a
stringlengths
138
6.19k
b
stringlengths
4
6.19k
label
int64
1
1
Cardiovascular magnetic resonance feature tracking (CMR-FT) is increasingly used for myocardial deformation assessment including ventricular strain, showing prognostic value beyond established risk markers if used in experienced centres.,Little is known about the impact of appropriate training on CMR-FT performance.,Consequently, this study aimed to evaluate the impact of training on observer variance using different commercially available CMR-FT software.,Intra- and inter-observer reproducibility was assessed prior to and after dedicated one-hour observer training.,Employed FT software included 3 different commercially available platforms (TomTec, Medis, Circle).,Left (LV) and right (RV) ventricular global longitudinal as well as LV circumferential and radial strains (GLS, GCS and GRS) were studied in 12 heart failure patients and 12 healthy volunteers.,Training improved intra- and inter-observer reproducibility.,GCS and LV GLS showed the highest reproducibility before (ICC >0.86 and >0.81) and after training (ICC >0.91 and >0.92).,RV GLS and GRS were more susceptible to tracking inaccuracies and reproducibility was lower.,Inter-observer reproducibility was lower than intra-observer reproducibility prior to training with more pronounced improvements after training.,Before training, LV strain reproducibility was lower in healthy volunteers as compared to patients with no differences after training.,Whilst LV strain reproducibility was sufficient within individual software solutions inter-software comparisons revealed considerable software related variance.,Observer experience is an important source of variance in CMR-FT derived strain assessment.,Dedicated observer training significantly improves reproducibility with most profound benefits in states of high myocardial contractility and potential to facilitate widespread clinical implementation due to optimized robustness and diagnostic performance.
Disease progression and heart failure development in Ebstein’s Anomaly (EA) of the tricuspid valve is characterized by both right and left ventricular (LV) deterioration.,The mechanisms underlying LV dysfunction and their role in heart failure development are incompletely understood.,We hypothesized that LV dyssynchrony and impaired torsion and recoil mechanics induced by paradoxical movement of the basal septum may play a role in heart failure development.,31 EA patients and 31 matched controls underwent prospective cardiovascular magnetic resonance (CMR).,CMR feature tracking (CMR-FT) was performed on apical, midventricular and basal short-axis and 4D-volume analysis was performed using three long-axis views and a short axis cine stack employing dedicated software.,Circumferential uniformity ratio estimates (CURE) time-to-peak-based circumferential systolic dyssynchrony index (C-SDI), 4D volume analysis derived SDI (4D-SDI), torsion (Tor) and systolic (sysTR) and diastolic torsion rate (diasTR) were calculated for the LV.,QRS duration, brain natriuretic peptide, NYHA and Total R/L-Volume Index (R/L Index) were obtained.,EA patients (31.5 years; controls 31.4 years) had significantly longer QRS duration (123.35 ms ± 26.36 vs.,97.33 ms ± 11.89 p < 0.01) and showed more LV dyssynchrony (4D-SDI 7.60% ± 4.58 vs.,2.54% ± 0.62, p < 0.001; CURE 0.77 ± 0.05 vs.,0.86 ± 0.03, p < 0.001; C-SDI 7.70 ± 3.38 vs.,3.80 ± 0.91, p = 0.001).,There were significant associations of LV dyssynchrony with heart failure parameters and QRS duration.,Although torsion and recoil mechanics did not differ significantly (p > 0.05) there was an association of torsion and recoil mechanics with dyssynchrony parameters CURE (sysTR r = −0.426; p = 0.017, diasTR r = 0.419; p = 0.019), 4D-SDI (sysTR r = 0.383; p = 0.044) and C-SDI (diasTR r = −0.364; p = 0.044).,EA is characterized by LV intra-ventricular dyssynchrony, which is associated with heart failure and disease severity parameters.,Markers of dyssynchrony can easily be quantified from CMR-FT, and may have a role in the assessment of altered cardiac function, carrying potential management implications for EA patients.,The online version of this article (10.1186/s12968-017-0414-y) contains supplementary material, which is available to authorized users.
1
Forensic investigations generally contain extensive morphological examinations to accurately diagnose the cause of death.,Thus, the appearance of a new disease often creates emerging challenges in morphological examinations due to the lack of available data from autopsy- or biopsy-based research.,Since late December 2019, an outbreak of a novel seventh coronavirus disease has been reported in China caused by “severe acute respiratory syndrome coronavirus 2” (SARS-CoV-2).,On March 11, 2020, the new clinical condition COVID-19 (Corona-Virus-Disease-19) was declared a pandemic by the World Health Organization (WHO).,Patients with COVID-19 mainly have a mild disease course, but severe disease onset might result in death due to proceeded lung injury with massive alveolar damage and progressive respiratory failure.,However, the detailed mechanisms that cause organ injury still remain unclear.,We investigated the morphological findings of a COVID-19 patient who died during self-isolation.,Pathologic examination revealed massive bilateral alveolar damage, indicating early-phase “acute respiratory distress syndrome” (ARDS).,This case emphasizes the possibility of a rapid severe disease onset in previously mild clinical condition and highlights the necessity of a complete autopsy to gain a better understanding of the pathophysiological changes in SARS-CoV-2 infections.
The new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has caused more than 210 000 deaths worldwide.,However, little is known about the causes of death and the virus's pathologic features.,To validate and compare clinical findings with data from medical autopsy, virtual autopsy, and virologic tests.,Prospective cohort study.,Autopsies performed at a single academic medical center, as mandated by the German federal state of Hamburg for patients dying with a polymerase chain reaction-confirmed diagnosis of COVID-19.,The first 12 consecutive COVID-19-positive deaths.,Complete autopsy, including postmortem computed tomography and histopathologic and virologic analysis, was performed.,Clinical data and medical course were evaluated.,Results: Median patient age was 73 years (range, 52 to 87 years), 75% of patients were male, and death occurred in the hospital (n = 10) or outpatient sector (n = 2).,Coronary heart disease and asthma or chronic obstructive pulmonary disease were the most common comorbid conditions (50% and 25%, respectively).,Autopsy revealed deep venous thrombosis in 7 of 12 patients (58%) in whom venous thromboembolism was not suspected before death; pulmonary embolism was the direct cause of death in 4 patients.,Postmortem computed tomography revealed reticular infiltration of the lungs with severe bilateral, dense consolidation, whereas histomorphologically diffuse alveolar damage was seen in 8 patients.,In all patients, SARS-CoV-2 RNA was detected in the lung at high concentrations; viremia in 6 of 10 and 5 of 12 patients demonstrated high viral RNA titers in the liver, kidney, or heart.,Limited sample size.,The high incidence of thromboembolic events suggests an important role of COVID-19-induced coagulopathy.,Further studies are needed to investigate the molecular mechanism and overall clinical incidence of COVID-19-related death, as well as possible therapeutic interventions to reduce it.,University Medical Center Hamburg-Eppendorf.,Little is known of the pathologic changes that lead to death in patients with COVID-19.,This study reports the autopsy findings of consecutive patients who died with a diagnosis of COVID-19.
1
The association of severe coronavirus disease 2019 (COVID-19) with an increased risk of venous thromboembolism (VTE) has resulted in specific guidelines for its prevention and management.,The VTE risk appears highest in those with critical care admission.,The need for postdischarge thromboprophylaxis remains controversial, which is reflected in conflicting expert guideline recommendations.,Our local protocol provides thromboprophylaxis to COVID-19 patients during admission only.,We report postdischarge VTE data from an ongoing quality improvement program incorporating root-cause analysis of hospital-associated VTE (HA-VTE).,Following 1877 hospital discharges associated with COVID-19, 9 episodes of HA-VTE were diagnosed within 42 days, giving a postdischarge rate of 4.8 per 1000 discharges.,Over 2019, following 18 159 discharges associated with a medical admission; there were 56 episodes of HA-VTE within 42 days (3.1 per 1000 discharges).,The odds ratio for postdischarge HA-VTE associated with COVID-19 compared with 2019 was 1.6 (95% confidence interval, 0.77-3.1).,COVID-19 hospitalization does not appear to increase the risk of postdischarge HA-VTE compared with hospitalization with other acute medical illness.,Given that the risk-benefit ratio of postdischarge thromboprophylaxis remains uncertain, randomized controlled trials to evaluate the role of continuing thromboprophylaxis in COVID-19 patients following hospital discharge are required.,•The rate of symptomatic postdischarge VTE following hospitalization with COVID-19 is low.,The rate of symptomatic postdischarge VTE following hospitalization with COVID-19 is low.
Acute respiratory failure and a systemic coagulopathy are critical aspects of the morbidity and mortality characterizing infection with severe acute respiratory distress syndrome-associated coronavirus-2, the etiologic agent of Coronavirus disease 2019 (COVID-19).,We examined skin and lung tissues from 5 patients with severe COVID-19 characterized by respiratory failure (n= 5) and purpuric skin rash (n = 3).,COVID-19 pneumonitis was predominantly a pauci-inflammatory septal capillary injury with significant septal capillary mural and luminal fibrin deposition and permeation of the interalveolar septa by neutrophils.,No viral cytopathic changes were observed and the diffuse alveolar damage (DAD) with hyaline membranes, inflammation, and type II pneumocyte hyperplasia, hallmarks of classic acute respiratory distress syndrome, were not prominent.,These pulmonary findings were accompanied by significant deposits of terminal complement components C5b-9 (membrane attack complex), C4d, and mannose binding lectin (MBL)-associated serine protease (MASP)2, in the microvasculature, consistent with sustained, systemic activation of the complement pathways.,The purpuric skin lesions similarly showed a pauci-inflammatory thrombogenic vasculopathy, with deposition of C5b-9 and C4d in both grossly involved and normally-appearing skin.,In addition, there was co-localization of COVID-19 spike glycoproteins with C4d and C5b-9 in the interalveolar septa and the cutaneous microvasculature of 2 cases examined.,In conclusion, at least a subset of sustained, severe COVID-19 may define a type of catastrophic microvascular injury syndrome mediated by activation of complement pathways and an associated procoagulant state.,It provides a foundation for further exploration of the pathophysiologic importance of complement in COVID-19, and could suggest targets for specific intervention.
1
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has been associated with a significant risk of thrombotic events in critically ill patients.,To summarize the findings of a multinational observational cohort of patients with SARS-CoV-2 and cerebrovascular disease.,Retrospective observational cohort of consecutive adults evaluated in the emergency department and/or admitted with coronavirus disease 2019 (COVID-19) across 31 hospitals in four countries (1 February 2020-16 June 2020).,The primary outcome was the incidence rate of cerebrovascular events, inclusive of acute ischemic stroke, intracranial hemorrhages (ICH), and cortical vein and/or sinus thrombosis (CVST).,Of the 14,483 patients with laboratory-confirmed SARS-CoV-2, 172 were diagnosed with an acute cerebrovascular event (1.13% of cohort; 1130/100,000 patients, 95%CI 970-1320/100,000), 68/171 (40.5%) were female and 96/172 (55.8%) were between the ages 60 and 79 years.,Of these, 156 had acute ischemic stroke (1.08%; 1080/100,000 95%CI 920-1260/100,000), 28 ICH (0.19%; 190/100,000 95%CI 130-280/100,000), and 3 with CVST (0.02%; 20/100,000, 95%CI 4-60/100,000).,The in-hospital mortality rate for SARS-CoV-2-associated stroke was 38.1% and for ICH 58.3%.,After adjusting for clustering by site and age, baseline stroke severity, and all predictors of in-hospital mortality found in univariate regression (p < 0.1: male sex, tobacco use, arrival by emergency medical services, lower platelet and lymphocyte counts, and intracranial occlusion), cryptogenic stroke mechanism (aOR 5.01, 95%CI 1.63-15.44, p < 0.01), older age (aOR 1.78, 95%CI 1.07-2.94, p = 0.03), and lower lymphocyte count on admission (aOR 0.58, 95%CI 0.34-0.98, p = 0.04) were the only independent predictors of mortality among patients with stroke and COVID-19.,COVID-19 is associated with a small but significant risk of clinically relevant cerebrovascular events, particularly ischemic stroke.,The mortality rate is high for COVID-19-associated cerebrovascular complications; therefore, aggressive monitoring and early intervention should be pursued to mitigate poor outcomes.
COVID-19 may predispose to both venous and arterial thromboembolism due to excessive inflammation, hypoxia, immobilisation and diffuse intravascular coagulation.,Reports on the incidence of thrombotic complications are however not available.,We evaluated the incidence of the composite outcome of symptomatic acute pulmonary embolism (PE), deep-vein thrombosis, ischemic stroke, myocardial infarction or systemic arterial embolism in all COVID-19 patients admitted to the ICU of 2 Dutch university hospitals and 1 Dutch teaching hospital.,We studied 184 ICU patients with proven COVID-19 pneumonia of whom 23 died (13%), 22 were discharged alive (12%) and 139 (76%) were still on the ICU on April 5th 2020.,All patients received at least standard doses thromboprophylaxis.,The cumulative incidence of the composite outcome was 31% (95%CI 20-41), of which CTPA and/or ultrasonography confirmed VTE in 27% (95%CI 17-37%) and arterial thrombotic events in 3.7% (95%CI 0-8.2%).,PE was the most frequent thrombotic complication (n = 25, 81%).,Age (adjusted hazard ratio (aHR) 1.05/per year, 95%CI 1.004-1.01) and coagulopathy, defined as spontaneous prolongation of the prothrombin time > 3 s or activated partial thromboplastin time > 5 s (aHR 4.1, 95%CI 1.9-9.1), were independent predictors of thrombotic complications.,The 31% incidence of thrombotic complications in ICU patients with COVID-19 infections is remarkably high.,Our findings reinforce the recommendation to strictly apply pharmacological thrombosis prophylaxis in all COVID-19 patients admitted to the ICU, and are strongly suggestive of increasing the prophylaxis towards high-prophylactic doses, even in the absence of randomized evidence.
1
Coronavirus disease 2019 (COVID‐19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), has rapidly evolved into a sweeping pandemic.,Its major manifestation is in the respiratory tract, and the general extent of organ involvement and the microscopic changes in the lungs remain insufficiently characterised.,Autopsies are essential to elucidate COVID‐19‐associated organ alterations.,This article reports the autopsy findings of 21 COVID‐19 patients hospitalised at the University Hospital Basel and at the Cantonal Hospital Baselland, Switzerland.,An in‐corpore technique was performed to ensure optimal staff safety.,The primary cause of death was respiratory failure with exudative diffuse alveolar damage and massive capillary congestion, often accompanied by microthrombi despite anticoagulation.,Ten cases showed superimposed bronchopneumonia.,Further findings included pulmonary embolism (n = 4), alveolar haemorrhage (n = 3), and vasculitis (n = 1).,Pathologies in other organ systems were predominantly attributable to shock; three patients showed signs of generalised and five of pulmonary thrombotic microangiopathy.,Six patients were diagnosed with senile cardiac amyloidosis upon autopsy.,Most patients suffered from one or more comorbidities (hypertension, obesity, cardiovascular diseases, and diabetes mellitus).,Additionally, there was an overall predominance of males and individuals with blood group A (81% and 65%, respectively).,All relevant histological slides are linked as open‐source scans in supplementary files.,This study provides an overview of postmortem findings in COVID‐19 cases, implying that hypertensive, elderly, obese, male individuals with severe cardiovascular comorbidities as well as those with blood group A may have a lower threshold of tolerance for COVID‐19.,This provides a pathophysiological explanation for higher mortality rates among these patients.
COVID-19 affects millions of patients worldwide, with clinical presentation ranging from isolated thrombosis to acute respiratory distress syndrome (ARDS) requiring ventilator support.,Neutrophil extracellular traps (NETs) originate from decondensed chromatin released to immobilize pathogens, and they can trigger immunothrombosis.,We studied the connection between NETs and COVID-19 severity and progression.,We conducted a prospective cohort study of COVID-19 patients (n = 33) and age- and sex-matched controls (n = 17).,We measured plasma myeloperoxidase (MPO)-DNA complexes (NETs), platelet factor 4, RANTES, and selected cytokines.,Three COVID-19 lung autopsies were examined for NETs and platelet involvement.,We assessed NET formation ex vivo in COVID-19 neutrophils and in healthy neutrophils incubated with COVID-19 plasma.,We also tested the ability of neonatal NET-inhibitory factor (nNIF) to block NET formation induced by COVID-19 plasma.,Plasma MPO-DNA complexes increased in COVID-19, with intubation (P < .0001) and death (P < .0005) as outcome.,Illness severity correlated directly with plasma MPO-DNA complexes (P = .0360), whereas Pao2/fraction of inspired oxygen correlated inversely (P = .0340).,Soluble and cellular factors triggering NETs were significantly increased in COVID-19, and pulmonary autopsies confirmed NET-containing microthrombi with neutrophil-platelet infiltration.,Finally, COVID-19 neutrophils ex vivo displayed excessive NETs at baseline, and COVID-19 plasma triggered NET formation, which was blocked by nNIF.,Thus, NETs triggering immunothrombosis may, in part, explain the prothrombotic clinical presentations in COVID-19, and NETs may represent targets for therapeutic intervention.,•NETs contribute to microthrombi through platelet-neutrophil interactions in COVID-19 ARDS.•nNIF blocks NETs induced by COVID-19 plasma and represents a potential therapeutic intervention in COVID-19.,NETs contribute to microthrombi through platelet-neutrophil interactions in COVID-19 ARDS.,nNIF blocks NETs induced by COVID-19 plasma and represents a potential therapeutic intervention in COVID-19.
1
The prevalence of venous thromboembolic event (VTE) and arterial thromboembolic event (ATE) thromboembolic events in patients with COVID-19 remains largely unknown.,In this meta-analysis, we systematically searched for observational studies describing the prevalence of VTE and ATE in COVID-19 up to 30 September 2020.,We analysed findings from 102 studies (64 503 patients).,The frequency of COVID-19-related VTE was 14.7% (95% CI 12.1% to 17.6%, I2=94%; 56 studies; 16 507 patients).,The overall prevalence rates of pulmonary embolism (PE) and leg deep vein thrombosis were 7.8% (95% CI 6.2% to 9.4%, I2=94%; 66 studies; 23 117 patients) and 11.2% (95% CI 8.4% to 14.3%, I2=95%; 48 studies; 13 824 patients), respectively.,Few were isolated subsegmental PE.,The VTE prevalence was significantly higher in intensive care unit (ICU) (23.2%, 95% CI 17.5% to 29.6%, I2=92%, vs 9.0%, 95% CI 6.9% to 11.4%, I2=95%; pinteraction<0.0001) and in series systematically screening patients compared with series testing symptomatic patients (25.2% vs 12.7%, pinteraction=0.04).,The frequency rates of overall ATE, acute coronary syndrome, stroke and other ATE were 3.9% (95% CI 2.0% to to 3.0%, I2=96%; 16 studies; 7939 patients), 1.6% (95% CI 1.0% to 2.2%, I2=93%; 27 studies; 40 597 patients) and 0.9% (95% CI 0.5% to 1.5%, I2=84%; 17 studies; 20 139 patients), respectively.,Metaregression and subgroup analyses failed to explain heterogeneity of overall ATE.,High heterogeneity limited the value of estimates.,Patients admitted in the ICU for severe COVID-19 had a high risk of VTE.,Conversely, further studies are needed to determine the specific effects of COVID-19 on the risk of ATE or VTE in less severe forms of the disease.
Coronavirus disease-2019 (COVID-19) is thought to predispose patients to thrombotic disease.,To date there are few reports of ST-segment elevation myocardial infarction (STEMI) caused by type 1 myocardial infarction in patients with COVID-19.,The aim of this study was to describe the demographic, angiographic, and procedural characteristics alongside clinical outcomes of consecutive cases of COVID-19-positive patients with STEMI compared with COVID-19-negative patients.,This was a single-center, observational study of 115 consecutive patients admitted with confirmed STEMI treated with primary percutaneous coronary intervention at Barts Heart Centre between March 1, 2020, and May 20, 2020.,Patients with STEMI presenting with concurrent COVID-19 infection had higher levels of troponin T and lower lymphocyte count, but elevated D-dimer and C-reactive protein.,There were significantly higher rates of multivessel thrombosis, stent thrombosis, higher modified thrombus grade post first device with consequently higher use of glycoprotein IIb/IIIa inhibitors and thrombus aspiration.,Myocardial blush grade and left ventricular function were significantly lower in patients with COVID-19 with STEMI.,Higher doses of heparin to achieve therapeutic activated clotting times were also noted.,Importantly, patients with STEMI presenting with COVID-19 infection had a longer in-patient admission and higher rates of intensive care admission.,In patients presenting with STEMI and concurrent COVID-19 infection, there is a strong signal toward higher thrombus burden and poorer outcomes.,This supports the need for establishing COVID-19 status in all STEMI cases.,Further work is required to understand the mechanism of increased thrombosis and the benefit of aggressive antithrombotic therapy in selected cases.
1
One of the defining features of the novel coronavirus disease 2019 infection has been high rates of venous thromboses.,The present study aimed to describe the prevalence of venous thromboembolism in critically ill patients receiving different regimens of prophylactic anticoagulation.,Single-center retrospective review using data from patients with confirmed severe acute respiratory syndrome coronavirus 2 requiring intubation.,Tertiary-care center in Indianapolis, IN, United States.,Patients hospitalized at international units Health Methodist Hospital with severe acute respiratory syndrome coronavirus 2 requiring intubation between March 23, 2020, and April 8, 2020, who underwent ultrasound evaluation for venous thrombosis.,None.,A total of 45 patients were included.,Nineteen of 45 patients (42.2%) were found to have deep venous thrombosis.,Patients found to have deep venous thrombosis had no difference in time to intubation (p = 0.97) but underwent ultrasound earlier in their hospital course (p = 0.02).,Sequential Organ Failure Assessment scores were similar between the groups on day of intubation and day of ultrasound (p = 0.44 and p = 0.07, respectively). d-dimers were markedly higher in patients with deep venous thrombosis, both for maximum value and value on day of ultrasound (p < 0.01 for both).,Choice of prophylactic regimen was not related to presence of deep venous thrombosis (p = 0.35).,Ultrasound evaluation is recommended if d-dimer is greater than 2,000 ng/mL (sensitivity 95%, specificity 46%) and empiric anticoagulation considered if d-dimer is greater than 5,500 ng/mL (sensitivity 53%, specificity 88%).,Deep venous thrombosis is very common in critically ill patients with coronavirus disease 2019.,There was no difference in incidence of deep venous thrombosis among different pharmacologic prophylaxis regimens, although our analysis is limited by small sample size. d-dimer values are elevated in the majority of these patients, but there may be thresholds at which screening ultrasound or even empiric systemic anticoagulation is indicated.
Little evidence of increased thrombotic risk is available in COVID-19 patients.,Our purpose was to assess thrombotic risk in severe forms of SARS-CoV-2 infection.,All patients referred to 4 intensive care units (ICUs) from two centers of a French tertiary hospital for acute respiratory distress syndrome (ARDS) due to COVID-19 between March 3rd and 31st 2020 were included.,Medical history, symptoms, biological data and imaging were prospectively collected.,Propensity score matching was performed to analyze the occurrence of thromboembolic events between non-COVID-19 ARDS and COVID-19 ARDS patients.,150 COVID-19 patients were included (122 men, median age 63 [53; 71] years, SAPSII 49 [37; 64] points).,Sixty-four clinically relevant thrombotic complications were diagnosed in 150 patients, mainly pulmonary embolisms (16.7%). 28/29 patients (96.6%) receiving continuous renal replacement therapy experienced circuit clotting.,Three thrombotic occlusions (in 2 patients) of centrifugal pump occurred in 12 patients (8%) supported by ECMO.,Most patients (> 95%) had elevated D-dimer and fibrinogen.,No patient developed disseminated intravascular coagulation.,Von Willebrand (vWF) activity, vWF antigen and FVIII were considerably increased, and 50/57 tested patients (87.7%) had positive lupus anticoagulant.,Comparison with non-COVID-19 ARDS patients (n = 145) confirmed that COVID-19 ARDS patients (n = 77) developed significantly more thrombotic complications, mainly pulmonary embolisms (11.7 vs.,2.1%, p < 0.008).,Coagulation parameters significantly differed between the two groups.,Despite anticoagulation, a high number of patients with ARDS secondary to COVID-19 developed life-threatening thrombotic complications.,Higher anticoagulation targets than in usual critically ill patients should therefore probably be suggested.,The online version of this article (10.1007/s00134-020-06062-x) contains supplementary material, which is available to authorized users.
1
The aim of the study was to describe ECG modifications and arrhythmic events in COVID-19 patients undergoing hydroxychloroquine (HCQ) therapy in different clinical settings.,COVID-19 patients at seven institutions receiving HCQ therapy from whom a baseline and at least one ECG at 48+ h were available were enrolled in the study.,QT/QTc prolongation, QT-associated and QT-independent arrhythmic events, arrhythmic mortality, and overall mortality during HCQ therapy were assessed.,A total of 649 COVID-19 patients (61.9 ± 18.7 years, 46.1% males) were enrolled.,HCQ therapy was administrated as a home therapy regimen in 126 (19.4%) patients, and as an in-hospital-treatment to 495 (76.3%) hospitalized and 28 (4.3%) intensive care unit (ICU) patients.,At 36-72 and at 96+ h after the first HCQ dose, 358 and 404 ECGs were obtained, respectively.,A significant QT/QTc interval prolongation was observed (P < 0.001), but the magnitude of the increase was modest [+13 (9-16) ms].,Baseline QT/QTc length and presence of fever (P = 0.001) at admission represented the most important determinants of QT/QTc prolongation.,No arrhythmic-related deaths were reported.,The overall major ventricular arrhythmia rate was low (1.1%), with all events found not to be related to QT or HCQ therapy at a centralized event evaluation.,No differences in QT/QTc prolongation and QT-related arrhythmias were observed across different clinical settings, with non-QT-related arrhythmias being more common in the intensive care setting.,HCQ administration is safe for a short-term treatment for patients with COVID-19 infection regardless of the clinical setting of delivery, causing only modest QTc prolongation and no directly attributable arrhythmic deaths.
As the coronavirus disease 19 (COVID-19) global pandemic rages across the globe, the race to prevent and treat this deadly disease has led to the “off-label” repurposing of drugs such as hydroxychloroquine and lopinavir/ritonavir, which have the potential for unwanted QT-interval prolongation and a risk of drug-induced sudden cardiac death.,With the possibility that a considerable proportion of the world’s population soon could receive COVID-19 pharmacotherapies with torsadogenic potential for therapy or postexposure prophylaxis, this document serves to help health care professionals mitigate the risk of drug-induced ventricular arrhythmias while minimizing risk of COVID-19 exposure to personnel and conserving the limited supply of personal protective equipment.
1
Individual studies have reported widely variable rates for VTE and bleeding among hospitalized patients with coronavirus disease 2019 (COVID-19).,What is the incidence of VTE and bleeding among hospitalized patients with COVID-19?,In this systematic review and meta-analysis, 15 standard sources and COVID-19-specific sources were searched between January 1, 2020, and July 31, 2020, with no restriction according to language.,Incidence estimates were pooled by using random effects meta-analyses.,Heterogeneity was evaluated by using the I2 statistic, and publication bias was assessed by using the Begg and Egger tests.,The pooled incidence was 17.0% (95% CI, 13.4-20.9) for VTE, 12.1% (95% CI, 8.4-16.4) for DVT, 7.1% (95% CI, 5.3-9.1) for pulmonary embolism (PE), 7.8% (95% CI, 2.6-15.3) for bleeding, and 3.9% (95% CI, 1.2-7.9) for major bleeding.,In subgroup meta-analyses, the incidence of VTE was higher when assessed according to screening (33.1% vs 9.8% by clinical diagnosis), among patients in the ICU (27.9% vs 7.1% in the ward), in prospective studies (25.5% vs 12.4% in retrospective studies), and with the inclusion of catheter-associated thrombosis/isolated distal DVTs and isolated subsegmental PEs.,The highest pooled incidence estimate of bleeding was reported for patients receiving intermediate- or full-dose anticoagulation (21.4%) and the lowest in the only prospective study that assessed bleeding events (2.7%).,Among hospitalized patients with COVID-19, the overall estimated pooled incidence of VTE was 17.0%, with higher rates with routine screening, inclusion of distal DVT, and subsegmental PE, in critically ill patients and in prospective studies.,Bleeding events were observed in 7.8% of patients and were sensitive to use of escalated doses of anticoagulants and nature of data collection.,Additional studies are required to ascertain the significance of various thrombotic events and to identify strategies to improve patient outcomes.,PROSPERO; No.: CRD42020198864; URL: https://www.crd.york.ac.uk/prospero/.
Coagulopathy is a common abnormality in patients with COVID‐19.,However, the exact incidence of venous thromboembolic event is unknown in anticoagulated, severe COVID‐19 patients.,Systematic assessment of venous thromboembolism (VTE) using complete duplex ultrasound (CDU) in anticoagulated COVID‐19 patients.,We performed a retrospective study in 2 French intensive care units (ICU) where CDU is performed as a standard of care.,A CDU from thigh to ankle at selected sites with Doppler waveforms and images was performed early during ICU stay in patients admitted with COVID‐19.,Anticoagulation dose was left to the discretion of the treating physician based on the individual risk of thrombosis.,Patients were classified as treated with prophylactic anticoagulation or therapeutic anticoagulation.,Pulmonary embolism was systematically searched in patients with persistent hypoxemia or secondary deterioration.,From March 19 to April 11, 2020, 26 consecutive patients with severe COVID‐19 were screened for VTE.,Eight patients (31%) were treated with prophylactic anticoagulation, whereas 18 patients (69%) were treated with therapeutic anticoagulation.,The overall rate of VTE in patients was 69%.,The proportion of VTE was significantly higher in patients treated with prophylactic anticoagulation when compared with the other group (100% vs 56%, respectively, P = .03).,Surprisingly, we found a high rate of thromboembolic events in COVID‐19 patients treated with therapeutic anticoagulation, with 56% of VTE and 6 pulmonary embolisms.,Our results suggest considering both systematic screening of VTE and early therapeutic anticoagulation in severe ICU COVID‐19 patients.
1
With the spread of coronavirus disease 2019 (COVID-19) during the current worldwide pandemic, there is mounting evidence that patients affected by the illness may develop clinically significant coagulopathy with thromboembolic complications including ischemic stroke.,However, there is limited data on the clinical characteristics, stroke mechanism, and outcomes of patients who have a stroke and COVID-19.,We conducted a retrospective cohort study of consecutive patients with ischemic stroke who were hospitalized between March 15, 2020, and April 19, 2020, within a major health system in New York, the current global epicenter of the pandemic.,We compared the clinical characteristics of stroke patients with a concurrent diagnosis of COVID-19 to stroke patients without COVID-19 (contemporary controls).,In addition, we compared patients to a historical cohort of patients with ischemic stroke discharged from our hospital system between March 15, 2019, and April 15, 2019 (historical controls).,During the study period in 2020, out of 3556 hospitalized patients with diagnosis of COVID-19 infection, 32 patients (0.9%) had imaging proven ischemic stroke.,Cryptogenic stroke was more common in patients with COVID-19 (65.6%) as compared to contemporary controls (30.4%, P=0.003) and historical controls (25.0%, P<0.001).,When compared with contemporary controls, COVID-19 positive patients had higher admission National Institutes of Health Stroke Scale score and higher peak D-dimer levels.,When compared with historical controls, COVID-19 positive patients were more likely to be younger men with elevated troponin, higher admission National Institutes of Health Stroke Scale score, and higher erythrocyte sedimentation rate.,Patients with COVID-19 and stroke had significantly higher mortality than historical and contemporary controls.,We observed a low rate of imaging-confirmed ischemic stroke in hospitalized patients with COVID-19.,Most strokes were cryptogenic, possibly related to an acquired hypercoagulability, and mortality was increased.,Studies are needed to determine the utility of therapeutic anticoagulation for stroke and other thrombotic event prevention in patients with COVID-19.
Patients with the Coronavirus Disease of 2019 (COVID-19) are at increased risk for thrombotic events and mortality.,Various anticoagulation regimens are now being considered for these patients.,Anticoagulation is known to increase the risk for adverse bleeding events, of which intracranial hemorrhage (ICH) is one of the most feared.,We present a retrospective study of 33 patients positive for COVID-19 with neuroimaging-documented ICH and examine anticoagulation use in this population.,Patients over the age of 18 with confirmed COVID-19 and radiographic evidence of ICH were included in this study.,Evidence of hemorrhage was confirmed and categorized by a fellowship trained neuroradiologist.,Electronic health records were analyzed for patient information including demographic data, medical history, hospital course, laboratory values, and medications.,We identified 33 COVID-19 positive patients with ICH, mean age 61.6 years (range 37-83 years), 21.2% of whom were female.,Parenchymal hemorrhages with mass effect and herniation occurred in 5 (15.2%) patients, with a 100% mortality rate.,Of the remaining 28 patients with ICH, 7 (25%) had punctate hemorrhages, 17 (60.7%) had small- moderate size hemorrhages, and 4 (14.3%) had a large single site of hemorrhage without evidence of herniation.,Almost all patients received either therapeutic dose anticoagulation (in 22 [66.7%] patients) or prophylactic dose (in 3 [9.1] patients) prior to ICH discovery.,Anticoagulation therapy may be considered in patients with COVID-19 though the risk of ICH should be taken into account when developing a treatment regimen.
1
The association of pulmonary embolism (PE) with deep vein thrombosis (DVT) in patients with coronavirus disease 2019 (COVID-19) remains unclear, and the diagnostic accuracy of D-dimer tests for PE is unknown.,To conduct meta-analysis of the study-level incidence of PE and DVT and to evaluate the diagnostic accuracy of D-dimer tests for PE from multicenter individual patient data.,A systematic literature search identified studies evaluating the incidence of PE or DVT in patients with COVID-19 from January 1, 2020, to June 15, 2020.,These outcomes were pooled using a random-effects model and were further evaluated using metaregression analysis.,The diagnostic accuracy of D-dimer tests for PE was estimated on the basis of individual patient data using the summary receiver operating characteristic curve.,Twenty-seven studies with 3342 patients with COVID-19 were included in the analysis.,The pooled incidence rates of PE and DVT were 16.5% (95% CI: 11.6, 22.9; I2 = 0.93) and 14.8% (95% CI: 8.5, 24.5; I2 = 0.94), respectively.,PE was more frequently found in patients who were admitted to the intensive care unit (ICU) (24.7% [95% CI: 18.6, 32.1] vs 10.5% [95% CI: 5.1, 20.2] in those not admitted to the ICU) and in studies with universal screening using CT pulmonary angiography.,DVT was present in 42.4% of patients with PE.,D-dimer tests had an area under the receiver operating characteristic curve of 0.737 for PE, and D-dimer levels of 500 and 1000 μg/L showed high sensitivity (96% and 91%, respectively) but low specificity (10% and 24%, respectively).,Pulmonary embolism (PE) and deep vein thrombosis (DVT) occurred in 16.5% and 14.8% of patients with coronavirus disease 2019 (COVID-19), respectively, and more than half of patients with PE lacked DVT.,The cutoffs of D-dimer levels used to exclude PE in preexisting guidelines seem applicable to patients with COVID-19.,© RSNA, 2020,Supplemental material is available for this article.,See also the editorial by Woodard in this issue.
COVID-19 infections are associated with a high prevalence of venous thromboembolism, particularly pulmonary embolism (PE).,It is suggested that COVID-19 associated PE represents in situ immunothrombosis rather than venous thromboembolism, although the origin of thrombotic lesions in COVID-19 patients remains largely unknown.,In this study, we assessed the clinical and computed tomography (CT) characteristics of PE in 23 consecutive patients with COVID-19 pneumonia and compared these to those of 100 consecutive control patients diagnosed with acute PE before the COVID-19 outbreak.,Specifically, RV/LV diameter ratio, pulmonary artery trunk diameter and total thrombus load (according to Qanadli score) were measured and compared.,We observed that all thrombotic lesions in COVID-19 patients were found to be in lung parenchyma affected by COVID-19.,Also, the thrombus load was lower in COVID-19 patients (Qanadli score −8%, 95% confidence interval [95%CI] −16 to −0.36%) as was the prevalence of the most proximal PE in the main/lobar pulmonary artery (17% versus 47%; −30%, 95%CI −44% to −8.2).,Moreover, the mean RV/LV ratio (mean difference −0.23, 95%CI −0.39 to −0.07) and the prevalence of RV/LV ratio >1.0 (prevalence difference −23%, 95%CI −41 to −0.86%) were lower in the COVID-19 patients.,Our findings therefore suggest that the phenotype of COVID-19 associated PE indeed differs from PE in patients without COVID-19, fuelling the discussion on its pathophysiology.,•COVID-19 pneumonia is associated with high incidence of pulmonary embolism (PE).,•The origin of COVID-19 associated PE is debated.,•We compared radiological PE parameters in COVID-19 patients with control patients.,•In COVID-19 patients, thrombus load and prevalence of RV dysfunction was lower.,•Our findings support the concept of in situ immunothrombosis in COVID-19 patients,COVID-19 pneumonia is associated with high incidence of pulmonary embolism (PE).,The origin of COVID-19 associated PE is debated.,We compared radiological PE parameters in COVID-19 patients with control patients.,In COVID-19 patients, thrombus load and prevalence of RV dysfunction was lower.,Our findings support the concept of in situ immunothrombosis in COVID-19 patients
1
Daratumumab, a human IgG monoclonal antibody targeting CD38, has demonstrated activity as monotherapy and in combination with standard-of-care regimens in multiple myeloma.,Population pharmacokinetic analyses were conducted to determine the pharmacokinetics of intravenous daratumumab in combination therapy versus monotherapy, evaluate the effect of patient- and disease-related covariates on drug disposition, and examine the relationships between daratumumab exposure and efficacy/safety outcomes.,Four clinical studies of daratumumab in combination with lenalidomide/dexamethasone (POLLUX and GEN503); bortezomib/dexamethasone (CASTOR); pomalidomide/dexamethasone, bortezomib/thalidomide/dexamethasone, and bortezomib/melphalan/prednisone (EQUULEUS) were included in the analysis.,Using various dosing schedules, the majority of patients (684/694) received daratumumab at a dose of 16 mg/kg.,In GEN503, daratumumab was administered at a dose of 2 mg/kg (n = 3), 4 mg/kg (n = 3), 8 mg/kg (n = 4), and 16 mg/kg (n = 34).,A total of 650 patients in EQUULEUS (n = 128), POLLUX (n = 282), and CASTOR (n = 240) received daratumumab 16 mg/kg.,The exposure-efficacy and exposure-safety relationships examined progression-free survival (PFS) and selected adverse events (infusion-related reactions; thrombocytopenia, anemia, neutropenia, lymphopenia, and infections), respectively.,Pharmacokinetic profiles of daratumumab were similar between monotherapy and combination therapy.,Covariate analysis identified no clinically important effects on daratumumab exposure, and no dose adjustments were recommended on the basis of these factors.,Maximal clinical benefit on PFS was achieved for the majority of patients (approximately 75%) at the 16 mg/kg dose.,No apparent relationship was observed between daratumumab exposure and selected adverse events.,These data support the recommended 16 mg/kg dose of daratumumab and the respective dosing schedules in the POLLUX and CASTOR pivotal studies.,Janssen Research & Development.,The online version of this article (10.1007/s12325-018-0815-9) contains supplementary material, which is available to authorized users.
New therapeutic strategies are urgently needed to improve clinical outcomes in patients with multiple myeloma (MM).,Daratumumab is a first‐in‐class, CD38 human immunoglobulin G1κ monoclonal antibody approved for treatment of relapsed or refractory MM.,Identification of an appropriate dose regimen for daratumumab is challenging due to its target‐mediated drug disposition, leading to time‐ and concentration‐dependent pharmacokinetics.,We describe a thorough evaluation of the recommended dose regimen for daratumumab in patients with relapsed or refractory MM.
