uuid
				 
			stringlengths 36 
			36 
			 | file_name
				 
			stringlengths 5 
			50 
			 | repo_name
				 
			stringclasses 110
				values  | file_path
				 
			stringlengths 7 
			112 
			 | commit_hash
				 
			stringclasses 110
				values  | starcount
				 
			int64 0 
			0 
			 | input
				 
			stringlengths 39 
			33.8k 
			 | category
				 
			dict  | licenses
				 
			listlengths 1 
			2 
			 | github_url
				 
			stringlengths 94 
			193 
			 | 
|---|---|---|---|---|---|---|---|---|---|
	6d32b21d-530f-4d1d-a2b2-bb08a0c056cc 
 | 
	triton_matric_matmul.py 
 | 
	elphinkuo/fast_matrix_multiplication 
 | 
	dot_product/on_gpu/Triton/triton_matric_matmul.py 
 | 
	4e875a17e95b7ccf9af102d2c0f8cc31ed9a29f3 
 | 0 
							 | 
	@triton.jit
def _matmul_kernel(A, B, C, M, N, K, **meta):
    TILE_M = meta['BLOCK_M']
    TILE_N = meta['BLOCK_N']
    TILE_K = 128
    m = tl.program_id(0) * TILE_M + tl.arange(0, TILE_M)
    n = tl.program_id(1) * TILE_N + tl.arange(0, TILE_N)
    acc = tl.zeros((TILE_M, TILE_N), dtype=tl.float32)
    for k in range(0, K, TILE_K):
        a = tl.load(A + m[:, None] * K + k, mask=[m[:, None] < M, None],
            other=0.0)
        b = tl.load(B + k * N + n, mask=[None, n < N], other=0.0)
        acc += tl.dot(a, b)
    tl.store(C + m[:, None] * N + n, acc, mask=[m[:, None] < M, n < N])
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Matrix Multiplication",
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "High Throughput"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/elphinkuo/fast_matrix_multiplication/blob/4e875a17e95b7ccf9af102d2c0f8cc31ed9a29f3/dot_product/on_gpu/Triton/triton_matric_matmul.py 
 | 
					
	1325bcba-7d28-47b5-b18b-31e0f79878f5 
 | 
	triton_sll.py 
 | 
	pytorch/FBGEMM 
 | 
	fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py 
 | 
	fe980ab54a6e28818d81c8694b6564e7f804418b 
 | 0 
							 | 
	@triton.jit
def jagged_2_softmax_kernel(input_ptr, output_ptr, offsets_row_ptr,
    offsets_col_ptr, offsets_overall_ptr, input_stride, output_stride,
    transpose, max_seq_len_row, max_seq_len_col, BLOCK_SIZE: tl.constexpr):
    """
    input shape is [sum_B(Ni * Hi)]
    output shape is [sum_B(Ni * Hi)]
    Padded version = [B, N, H]
    Calculate softmax alone N dim
    Each kernel calulates softmax for 1 sample and 1 head
    offsets_row.size == offsets_col.size == offsets_overall.size
    """
    pid_batch = tl.program_id(0)
    pid_head = tl.program_id(1)
    begin = tl.load(offsets_overall_ptr + pid_batch)
    if transpose:
        N = tl.load(offsets_row_ptr + pid_batch + 1) - tl.load(
            offsets_row_ptr + pid_batch)
        H = tl.load(offsets_col_ptr + pid_batch + 1) - tl.load(
            offsets_col_ptr + pid_batch)
        stride_n = H
        stride_h = H // H
        H = tl.minimum(max_seq_len_col, H)
        N = tl.minimum(max_seq_len_row, N)
    else:
        N = tl.load(offsets_col_ptr + pid_batch + 1) - tl.load(
            offsets_col_ptr + pid_batch)
        H = tl.load(offsets_row_ptr + pid_batch + 1) - tl.load(
            offsets_row_ptr + pid_batch)
        stride_h = N
        stride_n = N // N
        H = tl.minimum(max_seq_len_row, H)
        N = tl.minimum(max_seq_len_col, N)
    if pid_head >= H:
        return
    if H == 0 or N == 0:
        return
    start_ptr = input_ptr + begin * input_stride
    offsets = tl.arange(0, BLOCK_SIZE)
    input_ptrs = (start_ptr + offsets * input_stride * stride_n + pid_head *
        input_stride * stride_h)
    row = tl.load(input_ptrs, mask=offsets < N, other=-float('inf'))
    row_mins_max = row - tl.max(row, axis=0)
    numerator = tl.exp(row_mins_max)
    denominator = tl.sum(numerator, axis=0)
    softmax_output = numerator / denominator
    output_start_ptr = output_ptr + begin * output_stride
    output_ptrs = (output_start_ptr + offsets * output_stride * stride_n + 
        pid_head * output_stride * stride_h)
    tl.store(output_ptrs, softmax_output, mask=offsets < N)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Softmax"
  ],
  "Memory Access Pattern": [
    "Coalesced",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "BSD",
  "MIT"
]  | 
	https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py 
 | 
					
	c5681889-cbdf-4c8c-b730-916ee6ccb0d9 
 | 
	triton_ops.py 
 | 
	huyz2023/2by4-pretrain 
 | 
	sparse/triton_ops.py 
 | 
	9e330125dea71e5a3dee235f4efb8869f9e4cdd0 
 | 0 
							 | 
	@triton.jit
def _MVUE24_approx_triton(dense_ptr, sparse_ptr, dense_row_stride,
    sparse_row_stride, dense_col_stride, sparse_col_stride, m, k, seed,
    BLOCK_SIZE: tl.constexpr, ARRAY_LAYOUT: tl.constexpr):
    if ARRAY_LAYOUT == 'row':
        row_idx = tl.program_id(0)
        col_idx = tl.program_id(1) * 4 * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE
            ) * 4
        mask = col_idx < k
    elif ARRAY_LAYOUT == 'col':
        row_idx = tl.arange(0, BLOCK_SIZE) + tl.program_id(0) * BLOCK_SIZE
        col_idx = tl.program_id(1) * 4
        mask = row_idx < m
    dense_40 = tl.load(dense_ptr + row_idx * dense_row_stride + (col_idx + 
        0) * dense_col_stride, mask=mask)
    dense_41 = tl.load(dense_ptr + row_idx * dense_row_stride + (col_idx + 
        1) * dense_col_stride, mask=mask)
    dense_42 = tl.load(dense_ptr + row_idx * dense_row_stride + (col_idx + 
        2) * dense_col_stride, mask=mask)
    dense_43 = tl.load(dense_ptr + row_idx * dense_row_stride + (col_idx + 
        3) * dense_col_stride, mask=mask)
    if ARRAY_LAYOUT == 'row':
        seed0 = seed + (tl.program_id(0) + tl.program_id(1) * m) * 2
        seed1 = seed + (tl.program_id(0) + tl.program_id(1) * m) * 2 + 1
    else:
        seed0 = seed + (tl.program_id(0) * k // 16 + tl.program_id(1)) * 2
        seed1 = seed + (tl.program_id(0) * k // 16 + tl.program_id(1)) * 2 + 1
    random0 = tl.rand(seed0, tl.arange(0, BLOCK_SIZE), n_rounds=5)
    random1 = tl.rand(seed1, tl.arange(0, BLOCK_SIZE), n_rounds=5)
    dense_40, dense_41, dense_42, dense_43, m0, m1, m2, m3 = _MVUE24_approx(
        dense_40, dense_41, dense_42, dense_43, random0, random1)
    tl.store(sparse_ptr + row_idx * sparse_row_stride + (col_idx + 0) *
        sparse_col_stride, dense_40, mask=mask & m0)
    tl.store(sparse_ptr + row_idx * sparse_row_stride + (col_idx + 1) *
        sparse_col_stride, dense_41, mask=mask & m1)
    tl.store(sparse_ptr + row_idx * sparse_row_stride + (col_idx + 2) *
        sparse_col_stride, dense_42, mask=mask & m2)
    tl.store(sparse_ptr + row_idx * sparse_row_stride + (col_idx + 3) *
        sparse_col_stride, dense_43, mask=mask & m3)
 
 | 
	{
  "Data Type": [
    "fp32",
    "uint8"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Coalesced",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Memory-Bound",
    "Compute Bound"
  ]
} 
 | 
	[
  "BSD"
]  | 
	https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/triton_ops.py 
 | 
					
	ae2cb3a3-be88-4b7a-bbba-b418ac601259 
 | 
	parallel_scan.py 
 | 
	chengkai-liu/RecBLR 
 | 
	parallel_scan.py 
 | 
	66e520c26e28c05a5425ba2e81c9169b7e0176e2 
 | 0 
							 | 
	@triton.jit
def unpack64(merged):
    tl.static_assert(merged.dtype == tl.uint64)
    b = (merged & 4294967295).to(tl.uint32).to(tl.float32, bitcast=True)
    a = (merged >> 32).to(tl.uint32).to(tl.float32, bitcast=True)
    return a, b
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/chengkai-liu/RecBLR/blob/66e520c26e28c05a5425ba2e81c9169b7e0176e2/parallel_scan.py 
 | 
					
	f031d842-9ab5-40cf-b113-7fe0ef2ae51e 
 | 
	y_5.py 
 | 
	IntelLabs/EquiTriton 
 | 
	src/equitriton/sph_harm/direct/y_5.py 
 | 
	1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c 
 | 0 
							 | 
	@triton.jit
def fifth_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor,
    sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.
    constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr,
    output_stride: tl.constexpr):
    block_id = tl.program_id(0)
    coord_stride = 3
    coord_striding = tl.arange(0, block_size) * coord_stride
    coord_row_offset = coord_striding + block_size * coord_stride * block_id
    x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset <
        coord_numel)
    y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 <
        coord_numel)
    z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 <
        coord_numel)
    output_striding = tl.arange(0, block_size) * output_stride
    output_row_offset = (output_striding + block_size * output_stride *
        block_id + col_offset)
    g_0 = tl.load(sph_grad_ptr + output_row_offset, mask=output_row_offset <
        output_numel)
    g_1 = tl.load(sph_grad_ptr + output_row_offset + 1, mask=
        output_row_offset + 1 < output_numel)
    g_2 = tl.load(sph_grad_ptr + output_row_offset + 2, mask=
        output_row_offset + 2 < output_numel)
    g_3 = tl.load(sph_grad_ptr + output_row_offset + 3, mask=
        output_row_offset + 3 < output_numel)
    g_4 = tl.load(sph_grad_ptr + output_row_offset + 4, mask=
        output_row_offset + 4 < output_numel)
    g_5 = tl.load(sph_grad_ptr + output_row_offset + 5, mask=
        output_row_offset + 5 < output_numel)
    g_6 = tl.load(sph_grad_ptr + output_row_offset + 6, mask=
        output_row_offset + 6 < output_numel)
    g_7 = tl.load(sph_grad_ptr + output_row_offset + 7, mask=
        output_row_offset + 7 < output_numel)
    g_8 = tl.load(sph_grad_ptr + output_row_offset + 8, mask=
        output_row_offset + 8 < output_numel)
    g_9 = tl.load(sph_grad_ptr + output_row_offset + 9, mask=
        output_row_offset + 9 < output_numel)
    g_10 = tl.load(sph_grad_ptr + output_row_offset + 10, mask=
        output_row_offset + 10 < output_numel)
    CONST000 = 1.60565407233314
    CONST001 = 3.0
    CONST002 = 3.21130814466628
    CONST003 = 1.60565407233314
    CONST004 = 6.42261628933256
    CONST005 = 6.42261628933256
    CONST006 = 8.67152307844476
    CONST007 = 8.02827036166571
    CONST008 = 6.9372184627558
    CONST009 = 11.6340690431164
    CONST010 = 12.8452325786651
    CONST011 = 6.21867148191637
    CONST012 = 6.21867148191637
    CONST014 = 12.4373429638327
    CONST017 = 12.8452325786651
    CONST018 = 13.8744369255116
    CONST019 = 24.8746859276655
    CONST020 = 24.8746859276655
    CONST021 = 27.7488738510232
    CONST024 = 29.4321253055229
    CONST027 = 7.35803132638072
    CONST029 = 46.5362761724657
    CONST030 = 51.3809303146605
    CONST031 = 51.3809303146605
    CONST034 = 101.955872807799
    CONST036 = -8.67152307844475
    CONST037 = 3.4686092313779
    CONST038 = -88.2963759165686
    CONST039 = -83.2466215530696
    CONST040 = -69.8044142586986
    CONST041 = -50.9779364038993
    CONST042 = -50.9779364038993
    CONST043 = -46.5362761724657
    CONST044 = -44.1481879582843
    CONST045 = -41.6233107765348
    CONST046 = -38.5356977359954
    CONST047 = -38.5356977359954
    CONST048 = -33.166247903554
    CONST049 = -33.9852909359329
    CONST050 = 6.42261628933257
    CONST051 = -33.9852909359329
    CONST052 = -29.4321253055229
    CONST053 = -27.7488738510232
    CONST054 = -20.8116553882674
    CONST055 = -19.2678488679977
    CONST056 = -19.2678488679977
    CONST057 = -16.9926454679664
    CONST058 = -16.9926454679664
    CONST059 = -13.8744369255116
    CONST060 = -16.583123951777
    CONST061 = -8.49632273398321
    CONST062 = -6.9372184627558
    CONST063 = -5.20291384706685
    CONST064 = -3.4686092313779
    VAR06 = x * x * x * x
    VAR07 = x * x * x
    VAR08 = x * x
    VAR15 = y * y * y * y
    VAR16 = y * y * y
    VAR17 = y * y
    VAR24 = z * z * z * z
    VAR25 = z * z * z
    VAR26 = z * z
    g_x = tl.load(coord_grad_ptr + coord_row_offset, mask=coord_row_offset <
        coord_numel)
    g_y = tl.load(coord_grad_ptr + coord_row_offset + 1, mask=
        coord_row_offset + 1 < coord_numel)
    g_z = tl.load(coord_grad_ptr + coord_row_offset + 2, mask=
        coord_row_offset + 2 < coord_numel)
    g_x += g_0 * (CONST009 * VAR06 + CONST009 * VAR24 + CONST040 * VAR08 *
        VAR26) + g_1 * y * (CONST038 * VAR08 * z - CONST052 * VAR25) + g_10 * (
        CONST029 * VAR07 * z + CONST043 * VAR25 * x) + g_2 * (CONST001 *
        VAR08 * (CONST059 * VAR17 + CONST064 * VAR26) + CONST006 * VAR06 - 
        CONST045 * VAR17 * VAR26 + CONST063 * VAR24) + g_3 * (CONST041 *
        VAR08 * y * z - CONST049 * VAR16 * z + CONST057 * VAR25 * y) + g_4 * (
        CONST000 * VAR24 + CONST001 * VAR08 * (CONST002 * VAR26 + CONST055 *
        VAR17) + CONST007 * VAR06 + CONST010 * VAR15 + CONST056 * VAR17 * VAR26
        ) + g_5 * (CONST048 * VAR16 * x + y * (CONST019 * VAR07 + CONST019 *
        VAR26 * x)) + g_6 * (CONST005 * VAR25 * x + z * (CONST004 * VAR07 +
        CONST046 * VAR17 * x)) + g_7 * (CONST049 * VAR16 * x - CONST051 *
        VAR07 * y) + g_8 * (CONST008 * VAR25 * x + z * (CONST039 * VAR17 *
        x - CONST054 * VAR07)) + g_9 * y * (CONST024 * VAR07 + CONST038 *
        VAR26 * x)
    g_y += g_1 * (CONST052 * VAR07 * z - CONST052 * VAR25 * x) + g_2 * (-
        CONST039 * VAR26 * x * y + CONST053 * VAR07 * y) + g_3 * (CONST058 *
        VAR07 * z + x * (CONST034 * VAR17 * z + CONST057 * VAR25)) + g_4 * (
        CONST047 * VAR07 * y + x * (CONST030 * VAR16 + CONST046 * VAR26 * y)
        ) + g_5 * (CONST001 * VAR17 * (CONST060 * VAR08 + CONST060 * VAR26) +
        CONST011 * VAR06 + CONST012 * VAR24 + CONST014 * VAR08 * VAR26 - 
        CONST060 * VAR15) + g_6 * (CONST046 * VAR25 * y + z * (CONST031 *
        VAR16 + CONST046 * VAR08 * y)) + g_7 * (CONST001 * VAR17 * (
        CONST057 * VAR08 - CONST057 * VAR26) - CONST061 * VAR06 + CONST061 *
        VAR24) + g_8 * (CONST021 * VAR25 * y + CONST039 * VAR08 * y * z
        ) + g_9 * (CONST027 * VAR06 + CONST027 * VAR24 + CONST044 * VAR08 *
        VAR26)
    g_z += g_0 * (CONST029 * VAR25 * x + CONST043 * VAR07 * z) + g_1 * y * (
        -CONST038 * VAR26 * x + CONST052 * VAR07) + g_10 * (CONST009 *
        VAR06 + CONST009 * VAR24 + CONST040 * VAR08 * VAR26) + g_2 * (
        CONST062 * VAR07 * z + x * (-CONST039 * VAR17 * z + CONST054 * VAR25)
        ) + g_3 * (CONST058 * VAR07 * y + x * (CONST042 * VAR26 * y - 
        CONST049 * VAR16)) + g_4 * (CONST005 * VAR07 * z + x * (CONST046 *
        VAR17 * z + CONST050 * VAR25)) + g_5 * (CONST048 * VAR16 * z + y *
        (CONST019 * VAR08 * z + CONST020 * VAR25)) + g_6 * (CONST001 *
        VAR26 * (CONST002 * VAR08 + CONST056 * VAR17) + CONST003 * VAR06 + 
        CONST007 * VAR24 + CONST017 * VAR15 + CONST056 * VAR08 * VAR17
        ) + g_7 * (-CONST049 * VAR16 * z + CONST051 * VAR25 * y) + g_8 * (
        CONST001 * VAR26 * (CONST018 * VAR17 + CONST037 * VAR08) + CONST036 *
        VAR24 + CONST045 * VAR08 * VAR17 - CONST063 * VAR06) + g_9 * y * (
        CONST024 * VAR25 + CONST038 * VAR08 * z)
    tl.store(coord_grad_ptr + coord_row_offset, g_x, mask=coord_row_offset <
        coord_numel)
    tl.store(coord_grad_ptr + coord_row_offset + 1, g_y, mask=
        coord_row_offset + 1 < coord_numel)
    tl.store(coord_grad_ptr + coord_row_offset + 2, g_z, mask=
        coord_row_offset + 2 < coord_numel)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_5.py 
 | 
					
