82808805e-01 3.89608949e-01
5.55096984e-01 3.04059982e-01 -4.60723191e-01 -3.18159372e-01]
|
[6.637302875518799, 4.925988674163818]
|
1df71a30-5933-4456-bc00-de6641f9c689
|
semantic-preserving-adversarial-text-attacks
|
2108.10015
| null |
https://arxiv.org/abs/2108.10015v2
|
https://arxiv.org/pdf/2108.10015v2.pdf
|
Semantic-Preserving Adversarial Text Attacks
|
Deep neural networks (DNNs) are known to be vulnerable to adversarial images, while their robustness in text classification is rarely studied. Several lines of text attack methods have been proposed in the literature, including character-level, word-level, and sentence-level attacks. However, it is still a challenge to minimize the number of word changes necessary to induce misclassification, while simultaneously ensuring lexical correctness, syntactic soundness, and semantic similarity. In this paper, we propose a Bigram and Unigram based adaptive Semantic Preservation Optimization (BU-SPO) method to examine the vulnerability of deep models. Our method has four major merits. Firstly, we propose to attack text documents not only at the unigram word level but also at the bigram level which better keeps semantics and avoids producing meaningless outputs. Secondly, we propose a hybrid method to replace the input words with options among both their synonyms candidates and sememe candidates, which greatly enriches the potential substitutions compared to only using synonyms. Thirdly, we design an optimization algorithm, i.e., Semantic Preservation Optimization (SPO), to determine the priority of word replacements, aiming to reduce the modification cost. Finally, we further improve the SPO with a semantic Filter (named SPOF) to find the adversarial example with the highest semantic similarity. We evaluate the effectiveness of our BU-SPO and BU-SPOF on IMDB, AG's News, and Yahoo! Answers text datasets by attacking four popular DNNs models. Results show that our methods achieve the highest attack success rates and semantics rates by changing the smallest number of words compared with existing methods.
|
['DaCheng Tao', 'Wei Liu', 'James Bailey', 'Weifeng Liu', 'Xinghao Yang']
|
2021-08-23
| null | null | null | null |
['adversarial-text']
|
['adversarial']
|
[ 2.11934656e-01 -4.15369689e-01 5.24252243e-02 -2.90848762e-01
-1.97005346e-01 -6.63318694e-01 5.42816043e-01 2.55806118e-01
-7.90838778e-01 5.76713622e-01 2.36629829e-01 -4.50669348e-01
4.31915186e-02 -1.06906319e+00 -5.08876860e-01 -6.06914341e-01
5.94727457e-01 1.42628968e-01 5.01432478e-01 -3.97963554e-01
3.01277757e-01 4.90148336e-01 -1.20784903e+00 2.84722894e-01
1.14663625e+00 8.01363587e-01 9.16841626e-02 2.69352376e-01
-3.62176180e-01 5.06722331e-01 -9.70077336e-01 -1.08262634e+00
2.56061405e-01 -3.98968428e-01 -6.32713616e-01 -3.97326559e-01
2.25947902e-01 -3.68496299e-01 -4.51398194e-01 1.62534380e+00
8.09927404e-01 3.24016698e-02 4.09495026e-01 -1.08295500e+00
-7.13869035e-01 1.03009653e+00 -2.79302031e-01 2.76848406e-01
-2.11920999e-02 3.61743048e-02 9.59616601e-01 -6.57856643e-01
3.08972865e-01 1.63233232e+00 5.36875725e-01 7.78860509e-01
-8.02021444e-01 -1.01000309e+00 3.00455660e-01 4.28101242e-01
-1.32017922e+00 -2.42747843e-01 7.24772632e-01 -1.14432275e-02
9.91280437e-01 4.18572664e-01 2.00579405e-01 1.40273881e+00
3.75701368e-01 7.34104514e-01 7.57719636e-01 -5.28319001e-01
2.61469901e-01 1.73938900e-01 3.62145573e-01 6.04505360e-01
2.84286171e-01 -3.84525657e-02 -3.21675390e-01 -2.45967150e-01
3.00311267e-01 4.54010367e-02 -3.74964207e-01 1.87906921e-01
-8.51783454e-01 1.00310028e+00 1.32209450e-01 4.61143255e-01
-2.03164034e-02 1.96282025e-02 6.55794501e-01 3.20938259e-01
3.23763788e-01 4.96034503e-01 -4.68220860e-01 7.26412907e-02
-4.62512285e-01 1.61915526e-01 7.06057966e-01 6.58565164e-01
3.57139260e-01 3.32025230e-01 -2.14848757e-01 9.91423726e-01
2.88612306e-01 5.47320306e-01 9.50034559e-01 -2.25543603e-01
6.07393742e-01 5.13507783e-01 -4.24849093e-01 -1.28355515e+00
-2.38750875e-01 -5.81013262e-01 -8.80470574e-01 -7.28758126e-02
5.94508946e-02 -2.21782461e-01 -9.53523219e-01 1.96264100e+00
6.62050396e-02 1.57571673e-01 2.56734639e-01 6.70912385e-01
8.57759058e-01 7.21918523e-01 2.81839222e-01 -5.07280640e-02
1.39542580e+00 -8.97809863e-01 -8.55729163e-01 -3.16052735e-01
8.57869327e-01 -7.25624382e-01 1.27186120e+00 2.67700881e-01
-7.60567427e-01 -4.57837611e-01 -1.10309207e+00 1.88120827e-01
-6.55877769e-01 -1.65465504e-01 2.10412383e-01 1.12399232e+00
-5.60482085e-01 6.55604005e-01 -5.90425491e-01 -1.09762304e-01
1.85229331e-01 3.49287182e-01 -1.34987697e-01 1.43399522e-01
-2.01705217e+00 1.09493065e+00 8.06397498e-01 -2.00844541e-01
-7.16949821e-01 -5.59148788e-01 -7.07755566e-01 2.79134303e-01
3.16744745e-01 -4.74264592e-01 9.25771415e-01 -1.11752987e+00
-1.51067054e+00 4.39381242e-01 2.15794146e-02 -6.39985263e-01
4.32749659e-01 -1.60920262e-01 -7.23804414e-01 -3.40126753e-02
-2.77991474e-01 5.07299602e-01 7.78020084e-01 -9.98365462e-01
-5.82615018e-01 -3.05990696e-01 1.78753078e-01 2.85141170e-01
-1.12143457e+00 2.72204101e-01 -3.37087333e-01 -1.27084851e+00
-1.27797410e-01 -7.06844687e-01 -1.35816991e-01 -3.22277695e-01
-6.10428870e-01 -3.33412290e-01 8.01731706e-01 -6.94908977e-01
1.52984881e+00 -2.29686689e+00 1.10532023e-01 3.40105146e-01
2.97006927e-02 8.83177996e-01 -1.36469424e-01 2.79327691e-01
2.36458480e-02 4.39333856e-01 -3.45071226e-01 -2.08866924e-01
2.39317529e-02 2.41826490e-01 -5.49306870e-01 1.32395595e-01
-2.87080128e-02 8.28720391e-01 -5.63489735e-01 -2.99120843e-01
1.09252319e-01 2.69426942e-01 -6.49778962e-01 -1.10946268e-01
-2.25404769e-01 -2.57281691e-01 -4.68430936e-01 4.04725403e-01
7.59816170e-01 1.95261478e-01 4.11412828e-02 -2.17964292e-01
2.74323761e-01 3.73157650e-01 -1.24590802e+00 1.06624544e+00
-4.51080143e-01 2.12057665e-01 -3.46439451e-01 -8.95612121e-01
1.15903378e+00 1.06598340e-01 -1.28262145e-02 -7.17407525e-01
4.45996851e-01 2.99217910e-01 9.43572819e-02 -1.99365228e-01
4.61039215e-01 -2.89091974e-01 -1.47322580e-01 2.43176907e-01
-5.68508878e-02 2.06470445e-01 -9.17349681e-02 2.04307169e-01
9.91647899e-01 -4.14513558e-01 1.32680805e-02 -2.98013747e-01
8.50739002e-01 -2.76141018e-01 6.57621861e-01 7.99516439e-01
-1.38068408e-01 3.44646931e-01 5.44481874e-01 -3.21022034e-01
-8.69452417e-01 -9.05568242e-01 -3.28888334e-02 9.36836720e-01
5.45486569e-01 -5.02772212e-01 -9.62961137e-01 -9.68299389e-01
-2.04665121e-02 1.08292806e+00 -2.32269257e-01 -7.43047118e-01
-6.15604699e-01 -9.67900932e-01 1.16117895e+00 3.74706984e-01
8.55238140e-01 -1.20818591e+00 -1.41753003e-01 1.51055276e-01
-1.31475955e-01 -9.92389739e-01 -6.45792484e-01 1.28158405e-01
-5.44976950e-01 -6.22489631e-01 -4.52711552e-01 -7.92323112e-01
5.63969970e-01 -3.27161439e-02 5.85172057e-01 1.86854377e-01
8.80861729e-02 -3.29064876e-01 -5.54146826e-01 -3.60787541e-01
-6.42988563e-01 1.84902072e-01 1.95349544e-01 9.48342904e-02
4.73804623e-01 -3.03688914e-01 -1.54316843e-01 3.71546954e-01
-1.36343729e+00 -2.55432039e-01 5.69939673e-01 8.81030262e-01
3.87424827e-01 3.69561940e-01 7.78696835e-01 -1.10245049e+00
1.00871015e+00 -2.57271856e-01 -4.76291329e-01 4.44626778e-01
-7.60933518e-01 2.05168664e-01 1.25201654e+00 -7.08707392e-01
-1.01632285e+00 -3.14713299e-01 -6.64641201e-01 -4.72990185e-01
-3.48371901e-02 4.44237590e-01 -7.57757723e-01 -6.91844523e-02
6.71047509e-01 3.47438157e-01 -1.66187197e-01 -5.39382815e-01
2.65849739e-01 7.73751140e-01 3.11774343e-01 -3.80672306e-01
8.26978922e-01 1.51426300e-01 -3.40475559e-01 -5.96194625e-01
-5.98235965e-01 5.07624121e-03 -2.27364868e-01 1.88889354e-01
7.72156894e-01 -4.56359416e-01 -6.48665488e-01 8.81631315e-01
-1.34142041e+00 1.84723109e-01 1.23812638e-01 4.24544185e-01
1.08362645e-01 8.51301074e-01 -7.56913960e-01 -4.26400989e-01
-7.02874184e-01 -1.35789657e+00 4.32152748e-01 1.51136369e-01
-1.19166635e-01 -9.82300520e-01 -3.43400300e-01 1.65772796e-01
4.36404765e-01 -1.07767828e-01 1.39237928e+00 -1.24608076e+00
-8.48757476e-02 -1.56358495e-01 -1.23126492e-01 7.81107962e-01
9.54295471e-02 -1.52911618e-01 -7.04264402e-01 -3.43730956e-01
2.78964728e-01 -7.81395808e-02 1.03242636e+00 7.69466460e-02
1.35139060e+00 -6.07197821e-01 -1.45812333e-01 7.27974415e-01
1.26939285e+00 6.03191316e-01 8.17957520e-01 7.50912189e-01
8.54823470e-01 4.48626697e-01 3.54025364e-01 2.55587190e-01
-1.40614063e-01 6.00162327e-01 4.51820642e-01 8.47511590e-02
3.14245634e-02 -3.04297298e-01 5.38653910e-01 8.91975105e-01
5.75450301e-01 -8.27703059e-01 -7.52757549e-01 2.52353847e-01
-1.53539228e+00 -8.63498986e-01 6.81512356e-02 2.06622601e+00
9.06540930e-01 6.69985175e-01 -3.33360106e-01 3.92057657e-01
1.03670239e+00 3.53067964e-01 -5.04936099e-01 -6.79008365e-01
-4.13164437e-01 3.46722335e-01 6.55033171e-01 5.71251035e-01
-1.08796036e+00 1.22633266e+00 5.05695152e+00 1.53000355e+00
-1.11105502e+00 2.53331810e-02 5.94615817e-01 1.16033535e-02
-6.76196337e-01 -1.35711789e-01 -1.17593122e+00 7.83472657e-01
7.96338558e-01 -1.54564068e-01 3.43379140e-01 7.94739902e-01
-3.46482582e-02 5.21306098e-01 -6.14315748e-01 7.18688667e-01
3.50662231e-01 -1.20328295e+00 7.22775936e-01 -3.39551777e-01
3.65168840e-01 -3.74754518e-01 2.25335974e-02 1.70274153e-01
2.52100557e-01 -9.25725520e-01 7.93397903e-01 3.14791761e-02
4.85540539e-01 -1.27535737e+00 9.90430355e-01 3.91912609e-01
-7.40707576e-01 -8.25046375e-02 -4.38174099e-01 4.03907120e-01
-6.21464383e-03 4.83186960e-01 -4.18927848e-01 5.52664697e-01
5.13191402e-01 4.18617815e-01 -5.99314570e-01 5.81530094e-01
-3.56881887e-01 6.59532726e-01 -2.72408962e-01 -4.42952901e-01
3.45392436e-01 9.58234742e-02 6.52798772e-01 1.27944291e+00
1.57922402e-01 -6.50877580e-02 8.14902503e-03 5.93372285e-01
-3.48450243e-01 3.48488301e-01 -2.50623584e-01 -4.08482626e-02
8.38190496e-01 8.31986368e-01 -6.09000683e-01 -2.40118146e-01
-1.50547415e-01 1.09064209e+00 7.24405050e-02 1.54242411e-01
-9.31671321e-01 -9.47681308e-01 6.52145445e-01 -2.00191960e-01
4.69825938e-02 5.02574891e-02 -3.23271036e-01 -1.12477744e+00
1.90569833e-01 -1.38706064e+00 5.47956824e-01 -3.45402688e-01
-1.32765079e+00 8.73694837e-01 -1.52187273e-01 -9.65668261e-01
1.88926727e-01 -6.33872628e-01 -6.57887042e-01 8.93334270e-01
-1.37325656e+00 -8.10435176e-01 3.08967158e-02 7.19458163e-01
6.92167759e-01 -5.05420864e-01 6.79803610e-01 5.48430204e-01
-8.45942676e-01 1.27602327e+00 2.24094719e-01 3.25092137e-01
5.92442691e-01 -7.21215487e-01 6.41446769e-01 1.05885088e+00
1.35618299e-01 6.52809799e-01 5.92370808e-01 -7.79044092e-01
-9.67298329e-01 -1.12534046e+00 1.06952417e+00 1.98078733e-02
5.65767884e-01 -3.56456250e-01 -1.17625248e+00 3.42439115e-01
-8.16265270e-02 -4.51216877e-01 4.58016038e-01 -3.75637293e-01
-4.39768314e-01 -1.69281259e-01 -1.24927604e+00 1.14149058e+00
8.44483793e-01 -4.70845103e-01 -6.84500992e-01 2.04410180e-01
1.23901987e+00 -2.47337639e-01 -4.00132149e-01 6.31237149e-01
3.30930710e-01 -7.39936531e-01 1.01339793e+00 -6.16514385e-01
4.54603255e-01 -1.73885018e-01 -2.29109392e-01 -1.31641483e+00
-2.39565194e-01 -4.43127960e-01 1.74371600e-01 1.48004794e+00
4.55305994e-01 -9.70972002e-01 6.64988995e-01 3.28796953e-01
-2.05557764e-01 -7.48425424e-01 -9.61762190e-01 -9.49964046e-01
2.21602842e-01 -4.05309737e-01 7.76049137e-01 1.06637073e+00
-2.78386503e-01 1.87154889e-01 -4.23313469e-01 2.41251111e-01
2.96389848e-01 -4.03871745e-01 3.36632967e-01 -9.12081420e-01
-2.56170541e-01 -7.51112580e-01 -4.41159755e-01 -9.70170259e-01
4.46742415e-01 -9.82587337e-01 -2.70336419e-01 -1.10626495e+00
-1.26747489e-01 -3.06611985e-01 -5.26000977e-01 5.49392700e-01
-4.11718816e-01 4.25200872e-02 2.62190402e-01 1.92737609e-01
-1.48581788e-01 6.67561889e-01 9.22818303e-01 -2.55492687e-01
-5.22576086e-02 -2.44624894e-02 -6.49717033e-01 7.84543574e-01
1.03214085e+00 -7.25704789e-01 -4.22246188e-01 -7.04151571e-01
1.11772262e-01 -3.86644393e-01 1.62821665e-01 -8.35981071e-01
1.51487932e-01 -1.86036438e-01 1.69850409e-01 -4.25025523e-01
1.16936192e-01 -7.32254207e-01 -1.04506150e-01 8.62658143e-01
-6.74427211e-01 2.33059436e-01 2.49156579e-01 5.43600082e-01
-1.75928622e-01 -7.89525688e-01 1.10239387e+00 -5.94327189e-02
-6.48470759e-01 2.00397700e-01 -3.01782846e-01 7.04500750e-02
9.24675465e-01 -6.01349100e-02 -6.24217093e-01 -1.80756763e-01
-3.48657280e-01 1.36323899e-01 2.97671169e-01 7.45253861e-01
6.97816849e-01 -1.26230967e+00 -7.07072318e-01 3.62799138e-01
-1.10529482e-01 -4.82454330e-01 2.12658480e-01 1.73469380e-01
-6.24459803e-01 2.98592627e-01 -1.57692060e-01 4.58246544e-02
-1.40311933e+00 6.27629459e-01 3.66293758e-01 -3.88342977e-01
-4.61111873e-01 9.63580787e-01 2.05866247e-01 -4.81556624e-01
5.42308211e-01 3.47240362e-03 -3.81710202e-01 -1.12555146e-01
4.38183606e-01 3.11415792e-01 3.31718713e-01 -4.92917866e-01
-4.56122786e-01 3.15920621e-01 -3.49615723e-01 1.50837535e-02
8.63126457e-01 5.12365997e-02 -1.93063259e-01 -1.30935624e-01
1.24773288e+00 1.96779087e-01 -5.82773447e-01 -3.78277242e-01
1.19686089e-01 -4.53118533e-01 7.06420317e-02 -8.37020755e-01
-1.20396447e+00 9.52249467e-01 5.15901744e-01 2.03236952e-01
1.14182270e+00 -4.33726937e-01 1.33779740e+00 4.26784098e-01
-2.66875997e-02 -1.00722122e+00 1.39756128e-01 7.38359094e-01
5.08103311e-01 -6.98922455e-01 -2.05570728e-01 -3.23840708e-01
-7.80073345e-01 1.01796198e+00 8.14287603e-01 3.43533196e-02
5.31152129e-01 2.57249415e-01 3.08144744e-02 2.20941573e-01
-5.73492467e-01 1.19920224e-01 1.04026861e-01 2.14007363e-01
-1.86699480e-02 -1.61657855e-01 -6.43358231e-01 8.37939501e-01
-3.26372296e-01 -6.50960326e-01 4.31320101e-01 7.28842139e-01
-5.74648917e-01 -1.36203706e+00 -3.16388726e-01 4.93324459e-01
-8.65857959e-01 -5.65672815e-01 -4.76599395e-01 3.77998292e-01
1.31568193e-01 9.66122985e-01 -1.41647249e-01 -7.88849056e-01
4.29677576e-01 1.27442375e-01 -7.67576844e-02 -5.05585194e-01
-8.47994506e-01 -1.78522214e-01 2.08691638e-02 -7.73978755e-02
1.92077026e-01 -1.37745231e-01 -1.29007089e+00 -5.20396471e-01
-6.70651376e-01 2.14894101e-01 6.00880206e-01 1.10848486e+00
2.69010276e-01 4.99871641e-01 7.95845389e-01 -7.55050033e-02
-1.02474391e+00 -7.82835186e-01 -3.87643009e-01 6.01103902e-01
-4.66184318e-02 -4.76518840e-01 -6.56515300e-01 -2.46335268e-01]
|
[5.979241847991943, 8.08846664428711]
|
9016f2cf-ed36-4d29-84b9-111a0f147419
|
detecting-incongruity-between-news-headline
|
1811.07066
| null |
http://arxiv.org/abs/1811.07066v2
|
http://arxiv.org/pdf/1811.07066v2.pdf
|
Detecting Incongruity Between News Headline and Body Text via a Deep Hierarchical Encoder
|
Some news headlines mislead readers with overrated or false information, and
identifying them in advance will better assist readers in choosing proper news
stories to consume. This research introduces million-scale pairs of news
headline and body text dataset with incongruity label, which can uniquely be
utilized for detecting news stories with misleading headlines. On this dataset,
we develop two neural networks with hierarchical architectures that model a
complex textual representation of news articles and measure the incongruity
between the headline and the body text. We also present a data augmentation
method that dramatically reduces the text input size a model handles by
independently investigating each paragraph of news stories, which further
boosts the performance. Our experiments and qualitative evaluations demonstrate
that the proposed methods outperform existing approaches and efficiently detect
news stories with misleading headlines in the real world.
|
['Kunwoo Park', 'Hongjun Lim', 'Seunghyun Yoon', 'Seungpil Won', 'Kyomin Jung', 'Meeyoung Cha', 'Joongbo Shin']
|
2018-11-17
| null | null | null | null |
['incongruity-detection']
|
['natural-language-processing']
|
[-3.03375963e-02 1.78201169e-01 -5.33236623e-01 -4.33787256e-01
-8.55749905e-01 -5.90880215e-01 6.55079365e-01 5.56968153e-01
-3.10053855e-01 7.46254921e-01 1.20246816e+00 -2.05181316e-01
1.62569463e-01 -8.76699746e-01 -9.46996033e-01 -1.79233432e-01
2.89509326e-01 5.29420376e-01 1.25943378e-01 -4.82155174e-01
5.72324276e-01 -3.88220608e-01 -1.29603934e+00 1.11105680e+00
8.06338668e-01 8.69922578e-01 -1.73177347e-01 5.85441053e-01
-3.21369827e-01 1.47336650e+00 -1.10993266e+00 -8.06905389e-01
-2.33733535e-01 -5.04528284e-01 -7.57937968e-01 2.21589267e-01
5.80797255e-01 -6.09052718e-01 -3.68887961e-01 1.15316904e+00
4.82393473e-01 -2.55693287e-01 5.35204291e-01 -8.12079370e-01
-1.00531268e+00 1.66544068e+00 -8.17087829e-01 7.62580514e-01
5.27112961e-01 -4.45688546e-01 1.23350430e+00 -7.90363252e-01
6.37625515e-01 1.20772839e+00 8.93923819e-01 -3.29720154e-02
-5.90905905e-01 -6.46456003e-01 5.13024747e-01 3.11269820e-01
-9.91727293e-01 -2.61884242e-01 8.88401926e-01 -5.24745464e-01
7.90923119e-01 4.97980624e-01 6.80717111e-01 1.80624521e+00
3.15888792e-01 1.15713346e+00 8.57963383e-01 -1.03392847e-01
-2.47888565e-01 1.18437529e-01 7.51247644e-01 1.19719625e-01
4.73629951e-01 -3.11308414e-01 -6.10254705e-01 -1.36068940e-01
1.70691878e-01 -7.02410489e-02 -4.53737438e-01 4.93795276e-01
-1.13054514e+00 1.16004395e+00 4.52524632e-01 1.86327294e-01
-4.84717101e-01 -3.37113857e-01 8.44956100e-01 4.28679585e-01
1.04885364e+00 8.27531397e-01 -3.06078285e-01 -2.68180165e-02
-9.17377234e-01 5.64695358e-01 1.05914235e+00 1.16618419e+00
-8.48226994e-02 -1.07606851e-01 -5.17590165e-01 8.38114679e-01
1.29630482e-02 4.31087881e-01 6.87570632e-01 -1.98237062e-01
8.32495987e-01 8.08221221e-01 4.03611630e-01 -1.62436402e+00
-7.57369399e-01 -1.29401505e+00 -8.24629426e-01 -5.77256382e-01
6.75333813e-02 -3.86012197e-01 -3.29016000e-01 1.23442185e+00
2.46683545e-02 -5.37331283e-01 -8.64031017e-02 8.53220701e-01
1.16843176e+00 1.05403125e+00 -3.48580569e-01 -4.08674270e-01
1.61943245e+00 -1.12367344e+00 -1.33167827e+00 -4.24178332e-01
6.49525583e-01 -1.08368123e+00 1.10225022e+00 4.16792870e-01
-1.05848312e+00 -3.11496884e-01 -1.42881083e+00 -2.07004264e-01
-3.83863568e-01 4.00465131e-01 -9.25570503e-02 1.08625509e-01
-2.06966281e-01 2.21390098e-01 -1.90984905e-01 2.57045954e-01
3.94285589e-01 -4.98237878e-01 1.61113009e-01 1.53691009e-01
-1.85610437e+00 8.51138294e-01 6.81454897e-01 -1.57410264e-01
-5.88649929e-01 -6.64211810e-01 -6.25125110e-01 3.92243229e-02
5.84103048e-01 -4.05868709e-01 1.62193322e+00 -8.89292419e-01
-8.70711029e-01 6.42825007e-01 1.58945948e-01 -6.79991722e-01
9.82959330e-01 -8.37383330e-01 -8.35096836e-01 -2.58107841e-01
5.53110123e-01 -2.25392655e-02 8.17117214e-01 -8.52596819e-01
-6.93714201e-01 -2.38526598e-01 -1.93748847e-01 3.51309121e-01
-4.67278361e-01 3.30356687e-01 -2.68777311e-01 -1.22131646e+00
-2.95166695e-03 -2.75047213e-01 2.31592253e-01 -7.11058080e-01
-1.28495181e+00 -1.07885845e-01 7.11679697e-01 -9.36529636e-01
1.80075634e+00 -1.84892166e+00 -3.92519206e-01 -3.91941778e-02
6.04077876e-01 -2.43672505e-01 2.58933514e-01 5.72657526e-01
3.05882901e-01 2.24635184e-01 2.04422206e-01 -2.44980827e-02
-4.56630215e-02 -2.26094052e-01 -8.94976854e-01 3.52470189e-01
-8.90060216e-02 8.63383532e-01 -6.72764540e-01 -2.99890488e-01
-5.84087372e-01 6.53807521e-02 -2.47218668e-01 9.04102176e-02
-3.98180127e-01 6.40396997e-02 -4.76694971e-01 2.46147677e-01
5.40536404e-01 -7.80208468e-01 -2.50646055e-01 -2.82052428e-01
-2.50629693e-01 9.71020103e-01 -8.70802224e-01 5.45966089e-01
8.34176540e-02 1.03281164e+00 -4.25719410e-01 -5.14297009e-01
9.90697205e-01 2.19006345e-01 -2.64274180e-01 -9.83257532e-01
4.43681210e-01 -1.18850827e-01 -2.27362275e-01 -7.48441637e-01
8.33888292e-01 2.57320464e-01 -4.75185156e-01 7.94301152e-01
-4.33015049e-01 5.37387252e-01 3.99249703e-01 3.38147432e-01
8.08419883e-01 -6.19186640e-01 4.89209682e-01 -8.94366354e-02
2.73399919e-01 2.05131575e-01 4.70421970e-01 1.15729046e+00
1.96172118e-01 5.02067745e-01 9.10590768e-01 -7.27827191e-01
-1.44655049e+00 -4.67102796e-01 -1.62776351e-01 1.60071743e+00
1.15129352e-01 -4.56300616e-01 -5.86751878e-01 -7.54492223e-01
-1.82783768e-01 1.30982316e+00 -1.03041768e+00 7.12670311e-02
-5.82247972e-01 -9.51059997e-01 6.83425605e-01 5.77429295e-01
6.04849100e-01 -6.52852297e-01 -3.26855063e-01 4.43038434e-01
-7.60870039e-01 -1.10656750e+00 -5.49671769e-01 8.31271037e-02
-2.56377518e-01 -1.08429337e+00 -6.14734709e-01 -7.27556825e-01
4.78790700e-01 2.93148309e-01 1.17482018e+00 -1.53794140e-01
4.17476982e-01 -5.86182892e-01 -7.83708811e-01 -7.16058791e-01
-8.13639402e-01 1.79628015e-01 -1.35314971e-01 -1.91303454e-02
3.79964143e-01 2.75431350e-02 -3.62072468e-01 3.41010451e-01
-9.67081547e-01 5.19653320e-01 5.56670904e-01 9.42784905e-01
1.33748516e-01 1.35752916e-01 7.78629720e-01 -1.55190229e+00
1.31858134e+00 -9.07762885e-01 -3.02559078e-01 1.08697340e-01
-6.33274138e-01 -2.30595484e-01 9.88851190e-01 -4.40740526e-01
-1.18226659e+00 -8.00454855e-01 -2.93822020e-01 3.87042761e-01
1.01781294e-01 1.10614169e+00 2.30025023e-01 7.14868426e-01
1.03604066e+00 3.34289312e-01 -4.90138173e-01 -6.11211538e-01
3.07559252e-01 8.24378669e-01 7.30762839e-01 1.82672948e-01
3.83347929e-01 2.21612975e-01 -1.02535391e+00 -4.89159465e-01
-1.77091360e+00 -5.25916994e-01 -2.75518954e-01 -3.97881120e-01
3.57587546e-01 -1.00561547e+00 -1.69247493e-01 4.33121294e-01
-1.41584623e+00 6.20626390e-01 1.59538329e-01 4.27287430e-01
-1.10639147e-01 1.77758843e-01 -1.01653719e+00 -5.76902807e-01
-4.48522955e-01 -6.29930735e-01 5.36164820e-01 5.71196303e-02
-6.43312693e-01 -6.82662845e-01 1.22912690e-01 5.70507169e-01
4.23911572e-01 3.00503612e-01 8.84316921e-01 -1.65743828e+00
1.28674060e-01 -7.69530714e-01 -2.66844541e-01 1.87846236e-02
-3.29995453e-01 8.21262002e-02 -6.94454432e-01 -3.86391468e-02
1.99966222e-01 -5.59949279e-01 8.56847763e-01 4.19640988e-01
8.06086242e-01 -1.41752326e+00 -2.45450437e-01 1.60995826e-01
7.50095487e-01 6.89952774e-03 3.55274826e-01 8.61705005e-01
5.97062945e-01 5.80599844e-01 4.82714146e-01 8.42782319e-01
4.71932024e-01 2.16252595e-01 3.03315759e-01 -1.43923447e-01
1.06353380e-01 -5.33458292e-01 3.61548334e-01 1.23039627e+00
4.24098641e-01 -9.05935705e-01 -7.57501364e-01 5.10439157e-01
-1.73800588e+00 -1.22707975e+00 -3.94720286e-01 1.41508698e+00
1.17607450e+00 8.32260966e-01 1.82176828e-01 2.81016380e-01
1.13536072e+00 3.77488047e-01 -4.04392093e-01 -1.87457263e-01
-6.27602398e-01 -9.44210649e-01 3.60924810e-01 3.03212941e-01
-1.47745490e+00 4.88290846e-01 6.87317944e+00 6.73185110e-01
-8.70238304e-01 -3.23270336e-02 1.02842128e+00 -1.21924929e-01
-3.93836558e-01 -5.49424529e-01 -1.16380918e+00 8.41062844e-01
8.76723945e-01 -4.98063415e-01 -4.09402668e-01 1.26986313e+00
3.47752929e-01 3.07201445e-01 -9.32346702e-01 4.68134463e-01
4.39644128e-01 -1.79847026e+00 4.27300245e-01 -3.97568822e-01
1.00842762e+00 7.87648708e-02 1.78261116e-01 2.98327833e-01
4.54028577e-01 -6.34634912e-01 9.99838352e-01 4.44201380e-01
1.56302154e-01 -8.87161732e-01 1.37575591e+00 6.92548752e-01
-3.94491255e-01 -6.55807480e-02 -1.64214611e-01 -3.24407607e-01
3.18810195e-01 8.41032624e-01 -1.10214460e+00 -7.49228930e-04
7.26778567e-01 8.08465958e-01 -8.02253842e-01 9.88938510e-01
-3.92911404e-01 8.15787971e-01 8.25254098e-02 -6.79414451e-01
4.95524555e-01 3.50723416e-01 8.94470215e-01 1.66530406e+00
4.84223329e-02 -2.78062522e-01 1.49183676e-01 9.09423292e-01
-4.80244428e-01 3.22628558e-01 -3.71100873e-01 -2.81268179e-01
6.97786093e-01 9.19451416e-01 -5.74320674e-01 -7.41971433e-01
-3.91240895e-01 5.40229619e-01 3.58498812e-01 2.22149745e-01
-9.46627975e-01 -4.44600880e-01 -1.64351106e-01 1.65746778e-01
1.00145221e-03 4.77644473e-01 -6.02967978e-01 -1.07960844e+00
5.30826822e-02 -1.05477917e+00 5.33550382e-01 -8.23634505e-01
-1.72218120e+00 9.42641437e-01 -2.83785760e-01 -1.32302833e+00
-1.96044520e-01 -6.37507513e-02 -6.96887434e-01 3.12174380e-01
-1.14900923e+00 -8.25964570e-01 -2.38226384e-01 1.56054556e-01
8.78482223e-01 -1.05788186e-01 2.20817760e-01 2.31721029e-01
-8.30438852e-01 7.41448939e-01 4.28730488e-01 7.40975261e-01
7.67924547e-01 -1.12655675e+00 7.81278372e-01 9.28510129e-01
-3.23576368e-02 5.70126057e-01 1.27002549e+00 -1.01331043e+00
-5.98064303e-01 -1.15841663e+00 1.14115870e+00 -2.96995789e-01
1.01419175e+00 -1.90799236e-01 -1.07964170e+00 8.40280235e-01
6.21571660e-01 -9.12028372e-01 1.04021478e+00 1.90074638e-01
-5.65018177e-01 2.35895231e-01 -6.01779580e-01 6.08100057e-01
4.48043495e-01 -3.29965234e-01 -1.28439200e+00 7.33798921e-01
1.20052230e+00 -6.97070897e-01 -4.87515450e-01 2.04743609e-01
3.48724127e-01 -8.25612366e-01 5.55764556e-01 -9.88429308e-01
1.13273501e+00 -2.31043138e-02 2.65209198e-01 -1.41791356e+00
-6.41532600e-01 -3.62202972e-01 -3.52197111e-01 1.16473091e+00
8.67401302e-01 -3.27476978e-01 2.64260203e-01 1.07646398e-01
-4.10307616e-01 -6.40823722e-01 -6.11286044e-01 -3.37764204e-01
-1.93528518e-01 -3.42941880e-01 4.14064288e-01 1.19724512e+00
3.59600395e-01 8.43948364e-01 -8.59339774e-01 -1.77522063e-01
2.49268442e-01 1.82927698e-01 4.06384975e-01 -1.00009310e+00
-2.76278798e-02 -7.93652773e-01 4.37191986e-02 -1.28846228e+00
-3.62676352e-01 -4.60313916e-01 1.10813409e-01 -1.25856042e+00
4.19537246e-01 3.09828818e-01 -2.17099185e-03 6.03462905e-02
-3.83345187e-01 1.28100976e-01 -3.91862601e-01 4.11797643e-01
-9.75816607e-01 4.56542581e-01 1.17428517e+00 -3.78519684e-01
5.71373664e-03 1.64441675e-01 -1.23269320e+00 1.13452828e+00
5.44029713e-01 -5.74820459e-01 -1.51484504e-01 -3.70656312e-01
1.14202189e+00 -1.88385829e-01 9.01366696e-02 -6.86477721e-01
4.54140842e-01 -1.47710023e-02 8.21750402e-01 -1.18969476e+00
-3.20016533e-01 -3.68180454e-01 -2.69129574e-01 2.91834384e-01
-1.39229119e+00 4.63423282e-01 -3.63704599e-02 8.11728001e-01
-4.62265015e-01 -1.62091225e-01 5.44700742e-01 -1.37943134e-01
-2.37037897e-01 -1.97838277e-01 -7.67960608e-01 5.40780187e-01
7.77063072e-01 3.16343337e-01 -1.18734896e+00 -9.57304239e-01
-4.80394900e-01 2.59635627e-01 -6.60726652e-02 6.48230016e-01
7.16008663e-01 -1.37591720e+00 -1.38895869e+00 3.78785543e-02
3.58459890e-01 -2.71259218e-01 1.97409526e-01 8.67558241e-01
-6.75387979e-01 4.22135621e-01 -1.33342981e-01 -1.76164091e-01
-9.94849384e-01 7.00933456e-01 -1.79382533e-01 -3.92473012e-01
-7.32681394e-01 9.81789649e-01 7.59178177e-02 8.02459866e-02
4.36203957e-01 -3.25429738e-01 -9.08979833e-01 7.44438708e-01
1.32629752e+00 5.56142151e-01 1.53200209e-01 -7.75402546e-01
9.81091782e-02 -1.49294227e-01 -1.03076601e+00 2.31559873e-01
1.18285120e+00 -5.87108970e-01 2.98904758e-02 6.89246058e-01
1.15553832e+00 1.76315159e-01 -7.30749428e-01 -5.88986874e-01
1.57882944e-01 -2.12414727e-01 3.11851025e-01 -1.14436257e+00
-4.46902901e-01 3.26324463e-01 -1.96068555e-01 9.61570442e-01
7.60925114e-01 1.95686817e-01 1.11949384e+00 5.88702500e-01
-6.18068159e-01 -1.51394713e+00 1.65620074e-01 9.15188909e-01
1.49399233e+00 -1.32447755e+00 1.93507895e-01 -1.13198973e-01
-1.06188059e+00 1.32617331e+00 7.01604247e-01 -3.34912874e-02
1.55000523e-01 4.79797304e-01 3.69025409e-01 -5.06052017e-01
-9.37180340e-01 3.09372216e-01 7.23156691e-01 -1.16077833e-01
5.45138955e-01 -9.19197723e-02 -4.86525267e-01 1.18469858e+00
-7.46634901e-01 -6.67070270e-01 8.43836308e-01 7.11539328e-01
-9.10256088e-01 4.98560034e-02 -5.08551121e-01 8.56109083e-01
-8.40089381e-01 -3.25925559e-01 -9.71336722e-01 6.05652213e-01
-3.20072442e-01 9.18390453e-01 2.42374957e-01 -5.55582523e-01
2.79908687e-01 -6.60092151e-03 -4.79201525e-01 -2.15026259e-01
-7.83937156e-01 4.86359298e-01 6.28800750e-01 -1.58594802e-01
-1.47832960e-01 -2.90939420e-01 -8.26089740e-01 -5.03079176e-01
-5.07016122e-01 1.95350081e-01 3.10507089e-01 1.02289808e+00
3.79982024e-01 7.41149127e-01 6.80819929e-01 -1.54397875e-01
-6.90328598e-01 -1.47050810e+00 -2.08397150e-01 6.35523081e-01
6.68891907e-01 -3.99054825e-01 -4.21380401e-01 8.31735730e-02]
|
[12.20760726928711, 9.369093894958496]
|
382f27c4-ee33-4617-93b4-964cdca0634d
|
a-scale-independent-multi-objective
|
2302.04179
| null |
https://arxiv.org/abs/2302.04179v4
|
https://arxiv.org/pdf/2302.04179v4.pdf
|
A Scale-Independent Multi-Objective Reinforcement Learning with Convergence Analysis
|
Many sequential decision-making problems need optimization of different objectives which possibly conflict with each other. The conventional way to deal with a multi-task problem is to establish a scalar objective function based on a linear combination of different objectives. However, for the case of having conflicting objectives with different scales, this method needs a trial-and-error approach to properly find proper weights for the combination. As such, in most cases, this approach cannot guarantee an optimal Pareto solution. In this paper, we develop a single-agent scale-independent multi-objective reinforcement learning on the basis of the Advantage Actor-Critic (A2C) algorithm. A convergence analysis is then done for the devised multi-objective algorithm providing a convergence-in-mean guarantee. We then perform some experiments over a multi-task problem to evaluate the performance of the proposed algorithm. Simulation results show the superiority of developed multi-objective A2C approach against the single-objective algorithm.
|
['Mohsen Amidzadeh']
|
2023-02-08
| null | null | null | null |
['multi-objective-reinforcement-learning']
|
['methodology']
|
[ 2.45959327e-01 -2.37263158e-01 1.18724637e-01 -1.52935073e-01
-7.71338761e-01 -1.89520463e-01 2.52787143e-01 5.12497962e-01
-8.15728009e-01 1.22312200e+00 -2.16088787e-01 -6.43812940e-02
-8.89654815e-01 -4.18310523e-01 -3.04638714e-01 -1.09637725e+00
8.62368196e-03 7.14531124e-01 2.05238964e-02 -2.82560199e-01
5.77083588e-01 1.20905548e-01 -1.30798054e+00 -3.08017343e-01
1.20700467e+00 8.91922951e-01 5.62776566e-01 7.27420628e-01
7.39992037e-02 2.32870385e-01 -7.83301592e-01 -3.31909768e-02
3.44367117e-01 -4.18893963e-01 -4.00587559e-01 3.08906585e-01
-3.35225254e-01 3.76349390e-02 8.40236485e-01 1.08836830e+00
7.76590049e-01 4.73087341e-01 7.18002617e-01 -1.35610008e+00
-9.94960293e-02 3.03482085e-01 -9.18789566e-01 2.46998683e-01
1.05634533e-01 2.18965217e-01 8.24994266e-01 -3.69042724e-01
1.68865025e-01 1.22825241e+00 2.15233281e-01 1.72662333e-01
-1.18149567e+00 -3.12991858e-01 3.78453523e-01 1.18502200e-01
-1.12228787e+00 -1.13853432e-01 8.07689250e-01 -1.85522676e-01
5.41873455e-01 -2.56243031e-02 4.50318098e-01 4.73619908e-01
6.47741973e-01 3.33470315e-01 1.54227221e+00 -5.55253327e-01
4.93096918e-01 1.72704980e-01 -6.35831282e-02 4.64083523e-01
6.98673666e-01 -4.88752723e-02 -1.23745240e-01 -9.43294764e-02
3.22781682e-01 -1.71617463e-01 2.89851446e-02 -3.26553822e-01
-1.02627957e+00 8.53961945e-01 1.30632147e-01 4.55364227e-01
-8.69144619e-01 1.07640408e-01 3.08768332e-01 4.15592939e-01
2.71440059e-01 4.37255383e-01 -2.47210443e-01 4.57186103e-02
-7.34214604e-01 2.69024283e-01 4.97763366e-01 3.04656714e-01
3.46078962e-01 4.86304998e-01 -1.01793781e-02 4.89109606e-01
5.21688700e-01 5.61157644e-01 5.87813675e-01 -7.60806084e-01
4.54625994e-01 3.77080441e-01 7.31010377e-01 -1.03187180e+00
-5.50722182e-01 -9.24703419e-01 -6.90807164e-01 1.13716221e+00
6.52878702e-01 -6.80400670e-01 -2.08754838e-01 1.50796449e+00
6.38386905e-01 -3.26143563e-01 3.82041603e-01 1.16058946e+00
-1.37639433e-01 5.70940614e-01 1.71333268e-01 -7.36705363e-01
1.19108391e+00 -8.20115387e-01 -1.00768673e+00 3.81352991e-04
7.18142092e-03 -7.93586671e-01 6.35980010e-01 6.53226912e-01
-1.10768247e+00 -4.47493047e-01 -1.13891029e+00 9.73170459e-01
-1.58305779e-01 1.50673762e-01 1.89300910e-01 5.51113427e-01
-7.38089263e-01 3.92118782e-01 -3.59238863e-01 -1.91700101e-01
-1.65089473e-01 5.30044973e-01 1.23642839e-01 5.28852284e-01
-1.04046619e+00 1.16919851e+00 7.59007514e-01 2.35227391e-01
-7.20775545e-01 -1.51063040e-01 -2.02492535e-01 1.89724252e-01
7.44323432e-01 -5.44133365e-01 1.09621930e+00 -1.62320292e+00
-1.75882912e+00 1.00005709e-01 2.31051207e-01 -3.01549226e-01
7.53566265e-01 -4.54682298e-02 -2.90177435e-01 1.06947482e-01
-6.29957989e-02 2.70190910e-02 1.05216777e+00 -1.46507359e+00
-1.09870732e+00 -2.31518075e-01 2.74918169e-01 7.62476444e-01
-3.30355436e-01 6.95972070e-02 3.71961832e-01 -3.72022480e-01
-5.80299020e-01 -7.42095947e-01 -4.71292406e-01 -4.36404467e-01
-7.69722089e-02 -3.43408473e-02 4.71982628e-01 -3.91230017e-01
1.29285491e+00 -1.73997259e+00 3.68795961e-01 3.26761991e-01
-8.57637003e-02 2.01169133e-01 -4.51755226e-02 3.58061105e-01
1.39411673e-01 -2.10136950e-01 -8.05656984e-02 -1.95981905e-01
-2.52029542e-02 -7.08464757e-02 3.69471580e-01 6.12338483e-01
1.96635649e-01 1.21430747e-01 -8.86580646e-01 -6.94240391e-01
1.57734886e-01 2.15440750e-01 -1.95261434e-01 7.03260824e-02
-3.21139485e-01 4.08293992e-01 -1.01293218e+00 5.66070139e-01
3.89287859e-01 -3.39082517e-02 4.16888744e-01 4.90693115e-02
-4.16934252e-01 -7.51269758e-01 -1.85330355e+00 1.15650558e+00
-6.74848080e-01 1.14380397e-01 4.81392145e-01 -1.37476957e+00
9.17823017e-01 5.66734493e-01 8.35411787e-01 -4.88393575e-01
5.78110933e-01 4.27971095e-01 2.96780914e-01 -3.85695577e-01
3.43590498e-01 -3.94570261e-01 1.31674185e-01 4.98203993e-01
-1.91403434e-01 1.62544429e-01 5.06762683e-01 -4.46864456e-01
7.33305693e-01 1.39792532e-01 6.78885162e-01 -5.46836436e-01
1.11409438e+00 -4.62410748e-02 5.72895348e-01 4.53579515e-01
-4.27741259e-01 -4.04978581e-02 4.20517772e-01 -1.74652085e-01
-9.03329551e-01 -4.97131824e-01 1.08714193e-01 7.62021363e-01
2.63660580e-01 5.16698539e-01 -3.94020051e-01 -5.26885927e-01
1.52352259e-01 6.62473023e-01 -3.08443934e-01 1.58677503e-01
-3.06908548e-01 -1.08442104e+00 5.86676486e-02 -2.61991769e-01
3.89208764e-01 -9.76665318e-01 -1.39803231e+00 7.95470417e-01
7.33601749e-02 -7.04146862e-01 -2.50696957e-01 2.55846620e-01
-8.65761936e-01 -1.02582431e+00 -9.56754029e-01 -5.88180244e-01
6.20693386e-01 8.16969201e-02 6.91713810e-01 8.38816762e-02
8.71152356e-02 3.40943962e-01 -3.32566410e-01 -5.23013771e-01
-4.41774219e-01 -4.13413718e-02 2.98168123e-01 4.21520114e-01
-2.81024724e-01 -4.97805148e-01 -4.48228508e-01 3.91352087e-01
-9.03549492e-01 -3.05743068e-01 8.75877678e-01 7.21773088e-01
4.35792834e-01 7.36310184e-01 1.37168932e+00 -3.32786471e-01
1.16099477e+00 -4.02811915e-01 -1.14477909e+00 7.11853504e-01
-9.50260937e-01 3.84012312e-01 1.00515711e+00 -6.27984345e-01
-1.32971156e+00 3.10377707e-03 4.36362535e-01 -2.23123178e-01
1.77840054e-01 6.51466906e-01 -6.37920722e-02 -2.39774823e-01
1.74781084e-01 1.38280138e-01 2.63550907e-01 -1.40555099e-01
6.08966053e-02 5.15076458e-01 1.32323176e-01 -7.59765625e-01
6.50838435e-01 -6.16723448e-02 4.86137420e-01 -4.84978825e-01
-4.24816966e-01 -3.59594822e-01 -1.85585856e-01 -7.41237640e-01
7.97329605e-01 -4.93969917e-01 -1.16239083e+00 3.66168976e-01
-9.84869242e-01 9.95499715e-02 4.03018482e-02 6.59033477e-01
-6.78536832e-01 2.55919546e-01 1.29423067e-01 -1.44271624e+00
-4.45147991e-01 -1.18382156e+00 4.04569596e-01 5.74744523e-01
1.09344579e-01 -1.19861603e+00 2.14487270e-01 2.49183282e-01
5.12991965e-01 6.35299683e-01 6.78811073e-01 -7.07940757e-01
-1.46118984e-01 -1.68214813e-01 2.48451069e-01 1.39901578e-01
1.87237918e-01 8.63424540e-02 -1.97443053e-01 -4.99478579e-01
1.96822837e-01 -4.75649744e-01 9.28196535e-02 5.36461532e-01
3.66551161e-01 -3.92640561e-01 6.17073365e-02 -6.99525476e-02
2.09544635e+00 6.47620499e-01 1.52038597e-02 8.03576469e-01
2.51490846e-02 4.75539297e-01 1.17862260e+00 1.01592696e+00
8.61255005e-02 6.15616322e-01 7.47324944e-01 1.54795742e-03
4.73020077e-01 5.20191371e-01 3.82402569e-01 5.64408720e-01
-2.99255997e-01 -5.66766262e-01 -6.38848424e-01 4.54684019e-01
-2.08510685e+00 -8.40849400e-01 -1.43255582e-02 2.27797532e+00
5.99084675e-01 3.01293403e-01 3.24528664e-01 3.22681367e-01
1.04123640e+00 -2.19597127e-02 -4.93595809e-01 -6.23298287e-01
-1.51816532e-01 -8.21847916e-02 5.61233640e-01 7.35141277e-01
-9.17654335e-01 2.75069475e-01 4.97036219e+00 8.89804661e-01
-1.20361865e+00 3.31547707e-02 4.21295077e-01 -1.94230199e-01
-7.15943202e-02 -6.96594492e-02 -5.53248405e-01 5.89207113e-01
8.01873863e-01 -6.35748863e-01 6.47384226e-01 5.06033003e-01
8.72565985e-01 -6.27071559e-01 -3.37229103e-01 6.59905016e-01
-2.39395693e-01 -5.49338639e-01 -4.18687791e-01 -4.41334732e-02
9.09571946e-01 -6.19533062e-01 -8.09133723e-02 -2.74872780e-03
3.15696418e-01 -5.71169078e-01 7.93420970e-01 6.07330501e-01
2.11640552e-01 -1.08875000e+00 9.51713026e-01 4.95128959e-01
-1.02830184e+00 -4.06153053e-01 -1.99334458e-01 -4.17104848e-02
3.83056015e-01 4.43717003e-01 -3.04312915e-01 9.43324745e-01
1.00065805e-01 2.52494705e-03 -9.20278132e-02 1.30132926e+00
-5.50246472e-03 1.55221716e-01 -1.90346643e-01 -5.57588518e-01
6.02769971e-01 -5.27882636e-01 9.29072857e-01 7.70727694e-01
4.96605903e-01 -2.55204141e-02 2.88551182e-01 4.47873801e-01
4.96425033e-01 4.81104523e-01 -1.98786005e-01 6.48985663e-03
3.38645548e-01 1.38369977e+00 -8.53318453e-01 -2.12584808e-01
-1.87591508e-01 5.87585568e-01 1.52422592e-01 3.91422540e-01
-1.02352870e+00 -3.95719796e-01 2.77893275e-01 -2.86506593e-01
3.04015130e-01 -2.56731302e-01 -1.24801017e-01 -6.40488923e-01
3.64466049e-02 -1.03810251e+00 3.90561610e-01 -3.20400238e-01
-1.05802453e+00 4.80730623e-01 1.25819564e-01 -1.44282913e+00
-1.55673519e-01 -3.06427509e-01 -5.84903479e-01 8.68457139e-01
-1.72604430e+00 -6.54909551e-01 5.65661900e-02 4.40367609e-01
6.91640079e-01 -4.43658739e-01 4.70303506e-01 1.75984547e-01
-6.57995641e-01 1.63928434e-01 7.39161432e-01 -7.65258014e-01
6.57817662e-01 -1.14043891e+00 -8.92040253e-01 7.21506596e-01
-6.78899109e-01 1.10458910e-01 1.14740670e+00 -6.79397643e-01
-1.27268183e+00 -5.34808218e-01 5.21149635e-01 4.26027060e-01
7.50902951e-01 4.31762934e-01 -3.53575468e-01 7.17598870e-02
6.64209187e-01 -3.13010782e-01 2.66360313e-01 -2.41208076e-01
6.02485836e-01 -3.67504358e-01 -1.28124976e+00 3.15022796e-01
9.21545252e-02 3.72137457e-01 -4.33133602e-01 1.23780929e-01
2.72278011e-01 -6.64537027e-02 -9.47618484e-01 2.48167992e-01
4.96867687e-01 -8.08814704e-01 6.44373596e-01 -4.66869503e-01
1.50019705e-01 -5.53801596e-01 -6.44529378e-03 -1.77148438e+00
-3.53595346e-01 -5.23624420e-01 1.90397143e-01 1.12694037e+00
3.21679682e-01 -7.87491620e-01 3.72612089e-01 3.79344374e-01
1.32848442e-01 -7.29337275e-01 -1.05713427e+00 -1.03066337e+00
-1.63839653e-01 3.15396577e-01 1.96019605e-01 6.42992914e-01
-1.55988887e-01 3.27127278e-01 -4.81581569e-01 1.51792720e-01
1.06895506e+00 6.04894646e-02 3.32726508e-01 -1.05718803e+00
-5.40924966e-01 -5.74815273e-01 -8.13460350e-02 -1.07610030e-02
-1.26742767e-02 -3.09128761e-01 2.18102857e-01 -1.51608407e+00
-1.57573625e-01 -5.13128281e-01 -6.94341600e-01 1.15242742e-01
-4.78522062e-01 -4.45823550e-01 4.73388761e-01 4.25233543e-02
-9.19456482e-01 7.36500263e-01 1.32225764e+00 -1.05312735e-01
-2.99449354e-01 3.03759545e-01 -4.37180191e-01 5.52302539e-01
1.09501171e+00 -7.08907783e-01 -5.99485934e-01 -2.73134440e-01
7.69084170e-02 7.00354278e-01 -1.22944929e-01 -1.13033724e+00
-2.84192562e-02 -7.76704252e-01 2.87643448e-02 -1.61529303e-01
7.41748363e-02 -1.33151555e+00 1.82536200e-01 7.01861560e-01
-3.00316364e-01 4.74996001e-01 5.13881706e-02 7.07880318e-01
-1.75503314e-01 -7.24404395e-01 7.87209809e-01 -1.18238263e-01
-5.03969967e-01 -3.03488791e-01 -5.80324173e-01 -5.54462969e-02
1.45367897e+00 -3.50533500e-02 -2.87742838e-02 -3.99359554e-01
-4.90403265e-01 6.78717613e-01 9.74386111e-02 1.24128222e-01
3.51797968e-01 -1.11220407e+00 -9.36634123e-01 -7.31302440e-01
-2.90819377e-01 -5.34806430e-01 1.25527188e-01 9.35529411e-01
-4.18550700e-01 3.57749224e-01 -7.21888125e-01 -1.56303763e-01
-1.43122005e+00 5.78670204e-01 3.88494760e-01 -7.84942925e-01
2.10466776e-02 1.02648519e-01 -3.37649316e-01 1.06602632e-01
1.61848471e-01 7.64975324e-02 -6.28293693e-01 3.60746294e-01
1.96193710e-01 6.67298496e-01 -2.15696976e-01 -3.62313360e-01
-3.98005813e-01 6.66758597e-01 5.32368422e-01 -6.08126640e-01
1.32657254e+00 -3.62432867e-01 1.58894703e-01 3.93322021e-01
5.73218346e-01 3.02136992e-03 -1.24993837e+00 -3.62726897e-02
-9.31112096e-03 -3.66481394e-01 1.48806527e-01 -9.61364090e-01
-8.51943970e-01 3.01393628e-01 7.34577835e-01 2.99991965e-01
1.34933853e+00 -1.06236506e+00 2.84840375e-01 3.66407782e-01
3.52651149e-01 -1.49117315e+00 2.10938573e-01 1.49388373e-01
8.85048091e-01 -1.29194200e+00 2.77022868e-01 1.06503434e-01
-8.97306144e-01 1.41154671e+00 6.28863633e-01 -2.57282943e-01
4.30540472e-01 8.63345191e-02 6.92269728e-02 1.35292277e-01
-8.44912529e-01 -4.40486193e-01 1.28509492e-01 3.30555618e-01
2.07907081e-01 9.00815353e-02 -1.21262300e+00 2.27021620e-01
5.07801354e-01 1.44341961e-01 5.47073960e-01 1.09437358e+00
-7.15201795e-01 -1.23070204e+00 -9.58868802e-01 1.39231071e-01
-6.03455305e-01 3.97193104e-01 1.62572965e-01 8.18116844e-01
4.66844738e-02 1.29166257e+00 -4.26373839e-01 1.40085667e-01
2.71851301e-01 -7.33565167e-02 4.92580652e-01 -4.07579206e-02
-9.13159788e-01 4.70243543e-01 2.84391552e-01 9.63319838e-03
-7.40540326e-01 -5.51769793e-01 -1.30105782e+00 -1.05943643e-01
-4.56579685e-01 4.57864255e-01 9.92508173e-01 9.85519826e-01
-3.78785394e-02 9.41091001e-01 8.78937721e-01 -5.62792361e-01
-1.18558693e+00 -7.68605530e-01 -5.99033594e-01 2.89149791e-01
2.61211395e-01 -8.43950748e-01 -3.44510317e-01 -3.87958497e-01]
|
[4.367411136627197, 2.423182725906372]
|
9323b692-9302-483d-92f7-d08d3a9c5dc4
|
are-transformers-effective-for-time-series
|
2205.13504
| null |
https://arxiv.org/abs/2205.13504v3
|
https://arxiv.org/pdf/2205.13504v3.pdf
|
Are Transformers Effective for Time Series Forecasting?
|
Recently, there has been a surge of Transformer-based solutions for the long-term time series forecasting (LTSF) task. Despite the growing performance over the past few years, we question the validity of this line of research in this work. Specifically, Transformers is arguably the most successful solution to extract the semantic correlations among the elements in a long sequence. However, in time series modeling, we are to extract the temporal relations in an ordered set of continuous points. While employing positional encoding and using tokens to embed sub-series in Transformers facilitate preserving some ordering information, the nature of the \emph{permutation-invariant} self-attention mechanism inevitably results in temporal information loss. To validate our claim, we introduce a set of embarrassingly simple one-layer linear models named LTSF-Linear for comparison. Experimental results on nine real-life datasets show that LTSF-Linear surprisingly outperforms existing sophisticated Transformer-based LTSF models in all cases, and often by a large margin. Moreover, we conduct comprehensive empirical studies to explore the impacts of various design elements of LTSF models on their temporal relation extraction capability. We hope this surprising finding opens up new research directions for the LTSF task. We also advocate revisiting the validity of Transformer-based solutions for other time series analysis tasks (e.g., anomaly detection) in the future. Code is available at: \url{https://github.com/cure-lab/LTSF-Linear}.
|
['Qiang Xu', 'Lei Zhang', 'Muxi Chen', 'Ailing Zeng']
|
2022-05-26
| null | null | null | null |
['temporal-relation-extraction']
|
['natural-language-processing']
|
[ 5.84353507e-02 -1.73343346e-01 -2.97916979e-01 -3.82349342e-01
-6.82562947e-01 -7.73157895e-01 6.70193911e-01 1.96018681e-01
-2.72812671e-03 3.16040188e-01 4.17713881e-01 -7.71002948e-01
-4.06911075e-01 -5.79186618e-01 -6.51604474e-01 -6.05311155e-01
-6.31723106e-01 -1.23939281e-02 2.29219105e-02 -2.69637644e-01
1.45484775e-01 3.51953566e-01 -1.55895030e+00 3.18738282e-01
7.92581737e-01 1.38169324e+00 -1.47406489e-01 1.98985025e-01
-8.29764009e-02 1.06335449e+00 -3.36852878e-01 -4.56129909e-01
1.85428068e-01 -2.25749686e-01 -8.35374296e-01 -2.27400362e-01
-4.06814516e-02 -1.87482372e-01 -3.94730866e-01 8.29066277e-01
2.27522284e-01 6.53969124e-02 2.66560793e-01 -1.54606700e+00
-6.56117141e-01 8.57423186e-01 -2.65778810e-01 6.32320225e-01
3.56296986e-01 1.21937886e-01 1.43511522e+00 -7.96787977e-01
3.40738505e-01 8.73350441e-01 1.12378168e+00 3.58886980e-02
-1.04636586e+00 -6.83322787e-01 5.38793623e-01 5.89805245e-01
-1.34071684e+00 -5.28236866e-01 1.02729142e+00 -3.32604289e-01
1.32169771e+00 5.94905913e-01 6.23928130e-01 1.27106607e+00
4.01987940e-01 8.64224255e-01 1.12100363e+00 -2.36119300e-01
1.66227669e-02 -3.66431981e-01 4.17766333e-01 3.70437711e-01
-1.62362188e-01 1.40749499e-01 -6.36266530e-01 -3.48503560e-01
4.45499837e-01 1.86035842e-01 -2.02537447e-01 1.34003744e-01
-1.21366489e+00 6.63603246e-01 1.16175115e-01 7.13713825e-01
-4.61129814e-01 -9.73250531e-03 7.18317568e-01 5.64094365e-01
8.76309037e-01 3.71998608e-01 -7.22262025e-01 -6.50674760e-01
-8.30448806e-01 1.92896679e-01 5.90223372e-01 7.12070048e-01
1.51504621e-01 4.50687855e-02 -2.21722528e-01 7.75037229e-01
2.50832979e-02 9.98578891e-02 6.51055455e-01 -6.75911486e-01
4.61211562e-01 4.15911108e-01 -2.17530057e-01 -1.19857562e+00
-3.83278847e-01 -6.53171241e-01 -8.50802600e-01 -5.08736491e-01
4.15241718e-01 8.39144811e-02 -4.62130010e-01 1.89464438e+00
9.52035636e-02 5.11175036e-01 -4.05462563e-01 5.64270914e-01
3.22470278e-01 7.40336061e-01 -1.29232273e-01 -5.00470400e-01
1.35489607e+00 -7.10205793e-01 -8.99768770e-01 -1.25549272e-01
6.73587084e-01 -7.04928637e-01 1.25325155e+00 2.36371621e-01
-8.05191517e-01 -2.95419455e-01 -7.02985644e-01 3.18197832e-02
-3.78636748e-01 -1.64173201e-01 9.06265974e-01 2.98029423e-01
-8.92207265e-01 8.32309425e-01 -1.07719922e+00 -5.42403758e-01
2.92832345e-01 1.12337835e-01 -7.54704997e-02 2.81812549e-01
-1.51271677e+00 6.89759016e-01 5.51648811e-03 3.62294793e-01
-5.47232151e-01 -8.99634063e-01 -6.33995056e-01 1.41216502e-01
3.65534306e-01 -4.02711183e-01 1.22330904e+00 -6.51795626e-01
-1.08440936e+00 6.71113729e-01 -4.49558496e-01 -6.55379772e-01
2.70915419e-01 -2.66268730e-01 -8.34941328e-01 -2.98312247e-01
9.79247466e-02 -1.05243241e-02 6.96273088e-01 -6.80493653e-01
-5.64280033e-01 -4.32782859e-01 -9.34362635e-02 -2.15219542e-01
-6.54013097e-01 2.56637990e-01 -8.96264240e-02 -1.05935121e+00
1.12762146e-01 -1.08060586e+00 -1.56494919e-02 -4.35320914e-01
-4.14957464e-01 -6.86706662e-01 7.07390130e-01 -7.11216986e-01
2.01145554e+00 -2.19720650e+00 -3.66797000e-01 1.47481948e-01
-1.03327502e-02 3.31949559e-03 -1.39355749e-01 9.13826823e-01
-5.35564303e-01 3.33377659e-01 -2.54579365e-01 -3.59147787e-01
6.00067154e-02 1.86679840e-01 -1.02303851e+00 4.80138421e-01
1.39459997e-01 1.17939341e+00 -7.83098638e-01 -2.09632143e-01
5.14008589e-02 3.95243973e-01 -3.44291359e-01 6.83413818e-02
-7.58700967e-02 4.37978178e-01 -5.00267088e-01 6.67420089e-01
2.26665497e-01 -4.58374828e-01 1.63517386e-01 -1.91388994e-01
-2.99536645e-01 8.96994770e-01 -6.00375116e-01 1.51086974e+00
-2.68005401e-01 6.30334377e-01 -7.20743656e-01 -1.29309738e+00
7.85991967e-01 5.81173420e-01 1.12601459e+00 -9.44925249e-01
-4.88603972e-02 2.15551034e-01 7.99349472e-02 -5.15855074e-01
3.86424571e-01 -1.02977641e-01 -1.90950662e-01 4.39894259e-01
-2.23585665e-01 3.75507116e-01 1.21977359e-01 -1.03029899e-01
1.25962436e+00 2.32834816e-01 1.83788180e-01 -2.36228079e-01
3.07531625e-01 -4.03862968e-02 7.70666897e-01 4.69752371e-01
-3.46949637e-01 4.39485669e-01 5.52854240e-01 -7.00759888e-01
-9.73792493e-01 -8.87683392e-01 -2.65904367e-01 9.88202035e-01
-3.50120336e-01 -8.67508411e-01 -2.11977601e-01 -6.10279799e-01
-6.90156594e-03 8.35962057e-01 -6.43015385e-01 -1.20040998e-01
-8.07147622e-01 -1.07180905e+00 7.33627915e-01 5.92662454e-01
1.24304287e-01 -9.28879678e-01 -4.86300677e-01 3.87918234e-01
-7.52688348e-01 -1.23426020e+00 -5.18722475e-01 3.19552571e-01
-1.00003743e+00 -8.18855762e-01 -2.61710882e-01 -4.26511765e-01
1.65014252e-01 1.82672918e-01 1.18108881e+00 -2.64627516e-01
1.62901238e-01 2.14329243e-01 -6.04613304e-01 -3.58372986e-01
-1.83865372e-02 2.08051562e-01 -1.39754312e-02 1.27010241e-01
6.13895953e-01 -1.17585242e+00 -6.04415774e-01 3.85890990e-01
-6.49971962e-01 -1.81438565e-01 9.93695706e-02 6.59807265e-01
5.05150378e-01 3.80572498e-01 8.27448845e-01 -6.08960569e-01
7.52848446e-01 -7.22135603e-01 -4.28446740e-01 7.39059225e-02
-8.05628717e-01 -1.82479918e-02 8.70865345e-01 -4.77441132e-01
-6.51405156e-01 -4.74146813e-01 -2.53062636e-01 -5.25591195e-01
5.77194840e-02 9.28767502e-01 2.59422809e-01 4.94631141e-01
2.99803406e-01 4.92865443e-01 -1.59053296e-01 -6.18866444e-01
2.78167818e-02 3.46821159e-01 4.36783850e-01 -5.77598512e-01
6.95959270e-01 5.43467164e-01 -2.06688672e-01 -6.49053872e-01
-9.69612956e-01 -4.03251618e-01 -3.05655271e-01 -1.22997552e-01
5.74539304e-01 -7.63571382e-01 -7.50068128e-01 4.43282843e-01
-1.04171455e+00 -3.50247920e-01 -4.28137720e-01 3.22198629e-01
-4.84565139e-01 3.45985711e-01 -7.90562987e-01 -8.82227719e-01
-2.97334582e-01 -8.23378682e-01 1.04295003e+00 -4.08549011e-01
-7.40201592e-01 -1.13614571e+00 7.28297830e-02 2.88997680e-01
4.67023432e-01 3.43074381e-01 1.07238805e+00 -8.76388371e-01
-4.86307472e-01 -1.81735054e-01 1.76382810e-01 1.37702346e-01
2.46701524e-01 -7.85305817e-03 -1.06315541e+00 -1.52005702e-01
4.19734925e-01 1.66318357e-01 7.48816311e-01 3.88881773e-01
1.53663707e+00 -5.25400817e-01 -3.30812573e-01 6.79062068e-01
1.04236400e+00 5.59566140e-01 6.62178636e-01 4.56406593e-01
6.60478652e-01 5.65854132e-01 6.91787541e-01 5.54374695e-01
7.07992733e-01 7.91878939e-01 2.13499889e-01 2.12754712e-01
1.21546432e-01 -4.13458347e-01 6.04124486e-01 1.39223146e+00
-1.29116163e-01 -3.60510916e-01 -1.06302381e+00 7.24283099e-01
-1.90577245e+00 -1.21013188e+00 -8.87847766e-02 2.18876362e+00
7.76087105e-01 2.00949669e-01 2.21499994e-01 5.60714602e-01
2.69126475e-01 5.37215412e-01 -4.17413265e-01 -3.20030212e-01
-1.74874187e-01 -2.82008597e-03 2.01026157e-01 7.53442943e-02
-1.17309070e+00 5.97198427e-01 5.79982471e+00 9.28765118e-01
-1.39885879e+00 7.02379271e-02 7.62140930e-01 -5.54009229e-02
-5.06474018e-01 1.44256487e-01 -5.87119997e-01 7.41477787e-01
1.37043357e+00 -4.69404012e-01 4.53956544e-01 3.23970407e-01
5.93943596e-01 3.25568050e-01 -1.22134161e+00 8.75854313e-01
-2.68990695e-01 -1.12613928e+00 -2.19417974e-01 9.31665301e-02
3.98998410e-01 1.32592618e-01 2.64208883e-01 3.04828197e-01
-8.30495059e-02 -9.03358936e-01 7.44762778e-01 4.45249557e-01
5.53002179e-01 -4.83875692e-01 4.92896974e-01 2.31364653e-01
-1.49763918e+00 -2.67356247e-01 2.16764241e-01 -3.25441629e-01
2.64985293e-01 9.37808394e-01 -6.18926585e-01 8.22287023e-01
1.00719202e+00 1.15655816e+00 -4.74136651e-01 7.28882551e-01
6.65723160e-02 1.20614707e+00 -3.91544849e-01 3.97765011e-01
2.47427523e-01 -1.72328293e-01 6.27801538e-01 9.54503417e-01
5.85819244e-01 -6.52768686e-02 -1.03339188e-01 6.14921212e-01
3.21291476e-01 6.51689544e-02 -8.06162715e-01 -3.89121592e-01
5.94956636e-01 8.22520733e-01 -6.77940011e-01 -8.50164816e-02
-7.01815665e-01 6.41063869e-01 1.61633849e-01 4.20368373e-01
-1.16559911e+00 3.37480567e-02 7.41985559e-01 3.12295407e-01
2.80858994e-01 -3.58024746e-01 -5.21083713e-01 -1.28585386e+00
4.88859266e-01 -1.06081522e+00 7.27716506e-01 -5.60672641e-01
-1.53837669e+00 7.90408015e-01 5.15680686e-02 -1.54599988e+00
-4.44369584e-01 -8.46027955e-02 -5.34728169e-01 5.64588964e-01
-1.38627720e+00 -1.14066911e+00 1.98204517e-01 6.23266637e-01
6.67916477e-01 1.23236395e-01 8.01825821e-01 6.32694840e-01
-7.36076593e-01 6.27090633e-01 6.40194267e-02 1.14107639e-01
5.49653590e-01 -8.87333930e-01 7.46066988e-01 1.06644022e+00
2.87674963e-01 8.94095600e-01 7.13459492e-01 -6.27940476e-01
-1.36327314e+00 -1.07803714e+00 1.41345978e+00 -5.44448256e-01
1.15359998e+00 -4.59805816e-01 -1.19695902e+00 1.06374550e+00
9.85266194e-02 -2.75155921e-02 6.79573774e-01 4.72723693e-01
-4.81815159e-01 -2.69285232e-01 -5.63146353e-01 6.09528482e-01
1.34610474e+00 -8.65356565e-01 -5.63901067e-01 2.31266022e-01
8.20990443e-01 -5.17192930e-02 -1.19901145e+00 7.43133307e-01
6.39232695e-01 -9.84114468e-01 1.09152508e+00 -4.76417601e-01
4.25702721e-01 -1.99697867e-01 -2.31570154e-01 -1.10213709e+00
-3.49210918e-01 -8.74646306e-01 -2.46795252e-01 1.48115957e+00
2.74580330e-01 -1.11369097e+00 3.72026563e-01 4.86545950e-01
-2.88537234e-01 -1.03032780e+00 -9.82901752e-01 -1.11589026e+00
5.79813570e-02 -1.06257749e+00 8.71262908e-01 1.32834697e+00
2.59649426e-01 2.24354476e-01 -5.93005478e-01 1.46377936e-01
3.43459308e-01 4.88166392e-01 2.22532719e-01 -1.13302410e+00
-1.07743710e-01 -5.69145441e-01 -1.46400750e-01 -9.88072991e-01
2.70712554e-01 -9.89878297e-01 -3.13145161e-01 -1.10299420e+00
-1.37062609e-01 -6.19936705e-01 -7.16046989e-01 6.69872999e-01
-1.75735757e-01 -8.82708468e-04 6.65542632e-02 4.06012267e-01
-3.50519270e-01 6.83730960e-01 9.43687201e-01 1.86734591e-02
-4.37632874e-02 2.34127834e-01 -7.22637534e-01 5.19665003e-01
9.04566407e-01 -4.65435594e-01 -5.90751052e-01 -3.18890989e-01
2.55678952e-01 1.60585806e-01 3.64359260e-01 -6.05727553e-01
2.26084724e-01 -1.23475209e-01 -6.51807263e-02 -6.26678348e-01
2.50021368e-01 -8.76506865e-01 4.78288770e-01 2.23205850e-01
-3.26999664e-01 6.54075980e-01 2.14968547e-01 3.28640550e-01
-4.47689533e-01 3.84267598e-01 1.90767094e-01 1.83722541e-01
-7.00269282e-01 4.61252272e-01 -3.40615243e-01 1.27490118e-01
6.76925778e-01 -9.52424556e-02 -3.15261036e-01 -5.24222851e-01
-5.08132875e-01 7.97764510e-02 2.56392304e-02 8.27587783e-01
3.60653669e-01 -1.48540759e+00 -5.38857460e-01 3.24958444e-01
1.36271149e-01 -4.02809352e-01 2.49376282e-01 1.33081818e+00
2.35441342e-01 7.26211548e-01 1.11527875e-01 -5.24776638e-01
-1.11183405e+00 8.26952815e-01 1.41963318e-01 -5.19522011e-01
-8.41039777e-01 5.05972147e-01 1.29271254e-01 -1.48551613e-01
1.45852610e-01 -7.44581819e-01 -1.07137617e-02 2.70671040e-01
2.54185855e-01 4.23220664e-01 2.26577282e-01 -5.54965496e-01
-6.33055627e-01 4.39566314e-01 2.36751679e-02 5.35132438e-02
1.63330376e+00 -3.18564773e-01 -1.72005072e-01 9.36874270e-01
1.30753195e+00 1.01199392e-02 -9.08609331e-01 -2.75235623e-01
4.50498462e-01 -3.71392787e-01 -2.51645863e-01 -6.25788927e-01
-1.03570795e+00 6.32411838e-01 2.48218656e-01 7.54024386e-01
1.52005613e+00 -1.23608835e-01 9.87527013e-01 -7.02898651e-02
3.27309847e-01 -6.81397378e-01 -2.37462327e-01 7.24410892e-01
9.49379206e-01 -9.75305796e-01 -2.34640107e-01 -2.77333349e-01
-4.67238933e-01 7.84053981e-01 1.54146180e-01 1.56894568e-02
8.85400712e-01 4.51071769e-01 1.10500209e-01 -3.32650453e-01
-1.25153339e+00 -7.60843158e-02 3.42175007e-01 2.10175201e-01
7.91599929e-01 -1.78129319e-02 -3.48535955e-01 6.39014065e-01
-5.06907582e-01 -1.48932571e-02 1.05656207e-01 7.93981075e-01
1.67626634e-01 -1.24652028e+00 -2.00389639e-01 5.57932854e-01
-7.52100348e-01 -2.77821571e-01 -1.07111938e-01 5.98087430e-01
-9.19028968e-02 1.09415543e+00 1.92403361e-01 -4.82672483e-01
4.20517206e-01 4.04147178e-01 1.44026503e-01 -2.14546565e-02
-8.26494336e-01 1.94175214e-01 3.26546431e-01 -8.38648379e-01
-4.13368434e-01 -1.07767618e+00 -1.03943419e+00 -3.12707663e-01
4.71151806e-02 8.84263292e-02 2.19562322e-01 9.22176719e-01
5.07416725e-01 6.71775341e-01 8.00678492e-01 -2.66771048e-01
-4.60434616e-01 -7.92526305e-01 -3.93186599e-01 5.25854290e-01
4.22049552e-01 -5.64611375e-01 -3.81986171e-01 1.51515808e-02]
|
[7.003968715667725, 2.935858726501465]
|
7bccb47f-5bfa-444d-9361-14440b35c04a
|
consistency-training-with-virtual-adversarial
|
2104.07284
| null |
https://arxiv.org/abs/2104.07284v2
|
https://arxiv.org/pdf/2104.07284v2.pdf
|
Consistency Training with Virtual Adversarial Discrete Perturbation
|
Consistency training regularizes a model by enforcing predictions of original and perturbed inputs to be similar. Previous studies have proposed various augmentation methods for the perturbation but are limited in that they are agnostic to the training model. Thus, the perturbed samples may not aid in regularization due to their ease of classification from the model. In this context, we propose an augmentation method of adding a discrete noise that would incur the highest divergence between predictions. This virtual adversarial discrete noise obtained by replacing a small portion of tokens while keeping original semantics as much as possible efficiently pushes a training model's decision boundary. Experimental results show that our proposed method outperforms other consistency training baselines with text editing, paraphrasing, or a continuous noise on semi-supervised text classification tasks and a robustness benchmark
|
['Jaewoo Kang', 'Gyuwan Kim', 'Jungsoo Park']
|
2021-04-15
| null |
https://aclanthology.org/2022.naacl-main.414
|
https://aclanthology.org/2022.naacl-main.414.pdf
|
naacl-2022-7
|
['semi-supervised-text-classification-1']
|
['natural-language-processing']
|
[ 4.69299912e-01 5.05182743e-01 -2.99900711e-01 -5.52331626e-01
-7.28474915e-01 -6.10547006e-01 7.01453745e-01 2.35626027e-01
-3.21834236e-01 8.80737901e-01 1.92305237e-01 -2.86549747e-01
4.23670590e-01 -6.85241699e-01 -1.09071064e+00 -4.89602655e-01
4.78239208e-01 3.69890094e-01 9.32239369e-02 -2.51441479e-01
1.72829166e-01 1.39907226e-01 -1.05422068e+00 5.08037865e-01
1.17961824e+00 7.75758982e-01 -4.22173999e-02 2.61529654e-01
-9.49068516e-02 8.37765276e-01 -8.26269090e-01 -7.91244686e-01
5.00625491e-01 -5.17833948e-01 -6.59950197e-01 -5.23653533e-03
6.27500474e-01 -3.31830561e-01 -2.81235456e-01 1.32931149e+00
1.09661490e-01 3.83870393e-01 6.46247745e-01 -1.37160683e+00
-1.31439817e+00 8.60288024e-01 -2.23191574e-01 -1.02828458e-01
3.01100969e-01 1.10536776e-02 9.51805949e-01 -8.63836586e-01
7.05885649e-01 1.11488211e+00 9.71955001e-01 9.10140336e-01
-1.63354921e+00 -6.34107471e-01 5.75578034e-01 -1.52829900e-01
-1.30129158e+00 -4.57573563e-01 1.03575432e+00 -1.64814681e-01
9.68563795e-01 5.31883657e-01 9.59903747e-02 1.71859682e+00
5.72115555e-02 7.29581237e-01 1.04643822e+00 -5.01687348e-01
3.75387162e-01 6.75894797e-01 2.22002476e-01 3.97974551e-01
1.45026952e-01 -5.76199070e-02 -3.14634591e-01 -5.06895542e-01
3.01937521e-01 8.45530182e-02 -4.00853693e-01 -1.69652849e-01
-7.31103420e-01 7.45386720e-01 3.62714440e-01 -1.35658488e-01
2.03463685e-04 8.32655877e-02 6.75535619e-01 6.59035087e-01
6.84471071e-01 4.92566139e-01 -6.96773708e-01 1.18379481e-01
-7.87941277e-01 3.18815768e-01 6.70495749e-01 1.18641138e+00
6.25703633e-01 2.31326088e-01 -4.93029565e-01 9.74546194e-01
2.00325921e-01 3.30826133e-01 7.22532511e-01 -8.05246532e-01
7.76708901e-01 6.31285012e-01 2.69626796e-01 -8.30962539e-01
1.65939093e-01 -3.19484264e-01 -1.09312093e+00 2.08656013e-01
2.58846074e-01 -1.17482692e-01 -9.81754005e-01 2.08297038e+00
1.22244745e-01 3.22116107e-01 1.80939078e-01 6.45124614e-01
5.76240897e-01 5.07001936e-01 2.18263716e-01 3.80660617e-03
7.80474544e-01 -1.10763943e+00 -8.00348282e-01 -4.11632568e-01
5.63693523e-01 -7.43749142e-01 1.69842410e+00 1.75265282e-01
-1.00904429e+00 -5.77558994e-01 -1.09459674e+00 2.49365233e-02
-4.64142382e-01 -1.43395597e-02 2.42684960e-01 5.89289367e-01
-6.51144564e-01 8.24953198e-01 -7.66207159e-01 -8.52352157e-02
3.82202268e-01 7.31882229e-02 -5.13894558e-01 1.20532930e-01
-1.43691587e+00 1.08622396e+00 2.84707963e-01 -2.07313895e-01
-5.12317479e-01 -9.23015833e-01 -9.13261056e-01 1.70083404e-01
1.40821978e-01 -5.50002873e-01 1.37483108e+00 -1.46529341e+00
-1.53218794e+00 6.57426357e-01 -5.44057600e-02 -7.15695202e-01
1.06187201e+00 -4.38728482e-01 -3.24743271e-01 -3.95950377e-01
7.91675970e-02 4.70325738e-01 1.14099765e+00 -1.45258379e+00
-1.32235900e-01 9.68907669e-04 -1.12066649e-01 1.90203533e-01
-6.40938342e-01 -2.75382936e-01 -2.84503043e-01 -1.28916514e+00
3.05320346e-03 -9.57681656e-01 -2.02481717e-01 3.21773775e-02
-7.88689733e-01 2.23211452e-01 1.14357042e+00 -6.10133171e-01
1.13927257e+00 -2.05984044e+00 -2.15337891e-02 3.03492844e-01
-1.46980271e-01 3.40257764e-01 -2.85373479e-01 3.49908829e-01
-1.56277925e-01 6.34385705e-01 -3.98521751e-01 -8.05241108e-01
3.06155179e-02 3.77220958e-01 -8.88982952e-01 2.86565363e-01
2.07788691e-01 6.32360935e-01 -8.54910672e-01 -1.66190460e-01
3.46938260e-02 3.68865073e-01 -5.84838867e-01 2.85275847e-01
-4.69322145e-01 3.29919666e-01 -2.87225813e-01 4.11865234e-01
8.28801274e-01 -1.48670420e-01 1.08269855e-01 1.46194741e-01
5.49046993e-01 3.22479874e-01 -1.13216889e+00 1.47919369e+00
-3.58441800e-01 3.48076105e-01 -5.80508560e-02 -8.47942889e-01
8.71819198e-01 3.13391149e-01 1.20286405e-01 -3.57523948e-01
-1.28917068e-01 -1.63465321e-01 -2.34529406e-01 -1.65955126e-01
5.50158083e-01 -7.84597099e-02 -1.48345912e-02 5.21969557e-01
-2.33166739e-01 -1.57123730e-01 -2.31330112e-01 2.85635918e-01
1.05473781e+00 1.80894747e-01 9.96974856e-02 7.74708018e-02
3.64934057e-01 -1.17559396e-01 8.96187365e-01 1.18068480e+00
-3.38473827e-01 7.67374098e-01 3.67682934e-01 -7.59993643e-02
-1.33692646e+00 -1.11172569e+00 -2.61041045e-01 9.92539048e-01
-7.73459151e-02 -4.73139077e-01 -8.38910997e-01 -1.16589379e+00
3.27361077e-01 1.05116355e+00 -9.64911401e-01 -5.61744034e-01
-4.00485843e-01 -4.37113523e-01 9.07996774e-01 6.18105292e-01
5.79525411e-01 -8.42883289e-01 2.05800071e-01 7.89983124e-02
-2.06548899e-01 -1.04656744e+00 -8.89173687e-01 3.54017466e-01
-1.03668237e+00 -9.26200747e-01 -2.71426976e-01 -8.13635588e-01
1.15883482e+00 1.88173093e-02 9.15676236e-01 8.93947482e-02
3.12175989e-01 -6.02627583e-02 -4.78924364e-01 -3.30473721e-01
-1.04726923e+00 -2.73097102e-02 2.16440231e-01 -2.68374950e-01
2.47937828e-01 -4.52756941e-01 -2.10477471e-01 2.65156150e-01
-1.09663522e+00 7.25402981e-02 2.27119476e-01 1.22952282e+00
5.52499056e-01 -1.63806796e-01 6.69765115e-01 -1.51127243e+00
9.64485109e-01 -6.01931214e-01 -2.54791468e-01 4.32812244e-01
-1.03054106e+00 1.03769518e-01 1.39988089e+00 -8.34127545e-01
-1.28604412e+00 -3.76706384e-02 4.92681153e-02 -8.00116301e-01
-2.26479456e-01 2.47973830e-01 -2.21471757e-01 1.69296488e-01
9.91530478e-01 2.56169319e-01 -1.08993299e-01 -4.63965744e-01
4.95576799e-01 5.07858098e-01 3.89122784e-01 -7.37203777e-01
1.10165048e+00 2.63218224e-01 -2.91749150e-01 -2.82058328e-01
-9.00072455e-01 3.90357710e-02 -5.21964312e-01 2.43458644e-01
2.89257377e-01 -7.42337584e-01 -6.25231937e-02 4.13095951e-01
-1.15445709e+00 -2.73451149e-01 -4.99077976e-01 1.52171269e-01
-3.39616656e-01 6.39690042e-01 -7.48687029e-01 -4.94075805e-01
-4.39890474e-01 -8.65699112e-01 6.42648220e-01 -8.54763091e-02
-5.79244554e-01 -9.99780536e-01 3.76333818e-02 2.01682597e-01
5.08362889e-01 2.48285115e-01 9.68943119e-01 -1.10611200e+00
-1.00273669e-01 -4.83957469e-01 1.51201874e-01 9.37527001e-01
4.08126920e-01 2.30647892e-01 -1.17384386e+00 -2.59778947e-01
1.25358984e-01 -5.16969502e-01 8.32765937e-01 3.83370742e-02
1.42149866e+00 -8.00619125e-01 -2.11081386e-01 7.61483371e-01
1.21696973e+00 -9.79493633e-02 5.21282017e-01 4.36048090e-01
6.62469387e-01 2.93055445e-01 6.31223857e-01 4.51288104e-01
-2.30410531e-01 4.29134578e-01 3.93543303e-01 -5.03142588e-02
9.94193107e-02 -6.50503457e-01 4.05734420e-01 4.13195372e-01
3.77320200e-01 -3.09106141e-01 -6.36391342e-01 1.96758837e-01
-2.02719259e+00 -1.12712598e+00 1.38740912e-01 2.30750871e+00
1.32209206e+00 4.81483996e-01 -4.28864539e-01 8.67584348e-02
8.58673692e-01 1.17293522e-01 -7.16147780e-01 -5.02268612e-01
-2.17956692e-01 7.57450759e-02 4.96753663e-01 6.65140986e-01
-1.07364476e+00 1.10661483e+00 6.45591164e+00 7.41377890e-01
-1.02793443e+00 1.25461519e-01 7.53380358e-01 -1.27230331e-01
-6.03719831e-01 1.76440943e-02 -6.71205342e-01 7.20938683e-01
7.22039104e-01 -5.47021516e-02 3.52423847e-01 1.13610137e+00
4.20110583e-01 3.02148819e-01 -1.42450881e+00 4.42257196e-01
4.08201851e-03 -1.19541585e+00 4.54935461e-01 -5.21378160e-01
9.86608028e-01 -1.69049919e-01 4.50458586e-01 5.07181168e-01
5.61041951e-01 -9.96455967e-01 8.41490448e-01 5.60823500e-01
5.50901055e-01 -6.06233001e-01 5.72201788e-01 5.30997694e-01
-5.78216553e-01 9.36353132e-02 -4.51762944e-01 -1.94347985e-02
-2.28464231e-01 4.49136049e-01 -8.46143305e-01 1.36943325e-01
4.73177761e-01 4.26410735e-01 -6.76401675e-01 4.96324658e-01
-3.56301457e-01 9.93063152e-01 -2.41360664e-01 1.85166076e-01
-1.06048342e-02 -2.01784670e-01 5.59670985e-01 1.24318743e+00
-5.90673722e-02 -1.88692912e-01 2.39282891e-01 1.13599551e+00
-6.52955532e-01 1.86367691e-01 -7.80819356e-01 2.80231267e-01
8.92011881e-01 8.06338906e-01 -3.18003118e-01 -4.71952885e-01
-5.69827557e-01 1.44522953e+00 6.88490629e-01 6.24851942e-01
-1.14529967e+00 -4.00362223e-01 7.52686143e-01 5.22519052e-02
-8.75889417e-03 2.16826707e-01 -8.15065503e-01 -1.27836657e+00
4.34287786e-01 -9.94038463e-01 1.35026142e-01 -6.19509578e-01
-1.63918293e+00 6.09838605e-01 -2.75035262e-01 -1.25077653e+00
-1.20345198e-01 -1.45355105e-01 -9.13991153e-01 1.11162007e+00
-1.30901718e+00 -1.13477707e+00 -2.21325040e-01 4.75248694e-01
5.49277246e-01 -1.99878350e-01 1.06621528e+00 -9.34005901e-02
-7.36277521e-01 1.18468797e+00 6.14197612e-01 3.08301926e-01
1.15172338e+00 -1.36388385e+00 6.57321215e-01 9.62661862e-01
-1.01012506e-01 1.06342876e+00 8.83829713e-01 -9.12206054e-01
-8.25356424e-01 -1.60772800e+00 8.04062366e-01 -7.04930782e-01
5.96341014e-01 -4.62693781e-01 -1.46865654e+00 1.09739971e+00
1.28017992e-01 3.03098828e-01 7.23516166e-01 3.03218961e-02
-7.56853521e-01 -3.99671914e-03 -1.57087278e+00 8.08851957e-01
8.66237760e-01 -7.06272125e-01 -8.35868716e-01 5.25792301e-01
8.23561549e-01 -5.32161891e-01 -7.22418845e-01 3.29037696e-01
1.56280428e-01 -6.30452037e-01 7.79656172e-01 -1.12852609e+00
5.07104278e-01 -7.34386966e-02 -2.10052386e-01 -1.46416831e+00
-3.19311142e-01 -5.02657771e-01 -3.47742617e-01 1.55497837e+00
5.68895221e-01 -6.09609783e-01 1.06512165e+00 9.99339700e-01
-2.18321294e-01 -5.97375572e-01 -6.95255101e-01 -9.74812865e-01
4.71217543e-01 -4.39506203e-01 4.94465381e-01 1.52919877e+00
1.03400454e-01 9.00430605e-02 -5.50414622e-01 2.34483227e-01
4.18317378e-01 -3.21464866e-01 7.09834993e-01 -8.59678209e-01
-3.75443816e-01 -2.79888391e-01 -2.72619706e-02 -7.88188756e-01
7.37837493e-01 -1.05709255e+00 2.07389388e-02 -1.08918381e+00
1.75704733e-01 -5.21184385e-01 -3.47280890e-01 7.57955313e-01
-5.65913200e-01 -7.94215277e-02 -1.00004792e-01 4.45789218e-01
-1.24412633e-01 7.08609104e-01 9.35574591e-01 -3.66127461e-01
-3.24065268e-01 1.20828569e-01 -8.03539872e-01 7.40703225e-01
1.02721250e+00 -6.99708402e-01 -6.47528291e-01 -4.42216605e-01
-8.24576542e-02 -3.36087644e-01 2.45179698e-01 -6.55372560e-01
9.58611071e-02 -3.52520049e-01 5.38326383e-01 -1.51687674e-03
1.18192405e-01 -8.96653116e-01 3.52380760e-02 3.32181156e-01
-9.58235443e-01 -1.80017315e-02 3.21049243e-01 8.50180089e-01
-1.62606895e-01 -4.83355582e-01 1.13647974e+00 -5.17559797e-02
-2.97629476e-01 2.19700672e-02 -3.19968551e-01 2.17263877e-01
9.83012378e-01 -1.45952433e-01 -4.16258752e-01 -3.24915767e-01
-8.67190719e-01 2.05325037e-02 8.35890293e-01 4.94261682e-01
4.75006312e-01 -1.34105778e+00 -5.91024280e-01 3.27341080e-01
1.05574362e-01 -8.43972340e-02 -2.77269017e-02 1.73504099e-01
-1.88890010e-01 1.58252060e-01 -1.14298195e-01 -2.11542621e-01
-1.26158118e+00 7.82077193e-01 4.63604689e-01 -2.86587656e-01
-5.36178589e-01 8.13375950e-01 -8.31557810e-02 -8.38923872e-01
6.38053060e-01 -4.61584538e-01 2.60159940e-01 -4.11408544e-01
2.12368622e-01 2.60684401e-01 2.05283999e-01 -3.30270261e-01
-9.37305391e-02 5.42373173e-02 -5.49873769e-01 7.38557354e-02
9.85471666e-01 2.62301043e-02 2.70663202e-01 3.30718219e-01
1.12927270e+00 2.21543521e-01 -1.41843200e+00 -5.16371548e-01
-1.94274709e-01 -5.58124006e-01 -2.42818162e-01 -8.69229913e-01
-7.73623407e-01 4.66029078e-01 3.70083034e-01 1.02256201e-01
8.16173196e-01 -4.61631536e-01 5.25240481e-01 7.53947914e-01
-1.57986581e-01 -1.45974207e+00 7.45937228e-02 6.05761409e-01
9.91064787e-01 -1.52205682e+00 -9.56680551e-02 -4.16644394e-01
-8.86218011e-01 8.03975761e-01 1.16330802e+00 -1.33504882e-01
6.47905469e-01 3.92744184e-01 2.11209312e-01 4.27586704e-01
-9.47644591e-01 4.49572176e-01 1.52049020e-01 7.13888645e-01
5.66863835e-01 -2.64346480e-01 -1.34143919e-01 7.69311488e-01
-8.25467482e-02 -2.78877467e-01 4.60715622e-01 1.02038825e+00
-2.77923882e-01 -1.25642896e+00 -4.36251014e-01 6.07559085e-01
-5.74829996e-01 -3.30330998e-01 -6.65353000e-01 7.45287299e-01
-6.16887026e-02 8.12865853e-01 -4.29715738e-02 -3.63270134e-01
5.37166357e-01 4.57287580e-01 9.68092084e-02 -7.83465266e-01
-8.29964697e-01 -4.71120745e-01 1.11813359e-02 -2.88330376e-01
2.14381978e-01 -4.95727330e-01 -1.46046257e+00 -4.24759299e-01
-4.09908891e-01 2.85496056e-01 3.86697143e-01 7.92853653e-01
2.81708598e-01 4.37708616e-01 6.98486626e-01 -4.47827369e-01
-1.44190371e+00 -1.30006588e+00 -4.26113635e-01 1.03861129e+00
3.01011443e-01 -3.11160803e-01 -6.12400055e-01 2.61403799e-01]
|
[10.442755699157715, 7.887442111968994]
|
43e5a6be-a1db-4471-97bd-6fb0d8f8cc8c
|
privacy-against-real-time-speech-emotion
|
2211.09273
| null |
https://arxiv.org/abs/2211.09273v1
|
https://arxiv.org/pdf/2211.09273v1.pdf
|
Privacy against Real-Time Speech Emotion Detection via Acoustic Adversarial Evasion of Machine Learning
|
Emotional Surveillance is an emerging area with wide-reaching privacy concerns. These concerns are exacerbated by ubiquitous IoT devices with multiple sensors that can support these surveillance use cases. The work presented here considers one such use case: the use of a speech emotion recognition (SER) classifier tied to a smart speaker. This work demonstrates the ability to evade black-box SER classifiers tied to a smart speaker without compromising the utility of the smart speaker. This privacy concern is considered through the lens of adversarial evasion of machine learning. Our solution, Defeating Acoustic Recognition of Emotion via Genetic Programming (DARE-GP), uses genetic programming to generate non-invasive additive audio perturbations (AAPs). By constraining the evolution of these AAPs, transcription accuracy can be protected while simultaneously degrading SER classifier performance. The additive nature of these AAPs, along with an approach that generates these AAPs for a fixed set of users in an utterance and user location-independent manner, supports real-time, real-world evasion of SER classifiers. DARE-GP's use of spectral features, which underlay the emotional content of speech, allows the transferability of AAPs to previously unseen black-box SER classifiers. Further, DARE-GP outperforms state-of-the-art SER evasion techniques and is robust against defenses employed by a knowledgeable adversary. The evaluations in this work culminate with acoustic evaluations against two off-the-shelf commercial smart speakers, where a single AAP could evade a black box classifier over 70% of the time. The final evaluation deployed AAP playback on a small-form-factor system (raspberry pi) integrated with a wake-word system to evaluate the efficacy of a real-world, real-time deployment where DARE-GP is automatically invoked with the smart speaker's wake word.
|
['Asif Salekin', 'Avery Gump', 'Yi Xiao', 'Brian Testa']
|
2022-11-17
| null | null | null | null |
['speech-emotion-recognition']
|
['speech']
|
[ 4.13521320e-01 5.16781092e-01 4.85885710e-01 -1.84508011e-01
-1.05092752e+00 -1.00647783e+00 3.34552974e-01 -2.69469440e-01
-3.21328372e-01 5.20298600e-01 -7.35315681e-02 -4.07425761e-01
2.62196213e-02 -4.55969006e-01 -7.44777203e-01 -9.22602117e-01
-3.52330118e-01 -1.06803171e-01 -2.99862474e-02 -3.02094162e-01
-4.83182997e-01 5.27387977e-01 -1.75639260e+00 3.62190217e-01
2.43201911e-01 1.47881615e+00 -6.20007575e-01 1.06959224e+00
7.32832551e-01 3.39102536e-01 -1.30481315e+00 -3.77672136e-01
5.19397259e-01 -2.89115272e-02 3.64963734e-03 -5.99441171e-01
7.40257725e-02 -2.79276311e-01 2.23146543e-01 7.86978960e-01
9.47970986e-01 -7.98955038e-02 7.12918118e-02 -1.86378109e+00
-1.07385859e-01 2.85771102e-01 5.50392736e-03 -1.55049533e-01
8.27052832e-01 2.92771310e-01 5.99351883e-01 2.99166124e-02
2.85758264e-02 1.10494506e+00 8.94186199e-01 7.73917437e-01
-1.21063542e+00 -1.27360582e+00 -2.22120285e-01 -4.81087804e-01
-1.56833053e+00 -7.11079001e-01 9.03473318e-01 -1.56110913e-01
1.13563395e+00 8.66058648e-01 5.58524489e-01 1.79410172e+00
3.76780957e-01 1.94544524e-01 1.04255116e+00 -2.74383456e-01
8.10295701e-01 5.26480496e-01 -1.26374885e-01 4.48450953e-01
1.43342838e-02 6.95235372e-01 -7.19609976e-01 -1.25300944e+00
-2.20132485e-01 -4.22081381e-01 -4.28720713e-01 1.85587537e-02
-4.83931154e-01 5.49614310e-01 -3.95645022e-01 1.58847854e-01
-4.71681297e-01 1.96181685e-01 3.95049602e-01 2.69358039e-01
2.95166910e-01 5.17925799e-01 -6.80974126e-01 -7.12892234e-01
-6.64744139e-01 -1.86493769e-01 1.26702833e+00 6.07828259e-01
1.89488038e-01 3.35320055e-01 -4.25162874e-02 3.32010925e-01
4.99858409e-01 9.94307458e-01 4.14778501e-01 -5.69019914e-01
8.40519220e-02 -2.66341008e-02 2.41021678e-01 -1.09503281e+00
-4.59284365e-01 -2.27684706e-01 -1.67109668e-01 5.84528804e-01
7.97358155e-02 -1.03515577e+00 -2.99674153e-01 2.10223126e+00
6.51238203e-01 4.76936728e-01 5.35589874e-01 4.47331488e-01
2.72165120e-01 7.52896130e-01 1.44290686e-01 -3.59690398e-01
1.59365237e+00 -7.78946579e-02 -5.84405363e-01 -4.62302156e-02
2.30902687e-01 -2.35883281e-01 9.18008268e-01 7.42481470e-01
-6.52628899e-01 -1.87374070e-01 -1.41717243e+00 8.04232776e-01
-4.64648098e-01 -3.31246734e-01 1.32459670e-01 2.03320479e+00
-1.17023218e+00 -2.07933247e-01 -8.25344026e-01 -1.99589789e-01
2.02054068e-01 8.59916449e-01 -2.19366372e-01 6.33733213e-01
-1.50200462e+00 6.43830061e-01 -2.20295325e-01 -1.52581170e-01
-9.52278972e-01 -7.50400424e-01 -7.59446919e-01 1.19857848e-01
5.72535768e-02 -3.85789812e-01 1.11892605e+00 -1.26291239e+00
-1.88641894e+00 5.65672874e-01 2.61963904e-01 -6.84273183e-01
4.18290645e-01 -7.27040991e-02 -1.36222529e+00 2.40394861e-01
-3.85393202e-01 3.22854042e-01 1.38963819e+00 -1.20441854e+00
-3.41294169e-01 -1.41034082e-01 -1.41392380e-01 -1.40300661e-01
-6.93682909e-01 3.48948389e-01 5.31817853e-01 -5.41247904e-01
-7.63654649e-01 -1.20446920e+00 3.39660197e-01 -3.46818149e-01
-2.75498211e-01 3.17055136e-01 1.53468907e+00 -5.88962793e-01
1.01106369e+00 -2.48860908e+00 -4.94314224e-01 4.83362854e-01
-3.03227395e-01 5.85463166e-01 -5.53003475e-02 3.12735200e-01
-1.62284911e-01 2.83537805e-01 -1.57833725e-01 -4.22524214e-01
3.40603590e-01 1.15468428e-01 -5.85278988e-01 5.33228219e-01
1.06283277e-02 4.38695014e-01 -5.44121265e-01 1.24436997e-01
5.66978864e-02 8.45043480e-01 -4.17354524e-01 3.04771692e-01
-7.20251799e-02 1.95446953e-01 -3.92996162e-01 7.11213231e-01
4.32264745e-01 7.80459583e-01 3.04709654e-02 1.11028165e-01
4.73204777e-02 -1.23996384e-01 -9.43851173e-01 1.01729643e+00
-5.43218791e-01 4.17960227e-01 8.80855918e-01 -5.71831226e-01
1.00856638e+00 8.04621160e-01 3.82227361e-01 -3.33802223e-01
6.15152240e-01 -9.18576196e-02 -1.49277970e-01 -5.79403341e-01
1.20713942e-01 -1.35707781e-01 -5.60146511e-01 6.88467860e-01
-1.96934238e-01 -1.34854585e-01 -1.02965033e+00 -1.83328032e-01
1.62510467e+00 -2.26657227e-01 2.06126750e-01 -2.44234711e-01
3.80661964e-01 -4.95370358e-01 5.19555569e-01 8.39850247e-01
-7.12134838e-01 6.11264408e-02 1.33219957e-01 -4.56872247e-02
-3.41751873e-01 -9.51330841e-01 4.56322692e-02 1.03629720e+00
-8.25662613e-02 -2.13987723e-01 -1.01191986e+00 -7.29546130e-01
-2.48770025e-02 1.19555378e+00 -6.63986742e-01 -5.44945240e-01
-1.77083418e-01 -6.39661908e-01 1.66554296e+00 -1.09396316e-01
3.32231969e-01 -9.35781002e-01 -1.34862113e+00 2.14272812e-01
5.79744019e-02 -1.16638124e+00 -2.68744648e-01 2.09012523e-01
1.89980585e-02 -5.58082581e-01 4.24396656e-02 -9.70520601e-02
2.08144322e-01 -1.72318041e-01 5.16409099e-01 -2.40185902e-01
-2.78440982e-01 1.37466741e+00 -3.88350993e-01 -1.19204092e+00
-9.03703272e-01 -3.78967524e-01 6.27747476e-01 4.42123950e-01
5.05201697e-01 -9.14084315e-01 -1.68351233e-01 4.81259763e-01
-9.24853504e-01 -7.85476387e-01 9.33198724e-03 5.72462916e-01
-8.76525864e-02 3.34483773e-01 8.21154773e-01 -1.82837754e-01
9.31053162e-01 -4.93430585e-01 -5.71753323e-01 2.06303865e-01
-3.01627249e-01 -1.85190067e-01 6.28728867e-01 -9.60799515e-01
-1.04638660e+00 1.43061951e-01 -3.50054651e-01 -3.48242551e-01
-3.90723675e-01 -1.08524896e-01 -7.19105363e-01 -4.98974413e-01
7.54734993e-01 -9.98458359e-03 9.60702449e-02 1.72469288e-01
8.90943408e-02 1.13216698e+00 4.92154270e-01 -4.98343438e-01
7.90600538e-01 4.50408459e-01 -2.59096563e-01 -1.17843473e+00
-2.03841284e-01 6.94446042e-02 3.20293099e-01 -4.28994924e-01
7.82976031e-01 -8.78186703e-01 -1.10029066e+00 6.59614444e-01
-9.98662770e-01 -2.42684081e-01 -5.77682704e-02 1.90854356e-01
-2.55131334e-01 1.92828014e-01 -1.48691520e-01 -1.59965158e+00
-7.97822833e-01 -9.48775291e-01 1.11401951e+00 1.06799021e-01
-6.56389296e-01 -5.64194381e-01 1.82950318e-01 6.35750830e-01
6.26271307e-01 5.88774323e-01 4.12835509e-01 -1.09405112e+00
2.05620080e-01 -7.46538877e-01 8.45324099e-01 4.38966453e-01
-1.45953521e-02 -7.34921843e-02 -1.75092435e+00 -3.89518231e-01
6.55353248e-01 -2.57160008e-01 -2.86205918e-01 1.59908339e-01
7.68301129e-01 -8.97254586e-01 -2.07770079e-01 5.25683582e-01
7.65790462e-01 6.79895639e-01 5.78571677e-01 1.05708703e-01
8.84601921e-02 5.35694540e-01 4.99165088e-01 5.91512084e-01
-1.02118015e-01 6.48609877e-01 7.98913777e-01 8.08723345e-02
6.34315491e-01 -6.52496889e-02 1.01823330e+00 -3.27050649e-02
5.26474595e-01 -5.48427403e-01 -6.49168670e-01 1.87665764e-02
-1.33044004e+00 -1.11333215e+00 3.93747449e-01 2.24275899e+00
5.00717521e-01 8.01193193e-02 1.94069773e-01 3.02486002e-01
6.71045780e-01 4.40853797e-02 -4.40562308e-01 -1.10771894e+00
-3.85311507e-02 3.43831003e-01 6.56067193e-01 5.35800397e-01
-1.06219280e+00 3.69507968e-01 5.32187700e+00 4.72504616e-01
-1.22952628e+00 4.40019846e-01 5.16949296e-01 -4.77418274e-01
-9.91136283e-02 -4.35454905e-01 -5.09489059e-01 6.06104314e-01
1.51254475e+00 -1.00617185e-02 6.22619927e-01 9.80364859e-01
4.55671072e-01 1.04561403e-01 -9.88822818e-01 9.56228852e-01
3.81871253e-01 -7.10225523e-01 -7.57653534e-01 2.12702006e-01
5.04929237e-02 1.20713301e-02 2.58430690e-01 2.87530333e-01
3.45564753e-01 -9.43694592e-01 7.85246432e-01 1.35665938e-01
8.19723725e-01 -9.92352664e-01 5.34665287e-01 4.93221730e-01
-7.34798193e-01 -3.73323947e-01 3.94952863e-01 -7.66630322e-02
1.64360628e-01 2.92181164e-01 -8.87459695e-01 1.51829228e-01
8.79161000e-01 -6.16764069e-01 -2.38985524e-01 2.28418171e-01
-1.23381756e-01 1.12085021e+00 -8.68933380e-01 -3.46713454e-01
-1.45921215e-01 3.08377683e-01 1.01919830e+00 1.19997823e+00
4.11027819e-01 4.29101825e-01 -2.00452134e-01 5.30074120e-01
3.16994667e-01 -3.25409710e-01 -8.00091803e-01 1.46650195e-01
7.53554046e-01 1.33846784e+00 -7.07426146e-02 1.97530314e-01
7.97303542e-02 8.93616915e-01 -4.98681396e-01 2.57830232e-01
-1.08166802e+00 -3.72425824e-01 1.14323509e+00 -1.31957069e-01
1.26455426e-01 1.45769477e-01 -2.18521357e-02 -5.27744055e-01
5.46096079e-03 -1.27720094e+00 2.48872861e-01 -8.18377078e-01
-1.15157831e+00 7.86806524e-01 -8.43156800e-02 -1.02323985e+00
-4.32809889e-01 -1.59891382e-01 -7.36034036e-01 7.10491657e-01
-7.92581737e-01 -1.16580069e+00 -1.15968518e-01 7.42497504e-01
-1.09837271e-01 -2.96863973e-01 1.47791851e+00 -1.70554481e-02
-4.43759471e-01 1.12039530e+00 -2.34768689e-01 -6.83472604e-02
2.77813941e-01 -6.05108261e-01 2.22683623e-01 9.95470524e-01
-1.41014174e-01 4.23146874e-01 1.02433276e+00 -5.58125854e-01
-1.60709751e+00 -9.07263935e-01 2.49903724e-01 -5.49083352e-01
5.60788035e-01 -9.79555130e-01 -5.50082386e-01 3.40790927e-01
2.63065934e-01 -2.94011123e-02 1.17119241e+00 -2.52957642e-01
-3.93520862e-01 -4.01875556e-01 -2.00266647e+00 5.18873692e-01
4.71936464e-01 -8.14788759e-01 -4.32541817e-01 -7.93199986e-02
8.45229268e-01 4.11494169e-03 -6.51792526e-01 2.02061146e-01
8.21521461e-01 -8.14291596e-01 7.45684385e-01 -1.96958721e-01
-6.45503104e-01 -3.21855575e-01 -2.78470516e-01 -1.24661720e+00
5.09982407e-01 -1.58979869e+00 -2.86922812e-01 1.73610747e+00
3.71232808e-01 -1.20462763e+00 4.85287637e-01 1.22628772e+00
2.21781105e-01 -2.54659623e-01 -1.48638833e+00 -8.09279382e-01
-3.82234275e-01 -1.02057064e+00 7.94018269e-01 8.18456888e-01
3.51753175e-01 -7.04371510e-03 -5.40844142e-01 1.01657712e+00
4.33647126e-01 -8.40093136e-01 8.26224029e-01 -8.04827452e-01
-6.66509807e-01 1.73462890e-02 -7.52790570e-01 -5.51645570e-02
1.58617020e-01 -2.26065919e-01 2.22225219e-01 -2.78101325e-01
-7.29300439e-01 -3.56370866e-01 -2.21683428e-01 7.20003366e-01
3.22493792e-01 6.11194558e-02 1.54524490e-01 -6.06213510e-01
-4.70431894e-02 3.64917576e-01 -1.52856559e-01 -2.12402403e-01
-4.81741667e-01 2.70374745e-01 -6.33751392e-01 6.45047307e-01
9.70348239e-01 -6.73907459e-01 -6.06669068e-01 2.02723354e-01
1.56007499e-01 1.16190284e-01 5.49161017e-01 -1.39154065e+00
2.00590029e-01 2.01750547e-01 4.64460291e-02 1.53606310e-01
6.93970859e-01 -1.47240722e+00 6.06201172e-01 4.33203071e-01
-1.15433104e-01 4.48898114e-02 7.72977829e-01 6.14589751e-01
3.02046150e-01 6.95927888e-02 6.02590382e-01 4.13115114e-01
4.68089059e-02 -2.58852184e-01 -8.63460183e-01 -2.78183252e-01
1.47475588e+00 -2.14037612e-01 -4.59752619e-01 -8.27676237e-01
-3.19163591e-01 -7.81485215e-02 3.29039276e-01 5.82434177e-01
3.81001562e-01 -6.81953788e-01 -3.07302833e-01 4.82011586e-01
-5.49787357e-02 -6.36142075e-01 1.62044659e-01 4.13001299e-01
6.97256103e-02 -9.91816893e-02 9.15213376e-02 -4.25604194e-01
-1.97955644e+00 6.86080098e-01 7.40445018e-01 2.62675166e-01
-3.09271187e-01 8.30924153e-01 -1.25220373e-01 -2.24282667e-01
5.47572613e-01 6.36968017e-02 2.04412758e-01 -3.96929979e-02
7.49804437e-01 9.02584121e-02 2.65842944e-01 -5.61742842e-01
-7.02713847e-01 9.42970589e-02 6.56921923e-01 -6.70638621e-01
1.04120910e+00 1.05874680e-01 2.71622658e-01 1.53424218e-01
1.13070822e+00 6.27458453e-01 -1.21178746e+00 5.30073285e-01
-2.12407887e-01 -1.30361006e-01 1.00433923e-01 -1.22971511e+00
-7.22742975e-01 3.01936001e-01 1.18906772e+00 6.95655823e-01
1.43890870e+00 -3.42905849e-01 7.99733162e-01 1.66431665e-01
6.24034703e-01 -9.58913505e-01 -2.06904665e-01 -1.28228739e-01
6.38414443e-01 -8.15840125e-01 -3.86033237e-01 -1.41664296e-01
-7.54936457e-01 6.83572650e-01 1.77281678e-01 3.28977406e-01
7.31465578e-01 1.04306662e+00 4.70475167e-01 -2.79813334e-02
-7.25018322e-01 6.52544260e-01 -7.52438754e-02 1.13211501e+00
-4.26129937e-01 3.24599206e-01 2.45073497e-01 1.13716280e+00
-5.44969141e-01 -2.04298392e-01 4.24698591e-01 1.10525799e+00
-9.90265012e-02 -8.03097069e-01 -9.11316812e-01 4.68000732e-02
-8.04885268e-01 4.13728692e-02 -7.13300943e-01 3.62026006e-01
2.94196308e-01 1.74001348e+00 -1.49859443e-01 -8.03961098e-01
1.93177402e-01 3.76607567e-01 -1.18552193e-01 -9.09627452e-02
-1.32481170e+00 -1.29389808e-01 4.88870412e-01 -6.35434270e-01
-2.51589328e-01 -9.93905127e-01 -9.54111695e-01 -5.24663441e-02
-1.66091099e-01 2.12312624e-01 1.04997182e+00 7.76135147e-01
6.63021624e-01 3.99743408e-01 9.15106773e-01 -5.90960264e-01
-7.63059914e-01 -5.67373574e-01 -4.86590475e-01 4.27540913e-02
5.31690717e-01 -3.22012305e-01 -7.74020612e-01 -2.81413585e-01]
|
[13.909370422363281, 5.793196201324463]
|
af1e211e-1fe3-4eb4-9dc1-8a6fccb27228
|
a-pilot-study-of-text-to-sql-semantic-parsing
|
2010.01891
| null |
https://arxiv.org/abs/2010.01891v1
|
https://arxiv.org/pdf/2010.01891v1.pdf
|
A Pilot Study of Text-to-SQL Semantic Parsing for Vietnamese
|
Semantic parsing is an important NLP task. However, Vietnamese is a low-resource language in this research area. In this paper, we present the first public large-scale Text-to-SQL semantic parsing dataset for Vietnamese. We extend and evaluate two strong semantic parsing baselines EditSQL (Zhang et al., 2019) and IRNet (Guo et al., 2019) on our dataset. We compare the two baselines with key configurations and find that: automatic Vietnamese word segmentation improves the parsing results of both baselines; the normalized pointwise mutual information (NPMI) score (Bouma, 2009) is useful for schema linking; latent syntactic features extracted from a neural dependency parser for Vietnamese also improve the results; and the monolingual language model PhoBERT for Vietnamese (Nguyen and Nguyen, 2020) helps produce higher performances than the recent best multilingual language model XLM-R (Conneau et al., 2020).
|
['Dat Quoc Nguyen', 'Mai Hoang Dao', 'Anh Tuan Nguyen']
|
2020-10-05
| null |
https://aclanthology.org/2020.findings-emnlp.364
|
https://aclanthology.org/2020.findings-emnlp.364.pdf
|
findings-of-the-association-for-computational
|
['vietnamese-word-segmentation']
|
['natural-language-processing']
|
[-1.24744773e-01 4.70047832e-01 -3.29959184e-01 -6.61415577e-01
-1.36487865e+00 -8.90892446e-01 2.81412333e-01 3.08472365e-01
-7.42257655e-01 9.72353637e-01 6.18272662e-01 -3.54482144e-01
2.82112032e-01 -9.25682604e-01 -9.09118593e-01 -8.20696354e-02
1.60143390e-01 7.62267113e-01 3.65478605e-01 -3.76958698e-01
2.77590245e-01 -5.24052139e-03 -9.48721290e-01 5.11109531e-01
1.29081655e+00 3.53079259e-01 6.13794506e-01 4.27268505e-01
-5.01957119e-01 5.49245954e-01 -5.53407431e-01 -9.34085667e-01
1.24457203e-01 -3.72946382e-01 -1.17845511e+00 -6.77776158e-01
3.76149744e-01 1.11743286e-02 1.82293296e-01 1.16509914e+00
5.05972743e-01 -1.51428178e-01 2.90916473e-01 -9.23750103e-01
-7.95524538e-01 1.30612624e+00 -1.81971565e-01 9.64816543e-04
3.93455237e-01 -1.90289900e-01 1.47138822e+00 -9.48541105e-01
1.34787726e+00 1.37525237e+00 7.24127233e-01 6.24514520e-01
-7.29250669e-01 -6.76613510e-01 1.10618331e-01 2.11333722e-01
-1.21555018e+00 -1.53524965e-01 3.98358881e-01 1.32041112e-01
1.62864411e+00 5.51838726e-02 2.72403598e-01 1.34466016e+00
7.49017745e-02 9.40683246e-01 1.09757078e+00 -4.77197945e-01
-5.91253862e-03 -8.76810923e-02 9.96429920e-02 7.77430475e-01
4.11410965e-02 -1.61420684e-02 -5.87001085e-01 1.38690233e-01
3.17748040e-01 -7.36983120e-01 3.81914794e-01 1.35690048e-01
-1.16986442e+00 1.04029024e+00 3.20673227e-01 3.10585737e-01
-2.38295630e-01 -6.80244341e-02 8.46972287e-01 2.41908103e-01
4.90379184e-01 4.56508279e-01 -8.02746654e-01 -4.41756099e-01
-6.44682050e-01 3.82860303e-01 1.07169199e+00 1.50991976e+00
5.66587448e-01 -1.59903660e-01 -2.18987814e-03 1.08347833e+00
1.67386234e-01 5.00019789e-01 1.98998198e-01 -1.31304145e+00
1.31287098e+00 2.62799412e-01 -3.32205266e-01 -5.98681748e-01
-3.68590713e-01 -1.38621286e-01 -3.53362054e-01 -5.53140581e-01
5.23920536e-01 -2.61322677e-01 -6.65617526e-01 1.88639247e+00
2.56201059e-01 -5.54448485e-01 6.40627980e-01 6.64384365e-01
9.27133441e-01 9.18195903e-01 7.61671484e-01 -7.20789135e-02
1.58936989e+00 -1.40568960e+00 -8.80127728e-01 -6.06522322e-01
9.84879494e-01 -1.04662132e+00 1.22075105e+00 1.79924205e-01
-1.16855419e+00 -5.93520939e-01 -8.15277576e-01 -6.56213760e-01
-6.04984581e-01 3.90299112e-02 7.93277979e-01 6.64125919e-01
-9.83705103e-01 3.86350423e-01 -8.55204999e-01 -9.73648250e-01
1.86483800e-01 6.43973704e-03 -3.55220109e-01 -4.09704208e-01
-1.57461238e+00 9.93662238e-01 1.00857031e+00 -8.79892558e-02
-5.38746595e-01 -5.81789732e-01 -1.01190972e+00 -2.22294360e-01
7.48873413e-01 -4.16433513e-01 1.18535042e+00 -7.65834212e-01
-1.33442962e+00 1.04214489e+00 -2.81405926e-01 -4.30407971e-01
4.56927449e-01 -5.76860130e-01 -3.68709803e-01 1.99806601e-01
7.53548682e-01 1.29417968e+00 -1.48940369e-01 -1.03722000e+00
-7.29850650e-01 -5.38012683e-01 -1.64854005e-01 4.96256292e-01
6.10442646e-02 4.96586770e-01 -8.08619976e-01 -7.05815792e-01
8.76353607e-02 -9.27673578e-01 -2.38376141e-01 -6.83128536e-01
-3.14351201e-01 -5.67018926e-01 5.56565225e-01 -1.45958960e+00
1.09895003e+00 -1.85818732e+00 3.58107127e-02 -9.02580693e-02
-3.82080972e-01 1.86599240e-01 -4.05181587e-01 7.80723453e-01
1.20694436e-01 4.47758198e-01 -7.11901426e-01 -2.94265270e-01
1.31657705e-01 7.60664105e-01 5.55700138e-02 -7.80792460e-02
3.73982966e-01 1.40868986e+00 -8.20003867e-01 -9.22271729e-01
-1.35671347e-01 1.65951252e-01 -6.37991607e-01 1.67848766e-01
-4.44237888e-01 4.53336567e-01 -2.61998981e-01 9.13445711e-01
5.41318715e-01 4.50846583e-01 7.71756649e-01 -3.99466753e-02
-2.72752523e-01 6.26793444e-01 -6.42755985e-01 2.33045459e+00
-5.43675303e-01 2.73592979e-01 -2.38673910e-02 -7.16453075e-01
9.24724400e-01 3.33427697e-01 2.03743264e-01 -1.11688471e+00
-1.21209964e-01 6.09462857e-01 -1.04580685e-01 -4.72527176e-01
7.26476729e-01 1.46915868e-01 -7.38217413e-01 1.52509296e-02
1.75982550e-01 -2.40475133e-01 5.48776925e-01 4.17043835e-01
8.55958462e-01 6.58690035e-01 4.02116567e-01 -5.61117291e-01
3.23905081e-01 5.45605302e-01 9.84345376e-01 6.29685342e-01
-3.09238195e-01 5.39547920e-01 7.50121474e-01 4.94379224e-03
-1.30497289e+00 -1.16392279e+00 -5.99197596e-02 1.26624966e+00
-6.23852648e-02 -5.55755258e-01 -1.24904668e+00 -1.14064884e+00
-2.74497449e-01 1.12811327e+00 -3.34999561e-01 4.94074225e-01
-1.30180776e+00 -6.13833368e-01 1.08211803e+00 8.21721256e-01
7.29720712e-01 -1.33145654e+00 -2.12634757e-01 5.61683118e-01
-7.58251905e-01 -1.67097032e+00 -4.01374727e-01 1.95795819e-01
-7.91552782e-01 -8.82188797e-01 -4.37314570e-01 -1.10457981e+00
2.02088848e-01 -4.51472312e-01 1.31004477e+00 -3.33900124e-01
-5.65119460e-02 -1.91953164e-02 -6.87833428e-01 -3.44778866e-01
-6.07047856e-01 4.29401785e-01 -4.74761337e-01 -1.00038087e+00
5.23953676e-01 8.24796259e-02 -1.56046361e-01 -7.84209371e-02
-6.92019999e-01 9.41030830e-02 4.53495383e-01 6.33447051e-01
7.10656881e-01 -2.98436642e-01 5.51355660e-01 -1.49634182e+00
3.76176417e-01 -5.79559863e-01 -6.49975836e-01 3.90063494e-01
-6.51633203e-01 -6.31267205e-03 6.46837294e-01 2.87349671e-01
-1.60321462e+00 -1.09947287e-01 -8.33031893e-01 5.47196686e-01
-1.79083869e-01 6.45932198e-01 -6.28941655e-01 3.72752815e-01
2.31805384e-01 -1.36487052e-01 -5.42200685e-01 -6.31154954e-01
6.70781910e-01 3.88033271e-01 7.32633531e-01 -9.62594151e-01
3.95910025e-01 4.59447643e-03 -3.02503586e-01 -6.20840430e-01
-8.84630799e-01 -2.50687420e-01 -9.70763862e-01 3.30789357e-01
1.51601493e+00 -1.06121922e+00 -3.38150263e-01 1.03488848e-01
-1.45808542e+00 -3.85687381e-01 8.57974663e-02 2.79215068e-01
-3.92658710e-01 4.47022319e-01 -1.15314519e+00 -4.05229837e-01
-3.80791724e-01 -1.12557197e+00 1.22056329e+00 2.82582492e-02
-3.61551940e-01 -1.19948745e+00 -6.24356307e-02 7.63907731e-01
6.24575354e-02 2.62559623e-01 1.40468729e+00 -8.83671582e-01
-4.08933431e-01 4.13940877e-01 -5.43441355e-01 4.18722630e-01
-3.65321517e-01 -1.21914282e-01 -5.29618561e-01 -8.35341215e-02
-2.14283377e-01 -3.78456235e-01 7.19660282e-01 2.32308507e-01
7.85310626e-01 -2.44406417e-01 -4.72977050e-02 5.62521636e-01
1.60273302e+00 4.95203137e-01 6.27918959e-01 6.46274388e-01
8.43904376e-01 1.15487111e+00 1.10208666e+00 -1.85545295e-01
1.14270878e+00 3.24101001e-01 1.86682984e-01 -1.75948873e-01
-2.11261734e-01 -6.87738001e-01 6.64330423e-01 1.51529729e+00
1.14051379e-01 -4.67259586e-01 -1.16916621e+00 4.28517640e-01
-1.89235449e+00 -3.16764265e-01 -5.42718887e-01 1.85529768e+00
8.56612027e-01 -4.88998778e-02 -9.84466374e-02 -6.58583224e-01
6.35884404e-01 9.16568562e-02 -1.94003135e-01 -7.93651581e-01
-5.22162020e-01 6.14870667e-01 7.64759600e-01 6.96750760e-01
-1.10279000e+00 2.06292820e+00 5.64845610e+00 8.59849572e-01
-4.18750495e-01 6.76841199e-01 3.55328113e-01 4.39684361e-01
-4.24764514e-01 4.36690539e-01 -1.08943427e+00 3.57305527e-01
1.30618322e+00 1.06658280e-01 2.64253914e-01 6.54735982e-01
-1.73190147e-01 -3.23747694e-01 -8.40708792e-01 5.12516260e-01
1.53039038e-01 -1.17745018e+00 -2.37016305e-01 -1.09963514e-01
6.25524759e-01 4.50932920e-01 -4.07913357e-01 6.25181615e-01
6.52208745e-01 -8.91986549e-01 7.85603702e-01 -2.90497299e-03
5.54084718e-01 -9.41524565e-01 1.00411904e+00 2.01026350e-01
-1.22011018e+00 2.07717478e-01 -3.79994690e-01 3.83992881e-01
6.52121723e-01 2.59791970e-01 -4.81185526e-01 9.15135443e-01
8.50692689e-01 7.86052525e-01 -8.44201148e-01 1.53562054e-01
-7.68309653e-01 8.96512330e-01 -4.61206399e-02 -5.12511283e-02
5.57133019e-01 -5.61488807e-01 4.12541211e-01 1.57781017e+00
2.74429440e-01 -4.41319942e-02 4.80073333e-01 6.79359198e-01
-1.14359692e-01 5.70641458e-01 -5.24442911e-01 -2.81338096e-01
4.72404808e-01 9.58314121e-01 -9.50094581e-01 -4.19699371e-01
-6.51513755e-01 1.26347840e+00 5.15625954e-01 3.55420560e-01
-7.00434089e-01 -4.46326673e-01 3.50510687e-01 -4.12874728e-01
1.64598927e-01 -4.24501657e-01 -4.36406851e-01 -1.04070222e+00
4.30122428e-02 -1.01353025e+00 7.77230799e-01 -6.66641533e-01
-1.16066086e+00 5.62882900e-01 1.16492115e-01 -3.51150692e-01
-3.09463173e-01 -6.92184925e-01 -1.21205337e-01 8.70133698e-01
-1.70658171e+00 -1.61083174e+00 2.25595519e-01 3.10193092e-01
9.66566741e-01 -5.01993299e-02 1.02799463e+00 4.22951221e-01
-6.17684305e-01 5.47287762e-01 -8.05789977e-02 5.75396001e-01
7.63370156e-01 -1.41241848e+00 1.09199178e+00 9.63360190e-01
1.08723298e-01 5.47958672e-01 2.79995650e-01 -1.29722214e+00
-1.45272124e+00 -1.29348743e+00 1.64410996e+00 -5.82548618e-01
7.29644299e-01 -6.58882916e-01 -1.11639965e+00 1.05179477e+00
6.89699888e-01 -6.38225913e-01 5.94690084e-01 2.57345289e-01
-5.00533879e-01 2.77892888e-01 -1.10570025e+00 4.09476966e-01
1.33640790e+00 -4.76714969e-01 -7.01637685e-01 5.10672688e-01
1.14907873e+00 -4.99642372e-01 -1.15734589e+00 4.28401411e-01
3.03085595e-01 -8.36662233e-01 6.91626191e-01 -5.58261931e-01
4.56012845e-01 1.01870812e-01 -4.03691024e-01 -1.13750458e+00
5.20248786e-02 -2.94740379e-01 6.88308477e-01 1.77190125e+00
7.71009386e-01 -8.20299566e-01 5.69658458e-01 2.44791493e-01
-5.03824413e-01 -1.95005968e-01 -8.80898774e-01 -1.03676379e+00
7.14027643e-01 -6.19470179e-01 4.99804497e-01 1.03905606e+00
-2.05168024e-01 5.36520660e-01 1.10998198e-01 2.80648410e-01
7.18196154e-01 -1.82447761e-01 2.90730357e-01 -8.54717076e-01
1.51634682e-03 -1.16906352e-01 1.88925982e-01 -6.13528907e-01
7.79947639e-01 -1.43142927e+00 5.40644266e-02 -1.78841603e+00
2.95140117e-01 -4.42782015e-01 8.23082924e-02 5.84210336e-01
-1.59478441e-01 -1.74794123e-01 3.13865542e-01 -2.48386450e-02
-4.63575542e-01 3.29286724e-01 9.35982943e-01 2.28516370e-01
4.10477035e-02 -6.27584398e-01 -6.61049843e-01 5.77954948e-01
8.61967504e-01 -7.20099390e-01 -1.28025919e-01 -9.18923378e-01
2.32248649e-01 2.06965104e-01 -1.22738428e-01 -4.17729259e-01
2.40558758e-01 -1.69956043e-01 1.24310981e-03 -5.99752545e-01
-1.15799084e-01 -3.60964328e-01 -8.57932214e-03 4.59659666e-01
-3.16735476e-01 7.49853373e-01 2.13354483e-01 -8.49069562e-03
-4.65204239e-01 -5.14232099e-01 5.50828934e-01 -5.64084291e-01
-1.14874887e+00 7.36490265e-02 -2.23992094e-01 7.08954930e-01
7.28616059e-01 -2.62229461e-02 -6.05263054e-01 2.34339181e-02
-3.20950150e-01 4.68667626e-01 2.55431652e-01 6.83566034e-01
2.48935193e-01 -1.02939463e+00 -8.43137085e-01 -4.11579609e-02
1.90370947e-01 -1.75083019e-02 -7.96548265e-04 6.09002531e-01
-9.63942647e-01 6.87359869e-01 -1.42416909e-01 -2.01371193e-01
-1.07141113e+00 2.70997852e-01 -3.46891433e-01 -3.68874162e-01
-4.28321719e-01 8.84630799e-01 -1.07273169e-01 -1.16155541e+00
8.71426426e-03 -1.36284873e-01 -7.59315416e-02 8.06640163e-02
-1.51424691e-01 5.49483418e-01 -5.25284652e-03 -8.30922365e-01
-5.22264540e-01 5.28986573e-01 -2.32405756e-02 -4.79984522e-01
1.29160416e+00 -1.46017626e-01 -4.60746080e-01 1.96741194e-01
1.41605067e+00 6.84409365e-02 -6.91225231e-01 -1.30330056e-01
7.30034649e-01 -6.15704544e-02 -3.80420029e-01 -1.21054864e+00
-7.81857967e-01 9.38672364e-01 1.99039221e-01 -1.00935057e-01
8.63654315e-01 2.62811005e-01 1.25138330e+00 3.49318117e-01
4.13451761e-01 -1.79476428e+00 -4.13912177e-01 9.99004185e-01
6.64231777e-01 -1.42476571e+00 -4.18987393e-01 -9.77305055e-01
-1.19664240e+00 9.76766944e-01 7.97517657e-01 3.07449788e-01
2.00511232e-01 3.26353163e-01 3.53934944e-01 -1.23011746e-01
-5.13537884e-01 -4.99594599e-01 3.36175561e-02 6.33136988e-01
6.55114532e-01 3.02159160e-01 -9.88268971e-01 6.47580683e-01
-6.10604465e-01 -4.57376033e-01 1.39113218e-01 9.63949621e-01
-2.07397252e-01 -1.70071876e+00 6.26263842e-02 -4.81798388e-02
-5.41680157e-01 -6.27983749e-01 -4.46212381e-01 1.35018730e+00
1.73679516e-01 9.82764006e-01 9.78188068e-02 1.97318286e-01
5.04275858e-01 3.14454973e-01 3.94858629e-01 -9.35893536e-01
-8.80449176e-01 2.17864424e-01 6.89031601e-01 -8.33850265e-01
-1.80809945e-01 -8.48703146e-01 -1.79904461e+00 2.19492167e-02
1.72705293e-01 2.92716146e-01 1.05107224e+00 9.05378699e-01
2.32153609e-01 2.35575631e-01 1.33239791e-01 1.28893666e-02
-1.41835764e-01 -8.07991385e-01 -3.66698086e-01 2.47602776e-01
-6.48883760e-01 -2.46601880e-01 -3.87511827e-04 8.27161372e-02]
|
[10.570528030395508, 9.60124683380127]
|
11e3d928-2538-4dd9-b6d4-aa73935cc982
|
identification-of-novel-classes-for-improving
|
2303.10422
| null |
https://arxiv.org/abs/2303.10422v1
|
https://arxiv.org/pdf/2303.10422v1.pdf
|
Identification of Novel Classes for Improving Few-Shot Object Detection
|
Conventional training of deep neural networks requires a large number of the annotated image which is a laborious and time-consuming task, particularly for rare objects. Few-shot object detection (FSOD) methods offer a remedy by realizing robust object detection using only a few training samples per class. An unexplored challenge for FSOD is that instances from unlabeled novel classes that do not belong to the fixed set of training classes appear in the background. These objects behave similarly to label noise, leading to FSOD performance degradation. We develop a semi-supervised algorithm to detect and then utilize these unlabeled novel objects as positive samples during training to improve FSOD performance. Specifically, we propose a hierarchical ternary classification region proposal network (HTRPN) to localize the potential unlabeled novel objects and assign them new objectness labels. Our improved hierarchical sampling strategy for the region proposal network (RPN) also boosts the perception ability of the object detection model for large objects. Our experimental results indicate that our method is effective and outperforms the existing state-of-the-art (SOTA) FSOD methods.
|
['Mohammad Rostami', 'Zeyu Shangguan']
|
2023-03-18
| null | null | null | null |
['robust-object-detection', 'few-shot-object-detection']
|
['computer-vision', 'computer-vision']
|
[ 2.82433540e-01 4.03347723e-02 -2.87899584e-01 -3.46814483e-01
-5.34167767e-01 -2.85474002e-01 3.92268121e-01 5.79461306e-02
-5.02600491e-01 6.39986634e-01 -4.42393899e-01 2.12233812e-01
2.68354356e-01 -8.26558590e-01 -6.56395137e-01 -8.42325747e-01
1.97905943e-01 4.12533671e-01 1.18741167e+00 2.66552478e-01
5.03819287e-02 7.64042735e-01 -1.88242316e+00 3.01760823e-01
7.75603175e-01 1.28019536e+00 7.11415708e-01 1.87039763e-01
-2.58053988e-01 8.25346351e-01 -8.30039382e-01 8.00021216e-02
3.34441096e-01 -2.91804492e-01 -4.60901856e-01 3.58240634e-01
6.27610743e-01 -6.90193892e-01 -2.95467526e-01 1.32348990e+00
5.56762576e-01 5.04407287e-01 7.26313114e-01 -1.31286061e+00
-6.01747990e-01 5.28685689e-01 -7.70239592e-01 6.27840698e-01
-4.13624465e-01 4.95115705e-02 6.77322626e-01 -1.48180711e+00
5.38923800e-01 1.30174601e+00 4.79561538e-01 7.84682453e-01
-1.03870845e+00 -8.73270512e-01 5.01902938e-01 3.06726605e-01
-1.60065782e+00 -3.70988727e-01 6.39654517e-01 -3.16820085e-01
6.11260772e-01 9.06414688e-02 5.83394408e-01 9.06848490e-01
-2.25575000e-01 1.10118234e+00 7.33557701e-01 -4.83790070e-01
6.24376118e-01 5.15929222e-01 5.43968976e-01 5.56898177e-01
6.81953669e-01 1.68721780e-01 -4.56886113e-01 1.79112032e-01
6.32610679e-01 3.78054917e-01 -2.48361360e-02 -5.35459220e-01
-8.93197119e-01 6.46998107e-01 7.62272775e-01 2.71738172e-01
-2.84974545e-01 4.52972576e-02 3.12961519e-01 -2.52525657e-01
3.15111846e-01 2.33938061e-02 -3.43955755e-01 4.02844280e-01
-7.58715510e-01 -3.34901996e-02 3.62434626e-01 1.07666588e+00
9.21972573e-01 3.67491990e-02 -6.06621325e-01 1.03561676e+00
1.69207677e-01 3.35451514e-01 3.45708877e-01 -7.41710842e-01
1.95895672e-01 8.38661909e-01 2.92179614e-01 -7.53708243e-01
-2.41707444e-01 -7.04222381e-01 -3.80637437e-01 3.73868197e-01
4.06032890e-01 9.27305222e-03 -1.21614552e+00 1.47422206e+00
7.37618029e-01 1.17178924e-01 -5.07309362e-02 1.10959923e+00
8.90345156e-01 8.62950146e-01 2.38929093e-01 -2.97908694e-01
1.39744008e+00 -1.30402553e+00 -5.55268824e-01 -5.31806231e-01
5.55807114e-01 -4.72246200e-01 9.53073442e-01 2.58505881e-01
-7.22312868e-01 -8.49689543e-01 -1.07809579e+00 1.77614182e-01
-4.97156352e-01 5.91052771e-01 6.70024693e-01 5.97282350e-01
-5.01263857e-01 3.09745610e-01 -7.41537988e-01 -3.85451853e-01
1.10457230e+00 2.57768244e-01 6.62833974e-02 -4.63219374e-01
-7.22965062e-01 6.09573483e-01 9.57323253e-01 2.10224643e-01
-1.52646029e+00 -2.96428412e-01 -7.40175962e-01 1.91875562e-01
8.83742929e-01 8.40016920e-03 1.32603180e+00 -9.82514977e-01
-9.19901550e-01 7.13689566e-01 -1.43434167e-01 -3.61230016e-01
2.37151474e-01 -1.66356683e-01 -4.38582510e-01 3.44529092e-01
3.46020848e-01 1.04023838e+00 9.08530593e-01 -1.46343434e+00
-1.05941701e+00 -2.30325952e-01 -9.86270532e-02 1.68486297e-01
-4.88620490e-01 1.31554693e-01 -4.37643349e-01 -5.66693366e-01
4.41498071e-01 -5.74474454e-01 -2.24993870e-01 6.04372084e-01
-4.08266753e-01 -6.76665604e-01 1.36384678e+00 8.87513384e-02
9.40217018e-01 -2.23835540e+00 -5.43524623e-01 -2.17984855e-01
2.17710838e-01 6.46763623e-01 -7.49048069e-02 -1.64827272e-01
1.64167017e-01 -3.14687341e-01 7.13520646e-02 -1.37264684e-01
-1.22313529e-01 3.10631633e-01 -2.93987542e-01 3.10891449e-01
3.98918986e-01 6.81024849e-01 -1.01380622e+00 -6.28083825e-01
1.42964959e-01 1.64001342e-02 -1.27281427e-01 2.28037894e-01
-4.06894088e-01 -2.12509613e-02 -4.32819754e-01 1.05491877e+00
9.51216459e-01 -4.43794787e-01 -2.45638847e-01 -1.46561161e-01
-6.08584657e-02 -1.14356175e-01 -1.40213645e+00 1.09926033e+00
2.63570398e-01 4.87201631e-01 -2.22227573e-01 -9.56137300e-01
1.12814200e+00 -6.74303770e-02 7.33179972e-02 -4.53677535e-01
3.50786239e-01 3.51992816e-01 4.82284687e-02 -5.77251196e-01
3.63501012e-01 -2.51903057e-01 3.43973875e-01 4.26565915e-01
3.39895993e-01 4.75469172e-01 3.53104025e-01 2.62053847e-01
9.07747865e-01 -1.12969786e-01 4.81493026e-01 -1.88910395e-01
2.24634424e-01 6.53542653e-02 1.01887250e+00 1.26731360e+00
-7.14035511e-01 3.73975307e-01 1.80111304e-01 -4.76669878e-01
-8.37612092e-01 -1.16193771e+00 -3.46268743e-01 1.45704997e+00
5.65215349e-01 2.26010919e-01 -6.77557528e-01 -9.72746551e-01
2.64893658e-03 5.86344540e-01 -6.06166065e-01 -4.26222295e-01
-2.04002872e-01 -7.01957881e-01 2.05688789e-01 8.02622378e-01
5.41144669e-01 -1.32538939e+00 -6.93220973e-01 3.47082347e-01
2.38237262e-01 -1.09033668e+00 -3.54683936e-01 6.41265929e-01
-7.92631149e-01 -9.85812902e-01 -8.33118737e-01 -1.21851385e+00
1.08381438e+00 9.87096667e-01 5.84329486e-01 8.24071094e-03
-6.05115592e-01 -5.52478917e-02 -4.68720734e-01 -8.23510826e-01
-1.98503509e-01 -3.26740950e-01 2.77412564e-01 2.31525153e-01
8.52651715e-01 2.15124711e-03 -7.14576900e-01 6.47376776e-01
-7.76646733e-01 -9.45637301e-02 6.68922603e-01 8.65684748e-01
6.13329947e-01 1.69469550e-01 9.12630200e-01 -8.36414695e-01
-1.51589513e-01 -4.92706776e-01 -7.72898376e-01 2.09247991e-01
-2.92391032e-01 -4.21514928e-01 4.84994262e-01 -1.00300884e+00
-1.20022202e+00 2.98766851e-01 4.92840528e-01 -6.79596305e-01
-3.53744239e-01 -3.06732859e-03 -9.15316418e-02 -1.47592977e-01
1.01741672e+00 1.74259186e-01 -2.04962000e-01 -5.49126983e-01
2.20462084e-02 7.34800160e-01 4.58465517e-01 -2.64278680e-01
7.71960974e-01 6.89602554e-01 -2.15858057e-01 -7.31418133e-01
-1.41830206e+00 -8.44185770e-01 -6.58512175e-01 -4.34579939e-01
5.74687183e-01 -1.08925915e+00 -2.42767513e-01 4.81016815e-01
-1.15021062e+00 -1.92873150e-01 -5.24118423e-01 5.75946987e-01
-2.47482881e-02 1.70738906e-01 -4.90750045e-01 -1.25695395e+00
-2.03221053e-01 -8.79585207e-01 1.09637535e+00 7.15102255e-01
3.11059237e-01 -3.75369430e-01 -6.07425869e-01 1.67010367e-01
1.27446890e-01 -6.99144974e-02 5.85690439e-01 -8.42657924e-01
-9.31097448e-01 -3.92901599e-01 -6.12739205e-01 3.99889708e-01
7.78920427e-02 -1.60843864e-01 -1.22045887e+00 -4.01541233e-01
-3.17808352e-02 -5.85296154e-01 1.13172770e+00 3.98943871e-01
1.20942092e+00 -1.08470589e-01 -7.79702783e-01 1.40118852e-01
1.25763047e+00 4.69586372e-01 1.47658288e-01 7.46970847e-02
5.73779345e-01 5.87022960e-01 1.18284249e+00 4.73417461e-01
-1.79057911e-01 4.48178083e-01 4.84455258e-01 -1.68514833e-01
-1.76970989e-01 -7.02940151e-02 2.49276981e-01 2.00888157e-01
2.20540434e-01 -4.03212667e-01 -6.33539319e-01 6.64194107e-01
-1.85133016e+00 -8.81818771e-01 -5.72369508e-02 1.90549695e+00
7.36811817e-01 4.42447126e-01 1.17828213e-01 1.33464664e-01
1.23649144e+00 -1.03584565e-01 -8.07269931e-01 3.49241078e-01
-3.41815166e-02 -5.58626316e-02 2.90835023e-01 -1.62141457e-01
-1.32204139e+00 1.09883094e+00 5.67144060e+00 1.06005454e+00
-1.09028840e+00 2.97291905e-01 6.19778275e-01 -1.19045153e-01
3.84748429e-01 -2.76019007e-01 -1.52810502e+00 3.42616737e-01
3.49785805e-01 -3.15085463e-02 1.67153124e-02 1.61985826e+00
2.04847604e-01 -3.75404745e-01 -9.03234839e-01 8.19680810e-01
1.82581618e-01 -1.18516195e+00 6.34000152e-02 -2.98054487e-01
9.38407719e-01 7.27483556e-02 -1.06315613e-01 6.13004088e-01
-1.51268160e-02 -4.84250844e-01 8.74595046e-01 1.34722874e-01
5.67116857e-01 -4.00188148e-01 5.88902414e-01 6.07696295e-01
-1.21955752e+00 -6.58390284e-01 -1.08606446e+00 6.69385120e-02
-1.11054061e-02 6.89806044e-01 -1.07188976e+00 -2.86168903e-01
8.60925972e-01 5.89854419e-01 -7.34968066e-01 1.55425715e+00
-4.81665805e-02 6.66040361e-01 -3.61960977e-01 -3.49289775e-01
3.67814094e-01 2.15847388e-01 5.43810606e-01 8.02430511e-01
2.38088697e-01 1.96560562e-01 4.59151238e-01 1.07636762e+00
-2.19348580e-01 -8.59235302e-02 -4.13835108e-01 -8.48849043e-02
7.20941484e-01 1.46294451e+00 -1.45153785e+00 -7.46084273e-01
-4.21128094e-01 7.84008622e-01 4.73692447e-01 3.87274116e-01
-7.09484756e-01 -4.46227640e-01 6.17902540e-02 1.11061968e-01
7.16155589e-01 1.82407320e-01 2.23151837e-02 -9.35764670e-01
1.04329795e-01 -3.84473652e-01 5.70892036e-01 -7.18556464e-01
-1.34828389e+00 2.79397279e-01 -7.69849569e-02 -1.45627797e+00
5.02556920e-01 -9.11496222e-01 -6.22446120e-01 3.64047050e-01
-1.46706140e+00 -9.73061264e-01 -6.90134406e-01 3.23651224e-01
7.69219637e-01 -2.43661836e-01 4.42632318e-01 4.14368510e-01
-7.16162860e-01 5.31117558e-01 1.61292717e-01 1.73510566e-01
4.38914478e-01 -9.81712282e-01 3.41825783e-02 1.09692252e+00
1.75510213e-01 4.62156326e-01 3.54310870e-01 -6.18254900e-01
-9.11348760e-01 -1.56008768e+00 4.19232994e-01 -4.16598730e-02
3.31154734e-01 -5.99024355e-01 -1.11734784e+00 5.08447111e-01
-5.61769366e-01 7.10269511e-01 3.72741908e-01 -3.09796125e-01
-2.20454827e-01 -3.81197929e-01 -1.12110627e+00 4.65786725e-01
1.10250986e+00 -1.18668772e-01 -5.54920077e-01 5.78658164e-01
9.17233109e-01 -1.59371607e-02 -1.14153564e-01 4.86412436e-01
1.86795861e-01 -7.51012385e-01 7.73030460e-01 -4.27716464e-01
-7.92234167e-02 -7.57784009e-01 -1.35360688e-01 -6.91654563e-01
-3.48359376e-01 -1.89523086e-01 -5.02633393e-01 1.20611596e+00
1.76017419e-01 -3.78729939e-01 1.01658392e+00 3.05329829e-01
-3.13438177e-01 -6.35440767e-01 -1.00657439e+00 -1.17517066e+00
-5.32890379e-01 -1.45888180e-01 2.20039263e-01 8.72323692e-01
-3.32190216e-01 3.21962386e-01 -8.94889906e-02 3.14736068e-01
8.24123442e-01 7.56981745e-02 5.98324001e-01 -1.43779850e+00
-1.35374159e-01 -1.37269065e-01 -5.06028831e-01 -1.13708150e+00
-3.85396451e-01 -5.60299873e-01 5.75294852e-01 -1.30349505e+00
5.37165225e-01 -6.34766340e-01 -5.56906223e-01 7.79528677e-01
-3.82800519e-01 6.11434460e-01 -4.97558666e-03 1.97667018e-01
-1.17125010e+00 6.24890745e-01 1.27752507e+00 -1.50871873e-01
-1.65456653e-01 1.96882412e-01 -4.19137925e-01 7.15345383e-01
4.82174873e-01 -8.46884370e-01 -3.67998809e-01 -3.27807628e-02
-4.43231523e-01 -3.00511628e-01 4.44956243e-01 -1.32360268e+00
2.65549719e-01 -2.05127925e-01 6.68737411e-01 -1.11413300e+00
3.79858911e-01 -8.76729190e-01 -3.22139561e-01 8.11746836e-01
-1.42350599e-01 -7.73834765e-01 1.48209587e-01 8.66336882e-01
4.71018516e-02 -7.13823438e-01 1.28151989e+00 -1.71895683e-01
-1.21977282e+00 3.71612191e-01 -4.71033514e-01 -1.61510915e-01
1.60116684e+00 -4.57145840e-01 -5.13452828e-01 2.77017206e-01
-6.58686221e-01 1.90578267e-01 1.63895078e-02 4.32610989e-01
6.54649496e-01 -1.27423954e+00 -2.26464123e-01 2.02113926e-01
5.47340214e-01 4.35208112e-01 2.54101455e-01 5.31084299e-01
-4.26835001e-01 1.28839836e-01 -1.13234445e-01 -8.15104306e-01
-1.23402929e+00 9.68232036e-01 4.31926489e-01 3.32669765e-01
-7.19427288e-01 1.25420725e+00 5.33512294e-01 -2.37970322e-01
6.64882720e-01 -7.36218467e-02 -2.71633565e-01 2.06818283e-01
7.91575313e-01 4.49146420e-01 -2.18760133e-01 -4.05772179e-01
-2.86567658e-01 1.38804525e-01 -5.94821572e-01 4.89551187e-01
1.18040311e+00 -4.14078636e-03 6.26614392e-02 5.93836665e-01
9.12716031e-01 -6.44388855e-01 -1.57624090e+00 -8.06650937e-01
4.26705591e-02 -5.25619209e-01 4.97561842e-02 -7.09904075e-01
-8.61113787e-01 8.27128470e-01 9.31972027e-01 7.46878162e-02
9.18167591e-01 3.18995625e-01 5.38155556e-01 7.45191336e-01
4.31490690e-01 -1.35489941e+00 6.77125394e-01 3.72740299e-01
3.52410018e-01 -1.55511129e+00 7.26214424e-02 -6.64168894e-01
-4.22627389e-01 1.03126574e+00 1.27850425e+00 -5.32644391e-02
4.67620432e-01 7.87092093e-03 4.43175063e-02 -1.60476193e-01
-5.35913587e-01 -3.37538570e-01 3.38012904e-01 5.46680868e-01
-2.22117543e-01 -1.53828159e-01 -8.28888267e-02 6.17647231e-01
5.75225055e-01 -8.11565891e-02 4.46602046e-01 1.13942885e+00
-1.26270223e+00 -4.55352306e-01 -4.30569351e-01 7.16717005e-01
-1.60447851e-01 4.52605374e-02 -7.04500973e-02 5.50525069e-01
4.52525169e-01 7.43489504e-01 1.95163608e-01 9.80353216e-04
-1.15586724e-02 -7.96704888e-02 1.53946325e-01 -1.22786140e+00
-4.96239364e-02 1.65255189e-01 -2.90761411e-01 -1.54258102e-01
-3.37188572e-01 -5.18866599e-01 -1.31155550e+00 3.49938244e-01
-1.04717755e+00 1.07890246e-02 3.57364833e-01 8.35347474e-01
1.12090141e-01 5.36738694e-01 6.58235192e-01 -1.06865978e+00
-6.93525016e-01 -1.02017379e+00 -9.07662332e-01 1.14258967e-01
2.72337645e-01 -1.17982769e+00 -2.72997737e-01 -2.98760645e-03]
|
[9.313141822814941, 1.3877068758010864]
|
88108cc7-ced0-4b35-a472-86a008f2ef8d
|
extreme-q-learning-maxent-rl-without-entropy
|
2301.02328
| null |
https://arxiv.org/abs/2301.02328v2
|
https://arxiv.org/pdf/2301.02328v2.pdf
|
Extreme Q-Learning: MaxEnt RL without Entropy
|
Modern Deep Reinforcement Learning (RL) algorithms require estimates of the maximal Q-value, which are difficult to compute in continuous domains with an infinite number of possible actions. In this work, we introduce a new update rule for online and offline RL which directly models the maximal value using Extreme Value Theory (EVT), drawing inspiration from economics. By doing so, we avoid computing Q-values using out-of-distribution actions which is often a substantial source of error. Our key insight is to introduce an objective that directly estimates the optimal soft-value functions (LogSumExp) in the maximum entropy RL setting without needing to sample from a policy. Using EVT, we derive our \emph{Extreme Q-Learning} framework and consequently online and, for the first time, offline MaxEnt Q-learning algorithms, that do not explicitly require access to a policy or its entropy. Our method obtains consistently strong performance in the D4RL benchmark, outperforming prior works by \emph{10+ points} on the challenging Franka Kitchen tasks while offering moderate improvements over SAC and TD3 on online DM Control tasks. Visualizations and code can be found on our website at https://div99.github.io/XQL/.
|
['Stefano Ermon', 'Matthieu Geist', 'Joey Hejna', 'Divyansh Garg']
|
2023-01-05
| null | null | null | null |
['d4rl']
|
['robots']
|
[-3.89231175e-01 2.21108675e-01 -4.59626198e-01 -1.42908603e-01
-1.01981139e+00 -7.01338112e-01 3.96289438e-01 1.46317989e-01
-7.57082939e-01 1.20305383e+00 -1.18925437e-01 -5.81681013e-01
-3.96003902e-01 -6.22175932e-01 -8.90578985e-01 -6.93177938e-01
-2.22076356e-01 5.42004108e-01 -3.53059977e-01 -1.83752209e-01
2.62526989e-01 3.46719846e-02 -1.06589782e+00 -3.16024244e-01
1.06774414e+00 1.32623672e+00 1.91861629e-01 6.33695662e-01
1.84721068e-01 9.03434396e-01 -4.23443913e-01 -3.70343387e-01
6.51855052e-01 -4.50429112e-01 -5.77366710e-01 -1.59888014e-01
-6.00811932e-03 -9.06289220e-01 -1.26640961e-01 1.09774446e+00
6.65297389e-01 4.79077816e-01 5.54737628e-01 -1.22160876e+00
-5.68786740e-01 7.35779166e-01 -6.04093075e-01 2.26381458e-02
9.78460386e-02 6.79298878e-01 1.32530916e+00 -3.62976074e-01
3.66129637e-01 1.14713621e+00 3.47855181e-01 4.91013050e-01
-1.36029863e+00 -6.09279275e-01 2.68423557e-01 9.24456567e-02
-9.54957366e-01 -2.09242374e-01 4.50939059e-01 -2.10603505e-01
8.25479627e-01 -1.78099990e-01 8.11870456e-01 1.00213075e+00
7.89304376e-02 1.06345820e+00 1.39243078e+00 -1.87990382e-01
9.54714060e-01 -8.46392475e-04 -3.87323111e-01 5.97048521e-01
-1.05700027e-02 5.51071107e-01 -2.90553868e-01 -1.30438685e-01
7.14948177e-01 9.72628221e-03 1.80155113e-02 -5.52986264e-01
-8.10977519e-01 1.16550505e+00 2.72797704e-01 -2.05535844e-01
-6.23649538e-01 7.46977806e-01 4.12321657e-01 5.72973907e-01
4.66559887e-01 5.53371906e-01 -7.51417994e-01 -5.88787436e-01
-5.66148758e-01 6.48180306e-01 8.29377413e-01 8.12649608e-01
5.62107801e-01 1.03468597e-01 -3.87923777e-01 5.78566134e-01
1.37649521e-01 6.51326180e-01 2.56750584e-01 -1.61097491e+00
5.27500629e-01 3.05021740e-02 8.46366763e-01 -3.58912885e-01
-2.76335895e-01 -6.43869162e-01 -3.43691826e-01 4.36944127e-01
7.42189229e-01 -6.51540756e-01 -6.00047588e-01 1.94273174e+00
4.64341938e-01 -1.57017514e-01 8.73584077e-02 8.49203765e-01
-1.83503836e-01 5.12727499e-01 3.50402184e-02 -4.96176153e-01
9.57701564e-01 -7.26210952e-01 -6.68321252e-01 -1.60196692e-01
5.71190834e-01 -2.79465795e-01 1.37101173e+00 6.91940546e-01
-1.31367290e+00 -6.56215996e-02 -8.23171854e-01 1.24906346e-01
-8.83854926e-03 -1.43193677e-01 7.71862507e-01 4.78128195e-01
-9.84065711e-01 1.07624590e+00 -8.59005094e-01 1.60027623e-01
8.38029206e-01 3.72326404e-01 1.48360103e-01 2.24817395e-01
-1.22744322e+00 8.58577013e-01 4.16948020e-01 -1.39685452e-01
-1.16557193e+00 -8.91281962e-01 -5.39155960e-01 2.08856747e-01
1.13747811e+00 -5.64017951e-01 1.88801861e+00 -1.16653323e+00
-2.18254185e+00 1.35157257e-01 4.25565988e-01 -9.16425586e-01
1.07228112e+00 -2.99658716e-01 3.77533704e-01 1.69210732e-01
-1.89100787e-01 6.28420055e-01 9.77687955e-01 -8.43522370e-01
-5.40254235e-01 -2.23117828e-01 3.35811526e-01 3.08756083e-01
-2.24400997e-01 -4.12239343e-01 1.85643703e-01 -4.46644545e-01
-6.16546214e-01 -9.01397526e-01 -4.19549346e-01 1.08261772e-01
-3.10927536e-02 -4.91159081e-01 8.11896771e-02 -6.04029417e-01
9.88958240e-01 -1.81615210e+00 7.52024725e-02 5.93029335e-02
8.05026740e-02 -1.19317546e-02 7.84669351e-03 3.94258589e-01
3.29818070e-01 7.36838952e-02 -2.52871245e-01 -1.98126495e-01
7.39673316e-01 2.22202927e-01 -3.45851034e-01 5.35057306e-01
-1.17944598e-01 1.13220072e+00 -1.13387215e+00 -3.16884786e-01
2.49494895e-01 -2.47116685e-02 -1.00019002e+00 1.67993754e-01
-9.21293199e-01 3.15923989e-01 -5.19496500e-01 2.51874864e-01
3.55721027e-01 -1.95692331e-01 3.56568485e-01 5.02829254e-01
-1.56220689e-01 1.43752933e-01 -1.21293378e+00 1.67815280e+00
-7.56008029e-01 2.63752341e-01 2.25604679e-02 -1.21568906e+00
5.61661839e-01 1.17069125e-01 6.61477804e-01 -8.20627451e-01
3.57263565e-01 2.36750960e-01 -1.08413048e-01 -2.72165745e-01
1.81824297e-01 -4.00849164e-01 -2.62907565e-01 7.13777542e-01
8.34715068e-02 -1.50756925e-01 2.39795297e-01 6.94972798e-02
1.00875425e+00 3.19237202e-01 4.37570572e-01 -3.43711972e-01
-2.75650341e-02 -1.94924682e-01 5.93634367e-01 9.22580540e-01
-4.43095535e-01 -2.10329354e-01 1.21403491e+00 -1.12910226e-01
-1.14283013e+00 -1.26106238e+00 6.77909655e-03 1.21534693e+00
-1.93172857e-01 -1.32430971e-01 -5.87737918e-01 -7.10416317e-01
5.21278858e-01 9.67101336e-01 -6.75040305e-01 -1.64702237e-01
-1.48145884e-01 -4.07843828e-01 4.62905690e-03 4.97011662e-01
3.75536323e-01 -9.79219913e-01 -7.99932480e-01 2.14864701e-01
3.64219025e-02 -6.94228888e-01 -5.95519662e-01 3.47217739e-01
-8.25442910e-01 -5.91312766e-01 -8.08395147e-01 -4.21209745e-02
2.74796903e-01 -4.46052372e-01 9.53437567e-01 -3.92766416e-01
-1.16145145e-02 4.99860406e-01 -1.19819403e-01 -7.07504869e-01
-1.44090101e-01 6.58068731e-02 1.63215429e-01 -2.99121767e-01
1.08521655e-01 -5.50625324e-01 -9.85734403e-01 -6.22693710e-02
-5.67675352e-01 -1.25662848e-01 5.73971450e-01 9.15563762e-01
6.15309894e-01 -2.28534847e-01 1.02316904e+00 -6.78597689e-01
7.47345865e-01 -7.40844786e-01 -1.28331304e+00 -5.37043512e-02
-8.68703544e-01 5.01196861e-01 1.07837677e+00 -5.41248560e-01
-8.80916834e-01 -1.09480679e-01 3.84377539e-02 -5.90839028e-01
1.87848613e-01 2.17546552e-01 1.60096854e-01 3.10344994e-01
4.33482796e-01 7.46466443e-02 3.08714479e-01 -3.30442727e-01
5.26435077e-01 4.96388644e-01 7.98480771e-03 -9.60825443e-01
4.19638425e-01 2.25177288e-01 -2.27953810e-02 -3.97089332e-01
-1.02267170e+00 2.20367461e-02 -1.03422478e-01 -2.67143607e-01
4.87642020e-01 -7.83689499e-01 -1.42129111e+00 1.46272793e-01
-5.09258747e-01 -1.10788178e+00 -8.23226213e-01 5.39242506e-01
-1.29499412e+00 1.53515339e-01 -5.17382801e-01 -1.18967998e+00
-2.80973077e-01 -7.69952834e-01 6.03955388e-01 2.77529657e-01
1.79456413e-01 -9.48935390e-01 1.02199957e-01 3.16981494e-01
4.62693572e-01 2.31278598e-01 7.07940996e-01 -3.56828094e-01
-5.07865191e-01 2.17673481e-01 2.19637200e-01 4.77380455e-01
-1.59850270e-01 -2.29704410e-01 -6.96811616e-01 -5.82099438e-01
-1.26472145e-01 -8.72011185e-01 7.56544113e-01 6.71683788e-01
1.42351651e+00 -6.56047165e-01 3.17560375e-01 5.84376991e-01
1.44547343e+00 3.03955019e-01 1.86563671e-01 3.09484065e-01
8.38650838e-02 2.52823412e-01 7.74935424e-01 1.27694345e+00
3.47511172e-01 4.62274879e-01 5.84628403e-01 3.32677335e-01
6.09391212e-01 -5.23925066e-01 6.69078708e-01 2.34047681e-01
5.74616864e-02 -8.30491930e-02 -5.92698514e-01 3.74092698e-01
-1.86582851e+00 -1.04434705e+00 5.78069568e-01 2.38111067e+00
1.27225089e+00 2.54056185e-01 6.44250989e-01 -2.44426370e-01
3.71816635e-01 -6.68546408e-02 -1.40279210e+00 -7.08115995e-01
4.36302453e-01 5.12044489e-01 9.22606707e-01 6.65868461e-01
-8.78147781e-01 8.35097194e-01 5.48350334e+00 9.58456993e-01
-8.41907740e-01 1.48391917e-01 7.77117789e-01 -7.63959885e-01
-2.58697033e-01 2.90374123e-02 -5.41561067e-01 6.66070938e-01
1.11566663e+00 -4.40721184e-01 1.11204529e+00 1.05540705e+00
5.94951868e-01 -3.27943057e-01 -1.06753778e+00 7.72164404e-01
-7.34471560e-01 -9.59992051e-01 -6.08245134e-01 3.61152232e-01
9.06876385e-01 1.11330718e-01 3.72715533e-01 7.50779331e-01
8.94875824e-01 -1.00057483e+00 9.13425684e-01 4.89854962e-01
6.76773906e-01 -1.13631511e+00 3.79910916e-01 5.42935133e-01
-6.65685952e-01 -6.46501541e-01 -5.40479720e-01 -2.47579396e-01
-1.53203845e-01 5.14930129e-01 -5.94516098e-01 1.48262471e-01
3.63649279e-01 4.82972950e-01 1.34031326e-01 6.95017397e-01
-3.98470700e-01 6.20465517e-01 -6.42922640e-01 -5.51350236e-01
5.08276045e-01 -3.96777511e-01 2.47380763e-01 6.76790476e-01
1.46030307e-01 9.98817198e-03 3.70740294e-01 1.25642419e+00
-2.69907862e-01 1.55845433e-01 -3.62637460e-01 -3.17211568e-01
4.54296738e-01 1.08073413e+00 -4.63815123e-01 -4.65560295e-02
-1.12771139e-01 7.18237042e-01 5.01997173e-01 3.82093728e-01
-1.06823480e+00 -4.14323896e-01 8.30376983e-01 -1.87950999e-01
5.50162375e-01 -3.95773172e-01 -7.04418123e-02 -8.70401263e-01
9.78707075e-02 -8.65820944e-01 4.45142061e-01 -2.91607618e-01
-1.16148603e+00 -2.36300379e-01 1.48947641e-01 -9.20491815e-01
-5.96449375e-01 -5.49338460e-01 -2.76746064e-01 6.26690626e-01
-1.60097325e+00 -3.28075945e-01 3.95912260e-01 5.51156998e-01
4.32794809e-01 1.30667567e-01 2.44895130e-01 1.89821795e-03
-5.30081153e-01 7.07704544e-01 8.12860966e-01 -1.86156377e-01
4.43933576e-01 -1.67591286e+00 1.85930520e-01 1.92072064e-01
-1.81548208e-01 2.93725766e-02 7.39167690e-01 -3.18436325e-01
-1.68473458e+00 -6.35280192e-01 9.74874943e-02 -2.52199054e-01
9.53741491e-01 -3.78031760e-01 -3.82139266e-01 6.18995249e-01
5.84874973e-02 1.54333860e-01 2.37755418e-01 9.26828198e-03
1.29618213e-01 -2.61304975e-01 -1.23099446e+00 5.63951492e-01
9.95556951e-01 -2.53751665e-01 -1.89849228e-01 4.40438181e-01
7.53562927e-01 -3.37498277e-01 -9.48394477e-01 -6.44457489e-02
5.75291693e-01 -8.27634633e-01 7.61130929e-01 -8.01553786e-01
4.87010300e-01 2.08449632e-01 -6.47430047e-02 -1.60706687e+00
1.41712010e-01 -1.13958073e+00 -5.05536437e-01 7.40292549e-01
3.07375342e-01 -9.83422220e-01 6.30986929e-01 5.90013027e-01
2.95594573e-01 -1.20899379e+00 -1.05641890e+00 -1.11841440e+00
7.34269738e-01 -4.27578151e-01 4.27154928e-01 7.18987346e-01
1.65209144e-01 -9.84498337e-02 -3.95346403e-01 -1.97647691e-01
1.00913405e+00 1.37807637e-01 5.56072533e-01 -7.74240255e-01
-8.79405081e-01 -5.53440094e-01 2.00379461e-01 -1.15319812e+00
4.21125084e-01 -7.84907818e-01 3.67189050e-02 -1.22528481e+00
1.01307333e-02 -5.13257623e-01 -3.78833324e-01 5.28608799e-01
1.08074017e-01 -4.46220279e-01 4.07063127e-01 -1.84745297e-01
-7.90480137e-01 1.21049309e+00 1.31411409e+00 1.34160995e-01
-3.42441916e-01 9.32842717e-02 -7.05907166e-01 5.75767398e-01
1.25554395e+00 -5.31891346e-01 -7.39913702e-01 -1.85233533e-01
5.31824589e-01 5.10210216e-01 3.63709807e-01 -6.57147706e-01
-1.90375790e-01 -8.26456070e-01 3.04340690e-01 -4.88064140e-02
9.64229703e-02 -5.35623372e-01 -3.44912410e-01 7.16187716e-01
-7.84350038e-01 -2.68232264e-02 7.12813810e-02 6.87151253e-01
4.41888571e-01 -3.05286199e-01 9.83371675e-01 -3.72468114e-01
-2.76037753e-01 4.00239766e-01 -3.43045294e-01 6.72748804e-01
1.15449595e+00 3.71509433e-01 -2.00535208e-01 -7.93687880e-01
-5.58549523e-01 6.83899403e-01 3.51181626e-01 -4.18064259e-02
3.37020099e-01 -1.16252565e+00 -5.79440236e-01 -2.41575569e-01
-4.25114453e-01 -8.27446282e-02 1.60859942e-01 7.82422543e-01
-2.76834309e-01 3.26215029e-01 -5.80077507e-02 -1.65447444e-01
-3.50986749e-01 5.70578218e-01 7.12058783e-01 -4.35403228e-01
-5.79605401e-01 5.64809918e-01 -1.78881288e-01 -3.65866750e-01
3.35215122e-01 -3.61358821e-01 3.32452774e-01 -8.73433147e-03
3.08899820e-01 5.90979695e-01 -3.61167461e-01 4.06071305e-01
1.59152485e-02 7.50441402e-02 -4.61639240e-02 -6.27293885e-01
1.40591764e+00 -5.29427156e-02 4.86354411e-01 4.49194133e-01
1.06509697e+00 -4.10270184e-01 -2.15892863e+00 -1.56420946e-01
8.62735957e-02 -5.00598967e-01 3.06720912e-01 -1.00887108e+00
-1.03738379e+00 7.55668521e-01 5.98449290e-01 6.51323050e-02
9.50897813e-01 -1.82300672e-01 7.86480963e-01 7.25602210e-01
5.21148443e-01 -1.70307040e+00 1.45327121e-01 3.48345399e-01
7.48384833e-01 -1.24739122e+00 4.59753945e-02 7.32281923e-01
-8.90010834e-01 8.78910780e-01 4.52936411e-01 -3.54714692e-01
6.04248166e-01 2.91689456e-01 -3.43034089e-01 2.28067085e-01
-1.23345017e+00 -2.62301236e-01 -3.02197874e-01 1.77983537e-01
1.09779313e-01 3.30750734e-01 -4.46245223e-01 5.16239762e-01
-2.19970137e-01 2.52856910e-01 4.78754044e-01 1.02274084e+00
-5.55463076e-01 -1.06633294e+00 1.83081403e-02 5.81116557e-01
-6.35577321e-01 -2.33820155e-02 -2.60378532e-02 7.62923121e-01
-3.48387480e-01 7.41969943e-01 1.27677068e-01 7.04060793e-02
7.37931877e-02 8.48373473e-02 6.83754265e-01 -8.04743022e-02
-3.35776538e-01 -5.65438941e-02 -1.73769772e-01 -7.68527150e-01
-1.02914441e-02 -7.63851166e-01 -1.26179171e+00 -6.74522281e-01
-9.88494605e-02 1.54932126e-01 6.35501266e-01 9.11400557e-01
3.22851777e-01 1.95557639e-01 9.76239800e-01 -6.64668322e-01
-1.67344475e+00 -7.46759534e-01 -7.18745351e-01 1.31106973e-01
4.91285473e-01 -7.49827504e-01 -5.35842776e-01 -5.72027028e-01]
|
[4.142472267150879, 2.4391841888427734]
|
a4f561cc-a4de-4ba1-b952-a0186f2dc6dc
|
dynamic-adaptive-threshold-based-learning-for
|
2208.10221
| null |
https://arxiv.org/abs/2208.10221v1
|
https://arxiv.org/pdf/2208.10221v1.pdf
|
Dynamic Adaptive Threshold based Learning for Noisy Annotations Robust Facial Expression Recognition
|
The real-world facial expression recognition (FER) datasets suffer from noisy annotations due to crowd-sourcing, ambiguity in expressions, the subjectivity of annotators and inter-class similarity. However, the recent deep networks have strong capacity to memorize the noisy annotations leading to corrupted feature embedding and poor generalization. To handle noisy annotations, we propose a dynamic FER learning framework (DNFER) in which clean samples are selected based on dynamic class specific threshold during training. Specifically, DNFER is based on supervised training using selected clean samples and unsupervised consistent training using all the samples. During training, the mean posterior class probabilities of each mini-batch is used as dynamic class-specific threshold to select the clean samples for supervised training. This threshold is independent of noise rate and does not need any clean data unlike other methods. In addition, to learn from all samples, the posterior distributions between weakly-augmented image and strongly-augmented image are aligned using an unsupervised consistency loss. We demonstrate the robustness of DNFER on both synthetic as well as on real noisy annotated FER datasets like RAFDB, FERPlus, SFEW and AffectNet.