1
Coronavirus disease of 2019 (COVID-19) is a cause of significant morbidity and mortality worldwide.,While cardiac injury has been demonstrated in critically ill COVID-19 patients, the mechanism of injury remains unclear.,Here, we review our current knowledge of the biology of SARS-CoV-2 and the potential mechanisms of myocardial injury due to viral toxicities and host immune responses.,A number of studies have reported an epidemiological association between history of cardiac disease and worsened outcome during COVID infection.,Development of new onset myocardial injury during COVID-19 also increases mortality.,While limited data exist, potential mechanisms of cardiac injury include direct viral entry through the angiotensin-converting enzyme 2 (ACE2) receptor and toxicity in host cells, hypoxia-related myocyte injury, and immune-mediated cytokine release syndrome.,Potential treatments for reducing viral infection and excessive immune responses are also discussed.,COVID patients with cardiac disease history or acquire new cardiac injury are at an increased risk for in-hospital morbidity and mortality.,More studies are needed to address the mechanism of cardiotoxicity and the treatments that can minimize permanent damage to the cardiovascular system.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, is being defined as the worst pandemic disease of modern times.,Several professional health organizations have published position papers stating that there is no evidence to change the use of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) in the management of elevated blood pressure in the context of avoiding or treating COVID-19 infection.,In this article, we review the evidence on the relationship between the renin-angiotensin-aldosterone system and COVID-19 infection.,In agreement with current guidelines, patients with hypertension should continue taking antihypertensive medications as prescribed without interruption.,Because ACEIs and ARBs are also used to retard the progression of chronic kidney disease, we suggest that these recommendations also apply to the use of these agents in chronic kidney disease.,No differences generally exist between ARBs and ACEIs in terms of efficacy in decreasing blood pressure and improving other outcomes, such as all-cause mortality, cardiovascular mortality, myocardial infarction, heart failure, stroke, and end-stage renal disease.,The ACEIs are associated with cough secondary to accumulation of bradykinin and angioedema, and withdrawal rates due to adverse events are lower with ARBs.,Given their equal efficacy but fewer adverse events, ARBs could potentially be a more favorable treatment option in patients with COVID-19 at higher risk for severe forms of disease.
1
Coronavirus disease 2019 (COVID-19) has become a global pandemic, affecting millions of people.,However, the relationship between COVID-19 and acute cerebrovascular diseases is unclear.,We aimed to characterize the incidence, risk factors, clinical-radiological manifestations, and outcome of COVID-19-associated stroke.,Three medical databases were systematically reviewed for published articles on acute cerebrovascular diseases in COVID-19 (December 2019-September 2020).,The review protocol was previously registered (PROSPERO ID = CRD42020185476).,Data were extracted from articles reporting ≥5 stroke cases in COVID-19.,We complied with the PRISMA guidelines and used the Newcastle-Ottawa Scale to assess data quality.,Data were pooled using a random-effect model.,Of 2277 initially identified articles, 61 (2.7%) were entered in the meta-analysis.,Out of 108,571 patients with COVID-19, acute CVD occurred in 1.4% (95%CI: 1.0-1.9).,The most common manifestation was acute ischemic stroke (87.4%); intracerebral hemorrhage was less common (11.6%).,Patients with COVID-19 developing acute cerebrovascular diseases, compared to those who did not, were older (pooled median difference = 4.8 years; 95%CI: 1.7-22.4), more likely to have hypertension (OR = 7.35; 95%CI: 1.94-27.87), diabetes mellitus (OR = 5.56; 95%CI: 3.34-9.24), coronary artery disease (OR = 3.12; 95%CI: 1.61-6.02), and severe infection (OR = 5.10; 95%CI: 2.72-9.54).,Compared to individuals who experienced a stroke without the infection, patients with COVID-19 and stroke were younger (pooled median difference = −6.0 years; 95%CI: −12.3 to −1.4), had higher NIHSS (pooled median difference = 5; 95%CI: 3-9), higher frequency of large vessel occlusion (OR = 2.73; 95%CI: 1.63-4.57), and higher in-hospital mortality rate (OR = 5.21; 95%CI: 3.43-7.90).,Acute cerebrovascular diseases are not uncommon in patients with COVID-19, especially in those whom are severely infected and have pre-existing vascular risk factors.,The pattern of large vessel occlusion and multi-territory infarcts suggests that cerebral thrombosis and/or thromboembolism could be possible causative pathways for the disease.
Although arterial and venous thromboembolic disorders are among the most frequent causes of mortality and morbidity, there has been little description of how the composition of thrombi and emboli depends on their vascular origin and age.,We quantified the structure and composition of arterial and venous thrombi and pulmonary emboli using high-resolution scanning electron microscopy.,Arterial thrombi contained a surprisingly large amount of fibrin, in addition to platelets.,The composition of pulmonary emboli mirrored the most distal part of venous thrombi from which they originated, which differed from the structure of the body and head of the same thrombi.,All thrombi and emboli contained few biconcave red blood cells but many polyhedrocytes or related forms of compressed red blood cells, demonstrating that these structures are a signature of clot contraction in vivo.,Polyhedrocytes and intermediate forms comprised the major constituents of venous thrombi and pulmonary emboli.,The structures within all of the thrombi and emboli were very tightly packed, in contrast to clots formed in vitro.,There are distinctive, reproducible differences among arterial and venous thrombi and emboli related to their origin, destination and duration, which may have clinical implications for the understanding and treatment of thrombotic disorders.
1
Coagulopathy is a common abnormality in patients with COVID‐19.,However, the exact incidence of venous thromboembolic event is unknown in anticoagulated, severe COVID‐19 patients.,Systematic assessment of venous thromboembolism (VTE) using complete duplex ultrasound (CDU) in anticoagulated COVID‐19 patients.,We performed a retrospective study in 2 French intensive care units (ICU) where CDU is performed as a standard of care.,A CDU from thigh to ankle at selected sites with Doppler waveforms and images was performed early during ICU stay in patients admitted with COVID‐19.,Anticoagulation dose was left to the discretion of the treating physician based on the individual risk of thrombosis.,Patients were classified as treated with prophylactic anticoagulation or therapeutic anticoagulation.,Pulmonary embolism was systematically searched in patients with persistent hypoxemia or secondary deterioration.,From March 19 to April 11, 2020, 26 consecutive patients with severe COVID‐19 were screened for VTE.,Eight patients (31%) were treated with prophylactic anticoagulation, whereas 18 patients (69%) were treated with therapeutic anticoagulation.,The overall rate of VTE in patients was 69%.,The proportion of VTE was significantly higher in patients treated with prophylactic anticoagulation when compared with the other group (100% vs 56%, respectively, P = .03).,Surprisingly, we found a high rate of thromboembolic events in COVID‐19 patients treated with therapeutic anticoagulation, with 56% of VTE and 6 pulmonary embolisms.,Our results suggest considering both systematic screening of VTE and early therapeutic anticoagulation in severe ICU COVID‐19 patients.
•The age and underlying diseases were the most important risk factors for death of COVID-19 pneumonia.,•Bacterial infections play an important role in promoting the death of patients.,•Multiple organ dysfunction can be observed, the most common organ damage was lung, followed by heart, kidney and liver.,•The rising of neutrophils, SAA, PCT, CRP, cTnI, D-Dimer and LDH levels can be used as indicators of disease progression, as well as the decline of lymphocytes counts.,The age and underlying diseases were the most important risk factors for death of COVID-19 pneumonia.,Bacterial infections play an important role in promoting the death of patients.,Multiple organ dysfunction can be observed, the most common organ damage was lung, followed by heart, kidney and liver.,The rising of neutrophils, SAA, PCT, CRP, cTnI, D-Dimer and LDH levels can be used as indicators of disease progression, as well as the decline of lymphocytes counts.,This study aims to summarize the clinical characteristics of death cases with COVID-19 and to identify critically ill patients of COVID-19 early and reduce their mortality.,The clinical records, laboratory findings and radiological assessments included chest X-ray or computed tomography were extracted from electronic medical records of 25 died patients with COVID-19 in Renmin Hospital of Wuhan University from Jan 14 to Feb 13, 2020.,Two experienced clinicians reviewed and abstracted the data.,The age and underlying diseases (hypertension, diabetes, etc.) were the most important risk factors for death of COVID-19 pneumonia.,Bacterial infections may play an important role in promoting the death of patients.,Malnutrition was common to severe patients.,Multiple organ dysfunction can be observed, the most common organ damage was lung, followed by heart, kidney and liver.,The rising of neutrophils, SAA, PCT, CRP, cTnI, D-dimer, LDH and lactate levels can be used as indicators of disease progression, as well as the decline of lymphocytes counts.,The clinical characteristics of 25 death cases with COVID-19 we summarized, which would be helpful to identify critically ill patients of COVID-19 early and reduce their mortality.
1
To evaluate the impact of the lockdown measures, consequent to the outbreak of COVID-19 pandemic, on the quality of pre-hospital and in-hospital care of patients with acute ischemic stroke.,This is an observational cohort study.,Data sources were the clinical reports of patients admitted during the first month of lockdown and discharged with a confirmed diagnosis of stroke or TIA.,Data were collected in the interval ranging from March 11th to April 11th 2020.,As controls, we evaluated the clinical reports of patients with stroke or TIA admitted in the same period of 2019.,The clinical reports of patients eligible for the study were 52 in 2020 (71.6 ± 12.2 years) and 41 in 2019 (73.7 ± 13.1 years).,During the lockdown, we observed a significant increase in onset-to-door time (median = 387 vs 161 min, p = 0.001), a significant reduction of the total number of thrombolysis (7 vs 13, p = 0.033), a non-significant increase of thrombectomy (15 vs 9, p = 0.451), and a significant increase in door-to-groin time (median = 120 vs 93 min, p = 0.048).,No relevant difference was observed between 2019 and 2020 in the total number of patients admitted.,Due to the COVID-19 pandemic and lockdown measures, the stroke care pathway changed, involving both pre-hospital and in-hospital performances.
The COVID-19 pandemic has disrupted established care paths worldwide.,Patient awareness of the pandemic and executive limitations imposed on public life have changed the perception of when to seek care for acute conditions in some cases.,We sought to study whether there is a delay in presentation for acute ischemic stroke patients in the first month of the pandemic in the US.,The interval between last-known-well (LKW) time and presentation of 710 consecutive patients presenting with acute ischemic strokes to 12 stroke centers across the US were extracted from a prospectively maintained quality database.,We analyzed the timing and severity of the presentation in the baseline period from February to March 2019 and compared results with the timeframe of February and March 2020.,There were 320 patients in the 2-month baseline period in 2019, there was a marked decrease in patients from February to March of 2020 (227 patients in February, and 163 patients in March).,There was no difference in the severity of the presentation between groups and no difference in age between the baseline and the COVID period.,The mean interval from LKW to the presentation was significantly longer in the COVID period (603±1035 min) compared with the baseline period (442±435 min, P<0.02).,We present data supporting an association between public awareness and limitations imposed on public life during the COVID-19 pandemic in the US and a delay in presentation for acute ischemic stroke patients to a stroke center.
1
Coronavirus disease 2019 (COVID-19), currently a worldwide pandemic, is a viral illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).,The suspected contribution of thrombotic events to morbidity and mortality in COVID-19 patients has prompted a search for novel potential options for preventing COVID-19-associated thrombotic disease.,In this article by the Global COVID-19 Thrombosis Collaborative Group, we describe novel dosing approaches for commonly used antithrombotic agents (especially heparin-based regimens) and the potential use of less widely used antithrombotic drugs in the absence of confirmed thrombosis.,Although these therapies may have direct antithrombotic effects, other mechanisms of action, including anti-inflammatory or antiviral effects, have been postulated.,Based on survey results from this group of authors, we suggest research priorities for specific agents and subgroups of patients with COVID-19.,Further, we review other agents, including immunomodulators, that may have antithrombotic properties.,It is our hope that the present document will encourage and stimulate future prospective studies and randomized trials to study the safety, efficacy, and optimal use of these agents for prevention or management of thrombosis in COVID-19.
To investigate the characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019 (COVID-19).,We enrolled 671 eligible hospitalized patients with severe COVID-19 from 1 January to 23 February 2020, with a median age of 63 years.,Clinical, laboratory, and treatment data were collected and compared between patients who died and survivors.,Risk factors of death and myocardial injury were analysed using multivariable regression models.,A total of 62 patients (9.2%) died, who more often had myocardial injury (75.8% vs.,9.7%; P < 0.001) than survivors.,The area under the receiver operating characteristic curve of initial cardiac troponin I (cTnI) for predicting in-hospital mortality was 0.92 [95% confidence interval (CI), 0.87-0.96; sensitivity, 0.86; specificity, 0.86; P < 0.001].,The single cut-off point and high level of cTnI predicted risk of in-hospital death, hazard ratio (HR) was 4.56 (95% CI, 1.28-16.28; P = 0.019) and 1.25 (95% CI, 1.07-1.46; P = 0.004), respectively.,In multivariable logistic regression, senior age, comorbidities (e.g. hypertension, coronary heart disease, chronic renal failure, and chronic obstructive pulmonary disease), and high level of C-reactive protein were predictors of myocardial injury.,The risk of in-hospital death among patients with severe COVID-19 can be predicted by markers of myocardial injury, and was significantly associated with senior age, inflammatory response, and cardiovascular comorbidities.
1
Coronavirus disease 2019 (COVID-19) represents a public health crisis of pandemic proportions.,Caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the symptoms most commonly reported include cough, fever and shortness of breath, but extra-pulmonary symptoms may also be present, such as neurological and gastroenterological manifestations.,Endothelial cell dysfunction and impaired microcirculatory function contribute markedly to life-threatening complications of COVID-19, such as venous thromboembolic disease and multiple organ involvementhttps://bit.ly/3cZMjKV
Coronavirus Disease 2019 (COVID-19) has quickly progressed to a global health emergency.,Respiratory illness is the major cause of morbidity and mortality in these patients with the disease spectrum ranging from asymptomatic subclinical infection, to severe pneumonia progressing to acute respiratory distress syndrome.,There is growing evidence describing pathophysiological resemblance of SARS-CoV-2 infection with other coronavirus infections such as Severe Acute Respiratory Syndrome coronavirus and Middle East Respiratory Syndrome coronavirus (MERS-CoV).,Angiotensin Converting Enzyme-2 receptors play a pivotal role in the pathogenesis of the virus.,Disruption of this receptor leads to cardiomyopathy, cardiac dysfunction, and heart failure.,Patients with cardiovascular disease are more likely to be infected with SARS-CoV-2 and they are more likely to develop severe symptoms.,Hypertension, arrhythmia, cardiomyopathy and coronary heart disease are amongst major cardiovascular disease comorbidities seen in severe cases of COVID-19.,There is growing literature exploring cardiac involvement in SARS-CoV-2.,Myocardial injury is one of the important pathogenic features of COVID-19.,As a surrogate for myocardial injury, multiple studies have shown increased cardiac biomarkers mainly cardiac troponins I and T in the infected patients especially those with severe disease.,Myocarditis is depicted as another cause of morbidity amongst COVID-19 patients.,The exact mechanisms of how SARS-CoV-2 can cause myocardial injury are not clearly understood.,The proposed mechanisms of myocardial injury are direct damage to the cardiomyocytes, systemic inflammation, myocardial interstitial fibrosis, interferon mediated immune response, exaggerated cytokine response by Type 1 and 2 helper T cells, in addition to coronary plaque destabilization, and hypoxia.,Unlabelled Image
1
•Stroke is an infrequent, but potentially life-threatening, complication of COVID-19.,•Typical features include large vessel occlusion and multi-territory stroke.,•Atypical presentations include PRES, vasculitis, and arterial dissection.,•Sedation interruption may be required for neurologic evaluation of ICU patients.,•Older age, elevated D-dimer, LDH, and creatinine are associated with poor outcome.,Stroke is an infrequent, but potentially life-threatening, complication of COVID-19.,Typical features include large vessel occlusion and multi-territory stroke.,Atypical presentations include PRES, vasculitis, and arterial dissection.,Sedation interruption may be required for neurologic evaluation of ICU patients.,Older age, elevated D-dimer, LDH, and creatinine are associated with poor outcome.,Acute cerebrovascular disease, particularly ischemic stroke, has emerged as a serious complication of infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of the Coronavirus disease‐2019 (COVID-19).,Accumulating data on patients with COVID-19-associated stroke have shed light on specificities concerning clinical presentation, neuroimaging findings, and outcome.,Such specificities include a propensity towards large vessel occlusion, multi-territory stroke, and involvement of otherwise uncommonly affected vessels.,Conversely, small-vessel brain disease, cerebral venous thrombosis, and intracerebral hemorrhage appear to be less frequent.,Atypical neurovascular presentations were also described, ranging from bilateral carotid artery dissection to posterior reversible encephalopathy syndrome (PRES), and vasculitis.,Cases presenting with encephalopathy or encephalitis with seizures heralding stroke were particularly challenging.,The pathogenesis and optimal management of ischemic stroke associated with COVID-19 still remain uncertain, but emerging evidence suggest that cytokine storm-triggered coagulopathy and endotheliopathy represent possible targetable mechanisms.,Some specific management issues in this population include the difficulty in identifying clinical signs of stroke in critically ill patients in the intensive care unit, as well as the need for a protected pathway for brain imaging, intravenous thrombolysis, and mechanical thrombectomy, keeping in mind that “time is brain” also for COVID-19 patients.,In this review, we discuss the novel developments and challenges for the diagnosis and treatment of stroke in patients with COVID-19, and delineate the principles for a rational approach toward precision medicine in this emerging field.
With the spread of coronavirus disease 2019 (COVID-19) during the current worldwide pandemic, there is mounting evidence that patients affected by the illness may develop clinically significant coagulopathy with thromboembolic complications including ischemic stroke.,However, there is limited data on the clinical characteristics, stroke mechanism, and outcomes of patients who have a stroke and COVID-19.,We conducted a retrospective cohort study of consecutive patients with ischemic stroke who were hospitalized between March 15, 2020, and April 19, 2020, within a major health system in New York, the current global epicenter of the pandemic.,We compared the clinical characteristics of stroke patients with a concurrent diagnosis of COVID-19 to stroke patients without COVID-19 (contemporary controls).,In addition, we compared patients to a historical cohort of patients with ischemic stroke discharged from our hospital system between March 15, 2019, and April 15, 2019 (historical controls).,During the study period in 2020, out of 3556 hospitalized patients with diagnosis of COVID-19 infection, 32 patients (0.9%) had imaging proven ischemic stroke.,Cryptogenic stroke was more common in patients with COVID-19 (65.6%) as compared to contemporary controls (30.4%, P=0.003) and historical controls (25.0%, P<0.001).,When compared with contemporary controls, COVID-19 positive patients had higher admission National Institutes of Health Stroke Scale score and higher peak D-dimer levels.,When compared with historical controls, COVID-19 positive patients were more likely to be younger men with elevated troponin, higher admission National Institutes of Health Stroke Scale score, and higher erythrocyte sedimentation rate.,Patients with COVID-19 and stroke had significantly higher mortality than historical and contemporary controls.,We observed a low rate of imaging-confirmed ischemic stroke in hospitalized patients with COVID-19.,Most strokes were cryptogenic, possibly related to an acquired hypercoagulability, and mortality was increased.,Studies are needed to determine the utility of therapeutic anticoagulation for stroke and other thrombotic event prevention in patients with COVID-19.
1
Recently, trimethylamine-N-oxide (TMAO) plasma levels have been proved to be associated with atherosclerosis development.,Among the targets aimed to ameliorating atherosclerotic lesions, inducing bile acid synthesis to eliminate excess cholesterol in body is an effective way.,Individual bile acid as endogenous ligands for the nuclear receptor has differential effects on regulating bile acid metabolism.,It is unclear whether bile acid profiles are mechanistically linked to TMAO-induced development of atherosclerosis.,Male apoE−/− mice were fed with control diet containing 0.3% TMAO for 8 weeks.,Aortic lesion development and serum lipid profiles were determined.,Bile acid profiles in bile, liver and serum were measured by liquid chromatographic separation and mass spectrometric detection (LC-MS).,Real-time PCRs were performed to analyze mRNA expression of genes related to hepatic bile acid metabolism.,The total plaque areas in the aortas strongly increased 2-fold (P < 0.001) in TMAO administration mice.,The levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) in TMAO group were also significantly increased by 25.5% (P = 0.044), 31.2% (P = 0.006), 28.3% (P = 0.032), respectively.,TMAO notably changed bile acid profiles, especially in serum, the most prominent inductions were tauromuricholic acid (TMCA), deoxycholic acid (DCA) and cholic acid (CA).,Mechanically, TMAO inhibited hepatic bile acid synthesis by specifically repressing the classical bile acid synthesis pathway, which might be mediated by activation of small heterodimer partner (SHP) and farnesoid X receptor (FXR).,These findings suggested that TMAO accelerated aortic lesion formation in apoE−/− mice by altering bile acid profiles, further activating nuclear receptor FXR and SHP to inhibit bile acid synthesis by reducing Cyp7a1 expression.
Emerging evidence has suggested a potential impact of gut microbiota on the pathophysiology of heart failure (HF).,However, it is still unknown whether HF is associated with dysbiosis in gut microbiota.,We investigated the composition of gut microbiota in patients with HF to elucidate whether gut microbial dysbiosis is associated with HF.,We performed 16S ribosomal RNA gene sequencing of fecal samples obtained from 12 HF patients and 12 age-matched healthy control (HC) subjects, and analyzed the differences in gut microbiota.,We further compared the composition of gut microbiota of 12 HF patients younger than 60 years of age with that of 10 HF patients 60 years of age or older.,The composition of gut microbial communities of HF patients was distinct from that of HC subjects in both unweighted and weighted UniFrac analyses.,Eubacterium rectale and Dorea longicatena were less abundant in the gut microbiota of HF patients than in that of HC subjects.,Compared to younger HF patients, older HF patients had diminished proportions of Bacteroidetes and larger quantities of Proteobacteria.,The genus Faecalibacterium was depleted, while Lactobacillus was enriched in the gut microbiota of older HF patients.,These results suggest that patients with HF harbor significantly altered gut microbiota, which varies further according to age.,New concept of heart-gut axis has a great potential for breakthroughs in the development of novel diagnostic and therapeutic approach for HF.
1
Coronavirus disease 2019 (COVID-19), currently a worldwide pandemic, is a viral illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).,The suspected contribution of thrombotic events to morbidity and mortality in COVID-19 patients has prompted a search for novel potential options for preventing COVID-19-associated thrombotic disease.,In this article by the Global COVID-19 Thrombosis Collaborative Group, we describe novel dosing approaches for commonly used antithrombotic agents (especially heparin-based regimens) and the potential use of less widely used antithrombotic drugs in the absence of confirmed thrombosis.,Although these therapies may have direct antithrombotic effects, other mechanisms of action, including anti-inflammatory or antiviral effects, have been postulated.,Based on survey results from this group of authors, we suggest research priorities for specific agents and subgroups of patients with COVID-19.,Further, we review other agents, including immunomodulators, that may have antithrombotic properties.,It is our hope that the present document will encourage and stimulate future prospective studies and randomized trials to study the safety, efficacy, and optimal use of these agents for prevention or management of thrombosis in COVID-19.
Little evidence of increased thrombotic risk is available in COVID-19 patients.,Our purpose was to assess thrombotic risk in severe forms of SARS-CoV-2 infection.,All patients referred to 4 intensive care units (ICUs) from two centers of a French tertiary hospital for acute respiratory distress syndrome (ARDS) due to COVID-19 between March 3rd and 31st 2020 were included.,Medical history, symptoms, biological data and imaging were prospectively collected.,Propensity score matching was performed to analyze the occurrence of thromboembolic events between non-COVID-19 ARDS and COVID-19 ARDS patients.,150 COVID-19 patients were included (122 men, median age 63 [53; 71] years, SAPSII 49 [37; 64] points).,Sixty-four clinically relevant thrombotic complications were diagnosed in 150 patients, mainly pulmonary embolisms (16.7%). 28/29 patients (96.6%) receiving continuous renal replacement therapy experienced circuit clotting.,Three thrombotic occlusions (in 2 patients) of centrifugal pump occurred in 12 patients (8%) supported by ECMO.,Most patients (> 95%) had elevated D-dimer and fibrinogen.,No patient developed disseminated intravascular coagulation.,Von Willebrand (vWF) activity, vWF antigen and FVIII were considerably increased, and 50/57 tested patients (87.7%) had positive lupus anticoagulant.,Comparison with non-COVID-19 ARDS patients (n = 145) confirmed that COVID-19 ARDS patients (n = 77) developed significantly more thrombotic complications, mainly pulmonary embolisms (11.7 vs.,2.1%, p < 0.008).,Coagulation parameters significantly differed between the two groups.,Despite anticoagulation, a high number of patients with ARDS secondary to COVID-19 developed life-threatening thrombotic complications.,Higher anticoagulation targets than in usual critically ill patients should therefore probably be suggested.,The online version of this article (10.1007/s00134-020-06062-x) contains supplementary material, which is available to authorized users.
1
Although there are regional reports that the COVID-19 pandemic is associated with a reduction in acute myocardial infarction presentations and primary percutaneous coronary intervention (PCI) procedures, little is known about the impact of the COVID-19 pandemic on mechanical complications resulting from ST-segment elevation myocardial infarction (STEMI) and mortality.,This single-centre retrospective cohort study analysed presentations, incidence of mechanical complications, and mortality in patients with STEMI before and after a state of emergency was declared due to the COVID-19 pandemic by the Japanese government on 7 April 2020.,We analysed 359 patients with STEMI hospitalised before the declaration and 63 patients hospitalised after the declaration.,The proportion of patients with late presentation was significantly higher after the declaration than before (25.4% vs 14.2%, p=0.03).,The incidence of late presentation was significantly higher during the COVID-19 pandemic than before (incidence rate ratio (IRR), 2.41; 95% CI, 1.37 to 4.05; p=0.001, even after adjusting for month (IRR, 2.61; 95% CI, 1.33 to 5.13; p<0.01).,Primary PCI was performed significantly less often after the declaration than before (68.3% vs 82.5%, p=0.009).,The mechanical complication resulting from STEMI occurred in 13 of 359 (3.6%) patients before the declaration and 9 of 63 (14.3%) patients after the declaration (p<0.001).,However, the incidence of in-hospital death (before, 6.2% vs after, 6.4%, p=0.95) was comparable.,Following the COVID-19 pandemic, an increased incidence of mechanical complications resulting from STEMI was observed.,Instructing people to stay at home, without effectively educating them to immediately seek medical attention when suffering symptoms of a heart attack, may worsen outcomes in patients with STEMI.
To evaluate the impact of the COVID-19 pandemic on patient admissions to Italian cardiac care units (CCUs).,We conducted a multicentre, observational, nationwide survey to collect data on admissions for acute myocardial infarction (AMI) at Italian CCUs throughout a 1 week period during the COVID-19 outbreak, compared with the equivalent week in 2019.,We observed a 48.4% reduction in admissions for AMI compared with the equivalent week in 2019 (P < 0.001).,The reduction was significant for both ST-segment elevation myocardial infarction [STEMI; 26.5%, 95% confidence interval (CI) 21.7-32.3; P = 0.009] and non-STEMI (NSTEMI; 65.1%, 95% CI 60.3-70.3; P < 0.001).,Among STEMIs, the reduction was higher for women (41.2%; P = 0.011) than men (17.8%; P = 0.191).,A similar reduction in AMI admissions was registered in North Italy (52.1%), Central Italy (59.3%), and South Italy (52.1%).,The STEMI case fatality rate during the pandemic was substantially increased compared with 2019 [risk ratio (RR) = 3.3, 95% CI 1.7-6.6; P < 0.001].,A parallel increase in complications was also registered (RR = 1.8, 95% CI 1.1-2.8; P = 0.009).,Admissions for AMI were significantly reduced during the COVID-19 pandemic across Italy, with a parallel increase in fatality and complication rates.,This constitutes a serious social issue, demanding attention by the scientific and healthcare communities and public regulatory agencies.
1
Although mortality due to COVID-19 is, for the most part, robustly tracked, its indirect effect at the population level through lockdown, lifestyle changes, and reorganisation of health-care systems has not been evaluated.,We aimed to assess the incidence and outcomes of out-of-hospital cardiac arrest (OHCA) in an urban region during the pandemic, compared with non-pandemic periods.,We did a population-based, observational study using data for non-traumatic OHCA (N=30 768), systematically collected since May 15, 2011, in Paris and its suburbs, France, using the Paris Fire Brigade database, together with in-hospital data.,We evaluated OHCA incidence and outcomes over a 6-week period during the pandemic in adult inhabitants of the study area.,Comparing the 521 OHCAs of the pandemic period (March 16 to April 26, 2020) to the mean of the 3052 total of the same weeks in the non-pandemic period (weeks 12-17, 2012-19), the maximum weekly OHCA incidence increased from 13·42 (95% CI 12·77-14·07) to 26·64 (25·72-27·53) per million inhabitants (p<0·0001), before returning to normal in the final weeks of the pandemic period.,Although patient demographics did not change substantially during the pandemic compared with the non-pandemic period (mean age 69·7 years [SD 17] vs 68·5 [18], 334 males [64·4%] vs 1826 [59·9%]), there was a higher rate of OHCA at home (460 [90·2%] vs 2336 [76·8%]; p<0·0001), less bystander cardiopulmonary resuscitation (239 [47·8%] vs 1165 [63·9%]; p<0·0001) and shockable rhythm (46 [9·2%] vs 472 [19·1%]; p<0·0001), and longer delays to intervention (median 10·4 min [IQR 8·4-13·8] vs 9·4 min [7·9-12·6]; p<0·0001).,The proportion of patients who had an OHCA and were admitted alive decreased from 22·8% to 12·8% (p<0·0001) in the pandemic period.,After adjustment for potential confounders, the pandemic period remained significantly associated with lower survival rate at hospital admission (odds ratio 0·36, 95% CI 0·24-0·52; p<0·0001).,COVID-19 infection, confirmed or suspected, accounted for approximately a third of the increase in OHCA incidence during the pandemic.,A transient two-times increase in OHCA incidence, coupled with a reduction in survival, was observed during the specified time period of the pandemic when compared with the equivalent time period in previous years with no pandemic.,Although this result might be partly related to COVID-19 infections, indirect effects associated with lockdown and adjustment of health-care services to the pandemic are probable.,Therefore, these factors should be taken into account when considering mortality data and public health strategies.,The French National Institute of Health and Medical Research (INSERM)
Coronavirus disease 2019 (COVID-19) is likely to have significant implications for the cardiovascular care of patients.,In most countries, containment has already started (on 17 March 2020 in France), and self-quarantine and social distancing are reducing viral contamination and saving lives.,However, these considerations may only be the tip of the iceberg; most resources are dedicated to the struggle against COVID-19, and this unprecedented situation may compromise the management of patients admitted with cardiovascular conditions.,We aimed to assess the effect of COVID-19 containment measures on cardiovascular admissions in France.,We asked nine major cardiology centres to give us an overview of admissions to their nine intensive cardiac care units for acute myocardial infarction or acute heart failure, before and after containment measures.,Before containment (02-16 March 2020), the nine participating intensive cardiac care units admitted 4.8 ± 1.6 patients per day, versus 2.6 ± 1.5 after containment (17-22 March 2020) (rank-sum test P = 0.0006).,We confirm here, for the first time, a dramatic drop in the number of cardiovascular admissions after the establishment of containment.,Many hypotheses might explain this phenomenon, but we feel it is time raise the alarm about the risk for patients presenting with acute cardiovascular disease, who may suffer from lack of attention, leading to severe consequences (an increase in the number of ambulatory myocardial infarctions, mechanical complications of myocardial infarction leading to an increase in the number of cardiac arrests, unexplained deaths, heart failure, etc.).,Similar consequences can be feared for all acute situations, beyond the cardiovascular disease setting.
1
The vascular endothelium provides the crucial interface between the blood compartment and tissues, and displays a series of remarkable properties that normally maintain homeostasis.,This tightly regulated palette of functions includes control of haemostasis, fibrinolysis, vasomotion, inflammation, oxidative stress, vascular permeability, and structure.,While these functions participate in the moment-to-moment regulation of the circulation and coordinate many host defence mechanisms, they can also contribute to disease when their usually homeostatic and defensive functions over-reach and turn against the host.,SARS-CoV-2, the aetiological agent of COVID-19, causes the current pandemic.,It produces protean manifestations ranging from head to toe, wreaking seemingly indiscriminate havoc on multiple organ systems including the lungs, heart, brain, kidney, and vasculature.,This essay explores the hypothesis that COVID-19, particularly in the later complicated stages, represents an endothelial disease.,Cytokines, protein pro-inflammatory mediators, serve as key danger signals that shift endothelial functions from the homeostatic into the defensive mode.,The endgame of COVID-19 usually involves a cytokine storm, a phlogistic phenomenon fed by well-understood positive feedback loops that govern cytokine production and overwhelm counter-regulatory mechanisms.,The concept of COVID-19 as an endothelial disease provides a unifying pathophysiological picture of this raging infection, and also provides a framework for a rational treatment strategy at a time when we possess an indeed modest evidence base to guide our therapeutic attempts to confront this novel pandemic.
COVID-19 may predispose to both venous and arterial thromboembolism due to excessive inflammation, hypoxia, immobilisation and diffuse intravascular coagulation.,Reports on the incidence of thrombotic complications are however not available.,We evaluated the incidence of the composite outcome of symptomatic acute pulmonary embolism (PE), deep-vein thrombosis, ischemic stroke, myocardial infarction or systemic arterial embolism in all COVID-19 patients admitted to the ICU of 2 Dutch university hospitals and 1 Dutch teaching hospital.,We studied 184 ICU patients with proven COVID-19 pneumonia of whom 23 died (13%), 22 were discharged alive (12%) and 139 (76%) were still on the ICU on April 5th 2020.,All patients received at least standard doses thromboprophylaxis.,The cumulative incidence of the composite outcome was 31% (95%CI 20-41), of which CTPA and/or ultrasonography confirmed VTE in 27% (95%CI 17-37%) and arterial thrombotic events in 3.7% (95%CI 0-8.2%).,PE was the most frequent thrombotic complication (n = 25, 81%).,Age (adjusted hazard ratio (aHR) 1.05/per year, 95%CI 1.004-1.01) and coagulopathy, defined as spontaneous prolongation of the prothrombin time > 3 s or activated partial thromboplastin time > 5 s (aHR 4.1, 95%CI 1.9-9.1), were independent predictors of thrombotic complications.,The 31% incidence of thrombotic complications in ICU patients with COVID-19 infections is remarkably high.,Our findings reinforce the recommendation to strictly apply pharmacological thrombosis prophylaxis in all COVID-19 patients admitted to the ICU, and are strongly suggestive of increasing the prophylaxis towards high-prophylactic doses, even in the absence of randomized evidence.
1
We present a case of focal cerebral arteriopathy and ischemic stroke in a pediatric patient with coronavirus disease 2019 who presented with seizure, right hemiparesis, and dysarthria with positive findings for severe acute respiratory syndrome coronavirus 2 from nasopharyngeal swab and cerebral spinal fluid.
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has been associated with a significant risk of thrombotic events in critically ill patients.,To summarize the findings of a multinational observational cohort of patients with SARS-CoV-2 and cerebrovascular disease.,Retrospective observational cohort of consecutive adults evaluated in the emergency department and/or admitted with coronavirus disease 2019 (COVID-19) across 31 hospitals in four countries (1 February 2020-16 June 2020).,The primary outcome was the incidence rate of cerebrovascular events, inclusive of acute ischemic stroke, intracranial hemorrhages (ICH), and cortical vein and/or sinus thrombosis (CVST).,Of the 14,483 patients with laboratory-confirmed SARS-CoV-2, 172 were diagnosed with an acute cerebrovascular event (1.13% of cohort; 1130/100,000 patients, 95%CI 970-1320/100,000), 68/171 (40.5%) were female and 96/172 (55.8%) were between the ages 60 and 79 years.,Of these, 156 had acute ischemic stroke (1.08%; 1080/100,000 95%CI 920-1260/100,000), 28 ICH (0.19%; 190/100,000 95%CI 130-280/100,000), and 3 with CVST (0.02%; 20/100,000, 95%CI 4-60/100,000).,The in-hospital mortality rate for SARS-CoV-2-associated stroke was 38.1% and for ICH 58.3%.,After adjusting for clustering by site and age, baseline stroke severity, and all predictors of in-hospital mortality found in univariate regression (p < 0.1: male sex, tobacco use, arrival by emergency medical services, lower platelet and lymphocyte counts, and intracranial occlusion), cryptogenic stroke mechanism (aOR 5.01, 95%CI 1.63-15.44, p < 0.01), older age (aOR 1.78, 95%CI 1.07-2.94, p = 0.03), and lower lymphocyte count on admission (aOR 0.58, 95%CI 0.34-0.98, p = 0.04) were the only independent predictors of mortality among patients with stroke and COVID-19.,COVID-19 is associated with a small but significant risk of clinically relevant cerebrovascular events, particularly ischemic stroke.,The mortality rate is high for COVID-19-associated cerebrovascular complications; therefore, aggressive monitoring and early intervention should be pursued to mitigate poor outcomes.
1
Up to 20%-30% of patients hospitalized with coronavirus disease 2019 (COVID-19) have evidence of myocardial involvement.,Acute cardiac injury in patients hospitalized with COVID-19 is associated with higher morbidity and mortality.,There are no data on how acute treatment of COVID-19 may affect the convalescent phase or long-term cardiac recovery and function.,Myocarditis from other viral pathogens can evolve into overt or subclinical myocardial dysfunction, and sudden death has been described in the convalescent phase of viral myocarditis.,This raises concerns for patients recovering from COVID-19.,Some patients will have subclinical and possibly overt cardiovascular abnormalities.,Patients with ostensibly recovered cardiac function may still be at risk of cardiomyopathy and cardiac arrhythmias.,Screening for residual cardiac involvement in the convalescent phase for patients recovered from COVID-19-associated cardiac injury is needed.,The type of testing and therapies for post COVID-19 myocardial dysfunction will need to be determined.,Therefore, now is the time to plan for appropriate registries and clinical trials to properly assess these issues and prepare for long-term sequelae of “post-COVID-19 cardiac syndrome.”
The coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 that has significant implications for the cardiovascular care of patients.,First, those with COVID-19 and pre-existing cardiovascular disease have an increased risk of severe disease and death.,Second, infection has been associated with multiple direct and indirect cardiovascular complications including acute myocardial injury, myocarditis, arrhythmias, and venous thromboembolism.,Third, therapies under investigation for COVID-19 may have cardiovascular side effects.,Fourth, the response to COVID-19 can compromise the rapid triage of non-COVID-19 patients with cardiovascular conditions.,Finally, the provision of cardiovascular care may place health care workers in a position of vulnerability as they become hosts or vectors of virus transmission.,We hereby review the peer-reviewed and pre-print reports pertaining to cardiovascular considerations related to COVID-19 and highlight gaps in knowledge that require further study pertinent to patients, health care workers, and health systems.,•Patients with pre-existing CVD appear to have worse outcomes with COVID-19.,•CV complications include biomarker elevations, myocarditis, heart failure, and venous thromboembolism, which may be exacerbated by delays in care.,•Therapies under investigation for COVID-19 may have significant drug-drug interactions with CV medications.,•Health care workers and health systems should take measures to ensure safety while providing high-quality care for COVID-19 patients.,Patients with pre-existing CVD appear to have worse outcomes with COVID-19.,CV complications include biomarker elevations, myocarditis, heart failure, and venous thromboembolism, which may be exacerbated by delays in care.,Therapies under investigation for COVID-19 may have significant drug-drug interactions with CV medications.,Health care workers and health systems should take measures to ensure safety while providing high-quality care for COVID-19 patients.
1
Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI).,We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months.,We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia.,Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI.,Investigators responsible for data collection and outcome assessment were masked to treatment allocation.,The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population.,This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed.,Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700).,After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis.,At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control).,No important unexpected adverse events or side effects of remote ischaemic conditioning were observed.,Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI.,British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden.
Inhibition of succinate dehydrogenase (SDH) with malonate during reperfusion reduces infarct size in isolated mice hearts submitted to global ischemia.,However, malonate has toxic effects that preclude its systemic administration in animals.,Here we investigated the effect of intracoronary malonate on infarct size in pigs submitted to transient coronary occlusion.,Under baseline conditions, 50 mmol/L of intracoronary disodium malonate, but not lower concentrations, transiently reduced systolic segment shortening in the region perfused by the left anterior descending coronary artery (LAD) in open-chest pigs.,To assess the effects of SDH inhibition on reperfusion injury, saline or malonate 10 mmol/L were selectively infused into the area at risk in 38 animals submitted to ischemia-reperfusion.,Malonate improved systolic shortening in the area at risk two hours after 15 min of ischemia (0.18 ± 0.07 vs 0.00 ± 0.01 a.u., p = 0.025, n = 3).,In animals submitted to 40 min of ischemia, malonate reduced reactive oxygen species production (MitoSOX staining) during initial reperfusion and limited infarct size (36.46 ± 5.35 vs 59.62 ± 4.00%, p = 0.002, n = 11), without modifying reperfusion arrhythmias.,In conclusion, inhibition of SDH with intracoronary malonate during early reperfusion limits reperfusion injury and infarct size in pigs submitted to transient coronary occlusion without modifying reperfusion arrhythmias or contractile function in distant myocardium.