	e4b5235d-37a5-4b17-8c48-fa82e3aecf4f 
 | 
	paged_attn.py 
 | 
	AlibabaPAI/FLASHNN 
 | 
	flashnn/triton_kernels/paged_attn.py 
 | 
	528a9301587f5fb135b25d973a87ba0a40a703a7 
 | 0 
							 | 
	@triton.autotune(configs=[triton.Config({'UNROLL_FACTOR': uf}) for uf in [1,
    2, 4, 8]], key=['POWER_OF_2_MAX_SEQ_LEN', 'QUERY_GROUP_SIZE',
    'USE_PARTITIONING', 'BLOCK_SIZE', 'HEAD_SIZE', 'PARTITION_SIZE'])
@triton.jit
def _paged_attn_wo_mma_kernel(exp_sums, max_logits, out, q, k_cache,
    v_cache, scale, block_tables, seq_lens, max_num_blocks_per_seq,
    alibi_slopes, stride_qm, stride_qn, stride_om, stride_on, stride_ok,
    stride_km, stride_kn, stride_kk, stride_exp_m, stride_exp_n, BLOCK_SIZE:
    tl.constexpr, HEAD_SIZE: tl.constexpr, QUERY_GROUP_SIZE: tl.constexpr,
    PARTITION_SIZE: tl.constexpr, POWER_OF_2_MAX_SEQ_LEN: tl.constexpr,
    USE_PARTITIONING: tl.constexpr, UNROLL_FACTOR: tl.constexpr):
    head_idx = tl.program_id(axis=0)
    kv_head_idx = head_idx // QUERY_GROUP_SIZE
    seq_idx = tl.program_id(axis=1)
    par_idx = tl.program_id(axis=2)
    seq_len = tl.load(seq_lens + seq_idx)
    if par_idx * PARTITION_SIZE >= seq_len:
        return
    num_context_blocks = tl.cdiv(seq_len, BLOCK_SIZE)
    if USE_PARTITIONING:
        num_blocks_per_par = PARTITION_SIZE // BLOCK_SIZE
        start_block_idx = par_idx * num_blocks_per_par
        end_block_idx = tl.minimum(start_block_idx + num_blocks_per_par,
            num_context_blocks)
    else:
        start_block_idx = 0
        end_block_idx = num_context_blocks
    if alibi_slopes is None:
        alibi_slope = 0.0
    else:
        alibi_slope = tl.load(alibi_slopes + head_idx)
    block_offs = tl.arange(0, BLOCK_SIZE)
    head_size_offs = tl.arange(0, HEAD_SIZE)
    q = tl.load(q + seq_idx * stride_qm + head_idx * stride_qn + head_size_offs
        )
    q = (q * scale).to(tl.float16)
    qkv = tl.zeros([BLOCK_SIZE, HEAD_SIZE], dtype=tl.float32)
    qk_max = float('-inf')
    exp_sum = 0.0
    fp16_0 = tl.zeros([1, 1], dtype=k_cache.dtype.element_ty)
    base_offs_kv = kv_head_idx * stride_kn + block_offs[:, None
        ] * stride_kk + head_size_offs[None, :]
    block_base_ptrs = block_tables + seq_idx * max_num_blocks_per_seq
    hi_unroll = (end_block_idx - 1) // UNROLL_FACTOR * UNROLL_FACTOR
    if UNROLL_FACTOR == 1:
        qkv, qk_max, exp_sum = _inner_paged_attn_unroll_0_kernel(q, k_cache,
            v_cache, stride_km, block_base_ptrs, base_offs_kv, alibi_slope,
            block_offs, seq_len, qkv, qk_max, exp_sum, BLOCK_SIZE,
            start_block_idx, hi_unroll)
    elif UNROLL_FACTOR == 2:
        qkv, qk_max, exp_sum = _inner_paged_attn_unroll_2_kernel(q, k_cache,
            v_cache, stride_km, block_base_ptrs, base_offs_kv, alibi_slope,
            block_offs, seq_len, qkv, qk_max, exp_sum, BLOCK_SIZE,
            start_block_idx, hi_unroll)
    elif UNROLL_FACTOR == 4:
        qkv, qk_max, exp_sum = _inner_paged_attn_unroll_4_kernel(q, k_cache,
            v_cache, stride_km, block_base_ptrs, base_offs_kv, alibi_slope,
            block_offs, seq_len, qkv, qk_max, exp_sum, BLOCK_SIZE,
            start_block_idx, hi_unroll)
    elif UNROLL_FACTOR == 8:
        qkv, qk_max, exp_sum = _inner_paged_attn_unroll_8_kernel(q, k_cache,
            v_cache, stride_km, block_base_ptrs, base_offs_kv, alibi_slope,
            block_offs, seq_len, qkv, qk_max, exp_sum, BLOCK_SIZE,
            start_block_idx, hi_unroll)
    tl.debug_barrier()
    for block_idx in range(hi_unroll, end_block_idx):
        physical_block_idx = tl.load(block_tables + seq_idx *
            max_num_blocks_per_seq + block_idx)
        mask = block_offs[:, None] < seq_len - block_idx * BLOCK_SIZE
        offs_kv = physical_block_idx * stride_km + base_offs_kv
        k = tl.load(k_cache + offs_kv, mask=mask, other=fp16_0)
        v = tl.load(v_cache + offs_kv, mask=mask, other=fp16_0)
        _qk = tl.sum((q[None, :] * k).to(tl.float32), axis=1)
        _qk = tl.where(block_offs < seq_len - block_idx * BLOCK_SIZE, _qk,
            float('-inf'))
        _qk += alibi_slope * (block_idx * BLOCK_SIZE + block_offs - seq_len + 1
            )
        _qk_max = tl.maximum(tl.max(_qk, axis=0), qk_max)
        _exp_sum = exp_sum * tl.exp(qk_max - _qk_max) + tl.sum(tl.exp(_qk -
            _qk_max), axis=0)
        qkv = qkv * (exp_sum * tl.exp(qk_max - _qk_max)) + tl.exp(_qk[:,
            None] - _qk_max) * v
        qkv = qkv / _exp_sum
        qk_max = _qk_max
        exp_sum = _exp_sum
    if USE_PARTITIONING:
        offs_exp = seq_idx * stride_exp_m + head_idx * stride_exp_n + par_idx
        tl.store(exp_sums + offs_exp, exp_sum)
        tl.store(max_logits + offs_exp, qk_max)
    offs_out = (seq_idx * stride_om + head_idx * stride_on + par_idx *
        stride_ok + head_size_offs)
    tl.store(out + offs_out, tl.sum(qkv, axis=0))
 
 | 
	{
  "Data Type": [
    "fp16",
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Softmax",
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Blocked Access",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops",
    "Persistent Kernels"
  ],
  "Performance Objective": [
    "High Throughput"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/paged_attn.py 
 | 
					
	cd64708f-5721-4a20-be92-b7c64e1762ca 
 | 
	GELUglu.py 
 | 
	huyz2023/2by4-pretrain 
 | 
	sparse/GELUglu.py 
 | 
	9e330125dea71e5a3dee235f4efb8869f9e4cdd0 
 | 0 
							 | 
	@triton.jit
def _gelu_glu_fwd_kernel(output_ptr, input_ptr, output_row_stride,
    input_row_stride, output_col_stride, input_col_stride,
    output_page_stride, input_page_stride, n_pages, BLOCK_SIZE: tl.constexpr):
    row_idx = tl.program_id(0)
    col_idx = tl.program_id(1)
    x = tl.load(input_ptr + row_idx * input_row_stride + col_idx *
        input_col_stride + tl.arange(0, BLOCK_SIZE // 2) *
        input_page_stride, mask=tl.arange(0, BLOCK_SIZE // 2) < n_pages // 
        2, other=-float('inf'))
    gate = tl.load(input_ptr + row_idx * input_row_stride + col_idx *
        input_col_stride + (tl.arange(0, BLOCK_SIZE // 2) + n_pages // 2) *
        input_page_stride, mask=tl.arange(0, BLOCK_SIZE // 2) < n_pages // 
        2, other=-float('inf'))
    gate_cube = gate * gate * gate
    beta = 0.7978845608028654
    kappa = 0.044715
    inner = beta * (gate + kappa * gate_cube)
    inner_tanh = tanh(inner)
    gate_gelu = 0.5 * gate * (inner_tanh + 1)
    gelu_glu = gate_gelu * x
    tl.store(output_ptr + row_idx * output_row_stride + col_idx *
        output_col_stride + tl.arange(0, BLOCK_SIZE // 2) *
        output_page_stride, gelu_glu, mask=tl.arange(0, BLOCK_SIZE // 2) < 
        n_pages // 2)
 
 | 
	{
  "Data Type": [],
  "Functionality": [
    "Activation Functions"
  ],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "BSD"
]  | 
	https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/GELUglu.py 
 | 
					