|
['S Balasubramanian', 'Bobbili Veerendra Raj Kumar', 'Naveen Siva Kumar Badveeti', 'Darshan Gera']
|
2022-08-22
| null | null | null | null |
['facial-expression-recognition']
|
['computer-vision']
|
[ 1.55655205e-01 1.39173329e-01 1.47848189e-01 -9.94394064e-01
-8.15145195e-01 -2.83421069e-01 2.91070461e-01 -2.77824461e-01
-6.73908830e-01 9.86151040e-01 3.22269127e-02 7.76236773e-01
1.27721995e-01 -3.95272672e-01 -7.17368126e-01 -9.75332797e-01
-3.99203151e-02 2.44882286e-01 2.93957070e-02 -2.70459503e-01
-4.51817155e-01 2.88695782e-01 -1.62700987e+00 5.27230561e-01
6.64918244e-01 1.57227612e+00 -8.06867629e-02 2.26646900e-01
-2.17825577e-01 9.60214376e-01 -8.13892007e-01 -7.88277090e-01
1.94671482e-01 -4.02854711e-01 -6.42387092e-01 3.48198771e-01
3.52470845e-01 -1.89227268e-01 -1.00450538e-01 1.44603848e+00
6.75481260e-01 2.45296583e-01 3.09458792e-01 -1.41439211e+00
-5.66415370e-01 3.95721167e-01 -6.01722360e-01 -6.23681955e-02
2.64325887e-01 1.24017656e-01 6.66068435e-01 -1.22999060e+00
7.88865149e-01 1.33259833e+00 7.26857185e-01 9.38727975e-01
-9.84227002e-01 -9.09613609e-01 3.38746428e-01 1.61492899e-01
-1.62716734e+00 -7.91174531e-01 8.77944410e-01 -2.91190207e-01
1.70526206e-01 1.58077091e-01 5.94422221e-01 1.46051323e+00
-2.28947848e-01 9.11635458e-01 1.13189590e+00 -2.43907556e-01
3.64860207e-01 3.39959055e-01 7.36643076e-02 6.75364614e-01
-2.43530303e-01 -2.63318837e-01 -9.16873753e-01 -2.72219807e-01
3.54925454e-01 -1.65179119e-01 -3.57932001e-01 -1.08272605e-01
-7.39132047e-01 5.59062421e-01 1.84853137e-01 1.21077217e-01
-4.28976089e-01 1.02575950e-01 6.99601889e-01 2.63267398e-01
6.04511023e-01 -9.54810008e-02 -6.05816960e-01 -1.18339151e-01
-7.59070873e-01 7.73017108e-02 5.29724538e-01 7.81093776e-01
9.58065808e-01 2.36359790e-01 -3.97782862e-01 1.24948776e+00
2.72126198e-01 5.45534372e-01 6.17020547e-01 -9.88881767e-01
2.49636248e-01 3.26671779e-01 9.45691317e-02 -1.18949664e+00
-8.00531507e-02 -4.25572962e-01 -1.08797944e+00 8.44398737e-02
2.78890073e-01 -2.93645501e-01 -1.01101172e+00 2.16924119e+00
4.48828667e-01 2.83345133e-01 8.68572444e-02 1.05736291e+00
9.08399522e-01 3.90539676e-01 3.55188042e-01 -4.95264322e-01
1.05786955e+00 -7.80163407e-01 -1.13881612e+00 -1.51088918e-02
4.42970037e-01 -5.51761389e-01 1.09819067e+00 6.75353885e-01
-8.64713490e-01 -5.40834248e-01 -9.33750868e-01 1.70063823e-01
-2.05148131e-01 4.35194790e-01 5.45782864e-01 5.67018628e-01
-8.54639947e-01 3.58513594e-01 -6.69967592e-01 2.87141893e-02
1.03291178e+00 4.09962922e-01 -9.55467165e-01 -1.03095688e-01
-1.17493320e+00 4.26781416e-01 3.76776844e-01 5.75758874e-01
-1.03115976e+00 -4.08332378e-01 -9.10679400e-01 -1.03212141e-01
3.07234436e-01 -1.19110152e-01 1.13465059e+00 -2.02443981e+00
-1.81390500e+00 9.68336761e-01 -1.97001964e-01 -3.51231188e-01
7.04916656e-01 -2.48071566e-01 -4.99287546e-01 1.10680610e-01
-3.92214954e-03 6.67617083e-01 9.65054572e-01 -1.37838757e+00
-2.58253902e-01 -3.94914269e-01 -2.60065377e-01 -3.42365429e-02
-3.76921266e-01 1.35930583e-01 -2.88476348e-01 -6.27120376e-01
2.27526188e-01 -7.48641372e-01 -4.82660569e-02 3.99074614e-01
-1.81271359e-01 -1.61345124e-01 9.38146770e-01 -5.35269678e-01
8.65626514e-01 -2.57809424e+00 -1.48445815e-01 2.33256295e-01
1.35164008e-01 3.26427519e-01 -3.36315334e-01 -2.26651236e-01
-2.14030936e-01 1.83702167e-02 -1.83497950e-01 -6.17815256e-01
-9.43105668e-02 6.09684348e-01 -1.29079282e-01 5.91606319e-01
5.68043530e-01 4.92423028e-01 -1.12179792e+00 -5.74392557e-01
-1.29812479e-01 6.33481264e-01 -2.63536602e-01 3.56452376e-01
-9.22131166e-02 5.64091206e-01 -3.42000544e-01 7.38206744e-01
9.99440491e-01 -8.67120177e-02 1.76086463e-02 -5.10369778e-01
6.15183771e-01 -4.12863076e-01 -1.42861795e+00 1.67646384e+00
-2.81990945e-01 3.96465480e-01 4.04457331e-01 -1.09674501e+00
1.22664905e+00 5.19576967e-01 4.15531218e-01 -5.52255273e-01
4.09987271e-01 2.33582973e-01 -3.08563173e-01 -7.49635696e-01
2.56991953e-01 -7.52615407e-02 7.57260844e-02 1.03264078e-01
6.49247766e-01 2.69471645e-01 1.37475371e-01 1.08461697e-02
8.95076036e-01 6.51131794e-02 -2.80184043e-03 2.15023104e-02
5.18332243e-01 -6.33932233e-01 1.19406438e+00 5.82001328e-01
-4.98165429e-01 7.72946894e-01 5.07135332e-01 -6.62567019e-01
-7.00695693e-01 -8.58740926e-01 -2.55341738e-01 1.13133121e+00
-4.54336815e-02 -2.84058094e-01 -8.14594686e-01 -1.10409737e+00
-3.94906670e-01 1.80866763e-01 -8.65306675e-01 -2.55743057e-01
-1.88118294e-01 -8.01453769e-01 6.51578367e-01 3.09725702e-01
8.52834046e-01 -1.06943035e+00 -1.27830297e-01 1.13274187e-01
-2.58059710e-01 -1.17224467e+00 -2.80210435e-01 2.18558624e-01
-2.36762300e-01 -1.08974242e+00 -5.30114889e-01 -5.76808155e-01
9.23145592e-01 -3.40107381e-01 9.96350110e-01 4.23020609e-02
-9.02998075e-02 2.88855463e-01 -4.66022044e-01 -4.52389866e-01
-1.88112408e-01 -3.33487600e-01 1.80042699e-01 7.71344543e-01
4.95780617e-01 -4.68598008e-01 -3.68661135e-01 3.74289989e-01
-1.03957856e+00 -3.65834922e-01 3.13081443e-01 1.33999062e+00
8.85765970e-01 -1.97629556e-01 6.61944628e-01 -8.28206480e-01
5.32057106e-01 -6.00822568e-01 -3.47774744e-01 2.67795682e-01
-9.05480608e-02 -1.88132867e-01 5.36588013e-01 -8.03663552e-01
-1.23611271e+00 3.53192329e-01 -1.14714354e-01 -7.65644372e-01
-1.58708483e-01 2.87574530e-01 -3.90627176e-01 -2.16483213e-02
7.77593553e-01 1.35518713e-02 2.79011820e-02 -2.90312827e-01
5.23537137e-02 7.86845028e-01 5.92333734e-01 -7.66344130e-01
4.32478428e-01 4.61570382e-01 -2.66003996e-01 -6.94770634e-01
-1.08377981e+00 -5.94497733e-02 -4.62306827e-01 -4.06310558e-01
7.31301606e-01 -1.09754407e+00 -5.87423325e-01 6.49178922e-01
-1.34705234e+00 -1.10551551e-01 -5.25769413e-01 3.79438698e-01
-2.85007626e-01 1.59236506e-01 -5.45939386e-01 -1.11015153e+00
-3.21916550e-01 -1.19739389e+00 1.22071850e+00 4.28138196e-01
-1.34786248e-01 -5.59801161e-01 -2.37774596e-01 2.38443285e-01
2.12956801e-01 5.69665194e-01 1.72737151e-01 -7.67386436e-01
-1.28688797e-01 -3.39080662e-01 -1.03759333e-01 1.01686347e+00
2.17936411e-01 1.97876558e-01 -1.41382647e+00 -6.01245202e-02
-1.27420779e-02 -1.03314614e+00 7.44292557e-01 6.24624314e-03
1.54469502e+00 -3.98885995e-01 -2.10297201e-02 5.83308101e-01
1.12986684e+00 -9.81551707e-02 6.25843465e-01 -6.24179328e-03
4.72241163e-01 5.89318216e-01 7.14370012e-01 6.23851418e-01
3.05653573e-03 4.76857990e-01 3.78870696e-01 -1.20087550e-03
7.58074373e-02 -4.62487005e-02 2.58523971e-01 5.75107276e-01
-1.05733494e-03 -1.79452360e-01 -5.63129783e-01 5.00626743e-01
-1.89565003e+00 -9.17291880e-01 2.92651206e-01 2.07744551e+00
1.22346234e+00 -9.93576944e-02 -2.07933769e-01 1.38591468e-01
7.38495529e-01 1.50840625e-01 -4.33742315e-01 -5.71364649e-02
-6.54334366e-01 3.62212867e-01 1.52446598e-01 3.19864213e-01
-1.11613548e+00 9.69488204e-01 5.47851896e+00 1.11323786e+00
-1.18980539e+00 4.36678439e-01 1.12143385e+00 -1.67989820e-01
2.09705085e-02 -3.77852887e-01 -5.95312774e-01 6.47211671e-01
5.76264322e-01 1.99771017e-01 1.00905955e-01 1.16590309e+00
2.23171666e-01 -2.57899821e-01 -7.27129042e-01 1.24744153e+00
1.25992030e-01 -1.01236725e+00 -1.06922403e-01 -5.27260780e-01
8.32427859e-01 -9.25127864e-02 -3.89977582e-02 2.81267673e-01
3.20969224e-01 -1.09555769e+00 8.27881157e-01 8.99984002e-01
7.40517080e-01 -7.37477481e-01 1.15980852e+00 6.84228614e-02
-7.97728121e-01 -7.37579614e-02 -5.34659922e-01 2.83631891e-01
-2.72974372e-02 9.60866630e-01 -4.88670439e-01 3.02087158e-01
1.14558709e+00 6.83316767e-01 -4.63885278e-01 7.33504534e-01
-3.07024509e-01 7.50647247e-01 -5.67192852e-01 2.01346949e-01
-9.79928896e-02 -1.47561118e-01 3.30622256e-01 1.13476837e+00
8.22755769e-02 4.22002971e-02 2.57720888e-01 5.50089657e-01
-3.55926692e-01 8.71919245e-02 -1.88603625e-01 7.15889633e-02
4.56337661e-01 1.37548804e+00 -2.60263443e-01 -2.33682588e-01
-1.32931307e-01 1.08275163e+00 4.53384072e-01 5.91241896e-01
-8.27683747e-01 -1.58402577e-01 6.70927465e-01 -1.49336025e-01
1.50462002e-01 1.04798369e-01 4.50190902e-02 -1.05605829e+00
3.40610445e-01 -9.79301333e-01 3.21091175e-01 -8.45837831e-01
-1.62582040e+00 1.00459099e+00 -1.92249790e-01 -1.11896396e+00
1.13710470e-01 -3.42283994e-01 -4.51198637e-01 6.74808800e-01
-1.41720402e+00 -1.12556005e+00 -6.03944063e-01 7.95292497e-01
3.26702982e-01 -3.36461008e-01 9.43243086e-01 5.39905369e-01
-7.19150186e-01 9.99886155e-01 -1.66326046e-01 4.90172058e-01
9.88580763e-01 -8.69148016e-01 -5.59076369e-01 4.87191021e-01
-1.68369710e-02 2.10401326e-01 6.84544981e-01 -4.19750005e-01
-8.47261131e-01 -1.22914374e+00 5.03646910e-01 -1.19423285e-01
4.11581963e-01 -4.57850248e-01 -1.14513314e+00 4.77976590e-01
3.26709040e-02 1.04645288e+00 6.95115566e-01 -1.09029002e-01
-4.63615447e-01 -6.68212235e-01 -1.45667779e+00 2.38073960e-01
1.00603187e+00 -4.13328052e-01 -1.00845031e-01 5.81519425e-01
4.55446690e-01 -5.89630961e-01 -7.46509850e-01 4.29650396e-01
4.54222858e-01 -9.33259547e-01 3.56737673e-01 -6.61619604e-01
2.62895465e-01 -4.23137724e-01 -3.07534099e-01 -1.22997773e+00
4.59266417e-02 -7.45942414e-01 6.53961599e-02 1.56013548e+00
3.29295486e-01 -3.55689913e-01 7.85501063e-01 6.49846017e-01
5.63241057e-02 -8.66714895e-01 -1.23964894e+00 -5.25505722e-01
-5.55443943e-01 -4.07121956e-01 5.91073215e-01 1.15221727e+00
-4.04027402e-01 -5.18803718e-03 -6.33344650e-01 1.46736071e-01
5.22983611e-01 -6.21027052e-01 7.92334914e-01 -1.09733772e+00
-1.77911028e-01 9.96089056e-02 -7.03466177e-01 -5.75360835e-01
5.40888846e-01 -4.70855653e-01 2.46907637e-01 -8.35277677e-01
2.93091685e-02 -5.32724500e-01 -3.02996725e-01 8.24776649e-01
-1.80311933e-01 4.73952800e-01 -1.18699372e-02 7.29115009e-02
-1.01988375e+00 1.05521619e+00 1.12109149e+00 -2.16798887e-01
1.09365946e-02 -1.52157113e-01 -2.65871823e-01 8.85427713e-01
5.97049415e-01 -6.28650308e-01 -3.65112275e-01 -3.59102815e-01
2.70751834e-01 -2.23892957e-01 2.89221466e-01 -8.85193765e-01
3.71640287e-02 -1.91980615e-01 6.74235880e-01 -9.82668251e-02
5.10902524e-01 -8.89006197e-01 1.34814546e-01 -2.43940473e-01
-3.80422771e-01 -3.48357797e-01 8.72559845e-02 7.08423972e-01
-6.04327977e-01 -2.15612635e-01 1.06296360e+00 -1.33614764e-01
-5.50769150e-01 4.94434386e-01 -3.80987003e-02 1.64506510e-01
9.04320538e-01 -2.41574422e-01 -5.46430834e-02 -5.54322243e-01
-9.87132192e-01 2.17514873e-01 9.22272280e-02 3.00436556e-01
5.36248088e-01 -1.60181260e+00 -6.61903143e-01 2.49157399e-01
2.33402342e-01 3.37525278e-01 3.57396245e-01 7.62431502e-01
-9.40337479e-02 -4.94671434e-01 -1.25470966e-01 -6.79535806e-01
-1.30645955e+00 1.53112516e-01 6.87657416e-01 2.93982923e-02
-6.26453338e-03 1.28484297e+00 -2.60258485e-02 -3.36403370e-01
4.80896980e-01 8.18746611e-02 -1.23596914e-01 1.16230465e-01
7.90705800e-01 -5.75189032e-02 1.23716868e-01 -8.83386850e-01
-2.39115641e-01 3.34077090e-01 -1.61513492e-01 7.21302032e-02
1.36455870e+00 -9.72513109e-02 -2.60874748e-01 4.99077827e-01
1.32153082e+00 -7.82033503e-02 -1.48246622e+00 -4.64151055e-01
-1.64487466e-01 -5.69845855e-01 -6.58253431e-02 -6.98130846e-01
-1.52832568e+00 5.85995555e-01 9.73399758e-01 -2.38828227e-01
1.35196555e+00 -1.93573445e-01 4.66181427e-01 4.74558413e-01
1.04914486e-01 -1.49293256e+00 3.01496387e-01 4.20807123e-01
9.46233451e-01 -1.46317446e+00 -3.31439167e-01 -3.29487056e-01
-8.56862009e-01 1.03809869e+00 9.11862671e-01 -1.20372131e-01
8.52146685e-01 4.09944564e-01 3.50848913e-01 -1.03058472e-01
-6.57492995e-01 7.72278616e-03 2.54001599e-02 7.37358451e-01
2.56031215e-01 -3.18648338e-01 -1.98744789e-01 1.11961854e+00
-3.83284763e-02 3.76885623e-01 2.72890866e-01 7.89477110e-01
-1.28041968e-01 -9.11037922e-01 -2.83559084e-01 2.80771106e-01
-6.25835121e-01 2.26227313e-01 -3.57268721e-01 3.93666714e-01
5.72181106e-01 8.01515698e-01 1.37034971e-02 -3.76739353e-01
3.35942417e-01 2.64494359e-01 3.15501332e-01 -3.98577839e-01
-3.97485614e-01 -9.10982788e-02 1.16969466e-01 -6.13633454e-01
-7.16126978e-01 -3.97697628e-01 -1.14078832e+00 1.76528543e-02
-5.08276105e-01 2.88566351e-01 5.03262341e-01 1.12648320e+00
4.24525917e-01 1.91559672e-01 7.47053087e-01 -7.27358103e-01
-4.58847046e-01 -1.13808775e+00 -7.07663536e-01 8.23421419e-01
3.52733254e-01 -8.38132203e-01 -5.50431967e-01 3.16268295e-01]
|
[13.640731811523438, 1.7090647220611572]
|
211055d0-6197-418c-a8f6-7873338672f0
|
spatially-selective-deep-non-linear-filters
|
2211.0242
| null |
https://arxiv.org/abs/2211.02420v2
|
https://arxiv.org/pdf/2211.02420v2.pdf
|
Spatially Selective Deep Non-linear Filters for Speaker Extraction
|
In a scenario with multiple persons talking simultaneously, the spatial characteristics of the signals are the most distinct feature for extracting the target signal. In this work, we develop a deep joint spatial-spectral non-linear filter that can be steered in an arbitrary target direction. For this we propose a simple and effective conditioning mechanism, which sets the initial state of the filter's recurrent layers based on the target direction. We show that this scheme is more effective than the baseline approach and increases the flexibility of the filter at no performance cost. The resulting spatially selective non-linear filters can also be used for speech separation of an arbitrary number of speakers and enable very accurate multi-speaker localization as we demonstrate in this paper.
|
['Timo Gerkmann', 'Kristina Tesch']
|
2022-11-04
| null | null | null | null |
['speech-separation']
|
['speech']
|
[ 6.37548491e-02 -2.10246876e-01 1.48974478e-01 -3.94619018e-01
-1.05142975e+00 -6.91594779e-01 5.38943946e-01 -5.00480771e-01
-4.35946822e-01 6.65062368e-01 4.52651143e-01 -8.08292255e-03
-2.40378588e-01 -2.75853485e-01 -4.16447014e-01 -9.45217550e-01
2.34659016e-02 2.36802369e-01 3.71850818e-01 -1.47879705e-01
-3.09747159e-02 7.21297085e-01 -1.42184687e+00 4.68946666e-01
4.53231603e-01 7.70882368e-01 3.38468283e-01 9.35061574e-01
3.49147469e-01 3.36881548e-01 -7.91833162e-01 2.30724841e-01
1.79255217e-01 -5.85931540e-01 -5.43289721e-01 1.13044620e-01
4.87612933e-01 6.69470578e-02 -4.56322998e-01 9.29933012e-01
1.00271857e+00 4.32737917e-01 5.17989516e-01 -5.74613273e-01
-1.22420549e-01 8.39097321e-01 -3.40648234e-01 5.23717642e-01
3.09246987e-01 -1.38887674e-01 8.58833969e-01 -9.19937372e-01
1.18195757e-01 1.47055387e+00 7.01501608e-01 6.94914103e-01
-1.26490128e+00 -6.61354363e-01 3.22748482e-01 -1.59458295e-02
-1.49342334e+00 -1.07734609e+00 8.91494513e-01 -2.40319356e-01
6.28842950e-01 5.39149046e-01 3.23574364e-01 1.15967643e+00
-1.09320760e-01 5.60723424e-01 1.10774291e+00 -5.75521231e-01
1.34823352e-01 8.41750801e-02 1.50909543e-01 4.34037864e-01
-3.06563497e-01 2.74899542e-01 -8.18720102e-01 -6.51137158e-02
7.21736968e-01 -1.87178880e-01 -6.36246920e-01 -1.01131901e-01
-1.11851227e+00 6.84453607e-01 4.32689220e-01 8.04051220e-01
-2.45598003e-01 1.04958586e-01 6.38665408e-02 2.71756887e-01
4.21670079e-01 4.05858040e-01 -1.41976193e-01 5.12917899e-02
-1.22120845e+00 2.01552704e-01 6.69382811e-01 4.66909826e-01
2.63499200e-01 2.30206624e-01 -4.12588894e-01 8.49650264e-01
3.83024424e-01 5.52967072e-01 4.30908650e-01 -7.58883953e-01
3.21241498e-01 -2.38865316e-01 2.48158291e-01 -6.59637213e-01
-7.24576831e-01 -9.89951015e-01 -5.97412229e-01 1.25253379e-01
5.47203302e-01 -4.65747982e-01 -9.19497371e-01 2.05335402e+00
3.01401407e-01 3.85324776e-01 1.40327036e-01 1.12105119e+00
5.11509717e-01 6.73368752e-01 -3.46832633e-01 -2.92240024e-01
1.18975472e+00 -7.08335876e-01 -8.51612747e-01 -4.86582607e-01
-7.07039163e-02 -8.00348699e-01 7.94831514e-01 3.25780421e-01
-1.15782881e+00 -4.76224303e-01 -9.62678492e-01 3.01184028e-01
-2.25655496e-01 3.52930009e-01 4.20297265e-01 5.98744631e-01
-1.19790506e+00 3.32235217e-01 -7.34739304e-01 -2.83116937e-01
-7.69836381e-02 5.40654302e-01 -7.94023573e-02 2.75400758e-01
-1.34645593e+00 8.80099535e-01 8.94509703e-02 3.16758603e-01
-6.62429571e-01 -3.48774821e-01 -5.76373637e-01 2.34433338e-01
3.42509151e-02 -4.99180317e-01 1.19367433e+00 -1.00466430e+00
-1.85071611e+00 5.46066165e-01 -4.97581631e-01 -4.39103007e-01
4.37010765e-01 -9.66432989e-02 -5.51051974e-01 2.59032935e-01
5.71484715e-02 3.59343886e-01 1.26884294e+00 -1.06659484e+00
-5.18649399e-01 -4.15097833e-01 -1.94878981e-01 4.28404272e-01
-2.90970176e-01 3.09849530e-01 -3.77007335e-01 -7.32265353e-01
2.47528613e-01 -8.78106833e-01 -1.58014953e-01 -4.15259838e-01
-6.10328794e-01 5.63726686e-02 5.46076655e-01 -5.55974126e-01
1.08090377e+00 -2.54695463e+00 3.50051820e-01 3.46370578e-01
-7.46479556e-02 2.90733039e-01 -1.83290809e-01 4.00464654e-01
2.33647302e-02 -3.48133206e-01 -4.33077425e-04 -4.90548551e-01
-1.98762536e-01 -2.55153954e-01 -4.38087821e-01 7.68133402e-01
2.43790150e-02 5.12633026e-01 -6.13678992e-01 -1.38570949e-01
1.76918849e-01 8.98144722e-01 -3.77740145e-01 1.38368189e-01
3.89408290e-01 7.27923930e-01 -2.19966754e-01 4.62699383e-02
5.73623240e-01 8.54676962e-02 2.22199783e-01 -7.61582255e-02
-2.37335265e-01 7.23950505e-01 -1.48714137e+00 1.51662648e+00
-6.22927904e-01 8.72029603e-01 7.56171405e-01 -9.33550537e-01
8.32399666e-01 5.12582898e-01 2.86451548e-01 -3.84214729e-01
8.08159485e-02 1.23043418e-01 2.03919232e-01 -4.80328016e-02
1.42199486e-01 -3.88671041e-01 -1.41494825e-01 2.25639611e-01
2.29080990e-01 1.80053204e-01 -1.22604951e-01 -2.32130468e-01
7.90216088e-01 -4.97017860e-01 1.55071452e-01 -7.28475332e-01
6.49242699e-01 -6.71069980e-01 3.95978957e-01 9.84101176e-01
-1.23110358e-02 7.12679625e-01 7.33966287e-03 -4.04541008e-02
-5.32061577e-01 -1.35441208e+00 -2.32310459e-01 1.23189092e+00
1.19294249e-01 -1.17225081e-01 -7.70279348e-01 -2.26754293e-01
-1.48635522e-01 4.91626203e-01 -3.30506861e-01 -3.31617177e-01
-8.29460442e-01 -5.33945620e-01 5.60064554e-01 5.42230487e-01
3.11252147e-01 -6.61623240e-01 -4.42924410e-01 2.34001949e-01
-2.73152769e-01 -1.03660333e+00 -8.61359000e-01 4.36324865e-01
-3.94701958e-01 -5.43875217e-01 -7.76761293e-01 -8.42232287e-01
4.41657096e-01 4.53650892e-01 5.53569913e-01 -4.68299747e-01
1.68648735e-01 3.93240184e-01 2.14432418e-01 -2.52583236e-01
-1.15296654e-01 1.35519296e-01 3.98961425e-01 4.47157025e-01
1.62266046e-01 -7.49347448e-01 -5.78212857e-01 4.07471240e-01
-4.82397705e-01 -2.74626732e-01 2.70614237e-01 8.93088102e-01
5.66638969e-02 2.99427867e-01 8.15318465e-01 -3.67591232e-01
8.71377647e-01 -1.27138510e-01 -4.41762567e-01 4.61978652e-02
1.96098208e-01 1.15363292e-01 7.46455014e-01 -7.75758147e-01
-1.17045319e+00 2.38712475e-01 -2.81222194e-01 -2.34720230e-01
-8.97045434e-02 2.03322589e-01 -1.66480213e-01 -7.03844875e-02
6.96986496e-01 2.37574846e-01 -1.65563822e-01 -6.17448568e-01
4.01031673e-01 8.23149264e-01 5.67229092e-01 -1.50234461e-01
7.16767848e-01 5.62464297e-01 -9.83618572e-02 -1.09710503e+00
-7.83591151e-01 -6.30999446e-01 -6.11502588e-01 -2.02494517e-01
6.49849474e-01 -1.01108825e+00 -9.04337227e-01 4.30090278e-01
-1.27261555e+00 -2.97666073e-01 -1.29818931e-01 8.23754787e-01
-3.70919824e-01 -2.85092294e-02 -6.52868688e-01 -1.13622177e+00
-8.70928764e-02 -9.69653547e-01 1.09077811e+00 2.58790344e-01
-2.96256185e-01 -1.05419588e+00 1.77387968e-02 -4.99487594e-02
5.67808688e-01 -3.52566272e-01 2.05510318e-01 -6.15774035e-01
-3.69886875e-01 -8.36661458e-02 2.25663602e-01 1.70521796e-01
2.40642443e-01 -3.42186183e-01 -1.35135245e+00 -5.00595391e-01
4.12486941e-01 1.77979898e-02 1.14533031e+00 8.34092975e-01
6.36093497e-01 -2.51629502e-01 -5.18748820e-01 6.06256902e-01
9.52300608e-01 1.95320785e-01 3.24975252e-01 -1.55727044e-01
6.85465515e-01 6.13454998e-01 1.13248557e-01 2.52167821e-01
-2.34841648e-03 1.03488100e+00 -6.97447285e-02 -2.69533753e-01
-2.10922778e-01 -2.82374513e-03 5.65334737e-01 6.55055761e-01
2.10931301e-01 -3.75929952e-01 -5.46284556e-01 5.37606478e-01
-1.81344473e+00 -1.24561346e+00 2.41135329e-01 2.36826134e+00
6.83935881e-01 1.01305544e-03 2.87606031e-01 1.60556853e-01
1.10096216e+00 2.30652198e-01 -2.60016233e-01 -2.97536403e-01
-2.53303260e-01 1.52161643e-01 4.06768173e-01 9.95455503e-01
-1.22935975e+00 7.35036671e-01 7.79019833e+00 7.29601800e-01
-1.58565569e+00 1.16118208e-01 1.85951173e-01 -4.24366206e-01
-4.52691652e-02 -4.43888009e-01 -9.30503011e-01 4.81251836e-01
1.06765258e+00 1.47882074e-01 5.57847679e-01 4.75382388e-01
4.07171398e-01 3.27480137e-02 -1.06446326e+00 1.14559650e+00
1.14230663e-01 -1.04106402e+00 -4.52439725e-01 6.03188341e-03
1.58249035e-01 2.24968828e-02 2.95824051e-01 -1.19486727e-01
1.84986979e-01 -9.49615777e-01 8.46578836e-01 4.44800586e-01
4.51903671e-01 -7.74665177e-01 1.49824515e-01 4.83896196e-01
-1.12949479e+00 -4.57302839e-01 -1.64999574e-01 -7.21128285e-02
4.05531943e-01 8.06458414e-01 -8.03079844e-01 1.49790928e-01
5.56356430e-01 1.85655460e-01 -1.31572992e-01 9.32976842e-01
-1.63442791e-01 7.18366921e-01 -6.13648415e-01 -6.92051975e-03
1.71396151e-01 2.94083953e-02 9.53521013e-01 1.50170147e+00
3.96157831e-01 -1.61651656e-01 1.80653259e-01 7.52963662e-01
1.93359077e-01 -1.39568880e-01 -6.45672321e-01 4.26932186e-01
5.37183046e-01 1.06928396e+00 -6.17816091e-01 -7.99318030e-02
-2.02653050e-01 1.04132020e+00 4.01994973e-01 5.62011421e-01
-7.37853348e-01 -3.67559046e-01 7.55440295e-01 -7.67589360e-03
6.24648631e-01 -2.96645999e-01 6.78911153e-03 -1.18807781e+00
6.68626651e-02 -7.17799067e-01 1.64060578e-01 -3.67462307e-01
-1.13626277e+00 8.69096160e-01 -2.01510936e-01 -9.23272848e-01
-4.46566701e-01 -5.33216059e-01 -5.91167152e-01 1.18110979e+00
-1.25510490e+00 -9.53806639e-01 2.13892639e-01 8.53770077e-01
3.60892475e-01 -5.95209748e-02 7.76782274e-01 4.06996012e-01
-5.52327037e-01 6.25577152e-01 1.80807143e-01 1.62050247e-01
6.86844587e-01 -1.21078932e+00 1.33826792e-01 1.18811131e+00
3.53213668e-01 8.38922203e-01 1.02550840e+00 -2.29767740e-01
-1.02319777e+00 -7.04204798e-01 7.80350745e-01 -2.20124558e-01
5.05699277e-01 -9.70538378e-01 -6.73253596e-01 5.65154731e-01
2.85457939e-01 -1.45767689e-01 6.51134312e-01 2.90605396e-01
-1.43345356e-01 -3.73002678e-01 -8.96284521e-01 5.08246124e-01
9.01706278e-01 -7.82649696e-01 -6.11989200e-01 3.17248672e-01
4.45023865e-01 -3.81950885e-01 -3.07474852e-01 1.88985273e-01
5.22972107e-01 -1.04974914e+00 1.20573914e+00 -3.37851852e-01
-5.28297126e-01 -3.92464727e-01 -2.43132085e-01 -1.57329392e+00
-7.77810156e-01 -9.87496912e-01 1.21881351e-01 1.35942495e+00
4.77661550e-01 -8.45298409e-01 4.47357714e-01 1.99305952e-01
-9.40928087e-02 -2.59717733e-01 -1.30412340e+00 -6.90646946e-01
-1.00508586e-01 -2.67910004e-01 3.00651044e-01 5.15143037e-01
2.62336701e-01 6.34250998e-01 -5.92881858e-01 4.30919468e-01
3.18238378e-01 1.67378053e-01 2.08326921e-01 -1.05533016e+00
-7.03236043e-01 -5.00588953e-01 -3.02855670e-01 -1.54478502e+00
3.62377852e-01 -5.79858243e-01 2.86530495e-01 -1.18528986e+00
-2.12731630e-01 -2.55629867e-01 -5.04841149e-01 1.12284869e-01
-1.22082792e-01 1.12486452e-01 9.83585417e-02 -4.82535325e-02
-2.54119217e-01 4.09846932e-01 9.16550934e-01 -8.39525759e-02
-5.01875639e-01 5.92231214e-01 -7.31382072e-01 6.43481970e-01
7.33021975e-01 -1.75287887e-01 -4.98457700e-01 -2.92193085e-01
-3.43065590e-01 7.00572431e-02 3.00949514e-01 -1.09746134e+00
3.87579679e-01 1.07547037e-01 4.20888960e-01 -2.96807438e-01
8.59493673e-01 -6.97476566e-01 -2.60483064e-02 3.41380626e-01
-5.73552668e-01 -2.97324866e-01 1.73293144e-01 3.91586453e-01
-2.54000217e-01 -7.68349739e-03 1.03747988e+00 1.17654502e-02
-1.84486032e-01 -1.81829974e-01 -5.69732428e-01 -2.38084421e-01
7.80573368e-01 3.70228477e-02 -4.50964756e-02 -7.95992076e-01
-8.92218053e-01 -4.83725220e-02 -4.01625335e-02 2.67642826e-01
4.91837382e-01 -1.37499380e+00 -6.77294135e-01 3.26297641e-01
-4.82344300e-01 -4.94500905e-01 2.92311817e-01 9.51293230e-01
1.60431340e-01 6.05561018e-01 2.57389620e-02 -7.21572995e-01
-1.24563575e+00 5.75939357e-01 7.91718781e-01 -9.38420929e-03
-5.69527864e-01 1.02362967e+00 4.90646154e-01 -2.78912604e-01
3.42238545e-01 -1.61523402e-01 -2.59810448e-01 1.46455318e-01
8.39868426e-01 1.67247906e-01 2.91479062e-02 -9.70226288e-01
-6.58768356e-01 6.25676155e-01 1.91964433e-01 -6.39642954e-01
1.26463020e+00 -4.24353749e-01 7.47999549e-02 7.10726082e-01
1.15479159e+00 6.16163254e-01 -1.39532828e+00 -2.76228756e-01
-2.84620821e-01 -3.25629026e-01 1.30986691e-01 -6.18581712e-01
-1.03017473e+00 9.20659363e-01 6.03219688e-01 3.92258972e-01
1.22643828e+00 1.67993903e-01 2.68096119e-01 9.07511935e-02
1.76002324e-01 -9.11210477e-01 -1.77332073e-01 3.62707704e-01
8.30497503e-01 -7.86552072e-01 -4.11041141e-01 -5.45648158e-01
-3.85158032e-01 1.10917234e+00 1.97832391e-01 -1.14569701e-01
7.40171313e-01 5.23832917e-01 2.58514404e-01 3.45637426e-02
-5.36723852e-01 -3.96790385e-01 5.12603104e-01 8.06296468e-01
4.53852057e-01 1.07137442e-01 -5.14047667e-02 5.05061567e-01
-2.81725407e-01 -5.32297730e-01 2.27001905e-01 4.03340638e-01
-5.45186222e-01 -9.16760981e-01 -7.75460482e-01 7.43327662e-02
-5.82521617e-01 -1.01429053e-01 -4.16633576e-01 3.38528633e-01
-1.80229530e-01 1.30452132e+00 -3.41158849e-03 -2.57479966e-01
3.29186946e-01 2.06789076e-01 5.20932376e-01 -4.51434553e-01
-5.19913375e-01 6.30036354e-01 1.20946802e-01 -3.96564215e-01
-4.00729418e-01 -8.73742759e-01 -1.11396897e+00 3.99367549e-02
-4.84022677e-01 3.05703580e-01 4.28012013e-01 9.56531525e-01
4.92183357e-01 6.20667994e-01 8.05384517e-01 -1.04577696e+00
-6.50639117e-01 -1.02446198e+00 -7.75487304e-01 2.36810625e-01
7.95921147e-01 -7.07089007e-01 -5.67099035e-01 -1.90117821e-01]
|
[15.15219783782959, 5.705580234527588]
|
e52ee6f7-6417-44bf-9730-29b630e5776c
|
modernizing-old-photos-using-multiple
|
2304.04461
| null |
https://arxiv.org/abs/2304.04461v1
|
https://arxiv.org/pdf/2304.04461v1.pdf
|
Modernizing Old Photos Using Multiple References via Photorealistic Style Transfer
|
This paper firstly presents old photo modernization using multiple references by performing stylization and enhancement in a unified manner. In order to modernize old photos, we propose a novel multi-reference-based old photo modernization (MROPM) framework consisting of a network MROPM-Net and a novel synthetic data generation scheme. MROPM-Net stylizes old photos using multiple references via photorealistic style transfer (PST) and further enhances the results to produce modern-looking images. Meanwhile, the synthetic data generation scheme trains the network to effectively utilize multiple references to perform modernization. To evaluate the performance, we propose a new old photos benchmark dataset (CHD) consisting of diverse natural indoor and outdoor scenes. Extensive experiments show that the proposed method outperforms other baselines in performing modernization on real old photos, even though no old photos were used during training. Moreover, our method can appropriately select styles from multiple references for each semantic region in the old photo to further improve the modernization performance.
|
['Munchurl Kim', 'Jae-Ho Lee', 'Hyeonjun Sim', 'Soo Ye Kim', 'Agus Gunawan']
|
2023-04-10
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Gunawan_Modernizing_Old_Photos_Using_Multiple_References_via_Photorealistic_Style_Transfer_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Gunawan_Modernizing_Old_Photos_Using_Multiple_References_via_Photorealistic_Style_Transfer_CVPR_2023_paper.pdf
|
cvpr-2023-1
|
['synthetic-data-generation', 'synthetic-data-generation']
|
['medical', 'miscellaneous']
|
[ 3.79850715e-01 -1.09216154e-01 -4.59487103e-02 -2.90013969e-01
-4.67816800e-01 -4.62524652e-01 8.79570663e-01 -6.36724412e-01
-5.91429949e-01 8.20423722e-01 3.22494119e-01 6.61710799e-02
3.67526948e-01 -8.44841897e-01 -9.43606198e-01 -5.45435965e-01
6.74013257e-01 1.62186682e-01 1.37545839e-01 -3.59265476e-01
4.46516484e-01 5.84886968e-01 -1.42421007e+00 -6.00050576e-02
1.29961169e+00 6.24213934e-01 5.51895618e-01 6.12436891e-01
-7.39980862e-02 1.96664706e-01 -7.32230246e-01 -6.59046710e-01
6.29386365e-01 -3.66279006e-01 -7.81841993e-01 2.76144326e-01
7.74141371e-01 -5.57157397e-01 -3.93067867e-01 1.02579522e+00
7.47545958e-01 4.78151888e-01 5.97467661e-01 -1.21380603e+00
-1.59415925e+00 5.73010027e-01 -9.42200899e-01 -5.87748084e-03
2.03465864e-01 3.07406187e-01 6.68747902e-01 -1.04031837e+00
9.34135079e-01 1.66926265e+00 6.69632614e-01 7.54819691e-01
-1.30805600e+00 -8.78947735e-01 2.72338212e-01 2.49462396e-01
-1.26459146e+00 -2.68962741e-01 8.92572880e-01 1.22911111e-02
2.70660996e-01 8.49334747e-02 8.56580734e-01 1.28961253e+00
2.09198192e-01 8.86166573e-01 1.31950521e+00 -3.02672625e-01
1.13246448e-01 -1.40165798e-02 -3.00481379e-01 4.82732475e-01
1.42891288e-01 -9.53240227e-03 -5.02266705e-01 4.31216389e-01
8.83244753e-01 2.56335530e-02 -2.88535625e-01 -8.79743621e-02
-1.48215854e+00 4.55400378e-01 7.33578026e-01 7.47338310e-02
-2.91692585e-01 2.06294671e-01 3.41080248e-01 1.61894456e-01
5.11136711e-01 7.89806187e-01 -3.88509512e-01 2.12945770e-02
-6.91665113e-01 1.91051319e-01 7.09939599e-02 1.33348525e+00
1.09855092e+00 1.67012364e-01 -4.28211987e-01 1.13477695e+00
-1.55341834e-01 8.23018491e-01 6.79238737e-01 -1.35578680e+00
4.94173259e-01 5.23049593e-01 2.72135809e-02 -7.01967299e-01
3.52711137e-03 -1.30533054e-01 -1.09289825e+00 4.72130366e-02
-8.01698118e-02 -1.13326050e-01 -1.31548166e+00 1.70897281e+00
2.30589539e-01 2.05431789e-01 1.88147679e-01 5.30816615e-01
8.01875293e-01 9.50758338e-01 2.94578135e-01 -8.28400999e-02
1.11519217e+00 -1.43344307e+00 -5.96333385e-01 -2.36922204e-01
1.94149718e-01 -9.36382711e-01 1.67816460e+00 2.24845499e-01
-1.05499363e+00 -1.07902312e+00 -1.18514514e+00 -3.84070039e-01
-3.43221366e-01 2.84059376e-01 3.20690602e-01 4.32550728e-01
-1.23917651e+00 7.44267523e-01 -2.79483616e-01 -7.06277192e-01
6.84217036e-01 1.52935296e-01 -4.62477803e-01 -2.79006124e-01
-1.02225494e+00 7.64423072e-01 7.59199858e-01 -8.89912471e-02
-8.04694951e-01 -1.04506230e+00 -9.71384764e-01 -1.10592246e-01
1.23794772e-01 -1.25506186e+00 1.20968235e+00 -1.34744394e+00
-1.69672143e+00 8.96089852e-01 -3.64200473e-02 -1.94808468e-01
4.92668182e-01 -4.22819406e-01 -4.81439948e-01 1.09644145e-01
5.10828316e-01 1.47646511e+00 1.07209039e+00 -1.75161433e+00
-7.72898614e-01 -1.43082486e-02 2.24444628e-01 3.33719522e-01
-4.93748844e-01 -4.24758911e-01 -8.90125453e-01 -1.21993208e+00
-3.29078406e-01 -1.14696217e+00 -2.45293602e-01 -3.00130565e-02
-5.40291071e-01 1.64542231e-03 9.17481303e-01 -6.81694984e-01
1.01321638e+00 -2.16811132e+00 3.64797294e-01 -1.67007610e-01
1.03838474e-01 4.47357923e-01 -6.23590350e-01 3.63965571e-01
-1.11599870e-01 2.81729192e-01 -2.37971410e-01 -7.40416944e-01
4.16085273e-02 4.08464015e-01 -2.70803720e-01 -7.09507838e-02
8.88881236e-02 1.25411785e+00 -9.12495553e-01 -5.86318135e-01
4.04386520e-01 3.42649400e-01 -4.38066721e-01 3.31795931e-01
-2.64330119e-01 4.87432748e-01 -7.61027262e-02 5.26045024e-01
1.18597543e+00 1.35474995e-01 -1.43057585e-01 -4.42470908e-01
1.37324166e-02 -7.27521241e-01 -8.30236077e-01 2.23657608e+00
-8.63902509e-01 5.54659307e-01 -6.83565617e-01 -1.69945866e-01
8.01464379e-01 -3.20670664e-01 7.07302764e-02 -9.08705413e-01
6.49433397e-03 -4.51605804e-02 -7.14836836e-01 -5.01822293e-01
1.12824750e+00 -7.71069750e-02 -1.10403992e-01 3.39310735e-01
-4.95126657e-02 -4.00794536e-01 4.74548072e-01 4.57420677e-01
6.06969297e-01 5.02707958e-01 6.37239665e-02 -2.58995920e-01
7.40127385e-01 -2.60689169e-01 8.49611938e-01 5.36009371e-01
-8.14227853e-03 8.54344428e-01 1.66734517e-01 -5.52190840e-01
-1.37380755e+00 -1.51920116e+00 2.27262452e-01 1.00919402e+00
6.17452383e-01 -3.15094620e-01 -8.54103744e-01 -8.32985401e-01
-2.01085314e-01 9.21447456e-01 -7.84960806e-01 -2.66272187e-01
-6.10883534e-01 -5.27553678e-01 3.74888390e-01 6.20618999e-01
1.22771525e+00 -1.22164118e+00 6.91498537e-03 -1.18095160e-01
-3.83822054e-01 -1.10936999e+00 -1.04695582e+00 -6.02281809e-01
-6.17792964e-01 -8.48226190e-01 -1.23349702e+00 -8.60786319e-01
8.94430101e-01 6.20823741e-01 1.06916893e+00 -2.75792420e-01
-9.86571461e-02 4.28695232e-01 -4.11290437e-01 -3.38172942e-01
-5.76169312e-01 2.80163556e-01 5.37918061e-02 5.40009961e-02
-1.03381217e-01 -7.23968804e-01 -9.66489494e-01 1.36134908e-01
-1.38372266e+00 5.42133152e-01 8.37453604e-01 8.98147941e-01
4.03956056e-01 -7.73140788e-02 6.98842943e-01 -9.23488796e-01
4.67861235e-01 -6.54126629e-02 -3.41100156e-01 4.62128967e-01
-7.15612411e-01 1.27535492e-01 8.20718825e-01 -4.91220444e-01
-1.77855515e+00 -7.39423186e-02 -7.12279677e-02 -2.88043499e-01
1.79285891e-02 -8.02878588e-02 -4.38153565e-01 -8.42125788e-02
6.46390557e-01 2.06434652e-01 -2.42192104e-01 -5.06675839e-01
1.01471889e+00 4.86801594e-01 9.54870760e-01 -6.11093521e-01
1.28784239e+00 5.73826075e-01 -2.29935214e-01 -6.79280639e-01
-8.56334686e-01 3.18949670e-02 -8.34375620e-01 -2.69953281e-01
1.05225480e+00 -9.70634878e-01 -4.64358956e-01 8.92738819e-01
-1.16863227e+00 -4.22642231e-01 -5.10613382e-01 1.80024728e-01
-4.68243748e-01 6.90967262e-01 -5.62629938e-01 -1.79794431e-01
-5.49098372e-01 -1.02960682e+00 1.28968191e+00 6.66193068e-01
-5.84180281e-02 -7.82781661e-01 -9.12162475e-04 3.98030937e-01
3.38463008e-01 3.09770554e-01 1.01481044e+00 4.36350435e-01
-5.93981147e-01 2.07915768e-01 -6.31745875e-01 6.15337968e-01
4.06064719e-01 2.20973089e-01 -9.39319789e-01 -2.07626924e-01
-7.63774633e-01 -1.10739380e-01 1.09770191e+00 2.05517620e-01
1.27012050e+00 -9.64104980e-02 -1.59947962e-01 1.04900420e+00
1.52753830e+00 2.49099255e-01 1.06934309e+00 7.11719990e-01
1.08798242e+00 3.97522390e-01 7.61829555e-01 4.83716249e-01
6.26166105e-01 2.67683119e-01 2.29704440e-01 -4.33734715e-01
-5.04812479e-01 -5.43416321e-01 3.80305201e-01 5.38595021e-01
-1.39619157e-01 -3.13191086e-01 -4.36053276e-01 5.98699749e-01
-1.63103342e+00 -8.04529190e-01 1.92604363e-01 1.96415043e+00
8.99058104e-01 -8.98965374e-02 -8.40673596e-02 -2.72874981e-01
1.01465559e+00 2.56154716e-01 -7.39061177e-01 -2.77539551e-01
-4.06552255e-01 3.21352869e-01 4.75391597e-01 1.20721772e-01
-9.29800451e-01 1.37093806e+00 5.96351194e+00 1.03529942e+00
-9.94446576e-01 4.70643006e-02 6.88868642e-01 1.50570467e-01
-5.20374119e-01 -4.06916067e-02 -5.44982076e-01 5.29934943e-01
2.92108744e-01 -4.23772722e-01 5.54558575e-01 7.33800411e-01
2.85202295e-01 -2.40276635e-01 -7.31880009e-01 1.43090129e+00
3.75961155e-01 -1.43554854e+00 6.72505736e-01 -3.77136678e-01
1.45265222e+00 -3.02444726e-01 3.78574759e-01 3.55686009e-01
4.00421619e-01 -6.08241737e-01 7.40548730e-01 7.75121331e-01
1.13684726e+00 -9.38973248e-01 3.32304716e-01 -1.18159838e-01
-1.28260064e+00 -2.86776453e-01 -4.16464448e-01 2.94075757e-01
2.06926465e-01 3.79777282e-01 -4.07195061e-01 9.24891293e-01
8.04096699e-01 1.00659275e+00 -1.25925040e+00 6.78943813e-01
-4.79126215e-01 6.88433275e-02 1.72927260e-01 4.93256152e-01
1.15752980e-01 -3.48270327e-01 2.05019444e-01 9.11848724e-01
5.77854037e-01 -2.26261303e-01 -1.01456381e-01 8.23506832e-01
-5.40192485e-01 1.04584247e-01 -4.78329033e-01 1.28283158e-01
5.57060778e-01 1.37936616e+00 -6.11570716e-01 -6.32644296e-01
-1.01985253e-01 1.53807330e+00 7.73729011e-02 6.67965591e-01
-8.37264180e-01 -5.49391150e-01 5.58753431e-01 -2.19310626e-01
1.31650297e-02 -1.77831426e-01 -1.03360817e-01 -1.38773608e+00
-1.36743551e-02 -7.01236188e-01 3.47266436e-01 -1.59176922e+00
-1.45504892e+00 7.33619630e-01 1.48540661e-01 -1.23680902e+00
1.12377375e-01 -2.04750061e-01 -7.88174391e-01 6.74100995e-01
-1.50623250e+00 -1.78562617e+00 -9.08272803e-01 3.37139159e-01
9.19057548e-01 -1.53008968e-01 3.98354739e-01 3.27461123e-01
-7.83549130e-01 5.40981412e-01 2.43007958e-01 -2.12597847e-01
1.36117506e+00 -1.35934544e+00 1.09121585e+00 1.12313092e+00
-3.11655343e-01 4.21725243e-01 4.08535242e-01 -7.26230860e-01
-1.01278007e+00 -1.59742713e+00 2.69581169e-01 -1.53842300e-01
1.37323290e-01 -1.10960945e-01 -5.59383333e-01 6.71365440e-01
6.94821060e-01 -5.32181442e-01 2.87813753e-01 -3.14807117e-01
-3.86078417e-01 -4.94170457e-01 -9.21633422e-01 1.15848339e+00
1.33487749e+00 -1.73722878e-01 -6.68114245e-01 9.94891673e-02
1.15146196e+00 -1.17703177e-01 -7.51866937e-01 4.31233793e-01
5.83263099e-01 -9.64181602e-01 1.00514483e+00 -1.07705638e-01
6.54493988e-01 -4.61078286e-01 1.32030830e-01 -1.80038333e+00
-3.50942492e-01 -8.71041596e-01 3.68503302e-01 1.76568782e+00
4.87559177e-02 -7.02956855e-01 5.14694750e-01 3.42791170e-01
-3.42189848e-01 -4.45634961e-01 -4.06909972e-01 -8.70376110e-01
-2.44259294e-02 -6.94464566e-03 1.06082225e+00 8.08771491e-01
-8.73760104e-01 4.30179089e-01 -6.32541478e-01 -1.46384761e-01
5.66569567e-01 2.47471184e-02 1.41059029e+00 -7.67577350e-01
-1.24903098e-02 -3.34442437e-01 -2.84940869e-01 -1.12177896e+00
3.31994653e-01 -6.36187792e-01 -5.89633454e-03 -1.73278940e+00
3.14217091e-01 -2.35850632e-01 -2.71195341e-02 5.65974563e-02
-5.49319327e-01 7.97857642e-01 3.87592524e-01 1.10344291e-01
-4.36014265e-01 1.01904762e+00 1.76892424e+00 -3.37264150e-01
-2.92004764e-01 -4.75553215e-01 -9.80924129e-01 7.30843961e-01
7.36323774e-01 -1.21788448e-02 -5.45020044e-01 -6.09721780e-01
1.41459703e-01 -4.57515538e-01 2.21298799e-01 -1.29842198e+00
-3.21201414e-01 -2.95601636e-01 7.93659508e-01 -7.42714345e-01
3.61669689e-01 -3.60259771e-01 2.65982509e-01 2.91619539e-01
-1.32737294e-01 4.40475464e-01 1.56322241e-01 6.40133739e-01
5.97264394e-02 -5.15104868e-02 1.15982938e+00 -5.41483313e-02
-1.43876040e+00 5.68680644e-01 7.21030235e-02 6.93702176e-02
1.26856399e+00 -2.54192412e-01 -5.27803302e-01 -2.38926321e-01
-4.78588074e-01 3.52097601e-01 9.78931069e-01 7.15626955e-01
6.61415756e-01 -1.66905773e+00 -5.98081708e-01 7.68332481e-02
4.28310663e-01 6.73786998e-02 7.61567891e-01 2.90734977e-01
-1.08122623e+00 -2.00516567e-01 -7.71338344e-01 -3.68951887e-01
-1.26877677e+00 9.89613950e-01 3.68364714e-02 9.41174254e-02
-6.47989511e-01 7.50940204e-01 7.33120918e-01 -2.84573972e-01
-1.38886854e-01 -4.20446903e-01 -5.05862273e-02 1.10184141e-02
3.73033643e-01 4.80954170e-01 -4.67148066e-01 -5.48016131e-01
2.63992131e-01 9.07394230e-01 -1.90556675e-01 -9.50511843e-02
1.24443650e+00 -6.93894982e-01 -1.53175056e-01 1.96615592e-01
1.06884265e+00 -1.02194794e-01 -1.38393831e+00 -4.19069856e-01
-3.36095363e-01 -8.65686774e-01 -4.61074144e-01 -5.69449306e-01
-1.12521410e+00 6.47117436e-01 6.71316206e-01 -5.05713165e-01
1.66008210e+00 -2.58539319e-01 1.42678905e+00 4.07053530e-01
1.58637926e-01 -1.42842436e+00 6.80200577e-01 1.10166542e-01
1.16703904e+00 -1.10912907e+00 1.07543796e-01 -4.02608454e-01
-9.85093236e-01 1.04462028e+00 1.03807485e+00 -2.19260618e-01
1.23141624e-01 -3.69701743e-01 2.84963429e-01 2.82428801e-01
-2.79596686e-01 -3.01630974e-01 2.37874717e-01 7.56462991e-01
-1.76692411e-01 -8.98920149e-02 -1.83292314e-01 1.62187099e-01
-2.29621470e-01 -9.81397927e-02 7.01714754e-01 5.86633921e-01
-1.29464656e-01 -1.28430057e+00 -4.42420781e-01 3.38292211e-01
-3.53979096e-02 -1.50915995e-01 -2.59152502e-01 8.50703299e-01
5.19448817e-01 6.62944615e-01 -2.47924048e-02 -6.60816729e-01
5.11102378e-01 -2.21001953e-01 5.30028820e-01 -4.59556878e-01
-2.66144902e-01 -1.62631929e-01 -2.02607915e-01 -3.61549854e-01
-6.39713407e-01 -3.67893457e-01 -8.52342129e-01 -6.99448884e-01
-2.57407371e-02 -1.65241241e-01 4.47210521e-01 7.10804760e-01
4.45368737e-01 7.67317057e-01 9.01489854e-01 -1.23379207e+00
-1.88178748e-01 -1.04235256e+00 -6.76959932e-01 6.83642805e-01
-1.16033480e-02 -6.68066919e-01 3.18932049e-02 6.96333885e-01]
|
[11.484576225280762, -0.6673908829689026]
|
cda56a79-63f1-45a1-951e-f4fd3b270142
|
group-activity-recognition-using-self
|
2303.12149
| null |
https://arxiv.org/abs/2303.12149v3
|
https://arxiv.org/pdf/2303.12149v3.pdf
|
SPARTAN: Self-supervised Spatiotemporal Transformers Approach to Group Activity Recognition
|
In this paper, we propose a new, simple, and effective Self-supervised Spatio-temporal Transformers (SPARTAN) approach to Group Activity Recognition (GAR) using unlabeled video data. Given a video, we create local and global Spatio-temporal views with varying spatial patch sizes and frame rates. The proposed self-supervised objective aims to match the features of these contrasting views representing the same video to be consistent with the variations in spatiotemporal domains. To the best of our knowledge, the proposed mechanism is one of the first works to alleviate the weakly supervised setting of GAR using the encoders in video transformers. Furthermore, using the advantage of transformer models, our proposed approach supports long-term relationship modeling along spatio-temporal dimensions. The proposed SPARTAN approach performs well on two group activity recognition benchmarks, including NBA and Volleyball datasets, by surpassing the state-of-the-art results by a significant margin in terms of MCA and MPCA metrics.
|
['Khoa Luu', 'Page Daniel Dobbs', 'Xin Li', 'Han-Seok Seo', 'Alexander H Nelson', 'Pha Nguyen', 'Naga VS Raviteja Chappa']
|
2023-03-06
| null | null | null | null |
['group-activity-recognition']
|
['computer-vision']
|
[ 9.90496427e-02 -4.00791645e-01 -6.82879508e-01 -2.78444678e-01
-4.99979585e-01 -4.49917436e-01 7.92568266e-01 1.69172026e-02
-1.94750056e-01 4.78520334e-01 3.77569258e-01 1.20064151e-02
-4.88343388e-01 -5.46286106e-01 -6.98320150e-01 -6.09626114e-01
-3.41541946e-01 2.13380456e-02 4.02536333e-01 7.85450563e-02
2.51596510e-01 2.93409139e-01 -1.73787403e+00 4.61095482e-01
6.00289285e-01 1.37587202e+00 2.64529921e-02 4.08374190e-01
2.05311820e-01 1.52371824e+00 -1.52669594e-01 -2.42948487e-01
2.49648869e-01 -6.38785005e-01 -8.00313950e-01 5.72032869e-01
6.77697778e-01 -1.22238964e-01 -6.70097947e-01 6.18271530e-01
1.36786535e-01 2.63683736e-01 3.65995675e-01 -1.27932739e+00
-5.52270889e-01 3.25345814e-01 -6.30877197e-01 6.49548948e-01
5.93564391e-01 6.54886514e-02 1.10201693e+00 -9.49374795e-01
5.99429965e-01 8.21217060e-01 4.58048165e-01 1.21343218e-01
-1.08273518e+00 -6.18607402e-01 6.27595544e-01 5.48095524e-01
-1.48160648e+00 -5.29395580e-01 7.22443402e-01 -4.85390604e-01
8.30948532e-01 1.79192215e-01 8.25313330e-01 1.13713491e+00
-1.15705796e-01 8.43820572e-01 1.23607481e+00 -2.47107834e-01
3.53068113e-01 -2.92030126e-01 -8.26409552e-03 8.18949461e-01
-1.39314443e-01 -3.02716702e-01 -1.20205176e+00 -3.65002267e-02
7.64428556e-01 2.08736971e-01 -2.51375943e-01 -8.47098947e-01
-1.65315223e+00 3.24474424e-01 -1.63485389e-03 6.66361988e-01
-3.10512394e-01 -4.95968759e-02 3.29881340e-01 4.02832866e-01
6.46245897e-01 1.24601766e-01 -1.97372377e-01 -5.73409855e-01
-1.06940842e+00 -8.39105919e-02 4.92535979e-01 8.81160975e-01
5.53687334e-01 3.68834101e-02 -2.10198075e-01 6.51251197e-01
1.59190997e-01 2.43955091e-01 5.92831194e-01 -9.51429605e-01
8.57502639e-01 5.87885141e-01 -1.06424890e-01 -1.07318032e+00
-4.40284573e-02 -6.47961020e-01 -7.39617944e-01 -4.82405722e-02
5.79300582e-01 3.35679144e-01 -5.85363328e-01 1.65294826e+00
1.68630511e-01 8.28634799e-01 1.05334865e-02 7.71185637e-01
4.73914117e-01 6.51912510e-01 -1.05306609e-02 -5.78970075e-01
1.02333152e+00 -1.17050838e+00 -7.31478631e-01 -2.30873734e-01
5.89678943e-01 -3.86906892e-01 9.04330134e-01 4.12273079e-01
-1.09711826e+00 -6.53878450e-01 -1.13751507e+00 2.23647833e-01
-8.55337307e-02 2.63720810e-01 5.13092101e-01 5.03636420e-01
-7.68360019e-01 5.44727504e-01 -1.11629057e+00 -6.16535544e-01
6.50936842e-01 1.06223181e-01 -6.81082487e-01 -2.16738820e-01
-7.26112425e-01 4.78215456e-01 1.40292764e-01 -1.47550225e-01
-1.11389577e+00 -6.88071609e-01 -7.64278173e-01 -1.60414189e-01
7.23252892e-01 -3.63735914e-01 8.56756747e-01 -1.15904129e+00
-1.23579323e+00 7.70197153e-01 -3.72433156e-01 -6.09367251e-01
5.27765930e-01 -2.71551996e-01 -5.14462292e-01 2.01645151e-01
1.25648946e-01 1.69591352e-01 7.36048043e-01 -9.08248067e-01
-7.14712620e-01 -5.67282438e-01 1.96415156e-01 4.68282104e-01
-6.83283746e-01 8.54021683e-02 -7.66935527e-01 -9.30258811e-01
1.88358471e-01 -7.85864711e-01 1.59134969e-01 6.82919249e-02
7.67230392e-02 -1.17113903e-01 9.27621126e-01 -6.65983081e-01
1.39955854e+00 -2.35042667e+00 4.12005782e-01 1.15209140e-01
1.31836265e-01 1.54691458e-01 -4.44378667e-02 4.17593420e-01
-1.18058100e-01 -1.50897920e-01 1.42334085e-02 -4.55982864e-01
-3.13453615e-01 3.17271441e-01 -2.22029582e-01 6.81891799e-01
-9.12985653e-02 7.32519865e-01 -1.05276442e+00 -5.99941134e-01
2.67688870e-01 1.48473755e-01 -3.69942576e-01 2.93411523e-01
7.54431337e-02 6.42948031e-01 -2.76094019e-01 6.93793535e-01
3.55740488e-01 -3.72429997e-01 4.94224072e-01 -1.86873525e-01
-1.75524861e-01 3.31163764e-01 -1.19385481e+00 2.06149006e+00
-2.04877496e-01 6.84684575e-01 -4.45906013e-01 -1.40521801e+00
6.90974772e-01 3.83832335e-01 9.95403051e-01 -8.77443731e-01
-3.48978132e-01 1.12422183e-01 -3.16440672e-01 -5.00584662e-01
2.05605850e-01 2.43739709e-01 1.14871440e-02 5.11930585e-01
3.71100336e-01 7.08547294e-01 4.39238459e-01 1.33723781e-01
1.17942274e+00 4.08948720e-01 4.67912048e-01 2.80279387e-03
6.70172811e-01 -3.55550051e-01 7.63995767e-01 7.69890726e-01
-2.91606933e-01 5.77365041e-01 5.91511011e-01 -5.17641306e-01
-8.54464471e-01 -1.06436563e+00 2.63312012e-01 1.07438135e+00
3.29626948e-01 -7.47901976e-01 -5.08453071e-01 -8.41926277e-01
-3.62968326e-01 1.25117272e-01 -6.28780246e-01 7.53252879e-02
-6.69762552e-01 -4.59107071e-01 4.90315318e-01 7.55909204e-01
8.82813036e-01 -6.07711792e-01 -4.19691950e-01 1.18266538e-01
-3.81398767e-01 -1.55505836e+00 -5.48244357e-01 -9.28696170e-02
-1.00390232e+00 -1.11099684e+00 -8.06564987e-01 -8.32140326e-01
4.69315112e-01 5.77944756e-01 8.69496524e-01 -2.20245883e-01
9.94008854e-02 3.89362633e-01 -5.41164100e-01 2.88116843e-01
2.79782582e-02 6.61893860e-02 9.24534127e-02 6.82457089e-01
6.88402727e-02 -7.86106288e-01 -6.57482624e-01 7.83247709e-01
-6.94578171e-01 2.99357176e-01 3.20513070e-01 6.28320634e-01
8.00228179e-01 1.30103856e-01 3.45740765e-01 -5.87609708e-01
7.79942051e-02 -4.99670714e-01 -2.62371391e-01 5.37503362e-01
-5.81510365e-01 -1.68153733e-01 6.60093784e-01 -5.11766493e-01
-1.05235505e+00 -3.37637938e-03 4.63704467e-01 -6.98229492e-01
-1.61268622e-01 4.24722046e-01 -2.76533395e-01 -6.43157437e-02
5.04461586e-01 4.43559617e-01 -1.46555200e-01 -4.56165642e-01
1.50068223e-01 3.86200696e-01 6.61014199e-01 -4.11808044e-01
7.51384079e-01 8.74417186e-01 1.78085349e-03 -4.81515437e-01
-9.49070632e-01 -8.52854252e-01 -8.34682584e-01 -3.99601936e-01
8.76016378e-01 -1.18599808e+00 -2.82719702e-01 7.11265981e-01
-6.31971180e-01 -2.81979561e-01 -2.64498442e-01 5.78939497e-01
-7.36004353e-01 7.02782810e-01 -4.08944905e-01 -7.06866145e-01
1.36743188e-01 -8.53990734e-01 8.86708021e-01 -9.79792103e-02
3.05168498e-02 -8.35284889e-01 1.13704741e-01 8.24305296e-01
2.52874624e-02 1.84470087e-01 3.90407234e-01 -4.42952424e-01
-8.80608976e-01 1.42079100e-01 7.23456740e-02 4.10534889e-01
5.74753463e-01 -3.04194659e-01 -8.37572157e-01 -3.31659019e-01
-1.35554537e-01 -1.56558916e-01 7.08993137e-01 1.02185793e-01
1.35162914e+00 -3.01121712e-01 -1.97499558e-01 6.95189893e-01
1.15978038e+00 3.26203197e-01 7.36203253e-01 4.25824672e-01
8.63715768e-01 3.66919607e-01 9.57216322e-01 6.58913612e-01
4.84818220e-01 1.10935819e+00 3.52973670e-01 -6.21414185e-02
-8.32723603e-02 -4.56483781e-01 5.34334481e-01 8.57039869e-01
-5.34908831e-01 -3.16994339e-01 -8.00303638e-01 8.24885666e-01
-2.37380815e+00 -1.48920977e+00 1.33042216e-01 2.27146506e+00
2.75978506e-01 2.16362905e-03 4.15983766e-01 3.73856217e-01
5.11570752e-01 7.60125995e-01 -3.97061080e-01 1.91359416e-01
-3.00848424e-01 2.75105648e-02 5.23152351e-01 2.05712207e-03
-1.44816124e+00 5.11002839e-01 5.69984484e+00 8.37537587e-01
-8.50521624e-01 2.10110664e-01 6.20431542e-01 -3.32178861e-01
1.22441716e-01 7.74668828e-02 -3.03884506e-01 6.33432150e-01
8.64756525e-01 -7.07411617e-02 6.34456694e-01 5.90159059e-01
4.09566879e-01 3.11833294e-03 -1.19423306e+00 1.20141613e+00
5.34525573e-01 -1.52359116e+00 -1.61694348e-01 1.51849717e-01
8.08904469e-01 -1.48954719e-01 1.35550082e-01 -5.24954759e-02
-2.24503502e-01 -8.37301254e-01 8.89779091e-01 5.49839795e-01
5.66345215e-01 -5.55064261e-01 5.18841386e-01 3.66309524e-01
-1.56787920e+00 -2.54318506e-01 2.55615383e-01 -3.88463177e-02
9.39938053e-02 2.31094286e-01 -3.07236463e-01 8.29669952e-01
1.01311696e+00 1.46255207e+00 -7.35222161e-01 8.07394326e-01
7.91990384e-02 7.59171367e-01 -5.30364318e-03 4.28683430e-01
1.86181679e-01 -2.32650146e-01 4.46598351e-01 9.89738107e-01
3.44330609e-01 2.53885631e-02 1.90505505e-01 3.57481778e-01
-4.27812338e-02 3.40055823e-02 -5.97241879e-01 -1.04169481e-01
2.83406585e-01 8.14173162e-01 -5.57897806e-01 -3.62999111e-01
-8.27595651e-01 9.22839880e-01 2.94322222e-01 2.84022391e-01
-9.91956830e-01 2.83189267e-01 6.23093009e-01 3.27346832e-01
4.59498912e-01 -3.44445735e-01 -5.07873520e-02 -1.58800828e+00
5.23759305e-01 -1.17201829e+00 7.46944427e-01 -7.72293568e-01
-1.05880284e+00 3.19506824e-01 2.05164716e-01 -1.81934655e+00
-2.16131315e-01 -1.92116410e-01 -2.27342069e-01 2.45516270e-01
-1.34045446e+00 -1.29834008e+00 -5.60940444e-01 1.00150895e+00
7.87504852e-01 -4.90958571e-01 5.02811134e-01 5.84512472e-01
-5.57703912e-01 4.61701095e-01 1.12477936e-01 2.05281422e-01
6.91727698e-01 -9.82152402e-01 3.36855322e-01 1.20533895e+00
6.12929761e-01 3.65897626e-01 3.30989748e-01 -4.19525415e-01
-1.44375122e+00 -1.05981827e+00 8.19625616e-01 -3.26210052e-01
7.52106667e-01 -3.57653648e-01 -8.58115613e-01 7.29538679e-01
1.18267789e-01 4.63784277e-01 7.24755883e-01 -6.64550215e-02
-5.03230035e-01 -4.02339906e-01 -7.77325153e-01 4.09988999e-01
1.58121336e+00 -7.94560134e-01 -4.92793322e-01 2.18631566e-01
1.62550807e-01 -3.81870419e-01 -1.08134270e+00 4.92442787e-01
7.17896521e-01 -1.17231059e+00 1.05565751e+00 -5.27664781e-01
3.43612581e-01 -5.77282667e-01 -3.15129101e-01 -9.83685315e-01
-3.51712376e-01 -6.03633165e-01 -4.70823854e-01 1.20501173e+00
-3.43734585e-02 -3.14218462e-01 1.00823319e+00 8.15920681e-02
3.27199437e-02 -6.20386899e-01 -1.09470344e+00 -1.01580298e+00
-5.50876856e-01 -4.94402766e-01 5.12177289e-01 1.07706678e+00
1.75321236e-01 -7.74565414e-02 -8.63401413e-01 1.67122871e-01
6.57949448e-01 2.16979191e-01 7.83384204e-01 -8.25417221e-01
-6.27226651e-01 -1.49947554e-01 -8.77791941e-01 -1.28410256e+00
1.08715527e-01 -6.15222275e-01 -3.87736857e-01 -1.27999496e+00
3.51884514e-01 -2.09285468e-01 -5.85921764e-01 4.09434617e-01
6.58779740e-02 4.12533909e-01 3.39860588e-01 5.47350943e-01
-1.13107109e+00 4.35683876e-01 9.35619891e-01 -2.16433361e-01
-8.81903693e-02 -8.78318027e-02 -4.85776186e-01 5.24660170e-01
7.70877004e-01 -2.27375656e-01 -7.75096118e-01 -4.58886057e-01
-1.04181372e-01 1.09995790e-01 4.65014577e-01 -1.19299948e+00
2.94796765e-01 -3.73465598e-01 1.54444605e-01 -4.95554358e-01
4.00771767e-01 -7.76265144e-01 4.15889561e-01 6.74520284e-02
-4.87283707e-01 1.57192960e-01 -1.61022946e-01 9.30004001e-01
-5.71453154e-01 4.17280942e-01 5.77192426e-01 -3.26383784e-02
-9.10609305e-01 5.12620568e-01 -5.09953558e-01 7.15935081e-02
1.30738115e+00 -5.96203387e-01 -4.15895432e-01 -5.54819345e-01
-5.66961229e-01 1.25798285e-01 5.23443997e-01 6.38634503e-01
5.43280482e-01 -1.49445379e+00 -3.86815101e-01 1.92366943e-01
5.92304230e-01 -3.39247555e-01 4.91575360e-01 1.09740245e+00
-3.39473009e-01 4.72222358e-01 -3.31991106e-01 -7.75340617e-01
-1.48818386e+00 5.21580100e-01 3.58226299e-01 -5.45573592e-01
-6.03862762e-01 3.40944111e-01 3.25477213e-01 8.61819014e-02
3.97898287e-01 -2.26218730e-01 -3.18404108e-01 -1.74730774e-02
5.23928583e-01 4.85508680e-01 1.17987253e-01 -9.18420017e-01
-5.57291865e-01 6.74169123e-01 1.91859901e-01 -6.19336851e-02
1.33203781e+00 -2.00972006e-01 2.30078787e-01 5.73896289e-01
1.08767188e+00 1.86857656e-02 -1.45872283e+00 -5.59893668e-01
2.06110999e-02 -7.91818082e-01 -5.78685924e-02 -4.72621351e-01
-1.20492637e+00 5.55691838e-01 6.97791994e-01 -4.83760387e-02
1.29528368e+00 1.19598992e-01 5.05780339e-01 1.34541377e-01
5.65536737e-01 -1.11315358e+00 4.76311266e-01 9.54368860e-02
5.83510101e-01 -1.00562882e+00 1.77313402e-01 -4.42068100e-01
-8.23678732e-01 7.53190279e-01 5.95144749e-01 4.52445112e-02
3.43652576e-01 -2.08749436e-02 -2.02913061e-01 -1.53655112e-01
-9.48081434e-01 -2.23575771e-01 3.64887565e-01 6.74484074e-01
2.86361426e-01 -1.39330357e-01 -1.74668878e-01 1.29022241e-01
3.94028187e-01 2.14302257e-01 1.94744110e-01 1.12158704e+00
5.13606519e-03 -1.12388468e+00 -2.66025543e-01 3.32876354e-01
-4.31702137e-01 2.92858869e-01 -2.15853065e-01 7.42165506e-01
1.73748001e-01 9.87960756e-01 7.57185742e-02 -3.84595543e-01
3.30484569e-01 -6.74476400e-02 5.53897262e-01 -3.63513649e-01
-4.48032200e-01 1.55671775e-01 2.62976736e-01 -8.49815428e-01
-1.24315214e+00 -1.01495492e+00 -7.61746466e-01 -7.22097456e-02
6.37718067e-02 -8.59822556e-02 6.22755587e-02 9.80791986e-01
4.21087593e-01 2.50112563e-01 9.53391731e-01 -4.60389853e-01
-7.36824945e-02 -7.22446918e-01 -6.13025188e-01 7.46145070e-01
2.57958323e-01 -7.50481367e-01 -2.42225066e-01 3.69713098e-01]
|
[8.369343757629395, 0.6959756016731262]
|
1cd669a6-0da9-4607-9a30-fab2bc36a1aa
|
exploiting-deep-generative-prior-for
|
2003.13659
| null |
https://arxiv.org/abs/2003.13659v4
|
https://arxiv.org/pdf/2003.13659v4.pdf
|
Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation
|
Learning a good image prior is a long-term goal for image restoration and manipulation. While existing methods like deep image prior (DIP) capture low-level image statistics, there are still gaps toward an image prior that captures rich image semantics including color, spatial coherence, textures, and high-level concepts. This work presents an effective way to exploit the image prior captured by a generative adversarial network (GAN) trained on large-scale natural images. As shown in Fig.1, the deep generative prior (DGP) provides compelling results to restore missing semantics, e.g., color, patch, resolution, of various degraded images. It also enables diverse image manipulation including random jittering, image morphing, and category transfer. Such highly flexible restoration and manipulation are made possible through relaxing the assumption of existing GAN-inversion methods, which tend to fix the generator. Notably, we allow the generator to be fine-tuned on-the-fly in a progressive manner regularized by feature distance obtained by the discriminator in GAN. We show that these easy-to-implement and practical changes help preserve the reconstruction to remain in the manifold of nature image, and thus lead to more precise and faithful reconstruction for real images. Code is available at https://github.com/XingangPan/deep-generative-prior.
|
['Ping Luo', 'Dahua Lin', 'Xingang Pan', 'Chen Change Loy', 'Bo Dai', 'Xiaohang Zhan']
|
2020-03-30
| null |
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/3265_ECCV_2020_paper.php
|
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123470256.pdf
|
eccv-2020-8
|
['image-morphing']
|
['computer-vision']
|
[ 4.64270055e-01 2.21158043e-02 2.79613473e-02 -1.88057363e-01
-7.28914082e-01 -7.02850997e-01 5.90218067e-01 -5.28371215e-01
1.20345511e-01 7.94252396e-01 3.08563560e-01 7.89294392e-02
-2.36538728e-03 -1.04667747e+00 -1.07368636e+00 -1.05655837e+00
3.88636023e-01 7.95333907e-02 2.07601637e-02 -4.01208878e-01
1.74336642e-01 5.08446455e-01 -1.53973722e+00 2.17101708e-01
1.00551736e+00 7.26163626e-01 5.44340253e-01 5.84152579e-01
1.57015786e-01 6.58642530e-01 -4.72267091e-01 -3.89362574e-01
4.61465776e-01 -7.58322835e-01 -4.39979553e-01 3.99815828e-01
3.62143099e-01 -6.15935385e-01 -5.42105019e-01 1.21457672e+00
4.63897556e-01 4.14101072e-02 5.54894984e-01 -1.18406665e+00
-1.19353318e+00 2.23785713e-01 -6.00739062e-01 -3.38443041e-01
2.20796987e-01 7.45280027e-01 6.84817493e-01 -5.93414843e-01
6.58362210e-01 1.17264652e+00 4.52274948e-01 6.00699008e-01
-1.42870092e+00 -5.71846306e-01 -1.56283498e-01 -2.84103230e-02
-1.20948672e+00 -4.76735234e-01 1.00788403e+00 -4.45297301e-01
9.49338675e-02 4.05948281e-01 7.00558543e-01 1.25351167e+00
2.67227918e-01 5.41631997e-01 1.25856400e+00 -4.70827430e-01
1.19228527e-01 -8.54459330e-02 -5.82011461e-01 6.36332810e-01
8.71440023e-02 2.90476352e-01 -4.03707355e-01 1.78997174e-01
1.34953129e+00 3.05806905e-01 -7.31215537e-01 -3.63637447e-01
-1.27247834e+00 6.48409963e-01 6.49679720e-01 9.11366567e-02
-6.16910040e-01 3.66370767e-01 -1.33748740e-01 2.45399088e-01
3.16362321e-01 4.33829099e-01 -1.10993765e-01 4.70640883e-02
-8.67974281e-01 1.44267112e-01 3.50714087e-01 8.54344249e-01
1.05307591e+00 3.18774968e-01 -5.15455008e-01 8.45048547e-01
5.95245231e-03 7.31740594e-01 3.89216006e-01 -1.31262517e+00
-3.89647931e-02 1.77056313e-01 1.53415099e-01 -1.03848279e+00
2.45578215e-01 -5.22067010e-01 -1.20989227e+00 5.45064569e-01
2.78464943e-01 1.00062370e-01 -1.20509350e+00 1.87619269e+00
1.74750194e-01 1.24029450e-01 -1.73921987e-01 8.65660310e-01
5.05435467e-01 6.56565070e-01 -2.90147334e-01 -7.36056119e-02
1.21717763e+00 -8.97511661e-01 -8.07092011e-01 -2.46773541e-01
-1.88485146e-01 -8.43694925e-01 1.40722144e+00 3.62373233e-01
-1.27779973e+00 -7.01746404e-01 -8.86598229e-01 -1.59303486e-01
1.78589188e-02 -4.57940511e-02 5.39150596e-01 4.44865882e-01
-1.12064576e+00 5.94922841e-01 -7.62009919e-01 -1.56011671e-01
6.23670697e-01 4.41431515e-02 -4.18078899e-01 -4.91674155e-01
-9.64944124e-01 4.72721696e-01 2.00697452e-01 2.10498065e-01
-1.27901959e+00 -6.98327422e-01 -7.06032872e-01 -1.47646621e-01
2.17085615e-01 -1.17161524e+00 6.62223756e-01 -1.20866823e+00
-1.82346427e+00 8.61350417e-01 1.45125641e-02 -3.19110602e-02
5.55990517e-01 -5.70804104e-02 -3.27565633e-02 2.04371199e-01
1.27040729e-01 9.18078542e-01 1.20428395e+00 -1.74176741e+00
-1.12638235e-01 -1.36590645e-01 2.51075197e-02 3.20223682e-02
-1.99528486e-01 -3.41479689e-01 -6.57860756e-01 -1.01622725e+00
-6.59396686e-03 -8.61167431e-01 -1.84016138e-01 2.62052208e-01
-5.66455364e-01 4.73715335e-01 6.89071774e-01 -9.44357455e-01
7.84308732e-01 -2.22979784e+00 3.30816329e-01 7.24059641e-02
1.03646606e-01 1.68719977e-01 -3.69384587e-01 6.04981482e-01
-4.89242040e-02 6.85666651e-02 -6.76316857e-01 -3.17816019e-01
-4.79679890e-02 5.05345464e-01 -5.15978515e-01 5.27027130e-01
1.59624219e-01 1.24397218e+00 -8.34470212e-01 -1.34972364e-01
3.95380646e-01 8.55411053e-01 -7.81322062e-01 5.15200317e-01
-3.27798337e-01 1.02755868e+00 -3.54467183e-01 6.45797253e-01
8.09755147e-01 -2.80721724e-01 -6.80047199e-02 -4.60475445e-01
1.09877512e-01 -1.03070050e-01 -9.19464886e-01 1.96657729e+00
-4.75684792e-01 4.55595404e-01 2.38257021e-01 -9.25745249e-01
9.28832233e-01 -9.95570794e-03 2.99862236e-01 -7.84638107e-01
-6.23439951e-03 9.67600271e-02 -2.23020718e-01 -2.99477249e-01
2.76170880e-01 -1.64773747e-01 5.79145737e-02 3.34817141e-01
-1.42916918e-01 -5.57981968e-01 -6.78613037e-02 1.19707264e-01
8.64763260e-01 2.35439330e-01 1.92012487e-03 -1.68725178e-01
2.62671918e-01 -2.68579811e-01 5.61657190e-01 7.56899178e-01
1.82419091e-01 1.29846859e+00 2.87810206e-01 -1.63364127e-01
-1.27908576e+00 -1.27668977e+00 -1.62442196e-02 6.27342641e-01
3.35310996e-01 -1.27766490e-01 -8.17130983e-01 -2.48353526e-01
-1.66093588e-01 5.77574372e-01 -6.28694713e-01 -3.24184865e-01
-5.55179060e-01 -5.49300492e-01 2.53397465e-01 2.33450785e-01
8.23112369e-01 -1.15866923e+00 -2.19010264e-01 1.39069870e-01
-3.91840816e-01 -9.34970140e-01 -6.49373293e-01 -2.45138053e-02
-6.74786627e-01 -8.37907016e-01 -8.85640144e-01 -6.98204517e-01
8.95616412e-01 2.75321633e-01 1.21360612e+00 2.38361388e-01
-4.00353491e-01 3.13601404e-01 -3.33202809e-01 6.74221143e-02
-5.00716269e-01 -3.62745851e-01 -3.71375829e-01 1.57328844e-01
-4.75613564e-01 -1.08945346e+00 -9.89591599e-01 3.04026991e-01
-1.41910040e+00 3.11322510e-01 6.73159719e-01 1.15811181e+00
8.37457895e-01 2.66767025e-01 3.11198533e-01 -8.03086996e-01
3.99680138e-01 -3.22664201e-01 -4.94918168e-01 2.22131371e-01
-3.93046647e-01 -5.05810417e-03 6.69129074e-01 -4.34357494e-01
-1.03038478e+00 -1.02727622e-01 -2.93001771e-01 -5.34131348e-01
-2.24338993e-01 8.76644850e-02 -5.66333294e-01 -1.64217144e-01
6.00235403e-01 6.49220347e-01 3.30721200e-01 -4.08870846e-01
7.13300407e-01 3.13237667e-01 9.09663081e-01 -7.50542343e-01
1.04207349e+00 7.11028218e-01 -1.87521100e-01 -5.81300616e-01
-7.78705597e-01 1.53542906e-01 -4.30394411e-01 -9.59902108e-02
8.40554774e-01 -1.02340281e+00 -4.71642166e-01 7.39874542e-01
-8.85407746e-01 -8.03629100e-01 -6.54264033e-01 9.56237689e-03
-6.83157146e-01 2.78747559e-01 -7.28591859e-01 -2.69719660e-01
-2.42680907e-01 -1.10527980e+00 1.17147589e+00 2.25660533e-01
1.47620305e-01 -9.27764893e-01 -1.82314619e-01 4.20163810e-01
6.97669029e-01 6.43743038e-01 8.37813556e-01 4.14559871e-01
-1.03766930e+00 1.46248281e-01 -1.74101233e-01 6.46704376e-01
4.34686661e-01 -1.82380658e-02 -7.68406749e-01 -4.88505781e-01
1.29230604e-01 -2.69751817e-01 9.83092904e-01 4.93514895e-01
1.46473086e+00 -5.27883649e-01 -4.47723307e-02 1.11577773e+00
1.55338597e+00 -2.34445427e-02 1.27287173e+00 1.91092074e-01
9.74445641e-01 3.74628603e-01 1.47352174e-01 3.07558447e-01
2.35043347e-01 7.45544016e-01 6.08695924e-01 -4.75561649e-01
-7.26285815e-01 -4.84972864e-01 3.88771415e-01 5.27165294e-01
-1.02181345e-01 -4.62348759e-01 -5.65078318e-01 4.69915956e-01
-1.59091103e+00 -9.72702384e-01 2.75149554e-01 2.07752013e+00
1.10802770e+00 -1.28289938e-01 -2.48582691e-01 -1.46473855e-01
8.17827284e-01 1.88891143e-01 -6.10090852e-01 1.58228576e-01
-3.46249312e-01 2.87431359e-01 4.50467438e-01 5.46645105e-01
-7.02697992e-01 9.92369294e-01 5.80268717e+00 1.11720908e+00
-1.26983213e+00 1.65124938e-01 8.18740129e-01 8.60545710e-02
-8.82371008e-01 1.44241586e-01 -2.57592738e-01 7.31030881e-01
3.82483721e-01 7.10595995e-02 8.23945820e-01 4.03697014e-01
2.65008271e-01 8.66039023e-02 -7.72813141e-01 1.09115005e+00
2.98597943e-02 -1.45677221e+00 3.26335043e-01 2.39640892e-01
1.11798930e+00 -2.66418993e-01 3.79296452e-01 -1.29262850e-01
5.08240819e-01 -1.12392592e+00 7.96127260e-01 7.94785738e-01
1.12429380e+00 -7.36317098e-01 3.23322266e-01 2.67490149e-01
-7.25985885e-01 6.83307052e-02 -3.01575869e-01 2.91181684e-01
4.33369368e-01 9.58109140e-01 -1.74539879e-01 5.31965137e-01
6.32184446e-01 8.08874011e-01 -4.18858796e-01 5.94445527e-01
-6.83872104e-01 5.86453974e-01 4.29365188e-02 6.78185105e-01
-7.64704645e-02 -5.58953404e-01 6.05186462e-01 7.22972810e-01
4.66086835e-01 -1.80951208e-02 1.18875854e-01 1.22726345e+00
-2.13075966e-01 -3.64339054e-01 -5.68204403e-01 5.07583916e-02
3.25430721e-01 1.17587256e+00 -6.33088291e-01 -1.16201371e-01
1.34181194e-02 1.37788987e+00 7.71950781e-02 6.38526499e-01
-8.71325254e-01 -1.64443940e-01 6.79774821e-01 4.22249407e-01
4.18928385e-01 -1.94664970e-01 -1.83711797e-01 -1.18185472e+00
1.72099292e-01 -1.05585968e+00 -6.05760477e-02 -1.07130051e+00
-1.45278335e+00 5.29014409e-01 -1.57213956e-01 -1.20267677e+00
-1.71293363e-01 -2.95105219e-01 -7.18424082e-01 8.85466158e-01
-1.46223104e+00 -1.45906341e+00 -6.54498696e-01 8.56657803e-01
3.56664836e-01 -1.17410598e-02 6.86673224e-01 2.72292018e-01
-4.11593467e-01 5.18594444e-01 2.19212428e-01 5.77247590e-02
8.48073363e-01 -1.07463169e+00 2.26827890e-01 1.17253006e+00
6.71284497e-02 6.31251514e-01 7.72216380e-01 -4.90702838e-01
-1.54451847e+00 -1.15549147e+00 2.27952488e-02 -2.20925763e-01
2.97634095e-01 -3.52135330e-01 -9.31835055e-01 6.22944772e-01
4.70081300e-01 2.42615283e-01 2.46026590e-01 -4.60771322e-01
-2.91142046e-01 -3.74416262e-01 -1.22171581e+00 6.35142446e-01
1.05483687e+00 -6.80736601e-01 -7.50805289e-02 3.38694036e-01
7.35289097e-01 -4.11849946e-01 -7.24889398e-01 3.06582749e-01
3.93600285e-01 -1.27917719e+00 1.15466058e+00 -1.32241445e-02
8.15545321e-01 -5.33519030e-01 -2.04857960e-01 -1.55028152e+00
-3.97902668e-01 -9.63885367e-01 1.19796082e-01 1.38502169e+00
-4.27122265e-02 -7.90655434e-01 5.28226614e-01 3.77477258e-01
-2.37838656e-01 -4.85955447e-01 -4.90966409e-01 -6.76673472e-01
1.23260193e-01 -7.69509375e-03 7.51001954e-01 8.99841011e-01
-7.60068238e-01 3.91140021e-03 -7.32608318e-01 1.11820161e-01
7.92164207e-01 3.69710952e-01 9.50172842e-01 -6.69682086e-01
-5.92365563e-01 -4.24342483e-01 -2.67575502e-01 -1.28573036e+00
5.22798039e-02 -7.21700609e-01 9.47613940e-02 -1.58136833e+00
2.73430645e-01 -4.90076005e-01 -1.33634657e-01 5.16811371e-01
-1.88048884e-01 6.46686792e-01 2.00975001e-01 4.23586458e-01
-1.24435216e-01 9.64699388e-01 1.92697012e+00 -1.33303225e-01
8.12742338e-02 -2.94866025e-01 -9.93953943e-01 4.70594198e-01
7.84178913e-01 -4.25379187e-01 -4.98016357e-01 -5.66051841e-01
1.21177830e-01 8.53604078e-02 7.94200718e-01 -8.12225461e-01
5.89763895e-02 -3.06492865e-01 4.74072754e-01 -1.25270486e-01
3.93848360e-01 -5.99926710e-01 6.33709133e-01 3.28960180e-01
-9.38242301e-02 -2.66058326e-01 1.44666247e-02 5.62695384e-01
-4.81761187e-01 8.24177340e-02 1.05526054e+00 -3.10206771e-01
-4.79732037e-01 4.66992259e-01 2.30472013e-01 1.06508277e-01
7.97819138e-01 -2.12373152e-01 -4.58052427e-01 -5.93744457e-01
-3.37496549e-01 -2.03424513e-01 1.02140999e+00 2.36019105e-01
6.42673492e-01 -1.42047739e+00 -8.20911825e-01 3.93239319e-01
-1.09303661e-01 2.05542862e-01 5.11597455e-01 5.31948268e-01
-6.42437458e-01 -2.69382060e-01 -6.09658241e-01 -6.77048862e-01
-7.01762021e-01 5.28197765e-01 3.03183109e-01 -7.85004795e-02
-9.35795605e-01 7.51701176e-01 6.20398998e-01 -2.13952959e-01
-1.39722675e-01 -5.82372285e-02 3.36475432e-01 -3.27281743e-01
4.51882273e-01 -1.03406057e-01 -1.71562508e-01 -3.50209802e-01
-1.39109641e-02 6.98691845e-01 2.31941909e-01 -9.40442309e-02
1.51665497e+00 -4.04576600e-01 -3.81552935e-01 3.82307656e-02
1.08003902e+00 3.55540901e-01 -1.90409064e+00 -8.53387043e-02
-7.88600564e-01 -8.80302966e-01 1.62697136e-01 -7.18801022e-01
-1.50567806e+00 7.60134041e-01 5.62641680e-01 7.85498545e-02
1.52889252e+00 -9.92125422e-02 8.96011293e-01 -1.95559084e-01
4.01562631e-01 -5.86911380e-01 4.35982645e-01 1.58553094e-01
1.29922867e+00 -1.10329473e+00 -7.41019100e-02 -3.79516393e-01
-5.58025420e-01 8.95920753e-01 4.05072957e-01 -2.67256111e-01
3.75219762e-01 3.10747027e-01 -2.28929240e-02 -1.01664647e-01
-4.13904846e-01 -1.78355426e-01 2.04786569e-01 7.65216887e-01
1.30922273e-01 8.95489529e-02 1.16425246e-01 1.20360941e-01
-2.68930972e-01 -7.09809735e-02 5.77510297e-01 7.23390460e-01
-1.91023335e-01 -1.21278548e+00 -3.68564308e-01 3.05875717e-03
-2.95031220e-01 -2.93511033e-01 6.54322058e-02 5.99113703e-01
2.16026917e-01 7.21141696e-01 -2.84735113e-02 -1.37197778e-01
1.04241423e-01 -4.20715302e-01 6.87084377e-01 -4.91165042e-01
-1.57916561e-01 1.72269508e-01 -4.11078691e-01 -7.12021232e-01
-3.57636213e-01 -4.14953858e-01 -7.96082199e-01 -3.90802890e-01
3.16217616e-02 -1.96640238e-01 4.56324428e-01 5.94604850e-01
4.99701113e-01 6.86165452e-01 7.75884926e-01 -1.01701093e+00
-2.88046867e-01 -8.00654888e-01 -6.62711680e-01 7.11369514e-01
4.36124295e-01 -6.08819366e-01 -5.65694094e-01 5.92653513e-01]
|
[11.426637649536133, -1.097342610359192]
|
a1cfce8b-ae48-4a50-9114-d57a86e3b5c4
|
scarcenet-animal-pose-estimation-with-scarce
|
2303.15023
| null |
https://arxiv.org/abs/2303.15023v1
|
https://arxiv.org/pdf/2303.15023v1.pdf
|
ScarceNet: Animal Pose Estimation with Scarce Annotations
|
Animal pose estimation is an important but under-explored task due to the lack of labeled data. In this paper, we tackle the task of animal pose estimation with scarce annotations, where only a small set of labeled data and unlabeled images are available. At the core of the solution to this problem setting is the use of the unlabeled data to compensate for the lack of well-labeled animal pose data. To this end, we propose the ScarceNet, a pseudo label-based approach to generate artificial labels for the unlabeled images. The pseudo labels, which are generated with a model trained with the small set of labeled images, are generally noisy and can hurt the performance when directly used for training. To solve this problem, we first use a small-loss trick to select reliable pseudo labels. Although effective, the selection process is improvident since numerous high-loss samples are left unused. We further propose to identify reusable samples from the high-loss samples based on an agreement check. Pseudo labels are re-generated to provide supervision for those reusable samples. Lastly, we introduce a student-teacher framework to enforce a consistency constraint since there are still samples that are neither reliable nor reusable. By combining the reliable pseudo label selection with the reusable sample re-labeling and the consistency constraint, we can make full use of the unlabeled data. We evaluate our approach on the challenging AP-10K dataset, where our approach outperforms existing semi-supervised approaches by a large margin. We also test on the TigDog dataset, where our approach can achieve better performance than domain adaptation based approaches when only very few annotations are available. Our code is available at the project website.
|
['Gim Hee Lee', 'Chen Li']
|
2023-03-27
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Li_ScarceNet_Animal_Pose_Estimation_With_Scarce_Annotations_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Li_ScarceNet_Animal_Pose_Estimation_With_Scarce_Annotations_CVPR_2023_paper.pdf
|
cvpr-2023-1
|
['animal-pose-estimation', 'pseudo-label']
|
['computer-vision', 'miscellaneous']
|
[ 1.70362368e-01 2.27360040e-01 -1.55770749e-01 -5.89917302e-01
-9.92031872e-01 -5.96253991e-01 2.97840863e-01 5.14167622e-02
-7.85707414e-01 9.76856530e-01 -2.03449726e-01 3.50842535e-01
1.97059974e-01 -3.83613437e-01 -1.12178266e+00 -6.09596491e-01
8.87696594e-02 6.98671818e-01 3.85224581e-01 -1.59518287e-01
-1.50141880e-01 1.30999193e-01 -1.59645712e+00 5.48806647e-03
9.60474133e-01 1.05006921e+00 4.22666758e-01 1.92298114e-01
1.79308861e-01 4.72063631e-01 -4.78647023e-01 -2.51447737e-01
4.05720323e-01 -4.77844477e-01 -8.60927105e-01 3.42363864e-01
5.69944501e-01 -5.59452534e-01 1.71165004e-01 9.58908379e-01
4.28310841e-01 1.47841170e-01 6.49213254e-01 -1.30369949e+00
-1.17082736e-02 4.18872297e-01 -6.94648802e-01 -2.21751451e-01
1.19725071e-01 1.46914318e-01 1.01063132e+00 -9.54311907e-01
7.72918165e-01 1.05162358e+00 6.30103827e-01 7.23954320e-01
-1.43718541e+00 -8.41052592e-01 2.49384806e-01 8.83515831e-03
-1.37142396e+00 -3.74359459e-01 7.07661688e-01 -4.98280048e-01
1.88177913e-01 -8.15390348e-02 5.07660389e-01 1.18835902e+00
-4.40351516e-01 8.38470638e-01 1.07747173e+00 -3.34321499e-01
3.54334950e-01 2.72887915e-01 7.99630880e-02 6.15830541e-01
1.57571569e-01 1.69128418e-01 -4.03609008e-01 -1.86791107e-01
5.05665958e-01 1.21729128e-01 -3.16302687e-01 -7.92511702e-01
-1.10708094e+00 9.19405997e-01 7.28835702e-01 -1.43369645e-01
-2.48598725e-01 -5.18322848e-02 3.26149076e-01 2.98395962e-01
6.63588762e-01 6.97072208e-01 -6.69585288e-01 2.20175073e-01
-9.92554784e-01 3.56633157e-01 7.44539917e-01 1.07082319e+00
1.08141923e+00 -3.37241620e-01 -2.07510993e-01 1.08404624e+00
3.49182665e-01 5.06134510e-01 2.22278684e-01 -7.76716650e-01
5.18751025e-01 5.06968439e-01 3.93124342e-01 -6.10570967e-01
-2.91861027e-01 -3.45299900e-01 -4.76136893e-01 2.45766148e-01
6.70558810e-01 -1.90001622e-01 -1.09211111e+00 1.98039401e+00
6.21942878e-01 2.07971692e-01 -2.84793526e-02 1.05547595e+00
7.39673197e-01 4.76285040e-01 8.22519138e-02 -4.98789642e-03
1.11462653e+00 -1.24590933e+00 -4.07101065e-01 -5.07562876e-01
6.68924212e-01 -6.69908524e-01 1.07767344e+00 2.62200326e-01
-6.27863169e-01 -4.66270715e-01 -1.14076293e+00 1.20162122e-01
-7.36347213e-02 5.52399576e-01 2.79039055e-01 1.92596063e-01
-6.72439277e-01 7.34322071e-01 -9.31426108e-01 -2.89002001e-01
4.91154969e-01 4.09262091e-01 -6.78185165e-01 -3.09900254e-01
-8.30905735e-01 8.55750918e-01 4.77943331e-01 2.71941692e-01
-1.12012994e+00 -5.07535815e-01 -1.00296545e+00 -3.28065068e-01
8.45552564e-01 -2.04159990e-01 1.24395823e+00 -1.15481091e+00
-1.35903072e+00 8.41598034e-01 2.29386836e-01 -3.21665227e-01
7.63634920e-01 -3.13071340e-01 2.42786661e-01 1.61883935e-01
3.21656913e-01 1.07026148e+00 9.42374945e-01 -1.47558725e+00
-6.70239031e-01 -3.80395472e-01 1.34610713e-01 2.06791922e-01
-1.60286009e-01 -2.53545761e-01 -6.02318585e-01 -7.59864867e-01
5.96560352e-02 -1.56977582e+00 -4.62765723e-01 2.58409500e-01
-2.60329068e-01 -2.47575361e-02 6.69199944e-01 -5.99170685e-01
6.42142594e-01 -2.09529138e+00 2.30847895e-01 1.30286157e-01
8.23625177e-02 2.61581600e-01 -4.33629483e-01 1.47694737e-01
3.85585539e-02 -2.64414161e-01 -5.61890602e-01 -6.23967707e-01
-2.83355027e-01 3.35091174e-01 -3.83372456e-02 5.24883151e-01
4.34793949e-01 5.92958868e-01 -9.52089489e-01 -5.25242448e-01
4.99001108e-02 2.22533450e-01 -7.65507400e-01 5.44259489e-01
-5.13832986e-01 8.85495782e-01 -5.23849130e-01 5.07110953e-01
7.76195049e-01 -1.91680685e-01 1.40677631e-01 -1.87563285e-01
2.82053322e-01 1.08846061e-01 -1.26883578e+00 1.81838715e+00
-5.73625326e-01 1.48268253e-01 1.16355620e-01 -9.15969491e-01
7.20068812e-01 7.86388144e-02 4.19372290e-01 -1.95482031e-01
1.61335126e-01 4.70106602e-01 -1.76482514e-01 -3.76060367e-01
3.18263978e-01 7.87513680e-04 -1.51767641e-01 4.00211871e-01
3.44991505e-01 -2.48876110e-01 3.69619429e-01 1.12596557e-01
1.03198981e+00 7.01330304e-01 1.45091817e-01 -6.62726909e-02
3.61925691e-01 1.88646674e-01 8.66856039e-01 4.73047853e-01
-9.76754725e-02 8.66585076e-01 3.16867977e-01 -2.80388385e-01
-1.02145779e+00 -6.20113552e-01 -2.17776492e-01 1.20427477e+00
3.20499957e-01 -3.86343122e-01 -7.97864437e-01 -1.26860809e+00
-1.71278473e-02 3.59749854e-01 -6.50988638e-01 -1.13367237e-01
-4.82418686e-01 -6.71021998e-01 1.80194199e-01 6.27946854e-01
2.65460402e-01 -1.21390533e+00 -6.36700213e-01 1.13216102e-01
-4.77817208e-01 -1.15135884e+00 -4.00815278e-01 5.12729824e-01
-6.97416663e-01 -1.07715011e+00 -8.71082723e-01 -8.17818940e-01
1.23956633e+00 6.05546236e-02 9.67676938e-01 1.69835404e-01
-1.77369013e-01 -1.18562460e-01 -5.87689698e-01 -3.36883634e-01
-3.81343961e-01 1.31754458e-01 -2.47635674e-02 -1.12313092e-01
1.68774519e-02 -3.00206006e-01 -5.01541078e-01 6.10328555e-01
-8.13490152e-01 -4.42752708e-03 5.71481586e-01 1.26783407e+00
8.53030443e-01 -2.85577297e-01 6.29901767e-01 -1.13305593e+00
-4.28258814e-02 -3.54436219e-01 -8.24833691e-01 7.82373324e-02
-2.98658222e-01 3.43719631e-01 7.01831818e-01 -7.93830812e-01
-8.35306048e-01 5.90481520e-01 -7.28635043e-02 -5.53314865e-01
-1.50561914e-01 3.73705566e-01 -1.86564445e-01 -2.47690991e-01
6.80773795e-01 -3.78529906e-01 1.39540821e-01 -7.68821061e-01
1.61593631e-01 4.69098657e-01 2.87849605e-01 -5.50046444e-01
8.73786628e-01 2.61953115e-01 -1.44468501e-01 -4.48940933e-01
-1.17992282e+00 -5.95065475e-01 -5.79842508e-01 -1.09603308e-01
6.48896754e-01 -1.03631020e+00 -3.23285520e-01 3.45926762e-01
-9.46943939e-01 -5.95327795e-01 -4.01941299e-01 8.44768226e-01
-5.38170755e-01 4.11855876e-01 -4.76058125e-01 -6.03395939e-01
-1.36250809e-01 -1.38916624e+00 1.39097047e+00 -4.47177514e-02
-1.14994027e-01 -3.89457643e-01 3.70686501e-03 4.47614938e-01
4.96976748e-02 1.88973963e-01 4.49171782e-01 -8.97592306e-01
-4.42880601e-01 -3.75282913e-01 -2.26904098e-02 5.39844334e-01
1.43078249e-02 -3.93173844e-01 -7.92720020e-01 -6.13725007e-01
-1.57493353e-01 -1.08738375e+00 9.03564990e-01 7.75891021e-02
1.12524104e+00 -1.52444333e-01 -3.84598315e-01 4.61466670e-01
1.22578442e+00 -2.81250656e-01 1.16329037e-01 1.45208806e-01
7.59344101e-01 1.02785039e+00 1.27513289e+00 4.25329983e-01
3.81702811e-01 8.50541353e-01 5.16892672e-01 -1.81679413e-01
-1.86704397e-02 -4.64479446e-01 2.08804607e-01 5.52374005e-01
-1.26572782e-02 -2.44043320e-01 -7.86192656e-01 4.71617192e-01
-1.98670971e+00 -6.12872362e-01 7.77278244e-02 2.56476712e+00
1.09456789e+00 5.24088480e-02 2.14240119e-01 -8.65401886e-03
7.70981014e-01 -1.53715238e-01 -6.02258742e-01 2.94004589e-01
4.18724805e-01 1.09148324e-01 7.51815498e-01 3.11865300e-01
-1.47076201e+00 1.04513526e+00 5.52838850e+00 8.39076996e-01
-1.09643805e+00 4.79276292e-02 5.32718837e-01 -5.06532416e-02
8.03503469e-02 6.37892187e-02 -9.01660502e-01 5.72014570e-01
4.71761286e-01 4.09131527e-01 2.64880061e-01 1.18267918e+00
-2.26245392e-02 -4.38228071e-01 -1.40272975e+00 9.12349522e-01
1.57120392e-01 -6.53961182e-01 -4.23893511e-01 -5.31379171e-02
7.42417395e-01 3.12664988e-03 -1.55518413e-01 3.27178389e-01
4.73570138e-01 -7.48360991e-01 8.33639205e-01 1.06570557e-01
7.64837921e-01 -6.35791183e-01 9.41442251e-01 6.59860909e-01
-1.05196440e+00 -1.79758370e-02 -5.35022557e-01 2.38218665e-01
8.77853036e-02 5.13228297e-01 -8.15216959e-01 5.61506271e-01
8.72092247e-01 6.38361156e-01 -6.61893070e-01 1.15516257e+00
-4.90409762e-01 5.92992842e-01 -6.73023164e-01 1.52865648e-01
1.21095337e-01 -2.31165439e-01 2.90773720e-01 6.76386356e-01
2.32826963e-01 -1.62896574e-01 7.19598234e-01 6.88574612e-01
-1.66129798e-01 2.66516596e-01 -3.84213567e-01 3.13192457e-01
3.82863015e-01 1.33124912e+00 -7.37584114e-01 -2.29517594e-01
-1.59882680e-01 9.81539607e-01 5.60135245e-01 1.42300710e-01
-8.32017720e-01 -5.65363765e-02 4.87215184e-02 4.56235148e-02
3.61586064e-01 1.14114039e-01 1.14001177e-01 -1.16689885e+00
2.69975185e-01 -9.05659020e-01 3.23398739e-01 -5.30188560e-01
-1.37535930e+00 7.36653566e-01 2.69656420e-01 -1.62152433e+00
-4.44404095e-01 -2.42163286e-01 -1.29089817e-01 6.96274459e-01
-1.60499513e+00 -1.34305322e+00 -4.29440022e-01 2.03144416e-01
5.27138472e-01 3.41701806e-02 6.91252112e-01 4.74231064e-01
-4.11917686e-01 6.43791497e-01 -3.77428606e-02 1.72235668e-02
1.06545174e+00 -1.13612962e+00 -1.62133351e-02 7.12562084e-01
6.66025355e-02 3.52061123e-01 7.68208385e-01 -7.30795860e-01
-8.43326211e-01 -1.33349633e+00 5.76770127e-01 -2.76081592e-01
2.74585128e-01 -6.57397270e-01 -9.26279664e-01 6.04403257e-01
-2.97510535e-01 4.94395733e-01 5.53280056e-01 -5.22679426e-02
-1.68327302e-01 -1.99728049e-02 -1.31410944e+00 3.61114353e-01
9.23977137e-01 -4.67654727e-02 -5.06506562e-01 3.99773598e-01
6.41167164e-01 -4.15784180e-01 -5.33590257e-01 7.47376144e-01
4.21356648e-01 -3.89227033e-01 6.58394456e-01 -1.65483877e-01
4.82324809e-01 -5.69058895e-01 9.14228261e-02 -1.51972318e+00
1.47116333e-01 -1.57153308e-01 4.63096380e-01 1.34078050e+00
5.73984563e-01 -3.61581117e-01 9.07413781e-01 5.20352781e-01
1.06109388e-01 -6.70035005e-01 -7.41447330e-01 -9.06158447e-01
-1.60725474e-01 -2.91470140e-02 3.21863919e-01 7.61618137e-01
-3.17704350e-01 4.29768622e-01 -6.80805206e-01 2.81824823e-03
6.95568800e-01 1.84719339e-01 1.08203959e+00 -1.28942215e+00
-4.80026692e-01 4.44828779e-01 -2.86532849e-01 -1.08575344e+00
3.66953790e-01 -8.02433789e-01 7.83862174e-01 -1.09642792e+00
2.54711598e-01 -9.65725303e-01 4.52860929e-02 9.59657431e-01
-3.24860901e-01 5.79566896e-01 1.54201344e-01 3.32956582e-01
-7.73670137e-01 8.19437385e-01 1.18315411e+00 -1.25665843e-01
-2.94511825e-01 1.71492770e-01 -2.64189214e-01 7.96687126e-01
6.07047081e-01 -9.10578847e-01 -4.58640009e-01 -1.97645247e-01
-1.88030750e-01 -5.23163192e-03 3.67906928e-01 -1.00921619e+00
-1.57645985e-01 2.24371646e-02 1.97398528e-01 -5.95795929e-01
4.90597993e-01 -1.05052829e+00 1.54860821e-02 2.85957605e-01
-4.94366854e-01 -4.13851678e-01 -6.39519617e-02 6.59380376e-01
-2.28014901e-01 -4.64662850e-01 1.03013194e+00 -1.12576470e-01
-5.05481958e-01 4.66054767e-01 4.77758758e-02 2.24958315e-01
1.16403437e+00 3.85417268e-02 1.09378517e-01 -2.03388289e-01
-6.22642219e-01 6.04380369e-01 7.06354737e-01 4.09792244e-01
3.21825624e-01 -1.24618232e+00 -6.43124819e-01 9.31964219e-02
5.73726654e-01 5.13997316e-01 8.85059983e-02 6.75422132e-01
-4.13825989e-01 -1.19089775e-01 -2.61455566e-01 -6.73863947e-01
-1.30716693e+00 6.66427076e-01 8.65616053e-02 -3.91370565e-01
-5.51561356e-01 8.18127453e-01 3.87449861e-01 -8.22883129e-01
3.97117883e-01 -2.41342649e-01 -3.64373773e-01 1.22857794e-01
2.62932688e-01 5.74612208e-02 5.99109977e-02 -8.12170863e-01
-3.58424157e-01 5.70824325e-01 -1.24766774e-01 -1.08482078e-01
1.55706167e+00 -6.53703883e-02 1.32661417e-01 3.03492755e-01
1.17639065e+00 -8.75601843e-02 -1.56335378e+00 -2.92609245e-01
2.58043762e-02 -5.03443480e-01 -2.72759169e-01 -6.07245743e-01
-1.18326688e+00 7.02704728e-01 6.25950634e-01 -4.25753713e-01
9.07497585e-01 8.52802545e-02 7.08458006e-01 3.78557414e-01
4.86897767e-01 -1.32348061e+00 3.73940736e-01 2.69346178e-01
8.68323147e-01 -1.70430422e+00 5.03178090e-02 -7.00613081e-01
-8.41050565e-01 6.46673977e-01 1.00941718e+00 -1.49764866e-01
3.60586584e-01 1.44233048e-01 1.18135020e-01 3.22834924e-02
-5.09173095e-01 -4.00551885e-01 2.10900351e-01 5.12680531e-01
2.41571441e-01 -6.30426034e-02 -4.65112478e-01 6.32770121e-01
-1.63423225e-01 1.17862128e-01 3.05778354e-01 1.03224719e+00
-2.38749593e-01 -1.38568723e+00 -3.87434632e-01 4.29048449e-01
-4.86314058e-01 1.26240879e-01 -2.58975774e-01 4.38399822e-01
2.67404199e-01 9.06578541e-01 -2.68047899e-01 -2.50367224e-01
2.58851647e-01 -1.19646721e-01 3.87783855e-01 -9.83701169e-01
-3.96866769e-01 1.59956366e-01 1.83171600e-01 -4.51136112e-01
-6.63037598e-01 -2.72701740e-01 -1.05362713e+00 1.75062284e-01
-8.43143761e-01 2.83961713e-01 5.39160907e-01 8.32691848e-01
5.01189493e-02 2.67189384e-01 7.30350912e-01 -1.08724880e+00
-8.72432888e-01 -9.65661705e-01 -5.13489604e-01 6.66641533e-01
2.81735897e-01 -1.01444590e+00 -4.37092572e-01 1.49437264e-01]
|
[9.310317993164062, 1.2673923969268799]
|
a212a2aa-b86c-40d0-9e2e-d9d8f98baaaf
|
autoencoder-based-anomaly-detection-and
|
2210.08011
| null |
https://arxiv.org/abs/2210.08011v1
|
https://arxiv.org/pdf/2210.08011v1.pdf
|
Autoencoder based Anomaly Detection and Explained Fault Localization in Industrial Cooling Systems
|
Anomaly detection in large industrial cooling systems is very challenging due to the high data dimensionality, inconsistent sensor recordings, and lack of labels. The state of the art for automated anomaly detection in these systems typically relies on expert knowledge and thresholds. However, data is viewed isolated and complex, multivariate relationships are neglected. In this work, we present an autoencoder based end-to-end workflow for anomaly detection suitable for multivariate time series data in large industrial cooling systems, including explained fault localization and root cause analysis based on expert knowledge. We identify system failures using a threshold on the total reconstruction error (autoencoder reconstruction error including all sensor signals). For fault localization, we compute the individual reconstruction error (autoencoder reconstruction error for each sensor signal) allowing us to identify the signals that contribute most to the total reconstruction error. Expert knowledge is provided via look-up table enabling root-cause analysis and assignment to the affected subsystem. We demonstrated our findings in a cooling system unit including 34 sensors over a 8-months time period using 4-fold cross validation approaches and automatically created labels based on thresholds provided by domain experts. Using 4-fold cross validation, we reached a F1-score of 0.56, whereas the autoencoder results showed a higher consistency score (CS of 0.92) compared to the automatically created labels (CS of 0.62) -- indicating that the anomaly is recognized in a very stable manner. The main anomaly was found by the autoencoder and automatically created labels and was also recorded in the log files. Further, the explained fault localization highlighted the most affected component for the main anomaly in a very consistent manner.
|
['Jana Kemnitz', 'Clemens Heitzinger', 'Daniel Schall', 'Bernhard Haslhofer', 'Thomas Kaufmann', 'Peter Holzner', 'Andreas Stiftinger', 'Leopold Schoeffl', 'Denis Katic', 'Robin Heel', 'Stephanie Holly']
|
2022-10-14
| null | null | null | null |
['fault-localization']
|
['computer-code']
|
[ 1.8434735e-02 -4.2365436e-02 7.0848107e-01 -1.8053477e-01
-3.7960792e-01 -4.9673966e-01 6.3287131e-02 7.5829875e-01
5.8617599e-02 4.1838205e-01 -3.7075537e-01 -2.4953972e-01
-7.6377821e-01 -6.1941713e-01 -5.9335494e-01 -7.8966224e-01
-5.5710804e-01 5.1804447e-01 -1.6115341e-01 -1.5419528e-01
2.3510309e-01 5.8429509e-01 -2.0008221e+00 3.2501665e-01
5.3806841e-01 1.3676689e+00 -4.9165737e-02 6.8685776e-01
1.4773603e-01 8.1823897e-01 -1.2013782e+00 5.1438171e-01
1.5177445e-01 -4.0489951e-01 -4.8306996e-01 1.1933027e-01
1.8409364e-01 -3.7446991e-01 3.4478452e-02 7.3305148e-01
3.3095595e-01 3.3435136e-02 4.9297309e-01 -1.5423554e+00
1.2554327e-01 4.6515682e-01 1.4368103e-01 1.7939384e-01
4.8151344e-01 6.3837528e-02 7.2322202e-01 -7.1111995e-01
3.0723783e-01 6.6550159e-01 8.9658159e-01 1.0055921e-01
-1.1908802e+00 -3.8230291e-01 4.4483315e-02 4.9633306e-01
-1.3529586e+00 2.1426736e-01 6.8394411e-01 -7.6366210e-01
1.5135556e+00 2.6336783e-01 7.5266784e-01 9.3254703e-01
4.5740560e-01 -2.4747467e-02 7.0449305e-01 -5.2787822e-01
7.7134001e-01 -8.3804183e-02 6.0437448e-02 3.7688148e-01
2.3289649e-01 1.8035734e-01 -2.3094483e-01 -2.8382003e-01
5.9442425e-01 4.4783613e-01 -5.7103321e-02 2.3892204e-01
-9.2361504e-01 5.4878891e-01 2.0912851e-01 7.3761261e-01
-9.0617931e-01 -3.9154939e-02 6.8878925e-01 7.2914380e-01
1.2453472e-01 8.8759571e-01 -1.1688141e+00 -3.1092364e-01
-6.7283612e-01 -2.1602832e-01 8.8814044e-01 4.8873746e-01
7.6041716e-01 6.5393823e-01 1.4711240e-01 5.7835090e-01
1.0785872e-01 2.1092221e-01 6.4011377e-01 -7.6689941e-01
-2.3035331e-01 1.1232861e+00 -2.4022971e-01 -8.3870620e-01
-6.5841317e-01 -4.3910781e-01 -7.9589552e-01 6.6929060e-01
1.3336274e-01 -3.9171979e-01 -7.3179424e-01 1.2857053e+00
1.0849230e-01 2.3515781e-02 1.0024463e-01 6.1587387e-01
1.4460488e-01 5.2551538e-01 -2.7784479e-01 -1.6059023e-01
1.0741619e+00 -1.9594179e-01 -1.0331703e+00 1.6508000e-01
7.5512660e-01 -3.8807330e-01 5.8912766e-01 8.8501710e-01
-4.0674540e-01 -5.5983859e-01 -1.3279825e+00 8.7620455e-01
-6.3093776e-01 3.1376341e-01 2.5043619e-01 4.3827382e-01
-8.8215858e-01 1.0951704e+00 -1.1833531e+00 -4.9387178e-01
-5.7725176e-02 4.3658686e-01 -5.3904295e-01 2.9352653e-01
-1.0016334e+00 9.7734463e-01 5.9597814e-01 1.8309408e-01
-1.1792812e+00 -6.2964541e-01 -7.7728564e-01 3.2337327e-02
2.8610939e-01 -1.6042101e-03 1.0642406e+00 -7.7532774e-01
-1.1261778e+00 4.9092237e-02 1.7370962e-01 -4.4848195e-01
1.9061734e-01 -4.8909244e-01 -1.0558941e+00 1.1030746e-01
-5.7355277e-02 -2.3017827e-01 9.1791195e-01 -1.2344395e+00
-7.4428964e-01 -3.9004225e-01 -4.5089266e-01 -5.8881956e-01
-4.4869646e-01 -1.4137580e-01 2.2549652e-01 -3.4901080e-01
5.0013179e-01 -6.4792639e-01 -1.0719201e-01 -5.8389777e-01
-3.2552493e-01 -1.2424126e-01 1.1694775e+00 -1.1224766e+00
1.5080079e+00 -2.2395303e+00 -2.4988419e-01 6.4631170e-01
4.8996691e-02 -2.3226570e-01 4.2577285e-01 7.7354020e-01
-8.9403170e-01 -3.1795803e-01 -6.0351276e-01 4.8492542e-03
-5.4111082e-02 3.1775141e-01 -1.7989239e-01 4.2492890e-01
5.9246093e-01 8.3851531e-02 -7.4809301e-01 2.4099430e-01
7.7562845e-01 2.6946068e-01 -2.2712363e-01 5.3349549e-01
-5.1452231e-02 3.0813465e-01 -3.0170003e-02 9.8527128e-01
2.7385646e-01 2.0985271e-01 5.4020700e-03 -3.5633257e-01
-1.4125387e-01 -2.3241164e-01 -1.5249702e+00 1.3049357e+00
-4.3710029e-01 6.7891002e-01 4.0039156e-02 -1.0779483e+00
1.2703767e+00 6.9165224e-01 1.0094934e+00 -4.0508613e-01
1.7652349e-01 4.7062254e-01 -3.3017799e-02 -7.9682666e-01
2.2514218e-01 1.8778300e-01 -1.4470901e-01 3.7170053e-01
3.4834874e-01 9.2336677e-02 1.1893624e-01 -1.0767860e-01
1.6940900e+00 -5.6957640e-02 1.3622957e-01 -2.3847884e-01
4.9533492e-01 9.1847539e-02 5.0138062e-01 5.2520728e-01
-3.9626166e-02 6.2433028e-01 5.5409282e-01 -7.0677644e-01
-1.0233731e+00 -8.2856232e-01 -1.6005097e-01 5.9458935e-01
-2.6047415e-01 -5.0541157e-01 -6.8735260e-01 -6.3138241e-01
2.3039588e-01 9.2720187e-01 -6.5292221e-01 -5.0223637e-01
-5.1254755e-01 -5.6802928e-01 4.8397723e-01 7.4026048e-01
-1.3609146e-01 -1.2345102e+00 -9.5681792e-01 5.8517772e-01
1.7669828e-01 -7.4447286e-01 5.3327006e-01 1.0462288e+00
-1.1404257e+00 -1.4228426e+00 5.8437645e-02 -3.4556398e-01
8.9816111e-01 -7.8907019e-01 1.1009481e+00 9.4903946e-02
-7.2566980e-01 4.8220077e-01 -3.3072636e-01 -5.5108792e-01
-6.6087258e-01 -5.4817158e-01 5.5271608e-01 -1.8904552e-01
3.2494062e-01 -6.6272354e-01 -3.0106559e-01 3.6992183e-01
-9.7337085e-01 -1.1323009e+00 4.4278932e-01 8.0347723e-01
6.6169316e-01 8.0173624e-01 5.5758303e-01 -3.2933217e-01
7.1322697e-01 -7.5362098e-01 -7.3323536e-01 -6.8564586e-02
-1.0723140e+00 -6.4877413e-02 8.5723311e-01 -3.3942026e-01
-4.5840332e-01 6.0119208e-02 -1.3266335e-01 -7.5947016e-01
-9.0435946e-01 6.7156672e-01 -1.0802787e-02 4.1679966e-01
8.0712253e-01 -7.1675047e-02 2.5791982e-02 -5.4157740e-01
-3.6622450e-01 6.1744124e-01 6.2973845e-01 -5.1874381e-01
3.5872751e-01 5.3998001e-02 3.0707028e-02 -6.3573462e-01
-1.0033965e-01 -3.7276337e-01 -6.4248008e-01 -6.3276798e-01
7.3772907e-01 -8.0573952e-01 -9.8572904e-01 5.1053786e-01
-9.3868345e-01 -2.0196247e-01 -6.5966535e-01 6.4814347e-01
-2.0627333e-01 2.3696981e-02 -4.3386659e-01 -1.1499768e+00
-3.2276976e-01 -9.6295953e-01 8.7578493e-01 -1.0722162e-01
-6.1888301e-01 -8.5950989e-01 1.7350018e-01 -2.4894390e-01
5.3297138e-01 8.2970423e-01 8.5860658e-01 -1.1500005e+00
-3.6839403e-02 -9.2096466e-01 4.0469918e-01 8.4728605e-01
5.0519520e-01 2.9611143e-01 -1.1419742e+00 -2.9820579e-01
3.8354501e-01 1.9537333e-01 3.0920798e-01 1.8782613e-01
1.2340808e+00 -2.3465324e-02 -1.0264618e-01 -8.8090770e-02
1.6057315e+00 6.0058820e-01 4.2967260e-01 4.9671963e-01
6.2357974e-01 5.8253616e-01 5.1902002e-01 7.8854555e-01
-2.7007875e-01 1.9484638e-01 1.0327255e+00 2.1635633e-02
5.9397018e-01 2.6303339e-01 6.5672183e-01 7.4211109e-01
-7.7845431e-03 -4.8502255e-02 -1.0683060e+00 6.9367915e-01
-1.7517741e+00 -6.8910187e-01 -3.9928052e-01 2.3054726e+00
2.0457554e-01 3.2715023e-01 -6.4611740e-02 1.1286764e+00
7.2081107e-01 -5.7066053e-01 -5.8341902e-01 -6.5390080e-01
7.1530744e-02 2.6283357e-01 3.4370601e-01 7.7610373e-02
-1.0766965e+00 1.3173973e-02 6.3190012e+00 1.4425647e-01
-9.6184808e-01 -9.6954457e-02 7.8325331e-02 -2.8971748e-02
3.9761832e-01 -1.7305352e-01 -3.0703428e-01 5.6231982e-01
1.6414148e+00 3.9861581e-01 3.6431518e-01 1.0627658e+00
1.4106634e-01 -2.0346974e-01 -1.4579692e+00 7.9990673e-01
-2.9247809e-02 -7.1556091e-01 -5.5808938e-01 2.2889916e-02
5.1964509e-01 1.2092548e-01 -5.6998706e-01 2.0467266e-01
2.0338440e-02 -8.8793212e-01 7.0501542e-01 7.0437926e-01
3.9617163e-01 -8.0851555e-01 1.3036993e+00 4.3471538e-02
-9.9843997e-01 -7.4132079e-01 1.8845238e-01 -4.0688872e-01
6.4851560e-02 1.2025439e+00 -9.5016158e-01 7.7696621e-01
1.2142507e+00 5.5731034e-01 -4.0560383e-01 7.0573610e-01
-1.3755290e-01 8.6600792e-01 -6.1849493e-01 2.2731344e-01
-2.1181598e-01 2.9079420e-02 4.5555863e-01 9.7855210e-01
7.3043454e-01 -4.5455828e-01 6.3879244e-02 8.5665101e-01
6.1641312e-01 -3.5567868e-01 -5.2247339e-01 3.4278337e-02
5.3921163e-01 1.1041477e+00 -6.6183096e-01 -1.3195942e-01
-1.1217548e-01 7.4489015e-01 -4.2198035e-01 2.0566696e-01
-6.0094565e-01 -6.9528109e-01 7.1052068e-01 -1.4753407e-01
4.0741715e-01 1.3854134e-02 -2.5523520e-01 -5.2901763e-01
3.1400970e-01 -8.8350534e-01 6.2793702e-01 -6.5840936e-01
-1.4654915e+00 7.5608581e-01 1.8542327e-02 -1.5595114e+00
-7.8855538e-01 -8.9777970e-01 -7.5548035e-01 7.1426147e-01
-5.8443344e-01 -3.6684725e-01 -5.5582845e-01 5.5586827e-01
3.0591884e-01 -3.7724006e-01 1.4131342e+00 4.2440000e-01
-9.2581892e-01 1.7644559e-01 3.2941779e-01 -3.4822904e-02
4.7596100e-01 -1.6267326e+00 -5.8663886e-02 9.1985637e-01
-2.2475323e-01 3.9260221e-01 8.5387975e-01 -8.1314105e-01
-1.3362707e+00 -9.9870217e-01 4.0199617e-01 -6.1457640e-01
9.0441859e-01 1.1598186e-03 -1.1903317e+00 5.7469195e-01
1.2560263e-01 -4.1299861e-02 8.3192706e-01 4.1226655e-02
-1.2102548e-02 -1.6705017e-01 -1.3273789e+00 -1.8464115e-01
2.4400587e-01 -5.5842710e-01 -5.5079329e-01 1.9919084e-01
3.9535540e-01 -3.3727527e-01 -1.3860033e+00 7.0886064e-01
3.0138904e-01 -9.2405033e-01 5.2008897e-01 -2.0277041e-01
4.2854342e-01 -7.8037065e-01 -3.5620394e-01 -1.3404309e+00
-1.7540234e-01 -1.0571250e-01 -5.2981806e-01 1.1001621e+00
4.2696220e-01 -7.0970345e-01 3.5941994e-01 6.0964406e-01
-6.2722594e-01 -6.5243435e-01 -9.1611814e-01 -8.2515657e-01
-5.4061902e-01 -9.7540742e-01 6.8259037e-01 1.0807776e+00
3.4595277e-02 -2.2760288e-01 7.1709178e-02 6.9800854e-01
2.5954252e-01 -2.6347297e-01 3.9943242e-01 -1.6168188e+00
-2.8588346e-01 -2.0997597e-01 -7.1089339e-01 3.0084860e-01
-1.8233377e-01 -4.4067731e-01 3.0816197e-01 -1.3113739e+00
-5.9307283e-01 4.9053822e-03 -9.0034568e-01 8.0164379e-01
8.9098059e-02 -2.1916509e-01 -3.9025089e-01 2.8001066e-02
-1.3290654e-01 2.6367292e-01 1.3768439e-01 -1.3689893e-01
-2.9956639e-01 -1.6464730e-01 -1.2702042e-01 6.3382924e-01
1.0060730e+00 -4.9617469e-01 -2.7713433e-02 -2.3988487e-01
3.2448748e-01 -1.8741778e-01 4.3869767e-01 -1.5876969e+00
9.9593841e-02 3.0096650e-01 7.0593643e-01 -9.3655074e-01
-1.1182457e-02 -1.5877099e+00 4.6306619e-01 6.3521212e-01
2.4416338e-01 5.9059888e-01 6.9993216e-01 4.7702831e-01
-4.9182311e-01 -3.0156440e-01 3.9891876e-02 1.6702423e-02
-8.6376941e-01 -2.5928965e-01 -7.9180121e-01 -7.7540195e-01
1.0001230e+00 -2.2848205e-01 1.1226146e-01 -1.7344099e-01
-1.0518284e+00 1.0758638e-01 2.1750627e-01 3.0818519e-01
6.5200502e-01 -1.1886868e+00 -5.3634626e-01 6.4824218e-01
4.4727042e-01 7.0695549e-02 2.9899102e-01 7.5964111e-01
-4.6135941e-01 7.1700126e-02 -3.5269678e-01 -9.6799088e-01
-1.0062641e+00 3.4940246e-01 4.5877999e-01 5.8457591e-02
-5.4632741e-01 4.8537460e-01 -7.2842926e-01 -4.3939406e-01
2.8928027e-01 -5.5757517e-01 -2.1268758e-01 2.9885888e-01
3.8868552e-01 8.3736533e-01 8.7362379e-01 -2.7177855e-01
-6.5458268e-01 4.6958804e-01 3.2398105e-01 2.0388867e-01
1.5051752e+00 2.4217173e-01 -2.7322352e-01 8.5248697e-01
9.3161833e-01 -3.6915469e-01 -1.0084311e+00 4.1000444e-01
1.7313942e-01 2.8552892e-02 1.6611531e-01 -1.1231711e+00
-1.1802927e+00 4.6944275e-01 1.2483295e+00 8.6123073e-01
1.4404420e+00 -1.6524914e-01 2.6851183e-01 6.7679328e-01
1.8767536e-01 -1.3366752e+00 -5.2491006e-02 5.9825498e-01
8.0981261e-01 -1.1720663e+00 -9.4838738e-02 2.3200037e-01
-3.6057797e-01 1.4296546e+00 6.7691380e-01 -1.4247437e-01
7.8507066e-01 5.4328358e-01 2.7522296e-01 -4.4984117e-01
-6.4238036e-01 2.7436769e-01 -2.4391774e-03 5.9853196e-01
3.0718341e-01 1.1672059e-01 3.0402413e-01 7.6289338e-01
-1.6174681e-01 -1.5181217e-01 3.7646896e-01 1.2034868e+00
-2.5571740e-01 -8.3361924e-01 -8.4546703e-01 7.1474427e-01
-3.7168390e-01 3.3527407e-01 -3.6323738e-01 6.1911303e-01
4.4544733e-01 1.4084204e+00 4.5191774e-01 -9.7358090e-01
7.4029225e-01 4.5157683e-01 5.8071637e-03 -2.2504845e-01
-8.6592913e-01 -1.6249003e-02 -7.6914325e-02 -9.9002522e-01
7.7315485e-03 -7.6882368e-01 -1.4718752e+00 1.0004704e-01
-5.6572390e-01 2.1502444e-01 1.2338511e+00 8.7810528e-01
4.5755589e-01 1.4396403e+00 8.7920356e-01 -6.7870367e-01
-3.4535515e-01 -1.3817286e+00 -6.7782503e-01 5.6644106e-01
5.3591460e-01 -6.0309082e-01 -9.0345389e-01 1.5817758e-01]
|
[6.885104179382324, 2.471644639968872]
|
75e2bf62-1c8c-479a-8ce2-89106827be3b
|
advancing-incremental-few-shot-semantic
|
2305.10868
| null |
https://arxiv.org/abs/2305.10868v1
|
https://arxiv.org/pdf/2305.10868v1.pdf
|
Advancing Incremental Few-shot Semantic Segmentation via Semantic-guided Relation Alignment and Adaptation
|
Incremental few-shot semantic segmentation (IFSS) aims to incrementally extend a semantic segmentation model to novel classes according to only a few pixel-level annotated data, while preserving its segmentation capability on previously learned base categories. This task faces a severe semantic-aliasing issue between base and novel classes due to data imbalance, which makes segmentation results unsatisfactory. To alleviate this issue, we propose the Semantic-guided Relation Alignment and Adaptation (SRAA) method that fully considers the guidance of prior semantic information. Specifically, we first conduct Semantic Relation Alignment (SRA) in the base step, so as to semantically align base class representations to their semantics. As a result, the embeddings of base classes are constrained to have relatively low semantic correlations to categories that are different from them. Afterwards, based on the semantically aligned base categories, Semantic-Guided Adaptation (SGA) is employed during the incremental learning stage. It aims to ensure affinities between visual and semantic embeddings of encountered novel categories, thereby making the feature representations be consistent with their semantic information. In this way, the semantic-aliasing issue can be suppressed. We evaluate our model on the PASCAL VOC 2012 and the COCO dataset. The experimental results on both these two datasets exhibit its competitive performance, which demonstrates the superiority of our method.
|
['Qi Tian', 'Richang Hong', 'Shijie Hao', 'Yanrong Guo', 'Xin Chen', 'Yuan Zhou']
|
2023-05-18
| null | null | null | null |
['few-shot-image-segmentation', 'incremental-learning']
|
['computer-vision', 'methodology']
|
[ 5.35927892e-01 1.39243707e-01 -1.81815431e-01 -6.27868593e-01
-3.74484986e-01 -3.65994394e-01 3.64289075e-01 2.93142706e-01
-4.98178661e-01 4.42212045e-01 8.77418220e-02 2.50284702e-01
-1.64970383e-02 -8.13569069e-01 -5.86638749e-01 -7.59885132e-01
5.23198783e-01 2.58251369e-01 8.21497560e-01 -1.11908048e-01
2.32787937e-01 1.73390731e-01 -1.65828776e+00 1.46950543e-01
1.16053677e+00 9.28216100e-01 5.19164562e-01 -5.36893159e-02
-5.89689672e-01 2.29942754e-01 -3.63031745e-01 -2.00594634e-01
1.03546783e-01 -4.36529636e-01 -7.56575286e-01 4.31623966e-01
3.45550150e-01 -7.02765286e-02 -9.35514122e-02 1.40017200e+00
1.90252051e-01 4.28266466e-01 3.93186271e-01 -1.21233940e+00
-4.80454326e-01 2.60808289e-01 -6.09400928e-01 7.08587915e-02
-1.87341906e-02 3.79391164e-02 1.01645887e+00 -9.13574934e-01
5.82950711e-01 1.18122387e+00 4.61697131e-01 6.67517185e-01
-1.12159002e+00 -6.20736778e-01 6.96987689e-01 3.75588834e-01
-1.36458349e+00 -2.34041810e-01 1.00299513e+00 -2.17624873e-01
3.79655927e-01 3.84914279e-02 7.88300633e-01 7.34209895e-01
-3.12300712e-01 8.35742116e-01 8.40790093e-01 -2.75102198e-01
5.28864861e-01 2.84605294e-01 3.25246990e-01 3.86843920e-01
1.51642337e-01 -3.16092312e-01 -3.79407555e-01 3.85958046e-01
3.71968657e-01 1.78807095e-01 -2.12757558e-01 -6.80908501e-01
-1.06553483e+00 7.17244446e-01 7.65572846e-01 3.64317089e-01
-1.94222525e-01 -2.86067605e-01 6.07559621e-01 -1.96173653e-01
4.31059629e-01 2.41459668e-01 -4.96898204e-01 1.95439234e-01
-7.64872909e-01 -4.94760759e-02 2.25789353e-01 1.00892699e+00
1.14770961e+00 -8.63085315e-02 -1.68383047e-01 1.11851346e+00
3.35584849e-01 1.86610043e-01 6.96813047e-01 -7.07413971e-01
3.30755353e-01 9.13449824e-01 -2.15380356e-01 -1.07372594e+00
-1.80582866e-01 -6.57499671e-01 -5.94097793e-01 -9.86326188e-02
2.54114538e-01 1.99334025e-01 -1.38147891e+00 1.74382842e+00
7.35672712e-01 4.46874171e-01 2.06646517e-01 9.82330561e-01
8.66478741e-01 6.24604702e-01 3.79193872e-01 -3.10117066e-01
1.19249523e+00 -1.09605205e+00 -6.21229410e-01 -5.60746133e-01
6.29061759e-01 -5.24504662e-01 1.37235987e+00 -1.25915751e-01
-3.63699466e-01 -8.11740816e-01 -1.09976554e+00 2.31936648e-02
-4.04456317e-01 -1.95640773e-01 5.20334184e-01 4.21687245e-01
-6.03258610e-01 3.44509035e-01 -7.42986917e-01 -4.26290751e-01
7.70333111e-01 1.64405573e-02 -8.32417831e-02 -2.79684126e-01
-1.18534052e+00 4.18880880e-01 9.57684934e-01 1.47121564e-01
-6.15405321e-01 -7.08523691e-01 -9.78829086e-01 -1.72900893e-02
5.75758994e-01 -3.53565037e-01 9.25156415e-01 -1.28367496e+00
-1.08702099e+00 8.25045764e-01 -2.76623607e-01 -2.53278077e-01
2.67537743e-01 5.34544885e-02 -4.08441216e-01 1.40888959e-01
5.03141403e-01 9.65661407e-01 6.85073972e-01 -1.51137543e+00
-9.72372234e-01 -5.73711812e-01 -4.34701890e-03 5.96041799e-01
-5.63335598e-01 -4.30915058e-01 -6.83995724e-01 -6.50307238e-01
6.15840375e-01 -7.86294281e-01 -2.11388633e-01 -8.24665427e-02
-3.92324060e-01 -2.50794798e-01 9.61146355e-01 -4.55438286e-01
1.12569809e+00 -2.36124396e+00 3.46292585e-01 1.63091689e-01
-1.19034015e-01 3.52450490e-01 -2.23201126e-01 -2.22133622e-01
3.15376297e-02 -1.74954757e-01 -6.91247463e-01 -2.47385979e-01
-3.41036350e-01 4.73501593e-01 -1.57760590e-01 1.10206291e-01
1.00091159e-01 8.13554406e-01 -1.09737909e+00 -6.59916222e-01
3.30217242e-01 6.13154136e-02 -5.31988144e-01 2.18440816e-01
-4.56199318e-01 4.80663031e-01 -5.85268438e-01 7.72049010e-01
7.65883446e-01 4.88720350e-02 4.57643233e-02 -4.38476056e-01
5.13011888e-02 -1.76592544e-01 -1.08993542e+00 1.94190669e+00
-3.46334070e-01 2.31632575e-01 -3.46272051e-01 -1.33437920e+00
1.05384684e+00 -2.15496287e-01 3.97927761e-01 -8.17603469e-01
5.35090454e-02 3.42895687e-01 -8.09211582e-02 -4.43183869e-01
2.06453368e-01 -3.57856899e-01 -1.29989088e-01 -7.34753981e-02
8.91069099e-02 -2.60709733e-01 1.29757211e-01 1.48237675e-01
3.87457550e-01 3.26877236e-01 1.35854810e-01 -2.45108247e-01
7.13041008e-01 1.97292000e-01 1.05238307e+00 3.80535960e-01
-4.56144363e-01 6.32724345e-01 2.41942391e-01 -2.16070920e-01
-8.09211612e-01 -1.27173090e+00 -2.04879031e-01 8.83733273e-01
7.88333476e-01 -2.55199224e-01 -9.46299911e-01 -1.04622602e+00
-1.92950949e-01 9.19308245e-01 -7.20563233e-01 -5.53176701e-01
-3.47861081e-01 -8.14669013e-01 -6.76201135e-02 6.06341600e-01
8.14196825e-01 -1.07249999e+00 -4.73932713e-01 2.83518195e-01
-1.31434530e-01 -1.08266425e+00 -4.18011546e-01 1.54946954e-03
-9.23151910e-01 -1.10507381e+00 -7.97665477e-01 -1.15769029e+00
9.45680439e-01 5.07166862e-01 4.78543401e-01 2.60470062e-02
-1.37083352e-01 4.65520509e-02 -5.29803157e-01 -1.31992131e-01
-1.44659549e-01 -1.20952008e-02 -2.45353729e-01 3.49944979e-01
6.35279059e-01 -4.36260670e-01 -6.20279729e-01 3.29207599e-01
-1.04253972e+00 2.95135647e-01 3.64959866e-01 8.59469712e-01
9.33729589e-01 1.98039532e-01 7.46877134e-01 -9.33009863e-01
7.09191263e-02 -4.57214445e-01 -4.22163039e-01 2.56799042e-01
-5.17500460e-01 -3.27786088e-01 7.47213542e-01 -3.52612853e-01
-1.26101208e+00 2.72717118e-01 -1.17750369e-01 -3.29394102e-01
-3.00036550e-01 4.04025882e-01 -6.68812335e-01 2.37279207e-01
3.36589813e-01 5.52361846e-01 -1.39389455e-01 -3.87671649e-01
4.14419830e-01 6.63160205e-01 6.97704077e-01 -4.06245798e-01
6.84894741e-01 5.35271227e-01 -3.35811287e-01 -6.95139945e-01
-1.27830291e+00 -6.28069758e-01 -8.41046572e-01 -1.20606169e-01
1.07886469e+00 -8.33349168e-01 1.90462604e-01 7.82398582e-01
-8.35583866e-01 -1.36100084e-01 -5.40443659e-01 4.12335515e-01
-4.83781070e-01 4.58274186e-01 -1.86413467e-01 -4.15415853e-01
-7.23028928e-02 -1.13172066e+00 9.05859053e-01 8.36210847e-01
-8.89168400e-03 -8.92450094e-01 -2.21990168e-01 4.25422192e-01
1.10972319e-02 2.90403366e-01 9.21059787e-01 -7.79866755e-01
-3.82529140e-01 2.32627802e-02 -5.46178281e-01 5.76634109e-01
5.47990918e-01 -2.17992708e-01 -8.95119488e-01 -3.21545899e-01
-1.83635186e-02 -7.62710422e-02 1.06573164e+00 1.48812786e-01
1.36957657e+00 -1.86084956e-02 -4.73612010e-01 6.53914392e-01
1.43901372e+00 5.13641715e-01 4.13158953e-01 4.61373657e-01
1.05975044e+00 7.58579075e-01 1.06249166e+00 1.50341377e-01
4.15318161e-01 5.73371172e-01 3.94612342e-01 -1.12205401e-01
-3.35399926e-01 -5.02165675e-01 -1.51847675e-01 7.87662804e-01
4.88378465e-01 6.68128356e-02 -7.62411416e-01 8.22403848e-01
-1.83468902e+00 -4.01002377e-01 5.64998314e-02 2.14606905e+00
8.79508436e-01 3.61650258e-01 -6.50599226e-02 4.30200882e-02
9.99944806e-01 1.91216066e-01 -8.62986505e-01 -2.03615591e-01
3.36266123e-03 5.61662205e-02 1.85026228e-01 2.02925146e-01
-1.09054339e+00 1.30773783e+00 4.34938860e+00 1.15255940e+00
-9.61779952e-01 2.30776817e-01 6.96409583e-01 1.91396803e-01
-4.08205420e-01 1.71162844e-01 -7.88650095e-01 7.80020356e-01
3.05928797e-01 -2.59401619e-01 2.32697502e-01 8.05692673e-01
7.86479637e-02 -1.61821365e-01 -7.86740363e-01 7.75698721e-01
9.81210768e-02 -1.02549374e+00 2.90354967e-01 -3.68027151e-01
9.13514197e-01 -2.62081116e-01 -1.68395177e-01 4.15755838e-01
-7.52374902e-02 -5.84427416e-01 6.39284134e-01 3.00536126e-01
7.37407982e-01 -9.38364804e-01 7.62066424e-01 2.25216717e-01
-1.38162136e+00 -2.13566214e-01 -5.82552612e-01 3.19869369e-01
1.50603950e-01 5.56702256e-01 -5.51266134e-01 5.24203837e-01
7.46503711e-01 1.10786927e+00 -5.74665308e-01 1.06961536e+00
-4.27790314e-01 3.59476358e-01 -6.19178936e-02 1.64809987e-01
4.39713567e-01 -2.69044548e-01 4.74611014e-01 7.81609058e-01
1.17352046e-01 1.44519463e-01 3.26347500e-01 7.90518582e-01
-1.22635337e-02 3.33039731e-01 -2.45265916e-01 1.64414987e-01
6.32679880e-01 1.08981526e+00 -1.14221454e+00 -5.81081986e-01
-3.89149368e-01 1.20970023e+00 2.97146142e-01 4.32453811e-01
-8.44577432e-01 -5.56889534e-01 6.95213556e-01 -1.04931481e-01
2.57995099e-01 5.45086563e-02 -4.95890349e-01 -1.04414403e+00
1.65669411e-01 -4.30826038e-01 6.17101192e-01 -6.04989350e-01
-1.02676690e+00 4.16296780e-01 2.97883917e-02 -1.29520953e+00
3.37164074e-01 -1.13211341e-01 -6.51150048e-01 5.59247434e-01
-1.57900333e+00 -1.16194963e+00 -5.37169218e-01 4.17987108e-01
1.00287306e+00 1.57998875e-02 5.18628359e-01 2.68435150e-01
-7.02089369e-01 5.83852828e-01 5.59966564e-02 3.73812916e-04
4.51151222e-01 -1.06683469e+00 1.85615599e-01 9.59862471e-01
-5.92759158e-03 3.61029446e-01 4.86978501e-01 -8.02829564e-01
-6.93303466e-01 -1.49483287e+00 6.02976680e-01 -5.14981784e-02
4.27425593e-01 -2.64920771e-01 -1.35406470e+00 4.12037998e-01
-3.21883380e-01 6.89753368e-02 4.47258383e-01 -1.19196244e-01
-2.99860060e-01 -3.59855503e-01 -1.05727875e+00 6.13623023e-01
1.26362288e+00 -3.61212254e-01 -9.41537082e-01 3.08728039e-01
1.10301840e+00 -2.43109256e-01 -4.21436191e-01 7.30608702e-01
2.59195626e-01 -7.89920390e-01 8.50144088e-01 -3.95597875e-01
3.27637374e-01 -6.76002383e-01 -1.98411122e-01 -1.44468999e+00
-1.62716255e-01 1.41738832e-01 1.76858604e-01 1.47771668e+00
1.61008105e-01 -6.46190166e-01 6.97303414e-01 3.16049337e-01
-3.99137616e-01 -7.24133372e-01 -9.44425285e-01 -8.94270837e-01
-1.38580622e-02 -2.26588607e-01 6.43354297e-01 1.10075271e+00
-3.16729605e-01 1.99351460e-01 9.32676345e-02 1.37680262e-01
6.50364041e-01 4.27879035e-01 5.96916914e-01 -1.12302351e+00
1.85656827e-02 -3.92800987e-01 -5.08848846e-01 -9.33363080e-01
3.00382495e-01 -1.02927315e+00 3.26875418e-01 -1.58689702e+00
3.64830315e-01 -7.06992805e-01 -7.15601087e-01 5.45273244e-01
-5.72185278e-01 4.45130527e-01 1.50687933e-01 1.69983476e-01
-6.60172403e-01 9.20632958e-01 1.40323126e+00 -2.74464220e-01
-3.61912817e-01 -1.35511294e-01 -8.26330185e-01 8.61967325e-01
8.50787520e-01 -4.04853165e-01 -7.35354841e-01 -3.37823391e-01
-2.55964726e-01 -4.14539039e-01 2.70781189e-01 -1.12948978e+00
1.37512982e-01 -2.91093558e-01 2.92281568e-01 -4.71523345e-01
3.81923020e-02 -7.92061210e-01 -1.45215541e-01 4.86890256e-01
-2.77105749e-01 -7.11691320e-01 2.18548909e-01 8.15129757e-01
-3.46839637e-01 -3.07568550e-01 1.06020808e+00 -5.78371920e-02
-1.46252310e+00 3.29389811e-01 1.21921115e-01 3.11885267e-01
1.31146264e+00 -6.28933847e-01 1.03175854e-02 2.31229872e-01
-8.55594516e-01 5.23604095e-01 6.59539700e-01 7.58486927e-01
7.58559287e-01 -1.34171295e+00 -4.79022264e-01 4.13046777e-01
6.30294025e-01 5.63967705e-01 6.27068460e-01 5.24712801e-01
-3.11204433e-01 4.55646254e-02 -2.05411047e-01 -7.47479260e-01
-1.10785496e+00 6.77288294e-01 2.48049513e-01 2.80396163e-01
-6.87201262e-01 1.05687499e+00 6.08575940e-01 -4.65674222e-01
1.25495404e-01 -1.04253732e-01 -4.27219450e-01 2.67451853e-01
3.35847557e-01 1.02409363e-01 -4.52657826e-02 -7.81339467e-01
-5.27072847e-01 8.04426491e-01 -2.72376180e-01 3.36163998e-01
1.08488631e+00 -5.21742880e-01 4.53301845e-03 4.43374217e-01
1.28419423e+00 -1.58956066e-01 -1.51433563e+00 -5.12401342e-01
8.97647366e-02 -6.88809812e-01 1.43931061e-02 -6.29300058e-01
-1.28230000e+00 9.20063913e-01 7.69082248e-01 -2.92851895e-01
1.30067337e+00 1.81835428e-01 1.07547009e+00 -1.13589928e-01
2.81031221e-01 -1.43381190e+00 1.67007655e-01 2.82947630e-01
5.09590030e-01 -1.13994217e+00 -2.32965320e-01 -7.84794033e-01
-6.88433170e-01 9.31973636e-01 1.09648621e+00 6.67399615e-02
3.74689966e-01 -4.91535991e-01 -2.78018173e-02 4.01739776e-03
-1.47866070e-01 -4.05653834e-01 3.03697377e-01 6.40994668e-01
-1.25153959e-01 1.17217258e-01 -4.14071947e-01 7.10076869e-01
9.02011916e-02 -2.06374258e-01 4.18210298e-01 8.32234800e-01
-6.70038402e-01 -8.82259965e-01 -5.14130332e-02 3.57873619e-01
8.71414542e-02 -1.47823263e-02 -1.32891074e-01 5.46061993e-01
5.24382114e-01 8.54588687e-01 3.00558448e-01 -2.86927879e-01
4.26878363e-01 -1.92848071e-02 1.12690084e-01 -9.67150092e-01
7.63909072e-02 1.16013497e-01 -2.10601419e-01 -4.84781653e-01
-3.77794415e-01 -6.49186134e-01 -1.70676911e+00 3.61733317e-01
-3.29539001e-01 1.70787245e-01 4.53099251e-01 1.01239514e+00
1.49499133e-01 6.77399337e-01 7.85463750e-01 -4.53728467e-01
-2.38050625e-01 -5.54585099e-01 -5.68759024e-01 7.32840121e-01
2.28129867e-02 -8.57439756e-01 -3.88692081e-01 -2.94259973e-02]
|
[9.619535446166992, 1.4217885732650757]
|
47cf3a73-50ba-4505-a9d6-1789665b6fd0
|
a-multi-purpose-and-large-scale-speech-corpus
|
1912.03627
| null |
https://arxiv.org/abs/1912.03627v1
|
https://arxiv.org/pdf/1912.03627v1.pdf
|
A Multi Purpose and Large Scale Speech Corpus in Persian and English for Speaker and Speech Recognition: the DeepMine Database
|
DeepMine is a speech database in Persian and English designed to build and evaluate text-dependent, text-prompted, and text-independent speaker verification, as well as Persian speech recognition systems. It contains more than 1850 speakers and 540 thousand recordings overall, more than 480 hours of speech are transcribed. It is the first public large-scale speaker verification database in Persian, the largest public text-dependent and text-prompted speaker verification database in English, and the largest public evaluation dataset for text-independent speaker verification. It has a good coverage of age, gender, and accents. We provide several evaluation protocols for each part of the database to allow for research on different aspects of speaker verification. We also provide the results of several experiments that can be considered as baselines: HMM-based i-vectors for text-dependent speaker verification, and HMM-based as well as state-of-the-art deep neural network based ASR. We demonstrate that the database can serve for training robust ASR models.