1
Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).,Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described.,In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020.,Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors.,We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death.,191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients).,Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03-1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61-12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64-128·55; p=0·0033) on admission.,Median duration of viral shedding was 20·0 days (IQR 17·0-24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors.,The longest observed duration of viral shedding in survivors was 37 days.,The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage.,Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.,Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
The aim of our study was to determine the incidence, characteristics, and clinical outcomes of patients with the novel coronavirus (COVID-19) infection who had presented with and been treated for acute limb ischemia (ALI) during the 2020 coronavirus pandemic.,We performed a single-center, observational cohort study.,The data from all patients who had tested positive for COVID-19 and had presented with ALI requiring urgent operative treatment were collected in a prospectively maintained database.,For the present series, successful revascularization of the treated arterial segment was defined as the absence of early (<30 days) re-occlusion or major amputation or death within 24 hours.,The primary outcomes were successful revascularization, early (≤30 days) and late (≥30 days) survival, postoperative (≤30 days) complications, and limb salvage.,We evaluated the data from 20 patients with ALI who were positive for COVID-19.,For the period from January to March, the incidence rate of patients presenting with ALI in 2020 was significantly greater than that for the same months in 2019 (23 of 141 [16.3%] vs 3 of 163 [1.8%]; P < .001)].,Of the 20 included patients, 18 were men (90%) and two were women (10%).,Their mean age was 75 ± 9 years (range, 62-95 years).,All 20 patients already had a diagnosis of COVID-19 pneumonia.,Operative treatment was performed in 17 patients (85%).,Revascularization was successful in 12 of the 17 (70.6%).,Although successful revascularization was not significantly associated with the postoperative use of intravenous heparin (64.7% vs 83.3%; P = .622), no patient who had received intravenous heparin required reintervention.,Of the 20 patients, eight (40%) had died in the hospital.,The patients who had died were significantly older (81 ± 10 years vs 71 ± 5 years; P = .008).,The use of continuous postoperative systemic heparin infusion was significantly associated with survival (0% vs 57.1%; P = .042).,In our preliminary experience, the incidence of ALI has significantly increased during the COVID-19 pandemic in the Italian Lombardy region.,Successful revascularization was lower than expected, which we believed was due to a virus-related hypercoagulable state.,The use of prolonged systemic heparin might improve surgical treatment efficacy, limb salvage, and overall survival.
1
The new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has caused more than 210 000 deaths worldwide.,However, little is known about the causes of death and the virus's pathologic features.,To validate and compare clinical findings with data from medical autopsy, virtual autopsy, and virologic tests.,Prospective cohort study.,Autopsies performed at a single academic medical center, as mandated by the German federal state of Hamburg for patients dying with a polymerase chain reaction-confirmed diagnosis of COVID-19.,The first 12 consecutive COVID-19-positive deaths.,Complete autopsy, including postmortem computed tomography and histopathologic and virologic analysis, was performed.,Clinical data and medical course were evaluated.,Results: Median patient age was 73 years (range, 52 to 87 years), 75% of patients were male, and death occurred in the hospital (n = 10) or outpatient sector (n = 2).,Coronary heart disease and asthma or chronic obstructive pulmonary disease were the most common comorbid conditions (50% and 25%, respectively).,Autopsy revealed deep venous thrombosis in 7 of 12 patients (58%) in whom venous thromboembolism was not suspected before death; pulmonary embolism was the direct cause of death in 4 patients.,Postmortem computed tomography revealed reticular infiltration of the lungs with severe bilateral, dense consolidation, whereas histomorphologically diffuse alveolar damage was seen in 8 patients.,In all patients, SARS-CoV-2 RNA was detected in the lung at high concentrations; viremia in 6 of 10 and 5 of 12 patients demonstrated high viral RNA titers in the liver, kidney, or heart.,Limited sample size.,The high incidence of thromboembolic events suggests an important role of COVID-19-induced coagulopathy.,Further studies are needed to investigate the molecular mechanism and overall clinical incidence of COVID-19-related death, as well as possible therapeutic interventions to reduce it.,University Medical Center Hamburg-Eppendorf.,Little is known of the pathologic changes that lead to death in patients with COVID-19.,This study reports the autopsy findings of consecutive patients who died with a diagnosis of COVID-19.
Severe acute respiratory-syndrome coronavirus-2 (SARS-CoV-2) host cell infection is mediated by binding to angiotensin-converting enzyme 2 (ACE2).,Systemic dysregulation observed in SARS-CoV was previously postulated to be due to ACE2/angiotensin 1-7 (Ang1-7)/Mas axis downregulation; increased ACE2 activity was shown to mediate disease protection.,Because angiotensin II receptor blockers, ACE inhibitors, and mineralocorticoid receptor antagonists increase ACE2 receptor expression, it has been tacitly believed that the use of these agents may facilitate viral disease; thus, they should not be used in high-risk patients with cardiovascular disease.,Based on the anti-inflammatory benefits of the upregulation of the ACE2/Ang1-7/Mas axis and previously demonstrated benefits of lung function improvement in SARS-CoV infections, it has been hypothesized that the benefits of treatment with renin-angiotensin system inhibitors in SARS-CoV-2 may outweigh the risks and at the very least should not be withheld.,•COVID-19 has been associated with cardiac involvement.,SARS-CoV-2 requires binding to ACE2 in the RAS.,•The ACE2/Ang1-7/Mas pathway counterbalances the RAS, which results in activation of anti-inflammatory pathways.,•ACE inhibitors, ARBs, and MRAs upregulate ACE2 activity and expression.,•More data are required to determine if regulation of ACE2 in patients with cardiovascular disease and COVID-19 would help improve clinical outcomes.,COVID-19 has been associated with cardiac involvement.,SARS-CoV-2 requires binding to ACE2 in the RAS.,The ACE2/Ang1-7/Mas pathway counterbalances the RAS, which results in activation of anti-inflammatory pathways.,ACE inhibitors, ARBs, and MRAs upregulate ACE2 activity and expression.,More data are required to determine if regulation of ACE2 in patients with cardiovascular disease and COVID-19 would help improve clinical outcomes.
1
The coronavirus disease 2019 (COVID-19) outbreak has become a global public health concern; however, relatively few detailed reports of related cardiac injury are available.,The aims of this study were to compare the clinical and echocardiographic characteristics of inpatients in the intensive-care unit (ICU) and non-ICU patients.,We recruited 416 patients diagnosed with COVID-19 and divided them into two groups: ICU (n = 35) and non-ICU (n = 381).,Medical histories, laboratory findings, and echocardiography data were compared.,The levels of myocardial injury markers in ICU vs non-ICU patients were as follows: troponin I (0.029 ng/mL [0.007-0.063] vs 0.006 ng/mL [0.006-0.006]) and myoglobin (65.45 μg/L [39.77-130.57] vs 37.00 μg/L [26.40-53.54]).,Echocardiographic findings included ventricular wall thickening (12 [39%] vs 1 [4%]), pulmonary hypertension (9 [29%] vs 0 [0%]), and reduced left-ventricular ejection fraction (5 [16%] vs 0 [0%]).,Overall, 10% of the ICU patients presented with right heart enlargement, thickened right-ventricular wall, decreased right heart function, and pericardial effusion.,Cardiac complications were more common in ICU patients, including acute cardiac injury (21 [60%] vs 13 [3%]) (including 2 cases of fulminant myocarditis), atrial or ventricular tachyarrhythmia (3 [9%] vs 3 [1%]), and acute heart failure (5 [14%] vs 0 [0%]).,Myocardial injury marker elevation, ventricular wall thickening, pulmonary artery hypertension, and cardiac complications including acute myocardial injury, arrhythmia, and acute heart failure are more common in ICU patients with COVID-19.,Cardiac injury in COVID-19 patients may be related more to the systemic response after infection rather than direct damage by coronavirus.
To describe the cardiac abnormalities in patients with COVID-19 and identify the characteristics of patients who would benefit most from echocardiography.,In a prospective international survey, we captured echocardiography findings in patients with presumed or confirmed COVID-19 between 3 and 20 April 2020.,Patient characteristics, indications, findings, and impact of echocardiography on management were recorded.,Multivariable logistic regression identified predictors of echocardiographic abnormalities.,A total of 1216 patients [62 (52-71) years, 70% male] from 69 countries across six continents were included.,Overall, 667 (55%) patients had an abnormal echocardiogram.,Left and right ventricular abnormalities were reported in 479 (39%) and 397 (33%) patients, respectively, with evidence of new myocardial infarction in 36 (3%), myocarditis in 35 (3%), and takotsubo cardiomyopathy in 19 (2%).,Severe cardiac disease (severe ventricular dysfunction or tamponade) was observed in 182 (15%) patients.,In those without pre-existing cardiac disease (n = 901), the echocardiogram was abnormal in 46%, and 13% had severe disease.,Independent predictors of left and right ventricular abnormalities were distinct, including elevated natriuretic peptides [adjusted odds ratio (OR) 2.96, 95% confidence interval (CI) 1.75-5.05) and cardiac troponin (OR 1.69, 95% CI 1.13-2.53) for the former, and severity of COVID-19 symptoms (OR 3.19, 95% CI 1.73-6.10) for the latter.,Echocardiography changed management in 33% of patients.,In this global survey, cardiac abnormalities were observed in half of all COVID-19 patients undergoing echocardiography.,Abnormalities were often unheralded or severe, and imaging changed management in one-third of patients.
1
Three months ago, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) broke out in Wuhan, China, and spread rapidly around the world.,Severe novel coronavirus pneumonia (NCP) patients have abnormal blood coagulation function, but their venous thromboembolism (VTE) prevalence is still rarely mentioned.,To determine the incidence of VTE in patients with severe NCP.,In this study, 81 severe NCP patients in the intensive care unit (ICU) of Union Hospital (Wuhan, China) were enrolled.,The results of conventional coagulation parameters and lower limb vein ultrasonography of these patients were retrospectively collected and analyzed.,The incidence of VTE in these patients was 25% (20/81), of which 8 patients with VTE events died.,The VTE group was different from the non‐VTE group in age, lymphocyte counts, activated partial thromboplastin time (APTT), D‐dimer, etc.,If 1.5 µg/mL was used as the D‐dimer cut‐off value to predicting VTE, the sensitivity was 85.0%, the specificity was 88.5%, and the negative predictive value (NPV) was 94.7%.,The incidence of VTE in patients with severe NCP is 25% (20/81), which may be related to poor prognosis.,The significant increase of D‐dimer in severe NCP patients is a good index for identifying high‐risk groups of VTE.
Few data are available on the rate and characteristics of thromboembolic complications in hospitalized patients with COVID-19.,We studied consecutive symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02.2020-10.04.2020).,The primary outcome was any thromboembolic complication, including venous thromboembolism (VTE), ischemic stroke, and acute coronary syndrome (ACS)/myocardial infarction (MI).,Secondary outcome was overt disseminated intravascular coagulation (DIC).,We included 388 patients (median age 66 years, 68% men, 16% requiring intensive care [ICU]).,Thromboprophylaxis was used in 100% of ICU patients and 75% of those on the general ward.,Thromboembolic events occurred in 28 (7.7% of closed cases; 95%CI 5.4%-11.0%), corresponding to a cumulative rate of 21% (27.6% ICU, 6.6% general ward).,Half of the thromboembolic events were diagnosed within 24 h of hospital admission.,Forty-four patients underwent VTE imaging tests and VTE was confirmed in 16 (36%).,Computed tomography pulmonary angiography (CTPA) was performed in 30 patients, corresponding to 7.7% of total, and pulmonary embolism was confirmed in 10 (33% of CTPA).,The rate of ischemic stroke and ACS/MI was 2.5% and 1.1%, respectively.,Overt DIC was present in 8 (2.2%) patients.,The high number of arterial and, in particular, venous thromboembolic events diagnosed within 24 h of admission and the high rate of positive VTE imaging tests among the few COVID-19 patients tested suggest that there is an urgent need to improve specific VTE diagnostic strategies and investigate the efficacy and safety of thromboprophylaxis in ambulatory COVID-19 patients.,•COVID-19 is characterized by coagulation activation and endothelial dysfunction.,Few data are available on thromboembolic complications.,•We studied symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02-10.04.2020).,•Venous and arterial thromboembolic events occurred in 8% of hospitalized patients (cumulative rate 21.0%) and 50% of events were diagnosed within 24 h of hospital admission.,•Forty-four (11% of total) patients underwent VTE imaging tests; 16 were positive (36% of tests), suggesting underestimation of thromboembolic complications.,•There is an urgent need to investigate VTE diagnostic strategies and the impact of thromboprophylaxis in ambulatory COVID-19 patients.,COVID-19 is characterized by coagulation activation and endothelial dysfunction.,Few data are available on thromboembolic complications.,We studied symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02-10.04.2020).,Venous and arterial thromboembolic events occurred in 8% of hospitalized patients (cumulative rate 21.0%) and 50% of events were diagnosed within 24 h of hospital admission.,Forty-four (11% of total) patients underwent VTE imaging tests; 16 were positive (36% of tests), suggesting underestimation of thromboembolic complications.,There is an urgent need to investigate VTE diagnostic strategies and the impact of thromboprophylaxis in ambulatory COVID-19 patients.
1
Supplemental Digital Content is available in the text.,Patients with coronavirus disease 2019 (COVID-19) have a high rate of thrombosis.,We hypothesized that severe acute respiratory syndrome coronavirus 2 infection leads to induction of TF (tissue factor) expression and increased levels of circulating TF-positive extracellular vesicles (EV) that may drive thrombosis.,We measured levels of plasma EV TF activity in 100 patients with COVID-19 with moderate and severe disease and 28 healthy controls.,Levels of EV TF activity were significantly higher in patients with COVID-19 compared with controls.,In addition, levels of EV TF activity were associated with disease severity and mortality.,Finally, levels of EV TF activity correlated with several plasma markers, including D-dimer, which has been shown to be associated with thrombosis in patients with COVID-19.,Our results indicate that severe acute respiratory syndrome coronavirus 2 infection induces the release of TF-positive EVs into the circulation that are likely to contribute to thrombosis in patients with COVID-19.,EV TF activity was also associated with severity and mortality.
COVID‐19 is associated with a substantial risk of venous thrombotic events, even in the presence of adequate thromboprophylactic therapy.,We aimed to better characterize the hypercoagulable state of COVID‐19 patients in patients receiving anticoagulant therapy.,We took plasma samples of 23 patients with COVID‐19 who were on prophylactic or intensified anticoagulant therapy.,Twenty healthy volunteers were included to establish reference ranges.,COVID‐19 patients had a mildly prolonged prothrombin time, high von Willebrand factor levels and low ADAMTS13 activity.,Most rotational thromboelastometry parameters were normal, with a hypercoagulable maximum clot firmness in part of the patients.,Despite detectable anti‐activated factor X activity in the majority of patients, ex vivo thrombin generation was normal, and in vivo thrombin generation elevated as evidenced by elevated levels of thrombin‐antithrombin complexes and D‐dimers.,Plasma levels of activated factor VII were lower in patients, and levels of the platelet activation marker soluble CD40 ligand were similar in patients and controls.,Plasmin‐antiplasmin complex levels were also increased in patients despite an in vitro hypofibrinolytic profile.,COVID‐19 patients are characterized by normal in vitro thrombin generation and enhanced clot formation and decreased fibrinolytic potential despite the presence of heparin in the sample.,Anticoagulated COVID‐19 patients have persistent in vivo activation of coagulation and fibrinolysis, but no evidence of excessive platelet activation.,Ongoing activation of coagulation despite normal to intensified anticoagulant therapy indicates studies on alternative antithrombotic strategies are urgently required.
1
Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).,Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described.,In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020.,Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors.,We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death.,191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients).,Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03-1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61-12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64-128·55; p=0·0033) on admission.,Median duration of viral shedding was 20·0 days (IQR 17·0-24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors.,The longest observed duration of viral shedding in survivors was 37 days.,The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage.,Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.,Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
There is concern about the potential of an increased risk related to medications that act on the renin-angiotensin-aldosterone system in patients exposed to coronavirus disease 2019 (Covid-19), because the viral receptor is angiotensin-converting enzyme 2 (ACE2).,We assessed the relation between previous treatment with ACE inhibitors, angiotensin-receptor blockers, beta-blockers, calcium-channel blockers, or thiazide diuretics and the likelihood of a positive or negative result on Covid-19 testing as well as the likelihood of severe illness (defined as intensive care, mechanical ventilation, or death) among patients who tested positive.,Using Bayesian methods, we compared outcomes in patients who had been treated with these medications and in untreated patients, overall and in those with hypertension, after propensity-score matching for receipt of each medication class.,A difference of at least 10 percentage points was prespecified as a substantial difference.,Among 12,594 patients who were tested for Covid-19, a total of 5894 (46.8%) were positive; 1002 of these patients (17.0%) had severe illness.,A history of hypertension was present in 4357 patients (34.6%), among whom 2573 (59.1%) had a positive test; 634 of these patients (24.6%) had severe illness.,There was no association between any single medication class and an increased likelihood of a positive test.,None of the medications examined was associated with a substantial increase in the risk of severe illness among patients who tested positive.,We found no substantial increase in the likelihood of a positive test for Covid-19 or in the risk of severe Covid-19 among patients who tested positive in association with five common classes of antihypertensive medications.
1
Troponin elevation is common in hospitalized COVID-19 patients, but underlying aetiologies are ill-defined.,We used multi-parametric cardiovascular magnetic resonance (CMR) to assess myocardial injury in recovered COVID-19 patients.,One hundred and forty-eight patients (64 ± 12 years, 70% male) with severe COVID-19 infection [all requiring hospital admission, 48 (32%) requiring ventilatory support] and troponin elevation discharged from six hospitals underwent convalescent CMR (including adenosine stress perfusion if indicated) at median 68 days.,Left ventricular (LV) function was normal in 89% (ejection fraction 67% ± 11%).,Late gadolinium enhancement and/or ischaemia was found in 54% (80/148).,This comprised myocarditis-like scar in 26% (39/148), infarction and/or ischaemia in 22% (32/148) and dual pathology in 6% (9/148).,Myocarditis-like injury was limited to three or less myocardial segments in 88% (35/40) of cases with no associated LV dysfunction; of these, 30% had active myocarditis.,Myocardial infarction was found in 19% (28/148) and inducible ischaemia in 26% (20/76) of those undergoing stress perfusion (including 7 with both infarction and ischaemia).,Of patients with ischaemic injury pattern, 66% (27/41) had no past history of coronary disease.,There was no evidence of diffuse fibrosis or oedema in the remote myocardium (T1: COVID-19 patients 1033 ± 41 ms vs. matched controls 1028 ± 35 ms; T2: COVID-19 46 ± 3 ms vs. matched controls 47 ± 3 ms).,During convalescence after severe COVID-19 infection with troponin elevation, myocarditis-like injury can be encountered, with limited extent and minimal functional consequence.,In a proportion of patients, there is evidence of possible ongoing localized inflammation.,A quarter of patients had ischaemic heart disease, of which two-thirds had no previous history.,Whether these observed findings represent pre-existing clinically silent disease or de novo COVID-19-related changes remain undetermined.,Diffuse oedema or fibrosis was not detected.
What are the cardiovascular effects in unselected patients with recent coronavirus disease 2019 (COVID-19)?,In this cohort study including 100 patients recently recovered from COVID-19 identified from a COVID-19 test center, cardiac magnetic resonance imaging revealed cardiac involvement in 78 patients (78%) and ongoing myocardial inflammation in 60 patients (60%), which was independent of preexisting conditions, severity and overall course of the acute illness, and the time from the original diagnosis.,These findings indicate the need for ongoing investigation of the long-term cardiovascular consequences of COVID-19.,This cohort study evaluates the presence of myocardial injury in unselected patients recently recovered from coronavirus disease 2019 (COVID-19).,Coronavirus disease 2019 (COVID-19) continues to cause considerable morbidity and mortality worldwide.,Case reports of hospitalized patients suggest that COVID-19 prominently affects the cardiovascular system, but the overall impact remains unknown.,To evaluate the presence of myocardial injury in unselected patients recently recovered from COVID-19 illness.,In this prospective observational cohort study, 100 patients recently recovered from COVID-19 illness were identified from the University Hospital Frankfurt COVID-19 Registry between April and June 2020.,Recent recovery from severe acute respiratory syndrome coronavirus 2 infection, as determined by reverse transcription-polymerase chain reaction on swab test of the upper respiratory tract.,Demographic characteristics, cardiac blood markers, and cardiovascular magnetic resonance (CMR) imaging were obtained.,Comparisons were made with age-matched and sex-matched control groups of healthy volunteers (n = 50) and risk factor-matched patients (n = 57).,Of the 100 included patients, 53 (53%) were male, and the mean (SD) age was 49 (14) years.,The median (IQR) time interval between COVID-19 diagnosis and CMR was 71 (64-92) days.,Of the 100 patients recently recovered from COVID-19, 67 (67%) recovered at home, while 33 (33%) required hospitalization.,At the time of CMR, high-sensitivity troponin T (hsTnT) was detectable (greater than 3 pg/mL) in 71 patients recently recovered from COVID-19 (71%) and significantly elevated (greater than 13.9 pg/mL) in 5 patients (5%).,Compared with healthy controls and risk factor-matched controls, patients recently recovered from COVID-19 had lower left ventricular ejection fraction, higher left ventricle volumes, and raised native T1 and T2.,A total of 78 patients recently recovered from COVID-19 (78%) had abnormal CMR findings, including raised myocardial native T1 (n = 73), raised myocardial native T2 (n = 60), myocardial late gadolinium enhancement (n = 32), or pericardial enhancement (n = 22).,There was a small but significant difference between patients who recovered at home vs in the hospital for native T1 mapping (median [IQR], 1119 [1092-1150] ms vs 1141 [1121-1175] ms; P = .008) and hsTnT (4.2 [3.0-5.9] pg/dL vs 6.3 [3.4-7.9] pg/dL; P = .002) but not for native T2 mapping.,None of these measures were correlated with time from COVID-19 diagnosis (native T1: r = 0.07; P = .47; native T2: r = 0.14; P = .15; hsTnT: r = −0.07; P = .50).,High-sensitivity troponin T was significantly correlated with native T1 mapping (r = 0.33; P < .001) and native T2 mapping (r = 0.18; P = .01).,Endomyocardial biopsy in patients with severe findings revealed active lymphocytic inflammation.,Native T1 and T2 were the measures with the best discriminatory ability to detect COVID-19-related myocardial pathology.,In this study of a cohort of German patients recently recovered from COVID-19 infection, CMR revealed cardiac involvement in 78 patients (78%) and ongoing myocardial inflammation in 60 patients (60%), independent of preexisting conditions, severity and overall course of the acute illness, and time from the original diagnosis.,These findings indicate the need for ongoing investigation of the long-term cardiovascular consequences of COVID-19.
1
The diffusion of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) forced the Italian population to restrictive measures that modified patients’ responses to non-SARS-CoV-2 medical conditions.,We evaluated all patients with acute coronary syndromes admitted in 3 high-volume hospitals during the first month of SARS-CoV-2 Italian-outbreak and compared them with patients with ACS admitted during the same period 1 year before.,Hospitalization for ACS decreased from 162 patients in 2019 to 84 patients in 2020.,In 2020, both door-to-balloon and symptoms-to-percutaneous coronary intervention were longer, and admission levels of high-sensitive cardiac troponin I were higher.,They had a lower discharged residual left-ventricular function and an increased predicted late cardiovascular mortality based on their Global Registry of Acute Coronary Events (GRACE) scores.
To evaluate the impact of the COVID-19 pandemic on patient admissions to Italian cardiac care units (CCUs).,We conducted a multicentre, observational, nationwide survey to collect data on admissions for acute myocardial infarction (AMI) at Italian CCUs throughout a 1 week period during the COVID-19 outbreak, compared with the equivalent week in 2019.,We observed a 48.4% reduction in admissions for AMI compared with the equivalent week in 2019 (P < 0.001).,The reduction was significant for both ST-segment elevation myocardial infarction [STEMI; 26.5%, 95% confidence interval (CI) 21.7-32.3; P = 0.009] and non-STEMI (NSTEMI; 65.1%, 95% CI 60.3-70.3; P < 0.001).,Among STEMIs, the reduction was higher for women (41.2%; P = 0.011) than men (17.8%; P = 0.191).,A similar reduction in AMI admissions was registered in North Italy (52.1%), Central Italy (59.3%), and South Italy (52.1%).,The STEMI case fatality rate during the pandemic was substantially increased compared with 2019 [risk ratio (RR) = 3.3, 95% CI 1.7-6.6; P < 0.001].,A parallel increase in complications was also registered (RR = 1.8, 95% CI 1.1-2.8; P = 0.009).,Admissions for AMI were significantly reduced during the COVID-19 pandemic across Italy, with a parallel increase in fatality and complication rates.,This constitutes a serious social issue, demanding attention by the scientific and healthcare communities and public regulatory agencies.
1
Compact cardiomyocytes that make up the ventricular wall of the adult heart represent an important therapeutic target population for modeling and treating cardiovascular diseases.,Here, we established a differentiation strategy that promotes the specification, proliferation and maturation of compact ventricular cardiomyocytes from human pluripotent stem cells (hPSCs).,The cardiomyocytes generated under these conditions display the ability to use fatty acids as an energy source, a high mitochondrial mass, well-defined sarcomere structures and enhanced contraction force.,These ventricular cells undergo metabolic changes indicative of those associated with heart failure when challenged in vitro with pathological stimuli and were found to generate grafts consisting of more mature cells than those derived from immature cardiomyocytes following transplantation into infarcted rat hearts. hPSC-derived atrial cardiomyocytes also responded to the maturation cues identified in this study, indicating that the approach is broadly applicable to different subtypes of the heart.,Collectively, these findings highlight the power of recapitulating key aspects of embryonic and postnatal development for generating therapeutically relevant cell types from hPSCs.,Cardiomyocytes of heart ventricles consist of subpopulations of trabecular and compact subtypes.,Here the authors describe the generation of structurally, metabolically and functionally mature compact ventricular cardiomyocytes as well as mature atrial cardiomyocytes from human pluripotent stem cells.
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful platform for biomedical research.,However, they are immature, which is a barrier to modeling adult-onset cardiovascular disease.,Here, we sought to develop a simple method that could drive cultured hiPSC-CMs toward maturity across a number of phenotypes, with the aim of utilizing mature hiPSC-CMs to model human cardiovascular disease. hiPSC-CMs were cultured in fatty acid-based medium and plated on micropatterned surfaces.,These cells display many characteristics of adult human cardiomyocytes, including elongated cell morphology, sarcomeric maturity, and increased myofibril contractile force.,In addition, mature hiPSC-CMs develop pathological hypertrophy, with associated myofibril relaxation defects, in response to either a pro-hypertrophic agent or genetic mutations.,The more mature hiPSC-CMs produced by these methods could serve as a useful in vitro platform for characterizing cardiovascular disease.,•Standard (glucose) cultured hiPSC-CMs demonstrate a blunted hypertrophic response•A maturation method induces hiPSC-CM maturation and suppresses HIF1A expression•Mature hiPSC-CMs demonstrate improved sarcomeric morphology and contractility•Mature hiPSC-CMs respond to agonist- or mutation-induced hypertrophy,Standard (glucose) cultured hiPSC-CMs demonstrate a blunted hypertrophic response,A maturation method induces hiPSC-CM maturation and suppresses HIF1A expression,Mature hiPSC-CMs demonstrate improved sarcomeric morphology and contractility,Mature hiPSC-CMs respond to agonist- or mutation-induced hypertrophy,In this article, Song and colleagues show that a combination of fatty acid medium and micropatterned surfaces induces maturation in human induced pluripotent stem cell-derived cardiomyocytes.,Matured cells display improved sarcomere morphology, metabolic maturation, and contractility.,These cells also show increased sensitivity to hypertrophic stimuli, including hypertrophic agonist and genetic mutations, representing an ideal system to model cardiovascular disease.
1
Thromboembolic disease is common in coronavirus disease-2019 (COVID-19).,There is limited evidence on the association of in-hospital anticoagulation (AC) with outcomes and postmortem findings.,The purpose of this study was to examine association of AC with in-hospital outcomes and describe thromboembolic findings on autopsies.,This retrospective analysis examined the association of AC with mortality, intubation, and major bleeding.,Subanalyses were also conducted on the association of therapeutic versus prophylactic AC initiated ≤48 h from admission.,Thromboembolic disease was contextualized by premortem AC among consecutive autopsies.,Among 4,389 patients, median age was 65 years with 44% women.,Compared with no AC (n = 1,530; 34.9%), therapeutic AC (n = 900; 20.5%) and prophylactic AC (n = 1,959; 44.6%) were associated with lower in-hospital mortality (adjusted hazard ratio [aHR]: 0.53; 95% confidence interval [CI]: 0.45 to 0.62 and aHR: 0.50; 95% CI: 0.45 to 0.57, respectively), and intubation (aHR: 0.69; 95% CI: 0.51 to 0.94 and aHR: 0.72; 95% CI: 0.58 to 0.89, respectively).,When initiated ≤48 h from admission, there was no statistically significant difference between therapeutic (n = 766) versus prophylactic AC (n = 1,860) (aHR: 0.86; 95% CI: 0.73 to 1.02; p = 0.08).,Overall, 89 patients (2%) had major bleeding adjudicated by clinician review, with 27 of 900 (3.0%) on therapeutic, 33 of 1,959 (1.7%) on prophylactic, and 29 of 1,530 (1.9%) on no AC.,Of 26 autopsies, 11 (42%) had thromboembolic disease not clinically suspected and 3 of 11 (27%) were on therapeutic AC.,AC was associated with lower mortality and intubation among hospitalized COVID-19 patients.,Compared with prophylactic AC, therapeutic AC was associated with lower mortality, although not statistically significant.,Autopsies revealed frequent thromboembolic disease.,These data may inform trials to determine optimal AC regimens.
A remarkably high incidence of venous thromboembolism (VTE) has been reported among critically ill patients with COVID‐19 assisted in the intensive care unit (ICU).,However, VTE burden among non‐ICU patients hospitalized for COVID‐19 that receive guideline‐recommended thromboprophylaxis is unknown.,To determine the incidence of VTE among non‐ICU patients hospitalized for COVID‐19 that receive pharmacological thromboprophylaxis.,We performed a systematic screening for the diagnosis of deep vein thrombosis (DVT) by lower limb vein compression ultrasonography (CUS) in consecutive non‐ICU patients hospitalized for COVID‐19, independent of the presence of signs or symptoms of DVT.,All patients were receiving pharmacological thromboprophylaxis with either enoxaparin or fondaparinux.,The population that we screened consisted of 84 consecutive patients, with a mean age of 67.6 ± 13.5 years and a mean Padua Prediction Score of 5.1 ± 1.6.,Seventy‐two patients (85.7%) had respiratory insufficiency, required oxygen supplementation, and had reduced mobility or were bedridden.,In this cohort, we found 10 cases of DVT, with an incidence of 11.9% (95% confidence interval [CI] 4.98‐18.82).,Of these, 2 were proximal DVT (incidence rate 2.4%, 95% CI −0.87‐5.67) and 8 were distal DVT (incidence rate 9.5%, 95% CI 3.23‐5.77).,Significant differences between subjects with and without DVT were D‐dimer > 3000 µg/L (P < .05), current or previous cancer (P < .05), and need of high flow nasal oxygen therapy and/or non‐invasive ventilation (P < .01).,DVT may occur among non‐ICU patients hospitalized for COVID‐19, despite guideline‐recommended thromboprophylaxis.
1
This study aimed to evaluate the impact of the Coronavirus Disease 2019 (COVID-19) pandemic on out-of-hospital cardiac arrest (OHCA) in Singapore.,We used data from the Singapore Civil Defence Force to compare the incidence, characteristics and outcomes of all Emergency Medical Services (EMS)-attended adult OHCA during the pandemic (January-May 2020) and pre-pandemic (January-May 2018 and 2019) periods.,Pre-hospital return of spontaneous circulation (ROSC) was the primary outcome.,Binary logistic regression was used to calculate the adjusted odds ratios (aOR) for the characteristics of OHCA.,Of the 3893 OHCA patients (median age 72 years, 63.7% males), 1400 occurred during the pandemic period and 2493 during the pre-pandemic period.,Compared with the pre-pandemic period, OHCAs during the pandemic period more likely occurred at home (aOR: 1.48; 95% CI: 1.24-1.75) and were witnessed (aOR: 1.71; 95% CI: 1.49-1.97).,They received less bystander CPR (aOR: 0.70; 95% CI: 0.61-0.81) despite 65% of witnessed arrests by a family member, and waited longer for EMS (OR ≥ 10 min: 1.71, 95% CI 1.46-2.00).,Pre-hospital ROSC was less likely during the pandemic period (aOR: 0.67; 95% CI: 0.53-0.84).,The pandemic saw increased OHCA incidence and worse outcomes in Singapore, likely indirect effects of COVID-19.
The impact of COVID-19 on pre-hospital and hospital services and hence on the prevalence and outcomes of out-of-hospital cardiac arrests (OHCA) remain unclear.,The review aimed to evaluate the influence of the COVID-19 pandemic on the incidence, process, and outcomes of OHCA.,A systematic review of PubMed, EMBASE, and pre-print websites was performed.,Studies reporting comparative data on OHCA within the same jurisdiction, before and during the COVID-19 pandemic were included.,Study quality was assessed based on the Newcastle-Ottawa Scale.,Ten studies reporting data from 35,379 OHCA events were included.,There was a 120% increase in OHCA events since the pandemic.,Time from OHCA to ambulance arrival was longer during the pandemic (p = 0.036).,While mortality (OR = 0.67, 95%-CI 0.49−0.91) and supraglottic airway use (OR = 0.36, 95%-CI 0.27−0.46) was higher during the pandemic, automated external defibrillator use (OR = 1.78 95%-CI 1.06-2.98), return of spontaneous circulation (OR = 1.63, 95%CI 1.18-2.26) and intubation (OR = 1.87, 95%-CI 1.12--3.13) was more common before the pandemic.,More patients survived to hospital admission (OR = 1.75, 95%-CI 1.42-2.17) and discharge (OR = 1.65, 95%-CI 1.28-2.12) before the pandemic.,Bystander CPR (OR = 1.18, 95%-CI 0.95-1.46), unwitnessed OHCA (OR = 0.84, 95%-CI 0.66-1.07), paramedic-resuscitation attempts (OR = 1.19 95%-CI 1.00-1.42) and mechanical CPR device use (OR = 1.57 95%-CI 0.55-4.55) did not defer significantly.,The incidence and mortality following OHCA was higher during the COVID-19 pandemic.,There were significant variations in resuscitation practices during the pandemic.,Research to define optimal processes of pre-hospital care during a pandemic is urgently required.,PROSPERO (CRD42020203371).
1
Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).,Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described.,In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020.,Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors.,We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death.,191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients).,Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03-1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61-12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64-128·55; p=0·0033) on admission.,Median duration of viral shedding was 20·0 days (IQR 17·0-24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors.,The longest observed duration of viral shedding in survivors was 37 days.,The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage.,Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.,Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
The role of clinical laboratory data in the differential diagnosis of the severe forms of COVID‐19 has not been definitely established.,The aim of this study was to look for the warning index in severe COVID‐19 patients.,We investigated 43 adult patients with COVID‐19.,The patients were classified into mild group (28 patients) and severe group (15 patients).,A comparison of the hematological parameters between the mild and severe groups showed significant differences in interleukin‐6 (IL‐6), d‐dimer (d‐D), glucose, thrombin time, fibrinogen, and C‐reactive protein (P < .05).,The optimal threshold and area under the receiver operator characteristic curve (ROC) of IL‐6 were 24.3 and 0.795 µg/L, respectively, while those of d‐D were 0.28 and 0.750 µg/L, respectively.,The area under the ROC curve of IL‐6 combined with d‐D was 0.840.,The specificity of predicting the severity of COVID‐19 during IL‐6 and d‐D tandem testing was up to 93.3%, while the sensitivity of IL‐6 and d‐D by parallel test in the severe COVID‐19 was 96.4%.,IL‐6 and d‐D were closely related to the occurrence of severe COVID‐19 in the adult patients, and their combined detection had the highest specificity and sensitivity for early prediction of the severity of COVID‐19 patients, which has important clinical value.
1
Coronavirus disease 2019 (COVID-19) is a global pandemic that is wreaking havoc on the health and economy of much of human civilization.,Electrophysiologists have been impacted personally and professionally by this global catastrophe.,In this joint article from representatives of the Heart Rhythm Society, the American College of Cardiology, and the American Heart Association, we identify the potential risks of exposure to patients, allied healthcare staff, industry representatives, and hospital administrators.,We also describe the impact of COVID-19 on cardiac arrhythmias and methods of triage based on acuity and patient comorbidities.,We provide guidance for managing invasive and noninvasive electrophysiology procedures, clinic visits, and cardiac device interrogations.,In addition, we discuss resource conservation and the role of telemedicine in remote patient care along with management strategies for affected patients.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells through ACE2 receptors, leading to coronavirus disease (COVID-19)-related pneumonia, while also causing acute myocardial injury and chronic damage to the cardiovascular system.,Therefore, particular attention should be given to cardiovascular protection during treatment for COVID-19.
1
Henoch-Schönlein purpura nephritis (HSPN) shares many similarities with IgA nephropathy.,We aimed to analyze the predictive value of the International Study of Kidney Disease in Children (ISKDC) classification and the updated Oxford classification for IgA nephropathy in HSPN patients.,Data of 275 HSPN patients (aged≥14 years) were retrieved, and all of them underwent a renal biopsy.,We re-classified the biopsies according to the ISKDC classification and the updated Oxford classification to analyze their correlations with clinical features and renal outcomes.,The renal endpoints were defined as ≥30% reduction in baseline estimated glomerular filtration rate (eGFR) in 2 years, doubling of serum creatinine (Scr) or end stage renal disease.,During follow-up period of 56(30,86) months, 30(10.9%) patients reached renal endpoints.,Segmental sclerosis was the only pathological feature independently associated with renal endpoints (HR 4.086, 95%CI 1.111-15.026, P = 0.034).,Tubular atrophy/ interstitial fibrosis was associated with eGFR and Scr levels, and its correlation with renal endpoints was found by univariate analysis.,Endocapillary hypercellularity was associated with 24 h urine protein and is of prognostic value in univariate analysis.,Mesangial hypercellularity was not associated with clinical features or renal endpoints.,Crescents were associated with 24 h urine protein, Scr and eGFR levels, but both ISKDC and updated Oxford classifications of crescents were not associated with renal endpoints by multivariate analysis.,The updated Oxford classification can help in disease management and renal outcome prediction of HSPN.,The online version of this article (10.1186/s13000-019-0818-0) contains supplementary material, which is available to authorized users.
Nephritis is the most important chronic complication of IgA Vasculitis (IgAV)/Henoch-Schönlein purpura (IGAV/HSP) and thus the main prognostic factor of this most common childhood vasculitis.,Since the prognosis and treatment selection depends on the mode of interpretation of biopsy material, in this manuscript we have presented several issues related to the uneven application of different histological classifications in IgAV/Henoch-Schönlein purpura nephritis (HSPN).,The nephritis of IgAV/IGAV/HSP will be abbreviated as HSPN for this paper.,In clinical practice we use different histological classifications for HSPN.,It is not known which of these classifications best correlates with severity of renal disease and renal outcome in IgAV/IGAV/HSP.,One of the major problem with existing histological classifications is that there is no consensus on the implementation of biopsy in the treatment of HSPN.,There is a histologic classification system conventionally used in HSPN, of the International Study of Kidney Disease in Children (ISKDC).,On the other hand there is the new classification system suggested for IgA nephropathy, the Oxford classification.,The latter has been validated only in IgA nephropathy.,There are also two further histologic classifications of Haas and Koskela that have been developed.,Current treatment strategies in HSPN are not standardised nor predominantly based on histological classification.,One of the possible solutions to problems related to the application of different histological classification in HSPN is the implementation of multicenter multinational prospective studies with joint collaboration between pediatric rheumatologists, nephrologists and nephropathologists to correlate the clinical features and outcome with the classification systems as well among the classifications.,This classification should be the basis for the construction of guidelines for the treatment of patients with HSPN.