	e3441201-2cc6-4bc0-b20c-0cd97d2fe333 
 | 
	triton_welford.py 
 | 
	pytorch-labs/tritonbench 
 | 
	tritonbench/operators/welford/triton_welford.py 
 | 
	3a5dccb159834968567a2e45e561dc1aeaa8f8a8 
 | 0 
							 | 
	@triton.autotune(configs=[triton.Config({'XBLOCK': 1, 'RBLOCK': 1024},
    num_stages=1, num_warps=8), triton.Config({'XBLOCK': 1, 'RBLOCK': 2048},
    num_stages=1, num_warps=8)], key=['xnumel', 'rnumel'])
@triton.jit
def triton_red_fused_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1,
    in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr,
    RBLOCK: tl.constexpr):
    xoffset = tl.program_id(0) * XBLOCK
    xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
    xmask = xindex < xnumel
    rbase = tl.arange(0, RBLOCK)[None, :]
    x0 = xindex
    tmp3_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
    tmp3_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
    tmp3_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
    for roffset in range(0, rnumel, RBLOCK):
        rindex = roffset + rbase
        rmask = rindex < rnumel
        r1 = rindex
        tmp0 = tl.load(in_ptr0 + (r1 + rnumel * x0), rmask, eviction_policy
            ='evict_last').to(tl.float32)
        tmp1 = tmp0.to(tl.float32)
        tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
        tmp3_mean_next, tmp3_m2_next, tmp3_weight_next = (triton_helpers.
            welford_reduce(tmp2, tmp3_mean, tmp3_m2, tmp3_weight, roffset == 0)
            )
        tmp3_mean = tl.where(rmask, tmp3_mean_next, tmp3_mean)
        tmp3_m2 = tl.where(rmask, tmp3_m2_next, tmp3_m2)
        tmp3_weight = tl.where(rmask, tmp3_weight_next, tmp3_weight)
    tmp3_tmp, tmp4_tmp, tmp5_tmp = triton_helpers.welford(tmp3_mean,
        tmp3_m2, tmp3_weight, 1)
    tmp3 = tmp3_tmp[:, None]
    tmp4 = tmp4_tmp[:, None]
    tmp5 = tmp5_tmp[:, None]
    tl.store(out_ptr0 + x0, tmp3, None)
    tmp6 = rnumel
    tmp7 = tmp4 / tmp6
    tmp8 = 1e-05
    tmp9 = tmp7 + tmp8
    tmp10 = libdevice.rsqrt(tmp9)
    tl.debug_barrier()
    tl.store(in_out_ptr0 + x0, tmp10, None)
    for roffset in range(0, rnumel, RBLOCK):
        rindex = roffset + rbase
        rmask = rindex < rnumel
        r1 = rindex
        tmp11 = tl.load(in_ptr0 + (r1 + rnumel * x0), rmask,
            eviction_policy='evict_first').to(tl.float32)
        tmp15 = tl.load(in_ptr1 + r1, rmask, eviction_policy='evict_last').to(
            tl.float32)
        tmp18 = tl.load(in_ptr2 + r1, rmask, eviction_policy='evict_last').to(
            tl.float32)
        tmp12 = tmp11.to(tl.float32)
        tmp13 = tmp12 - tmp3
        tmp14 = tmp13 * tmp10
        tmp16 = tmp15.to(tl.float32)
        tmp17 = tmp14 * tmp16
        tmp19 = tmp18.to(tl.float32)
        tmp20 = tmp17 + tmp19
        tmp21 = tmp20.to(tl.float32)
        tl.store(out_ptr1 + (r1 + rnumel * x0), tmp21, rmask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Normalization"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound",
    "Memory-Bound"
  ]
} 
 | 
	[
  "BSD"
]  | 
	https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/welford/triton_welford.py 
 | 
					
	b6bbdca6-8c98-4528-a967-b358c90a1d6f 
 | 
	triton_fused_local_attn.py 
 | 
	LouChao98/vqtree 
 | 
	ops/triton_fused_local_attn.py 
 | 
	27a53274df7a804bce27dffcce5f5be73f64b6f3 
 | 0 
							 | 
	@triton.jit
def _attn_fwd_inner(acc, l_i, m_i, q, sm_scale, K_block_ptr, V_block_ptr,
    start_m, offs_m, offs_n, SEQLEN_K: tl.constexpr, WINDOW_SIZE: tl.
    constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, EVEN_MN: tl.
    constexpr, STAGE: tl.constexpr):
    if STAGE == 1:
        hi = start_m * BLOCK_M - WINDOW_SIZE + BLOCK_M
        lo = start_m * BLOCK_M - WINDOW_SIZE
        if hi < 0:
            hi = 0
        if lo < 0:
            lo = 0
    elif STAGE == 2:
        hi = start_m * BLOCK_M
        lo = start_m * BLOCK_M - WINDOW_SIZE + BLOCK_M
        if lo < 0:
            lo = 0
    else:
        lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M
        lo = tl.multiple_of(lo, BLOCK_M)
        hi = min(hi, SEQLEN_K)
    EVEN_MASK_FREE = EVEN_MN & ((STAGE == 1) | (STAGE == 2))
    K_block_ptr = tl.advance(K_block_ptr, (0, lo))
    V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
    for start_n in range(lo, hi, BLOCK_N):
        start_n = tl.multiple_of(start_n, BLOCK_N)
        if EVEN_MASK_FREE:
            k = tl.load(K_block_ptr)
        else:
            k = tl.load(K_block_ptr, boundary_check=(1,), padding_option='zero'
                )
        qk = tl.dot(q, k) * (sm_scale * RCP_LN2)
        if STAGE == 1:
            mask = offs_m[:, None] <= start_n + WINDOW_SIZE + offs_n[None, :]
            qk += tl.where(mask, 0, NEGINF)
        elif STAGE == 3:
            mask = offs_m[:, None] >= start_n + offs_n[None, :]
            qk += tl.where(mask, 0, NEGINF)
        if not EVEN_MASK_FREE:
            qk += tl.where((start_n + offs_n)[None, :] < SEQLEN_K, 0, NEGINF)
        m_i_new = tl.maximum(m_i, tl.max(qk, 1))
        alpha = tl.math.exp2(m_i - m_i_new)
        p = tl.math.exp2(qk - m_i_new[:, None])
        acc *= alpha[:, None]
        if EVEN_MASK_FREE:
            v = tl.load(V_block_ptr)
        else:
            v = tl.load(V_block_ptr, boundary_check=(1,), padding_option='zero'
                )
        acc += tl.dot(p.to(V_block_ptr.dtype.element_ty), v)
        l_i = l_i * alpha + tl.sum(p, 1)
        m_i = m_i_new
        K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
        V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
    return acc, l_i, m_i
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_local_attn.py 
 | 
					
	362d6816-df21-46a1-b625-bc3f25aab424 
 | 
	06-fused-attention.py 
 | 
	triton-lang/triton 
 | 
	python/tutorials/06-fused-attention.py 
 | 
	a2b398e0bb1b120f31cf386d6ae3261c3ab84207 
 | 0 
							 | 
	@triton.jit
def _attn_bwd_dkdv(dk, dv, Q, k, v, sm_scale, DO, M, D, stride_tok,
    stride_d, H, N_CTX, BLOCK_M1: tl.constexpr, BLOCK_N1: tl.constexpr,
    HEAD_DIM: tl.constexpr, start_n, start_m, num_steps, MASK: tl.constexpr):
    offs_m = start_m + tl.arange(0, BLOCK_M1)
    offs_n = start_n + tl.arange(0, BLOCK_N1)
    offs_k = tl.arange(0, HEAD_DIM)
    qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d
    do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
    tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0)
    curr_m = start_m
    step_m = BLOCK_M1
    for blk_idx in range(num_steps):
        qT = tl.load(qT_ptrs)
        offs_m = curr_m + tl.arange(0, BLOCK_M1)
        m = tl.load(M + offs_m)
        qkT = tl.dot(k, qT)
        pT = tl.math.exp2(qkT - m[None, :])
        if MASK:
            mask = offs_m[None, :] >= offs_n[:, None]
            pT = tl.where(mask, pT, 0.0)
        do = tl.load(do_ptrs)
        ppT = pT
        ppT = ppT.to(tl.float16)
        dv += tl.dot(ppT, do)
        Di = tl.load(D + offs_m)
        dpT = tl.dot(v, tl.trans(do)).to(tl.float32)
        dsT = pT * (dpT - Di[None, :])
        dsT = dsT.to(tl.float16)
        dk += tl.dot(dsT, tl.trans(qT))
        curr_m += step_m
        qT_ptrs += step_m * stride_tok
        do_ptrs += step_m * stride_tok
    return dk, dv
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Attention Mechanisms"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/triton-lang/triton/blob/a2b398e0bb1b120f31cf386d6ae3261c3ab84207/python/tutorials/06-fused-attention.py 
 | 
					
	465954ee-4cfe-46e9-8668-a230f02bb257 
 | 
	triton_sll.py 
 | 
	pytorch/FBGEMM 
 | 
	fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py 
 | 
	fe980ab54a6e28818d81c8694b6564e7f804418b 
 | 0 
							 | 
	@triton.jit
def jagged_dense_bmm_kernel(a_ptr, a_offset_ptr, b_ptr, c_ptr, N, K,
    stride_am, stride_ak, stride_bl, stride_bk, stride_bn, stride_cm,
    stride_cn, max_seq_len, allow_tf32: tl.constexpr, BLOCK_SIZE_M: tl.
    constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr):
    """Kernel for computing the matmul C = A x B.
    A has shape (sum_B(M_i), K), B has shape (B, K, N) and C has shape (sum_B(M_i), N)
    """
    pid_batch = tl.program_id(0)
    pid = tl.program_id(1)
    begin = tl.load(a_offset_ptr + pid_batch)
    end = tl.load(a_offset_ptr + pid_batch + 1)
    M = tl.minimum(end - begin, max_seq_len)
    if M == 0:
        return
    num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
    pid_m = pid // num_pid_n
    pid_n = pid % num_pid_n
    offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    if pid_m * BLOCK_SIZE_M >= M:
        return
    offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    if pid_n * BLOCK_SIZE_N >= N:
        return
    offs_k = tl.arange(0, BLOCK_SIZE_K)
    a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] *
        stride_ak + begin * stride_am)
    b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] *
        stride_bn + pid_batch * stride_bl)
    c = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for k in range(0, K, BLOCK_SIZE_K):
        updated_offset = k + offs_k
        a = tl.load(a_ptrs, mask=(updated_offset[None, :] < K) & (offs_am[:,
            None] < M), other=0.0)
        b = tl.load(b_ptrs, mask=(updated_offset[:, None] < K) & (offs_bn[
            None, :] < N), other=0.0)
        c += tl.dot(a, b, allow_tf32=allow_tf32)
        a_ptrs += BLOCK_SIZE_K * stride_ak
        b_ptrs += BLOCK_SIZE_K * stride_bk
    offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
    c_ptrs = c_ptr + stride_cm * offs_m[:, None] + stride_cn * offs_n[None, :
        ] + begin * stride_cm
    tl.store(c_ptrs, c, mask=mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access",
    "Blocked Access"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "Memory-Bound"
  ]
} 
 | 
	[
  "BSD",
  "MIT"
]  | 
	https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py 
 | 
					
	ff383b02-6ac6-4d19-8a8c-ff80198f182f 
 | 
	z_order.py 
 | 
	Kitsunetic/space-filling-pytorch 
 | 
	space_filling_pytorch/functional/z_order.py 
 | 
	0de955ad1036973ee7506c5a0124c208acec722d 
 | 0 
							 | 
	@triton.jit
def _encode_z_kernel(xyz_ptr, distance_ptr, B, N, space_size, x_offset,
    y_offset, z_offset, str_xyz_B, str_xyz_N, str_xyz_C, BLK: tl.constexpr,
    ASSIGN_BATCH_INDEX: tl.constexpr):
    pid_b = tl.program_id(0)
    pid_n = tl.program_id(1)
    offs_n = pid_n * BLK + tl.arange(0, BLK)
    mask_n = offs_n < N
    xyz_ptrs = xyz_ptr + pid_b * str_xyz_B + offs_n * str_xyz_N
    fx = tl.load(xyz_ptrs + x_offset * str_xyz_C, mask=mask_n)
    fy = tl.load(xyz_ptrs + y_offset * str_xyz_C, mask=mask_n)
    fz = tl.load(xyz_ptrs + z_offset * str_xyz_C, mask=mask_n)
    ret = _calculate_zorder(fx, fy, fz, space_size)
    if ASSIGN_BATCH_INDEX:
        ret |= pid_b.to(tl.int64) << 48
    tl.store(distance_ptr + pid_b * N + offs_n, ret, mask=mask_n)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/Kitsunetic/space-filling-pytorch/blob/0de955ad1036973ee7506c5a0124c208acec722d/space_filling_pytorch/functional/z_order.py 
 | 
					
	1f260b65-2aa3-4dd8-ad87-6f5bba941dd2 
 | 
	block_sparse_attention_lut.py 
 | 
	sparklesea/sparse-quant 
 | 
	sparse-attention/muxi/playground/kernels/block_sparse_attention_lut.py 
 | 
	e3d8b6ecab208c31b744913ed8c3caaa43605f86 
 | 0 
							 | 
	@triton.jit
def _sparse_attention_prefill_fwd_kernel(Q, K, V, sm_scale, Out, lut,
    stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh,
    stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn,
    stride_oz, stride_oh, stride_om, stride_on, stride_lz, stride_lh,
    stride_lx, Z, H, N_CTX, LT, NNZ: tl.constexpr, BLOCK_M: tl.constexpr,
    BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr):
    start_m = tl.program_id(0)
    off_hz = tl.program_id(1)
    lut_indicator = tl.program_id(1) % H
    qvk_offset = off_hz * stride_qh
    lut_offset = lut_indicator * stride_lz
    Q_block_ptr = tl.make_block_ptr(base=Q + qvk_offset, shape=(N_CTX,
        BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m *
        BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0))
    K_block_ptr = tl.make_block_ptr(base=K + qvk_offset, shape=(
        BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0
        ), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1))
    V_block_ptr = tl.make_block_ptr(base=V + qvk_offset, shape=(N_CTX,
        BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0),
        block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0))
    O_block_ptr = tl.make_block_ptr(base=Out + qvk_offset, shape=(N_CTX,
        BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m *
        BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0))
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
    acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
    qk_scale = sm_scale * 1.44269504
    q = tl.load(Q_block_ptr, boundary_check=(0, 1), padding_option='zero')
    q = (q * qk_scale).to(tl.float16)
    last_nnz_id = -1
    for nnz_id in range(NNZ):
        present_nnz_id = tl.load(lut + lut_offset + start_m * stride_lh + 
            nnz_id * stride_lx)
        start_n = present_nnz_id * BLOCK_N
        start_n = tl.multiple_of(start_n, BLOCK_N)
        present_nnz_id = present_nnz_id.to(tl.int32)
        k = tl.load(tl.advance(K_block_ptr, (0, start_n)), boundary_check=(
            0, 1), padding_option='zero')
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += tl.dot(q, k)
        if LT:
            qk = tl.where(offs_m[:, None] >= start_n + offs_n[None, :], qk,
                float('-inf'))
        qk = tl.where((offs_m[:, None] < N_CTX) & ((start_n + offs_n)[None,
            :] < N_CTX), qk, float('-inf'))
        m_ij = tl.max(qk, 1)
        p = tl.math.exp2(qk - m_ij[:, None])
        p = tl.where(m_ij[:, None] == tl.full((BLOCK_M, BLOCK_N), float(
            '-inf'), tl.float32), 0.0, tl.math.exp2(qk - m_ij[:, None]))
        p = p * (last_nnz_id != present_nnz_id)
        l_ij = tl.sum(p, 1)
        m_i_new = tl.maximum(m_i, m_ij)
        alpha = tl.math.exp2(m_i - m_i_new)
        beta = tl.math.exp2(m_ij - m_i_new)
        l_i *= alpha
        l_i_new = l_i + beta * l_ij
        p_scale = beta / l_i_new
        p = p * p_scale[:, None]
        acc_scale = l_i / l_i_new
        acc = acc * acc_scale[:, None]
        v = tl.load(tl.advance(V_block_ptr, (start_n, 0)), boundary_check=(
            0, 1), padding_option='zero')
        p = p.to(tl.float16)
        acc += tl.dot(p, v)
        l_i = l_i_new
        m_i = m_i_new
        last_nnz_id = present_nnz_id
    tl.store(O_block_ptr, acc.to(tl.float16), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache",
  "BSD"
]  | 
	https://github.com/sparklesea/sparse-quant/blob/e3d8b6ecab208c31b744913ed8c3caaa43605f86/sparse-attention/muxi/playground/kernels/block_sparse_attention_lut.py 
 | 
					
