lessonName
stringlengths
3
52
TopicID
stringlengths
6
6
Text
stringlengths
31
6.57k
air pollution
T_0453
Poor air quality started to become a serious problem after the Industrial Revolution. The machines in factories burned coal. This released a lot of pollutants into the air. After 1900, motor vehicles became common. Cars and trucks burn gasoline, which adds greatly to air pollution.
air pollution
T_0454
By the mid-1900s, air quality in many big cities was very bad. The worst incident came in December 1952. A temperature inversion over London, England, kept cold air and pollutants near the ground. The air became so polluted that thousands of people died in just a few days. This event was called the Big Smoke.
air pollution
T_0455
At the same time, many U.S. cities had air pollution problems. Some of the worst were in California. Cars were becoming more popular. Oil refineries and power plants also polluted the air. Mountain ranges trapped polluted air over cities. The California sunshine caused chemical reactions among the pollutants. These reactions produced many more harmful compounds.
air pollution
T_0456
By 1970, it was clear that something needed to be done to protect air quality. In the U.S., the Clean Air Act was passed. It limits what can be released into the air. As a result, the air in the U.S. is much cleaner now than it was 50 years ago. But air pollution has not gone away. Vehicles, factories, and power plants still release more than 150 million tons of pollutants into the air each year.
air pollution
T_0457
There are two basic types of pollutants in air. They are known as primary pollutants and secondary pollutants.
air pollution
T_0458
Primary pollutants enter the air directly. Some are released by natural processes, like ash from volcanoes. Most are released by human activities. They pour into the air from vehicles and smokestacks. Several of these pollutants are described below. Carbon oxides include carbon monoxide (CO) and carbon dioxide (CO2 ). Carbon oxides are released when fossil fuels burn. Nitrogen oxides include nitric oxide (NO) and nitrogen dioxide (NO2 ). Nitrogen oxides form when nitrogen and oxygen combine at high temperatures. This occurs in hot exhausts from vehicles, factories, and power plants. Sulfur oxides include sulfur dioxide (SO2 ) and sulfur trioxide (SO3 ). Sulfur oxides are produced when sulfur and oxygen combine. This happens when coal burns. Coal can contain up to 10 percent sulfur. Toxic heavy metals include mercury and lead. Mercury is used in some industrial processes. It is also found in fluorescent light bulbs. Lead was once widely used in gasoline, paint, and pipes. It is still found in some products. Volatile organic compounds (VOCs) are carbon compounds such as methane. VOCs are released in many human activities, such as raising livestock. Livestock wastes produce a lot of methane. Particulates are solid particles. These particles may be ash, dust, or even animal wastes. Many are released when fossil fuels burn (see Figure 22.1).
air pollution
T_0459
Secondary pollutants form when primary pollutants undergo chemical reactions after they are released. Many occur as part of photochemical smog. This type of smog is seen as a brown haze in the air. Photochemical smog forms when certain pollutants react together in the presence of sunlight. You can see smog hanging in the air over San Francisco in Figure 22.2. Photochemical smog consists mainly of ozone (O3 ). The ozone in smog is the same compound as the ozone in the ozone layer,(O3 ). But ozone in smog is found near the ground. Figure 22.3 shows how it forms. When nitrogen oxides and VOCs are heated by the Sun, they lose oxygen atoms. The oxygen atoms combine with molecules of oxygen to form ozone. Smog ozone is harmful to humans and other living things.
air pollution
T_0460
Most pollutants enter the air when fossil fuels burn. Some are released when forests burn. Others evaporate into the air.
air pollution
T_0461
Burning fossil fuels releases many pollutants into the air. These pollutants include carbon monoxide, carbon dioxide, nitrogen dioxide, and sulfur dioxide. Motor vehicles account for almost half of fossil fuel use. Most vehicles run on gasoline, which comes from petroleum. Power plants and factories account for more than a quarter of fossil fuel use. Power plants burn fossil fuels to generate electricity. Factories burn fossil fuels to power machines. Homes and other buildings also burn fossil fuels. The energy they release is used for heating, cooking, and other purposes.
air pollution
T_0462
Millions of acres of forest have been cut and burned to make way for farming. Figure 22.4 shows an example. Burning trees produces most of the same pollutants as burning fossil fuels.
air pollution
T_0463
VOCs enter the air by evaporation. VOCs are found in many products, like paints and petroleum products. Methane is a VOC that evaporates from livestock waste and landfills.
effects of air pollution
T_0464
All air pollutants are harmful. Thats why theyre called pollutants. Some air pollutants damage the environment as well as the health of living things. The type of damage depends on the pollutant.
effects of air pollution
T_0465
Particulates cause lung diseases. They can also increase the risk of heart disease and the number of asthma attacks. Particulates block sunlight from reaching Earths surface. This means there is less energy for photosynthesis. Less photosynthesis means that plants and phytoplankton produce less food. This affects whole ecosystems.
effects of air pollution
T_0466
The ozone in smog may damage plants. The effects of ozone add up over time. Plants such as trees, which normally live a long time, are most affected. Entire forests may die out if ozone levels are very high. Other plants, including crop plants, may also be damaged by ozone. You can see evidence of ozone damage in Figure 22.5. The ozone in smog is also harmful to human health. Figure 22.6 shows the levels of ozone to watch out for. Some people are especially sensitive to ozone. They can be harmed by levels of ozone that would not affect most other people. These people include those with lung or heart problems.
effects of air pollution
T_0467
Both nitrogen and sulfur oxides are toxic to humans. These compounds can cause lung diseases or make them worse. Nitrogen and sulfur oxides form acid rain, which is described below.
effects of air pollution
T_0468
Carbon monoxide (CO) is toxic to both plants and animals. CO is deadly to people in a confined space, such as a closed home. Carbon monoxide is odorless and colorless, so people cant tell when they are breathing it. Thats why homes should have carbon monoxide detectors. You can see one in Figure 22.7.
effects of air pollution
T_0469
Heavy metals, such as mercury and lead, are toxic to living things. They can enter food chains from the atmosphere. The metals build up in the tissues of organisms by bioaccumulation. Bioaccumulation is illustrated in Figure 22.8. As heavy metals are passed up a food chain they accumulate. Imagine a low-level consumer eating a producer. That consumer takes in all of the heavy metals from all of the producers that it eats. Then a higher-level consumer eats it and accumulates all the heavy metals from all of the lower-level consumers that it eats. In this way, heavy metals may accumulate. At high levels in the food chain, the heavy metals may be quite become quite concentrated. The higher up a food chain that humans eat, the greater the levels of toxic metals they take in. Thats why people should avoid eating too much of large fish such as tuna. Tuna are predators near the top of their food chains. They have been shown to contain high levels of mercury. In people, heavy metals can damage the brain and other organs. Unborn babies and young children are most affected. Thats because their organs are still developing.