1
COVID-19 is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).,Apart from respiratory complications, acute cerebrovascular disease (CVD) has been observed in some patients with COVID-19.,Therefore, we described the clinical characteristics, laboratory features, treatment and outcomes of CVD complicating SARS-CoV-2 infection.,Demographic and clinical characteristics, laboratory findings, treatments and clinical outcomes were collected and analysed.,Clinical characteristics and laboratory findings of patients with COVID-19 with or without new-onset CVD were compared.,Of 219 patients with COVID-19, 10 (4.6%) developed acute ischaemic stroke and 1 (0.5%) had intracerebral haemorrhage.,COVID-19 with new onset of CVD were significantly older (75.7±10.8 years vs 52.1±15.3 years, p<0.001), more likely to present with severe COVID-19 (81.8% vs 39.9%, p<0.01) and were more likely to have cardiovascular risk factors, including hypertension, diabetes and medical history of CVD (all p<0.05).,In addition, they were more likely to have increased inflammatory response and hypercoagulable state as reflected in C reactive protein (51.1 (1.3-127.9) vs 12.1 (0.1-212.0) mg/L, p<0.05) and D-dimer (6.9 (0.3-20.0) vs 0.5 (0.1-20.0) mg/L, p<0.001).,Of 10 patients with ischemic stroke; 6 received antiplatelet treatment with aspirin or clopidogrel; and 3 of them died.,The other four patients received anticoagulant treatment with enoxaparin and 2 of them died.,As of 24 March 2020, six patients with CVD died (54.5%).,Acute CVD is not uncommon in COVID-19.,Our findings suggest that older patients with risk factors are more likely to develop CVD.,The development of CVD is an important negative prognostic factor which requires further study to identify optimal management strategy to combat the COVID-19 outbreak.
Supplemental Digital Content is available in the text.,Recent case-series of small size implied a pathophysiological association between coronavirus disease 2019 (COVID-19) and severe large-vessel acute ischemic stroke.,Given that severe strokes are typically associated with poor prognosis and can be very efficiently treated with recanalization techniques, confirmation of this putative association is urgently warranted in a large representative patient cohort to alert stroke clinicians, and inform pre- and in-hospital acute stroke patient pathways.,We pooled all consecutive patients hospitalized with laboratory-confirmed COVID-19 and acute ischemic stroke in 28 sites from 16 countries.,To assess whether stroke severity and outcomes (assessed at discharge or at the latest assessment for those patients still hospitalized) in patients with acute ischemic stroke are different between patients with COVID-19 and non-COVID-19, we performed 1:1 propensity score matching analyses of our COVID-19 patients with non-COVID-19 patients registered in the Acute Stroke Registry and Analysis of Lausanne Registry between 2003 and 2019.,Between January 27, 2020, and May 19, 2020, 174 patients (median age 71.2 years; 37.9% females) with COVID-19 and acute ischemic stroke were hospitalized (median of 12 patients per site).,The median National Institute of Health Stroke Scale was 10 (interquartile range [IQR], 4-18).,In the 1:1 matched sample of 336 patients with COVID-19 and non-COVID-19, the median National Institute of Health Stroke Scale was higher in patients with COVID-19 (10 [IQR, 4-18] versus 6 [IQR, 3-14]), P=0.03; (odds ratio, 1.69 [95% CI, 1.08-2.65] for higher National Institute of Health Stroke Scale score).,There were 48 (27.6%) deaths, of which 22 were attributed to COVID-19 and 26 to stroke.,Among 96 survivors with available information about disability status, 49 (51%) had severe disability at discharge.,In the propensity score-matched population (n=330), patients with COVID-19 had higher risk for severe disability (median mRS 4 [IQR, 2-6] versus 2 [IQR, 1-4], P<0.001) and death (odds ratio, 4.3 [95% CI, 2.22-8.30]) compared with patients without COVID-19.,Our findings suggest that COVID-19 associated ischemic strokes are more severe with worse functional outcome and higher mortality than non-COVID-19 ischemic strokes.
1
An important feature of severe acute respiratory syndrome coronavirus 2 pathogenesis is COVID-19-associated coagulopathy, characterised by increased thrombotic and microvascular complications.,Previous studies have suggested a role for endothelial cell injury in COVID-19-associated coagulopathy.,To determine whether endotheliopathy is involved in COVID-19-associated coagulopathy pathogenesis, we assessed markers of endothelial cell and platelet activation in critically and non-critically ill patients admitted to the hospital with COVID-19.,In this single-centre cross-sectional study, hospitalised adult (≥18 years) patients with laboratory-confirmed COVID-19 were identified in the medical intensive care unit (ICU) or a specialised non-ICU COVID-19 floor in our hospital.,Asymptomatic, non-hospitalised controls were recruited as a comparator group for biomarkers that did not have a reference range.,We assessed markers of endothelial cell and platelet activation, including von Willebrand Factor (VWF) antigen, soluble thrombomodulin, soluble P-selectin, and soluble CD40 ligand, as well as coagulation factors, endogenous anticoagulants, and fibrinolytic enzymes.,We compared the level of each marker in ICU patients, non-ICU patients, and controls, where applicable.,We assessed correlations between these laboratory results with clinical outcomes, including hospital discharge and mortality.,Kaplan-Meier analysis was used to further explore the association between biochemical markers and survival.,68 patients with COVID-19 were included in the study from April 13 to April 24, 2020, including 48 ICU and 20 non-ICU patients, as well as 13 non-hospitalised, asymptomatic controls.,Markers of endothelial cell and platelet activation were significantly elevated in ICU patients compared with non-ICU patients, including VWF antigen (mean 565% [SD 199] in ICU patients vs 278% [133] in non-ICU patients; p<0·0001) and soluble P-selectin (15·9 ng/mL [4·8] vs 11·2 ng/mL [3·1]; p=0·0014).,VWF antigen concentrations were also elevated above the normal range in 16 (80%) of 20 non-ICU patients.,We found mortality to be significantly correlated with VWF antigen (r = 0·38; p=0·0022) and soluble thrombomodulin (r = 0·38; p=0·0078) among all patients.,In all patients, soluble thrombomodulin concentrations greater than 3·26 ng/mL were associated with lower rates of hospital discharge (22 [88%] of 25 patients with low concentrations vs 13 [52%] of 25 patients with high concentrations; p=0·0050) and lower likelihood of survival on Kaplan-Meier analysis (hazard ratio 5·9, 95% CI 1·9-18·4; p=0·0087).,Our findings show that endotheliopathy is present in COVID-19 and is likely to be associated with critical illness and death.,Early identification of endotheliopathy and strategies to mitigate its progression might improve outcomes in COVID-19.,This work was supported by a gift donation from Jack Levin to the Benign Hematology programme at Yale, and the National Institutes of Health.
Few data are available on the rate and characteristics of thromboembolic complications in hospitalized patients with COVID-19.,We studied consecutive symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02.2020-10.04.2020).,The primary outcome was any thromboembolic complication, including venous thromboembolism (VTE), ischemic stroke, and acute coronary syndrome (ACS)/myocardial infarction (MI).,Secondary outcome was overt disseminated intravascular coagulation (DIC).,We included 388 patients (median age 66 years, 68% men, 16% requiring intensive care [ICU]).,Thromboprophylaxis was used in 100% of ICU patients and 75% of those on the general ward.,Thromboembolic events occurred in 28 (7.7% of closed cases; 95%CI 5.4%-11.0%), corresponding to a cumulative rate of 21% (27.6% ICU, 6.6% general ward).,Half of the thromboembolic events were diagnosed within 24 h of hospital admission.,Forty-four patients underwent VTE imaging tests and VTE was confirmed in 16 (36%).,Computed tomography pulmonary angiography (CTPA) was performed in 30 patients, corresponding to 7.7% of total, and pulmonary embolism was confirmed in 10 (33% of CTPA).,The rate of ischemic stroke and ACS/MI was 2.5% and 1.1%, respectively.,Overt DIC was present in 8 (2.2%) patients.,The high number of arterial and, in particular, venous thromboembolic events diagnosed within 24 h of admission and the high rate of positive VTE imaging tests among the few COVID-19 patients tested suggest that there is an urgent need to improve specific VTE diagnostic strategies and investigate the efficacy and safety of thromboprophylaxis in ambulatory COVID-19 patients.,•COVID-19 is characterized by coagulation activation and endothelial dysfunction.,Few data are available on thromboembolic complications.,•We studied symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02-10.04.2020).,•Venous and arterial thromboembolic events occurred in 8% of hospitalized patients (cumulative rate 21.0%) and 50% of events were diagnosed within 24 h of hospital admission.,•Forty-four (11% of total) patients underwent VTE imaging tests; 16 were positive (36% of tests), suggesting underestimation of thromboembolic complications.,•There is an urgent need to investigate VTE diagnostic strategies and the impact of thromboprophylaxis in ambulatory COVID-19 patients.,COVID-19 is characterized by coagulation activation and endothelial dysfunction.,Few data are available on thromboembolic complications.,We studied symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02-10.04.2020).,Venous and arterial thromboembolic events occurred in 8% of hospitalized patients (cumulative rate 21.0%) and 50% of events were diagnosed within 24 h of hospital admission.,Forty-four (11% of total) patients underwent VTE imaging tests; 16 were positive (36% of tests), suggesting underestimation of thromboembolic complications.,There is an urgent need to investigate VTE diagnostic strategies and the impact of thromboprophylaxis in ambulatory COVID-19 patients.
1
Patients with pre-existing heart failure (HF) are likely at higher risk for adverse outcomes in coronavirus disease-2019 (COVID-19), but data on this population are sparse.,This study described the clinical profile and associated outcomes among patients with HF hospitalized with COVID-19.,This study conducted a retrospective analysis of 6,439 patients admitted for COVID-19 at 1 of 5 Mount Sinai Health System hospitals in New York City between February 27 and June 26, 2020.,Clinical characteristics and outcomes (length of stay, need for intensive care unit, mechanical ventilation, and in-hospital mortality) were captured from electronic health records.,For patients identified as having a history of HF by International Classification of Diseases-9th and/or 10th Revisions codes, manual chart abstraction informed etiology, functional class, and left ventricular ejection fraction (LVEF).,Mean age was 63.5 years, and 45% were women.,Compared with patients without HF, those with previous HF experienced longer length of stay (8 days vs. 6 days; p < 0.001), increased risk of mechanical ventilation (22.8% vs.,11.9%; adjusted odds ratio: 3.64; 95% confidence interval: 2.56 to 5.16; p < 0.001), and mortality (40.0% vs.,24.9%; adjusted odds ratio: 1.88; 95% confidence interval: 1.27 to 2.78; p = 0.002).,Outcomes among patients with HF were similar, regardless of LVEF or renin-angiotensin-aldosterone inhibitor use.,History of HF was associated with higher risk of mechanical ventilation and mortality among patients hospitalized for COVID-19, regardless of LVEF.
The novel coronavirus disease (COVID-19) outbreak, caused by SARS-CoV-2, represents the greatest medical challenge in decades.,We provide a comprehensive review of the clinical course of COVID-19, its comorbidities, and mechanistic considerations for future therapies.,While COVID-19 primarily affects the lungs, causing interstitial pneumonitis and severe acute respiratory distress syndrome (ARDS), it also affects multiple organs, particularly the cardiovascular system.,Risk of severe infection and mortality increase with advancing age and male sex.,Mortality is increased by comorbidities: cardiovascular disease, hypertension, diabetes, chronic pulmonary disease, and cancer.,The most common complications include arrhythmia (atrial fibrillation, ventricular tachyarrhythmia, and ventricular fibrillation), cardiac injury [elevated highly sensitive troponin I (hs-cTnI) and creatine kinase (CK) levels], fulminant myocarditis, heart failure, pulmonary embolism, and disseminated intravascular coagulation (DIC).,Mechanistically, SARS-CoV-2, following proteolytic cleavage of its S protein by a serine protease, binds to the transmembrane angiotensin-converting enzyme 2 (ACE2) -a homologue of ACE-to enter type 2 pneumocytes, macrophages, perivascular pericytes, and cardiomyocytes.,This may lead to myocardial dysfunction and damage, endothelial dysfunction, microvascular dysfunction, plaque instability, and myocardial infarction (MI).,While ACE2 is essential for viral invasion, there is no evidence that ACE inhibitors or angiotensin receptor blockers (ARBs) worsen prognosis.,Hence, patients should not discontinue their use.,Moreover, renin-angiotensin-aldosterone system (RAAS) inhibitors might be beneficial in COVID-19.,Initial immune and inflammatory responses induce a severe cytokine storm [interleukin (IL)-6, IL-7, IL-22, IL-17, etc.] during the rapid progression phase of COVID-19.,Early evaluation and continued monitoring of cardiac damage (cTnI and NT-proBNP) and coagulation (D-dimer) after hospitalization may identify patients with cardiac injury and predict COVID-19 complications.,Preventive measures (social distancing and social isolation) also increase cardiovascular risk.,Cardiovascular considerations of therapies currently used, including remdesivir, chloroquine, hydroxychloroquine, tocilizumab, ribavirin, interferons, and lopinavir/ritonavir, as well as experimental therapies, such as human recombinant ACE2 (rhACE2), are discussed.
1
Coagulopathy is a common abnormality in patients with COVID‐19.,However, the exact incidence of venous thromboembolic event is unknown in anticoagulated, severe COVID‐19 patients.,Systematic assessment of venous thromboembolism (VTE) using complete duplex ultrasound (CDU) in anticoagulated COVID‐19 patients.,We performed a retrospective study in 2 French intensive care units (ICU) where CDU is performed as a standard of care.,A CDU from thigh to ankle at selected sites with Doppler waveforms and images was performed early during ICU stay in patients admitted with COVID‐19.,Anticoagulation dose was left to the discretion of the treating physician based on the individual risk of thrombosis.,Patients were classified as treated with prophylactic anticoagulation or therapeutic anticoagulation.,Pulmonary embolism was systematically searched in patients with persistent hypoxemia or secondary deterioration.,From March 19 to April 11, 2020, 26 consecutive patients with severe COVID‐19 were screened for VTE.,Eight patients (31%) were treated with prophylactic anticoagulation, whereas 18 patients (69%) were treated with therapeutic anticoagulation.,The overall rate of VTE in patients was 69%.,The proportion of VTE was significantly higher in patients treated with prophylactic anticoagulation when compared with the other group (100% vs 56%, respectively, P = .03).,Surprisingly, we found a high rate of thromboembolic events in COVID‐19 patients treated with therapeutic anticoagulation, with 56% of VTE and 6 pulmonary embolisms.,Our results suggest considering both systematic screening of VTE and early therapeutic anticoagulation in severe ICU COVID‐19 patients.
An increased risk of venous thromboembolism (VTE) in patients with COVID-19 pneumonia admitted to intensive care unit (ICU) has been reported.,Whether COVID-19 increases the risk of VTE in non-ICU wards remains unknown.,We aimed to evaluate the burden of asymptomatic deep vein thrombosis (DVT) in COVID-19 patients with elevated D-dimer levels.,In this prospective study consecutive patients hospitalized in non-intensive care units with diagnosis of COVID-19 pneumonia and D-dimer > 1000 ng/ml were screened for asymptomatic DVT with complete compression doppler ultrasound (CCUS).,The study was approved by the Institutional Ethics Committee.,The study comprised 156 patients (65.4% male).,All but three patients received standard doses of thromboprophylaxis.,Median days of hospitalization until CCUS was 9 (IQR 5-17).,CCUS was positive for DVT in 23 patients (14.7%), of whom only one was proximal DVT.,Seven patients (4.5%) had bilateral distal DVT.,Patients with DVT had higher median D-dimer levels: 4527 (IQR 1925-9144) ng/ml vs 2050 (IQR 1428-3235) ng/ml; p < 0.001.,D-dimer levels > 1570 ng/ml were associated with asymptomatic DVT (OR 9.1; CI 95% 1.1-70.1).,D-dimer showed an acceptable discriminative capacity (area under the ROC curve 0.72, 95% CI 0.61-0.84).,In patients admitted with COVID-19 pneumonia and elevated D-dimer levels, the incidence of asymptomatic DVT is similar to that described in other series.,Higher cut-off levels for D-dimer might be necessary for the diagnosis of DVT in COVID-19 patients.,•An increased risk of VTE in patients with COVID-19 pneumonia admitted to intensive care unit has been reported.,•The most consistent hemostatic abnormalities with COVID-19 include mild thrombocytopenia and increased D-dimer levels.,•In COVID-19 patients with high D-dimer levels, the incidence of asymptomatic DVT is similar to that described in other series.,•Higher cut-off levels for D-dimer might be necessary for the diagnosis of DVT in COVID-19 patients.,An increased risk of VTE in patients with COVID-19 pneumonia admitted to intensive care unit has been reported.,The most consistent hemostatic abnormalities with COVID-19 include mild thrombocytopenia and increased D-dimer levels.,In COVID-19 patients with high D-dimer levels, the incidence of asymptomatic DVT is similar to that described in other series.,Higher cut-off levels for D-dimer might be necessary for the diagnosis of DVT in COVID-19 patients.
1
Cardiovascular diseases encompassing atherosclerosis, aortic aneurysms, restenosis, and pulmonary arterial hypertension, remain the leading cause of morbidity and mortality worldwide.,In response to a range of stimuli, the dynamic interplay between biochemical and biomechanical mechanisms affect the behaviour and function of multiple cell types, driving the development and progression of cardiovascular diseases.,Accumulating evidence has highlighted microRNAs (miRs) as significant regulators and micro-managers of key cellular and molecular pathophysiological processes involved in predominant cardiovascular diseases, including cell mitosis, motility and viability, lipid metabolism, generation of inflammatory mediators, and dysregulated proteolysis.,Human pathological and clinical studies have aimed to identify select microRNA which may serve as biomarkers of disease and their progression, which are discussed within this review.,In addition, I provide comprehensive coverage of in vivo investigations elucidating the modulation of distinct microRNA on the pathophysiology of atherosclerosis, abdominal aortic aneurysms, restenosis, and pulmonary arterial hypertension.,Collectively, clinical and animal studies have begun to unravel the complex and often diverse effects microRNAs and their targets impart during the development of cardiovascular diseases and revealed promising therapeutic strategies through which modulation of microRNA function may be applied clinically.,Unlabelled Image
An elevated level of homocysteine (Hcy) in the blood is designated hyperhomocysteinaemia (Hhcy) and is regarded as a strong risk factor for the development of atherosclerosis (ATH), although the association remains controversial.,Considered to be essential gene expression regulators, micro-RNAs (miRNAs) modulate cardiovascular disease development and thus can be regarded as potential biomarkers and therapeutic targets in atherosclerosis.,The aim of the current study is to investigate the expression levels of atherosclerosis-associated miR-143 and miR-145 in Hhcy patients and predict the progress of atherosclerosis in Hhcy patients.,A total of 100 participants were enrolled and included normal control subjects (NC = 20), hyperhomocysteinaemia alone subjects (Hhcy = 25), hyperhomocysteinaemia and carotid artery atherosclerosis combined subjects (Hhcy + ATH = 30) and patients with standalone carotid artery atherosclerosis (ATH = 25).,Plasma Hcy, supplementary biochemical parameters and carotid artery ultrasonography (USG) were measured in all participants.,MicroRNA expression levels in the peripheral blood were calculated by real-time reverse transcription-polymerase chain reaction (qRT-PCR).,The correlations of miR-143 and miR-145 with Hcy, blood lipid parameters and carotid artery atherosclerotic plaques were evaluated using Pearson’s correlation coefficients.,Receiver operating characteristic (ROC) curve analyses were performed to evaluate the capacities of miR-143 and miR-145 for the detection of Hhcy and atherosclerosis patients.,MiR-143 and miR-145 exhibited trends towards significance with stepwise decreases from the NC to Hhcy groups and then to the Hhcy + ATH and ATH groups.,Similar results were observed in the carotid artery plaque group (Hhcy + ATH and ATH grups) compared with the no-plaque group (NC and Hhcy groups).,The miR-143 expression level exhibited significant negative correlations with Hcy, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c).,The miR-145 expression level exhibited significant negative correlations with Hcy, TC, triglyceride (TG) and LDL-c.,MiR-143 and miR-145 exhibited the greatest area under the curves (AUCs) (0.775 and 0.681, respectively) for the detection of every Hhcy patient, including those in the Hhcy and Hhcy + ATH groups, from among all subjects.,The results indicated that the levels of atherosclerosis-associated circulating miR-143 and miR-145 are linked to Hhcy.,MiR-143 may be used as a potential non-invasive biomarkers of Hhcy and thus may be helpful in predicting the progress of atherosclerosis in Hhcy patients.,The online version of this article (doi:10.1186/s12872-017-0596-0) contains supplementary material, which is available to authorized users.
1
Venous thromboembolism (VTE) is a well-known complication in hospitalised patients [1-5].,Risk factors include older age, obesity, immobilisation, active malignancy, systemic inflammatory response syndrome (SIRS), (major) surgery, thrombophilia and a history of thromboembolism [2, 5].,In 1884, Rudolph Virchow first described the underlying pathophysiological mechanisms, which consist of endothelial cell dysfunction/inflammation, low blood flow and blood hypercoagulability.,Current guidelines recommend the use of thromboprophylaxis in acutely ill medical patients who are at high risk for VTE (Padua score ≥4, IMPROVE (International Medical Prevention Registry on Venous Thromboembolism) score ≥2) [6].,However, in medical practice, less than half of the patients at risk receive adequate thromboprophylaxis [4].,Insidiousvenous thromboembolism (VTE) is mainly a problem in ICU-ventilated SARS-CoV-2 patients, while patients in the general ward, treated with thromboprophylaxis (0.5 mg·kg−1), had a low incidence of insidious VTEhttps://bit.ly/2Yl8jft
Few data are available on the rate and characteristics of thromboembolic complications in hospitalized patients with COVID-19.,We studied consecutive symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02.2020-10.04.2020).,The primary outcome was any thromboembolic complication, including venous thromboembolism (VTE), ischemic stroke, and acute coronary syndrome (ACS)/myocardial infarction (MI).,Secondary outcome was overt disseminated intravascular coagulation (DIC).,We included 388 patients (median age 66 years, 68% men, 16% requiring intensive care [ICU]).,Thromboprophylaxis was used in 100% of ICU patients and 75% of those on the general ward.,Thromboembolic events occurred in 28 (7.7% of closed cases; 95%CI 5.4%-11.0%), corresponding to a cumulative rate of 21% (27.6% ICU, 6.6% general ward).,Half of the thromboembolic events were diagnosed within 24 h of hospital admission.,Forty-four patients underwent VTE imaging tests and VTE was confirmed in 16 (36%).,Computed tomography pulmonary angiography (CTPA) was performed in 30 patients, corresponding to 7.7% of total, and pulmonary embolism was confirmed in 10 (33% of CTPA).,The rate of ischemic stroke and ACS/MI was 2.5% and 1.1%, respectively.,Overt DIC was present in 8 (2.2%) patients.,The high number of arterial and, in particular, venous thromboembolic events diagnosed within 24 h of admission and the high rate of positive VTE imaging tests among the few COVID-19 patients tested suggest that there is an urgent need to improve specific VTE diagnostic strategies and investigate the efficacy and safety of thromboprophylaxis in ambulatory COVID-19 patients.,•COVID-19 is characterized by coagulation activation and endothelial dysfunction.,Few data are available on thromboembolic complications.,•We studied symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02-10.04.2020).,•Venous and arterial thromboembolic events occurred in 8% of hospitalized patients (cumulative rate 21.0%) and 50% of events were diagnosed within 24 h of hospital admission.,•Forty-four (11% of total) patients underwent VTE imaging tests; 16 were positive (36% of tests), suggesting underestimation of thromboembolic complications.,•There is an urgent need to investigate VTE diagnostic strategies and the impact of thromboprophylaxis in ambulatory COVID-19 patients.,COVID-19 is characterized by coagulation activation and endothelial dysfunction.,Few data are available on thromboembolic complications.,We studied symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02-10.04.2020).,Venous and arterial thromboembolic events occurred in 8% of hospitalized patients (cumulative rate 21.0%) and 50% of events were diagnosed within 24 h of hospital admission.,Forty-four (11% of total) patients underwent VTE imaging tests; 16 were positive (36% of tests), suggesting underestimation of thromboembolic complications.,There is an urgent need to investigate VTE diagnostic strategies and the impact of thromboprophylaxis in ambulatory COVID-19 patients.
1
Thrombosis and inflammation may contribute to the risk of death and complications among patients with coronavirus disease 2019 (Covid-19).,We hypothesized that therapeutic-dose anticoagulation may improve outcomes in noncritically ill patients who are hospitalized with Covid-19.,In this open-label, adaptive, multiplatform, controlled trial, we randomly assigned patients who were hospitalized with Covid-19 and who were not critically ill (which was defined as an absence of critical care-level organ support at enrollment) to receive pragmatically defined regimens of either therapeutic-dose anticoagulation with heparin or usual-care pharmacologic thromboprophylaxis.,The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death (assigned a value of −1) and the number of days free of cardiovascular or respiratory organ support up to day 21 among patients who survived to hospital discharge.,This outcome was evaluated with the use of a Bayesian statistical model for all patients and according to the baseline d-dimer level.,The trial was stopped when prespecified criteria for the superiority of therapeutic-dose anticoagulation were met.,Among 2219 patients in the final analysis, the probability that therapeutic-dose anticoagulation increased organ support-free days as compared with usual-care thromboprophylaxis was 98.6% (adjusted odds ratio, 1.27; 95% credible interval, 1.03 to 1.58).,The adjusted absolute between-group difference in survival until hospital discharge without organ support favoring therapeutic-dose anticoagulation was 4.0 percentage points (95% credible interval, 0.5 to 7.2).,The final probability of the superiority of therapeutic-dose anticoagulation over usual-care thromboprophylaxis was 97.3% in the high d-dimer cohort, 92.9% in the low d-dimer cohort, and 97.3% in the unknown d-dimer cohort.,Major bleeding occurred in 1.9% of the patients receiving therapeutic-dose anticoagulation and in 0.9% of those receiving thromboprophylaxis.,In noncritically ill patients with Covid-19, an initial strategy of therapeutic-dose anticoagulation with heparin increased the probability of survival to hospital discharge with reduced use of cardiovascular or respiratory organ support as compared with usual-care thromboprophylaxis.,(ATTACC, ACTIV-4a, and REMAP-CAP ClinicalTrials.gov numbers, NCT04372589, NCT04505774, NCT04359277, and NCT02735707.)
Three months ago, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) broke out in Wuhan, China, and spread rapidly around the world.,Severe novel coronavirus pneumonia (NCP) patients have abnormal blood coagulation function, but their venous thromboembolism (VTE) prevalence is still rarely mentioned.,To determine the incidence of VTE in patients with severe NCP.,In this study, 81 severe NCP patients in the intensive care unit (ICU) of Union Hospital (Wuhan, China) were enrolled.,The results of conventional coagulation parameters and lower limb vein ultrasonography of these patients were retrospectively collected and analyzed.,The incidence of VTE in these patients was 25% (20/81), of which 8 patients with VTE events died.,The VTE group was different from the non‐VTE group in age, lymphocyte counts, activated partial thromboplastin time (APTT), D‐dimer, etc.,If 1.5 µg/mL was used as the D‐dimer cut‐off value to predicting VTE, the sensitivity was 85.0%, the specificity was 88.5%, and the negative predictive value (NPV) was 94.7%.,The incidence of VTE in patients with severe NCP is 25% (20/81), which may be related to poor prognosis.,The significant increase of D‐dimer in severe NCP patients is a good index for identifying high‐risk groups of VTE.
1
High serum uric acid (UA) level has been assumed to be a risk factor for left ventricular (LV) dysfunction; however, the precise relationship between these conditions has not been fully examined because many confounding factors are associated with UA level.,We herein examined the precise relationship by proposing structural equation models.,The study population consisted of 1432 cases with ischemic heart disease who underwent cardiac catheterization.,Multiple regression analyses and covariance structure analyses were performed to elucidate the cause-and-effect relationship between UA level and LV ejection fraction (LVEF).,A path model exploring the factors contributing to LVEF showed that high UA was a significant cause of reduced LVEF (P = 0.004), independent of other significant factors.,The degree of atherosclerosis, as estimated by the number of diseased coronary vessels, was significantly affected by high UA (P = 0.005); and the number of diseased coronary vessels subsequently led to reduced LVEF (P < 0.001).,Another path model exploring the factors contributing to UA level showed that LVEF was a significant cause of high UA (P = 0.001), while other risk factors were also independent contributing factors.,This study clearly demonstrated that there was a close link between high UA and LV dysfunction, which was represented by possible cause-and-effect relationship.
Although glucose-insulin-potassium (GIK) therapy ought to be beneficial for ischemic heart disease in general, variable outcomes in many clinical trials of GIK in acute coronary syndrome (ACS) had a controversial impact.,This study was designed to examine whether “insulin resistance” is involved in ACS and to clarify other potential intrinsic compensatory mechanisms for GIK tolerance through highly statistical procedure.,We compared the degree of insulin resistance during ACS attack and remission phase after treatment in individual patients (n = 104).,During ACS, homeostasis model assessment of insulin resistance (HOMA-IR) values were significantly increased (P<0.001), while serum potassium levels were transiently decreased (degree of which was indicated by ΔK) (P<0.001).,This finding provides a renewed paradox, as ΔK, a surrogate marker of intrinsic GIK cascade activation, probably reflects the validated glucose metabolism during ischemic attack.,Indeed, multiple regression analysis revealed that plasma glucose level during ACS was positively correlated with ΔK (P = 0.026), whereas HOMA-IR had no impact on ΔK.,This positive correlation between ΔK and glucose was confirmed by covariance structure analysis with a strong impact (β: 0.398, P = 0.015).,Intriguingly, a higher incidence of myocardial infarction relative to unstable angina pectoris, as well as a longer hospitalization period were observed in patients with larger ΔK, indicating that ΔK also reflects disease severity of ACS.,Insulin resistance most likely increases during ACS; however, ΔK was positively correlated with plasma glucose level, which overwhelmed insulin resistance condition.,The present study with covariance structure analysis suggests that there are potential endogenous glucose-coupled potassium lowering mechanisms, other than insulin, regulating glucose metabolism during ACS.
1
The novel coronavirus infection (COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as adult respiratory syndrome, sepsis, coagulopathy, and death in a proportion of patients.,Among other factors and direct viral effects, the increase in the vasoconstrictor angiotensin II, the decrease in the vasodilator angiotensin, and the sepsis-induced release of cytokines can trigger a coagulopathy in COVID-19.,A coagulopathy has been reported in up to 50% of patients with severe COVID-19 manifestations.,An increase in d-dimer is the most significant change in coagulation parameters in severe COVID-19 patients, and progressively increasing values can be used as a prognostic parameter indicating a worse outcome.,Limited data suggest a high incidence of deep vein thrombosis and pulmonary embolism in up to 40% of patients, despite the use of a standard dose of low-molecular-weight heparin (LMWH) in most cases.,In addition, pulmonary microvascular thrombosis has been reported and may play a role in progressive lung failure.,Prophylactic LMWH has been recommended by the International Society on Thrombosis and Haemostasis (ISTH) and the American Society of Hematology (ASH), but the best effective dosage is uncertain.,Adapted to the individual risk of thrombosis and the d-dimer value, higher doses can be considered, especially since bleeding events in COVID-19 are rare.,Besides the anticoagulant effect of LMWH, nonanticoagulant properties such as the reduction in interleukin 6 release have been shown to improve the complex picture of coagulopathy in patients with COVID-19.
Three months ago, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) broke out in Wuhan, China, and spread rapidly around the world.,Severe novel coronavirus pneumonia (NCP) patients have abnormal blood coagulation function, but their venous thromboembolism (VTE) prevalence is still rarely mentioned.,To determine the incidence of VTE in patients with severe NCP.,In this study, 81 severe NCP patients in the intensive care unit (ICU) of Union Hospital (Wuhan, China) were enrolled.,The results of conventional coagulation parameters and lower limb vein ultrasonography of these patients were retrospectively collected and analyzed.,The incidence of VTE in these patients was 25% (20/81), of which 8 patients with VTE events died.,The VTE group was different from the non‐VTE group in age, lymphocyte counts, activated partial thromboplastin time (APTT), D‐dimer, etc.,If 1.5 µg/mL was used as the D‐dimer cut‐off value to predicting VTE, the sensitivity was 85.0%, the specificity was 88.5%, and the negative predictive value (NPV) was 94.7%.,The incidence of VTE in patients with severe NCP is 25% (20/81), which may be related to poor prognosis.,The significant increase of D‐dimer in severe NCP patients is a good index for identifying high‐risk groups of VTE.
1
Hypertrophic cardiomyopathy (HCM) is characterized by cardiomyocyte hypertrophy and disarray, and myocardial stiffness due to interstitial fibrosis, which result in impaired left ventricular filling and diastolic dysfunction.,The latter manifests as exercise intolerance, angina, and dyspnoea.,There is currently no specific treatment for improving diastolic function in HCM.,Here, we investigated whether myeloperoxidase (MPO) is expressed in cardiomyocytes and provides a novel therapeutic target for alleviating diastolic dysfunction in HCM.,Human cardiomyocytes derived from control-induced pluripotent stem cells (iPSC-CMs) were shown to express MPO, with MPO levels being increased in iPSC-CMs generated from two HCM patients harbouring sarcomeric mutations in the MYBPC3 and MYH7 genes.,The presence of cardiomyocyte MPO was associated with higher chlorination and peroxidation activity, increased levels of 3-chlorotyrosine-modified cardiac myosin binding protein-C (MYBPC3), attenuated phosphorylation of MYBPC3 at Ser-282, perturbed calcium signalling, and impaired cardiomyocyte relaxation.,Interestingly, treatment with the MPO inhibitor, AZD5904, reduced 3-chlorotyrosine-modified MYBPC3 levels, restored MYBPC3 phosphorylation, and alleviated the calcium signalling and relaxation defects.,Finally, we found that MPO protein was expressed in healthy adult murine and human cardiomyocytes, and MPO levels were increased in diseased hearts with left ventricular hypertrophy.,This study demonstrates that MPO inhibition alleviates the relaxation defect in hypertrophic iPSC-CMs through MYBPC3 phosphorylation.,These findings highlight cardiomyocyte MPO as a novel therapeutic target for improving myocardial relaxation associated with HCM, a treatment strategy which can be readily investigated in the clinical setting, given that MPO inhibitors are already available for clinical testing.
Hypertrophic cardiomyopathy (HCM) is the most common cause of sudden cardiac death in young individuals.,A potential role of mtDNA mutations in HCM is known.,However, the underlying molecular mechanisms linking mtDNA mutations to HCM remain poorly understood due to lack of cell and animal models.,Here, we generated induced pluripotent stem cell-derived cardiomyocytes (HCM-iPSC-CMs) from human patients in a maternally inherited HCM family who carry the m.2336T>C mutation in the mitochondrial 16S rRNA gene (MT-RNR2).,The results showed that the m.2336T>C mutation resulted in mitochondrial dysfunctions and ultrastructure defects by decreasing the stability of 16S rRNA, which led to reduced levels of mitochondrial proteins.,The ATP/ADP ratio and mitochondrial membrane potential were also reduced, thereby elevating the intracellular Ca2+ concentration, which was associated with numerous HCM-specific electrophysiological abnormalities.,Our findings therefore provide an innovative insight into the pathogenesis of maternally inherited HCM.,•Generation of HCM-specific iPSC-CMs carrying the m.2336T>C mutation in MT-RNR2•m.2336T>C mutation results in mitochondrial dysfunctions•Mitochondrial dysfunctions lead to increased [Ca2+]i and decreased ICaL•Abnormal Ca2+ homeostasis is associated with HCM-specific abnormalities,Generation of HCM-specific iPSC-CMs carrying the m.2336T>C mutation in MT-RNR2,m.2336T>C mutation results in mitochondrial dysfunctions,Mitochondrial dysfunctions lead to increased [Ca2+]i and decreased ICaL,Abnormal Ca2+ homeostasis is associated with HCM-specific abnormalities,In this article, Yan Q, Liu Z, Huang W, and colleagues show that patient-specific iPSCs as well as their derived cardiomyocytes carrying the m.2336T>C mutation in MT-RNR2 were generated to understand the pathogenic mechanism of maternally inherited HCM.,MT-RNR2 mutation resulted in mitochondrial dysfunctions and ultrastructure defects, which induced abnormal Ca2+ homeostasis, then HCM-specific cellular and electrophysiological characteristics in iPSC-CMs.
1
Stroke is the most common cerebrovascular disease, the second leading cause of death behind heart disease and is a major cause of long-term disability worldwide.,Currently, systemic immunomodulatory therapy based on intravenous cells is attracting attention.,The immune response to acute stroke is a major factor in cerebral ischaemia (CI) pathobiology and outcomes.,Over the past decade, the significant contribution of the spleen to ischaemic stroke has gained considerable attention in stroke research.,The changes in the spleen after stroke are mainly reflected in morphology, immune cells and cytokines, and these changes are closely related to the stroke outcomes.,Autonomic nervous system (ANS) activation, release of central nervous system (CNS) antigens and chemokine/chemokine receptor interactions have been documented to be essential for efficient brain-spleen cross-talk after stroke.,In various experimental models, human umbilical cord blood cells (hUCBs), haematopoietic stem cells (HSCs), bone marrow stem cells (BMSCs), human amnion epithelial cells (hAECs), neural stem cells (NSCs) and multipotent adult progenitor cells (MAPCs) have been shown to reduce the neurological damage caused by stroke.,The different effects of these cell types on the interleukin (IL)-10, interferon (IFN), and cholinergic anti-inflammatory pathways in the spleen after stroke may promote the development of new cell therapy targets and strategies.,The spleen will become a potential target of various stem cell therapies for stroke represented by MAPC treatment.
Stroke is a leading cause of death and disability, and despite intensive research, few treatment options exist.,However, a recent breakthrough in cell therapy is expected to reverse the neurological sequelae of stroke.,Although some pioneer studies on the use of cell therapy for treating stroke have been reported, certain problems remain unsolved.,Recent studies have demonstrated that bone marrow stromal cells (BMSCs) have therapeutic potential against stroke.,We investigated the use of autologous BMSC transplantation as a next-generation cell therapy for treating stroke.,In this article, we introduce the protocol of a new clinical trial, the Research on Advanced Intervention using Novel Bone marrOW stem cell (RAINBOW).,RAINBOW is a phase 1, open-label, uncontrolled, dose-response study, with the primary aim to determine the safety of the autologous BMSC product HUNS001-01 when administered to patients with acute ischemic stroke.,Estimated enrollment is 6-10 patients suffering from moderate to severe neurological deficits.,Approximately 50 mL of the bone marrow is extracted from the iliac bone of each patient 15 days or later from the onset.,BMSCs are cultured with allogeneic human platelet lysate (PL) as a substitute for fetal calf serum and are labeled with superparamagnetic iron oxide for cell tracking using magnetic resonance imaging (MRI).,HUNS001-01 is stereotactically administered around the area of infarction in the subacute phase.,Each patient will be administered a dose of 20 or 50 million cells.,Neurological scoring, MRI for cell tracking, 18F-fuorodeoxyglucose positron emission tomography, and 123I-Iomazenil single­photon emission computed tomography will be performed for 1 year after the administration.,This is a first-in-human trial for HUNS001-01 to the patients with acute ischemic stroke.,We expect that intraparenchymal injection can be a more favorable method for cell delivery to the lesion and improvement of the motor function than intravenous infusion.,Moreover, it is expected that the bio-imaging techniques can clarify the therapeutic mechanisms.,The trial was registered at The University Hospital Medical Information Network on February 22, 2017 (UNIN ID: UMIN000026130).,The findings of this trial will be disseminated to patients and through peer-reviewed publications and international presentations.