	33299f98-59f0-48e0-ae23-2da139cb499d 
 | 
	triton_sll.py 
 | 
	pytorch/FBGEMM 
 | 
	fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py 
 | 
	fe980ab54a6e28818d81c8694b6564e7f804418b 
 | 0 
							 | 
	@triton.jit
def jagged_softmax_backward_kernel(grad_output_ptr, softmax_output_ptr,
    grad_input_ptr, input_offsets_ptr, grad_output_row_stride,
    grad_output_head_stride, softmax_output_row_stride,
    softmax_output_head_stride, grad_input_row_stride,
    grad_input_head_stride, max_seq_len: tl.constexpr, BLOCK_SIZE: tl.constexpr
    ):
    """
    grad_output_ptr shpae is [SUM_B, H]
    softmax_output shape is [SUM_B, H]
    grad_input shape is [SUM_B, H]
    """
    pid_batch = tl.program_id(0)
    pid_head = tl.program_id(1)
    row_begin = tl.load(input_offsets_ptr + pid_batch)
    row_end = tl.load(input_offsets_ptr + pid_batch + 1)
    N = tl.minimum(max_seq_len, row_end - row_begin)
    col_offsets = tl.arange(0, BLOCK_SIZE)
    grad_output_ptrs = (grad_output_ptr + row_begin *
        grad_output_row_stride + col_offsets * grad_output_row_stride + 
        pid_head * grad_output_head_stride)
    softmax_output_ptrs = (softmax_output_ptr + row_begin *
        softmax_output_row_stride + col_offsets * softmax_output_row_stride +
        pid_head * softmax_output_head_stride)
    grad_output_row = tl.load(grad_output_ptrs, mask=col_offsets < N, other=0.0
        )
    softmax_output_row = tl.load(softmax_output_ptrs, mask=col_offsets < N,
        other=0.0)
    sum_value = tl.sum(grad_output_row * softmax_output_row, axis=0)
    grad_input_row = (grad_output_row - sum_value) * softmax_output_row
    grad_input_ptrs = (grad_input_ptr + row_begin * grad_input_row_stride +
        col_offsets * grad_input_row_stride + pid_head * grad_input_head_stride
        )
    tl.store(grad_input_ptrs, grad_input_row, mask=col_offsets < N)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Softmax"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "BSD",
  "MIT"
]  | 
	https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py 
 | 
					
	a5dd6188-758a-4f75-ad16-7e404fe62595 
 | 
	chunk.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/linear_attn/chunk.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.jit
def chunk_linear_attn_fwd_kernel_h(k, v, h, h0, ht, s_k_h, s_k_t, s_k_d,
    s_v_h, s_v_t, s_v_d, s_h_h, s_h_t, T: tl.constexpr, K: tl.constexpr, V:
    tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT:
    tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.
    constexpr):
    i_k, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    b_h = tl.zeros([BK, BV], dtype=tl.float32)
    if USE_INITIAL_STATE:
        p_h0 = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k *
            BK, i_v * BV), (BK, BV), (1, 0))
        b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
    for i_t in range(NT):
        p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (
            i_k * BK, i_t * BT), (BK, BT), (0, 1))
        p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (
            i_t * BT, i_v * BV), (BT, BV), (1, 0))
        p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * K * V, (K, V), (
            s_h_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
        tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
        b_k = tl.load(p_k, boundary_check=(0, 1))
        b_v = tl.load(p_v, boundary_check=(0, 1))
        b_h += tl.dot(b_k, b_v, allow_tf32=False)
    if STORE_FINAL_STATE:
        p_ht = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k *
            BK, i_v * BV), (BK, BV), (1, 0))
        tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/linear_attn/chunk.py 
 | 
					
	e7e27939-c077-46e1-9632-7858a429dae5 
 | 
	k_layer_norm.py 
 | 
	cpuhrsch/torchfused 
 | 
	torchfused/triton/k_layer_norm.py 
 | 
	6c40ed160dcecbe7825f268f7c86bccd359e0ebf 
 | 0 
							 | 
	@triton.jit
def _layer_norm_non_affine_fw(X, Y, M, V, stride, N, eps, **META):
    _store(_layer_norm_non_affine(X, M, V, stride, N, eps, META), Y, stride,
        N, META)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Normalization"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "BSD"
]  | 
	https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_layer_norm.py 
 | 
					
	a8c30808-d914-41b7-8bd2-094cbdbfcbd0 
 | 
	k_fused_matmul_bw.py 
 | 
	cpuhrsch/torchfused 
 | 
	torchfused/triton/k_fused_matmul_bw.py 
 | 
	6c40ed160dcecbe7825f268f7c86bccd359e0ebf 
 | 0 
							 | 
	@triton.heuristics({'EVEN_N': lambda *args, **meta: args[3] % meta[
    'BLOCK_COL'] == 0})
@triton.autotune(configs=[triton.Config({'BLOCK_COL': 32}, num_stages=5,
    num_warps=2), triton.Config({'BLOCK_COL': 64}, num_stages=5, num_warps=
    2), triton.Config({'BLOCK_COL': 128}, num_stages=3, num_warps=4),
    triton.Config({'BLOCK_COL': 256}, num_stages=3, num_warps=8), triton.
    Config({'BLOCK_COL': 512}, num_stages=3, num_warps=8), triton.Config({
    'BLOCK_COL': 1024}, num_stages=3, num_warps=16)], key=['N'])
@triton.jit
def kernel_bw(GRAD_ACT, GRAD_OUT, ACT_INPUTS, N, stride_gom, stride_aim, **META
    ):
    """
    Go over all the activation inputs, compute the corresponding gradient
    """
    BLOCK_N = META['BLOCK_COL']
    pid_m, pid_n = tl.program_id(axis=0), tl.program_id(axis=1)
    rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    act_input_ptrs = ACT_INPUTS + pid_m * stride_aim + rn
    if META['EVEN_N']:
        act_in = tl.load(act_input_ptrs)
    else:
        act_in = tl.load(act_input_ptrs, mask=rn < N, other=0.0)
    grad_act = META['ACTIVATION_GRAD'](act_in)
    grad_out_ptrs = GRAD_OUT + pid_m * stride_gom + rn
    if META['EVEN_N']:
        grad_out = tl.load(grad_out_ptrs)
    else:
        grad_out = tl.load(grad_out_ptrs, mask=rn < N)
    grad_act *= grad_out
    grad_act_ptrs = GRAD_ACT + pid_m * stride_gom + rn
    tl.store(grad_act_ptrs, grad_act, mask=rn < N)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Activation Functions"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "BSD"
]  | 
	https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_fused_matmul_bw.py 
 | 
					
	e3fb6f4a-8ca3-4994-899f-d62d808652d3 
 | 
	shape.py 
 | 
	2niuhe/triton_utils 
 | 
	src/triton_utils/shape.py 
 | 
	6184906ac3b86dac3ccbfac128ec393ccecde5df 
 | 0 
							 | 
	@triton.jit
def store_1d(vals, ptr, sz: tl.constexpr, n, max, stride=1):
    """Store 1d block into nth chunk of vector (defined by ptr), where each chunk has size sz"""
    offs = get_1d_offest(sz, n)
    mask = get_1d_mask(offs, max)
    tl.store(ptr + offs, vals, mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Memory-Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/2niuhe/triton_utils/blob/6184906ac3b86dac3ccbfac128ec393ccecde5df/src/triton_utils/shape.py 
 | 
					
	ad3e39e4-beb3-4789-856e-e24e65695e79 
 | 
	wy_fast.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/delta_rule/wy_fast.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for
    num_warps in [1, 2, 4, 8]], key=['BT', 'BK'])
@triton.jit
def fwd_recompute_w_kernel(k, beta, w, A, offsets, indices, T: tl.constexpr,
    H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr,
    USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr):
    i_t, i_bh = tl.program_id(0), tl.program_id(1)
    i_b, i_h = i_bh // H, i_bh % H
    if USE_OFFSETS:
        i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
            i_t * 2 + 1).to(tl.int32)
        bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
            i_n + 1).to(tl.int32)
        T = eos - bos
    else:
        bos, eos = i_b * T, i_b * T + T
    if HEAD_FIRST:
        p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,),
            (BT,), (0,))
        p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
            BT, 0), (BT, BT), (1, 0))
    else:
        p_beta = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t *
            BT,), (BT,), (0,))
        p_A = tl.make_block_ptr(A + (bos * H + i_h) * BT, (T, BT), (H * BT,
            1), (i_t * BT, 0), (BT, BT), (1, 0))
    b_beta = tl.load(p_beta, boundary_check=(0,))
    b_A = tl.load(p_A, boundary_check=(0, 1)).to(k.dtype.element_ty)
    for i_k in range(tl.cdiv(K, BK)):
        if HEAD_FIRST:
            p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t *
                BT, i_k * BK), (BT, BK), (1, 0))
            p_w = tl.make_block_ptr(w + i_bh * T * K, (T, K), (K, 1), (i_t *
                BT, i_k * BK), (BT, BK), (1, 0))
        else:
            p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K,
                1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
            p_w = tl.make_block_ptr(w + (bos * H + i_h) * K, (T, K), (H * K,
                1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
        b_k = tl.load(p_k, boundary_check=(0, 1))
        b_kb = (b_k * b_beta[:, None]).to(b_k.dtype)
        b_w = tl.dot(b_A, b_kb, allow_tf32=False)
        tl.store(p_w, b_w.to(p_w.dtype.element_ty), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/wy_fast.py 
 | 
					
	02c185b4-ba6d-4e60-84de-9ccd865f78e9 
 | 
	chunk.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/abc/chunk.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.jit
def chunk_abc_fwd_kernel_intra_K(v, z, o, A, s_v_h, s_v_t, s_v_d, T: tl.
    constexpr, V: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BV: tl.
    constexpr, NC: tl.constexpr):
    i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    i_t, i_i = i_c // NC, i_c % NC
    p_z = tl.make_block_ptr(z + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t *
        BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
    p_zn = tl.make_block_ptr(z + i_bh * s_v_h, (T * V,), (s_v_d,), ((i_t *
        BT + i_i * BC) * V + i_v * BV,), (BV,), (0,))
    b_zn = tl.load(p_zn, boundary_check=(0,))
    b_o = tl.zeros([BC, BV], dtype=tl.float32)
    for i_j in range(0, i_i):
        p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
            BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
        p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (
            i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
        b_v = tl.load(p_v, boundary_check=(0, 1))
        b_A = tl.load(p_A, boundary_check=(0, 1))
        b_o += tl.dot(b_A, tl.exp(b_v - b_zn[None, :]).to(b_v.dtype),
            allow_tf32=False)
    b_z = tl.load(p_z, boundary_check=(0, 1))
    b_o *= tl.exp(b_zn[None, :] - b_z)
    o_i = tl.arange(0, BC)
    o_A = i_bh * T * BT + (i_t * BT + i_i * BC + tl.arange(0, BC)
        ) * BT + i_i * BC
    m_A = i_t * BT + i_i * BC + tl.arange(0, BC) < T
    for j in range(0, BC):
        p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T * V,), (1,), ((i_t *
            BT + i_i * BC + j) * V + i_v * BV,), (BV,), (0,))
        b_A = tl.load(A + o_A + j, mask=m_A, other=0)
        b_v = tl.load(p_v, boundary_check=(0,)).to(tl.float32)
        m_i = o_i[:, None] >= j
        b_o += tl.where(m_i, b_A[:, None] * tl.exp(b_v[None, :] - b_z), 0)
    p_o = tl.make_block_ptr(o + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t *
        BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
    tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "Memory-Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py 
 | 
					
	159f0cc5-72b0-4231-97dc-2a5e3f2c0d0b 
 | 
	hilbert.py 
 | 
	Kitsunetic/space-filling-pytorch 
 | 
	space_filling_pytorch/functional/hilbert.py 
 | 
	0de955ad1036973ee7506c5a0124c208acec722d 
 | 0 
							 | 
	@triton.jit
def _encode_hilbert_unpadded_kernel(xyz_ptr, batch_idx_ptr, code_ptr,
    space_size, x_offset, y_offset, z_offset, str_xyz_n, str_xyz_c, N, BLK:
    tl.constexpr, ASSIGN_BATCH_INDEX: tl.constexpr):
    pid = tl.program_id(0)
    offs_n = pid * BLK + tl.arange(0, BLK)
    mask = offs_n < N
    xyz_ptrs = xyz_ptr + offs_n * str_xyz_n
    fx = tl.load(xyz_ptrs + x_offset * str_xyz_c, mask=mask)
    fy = tl.load(xyz_ptrs + y_offset * str_xyz_c, mask=mask)
    fz = tl.load(xyz_ptrs + z_offset * str_xyz_c, mask=mask)
    ret = _calculate_hilbert_distance(fx, fy, fz, space_size)
    if ASSIGN_BATCH_INDEX:
        batch_idx_ptrs = batch_idx_ptr + offs_n
        batch_idx = tl.load(batch_idx_ptrs, mask=mask).to(tl.int64)
        ret |= batch_idx << 48
    code_ptrs = code_ptr + offs_n
    tl.store(code_ptrs, ret, mask=mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/Kitsunetic/space-filling-pytorch/blob/0de955ad1036973ee7506c5a0124c208acec722d/space_filling_pytorch/functional/hilbert.py 
 | 
					