|
['Jan "Honza\'\' Černocký', 'Lukáš Burget', 'Hossein Zeinali']
|
2019-12-08
| null | null | null | null |
['text-independent-speaker-verification', 'text-dependent-speaker-verification']
|
['speech', 'speech']
|
[-1.67693213e-01 2.30878871e-02 -1.77972570e-01 -9.41310585e-01
-1.36209190e+00 -5.03792167e-01 7.69750059e-01 -1.95960596e-01
-5.78718960e-01 4.74025428e-01 6.05427146e-01 -6.23041570e-01
5.32982588e-01 -2.53601419e-03 -1.94013923e-01 -7.09287047e-01
4.81799468e-02 9.39004481e-01 -3.41769814e-01 -4.59412634e-01
-1.32933166e-02 5.62731683e-01 -1.18067849e+00 -2.00152144e-01
5.16228080e-01 5.24358928e-01 -7.68541843e-02 7.24474251e-01
3.35025191e-01 6.06439233e-01 -1.13543367e+00 -7.38527417e-01
-3.28953058e-01 -1.29699558e-01 -1.06698418e+00 -6.66311905e-02
7.21592844e-01 -1.86408073e-01 -6.89716458e-01 6.42827392e-01
1.25455117e+00 1.39406025e-01 4.47626233e-01 -1.04864872e+00
-8.72065842e-01 1.31091547e+00 -1.63255662e-01 4.45798874e-01
4.89491940e-01 -4.38801683e-02 7.20683634e-01 -9.07206595e-01
4.26117837e-01 1.57401776e+00 5.57064116e-01 1.06766939e+00
-9.85505760e-01 -9.38645422e-01 -9.94572788e-02 3.33718657e-01
-1.60294521e+00 -1.56210876e+00 6.93092704e-01 -1.80855095e-02
1.06200182e+00 3.27834129e-01 2.41499171e-01 1.69722724e+00
-2.62316048e-01 1.04455006e+00 9.11092818e-01 -5.13356626e-01
-3.46836522e-02 1.99017078e-01 3.85057956e-01 4.16809291e-01
-3.24317575e-01 2.59530038e-01 -1.15025020e+00 -1.82968408e-01
3.14236999e-01 -6.42290950e-01 -1.97498009e-01 4.38373387e-01
-1.41369605e+00 6.60996020e-01 -2.68458843e-01 4.85010654e-01
-4.59152199e-02 -3.16368610e-01 6.97869182e-01 4.59496289e-01
3.07776660e-01 4.08323817e-02 -6.86391115e-01 -5.58752537e-01
-1.28955948e+00 1.99776329e-02 9.30311799e-01 1.02976167e+00
2.46146858e-01 8.98422241e-01 -1.31722972e-01 1.39101779e+00
4.12981540e-01 1.05338216e+00 8.47134173e-01 -6.39102697e-01
6.41355217e-01 3.47845033e-02 -1.79709509e-01 -2.70479709e-01
-3.29236835e-01 -6.53668717e-02 -8.25004876e-01 -3.15530986e-01
2.78639585e-01 -2.50183105e-01 -1.10913253e+00 1.88088632e+00
-1.33951637e-03 -2.57884935e-02 3.47320378e-01 3.94480228e-01
1.32156837e+00 5.79394817e-01 1.28262281e-01 -1.42138734e-01
1.56136191e+00 -7.43871689e-01 -8.06011498e-01 -3.29685807e-01
4.58707392e-01 -8.42695534e-01 7.71191359e-01 1.87742248e-01
-1.10494936e+00 -5.17064750e-01 -8.74047399e-01 -7.18120337e-02
-3.69326234e-01 3.59466583e-01 1.33811235e-01 1.47306144e+00
-1.49434078e+00 -7.31826527e-03 -9.69973862e-01 -5.69777489e-01
-3.25824469e-02 3.94586623e-01 -6.96328819e-01 2.07590505e-01
-1.32307792e+00 1.18012547e+00 1.79935962e-01 6.91548586e-02
-1.03350461e+00 -3.32441270e-01 -1.33929336e+00 -9.05347019e-02
-3.25761825e-01 3.53457071e-02 1.70067966e+00 -5.38782835e-01
-1.68790579e+00 1.41474736e+00 -8.19635689e-01 -5.85073113e-01
1.14829019e-01 2.11708769e-01 -1.20633733e+00 -2.96496511e-01
2.21838336e-02 6.32065535e-01 7.66853929e-01 -7.53572881e-01
-3.74149680e-01 -7.89117217e-01 -9.34758782e-01 1.58777982e-01
-1.73472911e-01 1.01091790e+00 -3.40605587e-01 -6.04432821e-01
3.23564038e-02 -9.11885619e-01 1.84252128e-01 -9.05979514e-01
-9.10305142e-01 -4.70417172e-01 9.66993093e-01 -1.44028354e+00
1.00300622e+00 -2.43463182e+00 -1.57129019e-01 -4.84885648e-02
-2.30571434e-01 4.02526796e-01 -2.77039796e-01 3.60670686e-01
-1.73119456e-01 1.84536040e-01 -8.90465155e-02 -1.12450671e+00
4.08377588e-01 1.80472270e-01 -2.25207567e-01 6.30837858e-01
5.39089832e-03 8.30201566e-01 -1.98053330e-01 -5.22119105e-01
2.84771979e-01 7.42617249e-01 2.66640246e-01 1.64460286e-01
6.17758393e-01 4.64785755e-01 2.95846641e-01 1.02808869e+00
7.07106709e-01 4.68066692e-01 1.67566597e-01 3.61770779e-01
-1.46966979e-01 9.24410462e-01 -1.02558517e+00 1.31239581e+00
-3.61643642e-01 9.74948883e-01 7.07059562e-01 -7.59137690e-01
1.20902622e+00 9.02497828e-01 -1.93317637e-01 -4.56177264e-01
2.95324832e-01 3.24574322e-01 -1.15063628e-02 1.31605148e-01
9.03304100e-01 -1.53861016e-01 -4.06962037e-01 4.33998168e-01
4.77171212e-01 -2.77657118e-02 7.97081068e-02 1.05741352e-01
6.91507638e-01 -8.74205172e-01 1.66244447e-01 -1.93279088e-01
7.98150301e-01 -5.59535623e-01 5.61273873e-01 5.95134497e-01
-6.29116654e-01 6.71196997e-01 -1.50779173e-01 -1.83842152e-01
-7.48980165e-01 -1.04828179e+00 -3.86627555e-01 1.38529778e+00
-4.63171959e-01 -3.12789649e-01 -8.10048223e-01 -3.81733835e-01
-1.97765499e-01 9.82477069e-01 -3.72782260e-01 1.83198109e-01
-7.09541917e-01 -5.33470929e-01 1.52413094e+00 7.76424110e-01
5.39705932e-01 -1.39750671e+00 5.08306205e-01 6.79621026e-02
-4.42211956e-01 -1.12101412e+00 -9.05185461e-01 3.09344262e-01
-4.08935428e-01 -7.41079748e-01 -9.97241139e-01 -1.40293288e+00
1.21656910e-01 -3.46952647e-01 1.14636338e+00 -2.30831221e-01
1.78996012e-01 4.44329262e-01 -5.53681999e-02 -5.74703753e-01
-1.10085285e+00 3.36845994e-01 6.03583694e-01 -2.66331017e-01
8.47861886e-01 -2.42229089e-01 1.13010176e-01 6.24808669e-01
-1.81738451e-01 -7.03348160e-01 2.25037262e-01 8.23274732e-01
-5.37959412e-02 -3.47778350e-01 7.17341959e-01 -1.96108341e-01
6.35188043e-01 1.00310907e-01 -4.65105116e-01 3.36221993e-01
-2.91121602e-01 -2.07170159e-01 2.02355176e-01 -3.39773953e-01
-1.11717856e+00 7.31441826e-02 -9.21610892e-01 -3.96853220e-03
-6.26692712e-01 3.16776395e-01 -5.22499621e-01 1.46627277e-01
4.69479889e-01 8.88362527e-01 -8.00272729e-03 -6.30572617e-01
2.18833894e-01 1.47641492e+00 9.69984174e-01 -3.52864206e-01
6.49492145e-01 -1.94484398e-01 -9.04479921e-01 -1.54493093e+00
-5.30378073e-02 -7.65707433e-01 -7.60929525e-01 2.69879192e-01
6.75106645e-01 -1.12559116e+00 -9.24728692e-01 1.24476695e+00
-1.21096206e+00 -2.67260879e-01 -1.51930563e-02 3.32478970e-01
-3.96494806e-01 3.25419068e-01 -1.02472174e+00 -1.16053653e+00
-8.06056678e-01 -1.26089561e+00 1.29149187e+00 -3.22798267e-02
-5.16524076e-01 -9.46384370e-01 1.42905772e-01 6.35903120e-01
4.75519031e-01 -7.42574096e-01 4.16265279e-01 -1.33651757e+00
1.06702581e-01 -2.24886864e-01 1.45323306e-01 6.37129545e-01
1.62454277e-01 9.48775560e-02 -1.28291464e+00 -5.43845236e-01
-2.15435609e-01 -5.67893445e-01 7.03418970e-01 5.02308965e-01
6.20348334e-01 -4.09668297e-01 -1.72406182e-01 4.25159305e-01
4.56843793e-01 4.00110573e-01 6.13735616e-01 7.81388730e-02
5.60886323e-01 4.31283951e-01 -1.35936076e-02 2.32170328e-01
8.59162986e-01 7.00316787e-01 -3.76824975e-01 -4.10906747e-02
8.27884860e-03 -2.41577283e-01 7.17453957e-01 1.22842729e+00
2.29705438e-01 -2.48508960e-01 -1.29186130e+00 9.10292983e-01
-1.09762371e+00 -1.21443999e+00 2.41210967e-01 2.27345538e+00
1.11915886e+00 -3.03157568e-01 5.70721686e-01 5.30404985e-01
1.16914487e+00 4.01164860e-01 -2.99928010e-01 -6.75486445e-01
-4.19353426e-01 2.84163505e-01 3.06461513e-01 6.16148531e-01
-1.25379968e+00 1.18144727e+00 7.84467793e+00 6.28057122e-01
-1.36686623e+00 2.27624729e-01 6.62262559e-01 2.20629945e-01
2.26448610e-01 -5.38698256e-01 -1.42849016e+00 2.90049344e-01
1.79359460e+00 -2.11577967e-01 2.84246951e-01 9.70999658e-01
-4.79273200e-02 4.55264598e-01 -1.17572808e+00 1.32551503e+00
4.25979942e-01 -9.91563737e-01 -2.45401084e-01 9.52011049e-02
3.37205231e-01 6.44399643e-01 1.09400041e-01 6.08411491e-01
3.91494125e-01 -1.18743932e+00 9.84761000e-01 -3.91836524e-01
1.00930727e+00 -8.81560445e-01 8.72092545e-01 2.11633593e-01
-1.07523799e+00 1.25826031e-01 4.44894284e-03 3.86372417e-01
4.10764396e-01 1.99827179e-02 -1.07556701e+00 1.22471698e-01
6.35653555e-01 6.45167947e-01 -6.07965052e-01 6.04742467e-01
-2.20474035e-01 1.24867821e+00 -3.02714646e-01 -3.43732424e-02
-1.77974373e-01 3.64971131e-01 6.60274386e-01 1.60384393e+00
1.34894833e-01 -3.12638104e-01 -1.05963185e-01 3.54510427e-01
-2.70050973e-01 1.52113348e-01 -4.64641631e-01 -2.38613576e-01
1.00599229e+00 9.74563003e-01 -2.15709761e-01 -4.14945543e-01
-1.34835660e-01 1.01455736e+00 1.43465295e-01 4.36982363e-01
-4.70263541e-01 -4.98837739e-01 8.15367162e-01 -2.79653430e-01
2.49643743e-01 -4.66157287e-01 -1.96526200e-01 -1.08920956e+00
-1.48415849e-01 -1.34357190e+00 3.67228001e-01 -4.22680795e-01
-1.42391765e+00 8.46339643e-01 -3.54393303e-01 -5.50801337e-01
-6.61677420e-01 -6.03485525e-01 -7.61307418e-01 1.24145877e+00
-1.27713394e+00 -1.38460660e+00 2.09652528e-01 9.51573968e-01
6.53398812e-01 -8.42891395e-01 1.23860657e+00 4.09150928e-01
-8.17303896e-01 1.28857565e+00 5.01849456e-03 9.96462405e-01
9.64562476e-01 -1.27764571e+00 1.19230688e+00 8.24395120e-01
2.19226912e-01 7.91058898e-01 4.98091042e-01 -4.09428746e-01
-1.16234350e+00 -7.85629988e-01 1.57272136e+00 -8.05818856e-01
4.35023814e-01 -7.10123420e-01 -7.58884549e-01 1.12898910e+00
4.88836765e-01 -4.89729434e-01 8.21358800e-01 6.79197729e-01
-4.13448125e-01 -1.91094622e-01 -1.27149332e+00 4.10682976e-01
6.93338096e-01 -9.78343129e-01 -8.23803306e-01 1.20003864e-01
6.14390612e-01 -4.91613865e-01 -8.28515768e-01 4.06738892e-02
5.27112246e-01 -7.65131354e-01 7.76650071e-01 -4.03177053e-01
-2.47733086e-01 1.29944712e-01 -4.12084639e-01 -1.45145857e+00
-2.64782459e-01 -8.92954469e-01 1.04055151e-01 1.92343724e+00
9.00082052e-01 -9.28670287e-01 7.13584542e-01 6.97775543e-01
-3.25264603e-01 1.33699521e-01 -1.59805596e+00 -1.09599125e+00
2.23123327e-01 -4.60425019e-01 8.96906495e-01 1.14592195e+00
8.93882066e-02 4.83381122e-01 -3.25653344e-01 2.72296757e-01
4.39631194e-01 -4.34616089e-01 7.25581706e-01 -1.12494802e+00
1.49465010e-01 -5.50157189e-01 -7.00514555e-01 -8.50627601e-01
7.31279612e-01 -7.83420444e-01 2.95055807e-01 -1.27160239e+00
-4.39381078e-02 -2.47569084e-01 -6.24035038e-02 8.41170549e-01
5.74723035e-02 -2.50904001e-02 -3.74043770e-02 -8.89506862e-02
-2.07909763e-01 6.35973096e-01 5.05725145e-01 -5.12390196e-01
-1.37884632e-01 2.81755418e-01 -6.53183043e-01 2.69227087e-01
9.58792925e-01 -2.30019063e-01 2.57525519e-02 -2.50580341e-01
-8.09223831e-01 1.84060797e-01 -1.67927176e-01 -8.18092227e-01
1.68335438e-01 1.24812216e-01 4.76855218e-01 -1.01828837e+00
6.64887190e-01 -2.28634462e-01 -3.45018983e-01 8.50369781e-02
-3.82435054e-01 2.43260413e-01 3.50969166e-01 -2.28863239e-01
-5.55213392e-01 2.35218152e-01 9.09369528e-01 1.06109731e-01
-6.24097109e-01 2.12028712e-01 -9.54344034e-01 2.01738939e-01
3.09916198e-01 -1.25667885e-01 -4.71188545e-01 -6.56091630e-01
-7.28049874e-01 1.75591245e-01 2.45495886e-01 8.27027678e-01
5.46101213e-01 -1.22746980e+00 -1.24568379e+00 6.43041193e-01
2.50038654e-01 -5.92251241e-01 2.21078664e-01 5.87153375e-01
-6.76473677e-02 7.74639726e-01 6.96145836e-03 -5.39367557e-01
-1.94848955e+00 2.38328442e-01 4.21222061e-01 2.23288521e-01
-1.16055407e-01 1.08796191e+00 -3.78569812e-01 -1.24739623e+00
6.67544127e-01 1.36142028e-02 -9.00737494e-02 -8.30626339e-02
9.48698759e-01 4.56001580e-01 3.13448757e-01 -1.58694541e+00
-8.68863165e-01 -5.24871349e-02 -1.14085160e-01 -6.58242464e-01
9.78364408e-01 -2.84430087e-01 -1.07615560e-01 5.44890165e-01
9.98406172e-01 3.24549079e-01 -2.19196483e-01 -1.57480374e-01
-3.63425165e-02 5.75148501e-02 6.65663704e-02 -1.01368737e+00
-8.27510893e-01 8.56934667e-01 5.89521945e-01 6.93995133e-02
7.65386045e-01 1.44404471e-01 9.30632949e-01 5.42878866e-01
2.10837185e-01 -1.15140510e+00 -6.14443183e-01 9.71358836e-01
9.37174141e-01 -1.36222970e+00 -6.03128433e-01 -1.01455282e-02
-7.22009957e-01 7.15151131e-01 6.17962003e-01 7.85972953e-01
6.44222260e-01 2.87519485e-01 7.44570971e-01 2.25008070e-01
-4.88477975e-01 6.87354058e-03 3.42426509e-01 1.00783801e+00
8.78337562e-01 4.50122297e-01 2.41221815e-01 6.93323374e-01
-9.84761894e-01 -6.33881867e-01 3.03238571e-01 7.25542188e-01
-1.13741621e-01 -1.35019195e+00 -6.35803759e-01 6.30514175e-02
-5.56169271e-01 -3.69501412e-01 -8.32537651e-01 5.71968377e-01
-6.42002821e-01 1.39663768e+00 9.97344218e-03 -5.00459254e-01
2.42013201e-01 7.27172732e-01 2.87234724e-01 -5.01032829e-01
-6.51894271e-01 -2.62979329e-01 6.70239329e-01 -7.23395869e-02
-1.39883041e-01 -9.52195406e-01 -9.37687814e-01 -7.74071991e-01
-3.21504891e-01 3.44631135e-01 1.12113416e+00 7.67606020e-01
2.01143846e-01 -1.28829300e-01 6.72895133e-01 -9.21560407e-01
-6.72133207e-01 -1.55521202e+00 -1.03635144e+00 8.92972201e-02
7.20720708e-01 -1.42675400e-01 -5.27563035e-01 -1.10474020e-01]
|
[14.281731605529785, 6.335227012634277]
|
7951f3c6-7a80-46e6-823a-87892386de8f
|
deep-learning-for-chemometric-and-non
|
1910.00391
| null |
https://arxiv.org/abs/1910.00391v4
|
https://arxiv.org/pdf/1910.00391v4.pdf
|
Deep learning for Chemometric and non-translational data
|
We propose a novel method to train deep convolutional neural networks which learn from multiple data sets of varying input sizes through weight sharing. This is an advantage in chemometrics where individual measurements represent exact chemical compounds and thus signals cannot be translated or resized without disturbing their interpretation. Our approach show superior performance compared to transfer learning when a medium sized and a small data set are trained together. While we observe a small improvement compared to individual training when two medium sized data sets are trained together, in particular through a reduction in the variance.
|
['Jacob Søgaard Larsen', 'Line Clemmensen']
|
2019-10-01
| null | null | null | null |
['small-data']
|
['computer-vision']
|
[ 6.91507041e-01 -1.59695596e-01 1.45695716e-01 -3.39312881e-01
-7.40234792e-01 -7.17616558e-01 5.89769125e-01 5.45538843e-01
-1.10275137e+00 1.24703813e+00 -2.16813549e-01 -1.89017564e-01
-1.13173105e-01 -9.20907855e-01 -1.25614679e+00 -9.59982574e-01
-2.01769963e-01 4.81322974e-01 1.41258081e-02 2.08973251e-02
4.89870757e-02 8.80670965e-01 -9.94368136e-01 1.88927650e-01
5.88498235e-01 1.05842745e+00 -1.47272244e-01 6.62828028e-01
-1.46185383e-01 3.84577036e-01 -8.73259127e-01 -1.28996596e-01
6.80042565e-01 -1.52521789e-01 -5.53227544e-01 -2.56339699e-01
7.44455278e-01 -8.87575671e-02 -1.16224632e-01 1.11308622e+00
7.08607495e-01 2.34700277e-01 7.74474084e-01 -8.81190598e-01
-8.11619937e-01 7.69954562e-01 -6.18266523e-01 2.32322976e-01
1.42696783e-01 6.81857318e-02 8.10305297e-01 -6.15094602e-01
3.13730389e-01 1.27854538e+00 8.27300489e-01 3.88447642e-01
-1.74404800e+00 -1.00677466e+00 8.84942487e-02 -1.48451015e-01
-1.28189015e+00 -4.94517595e-01 4.29350615e-01 -2.59124041e-01
1.02969933e+00 1.73454255e-01 2.57571727e-01 1.13041031e+00
3.31058085e-01 2.78668225e-01 1.03383172e+00 -1.16865546e-01
4.27355260e-01 2.33436987e-01 -1.81621909e-01 1.46026254e-01
6.26114964e-01 1.40309647e-01 -9.33883265e-02 -9.19758976e-02
6.09139144e-01 2.58071959e-01 -6.31913841e-02 -4.82991003e-02
-1.14108598e+00 8.72226298e-01 7.72783756e-01 5.36302686e-01
-3.77940953e-01 3.64712745e-01 4.09435689e-01 7.76396692e-01
4.44089055e-01 1.06176579e+00 -7.00939476e-01 4.39886600e-01
-7.35062361e-01 1.90628842e-01 7.73666084e-01 7.79169321e-01
8.51936221e-01 7.71350488e-02 -1.35683939e-01 6.82005823e-01
-2.03344271e-01 6.49197042e-01 8.30846429e-01 -5.50813198e-01
3.13302875e-01 4.40241009e-01 3.09385270e-01 -6.10297084e-01
-8.36789012e-01 -3.46107274e-01 -7.29855478e-01 4.47628707e-01
8.47844720e-01 -4.95985180e-01 -1.12392402e+00 1.64004767e+00
-3.12782601e-02 1.67705610e-01 2.86186218e-01 5.27879775e-01
9.61761534e-01 4.41902548e-01 3.37604016e-01 3.80868837e-02
9.72750783e-01 -5.93392551e-01 -5.03743589e-01 -2.06517190e-01
4.32805210e-01 -6.16272390e-01 7.50180304e-01 5.18161654e-01
-9.67063665e-01 -4.66883987e-01 -1.55564559e+00 -2.87077099e-01
-1.32611394e+00 -2.66852081e-01 5.92748761e-01 7.75882661e-01
-7.42917538e-01 1.28849566e+00 -3.84845316e-01 -2.06993241e-02
7.09051073e-01 1.06650233e+00 -6.65089846e-01 1.47544026e-01
-1.16665697e+00 8.41131270e-01 6.00215793e-01 -2.09808856e-01
-8.00437927e-01 -1.05879879e+00 -6.99624658e-01 3.10596675e-01
7.49315619e-02 -4.74864915e-02 1.07618940e+00 -8.28888834e-01
-1.73691785e+00 7.13363409e-01 4.62268263e-01 -6.45372033e-01
6.83759928e-01 -1.23255886e-02 -4.64172632e-01 -2.32778519e-01
-6.65557981e-02 6.91231906e-01 6.42825544e-01 -9.88125980e-01
-4.71250325e-01 -3.21544915e-01 1.54050827e-01 -2.24934697e-01
-5.34102738e-01 -5.24641685e-02 2.13356704e-01 -3.16002071e-01
-9.97309387e-02 -7.15227067e-01 -5.28842986e-01 -1.47944251e-02
-2.62306064e-01 7.83216115e-03 7.03053057e-01 -1.06396832e-01
5.37157476e-01 -1.87080097e+00 2.86115050e-01 3.58334094e-01
4.70018327e-01 3.63237381e-01 -5.65363109e-01 3.39439958e-01
-4.80125576e-01 2.41150320e-01 -2.61040509e-01 -1.10339247e-01
-6.15564547e-03 -4.88144122e-02 1.42783774e-02 6.17996156e-01
3.47992212e-01 1.01647091e+00 -1.15032589e+00 7.00525716e-02
3.04847956e-01 4.09515947e-01 -1.13870926e-01 4.40671183e-02
-2.07715854e-01 4.04944181e-01 -2.03625575e-01 5.49546659e-01
9.43706453e-01 -4.05301273e-01 2.48703957e-01 -2.29931459e-01
-4.54505719e-02 -6.49022460e-02 -1.06317472e+00 1.54896724e+00
-5.82588851e-01 5.64380705e-01 -2.55142242e-01 -1.28014505e+00
1.04517889e+00 3.78729463e-01 6.74738705e-01 -9.06024158e-01
4.49704915e-01 3.67101610e-01 4.16435778e-01 -1.42289922e-01
1.43732950e-01 -5.03623128e-01 1.01623520e-01 2.27269769e-01
2.81635493e-01 -1.82369232e-01 4.38617349e-01 -1.84410483e-01
1.12629294e+00 -2.63206065e-01 2.37972677e-01 -4.22506392e-01
5.67662656e-01 -4.83654231e-01 3.93902898e-01 6.00000918e-01
-8.43728036e-02 2.38068983e-01 5.28239548e-01 -7.53736556e-01
-1.16523039e+00 -9.02513981e-01 -5.70607781e-01 1.14203501e+00
-1.02657981e-01 -5.11315055e-02 -4.15832102e-01 -6.75209761e-01
6.36042774e-01 2.33871639e-01 -1.18612981e+00 -2.18699530e-01
-3.16525877e-01 -1.04543161e+00 7.18853235e-01 7.82298923e-01
3.15134883e-01 -9.00420666e-01 -3.46901894e-01 4.47036237e-01
8.21268857e-01 -9.92251813e-01 -1.25597596e-01 9.68663692e-01
-7.83633292e-01 -1.09872794e+00 -8.11870694e-01 -4.17912304e-01
4.07340974e-01 1.21146902e-01 9.75372612e-01 -2.29850382e-01
-1.70237407e-01 -2.43240014e-01 3.14123370e-02 -1.18805802e+00
-3.04840237e-01 1.58956453e-01 1.00449741e-01 -9.82945338e-02
8.00884664e-01 -9.35905397e-01 -5.30284524e-01 3.51662785e-02
-1.06912684e+00 -6.44202709e-01 6.26708686e-01 8.27363074e-01
4.59769696e-01 -3.67603749e-01 7.11128473e-01 -1.20508099e+00
8.16002905e-01 -5.24316967e-01 -8.90107334e-01 2.21544370e-01
-7.20087051e-01 3.67266208e-01 1.01951206e+00 -6.33160770e-01
-5.32615185e-01 4.67410013e-02 7.52472952e-02 -3.63969266e-01
-3.02785724e-01 4.77640688e-01 5.02417982e-02 -5.22200167e-01
1.10668182e+00 -2.50649959e-01 -6.42303973e-02 -5.63443899e-01
2.73334414e-01 4.77256566e-01 2.71955937e-01 -6.48149431e-01
6.85630441e-01 3.17757219e-01 4.50170070e-01 -4.78515476e-01
-5.13909161e-01 -4.75311428e-01 -8.82109046e-01 2.15672225e-01
6.42516673e-01 -7.56871641e-01 -8.28238189e-01 1.63244456e-01
-8.86379123e-01 -2.79011786e-01 -6.07524574e-01 5.79398274e-01
-2.03422576e-01 2.83000730e-02 -5.78834832e-01 -3.18024904e-01
-3.18647742e-01 -1.21790683e+00 9.03043628e-01 2.04849809e-01
-8.70177075e-02 -1.24478555e+00 7.55448788e-02 -3.75992030e-01
4.74698782e-01 6.38872147e-01 6.03021622e-01 -1.13767815e+00
-4.05239724e-02 -4.81514901e-01 -5.02300203e-01 2.24714220e-01
7.94339776e-01 -5.87296719e-03 -1.39365458e+00 -6.46503329e-01
-5.40068507e-01 -6.18491709e-01 1.03086150e+00 4.84005719e-01
1.27354348e+00 1.53767169e-01 -4.43283468e-01 6.19823158e-01
1.40243328e+00 5.20103514e-01 5.49454987e-01 3.31267118e-01
5.76719403e-01 3.51473391e-01 -1.81628823e-01 3.37358922e-01
-4.39430118e-01 3.16084832e-01 3.64014894e-01 -5.87845981e-01
-7.55652227e-03 3.30805257e-02 -9.26458389e-02 2.24399745e-01
-2.27277771e-01 -1.46834299e-01 -6.23888791e-01 1.78244248e-01
-1.53580618e+00 -8.28920782e-01 3.44216488e-02 2.39720249e+00
1.00679314e+00 7.47984573e-02 1.96741566e-01 2.25916773e-01
3.46502721e-01 -7.05214441e-02 -1.05636585e+00 -4.49035823e-01
-2.24955663e-01 8.04737508e-01 1.22900057e+00 4.63985175e-01
-1.16399086e+00 6.53405726e-01 8.18292809e+00 6.21206939e-01
-1.78301418e+00 -1.85025245e-01 5.24097681e-01 -3.50942075e-01
-1.00096315e-01 -6.49545193e-01 -4.92324442e-01 3.77756476e-01
1.39866030e+00 -4.81977910e-01 2.52720952e-01 4.63080645e-01
-1.13962255e-02 7.81671554e-02 -1.51976955e+00 8.37727308e-01
-3.08174163e-01 -1.36080003e+00 -4.84960787e-02 1.65345833e-01
8.27196360e-01 1.78000391e-01 2.38660946e-01 1.54429018e-01
5.23445368e-01 -1.45388544e+00 3.76421243e-01 3.06073546e-01
8.67140710e-01 -7.49077260e-01 6.93623722e-01 -2.02839941e-01
-9.24320102e-01 -7.83575103e-02 -8.91482770e-01 -9.70033109e-02
-5.54288566e-01 5.90199351e-01 -9.33407307e-01 6.21542335e-01
5.60966551e-01 6.87747538e-01 -6.07728899e-01 1.10372055e+00
1.51523903e-01 2.20439300e-01 -3.65879327e-01 -1.80766702e-01
4.60391015e-01 -3.84574264e-01 1.94106495e-03 1.40431881e+00
2.21239924e-01 -3.91258359e-01 9.59951282e-02 9.47963834e-01
-6.49451077e-01 3.68676335e-01 -7.13981986e-01 -3.32349837e-01
1.88315764e-01 1.28849483e+00 -7.46667087e-01 -5.14565408e-01
-6.33911669e-01 7.47421682e-01 3.75982136e-01 4.70373601e-01
-5.60806990e-01 -6.65028155e-01 5.81417263e-01 -3.23340654e-01
3.98455054e-01 9.71008465e-02 -2.21472099e-01 -9.48966920e-01
-4.29447681e-01 -6.23932779e-01 3.79283279e-01 -2.84197390e-01
-1.52411222e+00 3.43926460e-01 -5.52479066e-02 -1.13114464e+00
1.54233463e-02 -1.28936756e+00 -4.32465225e-01 1.01391387e+00
-1.60446143e+00 -7.07474887e-01 -5.27371727e-02 4.84595060e-01
1.10157028e-01 -1.73190415e-01 1.22875011e+00 4.82026070e-01
-4.70507085e-01 8.19275320e-01 7.13191211e-01 8.36442783e-02
1.06329286e+00 -1.58514178e+00 2.87203193e-01 2.68407226e-01
8.04830641e-02 7.51429319e-01 7.42910028e-01 -1.09259740e-01
-9.94515359e-01 -1.06204808e+00 4.58344847e-01 -2.46961281e-01
7.59058893e-01 -5.03369093e-01 -1.07611597e+00 5.50511897e-01
2.63842225e-01 3.20690513e-01 1.27071774e+00 3.76047730e-01
-7.07312703e-01 -3.36506605e-01 -1.40645540e+00 2.18039230e-01
6.32382929e-01 -5.20330846e-01 -3.99560869e-01 7.07219422e-01
5.95427752e-01 -3.54453415e-01 -1.34582949e+00 1.31736949e-01
9.09389913e-01 -6.15120411e-01 8.91617060e-01 -1.01350915e+00
3.63261014e-01 -2.22899914e-01 -1.79189309e-01 -1.51689255e+00
-3.96289825e-01 -1.70882910e-01 2.43212700e-01 4.42456663e-01
9.28352475e-01 -8.14368367e-01 8.51583719e-01 6.54873431e-01
1.59699470e-01 -3.01585585e-01 -7.23252535e-01 -1.12138188e+00
7.25365460e-01 5.62010743e-02 1.04509163e+00 1.05817640e+00
1.15445472e-01 4.11588997e-01 -2.68982798e-01 -5.93315549e-02
4.42306876e-01 3.65256257e-02 3.77963185e-01 -1.55657244e+00
-1.35778010e-01 -4.91245866e-01 -5.90515971e-01 -4.68733579e-01
6.06218837e-02 -9.14840817e-01 -1.61888804e-02 -9.07469511e-01
1.69516444e-01 -8.49041715e-03 -1.28240001e+00 5.35249829e-01
-1.68436021e-03 5.70086300e-01 -4.72327247e-02 -1.13978431e-01
-2.88991004e-01 9.66437310e-02 1.27118397e+00 -6.92364454e-01
-2.94544548e-01 -1.82776138e-01 -7.38161922e-01 2.50889093e-01
8.31467152e-01 -4.93864775e-01 -2.67787516e-01 -2.32382223e-01
2.24791560e-02 -4.44662601e-01 6.04692884e-02 -1.35213947e+00
2.20290218e-02 -2.22348809e-01 1.13662636e+00 -8.18912163e-02
1.34902641e-01 -9.99918222e-01 1.86271951e-01 5.93947351e-01
-7.12087333e-01 -1.77710950e-01 7.25911319e-01 5.30573785e-01
3.77971195e-02 -1.37400016e-01 8.34951162e-01 -4.47495669e-01
-2.92147517e-01 6.19037569e-01 -3.64753217e-01 -6.10316813e-01
8.90016675e-01 -1.38919517e-01 -1.50104240e-01 -1.14804044e-01
-7.87792087e-01 3.40828896e-02 2.09675968e-01 2.95149654e-01
2.98360229e-01 -1.35016334e+00 -5.76095402e-01 2.04933450e-01
2.75048405e-01 -1.39199093e-01 -1.58937246e-01 5.72841704e-01
-3.44458342e-01 6.41462862e-01 -7.18033493e-01 -2.78326482e-01
-1.08024490e+00 7.47725666e-01 6.21761322e-01 -1.65101930e-01
-1.82565808e-01 9.87121105e-01 1.68778062e-01 -4.84692693e-01
9.61467624e-02 -7.31907368e-01 -1.81876108e-01 1.36327058e-01
7.35997498e-01 2.13757381e-01 4.21655536e-01 -2.00301424e-01
-1.29167050e-01 4.05709147e-01 -4.41242933e-01 2.00342670e-01
1.68880665e+00 5.69633424e-01 -3.09904423e-02 5.34757376e-01
1.49433625e+00 1.88052393e-02 -1.22148240e+00 -3.68299901e-01
2.78285909e-02 -3.55763465e-01 8.91386196e-02 -8.60018134e-01
-1.13780594e+00 9.38846231e-01 8.16874206e-01 2.82465219e-01
7.49204218e-01 -3.06016922e-01 3.11659425e-01 1.01519048e+00
1.88717172e-02 -1.16980124e+00 -3.53828967e-02 2.93711215e-01
9.63468492e-01 -1.43781614e+00 3.48307490e-01 -5.40117808e-02
4.89030499e-03 1.45514822e+00 3.86350691e-01 -3.51754010e-01
5.41702688e-01 4.69531089e-01 1.42176524e-01 -1.68882772e-01
-3.77829105e-01 -2.05816820e-01 2.50710577e-01 8.03216696e-01
8.77830148e-01 1.20304585e-01 -2.92503119e-01 3.22846264e-01
-1.74428965e-03 9.01985634e-03 4.08749044e-01 9.17232811e-01
-4.19720769e-01 -1.37316561e+00 -2.17848420e-01 6.19347632e-01
-6.85122907e-01 -1.15320638e-01 -7.69946992e-01 9.33103800e-01
1.71595767e-01 7.95221865e-01 5.32088317e-02 -3.64890665e-01
3.64383280e-01 9.82846171e-02 7.19763160e-01 -6.24561667e-01
-6.47066236e-01 -8.57766019e-04 -2.07750008e-01 -4.65577573e-01
-7.03279555e-01 -4.02040422e-01 -1.12453783e+00 -4.16041702e-01
-3.19939852e-01 1.80850282e-01 4.99947578e-01 9.21645463e-01
1.10803038e-01 7.28562832e-01 6.30524755e-01 -8.67076516e-01
-6.36444092e-01 -1.29023898e+00 -8.95554423e-01 5.96147478e-01
6.33328021e-01 -6.95770383e-01 -2.72747189e-01 -4.11803909e-02]
|
[5.223744869232178, 5.728835105895996]
|
479f6c30-373b-4f70-93eb-53b52e3d7248
|
3d-dynamic-scene-graphs-actionable-spatial
|
2002.06289
| null |
https://arxiv.org/abs/2002.06289v2
|
https://arxiv.org/pdf/2002.06289v2.pdf
|
3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans
|
We present a unified representation for actionable spatial perception: 3D Dynamic Scene Graphs. Scene graphs are directed graphs where nodes represent entities in the scene (e.g. objects, walls, rooms), and edges represent relations (e.g. inclusion, adjacency) among nodes. Dynamic scene graphs (DSGs) extend this notion to represent dynamic scenes with moving agents (e.g. humans, robots), and to include actionable information that supports planning and decision-making (e.g. spatio-temporal relations, topology at different levels of abstraction). Our second contribution is to provide the first fully automatic Spatial PerceptIon eNgine(SPIN) to build a DSG from visual-inertial data. We integrate state-of-the-art techniques for object and human detection and pose estimation, and we describe how to robustly infer object, robot, and human nodes in crowded scenes. To the best of our knowledge, this is the first paper that reconciles visual-inertial SLAM and dense human mesh tracking. Moreover, we provide algorithms to obtain hierarchical representations of indoor environments (e.g. places, structures, rooms) and their relations. Our third contribution is to demonstrate the proposed spatial perception engine in a photo-realistic Unity-based simulator, where we assess its robustness and expressiveness. Finally, we discuss the implications of our proposal on modern robotics applications. 3D Dynamic Scene Graphs can have a profound impact on planning and decision-making, human-robot interaction, long-term autonomy, and scene prediction. A video abstract is available at https://youtu.be/SWbofjhyPzI
|
['Luca Carlone', 'Antoni Rosinol', 'Jingnan Shi', 'Arjun Gupta', 'Marcus Abate']
|
2020-02-15
| null | null | null | null |
['robot-task-planning']
|
['robots']
|
[-4.56945337e-02 3.50706428e-01 3.39479148e-01 -2.17530847e-01
3.08498502e-01 -6.00303531e-01 8.64702106e-01 3.42160583e-01
-3.59513789e-01 7.35039115e-01 1.56269863e-01 -1.31890863e-01
-3.33634287e-01 -8.95940423e-01 -8.16223681e-01 -3.26583028e-01
-6.28431082e-01 9.45857942e-01 9.15072799e-01 -4.68535602e-01
2.42435992e-01 9.52669144e-01 -2.08013749e+00 -8.38814676e-02
5.42167842e-01 7.69403934e-01 8.41203094e-01 9.56364751e-01
2.84087121e-01 8.38175356e-01 -2.80623674e-01 3.09652060e-01
2.14255452e-01 3.81652117e-02 -7.15211272e-01 2.40121126e-01
1.57596692e-01 -8.64139348e-02 -4.98998255e-01 7.04834104e-01
2.59420633e-01 5.29406011e-01 4.42107916e-01 -1.66465461e+00
-3.56882393e-01 1.24901950e-01 -1.49078742e-02 -6.24519773e-02
1.12506962e+00 2.75061339e-01 4.44602489e-01 -9.09615040e-01
1.10315311e+00 1.47110450e+00 3.46593887e-01 2.47501433e-01
-8.51668239e-01 -1.18639529e-01 4.50994432e-01 5.56233764e-01
-1.55489016e+00 -4.63727981e-01 5.40177941e-01 -5.92370272e-01
1.19569278e+00 4.35342669e-01 1.01588893e+00 1.03156161e+00
4.08382833e-01 4.17822421e-01 8.58654559e-01 -4.96639252e-01
6.36687577e-01 -6.76219538e-02 -1.06643870e-01 1.01543915e+00
3.40679646e-01 -8.14672336e-02 -6.56804383e-01 9.42705665e-03
9.82295632e-01 -1.89275667e-02 -1.46166861e-01 -1.31837094e+00
-1.58184004e+00 2.78532505e-01 7.62000203e-01 2.69003481e-01
-4.36641544e-01 3.50195944e-01 6.45741671e-02 -3.99321243e-02
-9.90449935e-02 2.07792714e-01 -1.60499319e-01 8.04348141e-02
-1.34775832e-01 4.40539002e-01 8.03886294e-01 1.40878487e+00
8.52090597e-01 -1.96082354e-01 1.92287192e-01 3.06459635e-01
4.05327469e-01 7.64932692e-01 7.48475492e-02 -1.28063130e+00
2.75561094e-01 6.05396032e-01 5.70563257e-01 -1.27663565e+00
-9.18543816e-01 1.03474163e-01 -5.57627380e-01 4.20838147e-01
1.16525978e-01 1.68415248e-01 -9.05538499e-01 1.41845322e+00
6.35837793e-01 1.72819883e-01 4.64323759e-02 1.02995145e+00
7.93627143e-01 3.16715986e-01 7.79145360e-02 1.28463313e-01
1.38286304e+00 -8.06080818e-01 -4.80906963e-01 -4.77743506e-01
4.37697768e-01 -3.00369680e-01 7.11628616e-01 8.73488486e-02
-8.64423215e-01 -4.78468984e-01 -8.66262555e-01 -1.51966363e-01
-7.72961557e-01 -1.47678971e-01 6.35094225e-01 2.32887059e-01
-1.34018338e+00 2.49778315e-01 -1.12621701e+00 -1.21302080e+00
-1.22607231e-01 4.21989501e-01 -5.97318053e-01 -9.12125334e-02
-8.21321905e-01 1.22849154e+00 5.96269369e-01 6.98260590e-02
-1.12366867e+00 -9.71121639e-02 -1.30428362e+00 -2.74468958e-01
6.62613511e-01 -1.14842391e+00 1.16313457e+00 -3.45507771e-01
-1.29778135e+00 9.38409090e-01 -3.20399821e-01 -4.91252244e-01
4.78702933e-01 -1.41513422e-01 -2.03562707e-01 5.44710979e-02
3.21819901e-01 7.19990134e-01 1.75904840e-01 -1.80797100e+00
-8.12726438e-01 -6.28948808e-01 4.75141555e-01 6.23729527e-01
4.04226482e-01 -3.48214984e-01 -4.75263506e-01 6.53420612e-02
6.24618411e-01 -1.22630095e+00 -6.47858620e-01 2.17065543e-01
-5.34083366e-01 -1.00712061e-01 7.30098128e-01 -2.31418788e-01
6.99807525e-01 -1.92758501e+00 4.93430972e-01 3.71394634e-01
1.99143037e-01 -3.04912239e-01 1.25815690e-01 7.17732310e-01
4.16791379e-01 -2.25548878e-01 -6.49089217e-02 -5.52575052e-01
2.45798737e-01 6.76397741e-01 3.85672525e-02 7.95851946e-01
-4.96964753e-01 6.86821103e-01 -1.12096012e+00 -5.84708989e-01
9.14882720e-01 5.96868277e-01 -3.67646605e-01 2.35229898e-02
-1.92090914e-01 7.14736521e-01 -6.41627848e-01 5.77599287e-01
5.37579536e-01 3.94876897e-02 2.96644539e-01 1.20395996e-01
-6.49673641e-01 2.09044144e-01 -1.62993443e+00 1.97039497e+00
-4.05621171e-01 4.94499058e-01 4.40006316e-01 -5.57867765e-01
7.02348948e-01 7.55782500e-02 4.43606138e-01 -5.90752840e-01
1.42846048e-01 1.16371706e-01 -4.52843994e-01 -5.03020346e-01
8.97589207e-01 4.22187448e-01 -3.86963159e-01 -1.98663399e-01
-2.52674073e-01 -4.59878594e-01 2.24444255e-01 2.29406700e-01
1.24780631e+00 3.92000407e-01 7.46166050e-01 -3.39095205e-01
5.27013063e-01 3.39214474e-01 3.02536279e-01 8.33659291e-01
-2.65876293e-01 2.56342769e-01 -3.65119986e-02 -5.14989614e-01
-9.35662210e-01 -1.37969172e+00 1.42581791e-01 1.05644107e+00
9.28128421e-01 -3.27035397e-01 -4.59902763e-01 2.79306695e-02
1.84302136e-01 6.76134109e-01 -6.26403987e-01 1.79888889e-01
-7.47574568e-01 1.17607070e-02 6.44225627e-02 3.61740083e-01
4.15179193e-01 -1.08686781e+00 -1.56245100e+00 1.81782246e-01
-1.45214647e-01 -1.37834740e+00 1.93384528e-01 1.13350295e-01
-5.15307903e-01 -1.21770978e+00 -1.30323634e-01 -7.94829667e-01
7.00195432e-01 5.59477866e-01 1.07776654e+00 -4.24550846e-02
-3.62637609e-01 1.19715774e+00 -4.92773890e-01 -3.11268270e-01
-1.76118955e-01 -3.84811044e-01 6.06586754e-01 -3.81916136e-01
-2.10155889e-01 -6.89978182e-01 -6.66063309e-01 5.33640325e-01
-3.94682080e-01 3.26256543e-01 9.43624005e-02 1.38439909e-01
7.45254457e-01 -7.32680112e-02 -4.82741237e-01 -3.30168337e-01
2.44729489e-01 -3.96956027e-01 -7.13470817e-01 1.89882472e-01
7.18708634e-02 -2.71735013e-01 2.97027439e-01 -1.01775557e-01
-1.04337418e+00 5.08658946e-01 3.29387784e-01 -2.71289617e-01
-7.15207338e-01 2.98839182e-01 -1.96365833e-01 -1.89942867e-01
7.67610788e-01 5.32987528e-02 -3.95606637e-01 -1.85633048e-01
7.06907272e-01 2.12608039e-01 7.26461351e-01 -4.84800577e-01
6.68696821e-01 9.46527958e-01 4.84059215e-01 -1.00758469e+00
-1.52397186e-01 -6.28399730e-01 -1.27609003e+00 -5.63754618e-01
9.80588078e-01 -8.88009548e-01 -1.06811655e+00 2.16669917e-01
-1.33947372e+00 -6.52958989e-01 -2.44249955e-01 5.73925197e-01
-1.00401270e+00 2.35371068e-01 -3.82414579e-01 -1.12823558e+00
3.50259840e-01 -9.32138562e-01 1.29373884e+00 4.18164805e-02
-2.36905053e-01 -9.80465829e-01 9.18385088e-02 6.90061077e-02
-2.39334162e-02 7.54429460e-01 1.82437599e-01 -1.73837945e-01
-1.05178237e+00 2.19282612e-01 9.03064832e-02 -7.51321316e-01
-3.42388190e-02 -1.63550109e-01 -6.31806314e-01 -2.41507635e-01
-3.39958370e-01 1.38733327e-01 3.83947134e-01 4.05547410e-01
4.83227313e-01 -1.98213771e-01 -1.03957367e+00 3.58302534e-01
1.39928758e+00 3.95506114e-01 6.63375258e-01 7.19159186e-01
8.23733866e-01 8.06544304e-01 9.96610999e-01 7.48158634e-01
8.63258541e-01 1.07863021e+00 9.81374681e-01 1.23223916e-01
-1.82980761e-01 -2.25707635e-01 2.28425011e-01 4.64569658e-01
-5.43703318e-01 -3.25655252e-01 -1.24969876e+00 4.72649395e-01
-2.15032959e+00 -9.03945327e-01 -5.00564814e-01 2.06692958e+00
-1.89583570e-01 -1.33333936e-01 -8.55501145e-02 -3.28681879e-02
6.47846341e-01 -2.96012722e-02 -3.61473739e-01 -1.29166216e-01
3.27234417e-02 -3.21423709e-01 7.29655802e-01 1.00172877e+00
-1.16468108e+00 1.25245965e+00 5.24489880e+00 1.37363791e-01
-5.69830298e-01 1.40936807e-01 -2.09926322e-01 5.46685755e-02
3.46796513e-02 1.35427624e-01 -5.01649141e-01 -3.77327651e-02
4.79015887e-01 -5.90567514e-02 6.31610692e-01 1.18424904e+00
3.06079596e-01 -6.02770090e-01 -1.15304875e+00 1.00689197e+00
1.43960297e-01 -1.16579342e+00 -3.51518065e-01 1.10577606e-01
3.98240387e-01 2.19126493e-01 -2.87732244e-01 1.57457575e-01
8.03281486e-01 -7.97682822e-01 1.47683036e+00 6.49345934e-01
4.85725015e-01 -2.93726981e-01 4.35548216e-01 6.38302505e-01
-1.82323170e+00 -1.97749346e-01 -3.42239678e-01 -5.15586317e-01
6.29397929e-01 1.57234922e-01 -1.13913035e+00 7.89909363e-01
8.13582778e-01 5.49404144e-01 -5.47557473e-01 1.13966823e+00
-2.04014868e-01 -4.80541915e-01 -5.19093752e-01 -3.20060164e-01
6.25156239e-02 -1.95433006e-01 8.71239066e-01 1.06992507e+00
5.68974257e-01 3.04275244e-01 6.43829167e-01 6.60207391e-01
5.61002254e-01 -2.30650797e-01 -1.12864602e+00 7.07196712e-01
7.08834827e-01 9.26798642e-01 -1.10678387e+00 -3.31683546e-01
1.60516016e-02 1.09006631e+00 2.97131836e-01 4.56636697e-01
-7.66978562e-01 6.23049103e-02 8.45098794e-01 4.47286189e-01
1.16819032e-02 -1.01227283e+00 -1.26136020e-01 -9.18745697e-01
2.77548265e-02 -2.92355478e-01 2.11680204e-01 -1.20303690e+00
-5.37622929e-01 5.38471401e-01 3.16624820e-01 -1.25385880e+00
-2.33312696e-01 -7.24376559e-01 9.14837979e-03 4.21219826e-01
-1.02879834e+00 -1.39102876e+00 -8.68408203e-01 8.84338558e-01
4.41796809e-01 2.62294620e-01 8.20217192e-01 -2.06240863e-01
4.92549092e-02 -4.63766605e-01 -2.40951106e-01 -1.74586415e-01
5.37085682e-02 -1.12254310e+00 3.37630481e-01 8.99045646e-01
6.74066469e-02 5.58220983e-01 1.05367255e+00 -9.13068950e-01
-1.75066423e+00 -9.68471587e-01 6.83533549e-01 -8.38404417e-01
5.16955376e-01 -7.59841383e-01 -3.30833942e-01 1.08278286e+00
-8.93005431e-02 -6.04382902e-03 -2.29206681e-02 6.52316085e-05
3.99684906e-02 2.15303287e-01 -1.21779263e+00 9.30891633e-01
1.85070229e+00 -3.22370768e-01 -4.65950489e-01 4.92545426e-01
7.10375667e-01 -9.99394238e-01 -5.06206334e-01 5.12695432e-01
4.66842711e-01 -1.33250940e+00 1.33686841e+00 2.38413457e-03
-3.89880449e-01 -7.44913757e-01 -5.26483655e-01 -1.19682109e+00
-6.33983433e-01 -3.43903035e-01 -1.17380451e-02 5.40114939e-01
-1.31468520e-01 -6.75209820e-01 6.14086628e-01 4.94186640e-01
-5.72487056e-01 -2.05422953e-01 -1.34206867e+00 -9.32186067e-01
-6.79832697e-01 -6.00937665e-01 6.15954459e-01 6.53084993e-01
2.00680062e-01 -2.28710007e-02 -2.56512612e-01 8.29463542e-01
5.54332793e-01 -3.98984812e-02 1.15713418e+00 -1.34255278e+00
4.74066250e-02 -2.01501325e-01 -9.79229689e-01 -1.06304657e+00
7.89433643e-02 -5.53818524e-01 3.66017818e-01 -2.27503467e+00
-2.80986279e-01 -7.48026729e-01 3.40794206e-01 3.13991010e-01
4.36982870e-01 -1.32205650e-01 3.28609765e-01 1.69193208e-01
-1.17597556e+00 5.81713557e-01 1.24553406e+00 1.69684097e-01
-3.62755686e-01 -3.77787828e-01 1.83307573e-01 9.32306468e-01
7.93055952e-01 -2.92673707e-02 -4.09665376e-01 -4.11617219e-01
1.70424983e-01 1.94732890e-01 8.78878236e-01 -1.55080521e+00
7.40685821e-01 -5.11482894e-01 1.47957847e-01 -5.05253017e-01
9.83745456e-01 -1.15808749e+00 7.44658291e-01 7.80098557e-01
2.43307158e-01 2.59685516e-01 1.40740961e-01 7.97701359e-01
2.34220102e-01 1.08858205e-01 2.34226614e-01 -6.35481477e-01
-1.42358506e+00 1.30669266e-01 -6.07338369e-01 -5.20861387e-01
1.54595637e+00 -6.39920413e-01 -3.78089130e-01 -3.55042875e-01
-1.03499615e+00 3.48807126e-01 9.93767619e-01 5.34843266e-01
8.13458204e-01 -1.19644928e+00 -2.78675705e-01 -4.99927951e-03
2.46216714e-01 2.84330875e-01 2.62155712e-01 5.54322779e-01
-8.72937799e-01 5.95359385e-01 -3.21143508e-01 -8.38185191e-01
-1.50371635e+00 7.21108377e-01 2.14846268e-01 1.36895776e-01
-6.81878567e-01 6.35598361e-01 3.55254799e-01 -6.25897110e-01
2.93468267e-01 -6.06890857e-01 -2.19820514e-01 -4.14631367e-01
1.79467604e-01 6.64338529e-01 -1.86849624e-01 -1.23149645e+00
-8.57040524e-01 8.49162579e-01 8.11204314e-01 -2.10525692e-01
1.06711853e+00 -5.79417169e-01 -2.56502032e-01 6.50402606e-01
4.10775363e-01 8.10881183e-02 -1.16535354e+00 8.49255472e-02
1.44490357e-02 -4.79625791e-01 -5.04668653e-01 -3.69735777e-01
-1.37725964e-01 4.93476987e-01 6.30294502e-01 3.25661570e-01
7.47401476e-01 5.15776277e-01 1.01901181e-01 6.92469656e-01
1.69180489e+00 -9.23657656e-01 1.17931150e-01 8.05092871e-01
1.25122249e+00 -8.76345158e-01 8.99002180e-02 -9.26278770e-01
-5.20235360e-01 8.44942391e-01 6.58293068e-01 -3.34964432e-02
4.15077597e-01 3.11337471e-01 -1.92717865e-01 -4.40284252e-01
-4.47703063e-01 -6.44506812e-01 5.33932000e-02 1.16310179e+00
-2.05822676e-01 4.56975937e-01 1.39531583e-01 -5.29246852e-02
-5.30482590e-01 -2.62143642e-01 5.69306314e-01 1.21960819e+00
-9.22023058e-01 -6.78326488e-01 -8.52297604e-01 -1.61048010e-01
4.36359495e-01 3.37706715e-01 -2.82377273e-01 9.33910728e-01
5.34007072e-01 1.17101502e+00 2.15980187e-01 -3.49571139e-01
6.98550403e-01 -3.37911516e-01 7.71509051e-01 -7.70786822e-01
-6.87809363e-02 -4.19570684e-01 2.79957741e-01 -1.03353989e+00
-5.34560561e-01 -7.37460434e-01 -1.64065468e+00 -3.78869206e-01
2.29748428e-01 -2.35688820e-01 8.06597471e-01 5.75554013e-01
4.58298653e-01 5.66515803e-01 -4.94694337e-02 -1.58839810e+00
3.58335078e-01 -5.74148655e-01 -5.47606707e-01 4.08178270e-01
3.01828444e-01 -1.22756600e+00 -1.10535830e-01 1.42989263e-01]
|
[4.8268232345581055, 0.46816226840019226]
|
7f3e5114-0926-4f13-8bb0-158f3cfaab09
|
3d-carigan-an-end-to-end-solution-to-3d
|
2003.06841
| null |
https://arxiv.org/abs/2003.06841v2
|
https://arxiv.org/pdf/2003.06841v2.pdf
|
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Face Photos
|
Caricature is a type of artistic style of human faces that attracts considerable attention in the entertainment industry. So far a few 3D caricature generation methods exist and all of them require some caricature information (e.g., a caricature sketch or 2D caricature) as input. This kind of input, however, is difficult to provide by non-professional users. In this paper, we propose an end-to-end deep neural network model that generates high-quality 3D caricatures directly from a normal 2D face photo. The most challenging issue for our system is that the source domain of face photos (characterized by normal 2D faces) is significantly different from the target domain of 3D caricatures (characterized by 3D exaggerated face shapes and textures). To address this challenge, we: (1) build a large dataset of 5,343 3D caricature meshes and use it to establish a PCA model in the 3D caricature shape space; (2) reconstruct a normal full 3D head from the input face photo and use its PCA representation in the 3D caricature shape space to establish correspondences between the input photo and 3D caricature shape; and (3) propose a novel character loss and a novel caricature loss based on previous psychological studies on caricatures. Experiments including a novel two-level user study show that our system can generate high-quality 3D caricatures directly from normal face photos.
|
['Juyong Zhang', 'MinJing Yu', 'Ran Yi', 'Yanan sun', 'Mengfei Xia', 'Yong-Jin Liu', 'Yu-Kun Lai', 'Zipeng Ye']
|
2020-03-15
| null | null | null | null |
['caricature']
|
['computer-vision']
|
[ 6.48509711e-02 3.20190668e-01 2.44368225e-01 -4.87800419e-01
-2.11560562e-01 -4.89060223e-01 3.89805645e-01 -7.67913640e-01
1.65989593e-01 3.23021084e-01 1.06060430e-01 3.05118598e-02
2.49020815e-01 -7.33134806e-01 -1.03604531e+00 -2.95774788e-01
3.55793297e-01 7.15203404e-01 -5.18616140e-01 -2.85426199e-01
9.16284844e-02 1.22517347e+00 -1.70094776e+00 1.18736036e-01
6.98157310e-01 9.44679260e-01 -1.74874552e-02 4.55559820e-01
-1.09471865e-01 -1.82847545e-01 -6.22560263e-01 -8.32818210e-01
5.67222774e-01 -4.72238034e-01 -1.70449093e-01 4.08460617e-01
1.07568431e+00 -4.97862041e-01 -2.46793538e-01 1.04996657e+00
5.84791541e-01 -2.20251277e-01 9.50978100e-01 -1.27584398e+00
-1.22619283e+00 1.19255632e-01 -8.55273485e-01 -5.97848475e-01
3.06084335e-01 3.30828577e-02 4.16707426e-01 -1.27458322e+00
7.51834750e-01 1.98478556e+00 7.93259382e-01 1.08375680e+00
-1.45952296e+00 -9.08456206e-01 -2.20020890e-01 -2.84129739e-01
-1.67367113e+00 -5.50366223e-01 1.41323662e+00 -3.13419044e-01
2.43478224e-01 2.02736959e-01 8.14458251e-01 1.47539043e+00
-5.56320436e-02 6.84167325e-01 1.20181382e+00 -2.55973935e-01
1.05194755e-01 2.70347655e-01 -2.26824746e-01 5.85011363e-01
2.60988250e-02 1.63623422e-01 4.35221009e-02 -2.68628448e-01
1.59943318e+00 -1.40239783e-02 -2.09759086e-01 -3.60548973e-01
-7.88765728e-01 6.99528217e-01 2.72074193e-01 2.14561835e-01
-4.43351805e-01 8.89020190e-02 -1.16112322e-01 1.84687361e-01
4.66418684e-01 3.75350207e-01 -1.02688625e-01 1.61260128e-01
-7.26967216e-01 5.94433725e-01 7.56457388e-01 1.06957221e+00
5.71867645e-01 3.38323653e-01 5.36644971e-03 1.22377121e+00
2.84303069e-01 9.20384228e-01 1.55238107e-01 -1.17111790e+00
2.04872619e-02 4.77176577e-01 -4.83524837e-02 -1.22665668e+00
-1.15356766e-01 1.25827536e-01 -1.01540768e+00 7.34183371e-01
4.47216958e-01 2.63167936e-02 -9.25387740e-01 1.86776936e+00
2.80001700e-01 6.68925568e-02 -1.55594438e-01 1.09344065e+00
1.03853023e+00 5.15954673e-01 -2.88218558e-01 2.92616356e-02
1.37326360e+00 -3.88103127e-01 -7.97965765e-01 -1.05256870e-01
-1.84139729e-01 -8.35591197e-01 1.44751191e+00 3.53991359e-01
-1.64878905e+00 -7.96348035e-01 -1.01967871e+00 -3.65521103e-01
-1.75872788e-01 4.70957458e-01 3.40736598e-01 8.17237079e-01
-1.15240622e+00 5.49345374e-01 -3.85025054e-01 -1.63415790e-01
7.65230417e-01 4.62339163e-01 -8.26798201e-01 3.58672328e-02
-7.62640774e-01 8.87477458e-01 -1.17886119e-01 1.70827135e-02
-6.74918234e-01 -8.34350586e-01 -9.69966590e-01 5.73316356e-03
1.46336138e-01 -6.37343705e-01 9.25938547e-01 -1.29354513e+00
-1.76700187e+00 1.24353933e+00 -1.72054604e-01 2.44185716e-01
5.20607829e-01 -1.08747393e-01 -3.66880596e-01 -2.70297974e-02
-3.40763777e-01 9.21243429e-01 1.55949295e+00 -1.67259586e+00
5.14651239e-02 -5.14072895e-01 -7.97568411e-02 2.01990083e-01
-1.92893058e-01 -1.03741929e-01 -7.10475206e-01 -9.95689869e-01
-1.00300439e-01 -1.01170266e+00 3.39542985e-01 6.37225449e-01
-4.71965820e-01 -2.23726526e-01 9.73604262e-01 -8.14361215e-01
5.46116292e-01 -2.38727880e+00 3.54628026e-01 2.56691307e-01
3.19594681e-01 2.95222282e-01 -4.23277825e-01 -7.10308328e-02
-4.65669841e-01 2.88197994e-01 -1.53085008e-01 -8.32565427e-01
9.97957289e-02 1.25466391e-01 -3.08951259e-01 3.80512655e-01
6.06499016e-01 8.83350432e-01 -5.39689481e-01 -3.71749967e-01
8.35049991e-03 1.06453347e+00 -7.48591483e-01 2.78013140e-01
-8.73093903e-02 2.62753695e-01 -8.53538737e-02 8.05863857e-01
1.13013756e+00 3.16543430e-01 -2.23884955e-01 -4.34360117e-01
3.21150661e-01 -4.42215413e-01 -9.40351188e-01 1.62741292e+00
-3.98476601e-01 5.97744107e-01 4.25832361e-01 -3.59860063e-01
1.33816051e+00 3.82858574e-01 1.28075600e-01 -3.70570451e-01
4.19988841e-01 2.00862959e-01 -2.30513453e-01 -3.48875493e-01
3.10130239e-01 -6.26917481e-01 1.12697147e-02 3.85331661e-01
-9.27592255e-03 -6.96260631e-01 -4.60931033e-01 -2.25287974e-01
3.47492367e-01 1.30691767e-01 -1.78541318e-01 -1.74757034e-01
5.08828163e-01 -5.26221454e-01 4.12722170e-01 3.94486412e-02
1.86296199e-02 1.19473588e+00 6.91141784e-01 -5.08925557e-01
-1.40544403e+00 -1.16585660e+00 -9.75198373e-02 2.89609611e-01
-1.35469779e-01 5.80490902e-02 -1.15272784e+00 -6.11458421e-01
2.33034432e-01 7.28982985e-01 -9.16221619e-01 -2.15912730e-01
-6.70544088e-01 -7.50158727e-02 6.28838241e-01 4.10540313e-01
4.31704998e-01 -1.20979452e+00 -1.05269223e-01 -2.93003350e-01
8.17033872e-02 -8.72961879e-01 -1.00476789e+00 -8.29284251e-01
-7.38940299e-01 -7.85934031e-01 -1.04329038e+00 -7.79038429e-01
1.09112966e+00 1.29252151e-01 1.04125428e+00 1.43739432e-01
-2.30342761e-01 3.22736651e-01 8.01141411e-02 -5.91374040e-01
-6.47709250e-01 -5.29330373e-01 5.13580441e-01 3.81356627e-01
2.91202277e-01 -8.74777138e-01 -3.76345754e-01 3.58455986e-01
-8.13398957e-01 1.43080443e-01 6.10429049e-01 6.85207963e-01
7.04562187e-01 2.99814288e-02 5.43050587e-01 -6.29635334e-01
8.63223553e-01 -1.84808020e-02 -4.96465445e-01 -1.13509871e-01
-3.73988487e-02 -1.59963042e-01 6.16165757e-01 -8.49024117e-01
-9.95300889e-01 1.19051576e-01 -4.71899480e-01 -1.37187207e+00
-4.34422046e-01 -1.07462928e-01 -5.41848361e-01 -5.19692264e-02
6.67813659e-01 1.77121293e-02 8.23001564e-01 -7.28666842e-01
4.85533297e-01 5.75695992e-01 8.40043426e-01 -5.67101479e-01
1.17844164e+00 6.01960003e-01 -2.22674310e-02 -9.84462261e-01
-1.95109874e-01 4.13857311e-01 -7.00696647e-01 -3.16563934e-01
8.68967533e-01 -6.17120981e-01 -1.17317128e+00 5.44257283e-01
-1.35744190e+00 -4.44965698e-02 -3.13837796e-01 2.10883871e-01
-6.02006257e-01 2.43002057e-01 -4.03939605e-01 -8.28481913e-01
-5.33863008e-01 -1.16948342e+00 1.28535056e+00 1.75305098e-01
-4.73506242e-01 -5.32933414e-01 -1.34985015e-01 3.53370935e-01
2.65158117e-01 5.22118390e-01 1.11136174e+00 -1.20656259e-01
-2.12442815e-01 -4.70611781e-01 -1.44183367e-01 6.17750943e-01
2.33616114e-01 1.87751740e-01 -1.06579399e+00 -2.07495093e-01
8.81799385e-02 -3.48546773e-01 2.58293420e-01 3.69360328e-01
1.20159888e+00 -2.12694764e-01 2.24449113e-02 7.30002463e-01
8.88476789e-01 2.19047517e-01 8.31379116e-01 -6.05210662e-01
7.41078436e-01 9.03492033e-01 2.45945677e-01 2.00950325e-01
1.00464970e-01 6.89205527e-01 3.70263487e-01 -2.21514493e-01
-4.87306446e-01 -6.82317555e-01 2.83894092e-01 5.29818296e-01
-3.18116516e-01 3.09395045e-01 -4.45845872e-01 2.78357416e-01
-1.19622183e+00 -8.50644827e-01 2.14851201e-01 2.28603411e+00
9.08904314e-01 -5.24990894e-02 1.95811182e-01 7.97526389e-02
8.60453784e-01 -3.10310572e-01 -7.23413885e-01 -5.02597034e-01
-1.13849886e-01 4.33010370e-01 -3.25604267e-02 3.83029312e-01
-6.65069103e-01 9.34465885e-01 5.92075729e+00 8.19146037e-01
-1.29314244e+00 -3.13409716e-01 6.88125849e-01 -1.86410680e-01
-4.88773257e-01 -4.42341506e-01 -6.80451453e-01 4.18634802e-01
3.54117006e-01 7.91156068e-02 6.28006935e-01 1.00839961e+00
1.70640394e-01 5.22837818e-01 -1.34852529e+00 1.56297994e+00
4.01296228e-01 -1.28795660e+00 3.44766110e-01 2.22663775e-01
4.46133137e-01 -8.30036700e-01 4.87652242e-01 2.17975929e-01
-2.06812117e-02 -1.54182315e+00 8.05983782e-01 6.47837520e-01
1.52667928e+00 -8.63696039e-01 1.49677038e-01 2.60476649e-01
-6.62950635e-01 2.87239134e-01 -4.69104737e-01 1.62176207e-01
-2.28609648e-02 2.76284993e-01 -6.43187225e-01 8.35589916e-02
6.38192475e-01 2.99917668e-01 -2.50919938e-01 7.11443424e-01
1.20538967e-02 9.71671864e-02 -3.20649475e-01 1.23353735e-01
-2.50872999e-01 -4.13833380e-01 6.02182925e-01 6.61047459e-01
6.09415948e-01 3.46879780e-01 -4.86290753e-01 1.54665935e+00
-6.02934718e-01 -4.26523387e-03 -8.67481470e-01 -1.72364160e-01
6.31690681e-01 1.27111459e+00 -3.11310649e-01 -9.75224525e-02
-1.80120543e-01 1.10105789e+00 1.60409778e-01 2.42806211e-01
-5.90937078e-01 -3.97410959e-01 1.04095614e+00 1.98603913e-01
7.69884661e-02 -1.30433887e-01 -3.38354558e-01 -9.52557802e-01
-1.73550352e-01 -1.01324141e+00 -3.86554360e-01 -1.19075930e+00
-1.60457873e+00 7.25786507e-01 -1.32519975e-02 -1.03084791e+00
-2.71828741e-01 -6.12098336e-01 -7.03939915e-01 1.31672502e+00
-9.90635514e-01 -1.28106213e+00 -3.77873659e-01 8.42262387e-01
4.64968383e-01 -2.81911314e-01 9.00809109e-01 2.86714256e-01
-3.38820279e-01 1.00014174e+00 -4.73951340e-01 1.31606773e-01
7.17199564e-01 -9.04644370e-01 8.10144544e-01 2.39980832e-01
2.62569785e-02 6.68864667e-01 5.21443188e-01 -6.56870842e-01
-1.82057273e+00 -9.05191123e-01 6.48533344e-01 -7.57324040e-01
-9.47080180e-02 -6.59068227e-01 -1.02345753e+00 5.03003061e-01
-2.11463943e-02 -6.05123937e-02 4.25727487e-01 -2.02551723e-01
-4.02103931e-01 -9.49666724e-02 -1.59877551e+00 1.05272973e+00
1.14609265e+00 -4.70779330e-01 -6.12519085e-01 -2.45260447e-02
5.12235165e-01 -4.75471914e-01 -8.51514101e-01 2.87131637e-01
9.00548041e-01 -7.92935371e-01 1.17318308e+00 -3.67914677e-01
4.54669803e-01 -1.33102104e-01 1.80782765e-01 -1.34725249e+00
-3.62482160e-01 -8.47561240e-01 -2.80896518e-02 1.10248435e+00
4.72031012e-02 -2.62096971e-01 9.50629711e-01 7.52925098e-01
-8.98185000e-02 -6.72016680e-01 -8.53549361e-01 -6.69775128e-01
3.44542474e-01 -3.75684083e-01 8.80608976e-01 9.27809715e-01
-4.73338127e-01 2.68585175e-01 -5.40927589e-01 -4.53564972e-02
6.67382538e-01 1.21860005e-01 1.07954037e+00 -1.43218803e+00
-1.28074195e-02 -5.42825460e-01 -2.53146410e-01 -8.56798351e-01
4.59754467e-01 -8.80435884e-01 -2.78868198e-01 -9.29522455e-01
-1.77032709e-01 -5.25599122e-01 6.28740430e-01 3.66948575e-01
2.49373659e-01 4.37964916e-01 2.68198431e-01 5.39605133e-02
7.48051703e-01 7.73207724e-01 1.67925107e+00 5.26749045e-02
-2.76219457e-01 3.49803898e-03 -9.06628788e-01 9.31174040e-01
4.94334728e-01 -2.15292200e-02 -5.19339323e-01 -4.04655635e-01
-1.26331657e-01 2.50581205e-01 4.58545119e-01 -7.24806488e-01
-3.06613237e-01 -1.04809552e-01 7.81120658e-01 -6.01703942e-01
1.00080848e+00 -1.10069728e+00 3.84767354e-01 1.21942155e-01
-1.20341726e-01 -7.21753389e-02 3.25980425e-01 3.62957150e-01
1.77708834e-01 -2.49079801e-02 1.04914534e+00 -1.04092121e-01
-6.98030964e-02 5.93276858e-01 4.69767535e-03 -1.76282451e-01
9.55383897e-01 -5.09933412e-01 1.66518819e-02 -4.79882538e-01
-6.60159707e-01 -3.59874159e-01 8.79866898e-01 6.99614525e-01
1.11104846e+00 -1.93523407e+00 -8.72857094e-01 9.37512338e-01
-1.52494296e-01 -8.49473253e-02 2.13643745e-01 3.02007854e-01
-5.46331286e-01 3.62837017e-02 -6.62367523e-01 -2.88183272e-01
-1.35864949e+00 6.67181253e-01 4.16810304e-01 6.95002854e-01
-7.34518945e-01 8.48602116e-01 4.26759571e-01 -4.68627244e-01
2.43995398e-01 -1.76048085e-01 -2.28864074e-01 -1.07998386e-01
5.98924816e-01 -7.83675537e-02 -3.29929352e-01 -1.00670838e+00
-1.16816200e-01 9.46378350e-01 1.22537546e-01 -2.26120234e-01
1.25757170e+00 2.94578344e-01 -6.64619654e-02 1.07797086e-01
1.54745793e+00 1.93285808e-01 -1.35671973e+00 -1.39819775e-02
-7.46341825e-01 -9.66858864e-01 -1.45782903e-01 -5.00854075e-01
-1.34285271e+00 1.01017570e+00 4.65746760e-01 -2.03370556e-01
1.04096127e+00 7.06719756e-02 9.35329735e-01 1.53221980e-01
1.40163869e-01 -8.44291151e-01 1.95405439e-01 2.49039561e-01
1.76277065e+00 -9.28782165e-01 -4.18437660e-01 -5.11980295e-01
-7.03866124e-01 1.16487992e+00 5.62237144e-01 -3.97857279e-01
7.64948487e-01 6.88445196e-02 -3.51517461e-03 -4.18141603e-01
-4.46137667e-01 2.43923634e-01 6.20069981e-01 9.28492725e-01
2.26352215e-01 1.06230406e-02 -3.50283906e-02 8.08023632e-01
-5.90067744e-01 4.25133184e-02 4.22821879e-01 4.08978432e-01
-1.96479331e-03 -1.03469598e+00 -7.68006325e-01 2.80260324e-01
-1.69972196e-01 1.66828737e-01 -7.03728557e-01 7.63403296e-01
1.44500807e-01 5.57821155e-01 3.07845473e-01 -4.77342129e-01
6.59155667e-01 1.14696488e-01 7.61451721e-01 -4.49992537e-01
-3.36607575e-01 1.11876212e-01 -1.04877628e-01 -3.25659841e-01
1.97341535e-02 -4.45912987e-01 -9.52968776e-01 -7.54198849e-01
1.40107632e-01 -2.97972232e-01 8.34388375e-01 3.74516964e-01
5.70925415e-01 -8.13313480e-03 6.68091834e-01 -1.47884047e+00
-3.50515276e-01 -9.22399879e-01 -7.15920806e-01 8.84788871e-01
1.40205681e-01 -8.27479124e-01 -2.93180764e-01 1.46941140e-01]
|
[12.740900039672852, -0.2006881982088089]
|
0a5a7279-117f-4a79-8503-f981e583f6e9
|
conformal-prediction-with-missing-values
|
2306.02732
| null |
https://arxiv.org/abs/2306.02732v1
|
https://arxiv.org/pdf/2306.02732v1.pdf
|
Conformal Prediction with Missing Values
|
Conformal prediction is a theoretically grounded framework for constructing predictive intervals. We study conformal prediction with missing values in the covariates -- a setting that brings new challenges to uncertainty quantification. We first show that the marginal coverage guarantee of conformal prediction holds on imputed data for any missingness distribution and almost all imputation functions. However, we emphasize that the average coverage varies depending on the pattern of missing values: conformal methods tend to construct prediction intervals that under-cover the response conditionally to some missing patterns. This motivates our novel generalized conformalized quantile regression framework, missing data augmentation, which yields prediction intervals that are valid conditionally to the patterns of missing values, despite their exponential number. We then show that a universally consistent quantile regression algorithm trained on the imputed data is Bayes optimal for the pinball risk, thus achieving valid coverage conditionally to any given data point. Moreover, we examine the case of a linear model, which demonstrates the importance of our proposal in overcoming the heteroskedasticity induced by missing values. Using synthetic and data from critical care, we corroborate our theory and report improved performance of our methods.
|
['Yaniv Romano', 'Julie Josse', 'Aymeric Dieuleveut', 'Margaux Zaffran']
|
2023-06-05
| null | null | null | null |
['imputation', 'prediction-intervals', 'imputation', 'imputation']
|
['computer-vision', 'miscellaneous', 'miscellaneous', 'time-series']
|
[ 4.21319455e-01 5.71879804e-01 -5.25521278e-01 -7.30057418e-01
-1.38288176e+00 -5.24435222e-01 3.13093774e-02 2.88622767e-01
1.85873643e-01 1.28844893e+00 5.82601190e-01 -3.24530184e-01
-6.87487781e-01 -9.52734470e-01 -1.10958743e+00 -6.23223662e-01
-2.00758114e-01 7.10452616e-01 -3.46491337e-01 1.02965035e-01
1.15733586e-01 1.07954584e-01 -1.21688211e+00 3.16337436e-01
1.17691672e+00 6.59017205e-01 -5.14112055e-01 4.56989288e-01
2.16367885e-01 7.31021225e-01 -1.14646323e-01 -6.17579758e-01
1.76730558e-01 -4.55416143e-01 -3.81376684e-01 -5.47941029e-01
4.36820954e-01 -3.37528497e-01 1.91375524e-01 6.88958824e-01
2.63896197e-01 -3.61662060e-01 1.22241342e+00 -1.40866446e+00
-6.15203679e-01 9.33600247e-01 -5.06218970e-01 -3.42181206e-01
1.03181206e-01 -7.34807551e-01 7.81442642e-01 -9.62693334e-01
3.35668772e-01 7.94177830e-01 1.36362910e+00 3.69424731e-01
-1.50880706e+00 -4.78820950e-01 -4.44805622e-01 -4.48554784e-01
-1.25958657e+00 -3.72583538e-01 2.81984657e-01 -8.59025419e-01
2.36742020e-01 4.63132799e-01 2.25115255e-01 1.05068660e+00
7.39436150e-01 1.26658097e-01 1.09300745e+00 -5.33731520e-01
5.37241518e-01 1.28976971e-01 4.05494690e-01 1.29011407e-01
5.29680789e-01 4.55391020e-01 -4.40394253e-01 -6.72461331e-01
5.98938286e-01 3.68117481e-01 -1.56650886e-01 -5.58776796e-01
-1.07378745e+00 1.07477164e+00 -2.41578922e-01 -2.63123095e-01
-3.45793396e-01 1.41364306e-01 1.34583220e-01 2.10266560e-01
6.59508705e-01 -5.58235757e-02 -6.62965119e-01 3.21227610e-02
-1.03152156e+00 2.41290465e-01 7.39420056e-01 1.26820350e+00
4.52849567e-01 -2.14096785e-01 -7.07541168e-01 6.78795695e-01
-8.90153423e-02 8.39783370e-01 -3.86654139e-01 -1.02647614e+00
4.27015305e-01 2.26699278e-01 5.38467348e-01 -6.53269351e-01
-6.06037974e-01 -5.95402420e-01 -1.07983005e+00 4.96232994e-02
6.47544503e-01 -3.12767833e-01 -4.70635861e-01 2.16212606e+00
8.64631087e-02 -2.56590005e-02 1.38591170e-01 3.87341887e-01
1.34775396e-02 1.65821478e-01 2.79423982e-01 -5.86623073e-01
1.09269869e+00 -6.17625304e-02 -6.77645147e-01 3.84933621e-01
6.62446380e-01 -3.65940541e-01 8.91737282e-01 2.89178580e-01
-1.19558847e+00 -1.51292786e-01 -5.80185354e-01 1.81962457e-02
2.39526764e-01 -1.14968553e-01 3.01917076e-01 8.60860169e-01
-7.73606479e-01 6.71591938e-01 -7.37017214e-01 2.73076314e-02
5.04658639e-01 2.05178946e-01 -2.69081533e-01 -9.29562002e-02
-9.89236236e-01 6.28379762e-01 -1.18716158e-01 -3.08312088e-01
-5.39621234e-01 -1.45314980e+00 -6.30707443e-01 3.71599048e-01
-3.16656791e-02 -8.76467586e-01 9.38188374e-01 -7.72227943e-01
-5.76850474e-01 5.51987052e-01 -4.53041285e-01 -4.93156224e-01
9.20759499e-01 -4.66573723e-02 -2.45087892e-01 -2.99357086e-01
4.96634007e-01 1.61061838e-01 6.54473603e-01 -1.05789697e+00
-5.61199486e-01 -6.68543279e-01 -4.97740209e-01 -2.61653394e-01
4.76135872e-02 -3.67715091e-01 3.01526278e-01 -6.91981733e-01
1.43982068e-01 -7.34410703e-01 -3.25168282e-01 -3.54516357e-01
-4.60986823e-01 -8.80588442e-02 -1.45516261e-01 -6.41773999e-01
1.32133460e+00 -2.18903327e+00 -6.09282888e-02 5.16654372e-01
-1.24782417e-02 -1.05351853e+00 2.98923224e-01 6.11762166e-01
-3.20173472e-01 6.20992966e-02 -8.60640168e-01 -3.94635975e-01
1.24959283e-01 2.11294189e-01 -7.58702576e-01 7.03015804e-01
8.28899145e-02 8.65707576e-01 -2.96053559e-01 -5.31187713e-01
-1.42052963e-01 4.85673904e-01 -6.62038386e-01 -8.89601484e-02
4.35310714e-02 6.52511716e-01 -1.39491111e-01 5.12785554e-01
1.03680956e+00 -3.13025057e-01 2.29255542e-01 2.80681133e-01
-2.02824563e-01 -2.06137136e-01 -9.42596436e-01 1.21845663e+00
-1.73035845e-01 -6.04812466e-02 -2.87459701e-01 -9.62049842e-01
9.81932044e-01 2.95010358e-01 7.06376851e-01 -3.13241899e-01
-3.05579126e-01 3.77906352e-01 -5.84613502e-01 -1.67169660e-01
2.31317624e-01 -7.28535116e-01 -4.11146879e-01 1.45449951e-01
-2.42202416e-01 3.78180206e-01 -4.29603338e-01 1.35656623e-02
1.01863968e+00 5.82283735e-02 3.25882703e-01 -7.27988362e-01
-2.42641233e-02 8.46158341e-02 7.95770764e-01 1.16079903e+00
3.22112560e-01 1.04449987e+00 1.12096786e+00 -3.61336023e-01
-1.41652977e+00 -1.54241693e+00 -1.19638324e+00 8.43741834e-01
-2.76371151e-01 1.22423038e-01 -7.07094491e-01 -3.96333128e-01
3.74334186e-01 9.91285324e-01 -1.26436532e+00 8.11181664e-02
-1.00535095e-01 -1.05699182e+00 3.48999828e-01 7.57874608e-01
-3.60485941e-01 -5.82547486e-01 -4.35113043e-01 3.26995313e-01
-1.70755863e-01 -6.72126472e-01 -3.22763354e-01 3.38731289e-01
-1.11352706e+00 -1.18407190e+00 -8.18950713e-01 -3.24508458e-01
6.43027902e-01 -4.30771619e-01 1.28640068e+00 -2.95921803e-01
1.27342597e-01 5.43841720e-01 -4.40622531e-02 -4.81510818e-01
-3.94394070e-01 -1.11869477e-01 -9.67064053e-02 -7.26972297e-02
2.93577880e-01 -5.66566288e-01 -7.43619621e-01 3.30784112e-01
-6.91915095e-01 1.52879236e-02 1.41376376e-01 9.35550809e-01
8.39464605e-01 -3.97338688e-01 1.25999248e+00 -1.14289951e+00
2.23223910e-01 -9.73169506e-01 -7.73233056e-01 4.57647175e-01
-7.47487426e-01 -7.89953675e-03 2.93425083e-01 4.13750932e-02
-9.06452179e-01 3.89465950e-02 8.71066898e-02 -1.01147909e-02
-2.13657040e-02 5.44408858e-01 6.89356178e-02 4.00164634e-01
7.27155507e-01 -9.87361819e-02 4.74440977e-02 -2.88125128e-01
1.05791397e-01 4.70606893e-01 6.37507439e-01 -7.90779889e-01
2.34113932e-01 7.23311305e-01 5.78966200e-01 -3.09780687e-01
-8.78874421e-01 -4.94226143e-02 -6.12014174e-01 2.21171334e-01
8.79735827e-01 -9.83331800e-01 -9.19960141e-01 -2.11255580e-01
-9.59849477e-01 -1.23370476e-01 -7.85674870e-01 6.53858840e-01
-1.13181961e+00 1.30715370e-01 -2.28261307e-01 -1.15068221e+00
-2.12499455e-01 -7.48404443e-01 1.10927188e+00 -3.88188511e-01
-2.15639696e-01 -1.14609134e+00 5.01865149e-01 -1.92393661e-02
3.16193819e-01 7.73907304e-01 1.38549149e+00 -5.60815156e-01
-1.95351318e-01 -2.22487897e-01 -2.11321473e-01 2.53229905e-02
-1.49374856e-02 -1.67419598e-01 -9.01044726e-01 -4.85619307e-02
-4.25157882e-02 1.71143979e-01 7.90500641e-01 1.10969734e+00
1.38354003e+00 -4.18931633e-01 -3.69950384e-01 4.68471050e-01
1.55380261e+00 -2.43224859e-01 7.68699110e-01 -1.35472521e-01
1.15556680e-01 8.50688100e-01 3.72170836e-01 8.68899345e-01
4.71762985e-01 5.21519542e-01 2.85527289e-01 -4.66387086e-02
4.31080878e-01 -4.37784135e-01 -1.05060317e-01 1.94848195e-01
2.81679491e-03 2.12634653e-01 -8.33311737e-01 7.80716717e-01
-1.93545425e+00 -1.05506384e+00 -7.40238249e-01 2.92082095e+00
1.03673697e+00 -1.67572364e-01 2.02530012e-01 -4.52409275e-02
7.03133702e-01 -8.48994195e-01 -4.11038607e-01 -3.72718006e-01
-3.57744604e-01 4.69174623e-01 6.63043022e-01 7.11471677e-01
-8.64524007e-01 -4.80525978e-02 7.20756102e+00 5.84813654e-01
-2.73674101e-01 2.61107862e-01 1.01082361e+00 8.58738944e-02
-9.68947232e-01 7.65366182e-02 -6.68649554e-01 6.29697442e-01
1.07241082e+00 -2.70227820e-01 -2.04940625e-02 8.91167641e-01
1.94599733e-01 -1.07900850e-01 -1.34332693e+00 3.70303303e-01
-1.81664094e-01 -1.26378453e+00 -3.09742421e-01 2.57572830e-01
1.04437447e+00 -3.33400398e-01 2.20002919e-01 9.65778157e-02
3.96170288e-01 -1.29633152e+00 4.93328035e-01 1.05716300e+00
1.17838037e+00 -1.07788110e+00 8.31971526e-01 3.24618608e-01
-5.15361011e-01 -3.34011801e-02 -6.69746041e-01 8.56490657e-02
1.41077623e-01 1.17669272e+00 -6.66290760e-01 5.52533507e-01
5.92371523e-01 3.92888486e-01 -1.08248711e-01 9.95267868e-01
3.58943492e-01 8.43111038e-01 -3.07519585e-01 7.23540604e-01
-4.89160925e-01 -2.87223577e-01 4.30729575e-02 9.42644775e-01
1.00790823e+00 2.87955582e-01 -4.04611498e-01 9.48684096e-01
1.09308414e-01 1.90602571e-01 -8.23121727e-01 7.38686144e-01
3.76377016e-01 6.51440680e-01 -1.64118782e-01 -6.70399293e-02
-6.27531350e-01 3.60110760e-01 2.25975290e-01 3.84550273e-01
-9.10006404e-01 9.66752246e-02 3.10838938e-01 4.57143068e-01
9.53761861e-02 1.32209525e-01 -1.12010980e+00 -1.00513077e+00
3.24761532e-02 -3.58471572e-01 6.86270297e-01 -6.09663188e-01
-1.79233170e+00 1.91054791e-01 2.79586434e-01 -1.26984000e+00
-2.93630362e-01 -2.29321495e-01 -3.54750484e-01 1.08593762e+00
-1.28444040e+00 -9.09488678e-01 -9.30589512e-02 6.93673909e-01
-2.18589902e-01 1.41976923e-01 1.09908652e+00 7.41231634e-05
8.36515203e-02 6.59296632e-01 6.05520427e-01 -3.19599628e-01
9.00838435e-01 -1.39180863e+00 -1.31605119e-01 3.21069449e-01
-2.32638344e-01 5.35043538e-01 6.69109762e-01 -1.05000794e+00
-9.81747925e-01 -1.10247469e+00 1.18833947e+00 -9.39493597e-01
3.41168135e-01 -2.12418154e-01 -9.74771559e-01 1.06087959e+00
-1.28095999e-01 -1.08800925e-01 1.17518485e+00 6.11849785e-01
-2.65323222e-01 -1.91241264e-01 -1.44445503e+00 2.22873107e-01
8.23639572e-01 -6.60479814e-02 -4.98504370e-01 4.76652086e-01
6.13040507e-01 -1.97724551e-01 -1.24628556e+00 9.04769599e-01
7.74919510e-01 -1.20184422e+00 8.37724507e-01 -8.67316782e-01
7.88962543e-01 3.31989378e-02 -6.82124078e-01 -8.29837978e-01
-2.35434026e-01 -2.38858253e-01 2.36003593e-01 1.00806499e+00
7.32986748e-01 -7.08178461e-01 6.93696856e-01 1.05552638e+00
-1.23595767e-01 -5.88461876e-01 -1.48620629e+00 -5.50473571e-01
8.20166171e-01 -7.13037133e-01 7.81979144e-01 1.03927577e+00
2.99499184e-01 -2.03844920e-01 -8.29213560e-01 3.61493766e-01
1.13439572e+00 3.85472715e-01 4.37511504e-01 -1.56618857e+00
-2.71417052e-01 3.39404017e-01 -2.17995141e-02 -2.99435794e-01
5.79864569e-02 -6.94693208e-01 -2.55031556e-01 -1.21356547e+00
7.48225033e-01 -8.34429383e-01 -2.13822201e-01 4.21324223e-01
-7.40331039e-02 2.62471914e-01 -3.45939428e-01 1.24670096e-01
-1.02874413e-01 4.60788637e-01 9.65609848e-01 1.87584370e-01
-1.29142553e-01 5.48255920e-01 -1.00768971e+00 5.19588768e-01
7.36067235e-01 -8.15822601e-01 -3.50623608e-01 -1.96768381e-02
6.92917407e-01 9.72781062e-01 6.86321557e-01 -6.79078043e-01
5.92868961e-02 -3.15368116e-01 7.26222456e-01 -7.42501676e-01
-4.54889536e-02 -1.07123029e+00 6.16380751e-01 2.66514122e-01
-5.52508652e-01 -2.42978055e-02 1.04568429e-01 7.09059298e-01
1.70084313e-01 -1.32132456e-01 6.20203137e-01 4.46250468e-01
3.99181187e-01 2.11032793e-01 -3.21944393e-02 3.04521590e-01
1.03055120e+00 -4.57069464e-02 -2.60760128e-01 -4.82109874e-01
-1.36841428e+00 2.19149664e-01 4.19173092e-01 -1.15570001e-01
4.86974090e-01 -1.55958915e+00 -1.28667521e+00 4.19848531e-01
1.85873508e-01 -3.03117365e-01 5.73968351e-01 1.09277499e+00
1.28514722e-01 3.00399721e-01 1.41316338e-03 -7.47351825e-01
-6.76938593e-01 7.07602382e-01 2.77947009e-01 8.89605507e-02
-5.42878091e-01 1.28065959e-01 4.65081036e-01 -4.07000691e-01
-8.24523643e-02 -3.38664532e-01 1.87285662e-01 -9.53227803e-02
3.13408583e-01 6.86400831e-01 8.21255222e-02 -8.87056068e-02
-3.22819740e-01 7.03006744e-01 4.25689548e-01 -1.83578655e-01
1.28998291e+00 -1.96299627e-01 -1.62266240e-01 5.44279099e-01
8.62711906e-01 3.60694081e-01 -1.41436362e+00 1.49330169e-01
9.27034020e-03 -3.51412535e-01 -7.13959277e-01 -9.09754872e-01
-4.16413099e-01 7.50198841e-01 3.15522343e-01 1.64394930e-01
9.53733146e-01 8.90642852e-02 -1.89578995e-01 -2.68598229e-01
6.26205564e-01 -6.47943914e-01 -7.21569598e-01 6.53495863e-02
9.81131673e-01 -1.16799760e+00 -3.58602591e-02 -3.28309506e-01
-6.35835171e-01 9.19269025e-01 -6.14382029e-02 -1.52062625e-01
8.81217003e-01 5.89856625e-01 -2.99077183e-01 2.10343271e-01
-7.20735133e-01 3.98121834e-01 2.78168172e-01 7.82226026e-01
5.04563987e-01 4.08263057e-01 -4.60619837e-01 1.16230488e+00
-3.12915176e-01 2.80520767e-01 7.32260823e-01 3.43403190e-01
-2.76489586e-01 -9.74711001e-01 -5.21286368e-01 7.93650508e-01
-7.05001175e-01 -2.60259867e-01 2.53975421e-01 7.98044086e-01
-1.05101831e-01 8.73720288e-01 2.95973748e-01 2.60848939e-01
3.79262596e-01 3.80115986e-01 3.97064447e-01 -2.91902751e-01
5.00716232e-02 1.28147662e-01 -2.52133757e-01 -2.76888698e-01
-1.62907839e-01 -1.07600701e+00 -1.06370711e+00 -4.56415325e-01
-9.80927125e-02 4.32702750e-01 2.58966357e-01 7.22359359e-01
2.82763213e-01 3.22344750e-01 7.14798927e-01 -4.79074940e-02
-1.00586915e+00 -7.89249718e-01 -8.94584656e-01 1.73793793e-01
5.40676177e-01 -5.78079224e-01 -4.51913893e-01 1.19536696e-02]
|
[7.768102169036865, 4.618338584899902]
|
6c3e07f7-071d-4c0e-83ef-a22b074157ac
|
augmentation-methods-on-monophonic-audio-for
|
1911.12505
| null |
https://arxiv.org/abs/1911.12505v2
|
https://arxiv.org/pdf/1911.12505v2.pdf
|
Augmentation Methods on Monophonic Audio for Instrument Classification in Polyphonic Music
|
Instrument classification is one of the fields in Music Information Retrieval (MIR) that has attracted a lot of research interest. However, the majority of that is dealing with monophonic music, while efforts on polyphonic material mainly focus on predominant instrument recognition. In this paper, we propose an approach for instrument classification in polyphonic music from purely monophonic data, that involves performing data augmentation by mixing different audio segments. A variety of data augmentation techniques focusing on different sonic aspects, such as overlaying audio segments of the same genre, as well as pitch and tempo-based synchronization, are explored. We utilize Convolutional Neural Networks for the classification task, comparing shallow to deep network architectures. We further investigate the usage of a combination of the above classifiers, each trained on a single augmented dataset. An ensemble of VGG-like classifiers, trained on non-augmented, pitch-synchronized, tempo-synchronized and genre-similar excerpts, respectively, yields the best results, achieving slightly above 80% in terms of label ranking average precision (LRAP) in the IRMAS test set.ruments in over 2300 testing tracks.
|
['Petros Maragos', 'Christos Garoufis', 'Agelos Kratimenos', 'Kleanthis Avramidis', 'Athanasia Zlatintsi']
|
2019-11-28
| null | null | null | null |
['instrument-recognition']
|
['audio']
|
[ 3.97634625e-01 -2.33232960e-01 -1.73719719e-01 -4.94679734e-02
-9.94257152e-01 -8.33416998e-01 5.09660423e-01 2.96247274e-01
-3.63741279e-01 3.54031175e-01 2.99941182e-01 1.17535934e-01
-3.46712351e-01 -4.38531339e-01 -4.29875970e-01 -6.64195597e-01
-6.68612197e-02 1.64289266e-01 -2.23608926e-01 -2.99476027e-01
2.93475538e-01 3.20183188e-01 -2.00151753e+00 4.77114856e-01
3.88781011e-01 1.25304580e+00 -1.33915797e-01 8.28115821e-01
-7.22109228e-02 7.11778104e-01 -9.98184621e-01 -2.76161224e-01
1.56320527e-01 -4.84891355e-01 -7.41378725e-01 -1.93338782e-01
7.04578459e-01 1.36568129e-01 -1.71506450e-01 8.10348928e-01
7.67840445e-01 1.98681399e-01 4.61978793e-01 -8.97514522e-01
-1.48368374e-01 1.27538705e+00 -3.79540712e-01 2.77425528e-01
4.19172406e-01 -2.98175275e-01 1.37512708e+00 -7.15783954e-01
2.11782321e-01 7.65102088e-01 9.33362961e-01 1.43671572e-01
-1.06836891e+00 -8.60399663e-01 -2.50559628e-01 4.23143774e-01
-1.39997375e+00 -2.96040714e-01 1.30630994e+00 -4.42053825e-01
6.73210084e-01 5.11211514e-01 7.80028462e-01 1.07152963e+00
-1.18867777e-01 8.48552167e-01 9.14002895e-01 -8.32499564e-01
3.52020189e-02 -5.87555096e-02 3.71205620e-02 -1.42787054e-01
-3.31981719e-01 -6.74026087e-02 -9.42826629e-01 -1.19414508e-01
4.84658420e-01 -3.94180954e-01 -3.64783704e-01 3.51264812e-02
-1.30462992e+00 7.25683033e-01 2.74329007e-01 7.68170416e-01
-4.99540716e-01 4.80674580e-02 8.77109826e-01 4.89192992e-01
5.83879113e-01 1.15063798e+00 -5.74093699e-01 -4.35348094e-01
-1.39976060e+00 4.15764272e-01 6.27424896e-01 4.84254688e-01
3.05312246e-01 4.02938336e-01 -3.89670342e-01 1.08666205e+00
-1.70374990e-01 3.19796838e-02 8.54092777e-01 -8.73238325e-01
2.59329438e-01 4.10166532e-01 -1.49839520e-01 -8.53255808e-01
-7.78724909e-01 -1.03610921e+00 -7.26507008e-01 -5.33013940e-02
4.27963793e-01 -7.17593431e-02 -5.22787869e-01 1.89215243e+00
2.53461711e-02 2.07028702e-01 -1.46170050e-01 9.34916079e-01
9.41683233e-01 6.03842318e-01 -1.66198701e-01 -3.17065239e-01
1.44339228e+00 -1.07856011e+00 -8.01637590e-01 2.17753395e-01
4.55822408e-01 -1.20521450e+00 1.24239898e+00 1.00627398e+00
-1.20682955e+00 -1.04852772e+00 -1.23633718e+00 6.97702989e-02
-3.23816240e-01 5.56766033e-01 4.52987492e-01 6.72482014e-01
-7.32865572e-01 1.12877142e+00 -3.38259012e-01 -9.71976072e-02
3.82427797e-02 3.07846129e-01 -9.76653919e-02 4.63210344e-01
-1.28480220e+00 3.33508939e-01 4.87705141e-01 -1.42304659e-01
-6.25937223e-01 -8.09971273e-01 -4.62944686e-01 1.89779371e-01
1.20385408e-01 -2.63918519e-01 1.54627824e+00 -1.16012657e+00
-1.68416822e+00 8.01625669e-01 4.64139313e-01 -6.29731417e-01
1.92256331e-01 -6.17896080e-01 -6.64960623e-01 1.11689903e-01
-1.79629788e-01 4.86906558e-01 9.55484271e-01 -7.99250603e-01
-4.67455834e-01 -4.22569782e-01 -7.06330612e-02 4.36843902e-01
-8.29701006e-01 1.57164365e-01 -2.26571292e-01 -1.11369228e+00
1.11400999e-01 -1.12705898e+00 2.04737708e-01 -7.65187263e-01
-6.03158355e-01 -2.48537555e-01 5.87325454e-01 -7.15759814e-01
1.65096998e+00 -2.28795743e+00 2.96367019e-01 7.18975067e-02
-2.94532150e-01 2.52551526e-01 -1.77499786e-01 4.53155190e-01
-3.11043113e-01 -6.84266537e-02 -3.61928791e-02 -3.24352890e-01
-5.01569733e-02 -2.38081500e-01 -5.93768299e-01 1.58654556e-01
3.76014188e-02 6.89192891e-01 -6.90323651e-01 -1.10131040e-01
1.23618022e-01 3.66111815e-01 -4.27606076e-01 8.83604363e-02
-2.16688633e-01 8.39494050e-01 6.82280585e-02 5.95072329e-01
3.08240265e-01 1.18900433e-01 6.76825196e-02 -4.17531937e-01
-1.51553228e-01 7.97424495e-01 -1.30732763e+00 2.13998508e+00
-5.33745229e-01 7.60700703e-01 -1.25048012e-01 -8.31562757e-01
1.12528765e+00 8.30605030e-01 8.14822674e-01 -4.49411780e-01
2.70468682e-01 3.89933616e-01 2.39520758e-01 -3.06519538e-01
8.93720150e-01 -7.99308270e-02 -1.69987708e-01 5.16867518e-01
2.79558718e-01 -7.84194618e-02 2.38409728e-01 -4.06078905e-01
9.89934623e-01 1.25212491e-01 2.27576017e-01 5.07750399e-02
6.25101507e-01 -1.41287029e-01 1.69698775e-01 7.92061210e-01
1.26552299e-01 1.00535750e+00 8.51721242e-02 -3.90200853e-01
-1.06673574e+00 -6.39073074e-01 -2.99662262e-01 1.54622722e+00
-4.13155138e-01 -7.18991637e-01 -7.06251979e-01 -1.70421466e-01
-2.48567834e-01 4.09011811e-01 -4.02416229e-01 -1.63764462e-01
-7.44458556e-01 -7.36249566e-01 1.15075815e+00 4.04878527e-01
4.01520669e-01 -1.57405674e+00 -4.36925083e-01 4.70326632e-01
-4.03629661e-01 -9.17850256e-01 -1.48600474e-01 4.79144365e-01
-8.78469706e-01 -9.31302965e-01 -9.83978927e-01 -6.49398923e-01
-4.66111511e-01 -2.02725548e-02 1.29712200e+00 -1.90545470e-01
-1.21634826e-01 2.02388227e-01 -6.43658102e-01 -6.45769358e-01
-2.69786865e-01 6.11300707e-01 2.02547550e-01 2.78665632e-01
3.72169703e-01 -7.65970588e-01 -3.81127268e-01 1.24301478e-01
-7.84974873e-01 -1.90871060e-01 4.74102855e-01 7.05993414e-01
5.59718192e-01 3.36907916e-02 8.32321286e-01 -7.11004496e-01
6.71409667e-01 -2.24271193e-01 2.37593353e-02 -2.74151713e-01
-2.53156036e-01 -5.28012633e-01 6.69642150e-01 -9.19938982e-01
-5.98622799e-01 -2.00057887e-02 -3.92171383e-01 -7.19479918e-01
-3.42525542e-01 7.23302484e-01 -2.47326810e-02 1.37346834e-01
1.02438390e+00 1.21611737e-01 -5.11324346e-01 -1.00227225e+00
3.45769614e-01 8.41351867e-01 8.82395208e-01 -4.04257327e-01
4.73982483e-01 1.51318818e-01 -1.45307392e-01 -8.94844770e-01
-1.13540459e+00 -7.45397627e-01 -5.19251704e-01 -2.85951704e-01
6.60214245e-01 -7.16333568e-01 -4.66269970e-01 5.67261100e-01
-9.56181467e-01 1.82482153e-02 -6.61598563e-01 8.79034162e-01
-7.50064611e-01 1.27096519e-01 -7.26975203e-01 -9.58007693e-01
-6.01899266e-01 -8.08124304e-01 1.04828382e+00 7.83028826e-02
-7.55032241e-01 -3.10168117e-01 6.16316557e-01 3.11390102e-01
2.48247132e-01 1.43235847e-01 9.29058135e-01 -1.09247661e+00
-7.45502934e-02 -4.55907077e-01 3.47439915e-01 4.81146306e-01
1.29000545e-01 -2.51104236e-01 -1.63055980e+00 -2.33695254e-01
-3.18796970e-02 -5.34990609e-01 8.85426939e-01 4.86755252e-01
1.49670911e+00 -1.62719488e-01 2.31730685e-01 5.73952973e-01
9.13120031e-01 2.50995338e-01 6.03758812e-01 5.75404465e-01
7.38645077e-01 5.77279985e-01 6.73982799e-01 4.64485168e-01
-3.26573521e-01 1.07139337e+00 4.56048310e-01 1.22902766e-02
-2.43007496e-01 -2.15565696e-01 1.35889247e-01 1.16195917e+00
-3.97975504e-01 -5.70471324e-02 -6.65567935e-01 4.92385805e-01
-1.57563245e+00 -9.78658080e-01 -1.44120395e-01 2.41949415e+00
9.02895987e-01 6.28523901e-02 4.91746336e-01 1.10040140e+00
6.81995451e-01 2.77016968e-01 -3.47832978e-01 -4.22713041e-01
-2.93769509e-01 6.82548404e-01 -6.35333508e-02 -5.91779836e-02
-1.50483608e+00 6.72592580e-01 5.84471226e+00 1.02179527e+00
-1.29489243e+00 8.71192440e-02 3.10622364e-01 -2.99740314e-01
1.41239807e-01 -3.36190403e-01 -3.95471603e-01 3.57699156e-01
1.08334303e+00 2.71187514e-01 6.18946910e-01 8.66885781e-01
3.42305116e-02 4.47990090e-01 -1.12311065e+00 1.22364378e+00
1.65942222e-01 -1.15481234e+00 5.54731153e-02 -7.76704177e-02
8.39181662e-01 4.69314270e-02 2.77969956e-01 6.43386841e-01
-5.46845436e-01 -1.01206207e+00 9.36356962e-01 3.87965322e-01
6.59253538e-01 -1.08370364e+00 8.91314447e-01 1.33547872e-01
-1.27871001e+00 -1.94216400e-01 2.33372152e-02 -2.17585176e-01
-1.08994395e-01 4.64488357e-01 -6.24651968e-01 7.40068614e-01
9.18672919e-01 7.38848686e-01 -4.73790497e-01 1.30300927e+00
-6.02919981e-02 8.60078692e-01 -2.97389656e-01 2.77376354e-01
-5.45271523e-02 3.44192497e-02 7.34468937e-01 1.34588671e+00
3.82508993e-01 -4.31705385e-01 1.14247911e-01 4.94748384e-01
-2.55432516e-01 6.02464736e-01 -4.03503209e-01 -2.02355951e-01
3.29315186e-01 1.46248460e+00 -5.50064683e-01 -1.96183681e-01
-5.79269715e-02 5.84342003e-01 -5.52826598e-02 3.91295999e-02
-6.67384684e-01 -4.70068216e-01 3.81399870e-01 -1.36848733e-01
1.31977350e-01 7.11889118e-02 -3.75015259e-01 -8.26682806e-01
-6.18755519e-02 -1.17937291e+00 5.26160121e-01 -7.21458793e-01
-1.21711349e+00 7.64586449e-01 -4.08490896e-01 -1.78496408e+00
-5.57682335e-01 -3.31113130e-01 -7.43197083e-01 7.96758890e-01
-1.25436378e+00 -9.64724839e-01 -3.04868817e-01 3.85382116e-01
6.60931766e-01 -3.68377030e-01 1.18104219e+00 6.99689925e-01
-1.77292198e-01 7.30635881e-01 -1.08329043e-01 1.49312550e-02
8.89132023e-01 -1.33749068e+00 1.56403020e-01 2.78624028e-01
1.00391638e+00 2.96550244e-01 5.81777036e-01 -1.54521018e-01
-9.48313832e-01 -1.01736510e+00 8.54012907e-01 -2.30090067e-01
5.33616602e-01 -2.01570261e-02 -1.12884367e+00 3.16465497e-01
1.24940954e-01 -5.45618296e-01 1.05144954e+00 5.71061373e-01
-3.32558602e-01 -1.73665360e-01 -5.73954701e-01 5.45684040e-01
5.94819665e-01 -7.44474590e-01 -5.23314953e-01 1.98089153e-01
5.26318312e-01 -4.32339668e-01 -9.96359169e-01 7.29110479e-01
7.13847101e-01 -7.97940433e-01 1.02838421e+00 -6.58828676e-01
4.34685469e-01 -3.73661608e-01 -1.81005001e-01 -1.25825834e+00
-3.28984439e-01 -6.18435204e-01 -3.08912933e-01 1.30968881e+00
2.85107493e-01 1.92350566e-01 8.04553509e-01 -6.40760601e-01
-3.56533468e-01 -6.19505525e-01 -8.26002896e-01 -7.65310109e-01
-4.16584685e-02 -7.90334284e-01 4.88090396e-01 1.09546614e+00
7.54209161e-02 6.15066051e-01 -7.12262928e-01 -1.79250330e-01
1.52643293e-01 2.55412042e-01 9.07666266e-01 -1.54814970e+00
-6.87710166e-01 -6.55631661e-01 -3.48249912e-01 -5.13613284e-01
-1.26297280e-01 -1.16489041e+00 -5.31920977e-02 -1.07109821e+00
-9.74817052e-02 -2.29445279e-01 -9.03570533e-01 3.75779867e-01
2.07514137e-01 1.04136419e+00 3.51854384e-01 4.10279900e-01
-3.43525410e-01 4.83621180e-01 9.36374843e-01 -3.01997155e-01
-6.17406189e-01 4.29944515e-01 -3.51157784e-01 9.54235613e-01
9.97937083e-01 -3.34333479e-01 -1.70787781e-01 6.03893446e-03
4.37651873e-01 -2.62926705e-02 7.82971755e-02 -1.59629655e+00
-5.09350002e-03 4.99927580e-01 3.90764207e-01 -7.99728572e-01
7.94486523e-01 -4.22724724e-01 2.80220121e-01 1.82579800e-01
-7.02050388e-01 -9.69029441e-02 4.12983567e-01 3.33025992e-01
-5.88063717e-01 -4.18916285e-01 5.70375681e-01 -3.90620269e-02
-3.04145157e-01 -2.63022035e-02 -3.40975076e-01 -1.97779760e-01
2.67901599e-01 8.24533030e-02 4.45302762e-03 -4.10484821e-01
-1.11810803e+00 -5.62600732e-01 -8.87526572e-02 6.11459494e-01
2.06486642e-01 -1.54646635e+00 -7.82552719e-01 4.15443927e-02
3.43001813e-01 -4.69920725e-01 3.43565971e-01 9.21174943e-01
-1.86246827e-01 5.73071837e-01 -2.39730850e-01 -8.16197991e-01
-1.36938238e+00 4.71253365e-01 1.29890487e-01 -4.16116148e-01
-5.50312936e-01 7.53927231e-01 -7.45220035e-02 -5.79229355e-01
6.24830425e-01 -1.33025870e-01 -7.64565110e-01 5.70843220e-01
5.05517185e-01 4.18872595e-01 5.51816225e-01 -5.38503826e-01
-5.82345054e-02 6.33749902e-01 3.82829569e-02 -3.11522901e-01
1.10321581e+00 2.31075257e-01 7.81111345e-02 1.06839216e+00
1.00802696e+00 2.24975854e-01 -5.75611293e-01 -2.82590389e-01
1.81061924e-01 -1.51061162e-01 2.78381944e-01 -9.63142455e-01
-8.62699032e-01 9.78481412e-01 7.39930391e-01 6.25872076e-01
1.30552101e+00 -2.38677666e-01 6.75822258e-01 3.53080243e-01
2.18332916e-01 -1.13667512e+00 2.89283276e-01 5.89836478e-01
9.68441248e-01 -7.47661352e-01 -2.37879395e-01 -4.18740660e-02
-3.53924304e-01 1.20204532e+00 2.29280129e-01 -2.41510049e-01
5.11761069e-01 -1.68187350e-01 2.36444056e-01 -3.45866717e-02
-3.77573818e-01 -3.14543605e-01 7.12653577e-01 1.49087191e-01
8.76502573e-01 8.80673644e-04 -3.17411870e-01 8.02805483e-01
-9.08047855e-01 -1.55844063e-01 2.78131276e-01 6.93098605e-01
-2.16778845e-01 -1.06020892e+00 -5.86000681e-01 3.29229832e-01
-9.13380682e-01 -2.53878087e-01 -5.95709920e-01 7.28993535e-01
2.79429018e-01 1.03295815e+00 2.72836804e-01 -6.68816686e-01
2.54272223e-01 4.17171687e-01 5.26488423e-01 -6.35333657e-01
-1.21750784e+00 6.12608135e-01 1.16036505e-01 -2.40279853e-01
-5.07826209e-01 -5.30627072e-01 -7.68945038e-01 9.59799513e-02
-3.34326178e-01 2.59471655e-01 9.61181104e-01 8.90535772e-01
1.49495816e-02 1.03541923e+00 7.21263766e-01 -1.27415919e+00
-4.05532956e-01 -1.58679867e+00 -7.92719722e-01 4.36055273e-01
2.96233147e-01 -4.46107805e-01 -2.65541613e-01 -1.23346776e-01]
|
[15.844988822937012, 5.247359752655029]
|
189b1beb-2d68-4f2d-b5c2-4a145ff68b34
|
optimistic-temporal-difference-learning-for
|
2111.1109
| null |
https://arxiv.org/abs/2111.11090v1
|
https://arxiv.org/pdf/2111.11090v1.pdf
|
Optimistic Temporal Difference Learning for 2048
|
Temporal difference (TD) learning and its variants, such as multistage TD (MS-TD) learning and temporal coherence (TC) learning, have been successfully applied to 2048. These methods rely on the stochasticity of the environment of 2048 for exploration. In this paper, we propose to employ optimistic initialization (OI) to encourage exploration for 2048, and empirically show that the learning quality is significantly improved. This approach optimistically initializes the feature weights to very large values. Since weights tend to be reduced once the states are visited, agents tend to explore those states which are unvisited or visited few times. Our experiments show that both TD and TC learning with OI significantly improve the performance. As a result, the network size required to achieve the same performance is significantly reduced. With additional tunings such as expectimax search, multistage learning, and tile-downgrading technique, our design achieves the state-of-the-art performance, namely an average score of 625 377 and a rate of 72% reaching 32768 tiles. In addition, for sufficiently large tests, 65536 tiles are reached at a rate of 0.02%.
|
['I-Chen Wu', 'Lung-Pin Chen', 'Hung Guei']
|
2021-11-22
| null | null | null | null |
['2048']
|
['playing-games']
|
[-2.92095721e-01 4.10796255e-02 -4.67300355e-01 1.40530691e-01
-9.89637852e-01 -2.39786997e-01 6.85853124e-01 4.29120027e-02
-7.26338148e-01 9.63801026e-01 1.67627603e-01 -4.07928109e-01
-1.65354628e-02 -6.43619835e-01 -5.66267908e-01 -9.76904452e-01
-7.72291780e-01 2.94011861e-01 6.29043758e-01 -6.49297908e-02
3.41943890e-01 1.49859235e-01 -1.65263534e+00 2.51167476e-01
8.91268432e-01 9.63812292e-01 -6.96982350e-03 5.97973168e-01
8.03924203e-02 6.10554516e-01 -6.82498157e-01 3.64221931e-01
4.45125282e-01 -2.85087138e-01 -6.34791017e-01 -3.84937860e-02
-1.30128711e-01 -2.17231467e-01 -1.30175382e-01 7.45423317e-01
4.81817544e-01 2.01810196e-01 3.42003882e-01 -1.06460595e+00
-3.64611186e-02 9.71348345e-01 -1.28731477e+00 1.97770402e-01
-3.66527289e-02 3.36824745e-01 7.51088142e-01 -8.71235609e-01
2.15240926e-01 1.20159960e+00 3.94790143e-01 4.13646549e-01
-1.20096803e+00 -9.68937337e-01 5.43685853e-01 1.84787527e-01
-1.41277409e+00 -4.63195294e-01 3.43221426e-01 9.88235474e-02
9.75867271e-01 3.33739907e-01 8.67729008e-01 5.42677283e-01
4.54069525e-01 8.90677035e-01 1.27963972e+00 -7.57681608e-01
7.84198821e-01 4.33717370e-02 -2.98518538e-01 6.80563331e-01
5.64882219e-01 4.36824679e-01 -9.12719429e-01 -2.10763887e-01
8.45377624e-01 -5.51350534e-01 2.28199244e-01 -3.41144979e-01
-1.25550270e+00 7.90094078e-01 4.25846517e-01 -3.27576287e-02
-4.07045126e-01 6.18281782e-01 5.92346847e-01 2.57076949e-01
5.43726146e-01 5.89022636e-01 -2.25001931e-01 -3.59741032e-01
-9.29468036e-01 9.06608030e-02 5.11918128e-01 7.21116543e-01
8.33311677e-01 2.01053694e-01 -1.81490287e-01 4.68912840e-01
2.43473679e-01 5.00886142e-01 3.69890451e-01 -1.22200131e+00
5.16138017e-01 5.43215811e-01 3.30772221e-01 -5.21581233e-01
-3.66250962e-01 -6.27150893e-01 -8.12812984e-01 5.61598182e-01
1.97477862e-01 -7.51670539e-01 -9.98121381e-01 1.82878220e+00
3.88846397e-01 1.97521895e-01 2.16639280e-01 5.95372021e-01
-8.79747272e-02 7.98716307e-01 -9.53013375e-02 -4.30963069e-01
1.06883109e+00 -1.01968217e+00 -3.43580604e-01 -3.97702068e-01
8.12023640e-01 -5.46125829e-01 1.13505411e+00 5.11823952e-01
-1.10813570e+00 -3.27897638e-01 -1.12195563e+00 8.87273610e-01
8.62459186e-03 -7.27154240e-02 7.53688514e-01 7.53820300e-01
-1.19278216e+00 3.20800841e-01 -1.30724216e+00 -3.61888200e-01
2.83649027e-01 5.24459064e-01 3.75058591e-01 1.70501560e-01
-9.93122518e-01 7.09862411e-01 5.78547657e-01 -7.31520355e-02
-1.02638388e+00 -5.52585125e-01 -4.07762796e-01 2.71457192e-02
6.43188179e-01 -2.93522328e-01 1.15622723e+00 -5.30063152e-01
-1.56021738e+00 9.68353152e-02 3.39585100e-03 -5.39802074e-01
4.86474752e-01 -3.62799674e-01 -2.38818720e-01 -4.99388389e-02
4.32816185e-02 8.74877691e-01 3.96959335e-01 -1.36060536e+00
-1.14059842e+00 -8.29885006e-02 -1.83841139e-02 4.93418068e-01
-7.52815843e-01 -2.49442622e-01 -6.10693872e-01 -3.49254966e-01
5.41095957e-02 -1.25311816e+00 -7.30471253e-01 -2.93374956e-01
-3.88863474e-01 -2.08557963e-01 5.59611201e-01 1.44297585e-01
1.41159153e+00 -1.98986030e+00 -2.14328215e-01 6.14305615e-01
-3.56966369e-02 -8.78743455e-02 -2.54996806e-01 5.08738756e-01
4.72284377e-01 4.48546000e-02 2.31825814e-01 -1.57005236e-01
-2.00274229e-01 2.47762918e-01 -6.33673742e-02 4.57253009e-01
-1.92248181e-01 5.88975132e-01 -9.49830115e-01 -5.46698570e-01
1.62093639e-01 -2.68809740e-02 -8.22018027e-01 -1.60656944e-01
-2.24233255e-01 1.95026577e-01 -7.63067126e-01 4.27009821e-01
3.83982360e-01 -4.58049089e-01 4.92067456e-01 2.76896238e-01
-7.12946653e-01 1.67332917e-01 -1.38040447e+00 1.47649789e+00
-5.66543579e-01 5.03798783e-01 -2.47888416e-01 -3.56597453e-01
7.78635740e-01 9.59715024e-02 5.82468390e-01 -7.47712731e-01
-1.46571383e-01 2.04317361e-01 4.95110601e-02 5.63174784e-02
5.51115215e-01 4.07136172e-01 -2.29583085e-01 8.12712073e-01
-7.87455082e-01 1.04435995e-01 3.94669354e-01 1.56986386e-01
1.23435783e+00 -1.77553929e-02 1.08599894e-01 -7.08573103e-01
3.00372720e-01 1.78680703e-01 6.71103239e-01 9.64951456e-01
1.65906414e-01 -8.66019949e-02 5.74874341e-01 -5.82380414e-01
-1.04379451e+00 -8.35644484e-01 1.12601340e-01 1.25669301e+00
4.08569843e-01 -4.84627515e-01 -5.91223180e-01 -2.54569024e-01
-2.64364034e-01 7.79921889e-01 -7.26298988e-01 -1.89216122e-01
-8.56753290e-01 -9.43476975e-01 3.25151265e-01 5.13742745e-01
8.77786815e-01 -9.52460647e-01 -1.25371623e+00 3.43223423e-01
7.72112608e-02 -5.40316105e-01 -3.55643570e-01 5.87096274e-01
-9.51281786e-01 -7.17255175e-01 -6.63520753e-01 -6.95014358e-01
7.74311662e-01 2.39195451e-01 8.54833841e-01 -1.45948738e-01
3.69734690e-02 -1.40823960e-01 -3.40547353e-01 8.84692837e-03
-6.12315275e-02 4.18654352e-01 3.00701231e-01 -4.17540163e-01
1.98809244e-02 -4.90130186e-01 -8.64064991e-01 4.30225670e-01
-6.33540332e-01 2.80536767e-02 9.59225059e-01 9.61362958e-01
5.06199181e-01 3.56420189e-01 4.34424907e-01 -4.95725840e-01
4.52293456e-01 -2.82636434e-01 -8.23916137e-01 1.55517936e-01
-1.04194736e+00 4.68507081e-01 5.11794806e-01 -6.18146777e-01
-1.15547395e+00 -1.22236453e-01 4.16877836e-01 -2.12408289e-01
2.39586234e-01 5.05020440e-01 4.46085483e-01 -3.94663140e-02
8.07134926e-01 1.64559454e-01 1.23051498e-02 -1.72675192e-01
2.71099836e-01 4.33488101e-01 1.63119212e-01 -7.05011010e-01
7.17541456e-01 4.74805951e-01 -1.98929012e-02 -4.21559304e-01
-5.41444838e-01 -2.50075459e-01 1.35308415e-01 -2.91574419e-01
2.62896925e-01 -1.10810483e+00 -8.82906258e-01 2.66066492e-01
-4.73089099e-01 -9.87296581e-01 -3.49677771e-01 5.19335687e-01
-3.82763475e-01 5.62388711e-02 -5.29706895e-01 -1.05694652e+00
-2.89138615e-01 -1.03882408e+00 7.12316632e-01 3.81820112e-01
-2.88351029e-01 -6.85393155e-01 1.89989358e-01 -3.56141597e-01
5.90232074e-01 2.41025597e-01 7.99243331e-01 -1.96747378e-01
-7.07915246e-01 2.92595625e-01 4.41733040e-02 -3.34951192e-01
2.44998649e-01 -5.50208911e-02 -4.14429933e-01 -7.63991773e-01
-5.31136930e-01 -5.08830786e-01 8.59212518e-01 6.18557334e-01
9.62114096e-01 -4.06351030e-01 -6.35666609e-01 3.38336855e-01
1.52123463e+00 5.02014875e-01 4.72281843e-01 9.74652529e-01
1.34379894e-01 4.07861412e-01 1.05662274e+00 1.18149555e+00
1.82632849e-01 6.90318644e-01 6.56094968e-01 -1.53883353e-01
6.70142844e-02 -1.10002451e-01 4.88368660e-01 5.83071947e-01
-2.16922797e-02 -3.50921154e-01 -1.10365999e+00 5.81495583e-01
-2.01123905e+00 -6.27373636e-01 2.09903732e-01 2.54034948e+00
1.12286150e+00 7.14395463e-01 1.71223715e-01 -5.67470118e-02
6.31790936e-01 3.56707752e-01 -8.51674855e-01 -3.78608346e-01
8.20173696e-02 -5.72908036e-02 8.45561385e-01 5.84479690e-01
-7.89613664e-01 1.08930111e+00 6.85890102e+00 1.11485815e+00
-9.91508007e-01 -1.78460836e-01 8.87220025e-01 -6.35089397e-01
-2.09017426e-01 6.54020067e-03 -9.69546914e-01 4.61685926e-01
1.00414920e+00 -2.10502431e-01 5.50127387e-01 8.65370393e-01
3.96738768e-01 -6.97192252e-01 -7.20328987e-01 6.60144091e-01
-3.85698915e-01 -1.29966879e+00 -2.07271546e-01 2.93137252e-01
1.37295437e+00 8.42105001e-02 4.88048464e-01 4.27889854e-01
9.27595139e-01 -8.39020550e-01 8.04385722e-01 -3.44910845e-02
8.59844923e-01 -1.43933880e+00 7.21803427e-01 3.03928018e-01
-1.28862298e+00 -3.63896757e-01 -2.61033505e-01 -1.32960647e-01
6.42456412e-02 7.39936471e-01 -6.92909241e-01 2.00836599e-01
9.74094033e-01 1.08093522e-01 -4.73161429e-01 9.74104702e-01
-2.03140125e-01 5.80884099e-01 -7.49385417e-01 -3.93403441e-01
7.85470605e-01 2.01098487e-01 3.95170063e-01 7.73603678e-01
3.58044654e-01 -2.11876556e-01 3.88550222e-01 4.21945870e-01
2.89177716e-01 -2.47840270e-01 -1.74186662e-01 4.22182888e-01
9.36518312e-01 9.22708392e-01 -8.63446832e-01 -3.65553707e-01
-7.54875913e-02 4.84152347e-01 1.59048200e-01 3.23227465e-01
-9.61642206e-01 -1.91655904e-01 5.89121997e-01 -9.76298824e-02
3.78149331e-01 -2.63770133e-01 -3.84384692e-01 -6.26889646e-01
-1.66818410e-01 -8.58177662e-01 3.16020519e-01 -8.11629966e-02
-6.52028620e-01 7.35378742e-01 2.05103576e-01 -1.27275634e+00
-5.37573040e-01 -1.94853004e-02 -6.48662865e-01 3.15436095e-01
-1.38917351e+00 -6.55353963e-01 -2.67689973e-01 3.26190650e-01
7.40885913e-01 -1.26633480e-01 5.33376038e-01 -1.07900217e-01
-5.54179788e-01 6.76476240e-01 4.85950887e-01 -4.75700200e-01
5.09273887e-01 -1.16257274e+00 4.59149212e-01 7.23228991e-01
-1.57977611e-01 4.64699626e-01 8.22023690e-01 -6.70925081e-01
-1.31418896e+00 -1.01475453e+00 4.42424297e-01 2.69358337e-01
4.67032254e-01 -2.09210739e-01 -4.73511070e-01 3.90121907e-01
3.40946883e-01 -1.58325031e-01 4.56353009e-01 3.74332398e-01
1.41845411e-02 -2.22816020e-01 -7.59629846e-01 1.16260755e+00
8.90281498e-01 2.28219748e-01 5.03784530e-02 2.95396775e-01
4.89739120e-01 -4.12046283e-01 -7.12751448e-01 4.10992444e-01
5.58090925e-01 -1.15136254e+00 7.39462435e-01 -1.23253785e-01
-1.19637186e-03 -2.75101423e-01 -1.08242338e-03 -1.33030355e+00
-5.28341413e-01 -9.01726067e-01 -2.18299165e-01 9.08143818e-01
6.28112674e-01 -7.40119338e-01 1.30008602e+00 2.73377180e-01
6.91407993e-02 -1.20859957e+00 -1.12560153e+00 -1.17662501e+00
3.51461098e-02 9.22256261e-02 5.95176637e-01 4.69826996e-01
2.44143292e-01 -4.67556864e-02 -4.72109318e-01 1.12812430e-01
7.62012661e-01 1.86825350e-01 6.19452119e-01 -7.30838656e-01
-3.23760659e-01 -2.96059579e-01 3.37898582e-01 -1.22937846e+00
-2.95700967e-01 -1.88847736e-01 2.76072741e-01 -1.16208935e+00
2.88016349e-01 -1.00506711e+00 -5.86053789e-01 6.00081682e-01
-8.93760994e-02 1.74238086e-01 -1.02042429e-01 4.81092662e-01
-9.55841303e-01 7.27089167e-01 1.08592343e+00 1.32260263e-01
-7.62099981e-01 -7.69391730e-02 -4.64830786e-01 6.22871876e-01
1.29490471e+00 -4.51810181e-01 -5.11571765e-01 -3.98332357e-01
2.07972229e-01 5.12327477e-02 -1.66957915e-01 -1.22535002e+00
4.83290285e-01 -3.41157049e-01 3.68499458e-01 -8.68755937e-01
3.61183316e-01 -5.73237419e-01 2.16095552e-01 1.19338310e+00
-5.34415603e-01 2.64334857e-01 4.32753623e-01 5.79695165e-01
7.74900168e-02 1.10625133e-01 6.85147047e-01 2.25786828e-02
-8.05055499e-01 -4.36289087e-02 -8.86101902e-01 8.85320548e-03
1.29693115e+00 -3.44882101e-01 -3.06758523e-01 -3.10013205e-01
-2.52163649e-01 8.06004643e-01 4.86856312e-01 2.77520344e-02
3.23307544e-01 -1.44896030e+00 -6.42816126e-01 -6.35632053e-02
-5.51474392e-02 -3.35325189e-02 9.97925103e-02 7.81228483e-01
-4.61113304e-01 5.04707038e-01 -1.94991425e-01 -6.87490880e-01
-1.04617274e+00 2.57651985e-01 -2.72485465e-02 -7.41187572e-01
-5.94455600e-01 8.68512571e-01 -1.90238114e-02 8.00210014e-02
4.37038660e-01 -1.54635683e-01 4.73226495e-02 -4.55081388e-02
3.77901673e-01 7.01063275e-01 -3.46975625e-01 2.50530958e-01
-5.76039135e-01 5.25398195e-01 -3.50874960e-01 -5.01316726e-01
1.25797868e+00 -1.75718039e-01 2.70408630e-01 9.42906216e-02
6.82767332e-01 6.23018779e-02 -1.81301773e+00 -2.51446605e-01
1.18150644e-01 -4.09412682e-01 2.91690975e-01 -7.23297000e-01
-1.10405457e+00 2.31731907e-01 6.64749861e-01 1.65304214e-01
1.19163501e+00 3.85942589e-03 5.85989952e-01 4.25439864e-01
8.40155959e-01 -1.35257983e+00 5.16099572e-01 4.53514099e-01
4.37450796e-01 -9.88346577e-01 2.85610050e-01 -1.52879700e-01
-6.29910409e-01 8.39407027e-01 9.26346064e-01 -1.81562543e-01
1.17741980e-01 6.91334307e-01 -1.48178160e-01 3.34574506e-02
-1.34251368e+00 -2.01315403e-01 -2.35349461e-01 3.55971187e-01
-3.44862752e-02 -4.02462371e-02 -6.00831658e-02 -3.21652889e-01
-7.21023306e-02 -2.76375771e-01 3.20094049e-01 1.13746524e+00
-9.37117219e-01 -1.03821290e+00 -4.70930278e-01 3.17180663e-01
-2.10636273e-01 -1.39951557e-01 1.74622506e-01 1.03198409e+00
-1.54183775e-01 1.01869869e+00 3.67853045e-01 -4.00542349e-01
-7.22569004e-02 -4.72316086e-01 3.33525717e-01 -3.88157994e-01
-6.46504343e-01 4.43544865e-01 2.82541960e-01 -7.60707438e-01
-1.66669264e-01 -6.29258215e-01 -1.29248512e+00 -5.97541630e-01
-4.79025781e-01 4.66791123e-01 2.71019697e-01 4.67516541e-01
4.05693293e-01 6.36667848e-01 8.48241985e-01 -7.03031600e-01
-6.16424918e-01 -7.15656102e-01 -5.63006043e-01 -5.92382491e-01
6.17268570e-02 -6.77296877e-01 -4.43375975e-01 -4.47416753e-01]
|
[3.864392042160034, 1.8637675046920776]
|
9358e140-115d-47a9-86cf-ad03bce23bf8
|
event-event-relation-extraction-using
| null | null |
https://openreview.net/forum?id=USuyAFWEuY
|
https://openreview.net/pdf?id=USuyAFWEuY
|
Event-Event Relation Extraction using Probabilistic Box Embedding
|
To understand a story with multiple events, it is important to capture the proper relations across these events. However, existing event relation extraction (ERE) framework regards it as a multi-class classification task and do not guarantee any coherence between different relation types, such as anti-symmetry. If a phone line "died" after "storm", then it is obvious that the "storm" happened before the "died". Current framework of event relation extraction do not guarantee this coherence and thus enforces it via constraint loss function (Wang et al., 2020). In this work, we propose to modify the underlying ERE model to guarantee coherence by representing each event as a box representation (BERE) without applying explicit constraints. From our experiments, BERE also shows stronger conjunctive constraint satisfaction while performing on par or better in F1 compared to previous models with constraint injection.
|
['Anonymous']
|
2021-11-16
| null | null | null |
acl-arr-november-2021-11
|
['event-relation-extraction']
|
['natural-language-processing']
|
[ 3.04066449e-01 4.69549298e-01 -4.95656967e-01 -4.66254801e-01
-3.24468821e-01 -6.90699577e-01 9.59686816e-01 6.53674066e-01
-1.09380849e-01 1.02577889e+00 4.54453826e-01 -4.90353197e-01
-2.94705093e-01 -1.10923648e+00 -6.41801476e-01 -9.47094858e-02
-2.10075476e-03 4.32763875e-01 5.60762823e-01 -1.50055990e-01
-9.39716026e-02 2.59113222e-01 -1.68249619e+00 7.32887685e-01
4.20793980e-01 7.70204544e-01 -2.95640171e-01 3.32485020e-01
1.92696583e-02 1.16556978e+00 -8.91360521e-01 -7.45340884e-01
-1.05595179e-01 -5.72628498e-01 -1.25392878e+00 -1.95278317e-01
8.65492523e-02 -1.77149817e-01 -1.18984491e-01 6.05624735e-01
-2.08677799e-02 1.33921221e-01 8.46824110e-01 -1.61851835e+00
-2.68843383e-01 1.03231454e+00 -3.50592315e-01 2.35828876e-01
8.80548835e-01 -4.74622548e-01 1.61902857e+00 -5.64113379e-01
1.04561234e+00 8.51383567e-01 6.41109526e-01 3.38638783e-01
-1.22487319e+00 -6.67437255e-01 3.93284827e-01 4.11373645e-01
-1.40575993e+00 -3.49885315e-01 5.55163622e-01 -2.99950868e-01
1.38300657e+00 8.63200426e-01 6.30923986e-01 1.31622899e+00
1.35962084e-01 6.81287229e-01 7.78235257e-01 -5.64164400e-01
1.89672768e-01 2.86754351e-02 4.65924859e-01 1.31206498e-01
4.74680066e-01 5.28359860e-02 -8.86427522e-01 -7.45123103e-02
3.61734986e-01 -3.09753627e-01 -2.83731908e-01 5.60849793e-02
-1.02694166e+00 6.41007364e-01 -5.17727621e-02 4.05539483e-01
-1.34336919e-01 -2.09467277e-01 4.56102729e-01 1.88952401e-01
1.45276621e-01 3.59097600e-01 -6.91912889e-01 -1.41216055e-01
-8.28149080e-01 6.59307420e-01 1.02848232e+00 1.31798053e+00
3.43404770e-01 -4.70504105e-01 -2.09365591e-01 1.96469605e-01
2.21481621e-01 -2.42147490e-01 -3.32344659e-02 -5.57840765e-01
3.67472559e-01 7.58533299e-01 2.25122645e-01 -9.96569037e-01
-6.21943593e-01 -3.68299037e-01 -5.91798723e-01 1.64524898e-01
4.91207421e-01 -3.02332472e-02 -5.47639608e-01 1.82810545e+00
2.32984319e-01 3.28155637e-01 1.16414830e-01 6.10402465e-01
8.87444496e-01 5.70104003e-01 3.74877334e-01 -5.87788522e-01
1.59160542e+00 -5.41486561e-01 -1.11648142e+00 -9.69252586e-02
7.06858456e-01 -5.76432288e-01 8.25371981e-01 5.69578230e-01
-9.83603716e-01 -1.79993555e-01 -1.27243352e+00 -2.06215128e-01
-5.57389557e-01 -2.87643939e-01 1.13428187e+00 6.96451902e-01
-3.29191089e-01 4.14037675e-01 -7.22597659e-01 -3.35013479e-01
2.29590878e-01 2.09768951e-01 -5.50969541e-01 1.77993447e-01
-1.47825170e+00 1.16769516e+00 6.94297552e-01 -2.73318022e-01
-4.52060223e-01 -8.60559642e-01 -1.00446820e+00 1.90485016e-01
8.89153540e-01 -5.93093574e-01 1.12627208e+00 -6.47286355e-01
-1.03325629e+00 9.03206825e-01 -2.54868418e-01 -4.35512245e-01
4.19777662e-01 -5.42658269e-01 -9.01312590e-01 -2.07919732e-01
8.49410370e-02 2.08832085e-01 8.56558383e-02 -1.32578421e+00
-1.01961088e+00 -1.68158591e-01 5.32992303e-01 -3.82540263e-02
-1.91517323e-02 6.21098578e-01 -3.17801028e-01 -6.21886015e-01
1.98063761e-01 -6.18225396e-01 2.10999772e-01 -3.36733699e-01
-7.87989676e-01 -4.35738474e-01 7.56361783e-01 -3.73440951e-01
1.97294545e+00 -1.90797055e+00 2.56759822e-02 3.02185178e-01
5.16599193e-02 -1.25259295e-01 4.53533679e-01 6.48919165e-01
-6.79809034e-01 4.43645567e-01 -2.66542554e-01 -1.55052528e-01
9.48291570e-02 6.36471629e-01 -4.64793652e-01 3.84402394e-01
4.65268642e-01 6.32429659e-01 -6.60755634e-01 -5.73594987e-01
-4.38573025e-02 2.92991996e-01 -6.96062505e-01 5.50610907e-02
-4.09141421e-01 1.64257929e-01 -1.29152551e-01 6.96368992e-01
4.69531149e-01 -4.10477743e-02 5.80013573e-01 -2.53910154e-01
-2.43287086e-01 6.42622054e-01 -1.74911487e+00 1.37363040e+00
-5.30140959e-02 4.98152047e-01 -2.99066663e-01 -9.53179598e-01
6.76659286e-01 7.37012088e-01 5.48512042e-01 -4.04654145e-01
1.36416420e-01 -1.14043184e-01 -8.18600133e-02 -3.96054626e-01
5.12016475e-01 -2.13176399e-01 -3.11581492e-01 1.35737956e-01
-1.43998921e-01 -7.40412399e-02 5.87904990e-01 1.36457965e-01
1.20067739e+00 4.80879873e-01 6.78823829e-01 -2.08176389e-01
5.21168828e-01 1.82283551e-01 1.04444957e+00 4.97470170e-01
2.22240314e-01 7.28462934e-01 1.01416981e+00 -2.97638029e-01
-7.00224340e-01 -1.07530200e+00 -4.02043164e-01 5.17061472e-01
-5.19018341e-03 -1.11578441e+00 -2.34946385e-01 -8.75998735e-01
-1.42699257e-01 1.22670853e+00 -6.44497693e-01 1.28243223e-01
-8.28084409e-01 -7.78367817e-01 7.74784684e-01 4.96870130e-01
2.16354147e-01 -8.62589657e-01 -8.05114925e-01 3.61201853e-01
-6.12968445e-01 -1.32230866e+00 -6.87118694e-02 5.39087951e-01
-2.29686067e-01 -1.34333217e+00 1.64394438e-01 -4.42395478e-01
3.72259498e-01 -4.71985042e-01 1.37234366e+00 3.36186327e-02
-5.56014776e-02 -4.84100908e-01 -7.61186063e-01 -6.59203947e-01
-5.53080924e-02 -1.84870586e-01 -2.41138920e-01 -1.80882439e-01
4.54504788e-01 -7.02200532e-01 -4.69573997e-02 2.32878581e-01
-1.13066566e+00 9.68500413e-03 -1.13650858e-02 5.92027128e-01
5.57098925e-01 7.78928816e-01 4.12372589e-01 -1.29843712e+00
4.50236142e-01 -5.55398524e-01 -2.48681411e-01 3.86814296e-01
-6.45099461e-01 -1.19556732e-01 4.59270120e-01 -4.34426785e-01
-9.59411800e-01 -1.14052363e-01 -7.18538240e-02 3.11762691e-01
-4.17423069e-01 7.47770309e-01 -6.67296052e-01 8.00609648e-01
5.12035370e-01 -2.14373887e-01 -8.55694175e-01 -1.96801513e-01
2.26811409e-01 2.44638488e-01 5.47320008e-01 -9.00361657e-01
5.23436427e-01 4.05739874e-01 1.60256609e-01 -3.26704144e-01
-1.05291915e+00 -4.76141334e-01 -6.39892280e-01 -7.94287845e-02
9.44333076e-01 -6.84766531e-01 -1.00483739e+00 9.61250141e-02
-1.33743250e+00 -1.62973866e-01 -3.41617703e-01 4.49035048e-01
-3.96880597e-01 2.41781101e-01 -4.32455152e-01 -9.20508623e-01
2.40095049e-01 -5.18425763e-01 7.55510330e-01 1.57971561e-01
-1.01700866e+00 -7.71728277e-01 -1.29963607e-01 6.56635985e-02
-4.83482815e-02 6.70493543e-01 1.18975842e+00 -7.10734487e-01
-1.88633978e-01 -1.95776895e-01 -2.52890829e-02 -2.48785034e-01
2.54824132e-01 4.39403027e-01 -7.39533424e-01 2.49162897e-01
-5.84599620e-04 3.62918153e-02 3.15746427e-01 5.51143326e-02
8.38995874e-01 -4.12576497e-01 -4.45930958e-01 2.92751580e-01
1.42755008e+00 3.00597638e-01 1.04728651e+00 5.81536591e-01
2.58999527e-01 9.46282804e-01 6.09765232e-01 5.72987795e-01
5.96985519e-01 1.06476974e+00 2.38124073e-01 1.15865707e-01
-2.85435379e-01 -3.38062108e-01 2.59819806e-01 1.25722840e-01
2.02596020e-02 -7.50045598e-01 -8.63986433e-01 5.45271814e-01
-1.96421504e+00 -1.30046546e+00 -7.34455645e-01 2.05680060e+00
1.23548460e+00 6.66499734e-01 8.00078586e-02 8.22734654e-01
2.71868974e-01 -1.55448588e-02 1.14268258e-01 -5.19852877e-01
-5.56439638e-01 4.01216060e-01 1.36538282e-01 7.39098310e-01
-1.03268099e+00 8.46610844e-01 6.29392433e+00 6.92619264e-01
-5.79396427e-01 -3.97834508e-03 2.81376183e-01 1.33375883e-01
-5.53183198e-01 6.12658978e-01 -1.06102824e+00 3.11906546e-01
6.72679007e-01 -1.29470199e-01 -1.39724746e-01 2.36455724e-01
3.04121245e-02 -6.26801312e-01 -1.49397433e+00 4.87185985e-01
6.97132666e-03 -1.16278338e+00 1.29712254e-01 -2.33764589e-01
4.38805580e-01 -9.17923331e-01 -5.57597995e-01 3.23338062e-01
3.25156033e-01 -1.17463434e+00 1.13034105e+00 5.67188144e-01
4.64673042e-01 -7.58474350e-01 6.65514588e-01 4.38118160e-01
-1.25888169e+00 2.38095179e-01 3.27841312e-01 -5.26896834e-01
5.32969058e-01 8.05366516e-01 -6.45603716e-01 1.11456883e+00
6.17107987e-01 4.70703214e-01 -3.60963613e-01 7.33405888e-01
-5.96024930e-01 6.23268545e-01 -4.42269772e-01 1.95475087e-01
-2.02111959e-01 -3.16265933e-02 6.53598011e-01 1.42658377e+00
3.65226977e-02 4.63452369e-01 5.09382226e-02 7.60463953e-01
3.10947210e-01 -1.28614768e-01 -5.21928847e-01 1.50360003e-01
3.78342032e-01 7.28046596e-01 -8.79996717e-01 -3.45301032e-01
-6.25440180e-01 7.47177362e-01 5.09316958e-02 2.66843319e-01
-1.06059992e+00 -3.04861099e-01 5.36494792e-01 1.93907559e-01
1.26167715e-01 -1.20021820e-01 -7.46315360e-01 -1.00919425e+00
2.54052907e-01 -7.53976047e-01 7.92822838e-01 -8.38709474e-01
-9.72688854e-01 5.03086388e-01 4.00537223e-01 -9.97519851e-01
-8.10398832e-02 -4.06157285e-01 -5.03500164e-01 5.83509147e-01
-1.31819141e+00 -1.35259247e+00 1.33445486e-01 6.44122481e-01
2.62563974e-01 4.56586063e-01 1.15626025e+00 6.57889962e-01
-6.33693516e-01 6.67362928e-01 -1.00704610e+00 7.39279687e-02
5.75300455e-01 -1.35236216e+00 -1.38976589e-01 1.18259358e+00
2.50255883e-01 6.58735633e-01 1.20126367e+00 -9.59570289e-01
-8.45474958e-01 -7.10742950e-01 1.73801732e+00 -6.96685731e-01
6.17426455e-01 -3.91598046e-01 -9.82875884e-01 1.04557133e+00
2.95846820e-01 -2.85427451e-01 7.83709466e-01 4.81754482e-01
-7.24345148e-01 1.03569359e-01 -1.00169837e+00 7.08465517e-01
1.15218878e+00 -3.53998125e-01 -9.08842504e-01 3.85306835e-01
7.37330854e-01 -3.90410870e-01 -9.18022156e-01 8.49798739e-01
3.17028403e-01 -9.22326803e-01 8.82851005e-01 -9.63752210e-01
5.82749486e-01 -5.64748108e-01 -3.30799073e-01 -6.89744115e-01
2.86481064e-03 -5.08117259e-01 -4.33723718e-01 1.71896183e+00
8.28170598e-01 -3.30827117e-01 6.64913714e-01 9.56964672e-01
-1.89701557e-01 -5.71719706e-01 -9.62782264e-01 -9.01580989e-01
-1.21353909e-01 -9.27269399e-01 6.53345466e-01 1.33432388e+00
5.62115252e-01 4.00728822e-01 -3.85638237e-01 4.64488387e-01
1.62101254e-01 5.64884804e-02 4.34617907e-01 -1.25206459e+00
-3.23644191e-01 -5.90040743e-01 -1.55364379e-01 -4.74545926e-01
1.81747586e-01 -7.06577778e-01 -1.38733804e-01 -1.61915624e+00
1.35060176e-01 -5.07003427e-01 -6.41149580e-02 8.76192272e-01
-9.32204947e-02 -8.88200030e-02 -1.66571334e-01 -1.33130908e-01
-3.85424405e-01 8.85578841e-02 8.47934306e-01 1.24418609e-01
-4.30004159e-03 1.02989316e-01 -6.18749082e-01 7.00545192e-01
7.21462429e-01 -6.89739764e-01 -3.93737197e-01 -1.14439636e-01
7.65585482e-01 2.68105567e-01 3.01168412e-01 -8.65212440e-01
3.09887141e-01 -5.61159730e-01 6.51464462e-02 -4.26452905e-01
2.80706376e-01 -1.15773571e+00 8.67067277e-01 2.59136379e-01
-3.00852329e-01 9.56182554e-02 3.17289531e-01 2.65958279e-01
-4.96213824e-01 -2.51329869e-01 1.11370079e-01 2.72390544e-01
-4.66730773e-01 -1.68299407e-01 -3.05660754e-01 -1.73368268e-02
1.25790823e+00 -1.41967446e-01 -3.85770887e-01 -1.51112050e-01
-8.70705009e-01 1.20170876e-01 1.30056754e-01 4.43970203e-01
3.64903629e-01 -1.16876328e+00 -7.53406346e-01 -1.34986704e-02
1.20299622e-01 1.32437959e-01 -1.39088258e-01 6.17359877e-01
-3.12874645e-01 1.51457012e-01 2.30826549e-02 4.14626263e-02
-1.41941726e+00 5.43758869e-01 -4.92801033e-02 -5.35798132e-01
-6.21776581e-01 8.25291872e-01 -4.26007360e-01 -5.23393005e-02
5.20973682e-01 -5.00498176e-01 -4.80007768e-01 4.65920657e-01
3.85988802e-01 5.99707514e-02 1.92746162e-01 -4.69759673e-01
-7.60020018e-01 2.32258454e-01 1.62054449e-01 -3.15340728e-01
1.18774998e+00 5.39241396e-02 -2.29447141e-01 4.85239893e-01
7.11498976e-01 4.85679835e-01 -6.93474352e-01 3.05563044e-02
5.32947481e-01 -2.59058595e-01 -3.11047703e-01 -1.08132911e+00
-5.86076498e-01 2.61961162e-01 -1.95594490e-01 5.30574262e-01
1.17052031e+00 9.81252417e-02 5.91764987e-01 3.08063645e-02
3.37606162e-01 -9.15145516e-01 -3.48447531e-01 6.07299447e-01
9.01707411e-01 -9.14802134e-01 3.78868312e-01 -1.17717314e+00
-6.92500591e-01 1.00876224e+00 5.58649480e-01 1.55554131e-01
7.34123647e-01 7.80928850e-01 -2.20046476e-01 -3.27255815e-01
-9.08525109e-01 -3.60071540e-01 2.72932708e-01 4.40937161e-01
6.97261393e-01 1.92648023e-01 -8.53072762e-01 1.01025057e+00
-3.97336036e-01 -2.39328202e-02 4.84066695e-01 1.12770259e+00
7.93685112e-03 -1.40929711e+00 -1.44399464e-01 1.74260631e-01
-8.35519791e-01 -1.25329480e-01 -4.61721927e-01 1.11363208e+00
5.60411930e-01 1.38658190e+00 5.68053918e-03 -3.66633922e-01
6.78302228e-01 2.34319106e-01 3.60607028e-01 -8.21009696e-01
-9.17151690e-01 -1.29113585e-01 8.65256667e-01 -4.01163101e-01
-6.03923202e-01 -9.04662549e-01 -1.57229245e+00 -3.29354018e-01
-5.60084105e-01 2.56843399e-02 1.04233645e-01 1.25175536e+00
-1.08640626e-01 8.16085458e-01 1.84246927e-01 2.36036554e-01
2.25461870e-01 -7.00831592e-01 -3.74640644e-01 6.55492663e-01
-2.35838778e-02 -8.17269564e-01 -2.89826691e-01 3.46651375e-01]
|
[9.160270690917969, 9.08932113647461]
|
faf1c000-d36c-40e1-bb5f-0a8d78238364
|
degradation-noise-aware-deep-unfolding
|
2305.04047
| null |
https://arxiv.org/abs/2305.04047v1
|
https://arxiv.org/pdf/2305.04047v1.pdf
|
Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral Image Denoising
|
Hyperspectral imaging (HI) has emerged as a powerful tool in diverse fields such as medical diagnosis, industrial inspection, and agriculture, owing to its ability to detect subtle differences in physical properties through high spectral resolution. However, hyperspectral images (HSIs) are often quite noisy because of narrow band spectral filtering. To reduce the noise in HSI data cubes, both model-driven and learning-based denoising algorithms have been proposed. However, model-based approaches rely on hand-crafted priors and hyperparameters, while learning-based methods are incapable of estimating the inherent degradation patterns and noise distributions in the imaging procedure, which could inform supervised learning. Secondly, learning-based algorithms predominantly rely on CNN and fail to capture long-range dependencies, resulting in limited interpretability. This paper proposes a Degradation-Noise-Aware Unfolding Network (DNA-Net) that addresses these issues. Firstly, DNA-Net models sparse noise, Gaussian noise, and explicitly represent image prior using transformer. Then the model is unfolded into an end-to-end network, the hyperparameters within the model are estimated from the noisy HSI and degradation model and utilizes them to control each iteration. Additionally, we introduce a novel U-Shaped Local-Non-local-Spectral Transformer (U-LNSA) that captures spectral correlation, local contents, and non-local dependencies simultaneously. By integrating U-LNSA into DNA-Net, we present the first Transformer-based deep unfolding HSI denoising method. Experimental results show that DNA-Net outperforms state-of-the-art methods, and the modeling of noise distributions helps in cases with heavy noise.
|
['Wilfried Philips', 'Hiep Luong', 'Hongyan zhang', 'Shaoguang Huang', 'Kai Feng', 'JieZhang Cao', 'Haijin Zeng']
|
2023-05-06
| null | null | null | null |
['medical-diagnosis']
|
['medical']
|
[ 5.96969903e-01 -3.91599983e-01 2.94773340e-01 -1.84137598e-01
-6.81457818e-01 -2.71281719e-01 5.93255572e-02 -1.97158217e-01
6.54219314e-02 5.72687984e-01 1.47157252e-01 4.14351039e-02
-4.97810423e-01 -8.74347150e-01 -5.46444058e-01 -1.34326899e+00
1.97156847e-01 -7.07674921e-02 1.44627839e-01 -1.78881407e-01
-2.45136067e-01 3.96667302e-01 -1.43346357e+00 2.41746366e-01
1.39792144e+00 1.28306067e+00 3.93960416e-01 2.88105637e-01
1.52817175e-01 5.56505561e-01 -2.04104066e-01 2.71405339e-01
2.60725409e-01 -6.31741524e-01 -3.12648304e-02 3.21370095e-01
-5.23912138e-04 -1.69537693e-01 -6.36028230e-01 1.46301234e+00
6.23308897e-01 2.09177196e-01 5.53620934e-01 -8.68981838e-01
-6.88329101e-01 3.52044702e-01 -8.10313523e-01 -1.76549852e-01
-1.32099152e-01 5.34947455e-01 3.87018859e-01 -6.63814962e-01
2.05894932e-01 1.00184166e+00 8.42248619e-01 1.08053528e-01
-1.36181903e+00 -6.32871866e-01 -2.12762468e-02 3.48423749e-01
-1.26791883e+00 -2.00021923e-01 1.21012628e+00 -3.97454441e-01
4.88914758e-01 1.33142442e-01 6.73174798e-01 1.02891839e+00
1.22657999e-01 5.94274044e-01 1.41239846e+00 -2.51868248e-01
1.34207010e-01 -4.08712506e-01 -4.84100953e-02 4.10067022e-01
1.82625875e-01 2.64110297e-01 -4.53428924e-01 1.30705414e-02
7.76347458e-01 8.61908793e-02 -7.92129099e-01 -2.18011662e-01
-9.33424771e-01 4.64387894e-01 7.20962226e-01 3.13578784e-01
-6.70065045e-01 -2.40144327e-01 3.23659688e-01 2.94483211e-02
5.75632691e-01 1.82924524e-01 -3.24455112e-01 2.87488073e-01
-9.35298443e-01 -1.80748776e-01 3.92229587e-01 5.42005181e-01
1.00376999e+00 2.44020402e-01 -3.34895968e-01 1.07560587e+00
2.56796896e-01 7.26765990e-01 2.22828731e-01 -9.04989123e-01
9.52114686e-02 3.47432047e-01 -5.26096895e-02 -1.08093870e+00
-5.07270098e-01 -8.73500466e-01 -1.63946593e+00 1.46026999e-01
-8.63779895e-03 -7.91479722e-02 -1.12856305e+00 1.68890107e+00
1.46815404e-01 3.35303485e-01 -4.48053516e-02 1.06196833e+00
7.09015608e-01 8.42867315e-01 -4.79069538e-02 -6.85116589e-01
1.10237455e+00 -7.89963484e-01 -9.07948196e-01 -2.15406939e-01
3.29458453e-02 -5.39504826e-01 1.14315689e+00 7.54162192e-01
-8.02940786e-01 -5.40537357e-01 -1.04250288e+00 9.86815318e-02
-1.29952073e-01 4.00335014e-01 1.86498314e-01 4.91247296e-01
-7.69574344e-01 7.27254868e-01 -9.47823286e-01 -1.87068239e-01
5.83163023e-01 -5.69869066e-03 -3.52585465e-02 -4.46559727e-01
-1.15423048e+00 5.86672962e-01 4.25280362e-01 7.43832111e-01
-9.59766626e-01 -7.01684356e-01 -6.69138193e-01 2.45958433e-01
5.29082894e-01 -6.58036709e-01 6.36031449e-01 -9.71928656e-01
-1.66198730e+00 2.62849420e-01 -1.18211299e-01 2.69685388e-02
2.44199648e-01 -1.50962137e-02 -6.24212027e-01 3.38586539e-01
-1.67169631e-01 3.37606557e-02 1.02807987e+00 -1.62553525e+00
-1.33928046e-01 -4.84601229e-01 -2.76491523e-01 7.54409507e-02
-5.52288353e-01 -3.29571307e-01 -2.83150077e-01 -6.57181501e-01
6.24183655e-01 -5.52384019e-01 -2.28322253e-01 1.23167805e-01
-4.89982218e-01 3.85847241e-01 1.00560081e+00 -9.90020275e-01
1.13574457e+00 -2.33391476e+00 7.71896467e-02 3.37819457e-01
1.59195662e-01 5.40720105e-01 -3.04143786e-01 3.50401103e-01
-1.50652990e-01 -8.21200535e-02 -7.75481880e-01 1.04524627e-01
-1.13353021e-01 2.20792130e-01 8.88905115e-03 5.62020600e-01
1.38476014e-01 5.22121787e-01 -9.04120982e-01 -8.72991234e-02
3.26143712e-01 7.58074105e-01 -1.83136314e-01 2.73778588e-01
-3.91177744e-01 6.70007706e-01 -4.45066124e-01 8.29014719e-01
1.11413658e+00 -1.38777241e-01 9.63969380e-02 -1.06889832e+00
-2.73751825e-01 -3.24656099e-01 -1.10179174e+00 1.67834377e+00
-3.25428843e-01 2.25269869e-01 7.19399095e-01 -1.15064228e+00
9.22290385e-01 3.25595737e-01 5.07826567e-01 -6.68499887e-01
9.19940546e-02 2.93078750e-01 -1.81383386e-01 -8.58668387e-01
-1.50757715e-01 -3.80731732e-01 5.36766648e-01 -9.97256264e-02
-2.07493693e-01 -1.83663219e-01 4.49434780e-02 -2.52990574e-01
1.00925994e+00 2.06718102e-01 -1.07654724e-02 -1.99001804e-01
6.81287289e-01 -1.94828302e-01 8.44385743e-01 6.09469891e-01
-1.30028352e-01 8.09176743e-01 4.12287980e-01 -1.02556787e-01
-9.20895576e-01 -8.96417201e-01 -2.39610046e-01 6.61725163e-01
1.86083779e-01 1.01830885e-01 -6.29932523e-01 -2.49818265e-01
-2.55587459e-01 6.26411021e-01 -4.05351996e-01 -2.75049239e-01
-1.51494846e-01 -1.33427095e+00 3.37022066e-01 2.80113131e-01
1.00689173e+00 -7.82704055e-01 -9.07957256e-02 3.64645034e-01
-3.94500136e-01 -9.55556750e-01 -1.53855756e-01 3.21772903e-01
-8.11812758e-01 -1.00232136e+00 -4.53900456e-01 -3.91704798e-01
6.20293617e-01 4.02537555e-01 7.55954981e-01 -2.54140735e-01
-3.03763032e-01 1.79689988e-01 -3.61544698e-01 -2.96595424e-01
-2.10216388e-01 -2.01389343e-01 -2.11762026e-01 3.09737325e-01
1.04351565e-01 -1.03125775e+00 -8.38244021e-01 2.64175057e-01
-1.38496208e+00 1.52172027e-02 7.96625137e-01 1.23368645e+00
6.99859560e-01 6.51652932e-01 3.91975462e-01 -7.78618991e-01
4.46573287e-01 -4.51651543e-01 -6.02764010e-01 3.91641587e-01
-4.65631932e-01 -1.81378901e-01 7.93295324e-01 -3.87886256e-01
-1.40373659e+00 1.75833985e-01 -1.60416305e-01 -6.48130119e-01
-2.57636100e-01 1.00993145e+00 -6.59671128e-01 -2.57239729e-01
7.80662954e-01 3.75508875e-01 1.39971673e-01 -4.55834478e-01
2.07236153e-03 5.75280070e-01 7.26688027e-01 -5.32419384e-01
9.29407120e-01 4.72757816e-01 1.79460287e-01 -1.15108299e+00
-1.09220588e+00 -4.27760631e-01 -3.77792150e-01 -3.02616030e-01
6.29083514e-01 -1.07627821e+00 -5.47125638e-01 9.68394995e-01
-9.84168351e-01 -3.79462570e-01 -1.12243399e-01 4.21541631e-01
-2.91516423e-01 5.76458216e-01 -6.95235610e-01 -8.05421054e-01
-4.73117709e-01 -1.06476331e+00 8.71722400e-01 3.55186015e-01
5.47889948e-01 -8.41487885e-01 -2.97870398e-01 3.70031357e-01
6.81164563e-01 4.27556843e-01 1.12066197e+00 2.25640852e-02
-5.86811841e-01 -3.19767557e-02 -5.82090855e-01 8.18300843e-01
3.20263982e-01 -3.91410738e-02 -1.25300431e+00 -3.46976817e-01
3.95915210e-01 -3.19352716e-01 1.02696264e+00 9.07334745e-01
1.62276042e+00 -6.14521019e-02 -6.70343414e-02 1.07093656e+00
1.85182929e+00 8.87020603e-02 8.94268811e-01 2.73498774e-01
8.47549140e-01 5.42424619e-01 2.84288824e-01 5.08348167e-01
-2.53307838e-02 1.17957585e-01 7.97272742e-01 -4.34385598e-01
-9.21236724e-02 6.96976706e-02 2.36363843e-01 7.57662237e-01
-5.01970313e-02 -3.86011481e-01 -6.62981987e-01 4.13756967e-01
-1.75791848e+00 -8.16180468e-01 -3.96087915e-01 1.98875690e+00
8.73038888e-01 -1.74539402e-01 -3.98916960e-01 1.08592346e-01
6.47436142e-01 3.21131378e-01 -9.92631912e-01 4.82665449e-01
-5.95924079e-01 1.10867925e-01 4.90217030e-01 2.44110689e-01
-1.05944467e+00 5.18276870e-01 5.32690954e+00 9.34951723e-01
-1.26831245e+00 1.01174906e-01 6.80469990e-01 2.20070690e-01
-3.71071994e-01 -1.79342464e-01 -1.08994596e-01 3.93868446e-01
4.71320152e-01 2.80659556e-01 6.95525765e-01 2.85569757e-01
6.97108507e-01 -2.45768949e-01 -5.53152025e-01 1.01674068e+00
-1.02375343e-01 -8.78508329e-01 -9.35719460e-02 -2.19839633e-01
7.56832719e-01 -6.22544624e-03 5.49186952e-02 -2.70576105e-02
3.56261767e-02 -8.85577440e-01 3.92327040e-01 8.07582140e-01
8.57265234e-01 -6.21858060e-01 8.76251042e-01 4.40285534e-01
-1.02521026e+00 -2.94245303e-01 -5.79646826e-01 2.34847695e-01
3.56002636e-02 1.48085237e+00 -9.21106786e-02 9.14053798e-01
8.10945928e-01 8.66080582e-01 -2.19361365e-01 1.04984331e+00
-3.49127203e-01 1.03733730e+00 -3.07499021e-01 5.43800354e-01
8.98389593e-02 -8.51230145e-01 5.87572575e-01 1.03595376e+00
7.54544497e-01 5.77350080e-01 3.52521122e-01 1.12351286e+00
5.48765250e-02 -2.62789160e-01 -2.21693784e-01 -5.16244769e-02
1.63749740e-01 1.38666475e+00 -5.82729638e-01 -5.00351451e-02
-3.76597196e-01 8.49808455e-01 -2.47642681e-01 8.61972988e-01
-6.58375382e-01 -2.94427067e-01 6.22588098e-01 1.52092353e-01
2.54290283e-01 -1.75171658e-01 -3.33257586e-01 -1.13515508e+00
6.10954501e-02 -1.11931884e+00 1.55944228e-01 -1.21893418e+00
-1.53419101e+00 5.02746403e-01 -2.45248720e-01 -1.18076658e+00
4.48676944e-01 -6.36237264e-01 -4.97488797e-01 9.82743919e-01
-1.90916467e+00 -1.32777047e+00 -8.76843393e-01 5.11649907e-01
2.81728506e-01 2.51849860e-01 5.56171894e-01 3.75117213e-01
-9.14492548e-01 -2.13297531e-02 5.94924986e-01 -1.19922444e-01
7.68617094e-01 -9.08781290e-01 -4.11209792e-01 1.14604473e+00
-5.85635424e-01 2.66766965e-01 7.93147564e-01 -6.76839411e-01
-1.41184318e+00 -1.31498134e+00 3.77347767e-02 4.52800244e-01
6.92656934e-01 7.07200840e-02 -1.31301892e+00 1.53590918e-01
1.47704244e-01 4.25854534e-01 4.79372978e-01 -2.64199138e-01
-2.97332019e-01 -6.83676660e-01 -1.17496502e+00 2.86157668e-01
8.85146320e-01 -4.99968916e-01 1.61518380e-01 4.84789550e-01
6.16102338e-01 -3.69403780e-01 -8.95647764e-01 6.96250796e-01
2.89654881e-01 -1.19407094e+00 9.29838300e-01 7.61833563e-02
5.17863572e-01 -7.09855378e-01 -1.18529581e-01 -1.64293635e+00
-7.41005480e-01 -3.91162068e-01 6.12641647e-02 1.26378369e+00
8.77586305e-02 -6.62424505e-01 5.16627252e-01 2.57034212e-01
-5.49941957e-01 -5.13198137e-01 -5.50777555e-01 -6.95178449e-01
-3.54261160e-01 -2.88857728e-01 5.96331656e-01 9.11748469e-01
-5.66320240e-01 -4.05319631e-02 -3.73180926e-01 8.32139790e-01
9.64182019e-01 1.42499059e-02 1.73438236e-01 -1.27267504e+00
-2.82025099e-01 -3.31663102e-01 2.00543012e-02 -8.31205249e-01
-2.28586812e-02 -3.73920977e-01 4.42709833e-01 -1.64445448e+00
2.43844539e-01 -2.32027471e-01 -4.11595255e-01 5.71993768e-01
-2.77606159e-01 1.82266980e-01 -2.45014682e-01 1.22564472e-01
-1.36145428e-01 8.95348549e-01 1.44351888e+00 -5.35308838e-01
-1.11041941e-01 -1.58423617e-01 -5.43155074e-01 6.40613973e-01
7.16957271e-01 -2.33273536e-01 -5.35271943e-01 -5.13887882e-01
3.15841198e-01 1.15204945e-01 5.58911562e-01 -1.21859097e+00
2.75320977e-01 -2.86293209e-01 4.95910168e-01 -5.77257693e-01
8.90885815e-02 -1.03788674e+00 4.37114865e-01 2.01592416e-01
1.67958345e-02 -7.46259153e-01 8.00696462e-02 6.73494220e-01
-5.70819914e-01 -7.99713805e-02 1.02969182e+00 -1.30786821e-01
-5.13171256e-01 5.75614750e-01 -3.71191114e-01 -3.07693571e-01
5.88545024e-01 -2.26886511e-01 -3.84403914e-01 -3.44143242e-01
-5.94012439e-01 1.99408263e-01 3.88536721e-01 -3.70097578e-01
5.45657516e-01 -1.05102980e+00 -7.75062859e-01 3.62066120e-01
4.68549617e-02 4.47290480e-01 8.26961875e-01 1.03326058e+00
-5.01416802e-01 -2.66215265e-01 3.25535461e-02 -7.43362546e-01
-8.54664922e-01 3.78100365e-01 5.46144664e-01 -2.46840477e-01
-4.31662470e-01 7.60302603e-01 2.13242874e-01 -5.16770005e-01
4.80510965e-02 -4.16232586e-01 -1.81121770e-02 -5.37634455e-02
3.32947522e-01 4.58931684e-01 2.98616648e-01 -3.46490562e-01
7.64640793e-02 5.44094861e-01 4.36860532e-01 2.96147943e-01
1.72598243e+00 -2.55874068e-01 -6.68484390e-01 2.58440048e-01
9.78550136e-01 -3.95456702e-01 -1.69126391e+00 -4.60969031e-01
-3.99178654e-01 -3.03285867e-01 5.98678291e-01 -9.26006258e-01
-1.38279009e+00 8.74268591e-01 7.64357567e-01 2.69058257e-01
1.97552133e+00 -6.02262914e-01 7.95324624e-01 2.84593493e-01
7.08054677e-02 -1.12630785e+00 8.67712945e-02 5.24495482e-01
8.00241590e-01 -1.12008703e+00 9.69881415e-02 -7.19826579e-01
-2.47603953e-01 1.31012857e+00 5.39907336e-01 2.93443054e-01
7.63357401e-01 3.52227181e-01 7.48643726e-02 -1.58648789e-01
-2.65430450e-01 -1.38588250e-01 1.97759375e-01 8.60658050e-01
1.86777115e-01 -9.25597697e-02 1.71324715e-01 6.14987373e-01
3.09051007e-01 1.24499984e-01 2.87095219e-01 7.03390777e-01
-4.88780946e-01 -7.62956440e-01 -7.64067113e-01 6.02738500e-01
-7.56937787e-02 -1.76496565e-01 1.67792976e-01 2.00051725e-01
4.29465711e-01 1.10342729e+00 -4.00728732e-01 -3.05820704e-01
4.28904712e-01 -1.08272724e-01 2.50422329e-01 -3.05272669e-01
-2.35962048e-01 5.79827607e-01 -2.30670914e-01 -4.73145634e-01
-6.97302759e-01 -5.61220288e-01 -8.17786038e-01 -6.01575598e-02
-5.05343914e-01 -5.37435189e-02 5.02894759e-01 8.78736854e-01
2.32143596e-01 8.47286522e-01 7.05381811e-01 -1.03164923e+00
-4.95048970e-01 -1.11249340e+00 -1.11994648e+00 2.26912573e-01
5.32015383e-01 -4.31223154e-01 -5.82494318e-01 2.25495666e-01]
|
[10.341517448425293, -1.9601426124572754]
|
7875d2da-c468-486d-81f6-dffae6bf142e
|
continual-reasoning-non-monotonic-reasoning
|
2305.02171
| null |
https://arxiv.org/abs/2305.02171v1
|
https://arxiv.org/pdf/2305.02171v1.pdf
|
Continual Reasoning: Non-Monotonic Reasoning in Neurosymbolic AI using Continual Learning
|
Despite the extensive investment and impressive recent progress at reasoning by similarity, deep learning continues to struggle with more complex forms of reasoning such as non-monotonic and commonsense reasoning. Non-monotonicity is a property of non-classical reasoning typically seen in commonsense reasoning, whereby a reasoning system is allowed (differently from classical logic) to jump to conclusions which may be retracted later, when new information becomes available. Neural-symbolic systems such as Logic Tensor Networks (LTN) have been shown to be effective at enabling deep neural networks to achieve reasoning capabilities. In this paper, we show that by combining a neural-symbolic system with methods from continual learning, LTN can obtain a higher level of accuracy when addressing non-monotonic reasoning tasks. Continual learning is added to LTNs by adopting a curriculum of learning from knowledge and data with recall. We call this process Continual Reasoning, a new methodology for the application of neural-symbolic systems to reasoning tasks. Continual Reasoning is applied to a prototypical non-monotonic reasoning problem as well as other reasoning examples. Experimentation is conducted to compare and analyze the effects that different curriculum choices may have on overall learning and reasoning results. Results indicate significant improvement on the prototypical non-monotonic reasoning problem and a promising outlook for the proposed approach on statistical relational learning examples.