effects of air pollution
T_0470
VOCs are toxic to humans and other living things. In people, they can cause a wide range of problems, from eye and nose irritation to brain damage and cancer. Levels of VOCs are often higher indoors than out. Thats because they are released by products such as paints, cleaning solutions, and building materials. How might you reduce your exposure to VOCs?
effects of air pollution
T_0471
Acid rain is rain that has a pH less than 5 (see Figure 22.9). The pH of normal rain is 5.6. Its slightly acidic because carbon dioxide in the air dissolves in rain. This forms carbonic acid, a weak acid.
effects of air pollution
T_0472
Acid rain forms when nitrogen and sulfur oxides in air dissolve in rain (see Figure 22.10). This forms nitric and sulfuric acids. Both are strong acids. Acid rain with a pH as low as 4.0 is now common in many areas. Acid fog may be even more acidic than acid rain. Fog with a pH as low as 1.7 has been recorded. Thats the same pH as toilet bowl cleaner!
effects of air pollution
T_0473
Figure 22.11 shows some of the damage done by acid rain. Acid rain ends up in soil and bodies of water. This can make them very acidic. The acid strips soil of its nutrients. These changes can kill trees, fish, and other living things. Acid rain also dissolves limestone and marble. This can damage buildings, monuments, and statues.
effects of air pollution
T_0474
Ozone near the ground harms human health. But the ozone layer in the stratosphere protects us from solar rays. Thats why people were alarmed in the 1980s to learn that there was a hole in the ozone layer.
effects of air pollution
T_0475
Whats destroying the ozone layer? The chief cause is chlorofluorocarbons (CFCs). These are human-made chemicals that contain the element chlorine (Cl). In the past, CFCs were widely used in spray cans, refrigerators, and many other products. CFCs are stable compounds that can remain in the atmosphere for hundreds of years. Once CFCs are in the air, they float up into the stratosphere. What happens next is shown in Figure 22.12. Sunlight breaks apart the molecules. This releases their chlorine atoms (Cl). The free chlorine atoms may then combine with oxygen atoms in ozone. This breaks down the ozone molecules into an oxygen molecule and an oxygen atom. One CFC molecule can break down as many as 100,000 ozone molecules in this way! These forms of oxygen do not protect the planet from ultraviolet radiation.
effects of air pollution
T_0476
Most ozone loss it taking place over the South Pole and Antarctica. This is the location of the ozone hole. The ozone hole is also seasonal. The hole forms during the early part spring in the Southern Hemisphere and then grows northward. You can see the hole in Figure 22.13. Besides the ozone hole, the ozone layer is thinner over the Northern Hemisphere.
effects of air pollution
T_0477
With less ozone in the stratosphere, more UV rays reach the ground. More UV rays increase skin cancer rates. Just a 1 percent loss of ozone causes a 5 percent increase in skin cancer. More UV rays also harm plants and phytoplankton. As a result, they produce less food. This may affect entire ecosystems.
reducing air pollution
T_0478
There are two basic types of strategies for reducing pollution from fossil fuels: 1. Use less fossil fuel to begin with. 2. When fossil fuels must be used, prevent the pollution from entering the air.
reducing air pollution
T_0479
We can reduce our use of fossil fuels in several ways: Conserve fossil fuels. For example, turning out lights when we arent using them saves electricity. Why does this help? A lot of the electricity we use comes from coal-burning power plants. Use fossil fuels more efficiently. For example, driving a fuel-efficient car lets you go farther on each gallon of gas. This can add up to a big savings in fossil fuel use. Change to alternative energy sources that produce little or no air pollution. For example, hybrid cars run on electricity that would be wasted during braking. These cars use gas only as a backup fuel. As a result, they produce just 10 percent of the air pollution produced by cars that run only on gas. Cars that run on hydrogen and produce no pollution at all have also been developed (see Figure 22.14).
reducing air pollution
T_0480
Some of the pollutants from fossil fuels can be filtered out of exhaust before it is released into the air. Other pollutants can be changed to harmless compounds before they are released. Two widely used technologies are scrubbers and catalytic converters. Scrubbers are used in factories and power plants. They remove particulates and waste gases from exhaust before it is released to the air. You can see how a scrubber works in Figure 22.15. Catalytic converters are used on motor vehicles. They break down pollutants in exhaust to non-toxic com- pounds. For example, they change nitrogen oxides to harmless nitrogen and oxygen gasses.
reducing air pollution
T_0481
The problems of ozone loss and global warming were unknown in 1970. When they were discovered, worldwide efforts were made to reduce CFCs and carbon dioxide emissions.
reducing air pollution
T_0482
The Montreal Protocol is a worldwide agreement on air pollution. It focuses on CFCs. It was signed by many countries in 1987. It controls almost 100 chemicals that can damage the ozone layer. Its aim is to return the ozone layer to its normal state. The Montreal Protocol has been effective in controlling CFCs. By 1995, few CFCs were still being used. But the ozone hole kept growing for several years after that because of the CFCs already in the atmosphere. It peaked in 2006. Since then, it has been somewhat smaller.
reducing air pollution
T_0483
The Kyoto Protocol is another worldwide agreement on air pollution. It was passed in 1997. The Protocol focuses on controlling greenhouse gas emissions. Its aim is to control global warming. Carbon dioxide is the main greenhouse gas causing global warming. There are several possible ways to reduce carbon dioxide emissions. They include cap-and-trade systems, carbon taxes, and carbon sequestration In a cap-and-trade system, each nation is given a cap, or upper limit, on carbon dioxide emissions. If a nation needs to go over its cap, it can trade with another nation that is below its cap. Figure 22.16 shows how this works. Carbon taxes are taxes placed on gasoline and other products that produce carbon dioxide. The taxes encourage people to use less fossil fuel, which reduces carbon dioxide emissions. Carbon sequestration is any way of removing carbon dioxide from the atmosphere and storing it in another form. Carbon is sequestered naturally by forests. Trees take in carbon dioxide for photosynthesis. Artificial methods of sequestering carbon underground are being researched. The Kyoto Protocol has not been as successful as the Montreal Protocol. One reason is that the worlds biggest producer of greenhouse gases, the U.S., did not sign the Kyoto Protocol. Of the nations that signed it, few are
telescopes
T_0484
Earth is just a tiny speck in the universe. Our planet is surrounded by lots of space. Light travels across empty space. Astronomers can study light from stars to learn about the universe. Light is the visible part of the electromagnetic spectrum. Astronomers use the light that comes to us to gather information about the universe.
telescopes
T_0485
In space, light travels at about 300,000,000 meters per second (670,000,000 miles per hour). How fast is that? A beam of light could travel from New York to Los Angeles and back again nearly 40 times in just one second. Even at that amazing rate, objects in space are so far away that it takes a lot of time for their light to reach us. Even light from the nearest star, our Sun, takes about 8 minutes to reach Earth.