	2c6c706f-18a5-446c-bc50-dd5319c23177 
 | 
	triton_fused_local_attn_rerope.py 
 | 
	LouChao98/vqtree 
 | 
	ops/triton_fused_local_attn_rerope.py 
 | 
	27a53274df7a804bce27dffcce5f5be73f64b6f3 
 | 0 
							 | 
	@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args[
    'BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args[
    'BLOCK_N'] == 0})
@triton.jit
def _fwd_kernel(Q1, Q2, K1, K2, V, Out, L, softmax_scale, stride_qb,
    stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb,
    stride_vh, stride_vn, stride_ob, stride_oh, stride_om, nheads, seqlen_q,
    seqlen_k, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, WINDOW_SIZE: tl.
    constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N:
    tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, WRITE_LSE:
    tl.constexpr):
    start_m = tl.program_id(0)
    off_hb = tl.program_id(1)
    off_b = off_hb // nheads
    off_h = off_hb % nheads
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    Q1_block_ptr = tl.make_block_ptr(base=Q1 + (off_b * stride_qb + off_h *
        stride_qh), shape=(seqlen_q, BLOCK_HEADDIM), strides=(stride_qm, 1),
        offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_HEADDIM
        ), order=(1, 0))
    Q2_block_ptr = tl.make_block_ptr(base=Q2 + (off_b * stride_qb + off_h *
        stride_qh), shape=(seqlen_q, BLOCK_HEADDIM), strides=(stride_qm, 1),
        offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_HEADDIM
        ), order=(1, 0))
    K1_block_ptr = tl.make_block_ptr(base=K1 + (off_b * stride_kb + off_h *
        stride_kh), shape=(BLOCK_HEADDIM, seqlen_k), strides=(1, stride_kn),
        offsets=(0, 0), block_shape=(BLOCK_HEADDIM, BLOCK_N), order=(0, 1))
    K2_block_ptr = tl.make_block_ptr(base=K2 + (off_b * stride_kb + off_h *
        stride_kh), shape=(BLOCK_HEADDIM, seqlen_k), strides=(1, stride_kn),
        offsets=(0, 0), block_shape=(BLOCK_HEADDIM, BLOCK_N), order=(0, 1))
    V_block_ptr = tl.make_block_ptr(base=V + (off_b * stride_vb + off_h *
        stride_vh), shape=(seqlen_k, BLOCK_HEADDIM), strides=(stride_vn, 1),
        offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_HEADDIM), order=(1, 0))
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF
    acc = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
    if EVEN_M:
        q1 = tl.load(Q1_block_ptr)
        q2 = tl.load(Q2_block_ptr)
    else:
        q1 = tl.load(Q1_block_ptr, boundary_check=(0,), padding_option='zero')
        q2 = tl.load(Q2_block_ptr, boundary_check=(0,), padding_option='zero')
    acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q1, q2, softmax_scale,
        K1_block_ptr, K2_block_ptr, V_block_ptr, start_m, offs_m, offs_n,
        seqlen_k, WINDOW_SIZE, BLOCK_M, BLOCK_N, EVEN_M & EVEN_N, 1)
    acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q1, q2, softmax_scale,
        K1_block_ptr, K2_block_ptr, V_block_ptr, start_m, offs_m, offs_n,
        seqlen_k, WINDOW_SIZE, BLOCK_M, BLOCK_N, EVEN_M & EVEN_N, 2)
    acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q1, q2, softmax_scale,
        K1_block_ptr, K2_block_ptr, V_block_ptr, start_m, offs_m, offs_n,
        seqlen_k, WINDOW_SIZE, BLOCK_M, BLOCK_N, EVEN_M & EVEN_N, 3)
    if WRITE_LSE:
        l_ptrs = L + off_hb * seqlen_q + offs_m
        tl.store(l_ptrs, m_i + tl.math.log2(l_i))
    acc = acc / l_i[:, None]
    start_m = tl.program_id(0)
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:,
        None] * stride_om + offs_d[None, :])
    if EVEN_M:
        tl.store(out_ptrs, acc)
    else:
        tl.store(out_ptrs, acc, mask=offs_m[:, None] < seqlen_q)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Softmax"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "High Throughput"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_local_attn_rerope.py 
 | 
					
	295647f9-b805-4b3f-8f9a-72124ff188fd 
 | 
	relu.py 
 | 
	daemyung/practice-triton 
 | 
	relu.py 
 | 
	27f727726f1507c8380a1c11751d851c7c4a07ce 
 | 0 
							 | 
	@staticmethod
@triton.jit
def backward(grad_input_ptr, grad_output_ptr, input_ptr, size, block_size:
    tl.constexpr):
    pid = tl.program_id(0)
    offset = pid * block_size
    grad_input_block_ptr = tl.make_block_ptr(grad_input_ptr, shape=(size,),
        strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,))
    grad_output_block_ptr = tl.make_block_ptr(grad_output_ptr, shape=(size,
        ), strides=(1,), offsets=(offset,), block_shape=(block_size,),
        order=(0,))
    input_block_ptr = tl.make_block_ptr(input_ptr, shape=(size,), strides=(
        1,), offsets=(offset,), block_shape=(block_size,), order=(0,))
    grad_output = tl.load(grad_output_block_ptr, boundary_check=(0,))
    input = tl.load(input_block_ptr, boundary_check=(0,))
    condition = input >= 0
    grad_input = tl.where(condition, grad_output, 0)
    tl.store(grad_input_block_ptr, grad_input, boundary_check=(0,))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Coalesced",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/daemyung/practice-triton/blob/27f727726f1507c8380a1c11751d851c7c4a07ce/relu.py 
 | 
					
	98f78d67-d8c7-4106-a9bc-6716d5cd0889 
 | 
	sb_varlen_fwd.py 
 | 
	shawntan/stickbreaking-attention 
 | 
	stickbreaking_attention/sb_varlen/sb_varlen_fwd.py 
 | 
	8dd32ad5e58f0ee0232fd4782dc53d354ff8d283 
 | 0 
							 | 
	@triton.jit
def compute_block(q, k, qk_scale, neg_log_acc, M_blk_idxs, N_blk_idxs, cm,
    on_band: tl.constexpr, ALLOW_TF32: tl.constexpr, backward: tl.constexpr,
    attend_current: tl.constexpr=False, use_cumsum: tl.constexpr=False,
    is_compiling: tl.constexpr=False):
    qk = tl.dot(q, tl.trans(k), allow_tf32=ALLOW_TF32) * qk_scale
    log_om_beta = -softplus(qk, is_compiling=is_compiling)
    if on_band:
        if attend_current:
            block_mask = M_blk_idxs[:, None] >= N_blk_idxs[None, :]
        else:
            block_mask = M_blk_idxs[:, None] > N_blk_idxs[None, :]
        log_om_beta = tl.where(block_mask, log_om_beta, 0.0)
        if backward:
            neg_log_acc -= tl.sum(log_om_beta, axis=1)
        log_p = qk + neg_log_acc[:, None]
        if use_cumsum:
            log_p += tl.cumsum(log_om_beta.to(q.dtype), axis=1, reverse=True)
        else:
            log_p = tl.dot(log_om_beta.to(q.dtype), cm, acc=log_p,
                allow_tf32=ALLOW_TF32)
        p = tl.math.exp2(log_p)
        p = tl.where(block_mask, p, 0.0)
    else:
        if backward:
            neg_log_acc -= tl.sum(log_om_beta, axis=1)
        log_p = qk + neg_log_acc[:, None]
        if use_cumsum:
            log_p += tl.cumsum(log_om_beta.to(q.dtype), axis=1, reverse=True)
        else:
            log_p = tl.dot(log_om_beta.to(q.dtype), cm, acc=log_p,
                allow_tf32=ALLOW_TF32)
        p = tl.math.exp2(log_p)
    if not backward:
        neg_log_acc += tl.sum(log_om_beta, axis=1)
    return p, log_om_beta, neg_log_acc
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Activation Functions"
  ],
  "Memory Access Pattern": [
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/shawntan/stickbreaking-attention/blob/8dd32ad5e58f0ee0232fd4782dc53d354ff8d283/stickbreaking_attention/sb_varlen/sb_varlen_fwd.py 
 | 
					
	c3784dfb-4b90-4a4f-9175-4a69cc1f915d 
 | 
	fused_attn.py 
 | 
	thunlp/Delta-CoMe 
 | 
	quant/fused_attn.py 
 | 
	646a1fbf3443295c4b04aba27334c6bc5aa3df4f 
 | 0 
							 | 
	@triton.jit
def rotate_half_kernel(qk_seq_ptr, position_ids_ptr, qk_seq_stride,
    position_ids_batch_stride, seq_len, HEAD_DIM: tl.constexpr,
    BLOCK_HEIGHT: tl.constexpr, BLOCK_WIDTH: tl.constexpr, INV_BASE: tl.
    constexpr):
    HALF_HEAD: tl.constexpr = HEAD_DIM // 2
    STEPS_PER_ROW: tl.constexpr = HALF_HEAD // BLOCK_WIDTH
    batch_seq = tl.program_id(axis=0)
    row_blk_x_col_blk = tl.program_id(axis=1)
    row_blk = row_blk_x_col_blk // STEPS_PER_ROW
    row = row_blk * BLOCK_HEIGHT
    if BLOCK_WIDTH < HALF_HEAD:
        col_blk = row_blk_x_col_blk % STEPS_PER_ROW
        col = col_blk * BLOCK_WIDTH
    else:
        col: tl.constexpr = 0
    batch = batch_seq // seq_len
    seq = batch_seq % seq_len
    position_id = tl.load(position_ids_ptr + batch *
        position_ids_batch_stride + seq)
    freq = tl.libdevice.exp((col + tl.arange(0, BLOCK_WIDTH)).to(tl.float32
        ) * INV_BASE) * position_id
    cos = tl.cos(freq).to(tl.float32)
    sin = tl.sin(freq).to(tl.float32)
    col_offsets: tl.constexpr = tl.arange(0, BLOCK_WIDTH)
    embed_offsets = row * HEAD_DIM + col + col_offsets
    x_ptrs = qk_seq_ptr + batch_seq * qk_seq_stride + embed_offsets
    for k in range(0, BLOCK_HEIGHT):
        x = tl.load(x_ptrs).to(tl.float32)
        y = tl.load(x_ptrs + HALF_HEAD).to(tl.float32)
        out_x = x * cos - y * sin
        tl.store(x_ptrs, out_x)
        out_y = x * sin + y * cos
        tl.store(x_ptrs + HALF_HEAD, out_y)
        x_ptrs += HEAD_DIM
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/thunlp/Delta-CoMe/blob/646a1fbf3443295c4b04aba27334c6bc5aa3df4f/quant/fused_attn.py 
 | 
					
	297bd9f8-dbf4-4cd4-b87b-6208c25245d1 
 | 
	pointwise.py 
 | 
	ServiceNow/Fast-LLM 
 | 
	fast_llm/functional/triton/pointwise.py 
 | 
	8b46289079da67cba99628448a6b6083dac083cf 
 | 0 
							 | 
	@triton.jit
def triton_copy_kernel(input_ptr, out_ptr, numel: tl.constexpr, block_size:
    tl.constexpr):
    block_start = tl.program_id(axis=0).to(tl.int64) * block_size
    offsets = block_start + tl.arange(0, block_size)
    mask = offsets < numel
    input_ = tl.load(input_ptr + offsets, mask=mask)
    tl.store(out_ptr + offsets, input_, mask=mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Coalesced",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Memory-Bound",
    "High Throughput"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/pointwise.py 
 | 
					
	c7b00225-9961-4819-bb21-d098a0681a35 
 | 
	RzLinearBackward.py 
 | 
	apd10/RzLinear 
 | 
	python/rz_linear/impl/RzLinearBackward.py 
 | 
	eb56657b2de0a97f398f88af421b0fbcbc5469c9 
 | 0 
							 | 
	@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_N': 128,
    'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=8),
    triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M':
    32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_N': 128,
    'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4),
    triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M':
    32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 256,
    'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4),
    triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M':
    32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128,
    'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4),
    triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M':
    32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128,
    'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4),
    triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 
    32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 256,
    'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=8),
    triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M':
    16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64,
    'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4),
    triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M':
    16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64,
    'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4),
    triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M':
    16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64,
    'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4),
    triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_M': 
    16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 32,
    'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4),
    triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_M':
    16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 32,
    'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4)],
    key=['M', 'N', 'K'])
@triton.jit
def rz_linear_backward_weight_grad_kernel_fp32(a_ptr, b_ptr, c_ptr,
    init_factor, M, N, K, H, stride_am, stride_ak, stride_bm, stride_bn, R7:
    int, R6: int, R5: int, R4: int, R3: int, R2: int, R1: int, R0: int,
    BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K:
    tl.constexpr, GROUP_SIZE: tl.constexpr):
    rz_linear_backward_weight_grad_core(a_ptr=a_ptr, b_ptr=b_ptr, c_ptr=
        c_ptr, init_factor=init_factor, M=M, N=N, K=K, H=H, stride_am=
        stride_am, stride_ak=stride_ak, stride_bm=stride_bm, stride_bn=
        stride_bn, R7=R7, R6=R6, R5=R5, R4=R4, R3=R3, R2=R2, R1=R1, R0=R0,
        allow_tf32=False, BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N=
        BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K, GROUP_SIZE=GROUP_SIZE)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Persistent Kernels"
  ],
  "Performance Objective": [
    "Memory-Bound",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/rz_linear/impl/RzLinearBackward.py 
 | 
					