|
["Artur S. d'Avila Garcez", 'Sofoklis Kyriakopoulos']
|
2023-05-03
| null | null | null | null |
['tensor-networks', 'relational-reasoning']
|
['methodology', 'natural-language-processing']
|
[ 2.27205917e-01 4.22522098e-01 -1.32714063e-01 -6.30200028e-01
-1.58851102e-01 -3.90019000e-01 8.31357300e-01 1.43525884e-01
-4.19911057e-01 9.40989733e-01 3.78044210e-02 -6.98808730e-01
-8.64487171e-01 -1.12378776e+00 -7.33016849e-01 -3.29119533e-01
-1.56816289e-01 6.87888324e-01 3.38791639e-01 -7.20301628e-01
4.79199618e-01 7.45260119e-01 -1.56043530e+00 9.05415475e-01
6.90117419e-01 7.60753691e-01 -2.42978722e-01 3.96705270e-01
-5.12489736e-01 1.82748890e+00 -5.73292434e-01 -6.69084251e-01
-1.56892873e-02 -2.90726960e-01 -1.40642393e+00 -5.41396677e-01
6.59805298e-01 -4.34065551e-01 -1.30449533e-01 1.11650121e+00
-2.36717556e-02 4.43624616e-01 7.42664993e-01 -1.27051258e+00
-8.72183681e-01 1.38930070e+00 7.98385441e-02 3.33986789e-01
7.44431317e-01 -3.43164578e-02 1.05187130e+00 -4.09808964e-01
4.43825573e-01 1.60330522e+00 9.75828111e-01 5.94421327e-01
-1.20980310e+00 -6.09884620e-01 -1.95615932e-01 7.71647930e-01
-9.58842516e-01 -1.07959569e-01 9.22759295e-01 -2.64990211e-01
1.26752949e+00 2.03949139e-01 6.06450796e-01 8.89809072e-01
1.89780653e-01 7.39057183e-01 1.47201920e+00 -7.16036320e-01
3.75882179e-01 1.34210542e-01 5.46384752e-01 6.92864001e-01
2.09963039e-01 2.35211343e-01 -4.72887307e-01 1.63281694e-01
4.92197126e-01 -5.72065711e-02 1.66636214e-01 -2.97996134e-01
-9.83298182e-01 8.25148404e-01 8.04958045e-01 7.72858620e-01
-4.37183946e-01 4.69113827e-01 7.35375464e-01 7.81877100e-01
-1.82154462e-01 7.17499554e-01 -5.05529165e-01 -6.75534457e-02
-9.63128686e-01 6.79178119e-01 1.00578368e+00 6.20598257e-01
4.84766573e-01 1.93759531e-01 -2.89179355e-01 6.32669270e-01
1.82416216e-01 1.91403747e-01 5.66086292e-01 -1.25616550e+00
2.44347766e-01 9.56002057e-01 -2.58903205e-01 -9.48450863e-01
-5.56210518e-01 -8.00472870e-02 -5.66953182e-01 4.66316819e-01
4.87752706e-01 1.09219559e-01 -6.53976679e-01 1.69895899e+00
2.75082793e-03 -4.07781824e-02 5.81693947e-01 5.77698350e-01
8.77187550e-01 3.23667586e-01 9.68123972e-02 -1.05079576e-01
1.28578866e+00 -4.70531046e-01 -7.96461999e-01 2.44751260e-01
6.93030238e-01 -3.24874669e-01 1.05755591e+00 7.65795112e-01
-1.10266531e+00 -5.48838019e-01 -1.10991442e+00 -3.46267760e-01
-8.90415549e-01 -4.80415583e-01 9.96670127e-01 4.96486008e-01
-9.42912400e-01 9.13132489e-01 -5.83779931e-01 -2.42278367e-01
5.84644258e-01 5.23305774e-01 -6.82532936e-02 -3.13992143e-01
-1.65445352e+00 1.47198248e+00 1.03848481e+00 1.55132040e-01
-4.96807694e-01 -7.73389459e-01 -7.82196701e-01 2.30323970e-01
7.12086618e-01 -4.94169891e-01 1.35232091e+00 -9.18496907e-01
-1.52541697e+00 7.06320405e-01 4.04518187e-01 -8.42516422e-01
6.65295839e-01 -1.26955256e-01 -3.80722284e-01 6.36296943e-02
-3.95401902e-02 4.81723249e-01 3.18482339e-01 -1.09031212e+00
-3.14090848e-01 -2.11567670e-01 7.89551616e-01 -9.16640610e-02
3.68034542e-02 -1.89471364e-01 5.04062951e-01 -2.14669004e-01
2.77570426e-01 -9.19972301e-01 3.10950309e-01 -2.54481435e-01
-2.77141720e-01 -7.26690054e-01 8.15596402e-01 -3.49439740e-01
8.22765887e-01 -1.72739172e+00 1.99545607e-01 3.44918162e-01
8.22749138e-02 3.44068944e-01 1.25825807e-01 3.41837704e-01
-3.76395404e-01 -6.03891686e-02 -2.34399632e-01 4.11816418e-01
2.00129315e-01 6.76118672e-01 -4.63909537e-01 -2.27482811e-01
1.55003369e-01 9.52098250e-01 -1.05856240e+00 -5.42432785e-01
2.39293650e-01 2.06581920e-01 -5.16891003e-01 -1.24145895e-01
-6.22330487e-01 -2.73391813e-01 -6.02785833e-02 5.51004231e-01
4.23605293e-01 4.12947275e-02 3.37854207e-01 -1.60455316e-01
1.00450054e-01 4.27494317e-01 -1.12193882e+00 1.44052172e+00
-5.39286435e-01 8.27525675e-01 -7.23703146e-01 -1.35785806e+00
9.42870080e-01 3.58548075e-01 -7.71985501e-02 -6.87622786e-01
1.89425871e-01 2.61893988e-01 6.15046442e-01 -7.78631330e-01
4.52656865e-01 -8.60995889e-01 6.54719844e-02 3.37946028e-01
1.25794485e-01 -5.74126422e-01 5.44258296e-01 1.02012418e-01
1.07063735e+00 4.64458317e-01 4.39893961e-01 -3.53232771e-01
8.44368994e-01 3.45030904e-01 1.45829126e-01 7.10222721e-01
-1.26454979e-01 -2.57918805e-01 7.57941782e-01 -7.66355157e-01
-8.01367164e-01 -1.05539763e+00 -1.67102844e-01 1.17409062e+00
-2.89905578e-01 1.31322816e-02 -3.31849128e-01 -5.69243729e-01
1.82728216e-01 1.46231341e+00 -6.81584775e-01 -3.96560192e-01
-6.75869048e-01 -4.74441439e-01 7.69795477e-01 5.85512161e-01
8.20179641e-01 -1.69275999e+00 -8.36935401e-01 1.56435862e-01
1.04035772e-01 -1.02268648e+00 7.60174930e-01 5.53734899e-01
-1.16375840e+00 -1.17171538e+00 -9.80669726e-03 -5.68819344e-01
3.14477146e-01 -1.96410671e-01 1.10459709e+00 3.60817075e-01
-1.07301340e-01 3.66249681e-01 -1.83387294e-01 -4.71807361e-01
-8.63831341e-01 -1.32875264e-01 -8.42236951e-02 -5.99213898e-01
8.07982385e-01 -7.60664999e-01 1.02454878e-01 -3.43693733e-01
-1.20740199e+00 -1.51596874e-01 5.52882850e-01 9.18385327e-01
-1.42460903e-02 6.36055052e-01 6.35926783e-01 -1.06288934e+00
1.02549231e+00 -3.96874607e-01 -4.46258724e-01 2.94404447e-01
-6.96241498e-01 6.04882658e-01 9.26575363e-01 -6.34541333e-01
-1.17813456e+00 -5.80898106e-01 1.29384086e-01 -3.18664610e-01
-6.37796149e-02 9.04729366e-01 2.79421359e-01 1.13097183e-01
1.06340110e+00 9.00570303e-02 2.87106093e-02 2.09703669e-01
3.16272676e-01 2.86479950e-01 4.51433837e-01 -1.16523278e+00
8.29792440e-01 1.28886506e-01 5.50217569e-01 -4.48429376e-01
-1.22808182e+00 9.16881338e-02 -7.63421059e-01 -1.61227345e-01
7.11430550e-01 -4.30840999e-01 -1.17105985e+00 7.41025135e-02
-1.10274553e+00 -5.50153911e-01 -5.51051557e-01 4.73683268e-01
-7.92391896e-01 5.50720491e-04 -5.89909017e-01 -8.95989656e-01
-5.55384085e-02 -8.66780579e-01 2.28588358e-01 1.71514884e-01
-5.30217111e-01 -1.32569647e+00 -8.26291963e-02 4.37824607e-01
3.88938516e-01 2.31152371e-01 1.48285723e+00 -9.85906065e-01
-4.97025102e-01 -1.85041696e-01 -2.16225922e-01 6.32562220e-01
-1.02219433e-01 2.19810084e-02 -8.58268678e-01 2.64568508e-01
-2.16415245e-02 -7.48067737e-01 7.37531960e-01 -3.13861333e-02
8.66737306e-01 -1.45452678e-01 1.84760511e-01 5.56159168e-02
1.49082065e+00 5.45985162e-01 7.79983044e-01 7.04499900e-01
4.99907881e-01 6.50901496e-01 4.62922782e-01 -8.82356763e-02
4.85067338e-01 3.03119451e-01 2.59805083e-01 5.36531031e-01
-9.38215107e-02 1.88649930e-02 2.09071562e-01 5.57388067e-01
-6.22972071e-01 5.26872337e-01 -1.35449398e+00 3.48579615e-01
-1.77645373e+00 -1.68192351e+00 -1.04125835e-01 1.74684227e+00
1.27385426e+00 5.80599010e-01 -6.14632256e-02 7.51745820e-01
2.61851847e-01 -2.11926743e-01 -4.23474997e-01 -1.14551532e+00
1.37047889e-02 4.12346274e-01 -7.11052492e-02 6.90662444e-01
-7.08341777e-01 1.04350054e+00 6.15771866e+00 5.90654075e-01
-1.00837100e+00 -2.16210768e-01 6.88845366e-02 1.31772429e-01
-2.87689716e-01 1.98661219e-02 -5.09981215e-01 -1.47704944e-01
1.11011851e+00 -1.35249704e-01 8.09140980e-01 8.52251530e-01
-2.96324074e-01 -2.55627185e-01 -1.60800648e+00 7.18504131e-01
6.39636368e-02 -1.51687765e+00 2.70165622e-01 -4.09136593e-01
6.01934135e-01 -4.17375505e-01 -1.82978794e-01 1.12931311e+00
6.02369368e-01 -1.08412206e+00 5.68725824e-01 7.63329685e-01
1.46209151e-01 -9.55987453e-01 1.12341130e+00 3.19106191e-01
-5.94548941e-01 -4.46556062e-01 -3.24893683e-01 -5.02064407e-01
-5.34136176e-01 2.07626164e-01 -1.00777578e+00 6.15404606e-01
5.74034870e-01 4.64798659e-01 -6.07974887e-01 4.19097394e-01
-5.16807616e-01 2.44351521e-01 -1.04491808e-01 -5.30991197e-01
3.74690443e-01 2.63525601e-02 1.21638119e-01 1.22566235e+00
2.34205159e-03 2.79189646e-01 -2.15606242e-01 1.31284213e+00
1.87098742e-01 -1.44009203e-01 -7.52993762e-01 1.21402256e-01
3.45552325e-01 7.96822667e-01 -7.66188383e-01 -7.34994650e-01
-1.55509889e-01 4.63632971e-01 5.49816251e-01 1.90715075e-01
-8.89143050e-01 -2.82427460e-01 5.80477156e-02 -5.69623075e-02
1.56517312e-01 1.75159816e-02 -3.33859831e-01 -8.04461002e-01
-1.34793043e-01 -9.53558922e-01 4.19816017e-01 -1.14441037e+00
-1.31600511e+00 3.44481796e-01 6.37564421e-01 -6.87506795e-01
-4.98507231e-01 -1.05564475e+00 -4.42232758e-01 7.38723278e-01
-1.50513446e+00 -1.00157440e+00 -1.87182292e-01 7.13900447e-01
2.63478309e-01 -4.29205656e-01 9.49090064e-01 -1.19764604e-01
-2.46373005e-02 2.33679384e-01 -3.63116503e-01 2.51437426e-01
1.83504522e-01 -1.62146986e+00 -4.66271043e-01 3.44923824e-01
4.14251238e-02 1.09912610e+00 8.87571037e-01 -3.48451644e-01
-1.38287401e+00 -6.46756828e-01 7.82852888e-01 -3.53846610e-01
9.73521292e-01 4.14783806e-02 -1.11668158e+00 9.27583992e-01
9.30348188e-02 -1.49902284e-01 6.43831074e-01 6.07070923e-01
-7.45465934e-01 -2.61368036e-01 -1.29981446e+00 9.33022320e-01
7.45020747e-01 -7.48790801e-01 -1.65912163e+00 2.38237932e-01
5.89541495e-01 -3.14671516e-01 -9.49129105e-01 4.51858491e-01
6.49640501e-01 -1.24126399e+00 9.79238629e-01 -7.98705935e-01
9.22171354e-01 -1.59474373e-01 -4.29896325e-01 -9.56427097e-01
-2.28801444e-01 -2.66954422e-01 -2.13183194e-01 9.21365023e-01
2.48818040e-01 -5.40935814e-01 6.45984828e-01 7.78946817e-01
3.10546905e-02 -6.58659816e-01 -9.60847616e-01 -9.79472697e-01
5.18103242e-01 -7.39884019e-01 5.32732069e-01 1.30139148e+00
3.83572400e-01 6.80336595e-01 2.42285311e-01 -1.00761369e-01
3.95744860e-01 2.39860356e-01 5.46041250e-01 -1.56369781e+00
-1.10028625e-01 -7.37051606e-01 -6.96231365e-01 -2.33914509e-01
6.25086010e-01 -1.30202281e+00 -1.73616335e-01 -1.57306302e+00
3.21891569e-02 -2.43944034e-01 -4.08877045e-01 7.96834767e-01
1.36560708e-01 -1.46906227e-01 2.76643157e-01 -9.03133154e-02
-3.67769003e-01 1.05859645e-01 1.31796193e+00 -2.06722453e-01
-1.88425735e-01 -1.40256613e-01 -4.99482810e-01 8.40096593e-01
8.37718546e-01 -4.51444864e-01 -7.90891707e-01 2.29828671e-01
7.99906015e-01 2.41746977e-01 5.95823467e-01 -1.19039619e+00
2.02732220e-01 -2.52212226e-01 3.18272054e-01 -5.88217795e-01
2.55029082e-01 -1.14842498e+00 -1.07801475e-01 8.37657273e-01
-7.53190458e-01 3.42205092e-02 4.68066901e-01 1.03465412e-02
-2.55176455e-01 -6.89296842e-01 6.35829866e-01 -3.00898105e-01
-8.12853158e-01 -6.02255821e-01 -2.26611093e-01 6.95681348e-02
9.40470397e-01 -3.39391142e-01 -3.76116753e-01 -5.90185076e-02
-1.13743484e+00 -8.74264687e-02 -1.98332220e-01 2.06542894e-01
6.12551033e-01 -1.37573361e+00 -5.51954567e-01 -2.43025586e-01
-7.73856342e-02 4.28347252e-02 1.02160372e-01 9.84911442e-01
-7.46493697e-01 5.51737905e-01 -5.66689193e-01 -4.74110991e-01
-1.11701894e+00 9.04968560e-01 5.93732953e-01 -3.99921685e-01
-6.72225416e-01 6.46379888e-01 -4.98151213e-01 -8.47447217e-01
1.52626753e-01 -9.93016958e-01 -3.59144628e-01 2.14409709e-01
3.22550386e-01 3.10327053e-01 2.10132357e-02 -4.98856306e-02
-2.58489877e-01 2.01365098e-01 -1.76250592e-01 -7.18857348e-02
1.41680908e+00 5.60303986e-01 -5.56167483e-01 1.16448855e+00
6.80554330e-01 -3.25839281e-01 -5.60904086e-01 -3.17776978e-01
4.29957747e-01 1.29915535e-01 -7.45375603e-02 -1.27075303e+00
-5.91914833e-01 7.65800178e-01 2.66737849e-01 5.86345673e-01
8.86822701e-01 -1.48830131e-01 1.12642229e-01 1.26484001e+00
3.38806063e-01 -1.08908451e+00 2.84713179e-01 9.26522076e-01
1.07625580e+00 -1.22211277e+00 4.62599754e-01 4.75399271e-02
-3.19615543e-01 1.73700428e+00 5.85839093e-01 -3.59148443e-01
4.72353488e-01 1.76387966e-01 -7.89493918e-02 -4.64733988e-01
-8.12367618e-01 5.85500442e-04 1.93484291e-01 5.37539363e-01
6.98704183e-01 6.21400140e-02 -1.41379490e-01 2.50242203e-01
-6.33035779e-01 4.88569319e-01 6.78455234e-01 1.06939971e+00
-3.49884212e-01 -8.09718072e-01 -6.30104840e-01 3.77480477e-01
-1.82673961e-01 -3.10530394e-01 -3.24983984e-01 1.47620010e+00
4.14087176e-01 6.62160397e-01 -7.91076124e-02 -1.71082199e-01
4.11381483e-01 5.52950203e-01 9.32288408e-01 -5.69306552e-01
-7.87028730e-01 -7.22479582e-01 2.28929549e-01 -3.85749191e-01
-8.98867249e-01 -6.45405293e-01 -1.75162613e+00 -6.88844383e-01
-6.28804639e-02 -1.27102546e-02 5.10203958e-01 1.40856314e+00
-4.87908661e-01 1.10560989e+00 -1.88839480e-01 -3.68954509e-01
-8.87162149e-01 -1.01849961e+00 -3.10849518e-01 4.60954815e-01
3.04031938e-01 -7.96797335e-01 -3.45680237e-01 -5.22979572e-02]
|
[9.099285125732422, 7.105953693389893]
|
b7d90785-4972-4805-b1f2-c88abcbe4dab
|
exploring-the-state-of-the-art-language
|
2211.01736
| null |
https://arxiv.org/abs/2211.01736v2
|
https://arxiv.org/pdf/2211.01736v2.pdf
|
Transformers on Multilingual Clause-Level Morphology
|
This paper describes our winning systems in MRL: The 1st Shared Task on Multilingual Clause-level Morphology (EMNLP 2022 Workshop) designed by KUIS AI NLP team. We present our work for all three parts of the shared task: inflection, reinflection, and analysis. We mainly explore transformers with two approaches: (i) training models from scratch in combination with data augmentation, and (ii) transfer learning with prefix-tuning at multilingual morphological tasks. Data augmentation significantly improves performance for most languages in the inflection and reinflection tasks. On the other hand, Prefix-tuning on a pre-trained mGPT model helps us to adapt analysis tasks in low-data and multilingual settings. While transformer architectures with data augmentation achieved the most promising results for inflection and reinflection tasks, prefix-tuning on mGPT received the highest results for the analysis task. Our systems received 1st place in all three tasks in MRL 2022.
|
['Deniz Yuret', 'Gözde Gül Şahin', 'Müge Kural', 'Tilek Chubakov', 'Emre Can Acikgoz']
|
2022-11-03
| null | null | null | null |
['lemmatization', 'morphological-analysis']
|
['natural-language-processing', 'natural-language-processing']
|
[-6.35815784e-02 3.14963609e-01 -1.84180841e-01 -5.18984675e-01
-1.24913967e+00 -9.27088797e-01 5.72912276e-01 4.56857890e-01
-8.37968826e-01 7.59428561e-01 3.66104841e-01 -7.59977102e-01
1.72193170e-01 -4.92392838e-01 -8.88602853e-01 -2.54883885e-01
-1.26479805e-01 1.13264155e+00 4.03273525e-03 -7.42111444e-01
-2.44331494e-01 2.60292888e-01 -7.71094203e-01 6.84830368e-01
1.28632486e+00 6.28309906e-01 3.23843807e-01 5.16048551e-01
-4.52344030e-01 6.56689525e-01 -4.95166898e-01 -8.71705472e-01
2.80093223e-01 -1.15712769e-02 -1.01580322e+00 -5.71751118e-01
6.95014775e-01 3.01460028e-01 2.30869621e-01 9.32443976e-01
4.78685051e-01 -6.99790046e-02 3.52233559e-01 -9.23825920e-01
-9.38200712e-01 1.86239636e+00 -4.62790579e-01 4.01037961e-01
2.26588354e-01 7.16945529e-02 1.47895324e+00 -1.27422822e+00
7.84085274e-01 1.46394396e+00 9.56344843e-01 3.30894351e-01
-1.40461600e+00 -5.83308756e-01 4.86250013e-01 3.43505710e-01
-1.15975583e+00 -5.75995147e-01 6.52881384e-01 -2.65135705e-01
1.61268878e+00 1.48636192e-01 5.74996769e-01 7.02965200e-01
4.67791706e-02 1.20893824e+00 1.11567211e+00 -5.45215845e-01
-2.89327294e-01 5.81729263e-02 1.41372412e-01 4.91037786e-01
-6.48907870e-02 -1.32522032e-01 -4.24137175e-01 1.14561014e-01
3.98081243e-01 -9.92830217e-01 -1.01438694e-01 -4.72441725e-02
-1.46741271e+00 8.54282975e-01 4.38068986e-01 7.46717751e-01
-1.76839992e-01 -1.00551285e-01 6.89056575e-01 7.51653135e-01
5.94297826e-01 8.42861831e-01 -1.33465540e+00 2.11179644e-01
-8.35608721e-01 2.91148424e-01 5.64145148e-01 1.16669607e+00
7.05883563e-01 3.11101645e-01 -1.71749130e-01 1.27706075e+00
5.54314591e-02 5.41860163e-01 6.05594397e-01 -5.22399426e-01
1.08451521e+00 4.33189571e-01 -4.38142926e-01 -1.22900702e-01
-5.96250832e-01 -6.42063856e-01 -4.64819580e-01 -1.28473371e-01
6.57100558e-01 -2.20128193e-01 -1.04453838e+00 2.07966423e+00
1.09090984e-01 -8.26289058e-01 2.46467590e-01 4.03978407e-01
9.14222956e-01 7.25785434e-01 4.25029993e-01 -1.35084122e-01
1.44453502e+00 -1.24719119e+00 -9.77383614e-01 -5.67608297e-01
1.21424329e+00 -1.04632163e+00 1.53963339e+00 5.64998209e-01
-1.61105609e+00 -6.53402984e-01 -1.08848369e+00 -6.21837556e-01
-8.46180022e-01 1.01032823e-01 6.52365983e-01 3.92819494e-01
-1.33968711e+00 3.37118506e-01 -7.58214414e-01 -1.84881389e-01
2.19622646e-02 4.89363194e-01 -4.10233676e-01 5.62509373e-02
-1.44835639e+00 1.11904693e+00 5.72420776e-01 1.23333717e-02
-4.27569121e-01 -1.14552665e+00 -1.07007813e+00 -3.01489502e-01
8.70965794e-02 -3.86016399e-01 1.53390372e+00 -8.82417381e-01
-1.26928306e+00 1.32274663e+00 8.56589526e-02 -6.88202083e-01
2.92276114e-01 -4.46070492e-01 -5.84964275e-01 -6.63197458e-01
2.12452054e-01 8.54859829e-01 3.42016101e-01 -1.05023336e+00
-7.93252945e-01 -4.75214034e-01 -3.03857774e-01 2.26620331e-01
-4.54745954e-03 3.77253205e-01 -1.08821526e-01 -9.57176268e-01
2.79664826e-02 -6.35730863e-01 -9.08580422e-02 -1.02318633e+00
-2.14681938e-01 -6.56149507e-01 5.31118393e-01 -1.15245903e+00
1.29209042e+00 -1.83523905e+00 3.42547357e-01 -1.01921588e-01
-1.19549304e-01 3.89632344e-01 -4.20991689e-01 3.57671797e-01
-3.76846492e-01 3.07832360e-01 -3.84522021e-01 -7.25796759e-01
2.09668055e-01 3.50474119e-01 -2.30828568e-01 5.77376923e-03
3.63029569e-01 1.45025814e+00 -9.35177922e-01 -4.14775521e-01
1.03138546e-02 4.55440991e-02 -6.13783896e-01 -1.40110999e-01
-5.03424406e-01 6.16944075e-01 2.88222730e-01 6.68949127e-01
7.65341997e-01 4.77955073e-01 4.22391355e-01 -3.87866527e-01
-5.17064989e-01 9.83947396e-01 -7.84086645e-01 2.04207134e+00
-8.70137930e-01 3.03853840e-01 3.60984534e-01 -6.16119385e-01
7.66925275e-01 3.73120815e-01 1.36218235e-01 -8.19602072e-01
-9.19293538e-02 7.47750401e-01 4.95159328e-01 -1.37003586e-01
8.63101482e-01 -1.64909735e-01 -6.77233577e-01 2.99656004e-01
5.16588688e-01 -6.17567360e-01 4.28852856e-01 5.30229732e-02
8.37071836e-01 3.03732544e-01 5.60524404e-01 -7.36811876e-01
5.96787930e-01 1.30200714e-01 7.12768257e-01 3.84165436e-01
-4.25059646e-02 2.50600398e-01 1.45567924e-01 -6.17716849e-01
-1.07741928e+00 -1.35772109e+00 -3.15402210e-01 1.71025872e+00
-6.81364775e-01 -6.99433267e-01 -7.03741431e-01 -9.11969781e-01
-2.24923998e-01 1.01540756e+00 -5.44973433e-01 1.32929802e-01
-1.42328179e+00 -8.57263386e-01 8.37112486e-01 5.93720078e-01
4.15325344e-01 -1.48085666e+00 2.60785133e-01 5.13471246e-01
-5.53126097e-01 -1.02439570e+00 -6.19965494e-01 7.00563014e-01
-6.68901026e-01 -6.45405650e-01 -2.74106443e-01 -1.28385341e+00
9.48539078e-02 -6.63722992e-01 1.48553097e+00 -2.76719689e-01
2.26240218e-01 -2.31558651e-01 -2.84271777e-01 -6.18309677e-01
-6.21168852e-01 6.73465431e-01 -7.19106272e-02 -3.85398448e-01
4.53527778e-01 -5.69423497e-01 1.48525193e-01 -1.91473588e-01
-7.02761829e-01 -2.46605337e-01 6.22228622e-01 5.12245119e-01
8.06495428e-01 -5.14090061e-01 7.52144814e-01 -1.17159820e+00
6.36789680e-01 -1.64950058e-01 -5.90173960e-01 4.55236793e-01
-3.71311694e-01 2.02571228e-01 7.60097682e-01 -2.71707028e-01
-1.06160867e+00 1.17624169e-02 -6.31012440e-01 1.97743177e-01
7.14949891e-02 6.79121792e-01 -7.46137619e-01 1.95383370e-01
7.26712525e-01 -2.15540856e-01 -4.26468402e-01 -9.09762204e-01
8.04410875e-01 3.38697642e-01 9.71818745e-01 -1.00008392e+00
6.80434525e-01 -2.24075362e-01 -4.31325138e-01 -5.43400168e-01
-9.70988572e-01 -4.45134081e-02 -1.12296808e+00 4.84926373e-01
9.26879108e-01 -7.97627926e-01 -7.19943689e-03 5.95916569e-01
-1.15530241e+00 -7.80093849e-01 -7.42081225e-01 2.33505785e-01
-5.62580943e-01 1.45438597e-01 -1.07371569e+00 -1.16863385e-01
-7.26338327e-01 -1.21375024e+00 8.45854521e-01 -4.25371796e-01
-3.68757039e-01 -1.35136092e+00 4.48681742e-01 3.28604311e-01
6.23829246e-01 6.40410259e-02 1.56953716e+00 -1.10156548e+00
-2.28120685e-01 2.27026030e-01 1.18805595e-01 3.90152574e-01
1.16246663e-01 -2.06112489e-01 -7.90407121e-01 -2.84258664e-01
-1.69126466e-01 -5.31395614e-01 7.51608729e-01 3.45638156e-01
7.22375035e-01 -2.36520454e-01 4.40209992e-02 8.95044506e-01
1.02139318e+00 -3.09647415e-02 5.64968646e-01 5.07234573e-01
6.81657493e-01 4.92837578e-01 6.47998631e-01 -1.94502756e-01
8.34004879e-01 7.39836991e-01 2.04557866e-01 -2.60331333e-01
-6.90072894e-01 -4.51495111e-01 4.93942767e-01 1.49788165e+00
1.11326806e-01 -1.16274953e-01 -1.24906051e+00 9.47711706e-01
-1.83715940e+00 -2.47348309e-01 -4.34322596e-01 2.14987159e+00
1.47184610e+00 6.65149391e-02 8.79912078e-02 9.64005515e-02
4.68016356e-01 4.87782359e-02 2.42373049e-02 -9.58520830e-01
-7.47777224e-01 7.53847420e-01 2.33981803e-01 8.90156388e-01
-1.16338956e+00 1.89571822e+00 6.00186396e+00 9.38642085e-01
-8.54076803e-01 6.80716276e-01 2.59017825e-01 2.35256329e-01
-5.24989069e-01 1.05844505e-01 -1.18927515e+00 6.28683567e-02
1.04319119e+00 -2.42435038e-02 4.59083974e-01 4.05975342e-01
-2.39921585e-01 3.23963493e-01 -1.32701540e+00 4.63955879e-01
1.31194694e-02 -9.00873661e-01 3.28374922e-01 -1.46530733e-01
7.31029153e-01 6.53357565e-01 1.18740439e-01 8.95168781e-01
7.69784272e-01 -1.03630555e+00 9.58529472e-01 1.24520743e-02
8.97089005e-01 -9.54052687e-01 7.28529990e-01 6.48848712e-02
-1.43476737e+00 1.98256493e-01 -1.55068070e-01 1.70975447e-01
5.24457812e-01 4.70719606e-01 -8.71348381e-01 6.42591178e-01
4.11082596e-01 5.44158697e-01 -7.74386942e-01 7.59020150e-01
-9.12305236e-01 7.51449764e-01 -3.51561993e-01 3.89833510e-01
3.82586360e-01 -1.38333410e-01 7.75155008e-01 1.72734749e+00
-8.14494863e-02 -4.51029688e-01 4.26963776e-01 5.29048026e-01
-2.84693807e-01 5.85595727e-01 -4.01037633e-01 1.36375338e-01
4.11144286e-01 1.38324153e+00 -2.17020839e-01 -3.07482451e-01
-2.09869087e-01 5.22483051e-01 9.30400610e-01 5.39973378e-02
-7.15184748e-01 -3.82704765e-01 4.14510041e-01 1.16989754e-01
1.86198905e-01 -4.06343460e-01 -4.24348265e-01 -1.05436337e+00
-1.86947227e-01 -1.10424125e+00 7.87182391e-01 -4.41373199e-01
-1.28447866e+00 9.66921389e-01 9.51819401e-03 -4.81637180e-01
-3.88091445e-01 -7.65696406e-01 -2.39820793e-01 1.00570941e+00
-1.61108065e+00 -1.89058161e+00 4.11819458e-01 7.61252940e-01
5.94367802e-01 -2.12554008e-01 1.06910408e+00 4.73485738e-01
-2.99090445e-01 1.10705280e+00 -2.13151842e-01 3.81818324e-01
1.03259921e+00 -1.75452602e+00 9.00383890e-01 8.85388255e-01
3.65248501e-01 4.46138978e-01 3.48276317e-01 -7.54422784e-01
-9.28241849e-01 -1.26757300e+00 1.66850650e+00 -5.80561221e-01
1.08995879e+00 -8.60003710e-01 -1.01863337e+00 1.51421130e+00
6.62288845e-01 -1.57807335e-01 5.44250727e-01 7.77917743e-01
-5.21343172e-01 -1.96654331e-02 -1.00408125e+00 6.97450995e-01
1.10663116e+00 -4.92351562e-01 -1.08108127e+00 4.22160983e-01
1.03379560e+00 -5.45007110e-01 -1.19604647e+00 6.78091645e-01
1.10376462e-01 -1.67813465e-01 7.28269517e-01 -7.44974315e-01
2.13649318e-01 -1.13485254e-01 -4.09479916e-01 -1.98231351e+00
-5.80266833e-01 -7.04224825e-01 1.49065375e-01 1.55120480e+00
1.20291936e+00 -6.18473470e-01 3.36616546e-01 -4.53880467e-02
-7.27955103e-01 -4.24341083e-01 -8.99867117e-01 -8.03702593e-01
9.23750222e-01 -6.40501559e-01 8.08947980e-01 1.10182047e+00
1.96567520e-01 8.05375576e-01 1.78942248e-01 -9.78147388e-02
5.57348549e-01 3.32635976e-02 5.11845767e-01 -9.19385314e-01
-2.87102580e-01 -5.31513393e-01 -1.08859576e-02 -7.31478035e-01
5.04418433e-01 -1.86443484e+00 -9.10565108e-02 -1.37184322e+00
-1.31648198e-01 -7.58872509e-01 -9.80385765e-02 9.75622058e-01
-1.47737905e-01 1.55106276e-01 2.59587348e-01 -9.01731476e-03
-3.55197430e-01 3.36197287e-01 9.64830160e-01 -1.29614726e-01
-4.23426688e-01 -1.62154049e-01 -6.33209050e-01 6.76191330e-01
9.30734515e-01 -3.48594546e-01 -1.77974813e-02 -1.21508121e+00
4.45116669e-01 -3.95171106e-01 -2.76295781e-01 -6.16693974e-01
4.28775921e-02 1.18976198e-01 2.38335446e-01 -8.91227365e-01
1.82991564e-01 -3.67029220e-01 -2.19161272e-01 2.70565420e-01
-1.77663133e-01 6.73896313e-01 7.47447550e-01 -2.93932706e-01
-3.06105882e-01 -4.24388684e-02 9.03894961e-01 -3.96882653e-01
-5.45346916e-01 1.35673717e-01 -3.78257155e-01 6.15215957e-01
3.99474561e-01 6.45360500e-02 -4.83882010e-01 3.67806032e-02
-1.21510971e+00 5.38096309e-01 1.36624292e-01 5.79464734e-01
1.42030656e-01 -1.36291957e+00 -1.24204242e+00 5.02142608e-01
1.08966544e-01 4.75378558e-02 -3.30516756e-01 7.72251248e-01
-2.97549725e-01 6.38580322e-01 -2.15539813e-01 -3.90060663e-01
-9.19921100e-01 5.33630848e-01 3.80376339e-01 -1.17564356e+00
-1.41430914e-01 1.13695621e+00 1.64263487e-01 -1.47445691e+00
2.19560005e-02 -6.26590192e-01 -1.91620246e-01 1.37780502e-01
3.62304986e-01 1.70991704e-01 9.29994106e-01 -7.34981716e-01
-3.79388481e-01 4.13042337e-01 -6.95910573e-01 -4.67384070e-01
1.42724371e+00 1.94296148e-02 -4.62571770e-01 6.05690122e-01
9.30096149e-01 5.66465795e-01 -6.00229084e-01 -5.96578062e-01
6.28400683e-01 2.77470171e-01 -2.19173897e-02 -1.44888985e+00
-8.84611666e-01 8.30224037e-01 -1.12964898e-01 -1.86258271e-01
9.60047305e-01 1.26818240e-01 9.84826863e-01 2.70380229e-01
5.12746930e-01 -1.36345673e+00 -3.61625493e-01 1.34324765e+00
1.33373678e+00 -9.09258544e-01 -4.36552435e-01 -3.83516908e-01
-5.58451891e-01 7.92692900e-01 7.10063398e-01 -1.89455226e-02
6.60719693e-01 7.72332191e-01 1.77507460e-01 -1.22055583e-01
-8.01652610e-01 -1.64511889e-01 3.76036167e-01 6.99157119e-01
1.00928581e+00 4.44903553e-01 -5.46446741e-01 8.79910767e-01
-1.07575405e+00 -5.90156674e-01 8.70898739e-02 7.59380281e-01
-2.32091755e-01 -1.61369145e+00 -1.21992707e-01 2.37642542e-01
-7.07655251e-01 -8.10129881e-01 -6.35905266e-01 1.28504515e+00
3.67994815e-01 7.11774409e-01 7.93567076e-02 -1.28246382e-01
6.16076052e-01 4.74901497e-01 8.84264946e-01 -8.99631798e-01
-1.30191207e+00 8.28096643e-02 6.12250090e-01 -4.91992354e-01
5.49144596e-02 -9.74205077e-01 -1.39614737e+00 -7.56987929e-02
-5.49766198e-02 2.96688080e-01 7.32729554e-01 8.09089899e-01
-8.71277601e-02 4.83768910e-01 -1.33259594e-02 -6.26962364e-01
-5.28536499e-01 -1.46823382e+00 -4.34169263e-01 9.77310091e-02
1.32474497e-01 -8.94671753e-02 -3.12993228e-01 -1.05013981e-01]
|
[10.637496948242188, 9.9209623336792]
|
4bba99f6-e09b-45b2-b7e8-8bc456bb28a2
|
learning-c-to-x86-translation-an-experiment
|
2108.07639
| null |
https://arxiv.org/abs/2108.07639v2
|
https://arxiv.org/pdf/2108.07639v2.pdf
|
Learning C to x86 Translation: An Experiment in Neural Compilation
|
Deep learning has had a significant impact on many fields. Recently, code-to-code neural models have been used in code translation, code refinement and decompilation. However, the question of whether these models can automate compilation has yet to be investigated. In this work, we explore neural compilation, building and evaluating Transformer models that learn how to produce x86 assembler from C code. Although preliminary results are relatively weak, we make our data, models and code publicly available to encourage further research in this area.
|
["Michael F. P. O'Boyle", 'Jordi Armengol-Estapé']
|
2021-08-17
| null |
https://openreview.net/forum?id=444ug_EYXet
|
https://openreview.net/pdf?id=444ug_EYXet
|
neurips-workshop-aiplans-2021-12
|
['code-translation']
|
['computer-code']
|
[-5.45461569e-03 -1.76935513e-02 -3.86010885e-01 -5.68240106e-01
-5.63061059e-01 -6.56337976e-01 4.67603445e-01 1.28999084e-01
1.50374714e-02 6.75398171e-01 2.95633107e-01 -1.08252501e+00
4.67933506e-01 -7.51822710e-01 -1.09765780e+00 -1.27855957e-01
-3.75772230e-02 6.84077144e-02 -1.93294555e-01 -2.86695927e-01
3.64713311e-01 2.53359526e-01 -1.41170204e+00 6.33030951e-01
9.27358449e-01 4.85516667e-01 1.22236833e-01 8.48047078e-01
-1.90479100e-01 1.10846019e+00 -5.32626688e-01 -4.78030443e-01
-2.61412207e-02 -5.91480076e-01 -1.05415750e+00 -4.04049844e-01
1.46582007e-01 -2.11336657e-01 7.17149153e-02 1.26343894e+00
3.72201413e-01 -3.83740902e-01 2.87732750e-01 -9.30754542e-01
-9.64068949e-01 1.15197730e+00 -2.31868759e-01 1.23262711e-01
3.20523530e-01 2.22160086e-01 8.73176992e-01 -6.89962864e-01
5.25918007e-01 8.80575120e-01 7.71896958e-01 6.08945668e-01
-1.23996043e+00 -8.38872373e-01 -2.67535150e-01 -7.13777244e-02
-1.30976868e+00 -4.68393505e-01 6.45503938e-01 -5.73189199e-01
1.67863977e+00 1.11485660e-01 7.07750261e-01 1.06569123e+00
7.62543738e-01 6.70194566e-01 1.10887623e+00 -4.55257386e-01
1.43899813e-01 1.91626236e-01 2.74802782e-02 1.15014923e+00
1.82062030e-01 4.61918443e-01 -2.68546313e-01 2.53573898e-02
5.96563578e-01 -4.28489178e-01 -8.09159279e-02 -1.65722638e-01
-1.05132866e+00 1.07368267e+00 6.67716980e-01 5.29926956e-01
-6.20322675e-02 6.53253615e-01 5.97591639e-01 6.83637023e-01
1.33992970e-01 9.64472592e-01 -6.50808930e-01 -6.79258287e-01
-9.11568642e-01 3.21807921e-01 1.01826322e+00 1.15424848e+00
7.90124118e-01 5.76409817e-01 4.44621325e-01 5.40297031e-01
1.42106384e-01 2.42118403e-01 3.74650389e-01 -8.30190837e-01
5.87461948e-01 6.64143980e-01 -3.83936465e-01 -9.11612630e-01
-4.57693070e-01 -3.50639045e-01 -6.45126939e-01 2.46708557e-01
-1.06702007e-01 -3.30436200e-01 -4.90231574e-01 1.32235396e+00
-3.32616836e-01 -1.75274089e-01 2.81553924e-01 7.73290038e-01
8.61086428e-01 6.91197276e-01 -1.85735598e-01 3.48640144e-01
9.67173576e-01 -8.93695354e-01 -2.72739708e-01 -3.10041755e-01
8.85328174e-01 -9.43883359e-01 9.25664425e-01 4.23752189e-01
-1.36317468e+00 -7.39438176e-01 -1.16092038e+00 -2.72965193e-01
-3.53818208e-01 2.51673460e-01 1.16250622e+00 8.39359224e-01
-1.46960163e+00 6.20498538e-01 -1.12345326e+00 -3.23407412e-01
3.37321907e-01 5.73835909e-01 -2.67168254e-01 3.32969129e-01
-9.69517708e-01 1.01533484e+00 6.00081861e-01 -9.87767130e-02
-1.18452740e+00 -6.36482120e-01 -9.38921630e-01 5.39953895e-02
-2.04945058e-02 -8.04707944e-01 1.69971192e+00 -1.30287659e+00
-1.60146844e+00 8.02925587e-01 6.98580220e-02 -8.20246160e-01
-8.64186883e-02 -1.31288856e-01 -5.50944388e-01 -5.20474195e-01
-2.32639939e-01 8.12453449e-01 6.44437850e-01 -1.10279858e+00
-6.33467793e-01 4.72410247e-02 5.04631162e-01 -2.97737390e-01
-3.59822586e-02 5.19181788e-01 -3.59231159e-02 -6.33082211e-01
-6.00081563e-01 -1.09891069e+00 -8.06244612e-02 -3.17781925e-01
-1.62896931e-01 6.71738759e-02 3.15786868e-01 -9.17494595e-01
9.50236201e-01 -1.99652612e+00 3.11380148e-01 -1.25812903e-01
1.72153935e-01 2.37599701e-01 -2.03162178e-01 3.50736201e-01
-2.59623170e-01 5.06609976e-01 -3.58667195e-01 2.27089211e-01
-5.81852086e-02 4.65249829e-02 -5.03243864e-01 2.66523033e-01
6.20319724e-01 1.29024780e+00 -8.26233268e-01 -2.26694360e-01
-1.18508898e-01 3.78513813e-01 -1.24961185e+00 3.52210939e-01
-5.24908364e-01 2.73801088e-01 -3.68231326e-01 7.37790942e-01
1.92255989e-01 -2.46169642e-01 1.25267729e-01 1.90733746e-01
-5.67390501e-01 6.63498700e-01 -3.21611464e-01 1.84754241e+00
-8.95003140e-01 1.05747902e+00 4.37875502e-02 -1.17718697e+00
1.01614821e+00 2.15552524e-01 -6.83897361e-02 -7.54318118e-01
1.30283117e-01 3.49189192e-01 5.54471791e-01 -4.84317064e-01
8.73049200e-01 -1.14736758e-01 -3.81777197e-01 6.13096356e-01
-1.62984745e-03 -4.83961940e-01 2.08767489e-01 -6.89443797e-02
1.09435678e+00 6.12137437e-01 4.62207735e-01 -2.82191485e-01
3.41120303e-01 3.87155145e-01 6.87224343e-02 4.44345146e-01
2.26899266e-01 4.26481873e-01 6.80785120e-01 -6.03552103e-01
-1.17813134e+00 -7.45599270e-01 5.00876121e-02 1.11102319e+00
-4.12095815e-01 -5.60289085e-01 -1.07503426e+00 -6.31264806e-01
-2.31132671e-01 1.02091384e+00 -6.72047436e-01 -3.53890359e-01
-9.08326328e-01 -5.89933634e-01 9.41725433e-01 7.39310265e-01
1.88584447e-01 -1.29902971e+00 -7.10889637e-01 3.91738236e-01
4.69844341e-02 -4.69467461e-01 -3.90325159e-01 6.81135356e-01
-1.09559608e+00 -9.25081670e-01 -3.16765219e-01 -1.08687830e+00
5.81171572e-01 -1.48002818e-01 1.56992209e+00 3.42647612e-01
4.37750015e-03 2.36259680e-02 -2.88208574e-01 -3.06243926e-01
-1.19749796e+00 6.60467327e-01 -2.17262760e-01 -8.04542959e-01
3.51082772e-01 -5.74418545e-01 -4.26930375e-02 1.00811377e-01
-8.26992333e-01 3.23246032e-01 6.52647257e-01 7.86851466e-01
5.84172085e-02 -2.00167477e-01 4.61693048e-01 -9.49117184e-01
9.18651819e-01 -4.63674068e-01 -9.70995188e-01 5.11280559e-02
-7.28909671e-01 5.04792035e-01 1.02536297e+00 -1.16431631e-01
-1.01388943e+00 -7.09352419e-02 -6.46471977e-01 4.64301109e-02
-3.28007638e-02 9.82883453e-01 2.44719774e-01 -2.41723672e-01
9.29502249e-01 1.33599609e-01 -2.26227239e-01 -3.35297555e-01
3.63440931e-01 5.21841466e-01 6.16413593e-01 -1.11263943e+00
7.70268142e-01 -1.19358979e-01 -4.60396975e-01 -4.23372030e-01
-2.11832583e-01 2.75229454e-01 -3.58770192e-01 1.86217457e-01
7.56344199e-01 -9.70248044e-01 -3.73241991e-01 1.36808544e-01
-1.46955299e+00 -6.94569230e-01 -1.26972958e-01 1.41993180e-01
-7.20088720e-01 -7.73388706e-03 -7.77678132e-01 -2.25380450e-01
-3.61755788e-01 -1.69366169e+00 8.47629428e-01 9.64762345e-02
-5.88323474e-01 -1.05978858e+00 3.44207615e-01 8.15145448e-02
7.79726565e-01 -7.46166632e-02 1.20641541e+00 -2.87161618e-01
-9.83169138e-01 3.01078125e-03 -1.91295192e-01 4.43803400e-01
-7.76837813e-03 2.55032659e-01 -7.33034551e-01 -3.07905376e-01
-7.05288798e-02 -5.29724479e-01 6.18254244e-01 1.42169878e-01
1.45401680e+00 -2.85580814e-01 -2.30956882e-01 1.01310730e+00
1.33309162e+00 3.18223655e-01 8.17650080e-01 4.36190158e-01
5.73027492e-01 2.90624350e-01 1.15730196e-01 2.21166104e-01
4.48540449e-01 5.20140409e-01 5.27757823e-01 6.63259104e-02
-2.22699508e-01 -2.50361472e-01 7.05206037e-01 1.27177680e+00
-1.80449799e-01 6.02807058e-03 -1.49962175e+00 4.69894707e-01
-1.31470168e+00 -6.14375055e-01 5.50082549e-02 1.59025383e+00
1.19866621e+00 9.93230715e-02 -1.98378012e-01 -2.22324446e-01
2.12275058e-01 -7.07638338e-02 -2.35039592e-01 -9.45546210e-01
2.45507479e-01 6.66739404e-01 2.39902779e-01 4.41545606e-01
-7.77298987e-01 1.12244892e+00 7.02017784e+00 3.33716184e-01
-1.56211770e+00 7.67816156e-02 7.36770570e-01 3.00821513e-01
-6.12682104e-01 4.33406174e-01 -7.58611798e-01 2.45973945e-01
1.38877356e+00 -3.03023726e-01 9.98429775e-01 1.09097886e+00
-3.10484320e-02 6.84910417e-02 -1.42532182e+00 5.51096380e-01
1.38595281e-02 -1.53261232e+00 -2.71587551e-01 -1.24185614e-01
1.00950158e+00 3.65538180e-01 -7.22751692e-02 8.76207173e-01
7.57115185e-01 -1.33269489e+00 8.43261302e-01 2.72377551e-01
8.43763530e-01 -9.50374842e-01 7.43946314e-01 1.05561033e-01
-9.68964458e-01 2.34980229e-02 -3.49390864e-01 -3.52874249e-01
-2.23167911e-01 1.90719277e-01 -1.11740375e+00 3.48254353e-01
5.87266862e-01 7.68094361e-01 -9.46264684e-01 7.36142993e-01
-3.87458831e-01 8.26061010e-01 2.29057238e-01 -3.31420273e-01
2.38382459e-01 8.65198951e-03 6.19392619e-02 1.38210773e+00
4.90942180e-01 -3.78857374e-01 5.30036092e-02 1.50467420e+00
-2.88244516e-01 5.64466119e-02 -6.89522386e-01 -6.03330553e-01
-8.67895260e-02 1.10833097e+00 -6.92341805e-01 -1.87746033e-01
-7.77713835e-01 7.40675032e-01 6.41003907e-01 3.03692907e-01
-1.10762072e+00 -5.26558578e-01 6.57341123e-01 7.64342993e-02
2.61113584e-01 -5.05177021e-01 -5.59978902e-01 -1.17304623e+00
-1.23531267e-01 -1.37146246e+00 -1.72078922e-01 -8.89556885e-01
-6.45788670e-01 6.61723316e-01 -5.61498478e-02 -8.88594091e-01
-5.55370331e-01 -7.66238213e-01 -6.23499751e-01 7.93938696e-01
-1.25877035e+00 -7.73041189e-01 8.37694928e-02 -8.41340721e-02
4.10540104e-01 -6.40000999e-01 9.78925526e-01 2.68767148e-01
-3.29424113e-01 5.37458658e-01 1.73151344e-02 1.33170962e-01
2.66345680e-01 -1.23024559e+00 1.07005787e+00 7.71900237e-01
1.04955509e-01 1.24181879e+00 6.24276638e-01 -6.36339605e-01
-1.76538563e+00 -1.21711731e+00 8.27529430e-01 -5.74923635e-01
8.71536374e-01 -4.42121983e-01 -8.49553227e-01 9.23454344e-01
6.59364879e-01 -2.72197694e-01 6.68864548e-01 2.16835335e-01
-3.84766787e-01 8.55320841e-02 -6.69717371e-01 6.38966203e-01
8.30511868e-01 -7.60297120e-01 -4.32834774e-01 9.00742635e-02
7.68920660e-01 -5.63573897e-01 -1.04020917e+00 1.96520045e-01
4.68305558e-01 -9.37510729e-01 7.99934983e-01 -4.89409477e-01
1.26022482e+00 -2.46034935e-01 -1.08175546e-01 -1.53253663e+00
-1.90868109e-01 -4.79513645e-01 -2.24622622e-01 1.13618696e+00
7.32622564e-01 -5.67410827e-01 6.66040957e-01 2.51913995e-01
-6.36138618e-01 -6.47569895e-01 -4.30515349e-01 -6.15070581e-01
6.21575892e-01 -6.64675534e-01 8.82190287e-01 9.97247815e-01
2.30073303e-01 5.04043996e-01 -2.67515719e-01 -2.22451955e-01
-2.24293038e-01 5.04880071e-01 8.85623276e-01 -8.39520931e-01
-7.47514248e-01 -7.84279943e-01 -6.85060304e-03 -8.55406582e-01
6.76167548e-01 -1.64816034e+00 1.79370731e-01 -1.26279783e+00
3.18440497e-01 -3.58142793e-01 1.01180948e-01 7.38398671e-01
9.71422996e-04 1.28401265e-01 -4.61519696e-02 -6.20990694e-02
-3.34394515e-01 4.96699989e-01 9.20900822e-01 -4.31187689e-01
3.26115899e-02 -2.11485624e-01 -9.50900972e-01 4.16026890e-01
1.49698079e+00 -6.30124867e-01 -1.44309536e-01 -7.61895835e-01
7.36414254e-01 9.23037603e-02 5.41015388e-03 -1.14154398e+00
-8.69166926e-02 -9.61880833e-02 2.00923890e-01 -2.59027153e-01
-2.52968222e-01 -6.90015018e-01 3.26781929e-01 7.10929453e-01
-5.60004771e-01 8.81311178e-01 6.26776695e-01 -6.65989518e-02
-3.16784531e-01 -5.82486987e-01 6.48620307e-01 -2.47086093e-01
-7.24870503e-01 7.01099541e-03 -7.48138726e-01 6.80767968e-02
8.01730990e-01 1.82826892e-01 -2.28297859e-01 -2.48495355e-01
-2.63724893e-01 -2.08428323e-01 9.77856934e-01 9.08747137e-01
5.25330365e-01 -1.16747415e+00 -7.50141621e-01 4.71460342e-01
2.52993524e-01 -3.78408194e-01 -4.42892045e-01 5.45466423e-01
-1.06050074e+00 7.34573245e-01 -5.13218880e-01 -4.18411106e-01
-1.05067611e+00 9.37629700e-01 2.88903981e-01 -1.95859537e-01
-3.74808282e-01 5.35472214e-01 -5.17404042e-02 -9.64121103e-01
-1.82727635e-01 -7.10519493e-01 1.58507690e-01 -5.69730580e-01
4.01779234e-01 1.29662538e-02 1.97645187e-01 -4.13628995e-01
-2.01139987e-01 3.51587981e-01 -1.04725063e-01 1.58484355e-01
1.34760714e+00 5.26641548e-01 -6.22985721e-01 4.75882918e-01
1.38138497e+00 -1.03381366e-01 -7.60096908e-01 1.83881044e-01
1.85457230e-01 -1.44591555e-01 -5.27664684e-02 -7.88101673e-01
-1.12229764e+00 1.14410031e+00 5.27164340e-01 1.38864055e-01
1.00479090e+00 -2.20146075e-01 5.60556650e-01 5.90624869e-01
5.69299519e-01 -8.56383920e-01 2.38922052e-02 1.09610009e+00
9.98096108e-01 -1.09038985e+00 -1.00812100e-01 5.21847382e-02
-2.39458874e-01 1.29330611e+00 7.41573930e-01 -1.31670773e-01
3.04827392e-01 9.47735608e-01 -1.11295804e-01 -9.57331210e-02
-9.43986475e-01 1.17730461e-01 1.07324354e-01 6.68805420e-01
1.34158075e+00 1.33672789e-01 -1.86981052e-01 3.72101396e-01
-6.27463996e-01 4.54404205e-01 7.22187102e-01 1.03139079e+00
-1.63610727e-01 -1.53473115e+00 -3.18658024e-01 5.82691312e-01
-5.49268305e-01 -5.50301433e-01 -4.06534433e-01 6.73926175e-01
-5.94525859e-02 5.80195546e-01 -1.22863650e-01 -5.76058447e-01
-2.04452965e-02 1.05211176e-01 7.09429622e-01 -9.20121253e-01
-1.11704552e+00 -5.54760814e-01 4.10932511e-01 -4.15121257e-01
-7.86753893e-02 -5.21176696e-01 -1.28147984e+00 -5.28533876e-01
-2.20406339e-01 4.70493436e-02 8.88401091e-01 5.72659314e-01
5.30357242e-01 8.70887756e-01 1.08532026e-01 -8.14505816e-01
-4.48783845e-01 -6.85472071e-01 -2.97456514e-02 -1.39757127e-01
2.67306477e-01 -1.25675306e-01 1.72435924e-01 4.08313930e-01]
|
[7.765370845794678, 7.764753818511963]
|
16e3e0ff-27c6-4996-bccd-a7467a5738ef
|
automatic-word-association-norms-awan
| null | null |
https://aclanthology.org/2020.cogalex-1.17
|
https://aclanthology.org/2020.cogalex-1.17.pdf
|
Automatic Word Association Norms (AWAN)
|
Word Association Norms (WAN) are collections that present stimuli words and the set of their associated responses. The corpus is widely used in diverse areas of expertise. In order to reduce the effort to have a good quality resource that can be reproduced in many languages with minimum sources, a methodology to build Automatic Word Association Norms is proposed (AWAN). The methodology has an input of two simple elements: a) dictionary, and b) pre-processed Word Embeddings. This new kind of WAN is evaluated in two ways: i) learning word embeddings based on the node2vec algorithm and comparing them with human annotated benchmarks, and ii) performing a lexical search for a reverse dictionary. Both evaluations are done in a weighted graph with the AWAN lexical elements. The results showed that the methodology produces good quality AWANs.
|
['Helena Gomez-Adorno', 'Gemma Bel-Enguix', 'Gerardo Sierra Martínez', 'Jorge Reyes-Magaña']
| null | null | null | null |
coling-cogalex-2020-12
|
['learning-word-embeddings', 'reverse-dictionary']
|
['methodology', 'natural-language-processing']
|
[-5.93524426e-02 -1.10853612e-01 -8.79122987e-02 -1.70963526e-01
-2.41791233e-01 -4.56517667e-01 8.48277926e-01 6.87092185e-01
-1.04943335e+00 5.52506804e-01 5.85027397e-01 -2.16602281e-01
-2.95391172e-01 -9.34667528e-01 8.96053240e-02 -3.60544950e-01
-3.60875949e-03 5.34013450e-01 3.75342309e-01 -6.22648478e-01
5.12132764e-01 4.28817421e-01 -1.73012042e+00 1.37119696e-01
6.93021178e-01 6.36076868e-01 1.42235860e-01 3.64058197e-01
-6.76371157e-01 4.96746331e-01 -3.62464756e-01 -5.81337333e-01
2.32565552e-01 -4.76165682e-01 -8.68512571e-01 -2.45121658e-01
5.80118708e-02 1.99183926e-01 5.13015613e-02 1.13067424e+00
5.35774052e-01 6.11097813e-01 8.65845263e-01 -8.79922986e-01
-8.44133496e-01 7.32937515e-01 -1.44213572e-01 2.15696424e-01
6.13608658e-01 2.36806367e-02 1.37863684e+00 -1.30477178e+00
8.79368305e-01 1.15691674e+00 4.93332565e-01 3.43065560e-01
-1.18038654e+00 -4.76126194e-01 -1.17896229e-01 4.53764558e-01
-1.40598297e+00 1.89718008e-01 5.93586802e-01 -6.72302783e-01
1.25952566e+00 1.75044611e-01 8.84627938e-01 1.04489791e+00
-6.27903342e-02 8.48327205e-02 1.18192923e+00 -9.55844402e-01
3.37387532e-01 5.57724297e-01 6.69131577e-01 3.45352024e-01
5.91498971e-01 -1.74771279e-01 -4.27723855e-01 -1.52114585e-01
2.93453425e-01 -4.35284019e-01 -9.15030297e-03 -4.43173110e-01
-1.12198198e+00 1.01610422e+00 2.10497826e-01 1.19110048e+00
-6.09374642e-01 -2.40338907e-01 7.14598417e-01 4.19285387e-01
2.75633723e-01 7.26298571e-01 -2.97121853e-01 7.89009687e-03
-5.32121658e-01 2.74149686e-01 8.19166064e-01 4.58705246e-01
7.26565361e-01 6.90939650e-02 -1.12244837e-01 1.00854886e+00
3.80542904e-01 4.70811844e-01 9.85411644e-01 1.69896763e-02
1.30547598e-01 9.20555115e-01 -8.47062692e-02 -1.43973267e+00
-3.93206388e-01 -1.19464628e-01 -3.74416709e-01 1.63257629e-01
3.32941204e-01 2.04939488e-02 -7.33021617e-01 1.64721489e+00
3.34179074e-01 -1.32926270e-01 -2.86533330e-02 7.96204329e-01
1.04849803e+00 7.84501791e-01 3.77432376e-01 -2.43002638e-01
1.51532280e+00 -5.64779401e-01 -1.04161417e+00 1.92927327e-02
8.00627053e-01 -9.38525140e-01 1.27231658e+00 4.10279989e-01
-6.74099326e-01 -7.93478608e-01 -1.18333995e+00 -6.74796924e-02
-1.24715018e+00 -3.43754083e-01 3.88138384e-01 8.01289082e-01
-1.16556942e+00 3.11283559e-01 -1.10614523e-02 -7.93088317e-01
-2.77052462e-01 2.55696684e-01 -6.01876259e-01 7.88015500e-02
-1.68951190e+00 1.56382012e+00 9.34415281e-01 -2.32784823e-01
-3.36266130e-01 -4.46758538e-01 -1.06056070e+00 -1.68312505e-01
1.17726758e-01 -4.06632274e-01 5.67983985e-01 -1.10527134e+00
-1.00580430e+00 1.05267501e+00 1.30723298e-01 -2.40629748e-01
1.04956381e-01 -1.62054915e-02 -1.00453639e+00 -1.78152949e-01
5.42617552e-02 4.23395991e-01 5.35134196e-01 -1.08514667e+00
-5.42682767e-01 -1.95888266e-01 -1.88495904e-01 7.88780749e-02
-1.11345541e+00 6.47569075e-02 -3.35153997e-01 -8.33532035e-01
-4.84543860e-01 -4.61701453e-01 -1.04369842e-01 -3.96634072e-01
1.85514558e-02 -7.03806221e-01 4.52722043e-01 -7.06109941e-01
1.81537104e+00 -2.05274153e+00 1.23041406e-01 8.71438742e-01
2.27487192e-01 6.60690188e-01 -5.48347294e-01 8.68088484e-01
-3.30971867e-01 3.66975963e-02 -3.54698300e-02 9.60518718e-02
1.68875456e-01 3.10609758e-01 -5.00720069e-02 1.58144906e-01
-5.13346586e-03 4.82855439e-01 -1.19930029e+00 -6.99991465e-01
3.14750999e-01 4.62338924e-01 -5.48592091e-01 3.04134786e-01
-6.25850931e-02 -3.54029864e-01 -1.43159777e-01 2.26596460e-01
2.80874729e-01 4.58710939e-01 3.62337530e-01 -5.36790907e-01
-3.15213561e-01 1.37388930e-01 -1.47580767e+00 1.49519873e+00
-4.15017933e-01 5.92062712e-01 -6.41671181e-01 -7.62905121e-01
1.34077692e+00 3.60069871e-01 4.51818526e-01 -7.27313817e-01
5.65945446e-01 5.14077187e-01 2.32973605e-01 -7.85687149e-01
7.49415398e-01 -1.10533036e-01 -8.18976462e-02 4.30901885e-01
6.80341840e-01 -1.02830596e-01 8.91019404e-01 2.00506300e-01
1.05418587e+00 -1.88465983e-01 7.77621508e-01 -6.88989758e-01
1.03012013e+00 -1.51236833e-03 2.63891876e-01 2.98405498e-01
7.29001909e-02 1.51597261e-02 3.61280501e-01 -7.39306569e-01
-1.21555793e+00 -8.92840803e-01 -3.64200845e-02 1.02274430e+00
-1.86687976e-01 -6.65938437e-01 -7.45764673e-01 -5.33569455e-01
-4.94288355e-02 9.71070707e-01 -9.39582109e-01 -7.51810223e-02
-2.54291892e-01 -3.35305005e-01 3.63994539e-01 3.19425821e-01
-3.39188576e-02 -1.42928588e+00 -5.31286359e-01 1.99197158e-01
9.67881382e-02 -6.32812917e-01 -4.90227848e-01 2.33691141e-01
-4.47923899e-01 -1.02863944e+00 -5.30058801e-01 -1.07451391e+00
4.75149065e-01 4.20697704e-02 1.19298220e+00 1.60380870e-01
-4.05583352e-01 4.22503024e-01 -9.78593290e-01 -6.60704851e-01
-3.71484816e-01 -4.56078500e-02 5.11027873e-01 2.00413406e-01
1.14088809e+00 -4.68032837e-01 -1.71393543e-01 -6.07034750e-02
-1.27383614e+00 -5.70789993e-01 7.11011350e-01 7.99940825e-01
4.60530579e-01 -4.12267268e-01 7.43355513e-01 -8.32833648e-01
1.32895005e+00 -5.72522402e-01 -3.59339088e-01 3.00103903e-01
-9.87287223e-01 1.62058264e-01 5.26269555e-01 -5.39046049e-01
-6.13884628e-01 -2.39945754e-01 -3.65380138e-01 1.01511348e-02
-8.05667117e-02 6.17487133e-01 3.30448747e-02 1.17793139e-02
1.01311684e+00 9.42825526e-03 -4.60954122e-02 -3.68269801e-01
7.06178963e-01 7.05884814e-01 1.45604894e-01 -4.37210411e-01
8.31569135e-01 -2.45966241e-01 -2.28062168e-01 -1.07992446e+00
-5.04163861e-01 -8.02682996e-01 -8.12723279e-01 -5.68856239e-01
1.04665673e+00 -2.94707984e-01 -2.62298793e-01 -2.09554955e-01
-1.22211659e+00 7.87575170e-02 -5.99253654e-01 8.99515688e-01
-2.80104149e-02 4.08109486e-01 -1.42263040e-01 -6.16206169e-01
-4.31079507e-01 -6.92630947e-01 1.74340829e-01 6.23580292e-02
-8.69386435e-01 -1.20130956e+00 6.66364789e-01 -1.00792721e-01
5.26891410e-01 1.59946784e-01 1.24392271e+00 -1.39683604e+00
3.93990666e-01 -2.89789528e-01 2.04564761e-02 6.84311628e-01
2.18483999e-01 6.28641620e-02 -6.69027567e-01 2.28544045e-02
-1.27204344e-01 -3.79964709e-01 5.31788886e-01 -1.02180094e-01
6.60556614e-01 -9.54624489e-02 3.24884728e-02 1.16589919e-01
1.77325940e+00 4.93377417e-01 6.31351948e-01 4.17016804e-01
4.14024919e-01 6.96617663e-01 5.27198315e-01 3.42682302e-01
-4.08769101e-02 5.23368359e-01 2.57368505e-01 -1.94205102e-02
-7.11296797e-02 -1.36038691e-01 3.65009844e-01 1.70463669e+00
-2.36551374e-01 -2.08000362e-01 -1.07465720e+00 9.73525643e-01
-1.56120467e+00 -8.80963981e-01 -3.48136097e-01 2.18574452e+00
7.42512405e-01 1.80551797e-01 2.09912792e-01 4.34365720e-01
5.39271355e-01 2.36654043e-01 1.53866529e-01 -1.22863829e+00
-1.04364581e-01 8.20096552e-01 1.50856793e-01 5.51360428e-01
-7.25888491e-01 7.87267923e-01 6.05703497e+00 8.68381202e-01
-8.33679318e-01 1.45962998e-01 -6.40874356e-02 3.82257581e-01
-7.80687273e-01 -2.83664018e-01 -5.31007111e-01 3.41326654e-01
9.17862475e-01 -3.90678644e-01 1.41141936e-01 7.60471463e-01
-9.33652297e-02 1.11865133e-01 -8.87312174e-01 9.98702288e-01
5.46440423e-01 -1.14921081e+00 6.57332003e-01 -2.01511428e-01
5.00949979e-01 -2.54246205e-01 -2.20123425e-01 4.28023458e-01
2.29875162e-01 -9.46054757e-01 4.26411241e-01 6.70860112e-01
6.97478890e-01 -8.10381234e-01 1.21758330e+00 -1.31507829e-01
-1.18044579e+00 1.26172200e-01 -3.83698344e-01 -1.07950628e-01
-6.97805211e-02 4.07739133e-01 -6.32170916e-01 6.71856463e-01
4.91399527e-01 4.33759838e-01 -6.26356840e-01 9.98450696e-01
-2.86416590e-01 5.33323944e-01 -1.12437554e-01 -8.61726522e-01
5.68661273e-01 -5.91593266e-01 4.62203979e-01 1.66376030e+00
3.43091607e-01 -7.46468678e-02 -7.80795738e-02 5.79677463e-01
7.71694854e-02 1.16672325e+00 -9.30221736e-01 -1.43413141e-01
5.55356622e-01 1.41595995e+00 -7.91371047e-01 -1.77431285e-01
-5.00781417e-01 6.71551108e-01 2.40657717e-01 -1.05593771e-01
-5.54924965e-01 -8.02952528e-01 6.01323485e-01 1.24648236e-01
9.96140763e-02 -1.16404578e-01 -1.01983719e-01 -6.18730009e-01
-2.99400657e-01 -8.47729564e-01 4.93563771e-01 -6.16437852e-01
-1.53327286e+00 1.03696680e+00 3.80111113e-02 -1.17055082e+00
-1.04942486e-01 -9.80446398e-01 -4.17404741e-01 1.01978004e+00
-9.09533143e-01 -8.61085653e-01 -2.12676376e-01 7.15871692e-01
5.50297737e-01 -5.05107164e-01 1.37227690e+00 6.76314175e-01
-3.67283136e-01 5.58237553e-01 -2.90036827e-01 1.81076467e-01
7.71273851e-01 -1.34988213e+00 -1.72970183e-02 8.83491695e-01
5.13598025e-01 7.15744555e-01 8.23775053e-01 -5.51851153e-01
-1.04393935e+00 -7.19004929e-01 1.56478715e+00 -2.47712716e-01
9.75263834e-01 -2.61732250e-01 -1.02235913e+00 3.42877775e-01
7.22359836e-01 -3.39798093e-01 1.16842449e+00 1.26845807e-01
-4.26417947e-01 -2.63529718e-01 -8.87535095e-01 5.89293242e-01
6.65770113e-01 -3.99454921e-01 -1.29101229e+00 2.34799892e-01
5.25993884e-01 2.79297680e-01 -8.03747416e-01 4.86212894e-02
4.73220646e-01 -7.42015302e-01 7.22919166e-01 -6.71168983e-01
2.58690715e-01 -2.26655543e-01 -1.58230484e-01 -1.69734359e+00
-4.98598516e-01 -3.33840817e-01 3.31724435e-01 1.30772078e+00
5.27433693e-01 -5.85333765e-01 2.19357405e-02 1.60218745e-01
7.47230947e-02 -6.95481360e-01 -6.97421312e-01 -8.59888971e-01
-6.02645054e-02 -4.81864274e-01 4.52418923e-01 1.22476196e+00
1.72985047e-01 6.41205311e-01 -1.27012894e-01 -5.62571943e-01
2.99717546e-01 -5.28557479e-01 4.29186851e-01 -1.51130867e+00
3.32315534e-01 -7.58603752e-01 -6.94480240e-01 -7.34805837e-02
4.29404788e-02 -1.19414878e+00 -1.34063378e-01 -1.58918965e+00
-8.43589976e-02 -2.64702201e-01 -6.91729307e-01 3.75177264e-01
-5.78607880e-02 2.42126703e-01 -8.04667473e-02 -2.14484125e-01
-3.00467789e-01 2.73225814e-01 7.61016428e-01 3.83815579e-02
-5.64527744e-03 -7.62142479e-01 -4.56780314e-01 7.25333571e-01
8.78735423e-01 -6.02978945e-01 -6.00074887e-01 -2.08881140e-01
5.91049612e-01 -7.98683524e-01 -2.32034504e-01 -9.40759242e-01
1.04095809e-01 -9.59379822e-02 1.93136856e-01 -3.36824834e-01
2.15779915e-02 -9.62506056e-01 1.12723701e-01 6.04574919e-01
-3.88762534e-01 5.91309130e-01 4.91861068e-02 2.54501164e-01
-4.60431635e-01 -6.81827188e-01 6.71511889e-01 1.52484849e-02
-1.12897623e+00 -1.18946038e-01 -5.51409304e-01 4.03201394e-02
1.17905462e+00 -3.93525571e-01 1.65986165e-01 -1.13601916e-01
-4.97780859e-01 8.54139309e-03 1.37879550e-01 6.95717812e-01
6.39716268e-01 -1.60079169e+00 -6.09527886e-01 1.64281175e-01
4.85632509e-01 -8.42754185e-01 -3.93209383e-02 5.98039687e-01
-8.11342835e-01 3.68681103e-01 -7.24103212e-01 1.75297275e-01
-1.23232126e+00 8.37232471e-01 -8.07241574e-02 -5.08982003e-01
-1.76523194e-01 7.77388215e-01 -4.96663153e-01 -3.26651603e-01
2.48957843e-01 -3.12892377e-01 -1.15835345e+00 8.15308332e-01
5.76305270e-01 3.35085928e-01 1.69553265e-01 -9.22474563e-01
-3.69832546e-01 5.14410079e-01 1.56217560e-01 -2.90515214e-01
1.46941316e+00 3.56207639e-01 -5.37449300e-01 8.11430275e-01
1.17046583e+00 3.63577724e-01 -4.05558906e-02 -3.17379564e-01
4.74792302e-01 -3.78119290e-01 -5.99298701e-02 -6.09519064e-01
-7.66707003e-01 5.97586930e-01 7.66686141e-01 5.93532264e-01
9.84641075e-01 -4.76466119e-01 6.69932783e-01 4.01416689e-01
2.92851359e-01 -1.51646566e+00 6.14943728e-02 6.04393601e-01
1.02563655e+00 -7.97501624e-01 -1.17838696e-01 -1.55449212e-01
-5.52200735e-01 1.49616456e+00 4.56785560e-01 -2.84004569e-01
9.31497514e-01 2.33951751e-02 1.40515745e-01 -3.14354897e-01
-5.33931136e-01 -6.11144066e-01 6.71159446e-01 7.20580935e-01
6.27219975e-01 4.44176644e-02 -1.57508183e+00 7.46986032e-01
5.43243475e-02 -1.98737592e-01 2.64978141e-01 6.04257345e-01
-5.34654081e-01 -1.61113405e+00 -2.43608981e-01 5.16378701e-01
-3.04767966e-01 -2.40507677e-01 -6.55582249e-01 1.06373978e+00
6.57263994e-01 8.77084494e-01 -7.00561702e-02 -6.99155390e-01
8.66908491e-01 3.02133769e-01 1.84337825e-01 -7.06446409e-01
-1.02717698e+00 -4.24330682e-01 2.26230338e-01 -3.99067253e-01
-5.62275589e-01 -3.74383271e-01 -8.32941353e-01 -1.81888714e-01
-1.56733230e-01 5.20394862e-01 7.14611173e-01 8.11712325e-01
-2.44142875e-01 5.01831889e-01 4.44407821e-01 -5.08250833e-01
-2.87466705e-01 -1.28059614e+00 -5.78959048e-01 9.61917996e-01
-3.83557260e-01 -7.28845060e-01 -3.57002288e-01 -1.29959315e-01]
|
[10.43235969543457, 8.915478706359863]
|
4f394287-343d-445d-9ba7-7673e93d735d
|
stereogan-bridging-synthetic-to-real-domain
|
2005.01927
| null |
https://arxiv.org/abs/2005.01927v1
|
https://arxiv.org/pdf/2005.01927v1.pdf
|
StereoGAN: Bridging Synthetic-to-Real Domain Gap by Joint Optimization of Domain Translation and Stereo Matching
|
Large-scale synthetic datasets are beneficial to stereo matching but usually introduce known domain bias. Although unsupervised image-to-image translation networks represented by CycleGAN show great potential in dealing with domain gap, it is non-trivial to generalize this method to stereo matching due to the problem of pixel distortion and stereo mismatch after translation. In this paper, we propose an end-to-end training framework with domain translation and stereo matching networks to tackle this challenge. First, joint optimization between domain translation and stereo matching networks in our end-to-end framework makes the former facilitate the latter one to the maximum extent. Second, this framework introduces two novel losses, i.e., bidirectional multi-scale feature re-projection loss and correlation consistency loss, to help translate all synthetic stereo images into realistic ones as well as maintain epipolar constraints. The effective combination of above two contributions leads to impressive stereo-consistent translation and disparity estimation accuracy. In addition, a mode seeking regularization term is added to endow the synthetic-to-real translation results with higher fine-grained diversity. Extensive experiments demonstrate the effectiveness of the proposed framework on bridging the synthetic-to-real domain gap on stereo matching.
|
['Hongsheng Li', 'Chengxi Yang', 'Wenxiu Sun', 'Rui Liu', 'Xiaogang Wang']
|
2020-05-05
|
stereogan-bridging-synthetic-to-real-domain-1
|
http://openaccess.thecvf.com/content_CVPR_2020/html/Liu_StereoGAN_Bridging_Synthetic-to-Real_Domain_Gap_by_Joint_Optimization_of_Domain_CVPR_2020_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2020/papers/Liu_StereoGAN_Bridging_Synthetic-to-Real_Domain_Gap_by_Joint_Optimization_of_Domain_CVPR_2020_paper.pdf
|
cvpr-2020-6
|
['synthetic-to-real-translation']
|
['computer-vision']
|
[ 3.59451503e-01 6.63631558e-02 -1.75982654e-01 -4.26707298e-01
-7.10759938e-01 -3.81978959e-01 6.77303195e-01 -6.12320602e-01
-9.54568312e-02 9.15448189e-01 2.41721407e-01 5.02275134e-06
1.15262054e-01 -8.27563941e-01 -8.99572551e-01 -7.27312922e-01
6.09459519e-01 2.66777962e-01 1.23945564e-01 -4.24901366e-01
2.11507976e-01 2.84006149e-01 -1.37300956e+00 1.30203277e-01
1.43040514e+00 1.04607666e+00 3.37575674e-01 2.74657109e-03
-4.09281999e-02 6.08429790e-01 5.48188612e-02 -5.88670075e-01
8.22889090e-01 -4.53651637e-01 -4.57583189e-01 3.32860768e-01
7.60297954e-01 -5.62678099e-01 -4.33888704e-01 1.20782363e+00
7.25167930e-01 -3.48335467e-02 4.48238999e-01 -1.25336409e+00
-3.98200154e-01 1.79357335e-01 -9.04100478e-01 -3.30314785e-01
3.39427143e-01 3.66543978e-01 8.71440589e-01 -9.51768219e-01
8.90289307e-01 1.29036033e+00 6.87629640e-01 2.42913172e-01
-1.26009333e+00 -9.00839567e-01 -1.19793691e-01 2.24126643e-03
-1.30929804e+00 -6.83237374e-01 1.17304254e+00 -5.07596135e-01
4.24495161e-01 -3.65492702e-02 6.21326208e-01 1.05111337e+00
-5.80190606e-02 6.24057889e-01 1.20898044e+00 -3.36947113e-01
-8.87869000e-02 2.02702492e-01 -5.31159937e-01 3.99514735e-01
1.73254713e-01 4.84571069e-01 -5.99065542e-01 2.31328890e-01
1.10948813e+00 -1.54643551e-01 -5.20533621e-01 -1.00172532e+00
-1.38050675e+00 5.98795116e-01 6.19104445e-01 7.18249381e-02
-2.59244233e-01 -3.39820348e-02 3.42838764e-01 3.27610850e-01
5.27517557e-01 3.53011698e-01 -2.33167127e-01 1.34666592e-01
-9.07518446e-01 3.67022395e-01 3.12308788e-01 1.18940854e+00
1.10940003e+00 3.36386591e-01 -7.41913915e-02 1.00074756e+00
9.27505344e-02 6.56738520e-01 4.17017967e-01 -1.08619189e+00
1.00300086e+00 5.51424921e-01 3.33088309e-01 -1.34889376e+00
-2.08895147e-01 -6.73389494e-01 -1.17933846e+00 3.01242501e-01
3.92000258e-01 7.89990425e-02 -5.39553702e-01 2.01343083e+00
4.23165679e-01 1.03097267e-01 -6.71320930e-02 1.06081367e+00
5.31921268e-01 4.13920581e-01 -2.68422842e-01 -9.89150554e-02
9.68724489e-01 -9.44978058e-01 -6.11120880e-01 -3.17244381e-01
3.52148205e-01 -1.11925983e+00 8.97757292e-01 -2.59536684e-01
-1.37709951e+00 -6.53173506e-01 -1.12640274e+00 -2.34011024e-01
1.27948225e-01 -8.42355751e-03 4.42848712e-01 3.61043990e-01
-8.99333179e-01 4.38204587e-01 -3.95220429e-01 -2.81787515e-01
4.91861045e-01 3.08539987e-01 -2.65914619e-01 -2.06931651e-01
-1.27856088e+00 7.65437067e-01 3.41598928e-01 6.48896545e-02
-3.64639848e-01 -7.93539524e-01 -9.57127512e-01 -1.30436927e-01
2.99137503e-01 -1.19406879e+00 8.62923622e-01 -1.37184787e+00
-1.63748312e+00 1.05481088e+00 -1.73839137e-01 -2.77959317e-01
1.18698311e+00 -1.47249429e-02 -1.29181787e-01 -4.96765338e-02
4.71575946e-01 9.75814402e-01 7.77915418e-01 -1.44255388e+00
-7.00186014e-01 -3.53831470e-01 3.88918445e-02 6.60554588e-01
-2.98249781e-01 -4.06484455e-01 -7.14168072e-01 -8.19629788e-01
4.49544400e-01 -8.97143781e-01 -4.53079417e-02 3.45778525e-01
-3.85742813e-01 4.04776663e-01 5.52463710e-01 -6.52469277e-01
8.01899016e-01 -1.97479403e+00 1.66044816e-01 3.82670015e-02
7.67985210e-02 1.58247292e-01 -2.92565256e-01 3.27783316e-01
-1.58227071e-01 -4.45483863e-01 -3.30580443e-01 -4.20883805e-01
-1.13455206e-01 8.00443441e-02 -4.62733686e-01 5.99790812e-01
1.66143894e-01 9.49776769e-01 -8.38896215e-01 -6.37344062e-01
4.44209993e-01 6.31389081e-01 -8.27153563e-01 1.98796511e-01
-2.28103716e-02 1.02641511e+00 -3.74003440e-01 5.24651825e-01
1.24210346e+00 -3.19022462e-02 -1.16680384e-01 -4.43559796e-01
-1.46599755e-01 1.67639032e-01 -1.25398636e+00 2.10197163e+00
-5.19656599e-01 5.57156622e-01 1.67063311e-01 -8.80100965e-01
8.52007508e-01 8.03227797e-02 5.47274649e-01 -1.07830429e+00
6.59384206e-02 6.19836867e-01 -1.96563676e-01 -1.72583416e-01
4.83503342e-01 -2.90863246e-01 2.67146736e-01 5.11960424e-02
-2.76585400e-01 -4.29091185e-01 1.32128196e-02 -2.02130333e-01
2.18131661e-01 5.15165448e-01 2.01293781e-01 -2.96894133e-01
8.56989384e-01 -5.71261607e-02 9.94190574e-01 2.42354929e-01
-6.13940842e-02 9.84446645e-01 1.22236036e-01 -4.07839477e-01
-1.52702451e+00 -9.60153103e-01 -7.15228319e-02 4.73700494e-01
6.58780396e-01 2.11968333e-01 -6.71609104e-01 -1.32714823e-01
-1.40661523e-01 3.35228324e-01 -2.39610046e-01 -1.09438874e-01
-8.00761402e-01 -3.29102784e-01 3.81487250e-01 3.14584434e-01
1.25746369e+00 -6.96018159e-01 -2.47991771e-01 1.63693383e-01
-6.88266754e-01 -1.27915561e+00 -7.99196780e-01 -3.22565943e-01
-9.89969552e-01 -9.47741270e-01 -1.18143141e+00 -1.07357264e+00
7.42375493e-01 5.71328700e-01 1.02305484e+00 -1.85341418e-01
6.07679822e-02 -2.24508330e-01 -6.07985668e-02 6.82175308e-02
-3.86918843e-01 -1.28668565e-02 -6.14394769e-02 1.57628283e-01
-9.02682394e-02 -9.78992105e-01 -1.03118968e+00 8.36419284e-01
-9.82591808e-01 6.94210947e-01 5.11710405e-01 1.18615592e+00
5.18674850e-01 -1.69573784e-01 1.85888693e-01 -4.55227971e-01
1.58654824e-01 1.34038562e-02 -8.48984182e-01 1.03884600e-01
-6.95061564e-01 -2.43544914e-02 7.55333066e-01 -3.25652897e-01
-1.30685163e+00 1.76602408e-01 -8.91404003e-02 -5.36517739e-01
2.89146304e-01 3.00528351e-02 -4.56745476e-01 -3.76947492e-01
5.90304732e-01 6.12986803e-01 2.10415289e-01 -1.48083612e-01
2.82589972e-01 3.65107089e-01 7.22139120e-01 -5.67513824e-01
1.29058480e+00 7.63325095e-01 2.05096588e-01 -4.97908294e-01
-5.97566307e-01 -3.88197750e-01 -5.97824514e-01 -4.38546808e-03
7.17203975e-01 -1.37527704e+00 -3.94921184e-01 7.34446764e-01
-1.12502229e+00 -1.72230974e-01 -2.28219226e-01 4.73395348e-01
-8.24672759e-01 6.83108449e-01 -3.14477861e-01 -3.70651633e-01
-2.09339231e-01 -1.33258533e+00 1.26664162e+00 9.22164097e-02
2.01517656e-01 -8.41749072e-01 -4.14431952e-02 5.14906406e-01
5.45808911e-01 2.21910134e-01 6.35384738e-01 2.44925246e-01
-9.38066661e-01 7.85489455e-02 -6.41919553e-01 4.20714885e-01
9.40042436e-02 -4.63762611e-01 -8.91434610e-01 -4.48841959e-01
7.85484239e-02 -3.12550575e-01 7.69045353e-01 3.90251964e-01
7.49444962e-01 3.28237936e-03 -2.08827958e-01 1.16124213e+00
1.56100976e+00 4.82722148e-02 9.03214216e-01 5.41231155e-01
8.94840539e-01 7.63529778e-01 8.26017380e-01 3.38930845e-01
5.23058951e-01 1.29088843e+00 3.22874665e-01 -5.01630723e-01
-4.56818074e-01 -5.43170571e-01 1.30318984e-01 7.28100777e-01
9.16349515e-02 3.78340716e-03 -7.08903790e-01 4.33601856e-01
-1.77639985e+00 -8.98151934e-01 -3.09672225e-02 2.40737247e+00
7.84263551e-01 -8.36997554e-02 -1.36560053e-01 -5.22676185e-02
9.45075333e-01 3.02443594e-01 -5.96784115e-01 1.40952513e-01
-6.52473152e-01 -3.78219724e-01 5.90567410e-01 4.96947229e-01
-9.16643322e-01 9.99159276e-01 4.62984943e+00 1.16127229e+00
-1.34494233e+00 -7.69915804e-02 7.69886374e-01 2.28121579e-01
-5.91216505e-01 2.42051706e-01 -4.18762594e-01 4.99330431e-01
-2.18241781e-04 -1.34783655e-01 5.28872609e-01 5.46335638e-01
3.31535250e-01 -1.31388968e-02 -9.59793150e-01 1.34809291e+00
3.12056523e-02 -1.37917387e+00 1.50684595e-01 1.48456678e-01
1.21247840e+00 -1.70313910e-01 1.63386121e-01 -1.49566010e-01
-3.10200453e-02 -6.58229947e-01 8.89665246e-01 1.41274124e-01
1.17859709e+00 -7.09241688e-01 5.22141755e-01 2.21283183e-01
-1.20909750e+00 1.00490279e-01 -5.25244474e-01 -7.28188409e-03
4.31055427e-01 6.42617702e-01 -4.87422287e-01 9.34307933e-01
3.43876362e-01 8.81624639e-01 -2.59179562e-01 1.00387025e+00
-1.17636755e-01 -2.34550193e-01 -1.63449451e-01 5.50685763e-01
2.11327672e-01 -7.17094958e-01 6.86734498e-01 6.77524865e-01
5.23882151e-01 -2.63335228e-01 -1.10582989e-02 1.06094062e+00
-5.63447922e-02 1.41703129e-01 -8.57386231e-01 4.54710752e-01
5.63526869e-01 8.95348787e-01 -3.91753584e-01 -2.00258270e-01
-4.27230120e-01 1.17822933e+00 1.21311523e-01 4.76665169e-01
-7.88594186e-01 -1.61686271e-01 8.90134931e-01 3.47484320e-01
1.47473902e-01 3.58279981e-03 -6.31890059e-01 -1.48151731e+00
4.28733408e-01 -9.61577117e-01 -1.67430818e-01 -8.52431238e-01
-1.19771898e+00 4.80641335e-01 -2.98293680e-01 -2.03475499e+00
-2.66997635e-01 -2.05137789e-01 -3.65913451e-01 1.07768989e+00
-1.90438187e+00 -1.57294977e+00 -5.83984613e-01 7.01346278e-01
5.08197904e-01 -1.65696010e-01 2.80999929e-01 7.16973960e-01
-2.15109557e-01 7.84031034e-01 3.50064784e-01 1.02941506e-02
1.11098981e+00 -7.42045641e-01 4.32511598e-01 8.79219472e-01
-4.09285843e-01 5.26628554e-01 6.90803409e-01 -4.66793031e-01
-1.27049315e+00 -1.18410683e+00 8.76076400e-01 -1.03937909e-01
2.46978953e-01 -2.34558165e-01 -6.14776969e-01 3.68361562e-01
9.94337201e-02 -1.72344223e-01 -4.79942635e-02 -3.01380187e-01
-4.63297218e-01 -4.04084712e-01 -1.13006413e+00 9.29247737e-01
1.36908662e+00 -6.05825365e-01 -2.73212820e-01 2.55946308e-01
6.54995084e-01 -6.95610225e-01 -5.75169861e-01 5.49461186e-01
6.64197803e-01 -1.36853182e+00 1.29390597e+00 3.11521683e-02
9.66839254e-01 -5.50922751e-01 -1.98813498e-01 -1.27582920e+00
-1.77197129e-01 -8.54682207e-01 6.12750888e-01 1.39888704e+00
2.33055055e-01 -8.81825387e-01 8.28094840e-01 3.37937206e-01
-1.68989539e-01 -4.81992692e-01 -1.09095275e+00 -9.49883521e-01
2.72895902e-01 -1.75806478e-01 7.11513042e-01 1.24106491e+00
-3.24359536e-01 2.43833005e-01 -8.88788819e-01 -2.89812274e-02
8.99067998e-01 4.86430019e-01 1.21383488e+00 -9.11496997e-01
-3.00108463e-01 -5.56048512e-01 -4.84935910e-01 -1.68138003e+00
1.41217113e-01 -7.31722414e-01 2.84932200e-02 -1.18680716e+00
2.12505922e-01 -6.03293300e-01 2.23743543e-01 -2.18384728e-01
-8.93137157e-02 4.45705712e-01 1.19151480e-01 5.98469377e-01
-5.96519299e-02 8.42666268e-01 1.84539187e+00 -3.82160246e-02
-1.91998154e-01 -5.72994575e-02 -5.56573153e-01 5.50989747e-01
6.03546500e-01 -1.94304302e-01 -5.37244499e-01 -7.84527242e-01
1.63693383e-01 4.01155293e-01 3.78870428e-01 -9.32364881e-01
2.06885561e-01 -1.64225474e-01 2.70212620e-01 -4.60178524e-01
4.69318628e-01 -7.72657573e-01 2.52669871e-01 2.82907546e-01
-1.43148705e-01 -1.84014425e-01 -1.23379283e-01 4.74741399e-01
-6.81051016e-01 3.01683396e-01 1.22135079e+00 -1.23419082e-02
-6.29768252e-01 4.37834620e-01 4.37678069e-01 1.62651658e-01
8.22949529e-01 -8.12140703e-01 -1.47362262e-01 -6.77808940e-01
-1.28666967e-01 3.08610022e-01 1.06687355e+00 4.48361993e-01
3.54112387e-01 -1.64084816e+00 -7.38252163e-01 4.93173122e-01
3.23390603e-01 2.29635403e-01 4.48904246e-01 1.05976999e+00
-6.51960194e-01 4.97911423e-01 -5.67707121e-01 -8.18269134e-01
-1.06744277e+00 3.06721330e-01 3.94110203e-01 -2.85077333e-01
-5.96420884e-01 8.04128408e-01 8.52613688e-01 -7.27042019e-01
2.38578826e-01 -1.33867100e-01 3.16652358e-01 -1.53302208e-01
1.25539944e-01 2.33093321e-01 -1.58207819e-01 -8.70410562e-01
-1.35148495e-01 1.24686027e+00 2.01999158e-01 -1.41278416e-01
1.12923169e+00 -5.90487480e-01 1.68710481e-02 -1.19271129e-01
1.29543042e+00 -6.25703856e-02 -1.62677062e+00 -5.25490761e-01
-5.55195510e-01 -9.09514248e-01 -1.71460420e-01 -5.52255273e-01
-1.17712533e+00 1.01744628e+00 6.71317816e-01 -4.59621608e-01
1.33209252e+00 -5.85890293e-01 1.15011299e+00 1.12462252e-01
4.89578307e-01 -1.15808213e+00 3.13202199e-03 4.13563311e-01
9.34709132e-01 -1.62327707e+00 3.70985158e-02 -8.52830827e-01
-6.87636375e-01 9.22470152e-01 6.71914995e-01 -1.42130032e-01
1.43606171e-01 -2.28515565e-01 7.16354847e-02 2.13392407e-01
-1.59926310e-01 -1.27350345e-01 2.58749932e-01 7.64457881e-01
2.35255316e-01 -2.33546853e-01 -4.54634637e-01 -1.83201492e-01
-2.23041013e-01 2.09100887e-01 2.87852466e-01 5.73014140e-01
-1.59892634e-01 -1.25048447e+00 -4.59810197e-01 -1.09185405e-01
-4.40021418e-02 -1.93356380e-01 -7.33552203e-02 8.69973600e-01
1.34373248e-01 7.68549681e-01 -8.12963545e-02 -2.31747895e-01
4.55492407e-01 -3.57481927e-01 4.70355928e-01 -8.06325227e-02
-3.03951949e-01 3.27723622e-01 6.93041906e-02 -6.81376636e-01
-4.07545388e-01 -3.81497413e-01 -8.38755608e-01 -3.82975221e-01
-1.39845237e-01 -3.12633842e-01 4.95755643e-01 5.81696570e-01
4.63351130e-01 1.63777113e-01 8.82683516e-01 -1.01826406e+00
-6.46101058e-01 -7.06819654e-01 -5.03337443e-01 8.81599605e-01
3.20878923e-01 -6.85413957e-01 -3.60935599e-01 1.51196104e-02]
|
[8.92290210723877, -2.301494598388672]
|
fa082731-bb5f-42fe-8356-75fd5eb93442
|
decoupling-pseudo-label-disambiguation-and
|
2305.17699
| null |
https://arxiv.org/abs/2305.17699v1
|
https://arxiv.org/pdf/2305.17699v1.pdf
|
Decoupling Pseudo Label Disambiguation and Representation Learning for Generalized Intent Discovery
|
Generalized intent discovery aims to extend a closed-set in-domain intent classifier to an open-world intent set including in-domain and out-of-domain intents. The key challenges lie in pseudo label disambiguation and representation learning. Previous methods suffer from a coupling of pseudo label disambiguation and representation learning, that is, the reliability of pseudo labels relies on representation learning, and representation learning is restricted by pseudo labels in turn. In this paper, we propose a decoupled prototype learning framework (DPL) to decouple pseudo label disambiguation and representation learning. Specifically, we firstly introduce prototypical contrastive representation learning (PCL) to get discriminative representations. And then we adopt a prototype-based label disambiguation method (PLD) to obtain pseudo labels. We theoretically prove that PCL and PLD work in a collaborative fashion and facilitate pseudo label disambiguation. Experiments and analysis on three benchmark datasets show the effectiveness of our method.
|
['Weiran Xu', 'Yunsen Xian', 'Jingang Wang', 'Pei Wang', 'Chen Zeng', 'Keqing He', 'Xiaoshuai Song', 'Yutao Mou']
|
2023-05-28
| null | null | null | null |
['pseudo-label', 'intent-discovery']
|
['miscellaneous', 'natural-language-processing']
|
[ 3.80379528e-01 -2.56911889e-02 -5.54634035e-01 -5.02685845e-01
-8.77856612e-01 -8.04351807e-01 7.74915516e-01 2.17549697e-01
-1.56027079e-01 5.74970007e-01 4.48018163e-01 3.53246406e-02
-2.52907276e-01 -4.68354166e-01 -1.30589381e-01 -4.83532161e-01
2.12490223e-02 5.63620329e-01 -2.02407733e-01 -1.32147029e-01
1.92706332e-01 9.20617878e-02 -1.34927702e+00 2.34617412e-01
8.71274948e-01 1.00998795e+00 1.67887852e-01 1.05220653e-01
-3.27215195e-01 1.06579351e+00 -3.80256295e-01 7.38746375e-02
3.29379767e-01 -1.55324146e-01 -1.14715898e+00 1.56354949e-01
2.15186715e-01 -1.82985723e-01 -1.92038566e-01 1.01671362e+00
1.45850480e-01 4.68147665e-01 1.03566957e+00 -1.43503416e+00
-7.77298152e-01 5.58495522e-01 -6.54997826e-01 -2.11101532e-01
7.80969322e-01 -2.34165728e-01 1.44850492e+00 -7.11670101e-01
5.41201115e-01 1.20404780e+00 7.25882113e-01 5.93326628e-01
-1.27477288e+00 -1.04707885e+00 6.50053382e-01 1.73349120e-02
-1.67356861e+00 -2.19018891e-01 1.10528123e+00 -5.52488089e-01
6.42530859e-01 1.67869687e-01 9.11459252e-02 1.23620045e+00
-4.21720296e-01 9.57828403e-01 1.40263581e+00 -3.90246958e-01
3.56170297e-01 7.61485770e-02 8.63562405e-01 6.39238358e-01
3.91162097e-01 2.05179080e-01 -1.98815033e-01 -5.56235850e-01
4.83982533e-01 4.90034014e-01 -3.27613026e-01 -4.40949440e-01
-9.91979837e-01 1.00417125e+00 5.26308656e-01 3.53545427e-01
-1.94995001e-01 -6.47942126e-02 5.59406519e-01 3.96363020e-01
3.65286589e-01 7.05467463e-01 -4.84421015e-01 2.07574099e-01
-6.15121961e-01 8.25188905e-02 8.44069779e-01 1.13862741e+00
1.34152985e+00 -2.72067815e-01 -2.30611905e-01 1.21320212e+00
4.86924410e-01 2.08999112e-01 9.59092975e-01 -6.82246268e-01
1.84743017e-01 8.57089579e-01 -3.33423764e-02 -1.00348639e+00
-5.59109330e-01 -3.07507306e-01 -6.97839975e-01 -3.16877097e-01
-1.51698813e-02 -1.02888802e-02 -8.70129406e-01 2.02039146e+00
1.89625874e-01 7.19560862e-01 3.45931083e-01 7.06458151e-01
8.52755070e-01 5.28140247e-01 3.76220047e-01 -3.16077739e-01
1.43611002e+00 -9.64099944e-01 -4.45952564e-01 -5.05434215e-01
1.03375554e+00 -3.64684820e-01 9.06748533e-01 -1.39676556e-02
-7.43083954e-02 -4.83003348e-01 -1.04992378e+00 -3.84642035e-02
-3.67646307e-01 -1.48330614e-01 7.19483197e-01 4.54440236e-01
-5.64363182e-01 1.87808260e-01 -5.18848598e-01 -3.11208010e-01
3.07440341e-01 3.93421143e-01 -5.21922886e-01 -3.81541282e-01
-1.27343524e+00 5.59653401e-01 9.42545533e-01 -4.74882632e-01
-7.97286570e-01 -4.71324563e-01 -1.18828189e+00 -1.59287140e-01
6.61923349e-01 -6.78880632e-01 1.45498240e+00 -9.27894354e-01
-1.16914260e+00 1.02698064e+00 -1.90424919e-02 -3.45617473e-01
-1.04753777e-01 -1.50733784e-01 -6.01866364e-01 -1.56788975e-01
5.32092392e-01 4.74539578e-01 8.80264580e-01 -1.62495422e+00
-8.41312706e-01 -2.84743309e-01 3.04738730e-01 3.78080815e-01
-3.56730014e-01 -3.87292564e-01 -3.03570509e-01 -7.52557516e-01
4.22200620e-01 -9.67379689e-01 -2.68004030e-01 -5.40351987e-01
-3.52399409e-01 -6.27787471e-01 1.02549779e+00 -7.49605000e-02
1.23049796e+00 -2.13785458e+00 -1.81715190e-01 3.07233036e-01
4.87500161e-01 2.48064563e-01 -2.14757293e-01 3.53871197e-01
-2.49920070e-01 -1.00353369e-02 -2.52078384e-01 -5.44221997e-01
2.28624612e-01 6.42304897e-01 -7.64488757e-01 3.51044863e-01
-1.51895046e-01 8.21813345e-01 -1.30982077e+00 -6.70402348e-01
1.52263105e-01 6.03570119e-02 -4.63094443e-01 4.13748741e-01
-2.88678855e-01 3.59916836e-01 -8.80944669e-01 9.20429528e-01
5.90989947e-01 -3.89995456e-01 6.24938905e-01 -1.91116571e-01
2.12760732e-01 4.78958517e-01 -1.11718929e+00 1.95987582e+00
-8.91511679e-01 5.49432971e-02 -1.73482880e-01 -1.02854145e+00
1.20536506e+00 2.24150032e-01 5.23334801e-01 -5.42099953e-01
1.41566545e-01 3.97614419e-01 -5.22079170e-01 -2.04695508e-01
6.16493165e-01 -4.36784923e-01 -5.96463740e-01 1.00275409e+00
1.40022323e-01 7.29791448e-02 3.66169773e-03 1.17300302e-01
9.58141267e-01 -6.10490292e-02 8.82166624e-01 -1.38309121e-01
4.92666781e-01 -1.50733441e-01 8.19264650e-01 6.89033270e-01
-4.08833325e-01 4.39367741e-01 2.47022122e-01 -3.32429439e-01
-3.24913472e-01 -8.56554389e-01 -1.42198920e-01 1.45695674e+00
3.96664023e-01 -8.32338512e-01 -9.65369791e-02 -1.35140955e+00
-1.06280530e-02 6.96320117e-01 -5.74933529e-01 -3.22135806e-01
-4.60666984e-01 -4.56627965e-01 3.44591320e-01 4.97176468e-01
2.99398869e-01 -8.41074586e-01 -2.45876357e-01 1.08940683e-01
-1.43286139e-01 -1.04179811e+00 -6.14707112e-01 5.39529920e-01
-4.65636253e-01 -1.17944229e+00 -2.52876997e-01 -1.08537447e+00
6.77909613e-01 7.32352018e-01 1.01793063e+00 2.51527708e-02
1.04426160e-01 4.84638184e-01 -6.71040535e-01 5.15613556e-02
-3.04467618e-01 2.24627405e-01 3.73452038e-01 3.80045883e-02
6.36061490e-01 -7.37925231e-01 -2.67707914e-01 4.23641086e-01
-9.47014749e-01 -4.77842018e-02 6.88534975e-01 1.13652825e+00
6.31959081e-01 -4.27537225e-02 6.72635555e-01 -1.23214006e+00
7.87491918e-01 -9.50291455e-01 -3.22235137e-01 3.31685752e-01
-8.57092738e-01 3.13114315e-01 5.48497975e-01 -5.35215378e-01
-9.20890391e-01 3.05476427e-01 8.35879892e-02 -7.13018000e-01
-2.94252247e-01 6.53672159e-01 -3.10457557e-01 1.32906646e-01
6.89260840e-01 2.15319768e-01 -2.36130849e-01 -5.15774369e-01
6.38186991e-01 9.96985495e-01 4.74251837e-01 -9.30527031e-01
7.25499094e-01 4.24349606e-01 -2.98485458e-01 -3.94986153e-01
-1.36878824e+00 -9.79377329e-01 -5.46003580e-01 1.41955778e-01
3.88259739e-01 -9.75289106e-01 -4.29392159e-01 1.70579236e-02
-7.76234865e-01 -9.16784108e-02 -4.02668118e-01 4.54374701e-01
-5.56872129e-01 5.04362106e-01 -2.14077875e-01 -6.60916924e-01
-3.53823453e-01 -9.64081049e-01 1.30890799e+00 1.64554611e-01
-4.59976673e-01 -1.22913229e+00 4.65121448e-01 2.38572896e-01
4.80021015e-02 1.29206270e-01 6.75223529e-01 -1.33639252e+00
-1.21925578e-01 -2.45934382e-01 -5.30095041e-01 1.72981799e-01
5.96201062e-01 -7.79657602e-01 -1.09509230e+00 -3.74065638e-01
1.29274637e-01 -7.81571567e-01 1.00369751e+00 -5.79611436e-02
9.85259235e-01 -4.36644584e-01 -5.98334849e-01 7.10866332e-01
1.29018092e+00 9.15534794e-02 5.54277152e-02 2.19466686e-01
8.69861186e-01 4.45552021e-01 7.93246329e-01 5.75867057e-01
4.70738769e-01 8.18350434e-01 1.29868872e-02 3.38936746e-01
-1.48749441e-01 -6.91399336e-01 2.81017452e-01 7.14674473e-01
4.40115601e-01 1.30594775e-01 -1.01376927e+00 3.92278254e-01
-2.03461313e+00 -7.06986547e-01 2.46426791e-01 2.07315397e+00
9.76909578e-01 -1.57415658e-01 9.17066410e-02 5.01803169e-03
8.35469782e-01 2.65088528e-01 -5.15661418e-01 -1.90920662e-02
2.03942910e-01 1.18092768e-01 2.99022228e-01 4.51168656e-01
-1.44464850e+00 1.04809284e+00 5.96649122e+00 9.93262947e-01
-9.63282228e-01 2.42946029e-01 2.73857385e-01 4.22688991e-01
-4.44430649e-01 3.15181941e-01 -8.47921610e-01 3.43762130e-01
4.92370456e-01 -2.82889992e-01 2.09658265e-01 1.41913760e+00
-5.73991895e-01 3.85264337e-01 -1.25992095e+00 1.33662236e+00
2.56210238e-01 -9.90061462e-01 1.71349630e-01 -7.04076365e-02
7.58324564e-01 -1.23441122e-01 -2.25007892e-01 9.53630865e-01
7.51672029e-01 -8.28384936e-01 3.32112253e-01 1.70770139e-01
1.01867664e+00 -6.08128965e-01 4.38228041e-01 3.99383813e-01
-1.55384135e+00 -2.96283782e-01 -3.50659013e-01 -1.72842965e-01
-2.08906177e-02 4.57521707e-01 -1.09896958e+00 7.35401332e-01
2.80056298e-02 1.13962865e+00 -4.08382058e-01 6.85565531e-01
-5.94346166e-01 3.57941628e-01 -1.87020868e-01 1.26799047e-01
2.39984348e-01 -6.37195557e-02 3.29631805e-01 1.21702540e+00
-1.49218246e-01 7.29788244e-02 9.68364120e-01 7.23462462e-01
-3.12958688e-01 -1.36977173e-02 -6.27570033e-01 -3.17834807e-03
9.18826640e-01 1.35365808e+00 -5.16704857e-01 -3.01684827e-01
-3.77037257e-01 8.43709826e-01 5.09680867e-01 2.17913717e-01
-5.87446570e-01 -1.25206411e-01 8.39772284e-01 -2.62374282e-01
3.33127417e-02 -6.33379817e-02 -4.09369580e-02 -1.38083148e+00
-3.37803006e-01 -7.71496594e-01 9.59005892e-01 -3.30876112e-01
-1.84371936e+00 4.67091382e-01 2.07227975e-01 -1.55192423e+00
-5.65902531e-01 -5.54120183e-01 -3.73061091e-01 6.17152989e-01
-1.84136093e+00 -1.40254760e+00 -3.96049738e-01 6.57607377e-01
5.40191412e-01 -6.40924349e-02 1.16415203e+00 9.30893347e-02
-4.49031800e-01 7.71140158e-01 2.85327230e-02 2.00640902e-01
7.97537386e-01 -1.10903811e+00 4.99888770e-02 4.44209725e-01
2.96036363e-01 8.63282800e-01 2.72415817e-01 -6.57113791e-01
-1.22681713e+00 -1.41922140e+00 6.20258093e-01 -3.66675526e-01
7.02316105e-01 -3.28798860e-01 -8.22688401e-01 1.03528929e+00
-3.22677284e-01 1.76315069e-01 1.15605211e+00 5.58294237e-01
-1.26395249e+00 9.77718681e-02 -9.81511474e-01 3.71289104e-01
1.13354838e+00 -9.25524116e-01 -1.19334304e+00 3.74301463e-01
8.08134675e-01 -1.57237947e-01 -4.67714369e-01 5.40042222e-01
5.09708464e-01 -5.40338337e-01 1.02819860e+00 -4.70521212e-01
-9.58136097e-02 -4.85128492e-01 -4.74180996e-01 -1.16744220e+00
-4.51717049e-01 -4.47376937e-01 -2.87558913e-01 1.33039081e+00
-3.75269838e-02 -7.87734091e-01 4.93089706e-01 4.82202321e-01
-3.53051394e-01 -5.57523727e-01 -8.10597539e-01 -1.06377208e+00
-1.73241183e-01 -6.37584865e-01 6.36741698e-01 1.47656953e+00
3.77679616e-01 8.55779409e-01 -4.41232055e-01 5.02943806e-02
4.55981761e-01 7.52521217e-01 6.47240341e-01 -1.65430617e+00
-4.61835146e-01 -3.81306291e-01 -3.47122580e-01 -1.37738669e+00
8.57610047e-01 -1.21592724e+00 1.37783498e-01 -1.41084814e+00
2.92292744e-01 -1.08324516e+00 -5.78106761e-01 8.90402198e-01
-3.10119897e-01 2.00249553e-02 3.87589633e-02 8.56555343e-01
-1.03337383e+00 5.83423555e-01 7.95852244e-01 -2.74873942e-01
-2.93292463e-01 -8.72207433e-02 -1.24949002e+00 7.59727061e-01
6.39126837e-01 -6.42196655e-01 -7.79783547e-01 -1.23612052e-02
-1.89739496e-01 -2.63299465e-01 1.13500156e-01 -8.02932978e-01
2.60090269e-02 -2.89326549e-01 -2.10095704e-01 -2.83360124e-01
2.83999920e-01 -8.66595328e-01 -2.82802638e-02 3.29082459e-01
-4.93082821e-01 -6.10734880e-01 -1.61258638e-01 8.22013140e-01
-2.17873544e-01 -3.13843101e-01 6.39960587e-01 -1.99523289e-02
-1.31541395e+00 3.49329412e-01 1.50437012e-01 3.52566451e-01
1.04971528e+00 -3.29062715e-02 -4.88360465e-01 -2.20907480e-01
-4.33358043e-01 3.35025579e-01 5.67430973e-01 5.30172348e-01
4.81770217e-01 -1.53135026e+00 -4.62951988e-01 1.90954044e-01
7.80785322e-01 -4.57729306e-03 1.06583372e-01 4.34178889e-01
1.93647504e-01 4.37773377e-01 1.39659584e-01 -4.52823311e-01
-9.48671222e-01 9.04158890e-01 9.16648582e-02 -6.97429776e-01
-4.76838976e-01 8.57738614e-01 6.40780330e-01 -6.95792735e-01
2.16086000e-01 -6.58434406e-02 -3.71694386e-01 1.40666008e-01
6.09834969e-01 -1.51099283e-02 -1.92219749e-01 -8.63577485e-01
-5.39947271e-01 5.32577157e-01 -4.92426664e-01 2.62703240e-01
9.09031928e-01 -1.09201632e-01 1.12686455e-01 5.04378021e-01
1.53203571e+00 -1.54538170e-01 -9.31691289e-01 -6.86532140e-01
2.97346085e-01 -4.63374943e-01 -6.27331138e-02 -6.26153827e-01
-6.21276021e-01 2.85575569e-01 4.36738580e-01 1.97292224e-01
1.24077141e+00 3.58170390e-01 8.69365811e-01 5.45748770e-01
5.31604588e-01 -8.32180321e-01 3.00576627e-01 8.49851668e-01
6.39694631e-01 -1.33812022e+00 -7.69184390e-03 -4.59984869e-01
-7.60734022e-01 7.33852804e-01 6.72649741e-01 -1.05353214e-01
6.78834677e-01 -8.62909853e-02 -2.44771447e-02 -2.84999400e-01
-6.57827020e-01 -4.62413400e-01 3.72314453e-01 7.18405366e-01
3.84857833e-01 3.19357574e-01 -2.03628063e-01 1.04322171e+00
2.27428488e-02 -1.38511628e-01 1.29420146e-01 1.21457195e+00
-4.48899120e-01 -1.49886119e+00 -3.83772343e-01 3.36635947e-01
1.32036731e-01 -6.29264414e-02 -5.68878233e-01 5.61189115e-01
2.44576901e-01 1.04868209e+00 -1.72403753e-01 -8.29335749e-01
2.40361895e-02 2.88696259e-01 4.67258645e-03 -1.12599611e+00
-2.28929743e-01 -2.03134269e-01 -3.36843096e-02 -3.47372949e-01
-5.62542737e-01 -4.03732270e-01 -1.38547301e+00 1.07732378e-01
-4.89197046e-01 4.42781627e-01 2.76970446e-01 1.06622446e+00
5.13164580e-01 2.45837942e-01 8.94202650e-01 -5.64453304e-01
-7.05521107e-01 -9.41960156e-01 -8.22124839e-01 7.60012150e-01
3.67124975e-01 -1.12412679e+00 -4.29238558e-01 -1.25082105e-01]
|
[9.705689430236816, 3.865482807159424]
|
1ba02195-00fa-4d7c-8c2e-c6e1073f07be
|
pa-gm-position-aware-learning-of-embedding
|
2301.01932
| null |
https://arxiv.org/abs/2301.01932v1
|
https://arxiv.org/pdf/2301.01932v1.pdf
|
PA-GM: Position-Aware Learning of Embedding Networks for Deep Graph Matching
|
Graph matching can be formalized as a combinatorial optimization problem, where there are corresponding relationships between pairs of nodes that can be represented as edges. This problem becomes challenging when there are potential ambiguities present due to nodes and edges with high similarity, and there is a need to find accurate results for similar content matching. In this paper, we introduce a novel end-to-end neural network that can map the linear assignment problem into a high-dimensional space augmented with node-level relative position information, which is crucial for improving the method's performance for similar content matching. Our model constructs the anchor set for the relative position of nodes and then aggregates the feature information of the target node and each anchor node based on a measure of relative position. It then learns the node feature representation by integrating the topological structure and the relative position information, thus realizing the linear assignment between the two graphs. To verify the effectiveness and generalizability of our method, we conduct graph matching experiments, including cross-category matching, on different real-world datasets. Comparisons with different baselines demonstrate the superiority of our method. Our source code is available under https://github.com/anonymous.
|
['Zhihong Zhang', 'Lichi Zhang', 'Yuxing Dai', 'Dongdong Chen']
|
2023-01-05
| null | null | null | null |
['graph-matching']
|
['graphs']
|
[-1.45551890e-01 7.21082911e-02 -5.05317390e-01 -4.85919625e-01
-5.98487556e-01 -5.39417863e-01 2.48169780e-01 5.24847150e-01
-6.95111752e-02 7.44431242e-02 4.10408705e-01 -1.94475427e-01
-3.68700683e-01 -1.20868027e+00 -5.71103990e-01 -3.81024897e-01
-2.68098563e-01 3.67365122e-01 -5.65511473e-02 -2.06053078e-01
1.46387324e-01 3.58501256e-01 -1.16244602e+00 -1.33614847e-02
9.35497403e-01 1.00853169e+00 1.35920852e-01 2.49197245e-01
-3.36898834e-01 1.81520954e-01 -3.10701191e-01 -5.35038352e-01
5.43974161e-01 -1.32849485e-01 -7.64377534e-01 -1.29638031e-01
8.86770427e-01 -2.67702430e-01 -8.66938174e-01 1.29285049e+00
4.81579363e-01 1.32321417e-01 4.12427574e-01 -1.63523531e+00
-1.07504320e+00 6.43220782e-01 -8.08674634e-01 -9.77231413e-02
6.38851762e-01 -1.18980117e-01 1.58315969e+00 -5.75293481e-01
4.44126427e-01 1.43867028e+00 8.65189254e-01 1.11232489e-01
-1.13474095e+00 -7.61044860e-01 4.06180710e-01 3.42044622e-01
-1.57343018e+00 -2.22311959e-01 1.03911197e+00 -3.08458686e-01
5.37706017e-01 1.91188052e-01 5.66114366e-01 5.61723411e-01
-7.11126029e-02 5.99965811e-01 2.41646305e-01 -2.13787764e-01
-2.54064143e-01 -1.92080244e-01 2.29347706e-01 8.70268822e-01
2.94468641e-01 1.90777585e-01 -1.82997793e-01 -3.10063154e-01
5.95068038e-01 3.43592584e-01 -3.90600234e-01 -7.04716444e-01
-1.28565168e+00 9.22470927e-01 1.39081788e+00 4.41968769e-01
-1.51958227e-01 2.56397754e-01 2.81839162e-01 3.75062257e-01
2.77800560e-01 4.33889210e-01 -8.70711580e-02 4.77240205e-01
-5.48229873e-01 6.53040335e-02 7.87373841e-01 1.19366872e+00
9.26656902e-01 -4.57453102e-01 -3.17896008e-01 8.71684670e-01
5.53317249e-01 3.69786531e-01 2.18949690e-01 -8.46681893e-01
7.06970096e-01 1.11477363e+00 -2.46921539e-01 -1.95246792e+00
-4.86065984e-01 -4.98252451e-01 -1.08777785e+00 -2.96000987e-01
3.31407070e-01 1.08507052e-01 -6.26160264e-01 2.08522105e+00
4.62497562e-01 3.69901627e-01 -2.41057575e-01 1.06922090e+00
1.23589861e+00 5.68884015e-01 -1.49184018e-01 3.34298164e-01
1.31585109e+00 -9.93493676e-01 -4.40861493e-01 -2.28300914e-01
7.23309278e-01 -6.01890445e-01 8.25897098e-01 -5.67663133e-01
-8.35126579e-01 -3.75819981e-01 -1.01263607e+00 -3.13752264e-01
-4.12537098e-01 1.15885720e-01 7.04360664e-01 2.25020617e-01
-1.15816009e+00 7.81297147e-01 -3.31486881e-01 -4.48567986e-01
2.63401866e-01 4.80730712e-01 -6.11182630e-01 -1.65053740e-01
-1.54304540e+00 4.82428432e-01 4.24859405e-01 3.49280894e-01
-5.25948964e-02 -6.57536626e-01 -1.17204368e+00 4.11684811e-01
3.01681578e-01 -7.34043837e-01 8.49622726e-01 -6.03499770e-01
-8.16967010e-01 1.00737977e+00 -1.96182832e-01 9.19724554e-02
3.42669487e-01 3.44610155e-01 -2.95684516e-01 8.84417212e-04
4.35273975e-01 6.63801551e-01 3.92201960e-01 -1.08885229e+00
-6.06772006e-01 -5.56950569e-01 3.24267566e-01 2.43375719e-01
-5.83144486e-01 -2.49854684e-01 -9.46887910e-01 -5.85997999e-01
5.97884059e-01 -9.09268379e-01 -1.20350301e-01 5.48704088e-01
-5.31557918e-01 -5.01464605e-01 5.13462842e-01 -7.38749683e-01
1.36164367e+00 -2.24073100e+00 2.51189739e-01 6.38067186e-01
7.72997975e-01 -9.21991095e-02 -6.06465280e-01 5.89897871e-01
-2.02096388e-01 1.52677968e-01 -8.96730050e-02 -7.75183886e-02
1.71804279e-01 -1.81297362e-01 4.07657698e-02 5.67492962e-01
-2.02567931e-02 1.27019823e+00 -1.08288968e+00 -5.46338618e-01
-1.19344063e-01 1.94482923e-01 -3.15371633e-01 2.29978636e-01
7.32363909e-02 -2.64855418e-02 -6.34365141e-01 7.95164585e-01
8.74174953e-01 -6.35042250e-01 3.21556091e-01 -6.42826319e-01
3.94914776e-01 1.73337057e-01 -1.28068256e+00 1.76688457e+00
-2.77850419e-01 7.10240245e-01 1.47214785e-01 -1.07729042e+00
1.12056839e+00 -1.02460332e-01 6.01226151e-01 -8.92209709e-01
4.57491316e-02 1.49884611e-01 -4.26528230e-03 -2.38384381e-01
4.11486834e-01 3.20923358e-01 -2.69324154e-01 4.39220756e-01
-2.48736516e-01 3.07418942e-01 1.39028907e-01 6.45201266e-01
1.09018254e+00 -3.28250051e-01 2.46723711e-01 -2.45169848e-01
5.11011660e-01 -2.28758216e-01 6.99798048e-01 5.09870708e-01
-1.57632560e-01 4.82011110e-01 6.58352196e-01 -5.66770017e-01
-8.96436632e-01 -1.03004491e+00 -3.05934679e-02 7.77087450e-01
8.76348555e-01 -6.44059479e-01 -4.06028837e-01 -6.19088590e-01
5.34541607e-01 2.92380899e-02 -7.89077044e-01 -4.06112164e-01
-6.65944278e-01 -3.89531523e-01 2.88416952e-01 4.45479602e-01
4.88331676e-01 -6.56692147e-01 2.64206082e-01 1.20901704e-01
-5.45350134e-01 -1.06646550e+00 -1.13936698e+00 -4.33302045e-01
-6.55724525e-01 -1.26174104e+00 -5.44671416e-01 -1.19960785e+00
1.02596319e+00 8.58978271e-01 1.23325002e+00 1.00286746e+00
-2.71419764e-01 1.38592839e-01 -2.16070324e-01 1.20396584e-01
-5.10554425e-02 3.63685369e-01 -2.00073689e-01 -1.11971103e-01
2.91049033e-01 -6.32118940e-01 -7.66693771e-01 5.76631069e-01
-6.19025350e-01 8.89530629e-02 6.01344764e-01 8.30882907e-01
3.87515366e-01 -2.16653873e-03 4.62772876e-01 -7.14675009e-01
7.10540891e-01 -6.58360422e-01 -6.47446334e-01 4.17646587e-01
-5.49237728e-01 1.96270421e-01 4.45338130e-01 -2.85082549e-01
-3.13081264e-01 -3.84220183e-02 1.34312287e-01 -4.00537670e-01
3.05791438e-01 7.58895397e-01 -4.64411616e-01 -3.48158002e-01
3.30438614e-01 -7.38243163e-02 2.07756653e-01 -4.28978682e-01
3.63288581e-01 6.08501554e-01 5.29731929e-01 -6.30878031e-01
1.13106155e+00 2.41419211e-01 1.80237666e-01 -1.53683141e-01
-7.14725018e-01 -6.07614279e-01 -6.71479285e-01 -2.78860256e-02
2.90603131e-01 -8.94614577e-01 -9.18646574e-01 3.80843639e-01
-1.18928170e+00 1.88039541e-02 2.42842957e-01 2.03442857e-01
-2.70819757e-02 7.65666723e-01 -6.26098096e-01 -1.01926379e-01
-5.08472741e-01 -9.69773710e-01 1.03074551e+00 3.12090576e-01
-6.83033168e-02 -1.14081872e+00 1.53581882e-02 2.36098304e-01
3.17252547e-01 1.79135904e-01 1.10962701e+00 -5.76890707e-01
-8.28125536e-01 -5.66754758e-01 -8.53409588e-01 -4.24500078e-01
2.52697647e-01 -8.83529894e-03 -3.08421016e-01 -5.81219912e-01
-7.21707225e-01 7.23891854e-02 7.99805403e-01 1.66599452e-01
1.11775756e+00 -4.58398372e-01 -8.14500809e-01 8.99974346e-01
1.40259492e+00 -2.46843725e-01 3.60920787e-01 3.32546264e-01
1.04508710e+00 7.44700193e-01 4.55359936e-01 7.89093524e-02
8.10227811e-01 9.02788460e-01 5.42716265e-01 -1.74712270e-01
-1.72358871e-01 -6.18128121e-01 -2.33565018e-01 7.03491330e-01
4.45890784e-01 -3.31787348e-01 -8.49335372e-01 5.45690775e-01
-2.09141684e+00 -8.97246003e-01 -1.49438754e-01 2.13208342e+00
5.01979768e-01 -2.00367704e-01 9.65256318e-02 -1.97599962e-01
1.24931371e+00 2.14488149e-01 -5.79840600e-01 9.65157524e-02
1.39608696e-01 -4.87111896e-01 3.69231075e-01 5.60737193e-01
-1.05516648e+00 6.42403126e-01 5.53929377e+00 6.70288980e-01
-1.02794611e+00 -3.83687913e-01 4.40314025e-01 2.57220984e-01
-6.96973383e-01 8.08053687e-02 -5.43737233e-01 6.87040806e-01
2.69987941e-01 -5.39281070e-01 5.37500978e-01 6.54646754e-01
-2.22087339e-01 3.86771083e-01 -1.18966222e+00 1.03451562e+00
2.20882036e-02 -1.34305191e+00 1.31557160e-03 1.33286089e-01
4.49992687e-01 -3.47219221e-02 -9.04741436e-02 2.28156433e-01
3.36584479e-01 -9.49180901e-01 3.26734483e-01 3.26326519e-01
7.88318694e-01 -3.89380246e-01 7.46232390e-01 1.01597734e-01
-1.75494325e+00 -5.35231866e-02 -4.95611966e-01 1.27051830e-01
3.68584357e-02 5.74453771e-01 -6.73523962e-01 7.98611283e-01
5.36222339e-01 1.01533926e+00 -6.55580163e-01 1.36360776e+00
-1.95122048e-01 -9.97915491e-02 -4.33950037e-01 -1.27980769e-01
1.41337737e-01 -4.51041937e-01 4.54725504e-01 9.24618244e-01
4.50115681e-01 -4.47814725e-02 3.76658142e-01 9.74711478e-01
-6.08262122e-01 2.61605740e-01 -6.23938560e-01 1.22424051e-01
1.05293643e+00 1.44177318e+00 -6.29091680e-01 -1.46472484e-01
-4.65697408e-01 8.32360625e-01 9.43902135e-01 3.04132909e-01
-7.36602008e-01 -7.86827147e-01 6.58058643e-01 6.97645843e-02
-6.25443980e-02 1.93978753e-02 -1.08654939e-01 -1.25615525e+00
4.16548252e-01 -6.93262517e-01 7.59238362e-01 -6.12488329e-01
-1.69392192e+00 5.44175208e-01 -2.34647438e-01 -1.35718358e+00
6.61463290e-02 -4.19029146e-01 -1.04241550e+00 9.66341972e-01
-1.29194093e+00 -1.24920988e+00 -8.54792714e-01 4.08391595e-01
-1.66898578e-01 -6.80034757e-02 7.17002392e-01 5.66001534e-01
-6.42159224e-01 1.11895335e+00 1.05584912e-01 7.01786995e-01
6.24873042e-01 -1.10384285e+00 7.09824562e-01 6.41286612e-01
1.56404570e-01 6.61904633e-01 3.46596181e-01 -5.13137639e-01
-1.49535477e+00 -1.11858749e+00 1.03256094e+00 -1.35055453e-01
6.75371885e-01 -4.60452110e-01 -1.13529670e+00 6.29843235e-01
-1.77661106e-01 2.77402133e-01 5.32973230e-01 4.01030600e-01
-6.78724647e-01 -3.25313896e-01 -1.16852665e+00 6.88237548e-01
1.45554817e+00 -5.98065376e-01 -3.23578715e-01 3.51689905e-01
9.70414996e-01 -4.86074984e-01 -1.01832032e+00 4.50527340e-01
6.62117362e-01 -5.76779902e-01 1.20068061e+00 -5.46500921e-01
3.16341221e-01 -3.31292063e-01 -1.28439993e-01 -1.46276093e+00
-8.41681123e-01 -3.81240577e-01 1.74156070e-01 1.31859851e+00
4.71360594e-01 -8.17729056e-01 9.30026531e-01 7.60846734e-01
1.32743314e-01 -7.91949689e-01 -7.79754102e-01 -6.16060674e-01
-3.77739370e-02 1.52809992e-01 1.09924650e+00 1.26035845e+00
2.43537843e-01 4.61819679e-01 -1.99751571e-01 2.53243119e-01
7.48665929e-01 7.66488373e-01 8.41446698e-01 -1.45118809e+00
-1.13494374e-01 -7.33391464e-01 -8.51445138e-01 -1.19905579e+00
5.53005934e-01 -1.45356095e+00 -1.31586239e-01 -1.77326715e+00
4.52392727e-01 -8.08185160e-01 -2.39403516e-01 5.79216540e-01
-5.21224022e-01 2.59582568e-02 1.95457980e-01 4.30306643e-01
-5.57433426e-01 6.94939852e-01 1.29981411e+00 -4.71692801e-01
-5.25919348e-02 -7.30502903e-02 -1.04204071e+00 2.86051184e-01
7.52726674e-01 -3.95982921e-01 -1.61172435e-01 -6.63874269e-01
2.69160956e-01 1.90539449e-01 4.24653322e-01 -6.15210056e-01
5.68690181e-01 -7.09889233e-02 2.82284766e-01 -4.01737839e-01
1.48128703e-01 -1.01088822e+00 2.23419875e-01 4.60047662e-01
-4.74654645e-01 2.31483638e-01 -5.54072559e-02 6.75627708e-01
-3.12823087e-01 -1.09880410e-01 5.06615698e-01 1.42452583e-01
-7.22708941e-01 9.08331990e-01 5.70132077e-01 -9.13988426e-03
9.40928876e-01 -2.16243759e-01 -4.68571007e-01 -6.61488414e-01
-3.62309277e-01 8.66220236e-01 6.91495121e-01 6.29012108e-01
5.68463266e-01 -1.90668190e+00 -8.03318024e-01 9.19989869e-02
4.27453995e-01 4.19865595e-03 1.66109040e-01 5.28232634e-01
-3.27739418e-01 2.53477305e-01 -1.30948901e-01 -5.07024944e-01
-1.31378889e+00 7.55280674e-01 5.64846992e-01 -1.68021441e-01
-5.86576104e-01 6.93076193e-01 1.58029258e-01 -9.57819819e-01
3.64973128e-01 8.11609924e-02 -8.98262858e-02 -8.95017013e-02
3.15468460e-01 2.09141463e-01 -2.09827140e-01 -7.93440700e-01
-4.61637735e-01 9.14690316e-01 -8.29625651e-02 5.03822088e-01
1.07838142e+00 -2.69543171e-01 -4.74962443e-01 -1.44237146e-01
1.81983054e+00 -2.01964192e-03 -7.56486356e-01 -7.83313096e-01
-5.51398285e-02 -9.44191873e-01 -1.06146462e-01 -2.60954589e-01
-1.50298119e+00 6.49255335e-01 2.75000542e-01 1.27864808e-01
8.82582545e-01 2.21963152e-01 9.81597006e-01 4.37779725e-01
3.27622503e-01 -5.99644244e-01 4.13182098e-03 1.86143234e-01
9.08878863e-01 -1.51459897e+00 8.68786052e-02 -8.50459993e-01
-1.05854832e-01 1.09856653e+00 8.45900893e-01 -9.16023329e-02
7.78584898e-01 -1.52459249e-01 -4.63454276e-02 -2.95075655e-01
-4.36826289e-01 -8.13529268e-02 6.28203571e-01 5.24600983e-01
3.74340534e-01 1.66098192e-01 -2.63596565e-01 3.41152370e-01
-1.75057814e-01 -4.98879701e-01 4.13767993e-02 6.04156196e-01
-2.92330682e-01 -1.13201642e+00 -1.28248602e-01 6.14605069e-01
-1.03335366e-01 2.48087384e-02 -5.16941726e-01 5.84179759e-01
-2.72034526e-01 8.44350815e-01 2.45632991e-01 -6.41358435e-01
3.70519251e-01 -5.56147039e-01 1.79569989e-01 -3.37894887e-01
-2.93245018e-01 -4.10014868e-01 1.39767607e-03 -6.12504780e-01
-2.44938210e-02 -3.73333633e-01 -1.35623670e+00 -8.30201685e-01
-5.17815650e-01 2.38284096e-01 3.59966338e-01 4.95641649e-01
6.91362560e-01 2.29325503e-01 9.71993983e-01 -6.59031928e-01
-4.95174110e-01 -6.16164029e-01 -5.10991454e-01 8.66354406e-01
2.50980228e-01 -6.22013271e-01 -3.37649047e-01 -5.62770844e-01]
|
[7.163776397705078, 6.40528678894043]
|
8585f9b8-b3c4-486f-acda-ad2b256b4177
|
a-personal-model-of-trumpery-deception
|
1811.01938
| null |
http://arxiv.org/abs/1811.01938v1
|
http://arxiv.org/pdf/1811.01938v1.pdf
|
A personal model of trumpery: Deception detection in a real-world high-stakes setting
|
Language use reveals information about who we are and how we feel1-3. One of
the pioneers in text analysis, Walter Weintraub, manually counted which types
of words people used in medical interviews and showed that the frequency of
first-person singular pronouns (i.e., I, me, my) was a reliable indicator of
depression, with depressed people using I more often than people who are not
depressed4. Several studies have demonstrated that language use also differs
between truthful and deceptive statements5-7, but not all differences are
consistent across people and contexts, making prediction difficult8. Here we
show how well linguistic deception detection performs at the individual level
by developing a model tailored to a single individual: the current US
president. Using tweets fact-checked by an independent third party (Washington
Post), we found substantial linguistic differences between factually correct
and incorrect tweets and developed a quantitative model based on these
differences. Next, we predicted whether out-of-sample tweets were either
factually correct or incorrect and achieved a 73% overall accuracy. Our results
demonstrate the power of linguistic analysis in real-world deception research
when applied at the individual level and provide evidence that factually
incorrect tweets are not random mistakes of the sender.
|
['Sophie van der Zee', 'Ronald Poppe', 'Aurelien Baillon', 'Alice Havrileck']
|
2018-11-05
| null | null | null | null |
['deception-detection']
|
['miscellaneous']
|
[-1.72634602e-01 3.42416018e-02 -5.61330557e-01 -5.50108075e-01
-7.90146708e-01 -6.74433529e-01 7.06509829e-01 7.05569267e-01
-8.46180499e-01 7.09953547e-01 7.69662917e-01 -6.12548947e-01
3.04603964e-01 -6.93927705e-01 -2.49539968e-02 -1.96744218e-01
2.43184999e-01 2.14774400e-01 -4.65091884e-01 -3.26456934e-01
6.39351070e-01 4.63391185e-01 -7.10140944e-01 4.20129478e-01
8.26102555e-01 3.97407800e-01 -6.51022851e-01 4.74343717e-01
-3.40836406e-01 1.29556680e+00 -1.11888444e+00 -9.12104547e-01
-3.53195012e-01 -4.56093937e-01 -8.67593765e-01 -1.46536127e-01
3.88903558e-01 -4.68124747e-01 -1.99504972e-01 1.05530190e+00
3.36138517e-01 -2.30703697e-01 6.47317350e-01 -8.83828342e-01
-7.89232492e-01 6.62355423e-01 -4.70599622e-01 6.67508721e-01
7.77584136e-01 2.57433832e-01 6.11403823e-01 -4.25289899e-01
7.51591623e-01 1.37306678e+00 1.04032946e+00 5.90534449e-01
-1.15048814e+00 -1.27713132e+00 -3.27046305e-01 3.08524519e-02
-1.39893913e+00 -8.19861710e-01 5.26972234e-01 -8.40180933e-01
8.10928226e-01 4.81685698e-01 5.94160199e-01 1.63358045e+00
5.54373741e-01 2.40860417e-01 1.45482945e+00 -1.50456578e-01
-4.78290692e-02 3.27649504e-01 6.18204057e-01 6.76917791e-01
4.84169871e-01 -2.45795697e-01 -7.05573976e-01 -1.13875234e+00
-7.18666613e-02 4.84677143e-02 -2.94217259e-01 8.73582721e-01
-1.04911697e+00 1.26073062e+00 1.44183403e-02 8.77246916e-01
-2.97617495e-01 -2.03598842e-01 6.15879118e-01 2.37787589e-01
9.07260776e-01 4.90799546e-01 2.45146304e-02 -6.50735736e-01
-1.22522569e+00 2.43011534e-01 1.21184945e+00 1.97645068e-01
1.43329799e-01 -2.15240970e-01 -1.10585324e-01 9.24456179e-01
-1.40062394e-02 6.40687704e-01 8.12155724e-01 -7.61208951e-01
5.38861930e-01 5.59767008e-01 4.24080610e-01 -1.94808292e+00
-7.49645472e-01 -3.12417567e-01 -7.18199611e-01 -2.96319723e-01
6.05925918e-01 -4.09427136e-01 -2.45141819e-01 1.48968446e+00
-1.61345094e-01 -4.05093074e-01 -2.16525376e-01 6.95467651e-01
5.65138698e-01 3.42350215e-01 3.76068920e-01 -4.72448081e-01
1.51390588e+00 4.13713232e-03 -1.04650259e+00 -4.96479541e-01
9.28637624e-01 -7.50079989e-01 6.92602336e-01 4.35057461e-01
-1.06439352e+00 5.82199357e-02 -7.05045164e-01 -2.06134856e-01
-3.88920218e-01 -4.78466898e-01 3.00628185e-01 1.32757306e+00
-8.11884999e-01 6.09142482e-01 -6.75497532e-01 -4.51331526e-01
5.57331741e-01 -1.27760634e-01 -4.80661035e-01 3.77131730e-01
-1.30493736e+00 1.31238461e+00 -1.75443307e-01 -3.11054051e-01
-1.43466219e-01 -5.43982804e-01 -7.68819690e-01 -3.03687453e-01
-1.51409999e-01 -3.99619550e-01 1.04150116e+00 -1.26656055e+00
-1.00979614e+00 1.54597032e+00 -6.02853775e-01 -5.14076769e-01
5.83386481e-01 1.69300020e-01 -1.00396800e+00 1.66515112e-01
4.60148722e-01 -6.80268332e-02 6.15726888e-01 -8.82948279e-01
-5.71595609e-01 -6.53950632e-01 -2.77414352e-01 -2.02606037e-01
-3.41842175e-01 5.44038653e-01 7.92983592e-01 -5.51654458e-01
-1.28531143e-01 -4.59712118e-01 3.53520542e-01 -1.11916743e-01
-6.48316920e-01 -3.31108361e-01 2.30561376e-01 -1.01198590e+00
1.72499621e+00 -2.09487724e+00 -5.52159488e-01 3.52152854e-01
6.83875084e-01 3.31474952e-02 5.44430256e-01 6.29040599e-01
4.45723236e-02 1.05731344e+00 -1.57751098e-01 -3.56192052e-01
-2.75641736e-02 1.14025459e-01 -3.22912246e-01 1.11556721e+00
-2.30533287e-01 6.27461135e-01 -1.28204346e+00 -5.20272315e-01
-1.75578147e-01 2.92300075e-01 -3.08108211e-01 -3.97106737e-01
7.16357350e-01 1.47660479e-01 -2.70501286e-01 5.84919691e-01
5.93753874e-01 -1.47071749e-01 1.74784243e-01 4.71964478e-02
-4.99209434e-01 6.87096536e-01 -1.89921334e-01 6.56966090e-01
-3.73145074e-01 1.10456741e+00 2.51314074e-01 -5.68076491e-01
7.62202680e-01 1.87094018e-01 -4.71484698e-02 -5.68366110e-01
3.25481683e-01 5.49467862e-01 2.32775435e-01 -8.58335733e-01
5.55376470e-01 -7.84272194e-01 -3.79634887e-01 6.35056019e-01
-6.91035569e-01 -9.74466279e-02 -1.16979375e-01 2.17078045e-01
1.13130224e+00 -8.48439276e-01 8.24936032e-01 -5.14186323e-01
3.14314425e-01 2.34676301e-01 5.34623206e-01 9.66940463e-01
-5.91137290e-01 4.93457913e-01 8.41060400e-01 -4.21895504e-01
-6.73646390e-01 -6.51003480e-01 -4.70903605e-01 9.15412128e-01
-2.08610177e-01 -3.32342267e-01 -7.34763980e-01 -6.11710191e-01
2.89261520e-01 1.60469913e+00 -8.26574743e-01 -2.93420762e-01
-3.22620660e-01 -9.19019341e-01 1.29877639e+00 -3.11360508e-01
3.81044865e-01 -5.75938284e-01 -7.26318121e-01 5.09593450e-02
-6.91792428e-01 -9.57211852e-01 -5.46845436e-01 -3.92271608e-01
-4.06740367e-01 -1.17068386e+00 -3.48326772e-01 -2.06743434e-01
4.62729365e-01 1.08134925e-01 1.06365871e+00 5.96217453e-01
-3.42718922e-02 2.54974365e-01 -3.61323804e-01 -4.94552076e-01
-9.50671673e-01 -1.71986699e-01 1.89978436e-01 4.90853935e-02
8.63601804e-01 -4.07459766e-01 -4.79446262e-01 -1.81946918e-01
-7.67574906e-01 -3.53167683e-01 -3.65343168e-02 5.91005087e-01
-4.39682513e-01 -3.69052976e-01 4.63258088e-01 -1.30639195e+00
1.03038883e+00 -1.01732504e+00 2.97898382e-01 -2.80371636e-01
-3.30216408e-01 -4.36986178e-01 4.82222676e-01 -2.19287768e-01
-5.83729684e-01 -8.00370455e-01 -4.61584508e-01 4.66657311e-01
-2.52753496e-01 5.37778735e-01 6.50888503e-01 1.41637802e-01
9.35509741e-01 1.98308900e-01 3.46783012e-01 -1.83123335e-01
-6.26746237e-01 1.32973373e+00 4.56358530e-02 -3.54858078e-02
4.45655137e-01 7.52637148e-01 -5.16818762e-01 -1.42411005e+00
-1.23699319e+00 -4.81419563e-01 -1.98969647e-01 8.76145810e-02
7.69741416e-01 -6.44549012e-01 -1.23089576e+00 6.08809412e-01
-1.22954941e+00 -2.20140293e-01 3.62009495e-01 3.19933385e-01
6.54411763e-02 7.13736475e-01 -7.04186976e-01 -1.12739289e+00
-3.94766748e-01 -6.74869359e-01 7.73349285e-01 -4.62538272e-01
-1.29537749e+00 -1.33926582e+00 1.01555064e-01 6.44484043e-01
3.57512593e-01 5.63060105e-01 9.12798166e-01 -1.04557872e+00
7.21798301e-01 -4.04747963e-01 -1.34887457e-01 7.14558661e-02
5.41514695e-01 -3.62009741e-02 -5.38468778e-01 8.27848017e-02
4.27428275e-01 -2.83854783e-01 4.28839028e-01 -2.59108208e-02
8.64138961e-01 -1.01358271e+00 -5.86882114e-01 1.52079150e-01
1.11366642e+00 -1.83874816e-01 5.44751048e-01 2.60120302e-01
4.31375265e-01 4.85491306e-01 -1.37962297e-01 6.08705044e-01
6.18949354e-01 5.20052195e-01 -7.88023174e-02 3.80017966e-01
4.49894339e-01 -2.29315743e-01 5.58692753e-01 5.18014550e-01
2.80275404e-01 -3.15184295e-01 -1.29445302e+00 5.84735632e-01
-1.13783765e+00 -1.44165909e+00 -4.97817516e-01 1.96281803e+00
1.10235918e+00 1.91180646e-01 3.58093560e-01 1.57310635e-01
4.61594731e-01 2.66062379e-01 7.35869072e-03 -8.02959383e-01
-3.64433862e-02 5.66017888e-02 6.60697758e-01 1.03684866e+00
-6.68645561e-01 5.24280488e-01 7.25409079e+00 5.88312089e-01
-1.13737607e+00 3.38141501e-01 9.68599439e-01 -2.94628829e-01
-4.40410048e-01 -5.46475172e-01 -5.91756701e-01 1.00145018e+00
1.30056334e+00 -3.90304297e-01 1.92331210e-01 3.11836064e-01
7.93075681e-01 -4.57551897e-01 -8.44312549e-01 1.03181100e+00
5.33984780e-01 -1.09997392e+00 7.03853816e-02 2.27828711e-01
3.81094992e-01 -6.46535382e-02 -7.32734129e-02 4.80216481e-02
1.53222308e-01 -1.21669734e+00 9.51652825e-01 7.89804041e-01
4.22291428e-01 -6.43207729e-01 9.57084537e-01 9.45379555e-01
9.41775516e-02 -8.83931145e-02 -7.32599497e-02 -5.05022407e-01
2.20383525e-01 9.14835393e-01 -9.40292895e-01 3.70617434e-02
4.22780693e-01 6.21599138e-01 -4.21979100e-01 3.19778442e-01
3.06718741e-02 9.60170627e-01 -2.76237100e-01 -3.68242234e-01
3.18528175e-01 5.50010130e-02 6.93488419e-01 1.86013532e+00
2.40220934e-01 5.29888988e-01 -3.57874870e-01 8.63216460e-01
-9.95334536e-02 1.23200901e-01 -6.43498421e-01 -4.54758465e-01
5.63420117e-01 1.08161080e+00 -3.84931743e-01 -3.30655336e-01
-3.26810688e-01 1.01225948e+00 4.96713489e-01 1.43482283e-01
-3.79206479e-01 -2.03389078e-01 8.84782255e-01 7.07340360e-01
-5.30565977e-01 -1.52522117e-01 -6.65283918e-01 -1.00307953e+00
-2.16632441e-01 -1.09248149e+00 3.62625450e-01 -5.13257802e-01
-1.64911616e+00 1.44417346e-01 -2.58816659e-01 -7.13825464e-01
-2.46710464e-01 -6.71802044e-01 -3.65396649e-01 9.12791073e-01
-1.07653856e+00 -6.02002919e-01 -1.62674949e-01 2.75443077e-01
9.25761610e-02 1.82486996e-01 9.45074975e-01 1.25413746e-01
-4.76788461e-01 7.78448999e-01 -9.57250819e-02 6.27753913e-01
6.78830564e-01 -8.91499579e-01 1.86878979e-01 1.82909712e-01
-1.96127459e-01 1.04319572e+00 9.50386763e-01 -8.70805621e-01
-8.39359701e-01 -5.69732964e-01 1.86564136e+00 -8.05101156e-01
1.03630018e+00 -2.58371949e-01 -8.25329900e-01 6.98074758e-01
9.43299383e-02 -6.05396807e-01 1.15801132e+00 8.58654752e-02
-3.13998818e-01 4.76090908e-01 -1.67667246e+00 6.82497025e-01
9.94831502e-01 -7.71581769e-01 -9.06568944e-01 6.11568868e-01
6.89561889e-02 -2.42550164e-01 -6.48865581e-01 -4.49657857e-01
6.28292918e-01 -1.40921092e+00 6.52129114e-01 -6.79066360e-01
6.97945058e-01 3.89877498e-01 6.57935962e-02 -1.40097523e+00
-3.44659597e-01 -4.90228772e-01 4.47558850e-01 9.70123410e-01
3.77374053e-01 -1.11039174e+00 2.50772804e-01 7.47271240e-01
8.74297544e-02 -3.54483187e-01 -1.27021277e+00 -3.46355945e-01
6.26713693e-01 -3.45939100e-01 1.49220660e-01 1.55952561e+00
8.43934000e-01 -7.14718848e-02 -1.87237263e-01 -9.88559499e-02
2.59090185e-01 -3.65405291e-01 2.24626228e-01 -1.14598238e+00
1.51868910e-01 -7.10629046e-01 -5.93193173e-01 -4.77262735e-01
6.07940495e-01 -9.52404320e-01 -3.87587547e-01 -1.25150621e+00
5.26312530e-01 -1.49751708e-01 5.09019971e-01 4.94823664e-01
-3.01641703e-01 4.59046990e-01 -8.95996168e-02 4.24409539e-01
-2.86372937e-02 -7.78051391e-02 7.49609888e-01 -1.36074513e-01
-7.14015439e-02 -1.63015381e-01 -1.22481906e+00 1.00978589e+00
8.20949614e-01 -6.65657938e-01 3.60317796e-01 -2.37489149e-01
7.02367246e-01 -8.19795579e-02 8.11779618e-01 -5.57360053e-01
4.89742719e-02 -2.43875191e-01 3.30955595e-01 -7.44573325e-02
1.80711851e-01 -5.30025601e-01 -7.56680816e-02 7.20639348e-01
-4.06929582e-01 6.38866946e-02 1.21103741e-01 2.28446603e-01
5.27312011e-02 -6.17310107e-01 7.12741375e-01 -3.66890132e-01
6.70333654e-02 -3.55485141e-01 -1.06537485e+00 3.95694405e-01
6.15294516e-01 -1.66124001e-01 -5.85218072e-01 -7.91177094e-01
-5.82907021e-01 -1.66474774e-01 5.89185178e-01 -2.62103770e-02
3.64491701e-01 -1.02448201e+00 -9.61078346e-01 -2.82449961e-01
3.14523801e-02 -1.03650022e+00 -3.96711612e-03 1.29214787e+00
-6.64488792e-01 2.76214749e-01 2.48268455e-01 6.00265060e-03
-1.17321575e+00 2.86514521e-01 6.30883455e-01 3.70658524e-02
-3.84972125e-01 5.03754973e-01 -2.87875324e-01 -3.15371126e-01
-3.28351915e-01 -6.34851232e-02 -3.44268493e-02 5.81592679e-01
9.14097130e-01 6.38589561e-01 -1.54542431e-01 -1.25716269e+00
-6.50651693e-01 7.62190670e-02 -1.36703417e-01 -2.01382220e-01
9.44295466e-01 -3.01985115e-01 -4.99283016e-01 1.04544938e+00
1.48003030e+00 6.67922080e-01 -1.66440103e-02 2.61001289e-01
4.46616784e-02 -6.82317436e-01 6.58811778e-02 -6.68770552e-01
-4.26382244e-01 5.44278800e-01 -5.42412363e-02 7.77793467e-01
3.68176788e-01 -2.27309704e-01 7.64627993e-01 1.24490030e-01
4.39048886e-01 -1.02933240e+00 -2.50025898e-01 3.53118718e-01
9.66465056e-01 -1.08466291e+00 1.35823995e-01 -3.59822482e-01
-6.94395125e-01 9.98558760e-01 -1.32363632e-01 -4.12745699e-02
6.66496575e-01 -4.30780165e-02 2.16841444e-01 -3.79164606e-01
-2.60710180e-01 3.58064294e-01 -3.54090631e-02 4.21021730e-01
9.24967349e-01 2.47718886e-01 -1.00865877e+00 7.47161567e-01
-9.20967221e-01 -4.49670702e-02 9.58829045e-01 5.95974445e-01
-4.14467216e-01 -7.46963680e-01 -5.28448522e-01 9.20217335e-01
-1.16869736e+00 -1.92989424e-01 -1.01603758e+00 9.16708291e-01
1.70407817e-01 1.44512939e+00 2.72949696e-01 -3.25885385e-01
2.16629580e-01 4.18412387e-01 1.14917859e-01 -6.93351805e-01
-1.22596717e+00 -6.80620432e-01 7.45492280e-01 -3.71062100e-01
-4.36602145e-01 -1.04034805e+00 -1.03730261e+00 -1.17723763e+00
8.30198601e-02 2.31250256e-01 2.17446387e-01 1.26244700e+00
3.15862536e-01 -1.85775727e-01 4.85232174e-01 -2.32643962e-01
-6.46815121e-01 -1.14117241e+00 -7.10375488e-01 6.91192925e-01
8.63253355e-01 -1.54017568e-01 -1.09372211e+00 -2.54956573e-01]
|
[8.64136791229248, 10.387162208557129]
|
fcb5d25a-604b-4146-ba03-f41059254fbf
|
generalizing-multimodal-pre-training-into
|
2206.11091
| null |
https://arxiv.org/abs/2206.11091v1
|
https://arxiv.org/pdf/2206.11091v1.pdf
|
Generalizing Multimodal Pre-training into Multilingual via Language Acquisition
|
English-based Vision-Language Pre-training (VLP) has achieved great success in various downstream tasks. Some efforts have been taken to generalize this success to non-English languages through Multilingual Vision-Language Pre-training (M-VLP). However, due to the large number of languages, M-VLP models often require huge computing resources and cannot be flexibly extended to new languages. In this work, we propose a \textbf{M}ulti\textbf{L}ingual \textbf{A}cquisition (MLA) framework that can easily generalize a monolingual Vision-Language Pre-training model into multilingual. Specifically, we design a lightweight language acquisition encoder based on state-of-the-art monolingual VLP models. We further propose a two-stage training strategy to optimize the language acquisition encoder, namely the Native Language Transfer stage and the Language Exposure stage. With much less multilingual training data and computing resources, our model achieves state-of-the-art performance on multilingual image-text and video-text retrieval benchmarks.
|
['Qin Jin', 'Anwen Hu', 'Liang Zhang']
|
2022-05-29
| null | null | null | null |
['video-text-retrieval', 'language-acquisition']
|
['computer-vision', 'natural-language-processing']
|
[-1.39309257e-01 -3.30008924e-01 -2.74917483e-01 -4.41951752e-01
-1.21239591e+00 -6.29375279e-01 9.16072488e-01 -1.02611706e-01
-1.04700077e+00 5.39483964e-01 8.86862502e-02 -7.81312108e-01
5.69412768e-01 -4.82596070e-01 -1.09148216e+00 -2.23426774e-01
4.74165589e-01 5.08595228e-01 1.99508648e-02 -2.64538914e-01
-1.63863510e-01 1.33918092e-01 -1.09113145e+00 4.99864966e-01
1.08927917e+00 4.63335961e-01 7.97478795e-01 7.37021506e-01
-3.36333036e-01 8.29940975e-01 -8.81529599e-02 -7.37424731e-01
3.17602843e-01 -2.87534058e-01 -8.56941223e-01 -3.85794193e-02
7.91550636e-01 -4.97708887e-01 -5.35406590e-01 1.14953578e+00
5.10157049e-01 -2.47731686e-01 5.00866055e-01 -1.03231990e+00
-1.21750212e+00 5.97663045e-01 -6.49956167e-01 3.80331352e-02
4.14594471e-01 2.27110833e-01 8.34598243e-01 -1.46610141e+00
7.68887758e-01 1.49026620e+00 5.75862944e-01 5.19507527e-01
-8.84416163e-01 -8.23186457e-01 3.37188423e-01 2.96509206e-01
-1.68508172e+00 -5.29162526e-01 3.54469121e-01 -5.46254218e-01
1.14100718e+00 -1.68577865e-01 6.25787139e-01 1.14337730e+00
5.88245913e-02 1.18864822e+00 1.36059105e+00 -8.03818941e-01
-4.36342835e-01 4.55954045e-01 -1.13103174e-01 1.09058034e+00
-6.33713678e-02 9.68860537e-02 -5.07621467e-01 6.08048916e-01
6.71179295e-01 -2.21822113e-01 -2.34863147e-01 -1.28584385e-01
-1.35611689e+00 8.07122886e-01 3.52421850e-01 2.36037537e-01
-1.50247797e-01 -2.57965196e-02 5.61477184e-01 5.88096976e-01
3.92221749e-01 9.77359191e-02 -4.89714772e-01 6.63525015e-02
-1.07387531e+00 -1.31117836e-01 4.33041990e-01 1.40515077e+00
9.07780409e-01 8.61213580e-02 -1.39018461e-01 9.75951016e-01
4.49433625e-01 9.95232284e-01 5.59623182e-01 -6.15231395e-01
7.01137960e-01 2.57205129e-01 -4.03115928e-01 -2.91982472e-01
4.41305786e-02 -4.12412658e-02 -8.70179057e-01 -1.33464724e-01
2.39469096e-01 3.81473103e-03 -1.00616837e+00 1.54575634e+00
-1.28298730e-01 -1.75920770e-01 5.37748039e-01 7.02636063e-01
8.48818421e-01 9.64614868e-01 2.23977938e-01 -1.79116786e-01
1.29350507e+00 -1.49357605e+00 -3.60691935e-01 -2.80073225e-01
5.73649168e-01 -1.12012351e+00 1.61634135e+00 2.12568700e-01
-1.08497024e+00 -8.99810374e-01 -8.10956299e-01 -5.30997097e-01
-4.63188171e-01 4.08669353e-01 5.93702316e-01 5.01433909e-01
-1.46304750e+00 -2.49519348e-01 -7.47550786e-01 -6.76920533e-01
1.23837866e-01 1.35756567e-01 -3.89348924e-01 -7.07574785e-01
-1.20075142e+00 8.62350523e-01 7.09795833e-01 4.04443741e-02
-1.37979805e+00 -4.14186925e-01 -1.10111678e+00 -4.51802582e-01
4.10657823e-01 -7.13556588e-01 1.11908841e+00 -1.10289645e+00
-1.45265067e+00 1.20489585e+00 -1.96849674e-01 -3.92555058e-01
6.01372838e-01 -2.88987815e-01 -4.26414222e-01 1.68427736e-01
3.81373525e-01 1.23344898e+00 8.71631026e-01 -1.20663261e+00
-7.55687058e-01 -1.89018786e-01 1.85676143e-01 5.64902782e-01
-4.11191642e-01 4.57345724e-01 -1.26923633e+00 -7.11006284e-01
-3.22666734e-01 -9.57695127e-01 -5.81367090e-02 -1.14844128e-01
-1.13155790e-01 -3.37835193e-01 4.46659654e-01 -1.03204691e+00
9.86909688e-01 -1.96747172e+00 1.07786410e-01 -2.15987623e-01
4.08721864e-02 4.31241304e-01 -5.54811239e-01 2.92327940e-01
2.85220534e-01 -9.01491642e-02 1.65002167e-01 -4.26012576e-01
-9.47064906e-02 3.68325949e-01 -2.58395433e-01 1.81531489e-01
1.21076912e-01 1.13516986e+00 -9.83592510e-01 -7.72398889e-01
2.15039089e-01 5.15820682e-01 -6.87731028e-01 1.75788090e-01
-2.28137329e-01 6.29329741e-01 -2.39837170e-01 7.38400877e-01
3.64512086e-01 -1.14071757e-01 -1.01378486e-02 -1.23177946e-01
-5.07399201e-01 -1.94992851e-02 -4.86211121e-01 2.22266269e+00
-8.60285580e-01 7.43139625e-01 1.29696533e-01 -8.89372706e-01
6.14453077e-01 2.98790306e-01 2.59417415e-01 -9.48449671e-01
-2.81050149e-02 4.97271657e-01 -1.28935516e-01 -4.74843651e-01
7.30435133e-01 -9.68624465e-03 -2.59003907e-01 1.06315948e-01
5.08688450e-01 -2.35365242e-01 4.83804673e-01 3.13393921e-01
4.57876444e-01 2.91716069e-01 1.71959937e-01 -2.77899712e-01
1.06616962e+00 -1.29722916e-02 2.79499352e-01 8.92052054e-01
-2.71212637e-01 2.65097618e-01 -2.46826023e-01 -1.38180435e-01
-1.04121006e+00 -1.22535777e+00 1.51050072e-02 1.51761007e+00
-1.54207721e-01 -5.11163712e-01 -7.29622483e-01 -6.48065686e-01
-3.18674535e-01 5.96010268e-01 1.06654987e-02 3.85194384e-02
-6.12849712e-01 -3.72004896e-01 8.57891500e-01 4.39272642e-01
8.02056491e-01 -1.10559440e+00 -1.40138060e-01 2.49559302e-02
-2.88738430e-01 -1.75173533e+00 -1.00536931e+00 -1.37977332e-01
-2.76562035e-01 -6.67147815e-01 -1.16064835e+00 -1.37234902e+00
6.85023069e-01 2.78011292e-01 1.19495332e+00 -2.77281821e-01
-1.53727680e-01 9.71391380e-01 -4.42320585e-01 -4.93642986e-01
-7.71844685e-01 1.50834210e-02 3.05731028e-01 -1.29195139e-01
5.01413882e-01 -1.92217510e-02 -2.17831507e-01 -6.58948049e-02
-8.15931082e-01 3.96852970e-01 9.65642273e-01 8.78593385e-01
9.44469690e-01 -2.85424292e-01 2.74089187e-01 -4.85905230e-01
5.65464020e-01 -6.34257356e-03 -8.05823386e-01 8.16269875e-01
-6.33834124e-01 1.09859414e-01 7.63421237e-01 -5.83431959e-01
-1.03300214e+00 5.17777540e-02 -3.33743066e-01 -6.78612649e-01
-2.44889148e-02 8.18216860e-01 -2.14594379e-01 -1.67444408e-01
2.61330605e-01 7.88685203e-01 -3.43527794e-01 -3.93734783e-01
8.32430303e-01 8.27873170e-01 9.03104365e-01 -8.34166110e-01
6.24812841e-01 1.45181254e-01 -5.58847427e-01 -1.28006685e+00
-8.08979154e-01 -4.69998658e-01 -8.64766598e-01 -1.74288660e-01
1.16099286e+00 -1.61085939e+00 -2.53316253e-01 7.06613839e-01
-1.20814383e+00 -5.02798975e-01 -7.93542266e-02 7.06672311e-01
-4.07305866e-01 5.92220366e-01 -7.40209877e-01 -3.91081303e-01
-5.53809643e-01 -1.57651174e+00 1.10184300e+00 1.43089369e-02
4.03930813e-01 -1.02046001e+00 -6.23287521e-02 6.15432858e-01
2.14208379e-01 -5.03573298e-01 7.75131345e-01 -3.02245617e-01
-6.11573339e-01 1.52067572e-01 -5.12633801e-01 6.81228995e-01
-1.30183950e-01 -3.86457920e-01 -6.31042838e-01 -7.83685982e-01
-2.85479754e-01 -9.04051542e-01 8.35006058e-01 2.02142566e-01
8.45180571e-01 -2.40231574e-01 2.69625019e-02 8.48924935e-01
1.37085640e+00 -1.39899775e-02 3.49566638e-01 3.15201879e-01
1.12471318e+00 2.47348383e-01 5.08535206e-01 -1.51165679e-01
1.06637585e+00 5.79891086e-01 -2.38131940e-01 -3.75679433e-01
-5.02198040e-01 -5.47349036e-01 9.86795723e-01 1.65293550e+00
2.06204131e-02 -5.90496771e-02 -1.18872344e+00 7.67672777e-01
-1.44224942e+00 -5.53126812e-01 2.17671424e-01 2.08489728e+00
1.23017621e+00 -4.55467328e-02 -1.52222261e-01 -7.26395190e-01
3.20337713e-01 2.75321119e-02 -4.42873538e-01 -3.04115891e-01
-3.53717357e-01 1.70752868e-01 5.26680171e-01 7.75003195e-01
-1.03812075e+00 1.75072134e+00 5.57166815e+00 9.08981681e-01
-1.41956782e+00 4.58483487e-01 3.66256356e-01 1.96441695e-01
-2.75553793e-01 1.70758348e-02 -1.08560908e+00 1.18153468e-01
8.32872510e-01 -2.15418249e-01 6.10782325e-01 6.88964546e-01
2.18604058e-02 9.66078267e-02 -1.14994168e+00 1.32125628e+00
4.31768835e-01 -1.02024364e+00 6.74799919e-01 -8.82636383e-02
7.58392334e-01 7.78262436e-01 1.20015003e-01 8.85972261e-01
4.22175527e-01 -9.30637002e-01 9.63372707e-01 3.68218809e-01
1.54265928e+00 -5.12366593e-01 2.46072993e-01 4.77242053e-01
-1.41243660e+00 2.13621974e-01 -4.07518446e-01 2.92913586e-01
1.42979935e-01 1.39825895e-01 -7.25682676e-01 7.40732908e-01
8.69640946e-01 7.58932173e-01 -7.15844750e-01 3.70581746e-01
-3.16044897e-01 5.19647360e-01 -2.19626144e-01 2.87282616e-01
6.01927876e-01 -2.80303210e-01 3.20971787e-01 1.54592931e+00
2.56045938e-01 -3.30628127e-01 9.20932174e-01 5.45247078e-01
-2.87499726e-01 5.41110218e-01 -7.63587773e-01 -2.51102626e-01
1.33057803e-01 8.81263137e-01 -2.61627525e-01 -5.80912590e-01
-1.15227389e+00 1.25868547e+00 5.11425436e-01 5.03840804e-01
-6.21387064e-01 -1.16078742e-01 2.04604194e-01 -1.75018743e-01
1.23718597e-01 -6.37533009e-01 4.27325904e-01 -1.71606767e+00
-2.26507150e-02 -1.28378999e+00 2.21589684e-01 -8.18485200e-01
-1.21196055e+00 8.37916195e-01 7.26812286e-03 -9.51090991e-01
-3.46468359e-01 -8.19951713e-01 1.70158416e-01 1.09613812e+00
-1.94224167e+00 -1.93708420e+00 -6.27931952e-02 1.21097016e+00
1.07863593e+00 -6.83280110e-01 7.17115700e-01 6.29856765e-01
-3.34252566e-01 8.79984677e-01 1.06679261e-01 5.40620863e-01
9.83931303e-01 -9.37860131e-01 1.78860486e-01 1.20960689e+00
5.52131236e-01 6.02409959e-01 1.86836272e-01 -5.62120378e-01
-1.59303474e+00 -1.34122276e+00 1.13311446e+00 -2.94895202e-01
9.58920479e-01 -4.38082188e-01 -6.32175803e-01 1.01474929e+00
7.55980253e-01 -1.41992137e-01 4.21251625e-01 -1.00988016e-01
-5.64191818e-01 -1.09871656e-01 -5.33943117e-01 8.35813820e-01
7.81380832e-01 -1.17435229e+00 -5.12255788e-01 4.33729857e-01
8.68925095e-01 -2.81353354e-01 -8.97723794e-01 3.88168484e-01
4.39231604e-01 -5.42166591e-01 1.08733249e+00 -3.11761260e-01
3.69204521e-01 -1.86373860e-01 -2.81824261e-01 -1.07944214e+00
-4.95035201e-02 -5.33014238e-01 2.48487145e-01 1.11883140e+00
3.56934518e-01 -3.57852846e-01 5.91948256e-02 -1.19164981e-01
-1.88119873e-01 -3.55975747e-01 -7.81812489e-01 -8.05441380e-01
6.37627125e-01 -6.61335349e-01 -7.14478791e-02 1.09309554e+00
-3.05445373e-01 7.31477737e-01 -5.01412511e-01 2.09530354e-01
6.78933203e-01 -6.20640144e-02 8.69402230e-01 -6.91123426e-01
-4.95351136e-01 -4.37926978e-01 5.01570515e-02 -1.56759834e+00
5.43923020e-01 -1.40080178e+00 2.61059880e-01 -1.45994258e+00
4.73409206e-01 -2.61756897e-01 -3.36005896e-01 6.21073723e-01
-1.83849305e-01 2.57160187e-01 3.53558362e-01 4.22420502e-01
-8.88803065e-01 6.50068760e-01 1.33704937e+00 -4.91021693e-01
-3.67932655e-02 -4.81902063e-01 -4.63824809e-01 6.64009035e-01
3.11290294e-01 -5.43266162e-02 -5.38799167e-01 -1.21475458e+00
2.76494157e-02 9.55882445e-02 1.70304850e-01 -8.65251362e-01
3.00075769e-01 1.67000443e-02 9.94678885e-02 -6.72202110e-01
1.73748255e-01 -5.93230724e-01 -3.98503006e-01 3.29736233e-01
-2.54203707e-01 3.57766479e-01 3.56447816e-01 2.33901978e-01
-5.27158141e-01 -2.01782417e-02 6.87696934e-01 -4.34324086e-01
-1.14167404e+00 4.61071849e-01 -4.23689544e-01 1.74089536e-01
6.82980299e-01 2.88807005e-01 -1.44825727e-01 -3.18428040e-01
-5.57354391e-01 6.00672781e-01 4.92940933e-01 8.16520333e-01
6.15230680e-01 -1.24424446e+00 -1.13090539e+00 2.63489127e-01
5.09112954e-01 -1.64495185e-01 -4.70210947e-02 8.73720825e-01
-7.19098091e-01 8.10220778e-01 -1.42305285e-01 -8.75119388e-01
-1.26211536e+00 7.59399891e-01 2.44929120e-01 -4.92288440e-01
-5.25148511e-01 7.95056701e-01 4.76246327e-01 -8.10154915e-01
2.43344292e-01 -1.37473390e-01 -7.64360875e-02 -2.77177483e-01
3.75135064e-01 -2.07423136e-01 -1.92476749e-01 -1.11761773e+00
-1.37464911e-01 7.57023096e-01 -4.73397523e-01 -4.47872937e-01
8.38531971e-01 -4.24901515e-01 -2.16396630e-01 4.76762384e-01
1.24677730e+00 7.53093958e-02 -1.01384449e+00 -6.07580125e-01
-1.23113774e-01 -9.42743346e-02 1.69474080e-01 -8.28981042e-01
-9.90936458e-01 1.16053998e+00 6.20140195e-01 -5.84781528e-01
1.22693706e+00 1.43397629e-01 8.47068310e-01 6.99990034e-01
6.64173722e-01 -1.26611221e+00 5.04306443e-02 1.06198657e+00
8.97902012e-01 -1.58833921e+00 -1.45657569e-01 -1.30068734e-01
-7.34568834e-01 8.71908605e-01 6.17474854e-01 2.18898401e-01
6.34493053e-01 8.57000202e-02 4.32252139e-01 1.71477258e-01
-4.43144232e-01 -4.77309644e-01 5.53603053e-01 5.04496098e-01
6.78321183e-01 1.09993272e-01 -3.57804894e-01 3.67567480e-01
-2.37544715e-01 1.31395742e-01 9.91196185e-02 8.15287650e-01
-1.15280993e-01 -1.19849241e+00 -2.30413303e-01 -8.38380456e-02
-4.20147717e-01 -7.08874643e-01 -1.28620505e-01 8.26487541e-01
2.33924389e-01 7.56111860e-01 -1.60217956e-01 -1.76202416e-01
1.93035409e-01 1.59337029e-01 8.51546109e-01 -5.61595023e-01
-3.94301772e-01 4.71058905e-01 -1.73570886e-01 -4.03823912e-01
-6.04953706e-01 -6.31878734e-01 -1.05036485e+00 3.06371339e-02
6.89959601e-02 -1.04592569e-01 5.86998999e-01 1.05546546e+00
4.41960767e-02 4.59566057e-01 2.46075079e-01 -5.98322093e-01
-3.05098176e-01 -8.88521016e-01 -8.09903443e-02 3.05593133e-01
1.57436639e-01 -1.94460630e-01 1.76551521e-01 5.14574766e-01]
|
[11.123297691345215, 1.5858856439590454]
|
4ba94ca3-075e-4ac6-a9b1-4a1137e317c3
|
quasi-score-matching-estimation-for-spatial
|
2305.19721
| null |
https://arxiv.org/abs/2305.19721v1
|
https://arxiv.org/pdf/2305.19721v1.pdf
|
Quasi-Score Matching Estimation for Spatial Autoregressive Model with Random Weights Matrix and Regressors
|
With the rapid advancements in technology for data collection, the application of the spatial autoregressive (SAR) model has become increasingly prevalent in real-world analysis, particularly when dealing with large datasets. However, the commonly used quasi-maximum likelihood estimation (QMLE) for the SAR model is not computationally scalable to handle the data with a large size. In addition, when establishing the asymptotic properties of the parameter estimators of the SAR model, both weights matrix and regressors are assumed to be nonstochastic in classical spatial econometrics, which is perhaps not realistic in real applications. Motivated by the machine learning literature, this paper proposes quasi-score matching estimation for the SAR model. This new estimation approach is still likelihood-based, but significantly reduces the computational complexity of the QMLE. The asymptotic properties of parameter estimators under the random weights matrix and regressors are established, which provides a new theoretical framework for the asymptotic inference of the SAR-type models. The usefulness of the quasi-score matching estimation and its asymptotic inference is illustrated via extensive simulation studies and a case study of an anti-conflict social network experiment for middle school students.