telescopes
T_0486
We need a really big unit to measure distances out in space because distances between stars are so great. A light- year, 9.5 trillion kilometers (5.9 trillion miles), is the distance that light travels in one year. Thats a long way! Out in space, its actually a pretty short distance. Proxima Centauri is the closest star to us after the Sun. This near neighbor is 4.22 light-years away. That means the light from Proxima Centauri takes 4.22 years to reach us. Our galaxy, the Milky Way Galaxy, is about 100,000 light-years across. So it takes light 100,000 years to travel from one side of the galaxy to the other! It turns out that even 100,000 light years is a short distance. The most distant galaxies we have detected are more than 13 billion light-years away. Thats over a hundred-billion-trillion kilometers!
telescopes
T_0487
When we look at stars and galaxies, we are seeing over great distances. More importantly, we are also seeing back in time. When we see a distant galaxy, we are actually seeing how the galaxy used to look. For example, the Andromeda Galaxy, shown in Figure 23.1, is about 2.5 million light-years from Earth. When you see an image of the galaxy what are you seeing? You are seeing the galaxy as it was 2.5 million years ago! Since scientists can look back in time they can better understand the Universes history. Check out http://science.n
telescopes
T_0488
Light is one type of electromagnetic radiation. Light is energy that travels in the form of an electromagnetic wave. Figure 23.2 shows a diagram of an electromagnetic wave. An electromagnetic (EM) wave has two parts: an electric field and a magnetic field. The electric and magnetic fields vibrate up and down, which makes the wave. The wavelength is the horizontal distance between two of the same points on the wave, like wave crest to wave crest. A waves frequency measures the number of wavelengths that pass a given point every second. As wavelength increases, frequency decreases. This means that as wavelengths get shorter, more waves move past a particular spot in the same amount of time.
telescopes
T_0489
Visible light is the part of the electromagnetic spectrum (Figure 23.3) that humans can see. Visible light includes all the colors of the rainbow. Each color is determined by its wavelength. Visible light ranges from violet wavelengths of 400 nanometers (nm) through red at 700 nm. There are parts of the electromagnetic spectrum that humans cannot see. This radiation exists all around you. You just cant see it! Every star, including our Sun, emits radiation of many wavelengths. Astronomers can learn a lot from studying the details of the spectrum of radiation from a star. Many extremely interesting objects cant be seen with the unaided eye. Astronomers use telescopes to see objects at wavelengths all across the electromagnetic spectrum. Some very hot stars emit light primarily at ultraviolet wavelengths. There are extremely hot objects that emit X-rays and even gamma rays. Some very cool stars shine mostly in the infrared light wavelengths. Radio waves come from the faintest, most distant objects. To learn more about stars spectra, visit
telescopes
T_0491
Humans have been making and using magnifying lenses for thousands of years. The first telescope was built by Galileo in 1608. His telescope used two lenses to make distant objects appear both nearer and larger. Telescopes that use lenses to bend light are called refracting telescopes, or refractors (Figure 23.4). The earliest telescopes were all refractors. Many amateur astronomers still use refractors today. Refractors are good for viewing details within our solar system. Craters on the surface of Earths Moon or the rings around Saturn are two such details. Around 1670, Sir Isaac Newton built a different kind of telescope. Newtons telescope used curved mirrors instead of lenses to focus light. This type of telescope is called a reflecting telescope, or reflector (see Figure 23.5). The mirrors in a reflecting telescope are much lighter than the heavy glass lenses in a refractor. This is important because a refracting telescope must be much stronger to support the heavy glass. Its much easier to precisely make mirrors than to precisely make glass lenses. For that reason, reflectors can be made larger than refractors. Larger telescopes can collect more light. This means that they can study dimmer or more distant objects. The largest optical telescopes in the world today are reflectors. Telescopes can also be made to use both lenses and mirrors. For more on how telescopes were developed, visit http://galileo.rice.edu/sci/instruments/telescope.html .
telescopes
T_0492
Radio telescopes collect radio waves. These telescopes are even larger telescopes than reflectors. Radio telescopes look a lot like satellite dishes. In fact, both are designed to collect and focus radio waves or microwaves from space. The largest single radio telescope in the world is at the Arecibo Observatory in Puerto Rico (see Figure 23.6). This telescope is located in a natural sinkhole. The sinkhole formed when water flowing underground dissolved the limestone. This telescope would collapse under its own weight if it were not supported by the ground. There is a big disadvantage to this design. The telescope can only observe the part of the sky that happens to be overhead at a given time. A group of radio telescopes can be linked together with a computer. The telescopes observe the same object. The computer then combines the data from each telescope. This makes the group function like one single telescope. An example is shown in Figure 23.7. To learn more about radio telescopes and radio astronomy in general, go to
telescopes
T_0493
Telescopes on Earth all have one big problem: Incoming light must pass through the atmosphere. This blocks some wavelengths of radiation. Also, motion in the atmosphere distorts light. You see this when you see stars twinkling in the night sky. Many observatories are built on high mountains. There is less air above the telescope, so there is less interference from the atmosphere. Space telescopes avoid such problems completely since they orbit outside the atmosphere. The Hubble Space Telescope is the best known space telescope. Hubble is shown in Figure 23.8. Hubble began operations in 1994. Since then it has provided huge amounts of data. The telescope has helped astronomers answer many of the biggest questions in astronomy. The National Aeronautics and Space Administration (NASA) has placed three other major space telescopes in orbit. Each uses a different part of the electromagnetic spectrum. The James Webb Space Telescope will launch in 2014. The telescope will replace the aging Hubble. To learn more about NASAs great observatories, check out
telescopes
T_0495
Humans have been studying the night sky for thousands of years. Knowing the motions of stars helped people keep track of seasons. With this information they could know when to plant crops. Stars were so important that the patterns they made in the sky were named. These patterns are called constellations. Even now, constellations help astronomers know where they are looking in the night sky. The ancient Greeks carefully observed the locations of stars in the sky. They noticed that some of the stars moved across the background of other stars. They called these bright spots in the sky planets. The word in Greek means wanderers. Today we know that the planets are not stars. They are objects in the solar system that orbit the Sun. Ancient astronomers made all of their observations without the aid of a telescope.
telescopes
T_0496
In 1610, Galileo looked at the night sky through the first telescope. This tool allowed him to make the following discoveries (among others): There are more stars in the night sky than the unaided eye can see. The band of light called the Milky Way consists of many stars. The Moon has craters (see Figure 23.10). Venus has phases like the Moon. Jupiter has moons orbiting around it. There are dark spots that move across the surface of the Sun. Galileos observations made people think differently about the universe. They made them think about the solar system and Earths place in it. Until that time, people believed that the Sun and planets revolved around Earth. One hundred years before Galileo, Copernicus had said that the Earth and the other planets revolved around the Sun. No one would believe him. But Galileos observations through his telescope proved that Copernicus was right.