	b43d035a-53a0-4ffb-8bee-abc8a227f8b9 
 | 
	ops.py 
 | 
	shawntan/scattermoe 
 | 
	scattermoe/kernels/ops.py 
 | 
	63b76a2f5f28c052fb4cd7c34479a54158354052 
 | 0 
							 | 
	@triton.autotune(configs=_scatter2scatter_configs(), key=['M', 'N', 'K'])
@triton.heuristics({'NO_K_MASK': lambda args: args['K'] % args['BLOCK_K'] ==
    0, 'NO_N_MASK': lambda args: args['N'] % args['BLOCK_N'] == 0})
@triton.jit
def _scatter2scatter(X_ptr, stride_xm, stride_xk, W_ptr, stride_we,
    stride_wk, stride_wn, Y_ptr, stride_ym, stride_yn, grouped_idx_ptr,
    expert_idxs_ptr, block_start_idx_ptr, FAN_OUT: tl.constexpr, M, K: tl.
    constexpr, N: tl.constexpr, E: tl.constexpr, BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, ACC_TYPE: tl.constexpr,
    OUT_M, allow_tf32: tl.constexpr, x_grouped: tl.constexpr, y_grouped: tl
    .constexpr, NO_K_MASK: tl.constexpr, NO_N_MASK: tl.constexpr):
    pid = tl.program_id(axis=0)
    N_BLOCK_COUNT = tl.cdiv(N, BLOCK_N)
    M_block_id = pid // N_BLOCK_COUNT
    N_block_id = pid % N_BLOCK_COUNT
    M_range = tl.arange(0, BLOCK_M)
    block_start_idx = tl.load(block_start_idx_ptr + M_block_id)
    M_block = tl.max_contiguous(block_start_idx + M_range, BLOCK_M)
    E_idxs = tl.load(expert_idxs_ptr + M_block, mask=M_block < FAN_OUT * M,
        other=E)
    E_idx = tl.min(E_idxs)
    E_mask = E_idxs == E_idx
    M_idx = tl.load(grouped_idx_ptr + M_block, mask=E_mask, other=0)
    if x_grouped:
        M_in_idx = M_block
    else:
        M_in_idx = M_idx // FAN_OUT
    if y_grouped:
        M_out_idx = M_block
    else:
        M_out_idx = M_idx
    K_block = tl.arange(0, BLOCK_K)
    N_block = N_block_id * BLOCK_N + tl.arange(0, BLOCK_N)
    N_mask = N_block < N
    X_blk_ptrs = X_ptr + M_in_idx[:, None] * stride_xm + K_block[None, :
        ] * stride_xk
    W_blk_ptrs = W_ptr + K_block[:, None] * stride_wk + N_block[None, :
        ] * stride_wn + E_idx * stride_we
    acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
    iters = tl.cdiv(K, BLOCK_K)
    for K_block_id in range(0, iters):
        if NO_K_MASK:
            x = tl.load(X_blk_ptrs, mask=E_mask[:, None])
            if NO_N_MASK or K_block_id < iters - 1:
                w = tl.load(W_blk_ptrs)
            else:
                w = tl.load(W_blk_ptrs, mask=N_mask[None, :])
        else:
            K_mask = K_block_id * BLOCK_K + K_block < K
            x = tl.load(X_blk_ptrs, mask=E_mask[:, None] & K_mask[None, :])
            w = tl.load(W_blk_ptrs, mask=K_mask[:, None] & N_mask[None, :])
        X_blk_ptrs += BLOCK_K * stride_xk
        W_blk_ptrs += BLOCK_K * stride_wk
        acc += tl.dot(x, w, allow_tf32=allow_tf32, out_dtype=ACC_TYPE)
    Y_blk_ptrs = Y_ptr + (M_out_idx[:, None] * stride_ym + N_block[None, :] *
        stride_yn)
    tl.store(Y_blk_ptrs, acc, mask=E_mask[:, None] & N_mask[None, :])
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Memory-Bound",
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/shawntan/scattermoe/blob/63b76a2f5f28c052fb4cd7c34479a54158354052/scattermoe/kernels/ops.py 
 | 
					
	98ed13e6-3d06-4b48-bf3b-55ccbee71cfb 
 | 
	dw_conv.py 
 | 
	neuro-ml/kerops 
 | 
	kerops/kernels/dw_conv.py 
 | 
	735336775e825d5cb06b8850d25423661b12d1ac 
 | 0 
							 | 
	@triton.jit
def _DWConv_wgrad_cl3d_impl(grad_ptr, input_ptr, weight_grad_ptr, H, W, D,
    H_stride, W_stride, ACCTYPE: tl.constexpr, channels: tl.constexpr,
    D_block: tl.constexpr, WD_grid):
    H_cell = tl.program_id(0)
    W_D_cell = tl.program_id(1)
    D_gridsize = tl.cdiv(D, D_block)
    W_cell = W_D_cell // D_gridsize
    D_cell = W_D_cell % D_gridsize
    input_ptr += D_cell * D_block * channels
    grad_ptr += D_cell * D_block * channels
    weight_grad_ptr += (H_cell * WD_grid + W_D_cell) * 27 * channels
    channels_offset = tl.arange(0, channels)
    channels_offset = tl.max_contiguous(tl.multiple_of(channels_offset,
        channels), channels)
    d_offset = tl.arange(0, D_block)
    near_offset = tl.arange(0, 4) - 1
    offset = d_offset[None, None, :] * channels + channels_offset[None, :, None
        ] + near_offset[:, None, None] * channels
    mask = d_offset[None, None, :] + near_offset[:, None, None
        ] < D - D_block * D_cell
    mask = mask and d_offset[None, None, :] + near_offset[:, None, None
        ] >= 0 - D_block * D_cell
    mask = mask and near_offset[:, None, None] != 2
    in_offset = d_offset[None, None, :] * channels + channels_offset[None,
        :, None]
    in_mask = d_offset[None, None, :] < D - D_block * D_cell
    H1_load = 2 * H_cell + 1 < H
    W1_load = 2 * W_cell + 1 < W
    h0_w0 = tl.zeros([4, channels], dtype=ACCTYPE)
    h0_w1 = tl.zeros([4, channels], dtype=ACCTYPE)
    h0_w2 = tl.zeros([4, channels], dtype=ACCTYPE)
    h1_w0 = tl.zeros([4, channels], dtype=ACCTYPE)
    h1_w1 = tl.zeros([4, channels], dtype=ACCTYPE)
    h1_w2 = tl.zeros([4, channels], dtype=ACCTYPE)
    h2_w0 = tl.zeros([4, channels], dtype=ACCTYPE)
    h2_w1 = tl.zeros([4, channels], dtype=ACCTYPE)
    h2_w2 = tl.zeros([4, channels], dtype=ACCTYPE)
    tmp_input_ptr = input_ptr + 2 * H_cell * H_stride + 2 * W_cell * W_stride
    x_h0_w0 = tl.load(tmp_input_ptr + in_offset, mask=in_mask, other=0.0)
    tmp_input_ptr = input_ptr + (2 * H_cell + 1
        ) * H_stride + 2 * W_cell * W_stride
    x_h1_w0 = tl.load(tmp_input_ptr + in_offset, mask=in_mask and H1_load,
        other=0.0)
    tmp_input_ptr = input_ptr + 2 * H_cell * H_stride + (2 * W_cell + 1
        ) * W_stride
    x_h0_w1 = tl.load(tmp_input_ptr + in_offset, mask=in_mask and W1_load,
        other=0.0)
    tmp_input_ptr = input_ptr + (2 * H_cell + 1) * H_stride + (2 * W_cell + 1
        ) * W_stride
    x_h1_w1 = tl.load(tmp_input_ptr + in_offset, mask=in_mask and (W1_load and
        H1_load), other=0.0)
    gradw_offset = tl.arange(0, 4)[:, None] * channels + channels_offset[
        None, :]
    gradw_mask = near_offset[:, None] != 2
    load_next = (2 * H_cell - 1 < H and 2 * H_cell - 1 >= 0) and (2 *
        W_cell - 1 < W and 2 * W_cell - 1 >= 0)
    tmp_grad_ptr = grad_ptr + (2 * H_cell - 1) * H_stride + (2 * W_cell - 1
        ) * W_stride
    i = -1
    j = -1
    grad = tl.zeros([4, channels, D_block], dtype=tl.float16)
    if load_next:
        grad = tl.load(tmp_grad_ptr + offset, mask=mask)
    for k in tl.static_range(0, 16):
        if load_next:
            if i == -1 and j == -1:
                h2_w2 += tl.sum(grad * x_h0_w0, axis=2)
            elif i == -1 and j == 0:
                h2_w1 += tl.sum(grad * x_h0_w0, axis=2)
                h2_w2 += tl.sum(grad * x_h0_w1, axis=2)
            elif i == -1 and j == 1:
                h2_w0 += tl.sum(grad * x_h0_w0, axis=2)
                h2_w1 += tl.sum(grad * x_h0_w1, axis=2)
            elif i == -1 and j == 2:
                h2_w0 += tl.sum(grad * x_h0_w1, axis=2)
            elif i == 0 and j == -1:
                h1_w2 += tl.sum(grad * x_h0_w0, axis=2)
                h2_w2 += tl.sum(grad * x_h1_w0, axis=2)
            elif i == 0 and j == 0:
                h1_w1 += tl.sum(grad * x_h0_w0, axis=2)
                h2_w1 += tl.sum(grad * x_h1_w0, axis=2)
                h1_w2 += tl.sum(grad * x_h0_w1, axis=2)
                h2_w2 += tl.sum(grad * x_h1_w1, axis=2)
            elif i == 0 and j == 1:
                h1_w0 += tl.sum(grad * x_h0_w0, axis=2)
                h2_w0 += tl.sum(grad * x_h1_w0, axis=2)
                h1_w1 += tl.sum(grad * x_h0_w1, axis=2)
                h2_w1 += tl.sum(grad * x_h1_w1, axis=2)
            elif i == 0 and j == 2:
                h1_w0 += tl.sum(grad * x_h0_w1, axis=2)
                h2_w0 += tl.sum(grad * x_h1_w1, axis=2)
            elif i == 1 and j == -1:
                h0_w2 += tl.sum(grad * x_h0_w0, axis=2)
                h1_w2 += tl.sum(grad * x_h1_w0, axis=2)
            elif i == 1 and j == 0:
                h0_w1 += tl.sum(grad * x_h0_w0, axis=2)
                h1_w1 += tl.sum(grad * x_h1_w0, axis=2)
                h0_w2 += tl.sum(grad * x_h0_w1, axis=2)
                h1_w2 += tl.sum(grad * x_h1_w1, axis=2)
            elif i == 1 and j == 1:
                h0_w0 += tl.sum(grad * x_h0_w0, axis=2)
                h1_w0 += tl.sum(grad * x_h1_w0, axis=2)
                h0_w1 += tl.sum(grad * x_h0_w1, axis=2)
                h1_w1 += tl.sum(grad * x_h1_w1, axis=2)
            elif i == 1 and j == 2:
                h0_w0 += tl.sum(grad * x_h0_w1, axis=2)
                h1_w0 += tl.sum(grad * x_h1_w1, axis=2)
            elif i == 2 and j == -1:
                h0_w2 += tl.sum(grad * x_h1_w0, axis=2)
            elif i == 2 and j == 0:
                h0_w1 += tl.sum(grad * x_h1_w0, axis=2)
                h0_w2 += tl.sum(grad * x_h1_w1, axis=2)
            elif i == 2 and j == 1:
                h0_w0 += tl.sum(grad * x_h1_w0, axis=2)
                h0_w1 += tl.sum(grad * x_h1_w1, axis=2)
            else:
                h0_w0 += tl.sum(grad * x_h1_w1, axis=2)
        k_ = k + 1
        i = k_ % 4 - 1
        j = k_ // 4 - 1
        load_next = (2 * H_cell + i < H and 2 * H_cell + i >= 0) and (2 *
            W_cell + j < W and 2 * W_cell + j >= 0)
        tmp_grad_ptr = grad_ptr + (2 * H_cell + i) * H_stride + (2 * W_cell + j
            ) * W_stride
        if load_next and k_ < 16:
            grad = tl.load(tmp_grad_ptr + offset, mask=mask)
    tl.store(weight_grad_ptr + gradw_offset, h0_w0, mask=gradw_mask)
    tl.store(weight_grad_ptr + 3 * channels + gradw_offset, h0_w1, mask=
        gradw_mask)
    tl.store(weight_grad_ptr + 6 * channels + gradw_offset, h0_w2, mask=
        gradw_mask)
    tl.store(weight_grad_ptr + 9 * channels + gradw_offset, h1_w0, mask=
        gradw_mask)
    tl.store(weight_grad_ptr + 12 * channels + gradw_offset, h1_w1, mask=
        gradw_mask)
    tl.store(weight_grad_ptr + 15 * channels + gradw_offset, h1_w2, mask=
        gradw_mask)
    tl.store(weight_grad_ptr + 18 * channels + gradw_offset, h2_w0, mask=
        gradw_mask)
    tl.store(weight_grad_ptr + 21 * channels + gradw_offset, h2_w1, mask=
        gradw_mask)
    tl.store(weight_grad_ptr + 24 * channels + gradw_offset, h2_w2, mask=
        gradw_mask)
 
 | 
	{
  "Data Type": [
    "fp16"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/dw_conv.py 
 | 
					
	2f63fe4e-4b75-45aa-b01f-c5b1eed17423 
 | 
	main_triton.py 
 | 
	dwgan/GraphMST 
 | 
	main_triton.py 
 | 
	4d65ed0f108d339e3e4cfff25085a39adc6a48a2 
 | 0 
							 | 
	@triton.jit
def find_kernel(parent, u, ret_ptr, BLOCK_SIZE: tl.constexpr):
    pu = tl.load(parent + u)
    while pu != u:
        u = pu
        pu = tl.load(parent + u)
    ret_ptr[u % BLOCK_SIZE] = pu
 
 | 
	{
  "Data Type": [],
  "Functionality": [],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/dwgan/GraphMST/blob/4d65ed0f108d339e3e4cfff25085a39adc6a48a2/main_triton.py 
 | 
					
	fee89749-a0a9-4316-87b5-75545363f010 
 | 
	wy_fast.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/delta_rule/wy_fast.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for
    num_warps in [1, 2, 4, 8, 16]], key=['BK'])
@triton.jit
def fwd_prepare_wy_repr_kernel_chunk32(k, beta, A, offsets, indices, T: tl.
    constexpr, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BK: tl.
    constexpr, BC: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.
    constexpr):
    i_t, i_bh = tl.program_id(0), tl.program_id(1)
    i_b, i_h = i_bh // H, i_bh % H
    if USE_OFFSETS:
        i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
            i_t * 2 + 1).to(tl.int32)
        bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
            i_n + 1).to(tl.int32)
        T = eos - bos
    else:
        bos, eos = i_b * T, i_b * T + T
    if HEAD_FIRST:
        p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,),
            (BT,), (0,))
    else:
        p_beta = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t *
            BT,), (BT,), (0,))
    b_beta = tl.load(p_beta, boundary_check=(0,))
    b_A = tl.zeros([BT, BT], dtype=tl.float32)
    for i_k in range(tl.cdiv(K, BK)):
        if HEAD_FIRST:
            p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t *
                BT, i_k * BK), (BT, BK), (1, 0))
        else:
            p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K,
                1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
        b_k = tl.load(p_k, boundary_check=(0, 1))
        b_kb = (b_k * b_beta[:, None]).to(b_k.dtype)
        b_A += tl.dot(b_kb, tl.trans(b_k), allow_tf32=False)
    b_A = -tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :],
        b_A, 0)
    for i in range(1, BT):
        mask = tl.arange(0, BT) == i
        b_a = tl.sum(tl.where(mask[:, None], b_A, 0), 0)
        b_a = b_a + tl.sum(b_a[:, None] * b_A, 0) * (tl.arange(0, BT) < i)
        b_A = tl.where(mask[:, None], b_a, b_A)
    b_A += tl.arange(0, BT)[:, None] == tl.arange(0, BT)[None, :]
    if HEAD_FIRST:
        p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
            BT, 0), (BT, BT), (1, 0))
    else:
        p_A = tl.make_block_ptr(A + (bos * H + i_h) * BT, (T, BT), (H * BT,
            1), (i_t * BT, 0), (BT, BT), (1, 0))
    tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
    b_A = b_A.to(k.dtype.element_ty)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/wy_fast.py 
 | 
					