|
['Tao Zou', 'Xuan Liang']
|
2023-05-31
| null | null | null | null |
['econometrics']
|
['miscellaneous']
|
[ 6.86225966e-02 -1.03252083e-01 -3.40307534e-01 -2.75137752e-01
-6.83956921e-01 -1.46340251e-01 4.35989708e-01 7.50893578e-02
-3.42957884e-01 8.54229867e-01 1.34216640e-02 -6.69613659e-01
-7.92403817e-01 -8.61585259e-01 -6.79507256e-01 -8.58785331e-01
-3.65913957e-01 1.11345567e-01 6.09227782e-03 1.39060035e-01
3.01886886e-01 4.82516050e-01 -1.46683300e+00 -5.80882668e-01
1.39809728e+00 6.65555716e-01 3.61327112e-01 4.15383071e-01
3.55574816e-01 5.22815228e-01 -4.20034021e-01 -4.05347347e-01
2.69907862e-01 -1.89547509e-01 -3.34395915e-01 1.15127631e-01
2.96688765e-01 -4.00411338e-01 -2.31203407e-01 1.24085808e+00
3.15808296e-01 5.79287052e-01 9.96668100e-01 -1.28691590e+00
-4.88843620e-01 4.16174352e-01 -9.63791072e-01 2.70898044e-01
1.95443094e-01 -4.05057490e-01 9.08369601e-01 -8.19403112e-01
1.63952023e-01 1.42039120e+00 6.48995280e-01 -3.20840359e-01
-1.23654747e+00 -8.46343219e-01 2.41281521e-02 2.09397897e-01
-1.77550256e+00 -2.36087665e-01 6.36224091e-01 -6.00495696e-01
2.89017886e-01 1.63093939e-01 5.33622861e-01 7.91365206e-01
3.21065575e-01 7.28263080e-01 1.31575704e+00 -5.95069110e-01
4.27053899e-01 1.22533061e-01 2.55549878e-01 2.56650895e-01
6.89646065e-01 2.20856175e-01 -3.71478617e-01 -5.04708409e-01
1.28999245e+00 7.71614313e-02 3.39877069e-01 -6.17666066e-01
-5.89934647e-01 1.26782918e+00 7.14354888e-02 4.49779004e-01
-7.04476833e-01 -1.81570009e-03 -2.94302199e-02 2.08922073e-01
9.09526467e-01 -5.73091879e-02 5.29089384e-02 -4.52035367e-02
-1.07356167e+00 2.99616009e-01 5.21606445e-01 8.01274478e-01
4.18423504e-01 3.20120275e-01 2.24799529e-01 8.38211656e-01
5.69502890e-01 8.11470389e-01 1.14664473e-01 -9.48040009e-01
5.19967377e-01 4.62566704e-01 2.69547880e-01 -1.29506302e+00
-3.35827559e-01 -6.11270010e-01 -1.17326570e+00 -7.16581717e-02
7.02843428e-01 -1.96061283e-01 -2.83044875e-01 1.70011091e+00
5.51809669e-01 6.78151011e-01 -6.04291707e-02 6.31580889e-01
3.66716720e-02 7.41958201e-01 2.45912671e-01 -5.11218965e-01
1.23068392e+00 -2.13726431e-01 -7.98861861e-01 -2.96059877e-01
8.86166096e-01 -4.48003232e-01 8.31442475e-01 2.89706469e-01
-8.54444742e-01 -3.68719518e-01 -6.64891899e-01 4.15390700e-01
-3.82527150e-02 6.96091428e-02 8.15443635e-01 8.60736966e-01
-8.48526359e-01 2.14366376e-01 -8.86582017e-01 -5.14353991e-01
2.27100119e-01 4.11472708e-01 -3.17849815e-01 -1.16576530e-01
-1.23513794e+00 6.92836583e-01 -2.70387363e-02 4.22645926e-01
-2.57005632e-01 -9.16122794e-01 -9.37816381e-01 4.03014094e-01
2.59936154e-01 -2.72913516e-01 1.03085339e+00 -9.63152468e-01
-1.24200916e+00 3.03992718e-01 -2.27734640e-01 -2.56040215e-01
4.45668936e-01 -6.56503588e-02 -3.20564181e-01 -8.19388628e-02
4.42443967e-01 -2.69441068e-01 5.48027277e-01 -9.38675702e-01
-4.38882560e-01 -5.30543447e-01 -4.33456242e-01 4.66149896e-02
-1.26556456e-01 2.13323206e-01 1.06127292e-01 -6.86080694e-01
8.13230723e-02 -8.18248630e-01 -6.91258311e-01 -4.05122340e-01
1.59876198e-02 -2.63199568e-01 2.15807468e-01 -7.02592075e-01
1.49307406e+00 -2.37105012e+00 -2.30955496e-01 8.09948623e-01
-2.76251256e-01 2.82974001e-02 -6.74187616e-02 6.02849126e-01
-1.18917972e-01 -1.31087601e-01 -4.43160981e-01 9.00749862e-02
-1.08282864e-01 8.71033873e-03 -2.87164390e-01 9.15103555e-01
-7.56749213e-02 3.88830721e-01 -8.72499585e-01 -6.14300013e-01
2.57043391e-01 1.14197433e-01 -4.86860782e-01 -4.67600934e-02
7.19512165e-01 2.81582385e-01 -7.43903756e-01 1.87401295e-01
8.68274510e-01 -2.66676188e-01 6.06355488e-01 5.29348969e-01
-4.93355572e-01 -1.17685527e-01 -1.57753801e+00 9.73019123e-01
-4.23359990e-01 6.07662678e-01 1.53512880e-01 -1.56123841e+00
8.14431667e-01 2.79760778e-01 5.14657915e-01 -6.86558247e-01
-1.92221969e-01 1.93562374e-01 1.07825391e-01 -4.42170441e-01
4.29585814e-01 -1.64946049e-01 -2.99735129e-01 3.23415875e-01
-1.35779887e-01 5.77312373e-02 2.15760976e-01 2.85409279e-02
8.72244596e-01 -1.38513044e-01 9.00352955e-01 -7.41521537e-01
3.66815567e-01 -2.61684060e-01 6.90120757e-01 8.95123184e-01
7.98175260e-02 -3.13951410e-02 6.57247484e-01 -2.06738450e-02
-9.04198289e-01 -1.14895248e+00 -5.62211215e-01 9.38064456e-01
-2.24386021e-01 1.60368562e-01 -5.92846811e-01 -2.56148189e-01
1.92771181e-01 7.65957832e-01 -4.67865467e-01 6.28846958e-02
-4.21164423e-01 -9.62670684e-01 2.39028066e-01 4.17516977e-01
3.16618770e-01 -4.16433245e-01 -3.98292243e-01 2.46887371e-01
4.32523526e-02 -7.11108863e-01 -1.71373819e-03 -3.22304785e-01
-1.02881753e+00 -1.09767294e+00 -8.11915100e-01 -4.35683668e-01
7.89436817e-01 5.15806258e-01 6.00537956e-01 -1.06932119e-01
1.86211720e-01 4.15303886e-01 -7.52034336e-02 -4.01467860e-01
-1.43862799e-01 1.99881513e-02 1.70906663e-01 3.55167449e-01
4.15740639e-01 -5.38021684e-01 -4.52902704e-01 2.83744037e-01
-9.91731882e-01 -2.40645975e-01 6.10175908e-01 7.80926406e-01
1.19847737e-01 2.67854422e-01 9.97735560e-01 -8.36542130e-01
5.33023119e-01 -9.58153486e-01 -1.20856404e+00 3.15764457e-01
-4.93772954e-01 -1.85815126e-01 2.23105311e-01 -6.69642270e-01
-1.50237834e+00 -1.58629298e-01 2.60538936e-01 -7.12923408e-02
7.02958321e-03 1.16424775e+00 -6.53571486e-02 9.93968993e-02
3.05442244e-01 -1.30339921e-01 3.19524929e-02 -5.73359311e-01
-9.29616913e-02 7.83119977e-01 7.94344693e-02 -5.44543982e-01
9.65186000e-01 3.37207109e-01 6.26182616e-01 -1.36079037e+00
-6.63646579e-01 -6.53538346e-01 -8.09780955e-01 -2.38995001e-01
6.05230749e-01 -1.01247585e+00 -6.92937374e-01 4.10517871e-01
-7.29277492e-01 -2.42399126e-01 -9.23935249e-02 1.12811506e+00
-6.22853935e-01 3.93143356e-01 -2.40865380e-01 -1.50370991e+00
4.23383415e-01 -9.60518479e-01 7.23474503e-01 1.88385516e-01
-1.64871365e-01 -1.34635055e+00 2.71551460e-01 2.04450518e-01
2.22393289e-01 1.59824893e-01 1.10692871e+00 -6.79843426e-01
-4.50738251e-01 -5.23478985e-01 -1.18556246e-01 -1.19167313e-01
-1.64568707e-01 1.09582409e-01 -5.43851674e-01 -2.39532590e-01
-7.65633285e-02 2.58546978e-01 1.85829058e-01 9.12872314e-01
9.23606932e-01 -3.84803087e-01 -1.50824741e-01 -2.11398560e-03
1.39520478e+00 3.11389029e-01 5.91536999e-01 9.38061178e-02
1.80439413e-01 1.05893469e+00 8.14303994e-01 7.90472925e-01
4.02717352e-01 8.08440208e-01 1.02395386e-01 6.88112304e-02
7.72690415e-01 -3.37427199e-01 2.74497151e-01 8.98047566e-01
-1.10623553e-01 -7.84670040e-02 -1.03494334e+00 6.53069913e-01
-2.07132912e+00 -1.23049486e+00 -6.02288008e-01 2.74682021e+00
5.96784651e-01 -5.00975609e-01 1.81026325e-01 -1.41194533e-03
9.09258485e-01 -1.04916086e-02 -9.00383070e-02 -3.77731115e-01
6.67688474e-02 2.32801646e-01 6.32000387e-01 4.40278560e-01
-9.24382865e-01 6.33553147e-01 6.90239811e+00 1.07166111e+00
-5.13130367e-01 1.56137362e-01 4.62498426e-01 3.11861455e-01
-1.70612514e-01 3.13168794e-01 -7.07476199e-01 5.12785554e-01
1.29653156e+00 -4.10192311e-01 1.73215434e-01 8.12253356e-01
7.57146716e-01 -7.26329744e-01 -5.23848295e-01 7.03223705e-01
-3.09188247e-01 -7.79302180e-01 -4.17026907e-01 7.22676516e-01
9.52361047e-01 -4.38341409e-01 1.25489712e-01 3.48690391e-01
5.26623726e-01 -8.83141935e-01 4.67015564e-01 6.09100699e-01
5.48402071e-01 -1.04391563e+00 8.35997999e-01 5.43412626e-01
-1.02393973e+00 -2.93544322e-01 -5.80935955e-01 -3.26625407e-01
1.55184008e-02 8.32713306e-01 -4.65195298e-01 5.89865327e-01
4.47720289e-01 4.58948821e-01 -3.67699683e-01 1.33387947e+00
-1.95795055e-02 9.53656077e-01 -4.15130079e-01 7.35557899e-02
1.33713290e-01 -8.53305936e-01 4.43984240e-01 7.97370076e-01
8.59920561e-01 1.13132745e-01 -1.50748447e-01 6.07620418e-01
3.51419032e-01 3.01522255e-01 -8.65431726e-01 1.60784926e-02
7.19277382e-01 8.92873883e-01 -4.72931236e-01 -1.03271134e-01
-7.84226477e-01 9.97724608e-02 1.55717075e-01 6.14943206e-01
-5.32186687e-01 -1.96046561e-01 5.16728044e-01 3.79691571e-01
1.31769612e-01 -5.24382532e-01 -2.49645010e-01 -9.05684114e-01
-2.29458898e-01 -6.82236612e-01 4.57884729e-01 -4.57521468e-01
-1.25756109e+00 -3.73816192e-01 8.37998807e-01 -1.22445750e+00
-7.87499189e-01 -3.67920846e-01 -7.29450464e-01 8.04515302e-01
-1.09232473e+00 -8.68930519e-01 2.25694597e-01 3.82868618e-01
2.36413181e-01 5.41632660e-02 4.19546574e-01 3.23077708e-01
-8.80372882e-01 2.78299302e-01 7.04072237e-01 -1.01833858e-01
4.51499611e-01 -1.03152025e+00 -7.48884529e-02 1.04096746e+00
-2.09007457e-01 8.72502625e-01 8.01631093e-01 -8.35212648e-01
-1.09200168e+00 -7.64903843e-01 1.00953436e+00 1.25935063e-01
1.13725591e+00 -4.17483896e-01 -9.31214452e-01 7.55530715e-01
-1.02050595e-01 -1.42034978e-01 8.82029057e-01 3.72484267e-01
1.00710258e-01 -2.02518940e-01 -9.41464067e-01 7.83893526e-01
5.67137599e-01 -3.18942338e-01 -2.62192816e-01 2.17378870e-01
1.64762899e-01 1.90207362e-01 -1.19184685e+00 3.85778844e-01
6.51482463e-01 -6.52038991e-01 9.00119841e-01 -6.22683585e-01
9.26546454e-02 -2.45955475e-02 -1.81081265e-01 -1.14799023e+00
-3.83548200e-01 -4.46044058e-01 1.77583769e-01 1.33033824e+00
1.59785241e-01 -7.27860153e-01 6.81772292e-01 7.75275171e-01
2.47681260e-01 -2.54391789e-01 -1.51876843e+00 -1.02760363e+00
3.18624228e-01 -4.34288472e-01 5.34355104e-01 1.06067371e+00
-7.37999529e-02 -7.44938329e-02 -6.42468989e-01 2.90920347e-01
9.02289271e-01 -5.62658533e-02 8.83059323e-01 -1.73313665e+00
-2.00063080e-01 -1.16125397e-01 -4.38130736e-01 -8.63038480e-01
5.49787641e-01 -3.28402847e-01 -4.00647148e-02 -1.20278227e+00
2.67667741e-01 -4.21277642e-01 -1.32357227e-02 -1.31866261e-01
-7.08379969e-02 -2.42307141e-01 -9.78111252e-02 9.42419767e-02
-1.11051001e-01 6.76457822e-01 7.87371397e-01 2.79745668e-01
-3.51779461e-01 6.53958023e-01 -4.14205730e-01 8.54218185e-01
6.51320815e-01 -6.67495966e-01 -5.83584309e-01 2.30408341e-01
4.88299042e-01 5.75989008e-01 4.99956220e-01 -5.40069103e-01
2.40872562e-01 -7.13811278e-01 2.26651266e-01 -5.71133792e-01
8.54321942e-02 -1.06698418e+00 4.76771653e-01 3.51443440e-01
-2.25082830e-01 1.48591980e-01 -9.25663635e-02 7.31607378e-01
-1.29490912e-01 -4.70098019e-01 5.89856684e-01 2.89131701e-01
-3.17791730e-01 5.27108647e-02 -9.47248697e-01 -3.95074487e-02
1.01726019e+00 -2.47644231e-01 -5.42602874e-02 -6.57776117e-01
-4.71571088e-01 1.27937481e-01 -1.05188321e-02 -2.83725765e-02
3.92825991e-01 -1.43246365e+00 -7.37704456e-01 2.71108270e-01
-1.33334830e-01 -2.53987640e-01 6.04465961e-01 1.40302920e+00
-1.26668274e-01 4.99984533e-01 3.42667066e-02 -3.61881614e-01
-1.06006324e+00 3.69890302e-01 -6.20048381e-02 -4.27441061e-01
-1.92359969e-01 1.52938664e-02 6.38857901e-01 -2.38777831e-01
-1.79968387e-01 9.73196402e-02 -3.20854872e-01 2.00381353e-01
2.80041486e-01 8.62517655e-01 -2.54897177e-01 -7.30569184e-01
-9.61608589e-02 3.04877937e-01 3.46507370e-01 -4.16992784e-01
1.52050447e+00 -4.83712941e-01 -2.45318651e-01 7.34712839e-01
9.14235234e-01 1.76499382e-01 -1.16727149e+00 -4.95568782e-01
4.45745945e-01 -6.28836930e-01 1.77625820e-01 1.13518447e-01
-7.79971659e-01 6.33122087e-01 3.20312709e-01 2.81948149e-01
8.80003035e-01 -3.46681356e-01 -6.24562129e-02 1.94207698e-01
3.87344003e-01 -1.15961754e+00 -3.90610963e-01 2.59542346e-01
6.86680555e-01 -9.58539248e-01 2.35960200e-01 -5.30753493e-01
-3.71757209e-01 7.06951320e-01 2.05072492e-01 -2.78862745e-01
1.00054991e+00 2.29382850e-02 -4.47245598e-01 6.87427521e-02
-4.57853526e-01 -5.92546351e-02 4.68838155e-01 5.46204090e-01
4.06057894e-01 1.30381718e-01 -6.60129130e-01 5.13262808e-01
-1.35987401e-01 -3.08465093e-01 7.21275032e-01 8.01790357e-01
-3.34107518e-01 -8.69464695e-01 -5.95518947e-01 4.59419280e-01
-6.92973912e-01 -2.62342449e-02 4.83482964e-02 1.31239784e+00
-6.38086855e-01 1.20823312e+00 4.23308462e-01 2.53045440e-01
1.72356591e-01 -2.26591751e-02 7.50431418e-02 -3.77360374e-01
-1.93625301e-01 3.95591140e-01 -8.51462185e-02 -1.84656203e-01
-6.22236371e-01 -1.13996792e+00 -6.35448098e-01 -7.02073157e-01
-5.95552325e-01 5.46368241e-01 6.18304729e-01 1.03143358e+00
1.74699336e-01 5.09796813e-02 9.13477719e-01 -5.49777091e-01
-8.57427716e-01 -1.14000607e+00 -1.15346515e+00 -4.97463942e-02
-1.10788688e-01 -8.95874977e-01 -4.71699744e-01 -4.35304135e-01]
|
[7.0577569007873535, 4.435070037841797]
|
6a6ea55e-6c2b-4353-88aa-4dfc501b7d12
|
fha-kitchens-a-novel-dataset-for-fine-grained
|
2306.10858
| null |
https://arxiv.org/abs/2306.10858v1
|
https://arxiv.org/pdf/2306.10858v1.pdf
|
FHA-Kitchens: A Novel Dataset for Fine-Grained Hand Action Recognition in Kitchen Scenes
|
A typical task in the field of video understanding is hand action recognition, which has a wide range of applications. Existing works either mainly focus on full-body actions, or the defined action categories are relatively coarse-grained. In this paper, we propose FHA-Kitchens, a novel dataset of fine-grained hand actions in kitchen scenes. In particular, we focus on human hand interaction regions and perform deep excavation to further refine hand action information and interaction regions. Our FHA-Kitchens dataset consists of 2,377 video clips and 30,047 images collected from 8 different types of dishes, and all hand interaction regions in each image are labeled with high-quality fine-grained action classes and bounding boxes. We represent the action information in each hand interaction region as a triplet, resulting in a total of 878 action triplets. Based on the constructed dataset, we benchmark representative action recognition and detection models on the following three tracks: (1) supervised learning for hand interaction region and object detection, (2) supervised learning for fine-grained hand action recognition, and (3) intra- and inter-class domain generalization for hand interaction region detection. The experimental results offer compelling empirical evidence that highlights the challenges inherent in fine-grained hand action recognition, while also shedding light on potential avenues for future research, particularly in relation to pre-training strategy, model design, and domain generalization. The dataset will be released at https://github.com/tingZ123/FHA-Kitchens.
|
['DaCheng Tao', 'Yonggang Wen', 'Bo Du', 'Han Hu', 'Yong Luo', 'Jing Zhang', 'YongQian Li', 'Ting Zhe']
|
2023-06-19
| null | null | null | null |
['action-recognition-in-videos', 'video-understanding', 'domain-generalization']
|
['computer-vision', 'computer-vision', 'methodology']
|
[ 4.9363843e-01 -2.6690355e-01 -6.1807913e-01 -5.7312835e-02
-5.8866650e-01 -6.9790280e-01 3.9695442e-01 -5.5426037e-01
-1.3674207e-02 3.7605420e-01 6.5979034e-01 1.1934051e-01
-2.7543488e-01 -5.8610958e-01 -7.0935941e-01 -8.9777654e-01
6.8585940e-02 3.7238947e-01 3.1756294e-01 6.1984800e-02
2.1343444e-01 6.2330592e-01 -1.5933627e+00 9.2507064e-01
3.0159909e-01 1.1951919e+00 1.6991210e-01 7.5228035e-01
4.4849446e-01 1.0515635e+00 -6.3836259e-01 -2.1886404e-01
4.5774975e-01 -4.9708503e-01 -1.0576601e+00 6.4390409e-01
5.4494774e-01 -7.8409541e-01 -6.0370642e-01 7.4095011e-01
3.9906213e-01 1.9002099e-01 8.6900288e-01 -1.1488901e+00
-5.1589149e-01 4.0776545e-01 -6.6320270e-01 2.5645724e-01
6.6228652e-01 4.4964427e-01 9.2919767e-01 -7.9022598e-01
7.0573729e-01 1.3330990e+00 4.6285346e-01 6.6857767e-01
-7.2792572e-01 -7.8444529e-01 3.0758470e-01 4.3394417e-01
-1.5256091e+00 -3.7176278e-01 4.8689485e-01 -8.2451099e-01
9.2365462e-01 1.8478326e-01 9.5971352e-01 1.4554251e+00
2.3887753e-02 1.4096658e+00 8.8072240e-01 -3.2782617e-01
1.3964574e-01 -5.3184026e-01 7.1564689e-02 7.5525975e-01
1.6137873e-01 7.7294558e-02 -7.0556086e-01 6.0815088e-02
1.3294202e+00 2.7996328e-01 -1.3605572e-01 -4.1534376e-01
-1.4871181e+00 6.3158560e-01 1.7518431e-01 2.6708761e-01
-5.6502920e-01 3.1809364e-02 5.8121347e-01 5.5458613e-02
1.1388957e-01 1.6522963e-01 -5.8105338e-01 -3.3241209e-01
-6.6922104e-01 4.0402776e-01 4.8315230e-01 1.1779343e+00
3.8451254e-01 -2.1019635e-01 -6.3612497e-01 8.1110728e-01
8.5446730e-02 4.7540987e-01 2.6242098e-01 -1.2460048e+00
6.1706543e-01 7.3295838e-01 2.2512947e-01 -8.4404963e-01
-3.9296561e-01 3.1726396e-01 -7.0994020e-01 1.5829593e-01
8.8961822e-01 9.2448443e-02 -9.7258466e-01 1.2000318e+00
2.8330454e-01 -1.9524324e-01 -1.6883707e-01 1.0980098e+00
9.3515950e-01 3.2324722e-01 1.7365970e-01 1.3671330e-01
1.5271518e+00 -1.2966403e+00 -4.3934819e-01 -2.5116870e-01
7.4223608e-01 -4.6768570e-01 1.2610199e+00 6.6616011e-01
-6.8120372e-01 -7.2737223e-01 -6.6143119e-01 -9.2949551e-03
-3.3700871e-01 7.5372118e-01 8.2209325e-01 5.0069207e-01
-4.8868936e-01 4.2228636e-01 -8.9506632e-01 -5.9091634e-01
7.8812706e-01 1.7844427e-01 -5.7561594e-01 -2.2269800e-01
-8.5488367e-01 3.5802537e-01 5.9362805e-01 1.3759179e-01
-1.1096106e+00 -4.3748832e-01 -8.5022670e-01 -1.4926818e-01
7.6512235e-01 -4.0106896e-01 1.3257720e+00 -8.8080227e-01
-1.3919231e+00 1.0669255e+00 8.6405106e-02 -3.5527118e-02
3.9030606e-01 -2.8067604e-01 -2.9127371e-01 3.1831214e-01
2.0044807e-01 6.2994337e-01 9.2011762e-01 -7.9437715e-01
-9.3679434e-01 -6.1898476e-01 3.2942870e-01 1.0922643e-01
-1.1698682e-01 3.5665181e-01 -6.3444483e-01 -1.2437931e+00
-3.3194542e-02 -1.0170544e+00 2.1021153e-01 1.0560646e-01
-3.9158636e-01 -4.6402529e-01 6.9601500e-01 -8.1328583e-01
1.3430618e+00 -2.1808932e+00 3.6735725e-01 -1.3157137e-01
1.5052944e-01 2.6296443e-01 -2.8900909e-01 3.2347882e-01
-1.1918798e-01 -1.9648114e-01 1.7814837e-04 2.7468681e-01
-5.4185998e-02 1.1644355e-01 -7.7022314e-02 4.0906006e-01
-5.8994018e-02 9.8525178e-01 -9.5826495e-01 -5.7342809e-01
4.7195995e-01 1.6106533e-01 -4.0396520e-01 1.1724534e-01
-2.0234118e-01 6.4348435e-01 -8.1783819e-01 1.4173025e+00
1.9233988e-01 -3.3011505e-01 2.4606737e-01 -4.8701444e-01
1.6616261e-01 -1.4406899e-01 -1.2334504e+00 1.8293110e+00
3.4904763e-02 4.6819505e-01 4.2998824e-02 -8.1874269e-01
5.2917761e-01 1.9924766e-01 7.9574937e-01 -4.8939252e-01
3.3448508e-01 2.1560317e-02 -8.6924702e-02 -6.8256623e-01
2.7656814e-01 1.6385478e-01 -2.7649313e-01 4.7604305e-01
9.4818100e-02 2.1217437e-01 4.7709891e-01 -1.8902600e-02
1.1595814e+00 5.1067436e-01 7.7357060e-01 -1.3146389e-01
3.7975341e-01 1.6800955e-01 4.1870782e-01 7.6215655e-01
-5.3454220e-01 6.9331133e-01 3.0654457e-01 -5.9714836e-01
-7.3755956e-01 -8.6390364e-01 7.5587697e-02 1.5865561e+00
2.1012276e-01 -5.1373333e-01 -8.7462556e-01 -1.0601007e+00
1.5643497e-01 -8.0577508e-03 -1.0441062e+00 2.1108538e-02
-6.6312152e-01 -2.6085994e-01 5.6537575e-01 1.2910377e+00
8.3993399e-01 -1.6353450e+00 -6.2405396e-01 -1.1282968e-01
-4.4021276e-01 -9.7105002e-01 -8.5089034e-01 -2.1337573e-03
-6.6535163e-01 -1.6734321e+00 -1.0049170e+00 -6.7525870e-01
3.1112689e-01 5.4592866e-01 1.0150900e+00 -1.6637385e-01
-5.3462136e-01 7.2939664e-01 -9.1827518e-01 -2.2841150e-01
-1.4565711e-01 -7.4825361e-02 1.8089359e-01 7.9588681e-02
6.7707545e-01 -1.8719836e-01 -6.8646002e-01 8.4466380e-01
-5.9220660e-01 -1.3835354e-01 9.1283911e-01 9.3375963e-01
6.4957249e-01 1.9114889e-02 1.4297000e-01 -6.3791901e-01
1.0002923e-01 -2.0242357e-01 -3.2853848e-01 5.1790577e-01
7.0027895e-02 -3.0686799e-01 1.3582829e-01 -5.9027618e-01
-1.2237059e+00 4.2057082e-01 3.8224667e-02 -5.2958643e-01
-6.4503407e-01 3.3356108e-02 -4.7084269e-01 -9.0029530e-02
8.1051528e-01 2.3540528e-01 -3.0300596e-01 -6.1939490e-01
1.9234492e-01 8.4714615e-01 5.8321089e-01 -7.1511745e-01
3.0227065e-01 5.5265182e-01 -3.5311162e-01 -9.5646292e-01
-9.5869488e-01 -8.7757093e-01 -1.1147487e+00 -4.9392173e-01
1.3265442e+00 -8.3493197e-01 -7.1206844e-01 1.0699095e+00
-7.8553808e-01 -8.7668496e-01 -2.3692910e-01 5.0687069e-01
-8.2636446e-01 5.1885885e-01 -7.1649617e-01 -6.4785415e-01
-1.4596850e-01 -1.0306978e+00 1.6782457e+00 3.5549294e-02
-4.5642415e-01 -5.6425059e-01 -2.5100246e-01 9.9988443e-01
-3.3017132e-01 1.3190137e-01 4.2719328e-01 -2.2446722e-01
-5.3858387e-01 -2.5927907e-01 -2.3009551e-01 4.1885334e-01
3.8351890e-01 -2.0445868e-01 -7.2220546e-01 -2.4885856e-01
-4.3037373e-01 -6.7060167e-01 8.1927413e-01 7.7132136e-01
1.5006455e+00 -4.5904398e-02 -4.1366512e-01 4.7705409e-01
6.1265743e-01 4.9129015e-01 8.2935143e-01 3.7835109e-01
9.7499675e-01 5.5928713e-01 1.2140312e+00 8.4793061e-01
-1.5212047e-01 9.4223452e-01 2.4235949e-01 1.3070679e-01
-3.8804904e-01 -2.1599934e-01 3.9991462e-01 6.6896744e-02
-8.7253475e-01 -2.3703367e-01 -7.1432734e-01 3.4188497e-01
-1.8456737e+00 -1.3582073e+00 1.8690550e-01 1.8101320e+00
5.6465113e-01 -2.6726717e-01 7.8996778e-01 3.2513011e-01
5.3762853e-01 4.1324043e-01 -6.2077343e-01 2.5796682e-01
-7.0318235e-03 1.0214337e-03 5.6046492e-01 -1.1039469e-01
-1.7772626e+00 1.0938631e+00 6.1323352e+00 9.0584630e-01
-6.2587774e-01 -1.0158108e-01 1.9587268e-01 -1.2816395e-01
6.1152691e-01 -4.8151031e-01 -9.8741162e-01 3.4449968e-01
1.1568749e-02 5.5226558e-01 4.0063170e-01 1.1205156e+00
1.2294601e-01 -1.5036564e-01 -1.1919619e+00 1.3702536e+00
2.5920185e-01 -1.1999837e+00 9.0622999e-02 5.3681983e-03
7.3726392e-01 -4.1545478e-01 -3.9888212e-01 4.5031002e-01
2.3150244e-01 -9.4170243e-01 9.2087358e-01 3.8435751e-01
9.8750663e-01 -2.7574900e-01 5.2258587e-01 3.1591702e-01
-1.6372694e+00 -4.8108426e-01 -4.7632349e-03 -2.2339131e-01
-1.1946053e-02 -1.1339488e-01 -3.0355519e-01 3.3570820e-01
1.2128135e+00 1.1946731e+00 -4.9735746e-01 6.6547120e-01
-2.7490446e-01 4.2114621e-01 -4.3379743e-02 1.0499065e-01
1.0426357e-01 -2.1509312e-02 1.8847874e-01 1.2167854e+00
3.0493727e-02 6.2662578e-01 3.6127275e-01 4.0212801e-01
1.1262567e-01 -1.8957499e-01 -3.6732966e-01 -4.1445109e-01
2.4511161e-01 8.6255407e-01 -9.3540585e-01 -4.2342848e-01
-7.2782677e-01 1.2720909e+00 -7.7022210e-02 3.1581253e-01
-8.2136768e-01 -2.4973649e-01 8.6792606e-01 2.9144153e-01
6.0804665e-01 3.0670444e-02 -4.8647609e-02 -1.3097067e+00
1.5378578e-01 -1.2847133e+00 8.6949629e-01 -7.3293453e-01
-1.1528831e+00 9.1770917e-02 3.1306759e-01 -1.4055839e+00
-2.7637261e-01 -1.1867983e+00 -6.1973561e-02 3.0487204e-01
-6.0784525e-01 -1.5254134e+00 -8.7617898e-01 9.5773458e-01
1.0788008e+00 -2.1606967e-01 6.6945845e-01 4.4629762e-01
-5.3192902e-01 6.7563844e-01 -2.0203732e-01 6.3750541e-01
6.3823771e-01 -8.4715974e-01 1.9905530e-01 5.2628732e-01
1.9229603e-01 3.1782284e-01 2.4282205e-01 -8.0086201e-01
-1.4527309e+00 -1.1133921e+00 2.5787196e-01 -8.7596124e-01
4.2419726e-01 -3.1822652e-01 -5.8746421e-01 9.9511588e-01
-4.2900175e-01 1.4569817e-01 4.8815444e-01 1.8194078e-01
-4.1358575e-01 8.5266858e-02 -1.0050796e+00 2.8349674e-01
1.7533313e+00 -5.9423864e-01 -4.7716802e-01 6.0418808e-01
3.6172359e-03 -5.3982592e-01 -9.7435206e-01 3.7160349e-01
1.1981599e+00 -9.5815444e-01 1.2106416e+00 -7.5576043e-01
4.7873479e-01 -2.2955255e-01 -3.6464736e-01 -7.3844671e-01
-6.6755134e-01 -3.5037372e-02 -4.5080781e-01 8.0189139e-01
-2.4694738e-01 -7.9296373e-02 1.1695997e+00 3.1342563e-01
-2.2912751e-01 -7.2501844e-01 -4.9656773e-01 -1.1440383e+00
-1.0330688e-01 -3.7032586e-01 3.5262823e-01 6.5095055e-01
3.5968181e-02 -6.7424238e-02 -6.5908784e-01 -5.8033574e-02
4.8821959e-01 3.1487060e-01 1.0789014e+00 -1.0266964e+00
-6.2450606e-01 -5.5926865e-01 -6.2350357e-01 -1.4655414e+00
-1.6865628e-02 -4.3955511e-01 1.8412532e-01 -1.4951460e+00
5.8550960e-01 3.3878487e-02 6.2718242e-03 8.3538371e-01
9.6478730e-02 5.0898981e-01 1.9142257e-01 3.6943072e-01
-7.0575494e-01 2.3471496e-01 1.5354263e+00 -3.7413168e-01
-2.3943986e-01 2.0944111e-01 -3.5226083e-01 9.1996223e-01
7.8882653e-01 -2.0011896e-02 -2.9138017e-01 -2.2014970e-01
-4.9548054e-01 1.2363941e-01 6.7101216e-01 -9.8028833e-01
-2.3786871e-01 -6.1677426e-01 4.7830650e-01 -6.8095297e-01
3.4616038e-01 -6.9149441e-01 8.5983671e-02 4.1497043e-01
-1.8968651e-01 -6.5665317e-01 -2.4879381e-02 5.8372819e-01
-1.2787616e-01 3.5071090e-02 7.8233492e-01 -3.3159742e-01
-1.5275931e+00 3.5091275e-01 -5.2398914e-01 4.3561719e-02
1.3275925e+00 -6.6102141e-01 -1.0351436e-01 -7.7593707e-02
-1.0593637e+00 -9.5343769e-02 2.4824195e-01 6.8706781e-01
3.8253486e-01 -1.3904597e+00 -5.3720474e-01 2.5395557e-01
5.5507803e-01 -1.5427844e-01 7.5211746e-01 8.4044141e-01
-3.6178026e-01 6.5515465e-01 -4.8618796e-01 -5.3621286e-01
-1.7078762e+00 7.2227281e-01 1.8802701e-01 -6.0274560e-02
-8.5367221e-01 9.3665582e-01 7.0701945e-01 -1.8625347e-01
5.9101999e-01 -6.1731213e-01 -2.1227822e-01 5.5327710e-02
8.2204968e-01 8.2269841e-01 -2.5045922e-01 -8.0671221e-01
-6.4670831e-01 7.8183621e-01 1.5240520e-01 4.8909667e-01
9.4780076e-01 1.7616844e-01 3.4277144e-01 1.6226174e-02
8.4401268e-01 -3.4107903e-01 -1.5482447e+00 -7.5239211e-02
-2.1485624e-01 -8.4060830e-01 -3.2125312e-01 -9.4796598e-01
-1.2439389e+00 6.8969464e-01 5.9184450e-01 -2.8094086e-01
1.3579620e+00 7.2989410e-01 5.9374845e-01 6.2259048e-01
6.9029295e-01 -1.2197787e+00 5.3520262e-01 4.4661501e-01
1.2565504e+00 -1.4118608e+00 1.6188416e-01 -6.5899056e-01
-8.0718815e-01 1.0259173e+00 8.1630445e-01 8.0313563e-02
4.3048039e-01 1.8723527e-01 6.0660327e-03 -4.2061019e-01
-2.0601258e-02 -2.6102805e-01 3.3817175e-01 7.9447782e-01
3.1191313e-01 2.9285342e-01 -9.2135571e-02 9.5092332e-01
1.5936482e-01 4.6441680e-01 -6.8772659e-02 1.1420177e+00
-3.4771740e-01 -8.3566928e-01 -5.4735804e-01 7.6188433e-01
-1.0506847e-01 3.1606787e-01 -5.6572986e-01 8.8391763e-01
3.5988975e-01 8.1652141e-01 -2.4425970e-01 -6.7577660e-01
6.5049416e-01 -8.5064195e-02 9.5586908e-01 -6.8187571e-01
-2.8285906e-01 2.3620334e-02 1.4368381e-01 -9.8129117e-01
-5.6308329e-01 -1.1126465e+00 -1.0987512e+00 -2.8577074e-01
-1.2501664e-01 -5.1249105e-01 -1.8737657e-01 9.1603196e-01
2.2036207e-01 3.9542869e-01 4.3028802e-02 -1.3285631e+00
-5.2131504e-01 -1.1538664e+00 -1.1449672e+00 4.8790419e-01
-4.9656503e-02 -1.3189131e+00 -1.8803504e-01 4.2608625e-01]
|
[7.915399551391602, 0.4045765995979309]
|
af31d262-177a-4224-9399-81323047211f
|
flipping-coins-to-estimate-pseudocounts-for
|
2306.03186
| null |
https://arxiv.org/abs/2306.03186v1
|
https://arxiv.org/pdf/2306.03186v1.pdf
|
Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning
|
We propose a new method for count-based exploration in high-dimensional state spaces. Unlike previous work which relies on density models, we show that counts can be derived by averaging samples from the Rademacher distribution (or coin flips). This insight is used to set up a simple supervised learning objective which, when optimized, yields a state's visitation count. We show that our method is significantly more effective at deducing ground-truth visitation counts than previous work; when used as an exploration bonus for a model-free reinforcement learning algorithm, it outperforms existing approaches on most of 9 challenging exploration tasks, including the Atari game Montezuma's Revenge.
|
['George Konidaris', 'Akhil Bagaria', 'Sam Lobel']
|
2023-06-05
| null | null | null | null |
['montezumas-revenge']
|
['playing-games']
|
[-2.36787694e-03 6.13626912e-02 -5.74254870e-01 6.61037639e-02
-9.65777457e-01 -6.91487253e-01 7.01142550e-01 1.36888623e-01
-8.39063168e-01 1.44740641e+00 3.67102437e-02 -9.33178186e-01
-2.49117211e-01 -8.64792049e-01 -6.94295228e-01 -7.89022326e-01
-5.59394658e-01 9.98503208e-01 -1.22198820e-01 -2.15164348e-01
5.52134573e-01 2.16524690e-01 -1.13007498e+00 -4.08302009e-01
6.68863356e-01 7.87593246e-01 2.18865350e-02 8.43370914e-01
1.48682594e-01 1.00785232e+00 -6.46280050e-01 -9.45400447e-02
3.14838171e-01 -7.31383562e-01 -1.12658131e+00 -2.51593649e-01
-2.09700555e-01 -5.98339975e-01 -8.61632824e-02 1.21123946e+00
4.04413044e-02 3.53103399e-01 7.41881132e-01 -1.18487096e+00
7.01764077e-02 9.53524113e-01 -5.91905117e-01 3.43863517e-01
3.89074296e-01 3.92351240e-01 1.25201643e+00 -3.71316895e-02
7.54774272e-01 1.23860049e+00 3.78488690e-01 4.63287681e-01
-1.61268973e+00 -5.93132496e-01 -6.12320863e-02 1.66859701e-01
-8.72414351e-01 -1.21141123e-02 5.01374602e-01 -2.07436800e-01
8.76674652e-01 2.09367573e-01 1.06850791e+00 1.31643689e+00
2.35971957e-01 1.10848820e+00 1.56292367e+00 -5.04411101e-01
9.84515667e-01 -2.90881932e-01 -1.14030309e-01 6.50789917e-01
5.46663523e-01 7.33116150e-01 -4.26940262e-01 -5.25642395e-01
9.92123127e-01 -1.63165331e-01 3.83618623e-02 -7.62182057e-01
-1.01549733e+00 1.20828319e+00 1.41793400e-01 -1.22393193e-02
-4.78976309e-01 6.01542056e-01 1.79560259e-01 3.72916460e-01
3.18731889e-02 7.81072378e-01 -2.60357350e-01 -8.60408008e-01
-7.63234556e-01 6.04152620e-01 1.20051408e+00 4.93750662e-01
7.83730268e-01 3.93739007e-02 -1.38411894e-01 -6.49121702e-02
1.98492959e-01 5.49754262e-01 2.73148417e-01 -1.36045074e+00
3.95907849e-01 1.82453915e-01 8.87264848e-01 -1.79066703e-01
-2.74147689e-01 -3.49626660e-01 -3.40719849e-01 6.33214712e-01
7.23354340e-01 -4.75307971e-01 -9.05415952e-01 1.98494029e+00
2.52017289e-01 1.23902231e-01 1.14194840e-01 5.84720254e-01
-3.94946456e-01 3.87429893e-01 -6.64262623e-02 -3.21697474e-01
9.99168038e-01 -6.49301946e-01 -6.20989740e-01 -2.78812259e-01
8.84356856e-01 5.37299775e-02 9.97188270e-01 6.17612779e-01
-1.19848847e+00 2.21267343e-01 -9.12671447e-01 5.25538385e-01
-1.26301214e-01 -3.43125522e-01 1.16123641e+00 9.32565451e-01
-8.79320741e-01 8.34062099e-01 -1.35567570e+00 -2.16596276e-01
6.10964537e-01 2.87106276e-01 4.98937219e-02 3.31780612e-01
-8.67777586e-01 1.20275164e+00 4.69043642e-01 -4.26354051e-01
-1.61748493e+00 -2.40073726e-01 -7.26525903e-01 1.38614431e-01
8.99374664e-01 -5.06288052e-01 1.61614728e+00 -1.81646079e-01
-1.67996466e+00 2.83035815e-01 -2.26988066e-02 -1.06431651e+00
5.34408092e-01 4.47462685e-02 1.87224686e-01 6.37702569e-02
2.50906534e-02 4.73721236e-01 4.75054741e-01 -1.16667902e+00
-6.06722772e-01 -2.72359252e-01 2.99786568e-01 3.43024403e-01
7.29911849e-02 -4.04835194e-01 3.71422559e-01 6.14285693e-02
-1.29991278e-01 -9.26645279e-01 -7.14864969e-01 -4.57586884e-01
-5.62785566e-01 -1.94003075e-01 2.10311651e-01 -1.06844410e-01
1.07502568e+00 -1.46521962e+00 1.91430926e-01 4.11999047e-01
1.18003994e-01 5.43529075e-03 9.29856114e-03 7.01663077e-01
3.86428267e-01 1.15970775e-01 -3.21795672e-01 -2.56186485e-01
3.05213451e-01 3.80536020e-01 -3.66300970e-01 4.05739218e-01
-1.93568826e-01 9.01999176e-01 -1.35548496e+00 -4.27844286e-01
3.11823577e-01 -4.20567006e-01 -6.90149069e-01 1.14909194e-01
-4.49852705e-01 3.96429181e-01 -4.21686649e-01 4.52208668e-01
3.17322522e-01 -2.58257985e-01 5.08876622e-01 6.73662663e-01
8.25758353e-02 4.52621251e-01 -1.06714201e+00 1.67165709e+00
-4.33668733e-01 2.69909471e-01 -6.57309145e-02 -8.71286154e-01
5.98814845e-01 -1.60481498e-01 3.58970493e-01 -3.97329837e-01
5.31591773e-01 6.89649358e-02 3.10235322e-02 4.56170365e-02
6.61313117e-01 -3.60852718e-01 -5.32581925e-01 9.80932653e-01
9.45400447e-02 -4.71846342e-01 3.63009363e-01 3.95471662e-01
1.59126699e+00 2.37988621e-01 5.60042143e-01 -3.87199640e-01
-1.05766810e-01 3.94716859e-01 3.20146412e-01 1.25752938e+00
-2.90992081e-01 -1.15282543e-01 1.09401727e+00 -3.47629517e-01
-9.30870771e-01 -1.51656437e+00 -4.59698401e-02 8.63202035e-01
2.65035808e-01 -5.55149615e-01 -7.78283060e-01 -7.84921229e-01
2.78036743e-02 1.08612180e+00 -9.47747827e-01 -1.10109180e-01
-8.43232125e-02 -6.90710485e-01 5.25889039e-01 4.10028547e-01
4.11776215e-01 -1.06899345e+00 -1.05106461e+00 1.23863220e-01
-6.66862056e-02 -4.03917402e-01 -1.36133254e-01 7.69201040e-01
-1.04587388e+00 -1.18916845e+00 -4.16720033e-01 -7.63388127e-02
3.83850843e-01 -2.29186743e-01 1.05200171e+00 -3.42412084e-01
-2.04819128e-01 4.53183770e-01 -4.59302589e-02 -4.87604082e-01
-4.19685602e-01 2.14776680e-01 2.56422698e-01 -8.01257610e-01
6.20994747e-01 -5.15356183e-01 -4.05257434e-01 -4.19515604e-03
-5.73168218e-01 -2.45806590e-01 3.65022987e-01 1.12388635e+00
3.62595946e-01 -5.49042001e-02 4.71971005e-01 -8.73080552e-01
1.11323190e+00 -6.10742331e-01 -1.22285926e+00 3.35494499e-03
-8.12053919e-01 5.55193067e-01 3.07890534e-01 -5.18085003e-01
-9.37001109e-01 -8.68038535e-02 2.35236198e-01 -3.22848231e-01
1.75052434e-02 3.87876809e-01 4.53574151e-01 1.66570455e-01
7.80584037e-01 1.66002959e-01 3.34440351e-01 -3.62589329e-01
4.04218078e-01 2.72556514e-01 3.58636320e-01 -8.96524429e-01
6.56080902e-01 4.47369188e-01 4.20476198e-01 -3.84500504e-01
-8.03727448e-01 -1.17902204e-01 -2.47418478e-01 -1.57933179e-02
5.10306299e-01 -5.93776226e-01 -1.48473406e+00 1.93123981e-01
-5.58413982e-01 -8.42425704e-01 -8.31255436e-01 6.38593674e-01
-1.19666970e+00 2.96621263e-01 -5.92010915e-01 -1.54662240e+00
1.24070786e-01 -8.59753013e-01 8.37671638e-01 4.17776227e-01
-3.95362586e-01 -1.11398256e+00 7.53959477e-01 -7.85506293e-02
2.84968376e-01 1.96961671e-01 7.77649224e-01 -6.58207119e-01
-7.79173195e-01 -1.49191976e-01 2.07488880e-01 -6.76119924e-02
-8.26755613e-02 -3.33835036e-01 -4.47966069e-01 -4.15157467e-01
-1.14823900e-01 -8.44280660e-01 9.20094907e-01 6.40511692e-01
1.01712012e+00 -5.51526845e-01 -4.07018870e-01 3.12403321e-01
1.39115000e+00 1.84431836e-01 6.59055114e-01 5.76342106e-01
4.16934416e-02 2.18864903e-01 8.12821925e-01 9.43039894e-01
2.95775831e-01 4.15575296e-01 7.40602612e-01 3.97236019e-01
6.27944708e-01 -7.72440910e-01 3.64822537e-01 2.30177119e-02
-3.74667719e-02 -4.62306291e-02 -6.70682251e-01 7.11052656e-01
-2.01986098e+00 -1.30822468e+00 3.63280833e-01 2.48430657e+00
9.33188796e-01 3.80148292e-01 5.82055628e-01 -8.41626748e-02
2.82282382e-01 1.89158797e-01 -9.31464672e-01 -5.54192960e-01
2.72170573e-01 7.26485014e-01 8.16273153e-01 7.02644050e-01
-7.19097257e-01 8.74668002e-01 8.07792187e+00 8.81151319e-01
-3.07907641e-01 5.51667549e-02 4.12416756e-01 -5.14511585e-01
-4.76539612e-01 4.62242007e-01 -5.87325633e-01 4.10491943e-01
9.37823355e-01 -3.14330041e-01 8.99808526e-01 1.05462694e+00
-7.05738142e-02 -9.08317745e-01 -1.19295049e+00 7.60531247e-01
-3.99004608e-01 -1.34459412e+00 -3.61728668e-01 6.01945102e-01
8.68154407e-01 -3.43286768e-02 1.83856472e-01 6.59500301e-01
1.61655223e+00 -1.09543848e+00 4.83883470e-01 2.06715599e-01
5.05409718e-01 -1.07939160e+00 5.88107884e-01 6.17276669e-01
-6.46216571e-01 -2.18573898e-01 -3.51143837e-01 -6.04763448e-01
3.76084149e-01 3.55193377e-01 -1.06803477e+00 8.65627751e-02
2.04979867e-01 1.36579692e-01 -3.82205695e-02 9.99319732e-01
-3.97067279e-01 7.73770630e-01 -7.23009586e-01 -5.10696828e-01
6.19207203e-01 -3.03598732e-01 5.24978340e-01 6.25515103e-01
1.93068475e-01 -1.17324717e-01 1.19345091e-01 1.28599727e+00
1.35993976e-02 -4.88583058e-01 -7.32202590e-01 -2.53475040e-01
7.26208091e-01 1.10700333e+00 -6.57556117e-01 -3.09067398e-01
4.70320314e-01 6.41009986e-01 4.64724183e-01 2.55830467e-01
-7.53169298e-01 -3.88440490e-01 7.45997190e-01 -3.39156479e-01
3.82650077e-01 -3.68879139e-01 -1.49484321e-01 -1.18816495e+00
-3.44056129e-01 -6.83582366e-01 3.59412670e-01 -4.43905294e-01
-9.86058891e-01 1.09507836e-01 4.32651192e-01 -8.28543723e-01
-1.08761775e+00 -5.42832196e-01 -9.32947278e-01 7.36539423e-01
-1.10656679e+00 -4.08080429e-01 2.67953604e-01 3.22256595e-01
2.01923013e-01 -1.38967633e-01 7.78594315e-01 -6.00166261e-01
-4.04569805e-01 3.31648141e-01 1.99577406e-01 -2.07462907e-01
1.99900232e-02 -1.62843096e+00 4.12949413e-01 7.60940135e-01
3.25428218e-01 5.24619341e-01 9.24578071e-01 -8.05939436e-01
-1.57472396e+00 -4.69575495e-01 2.48673353e-02 -7.60484517e-01
9.08044696e-01 -2.23073840e-01 -4.30209488e-01 9.21223283e-01
7.48925880e-02 -3.75928998e-01 3.72705370e-01 6.24056816e-01
-5.85415065e-02 4.09361869e-01 -1.27994442e+00 6.67364240e-01
9.54597771e-01 -3.41341972e-01 -6.86836064e-01 1.94248006e-01
2.40385070e-01 -5.70740640e-01 -5.74847519e-01 -1.72269136e-01
4.33809906e-01 -9.52475131e-01 6.99537337e-01 -9.99464989e-01
3.13763827e-01 9.03584249e-03 -4.01115976e-02 -1.52185071e+00
-3.73631716e-02 -1.05385733e+00 -4.79092091e-01 5.07103682e-01
2.13647127e-01 -7.04719126e-01 1.23180044e+00 2.86344320e-01
4.28014845e-01 -8.36960077e-01 -1.32650292e+00 -1.26325107e+00
3.44839931e-01 -2.59283394e-01 6.87921941e-01 5.22190332e-01
5.25678694e-01 1.73093051e-01 -3.98921520e-01 -1.87962234e-01
1.21162069e+00 -7.54091423e-03 9.17170107e-01 -1.00173903e+00
-5.36219776e-01 -5.19108891e-01 -6.07169271e-02 -1.22376955e+00
9.53508317e-02 -6.27843142e-01 1.51217818e-01 -1.39262867e+00
3.83486181e-01 -5.72953343e-01 -2.29839385e-01 4.94709104e-01
1.31258860e-01 -1.66554630e-01 1.53262347e-01 -4.31938507e-02
-1.04125094e+00 7.76918530e-01 1.14865005e+00 1.25034407e-01
-2.78884083e-01 1.77174971e-01 -6.80891216e-01 6.72230363e-01
9.13774431e-01 -6.84278429e-01 -3.86099815e-01 2.56731451e-01
5.58036923e-01 5.73872507e-01 3.58350754e-01 -9.07135665e-01
1.55193463e-01 -6.36947334e-01 1.17485128e-01 -6.68246269e-01
4.70167220e-01 -3.14269513e-01 4.54117246e-02 8.87797117e-01
-5.51971078e-01 -1.86592102e-01 4.20035422e-02 8.62627923e-01
2.46628642e-01 -6.61071002e-01 4.94098842e-01 -2.98349679e-01
-3.46938640e-01 8.38704854e-02 -7.49957025e-01 2.92395562e-01
1.01942241e+00 2.46846257e-03 -3.80968720e-01 -7.21140265e-01
-5.89980185e-01 5.24134934e-01 6.53284192e-01 -2.41496176e-01
3.17054480e-01 -1.24753153e+00 -3.80348355e-01 -1.21788867e-01
-9.95404720e-02 -1.77550480e-01 -3.60912606e-02 7.09482014e-01
-2.38492578e-01 3.33664864e-01 -3.50882292e-01 -4.23681587e-01
-6.55318558e-01 4.72255528e-01 2.16335565e-01 -1.00770533e+00
-2.82765359e-01 6.69795275e-01 -2.28332192e-01 -3.40788394e-01
1.80010989e-01 -4.51473475e-01 2.30515882e-01 -2.53528714e-01
4.85828429e-01 5.46595812e-01 -5.59169352e-01 2.58165956e-01
-1.55381441e-01 5.32687991e-05 -1.80881873e-01 -8.61823440e-01
1.26611805e+00 -6.86410815e-02 4.43632185e-01 6.81858659e-01
6.80027068e-01 -3.17600936e-01 -1.46553218e+00 -1.36960577e-02
-4.88465689e-02 -6.68618679e-01 4.87060621e-02 -9.49250877e-01
-4.56329793e-01 6.86877012e-01 3.42729598e-01 4.71480936e-01
6.11337721e-01 1.71942860e-02 5.91047347e-01 9.56812024e-01
1.13871706e+00 -1.12967682e+00 1.40930461e-02 5.01799822e-01
2.72190303e-01 -1.20079112e+00 2.34203506e-02 4.56649512e-01
-7.44032979e-01 6.89752400e-01 3.80928367e-01 -2.43409604e-01
2.42042974e-01 4.77107763e-01 -5.39845347e-01 -2.31368586e-01
-9.52672243e-01 -5.00609040e-01 -4.61583465e-01 7.86735117e-01
-3.48555207e-01 3.24323773e-01 -1.50442719e-01 3.04322362e-01
-4.59764570e-01 1.26975805e-01 9.43878412e-01 1.14324319e+00
-7.98073113e-01 -1.28299129e+00 -2.08747402e-01 9.30657029e-01
-2.70892292e-01 7.51709118e-02 -1.27590641e-01 8.24137568e-01
-4.98790711e-01 7.89842188e-01 2.00860932e-01 -2.47294813e-01
-3.12373549e-01 -6.03507310e-02 9.05784428e-01 -4.86833125e-01
-2.10893199e-01 -3.89648974e-01 2.55712241e-01 -7.53580809e-01
-1.51749492e-01 -8.91339600e-01 -9.42396462e-01 -7.55565882e-01
-4.65559334e-01 5.35865009e-01 6.47582829e-01 1.01427960e+00
-5.18702380e-02 2.16723531e-01 6.83683872e-01 -7.73236394e-01
-1.34050500e+00 -8.85268807e-01 -9.37907219e-01 1.23596892e-01
2.69205034e-01 -1.02028704e+00 -7.04007208e-01 -6.86852694e-01]
|
[4.01582145690918, 1.9450535774230957]
|
c66d2dca-e942-46f7-8e2a-9d30c211f290
|
automated-heartbeat-classification-using-3-d
| null | null |
https://xueshu.baidu.com/usercenter/paper/show?paperid=18c6ee969fc95c965365f1209b341c19&site=xueshu_se
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8734061
|
Automated Heartbeat Classification Using 3-D Inputs Based on Convolutional Neural Network With Multi-Fields of View
|
A high-performance method of automated heartbeat classification based on Convolutional
Neural Network (CNN) is proposed in this paper. To make full use of the electrocardiogram information
acquired from different parts of the human body, we present a novel 3-D data structure as the input of
the CNN. The 3-D structure consists of multiple feature maps, each of which indicates the information
collected from one lead and contains morphological characteristic, RR-interval, and beat-to-beat correlation
feature. Besides, atrous spatial pyramid pooling (ASPP) module which uses filters with different resolutions
is adopted to extract deep features in multi-fields of view. Validated on the MIT-BIH arrhythmia database,
the proposed method yields an overall accuracy of 91.44% in the inter-patient practice. In particular, this
method achieves 89.05% and 95.15% in the sensitivities of the supraventricular ectopic beat (SVEB) and
ventricular ectopic beat (VEB) classes, respectively. With the high performance in detecting these two
pathological classes, this method has potential clinical application.
|
['AND ZHENYAN LIU2', 'ZHIJIAN CHEN 1', 'YIN XU 1', 'FEITENG LI 1']
|
2019-06-10
| null | null | null |
ieeexplore-2019-6
|
['heartbeat-classification']
|
['medical']
|
[-1.15053624e-01 -3.63813728e-01 1.49443507e-01 -2.25901380e-01
-4.31421578e-01 -3.39485705e-01 -2.34331384e-01 1.91983938e-01
-2.82570660e-01 6.81588829e-01 -9.72338170e-02 -1.70107409e-02
-1.98499262e-01 -7.13513434e-01 4.70282137e-02 -6.79352820e-01
-3.37191731e-01 -1.41056567e-01 -1.66931406e-01 8.32439438e-02
7.31185079e-02 8.73007357e-01 -9.23364341e-01 4.04311091e-01
6.63747609e-01 1.47249901e+00 -7.74357915e-02 7.12065816e-01
3.64759475e-01 3.58864963e-01 -9.49171126e-01 4.93925810e-02
1.87384322e-01 -6.71057045e-01 -3.14672232e-01 -2.14471728e-01
-7.53650516e-02 -2.83961326e-01 -2.77221471e-01 6.31734133e-01
1.22350812e+00 -4.57841337e-01 3.94772768e-01 -7.49388933e-01
-2.62742400e-01 3.53476316e-01 -6.18507206e-01 8.51102889e-01
-1.31002411e-01 6.30435497e-02 6.12592280e-01 -9.33597267e-01
3.94515187e-01 5.32908082e-01 1.24867582e+00 -3.83444056e-02
-9.66048479e-01 -6.21542096e-01 -7.46879816e-01 1.23214051e-01
-1.59646404e+00 1.90066919e-01 9.51721966e-01 -5.64303339e-01
7.22501576e-01 3.89098972e-01 1.12761569e+00 3.86297613e-01
6.43383265e-01 4.36643422e-01 1.00696135e+00 -2.01039076e-01
-1.58530995e-01 -1.16376311e-01 3.01932126e-01 5.60660779e-01
4.48577523e-01 7.46122971e-02 -3.83172393e-01 -3.74101281e-01
1.25233984e+00 2.64710486e-01 -5.60467660e-01 9.26640481e-02
-1.43915427e+00 5.11751711e-01 5.41127503e-01 5.87123513e-01
-5.95277727e-01 -1.29965246e-01 7.10397840e-01 4.02532667e-02
6.39241412e-02 5.66612184e-01 -5.46535015e-01 -4.36629578e-02
-8.56689334e-01 2.73298711e-01 3.96872640e-01 3.36088270e-01
4.36303675e-01 1.75196946e-01 -7.24037111e-01 7.31022596e-01
3.42180692e-02 4.41587538e-01 6.52210474e-01 -8.16940725e-01
2.97602147e-01 6.93434179e-01 -1.36537012e-02 -1.25203001e+00
-1.05832660e+00 -9.52889740e-01 -1.54116750e+00 -7.15467408e-02
1.81140572e-01 -4.17436242e-01 -6.94060147e-01 1.26452577e+00
2.21020609e-01 2.03250702e-02 1.11984551e-01 1.01076424e+00
1.24694431e+00 4.62504685e-01 -6.46874905e-02 -4.12498325e-01
1.61250722e+00 -2.03842551e-01 -9.17747855e-01 2.29820743e-01
4.98500556e-01 -3.98021549e-01 5.75898409e-01 3.15989405e-01
-9.43234324e-01 -9.47052240e-01 -1.20626223e+00 2.22079471e-01
-9.26363189e-03 6.99357629e-01 3.66292745e-01 5.37918508e-01
-8.01165164e-01 7.76171863e-01 -7.95157135e-01 -1.52284056e-01
6.94909453e-01 2.88912773e-01 -2.74257839e-01 3.51076394e-01
-1.45210981e+00 6.50998294e-01 3.08643609e-01 5.00206709e-01
-4.34678614e-01 -7.52928019e-01 -6.63359284e-01 2.98540741e-01
-4.28248137e-01 -7.89449811e-01 7.72499204e-01 -4.84863132e-01
-1.21909034e+00 7.83372879e-01 1.29021838e-01 -3.97202164e-01
3.63171905e-01 -1.06559671e-01 -3.96317720e-01 3.63255590e-01
5.67089804e-02 9.43480581e-02 6.14400148e-01 -5.26303709e-01
-5.02453387e-01 -7.54097641e-01 -3.12893271e-01 1.88108534e-01
-1.28397346e-01 8.35433304e-02 -1.82024568e-01 -9.10314381e-01
3.68671089e-01 -5.13803601e-01 -1.40933439e-01 -1.11575514e-01
-4.02360827e-01 1.09468080e-01 6.05404198e-01 -9.52117503e-01
1.47167039e+00 -2.47586894e+00 -4.63018455e-02 4.44413960e-01
6.06901884e-01 5.85627735e-01 5.29163003e-01 9.20440108e-02
-1.06108867e-01 1.97147101e-01 -2.98090011e-01 2.31014863e-01
-5.84627509e-01 -1.66059539e-01 1.46788955e-01 4.93184835e-01
7.99719840e-02 1.05129910e+00 -3.71810406e-01 -5.05398214e-01
2.25162879e-01 6.34261847e-01 -5.68883158e-02 9.61460993e-02
8.08955431e-01 6.42923474e-01 -5.08651674e-01 4.72880363e-01
8.41749549e-01 -2.87585407e-01 1.68643206e-01 -4.59214449e-01
-7.64664188e-02 -1.74262673e-01 -1.06361425e+00 1.65112329e+00
3.60088497e-02 4.56864029e-01 -2.68912669e-02 -9.28975523e-01
1.28330398e+00 6.42048419e-01 6.67199910e-01 -5.50983131e-01
3.23507398e-01 2.52803802e-01 5.14624834e-01 -6.31028533e-01
-1.82734653e-01 -2.05562398e-01 1.34673178e-01 2.24953756e-01
5.91366179e-02 1.35312870e-01 -3.67827713e-02 -3.54716003e-01
1.01478744e+00 -2.12107182e-01 6.63944483e-01 -5.27078331e-01
5.42312980e-01 -4.17065948e-01 1.13544691e+00 8.20423305e-01
-5.14960110e-01 9.11136270e-01 6.51414275e-01 -1.23029160e+00
-6.59633994e-01 -9.46303964e-01 -5.07093251e-01 -5.70730567e-02
-4.01686430e-02 -2.81753153e-01 -4.02437001e-01 -3.47174436e-01
3.64480540e-02 -1.97402984e-01 -5.83920598e-01 -9.82278138e-02
-8.34632695e-01 -1.02946627e+00 8.36156547e-01 8.62038255e-01
8.04511130e-01 -1.45873141e+00 -1.48267615e+00 4.54938620e-01
-2.77004987e-01 -9.33135688e-01 -1.04828231e-01 3.56553197e-02
-1.19260883e+00 -1.13522208e+00 -9.24562812e-01 -6.74169183e-01
1.34926558e-01 -4.26137686e-01 1.02408063e+00 5.42224059e-03
-9.85177040e-01 -2.53500730e-01 -1.12281173e-01 -6.81136787e-01
5.89836836e-02 -1.21113107e-01 -1.02260485e-01 3.02552015e-01
1.35920674e-01 -6.43038988e-01 -9.13697064e-01 2.26046704e-02
-3.31444025e-01 2.35367902e-02 5.40393889e-01 7.25475669e-01
6.19300008e-01 -3.11567515e-01 9.06301498e-01 -4.48929787e-01
8.04463446e-01 -1.26206934e-01 -3.68545383e-01 4.34814394e-03
-4.06367630e-01 -7.61050344e-01 6.74333572e-01 -4.28127050e-02
-5.15198231e-01 1.19157761e-01 -1.44155726e-01 -4.14649308e-01
-2.23477691e-01 4.25336927e-01 9.54595022e-03 2.09698692e-01
7.17660367e-01 2.97816753e-01 1.27946928e-01 -2.02466071e-01
-4.45421934e-01 5.75289786e-01 6.79283023e-01 -6.32010102e-02
3.11531454e-01 3.82966459e-01 2.32199773e-01 -7.56604850e-01
-4.78239268e-01 -3.61135095e-01 -8.23681235e-01 -2.32861087e-01
1.19641566e+00 -9.39410210e-01 -7.42078960e-01 7.29857385e-01
-1.30347466e+00 2.26906613e-01 -2.85728961e-01 7.65237033e-01
-3.17363203e-01 3.43312979e-01 -8.80873621e-01 -7.02841580e-01
-1.16427159e+00 -9.81615961e-01 5.83608985e-01 3.54034483e-01
-3.52957875e-01 -4.70247477e-01 8.90185032e-03 -2.10908413e-01
5.01295686e-01 9.16805148e-01 9.04190958e-01 -6.21196568e-01
-1.44809589e-01 -4.94234264e-01 -2.39174515e-01 5.79359710e-01
3.51971120e-01 -1.15419820e-01 -9.65239942e-01 -1.89000279e-01
1.86671808e-01 1.43563733e-01 4.15592760e-01 9.83716786e-01
1.26451540e+00 1.80763960e-01 -2.05799177e-01 8.67528558e-01
1.29099393e+00 6.17123246e-01 8.21390629e-01 5.74819557e-02
6.22689784e-01 -5.06568747e-03 2.22613469e-01 8.33444595e-01
7.61276633e-02 4.26148981e-01 1.55875534e-01 -7.09423244e-01
6.48148581e-02 4.84120697e-01 -2.65077800e-01 6.48300171e-01
-3.85294467e-01 4.21954244e-01 -1.08546710e+00 4.58812952e-01
-1.69173157e+00 -9.32916164e-01 -3.39960545e-01 2.08660483e+00
6.31715953e-01 4.87856790e-02 4.20625657e-02 5.10839164e-01
9.75100160e-01 -9.20792017e-03 -5.91634572e-01 -4.15405840e-01
-2.37632632e-01 6.69889271e-01 9.60537717e-02 -9.63534713e-02
-1.29449153e+00 3.94845307e-02 5.96966934e+00 1.32806301e-01
-1.40635693e+00 -8.27747434e-02 8.57754052e-01 1.77933812e-01
5.53331375e-01 -5.68161726e-01 -4.97902036e-01 3.71640056e-01
6.13367438e-01 -1.21879667e-01 -5.07813655e-02 4.60980028e-01
2.99765676e-01 2.73871154e-01 -7.93510497e-01 1.53587127e+00
-1.03667691e-01 -1.62987840e+00 -3.30588490e-01 -2.60597408e-01
2.96080768e-01 -7.99764469e-02 -1.82225421e-01 1.24033317e-02
-9.98187244e-01 -1.03088903e+00 2.86811799e-01 7.50410497e-01
1.10539854e+00 -8.85591507e-01 1.17216098e+00 2.57904679e-01
-1.39686453e+00 -3.08088779e-01 -1.99935347e-01 -1.03640385e-01
-1.30117372e-01 8.60242426e-01 -6.18958354e-01 7.71589696e-01
1.15029347e+00 9.53277230e-01 -3.11240107e-01 1.28968382e+00
3.49016115e-02 6.40229940e-01 -2.79535145e-01 3.21884423e-01
-2.91388214e-01 5.53446747e-02 4.69835401e-01 1.13520551e+00
3.65646213e-01 4.49539185e-01 1.78465620e-01 9.67264056e-01
2.83300038e-02 2.79041946e-01 -5.39847434e-01 3.59912455e-01
2.89639026e-01 1.55130756e+00 -6.01939142e-01 -4.95393157e-01
-2.13496476e-01 4.53785449e-01 -1.35578364e-01 3.26922357e-01
-7.19274998e-01 -1.21016276e+00 3.81664962e-01 1.40612990e-01
1.21221974e-01 2.52172261e-01 -9.90486860e-01 -8.66549134e-01
3.78184587e-01 -8.26002836e-01 4.15576696e-01 -5.48901975e-01
-9.14949536e-01 8.84287059e-01 -3.75385195e-01 -1.38468182e+00
-4.21499498e-02 -3.53548646e-01 -9.45113480e-01 1.49529266e+00
-1.21386266e+00 -6.48568988e-01 -5.80098033e-01 5.21143436e-01
4.16921750e-02 -2.59530932e-01 1.22608578e+00 4.49289829e-01
-5.33272505e-01 4.42375749e-01 -2.89901257e-01 6.86378658e-01
4.86325800e-01 -1.04313064e+00 2.01529399e-01 7.50215173e-01
-2.89394200e-01 5.45434475e-01 1.80367574e-01 -3.86041075e-01
-7.48807728e-01 -1.07578194e+00 8.97563040e-01 -1.18768699e-01
-1.46142721e-01 1.19670369e-01 -8.11221778e-01 1.65406659e-01
5.86026162e-03 4.77707028e-01 7.48660624e-01 -1.75832152e-01
2.23192535e-02 -5.01727402e-01 -1.16935217e+00 5.98560944e-02
3.62069339e-01 -3.05003107e-01 -6.23042881e-01 -9.89257544e-02
3.20466533e-02 -5.93586326e-01 -1.31781912e+00 1.10287464e+00
8.51814628e-01 -1.16634369e+00 9.31495845e-01 -4.15235460e-01
3.49603057e-01 -3.50292772e-01 2.93283701e-01 -1.04970765e+00
-6.98318481e-01 -6.20693207e-01 -2.65769847e-02 7.86412120e-01
1.95311144e-01 -7.13873088e-01 4.90294695e-01 -3.39237601e-02
-4.56231952e-01 -1.23836756e+00 -8.97477388e-01 -3.56337696e-01
-2.65556693e-01 -3.27571444e-02 3.87753218e-01 8.38710248e-01
4.89631146e-02 1.25550508e-01 -2.24772260e-01 1.38062656e-01
4.99540538e-01 3.36718708e-01 3.58732373e-01 -1.57523775e+00
-5.24626598e-02 -3.19015145e-01 -7.17229128e-01 -1.47648335e-01
-4.70781744e-01 -8.48726094e-01 -2.70182014e-01 -1.55714691e+00
3.12307060e-01 -2.76175022e-01 -1.02438176e+00 5.68700314e-01
-2.61912674e-01 5.36727071e-01 1.26815513e-01 1.87141716e-01
5.06758094e-02 1.61406592e-01 1.32000399e+00 -3.16417329e-02
-5.21920919e-01 1.90775871e-01 -4.49139088e-01 8.32507789e-01
1.09927070e+00 -3.05059552e-01 -1.09251902e-01 -1.32492390e-02
-2.05735534e-01 6.23327017e-01 4.15050328e-01 -1.40619683e+00
-2.06659228e-01 5.41696310e-01 1.08197820e+00 -9.35942352e-01
2.33124465e-01 -3.90935719e-01 2.47339949e-01 9.25706565e-01
-1.30533099e-01 4.12764311e-01 3.66120875e-01 8.98174867e-02
-5.20554483e-01 3.87904227e-01 9.99810398e-01 -2.36418307e-01
-8.39299411e-02 5.75242996e-01 -3.57763767e-01 1.04323059e-01
9.72312570e-01 -4.03645456e-01 -6.02553971e-03 9.56888124e-02
-9.73228633e-01 -9.23097134e-02 -3.38058114e-01 1.05848253e-01
8.75079036e-01 -1.43007147e+00 -1.01612365e+00 4.29253608e-01
2.12569326e-01 -2.57769264e-02 7.91482389e-01 1.35504651e+00
-8.79083395e-01 4.30897504e-01 -8.31735373e-01 -8.70275259e-01
-1.18197846e+00 2.68102959e-02 8.56723130e-01 -3.70534629e-01
-1.10449433e+00 6.45792961e-01 1.10891104e-01 2.20005408e-01
1.22111440e-01 -5.34806907e-01 -5.37088335e-01 5.71627989e-02
6.52367651e-01 4.13053036e-01 3.32854867e-01 -4.01296258e-01
-6.20531082e-01 7.84653485e-01 2.19812214e-01 3.81055713e-01
1.12797058e+00 2.69315124e-01 -3.45636606e-01 4.83704805e-01
1.07987714e+00 -2.99123675e-01 -7.89738536e-01 -1.10533480e-02
-4.11799431e-01 -2.42577702e-01 -9.01376233e-02 -9.59711313e-01
-1.35715294e+00 1.31667995e+00 1.17561448e+00 1.40953228e-01
1.39615905e+00 -4.40617263e-01 8.58159363e-01 8.18742663e-02
1.26493528e-01 -8.50709498e-01 -3.15165192e-01 1.78428039e-01
9.00982261e-01 -7.13896155e-01 9.04047936e-02 -9.32477713e-02
-6.32259250e-01 1.51382148e+00 4.31265354e-01 -3.07346225e-01
9.38316524e-01 1.27151385e-01 4.46831405e-01 -2.85041094e-01
-1.71905115e-01 1.72664165e-01 2.26615772e-01 5.15229523e-01
5.34650505e-01 1.80377275e-01 -6.42609477e-01 9.37763810e-01
1.49002105e-01 3.15482497e-01 3.93153071e-01 7.85925210e-01
-2.10361660e-01 -5.37960052e-01 -2.45780140e-01 7.37884939e-01
-1.02271509e+00 -1.32208481e-01 2.42643971e-02 6.68033183e-01
3.84415179e-01 6.48658216e-01 -7.60761276e-02 -3.81273329e-01
3.04301679e-01 2.96122193e-01 2.33555064e-01 -4.73162085e-01
-1.00317788e+00 2.49364600e-01 -3.24983656e-01 -4.56479937e-01
-1.62551790e-01 -3.66063237e-01 -1.44500983e+00 4.16781425e-01
1.21264465e-01 -4.18958813e-02 3.72185916e-01 6.77271962e-01
6.78766429e-01 9.06814277e-01 5.63415349e-01 -6.28245950e-01
-3.67179841e-01 -1.23479462e+00 -1.05073559e+00 3.34271193e-01
6.22378588e-01 -3.88371021e-01 6.76093157e-03 7.82768577e-02]
|
[14.285323143005371, 3.2646384239196777]
|
f988f80f-db0a-4ae4-b9ee-071be8ec057a
|
weakly-supervised-video-anomaly-detection-1
|
2212.08506
| null |
https://arxiv.org/abs/2212.08506v1
|
https://arxiv.org/pdf/2212.08506v1.pdf
|
Weakly Supervised Video Anomaly Detection Based on Cross-Batch Clustering Guidance
|
Weakly supervised video anomaly detection (WSVAD) is a challenging task since only video-level labels are available for training. In previous studies, the discriminative power of the learned features is not strong enough, and the data imbalance resulting from the mini-batch training strategy is ignored. To address these two issues, we propose a novel WSVAD method based on cross-batch clustering guidance. To enhance the discriminative power of features, we propose a batch clustering based loss to encourage a clustering branch to generate distinct normal and abnormal clusters based on a batch of data. Meanwhile, we design a cross-batch learning strategy by introducing clustering results from previous mini-batches to reduce the impact of data imbalance. In addition, we propose to generate more accurate segment-level anomaly scores based on batch clustering guidance further improving the performance of WSVAD. Extensive experiments on two public datasets demonstrate the effectiveness of our approach.
|
['Yanning Zhang', 'Peng Wang', 'Shizhou Zhang', 'Xin Zhang', 'Congqi Cao']
|
2022-12-16
| null | null | null | null |
['video-anomaly-detection']
|
['computer-vision']
|
[-1.08709149e-01 -3.44600141e-01 -2.98007429e-01 -6.71650410e-01
-5.57453275e-01 -1.93555042e-01 2.18164340e-01 2.78590083e-01
-2.58655965e-01 2.70977527e-01 2.17578515e-01 -5.88499643e-02
-5.42836674e-02 -5.13325095e-01 -6.62758529e-01 -7.43957698e-01
-1.72487691e-01 -1.15091816e-01 4.97105062e-01 2.08512858e-01
1.19233564e-01 2.11671621e-01 -1.42633724e+00 3.81652951e-01
1.38376570e+00 1.16259813e+00 5.71334874e-03 3.75485048e-02
-2.06070155e-01 7.52061963e-01 -4.63629752e-01 -9.35112238e-02
5.66513300e-01 -6.65207684e-01 -2.79322267e-01 6.62977517e-01
2.98431575e-01 -6.13839984e-01 -3.21977973e-01 9.89238381e-01
3.77134293e-01 1.40422240e-01 4.30991530e-01 -1.51912916e+00
-1.26571640e-01 3.05547118e-01 -1.03360689e+00 3.86163384e-01
1.73311070e-01 2.15904236e-01 1.05795598e+00 -7.11595297e-01
1.96247041e-01 9.10289049e-01 5.31985521e-01 3.93627465e-01
-1.03002024e+00 -7.48626769e-01 6.99872375e-01 3.55402350e-01
-1.30972946e+00 -3.39003205e-01 1.12422860e+00 -4.55825001e-01
3.44220519e-01 7.71545023e-02 5.31801343e-01 7.45754898e-01
-2.81386167e-01 1.11065102e+00 5.91617465e-01 -2.80615956e-01
3.20708334e-01 -3.82010303e-02 -4.75191278e-03 8.99949312e-01
2.84463704e-01 -3.92325014e-01 -4.06167924e-01 -3.45391721e-01
5.01662314e-01 3.63785475e-01 -1.47633016e-01 -7.26329148e-01
-9.53969359e-01 6.13923490e-01 1.47190675e-01 1.96994200e-01
-3.37033421e-01 -3.40783894e-01 7.72285700e-01 3.69623989e-01
6.63658381e-01 -2.57842783e-02 -3.73798162e-01 -7.77362511e-02
-9.91317391e-01 -5.64585850e-02 1.26826316e-01 6.54366910e-01
6.88101947e-01 1.08408727e-01 -4.02555615e-01 9.28410351e-01
2.86249608e-01 -3.21823508e-02 6.36188686e-01 -8.86287153e-01
6.03721857e-01 9.61189926e-01 -1.76339313e-01 -1.17128170e+00
-1.43901810e-01 -4.68515575e-01 -7.91143894e-01 1.22940779e-01
3.51892233e-01 -9.83067378e-02 -8.37885320e-01 1.62955952e+00
4.61119443e-01 6.52258337e-01 -2.48048589e-01 9.33874011e-01
3.78155440e-01 6.50284827e-01 -7.07969023e-03 -5.08915842e-01
7.85224080e-01 -9.58473027e-01 -5.48296034e-01 1.25094354e-01
1.07645929e+00 -3.51313323e-01 1.13738966e+00 4.70271945e-01
-7.43667126e-01 -4.59947735e-01 -9.08932865e-01 4.31281537e-01
1.67771071e-01 3.20804954e-01 4.42904621e-01 4.20959294e-01
-5.03376484e-01 3.46276879e-01 -1.05312300e+00 -9.06789899e-02
7.72630692e-01 2.37030074e-01 -3.11115593e-01 -3.19339037e-01
-7.54512131e-01 3.93319689e-02 4.62194383e-01 1.68389440e-01
-7.56606400e-01 -5.04419744e-01 -8.72626364e-01 -1.26980901e-01
6.50054276e-01 -4.78157476e-02 8.18435729e-01 -1.25504398e+00
-1.05416155e+00 5.20245314e-01 -2.83059090e-01 -3.27571481e-01
6.83228433e-01 -2.72903532e-01 -3.99268925e-01 2.92578787e-01
1.92533478e-01 2.74352640e-01 9.30952966e-01 -1.19097376e+00
-8.14697623e-01 -4.23225433e-01 -9.77278799e-02 2.14647561e-01
-7.52805114e-01 -1.86943278e-01 -7.74860680e-01 -8.31932724e-01
3.36670130e-01 -6.87475622e-01 -4.23352033e-01 -1.34565130e-01
-3.22708100e-01 -3.61690313e-01 1.01623571e+00 -6.81819975e-01
1.59727478e+00 -2.50610995e+00 -1.95196092e-01 6.47982895e-01
2.76923150e-01 4.03073400e-01 -1.98404625e-01 -1.34898126e-01
-3.51663940e-02 -1.55867105e-02 -2.97346801e-01 -1.78767905e-01
-3.27231616e-01 3.02257329e-01 -1.37427628e-01 4.03572887e-01
3.51620883e-01 2.91028500e-01 -8.27806413e-01 -7.09453225e-01
1.40037939e-01 -1.65634528e-01 -9.19756711e-01 4.18150604e-01
-9.36063901e-02 4.24540341e-01 -6.99199021e-01 6.69312775e-01
7.66278088e-01 -1.43973947e-01 5.82515635e-02 -2.09313616e-01
1.36965796e-01 -9.72370282e-02 -1.15838003e+00 1.63872015e+00
-1.18668534e-01 4.16411497e-02 -2.20506102e-01 -1.42394149e+00
7.73002386e-01 1.81530669e-01 8.22366416e-01 -6.80582583e-01
-2.60763802e-02 1.23074375e-01 -8.11743457e-03 -7.24338233e-01
-2.41312664e-02 2.25972652e-01 1.48622960e-01 3.85610461e-01
-7.43283257e-02 6.44898653e-01 2.99206197e-01 4.54783678e-01
1.21586680e+00 1.29473746e-01 -1.38611317e-01 7.98076764e-02
7.03396976e-01 -2.15613201e-01 1.31339431e+00 6.44152462e-01
-5.56381702e-01 8.12870264e-01 8.49574804e-01 -3.16303581e-01
-9.05498743e-01 -7.42783666e-01 8.75126943e-02 1.03375304e+00
1.96833834e-01 -6.62395179e-01 -7.23933041e-01 -1.29870450e+00
-7.81765804e-02 3.66054922e-01 -5.93689144e-01 -5.54637671e-01
-5.34567714e-01 -9.51480508e-01 3.23907822e-01 6.18076146e-01
3.97652179e-01 -7.04911947e-01 -4.11752984e-02 1.52975246e-01
-2.68880755e-01 -1.09449470e+00 -6.63810194e-01 -1.95227847e-01
-9.61934507e-01 -1.10580242e+00 -4.87063140e-01 -7.92967916e-01
1.16677582e+00 5.02838910e-01 6.50180995e-01 3.37492257e-01
-2.78569236e-02 1.69706315e-01 -7.28255987e-01 -1.37748197e-02
-1.68285802e-01 -9.47940443e-03 2.56514132e-01 4.36227560e-01
4.35592234e-01 -5.98093629e-01 -7.24451900e-01 4.04392362e-01
-1.02670455e+00 -1.82920471e-01 6.53498232e-01 6.21100605e-01
6.36486828e-01 3.76790822e-01 7.60525405e-01 -8.66595984e-01
4.15052384e-01 -6.79551959e-01 -5.03307462e-01 8.48968402e-02
-6.61851048e-01 -1.59148663e-01 8.76464665e-01 -5.15420914e-01
-1.06390095e+00 8.62627849e-02 -2.33468902e-03 -8.19217622e-01
-2.53143966e-01 4.31795388e-01 -4.17644054e-01 1.83327869e-01
1.92787170e-01 3.49463224e-01 1.37265652e-01 -4.86064374e-01
-1.11847073e-01 5.53304255e-01 3.06782186e-01 -4.97719914e-01
8.22361350e-01 4.08418924e-01 -2.87796617e-01 -4.43512291e-01
-9.47043478e-01 -7.60777235e-01 -4.95883495e-01 -2.29267001e-01
6.49776816e-01 -1.07759643e+00 -3.40275347e-01 5.81567109e-01
-4.91325617e-01 -2.25285813e-01 -1.57308832e-01 6.94382489e-01
-1.75065205e-01 8.56432498e-01 -4.55564469e-01 -6.21028602e-01
-6.22147359e-02 -9.81360793e-01 6.74853683e-01 1.54285163e-01
1.32109940e-01 -6.48082793e-01 2.94655804e-02 3.82064372e-01
-4.01153266e-02 1.96719080e-01 8.01458776e-01 -1.00687730e+00
-3.03049475e-01 -4.30034012e-01 -2.69599140e-01 6.50474668e-01
3.73314410e-01 2.27135494e-01 -5.82217455e-01 -4.07468915e-01
-1.52331829e-01 -2.81870484e-01 1.04224753e+00 2.87498206e-01
1.83383763e+00 -2.69355893e-01 -2.67793387e-01 4.13923591e-01
1.07811248e+00 1.30907521e-01 3.91359866e-01 2.81788260e-01
9.86942053e-01 4.35192138e-01 9.95554149e-01 7.54499257e-01
3.80195498e-01 4.80447084e-01 3.63249421e-01 -2.28107627e-02
2.45487303e-01 -2.25737274e-01 6.09446228e-01 9.09067512e-01
-3.99623923e-02 3.21743637e-02 -6.69930696e-01 5.99832118e-01
-1.97368896e+00 -8.92927468e-01 -4.82354537e-02 2.43335056e+00
6.11528933e-01 4.07068372e-01 5.29656827e-01 3.25403750e-01
8.43665838e-01 9.15082172e-02 -5.67318022e-01 -1.50490096e-02
7.02546835e-02 -4.38352704e-01 9.37684104e-02 -8.58751833e-02
-1.22153783e+00 6.36582375e-01 5.22161579e+00 1.15335190e+00
-1.09700334e+00 -8.88402835e-02 8.74513388e-01 -3.11154604e-01
-2.07460254e-01 -9.49953403e-03 -5.67782462e-01 9.81366575e-01
4.34532911e-01 2.07125574e-01 3.59130697e-03 9.11995947e-01
5.77059627e-01 -8.82903710e-02 -7.97224522e-01 7.61022389e-01
2.26988614e-01 -7.92214453e-01 1.39465928e-01 1.09165974e-01
7.33170033e-01 -9.67527553e-02 -1.73052549e-01 4.24988180e-01
1.23744309e-02 -3.95056307e-01 3.67081583e-01 1.79005250e-01
3.96686733e-01 -8.91296327e-01 6.99447513e-01 3.59923482e-01
-1.08039248e+00 -3.59783888e-01 -3.86980087e-01 2.18314305e-01
-8.24598670e-02 1.10136044e+00 -5.91737032e-01 6.94195747e-01
8.36444914e-01 9.13313210e-01 -8.32506478e-01 1.30072737e+00
9.10725743e-02 1.17136645e+00 -3.86412680e-01 4.75000441e-01
3.41095656e-01 -3.16797018e-01 5.65513551e-01 9.67472434e-01
1.72916055e-01 9.18143317e-02 6.19529724e-01 3.43214482e-01
-3.00045088e-02 3.94202441e-01 -4.04442936e-01 1.65051907e-01
3.42541903e-01 1.26653111e+00 -6.80262446e-01 -2.06853881e-01
-7.22746313e-01 9.85507309e-01 2.87196487e-01 2.96341985e-01
-8.63213837e-01 -3.95828754e-01 4.63061750e-01 2.06950724e-01
4.92754370e-01 -1.43271938e-01 1.74064897e-02 -1.49837148e+00
4.85876858e-01 -8.20602059e-01 8.00504684e-01 -2.11223692e-01
-1.43630111e+00 2.29807913e-01 -1.99632347e-01 -1.79168737e+00
-4.97878976e-02 -7.25381523e-02 -1.09975326e+00 1.08342707e-01
-1.34768856e+00 -9.40378487e-01 -4.76255745e-01 8.12549651e-01
4.22811985e-01 -2.52298027e-01 2.19867975e-01 6.03834271e-01
-1.10997450e+00 1.00954747e+00 1.49413452e-01 5.16716480e-01
9.19151723e-01 -1.03099012e+00 -2.12515548e-01 1.11689317e+00
-7.72333071e-02 3.09432000e-01 3.67343068e-01 -6.55138373e-01
-8.56523275e-01 -1.35949218e+00 2.06566200e-01 1.41527951e-01
3.43886882e-01 -1.89724937e-01 -1.35598946e+00 5.82381606e-01
-3.06672454e-01 3.27591509e-01 1.00640440e+00 1.92895278e-01
-4.05545831e-01 -5.51012099e-01 -1.20893228e+00 4.27684754e-01
1.02123177e+00 -1.23262800e-01 -3.70284021e-01 2.36401290e-01
6.40197575e-01 -1.09690003e-01 -6.03976250e-01 7.37180948e-01
2.94744760e-01 -1.06596410e+00 5.15906632e-01 -6.36478186e-01
3.51007134e-01 -6.54745638e-01 9.70483720e-02 -1.09615767e+00
-2.32035086e-01 -2.95914322e-01 -2.96564072e-01 1.59092462e+00
1.18216701e-01 -4.71901119e-01 8.95123005e-01 5.26939631e-01
-3.51495743e-01 -8.90669107e-01 -7.89404750e-01 -8.37348521e-01
-3.54300857e-01 -4.54494506e-01 4.50475335e-01 1.24047673e+00
8.50787014e-02 -1.21620737e-01 -5.02053082e-01 3.80328596e-01
6.15793884e-01 1.02741346e-01 7.98717797e-01 -1.10683739e+00
-2.20239028e-01 -2.18221813e-01 -5.58705091e-01 -8.48521292e-01
8.38533789e-02 -6.29662335e-01 3.85468751e-02 -1.08061337e+00
4.09446418e-01 -6.70867145e-01 -8.17694008e-01 7.34116793e-01
-5.43017149e-01 2.63459474e-01 -1.04754210e-01 3.80371690e-01
-1.20757282e+00 6.27833009e-01 1.04511380e+00 2.20074877e-01
-3.52377534e-01 1.52031511e-01 -5.99675536e-01 7.74244726e-01
8.44752073e-01 -4.89412427e-01 -5.09305775e-01 -2.30467007e-01
-9.34674218e-02 -2.88837433e-01 7.86216930e-02 -1.05144310e+00
9.45505202e-02 -1.67732358e-01 5.52167952e-01 -6.55403197e-01
-2.26151943e-01 -7.59653807e-01 -4.93577719e-01 2.45849729e-01
-1.76621318e-01 -2.76773572e-01 -2.48607639e-02 8.56055737e-01
-4.36617255e-01 -7.29079992e-02 6.13597095e-01 1.10518254e-01
-7.46091068e-01 6.93003416e-01 -2.47069478e-01 1.03334486e-01
1.27238309e+00 -3.46226066e-01 1.44136861e-01 -2.75519401e-01
-5.48840284e-01 7.66109228e-01 5.30227005e-01 4.89650100e-01
5.05351841e-01 -1.52250993e+00 -6.39200807e-01 3.83784950e-01
3.94121140e-01 2.44104400e-01 4.28636223e-01 1.07725453e+00
-1.57533526e-01 -2.41276454e-02 -9.07441452e-02 -7.15937853e-01
-1.28167486e+00 5.71622729e-01 5.17144874e-02 -1.68363169e-01
-6.12241268e-01 5.46927750e-01 2.75928169e-01 -3.22914511e-01
2.71546215e-01 1.36580365e-02 -2.47356012e-01 -3.86680290e-02
5.41372478e-01 3.10488790e-01 5.57252243e-02 -4.34287339e-01
-3.85742009e-01 2.43060187e-01 -5.15220225e-01 3.41410100e-01
1.30579531e+00 -2.85026580e-01 2.18814285e-03 3.37341458e-01
1.02139699e+00 2.72304147e-01 -1.45282960e+00 -3.28808635e-01
-1.64672509e-01 -7.33840466e-01 -1.19218854e-02 -3.60523939e-01
-1.43215609e+00 6.27770483e-01 6.67465568e-01 6.18466288e-02
1.52258503e+00 -7.80488551e-02 9.89580274e-01 2.31321320e-01
-9.41415727e-02 -1.27720511e+00 4.94169116e-01 8.52166191e-02
1.95749059e-01 -1.33066559e+00 -1.42491996e-01 -3.59093845e-01
-7.52670944e-01 8.17442596e-01 1.12103713e+00 -8.96220505e-02
4.12408769e-01 -1.83449551e-01 5.92560023e-02 1.32420808e-01
-4.47153687e-01 -1.54635301e-02 2.47575134e-01 3.04076225e-01
1.70667276e-01 -3.19614738e-01 -4.12223905e-01 7.55913198e-01
6.12217784e-01 -5.41025326e-02 4.89782453e-01 1.03650761e+00
-4.67434317e-01 -1.11833835e+00 -1.23704240e-01 8.99854958e-01
-7.37864912e-01 2.27192551e-01 -4.80647869e-02 2.01219201e-01
2.95031607e-01 8.08484316e-01 1.37333229e-01 -6.94378138e-01
1.99527428e-01 7.57806897e-02 1.26455605e-01 -4.32002068e-01
-5.42934649e-02 2.66005725e-01 -2.54061431e-01 -6.35801435e-01
-3.75884831e-01 -7.50689149e-01 -1.33685315e+00 -1.53495684e-01
-5.16933382e-01 3.98548007e-01 9.38203335e-02 1.00957561e+00
6.45036280e-01 3.48474264e-01 1.31364083e+00 -4.18430299e-01
-3.10738951e-01 -7.61747360e-01 -6.15726888e-01 7.23369658e-01
2.46528223e-01 -6.10226631e-01 -4.92322981e-01 5.15797175e-02]
|
[7.828383445739746, 1.6434059143066406]
|
503717e7-e425-419d-93a7-a2457e13ee09
|
combating-covid-19-using-generative
|
2205.07236
| null |
https://arxiv.org/abs/2205.07236v1
|
https://arxiv.org/pdf/2205.07236v1.pdf
|
Combating COVID-19 using Generative Adversarial Networks and Artificial Intelligence for Medical Images: A Scoping Review
|
This review presents a comprehensive study on the role of GANs in addressing the challenges related to COVID-19 data scarcity and diagnosis. It is the first review that summarizes the different GANs methods and the lungs images datasets for COVID-19. It attempts to answer the questions related to applications of GANs, popular GAN architectures, frequently used image modalities, and the availability of source code. This review included 57 full-text studies that reported the use of GANs for different applications in COVID-19 lungs images data. Most of the studies (n=42) used GANs for data augmentation to enhance the performance of AI techniques for COVID-19 diagnosis. Other popular applications of GANs were segmentation of lungs and super-resolution of the lungs images. The cycleGAN and the conditional GAN were the most commonly used architectures used in nine studies each. 29 studies used chest X-Ray images while 21 studies used CT images for the training of GANs. For majority of the studies (n=47), the experiments were done and results were reported using publicly available data. A secondary evaluation of the results by radiologists/clinicians was reported by only two studies. Conclusion: Studies have shown that GANs have great potential to address the data scarcity challenge for lungs images of COVID-19. Data synthesized with GANs have been helpful to improve the training of the Convolutional Neural Network (CNN) models trained for the diagnosis of COVID-19. Besides, GANs have also contributed to enhancing the CNNs performance through the super-resolution of the images and segmentation. This review also identified key limitations of the potential transformation of GANs based methods in clinical applications.
|
['Zubair Shah', 'Hazrat Ali']
|
2022-05-15
| null | null | null | null |
['covid-19-detection']
|
['medical']
|
[ 2.36403152e-01 3.99857253e-01 -2.28224456e-01 -7.80258775e-02
-7.77773440e-01 -2.90706784e-01 2.27384523e-01 -5.26999652e-01
-2.50985742e-01 8.20226192e-01 4.38330323e-01 -2.28813812e-01
1.29756974e-02 -8.05541813e-01 -3.79827619e-01 -1.06166399e+00
3.80737811e-01 7.42099881e-01 3.67637128e-02 1.09708987e-01
-5.11557400e-01 5.12745023e-01 -9.16401505e-01 6.17806435e-01
3.97219479e-01 6.51058316e-01 3.38483572e-01 1.14111042e+00
-6.87758774e-02 1.08346725e+00 -8.18087816e-01 -1.85162410e-01
2.75713235e-01 -1.12106311e+00 -6.97831929e-01 -2.35359415e-01
5.14730632e-01 -5.80009997e-01 -3.95023912e-01 2.06285834e-01
1.09859788e+00 -1.49764672e-01 8.03947091e-01 -1.01340449e+00
-6.68264985e-01 5.38289309e-01 -2.81058520e-01 8.88163567e-01
-1.92922890e-01 4.57824349e-01 2.21081376e-01 -3.83720070e-01
4.11964297e-01 9.72823262e-01 1.05968976e+00 1.26707423e+00
-6.72557712e-01 -9.94137704e-01 -7.25204945e-01 -1.45967722e-01
-9.58567441e-01 1.13102138e-01 2.34496757e-01 -6.12840533e-01
1.16174495e+00 3.90822232e-01 9.81781483e-01 1.25290000e+00
5.76809704e-01 2.36389473e-01 1.32170033e+00 -2.50612170e-01
-1.00977257e-01 5.23270853e-02 -4.12785143e-01 6.26461327e-01
4.46870476e-01 2.42535919e-01 -2.45557293e-01 -9.91316438e-02
1.09708357e+00 3.21349539e-02 -1.69195160e-01 5.38232386e-01
-1.20443439e+00 1.10621715e+00 6.75078273e-01 7.59757817e-01
-5.73709488e-01 3.93549979e-01 7.28224695e-01 -7.78190345e-02
2.28864059e-01 4.03167903e-01 -7.46711269e-02 -1.21939637e-01
-8.31615984e-01 -1.79101303e-01 1.83332190e-01 7.44913697e-01
-2.66175002e-01 7.31698096e-01 -6.10685110e-01 7.87223279e-01
3.63403380e-01 6.83460712e-01 1.01868844e+00 -6.29684508e-01
3.85736406e-01 3.86389613e-01 -6.63281202e-01 -4.21868473e-01
-5.11961043e-01 -5.04627883e-01 -1.23643339e+00 1.92151144e-01
1.07863002e-01 -4.73931074e-01 -1.55469263e+00 1.44090080e+00
1.67622536e-01 2.39908263e-01 2.25050956e-01 7.96530962e-01
1.53175020e+00 3.63790989e-01 5.23309290e-01 1.64197072e-01
1.49478626e+00 -1.15054905e+00 -8.36005151e-01 2.27413580e-01
6.05296671e-01 -6.91005111e-01 8.48336756e-01 1.84569098e-02
-1.29953027e+00 -6.75936997e-01 -8.28430533e-01 1.25913337e-01
-3.37081999e-01 1.34196132e-01 2.13768750e-01 1.16419804e+00
-1.35601199e+00 1.24863669e-01 -1.11530077e+00 -4.87298787e-01
8.70476902e-01 5.18264890e-01 -1.57290325e-01 -1.90424995e-04
-1.08307612e+00 1.30729008e+00 2.58712381e-01 -6.78962544e-02
-1.18458557e+00 -9.65341628e-01 -4.15850282e-01 -2.92514622e-01
3.18092969e-03 -1.54518425e+00 1.10724986e+00 -8.79682243e-01
-1.20181096e+00 1.11312699e+00 3.58846843e-01 -7.18224883e-01
5.88593423e-01 2.38303646e-01 -3.15293580e-01 3.51289243e-01
-7.13689253e-02 7.76664555e-01 6.77908599e-01 -8.40920925e-01
-5.39010465e-01 -9.55026001e-02 -3.99674594e-01 2.59089440e-01
3.74284118e-01 -1.52300447e-02 -1.14602610e-01 -1.06999052e+00
-4.97578412e-01 -1.17860603e+00 -2.10891604e-01 -2.60515243e-01
-2.03684554e-01 -2.05601398e-02 1.14586365e+00 -9.13336694e-01
9.17054832e-01 -1.93646169e+00 -2.95347840e-01 -2.01770976e-01
5.09081483e-01 5.72802186e-01 1.43066928e-01 5.80889657e-02
-2.54626483e-01 7.10735738e-01 -3.21814984e-01 -1.07302181e-01
-6.92826569e-01 5.32156885e-01 2.69476503e-01 2.80428857e-01
4.45404351e-02 1.43176937e+00 -4.80742902e-01 -7.12304175e-01
6.83349490e-01 1.02871156e+00 -2.63451040e-01 5.10642529e-01
2.22248241e-01 1.06137800e+00 -3.63079727e-01 4.72811252e-01
5.27734101e-01 -3.11497569e-01 -2.24110767e-01 -2.46238917e-01
3.45251054e-01 1.39430780e-02 -3.19213152e-01 1.36195302e+00
-7.03893661e-01 6.01699710e-01 -1.65382639e-01 -6.67304933e-01
4.19727176e-01 1.08859122e+00 7.94261873e-01 -4.88313764e-01
3.48010927e-01 2.40635514e-01 4.88589317e-01 -5.95099926e-01
-2.05881998e-01 -6.92413449e-01 4.60615575e-01 3.15510869e-01
1.63348719e-01 -6.48771703e-01 -2.34004125e-01 -1.18189603e-01
8.82644415e-01 -1.48252904e-01 3.48899215e-01 -1.23433815e-02
4.38662559e-01 1.56397521e-01 1.85430348e-01 8.92856836e-01
-3.85835432e-02 1.10626042e+00 1.38721123e-01 -2.18462273e-01
-1.09153187e+00 -9.79894102e-01 -1.49631202e-01 4.00200963e-01
-7.57626832e-01 -2.74838656e-02 -1.00408685e+00 -1.00017953e+00
-5.06910563e-01 5.27809918e-01 -1.04153872e+00 -5.89870699e-02
-7.13113248e-01 -9.17785466e-01 1.11465514e+00 1.01530647e+00
6.47791266e-01 -1.53031838e+00 -1.00128233e+00 2.11541191e-01
-1.64664537e-01 -1.15386617e+00 -7.95585141e-02 2.04271019e-01
-1.35062110e+00 -1.06359231e+00 -1.24112546e+00 -7.86933422e-01
6.85309112e-01 -1.07762448e-01 1.12684751e+00 4.86485511e-01
-6.62418425e-01 5.66405654e-01 -2.46778607e-01 -7.90828168e-01
-8.76102507e-01 1.42695606e-01 -4.59591389e-01 -9.26449180e-01
-4.32744287e-02 -4.42768753e-01 -7.81104743e-01 1.62624955e-01
-9.70291078e-01 1.77611902e-01 9.71515119e-01 1.11253977e+00
7.92354584e-01 -1.02607189e-02 5.80399334e-01 -1.28960681e+00
4.92374957e-01 -6.75996482e-01 -8.27341080e-02 -5.60715348e-02
-5.93222857e-01 -4.09761250e-01 4.81851012e-01 -1.14760265e-01
-9.30448711e-01 -3.84017318e-01 -3.90837252e-01 -5.58825672e-01
-2.90519595e-01 2.19686940e-01 5.59407473e-01 -2.27404818e-01
6.87605441e-01 1.24070104e-02 2.08807513e-01 -1.65007547e-01
-7.80344903e-02 5.54131985e-01 4.78853941e-01 -1.78711325e-01
5.40163398e-01 4.28184927e-01 2.84157395e-01 -6.65519655e-01
-6.20763063e-01 -1.98946849e-01 -5.93650639e-01 -1.72569886e-01
1.63628590e+00 -8.91674757e-01 -7.80295432e-02 5.56213915e-01
-6.33864522e-01 -6.01411819e-01 -8.57748449e-01 7.35466361e-01
-4.80993450e-01 -2.14292303e-01 -7.64855444e-01 -3.33290994e-01
-1.24136329e+00 -1.55429935e+00 6.75778687e-01 4.74009514e-01
-2.25631669e-01 -1.14980638e+00 2.05251381e-01 7.21584082e-01
1.05080330e+00 8.50628853e-01 1.13969743e+00 -7.40463555e-01
-1.32902339e-01 2.81813033e-02 -5.53827770e-02 6.29164696e-01
6.47759020e-01 -1.33489102e-01 -1.10428572e+00 -1.66216701e-01
2.32753634e-01 -2.06771940e-01 5.02362072e-01 9.20845628e-01
1.42579424e+00 -2.61935800e-01 -8.14469904e-02 6.43429101e-01
1.39814591e+00 8.07784975e-01 6.80885196e-01 -1.35041147e-01
8.46521199e-01 7.99966380e-02 1.55509740e-01 -6.35499358e-02
-1.33757725e-01 2.81693131e-01 5.29931843e-01 -5.83234668e-01
-1.00854516e+00 -5.68140969e-02 -1.90331731e-02 1.05243742e+00
-4.28328335e-01 -5.20606816e-01 -9.69924271e-01 6.65711284e-01
-9.55724180e-01 -5.61752915e-01 -4.27623838e-01 1.61666739e+00
3.91706198e-01 -2.76413202e-01 2.77200550e-01 -2.49356419e-01
6.71328485e-01 -1.48311868e-01 -5.32424867e-01 -6.23362720e-01
1.46834940e-01 9.10162747e-01 4.54808444e-01 3.32505777e-02
-7.40088463e-01 4.01456654e-01 7.81751251e+00 4.76058453e-01
-1.40655506e+00 6.54172540e-01 7.96210706e-01 -1.38609126e-01
-4.31783609e-02 -5.50229371e-01 -4.85183775e-01 6.41466200e-01
1.30538964e+00 2.33456731e-01 5.15793040e-02 5.65563142e-01
6.47948384e-02 -1.65723011e-01 -6.35942340e-01 9.48331296e-01
1.76884249e-01 -1.44330740e+00 1.26317106e-02 1.92779496e-01
9.92693901e-01 5.25216818e-01 3.60908210e-01 1.42314449e-01
2.46173799e-01 -1.68795907e+00 -3.33242901e-02 3.20234537e-01
1.49194169e+00 -5.15694141e-01 1.33348358e+00 -1.66806489e-01
-7.92994678e-01 2.72726595e-01 -1.76146343e-01 6.44110441e-01
3.30130681e-02 1.85400873e-01 -1.76456833e+00 5.71826220e-01
8.34366977e-01 3.64254713e-01 -7.50944972e-01 7.82731056e-01
-2.53906667e-01 1.18799829e+00 -4.06646729e-01 1.92061782e-01
3.41238856e-01 4.06344943e-02 3.96602005e-01 1.36227059e+00
3.75566125e-01 2.30201796e-01 -4.62073624e-01 7.97762632e-01
-2.70829862e-03 2.43679378e-02 -7.44708598e-01 -1.06469624e-01
-4.03943472e-03 1.24088025e+00 -8.63213122e-01 -4.51955825e-01
-5.10733426e-01 4.22040910e-01 -4.99190956e-01 9.10861269e-02
-1.04526150e+00 3.68221253e-01 -5.00652529e-02 5.37804008e-01
1.72544196e-01 3.86644661e-01 -4.98216987e-01 -4.00914371e-01
-4.48486149e-01 -1.16220939e+00 1.02676034e+00 -1.15213883e+00
-1.12455940e+00 8.92171502e-01 2.47009158e-01 -9.79136646e-01
-2.79891282e-01 -4.04200613e-01 -7.43320227e-01 9.88658309e-01
-1.04979599e+00 -1.47496641e+00 -7.50740170e-01 6.64590240e-01
7.19180703e-01 -4.00970995e-01 1.08543217e+00 4.93324846e-02
-2.87000835e-01 3.57387185e-01 -8.88539851e-02 2.09722340e-01
5.93981087e-01 -1.24928391e+00 1.21086255e-01 5.08342326e-01
-4.95307356e-01 3.40478301e-01 1.01699658e-01 -8.58346999e-01
-7.07605839e-01 -1.12309718e+00 1.29470900e-01 -3.48343134e-01
-1.23192199e-01 1.53022692e-01 -5.90331256e-01 9.53166366e-01
8.09938669e-01 1.66964382e-01 9.50172603e-01 -9.06748533e-01
4.35193479e-01 1.71380624e-01 -1.86270237e+00 2.06515372e-01
4.48611885e-01 -2.30689570e-01 -4.37767506e-01 1.10201113e-01
5.63978970e-01 -9.02414024e-01 -1.19523466e+00 6.21142864e-01
3.35981011e-01 -6.61701202e-01 9.33903754e-01 -4.95272040e-01
7.04988301e-01 -1.09314851e-01 1.55781999e-01 -1.19092071e+00
-1.72604114e-01 -4.76444922e-02 1.03866421e-01 9.27249551e-01
2.54071862e-01 -7.89717138e-01 8.27797353e-01 3.72008950e-01
-1.94973096e-01 -9.42496538e-01 -1.03572679e+00 -4.28563775e-03
3.64390939e-01 -2.64520850e-02 5.02386510e-01 8.16032231e-01
-1.14771235e+00 3.72978766e-03 -7.31650367e-02 -4.23615038e-01
2.18487099e-01 -6.14106596e-01 5.44112504e-01 -6.05858684e-01
-9.36425850e-02 -2.98174530e-01 -4.78824347e-01 -6.24683918e-03
-4.39569354e-01 -9.92618561e-01 -4.88371164e-01 -2.06388307e+00
2.52114058e-01 -5.48469841e-01 -2.55257130e-01 5.89510202e-01
1.54711669e-02 6.34249210e-01 2.04683453e-01 1.38728529e-01
3.31859946e-01 -1.36834577e-01 1.88165569e+00 -4.99832584e-03
1.23058617e-01 1.52227491e-01 -8.39129627e-01 4.66687620e-01
1.11747277e+00 -8.07965100e-01 -7.64665544e-01 -1.97891101e-01
1.13940313e-02 2.39691541e-01 4.27918375e-01 -1.11600864e+00
-1.18153833e-01 1.39334589e-01 6.86152160e-01 -8.44697058e-01
1.68686872e-03 -1.11292052e+00 8.48240674e-01 9.34115469e-01
-1.28463298e-01 4.71245527e-01 5.78867137e-01 1.40810594e-01
-1.26380444e-01 -4.07962024e-01 1.28564703e+00 -6.37133300e-01
-1.68124467e-01 2.63996869e-01 -8.11546862e-01 4.39353704e-01
1.21997023e+00 -2.60337979e-01 -7.12530911e-02 -4.55895126e-01
-7.98935354e-01 -1.95664272e-01 1.84115067e-01 1.72591999e-01
5.77552199e-01 -1.23897851e+00 -9.57406223e-01 9.11500528e-02
-4.61479396e-01 7.68918157e-01 6.41335845e-01 1.42699528e+00
-1.08642375e+00 5.57123005e-01 -5.17013252e-01 -8.54063690e-01
-1.34518695e+00 3.20840448e-01 1.04924273e+00 -7.16627777e-01
-9.24262643e-01 7.92779863e-01 4.80162859e-01 -2.02183217e-01
-6.93821684e-02 -4.68183398e-01 -2.24028140e-01 -2.41975501e-01
1.14584357e-01 3.17240596e-01 3.54074955e-01 -5.51137865e-01
-3.91433001e-01 5.73563159e-01 -5.62750697e-02 -1.86769087e-02
1.27398705e+00 7.69567415e-02 1.01483613e-02 2.23663449e-01
9.98502076e-01 -2.75182992e-01 -6.68623209e-01 1.74405679e-01
-7.97097921e-01 -1.25570908e-01 -1.66769084e-02 -1.40155828e+00
-1.85856819e+00 9.18600082e-01 1.09946847e+00 -3.77840638e-01
1.47712672e+00 1.65393036e-02 7.70955861e-01 -5.51745355e-01
-2.32413456e-01 -6.31508946e-01 2.00861156e-01 3.89690734e-02
9.89151239e-01 -9.78356957e-01 -1.48173114e-02 -1.55037299e-01
-1.08738256e+00 1.17362976e+00 8.09395194e-01 -1.45703331e-01
5.69579601e-01 6.04987860e-01 4.16362673e-01 -4.88674998e-01
-3.72724503e-01 3.60531181e-01 3.33146453e-01 9.88792002e-01
7.66340911e-01 1.20943762e-01 -2.98926026e-01 4.84076172e-01
-4.25966084e-01 2.92222556e-02 4.95279014e-01 8.66196275e-01
4.25661892e-01 -7.80221343e-01 -4.63107407e-01 9.19595897e-01
-1.22695732e+00 -1.06579378e-01 -3.64430368e-01 1.20860767e+00
4.61916178e-01 6.36158943e-01 -1.80875987e-01 -5.74341603e-02
1.12663813e-01 1.64155308e-02 5.24142504e-01 -7.15068161e-01
-1.38576949e+00 6.40686741e-03 -1.22426651e-01 -1.63630188e-01
-8.39907765e-01 -4.67456669e-01 -1.13009024e+00 -1.19816020e-01
-3.33890915e-01 -3.40389498e-02 7.84586132e-01 7.38332391e-01
3.93299833e-02 1.40385485e+00 1.31594464e-01 -5.85271977e-02
-8.29082653e-02 -1.20709038e+00 -2.92413086e-01 1.00724481e-01
3.88924807e-01 -4.20623928e-01 -4.11451757e-01 8.48944038e-02]
|
[14.705095291137695, -1.9458351135253906]
|
8c1ff591-7db5-48d2-b113-f70e6b143beb
|
from-phonemes-to-images-levels-of
|
1610.03342
| null |
http://arxiv.org/abs/1610.03342v1
|
http://arxiv.org/pdf/1610.03342v1.pdf
|
From phonemes to images: levels of representation in a recurrent neural model of visually-grounded language learning
|
We present a model of visually-grounded language learning based on stacked
gated recurrent neural networks which learns to predict visual features given
an image description in the form of a sequence of phonemes. The learning task
resembles that faced by human language learners who need to discover both
structure and meaning from noisy and ambiguous data across modalities. We show
that our model indeed learns to predict features of the visual context given
phonetically transcribed image descriptions, and show that it represents
linguistic information in a hierarchy of levels: lower layers in the stack are
comparatively more sensitive to form, whereas higher layers are more sensitive
to meaning.
|
['Grzegorz Chrupała', 'Lieke Gelderloos']
|
2016-10-11
|
from-phonemes-to-images-levels-of-1
|
https://aclanthology.org/C16-1124
|
https://aclanthology.org/C16-1124.pdf
|
coling-2016-12
|
['grounded-language-learning']
|
['natural-language-processing']
|
[ 5.59346199e-01 1.47670224e-01 -5.52075617e-02 -7.86448658e-01
-9.02425766e-01 -7.61964262e-01 7.45572388e-01 1.31614313e-01
-4.25700098e-01 5.06129682e-01 7.59419858e-01 -3.30732405e-01
2.85445333e-01 -7.14063346e-01 -9.43893254e-01 -7.06863105e-01
-8.53860304e-02 2.28975996e-01 -7.01770931e-02 -2.61697680e-01
5.38585782e-01 4.08773869e-01 -1.66282809e+00 1.18990541e+00
-5.22605814e-02 8.42333257e-01 5.96508384e-01 8.99745286e-01
-5.40933073e-01 1.45600021e+00 -2.83376336e-01 1.05012260e-01
-1.57219574e-01 -8.24912488e-01 -1.08107126e+00 2.41043732e-01
7.74368465e-01 -7.20719472e-02 -1.47978052e-01 8.86615515e-01
5.74956872e-02 5.88352159e-02 7.29644120e-01 -7.42062390e-01
-1.16441548e+00 4.59486693e-01 -9.57459584e-02 3.36810917e-01
4.95694131e-01 1.08191982e-01 1.29198039e+00 -1.41876984e+00
1.01974940e+00 1.43107295e+00 4.34055328e-01 7.73448706e-01
-1.47623885e+00 -8.92718285e-02 7.88451791e-01 1.89456493e-01
-1.00647533e+00 -5.92802584e-01 5.71190715e-01 -5.55329204e-01
1.49402177e+00 8.19016919e-02 9.53832090e-01 1.33314264e+00
8.35605934e-02 7.36856997e-01 1.32294226e+00 -5.82802057e-01
1.55226424e-01 -3.95947769e-02 4.47150022e-02 9.95673239e-01
-1.64060965e-01 1.32533178e-01 -1.07699919e+00 3.19723152e-02
8.57523859e-01 5.96716627e-02 -1.46351203e-01 -3.91742557e-01
-1.33188450e+00 7.64532685e-01 8.74187708e-01 4.70279306e-01
-3.22041392e-01 4.89574373e-01 2.83701509e-01 2.26459682e-01
3.76589715e-01 4.25586700e-01 -3.74691904e-01 1.62754565e-01
-6.75718069e-01 -1.94442958e-01 3.46683174e-01 5.60495138e-01
1.09361160e+00 2.72821367e-01 -8.11460838e-02 6.86686814e-01
4.89826947e-01 5.00000417e-01 6.72249079e-01 -9.16011095e-01
2.78702199e-01 4.86389846e-01 -2.00155169e-01 -5.48285484e-01
-2.73972154e-01 7.33997747e-02 -4.38959420e-01 4.15027320e-01
1.85974881e-01 1.58792436e-01 -1.30078101e+00 1.79639101e+00
-5.36703885e-01 -8.69274586e-02 2.53920376e-01 9.58477259e-01
1.19057381e+00 9.51758087e-01 4.63257909e-01 -4.12101969e-02
1.13914919e+00 -5.12747824e-01 -3.85046691e-01 -6.39241874e-01
4.60913450e-01 -4.43509936e-01 1.36472976e+00 2.08735630e-01
-1.14355469e+00 -6.49427116e-01 -9.22101557e-01 -6.40689611e-01
-5.87356746e-01 -1.03442259e-01 5.03541350e-01 1.27519779e-02
-1.77063704e+00 3.55687201e-01 -3.37690800e-01 -6.54971302e-01
3.97708565e-01 1.14167847e-01 -6.65934145e-01 1.49394408e-01
-7.43654907e-01 8.59686911e-01 4.68972594e-01 3.20251346e-01
-1.32789981e+00 3.38004157e-02 -1.26534700e+00 8.55060592e-02
4.55073044e-02 -5.91499627e-01 1.32112312e+00 -1.44991326e+00
-1.18688881e+00 1.43665445e+00 -6.06076241e-01 -2.41294056e-01
-4.25273776e-01 1.07509203e-01 -1.96792156e-01 3.18135053e-01
-1.74127266e-01 1.11398494e+00 8.51962149e-01 -1.84716105e+00
-6.17546201e-01 -4.75605696e-01 6.50343150e-02 4.28675711e-01
9.11481678e-02 -2.65825726e-02 -7.55779818e-02 -5.74132383e-01
3.87461960e-01 -6.12088621e-01 -2.28446543e-01 3.20686810e-02
-3.30617577e-01 -2.72183150e-01 6.11532986e-01 -6.32143438e-01
5.43878913e-01 -2.17080569e+00 1.88515738e-01 8.62105563e-02
3.05375099e-01 -2.76239127e-01 -3.50455970e-01 5.71524680e-01
-1.68558821e-01 3.60913545e-01 -3.21739584e-01 -2.32575715e-01
-1.56678036e-01 6.79639280e-01 -7.13212609e-01 2.10348532e-01
5.43065012e-01 1.20055234e+00 -9.40089166e-01 -4.07743841e-01
3.76570709e-02 5.33634841e-01 -2.27141649e-01 3.96947086e-01
-4.21521276e-01 3.89408797e-01 -2.86186606e-01 5.24713337e-01
-1.17247649e-01 -4.39638585e-01 2.97897071e-01 4.54461314e-02
-3.46694678e-01 7.80762732e-01 -4.31630194e-01 1.87840772e+00
-6.42024457e-01 1.12736833e+00 -1.66224524e-01 -1.13038814e+00
9.90330935e-01 4.80736732e-01 -4.38122422e-01 -1.03352809e+00
-1.84709683e-01 1.01376474e-02 -1.79481164e-01 -8.17770779e-01
3.80550951e-01 -6.31135285e-01 -1.65202439e-01 4.07663375e-01
3.34912986e-01 -3.00387949e-01 -2.21127450e-01 3.21056485e-01
6.22857928e-01 5.73031783e-01 3.50358576e-01 -1.60488673e-02
2.30017185e-01 -2.42139399e-02 3.13761652e-01 8.87748957e-01
5.18825799e-02 6.04466200e-01 4.51321691e-01 -7.92236865e-01
-1.06955516e+00 -1.40698373e+00 2.72344977e-01 1.69793391e+00
-2.02777416e-01 -2.57727683e-01 -3.61146063e-01 -2.62279660e-01
-4.24733251e-01 5.91134310e-01 -8.85065198e-01 1.47189543e-01
-6.10199630e-01 -1.40891522e-01 2.59808123e-01 8.29742849e-01
1.04974270e-01 -1.96796286e+00 -8.75022352e-01 -3.75967734e-02
1.99893191e-02 -1.04602325e+00 -2.00566024e-01 7.45525122e-01
-8.49637747e-01 -8.13081205e-01 -4.34687495e-01 -1.64372456e+00
8.11529517e-01 -4.80358191e-02 1.51937234e+00 2.31982544e-01
-3.54695499e-01 5.62023878e-01 -2.29288861e-01 -2.02505976e-01
-1.92793876e-01 -3.35560203e-01 -4.13725555e-01 1.56514645e-02
2.05066368e-01 -3.78153175e-01 -3.25551540e-01 -3.08815062e-01
-7.03566611e-01 2.25923911e-01 5.62994421e-01 9.12099957e-01
9.48692858e-01 -6.77264273e-01 1.41797036e-01 -9.17452514e-01
3.89702737e-01 -2.58477807e-01 -2.89839864e-01 4.64603305e-01
9.33948606e-02 3.63665134e-01 6.15281522e-01 -1.37351558e-01
-1.15479195e+00 5.26703060e-01 -7.79189244e-02 9.24024209e-02
-6.30038023e-01 5.22473574e-01 5.97697943e-02 9.85663608e-02
6.25707388e-01 5.08514464e-01 -2.94802338e-01 -3.87700468e-01
7.94677496e-01 2.95617074e-01 7.76116312e-01 -5.41600287e-01
3.81544560e-01 5.75692952e-01 -2.00055689e-01 -9.97757316e-01
-8.67592156e-01 -2.44274676e-01 -9.20684934e-01 -1.27976611e-01
1.13870931e+00 -1.00311565e+00 -6.86823010e-01 -9.61206388e-03
-1.24275970e+00 -4.58002955e-01 -5.61878562e-01 1.92542523e-01
-9.40250993e-01 -2.07868367e-01 -7.68655658e-01 -8.29136729e-01
-3.12648080e-02 -8.36441040e-01 1.07659256e+00 1.32777125e-01
-1.95801631e-01 -1.13165033e+00 5.14903739e-02 -1.22017525e-01
9.98004228e-02 3.41445804e-01 1.38604963e+00 -3.74407083e-01
-6.30894125e-01 2.76340038e-01 -2.33694717e-01 -2.41328962e-02
1.02485038e-01 -5.40214032e-02 -1.36352408e+00 -1.35678425e-01
8.37663375e-03 -8.28666568e-01 1.20452929e+00 3.52416545e-01
1.29285109e+00 -4.33001220e-01 -1.52533203e-01 5.53718925e-01
1.66329777e+00 3.22382659e-01 4.51153427e-01 2.05506966e-01
6.21517479e-01 9.13098156e-01 -1.27204552e-01 -9.12116542e-02
3.31547916e-01 1.29362330e-01 4.31753188e-01 -3.99840355e-01
-3.97161357e-02 -7.15325296e-01 4.79154170e-01 6.53124094e-01
6.78628385e-02 -1.13964006e-01 -1.14756751e+00 7.89265454e-01
-1.62547863e+00 -1.19155931e+00 4.44729418e-01 1.92978036e+00
7.71949589e-01 1.26467004e-01 1.31552622e-01 -2.87747718e-02
6.00194931e-01 3.31559241e-01 -5.05324602e-01 -1.02677965e+00
-3.98131043e-01 2.84549981e-01 -3.66382152e-02 6.13915682e-01
-6.85695767e-01 1.16936362e+00 8.35093880e+00 4.03770432e-02
-1.27077591e+00 -2.01437443e-01 7.96454608e-01 7.06670955e-02
-6.78941488e-01 1.69707805e-01 -2.88353950e-01 -2.43321523e-01
9.75145221e-01 2.29021206e-01 4.95557010e-01 3.81112427e-01
7.74349421e-02 -7.83207417e-02 -1.36593831e+00 9.18087363e-01
3.45652312e-01 -1.46862590e+00 7.01654971e-01 -1.33022949e-01
3.80134672e-01 2.05869719e-01 4.05746400e-01 1.17553053e-02
5.31706572e-01 -1.79337609e+00 8.62287819e-01 8.66066754e-01
7.81104684e-01 -3.49359542e-01 1.44946292e-01 2.41930202e-01
-1.23124325e+00 -3.03373069e-01 -3.60693067e-01 -5.31783879e-01
9.39591751e-02 -3.20037186e-01 -9.45266664e-01 -1.81320503e-01
7.82407105e-01 8.91716540e-01 -6.92322612e-01 7.42873013e-01
-4.28762734e-01 5.33589363e-01 1.50623992e-01 -1.87258691e-01
5.70119739e-01 4.72767316e-02 5.62142991e-02 1.34299493e+00
2.34196603e-01 2.17750952e-01 2.68744141e-01 7.64272392e-01
-1.93223029e-01 1.82596415e-01 -1.10537541e+00 -1.15219459e-01
2.04367697e-01 9.40643251e-01 -7.75811017e-01 -5.26225388e-01
-5.83643496e-01 9.92505014e-01 7.01942980e-01 8.16029668e-01
8.84008184e-02 2.86793453e-03 4.55712795e-01 5.20373806e-02
5.73385358e-01 -3.42056185e-01 -2.32416660e-01 -9.53256249e-01
-2.38040760e-01 -5.71250260e-01 3.54076564e-01 -1.51396191e+00
-1.25166976e+00 9.13678706e-01 -3.10974091e-01 -9.86488640e-01
-6.09152555e-01 -1.06198883e+00 -4.54694122e-01 9.22440410e-01
-1.27292550e+00 -1.20137823e+00 5.88029958e-02 7.10768044e-01
6.04163289e-01 -1.26473203e-01 1.23358285e+00 -5.53362429e-01
7.55435526e-02 -3.01147858e-03 -2.18660742e-01 4.59360570e-01
2.86097139e-01 -1.49624169e+00 6.36003852e-01 5.26227951e-01
1.08441329e+00 9.12454069e-01 6.63821936e-01 -2.59465039e-01
-1.00949025e+00 -6.09458745e-01 1.30873799e+00 -5.51637232e-01
4.23488975e-01 -8.28646958e-01 -9.84734952e-01 1.03974485e+00
5.97154796e-01 3.99063736e-01 7.96843946e-01 2.46286109e-01
-9.15712595e-01 1.70426682e-01 -7.99414694e-01 4.52448726e-01
1.03864145e+00 -1.60359061e+00 -1.15891850e+00 8.25287849e-02
5.72022378e-01 -2.27476567e-01 -2.98476219e-01 -1.21838395e-02
6.56487644e-01 -9.40947473e-01 7.96457887e-01 -1.01074839e+00
3.05533379e-01 -2.17471987e-01 -5.05640030e-01 -1.25750744e+00
-3.67057234e-01 -1.80162489e-01 4.77226436e-01 6.89631999e-01
7.61859834e-01 -1.82636753e-01 6.17094219e-01 -2.54007112e-02
9.94068310e-02 -6.57094777e-01 -9.95965660e-01 -1.99660853e-01
1.46069527e-01 -2.62221456e-01 1.56876504e-01 8.16972375e-01
8.54097083e-02 8.80480111e-01 -2.34193295e-01 -1.35937363e-01
1.83569118e-01 3.38748246e-01 -8.43765438e-02 -1.12599766e+00
8.56401492e-03 -2.27037340e-01 -5.24837077e-01 -1.01385081e+00
3.38351637e-01 -1.06697154e+00 6.07588947e-01 -1.95473015e+00
4.86644864e-01 1.97203770e-01 -6.84272528e-01 9.29065049e-01
1.66757330e-01 5.45133471e-01 4.83749419e-01 2.10192680e-01
-8.47961962e-01 2.56007254e-01 9.81314242e-01 -2.50016302e-01
5.75314052e-02 -6.57796979e-01 -7.26665139e-01 9.16010559e-01
4.91946250e-01 -2.94477731e-01 -3.43072534e-01 -7.22828925e-01
7.56979883e-01 1.03732489e-01 6.78997695e-01 -5.82674026e-01
1.09648621e-02 -1.12111792e-01 9.51305091e-01 -5.50792456e-01
4.33390468e-01 -5.88749707e-01 -3.52524132e-01 2.70272106e-01
-1.05744731e+00 6.25577569e-01 1.60533398e-01 3.83009166e-01
-4.61076826e-01 7.74360374e-02 3.58935475e-01 -6.98103845e-01
-1.39337742e+00 -6.38405532e-02 -9.61265028e-01 -7.84012303e-02
1.97697714e-01 -4.00451124e-01 -3.44758600e-01 -6.08731866e-01
-1.26852548e+00 -3.48830856e-02 5.09362519e-01 5.13376534e-01
1.24102247e+00 -1.33094203e+00 -4.52016711e-01 1.32541552e-01
4.08428401e-01 -4.08710152e-01 -2.10034236e-01 -2.52154078e-02
-2.79133499e-01 5.85099399e-01 -4.74192321e-01 -6.59419894e-01
-1.12950766e+00 5.43702960e-01 5.14628053e-01 3.20373565e-01
-7.21519113e-01 1.19384050e+00 7.01541901e-01 -2.67392933e-01
1.55466244e-01 -6.60507560e-01 -4.97740895e-01 1.51654273e-01
5.50917685e-01 -4.94658351e-01 -2.63334572e-01 -1.23194015e+00
-3.56299341e-01 9.50959206e-01 9.43940133e-02 -4.32757556e-01
1.33498394e+00 -3.62348169e-01 -1.69440746e-01 1.29236269e+00
1.24679136e+00 -3.23268265e-01 -1.54500127e+00 -3.92682016e-01
3.62979561e-01 8.85791983e-03 -1.76986605e-01 -1.04371393e+00
-6.45057619e-01 1.27519691e+00 7.54800916e-01 5.57741560e-02
9.86473143e-01 5.49961090e-01 3.54739308e-01 7.50636697e-01
1.60111904e-01 -9.40273821e-01 5.45281231e-01 7.42311239e-01
1.00605762e+00 -1.18283439e+00 -3.90226871e-01 1.42016178e-02
-8.48726034e-01 1.19943106e+00 2.76259750e-01 -1.78114414e-01
3.00746530e-01 2.49032497e-01 5.54653227e-01 -5.07816911e-01
-1.07848585e+00 -6.24081075e-01 4.64767903e-01 8.65488589e-01
9.05654371e-01 -8.11501667e-02 4.18640137e-01 -5.84148765e-02
-2.20327795e-01 -3.07501018e-01 3.70390445e-01 9.06650186e-01
-7.52019465e-01 -7.34412253e-01 -3.14352840e-01 2.85864562e-01
-1.90030888e-01 -5.72631717e-01 -7.29508162e-01 5.55101037e-01
3.92817110e-01 6.93726122e-01 5.71934700e-01 -8.97364467e-02
1.86419874e-01 5.57968259e-01 7.38943160e-01 -9.91044462e-01
-5.34269571e-01 4.82389480e-02 -4.26865071e-02 -6.42146409e-01
-7.60225117e-01 -5.79469681e-01 -1.68754578e+00 4.61408615e-01
4.83444870e-01 1.27932485e-02 5.71493685e-01 1.11606872e+00
-9.03591439e-02 2.95554698e-01 2.94758528e-01 -8.89113545e-01
1.43293113e-01 -6.69148147e-01 -4.90075529e-01 5.10004938e-01
1.09918249e+00 -3.10707748e-01 -1.52420178e-01 5.50195158e-01]
|
[10.413030624389648, 1.797534465789795]
|
4f6780ff-515f-4997-94f8-cfb4b2e18a32
|
modeling-content-emotion-duality-via
|
2209.12495
| null |
https://arxiv.org/abs/2209.12495v1
|
https://arxiv.org/pdf/2209.12495v1.pdf
|
Modeling Content-Emotion Duality via Disentanglement for Empathetic Conversation
|
The task of empathetic response generation aims to understand what feelings a speaker expresses on his/her experiences and then reply to the speaker appropriately. To solve the task, it is essential to model the content-emotion duality of a dialogue, which is composed of the content view (i.e., what personal experiences are described) and the emotion view (i.e., the feelings of the speaker on these experiences). To this end, we design a framework to model the Content-Emotion Duality (CEDual) via disentanglement for empathetic response generation. With disentanglement, we encode the dialogue history from both the content and emotion views, and then generate the empathetic response based on the disentangled representations, thereby both the content and emotion information of the dialogue history can be embedded in the generated response. The experiments on the benchmark dataset EMPATHETICDIALOGUES show that the CEDual model achieves state-of-the-art performance on both automatic and human metrics, and it also generates more empathetic responses than previous methods.
|
['Wenjie Li', 'Hinrich Schütze', 'Jiashuo Wang', 'Peiqin Lin']
|
2022-09-26
| null | null | null | null |
['empathetic-response-generation']
|
['natural-language-processing']
|
[-2.47762039e-01 3.68477821e-01 -8.49337783e-03 -6.45962059e-01
-3.72172207e-01 -3.96700054e-01 9.22499418e-01 -2.62062415e-03
2.27594879e-02 7.50554144e-01 1.29656208e+00 4.47063565e-01
2.83199757e-01 -8.59960556e-01 2.74491072e-01 -7.48174906e-01
5.46520591e-01 4.47924674e-01 -7.49407291e-01 -8.21740270e-01
2.46029988e-01 -2.57381685e-02 -1.18724954e+00 7.65392184e-01
5.68275034e-01 8.91170800e-01 -4.01144296e-01 4.99551266e-01
-1.89130396e-01 1.60290933e+00 -7.72775173e-01 -7.90784895e-01
-3.20536256e-01 -1.09478724e+00 -1.21071196e+00 -1.92665756e-01
-4.96447384e-01 -2.43616670e-01 -2.74330825e-01 8.57076347e-01
6.68789625e-01 2.98771888e-01 9.03248549e-01 -1.36946332e+00
-8.66178989e-01 8.48138571e-01 -2.22745687e-01 -2.31840238e-01
9.33783650e-01 3.30897346e-02 1.17584133e+00 -9.28029239e-01
6.43895566e-01 1.55560553e+00 3.68264586e-01 1.00525594e+00
-1.03227150e+00 -6.62234724e-01 -2.62064170e-02 3.29017192e-01
-6.61597908e-01 -4.74297076e-01 1.12777007e+00 -4.68469173e-01
4.88071889e-01 2.86058486e-01 7.61741996e-01 1.66398001e+00
3.51554081e-02 9.16493475e-01 1.14780211e+00 -1.45636544e-01
1.68177098e-01 4.83122796e-01 2.33852923e-01 8.31973404e-02
-7.18454838e-01 1.07706301e-01 -7.67213583e-01 -3.06632847e-01
3.77558708e-01 -2.20902264e-01 -3.77285957e-01 8.52001682e-02
-1.19515514e+00 1.29307735e+00 3.58708441e-01 1.19863279e-01
-6.55933678e-01 -2.06812084e-01 8.23827684e-01 4.75239068e-01
4.84173149e-01 7.24761069e-01 1.38543407e-02 -4.23407435e-01
-2.79727042e-01 4.41382527e-01 1.20490563e+00 7.18571961e-01
5.34550607e-01 -1.39996648e-01 -5.09022176e-01 1.12531388e+00
3.35664481e-01 2.53105253e-01 5.01152456e-01 -9.49204922e-01
1.78934008e-01 7.02000797e-01 4.16485667e-01 -1.09716654e+00
-4.41090196e-01 1.26963062e-02 -9.27616358e-01 1.45667307e-02
6.71609119e-02 -4.73721892e-01 -1.99682601e-02 2.28148079e+00
5.12730241e-01 -2.37746149e-01 8.15106988e-01 1.08248055e+00
1.43361485e+00 1.03045261e+00 1.64193988e-01 -4.47490424e-01
1.63693607e+00 -1.19462216e+00 -1.18122649e+00 -2.69668788e-01
6.37003481e-01 -7.73865044e-01 8.71399999e-01 2.25141585e-01
-1.27354455e+00 -3.62845242e-01 -9.58071113e-01 -1.36959910e-01
1.45731252e-02 3.17792207e-01 4.38515633e-01 7.29785338e-02
-4.70701635e-01 2.87438631e-01 -4.08117324e-02 -2.21978113e-01
-2.70457298e-01 -1.29009783e-01 -5.77630997e-01 3.42572421e-01
-1.82548881e+00 1.17490041e+00 1.84723765e-01 1.87667161e-01
-3.53258818e-01 -4.55882758e-01 -9.45027411e-01 1.10839337e-01
-1.30417183e-01 -8.28727305e-01 1.42897034e+00 -1.08417809e+00
-2.02594757e+00 9.39241648e-01 9.86961648e-03 -4.39038314e-02
4.92005318e-01 -8.91281664e-02 -4.65810418e-01 3.60797308e-02
-7.59098493e-03 6.12010241e-01 4.80976224e-01 -1.23454714e+00
-3.92122060e-01 -3.07744771e-01 1.46006957e-01 5.86323798e-01
-2.66590267e-01 3.44496191e-01 2.83445001e-01 -5.22618532e-01
-1.73081741e-01 -9.89875257e-01 1.54423624e-01 -1.48709670e-01
-2.30700985e-01 -5.74560881e-01 6.57225490e-01 -5.69395840e-01
9.84838188e-01 -2.31213284e+00 4.92116570e-01 -2.29881421e-01
3.86529148e-01 -8.90048593e-02 -1.32495999e-01 1.12867975e+00
-2.49593422e-01 -3.12726140e-01 1.37647644e-01 -4.85355884e-01
3.26487362e-01 1.07746124e-01 -8.75713885e-01 2.99752355e-01
-1.11854477e-02 7.30312645e-01 -1.07047737e+00 -4.08710748e-01
-1.54463410e-01 2.08864808e-01 -6.28490150e-01 1.01766419e+00
-7.96292722e-02 6.83242798e-01 -6.54002309e-01 -1.50309186e-02
3.88018608e-01 -4.86898869e-02 2.71623403e-01 -2.43185118e-01
4.13994789e-02 6.15388989e-01 -6.42736077e-01 1.50659120e+00
-7.36500859e-01 5.40044129e-01 -4.21927162e-02 -6.53321981e-01
1.41963482e+00 8.87571216e-01 3.14887643e-01 -6.85054064e-01
3.35389763e-01 -2.94226427e-02 -2.33868808e-02 -6.55178428e-01
5.54024816e-01 -7.60113478e-01 -7.79823005e-01 1.29562151e+00
-7.96009004e-02 -1.21367440e-01 -3.04240763e-01 3.61108363e-01
6.98472917e-01 1.74413696e-02 6.31760657e-01 -2.22979784e-02
7.69135356e-01 -1.90358132e-01 5.59120357e-01 1.43185556e-01
-2.30762586e-01 2.37123355e-01 9.36921000e-01 -6.03548825e-01
-7.08935618e-01 -9.87768054e-01 2.98098445e-01 1.18413866e+00
2.96419352e-01 -3.95212948e-01 -6.90482318e-01 -4.60860938e-01
-4.10395831e-01 9.50164795e-01 -1.04453611e+00 -7.00562775e-01
-4.84235018e-01 -4.46735799e-01 6.36531115e-01 4.76759285e-01
4.52487439e-01 -1.57835937e+00 -4.78766203e-01 3.56937021e-01
-8.90663564e-01 -1.01010454e+00 -3.65578085e-01 -2.78919727e-01
-2.35984832e-01 -6.64932668e-01 -2.99767733e-01 -6.03161752e-01
2.74195880e-01 -8.10396671e-02 1.12590170e+00 -2.54461050e-01
4.51449193e-02 1.82664096e-01 -7.57222712e-01 -2.07587853e-01
-8.77045214e-01 -4.19484347e-01 -5.71068302e-02 3.07490468e-01
3.45842212e-01 -7.46230662e-01 -7.07798839e-01 2.58258283e-01
-4.94680375e-01 5.66434562e-01 1.92992747e-01 1.00845325e+00
-1.21338896e-01 -6.86526537e-01 1.20449150e+00 -9.36663508e-01
1.35168004e+00 -9.67173815e-01 4.62648332e-01 2.07391858e-01
-2.88722873e-01 1.19034871e-01 8.76461327e-01 -5.98472059e-01
-1.64485145e+00 -3.60158861e-01 -3.23222041e-01 -3.92312296e-02
-8.91533047e-02 4.62026656e-01 -2.81566948e-01 6.38834000e-01
6.89187348e-01 1.29529074e-01 1.20210454e-01 -2.00023264e-01
7.81835318e-01 1.15324509e+00 7.70152628e-01 -1.03892541e+00
-8.57682992e-03 3.43305439e-01 -4.67879117e-01 -3.73743057e-01
-1.06730628e+00 -3.81938607e-01 -2.21620575e-01 -4.59362179e-01
9.94673312e-01 -9.05946374e-01 -1.03607321e+00 4.13329542e-01
-1.67724752e+00 -1.59108132e-01 -1.93525597e-01 4.49603319e-01
-1.06396115e+00 2.30176896e-01 -8.31726909e-01 -7.91952074e-01
-6.94461823e-01 -8.53845119e-01 8.04524541e-01 2.91405320e-01
-1.13658929e+00 -1.12388551e+00 4.91268665e-01 5.03328085e-01
1.31821930e-01 5.25806069e-01 1.27370894e+00 -9.60605085e-01
3.66519809e-01 -9.86119658e-02 -1.51278839e-01 1.14100315e-01
5.36841117e-02 -2.36711666e-01 -1.04779041e+00 2.02494308e-01
6.25742197e-01 -8.17749739e-01 1.62044138e-01 -4.06614512e-01
5.17478406e-01 -9.81602013e-01 2.36397013e-01 1.31452248e-01
7.69096494e-01 6.57282546e-02 8.45434546e-01 -1.80622220e-01
2.78170377e-01 1.35546494e+00 8.07512045e-01 1.00867164e+00
8.00799489e-01 7.79017866e-01 2.06478581e-01 3.56645286e-02
1.09322250e-01 -5.75759053e-01 6.29141271e-01 9.70104098e-01
2.40664274e-01 -2.35929325e-01 -4.66288179e-01 2.77335793e-01
-2.31494236e+00 -1.33541346e+00 -2.78079927e-01 1.58015335e+00
1.22671068e+00 -5.93689501e-01 1.79870576e-01 -1.79391474e-01
6.00224555e-01 4.20024455e-01 -4.27382410e-01 -1.04673302e+00
1.23249568e-01 -2.17761576e-01 -8.14973891e-01 5.93807638e-01
-4.24367279e-01 9.69462633e-01 5.26972675e+00 2.76802242e-01
-9.94161308e-01 -2.03514309e-03 3.46754849e-01 -6.86177090e-02
-4.54619735e-01 7.59323239e-02 -2.99928844e-01 3.86418223e-01
6.73262060e-01 -6.80218279e-01 3.38422179e-01 8.08865309e-01
3.38088155e-01 2.41235420e-01 -1.55343497e+00 1.05210483e+00
3.08754861e-01 -8.96039486e-01 -6.11567684e-02 -1.91056892e-01
4.19420421e-01 -8.25828850e-01 -1.02579646e-01 5.83651245e-01
5.07880509e-01 -1.01315570e+00 8.93069029e-01 6.89888299e-01
5.11958659e-01 -6.33538783e-01 8.60861659e-01 6.81673884e-01
-8.65215600e-01 -9.90383029e-02 -6.67202026e-02 -3.83234560e-01
3.65073144e-01 -8.08298290e-02 -7.28168488e-01 3.87630105e-01
2.78690457e-01 8.00891578e-01 2.14369088e-01 2.45920569e-01
-7.37630188e-01 1.28214106e-01 4.25750583e-01 -2.59123564e-01
1.29813164e-01 -4.52544659e-01 4.34236169e-01 1.16450715e+00
2.07068443e-01 7.15994358e-01 -1.01619475e-01 1.32676530e+00
-2.15080138e-02 3.48153383e-01 -4.30202425e-01 -5.00398129e-02
6.98169827e-01 1.56864226e+00 1.80345416e-01 -2.69872248e-01
-1.87265296e-02 9.81541693e-01 6.30726159e-01 1.98576614e-01
-8.73506188e-01 -1.46636397e-01 8.95818770e-01 -4.34890032e-01
-4.40334469e-01 5.15972257e-01 -2.10546300e-01 -1.07864702e+00
-1.85489148e-01 -1.12229979e+00 4.23843443e-01 -1.22716725e+00
-1.62280750e+00 7.77418792e-01 -1.04584366e-01 -1.15263271e+00
-8.41569543e-01 -2.58523554e-01 -1.22141790e+00 1.09962177e+00
-9.00268853e-01 -1.29542947e+00 -4.78306890e-01 5.43855131e-01
3.95898044e-01 7.09417462e-02 1.35521078e+00 -1.77994341e-01
-4.24490750e-01 5.41408300e-01 -5.46878159e-01 1.86174288e-01
1.02921891e+00 -9.49775934e-01 -9.71207097e-02 1.58719838e-01
-2.99468160e-01 5.88659406e-01 9.03264523e-01 -1.82657912e-01
-1.00367403e+00 -6.14229679e-01 1.22112763e+00 -3.50943059e-01
6.33748293e-01 -2.87142843e-01 -7.63393402e-01 4.31621045e-01
6.44797742e-01 -6.00567758e-01 1.23570049e+00 1.95591941e-01
-6.34703040e-01 3.43438596e-01 -1.16633737e+00 9.76839721e-01
6.89117968e-01 -6.66406274e-01 -1.05592012e+00 1.43983811e-01
7.31550992e-01 -2.49571696e-01 -9.95345235e-01 3.64991128e-02
6.51437640e-01 -1.15860057e+00 6.02421165e-01 -8.98090780e-01
1.18056011e+00 1.64277568e-01 -7.51810223e-02 -1.64249635e+00
-2.31749892e-01 -8.39554846e-01 1.61738545e-02 1.46221781e+00
1.49294183e-01 -5.36644340e-01 2.88945735e-01 8.78479004e-01
-1.46835223e-01 -9.04808700e-01 -6.90964520e-01 4.22314256e-02
2.65022069e-01 7.12522194e-02 8.80829513e-01 1.29289985e+00
1.07897949e+00 1.07858777e+00 -8.16273868e-01 -3.12411189e-01
-5.77113917e-03 6.23528004e-01 9.73786414e-01 -1.13622487e+00
-2.70300269e-01 -5.15028656e-01 1.72608122e-02 -9.05255914e-01
6.74305439e-01 -7.28787005e-01 1.20724998e-01 -1.57966590e+00
3.53120625e-01 -2.08098203e-01 3.20157498e-01 4.30435747e-01
-2.96983987e-01 -3.77193779e-01 2.43416578e-01 3.76715153e-01
-2.99105674e-01 1.12900651e+00 1.28822124e+00 1.27033368e-01
-2.36881286e-01 -2.25407586e-01 -1.21793830e+00 7.24479377e-01
7.69249797e-01 -4.38773364e-01 -5.06189942e-01 5.85895628e-02
4.29776788e-01 9.75792468e-01 2.71021307e-01 -3.42572540e-01
2.28866488e-01 -4.04264301e-01 -9.95615944e-02 -2.03280061e-01
8.71230245e-01 -4.51114088e-01 -1.55875022e-02 2.27499574e-01
-9.76716757e-01 2.09380329e-01 -3.55051011e-01 4.25517082e-01
-5.97880602e-01 -1.58334836e-01 9.30611491e-01 -1.34708047e-01
-2.89505064e-01 4.18754257e-02 -4.09967780e-01 2.99682349e-01
9.19000506e-01 1.22006699e-01 -7.16074228e-01 -1.05223429e+00
-7.34056532e-01 3.02307636e-01 3.37078303e-01 6.79972231e-01
7.06518233e-01 -1.77440131e+00 -1.07324111e+00 -1.41132474e-02
4.50694263e-01 -3.23801726e-01 6.29625738e-01 6.91825569e-01
-9.07033756e-02 -1.14261255e-01 -4.82531875e-01 1.14389718e-01
-1.27902365e+00 4.05591071e-01 3.97142053e-01 -4.23795700e-01
-5.18545270e-01 6.67121470e-01 6.04644239e-01 -6.96115971e-01
4.14096825e-02 4.67802286e-01 -7.99449205e-01 5.11274219e-01
6.60372436e-01 2.33762965e-01 -5.12801290e-01 -9.55077827e-01
1.87749555e-03 1.86013326e-01 -1.44714609e-01 -5.70475698e-01
1.21783578e+00 -3.36803868e-02 -4.77059335e-01 5.23663640e-01
1.39929295e+00 5.77643439e-02 -7.52907217e-01 -3.12363803e-01
-3.88283491e-01 -2.53750026e-01 -4.47992057e-01 -8.79390776e-01
-5.29761910e-01 1.03139293e+00 -1.60688028e-01 2.81747967e-01
9.05661821e-01 5.00127561e-02 1.06013119e+00 3.03628862e-01
1.11830711e-01 -1.16761887e+00 6.75232351e-01 6.02784634e-01
1.51672220e+00 -8.46353471e-01 -2.36539453e-01 -3.14090490e-01
-1.48595226e+00 1.28220499e+00 7.65163004e-01 -4.58443798e-02
2.51096785e-01 -2.69188918e-02 5.12854099e-01 -3.03712338e-01
-1.33254349e+00 3.48955005e-01 4.59784754e-02 3.98260325e-01
6.33973837e-01 2.42748335e-01 -5.06111264e-01 1.39854026e+00
-7.19785035e-01 -3.81527930e-01 6.99672163e-01 4.44525391e-01
-1.43794611e-01 -1.19920218e+00 -2.62654442e-02 -2.71928281e-01
-1.02160729e-01 8.02676976e-02 -1.17300105e+00 3.50489885e-01
-2.13301837e-01 1.35495067e+00 -1.81865200e-01 -6.60161912e-01
4.48793203e-01 1.47891268e-01 1.68036252e-01 -6.15158200e-01
-9.83335018e-01 -3.93732786e-01 6.58395648e-01 -3.95787627e-01
-4.10199672e-01 -4.38606948e-01 -1.44742584e+00 -5.37032723e-01
-3.15744989e-02 5.59609056e-01 4.79183137e-01 1.09207428e+00
2.49415740e-01 1.87602818e-01 1.33669174e+00 -5.47182202e-01
-1.09751129e+00 -1.14763474e+00 -4.94089007e-01 9.13873196e-01
-6.87919511e-03 -3.93898368e-01 -5.20931065e-01 -2.03382462e-01]
|
[13.183658599853516, 7.596688747406006]
|
672c7963-511d-4d9c-a276-453c6898ccf7
|
transliteration-of-foreign-words-in-burmese
|
2110.03163
| null |
https://arxiv.org/abs/2110.03163v2
|
https://arxiv.org/pdf/2110.03163v2.pdf
|
Transliteration of Foreign Words in Burmese
|
This manuscript provides general descriptions on transliteration of foreign words in the Burmese language. Phenomena caused by phonetic and orthographic issues are discussed. Based on this work, we expect to gradually establish prescriptive guidelines to normalize the transliteration on modern words in Burmese.
|
['Chenchen Ding']
|
2021-10-07
| null | null | null | null |
['transliteration']
|
['natural-language-processing']
|
[-3.29812676e-01 -3.55488211e-01 -1.80632904e-01 -3.44977647e-01
-3.16398501e-01 -5.81656039e-01 5.42673826e-01 1.32810488e-01
-7.52271116e-01 9.47329938e-01 6.68658197e-01 -9.58815515e-01
8.29808563e-02 -3.75268549e-01 -4.64174747e-01 -3.08767945e-01
4.49659377e-01 3.31788391e-01 -1.04123829e-02 -8.23015928e-01
5.96952200e-01 6.17052853e-01 -1.05915701e+00 9.40579697e-02
1.15661585e+00 -1.95356146e-01 5.62040329e-01 3.71159226e-01
-3.65927279e-01 4.36979145e-01 -9.85453427e-01 -5.58410048e-01
1.57033727e-01 -6.49575174e-01 -9.87152100e-01 -1.14620402e-01
4.58211392e-01 -3.11835647e-01 -2.53586024e-01 1.03513157e+00
4.51243281e-01 1.00326918e-01 9.93470788e-01 -2.57523149e-01
-1.45615053e+00 1.08773255e+00 2.16721311e-01 8.52261841e-01
4.83555228e-01 -1.06240608e-01 5.83190978e-01 -1.17811441e+00
6.39722943e-01 1.44534171e+00 4.20086086e-01 5.79508066e-01
-8.31949890e-01 -6.30263984e-01 2.63697088e-01 2.18302459e-01
-1.73748815e+00 -6.04528666e-01 2.41211802e-01 -4.63367343e-01
9.78657782e-01 2.01651469e-01 8.77204299e-01 7.99362302e-01
6.33921742e-01 2.46507555e-01 1.34306788e+00 -8.59645486e-01
-1.27417505e-01 4.10289943e-01 4.23900560e-02 6.69796988e-02
6.27833545e-01 1.57345936e-01 -6.59879506e-01 6.40604794e-01
6.75603807e-01 -4.86971736e-01 -2.79797703e-01 6.97406530e-01
-1.02567923e+00 6.50888443e-01 -8.96273777e-02 9.43926871e-01
-2.82906801e-01 -4.86922599e-02 6.89638674e-01 6.57330215e-01
4.38158602e-01 5.75463593e-01 -5.16128600e-01 -5.16772807e-01
-7.95464396e-01 -1.21653177e-01 4.38734949e-01 1.08637178e+00
2.21844494e-01 4.49059308e-01 4.77269441e-01 1.21800303e+00
4.16234285e-01 1.00326598e+00 8.57320547e-01 -1.53948054e-01
2.55210787e-01 -1.76298916e-01 -3.17169487e-01 -4.09219056e-01
2.69794017e-01 -3.36121172e-02 7.90037140e-02 -4.14837785e-02
3.07611197e-01 7.14167282e-02 -1.14089775e+00 1.22081864e+00
9.74799544e-02 -1.07626581e+00 1.06443450e-01 4.53868389e-01
9.37271416e-01 7.75526047e-01 3.87508005e-01 -5.04295111e-01
1.22654271e+00 -7.57195234e-01 -1.45308256e+00 2.98327692e-02
7.67080843e-01 -1.43562806e+00 1.54145849e+00 3.50705564e-01
-1.22637689e+00 -4.95432466e-01 -1.01024902e+00 -1.26655295e-01
-8.33159208e-01 5.13769872e-02 3.88060659e-01 1.31816041e+00
-9.90200698e-01 4.19754058e-01 -8.47753167e-01 -6.36643350e-01
-3.37839812e-01 2.42688969e-01 -3.32450449e-01 3.06089401e-01
-1.44291115e+00 1.62341058e+00 7.97888458e-01 4.58348900e-01
-2.51442909e-01 -1.37743220e-01 -7.97348320e-01 -7.40713537e-01
-1.28399864e-01 -1.78191084e-02 1.20491922e+00 -7.39949524e-01
-1.81722426e+00 1.22527349e+00 -2.35099480e-01 2.60339856e-01
2.25174144e-01 -2.98110157e-01 -1.19188070e+00 -1.47638381e-01
5.96632585e-02 2.29966745e-01 4.67018783e-01 -9.38800991e-01
-8.35685611e-01 -1.60835013e-01 -5.66034615e-01 2.39106596e-01
-6.13496937e-02 9.68159258e-01 -1.38759673e-01 -1.05463076e+00
2.02280238e-01 -6.18721366e-01 3.08379441e-01 -7.51732707e-01
1.83222011e-01 -5.81700325e-01 3.18278283e-01 -1.24471331e+00
1.59362042e+00 -1.94497120e+00 -2.64334083e-01 8.52882043e-02
-4.42479253e-01 2.70287007e-01 1.47561893e-01 7.68081307e-01
-2.37521425e-01 2.01670155e-01 2.25761920e-01 8.66474211e-02
2.38264084e-01 7.67501175e-01 -1.64368346e-01 7.04043686e-01
-2.10113004e-02 1.02677941e+00 -9.05818045e-01 -2.67673135e-01
4.26540732e-01 3.86387378e-01 -1.97859332e-01 -2.92705178e-01
5.86167157e-01 5.00232279e-01 5.60197569e-02 9.69768405e-01
6.29910767e-01 7.40753293e-01 -1.76388379e-02 3.46471727e-01
-8.14368606e-01 1.41239166e+00 -6.00743651e-01 1.46482539e+00
-6.54311776e-01 5.28586090e-01 -2.44320020e-01 -6.13442361e-01
7.09929705e-01 3.89754921e-01 -3.38883132e-01 -7.51691282e-01
5.04385412e-01 1.13815570e+00 6.30853713e-01 -4.58382726e-01
8.02951813e-01 -7.47274995e-01 -1.13084808e-01 5.30132651e-02
6.77069603e-03 -8.07026803e-01 4.06040579e-01 -1.53818041e-01
1.87390447e-02 -1.12139080e-02 9.09139693e-01 -1.22879982e+00
5.81176698e-01 -1.13546833e-01 2.15254709e-01 3.12432259e-01
-4.89886384e-03 1.77647680e-01 -3.81168485e-01 -3.13420355e-01
-7.59739518e-01 -1.54895043e+00 -7.66301930e-01 1.30509841e+00
-1.67298585e-01 -4.61836249e-01 -7.64592409e-01 -2.87621439e-01
-4.52660590e-01 1.18269777e+00 -4.54683214e-01 1.33280177e-02
-1.01855445e+00 -4.51221824e-01 4.30931658e-01 4.23663527e-01
-6.75456598e-02 -1.31403422e+00 -5.74929491e-02 3.96507680e-01
6.58520535e-02 -6.29350364e-01 -6.27608716e-01 2.40870848e-01
-7.29362726e-01 -3.91878039e-01 -9.77081418e-01 -1.26897097e+00
8.08990598e-01 6.12729378e-02 6.95807457e-01 1.84185639e-01
2.68838048e-01 2.70240426e-01 -6.77387297e-01 -5.67109287e-01
-1.15418637e+00 2.00347722e-01 4.49032217e-01 -8.86340559e-01
9.13900137e-01 -3.99426103e-01 -8.06544721e-02 1.03192525e-02
-7.55794823e-01 -5.38686633e-01 1.85436413e-01 4.26741630e-01
3.27358425e-01 -4.80747044e-01 4.43307042e-01 -8.30412984e-01
5.96338630e-01 -3.14167678e-01 -3.92335385e-01 1.67354614e-01
-7.78908491e-01 -3.17173451e-02 6.18370712e-01 -5.93498170e-01
-1.05610204e+00 -6.64744616e-01 -7.98159540e-01 7.33068585e-01
-1.99065462e-01 3.17997754e-01 -4.31533128e-01 -1.76825717e-01
6.86967075e-01 2.72686690e-01 -6.36389852e-01 -6.31095886e-01
4.36019421e-01 9.82732415e-01 9.51122642e-01 -7.22711563e-01
8.45046937e-01 -1.03896208e-01 -5.77993155e-01 -1.30643129e+00
-6.78620487e-02 -2.06656262e-01 -9.79584932e-01 -2.31258675e-01
7.91423023e-01 -7.85817325e-01 -1.59345102e-02 4.96987283e-01
-1.17849231e+00 -1.49004489e-01 -3.60376626e-01 1.24323034e+00
-2.83494830e-01 3.31487596e-01 -7.10329711e-01 -5.54385006e-01
-2.45955899e-01 -1.26155603e+00 7.21511006e-01 1.66068561e-02
-7.53355563e-01 -1.48135841e+00 4.16779935e-01 -4.56966646e-02
2.76738942e-01 -4.15673852e-01 9.42240894e-01 -6.00093246e-01
1.31307557e-01 2.99279869e-01 3.98663402e-01 7.10674286e-01
7.86796927e-01 3.25257003e-01 -3.65503907e-01 -1.36511222e-01
2.41424650e-01 1.63767904e-01 3.22924227e-01 1.91109374e-01
1.03602953e-01 -2.91405261e-01 2.37671569e-01 5.17793357e-01
1.12939286e+00 8.63013685e-01 5.04402816e-01 3.90487105e-01
4.45962071e-01 7.16400981e-01 5.60905457e-01 -1.33012757e-01
2.24556610e-01 2.86621153e-01 -4.28958386e-01 1.79399654e-01
-6.63901150e-01 -3.34980547e-01 9.49544370e-01 2.25116730e+00
-8.93564373e-02 -2.53415585e-01 -1.08659363e+00 1.04348493e+00
-8.55983078e-01 -3.00867081e-01 -6.06573701e-01 2.08882952e+00
1.02648914e+00 -1.86831698e-01 -1.59754947e-01 9.60433185e-02
9.16507900e-01 4.17224541e-02 3.32955033e-01 -1.26343095e+00
-4.06177938e-01 6.49161756e-01 5.14469445e-01 1.09588635e+00
-2.98327297e-01 1.75873971e+00 8.57679462e+00 8.97405207e-01
-1.37306261e+00 2.17064247e-01 -2.02869698e-01 2.02369228e-01
-8.41378152e-01 1.54947641e-03 -1.03575838e+00 4.79482085e-01
1.13092732e+00 -4.84349400e-01 4.11804497e-01 2.87562251e-01
3.76711875e-01 -1.15993068e-01 -9.75389600e-01 8.75742972e-01
2.70124048e-01 -7.12824821e-01 2.86976874e-01 5.03629707e-02
9.16535676e-01 1.14552006e-01 2.68066406e-01 2.29915902e-01
3.03025916e-02 -1.01197481e+00 1.02901614e+00 -5.26458882e-02
9.18877304e-01 -7.21552074e-01 4.94280487e-01 -2.13428110e-01
-8.71226251e-01 6.52734876e-01 -6.08172476e-01 -5.23168266e-01
3.90783876e-01 1.39122292e-01 -8.65424991e-01 1.05692603e-01
1.42249584e-01 3.04225892e-01 -5.87490916e-01 7.34895349e-01
-7.81664193e-01 1.03105378e+00 -3.54532093e-01 -2.93498099e-01
3.17835659e-01 -4.30363774e-01 5.42074740e-01 1.35743570e+00
6.65892005e-01 1.51051264e-02 -4.64846939e-01 3.06838781e-01
5.08670866e-01 1.41150880e+00 -5.07872641e-01 -3.58946502e-01
4.18019474e-01 3.54842097e-01 -1.00846422e+00 -4.10377830e-01
-5.10435998e-01 1.38386393e+00 -5.17521463e-02 3.09273452e-01
-4.42598462e-01 -3.32767427e-01 7.28813529e-01 3.64486307e-01
1.85423687e-01 -3.52723807e-01 -4.75075155e-01 -9.21082616e-01
1.16379000e-01 -9.07609403e-01 6.32078871e-02 -2.52735734e-01
-9.39051867e-01 7.70353436e-01 3.89768898e-01 -7.53569424e-01
-2.18189195e-01 -1.11555290e+00 -3.86937588e-01 1.20222902e+00
-9.58075345e-01 -8.98048580e-01 7.34371781e-01 1.88552186e-01
6.11607373e-01 -2.37140208e-01 8.78577054e-01 4.18024004e-01
-3.32771122e-01 8.47654879e-01 4.16378587e-01 -1.66018382e-01
7.59061098e-01 -1.27913725e+00 9.08735096e-01 1.23092544e+00
1.88876465e-01 1.14033937e+00 9.24131989e-01 -9.48646903e-01
-4.74731058e-01 -6.58248186e-01 1.84005320e+00 -5.68099558e-01
9.24752176e-01 -3.74414384e-01 -6.98188245e-01 9.40564096e-01
6.34187460e-01 -7.60053635e-01 8.71852458e-01 1.05528496e-01
8.29228163e-02 2.32135549e-01 -7.15936661e-01 1.25474083e+00
1.20289099e+00 -7.63266504e-01 -1.37308669e+00 5.16182721e-01
7.17694819e-01 -2.11184204e-01 -1.04551125e+00 -4.27117944e-02
5.86793542e-01 -3.27580422e-01 4.93608832e-01 -5.76900542e-01
-7.95537531e-02 -2.65688837e-01 7.44079351e-02 -1.74225199e+00
-3.66681218e-01 -1.01320016e+00 8.78561020e-01 1.01899993e+00
5.86467564e-01 -9.93271410e-01 -3.77502963e-02 2.02474967e-01
-5.91077149e-01 8.35258812e-02 -1.13715339e+00 -1.09132934e+00
8.08326423e-01 -3.73192102e-01 4.69270021e-01 8.44124973e-01
5.22467673e-01 4.08969998e-01 -2.53290415e-01 -1.45437524e-01
-1.00580454e-01 -6.19431198e-01 1.44777983e-01 -7.89992273e-01
-7.68325031e-02 -5.25186419e-01 -3.06914806e-01 -1.22091401e+00
3.86570185e-01 -8.08076680e-01 2.01509297e-01 -1.42384839e+00
-6.27173424e-01 3.21629434e-03 -2.11863175e-01 3.96294482e-02
-3.09008867e-01 3.71889323e-01 2.67079949e-01 -1.39001608e-01
1.86704770e-01 5.18704772e-01 1.55764925e+00 2.65747011e-01
-5.81089318e-01 -1.58966720e-01 -6.09513462e-01 7.85173357e-01
1.12357903e+00 -8.71223390e-01 -4.16679412e-01 -7.14835346e-01
2.09910601e-01 -4.94230568e-01 -6.71007872e-01 -6.92188084e-01
-1.33974314e-01 -4.82765019e-01 -3.27174403e-02 -7.44663835e-01
-8.43900889e-02 -6.13525748e-01 2.61052012e-01 7.58328617e-01
1.27059042e-01 9.32144701e-01 3.06521237e-01 -5.00788152e-01
-2.40815669e-01 -6.67364955e-01 9.09399450e-01 -6.58166707e-02
-8.19438875e-01 -1.41055971e-01 -1.31974661e+00 1.22924693e-01
8.26468408e-01 -6.93949282e-01 -7.00139999e-02 -1.18424080e-01
-5.92393875e-01 -2.99068511e-01 6.16441727e-01 5.15726984e-01
2.87505358e-01 -1.49973989e+00 -1.00302756e+00 3.97999555e-01
2.23861307e-01 -8.11699510e-01 -5.36476336e-02 8.53618503e-01
-1.45898080e+00 8.27746570e-01 -4.91782159e-01 2.98992306e-01
-1.12407959e+00 5.68392873e-01 1.77034706e-01 4.58184510e-01
-4.19860274e-01 9.14947331e-01 2.09485397e-01 -5.74125588e-01
-1.75164696e-02 -6.78381920e-01 -6.41877353e-02 -5.28349057e-02
5.43536365e-01 5.96875727e-01 2.76625693e-01 -1.32025397e+00
-6.91240132e-01 4.35681999e-01 -4.32511896e-01 -6.07240319e-01
4.52368230e-01 -5.17445445e-01 -4.84312981e-01 1.01332045e+00
1.03659427e+00 1.14836013e+00 -1.76615957e-02 1.97449133e-01
-1.42185509e-01 -5.68801165e-01 -3.18859786e-01 -9.39897299e-01
-3.39223355e-01 6.94360435e-01 1.58906028e-01 -4.29999471e-01
9.31928635e-01 -7.92831182e-02 9.60532486e-01 4.51702863e-01
9.08368304e-02 -1.80616128e+00 -8.26797843e-01 1.05281019e+00
1.03597403e+00 -5.68436742e-01 -2.26983547e-01 -3.87867182e-01
-3.66009295e-01 1.20525229e+00 2.62632549e-01 -1.88149847e-02
7.21613050e-01 6.42074645e-02 8.57889831e-01 6.26543015e-02
-1.68437198e-01 -1.30735725e-01 2.85896838e-01 9.71125901e-01
1.03671145e+00 4.15879458e-01 -1.84543812e+00 8.86691641e-03
-1.21218622e+00 -7.56176412e-01 6.41799927e-01 5.50176799e-01
-4.59544539e-01 -1.79123878e+00 -9.23928559e-01 6.81697652e-02
-7.39800513e-01 -8.25222135e-01 -4.85009581e-01 1.12451804e+00
5.13207495e-01 9.19814050e-01 8.52891728e-02 -6.52702302e-02
2.11694852e-01 1.74945518e-01 7.50214756e-01 -8.66124928e-01
-8.15572381e-01 4.85808909e-01 2.28922218e-01 5.48165180e-02
-2.44530901e-01 -8.13973784e-01 -1.20689285e+00 -5.89300036e-01
-2.30646774e-01 6.39103174e-01 7.87821114e-01 1.11466336e+00
-7.32181430e-01 3.08041900e-01 -6.80540921e-03 -1.28822610e-01
-3.97770137e-01 -1.25635231e+00 -1.08674741e+00 -6.72194511e-02
4.70806994e-02 -2.81763405e-01 -6.37433231e-01 4.27923687e-02]
|
[11.130743980407715, 10.314467430114746]
|
3f5c07c4-d59a-40d4-902c-34a1d3337b55
|
temporal-word-analogies-identifying-lexical
| null | null |
https://aclanthology.org/P17-2071
|
https://aclanthology.org/P17-2071.pdf
|
Temporal Word Analogies: Identifying Lexical Replacement with Diachronic Word Embeddings
|
This paper introduces the concept of temporal word analogies: pairs of words which occupy the same semantic space at different points in time. One well-known property of word embeddings is that they are able to effectively model traditional word analogies ({``}word $w_1$ is to word $w_2$ as word $w_3$ is to word $w_4${''}) through vector addition. Here, I show that temporal word analogies ({``}word $w_1$ at time $t_\alpha$ is like word $w_2$ at time $t_\beta${''}) can effectively be modeled with diachronic word embeddings, provided that the independent embedding spaces from each time period are appropriately transformed into a common vector space. When applied to a diachronic corpus of news articles, this method is able to identify temporal word analogies such as {``}Ronald Reagan in 1987 is like Bill Clinton in 1997{''}, or {``}Walkman in 1987 is like iPod in 2007{''}.