telescopes
T_0497
Galileos telescope got people to think about the solar system in the right way. Modern tools have also transformed our way of thinking about the universe. Imagine this: Today you can see all of the things Galileo saw using a good pair of binoculars. You can see sunspots if you have special filters on the lenses. (Never look directly at the Sun without using the proper filters!) With the most basic telescope, you can see polar caps on Mars, the rings of Saturn, and bands in the atmosphere of Jupiter. You can see many times more stars with a telescope than without a telescope. Still, stars seen in a telescope look like single points of light. They are so far away. Only the red supergiant star Betelgeuse is large enough to appear as a disk. Except for our Sun, of course. Today, astronomers attach special instruments to telescopes. This allows them to collect a wide variety of data. The data is fed into computers so that it can be studied. An astronomer may take weeks to analyze all of the data collected from just a single night!
telescopes
T_0498
A spectrometer is a special tool that astronomers commonly use. Spectrometers allow them to study the light from a star or galaxy. A spectrometer produces a spectrum, like the one shown in Figure 23.11. A prism breaks light into all its colors. Gases from the outer atmosphere of a star absorb light. This forms dark lines in the spectrum. These dark lines reveal what elements the star contains. Astronomers use the spectrum to learn even more about the star. One thing they learn is how hot the star is. They also learn the direction the star is going and how fast. By carefully studying light from many stars, astronomers know how stars evolve. They have learned about the distribution and kinds of matter found throughout the universe. They even know something about how the universe might have formed. To find out what you can expect to see when looking through a telescope, check out
early space exploration
T_0499
Humans did not reach space until the second half of the 20th century. They needed somehow to break past Earths gravity. A rocket moves rapidly in one direction. The device is propelled by particles flying out of it at high speed in the other direction. There are records of the Chinese using rockets in war against the Mongols as early as the 13th century. The Mongols then used rockets to attack Eastern Europe. Early rockets were also used to launch fireworks.
early space exploration
T_0500
Rockets were used for centuries before anyone could explain how they worked. The theory came about in 1687. Isaac Newton (16431727) described three basic laws of motion, now referred to as Newtons Laws of Motion: 1. An object in motion will remain in motion unless acted upon by a force. 2. Force equals mass multiplied by acceleration. 3. To every action, there is an equal and opposite reaction. Which of these three best explains how a rocket works? Newtons third law of motion. When a rockets propulsion pushes in one direction, the rocket moves in the opposite direction, as seen in the Figure 23.12. For a long time, many people believed that a rocket wouldnt work in space. There would be nothing for the rocket to push against. But they do work! Fuel is ignited in a chamber. The gases in the chamber explode. The explosion creates pressure that forces the gases out of one side of the rocket. The rocket moves in the opposite direction, as shown in Figure 23.13. The force pushing the rocket is called thrust.
early space exploration
T_0501
For centuries, rockets were powered by gunpowder or other solid fuels. These rockets could travel only short distances. Around the turn of the 20th century, several breakthroughs took place. These breakthroughs led to rockets that could travel beyond Earth. Liquid fuel gave rockets enough power to escape Earths gravity (Figure 23.14). By using multiple stages, empty fuel containers could drop away. This reduced the mass of the rocket so that it could fly higher. Rockets were used during World War II. The V2 was the first human-made object to travel high enough to be considered in space (Figure 23.15). Its altitude was 176 km (109 miles) above Earths surface. Wernher von Braun was a German rocket scientist. After he fled Germany in WWII, he helped the United States develop missile weapons. After the war, von Braun worked for NASA. He designed the Saturn V rocket (Figure
early space exploration
T_0502
One of the first uses of rockets in space was to launch satellites. A satellite is an object that orbits a larger object. An orbit is a circular or elliptical path around an object. Natural objects in orbit are called natural satellites. The Moon is a natural satellite. Human-made objects in orbit are called artificial satellites. There are more and more artificial satellites orbiting Earth all the time. They all get into space using some sort of rocket.
early space exploration
T_0503
Why do satellites stay in orbit? Why dont they crash into Earth due to the planets gravity? Newtons law of universal gravitation describes what happens. Every object in the universe is attracted to every other object. Gravity makes an apple fall to the ground. Gravity also keeps you from floating away into the sky. Gravity holds the Moon in orbit around Earth. It keeps Earth in orbit around the Sun. Newton used an example to explain how gravity makes orbiting possible. Imagine a cannonball launched from a high mountain, as shown in Figure 23.17. If the cannonball is launched at a slow speed, it will fall back to Earth. This is shown as paths (A) and (B). Something different happens if the cannonball is launched at a fast speed. The Earth below curves away at the same rate that the cannonball falls. The cannonball then goes into a circular orbit, as in path (C). If the cannonball is launched even faster, it could go into an elliptical orbit (D). It might even leave Earths gravity and go into space (E). Unfortunately, Newtons idea would not work in real life. A cannonball launched at a fast speed from Mt. Everest would not go into orbit. The cannonball would burn up in the atmosphere. However, a rocket can launch straight up, then steer into orbit. It wont burn up in the orbit. A rocket can carry a satellite above the atmosphere and then release the satellite into orbit.
early space exploration
T_0504
The first artificial satellite was launched just over 50 years ago. Thousands are now in orbit around Earth. Satellites have orbited other objects in the solar system. These include the Moon, the Sun, Venus, Mars, Jupiter, and Saturn. Satellites have many different purposes. Imaging satellites take pictures Earths surface. These images are used for military or scientific purposes. Astronomers use imaging satellites to study and make maps of the Moon and other planets. Communications satellites, such as the one in Figure 23.18, are now extremely common. These satellites receive and send signals for telephone, television, or other types of communications. Navigational satellites are used for navigation systems, such as the Global Positioning System (GPS). The largest artificial satellite is the International Space Station. The ISS is designed for humans to live in space while conducting scientific research.
early space exploration
T_0505
Dozens of satellites collect data about the Earth. One example is NASAs Landsat satellites. These satellites make detailed images of Earths continents and coastal areas. Other satellites study the oceans, atmosphere, polar ice sheets, and other Earth systems. This data helps us to monitor climate change. Other long-term changes in the planet are also best seen from space. Satellite images help scientists understand how Earths systems affect one another. Different satellites monitor different wavelengths of energy, as in Figure 23.19.