1
The Bergamo province, which is extensively affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic, is a natural observatory of virus manifestations in the general population.,In the past month we recorded an outbreak of Kawasaki disease; we aimed to evaluate incidence and features of patients with Kawasaki-like disease diagnosed during the SARS-CoV-2 epidemic.,All patients diagnosed with a Kawasaki-like disease at our centre in the past 5 years were divided according to symptomatic presentation before (group 1) or after (group 2) the beginning of the SARS-CoV-2 epidemic.,Kawasaki- like presentations were managed as Kawasaki disease according to the American Heart Association indications.,Kawasaki disease shock syndrome (KDSS) was defined by presence of circulatory dysfunction, and macrophage activation syndrome (MAS) by the Paediatric Rheumatology International Trials Organisation criteria.,Current or previous infection was sought by reverse-transcriptase quantitative PCR in nasopharyngeal and oropharyngeal swabs, and by serological qualitative test detecting SARS-CoV-2 IgM and IgG, respectively.,Group 1 comprised 19 patients (seven boys, 12 girls; aged 3·0 years [SD 2·5]) diagnosed between Jan 1, 2015, and Feb 17, 2020.,Group 2 included ten patients (seven boys, three girls; aged 7·5 years [SD 3·5]) diagnosed between Feb 18 and April 20, 2020; eight of ten were positive for IgG or IgM, or both.,The two groups differed in disease incidence (group 1 vs group 2, 0·3 vs ten per month), mean age (3·0 vs 7·5 years), cardiac involvement (two of 19 vs six of ten), KDSS (zero of 19 vs five of ten), MAS (zero of 19 vs five of ten), and need for adjunctive steroid treatment (three of 19 vs eight of ten; all p<0·01).,In the past month we found a 30-fold increased incidence of Kawasaki-like disease.,Children diagnosed after the SARS-CoV-2 epidemic began showed evidence of immune response to the virus, were older, had a higher rate of cardiac involvement, and features of MAS.,The SARS-CoV-2 epidemic was associated with high incidence of a severe form of Kawasaki disease.,A similar outbreak of Kawasaki-like disease is expected in countries involved in the SARS-CoV-2 epidemic.,None.
Few data are available on the rate and characteristics of thromboembolic complications in hospitalized patients with COVID-19.,We studied consecutive symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02.2020-10.04.2020).,The primary outcome was any thromboembolic complication, including venous thromboembolism (VTE), ischemic stroke, and acute coronary syndrome (ACS)/myocardial infarction (MI).,Secondary outcome was overt disseminated intravascular coagulation (DIC).,We included 388 patients (median age 66 years, 68% men, 16% requiring intensive care [ICU]).,Thromboprophylaxis was used in 100% of ICU patients and 75% of those on the general ward.,Thromboembolic events occurred in 28 (7.7% of closed cases; 95%CI 5.4%-11.0%), corresponding to a cumulative rate of 21% (27.6% ICU, 6.6% general ward).,Half of the thromboembolic events were diagnosed within 24 h of hospital admission.,Forty-four patients underwent VTE imaging tests and VTE was confirmed in 16 (36%).,Computed tomography pulmonary angiography (CTPA) was performed in 30 patients, corresponding to 7.7% of total, and pulmonary embolism was confirmed in 10 (33% of CTPA).,The rate of ischemic stroke and ACS/MI was 2.5% and 1.1%, respectively.,Overt DIC was present in 8 (2.2%) patients.,The high number of arterial and, in particular, venous thromboembolic events diagnosed within 24 h of admission and the high rate of positive VTE imaging tests among the few COVID-19 patients tested suggest that there is an urgent need to improve specific VTE diagnostic strategies and investigate the efficacy and safety of thromboprophylaxis in ambulatory COVID-19 patients.,•COVID-19 is characterized by coagulation activation and endothelial dysfunction.,Few data are available on thromboembolic complications.,•We studied symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02-10.04.2020).,•Venous and arterial thromboembolic events occurred in 8% of hospitalized patients (cumulative rate 21.0%) and 50% of events were diagnosed within 24 h of hospital admission.,•Forty-four (11% of total) patients underwent VTE imaging tests; 16 were positive (36% of tests), suggesting underestimation of thromboembolic complications.,•There is an urgent need to investigate VTE diagnostic strategies and the impact of thromboprophylaxis in ambulatory COVID-19 patients.,COVID-19 is characterized by coagulation activation and endothelial dysfunction.,Few data are available on thromboembolic complications.,We studied symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02-10.04.2020).,Venous and arterial thromboembolic events occurred in 8% of hospitalized patients (cumulative rate 21.0%) and 50% of events were diagnosed within 24 h of hospital admission.,Forty-four (11% of total) patients underwent VTE imaging tests; 16 were positive (36% of tests), suggesting underestimation of thromboembolic complications.,There is an urgent need to investigate VTE diagnostic strategies and the impact of thromboprophylaxis in ambulatory COVID-19 patients.
1
To determine the incidence, patient characteristics, and related events associated with new-onset atrial fibrillation (AF) during a national COVID-19 lockdown.,Using nationwide Danish registries, we included all patients, aged 18-90 years, receiving a new-onset AF diagnosis during the first 3 months of 2019 and 2020.,The main comparison was between patients diagnosed during lockdown (12 March 12-1 April 2020) and patients diagnosed in the corresponding period 1 year previously.,We found a lower incidence of new-onset AF during the 3 weeks of lockdown compared with the corresponding weeks in 2019 [incidence rate ratios with 95% confidence intervals (CIs) for the 3 weeks: 0.66 (0.56-0.78), 0.53 (0.45-0.64), and 0.41 (0.34-0.50)].,There was a 47% drop in total numbers (562 vs.,1053).,Patients diagnosed during lockdown were younger and with a lower CHA2DS2-VASc score, while history of cancer, heart failure, and vascular disease were more prevalent.,During lockdown, 30 (5.3%) patients with new-onset AF suffered an ischaemic stroke and 15 (2.7%) died, compared with 45 (4.3%) and 14 (1.3%) patients during the corresponding 2019 period, respectively.,The adjusted odds ratio of a related event (ischaemic stroke or all-cause death) during lock-down compared with the corresponding weeks was 1.41 (95% CI 0.93-2.12).,Following a national lockdown in Denmark, a 47% drop in registered new-onset AF cases was observed.,In the event of prolonged or subsequent lockdowns, the risk of undiagnosed AF patients developing complications could potentially translate into poorer outcomes in patients with AF during the COVID-19 pandemic.,Graphical Abstract
To evaluate the impact of the COVID-19 pandemic on patient admissions to Italian cardiac care units (CCUs).,We conducted a multicentre, observational, nationwide survey to collect data on admissions for acute myocardial infarction (AMI) at Italian CCUs throughout a 1 week period during the COVID-19 outbreak, compared with the equivalent week in 2019.,We observed a 48.4% reduction in admissions for AMI compared with the equivalent week in 2019 (P < 0.001).,The reduction was significant for both ST-segment elevation myocardial infarction [STEMI; 26.5%, 95% confidence interval (CI) 21.7-32.3; P = 0.009] and non-STEMI (NSTEMI; 65.1%, 95% CI 60.3-70.3; P < 0.001).,Among STEMIs, the reduction was higher for women (41.2%; P = 0.011) than men (17.8%; P = 0.191).,A similar reduction in AMI admissions was registered in North Italy (52.1%), Central Italy (59.3%), and South Italy (52.1%).,The STEMI case fatality rate during the pandemic was substantially increased compared with 2019 [risk ratio (RR) = 3.3, 95% CI 1.7-6.6; P < 0.001].,A parallel increase in complications was also registered (RR = 1.8, 95% CI 1.1-2.8; P = 0.009).,Admissions for AMI were significantly reduced during the COVID-19 pandemic across Italy, with a parallel increase in fatality and complication rates.,This constitutes a serious social issue, demanding attention by the scientific and healthcare communities and public regulatory agencies.
1
Previous studies has shown a significant relationship between baseline triglyceride-glucose (TyG) index and subsequent cardiovascular disease (CVD).,However, the effect of longitudinal changes in TyG index on the risk of CVD remains uncertain.,This study aimed to investigate the association between change in TyG index and the risk of CVD in the general population.,The current study included 62,443 Chinese population who were free of CVD.,The TyG index was calculated as ln [fasting triglyceride (mg/dL) × fasting glucose (mg/dL)/2], and change in TyG index was defined as the difference between the TyG index in 2010 and that in 2006.,Multivariable-adjusted Cox proportional hazard models and restricted cubic spline analysis were used to examine the association between change in TyG index and the risk of CVD.,During a median follow-up of 7.01 years, 2530 (4.05%) incident CVD occurred, including 2018 (3.23%) incident stroke and 545 (0.87%) incident myocardial infarction (MI).,The risk of developing CVD increased with the quartile of change in TyG index, after adjustment for multiple potential confounders, the hazard ratios for the Q4 group versus the Q1 group were 1.37 (95% confidence interval [CI], 1.21-1.54) for the overall CVD, 1.38 (95% CI, 1.19-1.60) for stroke, and 1.36 (95% CI, 1.05-1.76) for MI.,Restricted cubic spline analysis also showed a cumulative increase in the risk of CVD with increases in the magnitude of change in TyG index.,The addition of change in TyG index to a baseline risk model for CVD improved the C-statistics (P = 0.0097), integrated discrimination improvement value (P < 0.0001), and category-free net reclassification improvement value (P < 0.0001).,Similar results were observed for stroke and MI.,Substantial changes in TyG index independently predict the risk of CVD in the general population.,Monitoring long-term changes in TyG may assist with in the early identification of individuals at high risk of CVD.,The online version contains supplementary material available at 10.1186/s12933-021-01305-7.
The triglyceride-glucose (TyG) index, which is a simple surrogate marker of insulin resistance, has been suggested as a contributor of cardiovascular disease.,However, evidence on the effect of long-term elevation of the TyG index exposure on myocardial infarction (MI) is limited.,The current study aimed to evaluate the association of baseline and long-term elevation of the TyG index exposure with the risk of MI.,A total of 98,849 participants without MI at baseline (2006) were enrolled from the Kailuan study.,The baseline TyG index was calculated as ln [fasting triglyceride (mg/dL) × fasting glucose (mg/dL)/2].,The long-term TyG index was characterized in two ways as follows.,The updated mean TyG index was calculated as the mean of TyG index at all previous visits before MI occurred or the end of follow-up; alternatively, the TyG index was calculated as the number of visits with a high TyG index in 2006, 2008, and 2010, ranging from 0 (no exposure) to 3 (had high TyG index at all three study visits).,Hazard ratio (HR) and 95% confidence interval (CI) was estimated using multivariable Cox proportion hazard models.,During a median follow-up of 11.03 years, 1555 incident MI occurred.,In the multivariable-adjusted model, the risk of MI increased with quartiles of the baseline and updated mean TyG index, the HR in quartile 4 versus quartile 1 was 2.08 (95% CI,1.77-2.45) and 1.58 (1.18-2.12), respectively.,Individuals with a high TyG index at all three visits had a 2.04-fold higher risk (95% CI, 1.63-2.56) of MI compared with no exposure.,Subgroup analyses showed that the associations were more pronounced in women than in men (Pinteraction = 0.0411).,Elevated levels of the baseline and long-term TyG index are associated with an increased risk of MI.,This finding indicates that the TyG index might be useful in identifying people at high risk of developing MI.
1
Deep vein thrombosis (DVT) is prevalent in patients with coronavirus disease 2019 (COVID-19).,However, the risk factors and incidence rate of DVT remains elusive.,Here, we aimed to assess the incidence rate and risk factors of DVT.,All patients diagnosed with COVID-19 and performed venous ultrasound by ultrasound deparment between December 2019 and April 2020 in Wuhan Jin Yin-tan hospital were enrolled.,Demographic information and clinical features were retrospectively collected.,Notably, a comparison between the DVT and the non-DVT groups was explored.,The incidence rate of venous thrombosis was 35.2% (50 patients out of 142).,Moreover, the location of thrombus at the proximal extremity veins was 5.6% (n = 8), while at distal extremity veins was 35.2% (n = 50) of the patients.,We also noted that patients with DVT exhibited a high level of D-dimer (OR 10.9 (95% CI, 3.3-36.0), P < 0.001), were admitted to the intensive care unit (OR 6.5 (95% CI, 2.1-20.3), P = 0.001), a lower usage of the anticoagulant drugs (OR 3.0 (95% CI, 1.1-7.8), P < 0.001).,Finally, this study revealed that a high number of patients with COVID-19 developed DVT.,This was observed particularly in critically ill patients with high D-dimer levels who required no anticoagulant medication.
Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).,Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described.,In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020.,Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors.,We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death.,191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients).,Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03-1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61-12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64-128·55; p=0·0033) on admission.,Median duration of viral shedding was 20·0 days (IQR 17·0-24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors.,The longest observed duration of viral shedding in survivors was 37 days.,The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage.,Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.,Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
1
Sirtuin 3 (SIRT3) is a deacetylase that modulates proteins that control metabolism and protects against oxidative stress.,Modulation of SIRT3 activity has been proposed as a promising therapeutic target for ameliorating metabolic diseases and associated cardiac disturbances.,In this study, we investigated the role of SIRT3 in inflammation and fibrosis in the heart using male mice with constitutive and systemic deletion of SIRT3 and human cardiac AC16 cells.,SIRT3 knockout mice showed cardiac fibrosis and inflammation that was characterized by augmented transcriptional activity of AP-1.,Consistent with this, SIRT3 overexpression in human and neonatal rat cardiomyocytes partially prevented the inflammatory and profibrotic response induced by TNF-α.,Notably, these effects were associated with a decrease in the mRNA and protein levels of FOS and the DNA-binding activity of AP-1.,Finally, we demonstrated that SIRT3 inhibits FOS transcription through specific histone H3 lysine K27 deacetylation at its promoter.,These findings highlight an important function of SIRT3 in mediating the often intricate profibrotic and proinflammatory responses of cardiac cells through the modulation of the FOS/AP-1 pathway.,Since fibrosis and inflammation are crucial in the progression of cardiac hypertrophy, heart failure, and diabetic cardiomyopathy, our results point to SIRT3 as a potential target for treating these diseases.
Hyperglycemia-induced oxidative stress and fibrosis play a crucial role in the development of diabetic cardiomyopathy (DCM).,Tetrahydrocurcumin (THC), a major bioactive metabolite of natural antioxidant curcumin, is reported to exert even more effective antioxidative and superior antifibrotic properties as well as anti-inflammatory and antidiabetic abilities.,This study was designed to investigate the potential protective effects of THC on experimental DCM and its underlying mechanisms, pointing to the role of high glucose-induced oxidative stress and interrelated fibrosis.,In STZ-induced diabetic mice, oral administration of THC (120 mg/kg/d) for 12 weeks significantly improved the cardiac function and ameliorated myocardial fibrosis and cardiac hypertrophy, accompanied by reduced reactive oxygen species (ROS) generation.,Mechanically, THC administration remarkably increased the expression of the SIRT1 signaling pathway both in vitro and in vivo, further evidenced by decreased downstream molecule Ac-SOD2 and enhanced deacetylated production SOD2, which finally strengthened antioxidative stress capacity proven by repaired activities of SOD and GSH-Px and reduced MDA production.,Additionally, THC treatment accomplished its antifibrotic effect by depressing the ROS-induced TGFβ1/Smad3 signaling pathway followed by reduced expression of cardiac fibrotic markers α-SMA, collagen I, and collagen III.,Collectively, these finds demonstrated the therapeutic potential of THC treatment to alleviate DCM mainly by attenuating hyperglycemia-induced oxidative stress and fibrosis via activating the SIRT1 pathway.
1
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has resulted in >500,000 deaths worldwide, including >125,000 deaths in the U.S. since its emergence in late December 2019 and June 2020.,Neither curative anti-viral drugs nor a protective vaccine is currently available for the treatment and prevention of COVID-19.,Recently, new clinical syndromes associated with coagulopathy and vasculopathy have emerged as a cause of sudden death and other serious clinical manifestations in younger patients infected with SARS-CoV-2 infection.,Angiotensin converting enzyme 2 (ACE2), the receptor for SARS-CoV-2 and other coronaviruses, is a transmembrane protein expressed by lung alveolar epithelial cells, enterocytes, and vascular endothelial cells, whose physiologic role is to induce the maturation of angiotensin I to generate angiotensin 1-7, a peptide hormone that controls vasoconstriction and blood pressure.,In this review, we provide the general context of the molecular and cellular mechanisms of SARS-CoV-2 infection with a focus on endothelial cells, describe the vasculopathy and coagulopathy syndromes in patients with SARS-CoV-2, and outline current understanding of the underlying mechanistic aspects.
Severe acute respiratory syndrome coronavirus 2, coronavirus disease 2019 (COVID-19)-induced infection can be associated with a coagulopathy, findings consistent with infection-induced inflammatory changes as observed in patients with disseminated intravascular coagulopathy (DIC).,The lack of prior immunity to COVID-19 has resulted in large numbers of infected patients across the globe and uncertainty regarding management of the complications that arise in the course of this viral illness.,The lungs are the target organ for COVID-19; patients develop acute lung injury that can progress to respiratory failure, although multiorgan failure can also occur.,The initial coagulopathy of COVID-19 presents with prominent elevation of D-dimer and fibrin/fibrinogen-degradation products, whereas abnormalities in prothrombin time, partial thromboplastin time, and platelet counts are relatively uncommon in initial presentations.,Coagulation test screening, including the measurement of D-dimer and fibrinogen levels, is suggested.,COVID-19-associated coagulopathy should be managed as it would be for any critically ill patient, following the established practice of using thromboembolic prophylaxis for critically ill hospitalized patients, and standard supportive care measures for those with sepsis-induced coagulopathy or DIC.,Although D-dimer, sepsis physiology, and consumptive coagulopathy are indicators of mortality, current data do not suggest the use of full-intensity anticoagulation doses unless otherwise clinically indicated.,Even though there is an associated coagulopathy with COVID-19, bleeding manifestations, even in those with DIC, have not been reported.,If bleeding does occur, standard guidelines for the management of DIC and bleeding should be followed.
1
Rationale: The global death toll from coronavirus disease (COVID-19) virus as of May 12, 2020, exceeds 286,000.,The risk factors for death were attributed to advanced age and comorbidities but have not been accurately defined.,Objectives: To report the clinical features of 85 fatal cases of COVID-19 in two hospitals in Wuhan.,Methods: Medical records were collected of 85 fatal cases of COVID-19 between January 9, 2020, and February 15, 2020.,Information recorded included medical history, exposure history, comorbidities, symptoms, signs, laboratory findings, computed tomographic scans, and clinical management.,Measurements and Main Results: The median age of the patients was 65.8 years, and 72.9% were male.,Common symptoms were fever (78 [91.8%]), shortness of breath (50 [58.8%]), fatigue (50 [58.8%]), and dyspnea (60 [70.6%]).,Hypertension, diabetes, and coronary heart disease were the most common comorbidities.,Notably, 81.2% of patients had very low eosinophil counts on admission.,Complications included respiratory failure (80 [94.1%]), shock (69 [81.2%]), acute respiratory distress syndrome (63 [74.1%]), and arrhythmia (51 [60%]), among others.,Most patients received antibiotic (77 [90.6%]), antiviral (78 [91.8%]), and glucocorticoid (65 [76.5%]) treatments.,A total of 38 (44.7%) and 33 (38.8%) patients received intravenous immunoglobulin and IFN-α2b, respectively.,Conclusions: In this depictive study of 85 fatal cases of COVID-19, most cases were males aged over 50 years with noncommunicable chronic diseases.,The majority of the patients died of multiple organ failure.,Early onset of shortness of breath may be used as an observational symptom for COVID-19 exacerbations.,Eosinophilopenia may indicate a poor prognosis.,A combination of antimicrobial drugs did not offer considerable benefit to the outcome of this group of patients.
Studies have reminded that cardiovascular metabolic comorbidities made patients more susceptible to suffer 2019 novel corona virus (2019-nCoV) disease (COVID-19), and exacerbated the infection.,The aim of this analysis is to determine the association of cardiovascular metabolic diseases with the development of COVID-19.,A meta-analysis of eligible studies that summarized the prevalence of cardiovascular metabolic diseases in COVID-19 and compared the incidences of the comorbidities in ICU/severe and non-ICU/severe patients was performed.,Embase and PubMed were searched for relevant studies.,A total of six studies with 1527 patients were included in this analysis.,The proportions of hypertension, cardia-cerebrovascular disease and diabetes in patients with COVID-19 were 17.1%, 16.4% and 9.7%, respectively.,The incidences of hypertension, cardia-cerebrovascular diseases and diabetes were about twofolds, threefolds and twofolds, respectively, higher in ICU/severe cases than in their non-ICU/severe counterparts.,At least 8.0% patients with COVID-19 suffered the acute cardiac injury.,The incidence of acute cardiac injury was about 13 folds higher in ICU/severe patients compared with the non-ICU/severe patients.,Patients with previous cardiovascular metabolic diseases may face a greater risk of developing into the severe condition and the comorbidities can also greatly affect the prognosis of the COVID-19.,On the other hand, COVID-19 can, in turn, aggravate the damage to the heart.
1
We aimed to compare the outcome of acute ischemic stroke (AIS) patients who received endovascular thrombectomy (EVT) with confirmed COVID-19 to those without.,We performed a retrospective analysis using the Vizient Clinical Data Base and included hospital discharges from April 1 to July 31 2020 with ICD-10 codes for AIS and EVT.,The primary outcome was in-hospital death and the secondary outcome was favorable discharge, defined as discharge home or to acute rehabilitation.,We compared patients with laboratory-confirmed COVID-19 to those without.,As a sensitivity analysis, we compared COVID-19 AIS patients who did not undergo EVT to those who did, to balance potential adverse events inherent to COVID-19 infection.,We identified 3165 AIS patients who received EVT during April to July 2020, in which COVID-19 was confirmed in 104 (3.3%).,Comorbid COVID-19 infection was associated with younger age, male sex, diabetes, black race, Hispanic ethnicity, intubation, acute coronary syndrome, acute renal failure, and longer hospital and intensive care unit length of stay.,The rate of in-hospital death was 12.4% without COVID-19 vs 29.8% with COVID-19 (P<0.001).,In mixed-effects logistic regression that accounted for patient clustering by hospital, comorbid COVID-19 increased the odds of in-hospital death over four-fold (OR 4.48, 95% CI 3.02 to 6.165).,Comorbid COVID-19 was also associated with lower odds of a favorable discharge (OR 0.43, 95% CI 0.30 to 0.61).,In the sensitivity analysis, comparing AIS patients with COVID-19 who did not undergo EVT (n=2139) to the AIS EVT patients with COVID-19, there was no difference in the rate of in-hospital death (30.6% vs 29.8%, P=0.868), and AIS EVT patients had a higher rate of favorable discharge (32.4% vs 47.1%, P=0.002).,In AIS patients treated with EVT, comorbid COVID-19 infection was associated with in-hospital death and a lower odds of favorable discharge compared with patients without COVID-19, but not compared with AIS patients with COVID-19 who did not undergo EVT.,AIS EVT patients with COVID-19 were younger, more likely to be male, have systemic complications, and almost twice as likely to be black and over three times as likely to be Hispanic.
Emergency measures to treat patients with coronavirus 2019 (COVID-19) and contain the outbreak is the main priority in each of our hospitals; however, these measures are likely to result in collateral damage among patients with other acute diseases.,Here, we investigate whether the COVID-19 pandemic affects acute stroke care through interruptions in the stroke chain of survival.,A descriptive analysis of acute stroke care activity before and after the COVID-19 outbreak is given for a stroke network in southern Europe.,To quantify the impact of the pandemic, the number of stroke code activations, ambulance transfers, consultations through telestroke, stroke unit admissions, and reperfusion therapy times and rates are described in temporal relationship with the rising number of COVID-19 cases in the region.,Following confinement of the population, our stroke unit activity decreased sharply, with a 25% reduction in admitted cases (mean number of 58 cases every 15 days in previous months to 44 cases in the 15 days after the outbreak, P<0.001).,Consultations to the telestroke network declined from 25 every 15 days before the outbreak to 7 after the outbreak (P<0.001).,The increasing trend in the prehospital diagnosis of stroke activated by 911 calls stopped abruptly in the region, regressing to 2019 levels.,The mean number of stroke codes dispatched to hospitals decreased (78% versus 57%, P<0.001).,Time of arrival from symptoms onset to stroke units was delayed >30 minutes, reperfusion therapy cases fell, and door-to-needle time started 16 minutes later than usual.,The COVID-19 pandemic is disruptive for acute stroke pathways.,Bottlenecks in the access and delivery of patients to our secured stroke centers are among the main challenges.,It is critical to encourage patients to continue seeking emergency care if experiencing acute stroke symptoms and to ensure that emergency professionals continue to use stroke code activation and telestroke networks.
1
What are the contemporary clinical characteristics, management, and in-hospital outcomes in patients with acute stroke and transient ischemic attack in China?,In this quality improvement study that included more than 1 million admissions, in-hospital management measures and outcomes varied by type of cerebrovascular event and hospital level of care.,Temporal improvements from 2015 to 2019 were also observed.,Although improvements were seen over time, these findings suggest that ongoing support for evidence-based care is needed.,Stroke represents a significant burden on the health care system of China.,The Chinese Stroke Center Alliance was launched in 2015 to monitor and improve care quality and outcomes for patients with acute stroke and transient ischemic attack (TIA).,To evaluate the clinical characteristics, management, and in-hospital clinical outcomes and complications among patients with stroke or TIA in China.,This quality improvement study assessed stroke or TIA admissions to 1476 participating hospitals in the Chinese Stroke Center Alliance between August 1, 2015, and July 31, 2019.,Stroke types and calendar year.,Eleven guideline-based admission or discharge management measures and 2 summary measures: an all-or-none binary outcome and a composite score (range, 0 [nonadherence] to 1 [perfect adherence]) for adherence to evidence-based stroke and TIA care and in-hospital clinical outcomes, including death or discharge against medical advice (DAMA), major adverse cardiovascular events (MACEs), including ischemic stroke, hemorrhagic stroke, TIA, or myocardial infarction; and in-hospital complications.,Of 1 006 798 patients with stroke or TIA (mean [SD] age, 65.7 [12.2] years; 383 500 [38.1%] female), 838 229 (83.3%) had an ischemic stroke, 64 929 (6.4%) had TIA, 85 705 (8.5%) had intracerebral hemorrhage (ICH), and 11 241 (1.1%) had subarachnoid hemorrhage (SAH).,Management measures varied by cerebrovascular event type, with the mean (SD) composite score ranging from 0.57 (0.31) in SAH to 0.83 (0.24) in TIA.,Poor outcomes and complications were highest among patients with SAH (21.9%; 95% CI, 21.0%-22.8% in-hospital death or DAMA; 9.6%; 95% CI, 9.1%-10.2% MACEs; and 31.4%; 95% CI, 30.6%-32.3% in-hospital complications) and patients with ICH (17.2%; 95% CI, 16.9%-17.5% in-hospital death or DAMA; 9.3%; 95% CI, 9.1%-9.5% MACEs; and 31.3%; 95% CI, 31.0%-31.6% in-hospital complications), followed by patients with ischemic stroke (6.1%; 95% CI, 6.0%-6.1% in-hospital death or DAMA; 6.3%; 95% CI, 6.3%-6.4% MACEs; and 12.8%; 95% CI, 12.7%-12.9% in-hospital complications), and lowest in patients with TIA (5.0%; 95% CI, 4.8%-5.2% in-hospital death or DAMA; 2.4%; 95% CI, 2.3%-2.5% MACEs; and 0.8%; 95% CI, 0.7%-0.8% in-hospital complications).,Temporal improvements in management measures were observed from 2015 to 2019, especially in administration of intravenous recombinant tissue plasminogen activator (+60.3% relatively; 95% CI, 52.9%-70.5%), dysphagia screening (+14.7% relatively; 95% CI, 14.0%-15.6%), and use of anticoagulants for atrial fibrillation (+31.4% relatively; 95% CI, 25.7%-37.3%).,Temporal improvements in in-hospital death or DAMA (−9.7% relatively; 95% CI, −9.6% to −8.5%) and complications (−27.1% relatively; 95% CI, −28.6% to −25.3) were also observed.,In this quality improvement study, performance measure adherence and poor outcomes and complications varied by cerebrovascular event type; although there were substantial improvements over time, these results suggest that support for the use of evidence-based practices is needed.,This quality improvement study examines variations in and temporal trends of performance measures and in-hospital outcomes in patients with stroke or transient ischemic attack in the Chinese Stroke Center Alliance program.
China faces the greatest challenge from stroke in the world.,The death rate for cerebrovascular diseases in China was 149.49 per 100 000, accounting for 1.57 million deaths in 2018.,It ranked third among the leading causes of death behind malignant tumours and heart disease.,The age-standardised prevalence and incidence of stroke in 2013 were 1114.8 per 100 000 population and 246.8 per 100 000 person-years, respectively.,According to the Global Burden of Disease Study 2017, the years of life lost (YLLs) per 100 000 population for stroke increased by 14.6%; YLLs due to stroke rose from third highest among all causes in 1990 to the highest in 2017.,The absolute numbers and rates per 100 000 population for all-age disability-adjusted life years (DALYs) for stroke increased substantially between 1990 and 2017, and stroke was the leading cause of all-age DALYs in 2017.,The main contributors to cerebrovascular diseases include behavioural risk factors (smoking and alcohol use) and pre-existing conditions (hypertension, diabetes mellitus, dyslipidaemia and atrial fibrillation (AF)).,The most prevalent risk factors among stroke survivors were hypertension (63.0%-84.2%) and smoking (31.7%-47.6%).,The least prevalent was AF (2.7%-7.4%).,The prevalences for major risk factors for stroke are high and most have increased over time.,Based on the latest national epidemiological data, 26.6% of adults aged ≥15 years (307.6 million adults) smoked tobacco products.,For those aged ≥18 years, age-adjusted prevalence of hypertension was 25.2%; adjusted prevalence of hypercholesterolaemia was 5.8%; and the standardised prevalence of diabetes was 10.9%.,For those aged ≥40 years, the standardised prevalence of AF was 2.31%.,Data from the Hospital Quality Monitoring System showed that 3 010 204 inpatients with stroke were admitted to 1853 tertiary care hospitals during 2018.,Of those, 2 466 785 (81.9%) were ischaemic strokes (ISs); 447 609 (14.9%) were intracerebral haemorrhages (ICHs); and 95 810 (3.2%) were subarachnoid haemorrhages (SAHs).,The average age of patients admitted was 66 years old, and nearly 60% were male.,A total of 1555 (0.1%), 2774 (0.6%) and 1347 (1.4%) paediatric strokes (age <18 years) were identified among IS, ICH and SAH, respectively.,Over one-third (1 063 892 (35.3%)) of the patients were covered by urban resident basic medical insurance, followed by urban employee basic medical insurance (699 513 (23.2%)) and new rural cooperative medical schema (489 361 (16.3%)).,The leading risk factor was hypertension (67.4% for IS, 77.2% for ICH and 49.1% for SAH), and the leading comorbidity was pneumonia or pulmonary infection (10.1% for IS, 31.4% for ICH and 25.2% for SAH).,In-hospital death/discharge against medical advice rate was 8.3% for stroke inpatients, ranging from 5.8% for IS to 19.5% for ICH.,The median and IQR of length of stay was 10.0 (7.0-14.0) days, ranging from 10.0 (7.0-13.0) in IS to 14.0 (8.0-22.0) in SAH.,Data from the Chinese Stroke Center Alliance demonstrated that the composite scores of guideline-recommended key performance indicators for patients with IS, ICH and SAH were 0.77±0.21, 0.72±0.28 and 0.59±0.32, respectively.
1
•SARS-CoV-2 may impair host antiviral response, causing subsequent hyperinflammation.,•SARS-CoV-2 likely deranges the renin angiotensin aldosterone system (RAAS).,•Hyperinflammation and RAAS imbalance may drive acute lung injury and coagulopathy.,•RAAS imbalance impairs fibrinolysis, which can result in relative hypofibrinolysis.,•This can lead widespread immunothrombosis, contributing to multi-organ damage.,SARS-CoV-2 may impair host antiviral response, causing subsequent hyperinflammation.,SARS-CoV-2 likely deranges the renin angiotensin aldosterone system (RAAS).,Hyperinflammation and RAAS imbalance may drive acute lung injury and coagulopathy.,RAAS imbalance impairs fibrinolysis, which can result in relative hypofibrinolysis.,This can lead widespread immunothrombosis, contributing to multi-organ damage.,Early clinical evidence suggests that severe cases of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are frequently characterized by hyperinflammation, imbalance of renin-angiotensin-aldosterone system, and a particular form of vasculopathy, thrombotic microangiopathy, and intravascular coagulopathy.,In this paper, we present an immunothrombosis model of COVID-19.,We discuss the underlying pathogenesis and the interaction between multiple systems, resulting in propagation of immunothrombosis, which through investigation in the coming weeks, may lead to both an improved understanding of COVID-19 pathophysiology and identification of innovative and efficient therapeutic targets to reverse the otherwise unfavorable clinical outcome of many of these patients.
Few data are available on the rate and characteristics of thromboembolic complications in hospitalized patients with COVID-19.,We studied consecutive symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02.2020-10.04.2020).,The primary outcome was any thromboembolic complication, including venous thromboembolism (VTE), ischemic stroke, and acute coronary syndrome (ACS)/myocardial infarction (MI).,Secondary outcome was overt disseminated intravascular coagulation (DIC).,We included 388 patients (median age 66 years, 68% men, 16% requiring intensive care [ICU]).,Thromboprophylaxis was used in 100% of ICU patients and 75% of those on the general ward.,Thromboembolic events occurred in 28 (7.7% of closed cases; 95%CI 5.4%-11.0%), corresponding to a cumulative rate of 21% (27.6% ICU, 6.6% general ward).,Half of the thromboembolic events were diagnosed within 24 h of hospital admission.,Forty-four patients underwent VTE imaging tests and VTE was confirmed in 16 (36%).,Computed tomography pulmonary angiography (CTPA) was performed in 30 patients, corresponding to 7.7% of total, and pulmonary embolism was confirmed in 10 (33% of CTPA).,The rate of ischemic stroke and ACS/MI was 2.5% and 1.1%, respectively.,Overt DIC was present in 8 (2.2%) patients.,The high number of arterial and, in particular, venous thromboembolic events diagnosed within 24 h of admission and the high rate of positive VTE imaging tests among the few COVID-19 patients tested suggest that there is an urgent need to improve specific VTE diagnostic strategies and investigate the efficacy and safety of thromboprophylaxis in ambulatory COVID-19 patients.,•COVID-19 is characterized by coagulation activation and endothelial dysfunction.,Few data are available on thromboembolic complications.,•We studied symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02-10.04.2020).,•Venous and arterial thromboembolic events occurred in 8% of hospitalized patients (cumulative rate 21.0%) and 50% of events were diagnosed within 24 h of hospital admission.,•Forty-four (11% of total) patients underwent VTE imaging tests; 16 were positive (36% of tests), suggesting underestimation of thromboembolic complications.,•There is an urgent need to investigate VTE diagnostic strategies and the impact of thromboprophylaxis in ambulatory COVID-19 patients.,COVID-19 is characterized by coagulation activation and endothelial dysfunction.,Few data are available on thromboembolic complications.,We studied symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02-10.04.2020).,Venous and arterial thromboembolic events occurred in 8% of hospitalized patients (cumulative rate 21.0%) and 50% of events were diagnosed within 24 h of hospital admission.,Forty-four (11% of total) patients underwent VTE imaging tests; 16 were positive (36% of tests), suggesting underestimation of thromboembolic complications.,There is an urgent need to investigate VTE diagnostic strategies and the impact of thromboprophylaxis in ambulatory COVID-19 patients.
1
Objectives: Many studies indicate the involvement of transient receptor potential (TRP) channels in the development of heart hypertrophy.,However, the data is often conflicted and has originated in animal models.,Here, we provide systematic analysis of TRP channels expression in human failing myocardium.,Methods and results: Left-ventricular tissue samples were isolated from explanted hearts of NYHA III-IV patients undergoing heart transplants (n = 43).,Quantitative real-time PCR was performed to assess the mRNA levels of TRPC, TRPM and TRPV channels.,Analysis of functional, clinical and biochemical data was used to confirm an end-stage heart failure diagnosis.,Compared to myocardium samples from healthy donor hearts (n = 5), we detected a distinct increase in the expression of TRPC1, TRPC5, TRPM4 and TRPM7, and decreased expression of TRPC4 and TRPV2.,These changes were not dependent on gender, clinical or biochemical parameters, nor functional parameters of the heart.,We detected, however, a significant correlation of TRPC1 and MEF2c expression.,Conclusions: The end-stage heart failure displays distinct expressional changes of TRP channels.,Our findings provide a systematic description of TRP channel expression in human heart failure.,The results highlight the complex interplay between TRP channels and the need for deeper analysis of early stages of hypertrophy and heart failure development.
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of oral anti-diabetic drugs, implicated in pleiotropic secondary cardioprotective effects.,The aim of the study was to unveil the unknown and possible cardioprotective targets that can be exerted by sitagliptin (Sitg) against ischemia-reperfusion (I/R) injury.,Male wistar rats received 2 weeks’ Sitg oral treatment of different doses (25, 50, 100, and 150 mg/kg/day), or saline as a Control.,Hearts were then isolated and subjected to two different I/R injury protocols: 10 min perfusion, 45 min regional ischemia, and 120 min reperfusion for infarct size (IS) measurement, or: 10 min perfusion, 45 min regional ischemia and 10 min reperfusion for biochemical analysis: nitric oxide synthases (NOSs) and DPP-4 activity, glucagon-like peptide-1 (GLP-1), Calcium, transient receptor potential vanilloid (TRPV)-1 and calcitonin gene-related peptide (CGRP) levels, transient receptor potential canonical (TRPC)-1 and e-NOS protein expression.,NOS inhibitor (l-NAME) and TRPV-1 inhibitor (Capsazepine) were utilized to confirm the implication of both signaling mechanisms in DPP-4 inhibition-induced at the level of IS.,Findings show that Sitg (50 mg) resulted in significant decrease in IS and DPP-4 activity, and significant increase in GLP-1, NOS activity, e-NOS expression, TRPV-1 level and TRPC-1 expression, compared to controls.,Results of CGRP are in line with TRPV-1, as a downstream regulatory effect.,NOS system and transient receptor potential (TRP) channels can contribute to DPP-4 inhibition-mediated cardioprotection against I/R injury using Sitagliptin.
1
Luteolin has been reported to attenuate ischemia/reperfusion (I/R) injury in the diabetic heart through endothelial nitric oxide synthase- (eNOS-) related antioxidative response.,Though the nuclear factor erythroid 2-related factor 2 (Nrf2) is regarded as a key endogenous factor to reduce diabetic oxidative stress, whether luteolin reduces cardiac I/R injury in the diabetic heart via enhancing Nrf2 function needs to be clarified.,We hypothesized that pretreatment with luteolin could alleviate cardiac I/R injury in the diabetic heart by affecting the eNOS/Nrf2 signaling pathway.,The diabetic rat was produced by a single injection of streptozotocin (65 mg/kg, i.p.) for 6 weeks, and then, luteolin (100 mg/kg/day, i.g.), eNOS inhibitor L-NAME, or Nrf2 inhibitor brusatol was administered for the succedent 2 weeks.,After that, the isolated rat heart was exposed to 30 min of global ischemia and 120 min of reperfusion to establish I/R injury.,Luteolin markedly ameliorated cardiac function and myocardial viability; upregulated expressions of heme oxygenase-1, superoxide dismutase, glutathione peroxidase, and catalase; and reduced myocardial lactate dehydrogenase release, malondialdehyde, and 8-hydroxydeoxyguanosine in the diabetic I/R heart.,All these ameliorating effects of luteolin were significantly reversed by L-NAME or brusatol.,Luteolin also markedly reduced S-nitrosylation of Kelch-like ECH-associated protein 1 (Keap1) and upregulated Nrf2 and its transcriptional activity.,This effect of luteolin on Keap1/Nrf2 signaling was attenuated by L-NAME.,These data reveal that luteolin protects the diabetic heart against I/R injury by enhancing eNOS-mediated S-nitrosylation of Keap1, with subsequent upregulation of Nrf2 and the Nrf2-related antioxidative signaling pathway.