	3ccfe00c-b0c4-4828-873a-fd5b2174ea1b 
 | 
	kernels.py 
 | 
	pytorch-labs/tritonbench 
 | 
	tritonbench/operators/jagged_mean/kernels.py 
 | 
	3a5dccb159834968567a2e45e561dc1aeaa8f8a8 
 | 0 
							 | 
	@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_RAGGED': b_r,
    'BLOCK_SIZE_M': b_m}, num_warps=w, num_stages=s) for b_r, b_m, w, s in
    itertools.product(BLOCK_SIZES_RAGGED, BLOCK_SIZES_M, NUM_WARPS,
    NUM_STAGES)], key=['M'])
@triton.jit
def triton_jagged_mean_kernel_variable_length_loop_sum_then_buffer(
    input_ptr_values, input_ptr_offsets, output_ptr, M, BLOCK_SIZE_RAGGED:
    tl.constexpr, BLOCK_SIZE_M: tl.constexpr):
    pid = tl.program_id(axis=0)
    pid_b = pid // tl.cdiv(M, BLOCK_SIZE_M)
    pid_m = pid % tl.cdiv(M, BLOCK_SIZE_M)
    buffer = tl.zeros((1, BLOCK_SIZE_M), dtype=tl.float32)
    block_start_m = pid_m * BLOCK_SIZE_M
    offsets_m = block_start_m + tl.arange(0, BLOCK_SIZE_M)
    mask_m = offsets_m < M
    ragged_start, ragged_end = tl.load(input_ptr_offsets + pid_b), tl.load(
        input_ptr_offsets + (pid_b + 1))
    ragged_len = ragged_end - ragged_start
    for block_start_ragged in range(ragged_start, ragged_end, BLOCK_SIZE_RAGGED
        ):
        offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED)
        mask_ragged = offsets_ragged < ragged_end
        idxs = offsets_ragged[:, None] * M + offsets_m
        mask = mask_ragged[:, None] & mask_m
        input = tl.load(input_ptr_values + idxs, mask=mask, other=0)
        buffer += tl.sum(input, axis=0)
    buffer_view = buffer.reshape((BLOCK_SIZE_M,))
    buffer_view_mean = buffer_view * (1 / ragged_len)
    output_offsets = offsets_m + pid_b * M
    output_mask = output_offsets < M * (pid_b + 1)
    tl.store(output_ptr + output_offsets, buffer_view_mean, mask=output_mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Persistent Kernels"
  ],
  "Performance Objective": [
    "High Throughput"
  ]
} 
 | 
	[
  "BSD"
]  | 
	https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/jagged_mean/kernels.py 
 | 
					
	58fb14a4-ee5b-47db-b1e7-de8b3fd737be 
 | 
	fused_moe.py 
 | 
	Charlie-XIAO/sparse-vllm 
 | 
	vllm/model_executor/layers/fused_moe/fused_moe.py 
 | 
	d228909a30b0c245c35417fb7d2acdf9a3690042 
 | 0 
							 | 
	@triton.jit
def fused_moe_kernel(a_ptr, b_ptr, c_ptr, a_scale_ptr, b_scale_ptr,
    topk_weights_ptr, sorted_token_ids_ptr, expert_ids_ptr,
    num_tokens_post_padded_ptr, N, K, EM, num_valid_tokens, stride_am,
    stride_ak, stride_be, stride_bk, stride_bn, stride_cm, stride_cn,
    stride_bse, stride_bsn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.
    constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr,
    MUL_ROUTED_WEIGHT: tl.constexpr, top_k: tl.constexpr, compute_type: tl.
    constexpr, use_fp8_w8a8: tl.constexpr, use_int8_w8a16: tl.constexpr):
    """
    Implements the fused computation for a Mixture of Experts (MOE) using
    token and expert matrices.
    Key Parameters:
    - A: The input tensor representing tokens with shape (*, K), where '*' can
        be any shape representing batches and K is the feature dimension of
        each token.
    - B: The stacked MOE weight tensor with shape (E, N, K), where E is
        the number of experts, K is the input feature dimension, and N is
        the output feature dimension.
    - C: The output cache tensor with shape (M, topk, N), where M is the
        total number of tokens post padding, topk is the number of times
        each token is repeated, and N is the output feature dimension.
    - sorted_token_ids: A tensor containing the sorted indices of tokens,
        repeated topk times and arranged by the expert index they are
        assigned to.
    - expert_ids: A tensor containing the indices of the expert for each
        block. It determines which expert matrix from B should be used for
        each block in A.
    This kernel performs the multiplication of a token by its corresponding
    expert matrix as determined by `expert_ids`. The sorting of
    `sorted_token_ids` by expert index and padding ensures divisibility by
    BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
    multiplication across different blocks processed by the same expert.
    """
    pid = tl.program_id(axis=0)
    num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
    num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
    num_pid_in_group = GROUP_SIZE_M * num_pid_n
    group_id = pid // num_pid_in_group
    first_pid_m = group_id * GROUP_SIZE_M
    group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
    pid_m = first_pid_m + pid % num_pid_in_group % group_size_m
    pid_n = pid % num_pid_in_group // group_size_m
    num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
    if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
        return
    offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
    token_mask = offs_token < num_valid_tokens
    offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
    offs_k = tl.arange(0, BLOCK_SIZE_K)
    a_ptrs = a_ptr + (offs_token[:, None] // top_k * stride_am + offs_k[
        None, :] * stride_ak)
    off_experts = tl.load(expert_ids_ptr + pid_m)
    b_ptrs = b_ptr + off_experts * stride_be + (offs_k[:, None] * stride_bk +
        offs_bn[None, :] * stride_bn)
    if use_int8_w8a16:
        b_scale_ptrs = b_scale_ptr + off_experts * stride_bse + offs_bn[None, :
            ] * stride_bsn
        b_scale = tl.load(b_scale_ptrs)
    if use_fp8_w8a8:
        a_scale = tl.load(a_scale_ptr)
        b_scale = tl.load(b_scale_ptr + off_experts)
    accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
        a = tl.load(a_ptrs, mask=token_mask[:, None] & (offs_k[None, :] < K -
            k * BLOCK_SIZE_K), other=0.0)
        b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K,
            other=0.0)
        if use_int8_w8a16:
            accumulator = tl.dot(a, b.to(compute_type), acc=accumulator)
        elif use_fp8_w8a8:
            accumulator = tl.dot(a, b, acc=accumulator)
        else:
            accumulator += tl.dot(a, b)
        a_ptrs += BLOCK_SIZE_K * stride_ak
        b_ptrs += BLOCK_SIZE_K * stride_bk
    if MUL_ROUTED_WEIGHT:
        moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask,
            other=0)
        accumulator = accumulator * moe_weight[:, None]
    if use_int8_w8a16:
        accumulator = (accumulator * b_scale).to(compute_type)
    elif use_fp8_w8a8:
        accumulator = (accumulator * a_scale * b_scale).to(compute_type)
    else:
        accumulator = accumulator.to(compute_type)
    offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[
        None, :]
    c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
    tl.store(c_ptrs, accumulator, mask=c_mask)
 
 | 
	{
  "Data Type": [
    "int8",
    "fp16"
  ],
  "Functionality": [
    "Matrix Multiplication",
    "Top-K Selection"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/Charlie-XIAO/sparse-vllm/blob/d228909a30b0c245c35417fb7d2acdf9a3690042/vllm/model_executor/layers/fused_moe/fused_moe.py 
 | 
					
	b915901f-25e7-4e07-86fb-3ce11a600e0e 
 | 
	test_triton_varargs.py 
 | 
	facebookresearch/xformers 
 | 
	tests/test_triton_varargs.py 
 | 
	a2f37f8c5f4e3ae0d3459a92e42cd1aeb45b03bc 
 | 0 
							 | 
	@triton.jit
def kernel(x_ptrs: 'VAR_ARGS_ARRAY', y_ptrs: 'VAR_ARGS_ARRAY', numel,
    BLOCK_SIZE: tl.constexpr):
    pid = tl.program_id(axis=0)
    offsets = BLOCK_SIZE * pid + tl.arange(0, BLOCK_SIZE)
    mask = offsets < numel
    for i in range(len(x_ptrs)):
        x_ptr = x_ptrs[i]
        y_ptr = y_ptrs[i]
        data = tl.load(x_ptr + offsets, mask)
        result = data * data
        tl.store(y_ptr + offsets, result, mask)
 
 | 
	{
  "Data Type": [],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput"
  ]
} 
 | 
	[
  "BSD"
]  | 
	https://github.com/facebookresearch/xformers/blob/a2f37f8c5f4e3ae0d3459a92e42cd1aeb45b03bc/tests/test_triton_varargs.py 
 | 
					
	b5a86ee1-c573-4ef0-b121-3f8c69923b2c 
 | 
	triton_fused_attention.py 
 | 
	pytorch-labs/tritonbench 
 | 
	tritonbench/kernels/triton_fused_attention.py 
 | 
	3a5dccb159834968567a2e45e561dc1aeaa8f8a8 
 | 0 
							 | 
	@triton.autotune(list(filter(keep, configsWS)), key=['N_CTX'])
@triton.jit
def _attn_fwd_ws(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v, desc_o,
    stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh,
    stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn,
    stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.
    constexpr, BLOCK_N: tl.constexpr, HEAD_DIM: tl.constexpr, STAGE: tl.
    constexpr, ENABLE_TMA: tl.constexpr, LOOP_SCHEDULE: tl.constexpr,
    ENABLE_WS: tl.constexpr):
    tl.static_assert(BLOCK_N <= HEAD_DIM)
    pid = tl.program_id(0)
    off_hz = tl.program_id(1)
    _attn_fwd_compute_ws(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v,
        desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz,
        stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk,
        stride_vn, stride_oz, stride_oh, stride_om, stride_on, off_hz, pid,
        Z, H, N_CTX, BLOCK_M, BLOCK_N, HEAD_DIM, STAGE, ENABLE_TMA,
        LOOP_SCHEDULE)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "BSD"
]  | 
	https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/kernels/triton_fused_attention.py 
 | 
					
	ac3a79c4-8892-4afd-bc3a-b1376778c60f 
 | 
	parallel_scan.py 
 | 
	chengkai-liu/RecBLR 
 | 
	parallel_scan.py 
 | 
	66e520c26e28c05a5425ba2e81c9169b7e0176e2 
 | 0 
							 | 
	@triton.jit
def pack64(a, b):
    tl.static_assert(a.dtype == tl.float32)
    tl.static_assert(b.dtype == tl.float32)
    a = a.to(dtype=tl.uint32, bitcast=True).to(tl.uint64)
    a = a << 32
    b = b.to(dtype=tl.uint32, bitcast=True).to(tl.uint64)
    return a | b
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Register Intensive"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/chengkai-liu/RecBLR/blob/66e520c26e28c05a5425ba2e81c9169b7e0176e2/parallel_scan.py 
 | 
					
	aeb1d88e-f7a3-4baf-ad05-a447c96fd287 
 | 
	nll_loss_kernels.py 
 | 
	BobMcDear/attorch 
 | 
	attorch/nll_loss_kernels.py 
 | 
	da06cb6236bb47195e33fe3986ed21c675ed94cc 
 | 0 
							 | 
	@triton.autotune(configs=warps_kernel_configs(), key=['batch_dim',
    'spatial_dim'])
@triton.heuristics({'BLOCK_SIZE_BATCH': BLOCK_SIZE_BATCH_heuristic,
    'BLOCK_SIZE_SPATIAL': lambda args: next_power_of_2(args['spatial_dim'])})
@triton.jit
def nll_loss_forward_kernel(input_pointer, target_pointer, weight_pointer,
    sum_weights_pointer, output_pointer, batch_dim, spatial_dim,
    input_batch_stride, input_feat_stride, input_spatial_stride,
    target_batch_stride, target_spatial_stride, output_batch_stride,
    output_spatial_stride, reduction: tl.constexpr, weighted: tl.constexpr,
    BLOCK_SIZE_BATCH: tl.constexpr, BLOCK_SIZE_SPATIAL: tl.constexpr):
    """
    Measures the negative log likelihood loss between the input and target,
    with optional reweighing of each class.
    Args:
        input_pointer: Pointer to the input.
            The input must be of shape [batch_dim, feat_dim, spatial_dim].
        target_pointer: Pointer to the target.
            The target must be of shape [batch_dim, spatial_dim].
        weight_pointer: Pointer to an optional class weight vector.
            The class weight vector, if provided, must be of shape [feat_dim].
        sum_weights_pointer: Pointer to a container the sum of the class weights is written to.
            The container must be of shape [batch_dim/BLOCK_SIZE_BATCH].
        output_pointer: Pointer to a container the loss is written to.
            The container must be of shape [batch_dim, spatial_dim] if reduction is 'none',
            and otherwise of shape [batch_dim/BLOCK_SIZE].
        batch_dim: Batch dimension.
        spatial_dim: Spatial dimension.
        input_batch_stride: Stride necessary to jump one element along the
            input's batch dimension.
        input_feat_stride: Stride necessary to jump one element along the
            input's feature dimension.
        input_spatial_stride: Stride necessary to jump one element along the
            input's spatial dimension.
        target_batch_stride: Stride necessary to jump one element along the
            target's batch dimension.
        target_spatial_stride: Stride necessary to jump one element along the
            target's spatial dimension.
        output_batch_stride: Stride necessary to jump one element along the
            output container's batch dimension.
        output_spatial_stride: Stride necessary to jump one element along the
            output container's spatial dimension.
        reduction: Reduction strategy for the output.
            Options are 'none' for no reduction, 'mean' for averaging the loss
            across all entries, and 'sum' for summing the loss across all entries.
            If a reduction method is specified, the reduced result of each
            program is written to a separate index in the summed weights and
            output container, which should later be summed.
        weighted: Flag for weighing each class.
        BLOCK_SIZE_BATCH: Block size across the batch dimension.
        BLOCK_SIZE_SPATIAL: Block size across the spatial dimension.
    """
    batch_pid = tl.program_id(axis=0)
    batch_offset = batch_pid * BLOCK_SIZE_BATCH + tl.arange(0, BLOCK_SIZE_BATCH
        )
    spatial_offset = tl.arange(0, BLOCK_SIZE_SPATIAL)
    batch_mask = batch_offset < batch_dim
    spatial_mask = spatial_offset < spatial_dim
    target_pointer += target_batch_stride * batch_offset[:, None
        ] + target_spatial_stride * spatial_offset[None, :]
    target = tl.load(target_pointer, mask=batch_mask[:, None] &
        spatial_mask[None, :])
    input_pointer += (input_feat_stride * target + input_batch_stride *
        batch_offset[:, None] + input_spatial_stride * spatial_offset[None, :])
    input = tl.load(input_pointer, mask=batch_mask[:, None] & spatial_mask[
        None, :]).to(tl.float32)
    output = -input
    if weighted:
        weight = tl.load(weight_pointer + target, mask=batch_mask[:, None] &
            spatial_mask[None, :]).to(tl.float32)
        output *= weight
    if reduction == 'none':
        output_pointer += output_batch_stride * batch_offset[:, None
            ] + output_spatial_stride * spatial_offset[None, :]
        tl.store(output_pointer, output, mask=batch_mask[:, None] &
            spatial_mask[None, :])
    elif reduction == 'mean':
        if weighted:
            tl.store(sum_weights_pointer + batch_pid, tl.sum(weight))
            tl.store(output_pointer + batch_pid, tl.sum(output))
        else:
            tl.store(output_pointer + batch_pid, tl.sum(output) / (
                batch_dim * spatial_dim))
    elif reduction == 'sum':
        tl.store(output_pointer + batch_pid, tl.sum(output))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "High Throughput"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/nll_loss_kernels.py 
 | 
					