early space exploration
T_0506
Satellites have different views depending on their orbit. Satellites may be put in a low orbit. These satellites orbit from north to south over the poles. These satellites view a different part of Earth each time they circle. Imaging and weather satellites need this type of view. Satellite may be placed so that they orbit at the same rate the Earth spins. The satellite then remains over the same location on the surface. Communications satellites are often placed in these orbits.
early space exploration
T_0507
The Cold War was between the Soviet Union (USSR) and the United States. The war lasted from the end of World War II in 1945 to the breakup of the USSR in 1991. The hallmark of the Cold War was an arms race. The two nations spared no expense to create new and more powerful weapons. The development of better missiles fostered better rocket technologies.
early space exploration
T_0508
The USSR launched Sputnik 1 on October 4, 1957. This was the first artificial satellite ever put into orbit. Sputnik 1, shown in Figure 23.20, sent out radio signals, which were detected by scientists and amateur radio operators around the world. The satellite stayed in orbit for about 3 months, until it burned up as a result of friction with Earths atmosphere. The launch of Sputnik 1 started the Space Race between the USSR and the USA. Americans were shocked that the Soviets had the technology to put the satellite into orbit. They worried that the Soviets might also be winning the arms race. On November 3, 1957, the Soviets launched Sputnik 2. This satellite carried the first living creature into orbit, a dog named Laika.
early space exploration
T_0509
In response to Sputnik program, the U.S. launched two satellites. Explorer I was launched on January 31, 1958 and Vanguard 1 on March 17, 1958. National Aeronautics and Space Administration (NASA) was established that same year. The race was on! On April 12, 1961, a Soviet cosmonaut became the first human in space and in orbit. Less than one month later May 5, 1961 the U.S. sent its first astronaut into space: Alan Shepherd. The first American in orbit was John Glenn, in February 1962. And on it went.
early space exploration
T_0510
On May 25, 1961, President John F. Kennedy challenged the U.S. Congress: I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him back safely to the Earth. No single space project in this period will be more impressive to mankind, or more important for the long-range exploration of space; and none will be so difficult or expensive to accomplish. The Soviets were also trying to reach the Moon. Who would win? The answer came eight years after Kennedys challenge, on July 20, 1969. NASAs Apollo 11 mission put astronauts Neil Armstrong and Buzz Aldrin on the Moon, as shown in Figure 23.21. A total of five American missions put astronauts on the Moon. The last was Apollo 17. This mission landed on December 11, 1972. No other country has yet put a person on the Moon. Today, most space missions are done by
early space exploration
T_0511
Both the United States and the Soviet Union sent space probes to other planets. A space probe is an unmanned spacecraft. The craft collects data by flying near or landing on an object in space. This could be a planet, moon, asteroid, or comet. The USSR sent several probes to Venus in the Venera missions. Some landed on the surface and sent back data. The U.S. sent probes to Mercury, Venus, and Mars in the Mariner missions. Two probes landed on Mars during the Viking missions. The U.S. also sent probes to the outer solar system. These probes conducted fly-bys of Jupiter, Saturn, Uranus, and Neptune. The Pioneer and Voyager probes are now out beyond the edges of our solar system. We have lost contact with the two Pioneer probes. We hope to maintain contact with the two Voyager probes until at least 2020.
recent space exploration
T_0512
While the United States continued missions to the Moon in the early 1970s, the Soviets worked to build a space station. A space station is a large spacecraft. People can live on this craft for a long period of time.
recent space exploration
T_0513
Between 1971 and 1982, the Soviets put a total of seven Salyut space stations into orbit. Figure 23.22 shows the last of these, Salyut 7. These were all temporary stations. They were launched and later inhabited by a human crew. Three of the Salyut stations were used for secret military purposes. The others were used to study the problems of living in space. Cosmonauts aboard the stations performed a variety of experiments in astronomy, biology, and Earth science. Salyut 6 and Salyut 7 each had two docking ports. One crew could dock a spacecraft to one end. A replacement crew could dock to the other end. The U.S. only launched one space station during this time. It was called Skylab. Skylab was launched in May 1973. Three crews visited Skylab, all within its first year in orbit. Skylab was used to study the effects of staying in space for long period. Devices on board were and for studying the Sun. Skylab reentered Earths atmosphere in 1979, sooner than expected.
recent space exploration
T_0514
The first space station designed for long-term use was the Mir space station (Figure 23.23). Mir was launched in several separate pieces. These pieces were put together in space. Mir holds the current record for the longest continued presence in space. There were people living on Mir continuously for almost 10 years! Mir was the first major space project in which the United States and Russia worked together. American space shuttles transported supplies and people to and from Mir. American astronauts lived on Mir for many months. This cooperation allowed the two nations to learn from each other. The U.S. learned about Russias experiences with long-duration space flights. Mir was taken out of orbit in 2001. It fell into the Pacific Ocean.
recent space exploration
T_0515
The International Space Station, shown in Figure 23.24 is a joint project between the space agencies of many nations These include the United States (NASA), Russia (RKA), Japan (JAXA), Canada (CSA), several European countries (ESA) and the Brazilian Space Agency. The International Space Station is a very large station. It has many different sections and is still being assembled. The station has had people on board since 2000. American space shuttles deliver most of the supplies and equipment to the station. Russian Soyuz spacecraft carry people. The primary purpose of the station is scientific research. This is important because the station has a microgravity environment. Experiments are done in the fields of biology, chemistry, physics, physiology and medicine.
recent space exploration
T_0516
NASA wanted a new kind of space vehicle. This vehicle had to be reusable. It had to able to carry large pieces of equipment, such as satellites, space telescopes, or sections of a space station. The new vehicle was called a space shuttle, shown in Figure 23.25. There have been five space shuttles: Columbia, Challenger, Discovery, Atlantis, and Endeavor. A space shuttle has three main parts. You are probably most familiar with the orbiter. This part has wings like At the end of the mission, the orbiter re-enters Earths atmosphere. The outside heats up as it descends. Pilots have to steer the shuttle to the runway very precisely. Space shuttles usually land at Kennedy Space Center or at Edwards Air Force Base in California. The orbiter is later hauled back to Florida on the back of a jet airplane.
recent space exploration
T_0517
The space shuttle program has been very successful. Over 100 mission have been flown. Space shuttle missions have made many scientific discoveries. Crews have launched many satellites. There have been other great achievements in space. However, the program has also had two tragic disasters. The first came just 73 seconds after launch, on January 28, 1986. The space shuttle Challenger disintegrated in mid-air, as shown in Figure 23.27. On board were seven crew members. All of them died. One of them was Christa McAuliffe, who was to be the first teacher in space. The problem was later shown to be an O-ring. This small part was in one of the rocket boosters. Space shuttle missions were put on hold while NASA improved the safety of the shuttles. The second occurred during the takeoff of the Columbia on January 16, 2003. A small piece of insulating foam broke off the fuel tank. The foam smashed into a tile on the shuttles wing. The tile was part of the shuttles heat shield. The shield protects the shuttle from extremely high temperatures as it reenters the atmosphere. When Columbia returned to Earth on February 3, 2003, it could not withstand the high temperatures. The shuttle broke apart. Again, all seven crew members died. The space shuttle will be retired in 2011. All the remaining shuttle missions will be to the ISS. Orion will replace the shuttle. Known as a Crew Exploration Vehicle, Orion is expected to be ready by 2016.