Mitochondrial fission and selective mitochondrial autophagy (mitophagy) form an essential axis of mitochondrial quality control that plays a critical role in the development of cardiac ischemia-reperfusion (IR) injury.,However, the precise upstream molecular mechanism of fission/mitophagy remains unclear.,Dual-specificity protein phosphatase1 (DUSP1) regulates cardiac metabolism, but its physiological contribution in the reperfused heart, particularly its influence on mitochondrial homeostasis, is unknown.,Here, we demonstrated that cardiac DUSP1 was downregulated following acute cardiac IR injury.,In vivo, compared to wild-type mice, DUSP1 transgenic mice (DUSP1TG mice) demonstrated a smaller infarcted area and the improved myocardial function.,In vitro, the IR-induced DUSP1 deficiency promoted the activation of JNK which upregulated the expression of the mitochondrial fission factor (Mff).,A higher expression level of Mff was associated with elevated mitochondrial fission and mitochondrial apoptosis.,Additionally, the loss of DUSP1 also amplified the Bnip3 phosphorylated activation via JNK, leading to the activation of mitophagy.,Increased mitophagy overtly consumed mitochondrial mass resulting into the mitochondrial metabolism disorder.,However, the reintroduction of DUSP1 blunted Mff/Bnip3 activation and therefore alleviated the fatal mitochondrial fission/mitophagy by inactivating the JNK pathway, providing a survival advantage to myocardial tissue following IR stress.,The results of our study suggest that DUSP1 and its downstream JNK pathway are therapeutic targets for conferring protection against IR injury by repressing Mff-mediated mitochondrial fission and Bnip3-required mitophagy.,fx1,•IR injury induces DUSP1 downregulation.,•Loss of DUSP1 leads to an increase in JNK phosphorylation.,•JNK activates Mff and Bnip3, contributing to the fatal mitochondrial fission and mitophagy, respectively.,•Fission and mitophagy induces cell damage via trigging caspase9-related apoptosis and mitochondrial energy disorder.,IR injury induces DUSP1 downregulation.,Loss of DUSP1 leads to an increase in JNK phosphorylation.,JNK activates Mff and Bnip3, contributing to the fatal mitochondrial fission and mitophagy, respectively.,Fission and mitophagy induces cell damage via trigging caspase9-related apoptosis and mitochondrial energy disorder.
1
Clinical characteristics, anticoagulant protocols, and risk factors of deep vein thrombosis (DVT) in patients with femoral and pelvic fractures were analyzed throughout the perioperative period to provide references for early identification and optimization of risk factors.,This was a retrospective study.,A total of 569 patients undergoing surgery of femoral and pelvic fractures from May 2018 to December 2019 were included.,The clinical data including general conditions, trauma, surgery, anticoagulant protocols, and laboratory indexes were collected.,According to the results of deep vein Doppler ultrasonography of the lower extremities, the patients were divided into non-DVT group and DVT group.,Univariate analysis and multivariate logistic regression analysis were used to identify the independent risk factors of preoperative and postoperative DVT.,The incidence of DVT was 40.25% and preoperative DVT was 26.71%, which was higher than the incidence of postoperative DVT of 17.22%.,Most of them were thrombus on the affected side (60.26%) and distal thrombus (81.66%).,The average time of DVT formation was 6.55 ± 0.47 days after trauma and 6.67 ± 0.48 days after surgery.,Chronic obstructive pulmonary disease (COPD), anemia, hypoproteinemia, non-anticoagulation before surgery, delayed anticoagulation after trauma and admission, high-energy trauma, multiple injuries, drinking history, and advanced age were independent risk factors for perioperative DVT.,The increased level of fibrinogen degradation products was an independent risk factor for preoperative DVT.,These risk factors were identified to be independently associated with postoperative DVT, including intraoperative blood transfusion, postoperative blood transfusion, pulmonary infection, preoperative non-anticoagulation, postoperative delayed anticoagulation, preoperative waiting time > 7 days, operative time > 2 h, c-reactive protein, fibrinogen level, platelet count 1 day after surgery, c-reactive protein, fibrinogen, and hemoglobin levels 3 days after surgery, comminuted fracture.,At present, anticoagulation and other DVT prevention and treatment programs have not changed the current situation that the incidence of DVT is still high.,Through the analysis of the risk factors of DVT throughout the perioperative period, optimizing the perioperative blood transfusion, preoperative lung disease, hypoproteinemia, anemia, inflammation, etc., and surgery as soon as possible after trauma may further reduce its incidence.
This study aimed to investigate the incidence and risk factors for deep vein thrombosis (DVT) in patients with pelvic and acetabular fractures.,Patients with pelvic or acetabular fractures were included.,Demographic data, fracture classification, time to surgery, and d-dimer levels at admission and one day after surgical intervention were recorded.,Duplex ultrasonography was performed in the lower extremities for DVT evaluation.,All patients received mechanical and chemical thromboprophylaxis.,One hundred ten patients with a mean age of 44.2 ± 13.8 years were included.,There were 48 patients with pelvic fractures and 62 patients with acetabular fractures.,Thirty-two (29.09%) patients sustained DVT; 21 (19.09%) patients exhibited proximal thrombosis, and 3 patients suffered pulmonary embolism.,The incidence of DVT in patients with acetabular fractures was significantly higher than that of patients with pelvic fractures (χ2 = 4.42, P = .04).,The incidence of proximal DVT was significantly higher in patients with complex acetabular fractures than in patients with simple acetabular fractures (χ2 = 6.65, P = .01).,Multivariate analysis showed that age older than 60 years, associated injuries, and the time to surgery longer than 2 weeks were independent risk factors (P < .05).,Despite mechanical and chemical thromboprophylaxis, the risk of DVT in patients with pelvic and acetabular fractures is still very high, and most of the thromboses were localized proximally.,The risk of DVT is higher in patients older than 60 years, in those with associated injuries, and when the time from injury to operation is more than 2 weeks.
1
•Fever and cough are the most common symptoms in patients with COVID-19.,•The most prevalent comorbidities are hypertension and diabetes which are associated with the severity of COVID-19.,•ARDS and ACI may be the main obstacles to treatment recovery for patients.,•The case severe rate and mortality is lower than that of SARS and MERS.,Fever and cough are the most common symptoms in patients with COVID-19.,The most prevalent comorbidities are hypertension and diabetes which are associated with the severity of COVID-19.,ARDS and ACI may be the main obstacles to treatment recovery for patients.,The case severe rate and mortality is lower than that of SARS and MERS.,Since being first reported in Wuhan, China, in December 8, 2019, the outbreak of the novel coronavirus, now known as COVID-19, has spread globally.,Some case studies regarding the characteristics and outcome of patients with COVID-19 have been published recently.,We conducted a meta-analysis to evaluate the risk factors of COVID-19.,Medline, SinoMed, EMBASE, and Cochrane Library were searched for clinical and epidemiological studies on confirmed cases of COVID-19.,The incidence of fever, cough, fatigue, and dyspnea symptoms were 85.6 % (95CI 81.3-89.9 %), 65.7 % (95CI 60.1-71.4 %), 42.4 % (95CI 32.2-52.6 %) and 21.4 % (95CI 15.3-27.5 %).,The prevalence of diabetes was 7.7 % (95CI 6.1-9.3 %), hypertension was 15.6 % (95CI 12.6-18.6 %), cardiovascular disease was 4.7 % (95CI 3.1-6.2 %), and malignancy was 1.2 % (95CI 0.5-1.8 %).,The complications, including ARDS risk, ranged from 5.6-13.2 %, with the pooled estimate of ARDS risk at 9.4 %, ACI at 5.8 % (95CI 0.7-10.8 %), AKI at 2.1 % (95CI 0.6-3.7 %), and shock at 4.7 % (95CI 0.9-8.6 %).,The risks of severity and mortality ranged from 12.6 to 23.5% and from 2.0 to 4.4 %, with pooled estimates at 18.0 and 3.2 %, respectively.,The percentage of critical cases in diabetes and hypertension was 44.5 % (95CI 27.0-61.9 %) and 41.7 % (95CI 26.4-56.9 %), respectively.,Fever is the most common symptom in patients with COVID-19.,The most prevalent comorbidities are hypertension and diabetes which are associated with the severity of COVID-19.,ARDS and ACI may be the main obstacles for patients to treatment recovery.,The case severe rate and mortality is lower than that of SARS and MERS.
The aim of this study was to identify factors associated with the death of patients with COVID-19 pneumonia caused by the novel coronavirus SARS-CoV-2.,All clinical and laboratory parameters were collected prospectively from a cohort of patients with COVID-19 pneumonia who were hospitalised to Wuhan Pulmonary Hospital (Wuhan City, Hubei Province, China) between 25 December 2019 and 7 February 2020.,Univariate and multivariate logistic regression was performed to investigate the relationship between each variable and the risk of death of COVID-19 pneumonia patients.,In total, 179 patients with COVID-19 pneumonia (97 male and 82 female) were included in the present prospective study, of whom 21 died.,Univariate and multivariate logistic regression analysis revealed that age ≥65 years (OR 3.765, 95% CI 1.146-17.394; p=0.023), pre-existing concurrent cardiovascular or cerebrovascular diseases (OR 2.464, 95% CI 0.755-8.044; p=0.007), CD3+CD8+ T-cells ≤75 cells·μL−1 (OR 3.982, 95% CI 1.132-14.006; p<0.001) and cardiac troponin I ≥0.05 ng·mL−1 (OR 4.077, 95% CI 1.166-14.253; p<0.001) were associated with an increase in risk of mortality from COVID-19 pneumonia.,In a sex-, age- and comorbid illness-matched case-control study, CD3+CD8+ T-cells ≤75 cells·μL−1 and cardiac troponin I ≥0.05 ng·mL−1 remained as predictors for high mortality from COVID-19 pneumonia.,We identified four risk factors: age ≥65 years, pre-existing concurrent cardiovascular or cerebrovascular diseases, CD3+CD8+ T-cells ≤75 cells·μL−1 and cardiac troponin I ≥0.05 ng·mL−1.,The latter two factors, especially, were predictors for mortality of COVID-19 pneumonia patients.,These data showed that age ≥65 years, pre-existing concurrent cardiovascular or cerebrovascular diseases, CD3+CD8+ T-cells ≤75 cells·μL−1 and cardiac troponin I ≥0.05 ng·mL−1 were four risk factors predicting high mortality of COVID-19 pneumonia patientshttps://bit.ly/2Rh6Nqv
1
Coronavirus disease 2019 (COVID‐19) can lead to systemic coagulation activation and thrombotic complications.,To investigate the incidence of objectively confirmed venous thromboembolism (VTE) in hospitalized patients with COVID‐19.,Single‐center cohort study of 198 hospitalized patients with COVID‐19.,Seventy‐five patients (38%) were admitted to the intensive care unit (ICU).,At time of data collection, 16 (8%) were still hospitalized and 19% had died.,During a median follow‐up of 7 days (IQR, 3‐13), 39 patients (20%) were diagnosed with VTE of whom 25 (13%) had symptomatic VTE, despite routine thrombosis prophylaxis.,The cumulative incidences of VTE at 7, 14 and 21 days were 16% (95% CI, 10‐22), 33% (95% CI, 23‐43) and 42% (95% CI 30‐54) respectively.,For symptomatic VTE, these were 10% (95% CI, 5.8‐16), 21% (95% CI, 14‐30) and 25% (95% CI 16‐36).,VTE appeared to be associated with death (adjusted HR, 2.4; 95% CI, 1.02‐5.5).,The cumulative incidence of VTE was higher in the ICU (26% (95% CI, 17‐37), 47% (95% CI, 34‐58), and 59% (95% CI, 42‐72) at 7, 14 and 21 days) than on the wards (any VTE and symptomatic VTE 5.8% (95% CI, 1.4‐15), 9.2% (95% CI, 2.6‐21), and 9.2% (2.6‐21) at 7, 14, and 21 days).,The observed risk for VTE in COVID‐19 is high, particularly in ICU patients, which should lead to a high level of clinical suspicion and low threshold for diagnostic imaging for DVT or PE.,Future research should focus on optimal diagnostic and prophylactic strategies to prevent VTE and potentially improve survival.
Acute respiratory failure and a systemic coagulopathy are critical aspects of the morbidity and mortality characterizing infection with severe acute respiratory distress syndrome-associated coronavirus-2, the etiologic agent of Coronavirus disease 2019 (COVID-19).,We examined skin and lung tissues from 5 patients with severe COVID-19 characterized by respiratory failure (n= 5) and purpuric skin rash (n = 3).,COVID-19 pneumonitis was predominantly a pauci-inflammatory septal capillary injury with significant septal capillary mural and luminal fibrin deposition and permeation of the interalveolar septa by neutrophils.,No viral cytopathic changes were observed and the diffuse alveolar damage (DAD) with hyaline membranes, inflammation, and type II pneumocyte hyperplasia, hallmarks of classic acute respiratory distress syndrome, were not prominent.,These pulmonary findings were accompanied by significant deposits of terminal complement components C5b-9 (membrane attack complex), C4d, and mannose binding lectin (MBL)-associated serine protease (MASP)2, in the microvasculature, consistent with sustained, systemic activation of the complement pathways.,The purpuric skin lesions similarly showed a pauci-inflammatory thrombogenic vasculopathy, with deposition of C5b-9 and C4d in both grossly involved and normally-appearing skin.,In addition, there was co-localization of COVID-19 spike glycoproteins with C4d and C5b-9 in the interalveolar septa and the cutaneous microvasculature of 2 cases examined.,In conclusion, at least a subset of sustained, severe COVID-19 may define a type of catastrophic microvascular injury syndrome mediated by activation of complement pathways and an associated procoagulant state.,It provides a foundation for further exploration of the pathophysiologic importance of complement in COVID-19, and could suggest targets for specific intervention.
1
To investigate myocardial fibrosis (MF) in a large series of severe aortic stenosis (AS) patients using invasive biopsy and non-invasive imaging.,One hundred thirty-three patients with severe, symptomatic AS accepted for surgical aortic valve replacement underwent cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) and extracellular volume fraction (ECV) quantification.,Intra-operative left ventricular (LV) biopsies were performed by needle or scalpel, yielding tissue with (n = 53) and without endocardium (n = 80), and compared with 10 controls.,Myocardial fibrosis occurred in three patterns: (i) thickened endocardium with a fibrotic layer; (ii) microscopic scars, with a subendomyocardial predominance; and (iii) diffuse interstitial fibrosis.,Collagen volume fraction (CVF) was elevated (P < 0.001) compared with controls, and higher (P < 0.001) in endocardium-containing samples with a decreasing CVF gradient from the subendocardium (P = 0.001).,Late gadolinium enhancement correlated with CVF (P < 0.001) but not ECV.,Both LGE and ECV correlated independently (P < 0.001) with N-terminal pro-brain natriuretic peptide and high-sensitivity-troponin T.,High ECV was also associated with worse LV remodelling, left ventricular ejection fraction and functional capacity.,Combining high ECV and LGE better identified patients with more adverse LV remodelling, blood biomarkers and histological parameters, and worse functional capacity than each parameter alone.,Myocardial fibrosis in severe AS is complex, but three main patterns exist: endocardial fibrosis, microscars (mainly in the subendomyocardium), and diffuse interstitial fibrosis.,Neither histological CVF nor the CMR parameters ECV and LGE capture fibrosis in its totality.,A combined, multi-parametric approach with ECV and LGE allows best stratification of AS patients according to the response of the myocardial collagen matrix.
The left ventricular (LV) remodeling process associated with significant valvular heart disease (VHD) is characterized by an increase of myocardial interstitial space with deposition of collagen and loss of myofibers.,These changes occur before LV systolic function deteriorates or the patient develops symptoms.,Cardiovascular magnetic resonance (CMR) permits assessment of reactive fibrosis, with the use of T1 mapping techniques, and replacement fibrosis, with the use of late gadolinium contrast enhancement.,In addition, functional consequences of these structural changes can be evaluated with myocardial tagging and feature tracking CMR, which assess the active deformation (strain) of the LV myocardium.,Several studies have demonstrated that CMR techniques may be more sensitive than the conventional measures (LV ejection fraction or LV dimensions) to detect these structural and functional changes in patients with severe left-sided VHD and have shown that myocardial fibrosis may not be reversible after valve surgery.,More important, the presence of myocardial fibrosis has been associated with lesser improvement in clinical symptoms and recovery of LV systolic function.,Whether assessment of myocardial fibrosis may better select the patients with severe left-sided VHD who may benefit from surgery in terms of LV function and clinical symptoms improvement needs to be demonstrated in prospective studies.,The present review article summarizes the current status of CMR techniques to assess myocardial fibrosis and appraises the current evidence on the use of these techniques for risk stratification of patients with severe aortic stenosis or regurgitation and mitral regurgitation.
1
While SARS-CoV-2 primarily affects the lungs, the virus may be inflicting detriments to the cardiovascular system, both directly through angiotensin-converting enzyme 2 receptor and initiating systemic inflammation.,Persistent systemic inflammation may be provoking vascular dysfunction, an early indication of cardiovascular disease risk.,To establish the potential effects of SARS-CoV-2 on the systemic vasculature in the arms and legs, we performed a cross-sectional analysis of young healthy adults (control: 5 M/15 F, 23.0 ± 1.3 y, 167 ± 9 cm, 63.0 ± 7.4 kg) and young adults who, 3-4 wk prior to testing, had tested positive for SARS-CoV-2 (SARS-CoV-2: 4 M/7 F, 20.2 ± 1.1 y, 172 ± 12 cm, 69.5 ± 12.4 kg) (means ± SD).,Using Doppler ultrasound, brachial artery flow-mediated dilation (FMD) in the arm and single passive limb movement (sPLM) in the leg were assessed as markers of vascular function.,Carotid-femoral pulse wave velocity (PWVcf) was asvsessed as a marker of arterial stiffness.,FMD was lower in the SARS-CoV-2 group (2.71 ± 1.21%) compared with the control group (8.81 ± 2.96%) (P < 0.01) and when made relative to the shear stimulus (SARS-CoV-2: 0.04 ± 0.02 AU, control: 0.13 ± 0.06 AU, P < 0.01).,The femoral artery blood flow response, as evidenced by the area under the curve, from the sPLM was lower in the SARS-CoV-2 group (−3 ± 91 mL) compared with the control group (118 ± 114 mL) (P < 0.01).,PWVcf was higher in the SARS-CoV-2 group (5.83 ± 0.62 m/s) compared with the control group (5.17 ± 0.66 m/s) (P < 0.01).,Significantly lower systemic vascular function and higher arterial stiffness are evident weeks after testing positive for SARS-CoV-2 among young adults compared with controls.,NEW & NOTEWORTHY This study was the first to investigate the vascular implications of contracting SARS-CoV-2 among young, otherwise healthy adults.,Using a cross-sectional design, this study assessed vascular function 3-4 wk after young adults tested positive for SARS-CoV-2.,The main findings from this study were a strikingly lower vascular function and a higher arterial stiffness compared with healthy controls.,Together, these results suggest rampant vascular effects seen weeks after contracting SARS-CoV-2 in young adults.
The COVID-19 pandemic is an unprecedented healthcare emergency causing mortality and illness across the world.,Although primarily affecting the lungs, the SARS-CoV-2 virus also affects the cardiovascular system.,In addition to cardiac effects, e.g. myocarditis, arrhythmias, and myocardial damage, the vasculature is affected in COVID-19, both directly by the SARS-CoV-2 virus, and indirectly as a result of a systemic inflammatory cytokine storm.,This includes the role of the vascular endothelium in the recruitment of inflammatory leucocytes where they contribute to tissue damage and cytokine release, which are key drivers of acute respiratory distress syndrome (ARDS), in disseminated intravascular coagulation, and cardiovascular complications in COVID-19.,There is also evidence linking endothelial cells (ECs) to SARS-CoV-2 infection including: (i) the expression and function of its receptor angiotensin-converting enzyme 2 (ACE2) in the vasculature; (ii) the prevalence of a Kawasaki disease-like syndrome (vasculitis) in COVID-19; and (iii) evidence of EC infection with SARS-CoV-2 in patients with fatal COVID-19.,Here, the Working Group on Atherosclerosis and Vascular Biology together with the Council of Basic Cardiovascular Science of the European Society of Cardiology provide a Position Statement on the importance of the endothelium in the underlying pathophysiology behind the clinical presentation in COVID-19 and identify key questions for future research to address.,We propose that endothelial biomarkers and tests of function (e.g. flow-mediated dilatation) should be evaluated for their usefulness in the risk stratification of COVID-19 patients.,A better understanding of the effects of SARS-CoV-2 on endothelial biology in both the micro- and macrovasculature is required, and endothelial function testing should be considered in the follow-up of convalescent COVID-19 patients for early detection of long-term cardiovascular complications.
1
Trimethylamine‐N‐oxide (TMAO) has recently been identified as a novel and independent risk factor for promoting atherosclerosis through inducing vascular inflammation.,However, the exact mechanism is currently unclear.,Studies have established a central role of nucleotide‐binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the pathogenesis of vascular inflammation.,Here, we examined the potential role of the NLRP3 inflammasome in TMAO‐induced vascular inflammation in vitro and in vivo and the underlying mechanisms.,Experiments using liquid chromatography‐tandem mass spectrometry, Western blot, and fluorescent probes showed that TMAO‐induced inflammation in human umbilical vein endothelial cells (HUVECs) and aortas from ApoE−/− mice.,Moreover, TMAO promoted NLRP3 and activated caspase‐1 p20 expression and caspase‐1 activity in vitro and in vivo.,Notably, a caspase‐1 inhibitor (YVAD), an NLRP3 inhibitor (MCC950), as well as NLRP3 short interfering RNA attenuated TMAO‐induced activation of the NLRP3 inflammasome, subsequently leading to suppression of inflammation in HUVECs.,TMAO additionally stimulated reactive oxygen species (ROS) generation, in particular, mitochondrial ROS, while inhibiting manganese superoxide dismutase 2 (SOD2) activation and sirtuin 3 (SIRT3) expression in HUVECs and aortas from ApoE−/− mice.,TMAO‐induced endothelial NLRP3 inflammasome activation was ameliorated by the mitochondrial ROS scavenger Mito‐TEMPO, or SIRT3 overexpression in HUVECs.,Conversely, TMAO failed to further inhibit magnesium SOD2 and activate the NLRP3 inflammasome or induce inflammation in SIRT3 short interfering RNA-treated HUVECs and aortas from SIRT3−/− mice.,TMAO promoted vascular inflammation by activating the NLRP3 inflammasome, and the NLRP3 inflammasome activation in part was mediated through inhibition of the SIRT3‐SOD2-mitochondrial ROS signaling pathway.
Recently, the potential role of gut microbiome in metabolic diseases has been revealed, especially in cardiovascular diseases.,Hypertension is one of the most prevalent cardiovascular diseases worldwide, yet whether gut microbiota dysbiosis participates in the development of hypertension remains largely unknown.,To investigate this issue, we carried out comprehensive metagenomic and metabolomic analyses in a cohort of 41 healthy controls, 56 subjects with pre-hypertension, 99 individuals with primary hypertension, and performed fecal microbiota transplantation from patients to germ-free mice.,Compared to the healthy controls, we found dramatically decreased microbial richness and diversity, Prevotella-dominated gut enterotype, distinct metagenomic composition with reduced bacteria associated with healthy status and overgrowth of bacteria such as Prevotella and Klebsiella, and disease-linked microbial function in both pre-hypertensive and hypertensive populations.,Unexpectedly, the microbiome characteristic in pre-hypertension group was quite similar to that in hypertension.,The metabolism changes of host with pre-hypertension or hypertension were identified to be closely linked to gut microbiome dysbiosis.,And a disease classifier based on microbiota and metabolites was constructed to discriminate pre-hypertensive and hypertensive individuals from controls accurately.,Furthermore, by fecal transplantation from hypertensive human donors to germ-free mice, elevated blood pressure was observed to be transferrable through microbiota, and the direct influence of gut microbiota on blood pressure of the host was demonstrated.,Overall, our results describe a novel causal role of aberrant gut microbiota in contributing to the pathogenesis of hypertension.,And the significance of early intervention for pre-hypertension was emphasized.,The online version of this article (doi:10.1186/s40168-016-0222-x) contains supplementary material, which is available to authorized users.
1
Coagulopathy is a common abnormality in patients with COVID‐19.,However, the exact incidence of venous thromboembolic event is unknown in anticoagulated, severe COVID‐19 patients.,Systematic assessment of venous thromboembolism (VTE) using complete duplex ultrasound (CDU) in anticoagulated COVID‐19 patients.,We performed a retrospective study in 2 French intensive care units (ICU) where CDU is performed as a standard of care.,A CDU from thigh to ankle at selected sites with Doppler waveforms and images was performed early during ICU stay in patients admitted with COVID‐19.,Anticoagulation dose was left to the discretion of the treating physician based on the individual risk of thrombosis.,Patients were classified as treated with prophylactic anticoagulation or therapeutic anticoagulation.,Pulmonary embolism was systematically searched in patients with persistent hypoxemia or secondary deterioration.,From March 19 to April 11, 2020, 26 consecutive patients with severe COVID‐19 were screened for VTE.,Eight patients (31%) were treated with prophylactic anticoagulation, whereas 18 patients (69%) were treated with therapeutic anticoagulation.,The overall rate of VTE in patients was 69%.,The proportion of VTE was significantly higher in patients treated with prophylactic anticoagulation when compared with the other group (100% vs 56%, respectively, P = .03).,Surprisingly, we found a high rate of thromboembolic events in COVID‐19 patients treated with therapeutic anticoagulation, with 56% of VTE and 6 pulmonary embolisms.,Our results suggest considering both systematic screening of VTE and early therapeutic anticoagulation in severe ICU COVID‐19 patients.
An increased risk of venous thromboembolism (VTE) in patients with COVID-19 pneumonia admitted to intensive care unit (ICU) has been reported.,Whether COVID-19 increases the risk of VTE in non-ICU wards remains unknown.,We aimed to evaluate the burden of asymptomatic deep vein thrombosis (DVT) in COVID-19 patients with elevated D-dimer levels.,In this prospective study consecutive patients hospitalized in non-intensive care units with diagnosis of COVID-19 pneumonia and D-dimer > 1000 ng/ml were screened for asymptomatic DVT with complete compression doppler ultrasound (CCUS).,The study was approved by the Institutional Ethics Committee.,The study comprised 156 patients (65.4% male).,All but three patients received standard doses of thromboprophylaxis.,Median days of hospitalization until CCUS was 9 (IQR 5-17).,CCUS was positive for DVT in 23 patients (14.7%), of whom only one was proximal DVT.,Seven patients (4.5%) had bilateral distal DVT.,Patients with DVT had higher median D-dimer levels: 4527 (IQR 1925-9144) ng/ml vs 2050 (IQR 1428-3235) ng/ml; p < 0.001.,D-dimer levels > 1570 ng/ml were associated with asymptomatic DVT (OR 9.1; CI 95% 1.1-70.1).,D-dimer showed an acceptable discriminative capacity (area under the ROC curve 0.72, 95% CI 0.61-0.84).,In patients admitted with COVID-19 pneumonia and elevated D-dimer levels, the incidence of asymptomatic DVT is similar to that described in other series.,Higher cut-off levels for D-dimer might be necessary for the diagnosis of DVT in COVID-19 patients.,•An increased risk of VTE in patients with COVID-19 pneumonia admitted to intensive care unit has been reported.,•The most consistent hemostatic abnormalities with COVID-19 include mild thrombocytopenia and increased D-dimer levels.,•In COVID-19 patients with high D-dimer levels, the incidence of asymptomatic DVT is similar to that described in other series.,•Higher cut-off levels for D-dimer might be necessary for the diagnosis of DVT in COVID-19 patients.,An increased risk of VTE in patients with COVID-19 pneumonia admitted to intensive care unit has been reported.,The most consistent hemostatic abnormalities with COVID-19 include mild thrombocytopenia and increased D-dimer levels.,In COVID-19 patients with high D-dimer levels, the incidence of asymptomatic DVT is similar to that described in other series.,Higher cut-off levels for D-dimer might be necessary for the diagnosis of DVT in COVID-19 patients.
1
One of the defining features of the novel coronavirus disease 2019 infection has been high rates of venous thromboses.,The present study aimed to describe the prevalence of venous thromboembolism in critically ill patients receiving different regimens of prophylactic anticoagulation.,Single-center retrospective review using data from patients with confirmed severe acute respiratory syndrome coronavirus 2 requiring intubation.,Tertiary-care center in Indianapolis, IN, United States.,Patients hospitalized at international units Health Methodist Hospital with severe acute respiratory syndrome coronavirus 2 requiring intubation between March 23, 2020, and April 8, 2020, who underwent ultrasound evaluation for venous thrombosis.,None.,A total of 45 patients were included.,Nineteen of 45 patients (42.2%) were found to have deep venous thrombosis.,Patients found to have deep venous thrombosis had no difference in time to intubation (p = 0.97) but underwent ultrasound earlier in their hospital course (p = 0.02).,Sequential Organ Failure Assessment scores were similar between the groups on day of intubation and day of ultrasound (p = 0.44 and p = 0.07, respectively). d-dimers were markedly higher in patients with deep venous thrombosis, both for maximum value and value on day of ultrasound (p < 0.01 for both).,Choice of prophylactic regimen was not related to presence of deep venous thrombosis (p = 0.35).,Ultrasound evaluation is recommended if d-dimer is greater than 2,000 ng/mL (sensitivity 95%, specificity 46%) and empiric anticoagulation considered if d-dimer is greater than 5,500 ng/mL (sensitivity 53%, specificity 88%).,Deep venous thrombosis is very common in critically ill patients with coronavirus disease 2019.,There was no difference in incidence of deep venous thrombosis among different pharmacologic prophylaxis regimens, although our analysis is limited by small sample size. d-dimer values are elevated in the majority of these patients, but there may be thresholds at which screening ultrasound or even empiric systemic anticoagulation is indicated.
The new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has caused more than 210 000 deaths worldwide.,However, little is known about the causes of death and the virus's pathologic features.,To validate and compare clinical findings with data from medical autopsy, virtual autopsy, and virologic tests.,Prospective cohort study.,Autopsies performed at a single academic medical center, as mandated by the German federal state of Hamburg for patients dying with a polymerase chain reaction-confirmed diagnosis of COVID-19.,The first 12 consecutive COVID-19-positive deaths.,Complete autopsy, including postmortem computed tomography and histopathologic and virologic analysis, was performed.,Clinical data and medical course were evaluated.,Results: Median patient age was 73 years (range, 52 to 87 years), 75% of patients were male, and death occurred in the hospital (n = 10) or outpatient sector (n = 2).,Coronary heart disease and asthma or chronic obstructive pulmonary disease were the most common comorbid conditions (50% and 25%, respectively).,Autopsy revealed deep venous thrombosis in 7 of 12 patients (58%) in whom venous thromboembolism was not suspected before death; pulmonary embolism was the direct cause of death in 4 patients.,Postmortem computed tomography revealed reticular infiltration of the lungs with severe bilateral, dense consolidation, whereas histomorphologically diffuse alveolar damage was seen in 8 patients.,In all patients, SARS-CoV-2 RNA was detected in the lung at high concentrations; viremia in 6 of 10 and 5 of 12 patients demonstrated high viral RNA titers in the liver, kidney, or heart.,Limited sample size.,The high incidence of thromboembolic events suggests an important role of COVID-19-induced coagulopathy.,Further studies are needed to investigate the molecular mechanism and overall clinical incidence of COVID-19-related death, as well as possible therapeutic interventions to reduce it.,University Medical Center Hamburg-Eppendorf.,Little is known of the pathologic changes that lead to death in patients with COVID-19.,This study reports the autopsy findings of consecutive patients who died with a diagnosis of COVID-19.
1
Coronavirus disease of 2019 (COVID-19) is a cause of significant morbidity and mortality worldwide.,While cardiac injury has been demonstrated in critically ill COVID-19 patients, the mechanism of injury remains unclear.,Here, we review our current knowledge of the biology of SARS-CoV-2 and the potential mechanisms of myocardial injury due to viral toxicities and host immune responses.,A number of studies have reported an epidemiological association between history of cardiac disease and worsened outcome during COVID infection.,Development of new onset myocardial injury during COVID-19 also increases mortality.,While limited data exist, potential mechanisms of cardiac injury include direct viral entry through the angiotensin-converting enzyme 2 (ACE2) receptor and toxicity in host cells, hypoxia-related myocyte injury, and immune-mediated cytokine release syndrome.,Potential treatments for reducing viral infection and excessive immune responses are also discussed.,COVID patients with cardiac disease history or acquire new cardiac injury are at an increased risk for in-hospital morbidity and mortality.,More studies are needed to address the mechanism of cardiotoxicity and the treatments that can minimize permanent damage to the cardiovascular system.
Many patients with coronavirus disease 2019 (COVID-19) have underlying cardiovascular (CV) disease or develop acute cardiac injury during the course of the illness.,Adequate understanding of the interplay between COVID-19 and CV disease is required for optimum management of these patients.,A literature search was done using PubMed and Google search engines to prepare a narrative review on this topic.,Respiratory illness is the dominant clinical manifestation of COVID-19; CV involvement occurs much less commonly.,Acute cardiac injury, defined as significant elevation of cardiac troponins, is the most commonly reported cardiac abnormality in COVID-19.,It occurs in approximately 8-12% of all patients.,Direct myocardial injury due to viral involvement of cardiomyocytes and the effect of systemic inflammation appear to be the most common mechanisms responsible for cardiac injury.,The information about other CV manifestations in COVID-19 is very limited at present.,Nonetheless, it has been consistently shown that the presence of pre-existing CV disease and/or development of acute cardiac injury are associated with significantly worse outcome in these patients.,Most of the current reports on COVID-19 have only briefly described CV manifestations in these patients.,Given the enormous burden posed by this illness and the significant adverse prognostic impact of cardiac involvement, further research is required to understand the incidence, mechanisms, clinical presentation and outcomes of various CV manifestations in COVID-19 patients.,•COVID-19 is primarily a respiratory illness but cardiovascular involvement can occur through several mechanisms.,•Acute cardiac injury is the most reported cardiovascular abnormality in COVID-19, with average incidence 8-12%•Underlying CVD and/or development of acute cardiac injury are associated with significantly worse outcome in these patients.,•Information about other cardiovascular manifestations is very limited at present.,COVID-19 is primarily a respiratory illness but cardiovascular involvement can occur through several mechanisms.,Acute cardiac injury is the most reported cardiovascular abnormality in COVID-19, with average incidence 8-12%,Underlying CVD and/or development of acute cardiac injury are associated with significantly worse outcome in these patients.,Information about other cardiovascular manifestations is very limited at present.
1
Coagulopathy in COVID-19 is a burning issue and strategies to prevent thromboembolic events are debated and highly heterogeneous.,The objective was to determine incidence and risk factors of venous thromboembolism (VTE) in COVID-19 inpatients receiving thromboprophylaxis.,In this retrospective French cohort study, patients hospitalized in medical wards non-ICU with confirmed COVID-19 and adequate thromboprophylaxis were included.,A systematic low limb venous duplex ultrasonography was performed at hospital discharge or earlier if deep venous thrombosis (DVT) was clinically suspected.,Chest angio-CT scan was performed when pulmonary embolism (PE) was suspected.,Of 71 patients, 16 developed VTE (22.5%) and 7 PE (10%) despite adequate thromboprophylaxis.,D-dimers at baseline were significantly higher in patients with DVT (p < 0.001).,Demographics, comorbidities, disease manifestations, severity score, and other biological parameters, including inflammatory markers, were similar in patients with and without VTE.,The negative predictive value of a baseline D-dimer level < 1.0 µg/ml was 90% for VTE and 98% for PE.,The positive predictive value for VTE was 44% and 67% for D-dimer level ≥ 1.0 µg/ml and ≥ 3 µg/ml, respectively.,The association between D-dimer level and VTE risk increased by taking into account the latest available D-dimer level prior to venous duplex ultrasonography for the patients with monitoring of D-dimer.,Despite thromboprophylaxis, the risk of VTE is high in COVID-19 non-ICU inpatients.,Increased D-dimer concentrations of more than 1.0 μg/ml predict the risk of venous thromboembolism.,D-dimer level-guided aggressive thromboprophylaxis regimens using higher doses of heparin should be evaluated in prospective studies.
Acute respiratory failure and a systemic coagulopathy are critical aspects of the morbidity and mortality characterizing infection with severe acute respiratory distress syndrome-associated coronavirus-2, the etiologic agent of Coronavirus disease 2019 (COVID-19).,We examined skin and lung tissues from 5 patients with severe COVID-19 characterized by respiratory failure (n= 5) and purpuric skin rash (n = 3).,COVID-19 pneumonitis was predominantly a pauci-inflammatory septal capillary injury with significant septal capillary mural and luminal fibrin deposition and permeation of the interalveolar septa by neutrophils.,No viral cytopathic changes were observed and the diffuse alveolar damage (DAD) with hyaline membranes, inflammation, and type II pneumocyte hyperplasia, hallmarks of classic acute respiratory distress syndrome, were not prominent.,These pulmonary findings were accompanied by significant deposits of terminal complement components C5b-9 (membrane attack complex), C4d, and mannose binding lectin (MBL)-associated serine protease (MASP)2, in the microvasculature, consistent with sustained, systemic activation of the complement pathways.,The purpuric skin lesions similarly showed a pauci-inflammatory thrombogenic vasculopathy, with deposition of C5b-9 and C4d in both grossly involved and normally-appearing skin.,In addition, there was co-localization of COVID-19 spike glycoproteins with C4d and C5b-9 in the interalveolar septa and the cutaneous microvasculature of 2 cases examined.,In conclusion, at least a subset of sustained, severe COVID-19 may define a type of catastrophic microvascular injury syndrome mediated by activation of complement pathways and an associated procoagulant state.,It provides a foundation for further exploration of the pathophysiologic importance of complement in COVID-19, and could suggest targets for specific intervention.
1
•Prevalence of pulmonary thromboembolic disease (PTE) is 38% in COVID-19 patients who underwent CTPA.,Patients with more severe COVID-19 changes are more likely to have PTE.,•Majority of PTE is observed within smaller pulmonary vessels (75%) and lungs demonstrating COVID-19 changes (72%).,Subsegmental vessels should be scrutinized for presence of PTE.,•D-dimer values may have potential in guiding anticoagulation therapy and evaluating prognosis in these patients.,Prevalence of pulmonary thromboembolic disease (PTE) is 38% in COVID-19 patients who underwent CTPA.,Patients with more severe COVID-19 changes are more likely to have PTE.,Majority of PTE is observed within smaller pulmonary vessels (75%) and lungs demonstrating COVID-19 changes (72%).,Subsegmental vessels should be scrutinized for presence of PTE.,D-dimer values may have potential in guiding anticoagulation therapy and evaluating prognosis in these patients.,To define the prevalence of pulmonary thromboembolic (PTE) disease diagnosed on CT pulmonary angiography (CTPA) in COVID-19 patients.,To assess distribution of PTE and to evaluate for association between severity of COVID-19 disease, D-dimer values and incidence of PTE.,Patients with diagnosis of COVID-19 presenting to 5 different hospitals across Greater Manchester between 1st March 2020 and 30th April 2020 who had CTPA were included.,CTPA images were evaluated for presence of PTE, distribution of PTE (in small and/or large vessels) and distribution of PTE within lungs with or without COVID-19 CT changes.,Severity of COVID lung changes were graded.,D-dimer values within 72 hours of CTPA were obtained.,Statistical analyses were performed to evaluate for any significant association between variables. p values of ≤ 0.05 were regarded as statistically significant.,A total of 974 patients presented across five hospital sites with COVID-19 infection.,Eighty-four (n = 84) COVID-19 patients underwent CTPA.,Of these, 38% (32/84) had PTE.,PTE was seen in small vessels in 75% (24/32) and in lungs demonstrating COVID-19 changes in 72% (23/32). 84% (27/32) of PTE positive patients had disease severity of moderate or higher score (p = 0.005).,D-dimer values were significantly higher (p ≤ 0.001) in PTE patients, median value in PTE group was 6441mcg/L(range219-90925).,A D-dimer cut off value of 2247mcg/L provides sensitivity of 0.72 and specificity of 0.74.,There is increased prevalence of PTE in patients with moderate to severe COVID-19 disease.,D-dimer values may have potential in guiding anticoagulation therapy and prognostication.