|
['Terrence Szymanski']
|
2017-07-01
| null | null | null |
acl-2017-7
|
['diachronic-word-embeddings']
|
['natural-language-processing']
|
[-2.45073423e-01 -2.79839545e-01 -3.36916327e-01 -2.33355761e-01
-4.74806249e-01 -6.88803971e-01 1.05549407e+00 7.93851614e-01
-1.05247247e+00 5.03169656e-01 4.58731085e-01 -7.67709851e-01
-6.41379416e-01 -9.34475243e-01 -4.39716399e-01 -2.21593633e-01
-4.80185807e-01 3.44121188e-01 6.17064759e-02 -7.49318898e-01
3.97855341e-01 2.31581837e-01 -1.20340264e+00 -1.52443185e-01
2.89693803e-01 7.69636810e-01 9.46611166e-02 4.91093606e-01
-6.35970235e-01 3.15158933e-01 -5.82749724e-01 -6.34650588e-01
1.75153196e-01 -4.03655887e-01 -8.69123161e-01 -5.93135893e-01
2.46261209e-01 1.23035088e-02 -6.20885313e-01 1.21973097e+00
6.82853982e-02 7.04159260e-01 7.33545959e-01 -1.21603262e+00
-1.27840400e+00 8.58859539e-01 -3.28056127e-01 5.65223813e-01
3.44946384e-01 6.18185662e-02 1.56309199e+00 -8.22430432e-01
5.63049197e-01 1.20755577e+00 8.15304399e-01 2.97032267e-01
-1.55099750e+00 -8.01914632e-01 3.72673422e-01 5.51683486e-01
-1.28482962e+00 2.46449128e-01 7.82864332e-01 -5.98854721e-01
1.11973023e+00 2.52615184e-01 9.75405037e-01 1.17393661e+00
5.16949594e-01 4.24587697e-01 9.27348077e-01 -4.19131070e-01
2.88343489e-01 -2.27798566e-01 7.54607201e-01 2.07877874e-01
1.40848123e-02 2.66389996e-01 -5.40432155e-01 -2.77737707e-01
4.99405175e-01 3.20065051e-01 -3.37243192e-02 1.36337340e-01
-1.08878052e+00 1.35713947e+00 5.50439119e-01 1.03125596e+00
-2.33908474e-01 7.68202305e-01 5.75185716e-01 4.83810037e-01
4.34576899e-01 6.33140087e-01 -3.44046444e-01 -1.30797371e-01
-4.12168652e-01 7.42091179e-01 8.60038847e-02 8.46105933e-01
7.12804615e-01 1.50291964e-01 5.44348508e-02 5.28124571e-01
3.29145700e-01 1.92629546e-01 8.63564610e-01 -9.38955247e-01
1.34428203e-01 1.42235890e-01 4.36641365e-01 -8.87627602e-01
-5.92832148e-01 -1.47969618e-01 -4.62675393e-01 7.34798890e-03
3.93659621e-01 2.56058007e-01 -7.78097093e-01 2.35425019e+00
-2.89383382e-01 3.87221783e-01 1.31000638e-01 3.30556571e-01
4.41056222e-01 1.21060491e+00 5.74350655e-01 -5.15525162e-01
2.03411198e+00 -2.26500139e-01 -8.98325503e-01 -6.19546592e-01
6.00995660e-01 -7.81474829e-01 1.51439190e+00 -1.96650445e-01
-1.24256277e+00 -4.57084298e-01 -1.11086643e+00 -3.70186963e-03
-7.25957811e-01 -1.00793660e+00 6.50700569e-01 5.27603865e-01
-1.00972867e+00 8.06113601e-01 -5.21682143e-01 -7.08992124e-01
-1.70211047e-01 6.69604912e-02 -2.78521001e-01 -6.00781702e-02
-1.96430755e+00 1.20449340e+00 4.06292081e-01 -4.57461715e-01
-2.13084579e-01 -8.93200696e-01 -9.90578711e-01 -3.77123468e-02
-1.09430186e-01 -5.02916574e-01 1.24889779e+00 -3.67963403e-01
-8.89115036e-01 8.66288900e-01 -1.80462837e-01 -5.56268096e-01
-8.20833817e-02 -5.90526238e-02 -1.17335248e+00 -2.99890518e-01
6.47189677e-01 2.52097279e-01 4.59517151e-01 -8.31903517e-01
-4.35751319e-01 -6.46935940e-01 1.80304095e-01 -1.18167382e-02
-4.93257552e-01 2.07214162e-01 -1.98983178e-02 -1.21834719e+00
4.15495276e-01 -7.96692789e-01 -2.35271841e-01 -1.07517183e-01
2.40034685e-01 -6.62540734e-01 4.17142391e-01 -5.94717145e-01
1.54596257e+00 -2.25934768e+00 1.60882041e-01 1.53513953e-01
1.60901383e-01 9.45898220e-02 -1.82235688e-01 8.29633415e-01
-6.31895661e-01 3.11385274e-01 -3.16114843e-01 1.23740017e-01
4.77214098e-01 5.44083834e-01 -4.67404515e-01 7.46715128e-01
-4.31553036e-01 8.45974922e-01 -1.18041587e+00 6.84238598e-02
3.23906779e-01 9.10147130e-02 -4.57336336e-01 -2.49463037e-01
-1.85959786e-01 -1.77102536e-01 -2.47675061e-01 -1.71790332e-01
2.29576305e-01 -6.72860742e-02 1.74662158e-01 -2.28770375e-01
-2.96297938e-01 3.22239846e-01 -9.93122816e-01 1.84283650e+00
-3.84487122e-01 6.22123182e-01 -4.93004084e-01 -1.14305556e+00
8.77159894e-01 5.61796248e-01 4.32732463e-01 -1.18374479e+00
2.78245866e-01 1.34050608e-01 8.73634294e-02 -1.85905382e-01
6.90449059e-01 -9.82819140e-01 -7.33199298e-01 8.63349259e-01
-7.01775476e-02 -5.36134183e-01 6.78147599e-02 2.06678689e-01
1.24046874e+00 -3.48284960e-01 2.41962448e-01 -6.71301782e-01
1.89434931e-01 -1.73721865e-01 5.95508575e-01 4.40018505e-01
-3.84310871e-01 -6.14798181e-02 3.23941886e-01 -6.80034697e-01
-1.36457181e+00 -1.60339057e+00 -2.55722940e-01 1.37394130e+00
2.75628895e-01 -6.91300869e-01 -1.64103746e-01 6.75220937e-02
9.85765830e-02 1.57413542e+00 -1.01042461e+00 -4.67478782e-01
-6.74333215e-01 -5.98885775e-01 4.72212225e-01 9.01046216e-01
4.68318574e-02 -8.85747492e-01 -6.78524733e-01 4.96861666e-01
-2.55838573e-01 -3.36290807e-01 -7.84349680e-01 4.29064423e-01
-4.84582484e-01 -4.63034928e-01 -7.88307071e-01 -5.85315228e-01
2.06667222e-02 -1.54325619e-01 1.04273891e+00 -4.09501493e-01
-5.68331718e-01 5.52516937e-01 -4.65488762e-01 -4.16667968e-01
-1.32437900e-01 -7.85978496e-01 7.69816101e-01 -1.69095367e-01
7.32744694e-01 -7.26808667e-01 -7.10552752e-01 -6.71792449e-03
-1.24520707e+00 -6.66635692e-01 -1.39682829e-01 7.60706663e-01
4.33518887e-01 -1.74036190e-01 4.97383833e-01 -5.37221849e-01
1.00051892e+00 -6.00677371e-01 -3.20518613e-01 -3.53079624e-02
-7.59911597e-01 3.26950550e-01 4.30501670e-01 -7.19726324e-01
-3.89796615e-01 -8.72139215e-01 -2.64917135e-01 -4.15065110e-01
3.69326174e-01 8.00758898e-01 3.31632972e-01 8.84134352e-01
9.54702437e-01 1.30181760e-01 -2.71592587e-01 -3.71117800e-01
9.42882240e-01 2.43448764e-01 9.23668921e-01 -5.42316318e-01
7.92226255e-01 4.16075945e-01 -1.38473406e-01 -4.36949223e-01
-4.66634840e-01 -2.50523686e-01 -2.88611621e-01 1.12846702e-01
1.21568811e+00 -5.94133794e-01 -7.82983661e-01 -6.73122332e-02
-1.22707927e+00 -3.70672755e-02 -7.75117218e-01 8.52794051e-01
-7.56732404e-01 2.42399767e-01 -5.31463027e-01 -6.30891740e-01
2.16000271e-03 -4.84288037e-01 3.23214948e-01 8.02313760e-02
-1.24540043e+00 -1.40057170e+00 3.26357245e-01 -1.79074943e-01
3.60612333e-01 1.08988062e-01 1.80016184e+00 -9.05115604e-01
3.17611992e-01 -4.36907023e-01 9.69822705e-03 1.12484798e-01
3.70433867e-01 -1.29773125e-01 -4.13895190e-01 -4.50277627e-01
1.25327364e-01 1.24745063e-01 2.51064718e-01 3.78032684e-01
5.20242572e-01 -3.94967139e-01 -3.04271013e-01 -3.62990350e-02
1.49570060e+00 8.52983236e-01 5.59740722e-01 3.82537365e-01
1.05570950e-01 4.78743613e-01 2.74184525e-01 6.15170598e-01
9.80963856e-02 7.43176043e-01 1.96011558e-01 6.04924321e-01
1.64172187e-01 -2.75581688e-01 4.08816934e-01 8.42249811e-01
7.91604072e-02 -1.81681305e-01 -9.69683111e-01 1.06874669e+00
-1.76428711e+00 -1.15983975e+00 -7.97087103e-02 2.13065529e+00
6.63205266e-01 1.97454631e-01 2.76734168e-03 1.93365231e-01
7.95579970e-01 6.12827539e-01 -2.99604565e-01 -8.31146181e-01
4.47860248e-02 9.75293577e-01 2.72502065e-01 6.16226017e-01
-5.68970144e-01 9.14700985e-01 5.71915388e+00 8.07842195e-01
-7.63171554e-01 3.71283978e-01 1.83694344e-03 -1.94958836e-01
-9.60668147e-01 3.02687854e-01 -1.45408809e-01 7.77255476e-01
1.17146766e+00 -1.07027769e+00 7.81762004e-02 4.38061029e-01
2.48402543e-02 2.11074993e-01 -1.52241862e+00 1.17478323e+00
3.71093787e-02 -1.68801987e+00 1.40244067e-01 -2.80136466e-01
4.37491268e-01 -3.41425627e-01 5.76269865e-01 3.32020700e-01
9.17732656e-01 -1.27780628e+00 7.96106756e-01 1.95032343e-01
9.21920776e-01 -8.75337899e-01 3.45055640e-01 3.60700302e-02
-1.48356640e+00 -2.83221066e-01 -4.30211991e-01 -3.39456797e-01
6.49641514e-01 2.53755718e-01 -2.03022301e-01 5.03596723e-01
9.60331380e-01 4.33995575e-01 7.34885409e-02 2.91589320e-01
-2.08123505e-01 1.78424254e-01 -4.69818152e-02 -1.41182050e-01
7.03209877e-01 -3.32006305e-01 5.27968466e-01 8.73042881e-01
6.63935900e-01 4.95562971e-01 -9.36363637e-02 8.17619085e-01
4.15322594e-02 2.54078358e-01 -1.00626469e+00 -3.23797911e-01
7.01520085e-01 4.40438330e-01 -6.63577318e-01 -2.23483980e-01
-4.40787256e-01 1.04034662e+00 -2.87227556e-02 5.20705521e-01
-1.08130741e+00 -7.49013186e-01 1.30610216e+00 3.03576499e-01
-1.18398041e-01 -4.55787718e-01 -1.85338072e-02 -5.63420296e-01
-2.47316867e-01 -1.29669294e-01 7.05857217e-01 -1.05832553e+00
-1.66943955e+00 5.13500333e-01 2.84275383e-01 -1.14437735e+00
-2.10486174e-01 -7.10133076e-01 -8.94975901e-01 1.05590177e+00
-4.15039510e-01 -6.15372419e-01 5.12491703e-01 8.95018339e-01
4.87975031e-01 -1.77323610e-01 1.11334980e+00 7.90838078e-02
8.96651223e-02 6.88338995e-01 3.65597188e-01 7.14199170e-02
4.86872524e-01 -1.00979733e+00 6.27511919e-01 5.40912032e-01
4.59915102e-01 9.49717820e-01 1.21481657e+00 -5.30814290e-01
-1.18276381e+00 -8.61075640e-01 1.30725360e+00 -5.72709143e-01
1.40688312e+00 -1.85581893e-01 -9.53348041e-01 1.15822363e+00
5.09950757e-01 -2.76096702e-01 1.01569843e+00 9.96659920e-02
-7.25919425e-01 -4.04936820e-02 -1.13934946e+00 1.27188218e+00
9.09906924e-01 -9.96434331e-01 -1.34307516e+00 6.24064326e-01
1.40027726e+00 2.61744291e-01 -1.03549826e+00 2.70693064e-01
4.89811331e-01 -5.44024765e-01 1.14343226e+00 -1.17348731e+00
1.74998268e-01 -2.54752636e-02 -7.75893748e-01 -1.30586636e+00
-8.78662050e-01 -6.43095613e-01 5.27957737e-01 8.70007396e-01
3.31978291e-01 -1.04833651e+00 2.20682353e-01 6.74083114e-01
-1.42876074e-01 -2.53597230e-01 -1.70278537e+00 -1.39139521e+00
8.71339262e-01 -8.58113647e-01 5.25228858e-01 1.30765879e+00
5.11240125e-01 2.57692546e-01 -1.59869581e-01 -2.29148760e-01
4.26345706e-01 -1.13266267e-01 9.63295810e-03 -1.26186669e+00
-3.31367046e-01 -7.20630348e-01 -7.51284599e-01 -7.75223613e-01
3.91709745e-01 -1.14585209e+00 -4.68960255e-01 -1.35976624e+00
-7.74300704e-03 -3.50133300e-01 -5.18767059e-01 3.43081057e-01
5.35340458e-02 2.38972232e-01 1.71873584e-01 -9.67711955e-03
3.37637812e-01 5.98133266e-01 6.69748962e-01 -3.19111556e-01
5.35442047e-02 -4.33820486e-01 -6.34044349e-01 7.54919529e-01
3.94185424e-01 -3.26236725e-01 -5.37025392e-01 -5.23927927e-01
6.26931906e-01 3.68112206e-01 2.97498226e-01 -5.06156862e-01
2.02891201e-01 -4.75173086e-01 -3.92539613e-02 -2.57803887e-01
7.00412571e-01 -6.83116972e-01 4.70821738e-01 7.88122594e-01
-2.54422337e-01 1.05464137e+00 6.31382763e-01 7.61747301e-01
-1.41204730e-01 -3.35485905e-01 9.44701731e-01 -7.25801140e-02
-8.93319190e-01 3.43802959e-01 -7.03104258e-01 1.22036934e-01
1.30940139e+00 -4.69791926e-02 -3.08293641e-01 -5.96178532e-01
-9.10632789e-01 -1.79141480e-02 3.73792738e-01 7.67172575e-01
5.55727482e-01 -1.85128438e+00 -6.45205498e-01 -1.70254782e-01
3.73020083e-01 -6.46227717e-01 4.50149596e-01 2.91598171e-01
-4.31992084e-01 2.39230499e-01 -3.88617247e-01 -1.82730436e-01
-7.54483879e-01 1.01271248e+00 -9.46079865e-02 -8.20311829e-02
-6.47318840e-01 1.30139315e+00 1.59969583e-01 -1.65853426e-02
-1.79622456e-01 -2.59514570e-01 5.34820519e-02 3.82746398e-01
3.10719460e-01 3.17231625e-01 -3.96539271e-01 -7.42318869e-01
-5.74817836e-01 7.24241495e-01 -1.32622465e-01 -9.11187887e-01
1.19323313e+00 -8.90926197e-02 -3.74312431e-01 1.20055735e+00
1.59649324e+00 -3.49314272e-01 -3.07511568e-01 -5.38593292e-01
2.25380972e-01 -5.23541808e-01 -5.12846470e-01 -2.25321710e-01
-3.91393125e-01 7.17489958e-01 8.57030332e-01 2.08228767e-01
6.18735731e-01 3.84326994e-01 8.84352744e-01 7.86163360e-02
4.83813822e-01 -1.22391856e+00 3.35327893e-01 6.28236830e-01
8.05829823e-01 -4.80512500e-01 -1.82309777e-01 2.99386621e-01
-1.85079142e-01 6.93201900e-01 -6.01186566e-02 -3.42287958e-01
8.05487812e-01 -2.83587098e-01 -9.30174515e-02 -3.11471462e-01
-4.68963504e-01 1.44367546e-01 -6.44343942e-02 2.51488030e-01
4.22724694e-01 1.66567832e-01 -9.22682405e-01 8.59917581e-01
-3.94000649e-01 -6.68398321e-01 4.85062927e-01 1.03924549e+00
-4.08191383e-01 -1.38481402e+00 -3.30976963e-01 2.59163737e-01
-1.29295424e-01 -2.72540510e-01 8.10500383e-02 9.46028054e-01
4.92155179e-02 7.10486412e-01 5.80471337e-01 -4.90724921e-01
2.94232637e-01 7.59779572e-01 4.57006425e-01 -6.58492804e-01
-4.17630672e-01 -9.36095193e-02 -3.79402369e-01 -4.70410287e-01
-9.39977616e-02 -5.52905738e-01 -1.58954036e+00 -7.86127269e-01
3.42861950e-01 3.93590689e-01 4.83425260e-01 1.01330209e+00
-1.20975792e-01 3.98710757e-01 3.03585529e-01 -4.82225657e-01
-5.12988985e-01 -7.92850971e-01 -1.11704552e+00 1.02138209e+00
-1.20969802e-01 -7.15973020e-01 -3.72390002e-01 -1.20127067e-01]
|
[10.232377052307129, 8.880875587463379]
|
26d85902-5002-4d21-8876-2dca628ff571
|
attributed-network-embedding-model-for
|
2209.09448
| null |
https://arxiv.org/abs/2209.09448v2
|
https://arxiv.org/pdf/2209.09448v2.pdf
|
Attributed Network Embedding Model for Exposing COVID-19 Spread Trajectory Archetypes
|
The spread of COVID-19 revealed that transmission risk patterns are not homogenous across different cities and communities, and various heterogeneous features can influence the spread trajectories. Hence, for predictive pandemic monitoring, it is essential to explore latent heterogeneous features in cities and communities that distinguish their specific pandemic spread trajectories. To this end, this study creates a network embedding model capturing cross-county visitation networks, as well as heterogeneous features to uncover clusters of counties in the United States based on their pandemic spread transmission trajectories. We collected and computed location intelligence features from 2,787 counties from March 3 to June 29, 2020 (initial wave). Second, we constructed a human visitation network, which incorporated county features as node attributes, and visits between counties as network edges. Our attributed network embeddings approach integrates both typological characteristics of the cross-county visitation network, as well as heterogeneous features. We conducted clustering analysis on the attributed network embeddings to reveal four archetypes of spread risk trajectories corresponding to four clusters of counties. Subsequently, we identified four features as important features underlying the distinctive transmission risk patterns among the archetypes. The attributed network embedding approach and the findings identify and explain the non-homogenous pandemic risk trajectories across counties for predictive pandemic monitoring. The study also contributes to data-driven and deep learning-based approaches for pandemic analytics to complement the standard epidemiological models for policy analysis in pandemics.
|
['Ali Mostafavi', 'Chao Fan', 'Qingchun Li', 'Bo Li', 'Junwei Ma']
|
2022-09-20
| null | null | null | null |
['network-embedding']
|
['methodology']
|
[-4.23519254e-01 4.70357761e-03 -3.01559925e-01 2.83329841e-03
-8.68565217e-02 -5.62706590e-01 1.06228817e+00 7.68932700e-01
-1.85874701e-01 3.14837515e-01 1.01656353e+00 -5.54547310e-01
-5.70635259e-01 -1.42187059e+00 -3.40401791e-02 -6.15369678e-01
-9.70063865e-01 5.39229035e-01 -1.86716184e-01 -5.55578947e-01
-2.25789055e-01 4.24429417e-01 -9.21144128e-01 4.53413352e-02
1.02536345e+00 3.34929138e-01 -1.21008970e-01 5.75752199e-01
-7.09041283e-02 2.93298185e-01 -3.58099014e-01 -1.93298608e-01
2.30295677e-02 -4.89159971e-02 -4.81028825e-01 -4.32032198e-01
-5.88824570e-01 -3.68016481e-01 -7.01768219e-01 6.49509668e-01
3.74273181e-01 -4.79122587e-02 1.22614729e+00 -1.60240197e+00
-9.62271690e-01 6.31058931e-01 -5.45262992e-01 5.67711234e-01
2.87395716e-01 1.81107551e-01 1.00942314e+00 -6.22192264e-01
5.62345147e-01 9.08506751e-01 1.11796689e+00 -1.06856683e-02
-1.01428628e+00 -6.15576327e-01 2.16155276e-01 3.53949424e-03
-1.78625071e+00 -1.47453491e-02 6.98308229e-01 -9.95685160e-01
1.08825374e+00 3.26626807e-01 9.66595292e-01 1.45862031e+00
2.89007276e-01 3.60959619e-01 5.92042744e-01 5.00776172e-01
3.84496711e-02 6.14630282e-02 2.07705781e-01 5.17887890e-01
5.95609844e-01 3.65108222e-01 2.24297136e-01 -6.58791184e-01
3.33541811e-01 9.92413163e-01 -2.90524036e-01 2.62419999e-01
-1.39913023e+00 1.21879458e+00 8.44915867e-01 4.99072373e-01
-8.37262690e-01 -2.01191992e-01 3.46069157e-01 1.50131043e-02
9.35106158e-01 6.55420125e-02 -4.94159728e-01 1.10138267e-01
-8.22375536e-01 -2.65310705e-02 4.70027238e-01 5.61357498e-01
7.45949030e-01 1.86618268e-02 -9.53208655e-02 4.78082091e-01
4.30647999e-01 1.01497614e+00 1.37464985e-01 -4.06852871e-01
4.26864177e-01 1.00436628e+00 2.13660370e-03 -1.95718503e+00
-9.91273522e-01 -1.85402513e-01 -1.57488692e+00 -5.33899307e-01
-1.24383673e-01 -5.57996869e-01 -3.69627416e-01 1.69649112e+00
4.63012904e-01 4.93639082e-01 4.60037664e-02 4.38363135e-01
8.96242142e-01 8.97023797e-01 1.13632150e-01 1.08336464e-01
1.24019241e+00 -4.04927433e-01 -5.72671175e-01 5.03726304e-01
8.19959402e-01 -1.51412457e-01 5.29022515e-01 -5.31917632e-01
-4.45439130e-01 -2.91561723e-01 -3.25684041e-01 7.32275486e-01
-9.44308579e-01 -4.55451339e-01 5.42972028e-01 3.86240155e-01
-1.18456066e+00 2.13259935e-01 -7.17243791e-01 -6.61500692e-01
3.90682817e-01 7.59397745e-02 -3.47790003e-01 -1.84224155e-02
-1.67872000e+00 3.59547406e-01 4.15441334e-01 8.54568109e-02
-7.47681618e-01 -1.07517803e+00 -9.97654617e-01 1.29220203e-01
-1.34026632e-01 -8.08196604e-01 1.45614028e-01 -1.81492686e-01
-5.00736058e-01 3.20730716e-01 -6.74663335e-02 -3.42736095e-02
-6.46388233e-02 5.18902063e-01 -1.23539805e+00 6.41889423e-02
4.64343041e-01 4.23734903e-01 5.15929878e-01 -1.13838840e+00
-7.08988845e-01 -3.19429219e-01 -1.66281506e-01 -2.73513645e-01
-7.19965756e-01 -1.77786797e-01 -5.76326102e-02 -7.43954778e-01
-2.78354675e-01 -8.62652361e-01 -4.25724775e-01 -6.54292226e-01
-6.92619264e-01 -3.15420300e-01 7.35721529e-01 -7.25654542e-01
1.68675148e+00 -2.13797498e+00 -8.39039013e-02 6.02018654e-01
9.74814534e-01 -8.92424136e-02 -3.98056328e-01 1.11127424e+00
1.66580863e-02 5.82051098e-01 -3.78374636e-01 -1.77041620e-01
6.77389205e-02 -4.31720503e-02 -3.15841019e-01 7.73746789e-01
3.84066105e-01 1.24093497e+00 -1.27113819e+00 -1.71597660e-01
2.97011673e-01 9.24909592e-01 -5.75255692e-01 5.82156479e-02
2.28491455e-01 4.79957551e-01 -7.58468151e-01 4.97706026e-01
7.44828403e-01 -3.39571148e-01 4.17700671e-02 6.03768639e-02
-1.85053304e-01 5.55448234e-02 -5.35473049e-01 6.43286884e-01
-2.19838947e-01 7.56730556e-01 -8.50469917e-02 -7.17353582e-01
8.83572936e-01 4.89636630e-01 1.11592865e+00 -3.34031224e-01
1.07387438e-01 -3.52091461e-01 -1.09183691e-01 -5.46779633e-01
4.95654821e-01 3.84947747e-01 -4.33726221e-01 1.06523681e+00
-6.78454220e-01 5.17758787e-01 -3.88249367e-01 3.53278577e-01
1.39737689e+00 -1.02657807e+00 1.61464810e-01 -3.84867489e-01
1.34575278e-01 3.17575604e-01 4.91801023e-01 2.45279223e-01
-4.59592670e-01 2.18880534e-01 5.32266617e-01 -8.64761353e-01
-8.93851757e-01 -1.38487852e+00 -2.17649311e-01 7.37629116e-01
-8.73255506e-02 -6.07542694e-01 -3.04578304e-01 -4.96044129e-01
1.66825071e-01 2.22920597e-01 -1.15258181e+00 -1.63189322e-01
-3.07818800e-01 -1.32289541e+00 9.69192445e-01 3.04355800e-01
2.64383078e-01 -1.00792599e+00 -5.33701144e-02 7.45223090e-02
-3.30835074e-01 -7.69796133e-01 -5.84990382e-01 -3.69134367e-01
-3.90487224e-01 -1.47768760e+00 -5.70333123e-01 -7.55244792e-01
8.75772417e-01 5.38914561e-01 9.67696309e-01 1.12179957e-01
-3.12465638e-01 7.23558664e-01 -4.07328516e-01 6.83443574e-03
-2.39606127e-01 3.91107768e-01 5.20709753e-01 9.30294618e-02
6.70949042e-01 -6.29806459e-01 -8.85952532e-01 1.64226443e-01
-8.31602514e-01 -3.29473943e-01 2.21171603e-01 4.19378847e-01
2.80777425e-01 6.64386630e-01 7.78434753e-01 -5.82612693e-01
1.04046440e+00 -1.78130841e+00 -2.00742871e-01 -7.95380622e-02
-5.76073170e-01 -4.47517812e-01 6.96363807e-01 -1.79632053e-01
-7.38608479e-01 -5.27743042e-01 7.69332498e-02 -2.05131061e-02
-3.78606707e-01 8.44480515e-01 2.36524582e-01 6.66723847e-01
4.25309539e-01 3.21612388e-01 -1.70504570e-01 -7.72032663e-02
4.67257142e-01 9.18353856e-01 -3.02179884e-02 -1.41071659e-02
1.13041568e+00 6.35263681e-01 -2.61833042e-01 -1.25854385e+00
-1.00089453e-01 -7.80697405e-01 -7.73364544e-01 -2.66860761e-02
1.37631571e+00 -1.03608596e+00 -8.98654699e-01 2.62289017e-01
-1.11882722e+00 -4.43598837e-01 -5.02060652e-02 5.30819952e-01
1.52393475e-01 2.04839826e-01 -9.05536771e-01 -6.49488270e-01
-3.21465760e-01 -8.85953009e-01 7.98077464e-01 -1.33506849e-01
-5.82007408e-01 -2.00713444e+00 8.59046996e-01 -1.21679511e-02
7.72141516e-01 8.94412994e-01 1.09778440e+00 -6.67005002e-01
-2.78940022e-01 -1.28119215e-02 -4.38565999e-01 -5.08386254e-01
8.75404835e-01 2.53075808e-01 -6.41753376e-01 -4.87831205e-01
-5.67082703e-01 4.48432833e-01 8.97607028e-01 5.96509635e-01
5.77833772e-01 -7.46887863e-01 -1.00210857e+00 8.67504656e-01
1.14014876e+00 1.49969712e-01 1.78593367e-01 2.50800937e-01
9.76902187e-01 9.94313717e-01 -8.05568770e-02 5.82156956e-01
1.04518211e+00 2.16319829e-01 5.20424783e-01 -3.59199077e-01
4.78043646e-01 -3.36024940e-01 4.31159467e-01 1.13689864e+00
-2.19123513e-01 -2.94307411e-01 -1.49912786e+00 1.01492953e+00
-1.46597993e+00 -1.63383985e+00 -4.60676104e-01 1.77828634e+00
2.95227855e-01 -3.39088708e-01 4.99444425e-01 -1.92739621e-01
8.42283249e-01 6.97252750e-01 -3.83197606e-01 -2.19491571e-01
-2.50363588e-01 -4.60399538e-01 4.93321329e-01 7.43359864e-01
-1.20227695e+00 5.86324155e-01 6.76861191e+00 3.08223873e-01
-9.09486890e-01 2.17069775e-01 6.31040752e-01 7.39805251e-02
-1.06839204e+00 -5.46478391e-01 -5.27537405e-01 5.64215720e-01
1.21565509e+00 -1.18970633e-01 4.46852773e-01 5.84903061e-01
5.05600750e-01 7.98801422e-01 -5.29671907e-01 6.16176665e-01
-1.19185805e-01 -1.56643343e+00 -3.98801565e-02 5.86833179e-01
1.16393995e+00 5.97201109e-01 3.37529451e-01 2.68488586e-01
7.34112799e-01 -1.24368322e+00 -1.98088631e-01 4.00214136e-01
8.60441685e-01 -1.04747689e+00 6.91698492e-01 3.22158724e-01
-1.88526738e+00 -2.11572975e-01 -2.11001471e-01 3.69420722e-02
3.92192036e-01 6.09806538e-01 -9.93062496e-01 5.09896278e-01
8.64489138e-01 1.35305142e+00 -4.07372922e-01 3.94328028e-01
1.39474109e-01 7.03585148e-01 -5.25668450e-02 2.17789248e-01
5.38648784e-01 -5.37387252e-01 6.14825726e-01 1.40924418e+00
3.19864243e-01 1.28644571e-01 8.21772814e-02 1.04236686e+00
6.76489919e-02 -2.49597251e-01 -1.47465718e+00 -1.45387620e-01
8.46382558e-01 1.17965555e+00 -7.74783552e-01 -9.87407714e-02
-3.25508624e-01 7.43266165e-01 2.15017378e-01 7.11549461e-01
-9.57882285e-01 -3.44281077e-01 1.38253975e+00 2.62342364e-01
2.16966912e-01 -4.90098774e-01 2.94823110e-01 -9.52484906e-01
-5.40482283e-01 -3.20551604e-01 3.20975602e-01 -5.72892539e-02
-1.77138937e+00 9.60450113e-01 9.33296755e-02 -1.13422239e+00
-1.88166633e-01 4.26801331e-02 -1.31822670e+00 8.27633023e-01
-1.57546568e+00 -1.19614089e+00 -2.99782187e-01 9.91003096e-01
-1.74510386e-02 -2.60206759e-01 1.00514138e+00 4.46692646e-01
-1.01465583e+00 4.71321285e-01 6.84989572e-01 6.38055742e-01
-1.71513297e-02 -9.32719409e-01 8.18919182e-01 4.55837160e-01
-1.30538195e-01 9.85463083e-01 -7.63754547e-02 -1.00180984e+00
-9.73967433e-01 -1.97930908e+00 1.29297316e+00 -6.29815340e-01
9.72623885e-01 -3.03154916e-01 -6.59806013e-01 9.70269561e-01
3.25895429e-01 -2.00323611e-01 1.27487040e+00 2.76675314e-01
-2.62929797e-01 1.37686685e-01 -1.20635700e+00 7.46716797e-01
1.02950251e+00 -7.73951948e-01 -4.56286222e-01 3.74686331e-01
1.19593775e+00 7.30553269e-01 -1.30926931e+00 1.12178132e-01
2.11739361e-01 -6.80635095e-01 1.19654489e+00 -6.68860078e-01
1.91020876e-01 -2.94707250e-02 -5.92170507e-02 -1.75217497e+00
-1.02343762e+00 -5.10583043e-01 -1.66896433e-02 1.15205967e+00
5.61694264e-01 -1.20761621e+00 5.22874534e-01 2.73296505e-01
-4.67606932e-02 -6.95529699e-01 -8.83133411e-01 -4.65023935e-01
2.45027781e-01 -4.70520347e-01 1.38119471e+00 1.52336907e+00
3.66544118e-03 1.29972370e-02 -1.31673589e-01 6.07091606e-01
5.18887103e-01 1.49605675e-02 4.55879241e-01 -1.54493427e+00
3.69673908e-01 -8.43132138e-01 -2.54914105e-01 -5.08973897e-01
3.15385431e-01 -1.14291608e+00 -5.73284566e-01 -1.62677801e+00
7.06223696e-02 -1.04339290e+00 -4.28304374e-01 2.70917803e-01
-1.50976837e-01 -5.78308254e-02 -2.23831564e-01 4.52626765e-01
-3.39575946e-01 8.90478849e-01 7.83336699e-01 -7.39690125e-01
-5.91544807e-01 -1.36054039e-01 -7.49331117e-01 6.00785792e-01
1.15462136e+00 -5.70340872e-01 -6.10626400e-01 -5.32365024e-01
5.21328449e-01 -1.28859237e-01 3.71419817e-01 -6.32024229e-01
1.32095650e-01 -3.07494789e-01 2.08327949e-01 -8.39886844e-01
1.88231438e-01 -1.14344883e+00 4.76039201e-01 7.86902785e-01
2.33703684e-02 7.87823915e-01 7.00870380e-02 8.66355300e-01
-4.83019389e-02 7.73442924e-01 -2.47307479e-01 3.00071567e-01
-3.87608826e-01 1.01356149e+00 -1.02465403e+00 3.17251384e-01
1.45315313e+00 -2.99507290e-01 -5.89849532e-01 -2.88575679e-01
-5.61204374e-01 5.01622140e-01 5.41636407e-01 4.71941322e-01
8.24477851e-01 -1.72210932e+00 -9.71048176e-01 4.76386458e-01
1.70689240e-01 -1.05732523e-01 6.14873946e-01 1.00893593e+00
-4.72416461e-01 7.09921896e-01 -1.88885674e-01 -4.74394679e-01
-7.24248886e-01 8.81639183e-01 7.61458948e-02 -2.99201369e-01
-6.73397541e-01 2.90311724e-01 8.39382559e-02 -9.73933995e-01
-1.74967483e-01 -4.77032751e-01 -6.95207834e-01 5.86337686e-01
5.66647589e-01 7.66915202e-01 -6.27503872e-01 -1.22770452e+00
-6.61503494e-01 7.71888494e-01 4.71586883e-01 2.47117341e-01
1.59674072e+00 -3.02822828e-01 -2.25265682e-01 4.39347595e-01
1.58070886e+00 8.81720707e-02 -7.66801834e-01 -3.92340124e-02
-1.46904543e-01 -7.66323507e-02 -1.13667078e-01 -2.62798905e-01
-1.28067899e+00 6.05418146e-01 2.01440319e-01 8.68426681e-01
9.29497123e-01 8.09297413e-02 1.24503553e+00 9.12692994e-02
2.27554709e-01 -4.34215844e-01 -3.10017675e-01 4.78212118e-01
4.91483629e-01 -1.50864124e+00 -3.63167703e-01 -5.26405610e-02
-4.99532849e-01 6.79331362e-01 1.79631427e-01 -7.35167414e-02
1.62818146e+00 -8.69632699e-03 -7.83883259e-02 -7.73648143e-01
-5.77116072e-01 -1.54000610e-01 3.00580233e-01 1.09958923e+00
1.78897306e-01 7.73653209e-01 2.51845777e-01 7.34539866e-01
-1.69795737e-01 -6.47807539e-01 1.67101458e-01 4.40918267e-01
-2.11363494e-01 -7.37600207e-01 -3.90271068e-01 5.95908523e-01
-9.17993784e-02 -4.57585603e-01 -3.29639912e-01 9.40248311e-01
3.49318415e-01 1.20403135e+00 6.13973141e-01 -1.01624167e+00
-2.40478311e-02 -4.17466402e-01 -6.87332749e-01 -4.10421610e-01
-7.45166957e-01 -7.64863849e-01 -3.57003421e-01 -3.94946337e-01
-1.60007462e-01 -5.08911133e-01 -1.16938853e+00 -1.14923728e+00
2.90740192e-01 1.84215173e-01 1.22117393e-01 5.41475356e-01
9.39868629e-01 4.18632060e-01 1.16917086e+00 -7.86901951e-01
2.52694190e-01 -8.18634331e-01 -6.80011749e-01 5.23222744e-01
8.05863678e-01 -4.79532033e-01 -6.16073310e-01 -5.23421407e-01]
|
[6.588459491729736, 2.3084113597869873]
|
99883a6d-4beb-4a2b-b947-db848e65ceb0
|
a-robust-completed-local-binary-pattern-rclbp
|
2112.04021
| null |
https://arxiv.org/abs/2112.04021v1
|
https://arxiv.org/pdf/2112.04021v1.pdf
|
A Robust Completed Local Binary Pattern (RCLBP) for Surface Defect Detection
|
In this paper, we present a Robust Completed Local Binary Pattern (RCLBP) framework for a surface defect detection task. Our approach uses a combination of Non-Local (NL) means filter with wavelet thresholding and Completed Local Binary Pattern (CLBP) to extract robust features which are fed into classifiers for surface defects detection. This paper combines three components: A denoising technique based on Non-Local (NL) means filter with wavelet thresholding is established to denoise the noisy image while preserving the textures and edges. Second, discriminative features are extracted using the CLBP technique. Finally, the discriminative features are fed into the classifiers to build the detection model and evaluate the performance of the proposed framework. The performance of the defect detection models are evaluated using a real-world steel surface defect database from Northeastern University (NEU). Experimental results demonstrate that the proposed approach RCLBP is noise robust and can be applied for surface defect detection under varying conditions of intra-class and inter-class changes and with illumination changes.
|
['Daniel Opoku', 'Abdollah Homaifar', 'Shamila Nateghi', 'Mahmoud Nabil Mahmoud', 'Abenezer Girma', 'Nana Kankam Gyimah']
|
2021-12-07
| null | null | null | null |
['defect-detection']
|
['computer-vision']
|
[ 5.25019228e-01 -6.30297124e-01 4.88061160e-01 -2.70810425e-01
-8.71046484e-01 9.11755860e-02 2.35506132e-01 3.80873770e-01
-2.39544630e-01 2.90818840e-01 -9.65611115e-02 1.28926471e-01
-3.59316409e-01 -1.01263142e+00 -2.32778922e-01 -1.12156308e+00
1.90127507e-01 -1.79434329e-01 9.21820462e-01 -2.59653360e-01
7.60432959e-01 9.14057016e-01 -2.08302236e+00 6.55105412e-01
6.29550874e-01 1.36529994e+00 5.08801639e-01 7.81148255e-01
1.84502870e-01 5.79805136e-01 -6.80409729e-01 5.88827193e-01
2.80147403e-01 -1.52416244e-01 -5.16413808e-01 5.55089474e-01
9.76045579e-02 -8.94943401e-02 2.16113165e-01 1.09496474e+00
7.46008098e-01 2.09261760e-01 7.84854054e-01 -5.71203113e-01
-1.20931961e-01 -2.39270672e-01 -6.50900126e-01 6.35531247e-01
3.55613410e-01 -1.32384629e-03 4.42445040e-01 -1.15734959e+00
5.26784122e-01 1.36006439e+00 8.71982217e-01 -1.04790762e-01
-9.79220688e-01 -3.83320183e-01 -5.61054051e-01 5.51024795e-01
-1.18811512e+00 -3.89009953e-01 1.07038021e+00 -4.72176284e-01
8.67054522e-01 4.00675833e-01 3.68103325e-01 2.72114158e-01
7.03086257e-01 3.18590432e-01 1.53158057e+00 -1.04260790e+00
3.69157374e-01 -3.27647269e-01 3.81334692e-01 9.12661374e-01
1.70969024e-01 5.94258904e-02 -4.06863779e-01 -2.36866668e-01
7.80245304e-01 4.19596098e-02 -2.10783049e-01 4.87905592e-02
-6.44603550e-01 7.44965553e-01 1.14597313e-01 8.67099226e-01
-7.18538344e-01 -2.27592960e-01 5.14014781e-01 6.31902516e-01
5.71403325e-01 -1.22794293e-01 -2.49804720e-01 1.90516338e-01
-9.23985422e-01 -9.75469500e-02 5.77191651e-01 2.03418434e-01
7.75539041e-01 -5.01079671e-02 -2.01476336e-01 1.39564288e+00
5.80633581e-01 5.30561626e-01 5.97530901e-01 -7.44899988e-01
-4.45778705e-02 4.20995861e-01 -6.28449069e-03 -1.49244571e+00
-1.59564778e-01 7.30543733e-02 -5.92076719e-01 7.26863801e-01
4.62959409e-02 3.46118629e-01 -1.16840231e+00 7.02857077e-01
5.27266264e-01 -5.58702350e-02 -2.18405928e-02 4.72604424e-01
7.08606899e-01 7.91799664e-01 -2.46291295e-01 -2.40341827e-01
1.33440030e+00 -6.34885430e-01 -7.93537736e-01 9.91939455e-02
2.64561683e-01 -1.22785068e+00 7.17510581e-01 7.40453839e-01
-7.64397442e-01 -7.48369694e-01 -1.20686042e+00 2.26473525e-01
-1.22382209e-01 5.05307913e-01 -1.93626676e-02 6.29717886e-01
-9.87509727e-01 5.79108000e-01 -1.19261420e+00 -5.03838241e-01
1.23212986e-01 2.78336287e-01 -5.38209081e-01 -5.35751283e-01
-5.07305741e-01 6.93473995e-01 1.42947853e-01 4.04763162e-01
-7.55103469e-01 -1.95430424e-02 -9.88874376e-01 -2.34677911e-01
-1.03058495e-01 8.19063410e-02 7.29002237e-01 -7.41901934e-01
-1.51122475e+00 9.73289728e-01 -1.74789354e-01 1.11263596e-01
2.17465267e-01 2.61854939e-02 -4.57139492e-01 5.32703519e-01
3.23694259e-01 -2.91817844e-01 1.03616321e+00 -1.36226952e+00
-1.02348447e+00 -4.76902187e-01 -7.08173990e-01 -1.10301748e-01
3.44589613e-02 3.78562897e-01 -3.02437961e-01 -8.13955724e-01
1.14723730e+00 -3.75880629e-01 8.91333595e-02 -1.39464542e-01
-1.24657258e-01 -5.05471528e-01 1.34788644e+00 -1.20116973e+00
1.03268242e+00 -2.49375820e+00 -3.92286032e-01 7.93818533e-01
-3.24136764e-01 2.03690395e-01 -1.77941862e-02 5.22024632e-01
-2.83960223e-01 -3.40608418e-01 -4.95840400e-01 -1.93184271e-01
-4.51673239e-01 2.92066127e-01 4.25561279e-01 8.52406204e-01
1.21115120e-02 -5.60470670e-02 -3.59866321e-01 -5.86436749e-01
4.56283540e-01 3.22939694e-01 9.11421049e-03 5.59627600e-02
6.62361443e-01 1.68977469e-01 -3.32991213e-01 1.04544246e+00
9.96897697e-01 7.66997218e-01 -3.32322747e-01 -4.61381674e-01
-2.26760268e-01 -2.98120737e-01 -1.55086446e+00 9.86257493e-01
-4.38197315e-01 2.82494813e-01 7.67211735e-01 -1.35697711e+00
1.56694329e+00 2.53363520e-01 3.31383437e-01 -4.53846514e-01
2.17282504e-01 5.91519535e-01 -4.49028879e-01 -1.07906413e+00
-5.12289070e-02 -3.90698940e-01 4.13606673e-01 -1.57782972e-01
-7.63187790e-03 -2.96059966e-01 2.95825839e-01 -4.77577358e-01
1.43238163e+00 -2.12591290e-01 2.62049884e-01 -5.34513712e-01
1.04893482e+00 -1.62350059e-01 7.64200270e-01 6.23463333e-01
-3.65915149e-01 6.78182483e-01 5.84425963e-02 -2.42007107e-01
-7.97684371e-01 -7.97543108e-01 -4.02398884e-01 6.48756564e-01
1.23499066e-01 2.76589304e-01 -5.03941059e-01 -4.28672880e-01
3.24114389e-03 2.42097631e-01 -5.00011146e-01 -9.05190483e-02
-5.89626014e-01 -8.23597610e-01 3.04126926e-02 3.02856117e-01
6.76118016e-01 -1.26726663e+00 -5.43350458e-01 3.19724768e-01
2.78453194e-02 -7.01146364e-01 1.18001772e-03 1.92137480e-01
-1.07712710e+00 -1.17435789e+00 -5.46216488e-01 -1.45898736e+00
8.31087589e-01 2.88882732e-01 4.87860948e-01 5.20986974e-01
-7.37423420e-01 5.21218002e-01 -7.30673254e-01 -1.05204642e-01
-6.48819745e-01 -8.01101923e-01 -3.83938164e-01 4.31016356e-01
3.79146546e-01 -4.49395567e-01 -5.78685820e-01 4.27410960e-01
-1.07699478e+00 -6.17369533e-01 7.96549499e-01 1.07578504e+00
7.43807614e-01 1.04373169e+00 4.51783210e-01 -6.71966612e-01
7.11929023e-01 -2.35400766e-01 -3.78820002e-01 1.19165890e-01
-3.90352070e-01 -3.64833683e-01 1.22684084e-01 -2.43981872e-02
-1.43488073e+00 -1.51938319e-01 -3.88473392e-01 1.49877638e-01
-5.22139311e-01 6.22666359e-01 -1.32336274e-01 -4.67732668e-01
6.69363141e-01 2.83249676e-01 2.56908119e-01 -7.91567981e-01
-5.31498611e-01 1.25368714e+00 7.21349180e-01 -5.69491148e-01
6.96212947e-01 8.33246291e-01 4.27949578e-02 -1.23443758e+00
-2.62473732e-01 -1.13752091e+00 -6.94847286e-01 -2.85851896e-01
8.58959138e-01 -6.74661398e-01 -1.60330102e-01 1.32245517e+00
-8.02838027e-01 1.60458550e-01 -1.14162818e-01 3.82015854e-01
-2.93683231e-01 9.32747185e-01 -9.43411708e-01 -1.09678185e+00
-3.44522595e-01 -1.15101504e+00 1.02714813e+00 5.60751520e-02
3.44298601e-01 -7.33580172e-01 -1.81771412e-01 5.59228063e-01
4.73458976e-01 5.10328650e-01 9.01051223e-01 -1.65549934e-01
1.63353570e-02 -7.38398015e-01 1.76707900e-03 1.10366654e+00
5.51293135e-01 1.61848783e-01 -5.88125706e-01 -4.05687571e-01
7.59644508e-01 -8.48632678e-02 9.75916982e-01 4.31091070e-01
7.52083421e-01 1.12883158e-01 -2.04789117e-01 1.67638436e-01
1.86930251e+00 4.30315435e-01 8.55387986e-01 6.19198143e-01
2.96028256e-01 6.29676640e-01 9.82840002e-01 4.82919663e-01
-8.70719627e-02 2.02349380e-01 1.86551556e-01 -2.16376737e-01
-3.96770865e-01 3.49756628e-01 3.30993116e-01 1.05314910e+00
-1.72988892e-01 1.84160843e-01 -8.28908205e-01 8.87998700e-01
-1.39256227e+00 -7.70675182e-01 -3.89574766e-01 1.77248335e+00
6.01752698e-01 1.57279730e-01 -4.65474367e-01 1.08332407e+00
1.17823160e+00 -2.78706074e-01 7.25977197e-02 -4.34697241e-01
-3.20163697e-01 8.12034905e-01 4.11933601e-01 3.53217244e-01
-1.22283220e+00 4.49725211e-01 5.20892286e+00 1.33703315e+00
-1.12084019e+00 2.71458149e-01 4.70040828e-01 9.19251978e-01
3.18833441e-01 -1.82952866e-01 -2.34656096e-01 2.74667770e-01
2.24021539e-01 7.41162837e-01 -1.40739426e-01 6.34727776e-01
4.38504457e-01 -8.33392262e-01 -3.53375077e-01 1.01140225e+00
1.05662890e-01 -7.35876620e-01 -2.88044304e-01 -2.77011573e-01
6.45147979e-01 -2.53317982e-01 -2.26296157e-01 -1.26491114e-01
-1.39719322e-01 -6.14026368e-01 5.83633244e-01 6.86130166e-01
5.20932615e-01 -7.79133081e-01 1.23616636e+00 2.30263755e-01
-1.11677217e+00 -4.00630206e-01 -5.79539955e-01 1.89912394e-02
-5.94828539e-02 8.83365393e-01 -4.82923776e-01 5.64848661e-01
1.16455007e+00 4.94290680e-01 -3.57196212e-01 1.36068964e+00
-1.72689050e-01 8.67891788e-01 -5.70615172e-01 3.83746207e-01
2.59073712e-02 -2.24520892e-01 5.16169310e-01 1.06711340e+00
5.49883842e-01 1.63695872e-01 2.98225254e-01 3.59102279e-01
5.20484746e-01 4.37793553e-01 -1.90584376e-01 5.44497490e-01
3.36188257e-01 1.05295026e+00 -1.14097762e+00 -1.44863769e-01
-3.06669146e-01 8.04521143e-01 -2.81367719e-01 1.32314175e-01
3.27792345e-03 -7.82570064e-01 -4.77897227e-02 2.16020290e-02
6.39253378e-01 -1.61060289e-01 -3.66727561e-01 -5.95104158e-01
9.80658606e-02 -8.70051682e-01 5.68985820e-01 -6.63024724e-01
-1.46849859e+00 1.73673704e-01 -1.19380631e-01 -9.75776851e-01
6.47566676e-01 -7.12615907e-01 -8.94768536e-01 8.18396270e-01
-1.39217710e+00 -1.28599918e+00 -4.72116441e-01 4.90439773e-01
8.47837269e-01 -1.21491835e-01 3.65835905e-01 1.96826845e-01
-5.89544415e-01 6.62435293e-02 4.65962350e-01 3.62297483e-02
4.75958288e-01 -9.29111779e-01 -3.66700560e-01 1.31136143e+00
-5.16150057e-01 1.21424004e-01 8.40372562e-01 -1.00121999e+00
-9.39016104e-01 -6.55967891e-01 5.70917964e-01 1.97875187e-01
2.09046528e-01 8.78166333e-02 -9.41351295e-01 9.20654386e-02
-9.04323906e-02 2.74929971e-01 3.31257850e-01 -6.65429831e-01
9.54060853e-02 -2.51892984e-01 -1.87781537e+00 -1.79126024e-01
2.54535675e-01 -2.87322402e-01 -7.26960003e-01 2.24810764e-01
-1.47843048e-01 -1.60498530e-01 -1.08363116e+00 7.78872967e-01
3.63742352e-01 -1.02153814e+00 8.63816500e-01 3.10577154e-01
1.03090897e-01 -6.86523795e-01 -4.97731328e-01 -8.75876009e-01
-3.73703152e-01 -1.42082095e-01 6.97358549e-01 1.21651387e+00
-2.33685449e-02 -6.59615397e-01 4.53657299e-01 -3.14252339e-02
-4.61662203e-01 -6.15586817e-01 -1.14227188e+00 -5.52082062e-01
-4.13041741e-01 -3.66457075e-01 -5.29884435e-02 6.29932463e-01
-2.68985420e-01 -3.40079814e-01 3.27809826e-02 5.16891003e-01
6.41560256e-01 -2.25394160e-01 2.70880371e-01 -1.19811738e+00
-1.01969108e-01 -3.44300829e-02 -1.11114502e+00 -4.95078474e-01
-1.67023271e-01 -4.69040751e-01 5.67667663e-01 -1.61387277e+00
-9.28161070e-02 -4.49240208e-01 -4.67207551e-01 3.61583292e-01
-1.02926537e-01 5.76919496e-01 -3.65447700e-01 3.34888220e-01
2.75542717e-02 3.54672492e-01 9.69033778e-01 -1.68401942e-01
-1.55744879e-02 1.52433410e-01 -7.02341646e-02 7.13943541e-01
5.77087164e-01 -5.14159024e-01 1.81476429e-01 3.02604260e-03
-4.38190132e-01 -5.30893840e-02 2.48354107e-01 -1.40720665e+00
1.51158184e-01 8.97472575e-02 3.61606359e-01 -7.40386784e-01
8.17133039e-02 -8.77674937e-01 -1.72578171e-01 8.01783025e-01
2.74308532e-01 -2.36045748e-01 -7.20042735e-02 6.67517543e-01
-7.14474797e-01 -6.69026971e-01 1.33488107e+00 -1.03862800e-01
-9.01214898e-01 -3.77149105e-01 -5.25786281e-01 -8.23730469e-01
1.23095214e+00 -8.35175097e-01 -8.35815221e-02 9.48749036e-02
-1.03569496e+00 -2.24097520e-01 3.57745111e-01 -1.15681589e-01
9.94867742e-01 -1.06667912e+00 -8.37519705e-01 5.88780940e-01
1.14801303e-01 -1.40879124e-01 5.34438729e-01 1.08676898e+00
-1.38043559e+00 -2.00813338e-01 -3.30149531e-01 -7.73766041e-01
-1.63008583e+00 1.70646369e-01 2.64077008e-01 -2.27486901e-02
-6.35562062e-01 1.02348840e+00 -3.31719786e-01 -2.27128088e-01
-1.23351030e-01 -5.00941873e-01 -5.36881745e-01 -1.55798376e-01
2.99504161e-01 8.86704087e-01 6.99115098e-01 -9.55501616e-01
-2.01993600e-01 1.00739264e+00 2.06886202e-01 1.04737036e-01
1.65272558e+00 -2.69037515e-01 -8.40424657e-01 2.85772890e-01
1.14576566e+00 2.24064231e-01 -9.20475781e-01 -1.76158711e-01
2.34407082e-01 -6.26951039e-01 4.15679395e-01 -5.84057689e-01
-1.14214396e+00 5.63827872e-01 1.29635739e+00 1.98287845e-01
1.64683950e+00 -2.39464879e-01 8.25961828e-01 2.32473880e-01
3.01940799e-01 -1.41758668e+00 1.02165595e-01 1.66032121e-01
1.01590788e+00 -9.63388085e-01 1.37509964e-03 -7.72594094e-01
-5.42955771e-02 1.36483371e+00 2.45246306e-01 -5.73104620e-01
1.12390435e+00 3.25662643e-01 3.84278387e-01 -4.00124192e-01
-1.35322779e-01 -1.38659284e-01 4.74889614e-02 6.71119511e-01
1.53152868e-02 -2.73505181e-01 -8.63582611e-01 1.79068431e-01
3.29313874e-01 -1.60053372e-01 4.59296405e-01 1.70418680e+00
-1.23364031e+00 -9.34149802e-01 -1.14520919e+00 5.73862791e-01
-8.06891203e-01 4.49777782e-01 3.01539570e-01 4.20401335e-01
6.07173443e-01 1.59001791e+00 -1.76599622e-01 -2.59835154e-01
4.60764408e-01 -9.66705531e-02 2.12636650e-01 -6.10575199e-01
-4.75320429e-01 3.98200154e-01 1.63456257e-02 -4.77379739e-01
-7.29413509e-01 -7.89252937e-01 -1.08243978e+00 2.73766607e-01
-7.09896743e-01 9.58403498e-02 9.00140345e-01 1.01158452e+00
-1.80334464e-01 3.71742368e-01 7.76707351e-01 -9.15918887e-01
-5.16296029e-01 -1.30128360e+00 -1.17273760e+00 7.13061154e-01
3.31320554e-01 -9.59164798e-01 -7.62714863e-01 2.76320994e-01]
|
[7.497071266174316, 1.6320879459381104]
|
4241b691-cf84-46aa-b8eb-d7ca8b5a9c8c
|
learning-how-to-robustly-estimate-camera-pose
|
2304.08023
| null |
https://arxiv.org/abs/2304.08023v1
|
https://arxiv.org/pdf/2304.08023v1.pdf
|
Learning How To Robustly Estimate Camera Pose in Endoscopic Videos
|
Purpose: Surgical scene understanding plays a critical role in the technology stack of tomorrow's intervention-assisting systems in endoscopic surgeries. For this, tracking the endoscope pose is a key component, but remains challenging due to illumination conditions, deforming tissues and the breathing motion of organs. Method: We propose a solution for stereo endoscopes that estimates depth and optical flow to minimize two geometric losses for camera pose estimation. Most importantly, we introduce two learned adaptive per-pixel weight mappings that balance contributions according to the input image content. To do so, we train a Deep Declarative Network to take advantage of the expressiveness of deep-learning and the robustness of a novel geometric-based optimization approach. We validate our approach on the publicly available SCARED dataset and introduce a new in-vivo dataset, StereoMIS, which includes a wider spectrum of typically observed surgical settings. Results: Our method outperforms state-of-the-art methods on average and more importantly, in difficult scenarios where tissue deformations and breathing motion are visible. We observed that our proposed weight mappings attenuate the contribution of pixels on ambiguous regions of the images, such as deforming tissues. Conclusion: We demonstrate the effectiveness of our solution to robustly estimate the camera pose in challenging endoscopic surgical scenes. Our contributions can be used to improve related tasks like simultaneous localization and mapping (SLAM) or 3D reconstruction, therefore advancing surgical scene understanding in minimally-invasive surgery.
|
['Raphael Sznitman', 'Maximilian Allan', 'Thomas Kurmann', 'Daniel Candinas', 'Mathias Gallardo', 'Christopher Hahne', 'Michel Hayoz']
|
2023-04-17
| null | null | null | null |
['simultaneous-localization-and-mapping', '3d-reconstruction']
|
['computer-vision', 'computer-vision']
|
[ 1.58318996e-01 3.41148257e-01 -4.04159911e-02 2.57272199e-02
-8.10439348e-01 -1.06755900e+00 6.54836446e-02 3.77486722e-04
-6.07041180e-01 2.58722067e-01 3.18036109e-01 -3.48989397e-01
-1.97667792e-01 -1.91629410e-01 -9.17231023e-01 -7.71744251e-01
1.61811598e-02 8.45963880e-02 7.73201734e-02 -2.00663283e-01
1.15871996e-01 6.79253101e-01 -1.10792804e+00 5.75980023e-02
6.88519359e-01 9.57959235e-01 4.35725838e-01 6.66122854e-01
3.63561809e-01 3.21870625e-01 1.00287996e-01 -6.07562624e-02
6.90011859e-01 -1.19253270e-01 -6.05975568e-01 -6.37004226e-02
6.33174777e-01 -4.19458210e-01 -3.60525399e-01 1.12058282e+00
6.44618690e-01 6.14990033e-02 1.15183711e-01 -4.38943833e-01
1.79321080e-01 2.56528795e-01 -4.27271783e-01 2.12490140e-03
1.28773049e-01 3.60544711e-01 4.11816657e-01 -7.25125134e-01
1.00105572e+00 6.29484832e-01 1.01381266e+00 6.66994214e-01
-1.12774789e+00 -3.56688499e-01 1.75601095e-01 -3.01775038e-01
-9.26051140e-01 -2.76537001e-01 6.19760156e-01 -7.63695478e-01
6.98288143e-01 2.55540133e-01 9.98719633e-01 8.67303312e-01
7.65424073e-01 5.49354017e-01 9.08758163e-01 -3.00610989e-01
-9.71172974e-02 2.56668299e-01 -4.36286360e-01 1.28956246e+00
2.68562496e-01 4.77731615e-01 -4.27535325e-01 1.84371974e-02
1.15988410e+00 2.57108688e-01 -8.51805151e-01 -1.02474880e+00
-1.58787239e+00 4.33394521e-01 6.73324943e-01 1.90072313e-01
-4.77691025e-01 3.70873988e-01 1.88555047e-01 -1.87276723e-03
3.52711268e-02 8.14098418e-01 -3.96693498e-01 -2.16111064e-01
-5.62484503e-01 -3.03099006e-01 7.98918605e-01 8.84587586e-01
3.49934936e-01 -4.75460291e-01 -5.87925166e-02 3.51087749e-01
2.18880400e-01 1.34239299e-02 5.47158420e-01 -1.12305665e+00
3.53698492e-01 5.64098895e-01 2.44832337e-01 -6.86386406e-01
-9.31282043e-01 -7.74410605e-01 -5.61460018e-01 4.67459172e-01
4.80941355e-01 -2.28384823e-01 -9.28426325e-01 1.65181851e+00
5.18603384e-01 5.72286807e-02 -1.86211601e-01 1.25197423e+00
7.82140493e-01 -1.13605581e-01 -2.16690689e-01 -1.70992743e-02
1.36366796e+00 -1.02871847e+00 -4.43625420e-01 -5.79025507e-01
8.18453133e-01 -7.81657279e-01 1.04239893e+00 4.27703798e-01
-1.17375255e+00 -1.30998254e-01 -8.94193232e-01 -1.31947085e-01
-6.09485060e-02 3.59651864e-01 7.37536848e-01 6.65326595e-01
-1.01996231e+00 6.70456171e-01 -1.35133600e+00 -3.30889791e-01
3.44622076e-01 8.45554888e-01 -5.81422448e-01 -4.96138856e-02
-5.24571419e-01 1.07435691e+00 9.71116032e-03 4.22788471e-01
-8.21159720e-01 -1.13580573e+00 -1.05160844e+00 -6.97243661e-02
4.60436553e-01 -1.13334060e+00 1.11478853e+00 -6.28948510e-01
-1.60461259e+00 1.29640639e+00 1.45039693e-01 -2.33090460e-01
9.30225313e-01 -3.27202559e-01 2.54544228e-01 3.10454041e-01
-4.43882883e-01 5.28164744e-01 5.02444506e-01 -1.15075147e+00
-2.32930332e-01 -5.78699052e-01 4.02953982e-01 3.67877662e-01
-4.41484749e-01 -3.95831198e-01 -5.97019196e-01 -5.50776482e-01
2.70846158e-01 -1.37128425e+00 -6.67225301e-01 9.94214535e-01
-3.32725048e-01 8.02529514e-01 3.10404539e-01 -6.30589366e-01
9.55657423e-01 -2.29387522e+00 4.52092588e-01 4.23564278e-02
3.35363507e-01 6.74405135e-03 7.01410845e-02 9.22820196e-02
5.54590067e-03 -1.96288422e-01 -3.81569266e-02 -4.13108230e-01
-2.61973798e-01 1.48416702e-02 1.28478721e-01 9.64668870e-01
-3.43340248e-01 9.55559433e-01 -9.14618254e-01 -5.48038900e-01
6.51543438e-01 6.60633743e-01 -8.49134862e-01 2.47758225e-01
2.29334123e-02 1.13985562e+00 -2.58559048e-01 7.04939187e-01
5.74946404e-01 -1.76973537e-01 2.37490594e-01 -8.46486509e-01
-2.70864367e-01 9.43254854e-04 -8.03602397e-01 2.64393187e+00
-1.00690436e+00 3.34404498e-01 6.89183831e-01 -5.25127888e-01
3.62144351e-01 2.98721701e-01 8.77628863e-01 -5.23253143e-01
4.83574480e-01 4.82080907e-01 -1.08454963e-02 -6.37648523e-01
1.49614170e-01 -3.30131054e-01 1.19257413e-01 -6.24167882e-02
1.04985118e-01 -6.24899924e-01 -4.28925365e-01 -1.58578545e-01
1.04577875e+00 2.35171393e-01 3.74612480e-01 -5.56079984e-01
3.09037209e-01 1.51520491e-01 3.20644617e-01 5.43449879e-01
-3.19784611e-01 7.66812921e-01 4.32758093e-01 -6.47237837e-01
-7.34209418e-01 -1.06887949e+00 -1.12149656e-01 4.70305771e-01
5.93750000e-01 4.71138358e-02 -6.69194221e-01 -8.61032844e-01
-1.36815961e-02 1.69309497e-01 -9.00866985e-01 -3.45968455e-01
-6.62616193e-01 -5.80400169e-01 -6.90408722e-02 3.39915931e-01
-2.44398341e-01 -6.28545403e-01 -1.01524019e+00 2.24796385e-01
-1.06604859e-01 -1.47188854e+00 -6.68542981e-01 3.82315725e-01
-1.05886042e+00 -1.28961825e+00 -6.90242589e-01 -9.06399548e-01
1.00032544e+00 2.41461605e-01 9.61998761e-01 -1.31367937e-01
-8.86596978e-01 6.53860152e-01 7.80956671e-02 -4.19663370e-01
-3.39196205e-01 6.61056340e-02 -2.44542241e-01 -3.01730990e-01
-4.09971625e-01 -4.36572015e-01 -1.28001559e+00 3.95357639e-01
-8.43824029e-01 2.06330240e-01 6.40211403e-01 7.86293447e-01
6.22898400e-01 -4.91098583e-01 -3.83714408e-01 -8.85426819e-01
1.25985786e-01 -1.19749315e-01 -9.69866574e-01 6.31953701e-02
-3.39012861e-01 1.42182745e-02 6.04862750e-01 -3.98368746e-01
-8.42368126e-01 6.49010658e-01 -1.03439413e-01 -4.73811626e-01
1.94538772e-01 2.40217432e-01 4.10619974e-01 -7.09359407e-01
6.98746741e-01 -2.26665899e-01 4.39876318e-01 -1.36553096e-02
5.32143787e-02 -2.84060184e-02 6.84957683e-01 -3.29579771e-01
6.23325944e-01 1.11106896e+00 3.73788178e-01 -4.68200356e-01
-8.26240420e-01 -7.66182125e-01 -6.70860291e-01 -4.06412721e-01
9.03951585e-01 -9.37667906e-01 -9.42378998e-01 1.50696337e-01
-1.12886000e+00 -4.67676669e-01 -3.78995121e-01 1.07501495e+00
-6.68527484e-01 1.96305409e-01 -6.80104792e-01 -2.59231776e-01
-4.54441071e-01 -1.73852217e+00 1.37546372e+00 9.23139080e-02
-7.58772045e-02 -1.52342415e+00 1.96630865e-01 2.44753465e-01
5.14473498e-01 7.31391430e-01 6.60888910e-01 -2.90650800e-02
-9.43912625e-01 -3.01023215e-01 1.09855413e-01 6.21062219e-02
2.31237605e-01 -2.34643370e-01 -1.00186527e+00 -6.49872899e-01
9.84596014e-02 -5.44031560e-02 8.14384103e-01 8.05389166e-01
1.29915738e+00 5.61157949e-02 -4.06267434e-01 1.47067249e+00
1.61313486e+00 -3.39340329e-01 3.93069386e-01 3.97451788e-01
6.88011587e-01 7.41654336e-01 6.65509582e-01 2.81422049e-01
2.20927194e-01 7.78651178e-01 1.04698336e+00 -6.06550038e-01
-1.85077325e-01 6.81954473e-02 1.57580212e-01 5.82540751e-01
-8.74601305e-02 1.29077345e-01 -6.98182642e-01 4.22609746e-01
-1.56546712e+00 -3.82781297e-01 1.65428191e-01 2.48960686e+00
6.56369328e-01 -1.50500581e-01 -4.76423889e-01 -5.64805508e-01
2.01821238e-01 -5.22178784e-03 -7.28453040e-01 7.02221841e-02
3.07369977e-01 9.00981501e-02 1.07203400e+00 6.34376049e-01
-1.06281042e+00 4.67377067e-01 5.62934303e+00 2.02786162e-01
-1.52390003e+00 1.54565856e-01 1.41279936e-01 -4.83636022e-01
-4.35582370e-01 -3.52435917e-01 -4.07769889e-01 9.21388790e-02
2.23311976e-01 2.46858120e-01 2.48048514e-01 6.72684550e-01
3.39334786e-01 -1.20827094e-01 -1.26951098e+00 1.12876451e+00
2.93862462e-01 -1.57421196e+00 -4.59926188e-01 3.48437428e-01
7.37842858e-01 2.63337910e-01 2.24861428e-01 -2.08654732e-01
-1.02614267e-02 -8.96589458e-01 4.77619201e-01 5.03346682e-01
8.36732447e-01 -1.38180986e-01 7.23022699e-01 1.65138751e-01
-7.69529700e-01 -2.47640952e-01 -4.90223430e-03 6.29073918e-01
2.68057376e-01 5.58632016e-01 -1.02183008e+00 2.44402379e-01
6.05602443e-01 6.43600345e-01 -1.81463584e-01 1.31189907e+00
3.51447128e-02 -2.36887425e-01 -3.28023374e-01 3.48486096e-01
2.19349861e-01 2.14671507e-03 6.38090968e-01 1.09764922e+00
5.11931658e-01 1.42118465e-02 -9.92418379e-02 7.11290002e-01
-1.99270621e-01 -1.01293691e-01 -4.48739022e-01 3.61843944e-01
-9.42515284e-02 1.56541729e+00 -7.00341761e-01 2.82791883e-01
-3.53793621e-01 1.06580746e+00 1.68890152e-02 1.22076109e-01
-7.86169171e-01 1.55130804e-01 7.08941936e-01 3.68902445e-01
1.02064349e-01 -3.23773861e-01 -1.76117793e-01 -1.29017901e+00
2.57775515e-01 -4.73456949e-01 2.48303533e-01 -6.97952747e-01
-5.95295846e-01 4.89712417e-01 -4.84504670e-01 -1.63441014e+00
-4.04734835e-02 -1.09826994e+00 -3.84445459e-01 4.59772438e-01
-1.96127415e+00 -1.14328814e+00 -9.96038854e-01 5.25318801e-01
3.26100558e-01 3.83684784e-01 8.50260913e-01 2.57461250e-01
-2.31280848e-01 3.40692848e-01 1.65857021e-02 -1.64788932e-01
9.97023106e-01 -1.31365120e+00 -7.99239725e-02 7.03314960e-01
-2.31502995e-01 8.62335443e-01 5.82661152e-01 -1.26157075e-01
-1.91298747e+00 -7.40121603e-01 1.28746182e-01 -6.75852835e-01
6.22616708e-01 -3.96062732e-01 -2.76707530e-01 8.23192298e-01
-1.07130617e-01 5.13895512e-01 7.75191784e-01 -2.81415612e-01
2.24886201e-02 -2.11485654e-01 -1.26415193e+00 5.16726494e-01
1.06836867e+00 -4.04614538e-01 -2.77391165e-01 6.29348457e-01
6.60323441e-01 -1.39958274e+00 -1.05301380e+00 5.65591097e-01
1.03510797e+00 -1.16358018e+00 1.25205433e+00 -1.89146593e-01
3.94156009e-01 -1.00057863e-01 2.78734416e-01 -1.38045228e+00
5.90901636e-02 -8.31462264e-01 7.24053159e-02 1.18203685e-01
4.20714080e-01 -6.88698411e-01 1.00950718e+00 6.69317544e-01
-6.43728435e-01 -7.88830280e-01 -1.02390122e+00 -3.78317356e-01
-7.00411052e-02 -1.13650613e-01 -1.19580671e-01 7.31032133e-01
6.39492124e-02 -4.86323595e-01 5.48903309e-02 4.81978834e-01
6.24975264e-01 1.31066635e-01 5.93106925e-01 -1.03913724e+00
-4.84167397e-01 -3.52799475e-01 -2.88541615e-01 -1.01906824e+00
-2.51855642e-01 -8.72823298e-01 2.19654679e-01 -1.46448815e+00
1.35067180e-01 -4.91548628e-01 -2.46312603e-01 2.22354800e-01
2.83390488e-02 3.08476955e-01 8.45841691e-02 2.00189695e-01
-2.37802848e-01 1.05860002e-01 1.69324183e+00 1.38981611e-01
-3.51210028e-01 9.56314653e-02 -5.42943060e-01 8.88012111e-01
3.88721228e-01 -3.77800256e-01 -2.51830250e-01 -6.72964871e-01
4.45087790e-01 1.43349648e-01 7.69259572e-01 -8.42022777e-01
5.26829779e-01 1.60832658e-01 3.07464629e-01 -8.99064913e-02
4.73391622e-01 -1.38727200e+00 2.03155354e-01 8.91364157e-01
-1.02117889e-01 -1.66225597e-01 4.09202069e-01 4.31684017e-01
-1.37826830e-01 6.45208284e-02 9.62932229e-01 -4.62362051e-01
-4.17515039e-01 4.64682728e-01 1.18455566e-01 5.25501892e-02
1.07257009e+00 -3.99981767e-01 -1.22595869e-01 -9.47990865e-02
-8.69225383e-01 -2.54944898e-02 7.57637322e-01 2.99554259e-01
7.12228119e-01 -7.54516721e-01 -3.94584894e-01 3.44626874e-01
2.85895020e-01 3.51422876e-01 6.26096427e-01 1.79198015e+00
-1.25156808e+00 1.61113545e-01 -5.84773868e-02 -8.74002516e-01
-1.04686904e+00 4.07567441e-01 1.09433866e+00 -3.54134798e-01
-7.64745057e-01 9.00598764e-01 7.04724491e-01 -6.85396373e-01
3.05487216e-01 -8.73609304e-01 2.02308178e-01 -4.24249977e-01
2.38901719e-01 -1.94424659e-01 3.83994490e-01 -7.43882060e-02
-3.12325895e-01 1.10682797e+00 7.27599720e-03 2.57328659e-01
1.39994061e+00 -2.70357609e-01 1.11992516e-01 7.71843418e-02
1.22087753e+00 4.26805437e-01 -1.56801319e+00 9.77384970e-02
-5.99081516e-01 -5.37270010e-01 3.16947490e-01 -9.36377943e-01
-1.28161836e+00 7.77848959e-01 8.07820439e-01 -3.88221085e-01
1.07416296e+00 -8.98280647e-03 7.82935798e-01 9.35317427e-02
4.29244637e-01 -8.05083275e-01 -1.65384393e-02 5.28475605e-02
8.25041115e-01 -1.46598232e+00 -8.02046135e-02 -7.82602489e-01
-3.24509770e-01 1.20936751e+00 5.03448069e-01 1.22853048e-01
6.69661522e-01 7.01588690e-01 3.91602248e-01 -3.58494371e-01
-1.17702745e-01 5.05895950e-02 3.31688792e-01 2.56574005e-01
4.07636553e-01 -2.02014536e-01 -3.57818082e-02 6.99487031e-02
-1.24616817e-01 -3.33373919e-02 4.22345132e-01 8.86939228e-01
-1.12262912e-01 -6.39446080e-01 -5.29673137e-02 -7.71006569e-03
-5.90319335e-01 -2.41731793e-01 1.74842909e-01 8.78033161e-01
4.63230051e-02 3.90363336e-01 -2.15334639e-01 1.54277056e-01
7.49484241e-01 -6.27722323e-01 8.97017419e-01 -6.57501757e-01
-9.76681828e-01 5.35298474e-02 -2.65448242e-01 -1.13906443e+00
-4.05503720e-01 -4.31807756e-01 -1.27893853e+00 3.17719132e-01
-2.46067584e-01 -3.64121228e-01 1.16415644e+00 6.17643178e-01
3.40458483e-01 8.49588096e-01 4.75861013e-01 -1.16666341e+00
-4.63605881e-01 -3.57774317e-01 -4.00804579e-01 5.11170566e-01
7.84239590e-01 -5.12649179e-01 -6.36894464e-01 -3.98695543e-02]
|
[13.908585548400879, -3.1758763790130615]
|
d2a40c27-8249-4c83-a20a-99e454f54a9c
|
automatic-generation-of-realistic-training
| null | null |
https://elib.dlr.de/147156/
|
https://elib.dlr.de/147156/1/Final%20version%20V2opt.pdf
|
Automatic generation of realistic training data for learning parallel-jaw grasping from synthetic stereo images
|
This paper proposes a novel approach to automat-
ically generate labeled training data for predicting parallel-jaw
grasps from stereo-matched depth images. We generate realistic
depth images using Semi-Global Matching to compute disparity
maps from synthetic data, which allows producing images that
mimic the typical artifacts from real stereo matching in our
data, thus reducing the gap from simulation to real execu-
tion. Our pipeline automatically generates grasp annotations
for single or multiple objects on the synthetically rendered
scenes, avoiding any manual image pre-processing steps such as
inpainting or denoising. The labeled data is then used to train a
CNN-model that predicts parallel-jaw grasps, even in scenarios
with large amount of unknown depth values. We further show
that scene properties such as the presence of obstacles (a bin,
for instance) can be added to our pipeline, and the training
process results in grasp prediction success rates of up to 90%.
|
['Màximo A. Roa', 'Jochen Steil', 'Michael Suppa', 'Elena Gambaro', 'Carlos X. Garcia', 'Justus Drögemüller']
|
2021-12-07
| null | null | null |
ieee-int-conf-advanced-robotics-2021-12
|
['grasp-generation', 'stereo-matching-1', 'robotic-grasping', 'grasp-rectangle-generation']
|
['computer-vision', 'computer-vision', 'robots', 'robots']
|
[ 4.77595210e-01 3.46210569e-01 4.28948790e-01 -4.36644614e-01
-6.74831271e-01 -5.69333315e-01 1.94553092e-01 1.96064591e-01
-1.18770845e-01 4.93322760e-01 1.95132568e-02 1.19376339e-01
2.07440138e-01 -9.72874582e-01 -1.27615941e+00 -4.51582640e-01
-1.98498309e-01 9.31391597e-01 6.66485488e-01 -1.08468369e-01
5.19654810e-01 6.85668766e-01 -2.08791876e+00 5.06302297e-01
8.46427798e-01 9.59122300e-01 8.69771957e-01 8.25203240e-01
-1.43648371e-01 4.55747873e-01 -6.48829103e-01 -2.02712938e-01
7.43193924e-01 7.95993879e-02 -5.36684334e-01 3.62040728e-01
4.34437633e-01 -9.44639564e-01 -3.19392890e-01 7.53095508e-01
3.29137653e-01 -3.17279905e-01 5.71046352e-01 -1.09286726e+00
3.41991684e-03 3.96641791e-01 -5.93371451e-01 -5.98704875e-01
9.18113410e-01 5.85183561e-01 2.26514891e-01 -5.57295501e-01
8.98260772e-01 1.41235089e+00 3.98350447e-01 4.15267199e-01
-1.24338007e+00 -5.50592363e-01 -2.42114902e-01 -1.42254099e-01
-8.98962855e-01 -8.88240431e-03 8.07054818e-01 -4.88302052e-01
8.92241478e-01 1.14474788e-01 9.25845385e-01 1.16103053e+00
4.90190059e-01 8.12579572e-01 1.08413327e+00 -3.74975681e-01
3.97706270e-01 -5.33852458e-01 -3.12530816e-01 5.49625874e-01
4.11045961e-02 3.64784539e-01 -5.02839088e-01 6.51781773e-03
1.36320841e+00 -1.33163512e-01 -1.13787979e-01 -7.76626348e-01
-1.43337309e+00 1.79739356e-01 4.05675143e-01 -3.93534303e-01
-5.77371776e-01 1.99250326e-01 3.03791732e-01 1.84040785e-01
1.74682900e-01 4.50549036e-01 -5.31104326e-01 -4.17856164e-02
-8.76257420e-01 8.44947040e-01 6.10086262e-01 1.40205133e+00
1.01177275e+00 -1.41340524e-01 6.67639300e-02 4.64043111e-01
-3.74329695e-03 4.02078897e-01 2.40146205e-01 -1.54407763e+00
6.38905466e-01 7.09359229e-01 4.69977975e-01 -7.07773328e-01
-3.74987751e-01 1.83154225e-01 -4.45063382e-01 6.92612350e-01
5.47807634e-01 2.31205359e-01 -1.31146801e+00 1.26237833e+00
4.01656687e-01 -3.80032472e-02 -4.96297665e-02 9.84939575e-01
4.64837641e-01 3.15245956e-01 -2.06037655e-01 9.46836919e-02
1.01672351e+00 -7.18436480e-01 -4.37006176e-01 -3.90692323e-01
3.69940281e-01 -8.99453700e-01 1.32071412e+00 6.60573065e-01
-1.27529430e+00 -4.31812555e-01 -9.79022682e-01 6.06964109e-03
-8.34244117e-02 -1.57599419e-01 9.38760340e-01 4.92715389e-02
-9.18338537e-01 1.04905140e+00 -1.06179559e+00 -1.94778278e-01
3.62961292e-01 5.39805591e-01 -5.19091010e-01 -1.90426335e-01
-5.19528389e-01 7.74419427e-01 4.81261402e-01 1.14498548e-01
-1.40473998e+00 -7.32827604e-01 -9.54765439e-01 -2.57990211e-01
2.36898437e-01 -5.06991863e-01 1.20805168e+00 -7.44009912e-01
-1.50181437e+00 1.13749623e+00 -9.68336537e-02 -9.47365388e-02
8.90380204e-01 -2.77143747e-01 6.25167787e-01 1.61190648e-02
3.02778363e-01 1.09017384e+00 6.28798306e-01 -1.95312011e+00
-3.86907309e-01 -5.63987195e-01 5.12451887e-01 2.16475591e-01
3.54319364e-01 -2.28284657e-01 -3.90191555e-01 -5.58430552e-01
5.89932442e-01 -7.59970248e-01 -3.94123912e-01 3.94675344e-01
-6.27804339e-01 3.51741701e-01 9.74832475e-01 -7.41849542e-01
1.91401288e-01 -1.71386063e+00 2.96712726e-01 1.01655416e-01
-1.46826580e-01 -8.87345895e-02 -2.08829626e-01 5.71050286e-01
1.15524195e-02 -5.06395400e-01 -4.42749679e-01 -4.92663175e-01
-2.06572160e-01 4.92607683e-01 -3.43494385e-01 1.42845333e-01
1.28282249e-01 6.83163524e-01 -1.02874458e+00 -4.98115987e-01
6.37335062e-01 2.65895158e-01 -4.67464149e-01 8.44598114e-01
-7.70380914e-01 9.20959651e-01 -2.30392531e-01 8.15316260e-01
1.04184628e+00 2.76991218e-01 1.87727623e-02 -3.20409566e-01
-1.32636622e-01 2.23928437e-01 -1.25486422e+00 2.18023705e+00
-6.59096599e-01 1.74642712e-01 2.67958671e-01 -6.38788164e-01
1.00813091e+00 1.53234392e-01 4.85031992e-01 -4.90332872e-01
2.10919306e-01 1.72714114e-01 -3.16452742e-01 -7.51912355e-01
3.22357059e-01 1.92512348e-01 1.98853388e-01 3.84338796e-01
-6.19022846e-02 -9.76206303e-01 1.32229939e-01 -5.00630364e-02
9.39621687e-01 9.12968040e-01 -3.00902754e-01 -1.11964136e-01
-7.31268972e-02 4.35161829e-01 4.10048038e-01 4.08272147e-01
2.30480507e-01 1.22093165e+00 3.72391552e-01 -5.03279507e-01
-1.52713847e+00 -1.21762562e+00 8.15010890e-02 3.38316798e-01
5.83015263e-01 -8.25255886e-02 -1.03582025e+00 -1.55778319e-01
1.64163351e-01 4.74932581e-01 -5.77711284e-01 -2.04834826e-02
-7.21319377e-01 -3.20399970e-01 1.95794031e-01 7.08543003e-01
4.83815610e-01 -1.44947040e+00 -1.19716978e+00 3.39683652e-01
-1.41562941e-02 -1.00022638e+00 7.36875087e-02 4.62025106e-01
-1.12130892e+00 -1.24958348e+00 -7.28065550e-01 -8.49594831e-01
9.16857719e-01 1.99217975e-01 1.04170871e+00 1.23071946e-01
-7.18142450e-01 1.16145968e-01 -2.44228542e-01 -3.03899884e-01
-5.91305435e-01 -3.58475298e-01 -1.14429332e-01 -7.36720145e-01
-2.08550170e-02 -6.54312730e-01 -9.45995569e-01 3.19180250e-01
-8.47987592e-01 6.40461385e-01 3.88134718e-01 5.76986372e-01
5.95059752e-01 -1.63444310e-01 8.60240031e-03 -3.19729894e-01
4.22163785e-01 4.82847430e-02 -9.17324781e-01 2.10986733e-02
8.23812038e-02 7.33500943e-02 4.06913728e-01 -5.24285436e-01
-1.04381740e+00 5.58740139e-01 -1.99410751e-01 -6.54924333e-01
-4.82903719e-01 3.47337388e-02 -2.28989795e-01 -8.06075484e-02
5.11686027e-01 5.69831580e-02 4.33189608e-02 -3.95555377e-01
3.51720378e-02 4.50690418e-01 7.16163576e-01 -8.64421964e-01
7.31157422e-01 6.14903808e-01 6.25043362e-02 -4.74888027e-01
-4.23755050e-01 2.65038814e-02 -1.01741624e+00 -2.76262552e-01
8.76768410e-01 -7.10419774e-01 -1.00980866e+00 7.77538836e-01
-1.57403827e+00 -8.31235766e-01 -2.49566108e-01 3.97981942e-01
-1.12199330e+00 2.91145235e-01 -8.69482100e-01 -8.27462673e-01
-3.80786578e-03 -1.57582772e+00 1.67566168e+00 1.30565017e-01
-2.38981038e-01 -4.79342133e-01 -3.42005372e-01 3.42914283e-01
2.51765475e-02 6.39552891e-01 9.13526416e-01 1.10656351e-01
-1.02729452e+00 -2.06709757e-01 -2.68794131e-02 1.91970170e-01
2.49928147e-01 1.60895109e-01 -1.06306517e+00 -1.55981049e-01
-1.42286062e-01 -6.06850326e-01 4.10103589e-01 4.01123375e-01
1.48480356e+00 1.06767938e-01 -4.09471631e-01 3.38123888e-01
1.39268064e+00 2.85473496e-01 8.97901833e-01 3.42836261e-01
6.76440477e-01 1.01126838e+00 1.17185462e+00 5.28723240e-01
1.71888441e-01 7.64885902e-01 1.07006311e+00 -5.68331555e-02
-1.02157556e-01 -5.35018206e-01 4.47298363e-02 3.05282623e-01
-3.33750278e-01 3.66121694e-03 -1.01923025e+00 5.49090147e-01
-1.57126856e+00 -5.82922399e-01 -2.74269104e-01 2.44054079e+00
7.41165340e-01 1.17985383e-01 -4.90974449e-02 2.44404390e-01
5.43520570e-01 -2.23992497e-01 -5.71590304e-01 -2.06400260e-01
7.87652358e-02 4.23641562e-01 7.17461705e-01 6.98314667e-01
-8.41244757e-01 1.34688139e+00 6.46452665e+00 4.14072335e-01
-1.12729633e+00 -3.04111302e-01 2.66138613e-01 1.58158109e-01
-3.48819435e-01 7.77650848e-02 -1.92781746e-01 3.29348147e-01
1.55672938e-01 1.83298483e-01 4.74703938e-01 9.76006150e-01
4.25428540e-01 -6.49927974e-01 -1.22767293e+00 7.83258915e-01
-1.05427593e-01 -1.14609766e+00 7.46445507e-02 -1.05336718e-01
5.39793313e-01 -1.57648221e-01 -2.98997939e-01 -2.99968332e-01
6.48332655e-01 -7.73898780e-01 1.00503540e+00 3.07885855e-01
6.27897143e-01 -5.69655418e-01 5.19068301e-01 6.56764388e-01
-9.32186842e-01 1.04237422e-01 -5.95778704e-01 -1.41994163e-01
4.37503397e-01 5.48331439e-01 -8.69388163e-01 4.88586903e-01
8.22408557e-01 2.30847254e-01 -3.37385535e-01 1.07274425e+00
-1.73523739e-01 -6.56064674e-02 -5.24441063e-01 4.13782954e-01
-4.37778085e-02 -2.16204822e-01 2.86550164e-01 7.35640168e-01
3.34224612e-01 -7.21106166e-03 9.34550464e-02 1.00897717e+00
3.22984964e-01 -3.82379472e-01 -8.31299484e-01 3.89147192e-01
3.66571933e-01 7.77744412e-01 -8.97010088e-01 -2.50200599e-01
1.51119962e-01 1.40470326e+00 2.22922131e-01 1.94043487e-01
-6.45125389e-01 -8.35983977e-02 6.01592064e-01 5.28134465e-01
1.34462919e-02 -4.03312325e-01 -4.27905530e-01 -1.00335360e+00
4.09166455e-01 -6.88382745e-01 -3.96350235e-01 -1.19116783e+00
-8.98515105e-01 3.74794543e-01 1.69491574e-01 -1.35595679e+00
-4.26319063e-01 -6.91521227e-01 -5.42005122e-01 6.63690865e-01
-1.15005815e+00 -1.30874598e+00 -8.60799849e-01 2.57193863e-01
8.21459591e-01 3.31033379e-01 1.04440534e+00 -4.70045619e-02
9.21485946e-02 2.80470829e-02 -3.08458805e-01 -1.76434100e-01
5.76746762e-01 -1.22733784e+00 5.79814136e-01 3.87101561e-01
-5.23231924e-01 2.83189178e-01 1.07775831e+00 -9.18257773e-01
-1.54220080e+00 -8.13517749e-01 1.21419184e-01 -4.06987250e-01
2.72242546e-01 -6.43078387e-01 -9.06579792e-01 6.91872239e-01
-6.75669685e-02 -1.00928545e-01 -2.04885453e-01 -5.54727495e-01
-1.10305555e-01 1.54889360e-01 -1.51422644e+00 6.40649378e-01
1.41154015e+00 -1.45117790e-01 -4.63211030e-01 5.78267038e-01
5.71973741e-01 -1.10303807e+00 -8.05764079e-01 7.47026920e-01
7.62491465e-01 -1.36536932e+00 1.17823756e+00 -3.73194337e-01
1.06974351e+00 -2.84210235e-01 -1.60016716e-01 -1.30372071e+00
3.02953959e-01 -3.40934277e-01 2.07389653e-01 8.57640088e-01
4.12938185e-03 -1.60014063e-01 1.34314370e+00 7.27797627e-01
-3.19293052e-01 -6.99566662e-01 -6.94911540e-01 -7.25858212e-01
6.87796548e-02 -3.99289221e-01 6.33750975e-01 6.59320652e-01
-7.55352899e-02 -6.56609833e-01 -6.19416274e-02 2.91664064e-01
8.84728968e-01 3.39807957e-01 1.18088531e+00 -1.16557527e+00
-2.60260075e-01 1.83635607e-01 -6.09650314e-01 -1.31890023e+00
3.33617091e-01 -4.85597014e-01 4.84747499e-01 -1.80211031e+00
-2.82529127e-02 -7.67852485e-01 6.55581236e-01 3.32779616e-01
4.02578386e-03 1.57061577e-01 -1.04321567e-02 1.29821017e-01
1.62132457e-01 4.81358588e-01 1.74720442e+00 -3.83738242e-02
-1.27298877e-01 -1.55903921e-01 2.49854416e-01 8.76510143e-01
5.96851230e-01 -3.25661987e-01 -4.77306753e-01 -7.96850026e-01
-2.09227249e-01 4.63871926e-01 6.13774359e-01 -1.23245192e+00
-1.22258402e-01 -4.55327243e-01 4.67876673e-01 -7.55598426e-01
7.67159760e-01 -1.00240588e+00 3.60420763e-01 5.92124462e-01
-1.43349648e-01 -1.82904601e-02 3.11737478e-01 3.32920879e-01
-7.09439740e-02 -3.72779727e-01 5.55103540e-01 -5.93700826e-01
-3.81909698e-01 2.09094778e-01 -2.60568589e-01 -4.39657003e-01
1.28061318e+00 -6.45432472e-01 -3.44019532e-02 -3.90801162e-01
-8.37422073e-01 1.43199056e-01 1.16574764e+00 3.70123744e-01
8.20986152e-01 -1.03739047e+00 -4.35329497e-01 4.31094408e-01
1.38081819e-01 8.78564298e-01 1.81418031e-01 1.10525712e-01
-1.35880744e+00 1.00703612e-02 -4.70020801e-01 -9.06023979e-01
-1.07003939e+00 5.11535048e-01 2.03058824e-01 1.85080498e-01
-8.87202144e-01 6.54142916e-01 2.87295252e-01 -6.39822125e-01
4.23367620e-01 -5.62821090e-01 5.12567520e-01 -7.53783047e-01
1.32170498e-01 1.30303130e-01 1.02026090e-01 -2.52215505e-01
-2.33644489e-02 7.86264658e-01 3.92509438e-02 -1.96573630e-01
1.53464055e+00 2.62787193e-01 -2.67542489e-02 2.09463209e-01
8.38133931e-01 -3.03066015e-01 -1.92117429e+00 4.84000146e-01
-2.52653062e-01 -9.03818727e-01 -4.73970711e-01 -6.72480702e-01
-9.95035648e-01 1.01267898e+00 5.81006110e-01 -3.67338866e-01
8.15427899e-01 1.05092444e-01 8.33587170e-01 2.16745749e-01
1.28750443e+00 -1.03373861e+00 1.95682585e-01 2.93847144e-01
1.28749633e+00 -1.24059975e+00 -2.49641597e-01 -1.11260223e+00
-4.20328468e-01 1.25495505e+00 1.09692693e+00 -6.44409478e-01
2.42317528e-01 9.39681113e-01 2.22897172e-01 -2.41745830e-01
-3.55134755e-01 2.66942561e-01 -4.99223381e-01 1.14258826e+00
4.43911180e-02 -1.04275115e-01 8.80486798e-04 -5.09632044e-02
-5.31964540e-01 1.54441848e-01 6.75727129e-01 1.31368279e+00
-4.08023447e-01 -1.17867732e+00 -5.20855665e-01 3.17543834e-01
1.44081295e-01 2.85932600e-01 -3.51570219e-01 6.53525531e-01
1.36768878e-01 5.67872643e-01 4.10340339e-01 -4.36413854e-01
5.49453080e-01 -2.86225021e-01 1.00328863e+00 -7.56155014e-01
-4.70292449e-01 -9.01677758e-02 -1.11790828e-01 -9.76089418e-01
-2.85585612e-01 -3.81062299e-01 -1.51317108e+00 -2.17040509e-01
-2.61108816e-01 -4.28165346e-01 8.47966671e-01 8.64313841e-01
1.91326469e-01 3.73019695e-01 3.42014462e-01 -1.80883169e+00
-2.31989592e-01 -7.95154810e-01 -3.50317568e-01 7.17553794e-01
5.77695929e-02 -9.30336714e-01 -3.07300061e-01 1.90300688e-01]
|
[5.920238494873047, -0.9474340677261353]
|
b180cdf6-f9de-4518-be72-39c57a8c11a2
|
methodology-for-jointly-assessing-myocardial
|
2306.15281
| null |
https://arxiv.org/abs/2306.15281v1
|
https://arxiv.org/pdf/2306.15281v1.pdf
|
Methodology for Jointly Assessing Myocardial Infarct Extent and Regional Contraction in 3-D CMRI
|
Automated extraction of quantitative parameters from Cardiac Magnetic Resonance Images (CMRI) is crucial for the management of patients with myocardial infarct. This work proposes a post-processing procedure to jointly analyze Cine and Delayed-Enhanced (DE) acquisitions in order to provide an automatic quantification of myocardial contraction and enhancement parameters and a study of their relationship. For that purpose, the following processes are performed: 1) DE/Cine temporal synchronization and 3D scan alignment, 2) 3D DE/Cine rigid registration in a region about the heart, 3) segmentation of the myocardium on Cine MRI and superimposition of the epicardial and endocardial contours on the DE images, 4) quantification of the Myocardial Infarct Extent (MIE), 5) study of the regional contractile function using a new index, the Amplitude to Time Ratio (ATR). The whole procedure was applied to 10 patients with clinically proven myocardial infarction. The comparison between the MIE and the visually assessed regional function scores demonstrated that the MIE is highly related to the severity of the wall motion abnormality. In addition, it was shown that the newly developed regional myocardial contraction parameter (ATR) decreases significantly in delayed enhanced regions. This largely automated approach enables a combined study of regional MIE and left ventricular function.
|
['F. Frouin', 'E. Mousseaux', 'E. Roullot', 'M. Lefort', 'R. El Berbari', 'C. Constantinides', 'C. Pellot-Barakat', 'Y. Chenoune']
|
2023-06-27
| null | null | null | null |
['management']
|
['miscellaneous']
|
[ 2.86093295e-01 -1.96400687e-01 1.58256233e-01 -1.21881917e-01
-4.46768582e-01 -7.15113640e-01 1.96602643e-01 3.69096726e-01
-7.29169548e-01 4.65778917e-01 7.45198578e-02 -2.99009115e-01
-2.73576379e-01 -5.42196989e-01 1.18603587e-01 -7.68630922e-01
-5.86246431e-01 7.01289058e-01 4.31158155e-01 2.30871409e-01
1.66831687e-01 8.71161282e-01 -5.63821435e-01 -8.96503702e-02
5.21729946e-01 5.25951147e-01 4.02926713e-01 1.13014185e+00
2.26491705e-01 5.66816509e-01 -3.58695865e-01 2.59819984e-01
1.04769498e-01 -8.43445420e-01 -8.41991901e-01 2.21270591e-01
-1.01596534e-01 -5.16644716e-01 1.69948772e-01 6.88658714e-01
6.99349344e-01 -5.61232194e-02 8.39183271e-01 -4.45677310e-01
2.59315342e-01 5.79051256e-01 -5.09177923e-01 7.85430074e-01
-2.51205951e-01 -3.44551206e-02 8.60427022e-02 -8.74526799e-01
8.81527841e-01 3.01104903e-01 6.18772984e-01 2.59248394e-04
-1.37203169e+00 -1.64078727e-01 -5.83362937e-01 -3.38243507e-02
-1.11960340e+00 -3.01123019e-02 8.39505970e-01 -9.91475761e-01
4.79042888e-01 1.80120453e-01 8.85953367e-01 -8.22447836e-02
2.68470496e-01 -8.18929151e-02 1.26667273e+00 -6.74095690e-01
1.10054895e-01 -1.56265393e-01 4.90379065e-01 3.29208076e-01
3.09165895e-01 3.34765315e-01 3.08111399e-01 -1.40075371e-01
1.07216382e+00 -1.58619404e-01 -4.10774499e-01 -6.70596778e-01
-1.52749169e+00 5.33914387e-01 -1.70623198e-01 1.10562420e+00
-5.75262189e-01 -1.14976250e-01 8.08551073e-01 2.81290919e-01
3.61264497e-01 1.33362696e-01 -1.92492366e-01 -1.37362480e-01
-1.11878097e+00 -1.63475354e-03 3.17739159e-01 -1.57820418e-01
3.19659591e-01 -5.40307316e-04 2.35174410e-02 6.00117743e-01
2.25219429e-01 4.05833453e-01 5.89751959e-01 -1.23151898e+00
1.59356788e-01 4.73162383e-01 -1.86139680e-02 -8.34475815e-01
-5.39435625e-01 -5.21274149e-01 -1.10639763e+00 6.78193927e-01
6.89008594e-01 -1.31932095e-01 -3.87384146e-01 1.29423773e+00
4.43145692e-01 -1.97508708e-01 -3.70185152e-02 1.06961358e+00
2.94704556e-01 2.29227841e-01 3.46324712e-01 -7.84809351e-01
1.30607200e+00 -2.44798794e-01 -6.65813446e-01 1.68795824e-01
9.83460903e-01 -6.21083975e-01 4.87150818e-01 2.75403839e-02
-1.26728809e+00 -6.30328357e-01 -8.95827889e-01 6.35574102e-01
2.81603187e-01 3.51102978e-01 -9.55797583e-02 6.29136503e-01
-8.72724116e-01 9.22761738e-01 -1.13287079e+00 -3.24776396e-02
-1.37466602e-02 3.33152175e-01 -6.66555464e-01 2.81416237e-01
-9.31124866e-01 1.08914042e+00 4.49846804e-01 3.27311784e-01
-2.68751889e-01 -6.89093471e-01 -5.78907847e-01 -1.29505843e-01
-1.55308813e-01 -9.38444257e-01 6.00218892e-01 -9.35691774e-01
-1.19391072e+00 1.52535570e+00 7.17651993e-02 -3.13017726e-01
7.14385033e-01 1.32540464e-01 7.29289651e-02 7.39713252e-01
1.18317969e-01 -5.15119284e-02 5.27153134e-01 -1.17277670e+00
-1.33129627e-01 -7.66547441e-01 -3.46284389e-01 1.13142103e-01
2.91260988e-01 2.59433240e-01 -8.00484791e-02 -6.50904059e-01
6.24882102e-01 -6.97341383e-01 -3.34365487e-01 -3.90938073e-01
1.86462209e-01 5.01782894e-01 6.15453839e-01 -1.28761399e+00
1.27371085e+00 -2.17697263e+00 2.45180994e-01 4.59990859e-01
6.29662752e-01 4.01753396e-01 1.81682646e-01 -1.07774828e-02
-5.19038320e-01 1.94593519e-01 -5.38806200e-01 3.43282044e-01
-5.75706661e-01 -2.15446293e-01 2.87772626e-01 7.47526586e-01
-4.08892632e-01 7.81548083e-01 -7.49270558e-01 -7.96255350e-01
4.46265936e-01 3.04901540e-01 -1.67897567e-01 2.18979433e-01
5.99140048e-01 1.06347048e+00 -3.10374171e-01 1.61517560e-02
6.35669172e-01 9.44117829e-02 8.83941174e-01 -1.84016496e-01
-4.92186904e-01 -4.15437847e-01 -8.61956954e-01 1.19962931e+00
-5.47301918e-02 4.16953415e-01 2.32354760e-01 -1.05570292e+00
1.09946024e+00 1.01273119e+00 1.15068972e+00 -6.41428292e-01
4.07596409e-01 3.41413021e-01 2.84635633e-01 -5.49879491e-01
-2.38948748e-01 -4.26207840e-01 4.28557694e-01 8.40470612e-01
-2.58123934e-01 -2.78619141e-03 4.77719426e-01 -1.97729051e-01
6.55899107e-01 3.80303741e-01 6.43486142e-01 -5.37947595e-01
7.91329801e-01 1.59909145e-03 4.24010038e-01 2.92106539e-01
-5.04467368e-01 6.06910765e-01 7.58392096e-01 -7.42469072e-01
-1.14204788e+00 -9.13409114e-01 -3.25185716e-01 1.88971743e-01
1.67142358e-02 2.11114138e-01 -9.40044343e-01 -1.47260487e-01
-2.95594960e-01 7.48650581e-02 -3.69976342e-01 2.02773586e-01
-1.22401249e+00 -1.16688979e+00 1.28718764e-01 4.54184413e-01
2.16381863e-01 -9.32796299e-01 -1.31688237e+00 4.54780847e-01
-4.43934828e-01 -9.03473377e-01 -1.15730219e-01 -1.36260718e-01
-1.86456466e+00 -1.09726107e+00 -1.11540747e+00 -8.18791270e-01
4.88906443e-01 -1.06404074e-01 1.10521317e+00 2.61108041e-01
-4.77881491e-01 6.78318813e-02 -2.43183509e-01 4.37696390e-02
-9.55053210e-01 -3.10189724e-01 -2.42180616e-01 -2.70723850e-01
-3.64160895e-01 -9.38215435e-01 -8.70400608e-01 3.62316400e-01
-6.95345223e-01 -3.57338926e-03 4.74492997e-01 4.82579708e-01
8.68847013e-01 -3.47362071e-01 4.29642856e-01 -7.16502845e-01
2.78318256e-01 -1.19268350e-01 -7.40962267e-01 2.23587587e-01
-7.26487875e-01 -3.85849863e-01 8.40797201e-02 -2.36737236e-01
-8.36434305e-01 -7.79565126e-02 -5.77961579e-02 -1.47462338e-01
-2.44432673e-01 5.10120749e-01 2.38798290e-01 1.59480974e-01
7.26161540e-01 2.87680447e-01 3.38294446e-01 -2.86697775e-01
2.00054273e-02 2.55018562e-01 7.72644639e-01 -2.70598710e-01
4.42021817e-01 3.74816626e-01 3.15892816e-01 -7.01078355e-01
-7.45358244e-02 -6.97945535e-01 -1.36374891e+00 -5.30419290e-01
1.13859475e+00 -3.54400963e-01 -6.20099425e-01 4.66140181e-01
-1.08587861e+00 -5.90525687e-01 -5.67412853e-01 1.15262246e+00
-7.28142142e-01 1.02831137e+00 -7.10955441e-01 -5.81351697e-01
-8.66242409e-01 -9.43938673e-01 2.30969772e-01 -3.22582364e-01
-4.12712187e-01 -1.32858694e+00 6.21913731e-01 3.53033066e-01
3.76286119e-01 9.05191839e-01 1.28197265e+00 -2.25855529e-01
-3.60111982e-01 -3.94253671e-01 1.04853129e-02 5.29898345e-01
-3.95050310e-02 -2.84267589e-02 -4.40875411e-01 6.86061056e-03
4.78330821e-01 4.21453357e-01 4.60208476e-01 1.21014512e+00
2.01515749e-01 4.92020309e-01 -1.10940367e-01 4.98054802e-01
1.38305879e+00 5.67565918e-01 6.97181463e-01 4.24151987e-01
2.79940903e-01 5.77470601e-01 6.59230351e-01 4.48152840e-01
-2.20977455e-01 7.64228344e-01 2.44696110e-01 -3.80496502e-01
-3.71908575e-01 4.40042853e-01 1.67605337e-02 9.15535152e-01
-8.84135485e-01 4.15345907e-01 -9.78860080e-01 5.35740852e-01
-1.47358406e+00 -1.05669546e+00 -7.64942169e-01 2.36922336e+00
5.00268459e-01 1.30120173e-01 2.92268932e-01 3.99732918e-01
9.27039444e-01 -2.93575246e-02 1.09010991e-02 -2.61916220e-01
1.01409256e-01 3.41544956e-01 2.75420636e-01 7.50361264e-01
-9.19136286e-01 8.59187916e-02 6.89400196e+00 -1.25004002e-03
-1.16807306e+00 3.34975839e-01 7.45515347e-01 5.52712142e-01
5.44199534e-02 2.11978033e-01 -2.02299189e-02 1.52013645e-01
8.08092296e-01 -6.91400021e-02 -6.27095550e-02 4.77836311e-01
5.86759329e-01 -4.22468513e-01 -5.13017237e-01 6.91939175e-01
-2.36295298e-01 -1.36380577e+00 -4.99875724e-01 9.26446542e-03
2.13111460e-01 -1.15337521e-01 -4.31112826e-01 -2.43009910e-01
-8.33689690e-01 -4.14269120e-01 6.42750919e-01 8.75211477e-01
1.11653411e+00 -3.60547960e-01 9.86881912e-01 3.01843345e-01
-1.10526419e+00 2.70264268e-01 2.36561179e-01 2.33180851e-01
5.18849373e-01 6.75002396e-01 -7.10637987e-01 4.78986949e-01
9.67642292e-02 3.78457129e-01 -1.45683438e-01 8.90196562e-01
1.22930810e-01 6.09673858e-01 9.90361199e-02 6.53154850e-01
-2.25094780e-01 -7.99264133e-01 9.64363873e-01 9.06240880e-01
7.34735280e-02 2.57370114e-01 -1.09974124e-01 1.04311192e+00
5.37079632e-01 3.86660993e-01 -2.36392453e-01 1.79831818e-01
-1.27280459e-01 1.23940659e+00 -1.26983905e+00 -4.52956498e-01
-1.13509379e-01 5.23888886e-01 -3.24600518e-01 3.45128179e-01
-2.96513826e-01 3.73213226e-03 -2.46109918e-01 6.90756500e-01
-1.75153092e-01 -4.03814048e-01 -5.05079687e-01 -6.75246775e-01
3.82937007e-02 -4.29832846e-01 2.76573211e-01 -6.59048855e-01
-4.01511401e-01 6.71424985e-01 2.58313507e-01 -1.04908764e+00
-6.72091246e-01 -2.50629306e-01 -7.73779273e-01 1.37244844e+00
-9.90190446e-01 -7.12190807e-01 1.39821116e-02 1.72443256e-01
5.46976812e-02 9.40652341e-02 1.10967934e+00 4.21022564e-01
-2.04851672e-01 -2.30013326e-01 -3.34122241e-01 2.39846379e-01
3.38095427e-01 -1.43405914e+00 -2.09127352e-01 8.80969584e-01
-5.73112965e-01 3.27938676e-01 5.11180162e-01 -7.19410062e-01
-3.74139011e-01 -6.13479137e-01 1.24082828e+00 -2.60935485e-01
2.97189295e-01 5.23824632e-01 -5.89268267e-01 3.22941959e-01
-1.71687752e-01 2.82962948e-01 6.75770104e-01 -5.36991000e-01
4.39329475e-01 -7.89310113e-02 -8.93932343e-01 1.02904335e-01
2.66020626e-01 -2.89861441e-01 -6.30151033e-01 4.29423824e-02
-4.99400869e-02 -2.39534542e-01 -1.55745900e+00 4.57553744e-01
7.95903802e-01 -1.21581054e+00 8.97400200e-01 -1.77424312e-01
1.62739053e-01 -3.17960083e-01 4.48916256e-01 -4.77320373e-01
-4.29127544e-01 -5.61323941e-01 3.08602780e-01 7.67232835e-01
1.05223758e-02 -4.50593829e-01 5.08095562e-01 3.43909889e-01
-2.05307767e-01 -6.16552830e-01 -6.49579763e-01 -2.30768055e-01
-1.09485136e-02 1.84235405e-02 -4.05981928e-01 6.97031677e-01
4.14500665e-03 -2.70251259e-02 2.25253284e-01 -2.93425899e-02
6.06316388e-01 3.63426954e-01 2.12755561e-01 -1.33387351e+00
-2.18410075e-01 -3.70792240e-01 -6.04370356e-01 -1.13918103e-01
-2.38354683e-01 -8.97380531e-01 -4.76520479e-01 -1.49134934e+00
4.82263654e-01 -4.55901414e-01 -4.19895202e-01 -2.22634852e-01
-1.10179119e-01 2.86728084e-01 5.83395474e-02 6.17403567e-01
2.81807840e-01 -3.51291180e-01 1.52269757e+00 3.81142914e-01
-5.56425691e-01 2.48025164e-01 5.81545420e-02 7.71218061e-01
7.01372623e-01 -6.68384671e-01 -2.98087209e-01 1.99503601e-01
7.51796588e-02 9.15003836e-01 6.11563325e-01 -9.45273161e-01
-3.23493212e-01 3.25276166e-01 3.26058507e-01 -6.98421538e-01
-1.58388659e-01 -6.51587546e-01 4.64653224e-01 1.04246736e+00
-1.28201634e-01 2.45823875e-01 -1.57686472e-01 -7.29016289e-02
-4.58493650e-01 -6.10701859e-01 1.15448439e+00 -3.33719939e-01
-3.41282845e-01 1.17783077e-01 -7.21259475e-01 2.20323667e-01
1.05801356e+00 -5.70520103e-01 2.88328141e-01 5.02623506e-02
-1.68056774e+00 -5.40269613e-01 1.42113954e-01 -5.11938334e-01
4.56093729e-01 -8.48305404e-01 -9.48462486e-01 -5.89922927e-02
-3.51638407e-01 -3.27953309e-01 8.21332812e-01 2.05327964e+00
-1.29899621e+00 1.32539168e-01 -5.66391289e-01 -7.75069654e-01
-1.57426858e+00 6.05918705e-01 1.01639593e+00 -9.06999826e-01
-8.22526515e-01 1.55695245e-01 2.36642480e-01 2.70020753e-01
-2.47425720e-01 -2.06783742e-01 -6.21935487e-01 1.07187681e-01
3.17955583e-01 5.78326821e-01 -8.45356807e-02 -9.40220594e-01
-1.52065784e-01 9.75600541e-01 4.99180228e-01 -2.14215070e-01
1.05254495e+00 -5.34808755e-01 -5.53169668e-01 3.95628542e-01
9.58695531e-01 -2.62346417e-02 -1.01472270e+00 6.87873214e-02
5.35150357e-02 -7.04774410e-02 3.62158597e-01 -6.92339301e-01
-1.05656719e+00 9.19626415e-01 1.17915523e+00 1.56936392e-01
1.22149611e+00 -3.72257322e-01 6.05926991e-01 -4.87225384e-01
-5.84835075e-02 -7.61748850e-01 -2.94316053e-01 -1.15665644e-01
6.51546597e-01 -6.43583000e-01 1.63596347e-01 -6.10417485e-01
-6.24437988e-01 1.55989790e+00 -3.58059943e-01 -9.23670158e-02
7.97364652e-01 4.36929494e-01 4.28933203e-01 -1.88294917e-01
-6.01383783e-02 -1.07826829e-01 1.30164966e-01 4.28505033e-01
7.12407291e-01 4.10476588e-02 -1.13915658e+00 2.88846225e-01
5.03775954e-01 3.85881960e-01 1.91275731e-01 7.78603494e-01
-4.02207464e-01 -1.07989824e+00 -4.46076572e-01 -9.41544920e-02
-7.97157705e-01 7.34136477e-02 1.35826990e-02 9.49801564e-01
3.64113539e-01 3.68159741e-01 -1.51834130e-01 2.55111694e-01
4.08558995e-01 3.57035518e-01 7.33224392e-01 -3.06774855e-01
-7.38416493e-01 5.30184567e-01 -1.62282214e-01 4.08095866e-03
-7.98573554e-01 -7.57367373e-01 -1.41892171e+00 2.65121639e-01
-1.29209720e-02 1.15063384e-01 6.79703176e-01 9.11358297e-01
-2.08046228e-01 5.67869484e-01 6.78020895e-01 -7.23023593e-01
-2.51548856e-01 -8.78998041e-01 -1.05776727e+00 4.37022239e-01
1.34427071e-01 -1.68629050e-01 -2.71883339e-01 6.97855413e-01]
|
[14.110881805419922, -2.462512254714966]
|
7b984b38-23f8-4820-b394-80453b5d5ac8
|
pash-at-trec-2021-deep-learning-track
|
2205.11245
| null |
https://arxiv.org/abs/2205.11245v3
|
https://arxiv.org/pdf/2205.11245v3.pdf
|
PASH at TREC 2021 Deep Learning Track: Generative Enhanced Model for Multi-stage Ranking
|
This paper describes the PASH participation in TREC 2021 Deep Learning Track. In the recall stage, we adopt a scheme combining sparse and dense retrieval method. In the multi-stage ranking phase, point-wise and pair-wise ranking strategies are used one after another based on model continual pre-trained on general knowledge and document-level data. Compared to TREC 2020 Deep Learning Track, we have additionally introduced the generative model T5 to further enhance the performance.
|
['Wenfeng Xie', 'Xin Tang', 'Jun Wang', 'Guotong Xie', 'Peng Gao', 'Rui Fang', 'Xianbin Ye', 'Tuozhen Liu', 'Yongquan Lai', 'Hao Chen', 'Yixuan Qiao']
|
2022-05-18
| null | null | null | null |
['general-knowledge']
|
['miscellaneous']
|
[-3.89891714e-01 -3.67842257e-01 3.61393914e-02 -4.84089047e-01
-1.70312381e+00 -6.57447815e-01 1.24902391e+00 3.54313612e-01
-9.33806300e-01 8.11901033e-01 7.27286994e-01 2.43825931e-02
-7.12880790e-01 -6.69354200e-01 -5.66847563e-01 -3.58485937e-01
-1.31829619e-01 1.14548695e+00 3.20522815e-01 -5.75228214e-01
5.18041790e-01 1.69078901e-01 -1.32272935e+00 1.05012774e+00
4.70210403e-01 8.11154485e-01 -2.82438193e-03 6.95115387e-01
-1.63574904e-01 7.40780294e-01 -4.40215915e-01 -5.62368989e-01
3.21609527e-01 -1.02880346e-02 -8.72033596e-01 -6.98860466e-01
6.64952397e-01 -6.17293417e-01 -5.89022160e-01 7.78627992e-01
9.60905194e-01 4.93730903e-01 8.27153742e-01 -2.86535054e-01
-3.57385278e-01 4.60142255e-01 -4.99299198e-01 1.56064108e-01
5.85603297e-01 -4.89434600e-01 1.17164576e+00 -1.28494120e+00
7.00526237e-01 1.17098892e+00 5.00349641e-01 4.78280276e-01
-5.41899264e-01 -5.14595211e-01 -1.63584664e-01 2.68386960e-01
-1.54097903e+00 -2.87640870e-01 5.45373678e-01 -1.35917872e-01
1.22757733e+00 1.67959616e-01 5.84709585e-01 7.77577937e-01
3.65038276e-01 1.04746437e+00 1.01310122e+00 -5.05895674e-01
6.91827238e-02 -2.29734182e-01 3.97317469e-01 4.23752427e-01
5.72489053e-02 2.35175267e-01 -4.60080206e-01 -2.35499710e-01
4.43560064e-01 3.25723439e-02 8.76011923e-02 -5.24248965e-02
-6.54211879e-01 7.90808678e-01 5.22358656e-01 4.52654779e-01
-6.12025023e-01 3.19934845e-01 6.39178514e-01 5.50357342e-01
6.13426745e-01 5.35853624e-01 -3.61045599e-01 -1.39638051e-01
-1.60977614e+00 6.97073400e-01 5.47687888e-01 8.19421887e-01
6.15969658e-01 -6.79598927e-01 -7.22549260e-01 1.07603514e+00
7.46020436e-01 3.90591770e-01 7.11322248e-01 -5.85124314e-01
5.46244144e-01 3.83845359e-01 2.97247648e-01 -8.38211358e-01
-6.28554225e-02 -8.74424815e-01 -6.85154736e-01 -5.44049144e-01
-4.12109524e-01 2.12755203e-01 -1.56340182e+00 9.80141878e-01
-2.38722786e-01 -7.96524882e-02 6.47347122e-02 7.71139622e-01
1.19562316e+00 8.64190698e-01 8.98498893e-02 -1.23757673e-02
1.10842383e+00 -1.01641810e+00 -8.82433534e-01 1.91583991e-01
8.39282930e-01 -9.24937189e-01 2.97686040e-01 4.03943270e-01
-1.34508359e+00 -5.67795217e-01 -8.84187400e-01 -4.08976108e-01
-6.77384436e-01 1.13039933e-01 6.73018456e-01 4.68424827e-01
-1.59305060e+00 4.91559476e-01 -4.82940048e-01 -2.56678760e-01
-1.16179645e-01 4.09449816e-01 -3.47673565e-01 -6.87001765e-01
-1.85500240e+00 1.06582057e+00 4.93192941e-01 4.66796786e-01
-1.14792299e+00 -2.96096534e-01 -4.91521806e-01 2.58684725e-01
-1.24900490e-01 -6.51252806e-01 1.37014306e+00 -4.34577726e-02
-1.36905622e+00 8.18403721e-01 -4.14458252e-02 -5.47056615e-01
3.97308618e-01 -7.37520933e-01 -4.36058819e-01 1.70501411e-01
-2.40509212e-02 8.33539367e-01 1.55536577e-01 -1.24179542e+00
-6.64194584e-01 -2.46738032e-01 3.05166781e-01 6.94216073e-01
-1.49693236e-01 1.62877858e-01 -1.27342010e+00 -1.42082095e-01
1.49036393e-01 -7.98019648e-01 -2.15419903e-01 -8.77830327e-01
-2.06255034e-01 -6.46987319e-01 4.95288849e-01 -8.88068974e-01
1.62369072e+00 -1.73860991e+00 1.93000084e-03 6.76473498e-01
2.22531453e-01 5.89179099e-01 -5.47379375e-01 9.49584901e-01
3.79228830e-01 1.28973901e-01 6.14777863e-01 -5.86600959e-01
-2.39373427e-02 -9.26007479e-02 -9.87899154e-02 -3.36408503e-02
-7.04954788e-02 1.12415373e+00 -1.01259661e+00 -7.58383930e-01
1.03022166e-01 5.10906637e-01 -4.11434650e-01 4.26867492e-02
3.93843241e-02 -5.91493621e-02 -7.39032567e-01 6.15346789e-01
7.16984570e-01 -1.25727400e-01 2.89254606e-01 -1.72131971e-01
1.98995527e-02 6.13569736e-01 -5.20810068e-01 2.14049149e+00
-5.78474343e-01 3.39626074e-01 -2.32453674e-01 -7.02258527e-01
8.32616687e-01 6.06370747e-01 5.31165659e-01 -1.19326663e+00
-3.19412281e-03 4.64267731e-01 -3.11870217e-01 -1.29132107e-01
1.33609128e+00 -6.96387887e-02 -2.63863504e-01 2.06644520e-01
3.10460240e-01 -2.48788465e-02 4.40177202e-01 7.53396153e-01
1.37776089e+00 9.71507058e-02 -4.93138656e-02 -2.91023225e-01
3.54699731e-01 -4.97538224e-02 2.13580012e-01 1.34691608e+00
1.89696684e-01 9.61175323e-01 -7.17715248e-02 -3.55009496e-01
-9.98965025e-01 -8.36517870e-01 -9.12540555e-02 1.01475608e+00
-4.61618751e-02 -6.62317872e-01 -1.84783831e-01 -7.70876348e-01
-2.29342982e-01 3.98991734e-01 -7.16795564e-01 -1.39666125e-01
-5.78940153e-01 -4.20601666e-01 4.43138093e-01 5.31300426e-01
6.39444530e-01 -8.32681775e-01 1.85859039e-01 3.16208869e-01
-1.33328617e-01 -5.22994459e-01 -3.78237814e-01 4.23043311e-01
-9.19128001e-01 -6.84593201e-01 -1.46173668e+00 -7.97357917e-01
2.18377262e-01 2.89958566e-01 1.42071414e+00 1.83521226e-01
2.22127333e-01 6.85857475e-01 -8.05555820e-01 -6.17378391e-02
1.98987514e-01 4.50488806e-01 -3.70615721e-01 -5.39973497e-01
6.69453382e-01 6.77329227e-02 -9.44022954e-01 -9.47002992e-02
-8.93464983e-01 -2.86522955e-01 8.33945632e-01 8.62625957e-01
5.07383704e-01 -2.85659754e-03 3.82441819e-01 -7.90573359e-01
1.08528447e+00 -3.70876700e-01 -2.99719065e-01 6.99651301e-01
-7.93032825e-01 3.79712060e-02 -1.25365138e-01 1.12899140e-01
-1.04012764e+00 -1.20054923e-01 -2.89426923e-01 -1.88898206e-01
5.76224744e-01 1.28642893e+00 2.60490268e-01 1.21254995e-01
5.62002182e-01 2.71223903e-01 -3.67142379e-01 -6.75307930e-01
2.75310785e-01 7.81264544e-01 1.25667214e-01 -5.92988789e-01
5.46239913e-01 -2.12699071e-01 -3.00080478e-01 -1.94212079e-01
-1.22526455e+00 -1.07186580e+00 -5.81539512e-01 -3.95207375e-01
7.11879313e-01 -1.43277752e+00 -5.19569069e-02 3.87049764e-01
-1.33082366e+00 -1.45760132e-02 -6.18522167e-02 7.16407955e-01
-4.18763608e-02 1.15231030e-01 -9.30588365e-01 -6.67341411e-01
-7.18902290e-01 -8.76820028e-01 1.62785280e+00 2.54892498e-01
2.03003362e-01 -1.06737089e+00 8.85788500e-01 3.72205764e-01
6.58464015e-01 -4.35569227e-01 6.48457050e-01 -9.86895561e-01
-5.63678563e-01 -1.07545650e+00 -2.78298140e-01 3.93114716e-01
-4.01406467e-01 -3.38306010e-01 -6.63859367e-01 -5.39311767e-01
-5.38570225e-01 -7.89459467e-01 1.45982611e+00 3.23439360e-01
9.21711385e-01 2.12494612e-01 -3.45796376e-01 -3.88406403e-02
1.64040422e+00 1.93452626e-01 1.19356084e+00 4.07393664e-01
5.67154646e-01 3.17280859e-01 7.16366231e-01 8.09605718e-02
3.52514267e-01 7.58272469e-01 -3.16280201e-02 3.01632546e-02
-8.55890661e-02 -2.45888770e-01 5.89252971e-02 1.26235783e+00
-3.73286456e-01 -7.14034498e-01 -8.73211741e-01 4.77753431e-01
-1.89360082e+00 -1.09321177e+00 3.31859887e-02 2.24260187e+00
7.97838509e-01 2.79534310e-01 -3.41060787e-01 -8.63120332e-02
5.62815845e-01 1.94899663e-01 9.40706134e-02 -2.91419685e-01
-1.71370611e-01 6.97077513e-01 4.23829019e-01 7.60964870e-01
-1.04070258e+00 9.89946008e-01 7.06417894e+00 1.35588515e+00
-8.34158659e-01 3.10814870e-03 2.72697538e-01 -2.68502474e-01
-7.02815175e-01 -7.40872175e-02 -1.03055608e+00 1.23947710e-01
1.12500906e+00 -1.06770381e-01 -1.04653127e-02 3.40911776e-01
-2.94568002e-01 -4.88939323e-03 -8.97571981e-01 6.00947380e-01
1.34295985e-01 -1.30661106e+00 4.26915526e-01 2.79624224e-01
8.59853804e-01 3.12206030e-01 1.28910720e-01 1.33677006e+00
4.98351663e-01 -9.49094355e-01 1.59637809e-01 9.53953385e-01
7.14236379e-01 -7.80429602e-01 1.45592296e+00 -3.01815141e-02
-1.09509194e+00 1.48215294e-01 -4.88409907e-01 3.05101603e-01
1.35466326e-02 6.37103915e-01 -4.54298258e-01 1.17093027e+00
4.89913076e-01 7.62647688e-01 -6.79926991e-01 1.36332989e+00
-2.08919778e-01 2.98084527e-01 -2.72201896e-01 -2.01475203e-01
7.85048902e-01 1.94711700e-01 1.42225340e-01 1.30132818e+00
4.80134815e-01 5.90710267e-02 1.81932852e-01 -7.11066648e-02
-2.96439648e-01 1.70689732e-01 -3.83270383e-01 1.77870691e-02
4.78637308e-01 1.15184867e+00 -2.20244035e-01 -6.37907624e-01
-2.33132854e-01 9.08964813e-01 2.01977551e-01 5.59855223e-01
-4.76192862e-01 -4.09713984e-01 -3.96397114e-01 3.81367793e-03
2.79982746e-01 -1.17761478e-01 1.80675313e-01 -1.00402236e+00
-1.87530279e-01 -7.62017727e-01 6.32351756e-01 -7.82996833e-01
-1.26880991e+00 6.54763997e-01 1.69491634e-01 -1.20233059e+00
-4.37064111e-01 -2.86207110e-01 -4.34810400e-01 1.05184007e+00
-1.62688684e+00 -1.25455892e+00 1.84682071e-01 6.28542423e-01
4.76842463e-01 -4.82961625e-01 9.24842656e-01 7.27059484e-01
2.25882865e-02 7.12554157e-01 8.49545479e-01 7.35332444e-02
8.05464447e-01 -1.24845159e+00 -1.93823446e-02 2.94953853e-01
2.04401031e-01 1.27921069e+00 4.06057507e-01 -8.12642932e-01
-1.07781172e+00 -9.05204177e-01 1.50678575e+00 -3.92722547e-01
4.53151852e-01 -8.38359222e-02 -6.31909430e-01 3.45936120e-01
4.30639744e-01 -2.39067286e-01 8.14817011e-01 9.26450133e-01
-3.29107046e-01 -2.62012124e-01 -9.18876350e-01 1.55491814e-01
4.31615859e-01 -1.02377105e+00 -7.48886585e-01 4.82601702e-01
4.32442874e-01 -3.17211151e-01 -8.99174273e-01 7.67003894e-01
9.22178149e-01 -5.08637011e-01 8.23498189e-01 -5.83979547e-01
7.00574815e-01 -1.51882395e-01 -4.12943929e-01 -1.19202936e+00
-5.80050468e-01 -6.70398846e-02 -3.01788777e-01 1.02737522e+00
5.57066023e-01 3.52350101e-02 9.43370759e-01 3.66636515e-01
-2.19767198e-01 -8.03275049e-01 -8.93520117e-01 -8.33886623e-01
4.50943887e-01 1.32423952e-01 2.07791001e-01 5.44705272e-01
-3.12148809e-01 5.70314825e-01 -6.35985613e-01 -2.94988871e-01
2.84201652e-01 -1.72867909e-01 4.35012192e-01 -1.33018661e+00
-3.40909064e-01 -2.23012358e-01 -2.83933789e-01 -1.26330113e+00
-2.63563693e-01 -9.47559297e-01 3.42143625e-01 -1.95382810e+00
7.37452745e-01 -2.76469111e-01 -1.41263580e+00 2.44007751e-01
-1.59030959e-01 4.84346360e-01 -5.47908656e-02 5.26642561e-01
-1.50427890e+00 5.93619049e-01 1.12477815e+00 -2.71407217e-01
8.08885992e-02 -1.85698524e-01 -6.12171471e-01 -3.57956961e-02
3.95269036e-01 -5.67500651e-01 -4.85938311e-01 -7.78740525e-01
6.63506746e-01 1.89675152e-01 -3.92358266e-02 -9.46013868e-01
5.48494041e-01 5.15815437e-01 4.98784751e-01 -1.22951186e+00
4.76634711e-01 -6.00008428e-01 -1.51777729e-01 2.62204170e-01
-8.98233533e-01 1.34224012e-01 1.12764239e-01 6.54948175e-01
-8.12320471e-01 -5.26324987e-01 1.18617594e-01 -2.95810580e-01
-5.98107934e-01 4.07521069e-01 -4.13707495e-01 -3.35304737e-01
2.76391327e-01 1.80400968e-01 -4.38287318e-01 -5.87570965e-01
-7.33912885e-01 5.48164189e-01 -1.52759664e-02 3.26344579e-01
6.78312659e-01 -1.60294425e+00 -9.60914314e-01 -4.09181088e-01
4.25080359e-01 -2.19258860e-01 5.29560506e-01 5.64715505e-01
-4.30292338e-01 1.08628094e+00 -1.18780220e-02 -3.15019220e-01
-1.07676136e+00 9.57601443e-02 1.26214519e-01 -1.47601163e+00
-1.54642820e-01 9.71185207e-01 -7.93090612e-02 -5.07162392e-01
2.83397138e-01 4.76036370e-01 -6.03837013e-01 1.88932970e-01
6.44518971e-01 7.55695999e-02 6.13605499e-01 -1.22382864e-01
-3.76507044e-01 4.88580048e-01 -1.06568015e+00 -6.80970550e-01
1.25641596e+00 -5.95203340e-02 -2.08489969e-02 2.67750889e-01
1.38695133e+00 4.72627655e-02 -4.79506850e-01 -4.36492622e-01
2.77099103e-01 -1.66671991e-01 7.55846620e-01 -1.53881085e+00
-8.72617602e-01 8.70994329e-01 8.44862819e-01 -9.78218392e-02
1.04095018e+00 -2.92937517e-01 7.49576628e-01 8.64009857e-01
4.74731743e-01 -1.45861018e+00 1.88252702e-01 1.10737967e+00
1.04736471e+00 -1.21651721e+00 3.86546493e-01 4.65455890e-01
-3.20512801e-01 7.23588526e-01 2.16557831e-01 -3.65853608e-01
7.91100800e-01 -1.81440368e-01 1.06334046e-01 -7.30362713e-01
-1.09887588e+00 -2.67276019e-01 9.83940601e-01 2.22505331e-01
1.17693269e+00 -1.62667438e-01 -9.86266613e-01 1.85492069e-01
1.23570621e-01 2.16611594e-01 -1.99367061e-01 1.08075964e+00
-6.01812541e-01 -1.45715952e+00 2.13109583e-01 6.82011664e-01
-6.22631490e-01 -6.60345495e-01 -5.30050099e-01 6.65180147e-01
-3.51348788e-01 8.84295583e-01 -1.26623034e-01 -7.13909984e-01
4.94008437e-02 9.26113352e-02 6.33986235e-01 -8.00365210e-01
-1.03316212e+00 4.37268615e-01 4.95817333e-01 -5.28692305e-01
-4.49531943e-01 -4.90103126e-01 -6.95355058e-01 7.29499385e-03
-5.46106637e-01 7.84395695e-01 8.88853490e-01 8.55360866e-01
3.80434453e-01 3.99746954e-01 5.57293534e-01 -5.72011113e-01
-6.33713365e-01 -1.46203911e+00 -6.69168770e-01 1.24300331e-01
-1.16733625e-03 -4.53788400e-01 -1.03851140e-01 -6.15661919e-01]
|
[11.496105194091797, 7.6093525886535645]
|
6102ac67-f41f-4ff4-9611-f15104e7e147
|
deconvolutional-paragraph-representation
|
1708.04729
| null |
http://arxiv.org/abs/1708.04729v3
|
http://arxiv.org/pdf/1708.04729v3.pdf
|
Deconvolutional Paragraph Representation Learning
|
Learning latent representations from long text sequences is an important
first step in many natural language processing applications. Recurrent Neural
Networks (RNNs) have become a cornerstone for this challenging task. However,
the quality of sentences during RNN-based decoding (reconstruction) decreases
with the length of the text. We propose a sequence-to-sequence, purely
convolutional and deconvolutional autoencoding framework that is free of the
above issue, while also being computationally efficient. The proposed method is
simple, easy to implement and can be leveraged as a building block for many
applications. We show empirically that compared to RNNs, our framework is
better at reconstructing and correcting long paragraphs. Quantitative
evaluation on semi-supervised text classification and summarization tasks
demonstrate the potential for better utilization of long unlabeled text data.
|
['Lawrence Carin', 'Yizhe Zhang', 'Zhe Gan', 'Ricardo Henao', 'Guoyin Wang', 'Dinghan Shen']
|
2017-08-16
|
deconvolutional-paragraph-representation-1
|
http://papers.nips.cc/paper/7005-deconvolutional-paragraph-representation-learning
|
http://papers.nips.cc/paper/7005-deconvolutional-paragraph-representation-learning.pdf
|
neurips-2017-12
|
['semi-supervised-text-classification-1']
|
['natural-language-processing']
|
[ 3.92557323e-01 5.27051091e-02 -2.36251980e-01 -3.19920689e-01
-9.31153476e-01 -5.66811383e-01 6.99999213e-01 4.64542508e-02
-4.42486584e-01 8.83275688e-01 9.41666603e-01 -4.54795927e-01
3.27964932e-01 -5.66075265e-01 -7.06298888e-01 -7.00987399e-01
3.88731539e-01 4.65780914e-01 -2.73878038e-01 -1.73344612e-01
3.96941960e-01 1.88404053e-01 -1.32389402e+00 4.15749162e-01
7.57866502e-01 5.36998570e-01 5.16835332e-01 8.85213733e-01
-4.46776539e-01 1.06473851e+00 -3.80805314e-01 -3.87404114e-01
-1.52733013e-01 -6.92557514e-01 -8.78596783e-01 2.08662778e-01
6.86196461e-02 -4.55969244e-01 -4.46611583e-01 9.40060794e-01
5.62980771e-01 8.78245831e-02 7.08025575e-01 -4.26042020e-01
-5.88647485e-01 1.01917267e+00 -2.34211996e-01 1.53101832e-01
1.72901720e-01 -1.10381529e-01 1.25735700e+00 -1.02067053e+00
5.00287414e-01 1.07520449e+00 5.83122909e-01 6.91928566e-01
-1.08999085e+00 -4.56618309e-01 2.68626511e-02 -1.24510005e-01
-8.42744648e-01 -1.04863620e+00 4.86887276e-01 -2.12395817e-01
1.25221384e+00 5.24875522e-02 1.98727489e-01 1.43646014e+00
3.49729985e-01 1.28154123e+00 4.94988501e-01 -5.42855322e-01
8.45286548e-02 -1.00060180e-01 3.28999937e-01 6.82006061e-01
2.68182784e-01 -2.64479160e-01 -5.26279271e-01 1.30101770e-01
6.67132318e-01 3.02982032e-01 -4.84756142e-01 -2.26907209e-02
-1.10438764e+00 9.17687714e-01 -1.11378431e-02 3.44902545e-01
-5.29123068e-01 3.78449321e-01 6.81922734e-01 3.88635099e-01
7.09942997e-01 3.47881347e-01 -2.17770725e-01 -7.31503606e-01
-1.43938363e+00 -1.99270487e-01 8.80475402e-01 7.55162537e-01
3.96063626e-01 4.49702680e-01 -1.74321935e-01 1.01973033e+00
8.43816772e-02 1.73142508e-01 1.04121661e+00 -7.46266544e-01
7.39239216e-01 4.09793705e-01 6.64352179e-02 -5.52530766e-01
-2.76783884e-01 -5.83426595e-01 -1.17425430e+00 -2.14225560e-01
1.38265938e-01 -1.88248068e-01 -8.56876493e-01 1.51794720e+00
-3.37496936e-01 2.55422257e-02 3.85233194e-01 5.88297009e-01
7.41753280e-01 1.08359218e+00 -1.98912144e-01 -5.19029498e-01
1.00548577e+00 -1.22242427e+00 -9.27830994e-01 -4.38035339e-01
7.25263476e-01 -7.17365205e-01 9.18386161e-01 3.49970639e-01
-1.28262138e+00 -3.15184146e-01 -9.96216953e-01 -4.18914884e-01
1.30000874e-01 3.83348912e-01 5.10271430e-01 5.11374831e-01
-1.07051528e+00 7.37538636e-01 -1.10090756e+00 -3.34958285e-01
3.15679014e-01 2.64754415e-01 -3.08948219e-01 -1.17030285e-01
-8.65749538e-01 8.02395463e-01 4.12157714e-01 2.96249479e-01
-7.91297734e-01 -2.65394628e-01 -8.67962837e-01 6.18015289e-01
1.10929847e-01 -5.51438212e-01 1.45729601e+00 -9.85299706e-01
-1.85638392e+00 4.78222847e-01 -5.07803261e-01 -8.93003762e-01
3.51689160e-01 -5.17548740e-01 -9.29180160e-02 1.84837073e-01
-8.45255405e-02 4.25381094e-01 8.74937177e-01 -6.94905877e-01
-1.53642088e-01 -9.11190826e-03 -4.31882054e-01 2.39512995e-01
-4.67811525e-01 -4.89449576e-02 -3.05138677e-01 -8.16383481e-01
6.74083307e-02 -7.58872092e-01 -2.39601463e-01 -3.11965048e-01
-3.97220105e-01 -1.46521613e-01 5.98800898e-01 -9.26403642e-01
1.19986653e+00 -1.89903522e+00 3.57781172e-01 -3.12457502e-01
7.85597693e-03 5.48434854e-01 -2.16290623e-01 7.01009095e-01
-6.50219526e-03 1.55948743e-01 -4.15037543e-01 -7.33497500e-01
-2.07406119e-01 2.59063661e-01 -7.05901623e-01 3.00269037e-01
1.77707285e-01 1.24261820e+00 -7.97822118e-01 -7.04516396e-02
8.88705701e-02 6.13721192e-01 -2.79138744e-01 2.05472782e-01
-3.02710146e-01 4.17740673e-01 -2.72396505e-01 2.84259856e-01
5.65670915e-02 -6.08036160e-01 2.04811901e-01 2.83449411e-01
-5.68216927e-02 9.58280385e-01 -6.86010242e-01 1.95251775e+00
-6.87057614e-01 1.10807061e+00 -1.57720596e-01 -1.11831450e+00
8.78574193e-01 7.56691396e-01 1.75924018e-01 -4.45726782e-01
2.76036382e-01 1.93475246e-01 -2.25668311e-01 -4.68282938e-01
8.79016280e-01 -1.93023995e-01 7.44598508e-02 1.14415479e+00
2.44232506e-01 1.86990291e-01 2.21530199e-01 3.36024672e-01
1.19867015e+00 4.34109289e-03 5.54309249e-01 7.66621083e-02
3.16057056e-01 -3.32477629e-01 2.53149241e-01 6.95121825e-01
8.73221532e-02 8.38441372e-01 4.79894400e-01 -3.50993574e-01
-1.41073799e+00 -6.77951157e-01 2.01410174e-01 8.73760998e-01
-4.32124078e-01 -4.60814863e-01 -6.69441819e-01 -5.18472075e-01
-3.66055310e-01 8.19244266e-01 -3.19433302e-01 -7.77937993e-02
-6.22738004e-01 -5.24970174e-01 8.30932975e-01 6.83531165e-01
3.36611092e-01 -1.17822242e+00 -3.50243509e-01 5.69036722e-01
-6.62075758e-01 -1.11908841e+00 -4.66952235e-01 3.19438368e-01
-1.29927433e+00 -5.97088695e-01 -9.15107846e-01 -7.67858148e-01
7.32688308e-01 5.56447208e-01 1.03394961e+00 4.22532596e-02
3.09606697e-02 3.06255043e-01 -6.02554619e-01 -7.19740242e-02
-8.33410144e-01 3.94894540e-01 -8.35110992e-02 -1.29398867e-01
2.28887126e-01 -6.13532841e-01 -4.34492201e-01 -6.24597296e-02
-9.19489086e-01 2.84950525e-01 7.93766081e-01 1.15457070e+00
4.31471735e-01 -2.06142232e-01 6.86315417e-01 -1.13814521e+00
9.07756150e-01 -4.86777782e-01 -4.03103530e-01 2.17656568e-01
-5.65430164e-01 4.85770524e-01 8.25221837e-01 -2.26544574e-01
-1.13440788e+00 6.26156926e-02 -4.22370851e-01 -5.99886775e-02
-6.97408710e-03 7.30991185e-01 1.14814378e-01 5.08091271e-01
5.86094022e-01 5.95558643e-01 1.26873493e-01 -6.51339054e-01
2.90281475e-01 9.13619995e-01 4.60090727e-01 -2.20814437e-01
4.41281706e-01 4.47567374e-01 -3.33026886e-01 -9.89745736e-01
-9.29556012e-01 -6.25115037e-01 -6.51122630e-01 1.51933357e-01
5.87502658e-01 -1.03910089e+00 -2.69036949e-01 2.52254635e-01
-1.37718451e+00 -2.06511945e-01 -1.54218882e-01 4.31431860e-01
-5.04823327e-01 6.77990794e-01 -9.12713826e-01 -8.40241551e-01
-9.41944957e-01 -1.08887863e+00 1.05561328e+00 -7.40572363e-02
-2.64714599e-01 -1.06472659e+00 5.30700311e-02 3.56580496e-01
4.08280671e-01 -2.88120508e-01 7.17802823e-01 -6.90465152e-01
-5.51905036e-01 -3.33040386e-01 -1.89554363e-01 5.96929848e-01
1.62648126e-01 -1.62456244e-01 -9.73662496e-01 -3.09176981e-01
1.88793629e-01 -4.73761469e-01 1.48937249e+00 4.30132687e-01
9.90921319e-01 -6.69629693e-01 -1.35238571e-02 4.34257984e-01
1.36563718e+00 -3.60108435e-01 8.64760101e-01 1.69521589e-02
6.74912930e-01 5.69238067e-01 1.11551717e-01 3.65898699e-01
1.86780378e-01 1.80526689e-01 1.53127104e-01 2.95592517e-01
-2.08701581e-01 -3.41325134e-01 7.74403512e-01 1.59153700e+00
4.80875671e-02 -5.72663069e-01 -8.86014581e-01 6.19945228e-01
-1.93758368e+00 -1.16785550e+00 -1.61819100e-01 1.99874651e+00
9.61942554e-01 1.91351950e-01 -2.62932628e-01 3.09949249e-01
5.98804235e-01 2.78582871e-01 -4.00255740e-01 -5.89419186e-01
-9.28895250e-02 1.66053116e-01 3.65193546e-01 4.64146435e-01
-7.34562576e-01 1.01227033e+00 6.65216446e+00 5.53068459e-01
-1.14245605e+00 3.19204992e-03 5.31830847e-01 -6.71036169e-03
-2.72259057e-01 -2.22928956e-01 -8.76183867e-01 3.95074904e-01
1.47030139e+00 4.96191867e-02 3.85835886e-01 6.39598548e-01
4.63040739e-01 -5.11808209e-02 -1.22648406e+00 8.50628853e-01
1.90700144e-01 -1.78550148e+00 1.84015498e-01 -1.95421651e-01
7.90592492e-01 3.55297893e-01 2.09205900e-03 3.01708847e-01
2.56237417e-01 -1.16306329e+00 5.32976627e-01 2.51696795e-01
9.40232873e-01 -6.95390582e-01 8.74528289e-01 6.74122214e-01
-9.28518474e-01 2.16596834e-02 -5.35661817e-01 -2.14106798e-01
3.27808082e-01 7.58696198e-01 -9.37242508e-01 2.46977955e-01
3.88299048e-01 1.00820124e+00 -3.19912195e-01 8.56706738e-01
-5.15857697e-01 1.01955807e+00 -1.95603375e-03 -1.78588688e-01
2.81645238e-01 -9.31087956e-02 5.23810744e-01 1.41403747e+00
2.56435245e-01 -1.40662968e-01 -2.17226461e-01 6.50539815e-01
-5.77688992e-01 3.35111544e-02 -6.82017326e-01 -6.22047901e-01
2.67569304e-01 9.57188725e-01 -8.53059590e-01 -3.58184993e-01
-5.02642632e-01 1.34954393e+00 5.31647027e-01 5.06100655e-01
-4.29565847e-01 -3.52591664e-01 3.18196654e-01 -2.27597669e-01
6.04049206e-01 -5.71643531e-01 -4.50326055e-01 -1.56982887e+00
9.33205038e-02 -8.88624012e-01 -3.20646092e-02 -6.79067433e-01
-1.01331735e+00 5.77414036e-01 -6.31521642e-01 -1.18428671e+00
-6.69339061e-01 -4.67367172e-01 -5.13818145e-01 7.50498533e-01
-1.79551947e+00 -9.14195895e-01 -3.21388654e-02 2.54021227e-01
1.20479321e+00 -1.91559285e-01 1.07289886e+00 1.30546644e-01
-5.54908097e-01 4.51440662e-01 8.54368210e-01 2.51594126e-01
5.29277623e-01 -1.07354331e+00 6.51955724e-01 1.08240974e+00
4.82154191e-01 8.62559497e-01 7.29111314e-01 -5.61472535e-01
-1.40286326e+00 -1.12584662e+00 1.16853881e+00 -2.39411145e-01
5.89671731e-01 -5.23723423e-01 -9.76718545e-01 8.73637319e-01
4.69370931e-01 -5.07242799e-01 9.37408149e-01 1.48480326e-01
-3.49079043e-01 2.15677589e-01 -4.77873385e-01 5.92195868e-01
5.81127048e-01 -9.10311103e-01 -8.00180614e-01 2.19075918e-01
7.69052088e-01 -3.33400428e-01 -3.63704085e-01 -8.37761015e-02
6.00745201e-01 -8.74487698e-01 6.55107319e-01 -3.59619975e-01
9.29695129e-01 1.10123359e-01 3.33397761e-02 -1.35714388e+00
-9.25864503e-02 -8.21430981e-01 -4.15910423e-01 1.21632731e+00
4.97191995e-01 -3.79704654e-01 9.52760041e-01 2.67693132e-01
-2.72939920e-01 -5.70282638e-01 -7.51805425e-01 -5.94340205e-01
6.52679354e-02 -4.85303938e-01 1.20609209e-01 6.66434884e-01
1.20792195e-01 7.28259206e-01 -8.23803306e-01 -2.29007870e-01
3.05733830e-01 2.59230249e-02 6.07072115e-01 -1.14044702e+00
-2.89383739e-01 -4.95741367e-01 2.90713762e-03 -1.65492129e+00
3.64116848e-01 -1.01340604e+00 2.45046020e-01 -1.92152822e+00
2.50391424e-01 9.94859189e-02 -1.30243152e-01 2.94003904e-01
-3.11155953e-02 7.45447129e-02 -4.45509031e-02 5.19105911e-01
-6.32919967e-01 7.91191995e-01 9.00269151e-01 -1.15039840e-01
-6.54724240e-02 1.47280663e-01 -7.05486417e-01 4.82253939e-01
8.59302342e-01 -5.73069096e-01 -3.09162229e-01 -6.99297309e-01
4.76339906e-01 2.15736538e-01 -1.25840709e-01 -6.78665400e-01
5.13716698e-01 2.84038931e-01 1.49231523e-01 -8.87383282e-01
2.84600407e-01 -6.20977879e-01 -2.05873519e-01 3.94412100e-01
-7.39432037e-01 -2.82850973e-02 -2.70432923e-02 7.87468433e-01
-3.89315844e-01 -5.39800286e-01 5.42704761e-01 -3.15110534e-01
-3.31417620e-01 2.59167403e-02 -6.78182960e-01 -9.99249667e-02
4.88228709e-01 -2.18853518e-01 -2.52691120e-01 -7.16151655e-01
-3.22357565e-01 9.72697735e-02 2.75742978e-01 4.03724611e-01
8.13840866e-01 -9.45233524e-01 -8.60729396e-01 1.45766288e-01
-1.22909941e-01 -1.68319046e-02 -3.68814878e-02 6.11315429e-01
-6.16326094e-01 9.07935143e-01 -4.00382131e-02 -4.58676726e-01
-1.14091802e+00 2.92041868e-01 1.07328547e-02 -6.36726260e-01
-9.10145581e-01 8.71250629e-01 5.61906919e-02 -2.20487997e-01
4.42228884e-01 -3.14446509e-01 -3.41029465e-01 9.97626632e-02
7.96060681e-01 2.40378976e-01 1.67456865e-01 -4.87647831e-01
2.58735120e-01 1.32933050e-01 -4.57812220e-01 -1.31201714e-01
1.77702105e+00 -4.80871737e-01 -1.74769416e-01 7.57075727e-01
1.22201264e+00 -1.57604307e-01 -1.18877614e+00 -3.76978815e-01
2.32948154e-01 3.12856846e-02 1.51814416e-01 -4.82691765e-01
-7.65607059e-01 1.32545125e+00 -2.53358241e-02 1.05422415e-01
8.10225964e-01 -3.22323650e-01 1.15539074e+00 7.36374736e-01
-1.00665987e-02 -1.04791093e+00 3.34462315e-01 8.94902229e-01
7.17949033e-01 -1.31440902e+00 5.62494025e-02 9.43525061e-02
-6.75154328e-01 1.52840066e+00 3.78768705e-02 -1.27971098e-01
3.25839430e-01 1.93418950e-01 -1.30609542e-01 6.57948200e-03
-1.05699944e+00 3.57448980e-02 1.61562517e-01 2.02412561e-01
8.65296364e-01 -1.50309592e-01 -1.94688514e-01 3.88344198e-01
-1.15962900e-01 -8.83383006e-02 9.60888982e-01 8.69296670e-01
-6.44682348e-01 -1.21672881e+00 -1.42631456e-01 6.23587668e-01
-8.18223178e-01 -4.88516510e-01 -1.07052878e-01 4.42764685e-02
-7.64065564e-01 8.98583293e-01 -8.19774792e-02 -1.28123522e-01
-2.79726118e-01 3.72088671e-01 1.94389373e-01 -9.57307994e-01
-5.77012420e-01 1.29361570e-01 1.89602733e-01 -2.35519856e-01
-4.82914150e-01 -5.47896087e-01 -1.18810976e+00 -3.19492102e-01
-5.69858432e-01 2.14959711e-01 9.16658580e-01 1.19238508e+00
4.48837459e-01 5.81906438e-01 4.99475300e-01 -7.05722928e-01
-6.08380497e-01 -1.06826377e+00 -3.32329333e-01 6.89494759e-02
6.61406040e-01 -9.97326449e-02 -2.43110612e-01 3.34549278e-01]
|
[12.095929145812988, 9.210652351379395]
|
98568a5d-a361-44fa-81eb-512885c51708
|
transformer-based-deep-image-matching-for
|
2105.14432
| null |
https://arxiv.org/abs/2105.14432v2
|
https://arxiv.org/pdf/2105.14432v2.pdf
|
TransMatcher: Deep Image Matching Through Transformers for Generalizable Person Re-identification
|
Transformers have recently gained increasing attention in computer vision. However, existing studies mostly use Transformers for feature representation learning, e.g. for image classification and dense predictions, and the generalizability of Transformers is unknown. In this work, we further investigate the possibility of applying Transformers for image matching and metric learning given pairs of images. We find that the Vision Transformer (ViT) and the vanilla Transformer with decoders are not adequate for image matching due to their lack of image-to-image attention. Thus, we further design two naive solutions, i.e. query-gallery concatenation in ViT, and query-gallery cross-attention in the vanilla Transformer. The latter improves the performance, but it is still limited. This implies that the attention mechanism in Transformers is primarily designed for global feature aggregation, which is not naturally suitable for image matching. Accordingly, we propose a new simplified decoder, which drops the full attention implementation with the softmax weighting, keeping only the query-key similarity computation. Additionally, global max pooling and a multilayer perceptron (MLP) head are applied to decode the matching result. This way, the simplified decoder is computationally more efficient, while at the same time more effective for image matching. The proposed method, called TransMatcher, achieves state-of-the-art performance in generalizable person re-identification, with up to 6.1% and 5.7% performance gains in Rank-1 and mAP, respectively, on several popular datasets. Code is available at https://github.com/ShengcaiLiao/QAConv.