recent space exploration
T_0518
The disasters have caused NASA to focus on developing unmanned missions. Missions without a crew are less expensive and less dangerous. These missions still provide a great deal of valuable information.
recent space exploration
T_0519
Incredible images have come from the Hubble Space Telescope (HST). Even more incredible scientific discoveries have come from HST. The Hubble was the first telescope in space. It was put into orbit by the space shuttle Discovery in 1990. Since then, four shuttle missions have gone to the Hubble to make repairs and upgrades. The last repair mission to the Hubble happened in 2009. An example of a HST image is in Figure 23.28,
recent space exploration
T_0520
We continue to explore the solar system. A rover is like a spacecraft on wheels (Figure 23.29). It can wheel around on the surface. Scientists on Earth tell it where to go. The craft then collects and sends back data from that locations. The Mars Pathfinder studied the red planet for nearly three months in 1997. Two more rovers, Spirit and Opportunity, landed on Mars in 2004. Both were only designed to last 90 days, but have lasted many times longer. Spirit sent back data until it became stuck in January 2010. Opportunity continues to explore Mars. Several spacecraft are currently in orbit, studying the Martian surface and thin atmosphere.
recent space exploration
T_0521
Budget concerns have impacted NASA in recent years. Many scientists have come together to discuss the goals of the U.S. space program. Some would like to further explore the Moon. Others are interested in landing on Mars. A variety of destinations in the inner solar system may also be visited. Private aerospace companies will play more of a role in the coming years.
recent space exploration
T_0522
How to Discover a New Planet Thousands of planets - ones that look totally different than what were used to, and possibly could support life, exist outside of our solar system. But were only just now starting to find them. In the video below, Ashley takes you behind the simple technique that astronomers have been using to discover these curious new planets. MEDIA Click image to the left or use the URL below. URL:
planet earth
T_0523
As you walk, the ground usually looks pretty flat, even though the Earth is round. How do we know this? We have pictures of Earth taken from space that show that Earth is round. Astronauts aboard the Apollo 17 shuttle took this one, called The Blue Marble (Figure 24.1). Earth looks like a giant blue and white ball. Long before spacecraft took photos of Earth from space, people knew that Earth was round. How? One way was to look at ships sailing off into the distance. What do you see when you watch a tall ship sail over the horizon of the Earth? The bottom part of the ship disappears faster than the top part. What would that ship look like if Earth was flat? No part of it would disappear before the other. It would all just get smaller as it moved further away. In the solar system, the planets orbit around the Sun. The Sun and each of the planets of our solar system are round. Earth is the third planet from the Sun. It is one of the inner planets. Jupiter is an outer planet. It is the largest planet in the solar system at about 1,000 times the size of Earth. The Sun is about 1,000 times bigger than Jupiter! (Figure The outer planets in the solar system are giant balls of swirling gas. Earth and the other inner planets are relatively small, dense, and rocky. Most of Earths surface is covered with water. As far as we know, Earth is also the only planet that has liquid water. Earths atmosphere has oxygen. The water and oxygen are crucial to life as we know it. Earth appears to be the only planet in the solar system with living creatures. You can learn more about the planets in the Our Solar System chapter. Some of the different parts of the Earth are our: Since Earth is round, the layers all have the word sphere at the end (Figure 24.3). All of Earths layers interact. Therefore, Earths surface is constantly undergoing change.
planet earth
T_0524
Earth and Moon orbit each other. This Earth-Moon system orbits the Sun in a regular path (Figure 24.4). Gravity is the force of attraction between all objects. Gravity keeps the Earth and Moon in their orbits. Earths gravity pulls the Moon toward Earths center. Without gravity, the Moon would continue moving in a straight line off into space. All objects in the universe have a gravitational attraction to each other (Figure 24.5). The strength of the force of gravity depends on two things. They are the mass of the objects and the distance between them. The greater the objects mass, the greater the force of attraction. As the distance between the objects increases, the force of attraction decreases.
planet earth
T_0525
Earth has a magnetic field (Figure 24.6). The magnetic field has north and south poles. The field extends several thousand kilometers into space. Earths magnetic field is created by the movements of molten metal in the outer core. Earths magnetic field shields us from harmful radiation from the Sun (Figure 24.7). If you have a large bar magnet, you can hang it from a string. Then watch as it aligns itself in a north-south direction, in response to Earths magnetic field. A compass needle also aligns with Earths magnetic field. People can navigate by finding magnetic north (Figure 24.8).
planet earth
T_0526
Earths axis is an imaginary line passing through the North and South Poles. Earthsrotation is its spins on its axis. Rotation is what a top does around its spindle. As Earth spins on its axis, it also orbits around the Sun. This is called Earths revolution. These motions lead to the cycles we see. Day and night, seasons, and the tides are caused by Earths motions.
planet earth
T_0527
In 1851, Lon Foucault, a French scientist, hung a heavy iron weight from a long wire. He pulled the weight to one side and then released it. The weight swung back and forth in a straight line. If Earth did not rotate, the pendulum would not change direction as it was swinging. But it did, or at least it appeared to. The direction of the pendulum appeared to change because Earth rotated beneath it. Figure 24.9 shows how this might look. A Turn of the Earth In this video, MIT students demonstrate how a Foucault Pendulum is used to prove that the Earth is rotating. See the video at . MEDIA Click image to the left or use the URL below. URL:
planet earth
T_0528
How long does it take Earth to spin once on its axis? One rotation is 24 hours. That rotation is the length of a day! Whatever time it is, the side of Earth facing the Sun has daylight. The side facing away from the Sun is dark. If you look at Earth from the North Pole, the planet spins counterclockwise. As the Earth rotates, you see the Sun moving across the sky from east to west. We often say that the Sun is rising or setting. The Sun rises in the east and sets in the west. Actually, it is the Earths rotation that makes it appear that way. The Moon and the stars at night also seem to rise in the east and set in the west. Earths rotation is also responsible for this too. As Earth turns, the Moon and stars change position in the sky.