Three months ago, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) broke out in Wuhan, China, and spread rapidly around the world.,Severe novel coronavirus pneumonia (NCP) patients have abnormal blood coagulation function, but their venous thromboembolism (VTE) prevalence is still rarely mentioned.,To determine the incidence of VTE in patients with severe NCP.,In this study, 81 severe NCP patients in the intensive care unit (ICU) of Union Hospital (Wuhan, China) were enrolled.,The results of conventional coagulation parameters and lower limb vein ultrasonography of these patients were retrospectively collected and analyzed.,The incidence of VTE in these patients was 25% (20/81), of which 8 patients with VTE events died.,The VTE group was different from the non‐VTE group in age, lymphocyte counts, activated partial thromboplastin time (APTT), D‐dimer, etc.,If 1.5 µg/mL was used as the D‐dimer cut‐off value to predicting VTE, the sensitivity was 85.0%, the specificity was 88.5%, and the negative predictive value (NPV) was 94.7%.,The incidence of VTE in patients with severe NCP is 25% (20/81), which may be related to poor prognosis.,The significant increase of D‐dimer in severe NCP patients is a good index for identifying high‐risk groups of VTE.
1
Thrombosis and inflammation may contribute to the risk of death and complications among patients with coronavirus disease 2019 (Covid-19).,We hypothesized that therapeutic-dose anticoagulation may improve outcomes in noncritically ill patients who are hospitalized with Covid-19.,In this open-label, adaptive, multiplatform, controlled trial, we randomly assigned patients who were hospitalized with Covid-19 and who were not critically ill (which was defined as an absence of critical care-level organ support at enrollment) to receive pragmatically defined regimens of either therapeutic-dose anticoagulation with heparin or usual-care pharmacologic thromboprophylaxis.,The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death (assigned a value of −1) and the number of days free of cardiovascular or respiratory organ support up to day 21 among patients who survived to hospital discharge.,This outcome was evaluated with the use of a Bayesian statistical model for all patients and according to the baseline d-dimer level.,The trial was stopped when prespecified criteria for the superiority of therapeutic-dose anticoagulation were met.,Among 2219 patients in the final analysis, the probability that therapeutic-dose anticoagulation increased organ support-free days as compared with usual-care thromboprophylaxis was 98.6% (adjusted odds ratio, 1.27; 95% credible interval, 1.03 to 1.58).,The adjusted absolute between-group difference in survival until hospital discharge without organ support favoring therapeutic-dose anticoagulation was 4.0 percentage points (95% credible interval, 0.5 to 7.2).,The final probability of the superiority of therapeutic-dose anticoagulation over usual-care thromboprophylaxis was 97.3% in the high d-dimer cohort, 92.9% in the low d-dimer cohort, and 97.3% in the unknown d-dimer cohort.,Major bleeding occurred in 1.9% of the patients receiving therapeutic-dose anticoagulation and in 0.9% of those receiving thromboprophylaxis.,In noncritically ill patients with Covid-19, an initial strategy of therapeutic-dose anticoagulation with heparin increased the probability of survival to hospital discharge with reduced use of cardiovascular or respiratory organ support as compared with usual-care thromboprophylaxis.,(ATTACC, ACTIV-4a, and REMAP-CAP ClinicalTrials.gov numbers, NCT04372589, NCT04505774, NCT04359277, and NCT02735707.)
Coronavirus disease 2019 (COVID‐19) is a respiratory disease associated with thrombotic outcomes with coagulation and endothelial disorders.,Based on that, several anticoagulation guidelines have been proposed.,We aimed to determine whether anticoagulation therapy modifies the risk of developing severe COVID‐19.,Patients with COVID‐19 initially admitted in medical wards of 24 French hospitals were included prospectively from February 26 to April 20, 2020.,We used a Poisson regression model, Cox proportional hazard model, and matched propensity score to assess the effect of anticoagulation on outcomes (intensive care unit admission or in‐hospital mortality).,The study enrolled 2878 patients with COVID‐19, among whom 382 (13.2%) were treated with oral anticoagulation therapy before hospitalization.,After adjustment, anticoagulation therapy before hospitalization was associated with a better prognosis with an adjusted hazard ratio of 0.70 (95% CI, 0.55-0.88).,Analyses performed using propensity score matching confirmed that anticoagulation therapy before hospitalization was associated with a better prognosis, with an adjusted hazard ratio of 0.43 (95% CI, 0.29-0.63) for intensive care unit admission and adjusted hazard ratio of 0.76 (95% CI, 0.61-0.98) for composite criteria intensive care unit admission or death.,In contrast, therapeutic or prophylactic low‐ or high‐dose anticoagulation started during hospitalization were not associated with any of the outcomes.,Anticoagulation therapy used before hospitalization in medical wards was associated with a better prognosis in contrast with anticoagulation initiated during hospitalization.,Anticoagulation therapy introduced in early disease could better prevent COVID‐19-associated coagulopathy and endotheliopathy, and lead to a better prognosis.
1
Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).,Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described.,In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020.,Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors.,We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death.,191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients).,Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03-1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61-12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64-128·55; p=0·0033) on admission.,Median duration of viral shedding was 20·0 days (IQR 17·0-24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors.,The longest observed duration of viral shedding in survivors was 37 days.,The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage.,Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.,Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
Acute respiratory failure and a systemic coagulopathy are critical aspects of the morbidity and mortality characterizing infection with severe acute respiratory distress syndrome-associated coronavirus-2, the etiologic agent of Coronavirus disease 2019 (COVID-19).,We examined skin and lung tissues from 5 patients with severe COVID-19 characterized by respiratory failure (n= 5) and purpuric skin rash (n = 3).,COVID-19 pneumonitis was predominantly a pauci-inflammatory septal capillary injury with significant septal capillary mural and luminal fibrin deposition and permeation of the interalveolar septa by neutrophils.,No viral cytopathic changes were observed and the diffuse alveolar damage (DAD) with hyaline membranes, inflammation, and type II pneumocyte hyperplasia, hallmarks of classic acute respiratory distress syndrome, were not prominent.,These pulmonary findings were accompanied by significant deposits of terminal complement components C5b-9 (membrane attack complex), C4d, and mannose binding lectin (MBL)-associated serine protease (MASP)2, in the microvasculature, consistent with sustained, systemic activation of the complement pathways.,The purpuric skin lesions similarly showed a pauci-inflammatory thrombogenic vasculopathy, with deposition of C5b-9 and C4d in both grossly involved and normally-appearing skin.,In addition, there was co-localization of COVID-19 spike glycoproteins with C4d and C5b-9 in the interalveolar septa and the cutaneous microvasculature of 2 cases examined.,In conclusion, at least a subset of sustained, severe COVID-19 may define a type of catastrophic microvascular injury syndrome mediated by activation of complement pathways and an associated procoagulant state.,It provides a foundation for further exploration of the pathophysiologic importance of complement in COVID-19, and could suggest targets for specific intervention.
1
Thromboembolic disease is common in coronavirus disease-2019 (COVID-19).,There is limited evidence on the association of in-hospital anticoagulation (AC) with outcomes and postmortem findings.,The purpose of this study was to examine association of AC with in-hospital outcomes and describe thromboembolic findings on autopsies.,This retrospective analysis examined the association of AC with mortality, intubation, and major bleeding.,Subanalyses were also conducted on the association of therapeutic versus prophylactic AC initiated ≤48 h from admission.,Thromboembolic disease was contextualized by premortem AC among consecutive autopsies.,Among 4,389 patients, median age was 65 years with 44% women.,Compared with no AC (n = 1,530; 34.9%), therapeutic AC (n = 900; 20.5%) and prophylactic AC (n = 1,959; 44.6%) were associated with lower in-hospital mortality (adjusted hazard ratio [aHR]: 0.53; 95% confidence interval [CI]: 0.45 to 0.62 and aHR: 0.50; 95% CI: 0.45 to 0.57, respectively), and intubation (aHR: 0.69; 95% CI: 0.51 to 0.94 and aHR: 0.72; 95% CI: 0.58 to 0.89, respectively).,When initiated ≤48 h from admission, there was no statistically significant difference between therapeutic (n = 766) versus prophylactic AC (n = 1,860) (aHR: 0.86; 95% CI: 0.73 to 1.02; p = 0.08).,Overall, 89 patients (2%) had major bleeding adjudicated by clinician review, with 27 of 900 (3.0%) on therapeutic, 33 of 1,959 (1.7%) on prophylactic, and 29 of 1,530 (1.9%) on no AC.,Of 26 autopsies, 11 (42%) had thromboembolic disease not clinically suspected and 3 of 11 (27%) were on therapeutic AC.,AC was associated with lower mortality and intubation among hospitalized COVID-19 patients.,Compared with prophylactic AC, therapeutic AC was associated with lower mortality, although not statistically significant.,Autopsies revealed frequent thromboembolic disease.,These data may inform trials to determine optimal AC regimens.
An increased risk of venous thromboembolism (VTE) in patients with COVID-19 pneumonia admitted to intensive care unit (ICU) has been reported.,Whether COVID-19 increases the risk of VTE in non-ICU wards remains unknown.,We aimed to evaluate the burden of asymptomatic deep vein thrombosis (DVT) in COVID-19 patients with elevated D-dimer levels.,In this prospective study consecutive patients hospitalized in non-intensive care units with diagnosis of COVID-19 pneumonia and D-dimer > 1000 ng/ml were screened for asymptomatic DVT with complete compression doppler ultrasound (CCUS).,The study was approved by the Institutional Ethics Committee.,The study comprised 156 patients (65.4% male).,All but three patients received standard doses of thromboprophylaxis.,Median days of hospitalization until CCUS was 9 (IQR 5-17).,CCUS was positive for DVT in 23 patients (14.7%), of whom only one was proximal DVT.,Seven patients (4.5%) had bilateral distal DVT.,Patients with DVT had higher median D-dimer levels: 4527 (IQR 1925-9144) ng/ml vs 2050 (IQR 1428-3235) ng/ml; p < 0.001.,D-dimer levels > 1570 ng/ml were associated with asymptomatic DVT (OR 9.1; CI 95% 1.1-70.1).,D-dimer showed an acceptable discriminative capacity (area under the ROC curve 0.72, 95% CI 0.61-0.84).,In patients admitted with COVID-19 pneumonia and elevated D-dimer levels, the incidence of asymptomatic DVT is similar to that described in other series.,Higher cut-off levels for D-dimer might be necessary for the diagnosis of DVT in COVID-19 patients.,•An increased risk of VTE in patients with COVID-19 pneumonia admitted to intensive care unit has been reported.,•The most consistent hemostatic abnormalities with COVID-19 include mild thrombocytopenia and increased D-dimer levels.,•In COVID-19 patients with high D-dimer levels, the incidence of asymptomatic DVT is similar to that described in other series.,•Higher cut-off levels for D-dimer might be necessary for the diagnosis of DVT in COVID-19 patients.,An increased risk of VTE in patients with COVID-19 pneumonia admitted to intensive care unit has been reported.,The most consistent hemostatic abnormalities with COVID-19 include mild thrombocytopenia and increased D-dimer levels.,In COVID-19 patients with high D-dimer levels, the incidence of asymptomatic DVT is similar to that described in other series.,Higher cut-off levels for D-dimer might be necessary for the diagnosis of DVT in COVID-19 patients.
1
The objectives were to investigate and compare the risks and incidences of venous thromboembolism (VTE) between the 2 groups of patients with coronavirus disease 2019 (COVID-19) pneumonia and community-acquired pneumonia (CAP).,Medical records of 616 pneumonia patients who were admitted to the Yichang Central People’s Hospital in Hubei, China, from January 1 to March 23, 2020, were retrospectively reviewed.,The patients with COVID-19 pneumonia were treated in the dedicated COVID-19 units, and the patients with CAP were admitted to regular hospital campus.,Risks of VTE were assessed using the Padua prediction score.,All the patients received pharmaceutical or mechanical VTE prophylaxis.,VTE was diagnosed using Duplex ultrasound or computed tomography pulmonary angiogram.,Differences between COVID-19 and CAP groups were compared statistically.,All statistical tests were 2 sided, and P<0.05 was considered as statistically significant.,All data managements and analyses were performed by IBM SPSS, version 24, software (SPSS, Inc, Chicago, IL).,Of the 616 patients, 256 had COVID-19 pneumonia and 360 patients had CAP.,The overall rate of VTE was 2% in COVID-19 pneumonia group and 3.6% in CAP group, respectively (P=0.229).,In these two groups, 15.6% of the COVID-19 pneumonia patients and 10% of the CAP patients were categorized as high risk for VTE (Padua score, >4), which were significantly different (P=0.036).,In those high-risk patients, the incidence of VTE was 12.5% in COVID-19 pneumonia group and 16.7% in CAP group (P=0.606).,Subgroup analysis of the critically ill patients showed that VTE rate was 6.7% in COVID-19 group versus 13% in CAP group (P=0.484).,In-hospital mortality of COVID-19 and CAP was 6.3% and 3.9%, respectively (P=0.180).,Our study suggested that COVID-19 pneumonia was associated with hypercoagulable state.,However, the rate of VTE in COVID-19 pneumonia patients was not significantly higher than that in CAP patients.
Coagulopathy in COVID-19 is a burning issue and strategies to prevent thromboembolic events are debated and highly heterogeneous.,The objective was to determine incidence and risk factors of venous thromboembolism (VTE) in COVID-19 inpatients receiving thromboprophylaxis.,In this retrospective French cohort study, patients hospitalized in medical wards non-ICU with confirmed COVID-19 and adequate thromboprophylaxis were included.,A systematic low limb venous duplex ultrasonography was performed at hospital discharge or earlier if deep venous thrombosis (DVT) was clinically suspected.,Chest angio-CT scan was performed when pulmonary embolism (PE) was suspected.,Of 71 patients, 16 developed VTE (22.5%) and 7 PE (10%) despite adequate thromboprophylaxis.,D-dimers at baseline were significantly higher in patients with DVT (p < 0.001).,Demographics, comorbidities, disease manifestations, severity score, and other biological parameters, including inflammatory markers, were similar in patients with and without VTE.,The negative predictive value of a baseline D-dimer level < 1.0 µg/ml was 90% for VTE and 98% for PE.,The positive predictive value for VTE was 44% and 67% for D-dimer level ≥ 1.0 µg/ml and ≥ 3 µg/ml, respectively.,The association between D-dimer level and VTE risk increased by taking into account the latest available D-dimer level prior to venous duplex ultrasonography for the patients with monitoring of D-dimer.,Despite thromboprophylaxis, the risk of VTE is high in COVID-19 non-ICU inpatients.,Increased D-dimer concentrations of more than 1.0 μg/ml predict the risk of venous thromboembolism.,D-dimer level-guided aggressive thromboprophylaxis regimens using higher doses of heparin should be evaluated in prospective studies.
1
Three months ago, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) broke out in Wuhan, China, and spread rapidly around the world.,Severe novel coronavirus pneumonia (NCP) patients have abnormal blood coagulation function, but their venous thromboembolism (VTE) prevalence is still rarely mentioned.,To determine the incidence of VTE in patients with severe NCP.,In this study, 81 severe NCP patients in the intensive care unit (ICU) of Union Hospital (Wuhan, China) were enrolled.,The results of conventional coagulation parameters and lower limb vein ultrasonography of these patients were retrospectively collected and analyzed.,The incidence of VTE in these patients was 25% (20/81), of which 8 patients with VTE events died.,The VTE group was different from the non‐VTE group in age, lymphocyte counts, activated partial thromboplastin time (APTT), D‐dimer, etc.,If 1.5 µg/mL was used as the D‐dimer cut‐off value to predicting VTE, the sensitivity was 85.0%, the specificity was 88.5%, and the negative predictive value (NPV) was 94.7%.,The incidence of VTE in patients with severe NCP is 25% (20/81), which may be related to poor prognosis.,The significant increase of D‐dimer in severe NCP patients is a good index for identifying high‐risk groups of VTE.
Few data are available on the rate and characteristics of thromboembolic complications in hospitalized patients with COVID-19.,We studied consecutive symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02.2020-10.04.2020).,The primary outcome was any thromboembolic complication, including venous thromboembolism (VTE), ischemic stroke, and acute coronary syndrome (ACS)/myocardial infarction (MI).,Secondary outcome was overt disseminated intravascular coagulation (DIC).,We included 388 patients (median age 66 years, 68% men, 16% requiring intensive care [ICU]).,Thromboprophylaxis was used in 100% of ICU patients and 75% of those on the general ward.,Thromboembolic events occurred in 28 (7.7% of closed cases; 95%CI 5.4%-11.0%), corresponding to a cumulative rate of 21% (27.6% ICU, 6.6% general ward).,Half of the thromboembolic events were diagnosed within 24 h of hospital admission.,Forty-four patients underwent VTE imaging tests and VTE was confirmed in 16 (36%).,Computed tomography pulmonary angiography (CTPA) was performed in 30 patients, corresponding to 7.7% of total, and pulmonary embolism was confirmed in 10 (33% of CTPA).,The rate of ischemic stroke and ACS/MI was 2.5% and 1.1%, respectively.,Overt DIC was present in 8 (2.2%) patients.,The high number of arterial and, in particular, venous thromboembolic events diagnosed within 24 h of admission and the high rate of positive VTE imaging tests among the few COVID-19 patients tested suggest that there is an urgent need to improve specific VTE diagnostic strategies and investigate the efficacy and safety of thromboprophylaxis in ambulatory COVID-19 patients.,•COVID-19 is characterized by coagulation activation and endothelial dysfunction.,Few data are available on thromboembolic complications.,•We studied symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02-10.04.2020).,•Venous and arterial thromboembolic events occurred in 8% of hospitalized patients (cumulative rate 21.0%) and 50% of events were diagnosed within 24 h of hospital admission.,•Forty-four (11% of total) patients underwent VTE imaging tests; 16 were positive (36% of tests), suggesting underestimation of thromboembolic complications.,•There is an urgent need to investigate VTE diagnostic strategies and the impact of thromboprophylaxis in ambulatory COVID-19 patients.,COVID-19 is characterized by coagulation activation and endothelial dysfunction.,Few data are available on thromboembolic complications.,We studied symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02-10.04.2020).,Venous and arterial thromboembolic events occurred in 8% of hospitalized patients (cumulative rate 21.0%) and 50% of events were diagnosed within 24 h of hospital admission.,Forty-four (11% of total) patients underwent VTE imaging tests; 16 were positive (36% of tests), suggesting underestimation of thromboembolic complications.,There is an urgent need to investigate VTE diagnostic strategies and the impact of thromboprophylaxis in ambulatory COVID-19 patients.
1
Coronavirus Disease 2019 (COVID‐19) is responsible for a worldwide pandemic, with a high rate of morbidity and mortality.,The increasing evidence of an associated relevant prothrombotic coagulopathy has resulted in an increasing use of antithrombotic doses higher than usual in COVID‐19 patients.,Information on the benefit/risk ratio of this approach is still lacking.,To assess the incidence of relevant bleeding complications in association with the antithrombotic strategy and its relationship with the amount of drug.,Consecutive COVID‐19 patients admitted between February and April 2020 were included in a retrospective analysis.,Major bleedings (MB) and clinically relevant non‐major bleeding (CRNMB) were obtained from patient medical records and were adjudicated by an independent committee.,Of the 324 patients who were recruited, 240 had been treated with prophylactic doses and 84 with higher doses of anticoagulants.,The rate of the composite endpoint of MB or CRNMB was 6.9 per 100‐person/months in patients who had been given prophylactic doses, and 26.4 per 100‐person/months in those who had been prescribed higher doses (hazard ratio, 3.89; 95% confidence interval, 1.90‐7.97).,The corresponding rates for overall mortality were 12.2 and 20.1 per 100‐person/months, respectively.,The rate of relevant bleeding events was high in patients treated with (sub)therapeutic doses of anticoagulants.,In the latter group, overall mortality did not differ from that of patients treated with standard prophylactic doses and was even higher.,Our result does not support a strategy of giving (sub)therapeutic doses of anticoagulants in non‐critically ill patients with COVID‐19.
Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).,Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described.,In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020.,Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors.,We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death.,191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients).,Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03-1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61-12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64-128·55; p=0·0033) on admission.,Median duration of viral shedding was 20·0 days (IQR 17·0-24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors.,The longest observed duration of viral shedding in survivors was 37 days.,The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage.,Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.,Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
1
Although the pathophysiology underlying severe COVID19 remains poorly understood, accumulating data suggest that a lung‐centric coagulopathy may play an important role.,Elevated D‐dimer levels which correlated inversely with overall survival were recently reported in Chinese cohort studies.,Critically however, ethnicity has major effects on thrombotic risk, with a 3-4‐fold lower risk in Chinese compared to Caucasians and a significantly higher risk in African‐Americans.,In this study, we investigated COVID19 coagulopathy in Caucasian patients.,Our findings confirm that severe COVID19 infection is associated with a significant coagulopathy that correlates with disease severity.,Importantly however, Caucasian COVID19 patients on low molecular weight heparin thromboprophylaxis rarely develop overt disseminated intravascular coagulation (DIC).,In rare COVID19 cases where DIC does develop, it tends to be restricted to late‐stage disease.,Collectively, these data suggest that the diffuse bilateral pulmonary inflammation observed in COVID19 is associated with a novel pulmonary‐specific vasculopathy termed pulmonary intravascular coagulopathy (PIC) as distinct to DIC.,Given that thrombotic risk is significantly impacted by race, coupled with the accumulating evidence that coagulopathy is important in COVID19 pathogenesis, our findings raise the intriguing possibility that pulmonary vasculopathy may contribute to the unexplained differences that are beginning to emerge highlighting racial susceptibility to COVID19 mortality.
The Bergamo province, which is extensively affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic, is a natural observatory of virus manifestations in the general population.,In the past month we recorded an outbreak of Kawasaki disease; we aimed to evaluate incidence and features of patients with Kawasaki-like disease diagnosed during the SARS-CoV-2 epidemic.,All patients diagnosed with a Kawasaki-like disease at our centre in the past 5 years were divided according to symptomatic presentation before (group 1) or after (group 2) the beginning of the SARS-CoV-2 epidemic.,Kawasaki- like presentations were managed as Kawasaki disease according to the American Heart Association indications.,Kawasaki disease shock syndrome (KDSS) was defined by presence of circulatory dysfunction, and macrophage activation syndrome (MAS) by the Paediatric Rheumatology International Trials Organisation criteria.,Current or previous infection was sought by reverse-transcriptase quantitative PCR in nasopharyngeal and oropharyngeal swabs, and by serological qualitative test detecting SARS-CoV-2 IgM and IgG, respectively.,Group 1 comprised 19 patients (seven boys, 12 girls; aged 3·0 years [SD 2·5]) diagnosed between Jan 1, 2015, and Feb 17, 2020.,Group 2 included ten patients (seven boys, three girls; aged 7·5 years [SD 3·5]) diagnosed between Feb 18 and April 20, 2020; eight of ten were positive for IgG or IgM, or both.,The two groups differed in disease incidence (group 1 vs group 2, 0·3 vs ten per month), mean age (3·0 vs 7·5 years), cardiac involvement (two of 19 vs six of ten), KDSS (zero of 19 vs five of ten), MAS (zero of 19 vs five of ten), and need for adjunctive steroid treatment (three of 19 vs eight of ten; all p<0·01).,In the past month we found a 30-fold increased incidence of Kawasaki-like disease.,Children diagnosed after the SARS-CoV-2 epidemic began showed evidence of immune response to the virus, were older, had a higher rate of cardiac involvement, and features of MAS.,The SARS-CoV-2 epidemic was associated with high incidence of a severe form of Kawasaki disease.,A similar outbreak of Kawasaki-like disease is expected in countries involved in the SARS-CoV-2 epidemic.,None.
1
The incidence, characteristics, and prognosis of pulmonary embolism (PE) in Coronavirus disease 2019 (COVID-19) have been poorly investigated.,We aimed to investigate the prevalence and the correlates with the occurrence of PE as well as the association between PE and the risk of mortality in COVID-19.,Retrospective multicenter study on consecutive COVID-19 patients hospitalized at 7 Italian Hospitals.,At admission, all patients underwent medical history, laboratory and echocardiographic evaluation.,The study population consisted of 224 patients (mean age 69 ± 14, male sex 62%); PE was diagnosed in 32 cases (14%).,Patients with PE were hospitalized after a longer time since symptoms onset (7 IQR 3-11 days, 3 IQR 1-6 days; p = 0.001) and showed higher D-dimers level (1819 IQR 568-5017 ng/ml vs 555 IQR 13-1530 ng/ml; p < 0.001) and higher prevalence of myocardial injury (47% vs 28%, p = 0.033).,At multivariable analysis, tricuspid annular plane systolic excursion (TAPSE; HR = 0.84; 95% CI 0.66-0.98; p = 0.046) and systolic pulmonary arterial pressure (sPAP; HR = 1.12; 95% CI 1.03-1.23; p = 0.008) resulted the only parameters independently associated with PE occurrence.,Mortality rates (50% vs 27%; p = 0.010) and cardiogenic shock (37% vs 14%; p = 0.001) were significantly higher in PE as compared with non-PE patients.,At multivariate analysis PE was significant associated with mortality.,PE is relatively common complication in COVID-19 and is associated with increased mortality risk.,TAPSE and sPAP resulted the only parameters independently associated with PE occurrence in COVID-19 patients.
Hypercoagulability and endotheliopathy reported in patients with coronavirus disease 2019 (COVID-19) combined with strict and prolonged immobilization inherent to deep sedation and administration of neuromuscular blockers for Acute Respiratory Distress Syndrome (ARDS) may expose critically ill COVID-19 patients to an increased risk of venous thrombosis and pulmonary embolism (PE).,We aimed to assess the rate and to describe the clinical features and the outcomes of ARDS COVID-19 patients diagnosed with PE during ICU stay.,From March 13th to April 24th 2020, a total of 92 patients (median age: 61 years, 1st-3rd quartiles [55-70]; males: n = 73/92, 79%; baseline SOFA: 4 [3-7] and SAPS II: 31 [21-40]; invasive mechanical ventilation: n = 83/92, 90%; ICU mortality: n = 45/92, 49%) were admitted to our 41-bed COVID-19 ICU for ARDS due to COVID-19.,Among them, 26 patients (n = 26/92, 28%) underwent a Computed Tomography Pulmonary Angiography which revealed PE in 16 (n = 16/26, 62%) of them, accounting for 17% (n = 16/92) of the whole cohort.,PE was bilateral in 3 (19%) patients and unilateral in 13 (81%) patients.,The most proximal thrombus was localized in main (n = 4, 25%), lobar (n = 2, 12%) or segmental (n = 10, 63%) pulmonary artery.,Most of the thrombi (n = 13/16, 81%) were located in a parenchymatous condensation.,Only three of the 16 patients (19%) had lower limb venous thrombosis on Doppler ultrasound.,Three patients were treated with alteplase and anticoagulation (n = 3/16, 19%) while the 13 others (n = 13/16, 81%) were treated with anticoagulation alone.,ICU mortality was higher in patients with PE compared to that of patients without PE (n = 11/16, 69% vs. n = 2/10, 20%; p = 0.04).,The low rate of lower limb venous thrombosis together with the high rate of distal pulmonary thrombus argue for a local immuno-thrombotic process associated with the classic embolic process.,Further larger studies are needed to assess the real prevalence and the risk factors of pulmonary embolism/thrombosis together with its prognostic impact on critically ill patients with COVID-19.
1
To delineate the clinical characteristics of patients with coronavirus disease 2019 (covid-19) who died.,Retrospective case series.,Tongji Hospital in Wuhan, China.,Among a cohort of 799 patients, 113 who died and 161 who recovered with a diagnosis of covid-19 were analysed.,Data were collected until 28 February 2020.,Clinical characteristics and laboratory findings were obtained from electronic medical records with data collection forms.,The median age of deceased patients (68 years) was significantly older than recovered patients (51 years).,Male sex was more predominant in deceased patients (83; 73%) than in recovered patients (88; 55%).,Chronic hypertension and other cardiovascular comorbidities were more frequent among deceased patients (54 (48%) and 16 (14%)) than recovered patients (39 (24%) and 7 (4%)).,Dyspnoea, chest tightness, and disorder of consciousness were more common in deceased patients (70 (62%), 55 (49%), and 25 (22%)) than in recovered patients (50 (31%), 48 (30%), and 1 (1%)).,The median time from disease onset to death in deceased patients was 16 (interquartile range 12.0-20.0) days.,Leukocytosis was present in 56 (50%) patients who died and 6 (4%) who recovered, and lymphopenia was present in 103 (91%) and 76 (47%) respectively.,Concentrations of alanine aminotransferase, aspartate aminotransferase, creatinine, creatine kinase, lactate dehydrogenase, cardiac troponin I, N-terminal pro-brain natriuretic peptide, and D-dimer were markedly higher in deceased patients than in recovered patients.,Common complications observed more frequently in deceased patients included acute respiratory distress syndrome (113; 100%), type I respiratory failure (18/35; 51%), sepsis (113; 100%), acute cardiac injury (72/94; 77%), heart failure (41/83; 49%), alkalosis (14/35; 40%), hyperkalaemia (42; 37%), acute kidney injury (28; 25%), and hypoxic encephalopathy (23; 20%).,Patients with cardiovascular comorbidity were more likely to develop cardiac complications.,Regardless of history of cardiovascular disease, acute cardiac injury and heart failure were more common in deceased patients.,Severe acute respiratory syndrome coronavirus 2 infection can cause both pulmonary and systemic inflammation, leading to multi-organ dysfunction in patients at high risk.,Acute respiratory distress syndrome and respiratory failure, sepsis, acute cardiac injury, and heart failure were the most common critical complications during exacerbation of covid-19.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells through ACE2 receptors, leading to coronavirus disease (COVID-19)-related pneumonia, while also causing acute myocardial injury and chronic damage to the cardiovascular system.,Therefore, particular attention should be given to cardiovascular protection during treatment for COVID-19.
1
We investigated the impact of regionally imposed social and healthcare restrictions due to coronavirus disease 2019 (COVID-19) to the time metrics in the management of acute ischemic stroke patients admitted at the regional stroke referral site for Central South Ontario, Canada.,We compared relevant time metrics between patients with acute ischemic stroke receiving intravenous tissue plasminogen activator (tPA) and/or endovascular thrombectomy (EVT) before and after the declared restrictions and state of emergency imposed in our region (March 17, 2020).,We identified a significant increase in the median door-to-CT times for patients receiving intravenous tPA (19 min, interquartile range (IQR): 14-27 min vs. 13 min, IQR: 9-17 min, p = 0.008) and/or EVT (20 min, IQR: 15-33 min vs. 11 min, IQR: 5-20 min, p = 0.035) after the start of social and healthcare restrictions in our region compared to the previous 12 months.,For patients receiving intravenous tPA treatment, we also found a significant increase (p = 0.005) in the median door-to-needle time (61 min, IQR: 46-72 min vs. 37 min, IQR: 30-50 min).,No delays in the time from symptom onset to hospital presentation were uncovered for patients receiving tPA and/or endovascular reperfusion treatments in the first 1.5 months after the establishment of regional and institutional restrictions due to the COVID-19 pandemic.,We detected an increase in our institutional time to treatment metrics for acute ischemic stroke patients receiving tPA and/or endovascular reperfusion therapies, related to delays from hospital presentation to the acquisition of cranial CT imaging for both tPA- and EVT-treated patients, and an added delay to treatment with tPA.
Little evidence of increased thrombotic risk is available in COVID-19 patients.,Our purpose was to assess thrombotic risk in severe forms of SARS-CoV-2 infection.,All patients referred to 4 intensive care units (ICUs) from two centers of a French tertiary hospital for acute respiratory distress syndrome (ARDS) due to COVID-19 between March 3rd and 31st 2020 were included.,Medical history, symptoms, biological data and imaging were prospectively collected.,Propensity score matching was performed to analyze the occurrence of thromboembolic events between non-COVID-19 ARDS and COVID-19 ARDS patients.,150 COVID-19 patients were included (122 men, median age 63 [53; 71] years, SAPSII 49 [37; 64] points).,Sixty-four clinically relevant thrombotic complications were diagnosed in 150 patients, mainly pulmonary embolisms (16.7%). 28/29 patients (96.6%) receiving continuous renal replacement therapy experienced circuit clotting.,Three thrombotic occlusions (in 2 patients) of centrifugal pump occurred in 12 patients (8%) supported by ECMO.,Most patients (> 95%) had elevated D-dimer and fibrinogen.,No patient developed disseminated intravascular coagulation.,Von Willebrand (vWF) activity, vWF antigen and FVIII were considerably increased, and 50/57 tested patients (87.7%) had positive lupus anticoagulant.,Comparison with non-COVID-19 ARDS patients (n = 145) confirmed that COVID-19 ARDS patients (n = 77) developed significantly more thrombotic complications, mainly pulmonary embolisms (11.7 vs.,2.1%, p < 0.008).,Coagulation parameters significantly differed between the two groups.,Despite anticoagulation, a high number of patients with ARDS secondary to COVID-19 developed life-threatening thrombotic complications.,Higher anticoagulation targets than in usual critically ill patients should therefore probably be suggested.,The online version of this article (10.1007/s00134-020-06062-x) contains supplementary material, which is available to authorized users.
1
This study aims to explore the effect of hypertension on disease progression and prognosis in patients with coronavirus disease 2019 (COVID-19).,A total of 310 patients diagnosed with COVID-19 were studied.,A comparison was made between two groups of patients, those with hypertension and those without hypertension.,Their demographic data, clinical manifestations, laboratory indicators, and treatment methods were collected and analyzed.,A total of 310 patients, including 113 patients with hypertension and 197 patients without hypertension, were included in the analysis.,Compared with patients without hypertension, patients with hypertension were older, were more likely to have diabetes and cerebrovascular disease, and were more likely to be transferred to the intensive care unit.,The neutrophil count and lactate dehydrogenase, fibrinogen, and D-dimer levels in hypertensive patients were significantly higher than those in nonhypertensive patients (P < 0.05).,However, multivariate analysis (adjusted for age and sex) failed to show that hypertension was an independent risk factor for COVID-19 mortality or severity.,COVID-19 patients with hypertension were more likely than patients without hypertension to have severe pneumonia, excessive inflammatory reactions, organ and tissue damage, and deterioration of the disease.,Patients with hypertension should be given additional attention to prevent worsening of their condition.
This case series study evaluates the association of underlying cardiovascular disease and myocardial injury on fatal outcomes in patients with coronavirus disease 2019 (COVID-19).,What is the impact of underlying cardiovascular disease (CVD) and myocardial injury on fatal outcomes in patients with coronavirus disease 2019 (COVID-19)?,In this case series study of 187 patients with COVID-19, 27.8% of patients had myocardial injury, which resulted in cardiac dysfunction and arrhythmias.,Myocardial injury has a significant association with fatal outcome of COVID-19, while the prognosis of patients with underlying CVD but without myocardial injury were relatively favorable.,It is reasonable to triage patients with COVID-19 according to the presence of underlying CVD and evidence of myocardial injury for prioritized treatment and even more aggressive strategies.,Increasing numbers of confirmed cases and mortality rates of coronavirus disease 2019 (COVID-19) are occurring in several countries and continents.,Information regarding the impact of cardiovascular complication on fatal outcome is scarce.,To evaluate the association of underlying cardiovascular disease (CVD) and myocardial injury with fatal outcomes in patients with COVID-19.,This retrospective single-center case series analyzed patients with COVID-19 at the Seventh Hospital of Wuhan City, China, from January 23, 2020, to February 23, 2020.,Analysis began February 25, 2020.,Demographic data, laboratory findings, comorbidities, and treatments were collected and analyzed in patients with and without elevation of troponin T (TnT) levels.,Among 187 patients with confirmed COVID-19, 144 patients (77%) were discharged and 43 patients (23%) died.,The mean (SD) age was 58.50 (14.66) years.,Overall, 66 (35.3%) had underlying CVD including hypertension, coronary heart disease, and cardiomyopathy, and 52 (27.8%) exhibited myocardial injury as indicated by elevated TnT levels.,The mortality during hospitalization was 7.62% (8 of 105) for patients without underlying CVD and normal TnT levels, 13.33% (4 of 30) for those with underlying CVD and normal TnT levels, 37.50% (6 of 16) for those without underlying CVD but elevated TnT levels, and 69.44% (25 of 36) for those with underlying CVD and elevated TnTs.,Patients with underlying CVD were more likely to exhibit elevation of TnT levels compared with the patients without CVD (36 [54.5%] vs 16 [13.2%]).,Plasma TnT levels demonstrated a high and significantly positive linear correlation with plasma high-sensitivity C-reactive protein levels (β = 0.530, P < .001) and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels (β = 0.613, P < .001).,Plasma TnT and NT-proBNP levels during hospitalization (median [interquartile range (IQR)], 0.307 [0.094-0.600]; 1902.00 [728.35-8100.00]) and impending death (median [IQR], 0.141 [0.058-0.860]; 5375 [1179.50-25695.25]) increased significantly compared with admission values (median [IQR], 0.0355 [0.015-0.102]; 796.90 [401.93-1742.25]) in patients who died (P = .001; P < .001), while no significant dynamic changes of TnT (median [IQR], 0.010 [0.007-0.019]; 0.013 [0.007-0.022]; 0.011 [0.007-0.016]) and NT-proBNP (median [IQR], 352.20 [174.70-636.70]; 433.80 [155.80-1272.60]; 145.40 [63.4-526.50]) was observed in survivors (P = .96; P = .16).,During hospitalization, patients with elevated TnT levels had more frequent malignant arrhythmias, and the use of glucocorticoid therapy (37 [71.2%] vs 69 [51.1%]) and mechanical ventilation (31 [59.6%] vs 14 [10.4%]) were higher compared with patients with normal TnT levels.,The mortality rates of patients with and without use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers was 36.8% (7 of 19) and 21.4% (36 of 168) (P = .13).,Myocardial injury is significantly associated with fatal outcome of COVID-19, while the prognosis of patients with underlying CVD but without myocardial injury is relatively favorable.,Myocardial injury is associated with cardiac dysfunction and arrhythmias.,Inflammation may be a potential mechanism for myocardial injury.,Aggressive treatment may be considered for patients at high risk of myocardial injury.
1
Understanding the epidemiology and clinical course of multisystem inflammatory syndrome in children (MIS-C) and its temporal association with coronavirus disease 2019 (Covid-19) is important, given the clinical and public health implications of the syndrome.,We conducted targeted surveillance for MIS-C from March 15 to May 20, 2020, in pediatric health centers across the United States.,The case definition included six criteria: serious illness leading to hospitalization, an age of less than 21 years, fever that lasted for at least 24 hours, laboratory evidence of inflammation, multisystem organ involvement, and evidence of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on reverse-transcriptase polymerase chain reaction (RT-PCR), antibody testing, or exposure to persons with Covid-19 in the past month.,Clinicians abstracted the data onto standardized forms.,We report on 186 patients with MIS-C in 26 states.,The median age was 8.3 years, 115 patients (62%) were male, 135 (73%) had previously been healthy, 131 (70%) were positive for SARS-CoV-2 by RT-PCR or antibody testing, and 164 (88%) were hospitalized after April 16, 2020.,Organ-system involvement included the gastrointestinal system in 171 patients (92%), cardiovascular in 149 (80%), hematologic in 142 (76%), mucocutaneous in 137 (74%), and respiratory in 131 (70%).,The median duration of hospitalization was 7 days (interquartile range, 4 to 10); 148 patients (80%) received intensive care, 37 (20%) received mechanical ventilation, 90 (48%) received vasoactive support, and 4 (2%) died.,Coronary-artery aneurysms (z scores ≥2.5) were documented in 15 patients (8%), and Kawasaki’s disease-like features were documented in 74 (40%).,Most patients (171 [92%]) had elevations in at least four biomarkers indicating inflammation.,The use of immunomodulating therapies was common: intravenous immune globulin was used in 144 (77%), glucocorticoids in 91 (49%), and interleukin-6 or 1RA inhibitors in 38 (20%).,Multisystem inflammatory syndrome in children associated with SARS-CoV-2 led to serious and life-threatening illness in previously healthy children and adolescents.,(Funded by the Centers for Disease Control and Prevention.)