|
['Ling Shao', 'Shengcai Liao']
|
2021-05-30
|
transmatcher-deep-image-matching-through
|
http://proceedings.neurips.cc/paper/2021/hash/0f49c89d1e7298bb9930789c8ed59d48-Abstract.html
|
http://proceedings.neurips.cc/paper/2021/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
|
neurips-2021-12
|
['generalizable-person-re-identification']
|
['computer-vision']
|
[ 1.57181293e-01 -2.87169456e-01 -2.30289325e-02 -4.10700262e-01
-7.53493309e-01 -3.36393476e-01 6.60919487e-01 1.62453264e-01
-6.09920621e-01 3.09602559e-01 4.04397361e-02 -2.01012671e-01
5.96195161e-02 -8.52444589e-01 -7.71924973e-01 -5.76019824e-01
4.83875155e-01 1.94798797e-01 1.85555339e-01 1.77900381e-02
9.70131829e-02 2.63439000e-01 -1.63382649e+00 2.67464876e-01
9.73792374e-01 1.35781419e+00 4.27166879e-01 3.66115481e-01
1.63313560e-02 6.29638374e-01 -3.43805879e-01 -1.07952631e+00
2.75959760e-01 -4.24462050e-01 -6.80113912e-01 -6.38990775e-02
7.30986655e-01 -4.27575499e-01 -7.71279037e-01 1.20177770e+00
7.89174080e-01 1.04394481e-01 3.78993541e-01 -1.36049592e+00
-8.84983480e-01 4.70850468e-01 -4.89315927e-01 1.45539522e-01
3.53630006e-01 1.79748952e-01 1.16084063e+00 -1.03864980e+00
8.51673912e-03 1.19761634e+00 6.25206053e-01 5.06634355e-01
-1.07145345e+00 -8.47401023e-01 4.89552356e-02 7.06909716e-01
-1.63591218e+00 -6.02381527e-01 5.84446788e-01 -2.37811729e-01
9.52767432e-01 4.91089523e-01 5.60593843e-01 9.26115513e-01
-6.03475608e-02 8.77296984e-01 9.64327276e-01 -1.71157151e-01
-2.43370265e-01 2.27581322e-01 1.01442851e-01 7.17321157e-01
1.72241211e-01 5.81300929e-02 -4.01832789e-01 8.92625451e-02
7.01767981e-01 3.50804478e-01 -4.23359901e-01 -1.26457691e-01
-1.18472219e+00 6.17269874e-01 9.31615949e-01 1.75965905e-01
-2.57689595e-01 7.35336542e-02 3.60800177e-01 4.50975776e-01
2.45282829e-01 2.65896052e-01 -1.21448882e-01 1.50253117e-01
-8.85160565e-01 2.33267874e-01 3.92467976e-01 8.62603843e-01
7.96767950e-01 -2.30406195e-01 -5.13489306e-01 1.03422892e+00
1.37164250e-01 6.51513040e-01 6.97414160e-01 -5.58286428e-01
7.26343930e-01 7.07817256e-01 -1.06127955e-01 -1.06083667e+00
-3.67301106e-01 -5.29881001e-01 -1.07063329e+00 -1.39878556e-01
4.38663691e-01 1.81836069e-01 -9.12750900e-01 1.76389503e+00
3.71999778e-02 4.10839647e-01 -5.96889555e-02 1.13576794e+00
9.75802302e-01 3.45058143e-01 7.04984367e-02 1.81346744e-01
1.64366984e+00 -1.10279918e+00 -4.43689942e-01 -3.18828821e-01
4.88818586e-01 -8.16673517e-01 1.11869884e+00 -5.99606149e-02
-1.09417367e+00 -8.59968424e-01 -9.43555892e-01 -3.24451774e-01
-3.55921447e-01 3.74212891e-01 4.08351213e-01 6.40290618e-01
-1.00372910e+00 5.58758080e-01 -7.06085742e-01 -4.77023602e-01
4.36662793e-01 5.15337944e-01 -5.09739995e-01 -3.66583049e-01
-1.23875153e+00 9.50416923e-01 7.47529864e-02 2.93465018e-01
-6.41004920e-01 -5.10558069e-01 -8.94150376e-01 2.81797945e-01
1.76219299e-01 -8.78049493e-01 1.17805350e+00 -7.84283817e-01
-1.32481956e+00 1.00231826e+00 -3.43384147e-01 -4.56351876e-01
5.61561942e-01 -7.82149583e-02 -3.36165488e-01 -6.61527663e-02
1.31310970e-01 7.24937260e-01 7.75211215e-01 -9.22493637e-01
-6.77831233e-01 -5.78815699e-01 1.89652175e-01 2.55773187e-01
-6.78747296e-01 1.81929469e-02 -8.69839966e-01 -7.06158459e-01
1.21817157e-01 -8.69832575e-01 -8.31594169e-02 9.54812244e-02
-4.93750334e-01 -3.12293947e-01 2.83476174e-01 -9.58543062e-01
1.34046829e+00 -2.11170220e+00 9.28191766e-02 2.42818981e-01
2.50444114e-01 3.52647156e-01 -2.90425897e-01 2.21884370e-01
6.30576303e-03 6.32654205e-02 -2.04737455e-01 -7.09991813e-01
4.37299795e-02 -3.91878337e-02 -2.46879645e-02 4.94243622e-01
6.69281334e-02 1.22796190e+00 -6.21491492e-01 -3.61274093e-01
2.38826245e-01 4.07147795e-01 -5.45930505e-01 2.38764644e-01
3.55507702e-01 2.59245634e-01 -3.63076091e-01 6.07123375e-01
8.98726344e-01 -3.09022874e-01 2.08443105e-02 -6.10382318e-01
-4.67729829e-02 2.74751037e-01 -9.93894398e-01 1.61796010e+00
-4.92143869e-01 4.84447449e-01 -1.50593027e-01 -1.11126852e+00
8.70352685e-01 1.78313479e-01 2.57823408e-01 -1.17630017e+00
1.17658600e-01 2.58060306e-01 -5.75444661e-02 -4.08849627e-01
3.28646392e-01 4.80124131e-02 -1.86631046e-02 2.34468192e-01
-4.17850092e-02 4.16414708e-01 -1.67370141e-02 -1.22119347e-02
7.93024063e-01 -1.82584628e-01 4.71533127e-02 -3.66164632e-02
7.65556633e-01 -3.86093527e-01 5.45492947e-01 7.36482382e-01
-1.60718486e-01 8.65427792e-01 1.84227645e-01 -1.67321056e-01
-9.54364657e-01 -9.75576758e-01 -4.41904105e-02 1.03342474e+00
6.66780651e-01 -4.81124610e-01 -7.56455898e-01 -4.49014992e-01
9.17000175e-02 3.27975243e-01 -4.94727403e-01 -5.40823102e-01
-6.13641381e-01 -6.21018171e-01 6.44639432e-01 5.18717229e-01
9.86080050e-01 -9.04945552e-01 -3.59751761e-01 1.57032311e-02
-4.92230117e-01 -1.19508755e+00 -8.55754018e-01 -3.65157217e-01
-6.33964837e-01 -1.09950006e+00 -1.15990984e+00 -8.93115044e-01
6.09387696e-01 5.91397047e-01 8.51739049e-01 2.26707101e-01
-5.65130375e-02 1.90083981e-01 -2.75269926e-01 2.16452722e-02
-1.75193399e-02 2.01852188e-01 2.62433570e-02 4.73580599e-01
4.20509070e-01 -3.17706913e-01 -9.84992385e-01 5.03025532e-01
-6.53889716e-01 6.82258457e-02 8.07128549e-01 1.06622577e+00
4.83544827e-01 -2.00167149e-01 4.43584561e-01 -4.49555904e-01
4.97565061e-01 -2.70785719e-01 -3.61538172e-01 4.64776188e-01
-6.01019204e-01 7.42156990e-03 6.68557405e-01 -4.38212365e-01
-9.10596073e-01 -1.98528003e-02 -4.00197476e-01 -5.50434530e-01
2.65908167e-02 3.32072943e-01 -3.96714807e-01 -2.99795151e-01
4.51610208e-01 3.98292333e-01 -5.87619059e-02 -7.42823958e-01
1.03272848e-01 8.36105764e-01 6.34315252e-01 -2.77703226e-01
7.19463050e-01 2.76257753e-01 -3.84706557e-01 -5.22980630e-01
-5.83774686e-01 -4.23620224e-01 -2.35193759e-01 7.32832626e-02
8.22011709e-01 -1.04357445e+00 -8.47780287e-01 7.53079832e-01
-1.05927920e+00 -1.73266977e-01 4.89712618e-02 5.83315551e-01
-2.75099099e-01 5.13710260e-01 -6.59472644e-01 -3.91191870e-01
-5.78447521e-01 -1.36258709e+00 9.70418155e-01 3.62974942e-01
9.87192243e-02 -4.97046471e-01 -3.93698990e-01 6.37963235e-01
4.75769609e-01 -2.37539351e-01 6.55565083e-01 -5.51420331e-01
-6.49551988e-01 -2.43015677e-01 -7.77154803e-01 3.33245933e-01
4.44361158e-02 -6.18072271e-01 -1.17782700e+00 -5.78329861e-01
-2.36810446e-01 -1.47540674e-01 1.15398002e+00 1.83469146e-01
1.42689383e+00 -3.11809093e-01 -3.80208462e-01 8.23910594e-01
1.26674700e+00 -5.54053895e-02 8.81821096e-01 3.43713135e-01
9.05417562e-01 4.64573115e-01 2.75785416e-01 3.08551788e-01
8.07202637e-01 1.09663701e+00 2.85776198e-01 -1.85132593e-01
-2.92086571e-01 -3.30121636e-01 3.53303611e-01 5.82713246e-01
-8.22826773e-02 -3.02803218e-01 -7.61245191e-01 5.37269592e-01
-1.91216052e+00 -8.68652463e-01 6.33249879e-02 2.54405713e+00
5.25112569e-01 -4.28350829e-02 8.02511573e-02 8.03593695e-02
8.96791220e-01 -3.03578489e-02 -5.97914636e-01 -7.35357851e-02
-1.15377419e-01 2.08262935e-01 6.07660294e-01 3.98236930e-01
-1.12318659e+00 8.27843189e-01 4.53816795e+00 9.80454564e-01
-1.11100888e+00 3.41306090e-01 5.76420188e-01 3.91148552e-02
-2.23228931e-01 -1.64239109e-01 -6.51389658e-01 6.76848531e-01
6.26713216e-01 -5.65189533e-02 5.11596441e-01 4.68706906e-01
6.24255724e-02 2.90075928e-01 -1.10451603e+00 1.54847229e+00
1.55821487e-01 -1.03852880e+00 2.73359150e-01 -3.72771993e-02
3.23543668e-01 2.02102773e-02 1.89385429e-01 3.27090651e-01
-4.13017392e-01 -9.24183547e-01 7.52964258e-01 5.78865945e-01
9.59614158e-01 -6.80317640e-01 8.99081111e-01 1.43785208e-01
-1.48217511e+00 -2.47977674e-01 -4.70363200e-01 1.33174047e-01
-4.68827086e-03 3.32665443e-01 -1.97511688e-01 6.51574433e-01
8.36785018e-01 7.42438793e-01 -8.42519343e-01 1.41768777e+00
-1.32684410e-02 3.16377193e-01 -2.12352335e-01 1.85586914e-01
5.05293319e-05 -1.85928326e-02 3.15191001e-01 1.17446697e+00
5.02173305e-01 -1.72385842e-01 2.22205818e-01 6.66461110e-01
-3.20627779e-01 1.07007049e-01 -3.34808290e-01 3.94283354e-01
5.78791678e-01 1.11988652e+00 -3.46795470e-01 -3.65806133e-01
-6.34455740e-01 1.42971075e+00 4.14154619e-01 4.45215493e-01
-9.34374154e-01 -6.00646257e-01 8.71188581e-01 9.63634998e-02
3.43295276e-01 1.79207101e-01 -2.08476216e-01 -1.43403435e+00
4.09237117e-01 -9.03489709e-01 4.33474928e-01 -4.78183210e-01
-1.46719217e+00 6.88499451e-01 -1.61596566e-01 -1.22313273e+00
-5.64634949e-02 -5.75023711e-01 -6.30455494e-01 9.99301374e-01
-1.62571061e+00 -1.31465435e+00 -6.24666572e-01 8.63839030e-01
3.10157418e-01 -1.05139978e-01 6.24146998e-01 8.85214269e-01
-8.53334963e-01 1.44798887e+00 1.32098524e-02 2.66815513e-01
7.54357815e-01 -1.01002848e+00 6.21314406e-01 9.24938381e-01
1.16892792e-01 5.85145056e-01 2.70090520e-01 -2.86501944e-01
-1.40146768e+00 -1.18451107e+00 1.16359031e+00 -1.59605131e-01
3.51941675e-01 -5.33581376e-01 -1.06180668e+00 3.73187959e-01
3.22377235e-02 -1.70216039e-02 3.90540063e-01 -1.72632113e-01
-5.50022602e-01 -4.83718276e-01 -1.14242709e+00 6.93668723e-01
1.23295236e+00 -8.01813662e-01 -3.34965527e-01 1.49940863e-01
6.03858709e-01 -2.43051574e-01 -8.00966680e-01 3.67684931e-01
7.32147753e-01 -9.59062696e-01 1.26417100e+00 -2.03716755e-01
1.92988571e-02 -4.03596461e-01 -3.02468300e-01 -1.01171780e+00
-5.49220979e-01 -3.59076113e-01 9.10920929e-03 1.38374984e+00
2.86470562e-01 -9.60643053e-01 7.71723449e-01 6.13170981e-01
-6.77471235e-02 -7.45463967e-01 -9.95237172e-01 -7.04083741e-01
-1.39769495e-01 -3.35612237e-01 7.43717313e-01 7.95829535e-01
-2.23331749e-01 4.17700142e-01 -5.73195934e-01 1.93926156e-01
6.57864451e-01 1.88117892e-01 6.18104339e-01 -1.02197695e+00
-4.03217584e-01 -7.17935622e-01 -5.77577591e-01 -1.46798229e+00
9.98093560e-02 -1.15518761e+00 -2.63824075e-01 -1.48291838e+00
4.63243216e-01 -4.80934113e-01 -4.66324031e-01 4.91071224e-01
-3.74452472e-01 6.37856185e-01 5.10509431e-01 3.72255117e-01
-3.98063481e-01 7.29702830e-01 1.18167889e+00 -3.85118723e-01
-1.52051020e-02 1.50540069e-01 -8.18595827e-01 3.67399991e-01
1.05113232e+00 -1.84601292e-01 -3.24818105e-01 -7.45517790e-01
-1.54603168e-01 -2.39447206e-01 7.24462330e-01 -1.00915825e+00
4.83406991e-01 3.08654249e-01 4.62455720e-01 -2.66333044e-01
4.85352695e-01 -6.07423961e-01 8.11142698e-02 4.93405491e-01
-2.49658927e-01 3.05963457e-01 7.83630535e-02 4.20217901e-01
-3.60986233e-01 -1.63144782e-01 6.64568901e-01 -6.61962107e-02
-7.88326323e-01 6.95503175e-01 -1.94116998e-02 -1.43382877e-01
6.28435016e-01 -3.13516289e-01 -3.11373711e-01 -3.79562974e-01
-4.54921275e-01 4.01417106e-01 3.77533674e-01 5.15784979e-01
7.89321780e-01 -1.59183967e+00 -8.97502065e-01 3.60009342e-01
3.48792523e-01 -4.30803537e-01 4.27409679e-01 9.25216734e-01
-1.56773359e-01 4.10083205e-01 -2.04454720e-01 -5.17496884e-01
-1.22629321e+00 5.90927362e-01 5.55513144e-01 -1.74210414e-01
-5.55678546e-01 8.33038449e-01 5.01778960e-01 -3.99508238e-01
2.60115027e-01 -2.69847095e-01 -1.92009509e-01 -1.11107985e-02
6.95393384e-01 3.63842010e-01 1.45039290e-01 -8.92368734e-01
-5.25724828e-01 8.95504832e-01 -1.07560299e-01 1.98436141e-01
8.13521266e-01 -3.10847640e-01 -9.92039219e-02 -3.81466448e-02
1.43808270e+00 -3.29479069e-01 -8.80688548e-01 -5.09655893e-01
-1.37029305e-01 -5.23466527e-01 4.06603962e-02 -5.20664930e-01
-1.23803711e+00 1.02451527e+00 8.81464005e-01 3.57450619e-02
1.35105503e+00 2.99649872e-02 1.12041163e+00 3.24136853e-01
1.76818609e-01 -5.80010056e-01 -1.08141303e-01 2.62799084e-01
8.63257229e-01 -1.38072479e+00 -2.93532729e-01 -2.62892872e-01
-4.86794055e-01 8.42237473e-01 7.79825032e-01 4.42281999e-02
5.23560941e-01 -2.11624011e-01 -1.79096922e-01 3.29661965e-02
-3.89744282e-01 -5.48432231e-01 6.05920672e-01 3.88475001e-01
3.18782687e-01 1.53547570e-01 -1.15737244e-01 6.64898753e-01
-1.67748511e-01 -2.08209410e-01 -1.06472224e-02 3.93890858e-01
-2.54622191e-01 -1.08899629e+00 -2.55065501e-01 6.38505638e-01
-4.03598547e-01 -3.18817735e-01 -1.86555609e-01 4.52910066e-01
2.66847968e-01 1.04252326e+00 1.90904513e-01 -7.17925489e-01
6.51492000e-01 -2.07925126e-01 4.82786208e-01 -2.68296659e-01
-6.33681476e-01 -2.60723919e-01 -3.31677496e-02 -6.63743138e-01
-1.54227823e-01 -4.76115823e-01 -8.78349423e-01 -5.27875662e-01
-4.90918159e-01 -1.37510840e-02 2.86404043e-01 7.44180858e-01
4.94371325e-01 2.23283276e-01 6.32040501e-01 -7.53831685e-01
-5.69680870e-01 -9.46662128e-01 -2.55924225e-01 5.88661730e-01
3.47442716e-01 -7.22802162e-01 -9.51636061e-02 -2.99032390e-01]
|
[14.733733177185059, 0.8423817157745361]
|
88786650-56f2-4801-a0a5-7bff7b321ae9
|
gradient-based-geometry-learning-for-fan-beam
|
2212.02177
| null |
https://arxiv.org/abs/2212.02177v1
|
https://arxiv.org/pdf/2212.02177v1.pdf
|
Gradient-Based Geometry Learning for Fan-Beam CT Reconstruction
|
Incorporating computed tomography (CT) reconstruction operators into differentiable pipelines has proven beneficial in many applications. Such approaches usually focus on the projection data and keep the acquisition geometry fixed. However, precise knowledge of the acquisition geometry is essential for high quality reconstruction results. In this paper, the differentiable formulation of fan-beam CT reconstruction is extended to the acquisition geometry. This allows to propagate gradient information from a loss function on the reconstructed image into the geometry parameters. As a proof-of-concept experiment, this idea is applied to rigid motion compensation. The cost function is parameterized by a trained neural network which regresses an image quality metric from the motion affected reconstruction alone. Using the proposed method, we are the first to optimize such an autofocus-inspired algorithm based on analytical gradients. The algorithm achieves a reduction in MSE by 35.5 % and an improvement in SSIM by 12.6 % over the motion affected reconstruction. Next to motion compensation, we see further use cases of our differentiable method for scanner calibration or hybrid techniques employing deep models.
|
['Andreas Maier', 'Michael Manhart', 'Felix Denzinger', 'Jonas Utz', 'Mingxuan Gu', 'Laura Pfaff', 'Linda-Sophie Schneider', 'Maximilian Rohleder', 'Manuela Meier', 'Lukas Folle', 'Noah Maul', 'Fabian Wagner', 'Mareike Thies']
|
2022-12-05
| null | null | null | null |
['motion-compensation']
|
['computer-vision']
|
[ 3.46372545e-01 2.90698409e-01 2.05146566e-01 -5.31846702e-01
-8.52814019e-01 -2.18954280e-01 3.46046448e-01 -1.51682764e-01
-6.72250032e-01 3.79954100e-01 9.39391181e-02 -2.56499708e-01
-2.56305993e-01 -6.03471279e-01 -7.84945667e-01 -8.93332899e-01
-4.58460748e-02 5.55034876e-01 2.13550746e-01 -4.01451476e-02
3.16423684e-01 9.05625105e-01 -8.18362236e-01 -1.00568019e-01
3.89412284e-01 8.16102386e-01 3.84815186e-01 5.72161198e-01
1.06169328e-01 8.10063660e-01 -1.70889571e-01 -1.31410152e-01
4.52014655e-01 -4.28993940e-01 -7.89524615e-01 1.33392498e-01
3.25732797e-01 -5.06559551e-01 -1.70020089e-01 9.65212941e-01
7.24627316e-01 1.26118794e-01 4.18505758e-01 -4.99358773e-01
6.84390962e-02 5.54465175e-01 -3.76668066e-01 2.17661247e-01
3.73967085e-03 2.60557562e-01 4.53797340e-01 -7.46118248e-01
7.89734781e-01 8.80320370e-01 6.48020983e-01 4.07048255e-01
-1.32241035e+00 -1.27319261e-01 -3.81994843e-01 7.95350000e-02
-1.02660477e+00 -2.60690153e-01 7.15183318e-01 -5.75781107e-01
7.65606165e-01 2.70314127e-01 5.59259713e-01 4.98227537e-01
4.54598516e-01 4.28744912e-01 8.97432029e-01 -6.07524574e-01
1.16952166e-01 8.46008882e-02 -1.66704431e-01 7.80013442e-01
7.15760812e-02 2.71131724e-01 -6.96144029e-02 4.62693423e-01
1.23544836e+00 1.16149157e-01 -7.98128963e-01 -7.82825649e-01
-1.19604540e+00 8.01991284e-01 7.89750159e-01 4.09701824e-01
-4.28339273e-01 4.74305809e-01 2.55145162e-01 1.18512705e-01
2.28421524e-01 6.46365821e-01 -1.35456771e-01 -2.70960033e-02
-1.14161575e+00 1.85577348e-02 5.20628273e-01 5.36365569e-01
5.33685327e-01 1.07880913e-01 -1.89386278e-01 4.84295428e-01
3.48774582e-01 3.81257981e-01 4.83000368e-01 -1.21931410e+00
2.39732251e-01 2.12913737e-01 5.89330234e-02 -7.63107181e-01
-8.92501473e-01 -7.41979837e-01 -5.99142909e-01 4.19396758e-01
4.46328968e-01 4.71112842e-04 -8.30784380e-01 1.43976116e+00
5.64521849e-01 1.71947982e-02 -3.98235053e-01 1.32720423e+00
3.60437006e-01 1.84557453e-01 -2.72153437e-01 -3.68027747e-01
1.10584676e+00 -9.60082352e-01 -6.98370576e-01 1.31478548e-01
6.50015712e-01 -8.76092374e-01 1.19328558e+00 4.62321728e-01
-1.41880906e+00 -3.41713607e-01 -1.16576028e+00 8.43672231e-02
3.34717453e-01 1.08612917e-01 2.16281131e-01 8.21948528e-01
-1.11214590e+00 1.10061884e+00 -1.16462851e+00 -1.55634522e-01
2.24857911e-01 7.26790428e-01 -4.96102460e-02 -9.90421548e-02
-7.45135427e-01 1.18021798e+00 1.43348843e-01 2.77643614e-02
-7.82612562e-01 -1.08026969e+00 -5.92706621e-01 3.14042829e-02
2.88941890e-01 -9.62246776e-01 1.43640125e+00 -7.24634051e-01
-2.01362753e+00 7.15067089e-01 1.33509129e-01 -5.32814503e-01
1.02208686e+00 -2.30820611e-01 -3.79962847e-02 4.54830050e-01
-2.51981802e-02 3.16240937e-01 8.77573490e-01 -9.80440140e-01
-1.67538449e-01 -2.46162757e-01 -3.11317332e-02 1.71145231e-01
4.07844260e-02 -4.60964851e-02 -5.27287006e-01 -4.51553941e-01
4.61820364e-01 -1.06299400e+00 -3.81898999e-01 2.81377643e-01
-2.49085233e-01 7.38398552e-01 5.14345467e-01 -8.03464890e-01
9.42912817e-01 -1.82524097e+00 1.97142661e-01 1.91392258e-01
2.06610724e-01 -1.00428067e-01 1.59322605e-01 7.98951741e-03
-2.68964052e-01 -2.67717332e-01 -5.49167156e-01 -3.11816990e-01
-3.65636468e-01 -2.19650678e-02 4.00099680e-02 8.69444609e-01
-4.86392342e-02 9.88106549e-01 -8.03394258e-01 -2.78337866e-01
6.26032650e-01 7.59402990e-01 -7.53228903e-01 1.58339515e-01
1.33238450e-01 1.12574017e+00 -2.42666110e-01 1.05891556e-01
9.60137129e-01 -2.92444259e-01 2.17179149e-01 -6.01816893e-01
-3.46723020e-01 2.57531911e-01 -8.78711104e-01 2.00816870e+00
-8.39344859e-01 5.35638154e-01 2.77228653e-01 -8.41747761e-01
4.84810084e-01 2.41911098e-01 1.09591615e+00 -7.94025481e-01
4.24656808e-01 3.07510585e-01 1.67962685e-01 -5.77177405e-01
3.34709167e-01 -6.80110097e-01 4.82433200e-01 4.02662158e-01
-1.28754169e-01 -5.34754097e-01 -3.30265820e-01 -1.06378406e-01
1.07617462e+00 3.62609714e-01 -4.72876318e-02 -3.07882249e-01
6.01465702e-01 1.13472492e-01 2.56241430e-02 4.01891232e-01
-3.13341320e-02 1.04513240e+00 1.51112422e-01 -4.17140901e-01
-1.26689744e+00 -9.16872144e-01 -5.51338255e-01 2.95409441e-01
8.52836445e-02 1.51509605e-02 -8.98048520e-01 -5.15733123e-01
-3.26332986e-01 9.11075711e-01 -5.22602201e-01 -9.12334621e-02
-1.23040569e+00 -7.82275677e-01 2.30798662e-01 3.90022784e-01
5.21348834e-01 -6.35312378e-01 -1.08331966e+00 2.60556728e-01
-1.82579145e-01 -1.09189796e+00 -5.21570683e-01 2.30866969e-01
-1.18652630e+00 -8.99211764e-01 -8.18803787e-01 -2.58169144e-01
6.11178219e-01 -1.94637123e-02 9.90112722e-01 -7.91124180e-02
-2.63682365e-01 4.42295909e-01 1.72402523e-02 1.49065390e-01
-5.03706992e-01 -1.58966675e-01 -1.50363922e-01 -4.05253135e-02
-5.60621440e-01 -5.76202154e-01 -1.05021405e+00 4.79359716e-01
-9.24005687e-01 1.23434104e-01 5.10350347e-01 8.24964404e-01
7.99467981e-01 -1.26243025e-01 -2.45017186e-01 -9.77107048e-01
1.31413698e-01 -1.48280621e-01 -8.89227390e-01 -2.52971519e-02
-7.54579544e-01 5.37678480e-01 5.20911276e-01 -3.44552636e-01
-1.23423851e+00 4.46096778e-01 -3.75166833e-01 -5.89229643e-01
1.66462854e-01 4.46975708e-01 -4.59979381e-03 -5.16506672e-01
7.34679580e-01 1.13190070e-01 1.36561347e-02 -4.00854498e-01
2.07939833e-01 -4.33450099e-04 5.63901246e-01 -2.57295519e-01
6.47170722e-01 8.68181229e-01 6.12821817e-01 -6.82330012e-01
-5.73502302e-01 -4.61898804e-01 -7.95886934e-01 -3.43801290e-01
9.77251887e-01 -4.56522226e-01 -7.27251530e-01 2.73359497e-03
-1.05724692e+00 -4.73387122e-01 -5.37633419e-01 9.35849071e-01
-8.19666862e-01 5.30017376e-01 -5.26140988e-01 -4.22302902e-01
-3.57582986e-01 -1.62397873e+00 1.03568292e+00 -1.73323855e-01
9.39965770e-02 -1.11807978e+00 1.75336935e-02 1.95217133e-01
8.04237723e-01 3.16269636e-01 6.00453913e-01 -3.71480249e-02
-8.77985775e-01 -1.40871644e-01 -6.44087270e-02 3.25496674e-01
-2.24860516e-04 -3.89634281e-01 -9.64481175e-01 -2.49742165e-01
8.74912381e-01 2.18796924e-01 6.24995112e-01 8.93911898e-01
1.17835939e+00 1.06359892e-01 -7.91378096e-02 1.25849199e+00
1.67336297e+00 1.30634665e-01 7.76594162e-01 5.17940700e-01
8.09639931e-01 3.29018354e-01 4.14478779e-01 2.65927136e-01
-2.21398063e-02 1.09546316e+00 6.25871062e-01 3.20877810e-03
-3.96898419e-01 2.00604070e-02 1.46999896e-01 7.30807960e-01
-2.38257125e-01 2.05271482e-01 -8.96371961e-01 1.40416697e-01
-1.48988652e+00 -7.12244570e-01 -6.32628739e-01 2.60958290e+00
5.08809149e-01 1.76238250e-02 -1.60895497e-01 -5.71924495e-03
3.54222327e-01 -2.72168636e-01 -5.70183575e-01 -1.34867087e-01
1.10349417e-01 3.81388813e-01 1.02784526e+00 8.76901686e-01
-9.60439146e-01 4.03377891e-01 5.99844790e+00 4.92711604e-01
-1.74730718e+00 4.00252521e-01 3.55227232e-01 -2.27724001e-01
-3.01258355e-01 1.13430604e-01 -3.42790902e-01 2.73539841e-01
1.00177777e+00 1.96040958e-01 4.48039472e-01 6.45376444e-01
6.04173839e-01 -3.50395560e-01 -1.07257891e+00 1.00789917e+00
-1.16893902e-01 -1.20971203e+00 -3.79685074e-01 1.84799030e-01
5.10728359e-01 1.19034760e-01 1.08155571e-01 -8.73964727e-02
-8.78857002e-02 -9.77194965e-01 7.44799793e-01 6.21979475e-01
9.32968915e-01 -4.80705708e-01 6.08167648e-01 3.28953683e-01
-5.89683533e-01 2.51256198e-01 -2.35837847e-01 3.59857172e-01
6.91427410e-01 7.33645618e-01 -1.34407234e+00 7.77868807e-01
4.25646961e-01 3.72733206e-01 -2.07350805e-01 1.19220579e+00
-1.54576436e-01 4.56088632e-01 -4.76876527e-01 4.61532086e-01
6.59900233e-02 -3.59601587e-01 6.63963854e-01 1.20769811e+00
3.53746653e-01 7.75550678e-02 -2.95801193e-01 8.42085421e-01
1.87862590e-01 1.27429916e-02 -2.09889263e-01 5.19823492e-01
-2.83766389e-01 1.23580408e+00 -7.49965429e-01 -2.80229412e-02
-2.05189303e-01 1.15731299e+00 -3.32623324e-03 1.33367732e-01
-1.01059210e+00 1.49529859e-01 1.06424585e-01 7.51259387e-01
3.51996064e-01 -2.92232931e-01 -4.75946695e-01 -1.13629413e+00
-1.57646630e-02 -4.28890109e-01 4.51198919e-03 -7.79579520e-01
-7.83546507e-01 7.20046580e-01 1.26905993e-01 -1.34815001e+00
-4.52463001e-01 -5.90295792e-01 -4.46724236e-01 1.00719380e+00
-1.59453750e+00 -8.32481086e-01 -4.12373602e-01 3.59215647e-01
3.37409943e-01 2.97294140e-01 4.16195542e-01 5.97274780e-01
-2.61681288e-01 3.87848288e-01 1.32680461e-01 -1.23452693e-01
4.57065910e-01 -1.21049297e+00 9.90119018e-03 8.08244228e-01
-2.76844889e-01 6.74492776e-01 8.74994755e-01 -3.76792252e-01
-1.46369922e+00 -9.49733675e-01 3.94576192e-01 -4.00276810e-01
4.89906013e-01 1.54242218e-01 -8.04617584e-01 6.81887805e-01
-2.59553529e-02 2.58040816e-01 2.02688277e-01 -5.98874390e-01
2.31220350e-01 -8.20870474e-02 -1.43243587e+00 3.61403227e-01
7.99419105e-01 -1.32608205e-01 -1.09592363e-01 3.67537588e-01
5.32808185e-01 -9.56886351e-01 -9.73483443e-01 3.42203915e-01
4.70305383e-01 -1.13656795e+00 1.11760533e+00 -2.52796143e-01
5.26839197e-01 -3.30500335e-01 -1.41919404e-01 -1.24507928e+00
-1.85032666e-01 -3.98889631e-01 1.42942414e-01 5.32352507e-01
2.86624104e-01 -5.26671946e-01 8.66630554e-01 7.05108225e-01
-5.18696129e-01 -6.63963377e-01 -1.07722318e+00 -6.25255287e-01
1.30302519e-01 -6.79425359e-01 1.14603341e-01 8.31308126e-01
-4.22510862e-01 1.14100881e-01 -3.00949275e-01 3.69553298e-01
8.01288068e-01 -1.17393024e-01 5.12174070e-01 -7.03647554e-01
-8.24922442e-01 -3.68864506e-01 -3.13098937e-01 -1.33420980e+00
-2.86176413e-01 -9.29599583e-01 9.55155715e-02 -1.30961013e+00
1.61227360e-02 -5.17191052e-01 -5.25649544e-03 -6.56739920e-02
1.27697513e-01 2.52216831e-02 2.43154660e-01 3.51915568e-01
7.44267926e-03 3.69088382e-01 1.69770277e+00 4.31939252e-02
-1.33814916e-01 2.52273351e-01 -5.71440198e-02 6.56820834e-01
7.46237159e-01 -6.22069120e-01 -3.79247069e-01 -7.02101886e-01
1.12089358e-01 4.90460724e-01 4.41096932e-01 -1.06793034e+00
2.22370133e-01 2.74134539e-02 2.07704455e-01 -3.57173800e-01
4.58101839e-01 -1.13856733e+00 5.34082413e-01 7.73864746e-01
-1.95031628e-01 -8.82767662e-02 8.78798738e-02 1.76895827e-01
-1.12266056e-01 -6.13431871e-01 1.23129451e+00 -2.07673043e-01
-1.51584014e-01 6.23878129e-02 6.92342520e-02 -2.91852474e-01
5.99450588e-01 -3.12666088e-01 2.75550812e-01 -3.95414442e-01
-9.73210216e-01 -2.18718067e-01 5.62890291e-01 -3.01715672e-01
6.14506483e-01 -1.08915770e+00 -5.71068406e-01 1.60008028e-01
-4.21544999e-01 1.45681396e-01 3.40739548e-01 1.49477732e+00
-1.17319369e+00 4.71349150e-01 -1.11945435e-01 -9.75618720e-01
-9.44069564e-01 5.70698321e-01 1.07731318e+00 -5.65823853e-01
-7.20567346e-01 7.18936324e-01 8.15709606e-02 -4.23177689e-01
-1.31998956e-01 -5.75442970e-01 2.53809571e-01 -4.73041862e-01
2.46059120e-01 3.36196542e-01 7.08281517e-01 -6.36830509e-01
-3.28558594e-01 7.91655898e-01 1.89781800e-01 -4.98408318e-01
1.51162386e+00 -2.25126445e-01 1.72587678e-01 1.80833176e-01
1.42571199e+00 1.19273253e-01 -1.40508771e+00 -2.64888126e-02
-1.24758005e-01 -5.75814664e-01 5.44199646e-01 -7.67571151e-01
-1.45899105e+00 1.00177407e+00 9.77524698e-01 -1.91914931e-01
1.17833269e+00 -2.10869059e-01 5.87240517e-01 -6.79692253e-02
3.58301789e-01 -5.86144924e-01 7.04036430e-02 2.44659349e-01
1.02152681e+00 -1.23677206e+00 2.41933525e-01 -5.22481918e-01
-4.75040466e-01 1.32160974e+00 1.33183569e-01 -2.03866377e-01
7.25964665e-01 2.96956897e-01 1.17703341e-01 -3.46324414e-01
-7.16639012e-02 1.51119828e-01 2.34657675e-01 3.53146434e-01
6.40007555e-01 -5.58062233e-02 -5.10723352e-01 1.17117651e-02
-2.77803540e-01 7.85836205e-02 5.69211066e-01 8.75244260e-01
-1.84298560e-01 -1.17871201e+00 -5.57922065e-01 1.34575665e-01
-4.97390747e-01 -3.25098843e-03 4.04442430e-01 7.86933243e-01
-1.16239056e-01 4.20668960e-01 -9.22759548e-02 -1.05859889e-02
5.74724317e-01 -2.49834448e-01 9.25032139e-01 -5.06395340e-01
-7.80569792e-01 3.50234151e-01 -2.67631680e-01 -6.70866013e-01
-4.40225065e-01 -8.40912580e-01 -1.56352389e+00 -1.61453858e-01
-1.64190814e-01 -1.92397892e-01 1.18470645e+00 6.50396883e-01
-3.73245999e-02 7.77554691e-01 5.92045009e-01 -1.04620814e+00
-6.84298754e-01 -6.96020305e-01 -3.93952221e-01 3.64380866e-01
4.36686426e-01 -6.05046511e-01 -3.04455996e-01 -5.11458367e-02]
|
[13.485292434692383, -2.666454315185547]
|
96166548-c2b6-4486-8215-dd676a2c6192
|
incorporating-commonsense-knowledge-into
|
2010.10044
| null |
https://arxiv.org/abs/2010.10044v1
|
https://arxiv.org/pdf/2010.10044v1.pdf
|
Incorporating Commonsense Knowledge into Abstractive Dialogue Summarization via Heterogeneous Graph Networks
|
Abstractive dialogue summarization is the task of capturing the highlights of a dialogue and rewriting them into a concise version. In this paper, we present a novel multi-speaker dialogue summarizer to demonstrate how large-scale commonsense knowledge can facilitate dialogue understanding and summary generation. In detail, we consider utterance and commonsense knowledge as two different types of data and design a Dialogue Heterogeneous Graph Network (D-HGN) for modeling both information. Meanwhile, we also add speakers as heterogeneous nodes to facilitate information flow. Experimental results on the SAMSum dataset show that our model can outperform various methods. We also conduct zero-shot setting experiments on the Argumentative Dialogue Summary Corpus, the results show that our model can better generalized to the new domain.
|
['Ting Liu', 'Bing Qin', 'Xiaocheng Feng', 'Xiachong Feng']
|
2020-10-20
| null |
https://aclanthology.org/2021.ccl-1.86
|
https://aclanthology.org/2021.ccl-1.86.pdf
|
ccl-2021-8
|
['dialogue-understanding']
|
['natural-language-processing']
|
[ 1.66557267e-01 9.32894289e-01 -2.28906676e-01 -4.01613832e-01
-7.35168159e-01 -5.28130472e-01 9.53785181e-01 2.39340544e-01
7.33250752e-02 1.16050076e+00 1.39000249e+00 -1.20209329e-01
3.67783576e-01 -7.10908234e-01 -2.06172243e-01 2.88534351e-02
2.52076834e-01 5.54755092e-01 4.17229444e-01 -1.07923508e+00
3.32190067e-01 -3.35205853e-01 -8.48185599e-01 5.65923035e-01
1.55586207e+00 3.14211130e-01 2.24278286e-01 9.66692090e-01
-6.51007056e-01 1.50769281e+00 -1.42761338e+00 -7.94597805e-01
-2.85351008e-01 -1.18878973e+00 -1.47045636e+00 1.54302120e-01
1.08159043e-01 -6.00278258e-01 -5.88726401e-01 9.36553836e-01
6.93018079e-01 6.34752631e-01 6.26129866e-01 -1.01774418e+00
-8.41071486e-01 1.42078578e+00 -7.51582608e-02 1.76914901e-01
9.61570621e-01 -2.26620841e-03 1.14760172e+00 -2.48278528e-01
7.99169123e-01 1.73195469e+00 4.49070930e-01 9.77215767e-01
-7.04353869e-01 -1.46586984e-01 2.63206214e-01 3.43917698e-01
-4.12152439e-01 -6.35097504e-01 1.06669688e+00 8.31132159e-02
1.08562505e+00 6.56783044e-01 8.02808344e-01 1.35861683e+00
-1.50054488e-02 1.27128029e+00 6.30464911e-01 -3.43510985e-01
2.92032566e-02 -8.06518570e-02 8.72492671e-01 7.71545231e-01
2.03728274e-01 -8.00929844e-01 -7.13749588e-01 -3.51374209e-01
3.11909735e-01 -4.12530661e-01 -5.16463816e-01 4.09482300e-01
-9.80142415e-01 1.17356193e+00 2.62624145e-01 1.33449450e-01
-2.64317513e-01 -2.18772635e-01 8.43596756e-01 4.67123002e-01
7.70096064e-01 8.71757805e-01 -2.69446913e-02 -3.50041747e-01
-3.75866532e-01 3.93318325e-01 1.65571272e+00 1.19214451e+00
3.52108061e-01 9.75356773e-02 -7.75951385e-01 1.21371686e+00
3.48076262e-02 3.13383847e-01 7.04491198e-01 -1.23525000e+00
7.60305762e-01 7.52775908e-01 6.85126111e-02 -8.86682928e-01
-3.68741125e-01 9.03881527e-03 -1.08749700e+00 -9.40972388e-01
8.21379852e-03 -7.15523243e-01 -2.20284328e-01 1.66369343e+00
1.79469556e-01 5.17830476e-02 8.07209611e-01 5.44174731e-01
1.81128907e+00 1.05570865e+00 -2.17863232e-01 -7.00458884e-01
1.33507991e+00 -1.55451214e+00 -1.43512976e+00 -3.37367147e-01
6.90111637e-01 -3.98213685e-01 1.03221858e+00 -9.60002169e-02
-1.23009479e+00 -3.07828873e-01 -1.00786769e+00 -5.46798229e-01
-2.11001467e-02 -1.43481538e-01 5.40131330e-01 2.94646561e-01
-9.07648087e-01 4.92971033e-01 -3.90450388e-01 -4.66731578e-01
1.91338584e-01 -2.97220737e-01 1.38803765e-01 1.32766753e-01
-1.75058091e+00 1.12658656e+00 5.17220736e-01 -1.20582357e-02
-6.46975994e-01 -4.56603199e-01 -1.18481410e+00 1.51464269e-01
6.55411482e-01 -1.18751144e+00 1.78859532e+00 -4.36572731e-01
-2.13217974e+00 4.14440006e-01 -2.46530205e-01 -6.37770593e-01
3.81324172e-01 -1.63071245e-01 -1.12766251e-01 2.33631238e-01
2.17454985e-01 2.23350778e-01 1.09197810e-01 -1.22489405e+00
-4.32428330e-01 -5.15592508e-02 6.30579829e-01 8.33652020e-01
-1.77118689e-01 -9.10831764e-02 -1.35397092e-01 -4.49986666e-01
-4.06055808e-01 -5.86719155e-01 -2.20096231e-01 -8.03232551e-01
-1.19766021e+00 -7.19895720e-01 5.81275821e-01 -1.02422178e+00
1.58429956e+00 -1.47049665e+00 5.63381493e-01 -5.05926490e-01
4.72554684e-01 2.91902065e-01 -9.73732769e-02 1.07759726e+00
6.38094485e-01 1.40188083e-01 -3.97119552e-01 -5.14156401e-01
1.05032690e-01 2.85206765e-01 -4.95243281e-01 -2.76919872e-01
-6.63572475e-02 1.23390293e+00 -1.32334697e+00 -6.55611455e-01
-1.00032501e-01 -1.73293486e-01 -3.21240515e-01 6.19118929e-01
-5.13244092e-01 1.83888018e-01 -9.24073160e-01 7.57418796e-02
1.45133317e-01 -3.43856096e-01 2.83721924e-01 -1.46905437e-01
3.15815181e-01 7.45883763e-01 -4.91911113e-01 2.05500460e+00
-3.82206768e-01 6.63422823e-01 -1.08481785e-02 -8.04917753e-01
9.23282444e-01 2.09514067e-01 -2.32809171e-01 -3.99316758e-01
1.48710981e-01 -2.63122708e-01 3.24972346e-02 -6.80441976e-01
1.15039814e+00 -1.36156827e-01 -5.50099313e-01 8.34776282e-01
1.09806344e-01 -6.79956734e-01 4.07759249e-01 1.14555538e+00
9.88171399e-01 -4.99394625e-01 6.91461980e-01 -2.54065603e-01
5.92894375e-01 2.65417367e-01 3.72958332e-01 9.80109751e-01
-2.02988416e-01 1.05701961e-01 1.02067697e+00 3.06262877e-02
-6.33894026e-01 -7.14226961e-01 6.02562606e-01 1.15188885e+00
4.33928281e-01 -8.40956032e-01 -9.14862573e-01 -8.47992480e-01
-2.47738391e-01 1.41830063e+00 -5.00891268e-01 -2.87850618e-01
-6.00699484e-01 -4.08371419e-01 7.60337114e-01 2.60224819e-01
9.94780660e-01 -1.04180431e+00 -2.46621400e-01 1.83073863e-01
-8.91536772e-01 -9.45427060e-01 -7.30268836e-01 -5.05641997e-01
-5.52086592e-01 -1.07754695e+00 -5.43935537e-01 -7.50243723e-01
1.89955652e-01 4.78642821e-01 1.25367701e+00 1.51657626e-01
1.56539142e-01 6.71954930e-01 -5.93455732e-01 -4.52007353e-01
-1.05516374e+00 3.63317609e-01 -3.30792725e-01 -4.66709405e-01
-1.43544853e-01 -4.63505656e-01 -2.92183250e-01 -3.12230229e-01
-6.94461763e-01 6.08868718e-01 -1.24604590e-02 1.07259238e+00
-2.43487909e-01 -5.75377524e-01 1.26053202e+00 -1.41696131e+00
2.04271841e+00 -5.76550007e-01 3.75966817e-01 7.18136728e-01
-1.88874722e-01 9.78745744e-02 7.97857225e-01 -1.32142335e-01
-1.67396832e+00 -7.21832097e-01 -6.01783134e-02 3.85170251e-01
3.31108421e-01 8.14411223e-01 -1.80953845e-01 7.07922459e-01
6.58433259e-01 4.56043512e-01 3.01319987e-01 -1.60940558e-01
9.15943503e-01 9.56693113e-01 5.18121958e-01 -6.76701009e-01
2.06314191e-01 -2.92385928e-02 -4.04953510e-01 -1.12258208e+00
-1.26729941e+00 -2.93899804e-01 -3.15834492e-01 -3.29216123e-01
7.60498345e-01 -7.49992251e-01 -6.86660945e-01 2.44119793e-01
-1.73988855e+00 -4.04899955e-01 -4.15083349e-01 -3.99532691e-02
-6.01911366e-01 8.84041011e-01 -1.00426996e+00 -8.50436985e-01
-9.06585693e-01 -7.04923987e-01 7.61427820e-01 6.48998857e-01
-4.70254987e-01 -1.48523295e+00 2.98695743e-01 6.56128407e-01
3.61577868e-01 2.47404307e-01 7.80823886e-01 -1.40799785e+00
-1.18212633e-01 1.57214969e-01 -4.60027233e-02 2.38274276e-01
4.17938054e-01 -1.79282457e-01 -5.65440476e-01 2.27159172e-01
2.19107509e-01 -7.90149748e-01 8.92805159e-01 1.21805862e-01
7.03772604e-01 -9.84367907e-01 -5.17742261e-02 -1.45171911e-01
5.74859083e-01 -6.32796735e-02 4.36768860e-01 -1.45842910e-01
6.32919908e-01 9.25290346e-01 5.89140236e-01 5.83814859e-01
1.12461054e+00 3.01806062e-01 -6.39373809e-02 1.61259264e-01
-3.26551825e-01 -5.89500546e-01 3.78573000e-01 1.59021366e+00
2.34835465e-02 -6.51813269e-01 -5.75407386e-01 4.14223671e-01
-2.26808119e+00 -1.37112606e+00 -2.28642985e-01 1.26400244e+00
1.32588685e+00 -2.42123365e-01 2.20695749e-01 -6.15398586e-01
8.99558187e-01 8.14690948e-01 -5.28093278e-01 -6.62462950e-01
-3.63384247e-01 -2.05333054e-01 -2.91830897e-01 1.07823145e+00
-5.52650452e-01 1.22582400e+00 6.30925703e+00 8.51048470e-01
-2.86861658e-01 -1.79128908e-02 4.92137551e-01 7.94910192e-02
-6.61160886e-01 -1.12863809e-01 -4.96014565e-01 3.19154948e-01
8.27722609e-01 -1.35820615e+00 2.74691761e-01 5.27369797e-01
7.97408819e-02 -3.70328724e-02 -9.47647929e-01 6.63946867e-01
5.06045103e-01 -1.68600321e+00 6.11082971e-01 -5.51585615e-01
6.97233260e-01 -4.10091668e-01 -6.62482083e-01 7.19252706e-01
9.98096943e-01 -7.37503886e-01 9.82209891e-02 4.64382946e-01
2.59437978e-01 -6.40825927e-01 6.77593410e-01 8.16530645e-01
-8.04444611e-01 2.03067422e-01 -4.54264373e-01 -2.97930747e-01
5.32328486e-01 4.60695960e-02 -1.11080158e+00 1.10484540e+00
-2.11926118e-01 9.85795259e-01 -4.74240631e-01 2.85132915e-01
-5.38422167e-01 5.14729023e-01 6.67685568e-02 -7.49515295e-01
1.42360121e-01 -2.85513520e-01 8.46166611e-01 1.40520549e+00
-1.35815680e-01 7.81597376e-01 3.89365286e-01 7.65562832e-01
-5.11495590e-01 2.25652948e-01 -7.07056701e-01 -6.16755150e-02
8.28952193e-01 1.17315567e+00 -2.13635564e-01 -1.00030828e+00
-1.89047456e-01 1.21411192e+00 5.72163999e-01 2.97664911e-01
-5.13428926e-01 -6.13341451e-01 2.91717619e-01 -6.04844749e-01
-3.71831506e-01 1.59807503e-01 -1.06916567e-02 -1.55770159e+00
-2.74762928e-01 -8.89513016e-01 4.59399611e-01 -8.62569153e-01
-1.51610267e+00 6.78403616e-01 1.55364484e-01 -5.80409706e-01
-7.11571932e-01 9.99856070e-02 -1.25797057e+00 6.54742002e-01
-1.30584133e+00 -1.03530800e+00 -4.13697928e-01 4.41790760e-01
1.25991213e+00 -2.85253435e-01 9.96255279e-01 -4.85209972e-01
-7.57919848e-01 3.35246116e-01 -3.70168537e-02 2.57632256e-01
7.45734215e-01 -1.40658605e+00 5.24752021e-01 6.26349866e-01
-1.87462062e-01 7.03664303e-01 9.95284319e-01 -9.75388885e-01
-1.25842428e+00 -8.58699143e-01 7.92130530e-01 -3.89953673e-01
7.89093435e-01 -1.54484093e-01 -1.00627589e+00 8.17802012e-01
1.18876684e+00 -1.05012703e+00 1.06756282e+00 2.58072317e-01
-5.87829538e-02 3.98417979e-01 -9.87345576e-01 9.42946553e-01
1.28959715e+00 -4.01240528e-01 -1.61220515e+00 7.07985818e-01
1.43261719e+00 -7.38774240e-01 -8.42032671e-01 4.95239943e-02
1.14956029e-01 -8.56498182e-01 6.04432106e-01 -1.08169436e+00
1.06733251e+00 3.12443644e-01 1.11608990e-01 -2.06476188e+00
7.25137889e-02 -1.14795923e+00 -4.10971552e-01 1.50242841e+00
3.63831997e-01 -6.36982918e-01 2.87996560e-01 7.96722770e-01
-7.16149271e-01 -5.69105446e-01 -6.95012510e-01 -5.10690391e-01
8.91396403e-02 3.27424496e-01 6.19906366e-01 1.10526609e+00
9.88603115e-01 1.48784316e+00 -5.35373032e-01 -5.11151552e-01
3.16053778e-01 2.92264193e-01 1.05246425e+00 -1.10023344e+00
-2.05381393e-01 -5.40234149e-01 3.62897485e-01 -1.68813074e+00
7.34301567e-01 -8.21732104e-01 4.10425626e-02 -2.25728321e+00
5.25692880e-01 3.23609442e-01 5.35503983e-01 -3.77302337e-03
-8.56871367e-01 -7.09797859e-01 2.28420079e-01 6.97387010e-02
-1.14130270e+00 1.20424008e+00 1.67267072e+00 -3.28153878e-01
-4.48511451e-01 7.12872436e-03 -1.17891288e+00 5.13935745e-01
7.02122211e-01 9.99000371e-02 -8.87196243e-01 -2.17415154e-01
-1.69023886e-01 8.04012299e-01 -1.72832578e-01 -1.66281223e-01
5.89007258e-01 -2.28328854e-01 -3.26479286e-01 -5.82832396e-01
4.44426686e-01 8.78924802e-02 -4.49299306e-01 3.32046241e-01
-1.15399289e+00 -9.18859616e-02 3.18261608e-02 7.71923184e-01
-3.84838909e-01 -3.69269967e-01 1.75741449e-01 -3.03202778e-01
-5.00358045e-01 -7.67228603e-02 -2.71674752e-01 7.44663715e-01
7.74387181e-01 1.32599398e-01 -1.10739625e+00 -1.23748910e+00
-4.91407633e-01 8.43419909e-01 1.64760888e-01 4.12659287e-01
6.73194706e-01 -1.15518796e+00 -1.18014741e+00 -6.04879379e-01
1.44855818e-02 2.30926260e-01 5.20250022e-01 2.68488824e-01
-3.76273453e-01 3.57359201e-01 -1.67598873e-02 -1.05113342e-01
-1.42397249e+00 8.24576542e-02 2.03516483e-01 -5.53518653e-01
-7.15202630e-01 7.91849792e-01 1.16806842e-01 -4.78517264e-01
6.52665347e-02 -1.22221805e-01 -7.01608658e-01 2.69386232e-01
7.72111356e-01 6.32696748e-01 -6.28602087e-01 -3.16185415e-01
1.81393310e-01 -1.39070168e-01 -3.37180793e-01 -1.58887878e-01
1.25488353e+00 -6.08085334e-01 -4.89676833e-01 8.04200113e-01
8.06259692e-01 1.42103910e-01 -8.10328484e-01 -3.82436931e-01
-2.41201948e-02 -4.07941937e-02 -4.99390662e-01 -8.19194198e-01
-4.20557052e-01 5.64027965e-01 -7.27214336e-01 9.17117596e-01
6.96231306e-01 2.52863675e-01 9.97377038e-01 1.03817892e+00
1.79842468e-02 -1.13745165e+00 3.45037729e-01 1.02803612e+00
1.42301083e+00 -1.10870993e+00 1.35567367e-01 -6.47990823e-01
-1.46006417e+00 1.20971930e+00 7.92504251e-01 -3.51424403e-02
-2.49038246e-02 -2.04040810e-01 -3.16923968e-02 -3.41560066e-01
-1.19901299e+00 -6.90167397e-02 8.40138942e-02 5.03515601e-01
4.62333620e-01 1.81031808e-01 -6.60780549e-01 1.13312602e+00
-6.75197124e-01 -3.25224608e-01 1.29817426e+00 6.59697652e-01
-7.11335063e-01 -8.29695702e-01 2.81789541e-01 6.57938838e-01
-4.41214815e-02 -1.52830422e-01 -1.27634966e+00 6.58971131e-01
-1.06235552e+00 1.40092933e+00 -2.04403594e-01 -4.21523094e-01
5.96505105e-01 2.52340913e-01 3.72891933e-01 -1.10723639e+00
-9.44332302e-01 -4.98629451e-01 1.12363267e+00 -2.14359492e-01
-3.81078690e-01 -2.11442515e-01 -1.36037290e+00 -6.26440823e-01
-3.95353198e-01 6.82286203e-01 1.09927990e-01 9.68056560e-01
4.00871366e-01 8.63673925e-01 6.61881208e-01 -3.88640404e-01
-9.93161023e-01 -1.52275670e+00 -3.88903618e-01 5.39284945e-01
2.28256911e-01 -1.66878924e-01 -3.50826412e-01 -8.54330063e-02]
|
[12.65335750579834, 8.60495662689209]
|
b171fab3-68a4-40bd-8e5f-015ed1f5c7cc
|
unsupervised-flow-aligned-sequence-to
|
2205.10195
| null |
https://arxiv.org/abs/2205.10195v2
|
https://arxiv.org/pdf/2205.10195v2.pdf
|
Unsupervised Flow-Aligned Sequence-to-Sequence Learning for Video Restoration
|
How to properly model the inter-frame relation within the video sequence is an important but unsolved challenge for video restoration (VR). In this work, we propose an unsupervised flow-aligned sequence-to-sequence model (S2SVR) to address this problem. On the one hand, the sequence-to-sequence model, which has proven capable of sequence modeling in the field of natural language processing, is explored for the first time in VR. Optimized serialization modeling shows potential in capturing long-range dependencies among frames. On the other hand, we equip the sequence-to-sequence model with an unsupervised optical flow estimator to maximize its potential. The flow estimator is trained with our proposed unsupervised distillation loss, which can alleviate the data discrepancy and inaccurate degraded optical flow issues of previous flow-based methods. With reliable optical flow, we can establish accurate correspondence among multiple frames, narrowing the domain difference between 1D language and 2D misaligned frames and improving the potential of the sequence-to-sequence model. S2SVR shows superior performance in multiple VR tasks, including video deblurring, video super-resolution, and compressed video quality enhancement. Code and models are publicly available at https://github.com/linjing7/VR-Baseline
|
['Luc van Gool', 'Yulun Zhang', 'Xueyi Zou', 'Youliang Yan', 'Haoqian Wang', 'Yuanhao Cai', 'Xiaowan Hu', 'Jing Lin']
|
2022-05-20
| null | null | null | null |
['video-super-resolution', 'video-enhancement', 'video-restoration']
|
['computer-vision', 'computer-vision', 'computer-vision']
|
[ 3.84036809e-01 -3.54654282e-01 -2.12572813e-01 -1.63581640e-01
-5.55950463e-01 -4.41926658e-01 3.52009118e-01 -5.53985834e-01
-2.18452543e-01 7.89607048e-01 6.05938256e-01 -1.75706238e-01
4.30378579e-02 -2.93860614e-01 -6.32791340e-01 -6.14423096e-01
6.85603023e-02 -3.07443976e-01 2.24391103e-01 -1.47297367e-01
4.17944461e-01 2.90176958e-01 -1.28124261e+00 2.97463804e-01
1.09431541e+00 7.58127868e-01 7.10699022e-01 1.03050244e+00
3.01030725e-02 1.44296849e+00 -2.39592552e-01 -1.11992523e-01
3.30891401e-01 -6.43400669e-01 -8.01027358e-01 1.98753372e-01
8.46780241e-01 -8.65187407e-01 -9.27269995e-01 1.21318865e+00
4.56688970e-01 2.88943112e-01 2.78894037e-01 -1.08666778e+00
-6.92427993e-01 1.84611052e-01 -6.71020150e-01 6.84861422e-01
6.10337615e-01 3.73712778e-01 8.90352249e-01 -8.85776997e-01
9.11614418e-01 1.30669141e+00 2.54618585e-01 6.22006238e-01
-1.21666610e+00 -4.95553643e-01 7.50884563e-02 6.85019195e-01
-1.25029707e+00 -8.01164985e-01 7.17881620e-01 -7.33691514e-01
7.16721952e-01 1.49060696e-01 5.10258973e-01 1.01670861e+00
1.24853849e-01 8.25660050e-01 6.76526606e-01 -2.37926275e-01
-1.00054018e-01 -3.94959837e-01 -1.02258302e-01 5.50432503e-01
4.54778150e-02 3.00968170e-01 -8.38290751e-01 2.73515701e-01
1.19422483e+00 -1.74116999e-01 -1.00757003e+00 -1.41621917e-01
-1.22161520e+00 4.73009974e-01 1.49721563e-01 2.43541569e-01
-2.03766122e-01 1.69868127e-01 3.87946635e-01 1.79791689e-01
5.84690213e-01 3.38393629e-01 -2.49633849e-01 -4.01889473e-01
-1.25839305e+00 8.37221816e-02 2.71911353e-01 9.22669649e-01
6.31034791e-01 4.62548912e-01 -2.30937004e-01 8.43863904e-01
2.73452520e-01 4.17698294e-01 4.53348666e-01 -1.60501218e+00
6.56183839e-01 -7.17519969e-02 2.63667971e-01 -1.19208324e+00
-1.31476112e-02 -2.41281301e-01 -1.01849484e+00 7.53690973e-02
4.01369452e-01 2.07670629e-01 -5.67053914e-01 1.75261176e+00
1.93018928e-01 9.15558338e-01 1.01866424e-01 1.25546885e+00
6.62763894e-01 8.04229259e-01 -1.75367668e-01 -7.28710055e-01
1.01924264e+00 -1.15471089e+00 -1.04648292e+00 -1.58723518e-01
4.28470731e-01 -8.96942496e-01 7.78692007e-01 2.95277596e-01
-1.26290619e+00 -8.66907954e-01 -8.86396825e-01 -3.55479509e-01
4.45022136e-01 -1.91447362e-01 1.18468292e-01 2.89715707e-01
-1.31847680e+00 6.77175462e-01 -9.62904274e-01 -1.04559496e-01
3.36040705e-01 2.62460280e-02 -4.11506474e-01 -5.61399698e-01
-1.25094461e+00 6.78337216e-01 2.49650672e-01 2.18149334e-01
-8.47745895e-01 -9.07266140e-01 -1.07479489e+00 -6.53512776e-03
4.62404341e-01 -8.36547613e-01 9.92121816e-01 -1.08561218e+00
-1.61394119e+00 3.94539595e-01 -7.68233001e-01 -4.15910780e-01
6.56794488e-01 -4.17668581e-01 -2.90188044e-01 6.06833160e-01
-1.30406683e-02 6.11370564e-01 1.09474897e+00 -1.29593372e+00
-5.81469119e-01 3.76645736e-02 -6.03403002e-02 3.28499585e-01
-1.03072733e-01 -2.56789699e-02 -5.63983679e-01 -8.90244246e-01
3.42609622e-02 -7.46638238e-01 -3.90752628e-02 1.18374906e-01
-1.10424563e-01 2.84008473e-01 7.15441644e-01 -1.28818965e+00
1.49240303e+00 -2.09946656e+00 3.47113788e-01 -3.56080800e-01
3.26954842e-01 6.22718573e-01 -4.14101273e-01 1.82117388e-01
-2.13180929e-01 -1.08402492e-02 -3.47479701e-01 -3.73229176e-01
-6.03537917e-01 2.43491217e-01 -3.95771980e-01 5.47937274e-01
1.96201831e-01 8.28092754e-01 -1.18841457e+00 -5.93429565e-01
5.63584745e-01 7.03599274e-01 -8.37449193e-01 4.55690354e-01
9.96779650e-02 1.10591042e+00 -2.33879194e-01 2.63489842e-01
9.78071868e-01 -3.35198045e-01 1.54048651e-01 -5.71871221e-01
-1.02038428e-01 1.76541626e-01 -1.15111375e+00 1.77648544e+00
-4.50624585e-01 1.04420185e+00 1.26366943e-01 -7.98778951e-01
5.13157606e-01 3.45099181e-01 9.54729140e-01 -7.55793154e-01
-2.41983607e-01 1.42236635e-01 -1.35904932e-02 -8.31557155e-01
8.63506854e-01 1.49254754e-01 7.12276936e-01 -2.34315097e-02
-7.86110852e-03 8.23014081e-02 4.55795288e-01 4.71040457e-01
1.07799017e+00 4.00643289e-01 3.20695788e-01 1.92348808e-02
9.41655576e-01 -3.94129992e-01 9.07158196e-01 5.75046539e-01
-5.82814455e-01 1.15188468e+00 2.26590812e-01 -1.67801693e-01
-1.20565963e+00 -9.57362950e-01 -4.22043093e-02 5.86308420e-01
5.30727625e-01 -5.26122153e-01 -5.71064711e-01 -2.85861850e-01
-3.18682194e-01 5.77322125e-01 -1.28563449e-01 -3.42145525e-02
-9.80384886e-01 -3.24382097e-01 2.75840282e-01 1.92763120e-01
5.49220443e-01 -7.41545975e-01 -2.80652434e-01 3.65473360e-01
-1.06157911e+00 -1.75021160e+00 -9.84549046e-01 -6.77518666e-01
-9.04735088e-01 -1.08496428e+00 -9.16868389e-01 -4.83910352e-01
5.40477931e-01 7.28569150e-01 1.15618145e+00 1.82232141e-01
-1.17589012e-01 4.17400926e-01 -6.16946816e-01 5.22742093e-01
-6.01562083e-01 -3.73349071e-01 5.71950264e-02 2.91714430e-01
-3.01372558e-01 -6.84658825e-01 -9.63485003e-01 4.13291991e-01
-1.12307549e+00 2.88970709e-01 2.66288407e-02 9.05502319e-01
5.20439804e-01 -2.55854309e-01 3.43224138e-01 -4.22157198e-01
1.65759891e-01 -2.77788401e-01 -4.77341294e-01 7.09646493e-02
-3.63533080e-01 -2.73741726e-02 7.62037992e-01 -4.01338816e-01
-1.18074393e+00 -1.34385318e-01 -1.56248838e-01 -8.71433198e-01
4.03531194e-02 1.27053320e-01 -1.55676275e-01 -4.94032018e-02
2.71916568e-01 5.97127974e-01 1.41072243e-01 -3.89484346e-01
3.59932125e-01 5.21673083e-01 7.49375105e-01 -4.08296198e-01
7.48466730e-01 6.94536150e-01 2.95407046e-02 -1.13726187e+00
-7.18060195e-01 -7.98280060e-01 -6.26986086e-01 -3.84749323e-01
9.37064528e-01 -1.17680073e+00 -5.34194946e-01 6.30790830e-01
-1.43880224e+00 -4.03122187e-01 -1.43644229e-01 7.42212892e-01
-8.18018317e-01 1.13929403e+00 -8.49554956e-01 -6.46096945e-01
-1.35263801e-01 -1.36969066e+00 9.20596063e-01 2.20113799e-01
5.31818755e-02 -9.33606803e-01 6.04073666e-02 5.92756629e-01
2.90289849e-01 -1.20447233e-01 3.29265267e-01 6.49404004e-02
-9.48163927e-01 4.47679192e-01 -4.68293697e-01 7.33371317e-01
2.72887588e-01 1.86587349e-02 -6.78914189e-01 -5.16111732e-01
9.94981378e-02 1.20377757e-01 1.01188231e+00 7.50469565e-01
1.14113677e+00 -2.43842125e-01 1.25599131e-01 1.04983032e+00
1.32528412e+00 1.51247278e-01 1.15290451e+00 2.48547852e-01
1.05825901e+00 4.25803334e-01 6.22469664e-01 3.03827465e-01
4.77613211e-01 9.53166962e-01 2.96610743e-01 6.86452240e-02
-7.22275078e-01 -2.98376292e-01 6.79678261e-01 1.01384711e+00
-2.24339202e-01 -4.94306833e-01 -5.24890184e-01 4.34934735e-01
-1.92867088e+00 -1.30722177e+00 -2.77531445e-01 2.01869392e+00
6.90883994e-01 -2.69285828e-01 -2.38924339e-01 -1.49941854e-02
8.43589604e-01 6.41659915e-01 -4.29063648e-01 8.80319253e-03
-3.64985645e-01 -2.19584167e-01 4.04651582e-01 1.07079923e+00
-8.80776227e-01 1.03811443e+00 5.25219297e+00 8.82911503e-01
-1.02505422e+00 1.16851330e-01 5.10102332e-01 -6.28040964e-03
-1.96085796e-01 1.75421417e-01 -6.41148210e-01 6.98697209e-01
6.74543917e-01 -7.95934722e-02 7.36389399e-01 2.15368792e-01
9.72037911e-01 -2.55506694e-01 -1.04085100e+00 1.34176111e+00
1.84361577e-01 -1.43179131e+00 1.29736453e-01 5.46900481e-02
8.94076228e-01 -1.62301302e-01 -8.99356902e-02 -2.78175682e-01
-2.17211068e-01 -7.77866721e-01 6.64586723e-01 7.00753152e-01
9.94375229e-01 -3.03953439e-01 4.64718044e-01 1.20494142e-01
-1.34096026e+00 4.51628231e-02 -2.54579753e-01 1.75883994e-01
8.40787828e-01 7.38675416e-01 -2.87565559e-01 8.57888579e-01
6.22278154e-01 1.45774996e+00 -2.29039177e-01 1.06981790e+00
-1.36646643e-01 5.93058050e-01 8.78524482e-02 9.07952368e-01
-1.58843100e-01 -5.91220975e-01 1.03980982e+00 1.11546636e+00
4.51643467e-01 2.21387789e-01 1.07005201e-01 6.31539285e-01
3.98836508e-02 -1.05297789e-01 -3.38101983e-01 5.39983734e-02
2.69820482e-01 9.12825465e-01 -3.46799999e-01 -3.62688869e-01
-4.54570293e-01 1.26146221e+00 -3.13762687e-02 7.21539676e-01
-7.70629883e-01 6.08366765e-02 1.04359078e+00 1.63538665e-01
3.12331885e-01 -5.01711071e-01 1.25778886e-02 -1.81621146e+00
1.15483865e-01 -8.35659087e-01 1.67167559e-01 -9.90125358e-01
-1.10534346e+00 4.65607911e-01 -1.91823706e-01 -1.57107472e+00
-3.04661632e-01 -3.19505930e-01 -1.75301880e-01 7.85645783e-01
-2.04044032e+00 -6.83581769e-01 -2.91298002e-01 7.32215106e-01
9.28126872e-01 -6.71926513e-03 7.26149902e-02 6.56791687e-01
-5.24793506e-01 3.98699045e-01 2.95830399e-01 1.45526454e-01
1.02069628e+00 -7.97999024e-01 3.01750124e-01 1.46865010e+00
-2.36949492e-02 3.92917871e-01 8.30328584e-01 -7.35074103e-01
-1.37996972e+00 -1.07207215e+00 6.78520501e-01 -2.17553914e-01
5.57204962e-01 3.95175591e-02 -1.20124543e+00 4.43303257e-01
2.31709518e-02 3.24801505e-01 2.22512454e-01 -6.68336332e-01
-3.61336380e-01 -5.81163727e-02 -8.42609346e-01 5.71443498e-01
1.27737546e+00 -6.65745974e-01 -1.16283931e-01 9.52016562e-02
9.04189408e-01 -5.01097798e-01 -8.58867645e-01 2.93411791e-01
3.49135876e-01 -1.22369134e+00 1.30267942e+00 -2.52037108e-01
9.71352816e-01 -6.15001380e-01 -2.86105156e-01 -1.22796881e+00
-1.43851668e-01 -1.05257857e+00 -5.62023640e-01 1.27438414e+00
-1.29691482e-01 -5.07801116e-01 5.73478222e-01 4.43207622e-01
-1.05017267e-01 -2.60668755e-01 -8.59850585e-01 -7.62010336e-01
-1.66075036e-01 -3.59914333e-01 7.80328885e-02 9.63233829e-01
-3.01874220e-01 1.16184101e-01 -9.75332499e-01 2.50561535e-01
8.52249801e-01 -1.01181589e-01 6.45423174e-01 -6.31572902e-01
-4.97464299e-01 -3.09965074e-01 -4.14489865e-01 -1.86698210e+00
2.74849117e-01 -6.52254641e-01 7.29442388e-02 -1.45721531e+00
1.95965871e-01 -3.54852229e-02 7.64617464e-03 -2.16652170e-01
-5.09551883e-01 5.05625419e-02 7.04830229e-01 4.90156919e-01
-5.60874939e-01 7.45020270e-01 1.78704321e+00 3.95350643e-02
-2.31840447e-01 -2.22610474e-01 -3.32717150e-01 5.17223001e-01
5.11388004e-01 -2.51302928e-01 -4.99045283e-01 -7.28803813e-01
-1.06138557e-01 6.48859620e-01 3.67129087e-01 -7.84224272e-01
2.16484889e-01 -3.17038894e-01 3.96495424e-02 -2.94764638e-01
3.57529730e-01 -6.55331373e-01 -5.80639252e-03 2.86300987e-01
-4.53183532e-01 3.17762466e-03 -9.72408727e-02 7.30440199e-01
-5.10138214e-01 -6.46407381e-02 9.46489036e-01 -9.13669169e-03
-9.38859522e-01 5.49991429e-01 -2.83817500e-01 3.65955085e-01
5.86120963e-01 -3.20369869e-01 -4.84421372e-01 -7.65778720e-01
-5.13821661e-01 1.96665734e-01 5.59831798e-01 5.15162528e-01
8.77891541e-01 -1.08074415e+00 -9.55808938e-01 7.20601827e-02
-2.45926782e-01 -5.91243356e-02 8.33084345e-01 9.57172751e-01
-7.14534938e-01 2.23090738e-01 -2.08804175e-01 -7.19429314e-01
-1.30426049e+00 5.31269789e-01 4.26526070e-01 -2.92050630e-01
-8.65204155e-01 6.41633272e-01 5.29912114e-01 8.83391127e-02
-8.24598894e-02 -2.94886176e-02 -1.99443281e-01 -2.88152426e-01
9.56445813e-01 6.73692882e-01 -2.19847828e-01 -1.16161323e+00
-1.97374851e-01 7.67515540e-01 3.49691436e-02 -4.60105501e-02
1.13381863e+00 -8.59070718e-01 -9.15750116e-02 7.35710040e-02
1.46363699e+00 -6.22748304e-03 -1.88948834e+00 -2.89527744e-01
-3.05710882e-01 -1.07754588e+00 1.49911314e-01 -3.26532334e-01
-1.30654716e+00 9.33185458e-01 4.90032405e-01 -1.23930372e-01
1.23142087e+00 -4.48185682e-01 1.07719314e+00 -2.72404492e-01
1.78796232e-01 -6.91587865e-01 2.45079771e-01 6.98364794e-01
8.06695044e-01 -1.27726197e+00 3.40159275e-02 -7.19277322e-01
-6.67270541e-01 1.23380065e+00 4.94937986e-01 -5.91492318e-02
3.09195310e-01 1.80116355e-01 1.82145722e-02 4.29518074e-01
-7.12982714e-01 -2.35498488e-01 2.67402291e-01 7.98169196e-01
3.82213444e-01 -2.86839515e-01 -2.20649004e-01 -1.72011599e-01
1.87793672e-01 3.31755728e-01 9.68088031e-01 5.50837815e-01
-1.75755203e-01 -1.06593406e+00 -4.11271781e-01 -2.34748349e-02
-3.83284718e-01 -3.51039529e-01 3.99508625e-01 3.09972107e-01
-2.42027983e-01 1.20795166e+00 5.88336587e-02 -2.88185030e-01
1.02637954e-01 -3.70460272e-01 5.89331150e-01 -9.87367481e-02
-4.22823578e-02 2.88803905e-01 -1.51182981e-02 -8.99279654e-01
-7.31976628e-01 -5.68406224e-01 -1.00880539e+00 -4.04510498e-01
-1.75958443e-02 -1.94848657e-01 2.25113988e-01 8.35410714e-01
5.60220838e-01 5.56453645e-01 7.21731544e-01 -1.12250900e+00
-2.82569647e-01 -6.30002677e-01 -4.67900395e-01 6.87635839e-01
8.80357027e-01 -4.42383349e-01 -5.18006563e-01 5.99213541e-01]
|
[11.029869079589844, -1.8439075946807861]
|
341c6844-e8cb-4093-b651-0e3baa3e5c01
|
fingerspelling-recognition-in-the-wild-with
|
1908.10546
| null |
https://arxiv.org/abs/1908.10546v1
|
https://arxiv.org/pdf/1908.10546v1.pdf
|
Fingerspelling recognition in the wild with iterative visual attention
|
Sign language recognition is a challenging gesture sequence recognition problem, characterized by quick and highly coarticulated motion. In this paper we focus on recognition of fingerspelling sequences in American Sign Language (ASL) videos collected in the wild, mainly from YouTube and Deaf social media. Most previous work on sign language recognition has focused on controlled settings where the data is recorded in a studio environment and the number of signers is limited. Our work aims to address the challenges of real-life data, reducing the need for detection or segmentation modules commonly used in this domain. We propose an end-to-end model based on an iterative attention mechanism, without explicit hand detection or segmentation. Our approach dynamically focuses on increasingly high-resolution regions of interest. It outperforms prior work by a large margin. We also introduce a newly collected data set of crowdsourced annotations of fingerspelling in the wild, and show that performance can be further improved with this additional data set.
|
['Karen Livescu', 'Greg Shakhnarovich', 'Diane Brentari', 'Jonathan Keane', 'Bowen Shi', 'Aurora Martinez Del Rio']
|
2019-08-28
|
fingerspelling-recognition-in-the-wild-with-1
|
http://openaccess.thecvf.com/content_ICCV_2019/html/Shi_Fingerspelling_Recognition_in_the_Wild_With_Iterative_Visual_Attention_ICCV_2019_paper.html
|
http://openaccess.thecvf.com/content_ICCV_2019/papers/Shi_Fingerspelling_Recognition_in_the_Wild_With_Iterative_Visual_Attention_ICCV_2019_paper.pdf
|
iccv-2019-10
|
['hand-detection']
|
['computer-vision']
|
[ 3.13301802e-01 -3.63144636e-01 -2.71832436e-01 -2.50345349e-01
-9.24183369e-01 -8.42905343e-01 6.01502776e-01 -7.82824874e-01
-1.04950166e+00 3.40559691e-01 6.84399724e-01 3.95663194e-02
2.16292202e-01 6.03055209e-02 -4.68226582e-01 -5.13963699e-01
6.59761503e-02 5.01667917e-01 9.25947607e-01 -1.48775056e-01
2.21753940e-01 6.05389178e-01 -1.73927987e+00 2.65554130e-01
4.22458172e-01 3.87307674e-01 3.67723078e-01 1.25362051e+00
1.25479266e-01 9.41734672e-01 -4.29929227e-01 -1.29407018e-01
6.17843151e-01 -4.01707113e-01 -7.81266928e-01 2.74122089e-01
1.12845659e+00 -8.19869816e-01 -6.50028229e-01 7.85575449e-01
1.09200144e+00 1.05853133e-01 2.08564803e-01 -1.15750229e+00
-1.87998563e-02 1.48928031e-01 -3.35887969e-01 2.85791218e-01
5.57505190e-01 7.64761448e-01 8.50832880e-01 -8.45519483e-01
1.07908940e+00 1.11158168e+00 5.20512283e-01 1.03279209e+00
-7.17405021e-01 -5.04387200e-01 3.26475590e-01 9.37177092e-02
-1.17531300e+00 -6.73296630e-01 5.93292654e-01 -6.24448895e-01
1.04950714e+00 9.84811336e-02 9.72109854e-01 1.28253758e+00
-8.39923739e-01 1.49330974e+00 8.73587430e-01 -6.21574223e-01
9.85903293e-02 -6.01163447e-01 -1.90608557e-02 4.82970655e-01
5.47268316e-02 1.14533290e-01 -8.78194809e-01 3.98949347e-02
9.94486272e-01 -8.51525366e-02 -5.89391589e-01 -5.18472731e-01
-1.32100105e+00 3.12133819e-01 -3.83474492e-02 3.66143435e-01
-3.40563506e-01 3.14284086e-01 3.34678292e-01 1.82236910e-01
-2.42107213e-02 -1.05919547e-01 -4.42807972e-01 -8.87883484e-01
-1.11990213e+00 3.16350073e-01 7.99296677e-01 1.03152919e+00
-9.49731767e-02 -2.32318923e-01 -2.18184114e-01 6.86845064e-01
4.73397791e-01 5.94760060e-01 5.39591312e-01 -9.08389509e-01
7.79618025e-01 4.37292606e-01 3.99121612e-01 -6.36837557e-02
-2.94946879e-01 2.68507659e-01 5.49246073e-02 6.37865901e-01
1.24948883e+00 -3.25799316e-01 -1.44040835e+00 1.40463674e+00
2.66650021e-01 2.69468337e-01 -2.73234516e-01 1.59606028e+00
6.63305342e-01 -6.38811663e-02 2.03962103e-01 2.50688106e-01
1.03395402e+00 -1.06967068e+00 -5.08576930e-01 -1.63546965e-01
5.00764489e-01 -7.23165512e-01 1.34932935e+00 4.77629602e-01
-9.79110479e-01 -8.07281211e-02 -5.82341969e-01 -3.05510640e-01
-1.12130865e-02 2.38656297e-01 4.70834345e-01 6.65925503e-01
-9.42998171e-01 2.45384023e-01 -1.21017694e+00 -8.08418989e-01
6.95059538e-01 4.26810831e-01 -4.45689350e-01 -1.38660595e-01
-3.80241394e-01 5.81564724e-01 7.53739178e-02 2.22194687e-01
-4.70220268e-01 -3.32230330e-01 -7.88864791e-01 -5.72640777e-01
4.56218690e-01 -1.38153061e-01 1.49927843e+00 -9.62335646e-01
-1.66391802e+00 1.23592949e+00 -3.13259244e-01 -9.48172659e-02
1.28943455e+00 -6.32600784e-01 -7.75590017e-02 2.52628505e-01
-2.36601770e-01 5.18983364e-01 7.37617373e-01 -1.05508816e+00
-9.02520418e-01 -4.08663154e-01 -9.50496197e-02 1.28568113e-01
-1.61154374e-01 7.27798223e-01 -9.62534249e-01 -7.80974567e-01
7.57226795e-02 -1.04669738e+00 -1.38485879e-01 2.50877649e-01
-1.01056986e-01 -1.71312857e-02 9.05295908e-01 -9.54045355e-01
8.63965213e-01 -1.79337204e+00 1.35888964e-01 2.13165864e-01
1.41988143e-01 9.35665369e-01 -2.58534133e-01 2.65496820e-01
5.38496614e-01 -1.92175820e-01 -3.01138997e-01 -1.20565169e-01
-8.16720650e-02 2.67006636e-01 -2.01169521e-01 4.81215686e-01
9.35117900e-02 1.04012728e+00 -1.24916112e+00 -5.48610628e-01
2.95124203e-01 4.34485495e-01 -5.54567397e-01 2.96653718e-01
-2.36635298e-01 7.63736427e-01 -2.32987776e-01 1.10914171e+00
3.13422948e-01 3.85489352e-02 2.17014998e-01 6.51458725e-02
-2.51598328e-01 -1.95728466e-02 -1.25849295e+00 1.93937957e+00
-1.44949347e-01 1.13958919e+00 2.71553427e-01 -4.70680952e-01
4.23179656e-01 3.11420768e-01 5.66874325e-01 -4.84954059e-01
1.84063762e-01 4.52547073e-01 1.83311701e-01 -1.04677558e+00
3.96497875e-01 2.58271158e-01 2.10603356e-01 4.94447589e-01
1.14810541e-02 7.16459230e-02 4.15602773e-01 -1.07585669e-01
1.31914890e+00 4.58981544e-01 -6.78974297e-03 2.67458260e-01
1.81933939e-01 1.72248170e-01 2.98340142e-01 1.00276399e+00
-6.85122073e-01 9.56732035e-01 5.57694696e-02 -2.02467144e-01
-1.15044773e+00 -8.71153116e-01 2.45615020e-01 1.23139322e+00
3.02556939e-02 -7.94396698e-02 -7.15456069e-01 -8.04271996e-01
-6.75054453e-03 -1.43422276e-01 -2.49139011e-01 7.43974447e-01
-1.15570116e+00 -2.08560050e-01 8.08890104e-01 1.08442318e+00
5.46030760e-01 -1.39280939e+00 -1.17819214e+00 1.35425583e-01
6.66047409e-02 -1.49334526e+00 -8.27081144e-01 -4.04753983e-01
-5.90629876e-01 -1.24260414e+00 -1.47194624e+00 -1.02714479e+00
6.04727089e-01 6.64069653e-02 6.00199521e-01 -6.01543933e-02
-6.22338295e-01 8.27570379e-01 -6.69030309e-01 -3.44703913e-01
-5.72506525e-02 -6.10758811e-02 -8.23564753e-02 2.05400616e-01
7.59412408e-01 -4.09200042e-01 -5.68131566e-01 4.36583996e-01
-7.02627480e-01 -1.11870274e-01 4.66052204e-01 8.39001775e-01
2.52868354e-01 -9.72995102e-01 1.29349818e-02 -2.45900124e-01
4.55388159e-01 1.82199091e-01 -6.56719267e-01 2.45558798e-01
9.28709283e-02 2.76572760e-02 5.69458194e-02 -8.76028419e-01
-8.70784283e-01 6.95137560e-01 -3.42147760e-02 -3.73443455e-01
-3.85023981e-01 -9.45890993e-02 -2.08484203e-01 -4.78279769e-01
5.90967178e-01 1.22701891e-01 1.32059902e-01 -7.13194072e-01
3.34383190e-01 1.13528728e+00 9.02806520e-01 -2.76439637e-01
4.04220045e-01 7.70441771e-01 -4.45826411e-01 -1.01672828e+00
-1.73685983e-01 -9.85104680e-01 -1.06802428e+00 -6.58779502e-01
6.86948001e-01 -7.45013595e-01 -8.79385769e-01 1.07970715e+00
-1.00565541e+00 -9.21679199e-01 -3.15065682e-01 8.89725745e-01
-6.93471253e-01 6.79692209e-01 -3.94249827e-01 -1.18033385e+00
-1.18683450e-01 -9.54334617e-01 1.37576807e+00 1.64840892e-01
-3.96237105e-01 -3.39178354e-01 2.50414312e-01 4.22841012e-01
2.47426465e-01 3.43518764e-01 -1.52968556e-01 -4.35683936e-01
-8.27353477e-01 -4.68225688e-01 -2.59147108e-01 2.99567461e-01
-1.32798124e-02 -1.95680633e-01 -1.05443895e+00 -2.29711086e-01
-7.76091576e-01 -5.15098214e-01 1.09159076e+00 3.15517992e-01
7.86565721e-01 -2.24099606e-02 -2.59936647e-03 4.69802350e-01
9.95092630e-01 1.37093961e-01 3.27402979e-01 2.29855716e-01
9.49104488e-01 6.58187151e-01 5.09105444e-01 5.61601698e-01
3.30833673e-01 8.64083648e-01 -2.59142760e-02 -4.02637348e-02
-5.24059534e-01 -3.35619092e-01 4.20042366e-01 4.17205572e-01
-8.36009204e-01 -2.68277466e-01 -1.32889736e+00 1.05089641e+00
-2.28152800e+00 -1.09756768e+00 1.63464751e-02 2.19098163e+00
6.51888430e-01 -3.05410296e-01 7.62923360e-01 4.10247535e-01
6.91092789e-01 -1.71314720e-02 -6.08658612e-01 1.14179276e-01
-2.57351577e-01 3.31236750e-01 8.68156254e-01 6.76393926e-01
-1.31135547e+00 1.31183445e+00 6.22433662e+00 2.38988668e-01
-1.28693223e+00 -3.25626880e-02 -4.02618736e-01 -7.15911925e-01
2.41568699e-01 -2.50768334e-01 -6.98355794e-01 4.22873467e-01
2.28274792e-01 3.62079084e-01 3.58636320e-01 6.52827322e-01
3.96008462e-01 -1.35222912e-01 -1.15134525e+00 1.23792887e+00
2.15009049e-01 -9.49270844e-01 -3.42109025e-01 1.24402069e-01
4.80623066e-01 5.41314781e-01 -4.46542203e-01 -1.43993288e-01
3.95507693e-01 -9.46987987e-01 7.95722365e-01 6.10157013e-01
9.32177722e-01 -9.55649167e-02 4.80602831e-01 4.17164296e-01
-1.13619506e+00 -1.20835483e-01 3.92740011e-01 -1.60756454e-01
5.62630355e-01 -3.43228310e-01 -9.03391361e-01 -3.73683393e-01
7.54755735e-01 7.20712841e-01 -4.78998274e-01 1.58573902e+00
-3.85657758e-01 7.81894326e-01 -7.03634739e-01 -5.37204087e-01
1.63179636e-01 1.97020859e-01 8.21625948e-01 1.62638736e+00
6.15794808e-02 2.66920567e-01 1.84520155e-01 1.63236931e-01
2.23223493e-01 3.63044851e-02 -5.63960373e-01 -1.00896709e-01
1.47399500e-01 5.49788833e-01 -6.99501455e-01 -3.04865569e-01
-4.57605660e-01 1.33596253e+00 6.90825209e-02 5.14946699e-01
-3.27954799e-01 -4.28265214e-01 7.18640149e-01 1.95589781e-01
6.02087855e-01 -6.30215645e-01 -6.14541657e-02 -1.40533733e+00
7.44176388e-01 -7.89622903e-01 3.38068187e-01 -5.16597629e-01
-1.04141617e+00 2.59655774e-01 -2.41894767e-01 -1.46568191e+00
-6.37072980e-01 -9.34029162e-01 -2.77868062e-01 6.70857906e-01
-1.50690639e+00 -1.26828778e+00 -6.08227313e-01 9.19356108e-01
6.49667382e-01 -2.02583075e-01 5.63421249e-01 4.83370274e-01
-1.26112849e-01 7.73018241e-01 -6.84262905e-03 8.15069914e-01
7.26582229e-01 -1.03520679e+00 5.32570720e-01 1.13812637e+00
3.42782110e-01 3.09812993e-01 4.75848079e-01 -6.27778172e-01
-1.28400326e+00 -6.08229578e-01 9.99440014e-01 -8.80724311e-01
5.21659017e-01 -5.45126915e-01 -5.32450557e-01 5.78954458e-01
-3.08070242e-01 3.46518129e-01 3.29015017e-01 -3.29069078e-01
-3.31717163e-01 4.08206969e-01 -1.09416771e+00 6.74382150e-01
1.87402439e+00 -6.13918543e-01 -5.80750525e-01 3.13572913e-01
4.07407992e-02 -7.02579021e-01 -3.65857154e-01 2.56012976e-01
1.31148160e+00 -5.12241662e-01 7.78065622e-01 -9.68910098e-01
1.27969563e-01 -3.77927214e-01 -1.20117165e-01 -6.45144463e-01
3.38655651e-01 -8.24503601e-01 -1.96251184e-01 9.41567600e-01
7.10607171e-02 -2.22911194e-01 1.23929524e+00 1.09808266e+00
2.84404039e-01 -2.32911840e-01 -1.18363762e+00 -9.33357179e-01
-4.58185285e-01 -7.80020475e-01 1.35541677e-01 4.91813630e-01
5.98930158e-02 -2.87887633e-01 -5.90163231e-01 -4.19370756e-02
6.73003197e-01 -2.64764596e-02 1.23130989e+00 -1.05878377e+00
-3.57795358e-01 -5.15800893e-01 -9.87992883e-01 -1.42546761e+00
-1.21274143e-01 -6.18570328e-01 4.44342434e-01 -1.40970695e+00
-1.69773161e-01 1.79099720e-02 1.59175053e-01 5.58972776e-01
-1.89828966e-02 4.60504919e-01 5.84943593e-01 3.91309381e-01
-6.81218565e-01 1.46302804e-01 1.17016089e+00 2.45330296e-02
-4.09709126e-01 2.93346606e-02 8.08639750e-02 9.02630627e-01
5.64932883e-01 -1.41734868e-01 6.56287838e-03 -6.74967766e-01
-4.82465148e-01 -2.04728052e-01 7.09750473e-01 -8.44255328e-01
5.42189002e-01 -7.28139728e-02 -2.00581234e-02 -4.89696413e-01
2.85216868e-01 -6.64554477e-01 -4.54523444e-01 4.18390602e-01
-3.69140089e-01 -3.37657273e-01 -3.54448035e-02 4.06198859e-01
-2.21765250e-01 -6.12160936e-02 5.59305370e-01 -1.88555717e-01
-1.27730179e+00 2.20721513e-01 -4.83311117e-01 4.79331315e-01
8.56007874e-01 -5.84478319e-01 -3.62451258e-03 -3.61202955e-01
-8.06991339e-01 3.32969159e-01 4.70681250e-01 6.80926502e-01
6.53485060e-01 -1.10795438e+00 -9.00920510e-01 3.33560050e-01
3.60713542e-01 4.23920862e-02 -1.18392251e-01 5.94771802e-01
-8.13296437e-01 1.97630659e-01 -2.16229215e-01 -6.98914647e-01
-1.79750395e+00 -2.59163857e-01 2.46134207e-01 2.33787954e-01
-1.10078418e+00 9.84229922e-01 -6.15477383e-01 -2.13348880e-01
7.68632531e-01 -5.63304484e-01 -1.21406959e-02 -3.63585390e-02
7.03219712e-01 4.42345798e-01 -1.30204305e-01 -9.14045453e-01
-4.51640010e-01 8.88246059e-01 1.41068205e-01 -6.53186679e-01
1.18039215e+00 2.24116579e-01 3.70940536e-01 2.94798493e-01
8.40930283e-01 1.76705971e-01 -1.80986392e+00 -3.74002546e-01
2.44917497e-01 -1.00626194e+00 -2.48454794e-01 -8.68938208e-01
-8.07221949e-01 7.70472884e-01 7.69984484e-01 -5.13926566e-01
8.91774952e-01 1.65845096e-01 9.45886254e-01 5.36149800e-01
6.06883168e-01 -1.50949061e+00 -4.10736911e-02 6.98748648e-01
9.84320402e-01 -1.53618002e+00 -5.28965473e-01 -6.77705258e-02
-7.07570553e-01 1.01338065e+00 3.68064851e-01 -2.11390182e-01
4.41449523e-01 5.33607423e-01 5.18227577e-01 6.79169223e-02
-5.35709076e-02 -8.66842568e-01 3.61348093e-01 8.84370863e-01
2.85296649e-01 -2.22716071e-02 -4.23522830e-01 3.99850667e-01
-1.32847950e-01 4.69778508e-01 3.84504229e-01 1.39048040e+00
-1.90206051e-01 -1.09008205e+00 -4.34841603e-01 2.89718121e-01
-2.79049456e-01 7.03748837e-02 -7.71353006e-01 8.12446713e-01
1.16816416e-01 8.34591031e-01 -1.05605707e-01 -1.81056485e-01
6.15271628e-01 2.41219044e-01 8.51041913e-01 -3.68982643e-01
-4.86621648e-01 6.58226833e-02 1.99300170e-01 -8.31541717e-01
-6.96780384e-01 -1.10191810e+00 -1.25343120e+00 3.17714781e-01
-4.83174771e-02 -6.51233435e-01 6.74938679e-01 9.26957965e-01
1.53874889e-01 2.69483216e-02 -1.28185004e-01 -1.32559538e+00
-4.12740827e-01 -9.68365192e-01 -4.78091925e-01 7.06113696e-01
7.37066507e-01 -4.41613764e-01 -1.57207027e-01 3.63816410e-01]
|
[9.136438369750977, -6.463534832000732]
|
94c246a1-063c-45e5-b68c-725ab7f95885
|
ensemble-of-multi-view-learning-classifiers
|
1811.10068
| null |
http://arxiv.org/abs/1811.10068v1
|
http://arxiv.org/pdf/1811.10068v1.pdf
|
Ensemble of Multi-View Learning Classifiers for Cross-Domain Iris Presentation Attack Detection
|
The adoption of large-scale iris recognition systems around the world has
brought to light the importance of detecting presentation attack images
(textured contact lenses and printouts). This work presents a new approach in
iris Presentation Attack Detection (PAD), by exploring combinations of
Convolutional Neural Networks (CNNs) and transformed input spaces through
binarized statistical image features (BSIF). Our method combines lightweight
CNNs to classify multiple BSIF views of the input image. Following explorations
on complementary input spaces leading to more discriminative features to detect
presentation attacks, we also propose an algorithm to select the best (and most
discriminative) predictors for the task at hand.An ensemble of predictors makes
use of their expected individual performances to aggregate their results into a
final prediction. Results show that this technique improves on the current
state of the art in iris PAD, outperforming the winner of LivDet-Iris2017
competition both for intra- and cross-dataset scenarios, and illustrating the
very difficult nature of the cross-dataset scenario.
|
['Adam Czajka', 'Kevin Bowyer', 'Andrey Kuehlkamp', 'Anderson Rocha', 'Allan Pinto']
|
2018-11-25
| null | null | null | null |
['cross-domain-iris-presentation-attack']
|
['computer-vision']
|
[ 5.48278868e-01 -1.32157892e-01 -2.16250539e-01 -2.34580502e-01
-6.61503494e-01 -5.85065663e-01 9.06488299e-01 2.03046069e-01
-3.28187793e-01 1.62071973e-01 5.35904109e-01 -4.63214040e-01
-5.57137072e-01 -4.06250000e-01 -4.65316385e-01 -4.46221888e-01
-2.47615278e-01 9.78335962e-02 -5.03701493e-02 9.65492427e-03
4.41228241e-01 9.50393081e-01 -2.13574338e+00 8.84676993e-01
7.14452803e-01 1.21498621e+00 -6.47197723e-01 9.96339440e-01
4.16553408e-01 5.60961246e-01 -7.14775681e-01 -6.26412392e-01
6.03370130e-01 -4.01048481e-01 -7.11633146e-01 1.73880085e-01
1.37755120e+00 -2.29490802e-01 -6.45182952e-02 9.38681066e-01
7.70877898e-01 -2.69267261e-01 3.59975427e-01 -8.28920186e-01
-3.87768477e-01 1.73166156e-01 -6.38747692e-01 5.39109528e-01
5.93510211e-01 4.14115161e-01 7.07259238e-01 -5.13223290e-01
6.86721027e-01 9.88539457e-01 5.87506831e-01 3.76585007e-01
-1.23298395e+00 -5.16041875e-01 -2.77150124e-01 3.45206767e-01
-1.09675002e+00 -2.85430700e-01 3.66991431e-01 -4.15281773e-01
1.17312396e+00 8.05897415e-01 7.56530941e-01 1.16379094e+00
3.31281088e-02 9.09894407e-01 1.64481592e+00 -6.12125874e-01
-1.59989417e-01 3.64634484e-01 9.91620198e-02 5.09601295e-01
2.49527439e-01 5.61878741e-01 -6.97736502e-01 -2.75283188e-01
4.36268270e-01 -2.45015949e-01 -2.70466119e-01 -2.05553740e-01
-1.00480282e+00 4.91238117e-01 2.20362663e-01 5.82133830e-01
-2.35746533e-01 -4.91733551e-01 4.25463796e-01 4.39341813e-01
2.38761008e-01 7.14110553e-01 -4.55540001e-01 -3.73218864e-01
-9.97464299e-01 2.91881740e-01 6.39324248e-01 3.26705933e-01
2.77125120e-01 -4.45422858e-01 -6.34210348e-01 6.99113011e-01
-5.56667522e-02 1.32599458e-01 3.57100099e-01 -1.82173193e-01
2.78317183e-01 1.03109622e+00 -6.54586181e-02 -7.89785743e-01
-5.08786142e-01 -8.52920353e-01 -6.54824078e-01 6.66681647e-01
6.48718238e-01 5.80366030e-02 -1.35437787e+00 9.33772087e-01
1.21202037e-01 2.85471499e-01 -1.80060178e-01 8.31785619e-01
7.38408506e-01 -1.60024479e-01 -1.53350785e-01 2.15526417e-01
1.35662782e+00 -6.81059241e-01 -1.95047155e-01 2.55787760e-01
6.02593720e-01 -1.11084259e+00 8.50617826e-01 1.14694953e+00
-1.00929713e+00 -6.01864457e-01 -1.16784954e+00 2.96461191e-02
-6.22462094e-01 5.62516153e-01 2.87615985e-01 1.14968801e+00
-1.35853684e+00 5.92798412e-01 -5.11792898e-01 -3.72690767e-01
5.66386223e-01 9.02910471e-01 -4.69523251e-01 2.50177145e-01
-6.45226002e-01 9.22356606e-01 1.04837887e-01 5.93033396e-02
-3.56377542e-01 -6.01708949e-01 -6.14346087e-01 -1.23915896e-01
1.34247497e-01 -2.77271032e-01 8.64315093e-01 -1.17705536e+00
-1.56900668e+00 1.26234865e+00 -1.05764745e-02 -7.87207901e-01
6.14956379e-01 -4.61112082e-01 -6.83172762e-01 1.61497191e-01
-6.42913640e-01 4.69087571e-01 9.98691618e-01 -7.87651360e-01
-1.03121638e+00 -2.82483637e-01 9.42124724e-02 -1.69335902e-01
-4.83481944e-01 6.43571734e-01 -4.27998573e-01 -4.53314453e-01
-2.23264813e-01 -8.19270551e-01 -2.00847369e-02 -3.55149359e-01
-7.70573914e-01 -3.78017575e-01 5.40238500e-01 -7.95248151e-01
1.27685773e+00 -1.97682524e+00 1.60697863e-01 5.66159308e-01
4.18424040e-01 1.00748372e+00 -2.23123819e-01 3.38438749e-01
-5.60032010e-01 -3.94259952e-02 3.23098809e-01 -4.59464431e-01
-1.21056087e-01 -2.74387240e-01 -3.97067130e-01 6.45103514e-01
4.17338699e-01 7.09212065e-01 -4.81810063e-01 -2.70019650e-01
5.89398801e-01 7.13369727e-01 -2.05852389e-01 8.87755603e-02
-4.94403159e-03 5.38510025e-01 -1.32187322e-01 9.64983940e-01
7.84691691e-01 -2.61847615e-01 -7.63334930e-02 -1.82399079e-01
-1.70258671e-01 2.03927130e-01 -1.27382970e+00 1.30018735e+00
-2.48400033e-01 8.82615030e-01 -5.53323686e-01 -5.46730578e-01
9.13328946e-01 2.44677752e-01 2.16378331e-01 -9.21069324e-01
2.62254715e-01 3.39284062e-01 2.25522175e-01 -6.50128841e-01
2.52085358e-01 4.09748644e-01 5.03474772e-01 2.55594820e-01
2.30778024e-01 6.15914345e-01 1.27189159e-01 -2.56215781e-01
9.43066597e-01 1.57263890e-01 3.35173488e-01 2.53381301e-02
8.06841969e-01 -4.34156090e-01 4.21234258e-02 7.21112490e-01
-1.78155005e-01 7.01676011e-01 7.79160678e-01 -1.17296457e+00
-9.53252554e-01 -6.16737068e-01 -4.89845097e-01 5.52187443e-01
-2.11035416e-01 -5.40965974e-01 -7.18764007e-01 -1.05151904e+00
9.35631022e-02 1.38132989e-01 -1.07329667e+00 2.80689210e-01
-5.33714473e-01 -7.33759105e-01 5.62415957e-01 2.01754496e-01
9.24232230e-02 -1.05465925e+00 -9.00678754e-01 -2.23467082e-01
3.42356056e-01 -8.37604880e-01 4.56454046e-02 -1.56952441e-01
-5.69464386e-01 -1.49477398e+00 -6.85396314e-01 -3.60123217e-01
5.30142605e-01 -2.20921755e-01 9.78773594e-01 2.73264706e-01
-1.04638684e+00 2.29957581e-01 -3.00834566e-01 -6.13821864e-01
-2.51117378e-01 -4.47475724e-02 -1.34767845e-01 6.03176296e-01
9.53860402e-01 -2.13749841e-01 -8.07620943e-01 1.61614478e-01
-8.48439991e-01 -2.62569696e-01 9.31469619e-01 7.18469799e-01
3.26141328e-01 -2.17164204e-01 -3.25757205e-01 -6.46398187e-01
5.38533092e-01 1.26466257e-02 -8.33366990e-01 3.56114477e-01
-6.25136971e-01 -2.35644251e-01 2.96356589e-01 -6.30722046e-01
-5.23994684e-01 -8.00973698e-02 1.50710285e-01 -5.47897279e-01
-6.62316442e-01 1.47052184e-01 3.07832748e-01 -6.74866557e-01
9.97090757e-01 1.53170869e-01 9.86570492e-02 -6.33686006e-01
1.01074301e-01 8.55067968e-01 4.62213844e-01 -9.03400034e-02
6.68054044e-01 3.49366307e-01 3.27138931e-01 -5.38701832e-01
-5.12617350e-01 -5.71060181e-01 -6.96433544e-01 -2.05834016e-01
6.18793190e-01 -5.72970510e-01 -1.17591751e+00 7.77106881e-01
-8.63144994e-01 1.32286757e-01 -2.12512076e-01 4.83889401e-01
-3.23185265e-01 4.73903984e-01 -3.34361136e-01 -8.88199031e-01
-1.76265284e-01 -1.45788515e+00 1.26592803e+00 5.59257150e-01
-2.95727223e-01 -6.81726336e-01 2.37542644e-01 4.70826179e-01
4.69529033e-01 5.40143847e-01 7.16184735e-01 -1.05218029e+00
-6.81287706e-01 -5.71177363e-01 -4.21583056e-01 3.93939555e-01
-2.16557145e-01 2.34847948e-01 -1.41502047e+00 -4.90611285e-01
-2.97157466e-01 -2.99561679e-01 8.35010707e-01 3.58282208e-01
1.44198966e+00 -1.69147193e-01 -3.07325274e-01 9.27252352e-01
1.51458430e+00 5.16107976e-02 1.06706989e+00 7.94390440e-01
1.67112887e-01 7.74771750e-01 2.95503080e-01 2.54807860e-01
-1.42234847e-01 9.04658020e-01 5.21154463e-01 -7.35465527e-01
-2.66248375e-01 8.04013982e-02 -4.64861877e-02 -2.90819734e-01
-4.52908427e-01 -1.33752212e-01 -1.13924170e+00 7.17284262e-01
-1.44259679e+00 -6.26423776e-01 -1.86310243e-02 2.62900138e+00
5.38379014e-01 7.76533484e-02 4.84808654e-01 1.88691705e-01
5.42732716e-01 -1.30008414e-01 -2.47786880e-01 -7.20470726e-01
-2.69485414e-01 9.41325605e-01 5.41175425e-01 2.23564103e-01
-1.43199694e+00 4.70207900e-01 6.16979122e+00 9.26404238e-01
-1.44849265e+00 -2.61598557e-01 8.70787144e-01 -3.30977648e-01
3.47975761e-01 -3.21278811e-01 -9.52125013e-01 2.85738468e-01
1.10824311e+00 4.74457979e-01 1.69676021e-01 3.57556075e-01
-1.89624667e-01 -1.53496787e-01 -1.07707548e+00 1.16214347e+00
4.70968783e-01 -1.47935760e+00 -1.56114055e-02 6.12948775e-01
5.64460933e-01 1.63640156e-01 7.09765732e-01 -2.79585063e-01
4.35315259e-03 -1.48091304e+00 3.80300581e-02 7.73607612e-01
9.85224426e-01 -6.80027843e-01 9.31026816e-01 -2.72123158e-01
-6.63831234e-01 -4.86003429e-01 2.02427823e-02 1.76484197e-01
-4.62420672e-01 1.98609561e-01 -9.56784487e-01 5.73685825e-01
9.27224100e-01 7.15127528e-01 -1.21752644e+00 1.75931942e+00
6.44151121e-02 4.90391701e-01 -2.71277487e-01 1.29664630e-01
2.91536599e-01 4.05536592e-02 7.96411395e-01 1.23130500e+00
2.39663064e-01 -4.50733811e-01 -2.89586991e-01 5.62944174e-01
2.03183189e-01 5.59480965e-01 -4.19339389e-01 2.67150346e-02
-2.48264447e-01 1.26570427e+00 -4.60196257e-01 -1.26855865e-01
-5.55980086e-01 6.40599728e-01 3.17142755e-02 9.67546478e-02
-2.91204065e-01 -4.35856462e-01 6.70872569e-01 1.66693479e-01
4.72743750e-01 4.14564252e-01 -4.24419224e-01 -8.97205412e-01
3.38578850e-01 -1.39605558e+00 5.55534840e-01 -5.37521720e-01
-9.89084780e-01 1.00188673e+00 -3.25428635e-01 -1.86564398e+00
-1.71699077e-01 -9.74501729e-01 -8.06173146e-01 1.28183341e+00
-1.65842187e+00 -1.69915771e+00 -2.13723630e-01 5.25013208e-01
2.21470848e-01 -6.89509988e-01 9.74927962e-01 1.65451869e-01
-4.82006907e-01 1.00915933e+00 -8.88590142e-02 2.03513607e-01
8.90620708e-01 -1.42595005e+00 5.74225724e-01 1.05510759e+00
3.48108977e-01 6.79906666e-01 5.25895119e-01 -4.94620204e-01
-1.13057935e+00 -7.31626153e-01 1.12457645e+00 -7.28864789e-01
5.29836774e-01 -1.31609976e-01 -6.60184026e-01 2.85625130e-01
5.08691013e-01 2.58156043e-02 9.71684933e-01 5.78615010e-01
-6.79369986e-01 7.99386669e-03 -1.08708799e+00 4.60165888e-01
5.75206876e-01 -5.47362626e-01 -2.11158618e-01 4.71201122e-01
3.85734364e-02 -7.83578098e-01 -1.05244577e+00 6.41277075e-01
6.89871967e-01 -1.55258763e+00 1.05522275e+00 -9.14151907e-01
6.35847211e-01 -1.54541999e-01 2.91490793e-01 -7.89203167e-01
4.41242345e-02 -1.06361270e+00 -1.34378791e-01 7.58471012e-01
4.54600155e-01 -4.93398577e-01 8.56143594e-01 2.69800395e-01
2.34585494e-01 -1.05520916e+00 -9.64700222e-01 -5.26229501e-01
-1.19980566e-01 -1.59487218e-01 7.39201188e-01 7.31380939e-01
-9.44325849e-02 -4.64206010e-01 -4.93824303e-01 3.87281984e-01
4.87765878e-01 2.01855972e-01 9.98771966e-01 -1.38063979e+00
-4.16627318e-01 -7.50541151e-01 -1.27023160e+00 -3.72674108e-01
-5.08499801e-01 -4.38764095e-01 -5.99076748e-01 -7.20825851e-01
3.33285108e-02 -8.05819631e-02 -6.34967446e-01 6.39325619e-01
-8.75554830e-02 8.65592778e-01 2.95111179e-01 5.09937182e-02
-3.94487262e-01 -4.11154538e-01 8.33464503e-01 -7.75114372e-02
-3.95355910e-01 2.63328373e-01 -6.62267804e-01 3.31430256e-01
4.89772350e-01 8.04596692e-02 7.55957142e-02 4.81832922e-02
2.74410278e-01 -1.96505815e-01 5.74171245e-01 -1.29235744e+00
3.09013128e-01 3.33632588e-01 6.77160680e-01 -6.37930751e-01
1.57589629e-01 -5.90743184e-01 -9.35821310e-02 3.50696981e-01
-4.99832273e-01 -2.96911657e-01 6.28902733e-01 1.85507819e-01
-4.12127852e-01 1.24633655e-01 7.76558518e-01 3.11167985e-01
-4.21073794e-01 3.01572889e-01 7.24148080e-02 -3.59962732e-01
9.18878913e-01 -7.06194878e-01 -5.29539526e-01 -3.91395129e-02
-9.60915089e-01 -9.27006751e-02 5.02265096e-01 8.12147319e-01
4.72811908e-01 -6.44180596e-01 -8.58616114e-01 9.74985182e-01
5.63068151e-01 -6.82451010e-01 3.15441668e-01 1.23670805e+00
-3.58325571e-01 6.77741945e-01 -4.77391154e-01 -8.14044654e-01
-2.11124444e+00 5.61403751e-01 6.59093201e-01 -3.83274972e-01
-8.13431382e-01 1.04399061e+00 -1.77703112e-01 7.76614472e-02
5.25846958e-01 -2.96512842e-01 -7.39904284e-01 1.05985709e-01
1.05907071e+00 2.06448108e-01 7.00882435e-01 -5.84384024e-01
9.64309126e-02 7.40421474e-01 -5.66946268e-01 3.33306104e-01
1.27097249e+00 3.35418433e-01 -2.93334991e-01 -2.91992575e-01
1.12774110e+00 2.70540059e-01 -9.41123188e-01 -3.78655821e-01
3.05087655e-03 -1.11048138e+00 3.66121419e-02 -1.38269150e+00
-8.61939073e-01 9.83621061e-01 1.33896387e+00 2.71104693e-01
1.44579160e+00 -3.00592333e-01 5.00868618e-01 -1.02944523e-01
8.41357559e-03 -8.69417250e-01 -3.01315844e-01 -3.11067943e-02
7.90594220e-01 -1.06772661e+00 1.89636964e-02 -3.39890212e-01
-4.52995211e-01 1.52192450e+00 4.03404474e-01 -1.44016236e-01
5.49877465e-01 -3.11386846e-02 3.59027267e-01 -4.45388407e-01
-4.94312316e-01 -3.98576021e-01 1.10837960e+00 8.00490260e-01
3.42998594e-01 -6.06931560e-02 -1.71207279e-01 -5.63497692e-02
-1.97819546e-01 6.59305006e-02 4.23521012e-01 6.05179250e-01
8.90148357e-02 -1.63360870e+00 -4.69104737e-01 8.97230566e-01
-7.63118446e-01 -1.61335036e-01 -7.45537102e-01 7.14212835e-01
6.60904706e-01 6.57464266e-01 7.38651901e-02 -6.06696427e-01
3.92332673e-01 -9.20584891e-03 3.65783602e-01 -3.88375819e-01
-1.39484644e+00 2.81208903e-01 7.79785141e-02 -9.81924534e-01
-4.34593022e-01 -7.12209046e-01 1.08914033e-01 -3.12407594e-02
-2.57999420e-01 -3.75826746e-01 8.01400959e-01 9.17449296e-01
5.33020258e-01 3.09726775e-01 5.41537166e-01 -6.78826869e-01
-4.71909314e-01 -9.83807802e-01 -5.06370902e-01 5.76260149e-01
7.55632639e-01 -5.19584835e-01 -3.18861723e-01 -3.63336354e-02]
|
[3.7397189140319824, -3.634243965148926]
|
47f35413-ec9a-4748-a944-65e907eac64c
|
reinforced-swin-convs-transformer-for
|
2205.00434
| null |
https://arxiv.org/abs/2205.00434v1
|
https://arxiv.org/pdf/2205.00434v1.pdf
|
Reinforced Swin-Convs Transformer for Underwater Image Enhancement
|
Underwater Image Enhancement (UIE) technology aims to tackle the challenge of restoring the degraded underwater images due to light absorption and scattering. To address problems, a novel U-Net based Reinforced Swin-Convs Transformer for the Underwater Image Enhancement method (URSCT-UIE) is proposed. Specifically, with the deficiency of U-Net based on pure convolutions, we embedded the Swin Transformer into U-Net for improving the ability to capture the global dependency. Then, given the inadequacy of the Swin Transformer capturing the local attention, the reintroduction of convolutions may capture more local attention. Thus, we provide an ingenious manner for the fusion of convolutions and the core attention mechanism to build a Reinforced Swin-Convs Transformer Block (RSCTB) for capturing more local attention, which is reinforced in the channel and the spatial attention of the Swin Transformer. Finally, the experimental results on available datasets demonstrate that the proposed URSCT-UIE achieves state-of-the-art performance compared with other methods in terms of both subjective and objective evaluations. The code will be released on GitHub after acceptance.
|
['Ting Luo', 'Mei Yu', 'Gangyi Jiang', 'Haiyong Xu', 'Tingdi Ren']
|
2022-05-01
| null | null | null | null |
['uie']
|
['computer-vision']
|
[ 2.00035021e-01 2.01447904e-02 9.95707572e-01 -1.71866491e-01
-3.21845412e-01 6.85473382e-02 9.80660766e-02 -1.63703978e-01
-7.48298764e-01 5.26442826e-01 4.12752062e-01 -1.22489780e-01
-1.91941500e-01 -9.04245436e-01 -8.03230703e-01 -1.03939557e+00
-2.40041941e-01 -8.11890543e-01 3.70810360e-01 -6.44779980e-01
1.98766336e-01 7.84132034e-02 -1.39502609e+00 7.32532665e-02
1.26089728e+00 1.12818038e+00 7.02872634e-01 4.09298718e-01
4.79323491e-02 7.61547863e-01 -2.78863728e-01 -2.84327924e-01
2.59415030e-01 -3.98608327e-01 -3.44231308e-01 -2.30429858e-01
2.69709438e-01 -7.97121406e-01 -5.77356815e-01 1.31027591e+00
9.11416352e-01 3.55947256e-01 2.51129061e-01 -7.91808605e-01
-7.57610619e-01 4.41229284e-01 -6.14357829e-01 5.15895367e-01
-1.27580136e-01 -3.59578878e-02 6.99025869e-01 -9.67765749e-01
2.75943950e-02 1.16984642e+00 8.43212008e-01 3.66040170e-01
-4.48679507e-01 -6.73159719e-01 2.30527461e-01 4.89033222e-01
-1.03349030e+00 -2.76495397e-01 6.06856108e-01 6.15379885e-02
5.97438335e-01 1.00184642e-01 6.67656898e-01 4.44604695e-01
2.07242638e-01 8.26020598e-01 1.14372313e+00 -2.25859970e-01
-5.63419461e-02 -1.54418498e-01 1.23562142e-01 7.18570113e-01
1.61746010e-01 2.08127961e-01 -2.80371249e-01 3.19719046e-01
8.47306550e-01 1.97964534e-01 -7.99234688e-01 2.65298873e-01
-5.09530008e-01 4.46737528e-01 9.74608898e-01 7.02704713e-02
-4.93532926e-01 5.58556914e-02 4.74787563e-01 2.89768249e-01
6.21228993e-01 1.93273216e-01 -5.36807120e-01 -1.13298204e-02
-5.97142041e-01 -9.20366570e-02 1.86748445e-01 6.48405910e-01
8.70681345e-01 1.84555411e-01 -2.68816978e-01 9.39357460e-01
4.07430738e-01 4.56359088e-01 3.61483395e-01 -6.56546295e-01
3.44326556e-01 5.20857632e-01 3.60144824e-02 -6.46323860e-01
-4.32223648e-01 -5.37942469e-01 -8.97021472e-01 3.77845168e-01
-1.87146872e-01 -5.33453465e-01 -9.99321580e-01 1.43537426e+00
1.85233176e-01 6.14824653e-01 4.65215057e-01 1.14649451e+00
1.08911633e+00 8.64764273e-01 2.85069495e-02 -7.35581368e-02
1.38588774e+00 -1.04671788e+00 -9.01458502e-01 -2.23148838e-01
2.76720613e-01 -6.10905886e-01 9.32564616e-01 2.37126555e-02
-9.78687763e-01 -6.62897944e-01 -1.20960903e+00 -1.04097560e-01
-8.90103206e-02 1.92401439e-01 3.98785591e-01 3.49771947e-01
-1.04524744e+00 5.37988007e-01 -7.11230159e-01 -7.05145001e-02
4.46176201e-01 1.99437007e-01 -2.40393937e-01 -3.91750485e-01
-1.35994172e+00 7.58343697e-01 2.24188924e-01 8.60392570e-01
-1.00177217e+00 -6.31506622e-01 -1.02359796e+00 2.21167311e-01
8.27267915e-02 -3.32085967e-01 1.04920745e+00 -7.06041634e-01
-1.26887476e+00 -3.35311927e-02 7.82557726e-02 -1.30045593e-01
3.22853416e-01 -3.60735565e-01 -2.54259378e-01 3.98940235e-01
-4.99868281e-02 2.85656124e-01 6.12343669e-01 -1.43030012e+00
-8.08051586e-01 -4.68487054e-01 2.63535142e-01 5.30429244e-01
-7.51511037e-01 -2.53017377e-02 -4.51930910e-01 -6.08025432e-01
3.02915663e-01 -3.87509704e-01 -1.51282907e-01 1.69031784e-01
-1.32152727e-02 6.04377575e-02 1.24098027e+00 -1.04094660e+00
1.15838373e+00 -2.44725633e+00 -5.15287258e-02 -1.92706794e-01
1.42709777e-01 7.40009904e-01 -3.78363788e-01 3.92261803e-01
-1.60581574e-01 -1.70916677e-01 -4.49280381e-01 -5.03802836e-01
-2.80348241e-01 3.44424248e-01 4.55084033e-02 6.17382586e-01
7.66757429e-02 6.91610396e-01 -9.37371790e-01 -3.11879992e-01
3.12580347e-01 7.80723751e-01 -4.51042145e-01 5.08027256e-01
3.27229738e-01 3.36236924e-01 -3.70121777e-01 6.14598930e-01
1.22969019e+00 3.03020447e-01 -2.97311366e-01 -4.98819143e-01
-6.00819111e-01 -5.29938973e-02 -1.00087106e+00 1.24724400e+00
-5.71838140e-01 5.04993439e-01 5.84262192e-01 -7.41150498e-01
9.52636957e-01 3.13325405e-01 2.41068646e-01 -9.48402464e-01
3.55869234e-01 3.15969914e-01 -1.36565223e-01 -9.34329093e-01
4.61639524e-01 -3.39193642e-01 4.76288468e-01 -4.74660583e-02
5.01796324e-03 3.57529849e-01 -2.49583051e-02 1.37409031e-01
8.91827464e-01 1.89351723e-01 -2.45065928e-01 -3.53583843e-01
5.56834936e-01 -6.65674686e-01 5.71565270e-01 5.56185782e-01
-2.74071723e-01 5.35549104e-01 -6.19505271e-02 -3.12402099e-01
-7.17876315e-01 -7.14643836e-01 -2.56419659e-01 9.05633450e-01
6.77466154e-01 1.16889454e-01 -7.46153593e-01 -2.91521966e-01
-4.97511387e-01 2.43162751e-01 -8.33132207e-01 -3.29912305e-01
-4.36300159e-01 -1.03520525e+00 6.40011132e-01 7.32762814e-01
1.20785689e+00 -1.23807907e+00 -5.33325315e-01 3.27164680e-01
-4.05748785e-01 -9.65290010e-01 -5.09560883e-01 2.85584986e-01
-8.41610134e-01 -9.70427275e-01 -1.18267524e+00 -1.03563881e+00
8.43404293e-01 7.32369125e-01 2.99439311e-01 4.40780193e-01
5.23069277e-02 5.02871536e-03 -8.51934135e-01 -5.28638363e-01
2.81712234e-01 -5.90150535e-01 -2.87194222e-01 1.33940965e-01
1.09601170e-01 -6.85560584e-01 -1.04056609e+00 1.45625845e-01
-1.26432610e+00 -9.57980976e-02 7.57887542e-01 1.13957167e+00
1.20657690e-01 1.72501981e-01 3.93059164e-01 -4.28490132e-01
5.29909492e-01 -4.35207665e-01 -3.63921076e-01 5.82003668e-02
-3.68557572e-01 -1.96869880e-01 5.92905164e-01 -2.27945119e-01
-1.37913239e+00 -3.57116282e-01 -6.54072046e-01 -3.38232130e-01
2.83122867e-01 6.45602882e-01 -2.15389147e-01 -3.17052454e-01
2.64429629e-01 7.11948335e-01 8.15412551e-02 -7.07720876e-01
-2.43859515e-01 8.25420022e-01 5.47964513e-01 -2.81282395e-01
5.48754096e-01 5.52685618e-01 -3.84136468e-01 -9.73308742e-01
-6.00926399e-01 -4.65977728e-01 -3.03903036e-02 -4.42370206e-01
9.42945480e-01 -1.24926221e+00 -7.43923008e-01 1.03564131e+00
-1.08770752e+00 -4.07129586e-01 9.30185150e-03 5.16956568e-01
3.36997993e-02 7.13641584e-01 -9.71323907e-01 -9.06116307e-01
-7.24139094e-01 -1.22136116e+00 1.00819123e+00 9.41608787e-01
8.36320043e-01 -8.36112559e-01 -2.44053543e-01 1.87196717e-01
6.67201400e-01 -1.41742572e-01 4.37381655e-01 -2.67123487e-02
-4.31056142e-01 -5.52744828e-02 -7.82609224e-01 7.98282325e-01
8.00124109e-02 -3.83224696e-01 -1.05789483e+00 -4.76859421e-01
9.32870135e-02 -1.97057247e-01 1.17108154e+00 4.59943622e-01
1.03533125e+00 -2.56831765e-01 1.12668060e-01 1.00329506e+00
1.80327797e+00 3.46946567e-01 1.29455698e+00 5.84291041e-01
5.39304018e-01 4.53202456e-01 5.52146614e-01 5.95254898e-01
5.54491758e-01 2.75104672e-01 9.97664869e-01 -6.71834111e-01
-1.70287579e-01 -1.16853960e-01 4.07091528e-01 6.63216889e-01
-4.37964410e-01 -1.34958953e-01 -2.63893127e-01 8.41270983e-01
-1.54966760e+00 -6.53556108e-01 -2.85619527e-01 1.80139399e+00
5.50865352e-01 -2.33083129e-01 -5.74514985e-01 1.34603426e-01
6.51130974e-01 1.09160542e-01 -3.84365499e-01 -1.07694119e-01
-2.14530915e-01 1.22802600e-01 6.68582857e-01 4.81040567e-01
-8.52727115e-01 5.72587609e-01 5.01339197e+00 7.67352879e-01
-1.11774015e+00 1.67751893e-01 2.93038011e-01 4.81171548e-01
-2.28023708e-01 -1.92261651e-01 -6.50423527e-01 6.30860925e-01
3.24649781e-01 3.98270130e-01 2.20511317e-01 4.31053042e-01
6.72480404e-01 -7.06966594e-02 -1.77097872e-01 6.03426158e-01
-2.77538076e-02 -8.43655467e-01 -1.82712168e-01 -6.71132728e-02
6.64777994e-01 1.61768332e-01 -1.96219578e-01 2.76254058e-01
1.00856885e-01 -5.64985573e-01 7.64065087e-01 4.60571408e-01
6.36952221e-01 -6.56626642e-01 1.35608888e+00 1.70764744e-01
-1.32490551e+00 -4.57465440e-01 -7.01196551e-01 -1.74640253e-01
2.11501494e-01 4.54480499e-01 -9.49001536e-02 8.17411542e-01
1.27120852e+00 7.40034759e-01 -3.12392026e-01 1.35129929e+00
-3.41889888e-01 5.36271393e-01 -1.90364733e-01 2.16561034e-01
5.03087044e-01 -3.89074653e-01 4.73168075e-01 1.22377229e+00
5.80880463e-01 6.45464897e-01 -9.50986892e-02 4.93250012e-01
-3.79759492e-03 -9.26956385e-02 -1.91480979e-01 4.91529912e-01
1.71267360e-01 1.24061716e+00 -2.95631468e-01 -1.99824110e-01
-5.29597461e-01 1.02155709e+00 -3.95131893e-02 5.91051161e-01
-6.65605605e-01 -9.39949989e-01 7.37703383e-01 -2.07281671e-02
6.78388834e-01 1.14440555e-02 -5.70328869e-02 -9.62321401e-01
2.70348489e-02 -6.45539761e-01 7.90565014e-02 -1.02514553e+00
-1.18196261e+00 1.01812482e+00 -2.38897830e-01 -1.36753464e+00
8.19596052e-01 -5.66196024e-01 -9.17062163e-01 1.15443134e+00
-2.46284342e+00 -1.21617639e+00 -8.99072230e-01 7.64827132e-01
4.36884493e-01 1.76736087e-01 4.37977195e-01 8.06011260e-01
-6.33126080e-01 4.56782043e-01 1.25714660e-01 2.54117429e-01
4.88361746e-01 -9.74558353e-01 -1.63932860e-01 1.23993742e+00
-8.16783667e-01 5.40757775e-01 7.14797735e-01 -5.31609476e-01
-1.09299767e+00 -1.16874266e+00 4.47331995e-01 5.07331073e-01
4.68113214e-01 1.48453698e-01 -1.03618979e+00 4.35071111e-01
3.98721397e-01 2.11487934e-01 3.73515815e-01 -5.01548171e-01
3.91738452e-02 -3.05846572e-01 -1.01305032e+00 4.33976322e-01
6.56417787e-01 -2.51226008e-01 -3.60294610e-01 -7.70400092e-02
6.90997958e-01 -4.32872415e-01 -8.57334316e-01 5.95744550e-01
4.32110637e-01 -1.01539791e+00 8.86319280e-01 1.53461620e-01
9.20291245e-01 -6.72312140e-01 -2.87180662e-01 -1.40543008e+00
-1.44181117e-01 -2.66840398e-01 3.36050779e-01 1.14143336e+00
1.15680695e-01 -6.76406324e-01 3.46302986e-01 1.47861585e-01
-9.55232680e-01 -7.90837228e-01 -7.88315475e-01 -3.51099908e-01
-2.64467418e-01 -8.45796168e-02 4.25446004e-01 5.95193446e-01
-1.41568303e-01 8.60235915e-02 -6.68418646e-01 7.62457013e-01
7.95847833e-01 -2.02074394e-01 3.66098821e-01 -7.85812974e-01
-3.71998996e-02 5.01003675e-02 -2.70505756e-01 -1.56502092e+00
-4.47812021e-01 -3.22927296e-01 5.95469952e-01 -1.94172490e+00
2.34075606e-01 -1.93846717e-01 -4.33194995e-01 6.22832358e-01
-7.61903286e-01 6.74139321e-01 1.62275597e-01 -9.72845592e-04
-4.33129400e-01 1.20626509e+00 1.78634095e+00 -1.27747297e-01
-6.73778355e-02 -2.12291822e-01 -9.44367230e-01 4.82550949e-01
4.84994978e-01 -1.55432478e-01 -2.47041881e-01 -8.23702514e-01
-2.29022652e-01 1.33740932e-01 4.40415204e-01 -1.02454174e+00
3.98582667e-01 2.71708876e-01 1.55696854e-01 -4.65417385e-01
3.43515962e-01 -9.01670516e-01 -3.48863721e-01 5.26627839e-01
1.53297722e-01 -1.85341299e-01 2.85249770e-01 5.41895092e-01
-6.62533045e-01 -2.99934119e-01 9.65755045e-01 -2.57130593e-01
-1.01966608e+00 3.33262235e-01 -2.93522298e-01 -4.23278421e-01
6.78102911e-01 -5.19935906e-01 -5.54597557e-01 -3.29171389e-01
-4.93749946e-01 5.90642273e-01 1.16045959e-01 1.63738057e-01
1.12802875e+00 -7.45589018e-01 -9.42439020e-01 2.26572871e-01
-5.57544976e-02 5.16622663e-02 9.18121576e-01 9.98057306e-01
-7.31149614e-01 -2.27126241e-01 -4.10171628e-01 -1.76513627e-01
-1.15917706e+00 3.60299982e-02 6.09780848e-01 -8.52271914e-02
-9.19352531e-01 1.10262752e+00 5.81659079e-01 -3.55117410e-01
9.55225825e-02 -1.92181185e-01 -6.57158017e-01 -1.53655499e-01
9.00536180e-01 4.24259663e-01 5.30161187e-02 -4.57082152e-01
-7.71550387e-02 4.49963182e-01 3.66756730e-02 3.01670730e-01
1.93391633e+00 -6.67935252e-01 -4.14246768e-01 -3.11942577e-01
1.13226819e+00 -1.79320246e-01 -1.86506116e+00 -1.15457192e-01
-8.17527294e-01 -4.40553635e-01 5.09721220e-01 -7.64716506e-01
-1.49284863e+00 9.90967035e-01 9.55117762e-01 -5.39057665e-02
1.70452511e+00 -4.51645344e-01 1.17854428e+00 3.80412489e-02
9.88563150e-02 -7.31016397e-01 8.69543776e-02 6.26186788e-01
7.53371954e-01 -1.22130179e+00 -1.24869831e-01 -3.99323672e-01
-4.72850889e-01 1.10440528e+00 8.08178902e-01 -1.27116442e-01
7.24094212e-01 5.20678997e-01 3.12413514e-01 -2.94104695e-01
-1.90770417e-01 -3.08110625e-01 -1.62833780e-01 5.15766561e-01
1.68774560e-01 -3.52973521e-01 -5.92733383e-01 8.07868481e-01
3.36862475e-01 1.97729059e-02 8.12068701e-01 8.81014049e-01
-7.18140721e-01 -7.22374916e-01 -2.58671552e-01 2.67448425e-01
-5.53263426e-01 -5.61397731e-01 4.70788151e-01 3.84210885e-01
4.27937984e-01 1.07403576e+00 -1.13284178e-01 -5.10065556e-01
5.91485143e-01 -6.35424793e-01 3.96501981e-02 -2.00941831e-01
-5.07153809e-01 3.18400055e-01 -2.12354973e-01 -1.73577338e-01
-6.63182318e-01 -3.22538972e-01 -1.39800036e+00 5.53564355e-03
-5.30103564e-01 3.96684259e-01 6.06960058e-01 9.35180426e-01
1.49674143e-03 9.94987309e-01 7.77383506e-01 -1.15764844e+00
-4.44590032e-01 -1.42684722e+00 -9.74090815e-01 1.76237166e-01
6.33530974e-01 -5.84926665e-01 -4.85395133e-01 -9.88343582e-02]
|
[10.699969291687012, -3.5168166160583496]
|
25538fd9-9206-4d7a-bcd2-9938c3cb5f82
|
towards-confidence-guided-shape-completion
|
2209.043
| null |
https://arxiv.org/abs/2209.04300v1
|
https://arxiv.org/pdf/2209.04300v1.pdf
|
Towards Confidence-guided Shape Completion for Robotic Applications
|
Many robotic tasks involving some form of 3D visual perception greatly benefit from a complete knowledge of the working environment. However, robots often have to tackle unstructured environments and their onboard visual sensors can only provide incomplete information due to limited workspaces, clutter or object self-occlusion. In recent years, deep learning architectures for shape completion have begun taking traction as effective means of inferring a complete 3D object representation from partial visual data. Nevertheless, most of the existing state-of-the-art approaches provide a fixed output resolution in the form of voxel grids, strictly related to the size of the neural network output stage. While this is enough for some tasks, e.g. obstacle avoidance in navigation, grasping and manipulation require finer resolutions and simply scaling up the neural network outputs is computationally expensive. In this paper, we address this limitation by proposing an object shape completion method based on an implicit 3D representation providing a confidence value for each reconstructed point. As a second contribution, we propose a gradient-based method for efficiently sampling such implicit function at an arbitrary resolution, tunable at inference time. We experimentally validate our approach by comparing reconstructed shapes with ground truths, and by deploying our shape completion algorithm in a robotic grasping pipeline. In both cases, we compare results with a state-of-the-art shape completion approach.
|
['Lorenzo Natale', 'Michele Colledanchise', 'Fabrizio Bottarel', 'Stefano Berti', 'Andrea Rosasco']
|
2022-09-09
| null | null | null | null |
['robotic-grasping']
|
['robots']
|
[ 5.77456094e-02 1.87060237e-01 1.67086825e-01 -1.96939409e-01
-3.57399315e-01 -6.51475549e-01 4.81055886e-01 3.88217837e-01
-4.53562170e-01 5.23094356e-01 -3.26546192e-01 -5.53987138e-02
-3.11373264e-01 -8.52894843e-01 -1.07334507e+00 -3.82407039e-01
6.46456853e-02 1.03678060e+00 4.41094577e-01 -1.70126945e-01
3.42835397e-01 8.51804912e-01 -1.77557659e+00 1.58386588e-01
8.13928723e-01 1.28627849e+00 7.31256187e-01 2.90364116e-01
-2.97628075e-01 7.59031624e-02 -2.76956975e-01 -1.87100768e-02
5.59777856e-01 3.16522539e-01 -5.51678598e-01 3.08142453e-01
3.55545104e-01 -5.56170821e-01 -1.80895373e-01 9.42814410e-01
1.99173719e-01 1.46295518e-01 7.64378965e-01 -1.08191264e+00
-4.98597920e-01 2.84872115e-01 -2.96511680e-01 -6.68644309e-01
1.92734078e-01 3.25787663e-01 6.27919376e-01 -1.07438290e+00
9.07696545e-01 1.32640207e+00 6.98509395e-01 5.08489013e-01
-1.49223506e+00 -8.44073594e-02 2.60569036e-01 -1.26116881e-02
-1.10478222e+00 -2.03322321e-01 9.10459399e-01 -5.60808480e-01
8.97449970e-01 -5.52164689e-02 6.38642371e-01 1.01267159e+00
-8.47126544e-02 6.96451008e-01 9.91313100e-01 -3.18629682e-01
6.82293177e-01 -1.10516250e-01 -3.25188279e-01 5.46188653e-01
4.07982141e-01 -5.68733998e-02 -2.30739638e-01 -6.74869195e-02
1.20288241e+00 1.34919584e-01 -1.96180701e-01 -1.26254129e+00
-1.22512448e+00 6.54059470e-01 8.20454240e-01 1.78729460e-01
-6.34373903e-01 2.65976757e-01 2.37990886e-01 1.47477791e-01
3.22752178e-01 5.13097942e-01 -4.72571224e-01 9.08986256e-02
-6.02372408e-01 4.98781592e-01 8.97590578e-01 1.05394781e+00
9.17133689e-01 -9.86666903e-02 2.21498571e-02 6.79645360e-01
2.61734396e-01 4.35600549e-01 -8.16793889e-02 -1.23700261e+00
3.47791165e-01 7.14715183e-01 5.24693966e-01 -8.62633705e-01
-5.74550331e-01 -3.49677742e-01 -6.92360044e-01 9.49209273e-01
6.88275218e-01 2.94570893e-01 -9.56394017e-01 1.47183418e+00
4.75562483e-01 -4.02250320e-01 -1.59684509e-01 1.21907663e+00
4.87168550e-01 2.14190573e-01 -2.42794335e-01 1.82065085e-01
1.11738956e+00 -7.85659492e-01 -3.58653963e-01 -2.10177034e-01
9.18741524e-02 -4.60647076e-01 1.10880804e+00 7.19404578e-01
-1.00206995e+00 -4.84800071e-01 -9.87415075e-01 -2.72382200e-01
-3.21160764e-01 3.09143156e-01 5.71675718e-01 1.12539873e-01
-8.93511236e-01 8.24724913e-01 -1.12158751e+00 -3.66836309e-01
6.17058694e-01 2.67338067e-01 -6.39934659e-01 -2.50135154e-01
-4.35050637e-01 1.07421231e+00 4.29276198e-01 1.17181346e-01
-9.26480532e-01 -5.70957482e-01 -7.60916114e-01 1.01892449e-01
6.51525617e-01 -8.45044553e-01 1.13440466e+00 -4.76723939e-01
-1.56552804e+00 7.35760152e-01 1.59216493e-01 -2.96689153e-01
9.19538379e-01 -3.97036970e-01 6.26558542e-01 2.10427940e-01
-1.42070413e-01 8.50842774e-01 9.61744189e-01 -1.75732625e+00
-1.44918486e-01 -7.85531819e-01 5.07892251e-01 5.15932180e-02
-8.18656459e-02 -7.17919886e-01 -2.80315846e-01 -2.78482169e-01
6.38233364e-01 -7.78435528e-01 -5.00468373e-01 8.93688321e-01
-9.93375108e-02 -2.80176133e-01 8.66782904e-01 -5.37832081e-01
2.70740241e-01 -1.95311081e+00 5.65929830e-01 6.12989552e-02
1.57415360e-01 1.97534591e-01 -1.32304594e-01 4.52954173e-01
5.92056990e-01 -2.12497666e-01 -4.95119184e-01 -6.76744342e-01
2.18374833e-01 5.27763367e-01 -2.85056472e-01 5.03749073e-01
3.39655876e-01 8.27653766e-01 -8.99422884e-01 -8.92625451e-02
4.82523441e-01 7.80905843e-01 -6.71630979e-01 2.22904414e-01
-7.99980223e-01 6.46227360e-01 -5.33490062e-01 6.39895201e-01
7.82595873e-01 -3.03960256e-02 1.81744844e-01 -2.81715482e-01
-3.44834000e-01 1.83886643e-02 -1.28781545e+00 2.48923945e+00
-6.45657659e-01 2.50951618e-01 7.26060987e-01 -1.25525653e+00
1.19149804e+00 8.55444297e-02 3.91001076e-01 -2.77908474e-01
1.98579729e-01 5.04485667e-01 -2.67574161e-01 -3.75073880e-01
4.90182132e-01 5.22255898e-02 2.74979264e-01 1.77590176e-01
-1.64144281e-02 -6.68285131e-01 -4.40016910e-02 -3.24252963e-01
1.00735617e+00 9.05942380e-01 1.50188714e-01 -1.07320294e-01
2.55681992e-01 2.53602117e-01 1.75563425e-01 7.05150127e-01
1.24399550e-01 8.59372377e-01 3.04091364e-01 -5.90486288e-01
-1.49208856e+00 -1.12260389e+00 -2.48142540e-01 4.65264291e-01
2.21108735e-01 1.46330539e-02 -6.46332502e-01 -4.39676076e-01
3.84906948e-01 5.14166415e-01 -5.28865874e-01 2.03748837e-01
-6.74942613e-01 -2.91974563e-02 4.79438156e-02 6.31108344e-01
3.09527904e-01 -1.35408223e+00 -1.49437261e+00 3.96605074e-01
1.22732230e-01 -1.24003530e+00 2.71365494e-01 2.71221191e-01
-1.20474684e+00 -1.06685781e+00 -7.72707820e-01 -5.81024885e-01
9.20460761e-01 3.43039125e-01 8.67040932e-01 2.08548699e-02
-4.78205293e-01 4.88360405e-01 -4.58350241e-01 -3.03628176e-01
-3.46044600e-01 1.09813690e-01 3.69169004e-02 -2.76726097e-01
-2.19776541e-01 -9.95945632e-01 -5.62595844e-01 -3.16610709e-02
-9.57154036e-01 -9.08060372e-03 7.76353538e-01 7.87155271e-01
6.85332477e-01 -2.91945368e-01 4.32114720e-01 -3.81181985e-01
4.58218992e-01 -1.29952282e-01 -9.22230363e-01 6.68019280e-02
-2.61216283e-01 3.10020596e-01 5.95703125e-01 -5.55037320e-01
-8.23861301e-01 4.58870411e-01 -7.35912621e-02 -9.59635854e-01
-4.34403330e-01 4.80557859e-01 -3.71539742e-02 -1.70791596e-02
6.90850198e-01 9.98364761e-02 4.50259417e-01 -8.38772416e-01
5.13564110e-01 3.75628740e-01 5.81094384e-01 -7.27198005e-01
6.46508038e-01 7.57703006e-01 3.39498729e-01 -6.95804596e-01
-6.16667926e-01 -2.31645644e-01 -1.05888796e+00 -1.02132164e-01
5.97229362e-01 -6.09460711e-01 -9.96977746e-01 3.18211496e-01
-1.50552225e+00 -5.20605206e-01 -4.97711867e-01 4.08909887e-01
-1.01756239e+00 4.80528176e-01 -2.90144205e-01 -1.00267375e+00
-1.89006075e-01 -1.19028795e+00 1.33764172e+00 -1.40522033e-01
4.50638235e-02 -4.97519165e-01 -2.70725697e-01 6.77457154e-02
5.01260042e-01 5.96123099e-01 7.35782325e-01 -9.96411368e-02
-8.74698043e-01 -2.00907707e-01 -2.84225345e-01 1.50631428e-01
8.39693099e-03 -4.07988399e-01 -8.87104034e-01 -3.02182436e-01
-1.54447732e-02 -6.05826974e-01 8.25897813e-01 2.71384835e-01
1.32455039e+00 -1.02772199e-01 -3.51978868e-01 4.73227262e-01
1.45204520e+00 -2.62791157e-01 3.66780519e-01 3.23206127e-01
5.84210575e-01 8.65354598e-01 7.28292823e-01 6.46543324e-01
2.26561800e-01 8.52166414e-01 1.26042628e+00 2.55931258e-01
-2.02654585e-01 -2.20660150e-01 -6.29061013e-02 1.76998690e-01
-2.71791279e-01 1.56672299e-01 -8.79766583e-01 4.74809229e-01
-2.03716230e+00 -5.39458513e-01 -5.03962077e-02 2.36920953e+00
7.37200499e-01 1.87232658e-01 -1.68865591e-01 2.12156892e-01
3.35113138e-01 -1.59394175e-01 -9.12629128e-01 -7.24646673e-02
9.77905914e-02 1.31652713e-01 3.19506794e-01 5.12808144e-01
-8.43817711e-01 8.30979228e-01 5.06429672e+00 5.37474811e-01
-1.08970916e+00 -5.05091734e-02 -6.82358071e-02 1.17939696e-01
-2.60781914e-01 6.16022162e-02 -3.14333469e-01 3.23161893e-02
3.04899532e-02 5.36077499e-01 7.51837075e-01 1.16332531e+00
6.12631664e-02 -2.96208292e-01 -1.33641434e+00 1.11284554e+00
-1.36405602e-01 -1.21003664e+00 -7.87307769e-02 7.98784122e-02
3.74956399e-01 9.17021483e-02 -2.13584721e-01 7.01664016e-02
7.47028738e-02 -9.58869517e-01 1.11774623e+00 6.52351618e-01
8.43490064e-01 -4.00419056e-01 3.49322170e-01 8.95530701e-01
-9.63185966e-01 -1.69027671e-01 -7.56169379e-01 -2.48734057e-01
1.17296204e-01 7.37459004e-01 -8.60829830e-01 5.41557550e-01
7.50383377e-01 3.17578942e-01 -1.58057213e-01 1.05869532e+00
-2.18855456e-01 -1.15860455e-01 -5.46972275e-01 -2.96763889e-02
1.06140547e-01 -1.83521017e-01 7.72743702e-01 7.31531262e-01
3.94340277e-01 3.74304987e-02 4.98249054e-01 1.39955103e+00
2.17518762e-01 -2.44905427e-01 -6.59256041e-01 2.22921789e-01
5.04374444e-01 1.35944450e+00 -9.41884041e-01 -4.63135876e-02
-5.37721217e-02 8.16441596e-01 7.48205066e-01 2.23956987e-01
-3.49855244e-01 -2.02104524e-01 5.01881003e-01 2.72704571e-01
5.42839229e-01 -8.95729184e-01 -6.25907540e-01 -9.92714286e-01
5.08973062e-01 -4.41738784e-01 -3.46256942e-01 -8.59737992e-01
-1.11721647e+00 4.17338550e-01 -2.20055804e-02 -1.21862721e+00
-2.46453851e-01 -9.86851633e-01 -3.18600014e-02 8.13014805e-01
-1.45504951e+00 -1.19484198e+00 -6.40255809e-01 2.61853904e-01
6.03091955e-01 1.28594875e-01 9.23530281e-01 -1.52405441e-01
3.39530855e-01 -3.53599638e-02 -1.69252694e-01 -2.21676528e-01
3.91777575e-01 -1.05902696e+00 2.96389759e-01 3.41479301e-01
-9.15268809e-02 4.86145198e-01 7.87953556e-01 -5.11938691e-01
-1.93498087e+00 -6.46950603e-01 2.06185922e-01 -4.22483474e-01
2.66898334e-01 -6.74705863e-01 -1.01606917e+00 3.87845725e-01
-2.88313001e-01 3.81330788e-01 -2.57656336e-01 9.14973716e-05
-3.11791509e-01 4.76759709e-02 -1.41828179e+00 4.41460192e-01
1.44110274e+00 -2.13730648e-01 -6.28505647e-01 1.07380688e-01
6.50278211e-01 -6.83729768e-01 -7.79039979e-01 6.64321601e-01
7.79082775e-01 -9.91500556e-01 1.05428517e+00 -3.90391678e-01
4.42667425e-01 -4.73017126e-01 -3.15240651e-01 -1.31031621e+00
-1.55638874e-01 -2.27768481e-01 -2.50144809e-01 6.66472077e-01
-1.13391064e-01 -3.92632693e-01 9.08713698e-01 4.44501489e-01
-4.32986468e-01 -8.45231771e-01 -1.07165384e+00 -7.53530920e-01
-6.60510268e-03 -4.90244895e-01 4.00565773e-01 5.54783702e-01
-3.00644964e-01 -4.01807055e-02 4.84380648e-02 2.69066066e-01
8.01492631e-01 4.39101338e-01 9.97960210e-01 -1.68728220e+00
-2.16579258e-01 -4.52935219e-01 -3.49234134e-01 -1.19214070e+00
2.13620901e-01 -7.13321149e-01 3.52198392e-01 -1.95333993e+00
-8.75497758e-02 -8.05264950e-01 3.34436595e-01 6.75562680e-01
3.66841793e-01 1.30147845e-01 3.18244517e-01 2.43139461e-01
-2.50834942e-01 7.57869124e-01 1.46405602e+00 -1.59807444e-01
-1.87053010e-01 -1.68466121e-01 -1.16006814e-01 7.88310468e-01
6.82142615e-01 -1.56623945e-01 -2.78287232e-01 -8.20097208e-01
2.06874773e-01 1.42641410e-01 8.00604641e-01 -1.07988060e+00
1.32432088e-01 -1.20604344e-01 3.97816747e-01 -6.63516521e-01
7.43243635e-01 -1.19707012e+00 4.55728211e-02 6.22872353e-01
-1.44183978e-01 -3.17720532e-01 1.75521642e-01 6.27892077e-01
7.96779990e-02 -4.34709877e-01 4.87468660e-01 -4.82462227e-01
-5.48692465e-01 2.71520436e-01 -6.91283718e-02 -3.53512436e-01
7.99381137e-01 -4.00578380e-01 3.60878184e-02 -1.12118460e-01
-9.04743731e-01 6.69161901e-02 8.21230650e-01 5.02802074e-01
9.32264328e-01 -1.13532269e+00 -5.92434883e-01 2.64376551e-01
1.98536413e-03 7.49307215e-01 4.94462289e-02 5.86535275e-01
-5.98415315e-01 3.10768098e-01 -5.14124215e-01 -9.49850619e-01
-7.59109378e-01 6.89711988e-01 8.40491578e-02 -4.46226560e-02
-9.11359429e-01 4.46931094e-01 1.25690043e-01 -7.42848456e-01
4.02505755e-01 -6.36501670e-01 3.91649678e-02 -2.88359344e-01
1.36136770e-01 2.63331026e-01 2.26325840e-01 -2.34267503e-01
-2.26654693e-01 6.97671533e-01 4.35423851e-01 -1.31297544e-01
1.54939890e+00 2.81509981e-02 -2.18506426e-01 4.13734347e-01
7.29688525e-01 -2.39557281e-01 -1.88874435e+00 -2.00786084e-01
-1.45167276e-01 -5.03022134e-01 -2.23200336e-01 -6.25038743e-01
-8.38066638e-01 1.10194099e+00 3.98207814e-01 7.88214356e-02
7.59926081e-01 1.30213723e-01 3.81066710e-01 8.59602571e-01
1.06522405e+00 -9.23914731e-01 1.25167742e-01 6.61044717e-01
1.45844281e+00 -1.31047332e+00 9.43595022e-02 -5.02767026e-01
-8.95514265e-02 1.39654565e+00 5.13475239e-01 -4.08764035e-01
4.83443230e-01 3.28676552e-01 -2.46013224e-01 -1.05009429e-01
-4.43233937e-01 -1.44231737e-01 1.47800788e-01 9.00559366e-01
-3.57331671e-02 1.03989132e-02 -3.01992208e-01 3.65438372e-01
-1.71824962e-01 -2.53930800e-02 3.35880458e-01 1.13183665e+00
-6.81970060e-01 -9.92138326e-01 -4.39443499e-01 8.30725133e-02
-6.11205287e-02 3.50141019e-01 -1.98576912e-01 6.35831773e-01
6.77167848e-02 5.95739782e-01 9.48382318e-02 8.35958053e-04
4.15287673e-01 -1.23939529e-01 1.04341769e+00 -5.96059144e-01
-1.74441934e-01 -7.19736218e-02 -1.59152120e-01 -7.27236450e-01
-3.74619544e-01 -6.40128970e-01 -1.48793495e+00 2.55689085e-01
-2.30578277e-02 -3.04336756e-01 1.16194820e+00 8.43276083e-01
3.23255777e-01 3.29224795e-01 8.94048139e-02 -1.78057384e+00
-1.10103190e+00 -9.77540672e-01 -2.80502796e-01 4.02397066e-01
2.75018811e-01 -1.18617439e+00 -3.17988778e-03 -1.28061011e-01]
|
[5.939987659454346, -0.9042958617210388]
|
a93369e8-bb54-49fa-b98f-04a50f735095
|
guided-source-separation
|
2011.04569
| null |
https://arxiv.org/abs/2011.04569v4
|
https://arxiv.org/pdf/2011.04569v4.pdf
|
Informed Source Extraction With Application to Acoustic Echo Reduction
|
Informed speaker extraction aims to extract a target speech signal from a mixture of sources given prior knowledge about the desired speaker. Recent deep learning-based methods leverage a speaker discriminative model that maps a reference snippet uttered by the target speaker into a single embedding vector that encapsulates the characteristics of the target speaker. However, such modeling deliberately neglects the time-varying properties of the reference signal. In this work, we assume that a reference signal is available that is temporally correlated with the target signal. To take this correlation into account, we propose a time-varying source discriminative model that captures the temporal dynamics of the reference signal. We also show that existing methods and the proposed method can be generalized to non-speech sources as well. Experimental results demonstrate that the proposed method significantly improves the extraction performance when applied in an acoustic echo reduction scenario.
|
['Wolfgang Mack', 'Emanuël A. P. Habets', 'Mohamed Elminshawi']
|
2020-11-09
| null | null | null | null |
['acoustic-echo-cancellation', 'speaker-separation', 'acoustic-echo-cancellation']
|
['medical', 'speech', 'speech']
|
[ 2.70805717e-01 -3.75468992e-02 1.27022579e-01 -3.04232329e-01
-1.12325013e+00 -4.67721611e-01 6.75393522e-01 -2.33081251e-01
-3.87190655e-02 1.47589222e-01 6.72885776e-01 1.57866612e-01
-2.35857293e-02 -2.64475048e-01 -5.20097077e-01 -1.04649174e+00
-1.56631172e-01 -9.15592983e-02 -1.52551726e-01 -1.26421064e-01
-1.69676542e-01 4.02725995e-01 -1.26681566e+00 -1.17002591e-01
3.67220610e-01 8.97141218e-01 4.30196285e-01 7.85883844e-01
7.29723126e-02 6.24399424e-01 -9.09982860e-01 -2.32498869e-02
2.33213454e-01 -5.89409053e-01 -1.27940297e-01 1.39342919e-01
3.88723224e-01 -2.53005743e-01 -8.73507082e-01 1.09175444e+00
6.87735140e-01 1.77533433e-01 4.52333570e-01 -9.90210116e-01
-2.14968264e-01 8.57908905e-01 -3.49755824e-01 4.60724860e-01
-4.11038734e-02 -9.64632928e-02 1.04348934e+00 -9.94893670e-01
1.85004309e-01 1.11526036e+00 5.70022404e-01 5.05227864e-01
-1.17723501e+00 -8.35895836e-01 4.16612148e-01 2.36620829e-01
-1.38803601e+00 -1.14752889e+00 1.59236419e+00 -3.43702048e-01
5.05858541e-01 1.51504576e-01 4.21533734e-01 1.45191526e+00
1.74463280e-02 9.25165892e-01 7.85072803e-01 -3.11883867e-01
2.56870836e-01 1.05856791e-01 3.51956367e-01 2.77367681e-01
-1.68710276e-01 3.40643048e-01 -1.03106260e+00 -2.56070316e-01
1.69137239e-01 -2.23330304e-01 -5.94657242e-01 -3.01078141e-01
-1.08189189e+00 8.08178186e-01 7.53150135e-02 6.53272450e-01
-6.36497676e-01 1.68239847e-01 2.60769904e-01 2.40114689e-01
4.41902697e-01 -7.46247321e-02 -5.85818365e-02 -8.57335404e-02
-1.37399602e+00 4.16142195e-02 9.99709189e-01 8.30536425e-01
6.25484943e-01 8.11655045e-01 -5.39131351e-02 7.67011762e-01
5.55819929e-01 9.18176532e-01 5.44816017e-01 -6.83611453e-01
3.03457737e-01 -2.65866667e-01 1.80497065e-01 -1.01636195e+00
-5.67591712e-02 -9.35326517e-01 -7.05078423e-01 -1.26840726e-01
2.42493570e-01 -1.92318410e-01 -6.57695770e-01 2.07580829e+00
4.03611749e-01 8.33547413e-01 2.74238080e-01 9.52708364e-01
6.13561392e-01 7.64601231e-01 -3.83766592e-01 -4.85812008e-01
9.65111077e-01 -8.58191967e-01 -1.09458327e+00 -4.62137282e-01
-2.31607229e-01 -7.27492929e-01 4.98555183e-01 3.19036990e-01
-7.71438241e-01 -6.56736672e-01 -1.28657436e+00 3.58857870e-01
1.47585437e-01 1.04622640e-01 -4.51536700e-02 8.84274125e-01
-8.93800080e-01 1.66911125e-01 -9.36211348e-01 9.93261188e-02
-1.81397229e-01 3.68496627e-02 -5.27501963e-02 7.53359869e-02
-1.22661638e+00 5.64551473e-01 -1.07883103e-01 2.81198174e-01
-1.38046908e+00 -6.74232543e-01 -9.45271373e-01 2.46377468e-01
3.52806628e-01 -2.60916322e-01 1.56750309e+00 -9.75864708e-01
-1.67843664e+00 1.94209516e-01 -9.24616218e-01 -6.44458890e-01
2.07465276e-01 -2.97595203e-01 -8.87774110e-01 3.42482805e-01
-5.46813868e-02 -2.15637237e-01 1.62134862e+00 -1.17605507e+00
-3.10643911e-01 -1.79103866e-01 -4.15539682e-01 1.44132540e-01
-3.57924700e-01 -7.70370364e-02 -3.86471421e-01 -8.27353179e-01
1.32384956e-01 -7.63406217e-01 9.47032794e-02 -3.04496676e-01
-5.68895519e-01 1.72476023e-01 1.08983779e+00 -7.24161565e-01
1.20222163e+00 -2.63083744e+00 1.35774910e-01 1.84399799e-01
1.16956219e-01 1.75619349e-01 -3.71314853e-01 6.89115345e-01
-1.40790241e-02 -4.49667990e-01 -2.45861813e-01 -7.94829428e-01
1.68878362e-01 -1.52160689e-01 -8.08326840e-01 6.98559105e-01
1.64269164e-01 4.63929921e-01 -8.98624539e-01 -1.77256554e-01
2.63281375e-01 1.12173390e+00 -2.00383648e-01 2.85671294e-01
2.44662851e-01 5.74372888e-01 -3.49356502e-01 2.44873002e-01
6.55199766e-01 2.42461309e-01 1.20292887e-01 -3.02750081e-01
3.12610306e-02 7.63787866e-01 -1.34617090e+00 1.56238008e+00
-5.93196750e-01 8.71304691e-01 8.26747656e-01 -9.68284965e-01
1.06049645e+00 5.93889177e-01 5.26737154e-01 -3.93483907e-01
-4.94256690e-02 1.92506999e-01 2.42770746e-01 -2.60678023e-01
2.38567710e-01 -4.58209395e-01 1.66378200e-01 3.63398015e-01
2.57021815e-01 1.22184947e-01 -2.86092192e-01 1.26918584e-01
1.14404714e+00 -2.54990518e-01 3.10339272e-01 -1.27177671e-01
5.34050822e-01 -7.33254433e-01 7.20905423e-01 8.26127470e-01
-3.59328508e-01 4.75877643e-01 -1.88264534e-01 1.88364148e-01
-7.04273045e-01 -1.26730955e+00 3.45264329e-03 9.87571239e-01
-1.37163736e-02 -3.13035101e-01 -4.48344946e-01 -4.51137185e-01
-1.40184373e-01 8.87772143e-01 -3.50252748e-01 -1.64797634e-01
-7.78829217e-01 -4.20729548e-01 4.11228359e-01 2.55338550e-01
2.71994695e-02 -6.77114069e-01 -4.75181222e-01 6.24114871e-01
-3.35495889e-01 -1.13838387e+00 -9.77312148e-01 1.35168225e-01
-4.37413603e-01 -5.73603272e-01 -7.27359653e-01 -5.84273219e-01
2.06548482e-01 5.04694223e-01 7.33492732e-01 -6.01308823e-01
5.19476794e-02 8.43760252e-01 -6.57505468e-02 -5.49106479e-01
-6.95215940e-01 -3.21528256e-01 2.85231411e-01 8.22916031e-01
3.55778277e-01 -7.62710690e-01 -4.13375705e-01 1.46269605e-01
-7.51471460e-01 -1.66965485e-01 3.68296027e-01 7.62712479e-01
3.24675918e-01 4.02627736e-01 7.99492359e-01 -2.95943975e-01
4.93827730e-01 -5.47427058e-01 -3.42407465e-01 -1.19688459e-01
-2.35918611e-01 1.36969715e-01 5.82665682e-01 -9.01013970e-01
-1.20073378e+00 1.97807804e-01 -1.14901677e-01 -6.35056496e-01
-1.31253287e-01 5.33100843e-01 -5.15638888e-01 2.26550132e-01
2.75345355e-01 7.51737058e-01 -3.99271771e-02 -7.21502662e-01
2.38133132e-01 6.92426145e-01 6.61885202e-01 -2.10796282e-01
1.26586711e+00 4.20581311e-01 -1.52958512e-01 -1.37879109e+00
-6.26374424e-01 -7.36163378e-01 -4.24335808e-01 -1.43948153e-01
2.33574629e-01 -1.13576663e+00 -3.77975702e-01 4.31397736e-01
-1.18726325e+00 8.02152697e-03 -2.46361494e-01 9.48297143e-01
-3.62223893e-01 3.65644723e-01 -4.05714244e-01 -1.36437070e+00
-2.17841655e-01 -1.05498016e+00 1.13996315e+00 1.89324189e-02
-1.90110356e-01 -1.02623630e+00 2.84081638e-01 -7.98055530e-02
6.52086079e-01 -1.20052181e-01 4.49500680e-01 -9.45127070e-01
-5.65538287e-01 -2.97294170e-01 3.94504011e-01 4.44958687e-01
5.98832369e-01 -2.31100649e-01 -1.33100116e+00 -3.24607253e-01
7.48763859e-01 4.06105757e-01 9.06528592e-01 4.75757152e-01
3.55274737e-01 -5.95237195e-01 -3.46010983e-01 4.58632529e-01
1.07081366e+00 2.79751152e-01 1.18200652e-01 -2.86949098e-01
6.54756606e-01 6.60597026e-01 1.52101308e-01 3.40866089e-01
1.66273370e-01 7.94300914e-01 2.70798951e-01 1.13178343e-01
-3.18127483e-01 -3.01421344e-01 8.43900800e-01 1.27077925e+00
5.76888084e-01 -2.46948555e-01 -6.67238593e-01 9.41899538e-01
-1.48154747e+00 -1.20683885e+00 1.72989547e-01 2.27038860e+00
7.59018302e-01 -3.11961453e-02 2.13610288e-02 3.66639674e-01
7.69998014e-01 5.31584144e-01 -8.61589074e-01 1.42819792e-01
-1.18967347e-01 2.22844824e-01 2.02117965e-01 7.62267709e-01
-1.00165641e+00 3.69771540e-01 6.22279978e+00 5.59822142e-01
-1.56488788e+00 2.38190278e-01 -1.73330337e-01 -1.74982414e-01
-4.21657622e-01 -3.44291151e-01 -8.08327019e-01 4.13579077e-01
1.40294778e+00 -7.34247744e-01 3.70042294e-01 5.64610004e-01
4.40925926e-01 4.68045145e-01 -1.37101567e+00 9.35649395e-01
2.61793643e-01 -7.42388546e-01 -2.95351923e-01 1.73253745e-01
1.70476303e-01 7.12404624e-02 3.77577245e-01 3.33193153e-01
-7.65642151e-03 -6.92028761e-01 1.01468968e+00 5.24593294e-01
2.80033261e-01 -6.73473835e-01 3.28251302e-01 5.24354219e-01
-1.40625870e+00 -8.17990601e-02 1.02614388e-01 1.13481805e-01
2.71255374e-01 8.31046402e-01 -1.14650571e+00 5.00561953e-01
3.28932881e-01 7.14075327e-01 -9.65325534e-02 9.58173156e-01
-2.85021693e-01 1.26077378e+00 -4.30864394e-01 2.83008695e-01
8.15941989e-02 3.38741541e-02 1.34431612e+00 1.40883362e+00
5.16702831e-01 -1.53670847e-01 2.59573366e-02 8.71614277e-01
4.39525098e-02 3.79988216e-02 -7.75055826e-01 -1.97305650e-01
6.52630925e-01 1.08743846e+00 -2.13244915e-01 -1.07212976e-01
-4.33672279e-01 8.03966939e-01 -1.41069248e-01 7.81717658e-01
-6.64703786e-01 -3.88275146e-01 7.98575521e-01 -6.21104687e-02
6.82997942e-01 -4.94013965e-01 2.99189001e-01 -1.17784512e+00
2.09417000e-01 -8.14315081e-01 -1.19349100e-01 -4.01909828e-01
-1.36037827e+00 7.10706711e-01 -1.28152147e-01 -1.24348772e+00
-6.31042957e-01 -1.10165417e-01 -8.16637099e-01 1.24476004e+00
-1.59154522e+00 -1.02007174e+00 6.39397427e-02 6.08703136e-01
7.05590427e-01 -2.33085424e-01 8.52703035e-01 5.52246049e-02
-4.72667843e-01 5.58548808e-01 2.93635190e-01 2.34033540e-01
5.74844897e-01 -1.02707970e+00 3.85907173e-01 1.10908532e+00
5.43944120e-01 9.26863909e-01 1.03731298e+00 -2.41812333e-01
-1.48588324e+00 -1.14837766e+00 9.51021969e-01 -1.54995680e-01
8.09634507e-01 -5.70875525e-01 -1.14196324e+00 6.26815915e-01
3.63683969e-01 -4.65496583e-03 9.28065658e-01 -2.10778452e-02
-5.37913084e-01 -3.66619796e-01 -7.79746532e-01 3.24079663e-01
5.03431141e-01 -1.08614266e+00 -8.91479671e-01 -1.46327257e-01
6.49401784e-01 -2.49140620e-01 -3.88704687e-01 1.01433732e-01
4.66110587e-01 -6.58363104e-01 1.01098633e+00 -1.19268484e-01
-2.06471115e-01 -4.60822165e-01 -3.94885510e-01 -1.46683204e+00
-1.65275380e-01 -9.77238119e-01 -6.21859193e-01 1.40152228e+00
1.53472140e-01 -6.53273225e-01 3.21396232e-01 4.77921605e-01
-8.42484236e-02 -1.17540181e-01 -1.22643447e+00 -1.06034243e+00
-1.81434989e-01 -6.36338949e-01 5.17444134e-01 7.52020717e-01
-1.06589168e-01 4.22417849e-01 -7.48035133e-01 8.22006762e-01
1.03081751e+00 2.34824196e-01 6.22187376e-01 -1.08814406e+00
-5.40957391e-01 -2.52248049e-01 -2.43803099e-01 -1.31687176e+00
6.09969854e-01 -7.20028758e-01 4.10429657e-01 -1.11143053e+00
-1.56310484e-01 1.43463975e-02 -6.21172845e-01 -1.79458559e-02
-2.07813442e-01 -1.68330833e-01 1.91962659e-01 2.00780481e-02
-7.71358460e-02 9.45915401e-01 6.52240276e-01 -4.58865970e-01
-2.72065699e-01 4.24461991e-01 -6.84819460e-01 6.71932518e-01
5.62067389e-01 -6.29200101e-01 -5.29799223e-01 -2.92450398e-01
-5.61170042e-01 2.34589025e-01 3.57055515e-01 -9.53932345e-01
3.36408198e-01 3.43767032e-02 -9.61784460e-03 -6.30693972e-01
8.87925267e-01 -9.49986696e-01 2.44744018e-01 1.63971230e-01
-4.99795675e-01 -6.87948704e-01 2.19073012e-01 1.01461041e+00
-4.53689069e-01 -2.72215277e-01 6.75288677e-01 3.64467740e-01
-2.41162911e-01 2.04059422e-01 -4.78699148e-01 -2.16434181e-01
4.73826230e-01 1.61493778e-01 2.26486042e-01 -9.73684609e-01
-6.99598312e-01 -1.54216602e-01 -2.05292284e-01 5.21312416e-01
7.00638354e-01 -1.28773916e+00 -8.78238022e-01 3.37362051e-01
-4.67940345e-02 -5.47438681e-01 2.47700050e-01 8.41097653e-01
6.31787777e-01 5.20393968e-01 3.88638079e-01 -5.30434787e-01
-1.24442589e+00 6.57180309e-01 4.05696779e-01 1.32016256e-01
-7.86648750e-01 7.00430572e-01 5.51481545e-01 -6.48026839e-02
4.45504218e-01 -2.55596787e-01 -1.42925560e-01 2.97682788e-02
8.84207666e-01 2.55768687e-01 -1.38751073e-02 -1.27356482e+00
-4.73926812e-01 3.68760318e-01 4.89695594e-02 -5.62103510e-01
1.27043355e+00 -4.06255215e-01 3.09187859e-01 1.04162133e+00
1.57616794e+00 7.84243226e-01 -1.36507010e+00 -9.85086262e-01
-8.49689450e-03 -2.83873171e-01 4.31981534e-01 -4.38844919e-01
-1.06973791e+00 1.00924838e+00 5.36366999e-01 2.05086157e-01
1.18672037e+00 -1.36356011e-01 6.60648584e-01 1.20473079e-01
3.15666348e-01 -5.92554152e-01 1.29591338e-02 4.03787553e-01
9.27576125e-01 -1.02579153e+00 -4.92229015e-01 -2.23148644e-01
-4.09568727e-01 1.13261378e+00 4.26270999e-02 8.27193633e-02
1.00240445e+00 3.94491673e-01 2.29992807e-01 8.17449093e-02
-6.89825416e-01 -2.87251145e-01 4.98550594e-01 7.41310000e-01
2.72931755e-01 5.40871620e-02 3.80197108e-01 8.35865319e-01
-3.26137513e-01 -3.37861329e-01 4.78545427e-01 7.66122639e-01
-3.68447870e-01 -9.82755065e-01 -6.93644285e-01 -1.06557041e-01
-5.45210600e-01 -2.78417856e-01 -2.88211882e-01 2.87221998e-01
-4.14886832e-01 1.29247308e+00 -9.33495685e-02 -2.67990619e-01
3.90530676e-01 4.58034277e-01 1.07923619e-01 -6.18197739e-01
-2.22882286e-01 8.25279057e-01 -2.25812122e-01 -3.42395931e-01
-4.64630932e-01 -7.50277996e-01 -1.07313049e+00 1.19917206e-01
-2.80253053e-01 3.85211438e-01 8.84199798e-01 7.99426734e-01
3.25600147e-01 6.99191570e-01 9.84171450e-01 -9.96958315e-01
-7.73882329e-01 -1.07327175e+00 -8.20582688e-01 1.36082351e-01
1.28839850e+00 -4.15641069e-01 -8.29329908e-01 2.89008319e-01]
|
[14.896720886230469, 5.808861255645752]
|
5ac589ba-264e-4d31-b59c-d4bae92ab986
|
implicit-and-efficient-point-cloud-completion
|
2209.00522
| null |
https://arxiv.org/abs/2209.00522v2
|
https://arxiv.org/pdf/2209.00522v2.pdf
|
Implicit and Efficient Point Cloud Completion for 3D Single Object Tracking
|
The point cloud based 3D single object tracking has drawn increasing attention. Although many breakthroughs have been achieved, we also reveal two severe issues. By extensive analysis, we find the prediction manner of current approaches is non-robust, i.e., exposing a misalignment gap between prediction score and actually localization accuracy. Another issue is the sparse point returns will damage the feature matching procedure of the SOT task. Based on these insights, we introduce two novel modules, i.e., Adaptive Refine Prediction (ARP) and Target Knowledge Transfer (TKT), to tackle them, respectively. To this end, we first design a strong pipeline to extract discriminative features and conduct the matching with the attention mechanism. Then, ARP module is proposed to tackle the misalignment issue by aggregating all predicted candidates with valuable clues. Finally, TKT module is designed to effectively overcome incomplete point cloud due to sparse and occlusion issues. We call our overall framework PCET. By conducting extensive experiments on the KITTI and Waymo Open Dataset, our model achieves state-of-the-art performance while maintaining a lower computational cost.