planet earth
T_0529
The Earth is tilted 23 1/2 on its axis (Figure 24.10). This means that as the Earth rotates, one hemisphere has longer days with shorter nights. At the same time the other hemisphere has shorter days and longer nights. For example, in the Northern hemisphere summer begins on June 21. On this date, the North Pole is pointed directly toward the Sun. This is the longest day and shortest night of the year in the Northern Hemisphere. The South Pole is pointed away from the Sun. This means that the Southern Hemisphere experiences its longest night and shortest day (Figure 24.11). The hemisphere that is tilted away from the Sun is cooler because it receives less direct rays. As Earth orbits the Sun, the Northern Hemisphere goes from winter to spring, then summer and fall. The Southern Hemisphere does the opposite from summer to fall to winter to spring. When it is winter in the Northern hemisphere, it is summer in the Southern hemisphere, and vice versa.
planet earth
T_0530
Earths revolution around the Sun takes 365.24 days. That is equal to one year. The Earth stays in orbit around the Sun because of the Suns gravity (Figure 24.12). Earths orbit is not a circle. It is somewhat elliptical. So as we travel around the Sun, sometimes we are a little farther away from the Sun. Sometimes we are closer to the Sun. Students sometimes think the slightly oval shape of our orbit causes Earths seasons. Thats not true! The seasons are due to the tilt of Earths axis, as discussed above.
earths moon
T_0531
The Moon is Earths only natural satellite. The Moon is about one-fourth the size of Earth, 3,476 kilometers in diameter. Gravity on the Moon is only one-sixth as strong as it is on Earth. If you weigh 120 pounds on Earth, you would only weigh 20 pounds on the Moon. You can jump six times as high on the Moon as you can on Earth. The Moon makes no light of its own. Like every other body in the solar system, it only reflects light from the Sun. The Moon rotates on its axis once for every orbit it makes around the Earth. What does this mean? This means that the same side of the Moon always faces Earth. The side of the Moon that always faces Earth is called the near side. The side of the Moon that always faces away from Earth is called the far side (Figure 24.13). All people for all time have only seen the Moons near side. The far side has only been seen by spacecraft. The Moon has no atmosphere. With no atmosphere, the Moon is not protected from extreme temperatures. The average surface temperature during the day is approximately 107C (225F). Daytime temperatures can reach as high as 123C (253F). At night, the average temperature drops to -153C (-243F). The lowest temperatures measured are as low as -233C (-397F).
earths moon
T_0532
We all know what the Moon looks like. Its always looked the same during our lifetime. In fact, the Moon has looked the same to every person who has looked up at it for all time. Even the dinosaurs and trilobites, should they have looked up at it, would have seen the same thing. This is not true of Earth. Natural processes continually alter the Earths surface. Without these processes, would Earths surface resemble the Moons? Even though we cant see it from Earth, the Moon has changed recently too. Astronauts footprints are now on the Moon. They will remain unchanged for thousands of years, because there is no wind, rain, or living thing to disturb them. Only a falling meteorite could destroy them.
earths moon
T_0533
The landscape of the Moon - its surface features - is very different from Earth. The lunar landscape is covered by craters caused by asteroid impacts (Figure 24.14). The craters are bowl-shaped basins on the Moons surface. Because the Moon has no water, wind, or weather, the craters remain unchanged. The Moons coldest temperatures are found deep in the craters. The coldest craters are at the south pole on the Moons far side, where the Sun never shines. These temperatures are amongst the coldest in our entire solar system.
earths moon
T_0534
When you look at the Moon from Earth, you notice dark and light areas. The maria are dark, solid, flat areas of lava. Maria covers around 16% of the Moons surface, mostly on the near side. The maria formed about 3.0 to 3.5 billion years ago, when the Moon was continually bombarded by meteorites (Figure 24.15). Large meteorites broke through the Moons newly formed surface. This caused magma to flow out and fill the craters. Scientists estimate volcanic activity on the Moon ended about 1.2 billion years ago. The lighter parts on the Moon are called terrae, or highlands (Figure 24.15). They are higher than the maria and include several high mountain ranges. The rock that makes up the highlands is lighter in color and crystallized more slowly than the maria. The rock looks light because it reflects more of the Suns light.
earths moon
T_0535
There are no lakes, rivers, or even small puddles anywhere to be found on the Moons surface. So there is no running water and no atmosphere. This means that there is no erosion. Natural processes continually alter the Earths surface. Without these processes, our planets surface would be covered with meteorite craters just like the Moon. Many moons in our solar system have cratered surfaces. NASA scientists have discovered a large number of water molecules mixed in with lunar dirt. There is also surface water ice. Even though there is a very small amount of water, there is no atmosphere. Temperatures are extreme. So it comes as no surprise that there has not been evidence of life on the Moon.
earths moon
T_0536
Like Earth, the Moon has a distinct crust, mantle, and core. The crust is composed of igneous rock. This rock is rich in the elements oxygen, silicon, magnesium, and aluminum. On the near side, the Moons crust is about 60 kilometers thick. On the far side, the crust is about 100 kilometers thick. The mantle is made of rock like Earths mantle. The Moon has a small metallic core, perhaps 600 to 800 kilometers in diameter. The composition of the core is probably mostly iron with some sulfur and nickel. We learned this both from the rock samples gathered by astronauts and from spacecraft sent to the Moon.
the sun
T_0537
The Sun is made almost entirely of the elements hydrogen and helium. The Sun has no solid material. Most atoms in the Sun exist as plasma. Plasma is superheated gas with an electrical charge. Because the Sun is made of gases, it does not have a defined outer boundary. Like Earth, the Sun has an internal structure. The inner three layers make up what we would actually call the Sun.
the sun
T_0538
The core is the Suns innermost layer. The core is plasma. It has a temperature of around 15 million degrees Celsius (C). Nuclear fusion reactions create the immense temperature. In these reactions, hydrogen atoms fuse to form helium. This releases vast amounts of energy. The energy moves towards the outer layers of the Sun. Energy from the Suns core powers most of the solar system.
the sun
T_0539
The radiative zone is the next layer out. It has a temperature of about 4 million degrees C. Energy from the core travels through the radiative zone. The rate the energy travels is extremely slow. Light particles, called photons, can only travel a few millimeters before they hit another particle. The particles are absorbed and then released again. It may take 50 million years for a photon to travel all the way through the radiative zone.
the sun
T_0540
The convection zone surrounds the radiative zone. In the convection zone, hot material from near the Suns center rises. This material cools at the surface, and then plunges back downward. The material then receives more heat from the radiative zone.
the sun
T_0541
The three outer layers of the Sun are its atmosphere.
the sun
T_0542
The photosphere is the visible surface of the Sun (Figure 24.17). Its the part that we see shining. Surprisingly, the photosphere is also one of the coolest layers of the Sun. It is only about 6000 degrees C.
the sun
T_0543
The chromosphere lies above the photosphere. It is about 2,000 km thick. The thin chromosphere is heated by energy from the photosphere. Temperatures range from about 4000 degrees C to about 10,000 degrees C. The chromosphere is not as hot as other parts of the Sun, and it glows red. Jets of gas sometimes fly up through the chromosphere. With speeds up to 72,000 km per hour, the jets can fly as high as 10,000 kilometers.