The Bergamo province, which is extensively affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic, is a natural observatory of virus manifestations in the general population.,In the past month we recorded an outbreak of Kawasaki disease; we aimed to evaluate incidence and features of patients with Kawasaki-like disease diagnosed during the SARS-CoV-2 epidemic.,All patients diagnosed with a Kawasaki-like disease at our centre in the past 5 years were divided according to symptomatic presentation before (group 1) or after (group 2) the beginning of the SARS-CoV-2 epidemic.,Kawasaki- like presentations were managed as Kawasaki disease according to the American Heart Association indications.,Kawasaki disease shock syndrome (KDSS) was defined by presence of circulatory dysfunction, and macrophage activation syndrome (MAS) by the Paediatric Rheumatology International Trials Organisation criteria.,Current or previous infection was sought by reverse-transcriptase quantitative PCR in nasopharyngeal and oropharyngeal swabs, and by serological qualitative test detecting SARS-CoV-2 IgM and IgG, respectively.,Group 1 comprised 19 patients (seven boys, 12 girls; aged 3·0 years [SD 2·5]) diagnosed between Jan 1, 2015, and Feb 17, 2020.,Group 2 included ten patients (seven boys, three girls; aged 7·5 years [SD 3·5]) diagnosed between Feb 18 and April 20, 2020; eight of ten were positive for IgG or IgM, or both.,The two groups differed in disease incidence (group 1 vs group 2, 0·3 vs ten per month), mean age (3·0 vs 7·5 years), cardiac involvement (two of 19 vs six of ten), KDSS (zero of 19 vs five of ten), MAS (zero of 19 vs five of ten), and need for adjunctive steroid treatment (three of 19 vs eight of ten; all p<0·01).,In the past month we found a 30-fold increased incidence of Kawasaki-like disease.,Children diagnosed after the SARS-CoV-2 epidemic began showed evidence of immune response to the virus, were older, had a higher rate of cardiac involvement, and features of MAS.,The SARS-CoV-2 epidemic was associated with high incidence of a severe form of Kawasaki disease.,A similar outbreak of Kawasaki-like disease is expected in countries involved in the SARS-CoV-2 epidemic.,None.
1
Since its emergence in early 2020, the novel severe acute respiratory syndrome coronavirus 2 causing coronavirus disease 2019 (COVID-19) has reached pandemic levels, and there have been repeated outbreaks across the globe.,The aim of this two part series is to provide practical knowledge and guidance to aid clinicians in the diagnosis and management of cardiovascular (CV) disease in association with COVID-19.,A narrative literature review of the available evidence has been performed, and the resulting information has been organized into two parts.,The first, which was reported previously, focused on the epidemiology, pathophysiology, and diagnosis of CV conditions that may be manifest in patients with COVID-19.,This second part addresses the topics of: care pathways and triage systems and management and treatment pathways, both of the most commonly encountered CV conditions and of COVID-19; and information that may be considered useful to help patients with CV disease (CVD) to avoid exposure to COVID-19.,This comprehensive review is not a formal guideline but rather a document that provides a summary of current knowledge and guidance to practicing clinicians managing patients with CVD and COVID-19.,The recommendations are mainly the result of observations and personal experience from healthcare providers.,Therefore, the information provided here may be subject to change with increasing knowledge, evidence from prospective studies, and changes in the pandemic.,Likewise, the guidance provided in the document should not interfere with recommendations provided by local and national healthcare authorities.,Graphical Abstract
Supplemental Digital Content is available in the text.,Information on the cardiac manifestations of coronavirus disease 2019 (COVID-19) is scarce.,We performed a systematic and comprehensive echocardiographic evaluation of consecutive patients hospitalized with COVID-19 infection.,One hundred consecutive patients diagnosed with COVID-19 infection underwent complete echocardiographic evaluation within 24 hours of admission and were compared with reference values.,Echocardiographic studies included left ventricular (LV) systolic and diastolic function and valve hemodynamics and right ventricular (RV) assessment, as well as lung ultrasound.,A second examination was performed in case of clinical deterioration.,Thirty-two patients (32%) had a normal echocardiogram at baseline.,The most common cardiac pathology was RV dilatation and dysfunction (observed in 39% of patients), followed by LV diastolic dysfunction (16%) and LV systolic dysfunction (10%).,Patients with elevated troponin (20%) or worse clinical condition did not demonstrate any significant difference in LV systolic function compared with patients with normal troponin or better clinical condition, but they had worse RV function.,Clinical deterioration occurred in 20% of patients.,In these patients, the most common echocardiographic abnormality at follow-up was RV function deterioration (12 patients), followed by LV systolic and diastolic deterioration (in 5 patients).,Femoral deep vein thrombosis was diagnosed in 5 of 12 patients with RV failure.,In COVID-19 infection, LV systolic function is preserved in the majority of patients, but LV diastolic function and RV function are impaired.,Elevated troponin and poorer clinical grade are associated with worse RV function.,In patients presenting with clinical deterioration at follow-up, acute RV dysfunction, with or without deep vein thrombosis, is more common, but acute LV systolic dysfunction was noted in ≈20%.
1
Coronavirus disease-2019 (COVID-19), a viral respiratory illness caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), may predispose patients to thrombotic disease, both in the venous and arterial circulations, because of excessive inflammation, platelet activation, endothelial dysfunction, and stasis.,In addition, many patients receiving antithrombotic therapy for thrombotic disease may develop COVID-19, which can have implications for choice, dosing, and laboratory monitoring of antithrombotic therapy.,Moreover, during a time with much focus on COVID-19, it is critical to consider how to optimize the available technology to care for patients without COVID-19 who have thrombotic disease.,Herein, the authors review the current understanding of the pathogenesis, epidemiology, management, and outcomes of patients with COVID-19 who develop venous or arterial thrombosis, of those with pre-existing thrombotic disease who develop COVID-19, or those who need prevention or care for their thrombotic disease during the COVID-19 pandemic.,•COVID-19 may predispose patients to arterial and venous thrombosis.,•Initial series suggest the common occurrence of venous thromboembolic disease in patients with severe COVID-19.,The optimal preventive strategy warrants further investigation.,•Drug-drug interactions between antiplatelet agents and anticoagulants with investigational COVID-19 therapies should be considered.,•The available technology should be used optimally to care for patients without COVID-19 who have thrombotic disease during the pandemic.,COVID-19 may predispose patients to arterial and venous thrombosis.,Initial series suggest the common occurrence of venous thromboembolic disease in patients with severe COVID-19.,The optimal preventive strategy warrants further investigation.,Drug-drug interactions between antiplatelet agents and anticoagulants with investigational COVID-19 therapies should be considered.,The available technology should be used optimally to care for patients without COVID-19 who have thrombotic disease during the pandemic.
Coronavirus disease 2019 (COVID-19) is a global pandemic that is wreaking havoc on the health and economy of much of human civilization.,Electrophysiologists have been impacted personally and professionally by this global catastrophe.,In this joint article from representatives of the Heart Rhythm Society, the American College of Cardiology, and the American Heart Association, we identify the potential risks of exposure to patients, allied healthcare staff, industry representatives, and hospital administrators.,We also describe the impact of COVID-19 on cardiac arrhythmias and methods of triage based on acuity and patient comorbidities.,We provide guidance for managing invasive and noninvasive electrophysiology procedures, clinic visits, and cardiac device interrogations.,In addition, we discuss resource conservation and the role of telemedicine in remote patient care along with management strategies for affected patients.
1
COVID-19 has rapidly impacted on mortality worldwide.1 There is unprecedented urgency to understand who is most at risk of severe outcomes, requiring new approaches for timely analysis of large datasets.,Working on behalf of NHS England we created OpenSAFELY: a secure health analytics platform covering 40% of all patients in England, holding patient data within the existing data centre of a major primary care electronic health records vendor.,Primary care records of 17,278,392 adults were pseudonymously linked to 10,926 COVID-19 related deaths.,COVID-19 related death was associated with: being male (hazard ratio 1.59, 95%CI 1.53-1.65); older age and deprivation (both with a strong gradient); diabetes; severe asthma; and various other medical conditions.,Compared to people with white ethnicity, black and South Asian people were at higher risk even after adjustment for other factors (HR 1.48, 1.29-1.69 and 1.45, 1.32-1.58 respectively).,We have quantified a range of clinical risk factors for COVID-19 related death in the largest cohort study conducted by any country to date.,OpenSAFELY is rapidly adding further patients’ records; we will update and extend results regularly.
There is concern about the potential of an increased risk related to medications that act on the renin-angiotensin-aldosterone system in patients exposed to coronavirus disease 2019 (Covid-19), because the viral receptor is angiotensin-converting enzyme 2 (ACE2).,We assessed the relation between previous treatment with ACE inhibitors, angiotensin-receptor blockers, beta-blockers, calcium-channel blockers, or thiazide diuretics and the likelihood of a positive or negative result on Covid-19 testing as well as the likelihood of severe illness (defined as intensive care, mechanical ventilation, or death) among patients who tested positive.,Using Bayesian methods, we compared outcomes in patients who had been treated with these medications and in untreated patients, overall and in those with hypertension, after propensity-score matching for receipt of each medication class.,A difference of at least 10 percentage points was prespecified as a substantial difference.,Among 12,594 patients who were tested for Covid-19, a total of 5894 (46.8%) were positive; 1002 of these patients (17.0%) had severe illness.,A history of hypertension was present in 4357 patients (34.6%), among whom 2573 (59.1%) had a positive test; 634 of these patients (24.6%) had severe illness.,There was no association between any single medication class and an increased likelihood of a positive test.,None of the medications examined was associated with a substantial increase in the risk of severe illness among patients who tested positive.,We found no substantial increase in the likelihood of a positive test for Covid-19 or in the risk of severe Covid-19 among patients who tested positive in association with five common classes of antihypertensive medications.
1
Emerging reports suggest that obese patients who are hospitalized with COVID-19 may have worse outcomes; whether this association extends to those who are not hospitalized is unclear.,This study examines the association between obesity and death 21 days after diagnosis of COVID-19 among patients who receive care in an integrated health care system, accounting for obesity-related comorbidities and sociodemographic factors.,Emerging reports suggest that obese patients who are hospitalized with COVID-19 may have worse outcomes; whether this association extends to those who are not hospitalized is unclear.,This study examines the association between obesity and death 21 days after diagnosis of COVID-19 among patients who receive care in an integrated health care system, accounting for obesity-related comorbidities and sociodemographic factors.,Obesity, race/ethnicity, and other correlated characteristics have emerged as high-profile risk factors for adverse coronavirus disease 2019 (COVID-19)-associated outcomes, yet studies have not adequately disentangled their effects.,To determine the adjusted effect of body mass index (BMI), associated comorbidities, time, neighborhood-level sociodemographic factors, and other factors on risk for death due to COVID-19.,Retrospective cohort study.,Kaiser Permanente Southern California, a large integrated health care organization.,Kaiser Permanente Southern California members diagnosed with COVID-19 from 13 February to 2 May 2020.,Multivariable Poisson regression estimated the adjusted effect of BMI and other factors on risk for death at 21 days; models were also stratified by age and sex.,Among 6916 patients with COVID-19, there was a J-shaped association between BMI and risk for death, even after adjustment for obesity-related comorbidities.,Compared with patients with a BMI of 18.5 to 24 kg/m2, those with BMIs of 40 to 44 kg/m2 and greater than 45 kg/m2 had relative risks of 2.68 (95% CI, 1.43 to 5.04) and 4.18 (CI, 2.12 to 8.26), respectively.,This risk was most striking among those aged 60 years or younger and men.,Increased risk for death associated with Black or Latino race/ethnicity or other sociodemographic characteristics was not detected.,Deaths occurring outside a health care setting and not captured in membership files may have been missed.,Obesity plays a profound role in risk for death from COVID-19, particularly in male patients and younger populations.,Our capitated system with more equalized health care access may explain the absence of effect of racial/ethnic and socioeconomic disparities on death.,Our data highlight the leading role of severe obesity over correlated risk factors, providing a target for early intervention.,Roche-Genentech.
Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).,Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described.,In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020.,Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors.,We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death.,191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients).,Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03-1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61-12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64-128·55; p=0·0033) on admission.,Median duration of viral shedding was 20·0 days (IQR 17·0-24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors.,The longest observed duration of viral shedding in survivors was 37 days.,The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage.,Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.,Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
1
We hypothesize that specific microRNAs (miRNAs) within cardiomyocyte‐derived exosomes play a pivotal role in the phenoconversion of cardiac myofibroblasts following myocardial infarction (MI).,We used an established murine model of MI, obtained in vivo via ligation of the left anterior descending coronary artery.,We isolated adult cardiomyocytes and fibroblasts, and we assessed the functional role of cardiomyocyte‐derived exosomes and their molecular cargo in the activation of cardiac fibroblasts.,We identified and biologically validated miR‐92a as a transcriptional regulator of mothers against DPP homologues 7 (SMAD7), a known inhibitor of α‐smooth muscle actin (α‐SMA), established marker of myofibroblast activation.,We found that miR‐92a was significantly (P < 0.05) upregulated in cardiomyocyte‐derived exosomes and in fibroblasts isolated after MI compared with SHAM conditions (n ≥ 6/group).,We tested the activation of myofibroblasts by measuring the expression levels of αSMA, periostin, and collagen.,Primary isolated cardiac fibroblasts were activated both when incubated with cardiomyocyte‐derived exosomes isolated from ischemic cardiomyocytes and when cultured in conditioned medium of post‐MI cardiomyocytes, whereas no significant difference was observed following incubation with exosomes or medium from sham cardiomyocytes.,These effects were attenuated when an inhibitor of exosome secretion, GW4869 (10 μM for 12 h) was included in the experimental setting.,Through means of specific miR‐92a mimic and miR‐92a inhibitor, we also verified the mechanistic contribution of miR‐92a to the activation of cardiac fibroblasts.,Our results indicate for the first time that miR‐92a is transferred to fibroblasts in form of exosomal cargo and is critical for cardiac myofibroblast activation.
Prompt coronary catheterization and revascularization have dramatically improved the outcome of myocardial infarction, but also have resulted in a growing number of survived patients with permanent structural damage of the heart, which frequently leads to heart failure.,Finding new treatments for this condition is a largely unmet clinical need 1, especially because of the incapacity of cardiomyocytes to replicate after birth and thus achieve regeneration of the lost contractile tissue 2.,Here we show that expression of human microRNA-199a in infarcted pig hearts is capable of stimulating cardiac repair.,One month after myocardial infarction and delivery of this microRNA through an adeno-associated viral vector, the treated animals showed marked improvements in both global and regional contractility, increased muscle mass and reduced scar size.,These functional and morphological findings correlated with cardiomyocyte de-differentiation and proliferation.,At longer follow-up, however, persistent and uncontrolled expression of the microRNA resulted in sudden arrhythmic death of most of the treated pigs.,Such events were concurrent with myocardial infiltration of proliferating cells displaying a poorly differentiated myoblastic phenotype.,These results show that achieving cardiac repair through the stimulation of endogenous cardiomyocyte proliferation is attainable in large mammals, however this therapy needs to be tightly dosed.
1
An important feature of severe acute respiratory syndrome coronavirus 2 pathogenesis is COVID-19-associated coagulopathy, characterised by increased thrombotic and microvascular complications.,Previous studies have suggested a role for endothelial cell injury in COVID-19-associated coagulopathy.,To determine whether endotheliopathy is involved in COVID-19-associated coagulopathy pathogenesis, we assessed markers of endothelial cell and platelet activation in critically and non-critically ill patients admitted to the hospital with COVID-19.,In this single-centre cross-sectional study, hospitalised adult (≥18 years) patients with laboratory-confirmed COVID-19 were identified in the medical intensive care unit (ICU) or a specialised non-ICU COVID-19 floor in our hospital.,Asymptomatic, non-hospitalised controls were recruited as a comparator group for biomarkers that did not have a reference range.,We assessed markers of endothelial cell and platelet activation, including von Willebrand Factor (VWF) antigen, soluble thrombomodulin, soluble P-selectin, and soluble CD40 ligand, as well as coagulation factors, endogenous anticoagulants, and fibrinolytic enzymes.,We compared the level of each marker in ICU patients, non-ICU patients, and controls, where applicable.,We assessed correlations between these laboratory results with clinical outcomes, including hospital discharge and mortality.,Kaplan-Meier analysis was used to further explore the association between biochemical markers and survival.,68 patients with COVID-19 were included in the study from April 13 to April 24, 2020, including 48 ICU and 20 non-ICU patients, as well as 13 non-hospitalised, asymptomatic controls.,Markers of endothelial cell and platelet activation were significantly elevated in ICU patients compared with non-ICU patients, including VWF antigen (mean 565% [SD 199] in ICU patients vs 278% [133] in non-ICU patients; p<0·0001) and soluble P-selectin (15·9 ng/mL [4·8] vs 11·2 ng/mL [3·1]; p=0·0014).,VWF antigen concentrations were also elevated above the normal range in 16 (80%) of 20 non-ICU patients.,We found mortality to be significantly correlated with VWF antigen (r = 0·38; p=0·0022) and soluble thrombomodulin (r = 0·38; p=0·0078) among all patients.,In all patients, soluble thrombomodulin concentrations greater than 3·26 ng/mL were associated with lower rates of hospital discharge (22 [88%] of 25 patients with low concentrations vs 13 [52%] of 25 patients with high concentrations; p=0·0050) and lower likelihood of survival on Kaplan-Meier analysis (hazard ratio 5·9, 95% CI 1·9-18·4; p=0·0087).,Our findings show that endotheliopathy is present in COVID-19 and is likely to be associated with critical illness and death.,Early identification of endotheliopathy and strategies to mitigate its progression might improve outcomes in COVID-19.,This work was supported by a gift donation from Jack Levin to the Benign Hematology programme at Yale, and the National Institutes of Health.
Medical treatment of arterial thrombosis is mainly directed against platelets and coagulation factors, and can lead to bleeding complications.,Novel antithrombotic therapies targeting immune cells and neutrophil extracellular traps (NETs) are currently being investigated in animals.,We addressed whether immune cell composition of arterial thrombi induced in mouse models of thrombosis resemble those of human patients with acute myocardial infarction (AMI).,In a prospective cohort study of patients suffering from AMI, 81 human arterial thrombi were harvested during percutaneous coronary intervention and subjected to detailed histological analysis.,In mice, arterial thrombi were induced using two distinct experimental models, ferric chloride (FeCl3) and wire injury of the carotid artery.,We found that murine arterial thrombi induced by FeCl3 were highly concordant with human coronary thrombi regarding their immune cell composition, with neutrophils being the most abundant cell type, as well as the presence of NETs and coagulation factors.,Pharmacological treatment of mice with the protein arginine deiminase (PAD)-inhibitor Cl-amidine abrogated NET formation, reduced arterial thrombosis and limited injury in a model of myocardial infarction.,Neutrophils are a hallmark of arterial thrombi in patients suffering from acute myocardial infarction and in mouse models of arterial thrombosis.,Inhibition of PAD could represent an interesting strategy for the treatment of arterial thrombosis to reduce neutrophil-associated tissue damage and improve functional outcome.
1
•Multicenter study evaluating the impact of COVID-19 pandemic on ischemic stroke volumes, subtypes, and clinical presentation in US.,•Significant decline was observed in the mean weekly volumes of newly diagnosed ischemic strokes, LVOs, and IV-tPA administration.,•Patients admitted to the hospital had severe disease (NIHSS>14) and were more likely to discharge home.,Multicenter study evaluating the impact of COVID-19 pandemic on ischemic stroke volumes, subtypes, and clinical presentation in US.,Significant decline was observed in the mean weekly volumes of newly diagnosed ischemic strokes, LVOs, and IV-tPA administration.,Patients admitted to the hospital had severe disease (NIHSS>14) and were more likely to discharge home.,To evaluate overall ischemic stroke volumes and rates, specific subtypes, and clinical presentation during the COVID-19 pandemic in a multicenter observational study from eight states across US.,We compared all ischemic strokes admitted between January 2019 and May 2020, grouped as; March-May 2020 (COVID-19 period) and March-May 2019 (seasonal pre-COVID-19 period).,Primary outcome was stroke severity at admission measured by NIHSS stratified as mild (0−7), moderate [[8], [9], [10], [11], [12], [13], [14]], and severe (>14).,Secondary outcomes were volume of large vessel occlusions (LVOs), stroke etiology, IV-tPA rates, and discharge disposition.,Of the 7969 patients diagnosed with acute ischemic stroke during the study period, 933 (12 %) presented in the COVID-19 period while 1319 (17 %) presented in the seasonal pre-COVID-19 period.,Significant decline was observed in the mean weekly volumes of newly diagnosed ischemic strokes (98 ± 3 vs 50 ± 20,p = 0.003), LVOs (16.5 ± 3.8 vs 8.3 ± 5.9,p = 0.008), and IV-tPA (10.9 ± 3.4 vs 5.3 ± 2.9,p = 0.0047), whereas the mean weekly proportion of LVOs (18 % ±5 vs 16 % ±7,p = 0.24) and IV-tPA (10.4 % ±4.5 vs.,9.9 % ±2.4,p = 0.66) remained the same, when compared to the seasonal pre-COVID-19 period.,Additionally, an increased proportion of patients presented with a severe disease (NIHSS > 14) during the COVID-19 period (29.7 % vs 24.5 %,p < 0.025).,The odds of being discharged to home were 26 % greater in the COVID-19 period when compared to seasonal pre-COVID-19 period (OR:1.26, 95 % CI:1.07-1.49,p = 0.016).,During COVID-19 period there was a decrease in volume of newly diagnosed ischemic stroke cases and IV-tPA administration.,Patients admitted to the hospital had severe neurological clinical presentation and were more likely to discharge home.
The purpose of the study is to analyze how the coronavirus disease 2019 (COVID-19) pandemic affected acute stroke care in a Comprehensive Stroke Center.,On February 28, 2020, contingency plans were implemented at Hospital Clinic of Barcelona to contain the COVID-19 pandemic.,Among them, the decision to refrain from reallocating the Stroke Team and Stroke Unit to the care of patients with COVID-19.,From March 1 to March 31, 2020, we measured the number of emergency calls to the Emergency Medical System in Catalonia (7.5 million inhabitants), and the Stroke Codes dispatched to Hospital Clinic of Barcelona.,We recorded all stroke admissions, and the adequacy of acute care measures, including the number of thrombectomies, workflow metrics, angiographic results, and clinical outcomes.,Data were compared with March 2019 using parametric or nonparametric methods as appropriate.,At Hospital Clinic of Barcelona, 1232 patients with COVID-19 were admitted in March 2020, demanding 60% of the hospital bed capacity.,Relative to March 2019, the Emergency Medical System had a 330% mean increment in the number of calls (158 005 versus 679 569), but fewer Stroke Code activations (517 versus 426).,Stroke admissions (108 versus 83) and the number of thrombectomies (21 versus 16) declined at Hospital Clinic of Barcelona, particularly after lockdown of the population.,Younger age was found in stroke admissions during the pandemic (median [interquartile range] 69 [64-73] versus 75 [73-80] years, P=0.009).,In-hospital, there were no differences in workflow metrics, angiographic results, complications, or outcomes at discharge.,The COVID-19 pandemic reduced by a quarter the stroke admissions and thrombectomies performed at a Comprehensive Stroke Center but did not affect the quality of care metrics.,During the lockdown, there was an overload of emergency calls but fewer Stroke Code activations, particularly in elderly patients.,Hospital contingency plans, patient transport systems, and population-targeted alerts must act concertedly to better protect the chain of stroke care in times of pandemic.
1
We describe the first case of acute cardiac injury directly linked to myocardial localization of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in a 69‐year‐old patient with flu‐like symptoms rapidly degenerating into respiratory distress, hypotension, and cardiogenic shock.,The patient was successfully treated with venous‐arterial extracorporeal membrane oxygenation (ECMO) and mechanical ventilation.,Cardiac function fully recovered in 5 days and ECMO was removed.,Endomyocardial biopsy demonstrated low‐grade myocardial inflammation and viral particles in the myocardium suggesting either a viraemic phase or, alternatively, infected macrophage migration from the lung.
This study evaluated cardiac involvement in patients recovered from coronavirus disease-2019 (COVID-19) using cardiac magnetic resonance (CMR).,Myocardial injury caused by COVID-19 was previously reported in hospitalized patients.,It is unknown if there is sustained cardiac involvement after patients’ recovery from COVID-19.,Twenty-six patients recovered from COVID-19 who reported cardiac symptoms and underwent CMR examinations were retrospectively included.,CMR protocols consisted of conventional sequences (cine, T2-weighted imaging, and late gadolinium enhancement [LGE]) and quantitative mapping sequences (T1, T2, and extracellular volume [ECV] mapping).,Edema ratio and LGE were assessed in post-COVID-19 patients.,Cardiac function, native T1/T2, and ECV were quantitatively evaluated and compared with controls.,Fifteen patients (58%) had abnormal CMR findings on conventional CMR sequences: myocardial edema was found in 14 (54%) patients and LGE was found in 8 (31%) patients.,Decreased right ventricle functional parameters including ejection fraction, cardiac index, and stroke volume/body surface area were found in patients with positive conventional CMR findings.,Using quantitative mapping, global native T1, T2, and ECV were all found to be significantly elevated in patients with positive conventional CMR findings, compared with patients without positive findings and controls (median [interquartile range]: native T1 1,271 ms [1,243 to 1,298 ms] vs. 1,237 ms [1,216 to 1,262 ms] vs. 1,224 ms [1,217 to 1,245 ms]; mean ± SD: T2 42.7 ± 3.1 ms vs.,38.1 ms ± 2.4 vs.,39.1 ms ± 3.1; median [interquartile range]: 28.2% [24.8% to 36.2%] vs.,24.8% [23.1% to 25.4%] vs.,23.7% [22.2% to 25.2%]; p = 0.002; p < 0.001, and p = 0.002, respectively).,Cardiac involvement was found in a proportion of patients recovered from COVID-19.,CMR manifestation included myocardial edema, fibrosis, and impaired right ventricle function.,Attention should be paid to the possible myocardial involvement in patients recovered from COVID-19 with cardiac symptoms.
1
Acute respiratory distress syndrome development in patients with coronavirus disease 2019 (COVID-19) pneumonia is associated with a high mortality rate and is the main cause of death in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection [1].,Myocardial injury has also been reported to be significantly associated with fatal outcome, with a 37% mortality rate in patients without prior cardiovascular disease but elevated troponin levels [2].,A D-dimer level of >1 μg·mL−1 has been clearly identified as a risk factor for poor outcome in SARS-Cov-2 infection [3], with recent reports highlighting a high incidence of thrombotic events in intensive care unit (ICU) patients [4].,A normal D-dimer level allows the safe exclusion of pulmonary embolism (PE) in outpatients with a low or intermediate clinical probability of PE, but there is no recommendation to use D-dimer as a positive marker of thrombosis because of lack of specificity.,This study reports an overall 24% (95% CI 17-32%) cumulative incidence of pulmonary embolism in patients with COVID-19 pneumonia, 50% (30-70%) in ICU and 18% (12-27%) in other patientshttps://bit.ly/35s7hjm
We recently reported a high cumulative incidence of thrombotic complications in critically ill patients with COVID-19 admitted to the intensive care units (ICUs) of three Dutch hospitals.,In answering questions raised regarding our study, we updated our database and repeated all analyses.,We re-evaluated the incidence of the composite outcome of symptomatic acute pulmonary embolism (PE), deep-vein thrombosis, ischemic stroke, myocardial infarction and/or systemic arterial embolism in all COVID-19 patients admitted to the ICUs of 2 Dutch university hospitals and 1 Dutch teaching hospital from ICU admission to death, ICU discharge or April 22nd 2020, whichever came first.,We studied the same 184 ICU patients as reported on previously, of whom a total of 41 died (22%) and 78 were discharged alive (43%).,The median follow-up duration increased from 7 to 14 days.,All patients received pharmacological thromboprophylaxis.,The cumulative incidence of the composite outcome, adjusted for competing risk of death, was 49% (95% confidence interval [CI] 41-57%).,The majority of thrombotic events were PE (65/75; 87%).,In the competing risk model, chronic anticoagulation therapy at admission was associated with a lower risk of the composite outcome (Hazard Ratio [HR] 0.29, 95%CI 0.091-0.92).,Patients diagnosed with thrombotic complications were at higher risk of all-cause death (HR 5.4; 95%CI 2.4-12).,Use of therapeutic anticoagulation was not associated with all-cause death (HR 0.79, 95%CI 0.35-1.8).,In this updated analysis, we confirm the very high cumulative incidence of thrombotic complications in critically ill patients with COVID-19 pneumonia.
1
Coronavirus disease 2019 (COVID‐19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), has rapidly evolved into a sweeping pandemic.,Its major manifestation is in the respiratory tract, and the general extent of organ involvement and the microscopic changes in the lungs remain insufficiently characterised.,Autopsies are essential to elucidate COVID‐19‐associated organ alterations.,This article reports the autopsy findings of 21 COVID‐19 patients hospitalised at the University Hospital Basel and at the Cantonal Hospital Baselland, Switzerland.,An in‐corpore technique was performed to ensure optimal staff safety.,The primary cause of death was respiratory failure with exudative diffuse alveolar damage and massive capillary congestion, often accompanied by microthrombi despite anticoagulation.,Ten cases showed superimposed bronchopneumonia.,Further findings included pulmonary embolism (n = 4), alveolar haemorrhage (n = 3), and vasculitis (n = 1).,Pathologies in other organ systems were predominantly attributable to shock; three patients showed signs of generalised and five of pulmonary thrombotic microangiopathy.,Six patients were diagnosed with senile cardiac amyloidosis upon autopsy.,Most patients suffered from one or more comorbidities (hypertension, obesity, cardiovascular diseases, and diabetes mellitus).,Additionally, there was an overall predominance of males and individuals with blood group A (81% and 65%, respectively).,All relevant histological slides are linked as open‐source scans in supplementary files.,This study provides an overview of postmortem findings in COVID‐19 cases, implying that hypertensive, elderly, obese, male individuals with severe cardiovascular comorbidities as well as those with blood group A may have a lower threshold of tolerance for COVID‐19.,This provides a pathophysiological explanation for higher mortality rates among these patients.
We recently reported a high cumulative incidence of thrombotic complications in critically ill patients with COVID-19 admitted to the intensive care units (ICUs) of three Dutch hospitals.,In answering questions raised regarding our study, we updated our database and repeated all analyses.,We re-evaluated the incidence of the composite outcome of symptomatic acute pulmonary embolism (PE), deep-vein thrombosis, ischemic stroke, myocardial infarction and/or systemic arterial embolism in all COVID-19 patients admitted to the ICUs of 2 Dutch university hospitals and 1 Dutch teaching hospital from ICU admission to death, ICU discharge or April 22nd 2020, whichever came first.,We studied the same 184 ICU patients as reported on previously, of whom a total of 41 died (22%) and 78 were discharged alive (43%).,The median follow-up duration increased from 7 to 14 days.,All patients received pharmacological thromboprophylaxis.,The cumulative incidence of the composite outcome, adjusted for competing risk of death, was 49% (95% confidence interval [CI] 41-57%).,The majority of thrombotic events were PE (65/75; 87%).,In the competing risk model, chronic anticoagulation therapy at admission was associated with a lower risk of the composite outcome (Hazard Ratio [HR] 0.29, 95%CI 0.091-0.92).,Patients diagnosed with thrombotic complications were at higher risk of all-cause death (HR 5.4; 95%CI 2.4-12).,Use of therapeutic anticoagulation was not associated with all-cause death (HR 0.79, 95%CI 0.35-1.8).,In this updated analysis, we confirm the very high cumulative incidence of thrombotic complications in critically ill patients with COVID-19 pneumonia.
1
Supplemental Digital Content is available in the text.,Information on the cardiac manifestations of coronavirus disease 2019 (COVID-19) is scarce.,We performed a systematic and comprehensive echocardiographic evaluation of consecutive patients hospitalized with COVID-19 infection.,One hundred consecutive patients diagnosed with COVID-19 infection underwent complete echocardiographic evaluation within 24 hours of admission and were compared with reference values.,Echocardiographic studies included left ventricular (LV) systolic and diastolic function and valve hemodynamics and right ventricular (RV) assessment, as well as lung ultrasound.,A second examination was performed in case of clinical deterioration.,Thirty-two patients (32%) had a normal echocardiogram at baseline.,The most common cardiac pathology was RV dilatation and dysfunction (observed in 39% of patients), followed by LV diastolic dysfunction (16%) and LV systolic dysfunction (10%).,Patients with elevated troponin (20%) or worse clinical condition did not demonstrate any significant difference in LV systolic function compared with patients with normal troponin or better clinical condition, but they had worse RV function.,Clinical deterioration occurred in 20% of patients.,In these patients, the most common echocardiographic abnormality at follow-up was RV function deterioration (12 patients), followed by LV systolic and diastolic deterioration (in 5 patients).,Femoral deep vein thrombosis was diagnosed in 5 of 12 patients with RV failure.,In COVID-19 infection, LV systolic function is preserved in the majority of patients, but LV diastolic function and RV function are impaired.,Elevated troponin and poorer clinical grade are associated with worse RV function.,In patients presenting with clinical deterioration at follow-up, acute RV dysfunction, with or without deep vein thrombosis, is more common, but acute LV systolic dysfunction was noted in ≈20%.
•ASE guidance for patient and provider protection during echo exams in the COVID-19 pandemic.,•Triaging approach for prioritizing echo exams during the COVID-19 pandemic.,•Recommended imaging approach and appropriate PPE use during echo exams.,ASE guidance for patient and provider protection during echo exams in the COVID-19 pandemic.,Triaging approach for prioritizing echo exams during the COVID-19 pandemic.,Recommended imaging approach and appropriate PPE use during echo exams.
1
•There are anecdotal reports of lower stroke rates during the COVID-19 pandemic.,•Our center confirms a local fall in new acute stroke diagnoses during the pandemic.,•This fall is driven by fewer patients presenting with mild symptoms in our network.,•Mild stroke symptoms ought to not be ignored in community practices.,There are anecdotal reports of lower stroke rates during the COVID-19 pandemic.,Our center confirms a local fall in new acute stroke diagnoses during the pandemic.,This fall is driven by fewer patients presenting with mild symptoms in our network.,Mild stroke symptoms ought to not be ignored in community practices.,Although there is evidence to suggest a high rate of cerebrovascular complications in patients with SARS-CoV-2 infection, anecdotal reports indicate a falling rate of new ischemic stroke diagnoses.,We conducted an exploratory single-center analysis to estimate the change in number of new stroke diagnoses in our region, and evaluate the proximate reasons for this change during the COVID-19 pandemic at a tertiary care center in New Jersey.,A Comprehensive Stroke Center prospective cohort was retrospectively analyzed for the number of stroke admissions, demographic features, and short-term outcomes 5 months prior to 3/1/2020 (pre-COVID-19), and in the 6 weeks that followed (COVID-19 period).,The primary outcome was the number of new acute stroke diagnoses before and during the COVID-19 period, as well as the potential reasons for a decline in the number of new diagnoses.,Of the 328 included patients, 53 (16%) presented in the COVID-19 period.,There was a mean fall of 38% in new stroke diagnoses (mean 1.13/day [SD 1.07] from 1.82/day [SD 1.38], p<0.01), which was related to a 59% decline in the number of daily transfers from referral centers (p<0.01), 25% fewer telestroke consultations (p=0.08), and 55% fewer patients presenting directly to our institution by private vehicle (p<0.01) and 29% fewer patients through emergency services (p=0.09).,There was no significant change in the monthly number of strokes due to large vessel occlusion (LVO), however the proportion of new LVOs nearly doubled in the COVID-19 period (38% vs. 21%, p=0.01).,The observations at our tertiary care center corroborate anecdotal reports that the number of new stroke diagnoses is falling, which seems related to a smaller proportion of patients seeking healthcare services for milder symptoms.,These preliminary data warrant validation in larger, multi-center studies.
The COVID-19 pandemics required several changes in stroke management and it may have influenced some clinical or functional characteristics.,We aimed to evaluate the effects of the COVID-19 pandemics on stroke management during the first month of Italy lockdown.,In addition, we described the emergency structured pathway adopted by an Italian University Hub Stroke Unit in the cross-border Italy-Slovenia area.,We analyzed admitted patients' clinical features and outcomes between 9th March 2020 and 9th April 2020 (first month of lockdown), and compared them with patients admitted during the same period in 2019.,Total admissions experienced a reduction of 45% during the lockdown compared to the same period in 2019 (16 vs 29, respectively), as well as a higher prevalence of severe stroke (NIHSS>10) at admission (n = 8, 50% vs n = 8, 28%).,A dramatic prevalence of stroke of unknown symptom onset was observed in 2020 (n = 8, 50% vs n = 3, 10%).,During lockdown, worse functional and independence outcomes were found, despite the similar proportion of reperfused patients.,Similar ‘symptoms alert-to-admission’ and ‘door-to-treatment’ times were observed.,During lockdown hospitalization was shorter and fewer patients completed the stroke work-up.,In conclusion, the adopted strategies for stroke management during the COVID-19 emergency have suggested being effective, while suffering a reduced and delayed reporting of symptoms.,Therefore, we recommend raising awareness among the population against possible stroke symptoms onset.,Thus, think F.A.S.T. and do not stay-at-home at all costs.
1
COVID-19 might have affected the care and outcomes of hospitalised acute myocardial infarction (AMI).,We aimed to determine whether the COVID-19 pandemic changed patient response, hospital treatment and mortality from AMI.,Admission were classified as non ST-elevation myocardial infarction (NSTEMI) or STEMI at 99 hospitals in England through live feeding from the Myocardial Ischaemia National Audit Project between 1st January, 2019 and 22nd May, 2020.,Time series plots were estimated using a 7-day simple moving average, adjusted for seasonality.,From 23rd March, 2020 (UK lockdown) median daily hospitalisations decreased more for NSTEMI (69 to 35; IRR 0.51, 95% CI 0.47-0.54) than STEMI (35 to 25; IRR 0.74, 95% CI 0.69-0.80) to a nadir on 19th April, 2020.,During lockdown, patients were younger (mean age 68.7 years vs.,66.9 years), less frequently diabetic (24.6% vs.,28.1%) or had cerebrovascular disease (7.0% vs.,8.6%).,STEMI more frequently received primary PCI (81.8% vs 78.8%%), thrombolysis was negligible (0.5% vs.,0.3%), median admission-to-coronary angiography duration for NSTEMI decreased (26.2 vs.,64.0 hours), median duration of hospitalisation decreased (4 to 2 days), secondary prevention pharmacotherapy prescription remained unchanged (each >94.7%).,Mortality at 30 days increased for NSTEMI (from 5.4% to 7.5%; OR 1.41, 95% CI 1.08-1.80), but decreased for STEMI (from 10.2% to 7.7%; OR 0.73, 95% CI 0.54-0.97).,During COVID-19, there was a substantial decline in admissions with AMI.,Those who presented to hospital were younger, less co-morbid and, for NSTEMI, had higher 30-day mortality.
ST-segment elevation myocardial infarction (STEMI) is a fatal cardiovascular emergency requiring rapid reperfusion treatment.,During the coronavirus disease-2019 (COVID-19) pandemic, medical professionals need to strike a balance between providing timely treatment for STEMI patients and implementing infection control procedures to prevent nosocomial spread of COVID-19 among health care workers and other vulnerable cardiovascular patients.,This study evaluates the impact of the COVID-19 outbreak and China Chest Pain Center’s modified STEMI protocol on the treatment and prognosis of STEMI patients in China.,Based on the data of 28,189 STEMI patients admitted to 1,372 Chest Pain Centers in China between December 27, 2019 and February 20, 2020, the study analyzed how the COVID-19 outbreak and China Chest Pain Center’s modified STEMI protocol influenced the number of admitted STEMI cases, reperfusion strategy, key treatment time points, and in-hospital mortality and heart failure for STEMI patients.,The COVID-19 outbreak reduced the number of STEMI cases reported to China Chest Pain Centers.,Consistent with China Chest Pain Center’s modified STEMI protocol, the percentage of patients undergoing primary percutaneous coronary intervention declined while the percentage of patients undergoing thrombolysis increased.,With an average delay of approximately 20 min for reperfusion therapy, the rate of in-hospital mortality and in-hospital heart failure increased during the outbreak, but the rate of in-hospital hemorrhage remained stable.,There were reductions in STEMI patients’ access to care, delays in treatment timelines, changes in reperfusion strategies, and an increase of in-hospital mortality and heart failure during the COVID-19 pandemic in China.
1