|
['Xiaoping Li', 'Hangcheng Yu', 'En Yu', 'Jinrong Yang', 'Shengkai Wu', 'Liangliang Ren', 'Pan Wang']
|
2022-09-01
| null | null | null | null |
['point-cloud-completion', '3d-single-object-tracking']
|
['computer-vision', 'computer-vision']
|
[-1.66990831e-02 -2.91883081e-01 -1.79415837e-01 -2.28303552e-01
-9.41339016e-01 -4.34148341e-01 5.34939528e-01 -1.34865835e-01
6.24999814e-02 2.78842598e-01 4.91484404e-02 -5.21807112e-02
-1.64022803e-01 -5.46607971e-01 -7.96026826e-01 -6.27006233e-01
2.08353326e-01 3.32141906e-01 7.61925101e-01 1.04123592e-01
5.06636977e-01 4.75722909e-01 -1.57424819e+00 -3.83122056e-03
9.31752801e-01 1.16409850e+00 3.47501904e-01 3.29427719e-02
-1.59109876e-01 4.66992676e-01 -2.42807597e-01 -3.60543609e-01
4.66796130e-01 1.53685182e-01 -3.72576743e-01 7.28841573e-02
4.99918461e-01 -2.89538741e-01 -3.91451865e-01 1.14348304e+00
5.60607851e-01 -1.26325622e-01 3.79152477e-01 -1.40170014e+00
-4.98354197e-01 2.03513891e-01 -9.50569212e-01 1.11875251e-01
1.97346687e-01 3.68081957e-01 9.26809549e-01 -1.24773514e+00
4.38033700e-01 1.30674410e+00 9.32043791e-01 2.10915163e-01
-8.23490739e-01 -8.79546821e-01 4.65186030e-01 2.45125055e-01
-1.47153425e+00 -4.19119179e-01 8.72503161e-01 -4.74835515e-01
6.65027440e-01 2.45944723e-01 7.16249704e-01 7.71987796e-01
2.88674477e-02 8.73558402e-01 7.44784296e-01 -3.22337821e-02
-8.41279626e-02 1.06975600e-01 -9.10915714e-03 5.93099833e-01
3.47393394e-01 1.90967843e-01 -4.86252367e-01 -1.73479095e-01
6.05179191e-01 3.92392069e-01 -2.85833448e-01 -6.78567648e-01
-1.35584676e+00 4.56253499e-01 5.85996628e-01 6.35605380e-02
-4.02958214e-01 2.13380009e-02 2.12664008e-01 1.33820754e-02
4.57334280e-01 3.24375287e-05 -6.71001196e-01 1.21082164e-01
-7.08586574e-01 4.63447094e-01 3.66383076e-01 1.38667548e+00
9.10694182e-01 -3.51661116e-01 -2.68713653e-01 5.96921504e-01
7.49929130e-01 4.92390871e-01 8.50888863e-02 -6.57966375e-01
6.78749919e-01 1.01576746e+00 2.72351295e-01 -1.34921038e+00
-3.45732957e-01 -7.94113994e-01 -5.35794258e-01 1.46064103e-01
1.38680115e-01 1.30404547e-01 -6.67134166e-01 1.42806292e+00
8.64774048e-01 5.96504867e-01 -2.57176340e-01 1.15942550e+00
7.66644180e-01 5.06846547e-01 1.46970406e-01 -1.22722611e-01
1.40607750e+00 -1.16782629e+00 -4.98821318e-01 -3.01073372e-01
5.93433380e-01 -9.65101540e-01 8.75846803e-01 1.84624251e-02
-7.72051573e-01 -7.04736054e-01 -1.01808727e+00 4.51947600e-02
-5.71344569e-02 2.43166193e-01 4.73140240e-01 2.75112063e-01
-5.66115320e-01 4.35303211e-01 -9.92118418e-01 -3.96627963e-01
7.02182710e-01 4.48043406e-01 -2.45205551e-01 -1.89838931e-01
-5.49059451e-01 8.01024795e-01 3.61337125e-01 2.41019949e-01
-6.53660774e-01 -1.08204937e+00 -5.28581202e-01 -4.45680097e-02
6.10785842e-01 -8.59181762e-01 1.12174666e+00 -4.51653600e-01
-1.21695042e+00 7.13791966e-01 -1.86301649e-01 -1.82844892e-01
4.51742560e-01 -5.56889117e-01 -3.27026010e-01 -2.41392568e-01
3.42845768e-01 5.11148393e-01 6.31730497e-01 -1.49586356e+00
-1.14341438e+00 -6.68924749e-01 -2.60450751e-01 2.23534822e-01
-1.83260277e-01 1.35484681e-01 -9.00789618e-01 -5.56758702e-01
6.36823416e-01 -1.08284533e+00 -2.93363988e-01 2.65016854e-01
-4.57488924e-01 -4.42296356e-01 1.11155307e+00 -4.29587871e-01
1.12630510e+00 -2.07323360e+00 4.88173403e-03 6.94285184e-02
4.28173512e-01 2.40877762e-01 -2.94789504e-02 2.55861700e-01
6.72771409e-02 -2.24013105e-01 -5.19220857e-03 -5.45368373e-01
1.02698572e-01 2.10645590e-02 -5.76986790e-01 5.05074561e-01
4.75946635e-01 1.01752198e+00 -8.37002635e-01 -6.32971823e-01
2.68439770e-01 3.92366648e-01 -5.96381843e-01 2.34346882e-01
-3.58536243e-01 6.48541689e-01 -1.00897372e+00 1.07109582e+00
1.08212447e+00 -4.79196221e-01 -2.58651465e-01 -5.11449873e-01
-5.75146914e-01 2.29169801e-01 -1.21083736e+00 1.86819518e+00
9.99659076e-02 1.01663448e-01 -1.06751762e-01 -7.28084326e-01
9.81712222e-01 2.75525022e-02 7.37123370e-01 -3.02511871e-01
1.55122906e-01 2.91791618e-01 -1.19082168e-01 -4.13199127e-01
4.69380975e-01 3.86971980e-02 1.50727287e-01 7.47905672e-02
-1.76462188e-01 3.00373286e-01 -5.54462492e-01 -2.23606210e-02
1.20366681e+00 6.36889398e-01 1.45331293e-01 -4.37035970e-02
5.51975191e-01 4.59900975e-01 9.72234309e-01 4.56595540e-01
-4.60753709e-01 5.86335182e-01 9.93713289e-02 -3.79240543e-01
-8.12743187e-01 -7.75240660e-01 4.98416163e-02 8.38898242e-01
7.15351284e-01 -4.86163646e-01 -2.82793969e-01 -7.55827904e-01
2.27414981e-01 2.51272798e-01 -4.32995230e-01 -1.44195482e-01
-6.81785285e-01 -6.23847306e-01 1.34191588e-01 5.85952580e-01
4.89305407e-01 -8.10610116e-01 -4.89308625e-01 1.24742679e-01
1.58751160e-02 -1.22108793e+00 -4.34780836e-01 -2.82828808e-01
-1.01568210e+00 -1.02895808e+00 -4.95046794e-01 -7.03286707e-01
5.38290977e-01 9.78908479e-01 9.60651040e-01 3.13010603e-01
9.39943418e-02 1.77248374e-01 -4.93322402e-01 -5.00423849e-01
2.58921146e-01 1.62136838e-01 1.24239057e-01 1.31125068e-02
6.20109141e-01 -6.37212694e-01 -8.94772708e-01 6.80831015e-01
-4.35764134e-01 1.17810667e-01 1.00950217e+00 5.48636258e-01
1.03949082e+00 -9.44754481e-02 2.59956777e-01 -4.48875695e-01
3.37116718e-02 -6.69914126e-01 -8.08261931e-01 1.63297832e-01
-5.03711879e-01 -2.28305861e-01 2.40769535e-01 -4.18932408e-01
-9.45931375e-01 4.08615112e-01 -7.98322484e-02 -1.02578509e+00
-1.50420830e-01 2.92036295e-01 -4.69081849e-01 -4.51058239e-01
2.04708919e-01 2.97203034e-01 -2.17664838e-01 -7.89323032e-01
5.75729236e-02 4.93201375e-01 4.85756487e-01 -4.08081293e-01
1.37157464e+00 6.89814150e-01 -5.76495267e-02 -2.51500130e-01
-1.19337821e+00 -6.30897462e-01 -6.26043499e-01 -2.59973258e-01
7.06423163e-01 -1.18598652e+00 -8.25034678e-01 2.83660561e-01
-1.26992810e+00 1.89870328e-01 -4.05596271e-02 5.55935502e-01
-4.25763905e-01 3.20499569e-01 -1.59434348e-01 -7.83303440e-01
-4.00495768e-01 -1.19368935e+00 1.37416697e+00 3.44583988e-01
3.42189372e-01 -4.20073628e-01 1.46010563e-01 3.54739159e-01
2.27960393e-01 1.57537118e-01 3.70069116e-01 -5.90043247e-01
-1.32078183e+00 -2.18641490e-01 -6.69325888e-01 -2.15215445e-01
2.14074249e-03 -1.82089135e-01 -9.29699957e-01 -4.25378829e-01
1.57928482e-01 9.58714485e-02 7.39372432e-01 1.30028814e-01
1.16746867e+00 6.44817278e-02 -8.93411934e-01 7.06113040e-01
1.38324952e+00 5.62112816e-02 4.46430951e-01 5.31377971e-01
9.25481439e-01 4.15718555e-01 1.24074888e+00 4.23358828e-01
6.05520368e-01 1.00366223e+00 7.48240530e-01 1.17625013e-01
-1.16436400e-01 -5.23052216e-01 2.22174153e-01 8.53607595e-01
-1.03713968e-03 1.12311833e-01 -9.36661959e-01 4.78047520e-01
-2.25818992e+00 -7.54360139e-01 -2.90323794e-01 2.01934719e+00
3.33015680e-01 2.88190931e-01 1.67621411e-02 -1.23150155e-01
8.12246859e-01 7.06761032e-02 -6.98268473e-01 7.40051806e-01
7.42710307e-02 -2.68832922e-01 4.69009072e-01 1.11265376e-01
-1.16243911e+00 1.09389436e+00 5.12321901e+00 8.90758872e-01
-9.66096163e-01 2.59301305e-01 4.34068367e-02 7.24453181e-02
-6.14180118e-02 4.47677702e-01 -1.14983392e+00 6.55003905e-01
2.47069836e-01 6.28150031e-02 -5.16576022e-02 9.75613832e-01
3.43731232e-02 3.44700933e-01 -8.69334936e-01 1.02452230e+00
-9.34910625e-02 -1.26202667e+00 -6.15801774e-02 1.43739745e-01
4.43903506e-01 3.56621861e-01 -1.08190581e-01 4.15888339e-01
-3.89451757e-02 -4.78530973e-01 8.48991632e-01 6.04569077e-01
3.26653630e-01 -5.45773685e-01 6.91313505e-01 6.15889847e-01
-1.56017148e+00 -8.38440582e-02 -6.09080017e-01 9.62913111e-02
1.73469573e-01 6.07471108e-01 -5.39088368e-01 9.46964502e-01
8.54602635e-01 9.77496028e-01 -5.51480591e-01 1.64983463e+00
-8.23897049e-02 3.00152063e-01 -4.23580825e-01 2.09256545e-01
1.65207878e-01 -4.09943834e-02 9.10342157e-01 7.70850480e-01
5.92363179e-01 1.77106485e-01 4.95372564e-01 9.43062305e-01
2.29083359e-01 -5.95730692e-02 -4.81454194e-01 4.53577787e-01
7.27096081e-01 1.40326893e+00 -5.37920892e-01 -4.62745614e-02
-6.61270857e-01 6.55761778e-01 4.43816602e-01 -2.14037411e-02
-9.77069020e-01 -4.64984700e-02 8.66705537e-01 1.34130061e-01
7.11664617e-01 -2.30381444e-01 -2.93187946e-01 -1.24510157e+00
2.99245119e-01 -5.46574473e-01 2.78806657e-01 -7.92330861e-01
-1.46708751e+00 4.33308393e-01 -2.72483885e-01 -1.90538263e+00
4.91995960e-01 -4.18804556e-01 -6.88711703e-01 7.34662831e-01
-1.90080798e+00 -1.45741570e+00 -6.10230386e-01 4.02726471e-01
5.75855136e-01 1.25532793e-02 3.32627505e-01 6.93229020e-01
-7.43510485e-01 4.12184030e-01 -2.56440282e-01 -1.42474100e-01
6.89114869e-01 -7.98505247e-01 3.78910005e-01 7.99384415e-01
-7.08154663e-02 6.73632622e-01 5.32638490e-01 -9.02657866e-01
-1.85694265e+00 -1.42939174e+00 6.82489991e-01 -7.92386115e-01
5.94192147e-01 -2.65892982e-01 -1.01542890e+00 7.60278583e-01
-2.75371134e-01 2.98951596e-01 3.93044114e-01 -5.85912401e-03
-2.42119178e-01 -1.10015683e-01 -8.31484973e-01 4.76659000e-01
1.41153097e+00 -7.47825280e-02 -6.42632723e-01 2.92272955e-01
1.08337128e+00 -6.94226682e-01 -9.42785025e-01 7.84346938e-01
5.04261017e-01 -8.66119683e-01 1.18766487e+00 -3.04356128e-01
1.34240016e-01 -1.00822854e+00 -2.42000759e-01 -8.34410548e-01
-6.46398842e-01 -5.12537479e-01 -4.32342112e-01 1.45104492e+00
1.18520670e-01 -4.61645126e-01 1.01219559e+00 3.82188946e-01
-5.07453561e-01 -8.93238902e-01 -9.20232713e-01 -7.54558265e-01
-3.81506562e-01 -4.80414242e-01 9.00883675e-01 8.59750211e-01
-2.86626548e-01 4.46914852e-01 -4.51184064e-01 6.95204973e-01
8.39832485e-01 6.21798337e-01 1.23819947e+00 -1.42685354e+00
-6.56145662e-02 -2.70622343e-01 -4.02374297e-01 -1.62268996e+00
-1.80163071e-01 -7.07006037e-01 1.62582636e-01 -1.27314436e+00
3.22140187e-01 -9.00439680e-01 -3.71018946e-01 4.61821109e-01
-4.69759285e-01 1.33034453e-01 3.58800471e-01 8.29444408e-01
-9.91809309e-01 8.97516549e-01 1.32044888e+00 6.89446405e-02
-1.57030523e-01 2.28511050e-01 -8.45589817e-01 7.62956798e-01
6.02036238e-01 -7.44507372e-01 -2.29635946e-02 -6.77970052e-01
4.04847525e-02 -9.19885859e-02 6.18900001e-01 -1.20658004e+00
4.79567081e-01 -1.18192099e-01 4.59352702e-01 -1.44663453e+00
3.63824666e-01 -1.21005368e+00 2.26666793e-01 4.31017697e-01
1.81919456e-01 8.42779800e-02 1.53896779e-01 8.53227317e-01
-9.58234593e-02 1.43277749e-01 5.21466136e-01 7.88396150e-02
-7.32984006e-01 8.63740981e-01 4.01016712e-01 -3.57510805e-01
1.17735231e+00 -2.30337992e-01 -4.33846414e-01 2.04398841e-01
-2.09817976e-01 7.54509985e-01 6.01210952e-01 6.51315391e-01
5.32783866e-01 -1.63168907e+00 -5.69594204e-01 1.79658845e-01
3.92212778e-01 3.24072689e-01 3.22479993e-01 1.21587801e+00
-6.52862638e-02 4.51225996e-01 5.29466458e-02 -9.94283140e-01
-1.09697545e+00 6.78283691e-01 6.12224638e-02 -2.47951806e-01
-9.13326621e-01 7.04812825e-01 2.82718420e-01 -5.35240650e-01
3.08795452e-01 -2.88835227e-01 -2.18804911e-01 -1.87821507e-01
3.92789423e-01 2.80367017e-01 -4.27403301e-02 -7.01121271e-01
-6.26474380e-01 1.09679198e+00 -7.36444294e-02 5.00894964e-01
1.42528379e+00 -2.45656371e-01 4.99579757e-02 1.12594277e-01
8.74757648e-01 7.35246018e-02 -1.55114532e+00 -4.54238832e-01
1.20572232e-01 -8.43531549e-01 -6.24412745e-02 -4.79317278e-01
-1.06014907e+00 7.17557490e-01 7.52404153e-01 1.48358405e-01
9.62178051e-01 1.80076733e-01 9.95179892e-01 1.93307370e-01
4.09706563e-01 -6.73708320e-01 -1.48250207e-01 4.13504988e-01
7.29885936e-01 -1.44767642e+00 1.71320379e-01 -8.83235753e-01
-4.04133677e-01 7.32090414e-01 1.00685668e+00 -1.79932252e-01
6.39675736e-01 3.75366956e-03 -9.24014300e-02 -5.08043110e-01
-7.50506818e-01 -3.51917475e-01 3.83316070e-01 4.71754342e-01
6.47805026e-03 -3.15753371e-01 -1.43401533e-01 9.06079590e-01
1.00318762e-02 1.27683952e-01 -3.41250241e-01 9.42776203e-01
-7.58838952e-01 -9.74966109e-01 -5.46618104e-01 2.85726160e-01
-1.65727258e-01 2.21402481e-01 -2.11390555e-01 7.63649106e-01
2.79131234e-01 6.06268048e-01 -5.43262959e-02 -7.40552843e-01
6.53584480e-01 -3.34061891e-01 1.85299337e-01 -5.17769814e-01
-5.46565473e-01 1.49614543e-01 -2.86688387e-01 -7.82001197e-01
-5.04826546e-01 -7.91063607e-01 -1.03698945e+00 -8.52512941e-02
-8.00326049e-01 -2.94386339e-03 5.21808207e-01 9.38444376e-01
7.85120070e-01 4.78469789e-01 6.10777318e-01 -1.05146384e+00
-5.51945210e-01 -8.13325703e-01 -1.09709218e-01 1.79094106e-01
1.68893486e-01 -1.05010998e+00 -1.07450694e-01 -3.10777426e-01]
|
[6.620326519012451, -2.3441076278686523]
|
043f47bd-4060-4299-98c4-050524dac3fe
|
robot-basics-representation-rotation-and
|
2211.02786
| null |
https://arxiv.org/abs/2211.02786v2
|
https://arxiv.org/pdf/2211.02786v2.pdf
|
Robot Basics: Representation, Rotation and Velocity
|
In this article, we plan to provide an introduction about some basics about robots for readers. Several key topics of classic robotics will be introduced, including robot representation, robot rotational motion, coordinates transformation and velocity transformation. By now, classic rigid-body robot analysis is still the main-stream approach in robot controlling and motion planning. In this article, no data-driven or machine learning based methods will be introduced. Most of the materials covered in this article are based on the rigid-body kinematics that the readers probably have learned from the physics course at high-school or college. Meanwhile, these classic robot kinematics analyses will serve as the foundation for the latest intelligent robot control algorithms in modern robotics studies.
|
['Jiawei Zhang']
|
2022-11-05
| null | null | null | null |
['motion-planning']
|
['robots']
|
[-2.09076762e-01 1.06399707e-01 -7.50862360e-01 -3.33423950e-02
3.38601559e-01 -2.78331429e-01 3.47569436e-01 -2.84852147e-01
-3.63346040e-01 5.36902130e-01 -4.22683179e-01 -2.65297830e-01
-3.32496136e-01 -5.83056450e-01 -5.87684035e-01 -7.31624126e-01
-2.95396209e-01 3.43278259e-01 6.18002191e-02 -1.15032089e+00
5.46049953e-01 8.71650279e-01 -1.24633920e+00 -8.74494553e-01
5.79563200e-01 4.28252965e-01 8.58171701e-01 5.14853239e-01
2.49512359e-01 6.17727816e-01 -1.79087788e-01 7.99563229e-02
2.23191559e-01 -2.87865192e-01 -8.16446304e-01 -1.00026026e-01
-6.68734074e-01 1.34301390e-02 -6.53114378e-01 9.83447671e-01
2.57053971e-01 6.14584208e-01 9.17892694e-01 -1.32495856e+00
-2.97447890e-01 7.42644787e-01 -4.19850737e-01 -3.56610417e-01
6.79910123e-01 -2.28287783e-02 3.44332308e-01 -8.53137136e-01
7.20710635e-01 1.18938732e+00 7.23651767e-01 4.70457792e-01
-2.34084710e-01 -5.95887154e-02 -1.07008383e-01 4.35590327e-01
-1.28321838e+00 8.96214917e-02 9.30705965e-01 -4.51127023e-01
6.65590286e-01 8.31955150e-02 5.42063415e-01 4.77091551e-01
1.05511987e+00 5.18185496e-01 3.51833045e-01 -7.10259616e-01
-1.65308863e-01 -1.70353025e-01 3.76869678e-01 7.68303156e-01
7.22193956e-01 3.06925569e-02 1.82111070e-01 4.32326674e-01
1.17450440e+00 6.67365044e-02 -1.59505874e-01 -9.24969614e-01
-1.62443078e+00 7.69740343e-01 5.94701767e-01 4.04521286e-01
-2.46853247e-01 4.50421482e-01 1.32110968e-01 -1.86141841e-02
-5.58354318e-01 6.56027138e-01 -4.30661947e-01 -2.57120635e-02
1.99132055e-01 5.82309663e-01 8.44198108e-01 1.72025359e+00
5.83348215e-01 2.82404393e-01 5.75746715e-01 6.56621039e-01
5.44364095e-01 5.57023346e-01 6.52399063e-01 -1.23319185e+00
3.10956568e-01 3.58976990e-01 4.05776411e-01 -1.09526920e+00
-9.99971330e-01 2.52122730e-01 -9.11351144e-01 2.21599519e-01
8.50817487e-02 -4.20029640e-01 -5.86843789e-01 8.64663780e-01
3.83780092e-01 -7.18622208e-01 1.94487512e-01 1.03106320e+00
6.89624310e-01 8.83296788e-01 -2.96031594e-01 -2.99741238e-01
1.52290154e+00 -1.26463044e+00 -1.11416018e+00 -6.94030076e-02
7.43299067e-01 -7.41479278e-01 6.71873391e-01 4.10406619e-01
-7.74251163e-01 -8.52023005e-01 -1.25390327e+00 -1.93165034e-01
-4.00003582e-01 2.32332125e-01 6.24193013e-01 1.90469205e-01
-4.71801102e-01 7.82003284e-01 -1.01824999e+00 -9.16872263e-01
-5.16125202e-01 5.03390670e-01 -2.76197463e-01 2.29161996e-02
-1.10088694e+00 1.86422062e+00 4.73555297e-01 1.98125914e-01
-4.54578787e-01 -2.12631479e-01 -8.58806908e-01 -7.82529414e-01
3.35844129e-01 -8.45805347e-01 1.81191635e+00 -3.98879237e-02
-2.19894457e+00 5.20297706e-01 -1.19291522e-01 -1.94800366e-02
2.55769700e-01 -4.16898012e-01 -2.43476227e-01 -5.23920730e-02
4.42928225e-02 3.62431526e-01 6.93093717e-01 -1.21472228e+00
-7.31107712e-01 -3.94712761e-02 -2.84325164e-02 5.41393697e-01
4.40034389e-01 -1.13187104e-01 -4.67035115e-01 -5.99465728e-01
5.28174937e-01 -1.49690545e+00 -8.64700794e-01 -2.34885693e-01
-2.94902712e-01 -5.81352472e-01 6.76933587e-01 -5.56740575e-02
6.72932029e-01 -1.74370551e+00 5.43557763e-01 7.35853091e-02
-4.25578654e-01 -1.86515987e-01 3.55945170e-01 7.03644931e-01
-8.54679048e-02 -2.53178328e-01 1.39392748e-01 3.10234994e-01
-3.87351811e-02 4.18488055e-01 -4.55258012e-01 8.86464417e-01
-3.26747835e-01 6.80337846e-01 -1.01720726e+00 -2.21296385e-01
7.11953819e-01 1.13173202e-01 -4.44391137e-03 -4.54597957e-02
3.49280715e-01 6.21174574e-01 -8.92863870e-01 5.70734560e-01
4.02698934e-01 3.87770146e-01 -9.71631631e-02 -3.35681587e-01
-5.99414885e-01 4.72818203e-02 -1.20669663e+00 1.75924468e+00
-3.87099266e-01 3.82227361e-01 3.16117018e-01 -1.30592966e+00
1.11763513e+00 2.33869523e-01 7.84588575e-01 -1.78700164e-01
6.52382433e-01 3.58794272e-01 7.42029399e-02 -8.34713519e-01
9.75459337e-01 1.25216730e-02 -3.55917275e-01 1.28097711e-02
-3.22054863e-01 -8.61818969e-01 4.09201503e-01 -3.19470644e-01
6.16232336e-01 4.05025363e-01 6.78601325e-01 -4.05286908e-01
8.16103995e-01 7.96330333e-01 2.22763941e-01 4.27574456e-01
-2.44341329e-01 1.85952201e-01 -3.14637840e-01 -5.32767177e-01
-1.15529108e+00 -6.37435079e-01 -1.39566854e-01 1.13578677e+00
9.63658929e-01 -1.82556003e-01 -5.73749483e-01 3.88595492e-01
1.13677576e-01 2.72194386e-01 -2.72276364e-02 -1.86572552e-01
-1.19273913e+00 -3.40465456e-01 1.21226057e-01 4.96111900e-01
2.46212840e-01 -1.13218868e+00 -8.00437391e-01 2.78284490e-01
-3.13172373e-03 -1.13258278e+00 1.28141260e-02 2.26249367e-01
-1.15312171e+00 -1.21707618e+00 -7.85410821e-01 -1.36340570e+00
7.53502011e-01 9.54482079e-01 2.68261939e-01 -1.76205840e-02
-3.28867078e-01 4.74375397e-01 -7.22564995e-01 -6.29578829e-01
-3.05382997e-01 1.75969169e-01 7.33990490e-01 -1.10672128e+00
-1.72676742e-01 -1.41737655e-01 -2.36432970e-01 7.38862574e-01
-2.41155118e-01 -1.35657325e-01 7.68880129e-01 1.85697079e-01
5.90876162e-01 3.50547999e-01 2.11057603e-01 -2.09748879e-01
4.17947918e-01 -3.03141743e-01 -6.04503691e-01 -1.52832240e-01
-3.60074222e-01 -1.39133006e-01 7.13210166e-01 -4.03283089e-01
-9.24294472e-01 5.57085037e-01 -1.47050917e-01 8.24920312e-02
-2.20968023e-01 5.83695948e-01 -7.69972056e-02 -3.84668320e-01
5.63998818e-01 1.62928030e-01 2.77478755e-01 -4.99934554e-01
6.73856914e-01 7.15969801e-01 7.37585902e-01 -5.59107006e-01
9.66727376e-01 4.20439720e-01 6.53499186e-01 -9.57604110e-01
-1.89351052e-01 -7.13427186e-01 -1.04519069e+00 -3.12553197e-01
7.11287081e-01 -5.69698215e-01 -1.10328460e+00 6.38941824e-01
-1.33202362e+00 -4.11079168e-01 -6.07502908e-02 9.27815855e-01
-1.27714384e+00 4.80183333e-01 -6.10277712e-01 -6.92226350e-01
-1.59400731e-01 -1.58465421e+00 7.19749987e-01 3.76906931e-01
-3.73086065e-01 -7.21722186e-01 2.35710785e-01 -5.48363850e-02
4.67262976e-03 1.54528260e-01 5.33735693e-01 -1.28920823e-02
-1.69244930e-01 -4.86512721e-01 5.32926083e-01 -3.09604377e-01
2.85719872e-01 2.80914456e-01 -1.56649262e-01 -1.99624047e-01
1.85617074e-01 1.37581348e-01 1.68222457e-01 6.34064198e-01
7.99876869e-01 -1.71780810e-01 -9.97458041e-01 3.31413001e-01
1.32910883e+00 6.81060135e-01 5.05265772e-01 1.05116165e+00
8.08709323e-01 9.33676720e-01 1.16868401e+00 1.69795409e-01
5.58178008e-01 7.73224533e-01 7.01187015e-01 5.39621532e-01
4.57144618e-01 -9.30569023e-02 6.01396561e-01 1.00723600e+00
-6.16354525e-01 2.01688021e-01 -1.01042807e+00 7.16755539e-02
-2.01541853e+00 -7.96141744e-01 -9.07955348e-01 1.66691542e+00
2.00418383e-01 -2.64337361e-01 2.21848771e-01 3.66342694e-01
1.25107419e+00 -4.52205598e-01 -3.13113332e-01 -5.53620994e-01
2.59493738e-01 -3.86186421e-01 1.01524115e+00 4.56613183e-01
-1.29512858e+00 1.00625539e+00 7.03790045e+00 4.45030481e-01
-1.13724136e+00 -4.49420661e-01 -6.24333203e-01 6.14515305e-01
5.70663452e-01 2.86890212e-02 -1.04936790e+00 2.79967248e-01
5.88884056e-01 -3.21423948e-01 4.01168674e-01 1.71613860e+00
4.88992393e-01 -2.81758100e-01 -8.53443503e-01 1.11290801e+00
-1.13037981e-01 -9.10457134e-01 -1.90736338e-01 -8.21318105e-02
6.08937442e-01 -1.41148835e-01 5.26992120e-02 3.16089183e-01
2.45765790e-01 -8.29532027e-01 1.00168729e+00 4.30191368e-01
1.52746797e-01 -6.27062738e-01 6.81021988e-01 7.98807383e-01
-1.45041800e+00 -3.94953340e-01 -9.11620855e-01 -5.54536402e-01
6.32266223e-01 3.22742850e-01 -5.70752800e-01 1.03522098e+00
4.85541493e-01 8.40269387e-01 7.28196204e-02 1.07411361e+00
-3.88001680e-01 -2.52819747e-01 -3.47274840e-01 -7.15228975e-01
1.65203571e-01 -4.52520460e-01 6.98813021e-01 9.44907606e-01
4.20812458e-01 4.91297930e-01 1.65062964e-01 3.11438292e-01
5.59768558e-01 1.50853708e-01 -8.36156070e-01 3.73825669e-01
1.31549269e-01 1.51157546e+00 -8.21132600e-01 5.64867910e-03
-9.84487757e-02 5.96940100e-01 -2.28307530e-01 -1.51803028e-02
-7.94516206e-01 -9.55892742e-01 4.64892417e-01 -7.12972647e-03
-4.49963138e-02 -1.15467858e+00 -3.64193767e-01 -7.26958573e-01
-4.13279146e-01 -1.89486027e-01 -1.40436500e-01 -1.02043426e+00
-8.20748270e-01 -4.26435508e-02 6.45137429e-01 -1.59319639e+00
-5.42984247e-01 -1.33905315e+00 -7.48839796e-01 5.34264684e-01
-1.13538861e+00 -7.15574205e-01 -2.28010118e-01 4.14128035e-01
8.23003769e-01 -1.16221361e-01 4.91438270e-01 -2.78153151e-01
-7.04605401e-01 -7.05762580e-02 4.13630158e-01 9.72674489e-02
5.39114177e-01 -8.71837378e-01 -2.83877272e-03 5.28171480e-01
-5.65517128e-01 9.89202559e-01 1.20731461e+00 -5.11830270e-01
-2.33099556e+00 -8.58930349e-01 4.81823772e-01 -3.18662107e-01
7.39350855e-01 4.28116441e-01 -4.66288298e-01 7.66335309e-01
-4.66289409e-02 -2.50234157e-01 -6.38853386e-02 -4.30237263e-01
7.18518615e-01 1.37961330e-02 -8.02729130e-01 8.87550175e-01
9.13593650e-01 3.79516751e-01 -1.07703924e+00 3.64722073e-01
5.41030467e-01 -8.06449413e-01 -9.11869764e-01 7.25161254e-01
7.50333786e-01 -1.36259962e-02 8.96799445e-01 -3.64981383e-01
4.16232506e-03 -6.06422007e-01 -2.43882388e-02 -1.20499730e+00
-8.05697739e-01 -8.12105298e-01 9.87302065e-02 5.63898444e-01
4.40140776e-02 -5.14084816e-01 6.76605225e-01 2.87653536e-01
-7.83549011e-01 -5.62094688e-01 -5.46572387e-01 -1.07762706e+00
1.47243172e-01 -4.28872317e-01 2.25885019e-01 8.28453779e-01
8.53202522e-01 3.97335231e-01 -1.94194004e-01 1.88961372e-01
3.34914237e-01 -2.31186412e-02 1.30876243e+00 -1.01641631e+00
4.40914840e-01 -5.70979893e-01 -5.23218930e-01 -1.29560900e+00
3.12584460e-01 -5.12124181e-01 6.65712297e-01 -1.96062827e+00
-3.99442047e-01 -3.92765701e-01 4.56625074e-01 2.46160969e-01
1.68222085e-01 -9.99938548e-02 1.10954441e-01 7.28874385e-01
-2.56524742e-01 5.65396547e-01 1.65069532e+00 1.66759461e-01
-3.95980120e-01 4.32041168e-01 -3.40279877e-01 1.27935553e+00
1.28305769e+00 -2.50771165e-01 -3.44994217e-01 -1.93117589e-01
1.78006828e-01 -3.25553515e-03 -1.27841877e-02 -1.05922127e+00
6.14957809e-01 -8.46988320e-01 3.25195007e-02 -8.19162905e-01
2.39401162e-01 -1.10841918e+00 1.66801140e-01 1.13434207e+00
1.44626319e-01 3.29276711e-01 -1.75378233e-01 3.52667719e-01
8.44004378e-02 -6.96066976e-01 8.08061540e-01 -2.89807856e-01
-1.05102074e+00 -3.84351015e-02 -1.00523329e+00 -7.49642372e-01
1.50874138e+00 -5.52305102e-01 -2.14777261e-01 -1.71831906e-01
-5.59653401e-01 2.37270147e-01 5.57242692e-01 6.75501227e-01
3.92424464e-01 -1.29862249e+00 -1.08917937e-01 -4.23774064e-01
-5.81753701e-02 4.02089566e-01 1.03512511e-01 8.63569736e-01
-1.28341246e+00 1.01217592e+00 -5.92993498e-01 -6.49275243e-01
-7.30862558e-01 9.24321234e-01 1.94923002e-02 1.74945772e-01
-5.61068594e-01 3.00747871e-01 -1.89679116e-01 -7.25819111e-01
-7.72301182e-02 -4.66687739e-01 -5.97596288e-01 -5.72767854e-01
5.17438166e-02 1.05837584e+00 -1.91318542e-01 -1.09163487e+00
-3.57924879e-01 1.22515905e+00 5.51047087e-01 -2.58526534e-01
1.06778216e+00 -4.27837580e-01 -1.44942865e-01 6.78681254e-01
8.52515638e-01 -3.44357759e-01 -5.58797717e-01 4.03894961e-01
3.78704891e-02 9.80359837e-02 -5.80243170e-01 3.40805277e-02
-6.30170465e-01 5.97342670e-01 2.54300237e-01 6.73343614e-02
5.19313753e-01 -2.33088769e-02 5.06797135e-01 1.15067995e+00
9.61517096e-01 -1.30343115e+00 -7.58328568e-03 1.13179862e+00
1.19605160e+00 -9.39873397e-01 3.31714302e-01 -9.09130037e-01
-4.79355454e-01 1.48472083e+00 7.45432198e-01 -7.53495097e-01
8.39610577e-01 3.69114876e-01 -6.14574999e-02 2.50252545e-01
-1.16181940e-01 -1.24527246e-01 4.06262837e-02 9.69888151e-01
4.67254579e-01 -1.12219475e-01 -6.24181092e-01 5.98306656e-01
-7.17010200e-01 -2.25868955e-01 8.93398345e-01 1.42808926e+00
-1.12332773e+00 -1.17835855e+00 -9.59768355e-01 -2.35752538e-01
-1.29346311e-01 6.67662084e-01 -1.36032403e-02 1.34594572e+00
-8.26336890e-02 8.45191121e-01 -7.15801194e-02 -4.43068773e-01
7.52084851e-01 -2.79252052e-01 8.80109906e-01 -5.62450588e-01
1.23854972e-01 -1.95320681e-01 -3.46690208e-01 -4.46433961e-01
-5.86466312e-01 -4.43764448e-01 -2.04165721e+00 -4.82382447e-01
-3.21726620e-01 2.76425689e-01 1.25481641e+00 8.03472757e-01
-1.55357376e-01 3.29683930e-01 5.15140593e-01 -1.63364661e+00
-4.79570955e-01 -1.16936934e+00 -5.93810558e-01 -2.77434081e-01
1.63144037e-01 -1.10573685e+00 -1.63478583e-01 3.43448013e-01]
|
[4.891707420349121, 1.2815784215927124]
|
47b5baeb-0933-4afa-837b-5306e40c093b
|
fakeout-leveraging-out-of-domain-self
|
2212.00773
| null |
https://arxiv.org/abs/2212.00773v1
|
https://arxiv.org/pdf/2212.00773v1.pdf
|
FakeOut: Leveraging Out-of-domain Self-supervision for Multi-modal Video Deepfake Detection
|
Video synthesis methods rapidly improved in recent years, allowing easy creation of synthetic humans. This poses a problem, especially in the era of social media, as synthetic videos of speaking humans can be used to spread misinformation in a convincing manner. Thus, there is a pressing need for accurate and robust deepfake detection methods, that can detect forgery techniques not seen during training. In this work, we explore whether this can be done by leveraging a multi-modal, out-of-domain backbone trained in a self-supervised manner, adapted to the video deepfake domain. We propose FakeOut; a novel approach that relies on multi-modal data throughout both the pre-training phase and the adaption phase. We demonstrate the efficacy and robustness of FakeOut in detecting various types of deepfakes, especially manipulations which were not seen during training. Our method achieves state-of-the-art results in cross-manipulation and cross-dataset generalization. This study shows that, perhaps surprisingly, training on out-of-domain videos (i.e., videos with no speaking humans), can lead to better deepfake detection systems. Code is available on GitHub.
|
['Ohad Fried', 'Gil Knafo']
|
2022-12-01
| null | null | null | null |
['face-swapping']
|
['computer-vision']
|
[ 5.60719632e-02 -2.12208077e-01 -2.78299372e-03 -6.10438325e-02
-5.72978199e-01 -8.15088987e-01 7.55094051e-01 -2.47524410e-01
-4.08673346e-01 6.00204587e-01 2.19514728e-01 9.48791802e-02
2.49757513e-01 -6.88995600e-01 -1.06236541e+00 -4.03500348e-01
-1.59617007e-01 1.63580567e-01 3.28125656e-01 -4.36930686e-01
1.14426017e-01 4.10927445e-01 -1.72281659e+00 7.10525751e-01
6.91674948e-01 8.09182286e-01 -8.85786265e-02 7.21117496e-01
4.54801768e-01 9.26171243e-01 -1.11103201e+00 -7.84177601e-01
2.51735955e-01 -5.40840924e-01 -6.22927070e-01 1.82227209e-01
7.85759985e-01 -1.00820148e+00 -6.81612313e-01 1.08158171e+00
5.32868147e-01 7.54702836e-02 3.83437514e-01 -1.32512105e+00
-6.14471078e-01 3.63447666e-01 -3.34675759e-01 4.36328202e-01
5.37466645e-01 6.03862464e-01 4.24397290e-01 -8.55531633e-01
8.07915092e-01 1.34863067e+00 6.70562983e-01 8.01303148e-01
-1.06211197e+00 -1.00777245e+00 -2.77627945e-01 4.14697051e-01
-1.11241770e+00 -6.60460174e-01 8.58030200e-01 -5.78099370e-01
6.79381907e-01 6.17203377e-02 5.97375333e-01 2.08552122e+00
-2.47578230e-02 9.01611149e-01 1.10114443e+00 -2.07673565e-01
6.17080107e-02 2.46441290e-01 -3.81209522e-01 6.30815744e-01
2.97117710e-01 4.57679957e-01 -9.54287887e-01 1.43325459e-02
5.98998249e-01 -3.57420087e-01 -6.55494153e-01 -1.74130827e-01
-1.32707584e+00 9.22169268e-01 2.93404937e-01 4.34821278e-01
-2.93538809e-01 1.50901452e-01 7.47586370e-01 6.18940294e-01
5.26662588e-01 7.78544426e-01 -2.12878864e-02 -4.82301682e-01
-1.23971963e+00 3.87867093e-01 7.46540487e-01 6.18924856e-01
4.44391221e-01 2.14020282e-01 -6.86218664e-02 6.20224595e-01
-2.74362594e-01 4.00654435e-01 7.56104350e-01 -8.35084260e-01
5.53704441e-01 2.57740468e-01 1.78369716e-01 -1.54628265e+00
-6.88509345e-02 -3.79556268e-01 -7.17638135e-01 2.33827472e-01
6.06536090e-01 -7.93099329e-02 -6.72069490e-01 1.59525740e+00
3.58656824e-01 4.37847853e-01 3.18532921e-02 1.04706240e+00
6.22437775e-01 3.83439392e-01 -2.84301370e-01 5.56771904e-02
1.09202909e+00 -1.05427086e+00 -6.72811687e-01 -2.25117013e-01
6.44802034e-01 -7.74544477e-01 1.23528171e+00 8.08582366e-01
-8.18403661e-01 -5.69921911e-01 -1.11264360e+00 5.76742664e-02
-4.41479117e-01 -1.87460016e-02 1.35934502e-01 9.73483443e-01
-7.62512386e-01 8.43079090e-01 -6.24106348e-01 -3.63349676e-01
7.57998109e-01 1.18172895e-02 -7.17519462e-01 -2.52479762e-01
-1.35011303e+00 9.27267730e-01 4.03021544e-01 8.50695278e-03
-1.56194532e+00 -3.93246442e-01 -5.96681714e-01 -2.07658589e-01
5.46900630e-01 -3.77667665e-01 1.05961323e+00 -1.62830889e+00
-1.27010119e+00 9.72946882e-01 2.64183551e-01 -6.01146519e-01
1.24038351e+00 -5.22080660e-01 -4.91353899e-01 5.46343386e-01
-2.61244513e-02 6.56998038e-01 1.51560926e+00 -1.32061970e+00
-1.93164259e-01 -2.96517342e-01 2.92718798e-01 -1.47028461e-01
-7.31690049e-01 1.20209649e-01 -6.20479882e-02 -1.00678694e+00
-6.51362956e-01 -9.86999452e-01 4.06520844e-01 1.71066627e-01
-3.43244910e-01 6.91459849e-02 1.28192186e+00 -1.11091685e+00
1.12349010e+00 -2.28237677e+00 1.12205274e-01 -8.37511793e-02
3.33537847e-01 8.40951145e-01 -7.63815865e-02 5.01476288e-01
3.73042449e-02 2.33668387e-01 -3.37462574e-02 -4.21128750e-01
-2.04927534e-01 -1.14933498e-01 -3.68214905e-01 6.89460874e-01
3.19574386e-01 7.18498349e-01 -1.19104040e+00 -1.46341562e-01
1.55918807e-01 3.39264929e-01 -6.23821080e-01 3.59420538e-01
-1.63960040e-01 6.49018824e-01 -1.04245782e-01 5.54443002e-01
6.82679892e-01 -1.56337336e-01 -6.49454296e-02 -1.08073860e-01
1.20357282e-01 3.31909433e-02 -8.48308623e-01 1.60547066e+00
-3.06324869e-01 1.04826152e+00 -9.84467752e-03 -1.03258216e+00
5.73906839e-01 3.22755724e-01 9.05822664e-02 -5.98704040e-01
4.35534298e-01 4.20607090e-01 -1.10220164e-01 -8.53539407e-01
6.27792299e-01 8.55186656e-02 6.81252852e-02 3.44634384e-01
2.74297714e-01 -3.56791839e-02 2.53951430e-01 2.99706727e-01
1.11901879e+00 4.22075279e-02 -2.23283917e-02 -4.61642481e-02
3.39931071e-01 5.69158643e-02 2.93574445e-02 1.00641668e+00
-4.00947362e-01 5.79716146e-01 3.38070035e-01 -3.88722748e-01
-1.03678501e+00 -7.46961474e-01 1.80796042e-01 8.63877714e-01
1.80324271e-01 -4.03711051e-01 -1.05919456e+00 -9.22440767e-01
1.13843374e-01 5.29543161e-01 -7.41503298e-01 -6.72624171e-01
-6.33128822e-01 -3.48438114e-01 1.07901907e+00 2.03009978e-01
1.03819156e+00 -9.38136041e-01 -7.26649344e-01 2.03053579e-01
-4.34025586e-01 -1.46790218e+00 -3.36368352e-01 -4.98839587e-01
-3.46881181e-01 -1.14374769e+00 -9.53257442e-01 -5.68180978e-01
3.23352009e-01 5.25031984e-01 8.51305723e-01 4.57094163e-01
-1.93177760e-01 3.86997014e-01 -6.53573751e-01 -1.02648459e-01
-9.61173654e-01 -2.79445082e-01 1.31528199e-01 2.74670243e-01
2.17485547e-01 -3.98886621e-01 -5.80578685e-01 5.75711071e-01
-1.08897650e+00 -4.31553274e-03 3.35085273e-01 9.75712001e-01
-2.71176696e-01 -1.26025587e-01 6.00782037e-01 -6.76429868e-01
6.37074709e-01 -4.54114646e-01 -3.06232512e-01 9.96278673e-02
-4.11967449e-02 -3.21396619e-01 8.42460036e-01 -8.37473631e-01
-7.56163657e-01 -3.48716736e-01 -4.23742123e-02 -9.18309689e-01
-2.35701010e-01 2.01111242e-01 2.46549435e-02 -3.69605601e-01
1.17483461e+00 2.83390433e-01 1.08239099e-01 -2.45721176e-01
2.73146659e-01 9.95581448e-01 5.72335780e-01 -2.28542238e-01
8.81582081e-01 6.30238593e-01 -2.94123799e-01 -1.04964364e+00
-5.26597142e-01 -3.31303716e-01 -3.66771102e-01 -6.47383034e-01
7.57045448e-01 -1.08894920e+00 -4.73977059e-01 1.18188930e+00
-1.25199819e+00 -4.55329388e-01 1.00891657e-01 3.45583767e-01
-4.16235000e-01 7.05608428e-01 -6.37627244e-01 -5.35690665e-01
-8.84295776e-02 -1.14052176e+00 9.67348218e-01 -2.22708717e-01
-2.81498820e-01 -7.36995161e-01 -9.20006111e-02 7.32247949e-01
4.37048763e-01 3.72840881e-01 3.20237517e-01 -7.68670082e-01
-6.54300153e-01 -3.64223599e-01 -1.67322591e-01 8.48572016e-01
5.13337664e-02 -1.75796404e-01 -1.07776427e+00 -6.00574911e-01
-6.41811267e-03 -8.50405335e-01 9.70824301e-01 -1.71117350e-01
1.16573417e+00 -5.50721645e-01 -1.03395313e-01 3.67169797e-01
9.38100338e-01 -2.53262043e-01 8.03911030e-01 4.04055536e-01
7.03230500e-01 5.53820610e-01 5.13741314e-01 4.64336842e-01
1.69332415e-01 8.01415801e-01 4.73112285e-01 1.15488276e-01
-4.32001531e-01 -3.46260041e-01 6.25540555e-01 3.62405300e-01
6.38628080e-02 -5.80640256e-01 -6.72074437e-01 5.81583798e-01
-1.65009451e+00 -1.30572760e+00 9.82327387e-03 2.26006269e+00
7.35586822e-01 1.58920422e-01 4.34686035e-01 4.20094430e-01
8.28582644e-01 1.97139502e-01 -2.82762676e-01 -1.36126205e-01
-2.11305767e-01 -2.08324064e-02 3.89572769e-01 2.33906493e-01
-1.28036606e+00 1.05008292e+00 5.29064655e+00 9.52716589e-01
-1.42228878e+00 4.10276055e-01 5.16386211e-01 1.21191395e-02
-3.05228569e-02 -4.82214421e-01 -4.35245335e-01 9.16272402e-01
8.46001923e-01 1.53211966e-01 6.05863035e-01 7.77886331e-01
3.69089901e-01 1.03490858e-03 -9.81983662e-01 1.06005085e+00
6.44501984e-01 -1.47369683e+00 1.88568421e-02 -7.82168955e-02
6.59767866e-01 -1.74680799e-01 8.64122584e-02 3.04723650e-01
5.36983348e-02 -8.42431009e-01 9.41799641e-01 -1.61813311e-02
6.86782241e-01 -5.51328957e-01 5.96404254e-01 5.15661478e-01
-5.48181951e-01 -6.84226304e-02 -1.14463903e-01 1.47908732e-01
1.12952955e-01 5.57651222e-01 -9.76698697e-01 3.98640484e-01
9.22646642e-01 9.08119321e-01 -5.73299229e-01 9.18191791e-01
-2.93951184e-01 5.61310947e-01 -8.43886584e-02 6.87873438e-02
-7.53995636e-03 3.17686498e-01 7.32870936e-01 1.36061716e+00
3.26360106e-01 -3.97183716e-01 4.90085781e-02 6.59612834e-01
-3.43100816e-01 -1.61529317e-01 -7.89551258e-01 -3.13127279e-01
2.95526385e-01 8.21557343e-01 -4.38210845e-01 -4.03331876e-01
-1.80239886e-01 1.45829201e+00 3.06205362e-01 1.73642039e-01
-1.07633424e+00 -2.32328445e-01 4.83530700e-01 2.81690896e-01
3.36987734e-01 -2.26990268e-01 2.10964531e-01 -1.58203447e+00
1.40259102e-01 -1.55335569e+00 3.51105124e-01 -6.45346463e-01
-1.23551965e+00 5.72801828e-01 -1.53470794e-02 -1.32273841e+00
-2.66403168e-01 -5.78250408e-01 -2.51903266e-01 1.13310739e-01
-1.37843466e+00 -1.16015351e+00 -6.73392892e-01 9.03243065e-01
6.26376748e-01 -2.17678979e-01 5.12145042e-01 5.24446309e-01
-3.52052957e-01 8.40222418e-01 3.83182131e-02 3.29417497e-01
9.09553468e-01 -6.76313639e-01 4.40791100e-01 1.14671922e+00
1.32532179e-01 4.18729812e-01 9.09688175e-01 -7.01982856e-01
-1.20154285e+00 -1.06708896e+00 4.89617139e-01 -4.25247431e-01
7.23925471e-01 -5.87924659e-01 -9.72910762e-01 5.65220833e-01
1.15787163e-01 -6.79522455e-02 3.28350842e-01 -3.33054394e-01
-6.41380906e-01 1.54764891e-01 -1.39400709e+00 5.56050956e-01
1.15516818e+00 -6.67377293e-01 -4.13132906e-01 5.75408936e-01
4.62136179e-01 -4.39881861e-01 -4.15626675e-01 2.59410411e-01
5.85552156e-01 -1.30639756e+00 9.68223095e-01 -5.62577307e-01
8.01188350e-01 9.70313139e-03 7.25203007e-02 -1.54677677e+00
8.84468481e-02 -8.71182740e-01 -3.28885317e-01 9.63871717e-01
4.91914973e-02 -6.68264747e-01 7.41798937e-01 7.14974180e-02
-8.17200094e-02 -1.39964283e-01 -1.07113647e+00 -1.16752076e+00
-1.08038582e-01 -2.90447295e-01 2.54660070e-01 1.21940577e+00
-1.15210518e-01 -8.29045102e-02 -1.06182301e+00 1.17581777e-01
4.20825452e-01 -3.53155851e-01 1.27277029e+00 -8.03586900e-01
-5.41792750e-01 -2.72735775e-01 -7.79190361e-01 -1.10912037e+00
2.52568990e-01 -5.22713900e-01 -4.82978895e-02 -7.68125057e-01
-3.28766135e-03 1.47323087e-02 1.90817803e-01 3.03865701e-01
-1.62615836e-01 5.94450951e-01 3.29326063e-01 3.15024406e-01
-3.84515703e-01 5.07236242e-01 1.36492920e+00 -8.39838088e-02
2.11248785e-01 -3.03301334e-01 -2.83996940e-01 5.06550729e-01
7.08079934e-01 -5.91922998e-01 -2.25017592e-01 -4.44733918e-01
-1.52561748e-02 -1.49458364e-01 9.32106018e-01 -1.28594542e+00
-1.62722766e-01 8.79113525e-02 2.46487513e-01 -4.98133991e-03
5.94494939e-01 -6.26691580e-01 -6.76193237e-02 6.16961420e-01
-2.36363336e-01 1.40854083e-02 2.07101732e-01 7.38507986e-01
-2.21353754e-01 -1.91723377e-01 8.69221568e-01 -3.39839786e-01
-6.92893863e-01 -4.58293185e-02 -3.88965189e-01 1.60350457e-01
1.06847143e+00 -3.67631137e-01 -7.75431395e-01 -7.61550784e-01
-4.51984853e-01 -2.24330872e-01 6.89266562e-01 6.70636892e-01
6.66416645e-01 -9.94409263e-01 -7.01412082e-01 1.24412023e-01
1.54674008e-01 -4.50627565e-01 4.22591925e-01 6.86936200e-01
-7.02386439e-01 -1.54880568e-01 -3.85330886e-01 -5.70942938e-01
-1.31168330e+00 6.98471785e-01 4.36956942e-01 7.32976422e-02
-5.06463110e-01 1.03455877e+00 1.41963840e-01 -5.95340431e-02
1.79821447e-01 -1.09795621e-02 1.93673745e-01 6.36566803e-02
7.91899145e-01 4.48697567e-01 2.02446356e-01 -8.35598826e-01
-2.73618072e-01 -4.53598164e-02 -1.50924295e-01 1.75659005e-02
9.76476610e-01 3.59469280e-02 1.99289262e-01 1.40333727e-01
1.36506689e+00 8.89429078e-02 -1.30980396e+00 1.04949430e-01
-3.53527069e-01 -1.16559839e+00 2.25042813e-02 -8.68146658e-01
-9.91413534e-01 8.86060596e-01 6.21870816e-01 2.51585394e-01
8.90338719e-01 -1.55709356e-01 1.07498896e+00 1.42223075e-01
5.50070465e-01 -9.29774165e-01 8.31230164e-01 1.67225659e-01
1.12886322e+00 -1.44233787e+00 -2.52022713e-01 -3.46682101e-01
-7.00752437e-01 1.02245009e+00 6.10063612e-01 -2.85955578e-01
3.13004166e-01 -1.17930613e-01 -2.79392973e-02 -5.33608459e-02
-4.40414935e-01 1.30655825e-01 3.04710586e-02 5.70969343e-01
-1.02007441e-01 -4.72923107e-02 1.44677283e-03 2.31648624e-01
-2.07656637e-01 1.23255081e-01 9.32357669e-01 9.62873518e-01
-2.99356997e-01 -8.07923555e-01 -4.51557189e-01 2.56223917e-01
-4.62675184e-01 1.28533557e-01 -6.89877927e-01 8.12026203e-01
1.29131749e-01 1.20960689e+00 -2.21908540e-01 -6.29651904e-01
2.95011789e-01 -2.70368099e-01 6.57082200e-01 -2.44704202e-01
-7.90392041e-01 -3.22272003e-01 3.99299443e-01 -6.45301342e-01
-3.68694663e-01 -5.40261149e-01 -3.63851011e-01 -7.35937536e-01
-5.48476338e-01 -2.41748780e-01 4.72055078e-01 9.55418229e-01
4.44864422e-01 1.57521125e-02 6.67831898e-01 -1.15217662e+00
-7.25882769e-01 -8.70792866e-01 -1.81298837e-01 9.47969735e-01
6.87355399e-01 -8.75421345e-01 -7.44025886e-01 1.16251647e-01]
|
[12.496408462524414, 1.0912461280822754]
|
38c204a7-9f31-47a6-963d-566a4bfb13d5
|
deep-attention-diffusion-graph-neural
| null | null |
https://aclanthology.org/2021.emnlp-main.642
|
https://aclanthology.org/2021.emnlp-main.642.pdf
|
Deep Attention Diffusion Graph Neural Networks for Text Classification
|
Text classification is a fundamental task with broad applications in natural language processing. Recently, graph neural networks (GNNs) have attracted much attention due to their powerful representation ability. However, most existing methods for text classification based on GNNs consider only one-hop neighborhoods and low-frequency information within texts, which cannot fully utilize the rich context information of documents. Moreover, these models suffer from over-smoothing issues if many graph layers are stacked. In this paper, a Deep Attention Diffusion Graph Neural Network (DADGNN) model is proposed to learn text representations, bridging the chasm of interaction difficulties between a word and its distant neighbors. Experimental results on various standard benchmark datasets demonstrate the superior performance of the present approach.
|
['Xiaoyue Feng', 'Yanchun Liang', 'Fausto Giunchiglia', 'Renchu Guan', 'Yonghao Liu']
| null | null | null | null |
emnlp-2021-11
|
['deep-attention', 'deep-attention']
|
['computer-vision', 'natural-language-processing']
|
[-6.86501190e-02 -9.09171700e-02 -3.26032430e-01 -2.18987644e-01
2.24352449e-01 -7.43973162e-03 7.31026292e-01 7.17198849e-01
-3.30560982e-01 3.55376273e-01 4.07112449e-01 -5.52223742e-01
-3.12421501e-01 -1.11870015e+00 -1.43077597e-01 -6.54854476e-01
-9.70361289e-03 2.14372471e-01 3.13953578e-01 -4.78413969e-01
2.54735738e-01 1.76551908e-01 -7.97871351e-01 1.08896485e-02
1.15767527e+00 7.92209387e-01 2.21244752e-01 3.46565396e-01
-8.22108626e-01 8.80591452e-01 -5.42395055e-01 -4.46348101e-01
-2.39504158e-01 -5.39775550e-01 -6.19316876e-01 -8.91095251e-02
1.53065309e-01 -1.12286873e-01 -1.08145440e+00 1.42305398e+00
2.67477900e-01 4.48958665e-01 5.95233262e-01 -9.86676633e-01
-1.45532894e+00 9.69119787e-01 -8.23586702e-01 4.67471004e-01
1.56165704e-01 -1.99258491e-01 1.26982868e+00 -6.75323784e-01
2.05833942e-01 1.40016282e+00 6.12372220e-01 2.20240787e-01
-8.03668320e-01 -4.47046518e-01 8.72037232e-01 4.10267711e-01
-1.35060108e+00 3.59189600e-01 1.04543316e+00 -2.62294888e-01
1.04494202e+00 -1.09272026e-01 7.75568128e-01 1.02607322e+00
3.85937780e-01 8.46147716e-01 3.34302276e-01 -3.05430412e-01
-3.45299728e-02 -2.73753047e-01 7.99839199e-01 7.35089421e-01
6.44072890e-01 -5.71635365e-01 -1.30371332e-01 -1.12728618e-01
7.27285266e-01 6.04717791e-01 -4.25111502e-01 -8.18339810e-02
-9.31257367e-01 1.08849013e+00 1.15165401e+00 7.93369055e-01
-3.26231867e-01 1.93888947e-01 5.90602338e-01 1.90627992e-01
9.03749645e-01 9.97693278e-03 1.69552684e-01 3.26324046e-01
-3.84245783e-01 -1.94796905e-01 4.76336569e-01 7.66718268e-01
4.46004629e-01 2.15467244e-01 -1.15269735e-01 9.47004676e-01
4.70047116e-01 8.00731257e-02 9.26749825e-01 2.39993736e-01
8.83971334e-01 1.16752911e+00 -5.76771677e-01 -1.93828821e+00
-5.89575410e-01 -6.86314464e-01 -1.49197972e+00 -3.35690618e-01
7.84628093e-02 -6.96455836e-02 -7.64577091e-01 1.26425552e+00
1.45547897e-01 1.55621573e-01 -1.92688070e-02 8.63722682e-01
1.12857592e+00 9.32185292e-01 2.31660143e-01 6.28818348e-02
1.13874233e+00 -1.11371160e+00 -9.35257077e-01 -4.55862015e-01
8.01098287e-01 -3.51522893e-01 1.07492554e+00 1.65925920e-01
-5.71347058e-01 -4.75163102e-01 -1.02029908e+00 -2.03862011e-01
-7.58608699e-01 -2.92896986e-01 9.92525518e-01 4.37913269e-01
-1.10253501e+00 5.39683402e-01 -6.25065744e-01 -5.98100603e-01
6.94201112e-01 4.68676448e-01 -1.47206217e-01 -2.91782796e-01
-1.46012545e+00 4.22214538e-01 6.09640896e-01 4.81021553e-01
-3.85786742e-02 3.86713296e-02 -8.44655275e-01 4.23535526e-01
3.93443406e-01 -5.04116952e-01 7.54685163e-01 -8.38288188e-01
-1.25931883e+00 3.43552470e-01 7.81637505e-02 -3.30084264e-01
3.73320907e-01 -2.46147458e-02 -6.69465184e-01 7.28198662e-02
-2.09622055e-01 3.22555862e-02 6.08902812e-01 -7.23794937e-01
-3.32910687e-01 -5.62146366e-01 1.18740544e-01 3.56659949e-01
-1.08375859e+00 -3.78046036e-01 -4.35177416e-01 -9.99749005e-01
2.83214271e-01 -4.25056815e-01 -4.16438550e-01 -2.80145407e-01
-6.44357681e-01 -8.07989001e-01 1.01329195e+00 -2.81511545e-01
1.66577148e+00 -1.90783036e+00 9.01133418e-02 1.85284108e-01
6.35789514e-01 5.36233246e-01 -3.02883953e-01 7.38345981e-01
1.30462185e-01 1.94789380e-01 3.31600346e-02 -1.37071442e-02
-8.67720097e-02 7.35754073e-02 -3.02232683e-01 5.12055874e-01
-1.77234888e-01 1.10422087e+00 -1.07878399e+00 -3.75846744e-01
1.13733485e-01 6.15727663e-01 -3.15939814e-01 -8.83116871e-02
-3.04017514e-01 4.99707600e-03 -1.05017364e+00 1.83210686e-01
6.14345312e-01 -7.68771768e-01 4.10575688e-01 8.24629422e-03
3.77708972e-01 2.85334766e-01 -8.43636692e-01 1.56187701e+00
-2.64135480e-01 6.36350870e-01 -1.65963829e-01 -1.30316329e+00
9.94737267e-01 4.74950150e-02 2.14370444e-01 -6.28371894e-01
3.63903373e-01 -7.48715848e-02 2.59705782e-01 -4.43272650e-01
5.62815785e-01 1.01113714e-01 1.72932088e-01 5.62102973e-01
-5.59329726e-02 3.16393673e-01 1.97751775e-01 6.04974389e-01
1.01264882e+00 -5.88908017e-01 3.04594904e-01 -3.31362009e-01
6.87018335e-01 -3.75017256e-01 1.66753232e-01 5.73789537e-01
-1.33946329e-01 3.81811351e-01 7.65648067e-01 -5.09195268e-01
-4.94060218e-01 -4.06445891e-01 1.54131725e-01 1.29784000e+00
3.22807521e-01 -6.72965050e-01 -5.53213477e-01 -9.26895559e-01
1.52123943e-01 4.67128307e-01 -8.36270571e-01 -4.64047402e-01
-5.51702857e-01 -1.03019941e+00 3.60596716e-01 5.94945669e-01
5.13429224e-01 -1.12794459e+00 2.87910193e-01 3.11760932e-01
7.78143555e-02 -9.51623440e-01 -6.68994427e-01 -2.03746423e-01
-9.79989707e-01 -1.09033012e+00 -8.37731600e-01 -1.25763428e+00
8.46187055e-01 8.96681666e-01 8.88006687e-01 7.45890200e-01
-1.00991771e-01 1.07458785e-01 -6.15462005e-01 -1.01083405e-01
-8.21017101e-02 4.15737778e-01 -1.71112582e-01 2.16874480e-01
6.83574617e-01 -4.57976758e-01 -6.46328866e-01 7.07150474e-02
-1.06062627e+00 -9.83994547e-03 4.39089268e-01 9.46608245e-01
1.43802598e-01 4.61674541e-01 8.67857933e-01 -1.20816624e+00
1.22768116e+00 -8.90149355e-01 -3.69860619e-01 2.95322478e-01
-6.71468079e-01 -2.69058943e-01 1.05395627e+00 -4.31611329e-01
-8.53777349e-01 -5.95778167e-01 -4.48551700e-02 -1.24672830e-01
1.66866228e-01 1.07898712e+00 -1.02224447e-01 6.82410747e-02
2.98987269e-01 3.10661644e-01 -1.70878500e-01 -3.80533010e-01
3.89889836e-01 6.82694614e-01 5.41685969e-02 -2.42476389e-01
4.65501249e-01 2.93006539e-01 -1.15430817e-01 -8.89266849e-01
-9.26195741e-01 -3.67383182e-01 -4.28940028e-01 7.44725093e-02
8.79937828e-01 -6.64600432e-01 -8.35241258e-01 5.51467180e-01
-1.09118354e+00 -1.66676119e-01 2.10948110e-01 6.23453140e-01
1.70308158e-01 7.64802814e-01 -9.28239167e-01 -6.27900302e-01
-4.38692331e-01 -7.90966570e-01 5.19368351e-01 5.07808506e-01
2.24634737e-01 -1.66323805e+00 -1.86003745e-01 1.06279358e-01
4.60289836e-01 2.62328107e-02 1.27155912e+00 -9.95179713e-01
-3.29950064e-01 -4.48184848e-01 -6.55535817e-01 5.95552325e-02
4.36815411e-01 -1.81968853e-01 -5.39108634e-01 -4.32134181e-01
-2.09631607e-01 -1.39026016e-01 1.13918769e+00 3.94017935e-01
1.46970999e+00 -3.70573044e-01 -6.09116018e-01 3.33121926e-01
1.30700302e+00 5.86174466e-02 2.94636220e-01 2.35877097e-01
1.32123959e+00 5.18059015e-01 6.30536256e-03 3.04887027e-01
4.75892782e-01 1.35408893e-01 5.61719060e-01 -9.40928906e-02
-3.12666059e-03 -4.30147171e-01 -1.11578172e-02 1.40995312e+00
8.50370154e-02 -1.00298381e+00 -1.11166430e+00 3.49314541e-01
-2.16785097e+00 -7.63556242e-01 -5.88835478e-01 1.59790528e+00
2.94949353e-01 4.54371899e-01 -1.04083143e-01 1.70502514e-01
1.16583395e+00 6.93879545e-01 -6.33996427e-01 -1.76927641e-01
-1.50381386e-01 -1.64979368e-01 1.78389132e-01 3.50437820e-01
-1.09007871e+00 9.08806086e-01 5.48120356e+00 9.71763372e-01
-8.55115771e-01 -1.53578103e-01 7.18499541e-01 2.87806958e-01
-3.81669730e-01 -4.34829891e-01 -6.75173104e-01 5.82542717e-01
6.12829506e-01 -4.87435490e-01 2.44241774e-01 7.52544582e-01
-4.89855595e-02 2.72106200e-01 -6.70151472e-01 9.61486399e-01
2.28481576e-01 -1.36546934e+00 6.74812973e-01 -8.07507634e-02
7.02732146e-01 3.45652513e-02 9.69512314e-02 4.20061558e-01
6.22227550e-01 -1.16434240e+00 -1.70868412e-02 3.47944409e-01
5.64148366e-01 -9.75914061e-01 9.19681072e-01 4.26705360e-01
-1.50985229e+00 -2.12328792e-01 -8.43153059e-01 -2.66192049e-01
-3.09646931e-02 7.79751241e-01 -6.26863599e-01 7.09943533e-01
3.84912521e-01 1.31400204e+00 -7.08781421e-01 7.52197027e-01
-2.35200763e-01 6.73550725e-01 1.83880907e-02 -7.49003291e-01
7.28111982e-01 -6.23176396e-01 2.99789399e-01 1.36381936e+00
1.46783426e-01 4.00611341e-01 3.91029149e-01 6.15825534e-01
-5.20872474e-01 5.51302373e-01 -7.13110387e-01 -5.12786448e-01
1.15006045e-01 1.22038615e+00 -1.22444761e+00 -3.26197714e-01
-7.28470087e-01 8.52470458e-01 7.48143077e-01 5.38148224e-01
-4.62438852e-01 -9.13879693e-01 4.04881358e-01 -6.26330301e-02
2.60738224e-01 -3.42338860e-01 -8.51755366e-02 -1.21867633e+00
-4.57179062e-02 -5.26400566e-01 7.54285693e-01 -5.80338418e-01
-1.88187337e+00 8.72948587e-01 -5.07552683e-01 -9.97855544e-01
1.60847291e-01 -6.61255538e-01 -9.76801574e-01 9.00670350e-01
-1.52104068e+00 -1.06722045e+00 -4.56356019e-01 7.11076558e-01
5.26637197e-01 -1.84707239e-01 5.41313827e-01 2.43522644e-01
-8.37679029e-01 6.11033380e-01 5.08772552e-01 6.20830357e-01
1.48122355e-01 -1.19443607e+00 7.12084591e-01 5.96063733e-01
1.60450339e-01 7.80485511e-01 1.18846014e-01 -7.91162491e-01
-1.44000578e+00 -1.25053036e+00 7.52684534e-01 4.60727029e-02
1.01703286e+00 -4.75796878e-01 -1.49171317e+00 6.53716564e-01
4.05887663e-01 1.59556240e-01 6.18119776e-01 3.51140410e-01
-3.62046123e-01 4.22185324e-02 -5.57820737e-01 7.14026392e-01
1.23053920e+00 -4.92888927e-01 -5.78129411e-01 5.85714102e-01
9.14400697e-01 -7.27519020e-02 -5.33896387e-01 -2.52011381e-02
5.71429953e-02 -7.95410573e-01 7.35586047e-01 -8.06269884e-01
3.45113993e-01 -1.28740454e-02 1.51813984e-01 -1.50303316e+00
-4.72553641e-01 -4.31593746e-01 -2.08061978e-01 1.17644191e+00
6.74343435e-03 -9.81211483e-01 8.61643493e-01 8.22833627e-02
-5.97598366e-02 -7.55089819e-01 -5.72428942e-01 -5.76568186e-01
2.66321331e-01 -9.19409618e-02 6.51699185e-01 1.42776871e+00
3.97929341e-01 9.78177428e-01 -7.89747089e-02 -1.36144072e-01
3.53066802e-01 1.24097362e-01 3.88060898e-01 -1.69222569e+00
9.77370702e-03 -9.70365882e-01 -6.57724440e-01 -1.42776990e+00
3.88755471e-01 -1.25379694e+00 -3.04382890e-01 -2.10088658e+00
2.44411290e-01 -2.91646272e-01 -6.72867298e-01 2.33835965e-01
-5.72523654e-01 -7.82549679e-02 -8.93520713e-02 1.87411264e-01
-8.24312925e-01 9.72836196e-01 1.39680243e+00 -4.69137520e-01
-5.18468544e-02 -1.96768105e-01 -7.88048148e-01 7.37638533e-01
8.38718891e-01 -3.98981839e-01 -7.48753071e-01 -8.70837092e-01
5.16511977e-01 -1.33153021e-01 -2.76714517e-03 -8.21543455e-01
5.48544943e-01 -8.44511837e-02 4.06390131e-01 -5.65555453e-01
-9.19443145e-02 -7.03065991e-01 -4.06933039e-01 4.51983482e-01
-4.98378873e-01 1.77059963e-01 -5.88377267e-02 1.20579672e+00
-2.91844815e-01 -1.20981865e-01 4.35825855e-01 -4.42832299e-02
-4.93119031e-01 7.29500949e-01 -4.10416514e-01 2.34782528e-02
6.75419867e-01 1.44943092e-02 -4.62271124e-01 -4.38276857e-01
-4.34369415e-01 4.88032281e-01 7.87425339e-02 7.28311837e-01
6.71160996e-01 -1.40772235e+00 -6.59831703e-01 1.37837186e-01
1.04026385e-01 1.72096416e-01 4.14769292e-01 4.49468881e-01
-5.04473746e-01 5.80623984e-01 1.72646403e-01 -3.59081954e-01
-8.35247993e-01 8.50303590e-01 1.94571927e-01 -4.33213711e-01
-1.03176308e+00 8.67468774e-01 5.09617984e-01 -2.60384500e-01
3.00362408e-01 -3.41790766e-01 -7.42244184e-01 8.10391754e-02
6.53922796e-01 2.18173981e-01 6.13600165e-02 -5.81793070e-01
-1.60379395e-01 5.24488389e-01 -5.09925008e-01 4.88561541e-01
1.18245709e+00 -2.51462251e-01 -2.08110437e-01 4.34771270e-01
1.28701448e+00 -2.28908777e-01 -7.99638629e-01 -6.70284629e-01
2.09245682e-01 -3.15302342e-01 3.54396552e-01 -1.40154257e-01
-1.36590862e+00 1.23328757e+00 -2.91392431e-02 8.57230783e-01
8.10223520e-01 -2.25371689e-01 1.01730597e+00 7.64904976e-01
-5.60947172e-02 -9.50717688e-01 2.87579656e-01 7.47971177e-01
6.56974614e-01 -1.14158225e+00 1.40563205e-01 -3.32035571e-01
-4.13588375e-01 1.41785109e+00 8.09656918e-01 -3.19653004e-01
1.03895307e+00 -3.61703902e-01 -4.75407504e-02 -4.61671233e-01
-5.04188776e-01 -2.32509643e-01 2.28090167e-01 5.02900779e-01
5.47641277e-01 -1.53636113e-01 -4.72749919e-01 7.13147402e-01
1.82794094e-01 -4.15925533e-01 3.92452121e-01 7.97672153e-01
-5.03950179e-01 -7.68720210e-01 3.43061201e-02 7.47259736e-01
-4.16485161e-01 -3.32955450e-01 -4.86624777e-01 7.23802209e-01
-4.52193260e-01 9.94043171e-01 1.92378432e-01 -4.49749291e-01
1.96649104e-01 -2.00490937e-01 -8.47710855e-03 -6.88576221e-01
-5.50218463e-01 -1.15356088e-01 -3.41552466e-01 -9.70649272e-02
-1.44162148e-01 -1.60811171e-01 -1.53182673e+00 -5.50983608e-01
-5.85659027e-01 3.85990977e-01 3.80364090e-01 7.86143661e-01
4.61773485e-01 8.52954268e-01 6.03554249e-01 -5.54958820e-01
-3.80321026e-01 -1.06776083e+00 -8.88584137e-01 3.44385862e-01
2.28944838e-01 -4.99410272e-01 -3.07159841e-01 -4.26440239e-01]
|
[9.920279502868652, 6.720036029815674]
|
8f28e349-4d91-4609-b853-593337c11507
|
gconet-a-stronger-group-collaborative-co
|
2205.15469
| null |
https://arxiv.org/abs/2205.15469v4
|
https://arxiv.org/pdf/2205.15469v4.pdf
|
GCoNet+: A Stronger Group Collaborative Co-Salient Object Detector
|
In this paper, we present a novel end-to-end group collaborative learning network, termed GCoNet+, which can effectively and efficiently (250 fps) identify co-salient objects in natural scenes. The proposed GCoNet+ achieves the new state-of-the-art performance for co-salient object detection (CoSOD) through mining consensus representations based on the following two essential criteria: 1) intra-group compactness to better formulate the consistency among co-salient objects by capturing their inherent shared attributes using our novel group affinity module (GAM); 2) inter-group separability to effectively suppress the influence of noisy objects on the output by introducing our new group collaborating module (GCM) conditioning on the inconsistent consensus. To further improve the accuracy, we design a series of simple yet effective components as follows: i) a recurrent auxiliary classification module (RACM) promoting model learning at the semantic level; ii) a confidence enhancement module (CEM) assisting the model in improving the quality of the final predictions; and iii) a group-based symmetric triplet (GST) loss guiding the model to learn more discriminative features. Extensive experiments on three challenging benchmarks, i.e., CoCA, CoSOD3k, and CoSal2015, demonstrate that our GCoNet+ outperforms the existing 12 cutting-edge models. Code has been released at https://github.com/ZhengPeng7/GCoNet_plus.
|
['Chi-Keung Tang', 'Yu-Wing Tai', 'Luc van Gool', 'Jie Qin', 'Qi Fan', 'Deng-Ping Fan', 'Huazhu Fu', 'Peng Zheng']
|
2022-05-30
| null | null | null | null |
['co-saliency-detection']
|
['computer-vision']
|
[ 6.98397961e-03 -1.02563702e-01 -1.40964642e-01 -2.87798584e-01
-8.07900310e-01 1.07365549e-02 4.95972991e-01 2.07110733e-01
-2.57268816e-01 1.60590798e-01 1.31946340e-01 -3.03873862e-03
-2.21207052e-01 -4.09514815e-01 -8.08038712e-01 -7.64424026e-01
1.02223083e-03 1.41673505e-01 6.16965473e-01 -1.61024816e-02
2.61079997e-01 1.83792576e-01 -1.71375573e+00 4.06745940e-01
1.24182606e+00 1.41278517e+00 5.80187023e-01 9.58217382e-02
2.88551390e-01 8.89420092e-01 9.96426865e-03 -1.73589677e-01
3.35338801e-01 -2.13842317e-01 -4.67668265e-01 2.03967765e-01
3.63244981e-01 -1.06388582e-02 -1.21106915e-02 1.04795134e+00
5.51875710e-01 2.94398040e-01 4.99031991e-01 -1.35027492e+00
-6.03428721e-01 5.05362213e-01 -9.47199285e-01 2.84816653e-01
-1.76183745e-01 1.31425470e-01 1.27587664e+00 -1.45664895e+00
4.66455787e-01 1.27175617e+00 5.02777815e-01 1.21955365e-01
-1.02045810e+00 -9.36735153e-01 6.39015436e-01 6.93269730e-01
-1.46955955e+00 -2.52781928e-01 1.07125378e+00 -1.59643397e-01
6.45101845e-01 1.61157072e-01 6.54666662e-01 7.36709714e-01
9.85501707e-02 1.29725480e+00 7.11737394e-01 -3.08214307e-01
2.16909379e-01 1.49891777e-02 1.18687592e-01 9.48680103e-01
1.07572250e-01 5.53721213e-04 -7.41347969e-01 -8.48294273e-02
4.97253507e-01 2.72735029e-01 -1.25840932e-01 -7.50002861e-01
-1.13651001e+00 8.39178026e-01 9.05563235e-01 4.71156612e-02
-4.51958835e-01 2.52920855e-02 4.92661834e-01 -1.34448767e-01
6.91811919e-01 7.47336000e-02 -2.79415041e-01 3.50975066e-01
-6.88809991e-01 2.18582049e-01 1.85461864e-01 9.72150266e-01
7.84344792e-01 -3.23731512e-01 -4.17572170e-01 9.52284575e-01
3.90231133e-01 2.03873873e-01 4.56407279e-01 -7.63283372e-01
4.58424985e-01 7.61740148e-01 1.31990105e-01 -1.15180385e+00
-3.19135189e-01 -7.94598997e-01 -6.92867219e-01 -1.80733800e-02
-1.27105519e-01 5.83677217e-02 -7.23894477e-01 1.55306685e+00
6.35144234e-01 5.06364226e-01 -3.29299510e-01 1.30300665e+00
9.86918211e-01 5.46227634e-01 3.16881955e-01 -4.30183634e-02
1.01511598e+00 -1.64037311e+00 -3.97922546e-01 -2.95331359e-01
6.77898645e-01 -7.72543848e-01 8.35999429e-01 1.44988284e-01
-9.88799214e-01 -8.30351591e-01 -9.36158061e-01 -1.36052981e-01
-2.31495664e-01 5.61777949e-01 8.14649880e-01 -4.91663329e-02
-7.21796870e-01 4.16448504e-01 -8.72740805e-01 -1.02974419e-02
8.63941848e-01 2.67576993e-01 -3.49414460e-02 -3.02352197e-02
-8.04218948e-01 4.53018695e-01 3.07496727e-01 2.16780111e-01
-7.70838201e-01 -8.59896123e-01 -7.42509961e-01 1.47513911e-01
6.49355471e-01 -7.23921955e-01 9.13627326e-01 -1.24055636e+00
-1.10243285e+00 7.96259284e-01 -2.75480002e-01 -4.36340421e-01
7.23838091e-01 -5.83774745e-01 -2.21299842e-01 2.12359905e-01
3.78691465e-01 1.00837624e+00 8.56520593e-01 -1.30253363e+00
-1.11282611e+00 -3.60404521e-01 -3.48755687e-01 4.52563465e-01
-2.53213614e-01 7.71969631e-02 -7.37089157e-01 -8.16854656e-01
2.26999328e-01 -9.59470630e-01 -1.56017765e-01 3.96281600e-01
-4.13503557e-01 -6.32025361e-01 9.56362188e-01 -4.74890858e-01
1.02645302e+00 -2.39756513e+00 1.82122067e-01 1.16548322e-01
4.63055789e-01 5.15644491e-01 -2.36156717e-01 6.88098669e-02
-9.06194150e-02 -2.12178886e-01 -3.58494967e-02 -9.38345969e-01
-1.32821634e-01 -1.71677902e-01 -1.78473607e-01 4.89923924e-01
4.72352594e-01 1.03317356e+00 -1.03352094e+00 -7.02791214e-01
4.45563465e-01 3.80930215e-01 -4.81634408e-01 9.39062536e-02
-4.06556623e-03 1.66427448e-01 -5.81332505e-01 7.67407537e-01
7.48889387e-01 -6.21612012e-01 -1.41051158e-01 -2.59729981e-01
-1.55910522e-01 8.57360214e-02 -1.32018411e+00 1.54551446e+00
-1.96996406e-01 1.97204664e-01 7.38374591e-02 -9.38141048e-01
1.07669175e+00 -1.24717966e-01 5.34216285e-01 -6.27346396e-01
2.18501821e-01 1.11157522e-01 -1.53409600e-01 -1.71008185e-01
3.80007625e-01 4.25232291e-01 2.55389720e-01 1.50790378e-01
1.13404296e-01 5.07525742e-01 1.17328838e-01 4.89918917e-01
6.44652009e-01 2.34832782e-02 1.26888435e-02 -6.16361201e-01
5.42257071e-01 -2.72611558e-01 1.00552332e+00 6.64642215e-01
-5.39107978e-01 6.59166813e-01 1.23475634e-01 -3.44670266e-01
-6.39637172e-01 -1.00627398e+00 5.10801449e-02 1.08692169e+00
7.97097445e-01 -4.85061944e-01 -2.71082550e-01 -7.82941937e-01
2.62135118e-01 4.32106823e-01 -7.76313424e-01 -4.10867423e-01
-2.95496166e-01 -6.44330919e-01 -2.20167547e-01 7.95322359e-01
7.09873855e-01 -9.48968291e-01 -5.17541587e-01 4.91762422e-02
-3.05962175e-01 -1.02781069e+00 -8.35468829e-01 2.01635033e-01
-5.73587000e-01 -9.17708933e-01 -5.51878512e-01 -9.61666882e-01
7.33416080e-01 9.89092708e-01 7.66948044e-01 2.21509293e-01
-2.98485935e-01 9.12930965e-02 -5.89304507e-01 -6.70074344e-01
3.17814708e-01 -7.09255114e-02 -6.28635436e-02 4.61870015e-01
3.92316371e-01 -3.64621848e-01 -8.58360112e-01 5.24614990e-01
-4.93941665e-01 5.90383112e-01 6.20855868e-01 8.73048782e-01
9.00097430e-01 -2.37321064e-01 6.53929234e-01 -6.00025177e-01
4.92126085e-02 -4.81510252e-01 -4.47795808e-01 1.95463136e-01
-6.28705561e-01 -3.69092196e-01 6.59298420e-01 -4.38501090e-01
-1.00652003e+00 3.08732921e-03 2.38327920e-01 -8.95220160e-01
2.69334406e-01 3.08953345e-01 -1.67107522e-01 -1.17993288e-01
2.18600929e-01 2.41376698e-01 -7.88572952e-02 -3.95126373e-01
1.30518422e-01 2.82416195e-01 5.06186843e-01 -3.15983415e-01
7.86215663e-01 6.62116945e-01 -4.43848856e-02 -4.68212634e-01
-1.11222208e+00 -1.00243247e+00 -4.50532526e-01 -3.80324543e-01
6.79750264e-01 -1.32604802e+00 -4.56711739e-01 5.14010608e-01
-7.74529338e-01 -1.64591268e-01 -1.19908258e-01 5.23039460e-01
-3.46433967e-01 3.60004127e-01 -4.35191840e-01 -7.59228945e-01
-6.59750342e-01 -9.60926294e-01 1.28606999e+00 5.70498765e-01
1.49615064e-01 -7.05154419e-01 -3.90591979e-01 5.63692868e-01
2.20614821e-01 1.66950330e-01 4.36618090e-01 -4.67027277e-01
-6.91349506e-01 9.01097357e-02 -5.19608676e-01 4.24178123e-01
9.24665555e-02 1.09900311e-01 -7.72682071e-01 -5.33326089e-01
-3.69329184e-01 -4.02528375e-01 1.23611414e+00 4.65537012e-01
1.42874372e+00 1.48176268e-01 -6.57613754e-01 7.56901741e-01
1.30387568e+00 1.00829853e-02 3.37349594e-01 3.26690406e-01
8.62290442e-01 3.37396085e-01 1.10823262e+00 5.70298672e-01
4.34295446e-01 6.56615496e-01 5.41983128e-01 -4.55384612e-01
-1.47352472e-01 -3.81462753e-01 2.26944402e-01 7.19327986e-01
2.04459820e-02 -7.70665109e-02 -5.16668916e-01 6.97347224e-01
-2.39766788e+00 -7.41127670e-01 -1.82108551e-01 1.89043784e+00
3.75737369e-01 2.48273090e-01 2.29989976e-01 -1.24810524e-01
9.42250550e-01 1.13223888e-01 -6.58479393e-01 2.56877899e-01
-2.26706088e-01 -1.30856678e-01 2.64215201e-01 1.99888632e-01
-1.45682240e+00 9.52155948e-01 3.71446013e+00 1.11193538e+00
-1.11211443e+00 6.24325164e-02 8.81724119e-01 -7.83737674e-02
4.92183194e-02 1.88339818e-02 -9.69244599e-01 7.11579084e-01
4.06439975e-02 -1.55475616e-01 -1.84669998e-02 1.07769883e+00
3.16485524e-01 -1.43530652e-01 -6.95710659e-01 9.68442976e-01
1.56608090e-01 -1.44999266e+00 8.38702694e-02 -2.84865916e-01
7.13748157e-01 2.81858772e-01 1.23538256e-01 2.53344417e-01
1.41585827e-01 -4.57891017e-01 1.08627057e+00 4.87664193e-01
2.19083786e-01 -9.60589290e-01 6.52427852e-01 3.00988674e-01
-1.44572270e+00 -2.93657392e-01 -4.45222259e-01 2.70353377e-01
7.56857693e-02 7.92883277e-01 -4.33629543e-01 9.35747385e-01
1.02790487e+00 1.13393056e+00 -8.45152318e-01 1.32722831e+00
-1.09600142e-01 5.73302388e-01 -4.00942981e-01 -9.78151858e-02
5.10166824e-01 -1.06350631e-01 7.55051374e-01 1.11052287e+00
-6.44253418e-02 -2.18785722e-02 4.33144122e-01 8.12444329e-01
5.83761483e-02 1.08211264e-01 1.46167904e-01 4.60483611e-01
6.29259646e-01 1.55510068e+00 -9.47194397e-01 -2.90552408e-01
-3.93575937e-01 8.76934826e-01 5.65023780e-01 1.98080435e-01
-1.03934789e+00 -1.93681568e-01 5.24878621e-01 -5.07449135e-02
8.36669803e-01 1.47985201e-02 -1.84650183e-01 -1.16531694e+00
3.37222904e-01 -5.51787496e-01 5.62797368e-01 -7.83625364e-01
-1.41129577e+00 3.61743480e-01 -1.93704754e-01 -1.41978168e+00
3.34195197e-01 -2.79304206e-01 -8.02057981e-01 7.28395224e-01
-1.72206461e+00 -1.37730610e+00 -5.98610342e-01 6.19205415e-01
5.67683995e-01 -6.62676394e-02 2.90739655e-01 3.79919142e-01
-8.84052813e-01 6.63765550e-01 -3.92829888e-02 5.80140427e-02
7.89756119e-01 -9.33440447e-01 1.54140219e-01 9.37331975e-01
7.49016032e-02 3.60404551e-01 4.73614186e-01 -5.90538561e-01
-1.16099858e+00 -1.58325946e+00 7.74723232e-01 -7.14019611e-02
5.82558572e-01 -4.72484022e-01 -9.60901260e-01 5.15083551e-01
-2.03109965e-01 4.88375604e-01 3.95190269e-01 5.79983229e-03
-3.16732168e-01 -3.00791740e-01 -7.66799271e-01 4.43775028e-01
1.28226829e+00 -2.21232176e-01 -2.64624238e-01 4.54472363e-01
7.32716560e-01 -2.23448977e-01 -4.19143468e-01 6.37624204e-01
3.43966216e-01 -1.09732020e+00 8.77024353e-01 -3.68672997e-01
4.84474033e-01 -6.43943787e-01 1.52402660e-02 -1.10547769e+00
-8.46028745e-01 -5.14030159e-01 -1.85574725e-01 1.20357680e+00
1.89225867e-01 -5.16794205e-01 7.49366581e-01 2.20417321e-01
-4.62741792e-01 -1.32335377e+00 -8.31552148e-01 -7.89123714e-01
-3.13943923e-01 -1.55259505e-01 3.21465403e-01 8.82571101e-01
-2.71898508e-01 3.37480128e-01 -2.71337479e-01 2.66268551e-01
6.44937456e-01 4.91235346e-01 6.96148098e-01 -1.10521924e+00
-2.78805733e-01 -4.79314476e-01 -4.41052914e-01 -1.20512700e+00
-4.13727574e-02 -9.72380698e-01 4.94877482e-03 -1.26323223e+00
5.67503691e-01 -6.07723892e-01 -5.76916218e-01 5.09435534e-01
-6.60915732e-01 8.15930814e-02 4.85808969e-01 4.07274872e-01
-1.32661903e+00 1.03953004e+00 1.17976522e+00 -1.99422128e-02
-8.21194053e-02 -9.58044901e-02 -7.99685180e-01 7.00762510e-01
5.92833459e-01 -3.89658988e-01 -3.00681591e-01 -2.44079843e-01
-2.43217975e-01 -4.27488297e-01 7.01817214e-01 -1.14102221e+00
3.79364431e-01 7.74833187e-03 5.46894968e-01 -8.20375860e-01
2.04957634e-01 -6.01238906e-01 -2.01803640e-01 4.26963091e-01
-2.97686309e-01 -9.35761817e-03 1.81809902e-01 7.73827136e-01
-3.06678951e-01 2.28938594e-01 1.09154439e+00 2.51391917e-01
-1.04325688e+00 5.63214242e-01 2.03550294e-01 -1.21934384e-01
1.20052731e+00 -5.20647429e-02 -3.82031560e-01 -1.06001377e-01
-5.03248513e-01 8.28930795e-01 3.15032154e-01 7.43875861e-01
6.42639518e-01 -1.37496889e+00 -7.62376606e-01 1.52237296e-01
3.98723006e-01 5.74512556e-02 6.43313169e-01 1.12091374e+00
-1.05100438e-01 1.90717712e-01 -2.27246638e-02 -8.88563871e-01
-1.44866419e+00 5.11959255e-01 1.93294033e-01 -2.71029532e-01
-7.33455896e-01 1.13836908e+00 5.04134297e-01 -7.35771284e-02
2.93212980e-01 -1.35360152e-01 -1.05715863e-01 -8.83884206e-02
5.19171119e-01 3.26841533e-01 1.48893490e-01 -7.19196141e-01
-5.67598701e-01 3.64736617e-01 -5.30620933e-01 4.88833308e-01
1.30242467e+00 -1.12337798e-01 1.17219619e-01 1.67845786e-01
1.19398463e+00 -3.75303537e-01 -1.64564741e+00 -5.03572285e-01
-2.43415788e-01 -6.53867185e-01 2.95819283e-01 -6.91369295e-01
-1.13290083e+00 4.73584145e-01 8.33585441e-01 -2.43375137e-01
1.28436768e+00 3.01589578e-01 7.67859995e-01 1.09848171e-01
2.81919599e-01 -1.25773692e+00 3.04075450e-01 3.31575036e-01
8.94933701e-01 -1.35429609e+00 -1.87059846e-02 -7.46275723e-01
-7.78107822e-01 6.56916618e-01 7.75432527e-01 -4.10286546e-01
7.78138936e-01 -6.70154989e-02 -1.71077400e-01 -1.24217935e-01
-9.80862439e-01 -2.54933268e-01 4.91990954e-01 2.35172734e-01
7.19780847e-02 1.64865196e-01 -2.59183019e-01 7.93311536e-01
2.32598364e-01 -5.22193983e-02 -4.67368178e-02 9.20367420e-01
-4.48376000e-01 -5.14744818e-01 -7.48925433e-02 5.58161497e-01
-2.13645607e-01 -1.82055985e-03 -3.56351078e-01 6.62758052e-01
3.95153612e-01 9.01817441e-01 2.15532735e-01 -5.35246909e-01
1.86883241e-01 -4.38064575e-01 2.87212972e-02 -4.59207654e-01
-4.96379077e-01 2.48524904e-01 -1.73499197e-01 -8.11114788e-01
-5.36753714e-01 -9.70862448e-01 -1.21326363e+00 -2.62543513e-03
-6.12697482e-01 1.12381488e-01 2.22370103e-01 8.46262515e-01
8.26915622e-01 4.88844544e-01 7.55695462e-01 -1.06292486e+00
-3.81433010e-01 -9.02208269e-01 -5.56017935e-01 5.09685695e-01
1.56506836e-01 -9.78458166e-01 -4.30510342e-01 -6.07974641e-02]
|
[9.800750732421875, -0.22158242762088776]
|
0794cd0d-883e-43a7-831a-56181eebdede
|
diversity-measurable-anomaly-detection
|
2303.05047
| null |
https://arxiv.org/abs/2303.05047v1
|
https://arxiv.org/pdf/2303.05047v1.pdf
|
Diversity-Measurable Anomaly Detection
|
Reconstruction-based anomaly detection models achieve their purpose by suppressing the generalization ability for anomaly. However, diverse normal patterns are consequently not well reconstructed as well. Although some efforts have been made to alleviate this problem by modeling sample diversity, they suffer from shortcut learning due to undesired transmission of abnormal information. In this paper, to better handle the tradeoff problem, we propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity while avoid the undesired generalization on anomalies. To this end, we design Pyramid Deformation Module (PDM), which models diverse normals and measures the severity of anomaly by estimating multi-scale deformation fields from reconstructed reference to original input. Integrated with an information compression module, PDM essentially decouples deformation from prototypical embedding and makes the final anomaly score more reliable. Experimental results on both surveillance videos and industrial images demonstrate the effectiveness of our method. In addition, DMAD works equally well in front of contaminated data and anomaly-like normal samples.
|
['Xilin Chen', 'Shiguang Shan', 'Bingpeng Ma', 'Hong Chang', 'Wenrui Liu']
|
2023-03-09
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Liu_Diversity-Measurable_Anomaly_Detection_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Liu_Diversity-Measurable_Anomaly_Detection_CVPR_2023_paper.pdf
|
cvpr-2023-1
|
['anomaly-detection-in-surveillance-videos', 'defect-detection', 'anomaly-detection-in-surveillance-videos', 'one-class-classification']
|
['computer-vision', 'computer-vision', 'methodology', 'miscellaneous']
|
[ 3.80647361e-01 -7.16891587e-02 2.09398702e-01 -3.72584850e-01
-3.97063971e-01 -2.55650818e-01 5.10390162e-01 1.32252619e-01
1.95065081e-01 1.87960014e-01 3.57520610e-01 1.11042462e-01
-2.16144204e-01 -9.13652599e-01 -6.36229157e-01 -7.75474608e-01
-7.89887831e-02 -1.49226993e-01 1.93600744e-01 -2.49407962e-01
3.48363847e-01 5.23794830e-01 -1.47092509e+00 2.89060503e-01
1.29904759e+00 1.15077329e+00 -9.22803506e-02 1.82089582e-01
-1.13807656e-01 5.70472479e-01 -5.70707083e-01 -3.95189196e-01
5.35692692e-01 -3.72959733e-01 -1.42063677e-01 5.09822845e-01
5.85463047e-01 -7.43575275e-01 -5.12402594e-01 1.38117766e+00
4.62907791e-01 -1.70581087e-01 6.68730140e-01 -1.45493746e+00
-7.14600921e-01 1.84718966e-01 -9.28983510e-01 2.10561603e-01
3.66422504e-01 3.25952828e-01 8.92260134e-01 -9.61701870e-01
3.45470041e-01 1.41083705e+00 7.32659280e-01 4.65537786e-01
-1.18743992e+00 -4.84486997e-01 3.06945890e-01 2.45870814e-01
-1.04227686e+00 -1.61049321e-01 1.27333438e+00 -3.26342314e-01
2.41224676e-01 4.65996206e-01 4.52565581e-01 1.35713041e+00
2.67400235e-01 1.01468599e+00 6.11036897e-01 3.18113714e-02
1.52550846e-01 -2.00231120e-01 4.14894931e-02 5.16159892e-01
5.52489877e-01 -9.20401663e-02 -2.26749301e-01 -2.63422370e-01
6.25283957e-01 5.95686018e-01 -6.82730019e-01 -5.09481490e-01
-1.03172743e+00 5.84707081e-01 4.05084461e-01 1.29805163e-01
-5.76161742e-01 -1.95470765e-01 5.72305858e-01 7.33731925e-01
4.18629676e-01 1.23508319e-01 -2.19495729e-01 8.44174400e-02
-5.80535948e-01 2.31593624e-01 2.76187599e-01 7.69292891e-01
6.41790688e-01 5.57966948e-01 -3.17657292e-01 9.45289314e-01
3.14082861e-01 4.53342170e-01 5.50165951e-01 -7.42686749e-01
6.07517600e-01 9.32335258e-01 -2.06661627e-01 -1.69740331e+00
-2.49948785e-01 -7.17470407e-01 -1.35660100e+00 3.18582118e-01
2.60287732e-01 7.04538375e-02 -7.22002387e-01 1.76400959e+00
2.77064294e-01 2.18135297e-01 1.16218422e-02 8.70572150e-01
2.43747011e-01 6.38771772e-01 -1.57037213e-01 -5.94670884e-02
7.93015122e-01 -6.12242401e-01 -7.12556899e-01 -5.14779128e-02
5.52909970e-01 -5.43854535e-01 1.21551013e+00 4.65533614e-01
-8.66838753e-01 -6.44112706e-01 -1.11687326e+00 4.22893077e-01
3.53530869e-02 -1.24088876e-01 7.92825893e-02 6.27498388e-01
-6.30808473e-01 6.35474682e-01 -9.40855742e-01 -1.60483316e-01
4.41221148e-01 -3.21463458e-02 -2.84240633e-01 -2.06656814e-01
-9.03462350e-01 4.41769987e-01 2.68803447e-01 1.94071859e-01
-6.75590217e-01 -6.60968542e-01 -9.06638086e-01 -7.59069398e-02
2.72136390e-01 -3.34051430e-01 5.77395022e-01 -1.05340540e+00
-1.10240293e+00 3.51199031e-01 2.76573867e-01 -4.41605538e-01
6.18129671e-01 -3.43249202e-01 -8.04818630e-01 6.07552342e-02
-7.46708969e-03 2.18970522e-01 1.23539412e+00 -1.22998333e+00
-4.59127843e-01 -7.19199836e-01 -1.57475829e-01 7.39881545e-02
-8.00370336e-01 -4.93345350e-01 -1.45452499e-01 -1.26476133e+00
5.25895834e-01 -6.77534342e-01 -1.76370695e-01 3.38214874e-01
-3.71947944e-01 2.24325567e-01 1.34102178e+00 -7.45507658e-01
1.33362794e+00 -2.49613595e+00 2.51806863e-02 3.86886835e-01
1.69492096e-01 2.15908036e-01 -3.09556395e-01 3.33476454e-01
-8.06515589e-02 -1.80765688e-01 -6.68170929e-01 -1.30796619e-02
-1.50879383e-01 4.61897701e-01 -5.57629526e-01 5.87395191e-01
8.07633340e-01 5.26979804e-01 -8.45474482e-01 -2.95997739e-01
1.89197153e-01 2.84293354e-01 -9.45766807e-01 1.50203079e-01
-6.34235218e-02 6.44900203e-01 -7.43564427e-01 1.04545164e+00
1.11584234e+00 1.13190986e-01 -1.48094863e-01 -2.84529388e-01
2.51714021e-01 -2.27642968e-01 -1.33700299e+00 1.67742765e+00
-1.49230719e-01 1.76224932e-01 2.32371330e-01 -1.36405933e+00
1.02819836e+00 1.36480883e-01 6.02472365e-01 -7.01914847e-01
-2.54286796e-01 3.99856836e-01 2.15211362e-02 -6.52257442e-01
3.02496821e-01 1.53030470e-01 1.61943480e-01 9.10234451e-02
-1.61114603e-01 3.64023507e-01 -2.62479603e-01 9.03543737e-03
1.30508864e+00 2.22005501e-01 9.16591734e-02 -1.59440532e-01
8.26017618e-01 -2.98022002e-01 1.07892275e+00 5.12015700e-01
-2.89252877e-01 7.80760050e-01 4.66468960e-01 -5.25332510e-01
-9.52222824e-01 -1.34602344e+00 -1.23545468e-01 5.51613986e-01
4.23775315e-01 -2.82743037e-01 -4.96801972e-01 -1.01390314e+00
1.83534056e-01 6.23238742e-01 -4.21267480e-01 -5.24163246e-01
-7.93624401e-01 -9.27870512e-01 5.80043197e-01 4.73752171e-01
6.93110824e-01 -7.39695311e-01 -3.34078193e-01 1.30356357e-01
-2.54884899e-01 -7.63228834e-01 -5.08640051e-01 -3.79770964e-01
-1.06085551e+00 -9.50943470e-01 -7.27598429e-01 -5.37558436e-01
8.27056885e-01 3.25364202e-01 8.32900703e-01 8.27867910e-02
-2.52805263e-01 4.15934414e-01 -4.94091332e-01 -2.50688314e-01
-5.77001810e-01 -4.63647544e-01 1.29191458e-01 6.03944957e-01
3.40231478e-01 -9.95573580e-01 -7.42069304e-01 3.28949273e-01
-1.35345352e+00 -4.31515247e-01 7.36078322e-01 1.02015352e+00
4.39582646e-01 1.33822381e-01 7.74470091e-01 -5.76205254e-01
5.43272913e-01 -6.79493248e-01 -4.29681778e-01 3.25986035e-02
-6.98156118e-01 1.25274569e-01 9.54269111e-01 -3.88662905e-01
-1.00141037e+00 -1.43504888e-01 -3.13697398e-01 -7.73199320e-01
-1.97386056e-01 2.17726558e-01 -4.01131541e-01 4.90516275e-02
6.11152470e-01 6.23016119e-01 3.44263673e-01 -6.70165777e-01
-1.06136248e-01 4.89556611e-01 5.81972659e-01 -3.80067945e-01
1.17036402e+00 5.22452712e-01 1.94055483e-01 -9.64069188e-01
-4.84259725e-01 -3.48320991e-01 -2.81185418e-01 -1.53853267e-01
4.71383810e-01 -8.92445982e-01 -1.48753092e-01 6.96160257e-01
-9.51318383e-01 4.32652295e-01 -5.14701486e-01 2.95024306e-01
-2.63204932e-01 1.02311826e+00 -4.31044817e-01 -7.75210440e-01
-3.70001376e-01 -9.06614602e-01 1.03034258e+00 -1.39408171e-01
1.53296769e-01 -6.70543134e-01 -1.12584263e-01 -8.56780037e-02
5.89563370e-01 6.93133295e-01 8.97761941e-01 -6.30424261e-01
-5.44874191e-01 -4.43091810e-01 -6.07685931e-02 8.47944438e-01
4.06547636e-01 -1.40556127e-01 -8.10689092e-01 -4.88454521e-01
3.92535776e-01 -1.25170320e-01 9.60871041e-01 -1.07299276e-02
1.47391570e+00 -5.59598207e-01 -9.27116908e-03 6.58366919e-01
1.35542691e+00 3.88756841e-02 7.72636712e-01 2.71599650e-01
8.56878817e-01 6.02823377e-01 6.93017244e-01 6.61854863e-01
6.04875677e-04 5.96824110e-01 8.85183394e-01 1.04268663e-01
-1.02617741e-01 -8.44771862e-02 7.64160752e-01 9.24671471e-01
7.15790540e-02 -1.20345742e-01 -6.48950636e-01 4.74396348e-01
-1.68475735e+00 -1.08551407e+00 -9.41624045e-02 2.20519280e+00
4.87373531e-01 3.28940988e-01 1.09084629e-01 5.72691143e-01
7.30344713e-01 3.65571201e-01 -6.87092006e-01 -1.40238136e-01
-3.53696704e-01 -2.58865535e-01 8.87746066e-02 -1.57335158e-02
-1.07710302e+00 1.45443186e-01 4.81808758e+00 8.17039490e-01
-1.07178056e+00 -1.87908128e-01 3.78578335e-01 1.78133428e-01
-5.78819990e-01 -2.89778918e-01 -3.07199866e-01 8.16444874e-01
3.84636372e-01 8.06566924e-02 5.61203398e-02 9.25868988e-01
4.23471108e-02 5.17714679e-01 -8.18776906e-01 8.35254073e-01
-5.80290928e-02 -8.11350226e-01 5.92002690e-01 -3.32536921e-02
4.59530026e-01 -1.70759588e-01 1.93966791e-01 2.78467894e-01
-3.43666077e-01 -3.76419336e-01 6.57016575e-01 4.54202682e-01
4.82627422e-01 -7.16645062e-01 6.60058141e-01 4.26159739e-01
-1.11597502e+00 -4.66432184e-01 -5.55826306e-01 1.39544383e-01
3.59789766e-02 8.79448116e-01 -5.11233151e-01 9.15212274e-01
5.79279840e-01 1.04502797e+00 -6.43189847e-01 9.54361796e-01
1.46046430e-01 5.83520412e-01 -3.16304386e-01 5.46695232e-01
2.95186847e-01 -4.47854489e-01 1.17857945e+00 1.05191982e+00
5.78303516e-01 -2.37293631e-01 2.91668326e-01 7.77522027e-01
1.43224597e-01 -3.44319944e-03 -9.70756292e-01 2.23742738e-01
3.02894294e-01 1.01279414e+00 -2.78441876e-01 2.05038525e-02
-5.29213011e-01 1.24378836e+00 -6.72224835e-02 3.53514016e-01
-7.50792265e-01 -3.59500438e-01 8.51957262e-01 2.94232279e-01
1.99708596e-01 -6.82081003e-03 -1.86765552e-01 -1.49384964e+00
5.67149162e-01 -1.14204359e+00 4.32143450e-01 -2.25876078e-01
-1.65591335e+00 4.68902707e-01 -2.94086307e-01 -2.08723259e+00
-1.61977649e-01 -4.02403384e-01 -8.48707259e-01 4.70842212e-01
-1.43509364e+00 -1.09408450e+00 -5.14792621e-01 7.17585742e-01
8.09460819e-01 -2.58220255e-01 5.80839217e-01 6.63233161e-01
-7.39017427e-01 7.84250796e-01 1.80336893e-01 1.23773724e-01
6.63393378e-01 -1.16698730e+00 5.11972487e-01 1.20654798e+00
-1.06702559e-01 3.95947099e-01 6.01798713e-01 -7.97764421e-01
-1.43995786e+00 -1.55393100e+00 -2.34533958e-02 -1.68851167e-01
5.53531468e-01 5.08702770e-02 -1.33550596e+00 4.47715849e-01
-1.40633732e-01 2.02120990e-01 2.83627659e-01 -3.38213325e-01
-5.11320949e-01 -4.15143192e-01 -1.39558351e+00 6.71339095e-01
1.22356951e+00 -2.56582558e-01 -6.40135825e-01 5.46463393e-03
6.10116720e-01 -1.53795421e-01 -7.36886621e-01 9.53588188e-01
3.41800153e-01 -1.17599392e+00 1.09219277e+00 -3.97121191e-01
5.28621614e-01 -4.09734339e-01 -4.49320525e-01 -1.17108417e+00
-3.60703349e-01 -4.80327308e-01 -5.50175250e-01 1.30012774e+00
2.62034051e-02 -8.59518230e-01 6.16757035e-01 9.58618000e-02
-4.31817591e-01 -8.98386061e-01 -9.30642903e-01 -1.09947443e+00
-2.62847841e-01 -3.52096677e-01 6.40456080e-01 1.06148195e+00
-4.70873117e-01 -8.66240859e-02 -6.34333253e-01 5.04434645e-01
1.01628101e+00 3.69507745e-02 7.00613737e-01 -1.10480785e+00
-2.70720035e-01 -3.16277623e-01 -9.37739968e-01 -9.34175253e-01
-1.64515451e-01 -7.23060787e-01 -1.63415566e-01 -8.87093961e-01
-1.34465531e-01 -3.08903158e-01 -5.10237396e-01 1.99336037e-01
-3.50717843e-01 2.43154585e-01 -3.45579460e-02 4.30419624e-01
-2.94637293e-01 8.85114312e-01 1.23469043e+00 -2.74902731e-01
1.75888781e-02 7.48075768e-02 -5.13922930e-01 9.01691198e-01
9.15527642e-01 -3.18630725e-01 -6.40338421e-01 -6.08192205e-01
-1.59297690e-01 -1.68218613e-01 4.80068892e-01 -1.33188105e+00
-1.11224763e-01 1.29809976e-02 5.23033321e-01 -6.90749645e-01
1.71631619e-01 -1.03602695e+00 3.00711878e-02 6.42627239e-01
-1.11834913e-01 3.09926599e-01 -4.26408090e-02 1.17761958e+00
-4.62572485e-01 4.98201873e-04 8.70265663e-01 1.75004691e-01
-6.70729160e-01 4.86250758e-01 -1.58392623e-01 -6.77593425e-02
9.18789685e-01 -4.56595331e-01 -1.19989507e-01 -3.66274685e-01
-4.25344288e-01 2.28953421e-01 6.98149920e-01 5.73426425e-01
9.26956773e-01 -1.57910252e+00 -9.06163633e-01 7.59901762e-01
2.98218757e-01 -1.42242750e-02 4.00652319e-01 8.43253076e-01
-4.11347091e-01 -1.90990254e-01 -3.25555354e-01 -7.96753109e-01
-8.70018840e-01 5.96170604e-01 3.77252251e-02 -1.87602609e-01
-1.07443380e+00 3.96485835e-01 2.89986610e-01 -3.52609456e-01
3.68180007e-01 -3.16148400e-01 -1.92049831e-01 -4.50973734e-02
5.11351705e-01 5.88890195e-01 6.07217401e-02 -5.49303114e-01
-2.50073701e-01 6.68145895e-01 -1.37897134e-01 4.05533671e-01
1.27784204e+00 -2.42511898e-01 4.43809405e-02 2.40078628e-01
1.22336745e+00 1.87802017e-01 -1.37870145e+00 -2.13039994e-01
1.72963232e-01 -7.65568793e-01 -1.63777694e-01 -3.36230546e-01
-1.37005186e+00 7.94988275e-01 8.57888579e-01 4.57778960e-01
1.63231289e+00 -5.71286559e-01 1.12397289e+00 3.65296245e-01
1.64203823e-01 -7.55460382e-01 4.25742835e-01 1.44024119e-01
1.04437196e+00 -1.32223749e+00 -1.34662911e-01 -3.91549945e-01
-6.03179157e-01 1.02016377e+00 6.77942455e-01 -3.70048374e-01
5.09267211e-01 3.46626691e-03 -6.05117977e-02 -1.86233670e-01
-3.89860451e-01 2.74626702e-01 2.54789770e-01 7.17317224e-01
1.15069440e-02 -2.01061636e-01 -2.13588163e-01 4.41911459e-01
3.26997906e-01 -3.82295161e-01 4.75812554e-01 1.01634622e+00
-4.09108281e-01 -9.24622774e-01 -5.37799239e-01 5.93755364e-01
-6.26454830e-01 1.55637696e-01 -7.92025626e-02 5.31482816e-01
7.79481903e-02 6.60936594e-01 5.47457449e-02 -6.19051754e-01
5.61276853e-01 -7.08361119e-02 1.14333875e-01 -1.86103672e-01
-3.44205052e-01 -2.19666511e-02 -2.59340584e-01 -7.52831578e-01
-1.69954911e-01 -6.48390353e-01 -8.93784702e-01 -1.12392224e-01
-2.62481958e-01 -1.18636303e-01 2.07132459e-01 5.29763818e-01
5.59423327e-01 5.08003175e-01 1.12076449e+00 -5.63946664e-01
-1.28054714e+00 -7.83770442e-01 -7.40446925e-01 1.00199175e+00
6.90164924e-01 -6.13879561e-01 -6.58328831e-01 -1.68450549e-01]
|
[7.606215953826904, 2.09877610206604]
|
ddefad95-cf11-4ae3-90ac-ec58b337dff8
|
multimodal-side-tuning-for-document
|
2301.07502
| null |
https://arxiv.org/abs/2301.07502v2
|
https://arxiv.org/pdf/2301.07502v2.pdf
|
Multimodal Side-Tuning for Document Classification
|
In this paper, we propose to exploit the side-tuning framework for multimodal document classification. Side-tuning is a methodology for network adaptation recently introduced to solve some of the problems related to previous approaches. Thanks to this technique it is actually possible to overcome model rigidity and catastrophic forgetting of transfer learning by fine-tuning. The proposed solution uses off-the-shelf deep learning architectures leveraging the side-tuning framework to combine a base model with a tandem of two side networks. We show that side-tuning can be successfully employed also when different data sources are considered, e.g. text and images in document classification. The experimental results show that this approach pushes further the limit for document classification accuracy with respect to the state of the art.
|
['Maurizio Gabbrielli', 'Giuseppe Lisanti', 'Stefano Pio Zingaro']
|
2023-01-16
| null | null | null | null |
['document-image-classification', 'document-classification']
|
['computer-vision', 'natural-language-processing']
|
[ 6.94729090e-02 2.10792184e-01 -5.30750863e-02 -3.33146542e-01
-3.46948415e-01 -5.77200711e-01 8.45449150e-01 1.14571907e-01
-7.73941398e-01 7.80379832e-01 -1.25274286e-01 -2.46130839e-01
-3.01696181e-01 -7.06363142e-01 -6.58735454e-01 -6.36423707e-01
1.32686555e-01 7.90308893e-01 4.24655825e-01 -5.40873766e-01
3.04750532e-01 6.55592799e-01 -1.63026822e+00 7.54359126e-01
4.73810107e-01 7.53763914e-01 1.61121428e-01 7.44202256e-01
-5.36444187e-01 3.67945105e-01 -4.77006346e-01 -6.56948984e-01
5.10094799e-02 -8.66554752e-02 -8.28726530e-01 -3.46793756e-02
4.45230871e-01 -1.63735643e-01 6.76056892e-02 7.69596636e-01
6.10023320e-01 7.40832314e-02 7.49991477e-01 -9.28854704e-01
-3.95948619e-01 7.82228351e-01 -3.71145248e-01 1.07092030e-01
7.35891908e-02 -1.51736334e-01 5.82493424e-01 -9.80339825e-01
6.24415576e-01 1.15038764e+00 8.46060932e-01 8.10510337e-01
-1.23176479e+00 -4.06985372e-01 2.79442668e-01 2.86831468e-01
-1.04463792e+00 -3.78590196e-01 7.52454638e-01 -4.48360890e-01
1.10026336e+00 8.47501531e-02 4.93813962e-01 1.64811480e+00
8.17792714e-02 7.49715626e-01 9.10332501e-01 -9.58423495e-01
2.19963834e-01 7.17680216e-01 1.51943401e-01 4.63154733e-01
2.13289306e-01 -3.47555950e-02 -4.51540351e-01 -1.95610756e-03
5.40967226e-01 -3.26099753e-01 -1.91424891e-01 -6.83714390e-01
-9.60964978e-01 8.25835705e-01 3.02169561e-01 9.13082898e-01
-9.74915028e-02 4.35636044e-02 7.68742383e-01 4.53039259e-01
4.77673680e-01 5.31933963e-01 -5.77126026e-01 3.13826911e-02
-1.21634197e+00 -4.45741788e-02 8.88006985e-01 6.42367184e-01
6.35841608e-01 -5.78480661e-02 -2.03365430e-01 9.04317677e-01
1.76115632e-01 2.13474408e-02 9.08089817e-01 -4.73969311e-01
5.77251911e-01 6.30235493e-01 4.50972877e-02 -6.45198107e-01
-8.94372821e-01 -7.89722562e-01 -9.19409692e-01 2.96040088e-01
5.63714266e-01 -1.22463927e-01 -1.02422178e+00 1.69550419e+00
1.67389318e-01 -2.79177427e-01 -4.06849477e-03 4.80862379e-01
3.83233726e-01 3.31714332e-01 -8.18269029e-02 3.44567671e-02
1.21211040e+00 -1.18136263e+00 -5.25606811e-01 2.33335093e-01
6.81643963e-01 -6.60528481e-01 1.31078815e+00 8.22147429e-01
-1.01921880e+00 -6.42974257e-01 -1.15889645e+00 2.85413593e-01
-9.78493333e-01 2.90149748e-01 5.65755606e-01 1.17898357e+00
-1.21606994e+00 7.25075960e-01 -7.20686495e-01 -7.47559071e-01
3.66220117e-01 6.39796197e-01 -4.56709802e-01 1.08056732e-01
-1.10227704e+00 1.02501464e+00 8.99974942e-01 -2.24018637e-02
-6.72867894e-01 -3.61696541e-01 -2.40297675e-01 2.90131956e-01
2.68578321e-01 -1.03862762e+00 1.13028145e+00 -1.10430431e+00
-1.88963163e+00 9.36772168e-01 3.06213737e-01 -3.67254198e-01
9.49513078e-01 -1.87474921e-01 -3.78971100e-01 1.99845180e-01
-5.12538493e-01 6.55782700e-01 1.18911064e+00 -1.33184016e+00
-3.38057309e-01 -3.00450087e-01 1.43095940e-01 -9.33870152e-02
-1.22394860e+00 -2.86532104e-01 -3.08672041e-01 -5.07726490e-01
-4.18782800e-01 -9.50254261e-01 1.03306510e-01 -2.50821322e-01
-1.27431273e-01 -1.29683658e-01 9.30577934e-01 -2.53241837e-01
1.15642786e+00 -1.83747101e+00 5.50216794e-01 3.14292103e-01
-2.44230896e-01 7.37647533e-01 -4.89674330e-01 8.29745471e-01
-3.54894578e-01 -8.20210762e-03 -9.84550267e-02 -6.50090456e-01
9.57601517e-02 2.58211166e-01 -1.96456417e-01 1.55691981e-01
1.56372041e-02 7.41637886e-01 -5.12131214e-01 -2.14628816e-01
1.06405862e-01 7.29067147e-01 -4.62894738e-01 -3.62466276e-02
-3.50585610e-01 3.79881144e-01 -2.39480823e-01 2.82644123e-01
7.72400916e-01 -6.10471889e-02 1.98482260e-01 -1.89815745e-01
-1.29876370e-02 -1.27957270e-01 -1.19261336e+00 1.94332683e+00
-7.29304135e-01 3.71990651e-01 1.07750215e-01 -1.27594280e+00
8.40333164e-01 4.55910891e-01 3.60716693e-02 -4.35390919e-01
2.96101570e-01 4.69211072e-01 -1.71836063e-01 -6.27151072e-01
6.37091756e-01 -1.86308473e-01 2.07096890e-01 4.40178126e-01
5.49982250e-01 2.04857126e-01 3.48181814e-01 -4.74016629e-02
7.23454833e-01 2.91776985e-01 9.26983729e-02 -3.79230171e-01
1.13418436e+00 -2.35457227e-01 -2.14639634e-01 8.12015712e-01
2.48881012e-01 4.24574256e-01 4.69471037e-01 -5.29790282e-01
-1.13231432e+00 -5.39168000e-01 5.98534271e-02 1.45273829e+00
-5.65425038e-01 -2.14769661e-01 -1.09441578e+00 -9.79699492e-01
-1.37958556e-01 5.61102331e-01 -9.60453451e-01 -2.59629518e-01
-5.76997519e-01 -9.98385072e-01 7.42077053e-01 5.93626499e-01
4.41851854e-01 -8.43907714e-01 -5.41394293e-01 2.16910660e-01
1.58159927e-01 -8.09963405e-01 9.97457504e-02 5.32885671e-01
-1.18580329e+00 -6.99770451e-01 -1.09111309e+00 -5.52515626e-01
4.16316062e-01 4.38583829e-03 1.20987928e+00 2.30533630e-01
2.77420375e-02 5.31384468e-01 -4.95586038e-01 -2.32544303e-01
-7.24437118e-01 9.38387334e-01 -1.53351739e-01 1.58025399e-01
1.57825172e-01 -7.44746864e-01 -4.85332936e-01 1.14051066e-01
-1.41710305e+00 -1.59362748e-01 6.94979012e-01 1.12803364e+00
-6.82445988e-02 5.36533706e-02 6.80760324e-01 -1.09627068e+00
8.03541303e-01 -1.55462846e-01 -5.69420338e-01 4.52639222e-01
-8.10096025e-01 2.74116158e-01 7.17629611e-01 -4.67822939e-01
-1.12916589e+00 4.10993770e-02 -2.11383790e-01 -2.56576121e-01
-2.27582127e-01 4.82776791e-01 -7.22718164e-02 -2.41857827e-01
7.21418202e-01 1.83641776e-01 -1.35892585e-01 -7.70398319e-01
4.29353625e-01 7.00198472e-01 3.59132260e-01 -5.11935771e-01
5.86287558e-01 5.28321028e-01 1.27644300e-01 -4.48333025e-01
-7.40995288e-01 -3.44043434e-01 -9.43422794e-01 -1.24594592e-01
6.30010128e-01 -6.34366214e-01 -7.60947347e-01 5.91038942e-01
-1.21971047e+00 -2.54306406e-01 -2.02418283e-01 2.38567159e-01
-6.22853339e-01 3.83679330e-01 -4.43809509e-01 -6.57751858e-01
-3.44847292e-01 -8.64592075e-01 9.25543129e-01 1.93177447e-01
7.16830492e-02 -1.33916187e+00 1.56256527e-01 1.55174926e-01
8.31926227e-01 -1.04402877e-01 1.03658235e+00 -9.35079098e-01
-1.37773186e-01 -2.57842064e-01 -1.32629290e-01 4.77064520e-01
-1.37034580e-01 -1.41397670e-01 -1.35198271e+00 -6.52173221e-01
-5.59135750e-02 -2.98033953e-01 1.30364442e+00 -4.12359787e-03
9.47814047e-01 -7.44395778e-02 -3.61550480e-01 3.95262718e-01
1.54244459e+00 -1.34149045e-01 7.27210224e-01 9.03324723e-01
4.49539691e-01 7.18301654e-01 2.87363529e-01 4.15612131e-01
2.23155424e-01 9.43824589e-01 5.53790033e-01 -4.81744260e-02
-1.90523371e-01 1.10681001e-02 2.21462548e-01 4.30354863e-01
-9.13839787e-02 -4.65505660e-01 -1.05536509e+00 5.14132559e-01
-1.90697134e+00 -8.66115391e-01 7.29663372e-02 2.21520805e+00
5.72629690e-01 3.63414705e-01 1.90950245e-01 3.40487868e-01
6.09918714e-01 -1.36404425e-01 -1.01467751e-01 -7.47981191e-01
-1.58933669e-01 2.06803769e-01 3.44334394e-01 4.97479796e-01
-1.10528886e+00 7.79813588e-01 6.42193747e+00 9.30141926e-01
-1.22387838e+00 3.96523714e-01 9.66523215e-02 2.37744357e-02
-1.37133718e-01 -1.71325937e-01 -9.98758197e-01 2.91266054e-01
1.14200950e+00 3.86701316e-01 3.18102449e-01 6.01936698e-01
-1.61543369e-01 -5.18050902e-02 -1.20424306e+00 6.61853552e-01
3.47083211e-01 -1.23837757e+00 3.89348000e-01 1.05463797e-02
5.95230818e-01 -4.07899395e-02 3.27660173e-01 3.27763468e-01
-2.48833105e-01 -8.60091567e-01 5.09547174e-01 6.58554554e-01
5.18934667e-01 -8.68830442e-01 9.50555086e-01 6.03789568e-01
-6.82006359e-01 -4.39331114e-01 -2.23641589e-01 1.46758929e-01
-2.78301798e-02 5.30934989e-01 -9.44459319e-01 7.15278506e-01
6.47674739e-01 3.94753069e-01 -8.70399654e-01 8.86167943e-01
7.19242468e-02 2.89691508e-01 -2.86913365e-01 2.72900425e-02
4.17324781e-01 1.64137736e-01 4.76275802e-01 1.74583292e+00
5.08624673e-01 -8.18994820e-01 -3.98479104e-01 5.55246115e-01
-2.03119451e-03 6.34011626e-02 -5.32615602e-01 -2.22963877e-02
-2.58083325e-02 1.38376999e+00 -8.09138417e-01 -5.35553396e-01
-1.92187741e-01 1.15066779e+00 5.03110707e-01 1.51508257e-01
-5.78331172e-01 -4.14238751e-01 -1.08949512e-01 -7.67243207e-02
9.30186033e-01 -3.00889879e-01 -1.06659085e-01 -1.30787075e+00
-3.12682688e-02 -8.25904727e-01 4.71509337e-01 -6.23768210e-01
-1.24720645e+00 8.90010417e-01 9.15550441e-02 -1.03466654e+00
-5.61178982e-01 -1.02388740e+00 -2.77670532e-01 5.70208490e-01
-1.67507637e+00 -1.55598223e+00 -2.06044823e-01 7.24284589e-01
3.93829525e-01 -5.26775301e-01 1.20570588e+00 3.71451885e-01
-3.44353706e-01 8.15088272e-01 4.22443449e-01 -3.41816694e-01
7.75027752e-01 -1.26443064e+00 -4.05993536e-02 3.71899158e-01
2.00754359e-01 5.41736960e-01 6.97768986e-01 -9.26665515e-02
-9.17692900e-01 -6.76669300e-01 8.79798770e-01 -3.59128207e-01
5.73711574e-01 -5.91719508e-01 -9.91108060e-01 4.41214561e-01
6.11185849e-01 -2.34534517e-01 7.07761645e-01 2.83329755e-01
-6.65788472e-01 -2.95418382e-01 -1.09630930e+00 3.77568305e-01
5.70690274e-01 -3.77491385e-01 -6.50289118e-01 2.69838482e-01
1.71929166e-01 -1.44396350e-01 -7.22858727e-01 2.36360177e-01
7.10256994e-01 -1.32744467e+00 8.44834387e-01 -6.52015746e-01
2.87475526e-01 -3.95928510e-02 -9.51229408e-03 -1.49582851e+00
-5.04721999e-02 -5.62826395e-01 -3.45286936e-01 1.49680102e+00
4.30684894e-01 -5.53852320e-01 7.69660830e-01 2.68805355e-01
2.12909710e-02 -4.17124450e-01 -1.16483307e+00 -1.02704167e+00
4.81293619e-01 -2.01980159e-01 4.95413184e-01 8.81386518e-01
-1.00353613e-01 5.10374546e-01 -4.88323420e-01 -2.08247438e-01
3.10213000e-01 -9.65844542e-02 7.12384284e-01 -1.37408352e+00
-5.86103439e-01 -7.15606451e-01 -2.77520090e-01 -5.85470974e-01
1.88369572e-01 -9.12454605e-01 -3.68641883e-01 -1.17350292e+00
1.44147873e-01 -2.11872399e-01 -6.32418096e-01 5.16903698e-01
2.60592282e-01 4.47083116e-01 4.45460260e-01 4.07245792e-02
-4.30828989e-01 4.73464757e-01 9.57518399e-01 -1.49091348e-01
-1.63726524e-01 -6.36149421e-02 -5.39725125e-01 6.79027557e-01
9.39461052e-01 -5.14519513e-01 -3.17156136e-01 -5.63555658e-01
6.16032839e-01 -3.29562396e-01 3.15531969e-01 -1.17054033e+00
3.01479429e-01 4.37926590e-01 5.00593364e-01 -5.04440486e-01
4.39083964e-01 -1.28041160e+00 -1.41212583e-01 5.49430430e-01
-4.35244322e-01 1.07387766e-01 5.75489342e-01 5.89309752e-01
-1.81924686e-01 -7.12189436e-01 7.54396617e-01 -2.24330872e-01
-4.16268021e-01 -4.12650257e-01 -4.32333291e-01 -5.78265965e-01
8.13133895e-01 -2.22284690e-01 -3.59899133e-01 -2.13329315e-01
-1.04086065e+00 -1.47645429e-01 2.75073260e-01 6.37109935e-01
3.45396787e-01 -1.15885127e+00 -5.86429119e-01 1.51455596e-01
2.05806419e-01 -7.12849081e-01 2.74574548e-01 1.09116459e+00
-1.61287233e-01 6.38766110e-01 -5.73171556e-01 -6.47955120e-01
-1.34560490e+00 7.10555553e-01 4.58666354e-01 -7.09276557e-01
-3.00439537e-01 6.05824947e-01 -1.69524252e-01 -6.03106856e-01
2.82789320e-01 -1.00340456e-01 -4.78001356e-01 4.09568548e-01
4.31019187e-01 1.99333996e-01 5.70712745e-01 -2.57387787e-01
-3.45781028e-01 6.47659481e-01 -4.68945950e-01 -3.33152711e-01
1.53477907e+00 -3.48770052e-01 -4.70613055e-02 6.04443967e-01
1.16056573e+00 -1.16796695e-01 -9.21313345e-01 -5.57528995e-02
2.25494742e-01 -1.97409138e-01 2.87850033e-02 -1.18373752e+00
-9.73409951e-01 1.25625050e+00 8.59297097e-01 3.58272165e-01
1.25948548e+00 -3.48349810e-01 3.59693617e-01 8.10728014e-01
2.92886823e-01 -1.38600063e+00 2.43716434e-01 6.90520465e-01
9.00051415e-01 -1.08798635e+00 -1.54700249e-01 3.97674516e-02
-2.97988325e-01 1.71623433e+00 3.48663092e-01 -1.02009833e-01
5.52738190e-01 1.49611592e-01 -4.91199978e-02 4.08220850e-02
-9.23738480e-01 -9.66984630e-02 1.81613922e-01 6.39648557e-01
5.54232478e-01 -3.19316983e-01 -5.14339447e-01 4.22172338e-01
1.75134763e-01 3.53818536e-01 6.26149833e-01 8.56191516e-01
-3.47999483e-01 -1.76851952e+00 -5.39626718e-01 -3.71700414e-02
-4.71852899e-01 -4.40900698e-02 -3.89259189e-01 1.13163531e+00
3.21559250e-01 6.38210177e-01 -2.63123512e-01 -3.12211484e-01
3.78333151e-01 4.58733767e-01 8.62291455e-01 -3.51607412e-01
-1.04673624e+00 -5.18910661e-02 6.66811243e-02 -2.56267816e-01
-7.96527863e-01 -3.71450603e-01 -6.60974801e-01 1.23107068e-01
-4.22407866e-01 2.00837497e-02 1.06475246e+00 9.03247058e-01
4.96709317e-01 6.58681095e-01 2.61420250e-01 -1.18524587e+00
-8.20916712e-01 -1.14978302e+00 -4.37340677e-01 1.62655294e-01
3.63936037e-01 -7.90405035e-01 -1.76988304e-01 7.03044534e-02]
|
[9.907890319824219, 2.4577620029449463]
|
a27103b8-1ee8-4519-abfc-6e3e1ee043c9
|
learning-based-sound-speed-reconstruction-and
|
2306.11034
| null |
https://arxiv.org/abs/2306.11034v1
|
https://arxiv.org/pdf/2306.11034v1.pdf
|
Learning-based sound speed reconstruction and aberration correction in linear-array photoacoustic/ultrasound imaging
|
Photoacoustic (PA) image reconstruction involves acoustic inversion that necessitates the specification of the speed of sound (SoS) within the medium of propagation. Due to the lack of information on the spatial distribution of the SoS within heterogeneous soft tissue, a homogeneous SoS distribution (such as 1540 m/s) is typically assumed in PA image reconstruction, similar to that of ultrasound (US) imaging. Failure to compensate the SoS variations leads to aberration artefacts, deteriorating the image quality. In this work, we developed a deep learning framework for SoS reconstruction and subsequent aberration correction in a dual-modal PA/US imaging system sharing a clinical US probe. As the PA and US data were inherently co-registered, the reconstructed SoS distribution from US channel data using deep neural networks was utilised for accurate PA image reconstruction. On a numerical and a tissue-mimicking phantom, this framework was able to significantly suppress US aberration artefacts, with the structural similarity index measure (SSIM) of up to 0.8109 and 0.8128 as compared to the conventional approach (0.6096 and 0.5985, respectively). The networks, trained only on simulated US data, also demonstrated a good generalisation ability on data from ex vivo tissues and the wrist and fingers of healthy human volunteers, and thus could be valuable in various in vivo applications to enhance PA image reconstruction.
|
['Wenfeng Xia', 'Tom Vercauteren', 'Mengjie Shi']
|
2023-06-19
| null | null | null | null |
['image-reconstruction']
|
['computer-vision']
|
[ 6.16581798e-01 7.02432543e-02 9.09333229e-01 9.11481753e-02
-9.59186018e-01 -2.20698163e-01 2.53377497e-01 2.13716328e-01
-6.05958879e-01 5.01416624e-01 1.19437486e-01 -2.58509129e-01
-4.07150894e-01 -6.21454298e-01 -5.57454586e-01 -1.28111660e+00
-4.84223515e-01 1.98766589e-01 4.64460641e-01 -2.75624264e-02
-1.11566104e-01 4.46375042e-01 -1.38047838e+00 1.69948205e-01
7.43113577e-01 1.23027492e+00 3.17228079e-01 8.51812780e-01
2.43255585e-01 5.27996600e-01 -5.20257115e-01 -1.80975482e-01
1.68882817e-01 -3.13950866e-01 -5.24333775e-01 -4.53263640e-01
2.90905029e-01 -5.20754158e-01 -4.13772523e-01 8.93857896e-01
1.10441232e+00 1.50999770e-01 8.70579004e-01 -4.78682816e-01
-2.68655330e-01 6.54422104e-01 -5.27431607e-01 3.05507064e-01
3.46554101e-01 1.62836254e-01 3.26318294e-01 -5.21145284e-01
4.37309474e-01 3.39309871e-01 9.79502976e-01 4.17169511e-01
-1.12397504e+00 -2.53806233e-01 -9.24517155e-01 3.33887488e-01
-1.17370093e+00 -3.63149136e-01 7.45209455e-01 -4.03331280e-01
7.13567257e-01 5.17370582e-01 6.65739477e-01 8.10712039e-01
7.56199479e-01 1.25292286e-01 1.24250770e+00 -6.68858409e-01
2.57500857e-01 -5.14281429e-02 -1.39626354e-01 4.49809313e-01
9.73267704e-02 2.58418351e-01 -1.33652955e-01 -2.38825560e-01
8.59132230e-01 -7.09559023e-01 -8.01125705e-01 -2.49499485e-01
-1.16505063e+00 2.87955701e-01 5.00937700e-01 9.54797208e-01
-7.05758572e-01 1.85903937e-01 5.70142031e-01 -8.20816904e-02
7.22306222e-02 4.46429610e-01 -1.97580587e-02 -1.94639996e-01
-6.99300587e-01 -1.65630087e-01 7.33080387e-01 -1.25411917e-02
2.31047317e-01 2.19627455e-01 -1.33588254e-01 7.30398476e-01
2.49165773e-01 6.54604793e-01 7.19665110e-01 -9.33306336e-01
-6.11829795e-02 -1.88550815e-01 1.51071236e-01 -1.20083570e+00
-6.66138232e-01 -7.49444783e-01 -1.24880862e+00 2.72796959e-01
7.78205752e-01 -1.19070366e-01 -8.84154022e-01 1.62748361e+00
3.90694261e-01 6.28886640e-01 3.54198813e-01 1.21739781e+00
9.91844177e-01 5.39545655e-01 -5.41097522e-02 -3.83446366e-01
1.28731740e+00 -2.23162934e-01 -7.58316994e-01 -4.25976813e-02
5.70167065e-01 -8.67703557e-01 7.14666069e-01 5.32209516e-01
-1.39199066e+00 -3.75140280e-01 -1.00054359e+00 4.97671694e-01
3.93452018e-01 -7.76612014e-02 1.26383901e-01 7.95697391e-01
-1.31854379e+00 7.45933354e-01 -1.05091608e+00 2.22301602e-01
9.90517139e-02 2.44039953e-01 -3.91689509e-01 -1.32424951e-01
-1.35655868e+00 8.67749155e-01 -8.90296977e-03 4.59406555e-01
-5.48976660e-01 -1.29696405e+00 -7.55766511e-01 8.16907063e-02
-2.68415511e-01 -6.24884307e-01 1.00836575e+00 -7.15526700e-01
-1.76188731e+00 5.24218619e-01 2.47967198e-01 -3.86116177e-01
6.31064832e-01 1.53057083e-01 -4.01195616e-01 7.42149472e-01
-1.01515196e-01 -2.36867145e-01 7.73205519e-01 -1.55568802e+00
6.06984422e-02 -1.29563794e-01 -3.50961894e-01 -3.73232961e-02
7.35100731e-02 -2.91648787e-02 4.61689755e-03 -3.21489364e-01
4.64263797e-01 -7.34186292e-01 -2.67304868e-01 -1.46667704e-01
-2.28654742e-01 4.82412279e-01 8.79605673e-03 -1.17367113e+00
9.84805763e-01 -2.02705717e+00 -3.71155553e-02 6.49783552e-01
2.34020188e-01 5.57528257e-01 -2.70940244e-01 2.62983918e-01
-3.86016339e-01 -5.56546450e-01 -8.39765310e-01 2.78642736e-02
-4.27940309e-01 -9.62795764e-02 1.52121007e-01 1.02671015e+00
-3.66044462e-01 6.60391808e-01 -9.85086918e-01 -2.63035089e-01
2.51753658e-01 8.34408343e-01 -2.78627187e-01 2.80902207e-01
4.37865674e-01 8.87868166e-01 -1.15747966e-01 1.90101177e-01
1.24528813e+00 7.48744905e-02 7.82585591e-02 -6.11678898e-01
-1.93217620e-01 -1.02617010e-01 -1.17158806e+00 1.47283494e+00
-9.91026044e-01 5.75377524e-01 6.44549847e-01 -1.07906830e+00
5.71041286e-01 7.99282312e-01 1.01014602e+00 -1.15629053e+00
3.31796855e-01 5.61865032e-01 5.33000827e-01 -9.69222307e-01
-2.59397566e-01 -6.07792258e-01 5.76742172e-01 6.76033914e-01
-7.33327046e-02 -2.93142974e-01 -2.11897671e-01 -2.77119219e-01
1.15783703e+00 -3.51155967e-01 -1.57646194e-01 -3.90071929e-01
9.03274477e-01 -3.96865934e-01 -4.76871952e-02 6.65161967e-01
-3.09597135e-01 8.24241877e-01 1.70735523e-01 -1.99068278e-01
-9.78720129e-01 -1.22218621e+00 -6.35099947e-01 4.01680708e-01
1.78372070e-01 2.75401860e-01 -8.87171924e-01 2.65901443e-03
-3.85054380e-01 5.92063189e-01 -4.42167908e-01 -1.31090820e-01
-9.51817572e-01 -8.95629704e-01 5.79023123e-01 7.30861947e-02
3.30599219e-01 -1.04794812e+00 -7.58820236e-01 4.05549318e-01
-4.19670343e-01 -1.22970438e+00 1.34498030e-01 1.31505266e-01
-5.71244419e-01 -1.02583098e+00 -1.18691921e+00 -5.57245970e-01
4.33922291e-01 -1.46805778e-01 8.95116150e-01 -1.42545223e-01
-4.71144021e-01 7.06941545e-01 -3.30950677e-01 -1.63066149e-01
-1.04774165e+00 -5.88126659e-01 -4.17343760e-03 2.76482105e-02
-2.78586656e-01 -9.00696695e-01 -1.03107107e+00 1.23962417e-01
-1.08278108e+00 -2.97110617e-01 6.17945611e-01 9.03306603e-01
1.36310816e-01 4.57289554e-02 4.11537230e-01 -3.23191673e-01
5.64919472e-01 -2.49320731e-01 -3.35136265e-01 -1.02881223e-01
-2.14055300e-01 -1.62550509e-01 4.82719839e-01 -4.71994221e-01
-1.37304842e+00 -1.81300521e-01 -9.05431211e-01 1.10110275e-01
-5.20911336e-01 7.73878813e-01 3.54698718e-01 -5.55227757e-01
1.05525148e+00 6.33014143e-01 4.42300081e-01 -1.28118932e-01
-2.81342685e-01 5.41383088e-01 6.63731039e-01 -1.52877718e-01
4.91640657e-01 4.39051330e-01 5.29729962e-01 -1.24868417e+00
-2.87831239e-02 -4.00557190e-01 -3.13426971e-01 -3.61508131e-01
7.44053245e-01 -4.58603084e-01 -8.87761772e-01 9.14347291e-01
-1.12036037e+00 -4.94205832e-01 -1.62033647e-01 8.57453346e-01
-5.18815756e-01 1.19415176e+00 -9.46257114e-01 -6.90523386e-01
-6.38699889e-01 -1.21473157e+00 5.85081458e-01 1.54164005e-02
4.60411645e-02 -1.11336768e+00 3.93549979e-01 2.92362958e-01
9.91368830e-01 5.20137370e-01 8.27469468e-01 -4.60931510e-02
-9.05833989e-02 -3.66215557e-01 -9.52999070e-02 4.07494128e-01
1.94291398e-01 -4.27888960e-01 -1.33097911e+00 -3.04601222e-01
5.48579454e-01 -1.23245925e-01 6.24703050e-01 1.13603985e+00
1.02165735e+00 1.29324630e-01 -1.03945956e-02 5.93270004e-01
1.52116978e+00 2.77351022e-01 9.24344301e-01 3.80293094e-02
3.46048504e-01 7.46913850e-01 1.57005072e-01 5.34686506e-01
-2.17992052e-01 6.05515122e-01 6.55817330e-01 -3.47821057e-01
-3.76078755e-01 5.09706438e-01 -5.79233617e-02 4.26146895e-01
-3.52845043e-01 -2.36353412e-01 -9.40915525e-01 4.25808787e-01
-1.02429616e+00 -5.56211770e-01 -6.04155600e-01 2.29622388e+00
8.46438944e-01 -2.67950118e-01 -4.04446751e-01 4.91824031e-01
3.22749555e-01 -1.73891529e-01 -1.50156781e-01 -2.68781424e-01
-5.43073528e-02 7.34165013e-01 4.17844683e-01 8.48144174e-01
-9.09981430e-01 -1.16371743e-01 5.94106960e+00 6.05924964e-01
-1.54485595e+00 3.04333091e-01 3.70168597e-01 4.43978608e-01
-2.88821608e-01 -7.23656476e-01 2.51294017e-01 4.75965142e-01
1.14364982e+00 3.06160152e-01 1.90033838e-01 1.65897924e-02
2.82153845e-01 -4.74417239e-01 -6.28759861e-01 8.76051009e-01
-1.10134102e-01 -8.74807894e-01 -4.34387803e-01 -2.34559149e-01
4.35897410e-01 5.13564385e-02 8.95171985e-02 -4.14139628e-01
-4.44680929e-01 -1.08023012e+00 2.44289353e-01 6.00560665e-01
1.08310783e+00 -4.43924606e-01 1.24882221e+00 4.60855216e-01
-6.82738781e-01 1.48819238e-01 -7.70220011e-02 2.43942708e-01
5.60280621e-01 9.34109807e-01 -9.04588699e-01 8.46532345e-01
6.59402430e-01 9.54853371e-02 -1.30599737e-01 1.17758560e+00
1.26430914e-01 6.85414314e-01 -5.06879985e-01 2.44668067e-01
1.99886769e-01 -1.21193908e-01 7.38257110e-01 1.33136368e+00
7.50769675e-01 2.50895798e-01 -7.09402144e-01 6.78446293e-01
7.08731949e-01 9.82806385e-02 -1.12643264e-01 4.75674361e-01
-2.22552165e-01 1.23029280e+00 -5.50207257e-01 4.91286404e-02
-1.45550668e-01 7.65887499e-01 -5.01271963e-01 6.14513278e-01
-6.17011547e-01 -2.32771620e-01 3.03487778e-01 4.84265387e-01
1.15390033e-01 -1.25044018e-01 -2.17546120e-01 -6.03437126e-01
-4.88199852e-02 -3.83513510e-01 6.50234967e-02 -6.95913494e-01
-1.20479786e+00 8.42155695e-01 -1.50005762e-02 -1.17347276e+00
-2.49879450e-01 -6.16155326e-01 -8.09800327e-01 1.24869823e+00
-1.64082778e+00 -8.16766620e-01 -5.44280052e-01 1.91767544e-01
-4.78388369e-01 2.41531596e-01 9.01224971e-01 5.41613102e-01
3.67269269e-03 4.15367544e-01 1.97376177e-01 -1.33604109e-01
6.29218936e-01 -1.25069678e+00 -1.75161481e-01 6.29737079e-01
-6.00354850e-01 5.21384001e-01 1.15405071e+00 -2.73989528e-01
-1.26506579e+00 -4.89266187e-01 3.48244965e-01 2.66363055e-01
6.42421246e-01 2.50778913e-01 -1.12761903e+00 -2.89462022e-02
4.31372732e-01 3.67433995e-01 8.01340282e-01 -8.16881418e-01
2.17436671e-01 -1.08166881e-01 -1.45635951e+00 2.03115940e-01
3.11047047e-01 7.29290396e-03 -6.18702024e-02 1.54198349e-01
1.80890352e-01 -7.96646535e-01 -1.19347215e+00 5.60136974e-01
6.83629930e-01 -1.31560922e+00 1.30616689e+00 2.35179856e-01
5.16194284e-01 -1.46123677e-01 1.76713392e-01 -1.44693065e+00
-4.27211761e-01 -3.10768664e-01 1.03687562e-01 5.86626410e-01
6.51176721e-02 -9.50581372e-01 7.09757328e-01 4.36485022e-01
-4.67824936e-01 -5.86799204e-01 -1.49058580e+00 -3.38666737e-01
3.04316819e-01 -5.93746126e-01 4.38209288e-02 5.98064303e-01
-1.83780178e-01 -3.77271235e-01 2.31542699e-02 5.80645263e-01
8.74719501e-01 -2.94075072e-01 3.57972793e-02 -9.34694946e-01
-4.91058558e-01 -4.80267197e-01 -3.57320458e-01 -8.02320719e-01
5.40634952e-02 -7.93421865e-01 3.36150020e-01 -1.55562973e+00
-5.79929575e-02 -8.95370543e-01 -3.81667674e-01 -4.41303514e-02
-1.13819443e-01 6.06466413e-01 -3.94242704e-01 -1.60027489e-01
4.85285848e-01 1.59933671e-01 1.58039808e+00 -4.24650982e-02
-1.92053646e-01 2.79365063e-01 -6.49725124e-02 4.53606158e-01
5.71726739e-01 9.75413248e-04 -1.53369084e-01 -2.22113132e-01
1.23298809e-01 4.81304795e-01 5.32907426e-01 -1.35590506e+00
2.74834216e-01 3.24686646e-01 3.53865415e-01 -1.76935762e-01
4.46798235e-01 -1.18140101e+00 5.89464247e-01 9.92366970e-01
-2.21464768e-01 -7.76205003e-01 3.49847108e-01 1.78310826e-01
-2.28580311e-01 -6.77329183e-01 1.11288488e+00 -1.76725388e-01
-1.67091742e-01 -1.07358865e-01 -6.84169590e-01 -4.74291533e-01
6.83714032e-01 -2.53090084e-01 4.58241329e-02 -5.01097441e-01
-8.46648633e-01 -4.86368388e-01 4.53889556e-02 -4.39646542e-01
8.42318237e-01 -9.20485616e-01 -9.58320260e-01 3.88374567e-01
-1.84387207e-01 -8.18111300e-02 1.14680898e+00 1.58632791e+00
-1.11980891e+00 1.97985515e-01 -9.29926261e-02 -9.26452637e-01
-1.16172910e+00 3.43325511e-02 1.00282812e+00 -2.14993164e-01
-5.09842634e-01 9.23249424e-01 1.27690509e-01 -2.46640339e-01
-1.81948929e-03 -4.16661501e-01 -4.06577587e-01 -3.14590156e-01
5.62138498e-01 4.98452097e-01 4.92332995e-01 -8.01304340e-01
-3.07676673e-01 9.46177244e-01 6.83865011e-01 -1.20806269e-01
1.43067575e+00 -1.52467564e-01 -2.81894445e-01 -2.22329292e-02
1.27643907e+00 1.81297496e-01 -1.04546189e+00 -1.71714872e-01
-4.66956288e-01 -4.26330775e-01 4.00681555e-01 -9.48569417e-01
-1.14208615e+00 8.65553200e-01 9.93333936e-01 5.09495020e-01
1.34867096e+00 -3.40001695e-02 9.36774194e-01 -2.60944784e-01
1.28543720e-01 -3.97153020e-01 2.98556313e-02 8.45819190e-02
9.88569260e-01 -1.14492619e+00 -1.88584268e-01 -8.27099741e-01
-2.91750073e-01 1.36078370e+00 5.58268130e-02 3.08082700e-02
8.30396771e-01 7.24550128e-01 3.89343292e-01 7.46602044e-02
6.24397509e-02 2.37971976e-01 3.34198952e-01 9.73352671e-01
7.61152029e-01 -7.52408206e-02 -4.33938712e-01 2.74627745e-01
1.06206514e-01 7.48980120e-02 7.41053641e-01 7.36058593e-01
-2.93852925e-01 -7.11657703e-01 -5.98602414e-01 1.75748095e-01
-8.08584809e-01 1.04809701e-01 5.27875543e-01 2.69781232e-01
1.10346369e-01 7.57272243e-01 3.39046158e-02 1.19011916e-01
3.99058640e-01 -2.86575824e-01 7.59453297e-01 -1.00565180e-01
-6.65310621e-01 3.17020446e-01 -4.22532111e-03 -4.73900735e-01
-6.01161838e-01 -5.61088562e-01 -1.42591715e+00 1.60227314e-01
-2.48047143e-01 -2.81557254e-02 9.77659166e-01 7.48432338e-01
6.41602883e-03 7.83147812e-01 5.76067209e-01 -1.07163298e+00
-3.79951596e-01 -1.08825552e+00 -9.32228386e-01 4.54950213e-01
6.79995775e-01 -4.33425814e-01 -7.02592552e-01 -6.57640845e-02]
|
[12.703429222106934, -2.583390712738037]
|
cc4d22f4-fe1e-4993-9bc2-d826c9208d51
|
prnu-based-source-camera-identification-for-1
|
2201.11737
| null |
https://arxiv.org/abs/2201.11737v1
|
https://arxiv.org/pdf/2201.11737v1.pdf
|
PRNU Based Source Camera Identification for Webcam and Smartphone Videos
|
This communication is about an application of image forensics where we use camera sensor fingerprints to identify source camera (SCI: Source Camera Identification) in webcam/smartphone videos. Sensor or camera fingerprints are based on computing the intrinsic noise that is always present in this kind of sensors due to manufacturing imperfections. This is an unavoidable characteristic that links each sensor with its noise pattern. PRNU (Photo Response Non-Uniformity) has become the default technique to compute a camera fingerprint. There are many applications nowadays dealing with PRNU patterns for camera identification using still images. In this work we focus on video, first on webcam video and afterwards on smartphone video. Webcams and smartphones are the most used video cameras nowadays. Three possible methods for SCI are implemented and assessed in this work.
|
['Fernando Isasi-de-Vicente', 'Fernando Martín-Rodríguez']
|
2022-01-27
| null | null | null | null |
['image-forensics']
|
['computer-vision']
|
[ 6.37640595e-01 -6.09360516e-01 -1.54222846e-01 2.11500645e-01
-4.20727074e-01 -9.82156396e-01 5.73355496e-01 -1.11672208e-01
-3.46991360e-01 5.10813594e-01 -1.79015234e-01 -2.21002579e-01
-2.00586677e-01 -6.30261123e-01 -8.03061128e-01 -6.01899624e-01
3.40449154e-01 -6.38196841e-02 4.32223558e-01 3.61225367e-01
6.34817302e-01 8.21116090e-01 -1.93436050e+00 2.99230337e-01
2.32288793e-01 1.11489356e+00 2.52458036e-01 9.91257071e-01
-2.14395896e-02 7.59182751e-01 -6.93962753e-01 -5.43291688e-01
2.22130150e-01 -4.52042103e-01 -2.85939455e-01 8.97201225e-02
4.33451802e-01 -3.71675730e-01 7.32772127e-02 1.58465731e+00
1.16024591e-01 -3.71970534e-01 7.59171307e-01 -1.26056921e+00
-2.51210868e-01 5.37524045e-01 -6.09388709e-01 2.45282963e-01
8.90440643e-01 -1.67238042e-01 9.53217521e-02 -3.74550700e-01
5.15944123e-01 9.21002507e-01 9.44956779e-01 2.36217171e-01
-9.79520202e-01 -6.48959458e-01 -9.09680486e-01 4.62674052e-01
-1.48573565e+00 -3.33425134e-01 8.39627266e-01 -4.23171222e-01
4.51172292e-01 3.82179320e-01 1.15442798e-01 1.46915841e+00
4.28137690e-01 2.09529832e-01 1.38148975e+00 -5.33931077e-01
1.45238608e-01 7.51023948e-01 3.69220734e-01 1.42748550e-01
7.05021262e-01 -6.57860786e-02 -2.61691093e-01 -2.45534852e-01
7.58338571e-01 1.55454636e-01 -3.28595459e-01 1.55636817e-01
-7.29328752e-01 4.28639233e-01 -5.10678649e-01 7.01823354e-01
-3.29532832e-01 1.71126008e-01 2.44152993e-01 2.37410590e-01
-3.72442544e-01 5.18610366e-02 1.20782375e-01 -6.60701275e-01
-8.18412006e-01 -2.45387867e-01 8.06403756e-01 1.16291690e+00
6.94101810e-01 -2.28487343e-01 4.82243866e-01 5.87158203e-01
8.34394097e-02 9.48020637e-01 6.16283476e-01 -9.65422451e-01
2.09522411e-01 3.96512270e-01 2.79623598e-01 -1.31217599e+00
7.35556111e-02 3.03849995e-01 -5.39716065e-01 3.17936569e-01
4.76645529e-01 -7.14150816e-02 -2.65193611e-01 9.54687595e-01
-9.61668715e-02 6.21657193e-01 -1.24036431e-01 5.35032392e-01
4.58230555e-01 4.62197006e-01 -2.10189819e-01 -2.89042175e-01
1.40356243e+00 -1.45902947e-01 -8.59969020e-01 4.52638447e-01
-8.05512220e-02 -1.24353755e+00 6.70656323e-01 1.00519526e+00
-6.31502330e-01 -6.70971632e-01 -1.11826634e+00 4.04891491e-01
-6.76256657e-01 2.86270767e-01 -2.51236949e-02 1.53617346e+00
-7.11558461e-01 6.64121985e-01 -3.57005745e-01 -5.08909464e-01
-1.43297598e-01 4.56490427e-01 -5.29372394e-01 1.20791510e-01
-6.80791199e-01 6.10926211e-01 2.30540521e-03 -2.95517564e-01
-2.67149746e-01 -3.70391607e-01 -4.31143671e-01 -9.81891602e-02
2.70378858e-01 1.45884082e-01 8.85035694e-01 -1.19873011e+00
-1.79083312e+00 9.39737678e-01 1.14034656e-02 -4.01105791e-01
5.12421787e-01 3.73025537e-02 -7.99531937e-01 5.63876808e-01
-7.10853785e-02 -3.72601599e-01 1.33716643e+00 -1.15031922e+00
-2.95890033e-01 -1.92864746e-01 -3.66615146e-01 -7.80940413e-01
-1.68576360e-01 3.73987079e-01 -2.92867690e-01 -3.36879402e-01
6.69537857e-02 -8.47342491e-01 6.10296607e-01 -6.86524570e-01
-4.26618665e-01 8.34126845e-02 1.18771434e+00 -6.40923440e-01
1.03897738e+00 -1.96371901e+00 -5.74257672e-01 5.38015008e-01
-2.66811728e-01 5.47842503e-01 3.48629653e-01 6.18714809e-01
4.79644677e-03 2.01436669e-01 2.86757061e-03 -8.33401084e-02
-1.49317086e-01 -1.81926459e-01 -3.19595665e-01 5.95533669e-01
-3.56946796e-01 8.32382217e-02 -5.47373950e-01 -7.04387665e-01
6.04667723e-01 6.22398615e-01 2.23433688e-01 5.47745116e-02
2.86010563e-01 3.67235243e-01 -3.21348280e-01 8.97171021e-01
1.30224001e+00 2.53384411e-01 2.45035678e-01 -4.52802479e-01
-4.56025362e-01 -4.18943077e-01 -1.50600016e+00 1.17973602e+00
-3.10786188e-01 7.30041087e-01 -5.19645438e-02 -6.68358028e-01
1.12171400e+00 3.82977158e-01 3.86658370e-01 -4.54124063e-01
3.22875351e-01 5.48604310e-01 -5.83503067e-01 -1.05415440e+00
5.32017350e-01 2.54390687e-01 2.43030041e-01 3.35994244e-01
-2.49331705e-02 2.38480240e-01 2.18990877e-01 -3.06503862e-01
1.14697206e+00 3.49608250e-02 2.59594202e-01 -4.19034302e-01
1.08114100e+00 -2.95196801e-01 7.68075436e-02 8.56438041e-01
7.19038420e-04 9.61004257e-01 5.85106730e-01 -2.94287410e-02
-1.14172196e+00 -8.46902072e-01 -2.88194358e-01 -1.35815188e-01
2.33819008e-01 -1.95765913e-01 -1.04265642e+00 -2.34278634e-01
-2.63661057e-01 3.03349733e-01 -3.33781004e-01 3.96422863e-01
-3.33552152e-01 -2.94369400e-01 8.02780509e-01 2.02288181e-01
4.85578060e-01 -7.73932695e-01 -8.13235104e-01 1.86120331e-01
3.14273655e-01 -1.54140747e+00 -1.43237948e-01 -2.46479511e-01
-8.18085849e-01 -1.68828201e+00 -7.35109389e-01 -2.22412974e-01
4.60875124e-01 3.60492468e-01 7.25331485e-01 4.27951179e-02
-3.29126030e-01 1.05667591e+00 -5.90852380e-01 -3.17580998e-01
-7.87529230e-01 -3.39403361e-01 1.46042436e-01 5.47478616e-01
6.48771882e-01 -6.59328103e-01 -4.38947201e-01 5.42336345e-01
-1.09754205e+00 -7.80282855e-01 3.13388765e-01 2.13052511e-01
3.82554710e-01 3.54385644e-01 -2.15870976e-01 -9.89985466e-01
6.10598803e-01 -4.71723378e-01 -1.18884313e+00 3.59642148e-01
-3.28337342e-01 -4.21837032e-01 7.26375580e-01 -4.01384741e-01
-9.60349083e-01 1.77690610e-01 2.90942974e-02 -8.40269089e-01
-6.74582601e-01 4.84170020e-02 -3.37376744e-01 -6.08368218e-01
5.68573117e-01 1.07246831e-01 1.11146115e-01 -8.03940475e-01
-4.75048453e-01 1.08948934e+00 7.89060771e-01 -4.07734782e-01
6.55481040e-01 4.83097881e-01 3.32978070e-01 -1.38318574e+00
1.79233402e-01 -7.47460067e-01 -2.84525871e-01 -5.89349568e-01
9.23013687e-01 -4.28293377e-01 -1.34627116e+00 9.08820748e-01
-1.41664672e+00 2.39962295e-01 2.31788069e-01 5.81851125e-01
-1.71395808e-01 7.96528757e-01 -3.51915359e-01 -1.48750985e+00
-2.22023372e-02 -1.24599862e+00 8.45170021e-01 5.87793529e-01
1.09980382e-01 -9.37303364e-01 1.10918477e-01 2.10044906e-01
2.62003988e-01 5.37065387e-01 2.58482784e-01 -2.53582150e-01
-6.15361214e-01 -7.97178864e-01 -2.80704588e-01 6.58714533e-01
4.02429476e-02 5.24863303e-01 -1.22279978e+00 2.26000831e-01
4.85843092e-01 3.86852354e-01 3.94767761e-01 2.38312766e-01
1.15452504e+00 -3.25126313e-02 -4.07950461e-01 4.79726732e-01
2.14676785e+00 5.21029890e-01 1.35295475e+00 4.65249598e-01
5.85737526e-01 4.58655834e-01 3.61500591e-01 3.77069056e-01
-4.48604763e-01 7.92275071e-01 4.62608427e-01 5.18384814e-01
1.32187277e-01 -2.46093839e-01 7.10233569e-01 3.34487617e-01
-3.83824885e-01 -5.92421472e-01 -8.15259159e-01 1.57671079e-01
-1.34928918e+00 -1.27461755e+00 -1.00947249e+00 2.73102880e+00
-1.25426918e-01 -7.07242116e-02 1.31906301e-01 5.46752751e-01
1.32398796e+00 -3.83298546e-01 7.48072471e-03 -4.54527944e-01
-2.95818031e-01 4.99834061e-01 1.12715554e+00 2.79116422e-01
-9.51350033e-01 1.95012912e-01 5.82857990e+00 8.55603397e-01
-1.19483590e+00 2.22915128e-01 3.80832046e-01 4.34158564e-01
1.47248711e-02 7.00880289e-02 -8.37611079e-01 1.17083192e+00
1.07044828e+00 4.58381027e-01 2.66963631e-01 7.68249154e-01
9.59544554e-02 -8.24419379e-01 -8.70494187e-01 1.62567043e+00
3.48223746e-01 -1.24495149e+00 -1.66109025e-01 2.41315082e-01
4.98359770e-01 -5.66791654e-01 1.21430971e-01 -5.87842047e-01
-5.38428903e-01 -8.21088016e-01 5.48148453e-01 8.49049211e-01
8.13639164e-01 -7.60418117e-01 1.17528653e+00 -1.02540985e-01
-9.34157252e-01 -4.29520309e-02 -6.91244006e-01 1.03798524e-01
1.69842929e-01 5.93508363e-01 -4.80576277e-01 3.99407357e-01
7.89275289e-01 5.07617831e-01 -5.34982502e-01 1.30506170e+00
4.16568145e-02 5.78274906e-01 -5.03532350e-01 -1.89720765e-01
-1.33416681e-02 -8.05447578e-01 7.53038287e-01 1.24755597e+00
1.08631706e+00 -1.95837170e-01 -7.19384193e-01 8.91042411e-01
9.93102342e-02 -1.93225238e-02 -9.12557602e-01 -1.54432682e-02
4.29203331e-01 1.10097480e+00 -9.78833675e-01 -1.83669046e-01
-5.09178281e-01 1.10946631e+00 -8.63016427e-01 1.49074391e-01
-7.76395619e-01 -5.50069988e-01 4.02354151e-01 3.80500406e-01
2.52743244e-01 -3.91410962e-02 -5.24748452e-02 -8.67508531e-01
3.46641950e-02 -6.05391264e-01 -5.52441701e-02 -7.30263352e-01
-1.25478363e+00 2.47709349e-01 1.20209835e-01 -1.65439153e+00
-1.82436407e-03 -1.04247260e+00 -7.68568397e-01 6.38103485e-01
-9.33389068e-01 -8.89666855e-01 -3.91972750e-01 8.30874741e-01
2.26269394e-01 -4.55076218e-01 6.84490800e-01 4.36510652e-01
-4.90646660e-01 5.58205485e-01 4.62507248e-01 5.47146387e-02
5.63255310e-01 -9.93365109e-01 -1.39657050e-01 1.06447542e+00
2.01534942e-01 7.41517067e-01 9.03822899e-01 -6.81969166e-01
-1.66991460e+00 -1.18407264e-01 6.61157787e-01 -6.52914345e-01
6.19069874e-01 -1.61192372e-01 -5.08389056e-01 2.26364136e-01
5.45792699e-01 -2.94359148e-01 6.95558071e-01 -5.13635397e-01
-1.40106171e-01 -3.65233034e-01 -1.43131959e+00 7.54121989e-02
4.21181142e-01 -7.57912755e-01 -3.00636113e-01 1.85458809e-01
-1.78192466e-01 -9.75642055e-02 -9.27018344e-01 -1.53847784e-01
9.10724282e-01 -1.73388100e+00 7.88551688e-01 4.33669746e-01
-6.68551177e-02 -4.68614489e-01 -2.05617040e-01 -2.35269696e-01
5.48071027e-01 -1.06971264e+00 3.61365527e-01 1.63335645e+00
-2.54597552e-02 -7.38419116e-01 8.44304681e-01 4.74691689e-01
4.50500429e-01 3.93504143e-01 -7.99855709e-01 -1.07762671e+00
-6.14540517e-01 -5.96362710e-01 6.32082582e-01 7.24707782e-01
-1.33950323e-01 -2.66638368e-01 -5.34022748e-01 3.01896006e-01
1.09546185e+00 -4.28235352e-01 7.57020712e-01 -1.30879366e+00
-4.14816678e-01 -2.04658389e-01 -9.04733062e-01 -4.35337543e-01
-1.17684700e-01 -1.53513234e-02 -5.30277014e-01 -6.36668563e-01
3.42450067e-02 -1.10119484e-01 -7.69660547e-02 -4.82163012e-01
5.50202370e-01 6.57786310e-01 1.34163380e-01 2.87838072e-01
-2.75391996e-01 -6.51235402e-01 3.32352549e-01 1.81251496e-01
1.16386935e-01 4.52358156e-01 6.89743459e-02 6.44230306e-01
8.60848129e-01 -6.72150791e-01 -3.02347034e-01 4.94266227e-02
4.11578506e-01 1.46544456e-01 6.24469161e-01 -1.66199708e+00
4.94749606e-01 2.64289916e-01 3.37778628e-01 -5.66995442e-01
1.78252101e-01 -1.48508680e+00 8.60165238e-01 4.13812160e-01
3.74513716e-01 3.21225792e-01 -1.42809868e-01 5.46670318e-01
-3.16904902e-01 -1.09442949e+00 7.22877920e-01 -4.71835434e-01
-6.10511899e-01 -2.38782123e-01 -8.81727338e-01 -6.48688495e-01
9.69020009e-01 -1.01660371e+00 -3.02153170e-01 -3.34250271e-01
-2.63450921e-01 -8.16185594e-01 9.84908104e-01 -5.90770133e-02
6.36346877e-01 -9.98953998e-01 1.94268391e-01 2.38752410e-01
-1.09827265e-01 -8.50382030e-01 3.72742325e-01 8.87565970e-01
-1.14768338e+00 2.63775796e-01 -5.35913169e-01 -5.39722085e-01
-1.62715316e+00 7.74825394e-01 2.24842146e-01 2.32644036e-01
-4.17661071e-02 3.69099200e-01 -6.39585793e-01 4.74052757e-01
-4.68234830e-02 -9.96379480e-02 -3.94161403e-01 -3.38896289e-02
6.93113327e-01 1.02700114e+00 1.22591004e-01 -8.18275750e-01
-3.81770760e-01 1.28529096e+00 4.73959833e-01 -1.52813718e-01
9.08561587e-01 -1.60834759e-01 -3.63561153e-01 4.53315884e-01
1.51157045e+00 6.17512226e-01 -8.30269694e-01 6.47686303e-01
2.86803782e-01 -6.66062295e-01 -2.22110659e-01 -3.14836919e-01
-7.68865824e-01 7.92196751e-01 1.06080937e+00 6.21958911e-01
9.93824363e-01 -4.92449820e-01 6.34929299e-01 2.73550838e-01
6.59752607e-01 -1.48358119e+00 -1.83100611e-01 -9.74529907e-02
3.52279484e-01 -1.07256579e+00 5.48643470e-02 -4.99339521e-01
-2.64957964e-01 1.76632273e+00 -9.10165310e-02 -4.23230171e-01
7.52410114e-01 4.75274324e-01 -8.73494968e-02 1.26357794e-01
2.44692758e-01 -1.06803939e-01 -1.31774336e-01 1.00316501e+00
2.64051646e-01 -1.12540327e-01 -5.48175454e-01 5.20475686e-01
2.11896226e-01 8.61734003e-02 9.97648418e-01 7.25307882e-01
-2.03786224e-01 -1.60110629e+00 -1.09286571e+00 2.71565735e-01
-9.83478189e-01 3.25336456e-01 -5.81680417e-01 8.34616303e-01
4.93767679e-01 1.39880192e+00 -7.10002035e-02 -7.11743057e-01
3.09260637e-01 -5.99166863e-02 4.80211556e-01 7.78271034e-02
-6.91256642e-01 -1.12259768e-01 -4.13326435e-02 -7.05248713e-01
-7.77789474e-01 -9.18016434e-01 -6.25693977e-01 -5.81162572e-01
-2.08269790e-01 8.90069902e-02 1.33496547e+00 5.08672357e-01
1.75335333e-02 -1.82088405e-01 6.20694220e-01 -5.93487024e-01
-3.78412604e-02 -6.22678280e-01 -1.04980588e+00 3.80610526e-01
1.92366868e-01 -7.23227143e-01 -7.09914923e-01 2.45787889e-01]
|
[12.383108139038086, 0.9682959318161011]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.