the sun
T_0544
The corona is the outermost part of the Suns atmosphere. It is the Suns halo, or crown. With a temperature of 1 to 3 million K, the corona is much hotter than the photosphere. The corona extends millions of kilometers into space. Sometime you should try to see a total solar eclipse. If you do you will see the Suns corona shining out into space.
the sun
T_0545
The Sun has many incredible surface features. Dont try to look at them though! Looking directly at the Sun can cause blindness. Find the appropriate filters for a pair of binoculars or a telescope and enjoy!
the sun
T_0546
The most noticeable magnetic activity of the Sun is the appearance of sunspots. Sunspots are cooler, darker areas on the Suns surface (Figure 24.18). Sunspots occur in an 11 year cycle. The number of sunspots begins at a minimum. The number gradually increases to the maximum. Then the number returns to a minimum again. Sunspots form because loops of the Suns magnetic field break through the surface. Sunspots usually occur in pairs. The loop breaks through the surface where it comes out of the Sun. It breaks through again where it goes back into the Sun. Sunspots disrupt the transfer of heat from the Suns lower layers.
the sun
T_0547
A loop of the Suns magnetic field may break. This creates solar flares. Solar flares are violent explosions that release huge amounts of energy (Figure 24.19). The streams of high energy particles they emit make up the solar wind. Solar wind is dangerous to spacecraft and astronauts. Solar flares can even cause damage on Earth. They have knocked out entire power grids and can disturb radio, satellite, and cell phone communications.
the sun
T_0548
Another amazing feature on the Sun is solar prominences. Plasma flows along the loop that connects sunspots. This plasma forms a glowing arch. The arch is a solar prominence. Solar prominences can reach thousands of kilometers into the Suns atmosphere. Prominences can last for a day to several months. Prominences can be seen during a total solar eclipse. NASAs Solar Dynamics Observatory (SDO) was launched on February 11, 2010. SDO is studying the Suns magnetic field. This includes how the Sun affects Earths atmosphere and climate. SDO provides extremely high resolution images. The craft gathers data faster than anything that ever studied the Sun. To learn more about the SDO mission, visit: http://sdo.gsfc.nasa.gov To find these videos for download, check out: There are other ways to connect with NASA. Subscribe to NASAs Goddard Shorts HD podcast (http://svs.gsfc.nasa
the sun and the earthmoon system
T_0549
When a new moon passes directly between the Earth and the Sun, it causes a solar eclipse (Figure 24.20). The Moon casts a shadow on the Earth and blocks our view of the Sun. This happens only all three are lined up and in the same plane. This plane is called the ecliptic. The ecliptic is the plane of Earths orbit around the Sun. The Moons shadow has two distinct parts. The umbra is the inner, cone-shaped part of the shadow. It is the part in which all of the light has been blocked. The penumbra is the outer part of Moons shadow. It is where the light is only partially blocked. When the Moons shadow completely blocks the Sun, it is a total solar eclipse (Figure 24.21). If only part of the Sun is out of view, it is a partial solar eclipse. Solar eclipses are rare events. They usually only last a few minutes. That is because the Moons shadow only covers a very small area on Earth and Earth is turning very rapidly. Solar eclipses are amazing to experience. It appears like night only strange. Birds may sing as they do at dusk. Stars become visible in the sky and it gets colder outside. Unlike at night, the Sun is out. So during a solar eclipse, its easy to see the Suns corona and solar prominences. This NASA page will inform you on when solar eclipses are expected: http://eclipse.gsfc.nasa.gov/solar.html
the sun and the earthmoon system
T_0550
Sometimes a full moon moves through Earths shadow. This is a lunar eclipse (Figure 24.22). During a total lunar eclipse, the Moon travels completely in Earths umbra. During a partial lunar eclipse, only a portion of the Moon enters Earths umbra. When the Moon passes through Earths penumbra, it is a penumbral eclipse. Since Earths shadow is large, a lunar eclipse lasts for hours. Anyone with a view of the Moon can see a lunar eclipse. Partial lunar eclipses occur at least twice a year, but total lunar eclipses are less common. The Moon glows with a dull red coloring during a total lunar eclipse.
the sun and the earthmoon system
T_0551
The Moon does not produce any light of its own. It only reflects light from the Sun. As the Moon moves around the Earth, we see different parts of the Moon lit up by the Sun. This causes the phases of the Moon. As the Moon revolves around Earth, it changes from fully lit to completely dark and back again. A full moon occurs when the whole side facing Earth is lit. This happens when Earth is between the Moon and the Sun. About one week later, the Moon enters the quarter-moon phase. Only half of the Moons lit surface is visible from Earth, so it appears as a half circle. When the Moon moves between Earth and the Sun, the side facing Earth is completely dark. This is called the new moon phase. Sometimes you can just barely make out the outline of the new moon in the sky. This is because some sunlight reflects off the Earth and hits the Moon. Before and after the quarter-moon phases are the gibbous and crescent phases. During the crescent moon phase, the Moon is less than half lit. It is seen as only a sliver or crescent shape. During the gibbous moon phase, the Moon is more than half lit. It is not full. The Moon undergoes a complete cycle of phases about every 29.5 days.
introduction to the solar system
T_0553
The Sun and all the objects that are held by the Suns gravity are known as the solar system. These objects all revolve around the Sun. The ancient Greeks recognized five planets. These lights in the night sky changed their position against the background of stars. They appeared to wander. In fact, the word planet comes from a Greek word meaning wanderer. These objects were thought to be important, so they named them after gods from their mythology. The names for the planets Mercury, Venus, Mars, Jupiter, and Saturn came from the names of gods and a goddess.
introduction to the solar system
T_0554
The ancient Greeks thought that Earth was at the center of the universe, as shown in Figure 25.1. The sky had a set of spheres layered on top of one another. Each object in the sky was attached to one of these spheres. The object moved around Earth as that sphere rotated. These spheres contained the Moon, the Sun, and the five planets they recognized: Mercury, Venus, Mars, Jupiter, and Saturn. An outer sphere contained all the stars. The planets appear to move much faster than the stars, so the Greeks placed them closer to Earth. Ptolemy published this model of the solar system around 150 AD.
introduction to the solar system
T_0555
About 1,500 years after Ptolemy, Copernicus proposed a startling idea. He suggested that the Sun is at the center of the universe. Copernicus developed his model because it better explained the motions of the planets. Figure 25.2 shows both the Earth-centered and Sun-centered models. Copernicus did not publish his new model until his death. He knew that it was heresy to say that Earth was not the center of the universe. It wasnt until Galileo developed his telescope that people would take the Copernican