	f9da9e73-4afd-45c7-a28d-2725468622a1 
 | 
	paged_attn.py 
 | 
	AlibabaPAI/FLASHNN 
 | 
	flashnn/triton_kernels/paged_attn.py 
 | 
	528a9301587f5fb135b25d973a87ba0a40a703a7 
 | 0 
							 | 
	@triton.autotune(configs=[triton.Config({}, num_warps=warps) for warps in [
    4, 8, 16]], key=['QUERY_GROUP_SIZE', 'HEAD_SIZE', 'NUM_PARTITIONS',
    'PARTITION_SIZE'])
@triton.jit
def _paged_attn_w_mma_v2_reduce_kernel(out_ptr, m_i_ptr, l_i_ptr,
    tmp_out_ptr, context_lens_ptr, max_num_partitions, stride_o0, stride_o1,
    stride_o2, HEAD_SIZE: tl.constexpr, QUERY_GROUP_SIZE: tl.constexpr,
    PADDED_QUERY_GROUP_SIZE: tl.constexpr, NUM_KV_HEADS: tl.constexpr,
    PARTITION_SIZE: tl.constexpr, NUM_PARTITIONS: tl.constexpr):
    seq_idx = tl.program_id(0)
    kv_head_idx = tl.program_id(1)
    context_len = tl.load(context_lens_ptr + seq_idx)
    num_partitions = tl.cdiv(context_len, PARTITION_SIZE)
    group_head_offset = tl.arange(0, PADDED_QUERY_GROUP_SIZE)[:, None
        ] * HEAD_SIZE + tl.arange(0, HEAD_SIZE)[None, :]
    group_mask = tl.arange(0, PADDED_QUERY_GROUP_SIZE)[:, None
        ] < QUERY_GROUP_SIZE
    if num_partitions == 1:
        tmp_out_offset = ((seq_idx * NUM_KV_HEADS + kv_head_idx) *
            max_num_partitions * QUERY_GROUP_SIZE * HEAD_SIZE +
            group_head_offset)
        tmp_out = tl.load(tmp_out_ptr + tmp_out_offset, mask=group_mask,
            other=0.0)
        out_offset = (seq_idx * stride_o0 + kv_head_idx * QUERY_GROUP_SIZE *
            stride_o1 + group_head_offset * stride_o2)
        tl.store(out_ptr + out_offset, tmp_out, mask=group_mask)
        return
    ml_offset = (seq_idx * NUM_KV_HEADS + kv_head_idx
        ) * max_num_partitions * QUERY_GROUP_SIZE + tl.arange(0, NUM_PARTITIONS
        )[:, None] * QUERY_GROUP_SIZE + tl.arange(0, PADDED_QUERY_GROUP_SIZE)[
        None, :]
    mask = (tl.arange(0, NUM_PARTITIONS)[:, None] < num_partitions) & (tl.
        arange(0, PADDED_QUERY_GROUP_SIZE)[None, :] < QUERY_GROUP_SIZE)
    m_i = tl.load(m_i_ptr + ml_offset, mask=mask, other=float('-inf'))
    m = tl.max(m_i, axis=0)
    l_i = tl.load(l_i_ptr + ml_offset, mask=mask, other=0.0)
    l_i *= tl.exp(m_i - m[None, :])
    l = tl.sum(l_i, axis=0)
    r = l_i / l[None, :]
    r = tl.reshape(r, (NUM_PARTITIONS, PADDED_QUERY_GROUP_SIZE, 1))
    tmp_out_offset = (seq_idx * NUM_KV_HEADS + kv_head_idx
        ) * max_num_partitions * QUERY_GROUP_SIZE * HEAD_SIZE + tl.arange(0,
        NUM_PARTITIONS)[:, None, None
        ] * QUERY_GROUP_SIZE * HEAD_SIZE + tl.arange(0, PADDED_QUERY_GROUP_SIZE
        )[None, :, None] * HEAD_SIZE + tl.arange(0, HEAD_SIZE)[None, None, :]
    tmp_out = tl.load(tmp_out_ptr + tmp_out_offset, mask=mask[:, :, None],
        other=0.0)
    out = tl.sum((tmp_out * r).to(tl.float32), axis=0)
    out_offset = (seq_idx * stride_o0 + kv_head_idx * QUERY_GROUP_SIZE *
        stride_o1 + group_head_offset * stride_o2)
    tl.store(out_ptr + out_offset, out, mask=group_mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Softmax"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "High Throughput"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/paged_attn.py 
 | 
					
	fbbb8e30-59c7-4345-a0af-c5932ca05a42 
 | 
	hello_triton.py 
 | 
	gmgu/study-triton 
 | 
	1_hello_triton/hello_triton.py 
 | 
	3a9a24fd3f1de3e7465535ffe72f6deac8a419bd 
 | 0 
							 | 
	@triton.jit
def hello_kernel():
    print('Hello Triton Kernel!')
 
 | 
	{
  "Data Type": [],
  "Functionality": [],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/gmgu/study-triton/blob/3a9a24fd3f1de3e7465535ffe72f6deac8a419bd/1_hello_triton/hello_triton.py 
 | 
					
	89417c21-0b2b-4b0f-bb94-3113c88d8895 
 | 
	adam.py 
 | 
	ServiceNow/Fast-LLM 
 | 
	fast_llm/functional/triton/adam.py 
 | 
	8b46289079da67cba99628448a6b6083dac083cf 
 | 0 
							 | 
	@triton.jit
def triton_adam_kernel(params_ptr, grads_ptr, exp_avgs_ptr, exp_avg_sqs_ptr,
    noop_flag_ptr, scale_ptr, step_size, beta1, beta2, bias_correction,
    decay_factor, epsilon, numel: tl.constexpr, block_size: tl.constexpr):
    noop_flag = tl.load(noop_flag_ptr)
    if noop_flag != 0:
        return
    scale = tl.load(scale_ptr)
    block_start = tl.program_id(axis=0).to(tl.int64) * block_size
    offsets = block_start + tl.arange(0, block_size)
    mask = offsets < numel
    params = tl.load(params_ptr + offsets, mask=mask)
    grads = tl.load(grads_ptr + offsets, mask=mask)
    grads = scale * grads
    exp_avgs = tl.load(exp_avgs_ptr + offsets, mask=mask)
    exp_avgs = beta1 * exp_avgs + (1 - beta1) * grads
    tl.store(exp_avgs_ptr + offsets, exp_avgs, mask=mask)
    exp_avg_sqs = tl.load(exp_avg_sqs_ptr + offsets, mask=mask)
    exp_avg_sqs = beta2 * exp_avg_sqs + (1 - beta2) * grads * grads
    tl.store(exp_avg_sqs_ptr + offsets, exp_avg_sqs, mask=mask)
    params = decay_factor * params - step_size * exp_avgs / (tl.sqrt(
        exp_avg_sqs) / bias_correction + epsilon)
    tl.store(params_ptr + offsets, params, mask=mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Strided Access",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "High Throughput"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/adam.py 
 | 
					
	b21323e3-f171-4003-9eda-bd4fcfee5aff 
 | 
	flash_attention.py 
 | 
	falkaer/multi-scale-music 
 | 
	seq/flash_attention.py 
 | 
	a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d 
 | 0 
							 | 
	@triton.jit
def make_bounds(offs_m, offs_n, M, N, EVEN_M: tl.constexpr, EVEN_N: tl.
    constexpr):
    if EVEN_M:
        mask = offs_n[None, :] < N
    elif EVEN_N:
        mask = offs_m[:, None] < M
    else:
        mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
    return mask
 
 | 
	{
  "Data Type": [],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/seq/flash_attention.py 
 | 
					
	5f6f1215-91df-4856-935d-ad21674c7526 
 | 
	rwkv_log.py 
 | 
	berlino/seq_icl 
 | 
	src/models/sequence/rnn/scan_triton/rwkv_log.py 
 | 
	9b9223d15348b5a415fb453ed988ed5f7ab9fbdc 
 | 0 
							 | 
	@triton.jit
def logaddexp(a, b):
    max_ab = tl.maximum(a, b)
    return max_ab + tl.log(tl.exp(a - max_ab) + tl.exp(b - max_ab))
 
 | 
	{
  "Data Type": [],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/berlino/seq_icl/blob/9b9223d15348b5a415fb453ed988ed5f7ab9fbdc/src/models/sequence/rnn/scan_triton/rwkv_log.py 
 | 
					
	aeaaa009-521f-43fd-884c-f286d78d2d44 
 | 
	fused_linear_cross_entropy.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/modules/fused_linear_cross_entropy.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.jit
def cross_entropy_kernel(logits, lse, target, loss, total, ignore_index,
    label_smoothing: tl.constexpr, logit_scale: tl.constexpr, reduction: tl
    .constexpr, V: tl.constexpr, BV: tl.constexpr):
    """
    This kernel computes both cross entropy loss and the gradient of the input.
    We only consider hard label + mean reduction for now.
    Please refer to https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html for the math.
    Args:
        logits:
            Pointer to logits tensor.
        lse:
            Pointer to logsumexp tensor.
        target: Pointer to target tensor.
        loss:
            Pointer to tensor to store the loss.
        V (int):
            The number of columns in the input tensor.
        total (int):
            The number of non-ignored classes.
        ignore_index (int):
            The index to ignore in the target.
        label_smoothing (float):
            The amount of smoothing when computing the loss, where 0.0 means no smoothing.
        reduction (str):
            The string for the reduction to apply
        BV (int):
            The block size for vocab.
    """
    i_n = tl.program_id(0).to(tl.int64)
    NV = tl.cdiv(V, BV)
    b_y = tl.load(target + i_n)
    logits += i_n * V
    if b_y == ignore_index:
        for i in range(0, V, BV):
            o_v = i + tl.arange(0, BV)
            tl.store(logits + o_v, 0.0, mask=o_v < V)
        return
    b_l = tl.load(logits + b_y) * logit_scale
    b_lse = tl.load(lse + i_n)
    b_loss = b_lse - b_l
    b_z = 0.0
    eps = label_smoothing / V
    tl.debug_barrier()
    for iv in range(0, NV):
        o_v = iv * BV + tl.arange(0, BV)
        b_logits = tl.load(logits + o_v, mask=o_v < V, other=float('-inf')
            ) * logit_scale
        if label_smoothing > 0:
            b_z += tl.sum(tl.where(o_v < V, -eps * b_logits, 0.0))
        b_p = (tl.exp(b_logits - b_lse) - eps) * logit_scale
        if reduction == 'mean':
            b_p = b_p / total
        tl.store(logits + o_v, b_p, mask=o_v < V)
        tl.debug_barrier()
    if label_smoothing > 0:
        b_loss = b_loss * (1 - label_smoothing) + (b_z + label_smoothing *
            b_lse)
    b_l = tl.load(logits + b_y)
    if reduction == 'mean':
        b_loss = b_loss / total
        b_l += (label_smoothing - 1) / total * logit_scale
    else:
        b_l += (label_smoothing - 1) * logit_scale
    tl.store(loss + i_n, b_loss)
    tl.store(logits + b_y, b_l)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Softmax",
    "Backpropagation"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [],
  "Performance Objective": [
    "Memory-Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/fused_linear_cross_entropy.py 
 | 
					
	0259cfec-6015-444e-944d-75eaa64eb07f 
 | 
	y_4.py 
 | 
	IntelLabs/EquiTriton 
 | 
	src/equitriton/sph_harm/direct/y_4.py 
 | 
	1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c 
 | 0 
							 | 
	@triton.jit
def fourth_order_fwd(coord_ptr: tl.tensor, output_ptr: tl.tensor,
    block_size: tl.constexpr, coord_numel: tl.constexpr, output_numel: tl.
    constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr):
    coord_stride = 3
    block_id = tl.program_id(0)
    coord_striding = tl.arange(0, block_size) * coord_stride
    coord_row_offset = coord_striding + block_size * coord_stride * block_id
    x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset <
        coord_numel)
    y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 <
        coord_numel)
    z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 <
        coord_numel)
    CONST000 = 1.125
    CONST001 = 2.25
    CONST002 = 3.0
    CONST005 = 2.21852991866236
    CONST007 = 9.48683298050514
    CONST010 = 20.1246117974981
    CONST011 = -18.8248505970167
    CONST012 = -13.3111795119741
    CONST013 = -10.0623058987491
    CONST014 = -9.0
    CONST015 = -8.87411967464942
    CONST016 = -7.11512473537885
    CONST017 = -6.27495019900557
    CONST018 = -3.35410196624968
    CONST019 = -1.67705098312484
    VAR06 = x * x * x * x
    VAR07 = x * x * x
    VAR08 = x * x
    VAR15 = y * y * y * y
    VAR16 = y * y * y
    VAR17 = y * y
    VAR24 = z * z * z * z
    VAR25 = z * z * z
    VAR26 = z * z
    Y00 = CONST015 * VAR07 * z - CONST015 * VAR25 * x
    Y01 = y * (-CONST011 * VAR26 * x + CONST017 * VAR07)
    Y02 = CONST018 * VAR07 * z + x * (CONST010 * VAR17 * z + CONST018 * VAR25)
    Y03 = CONST016 * VAR07 * y + x * (CONST007 * VAR16 + CONST016 * VAR26 * y)
    Y04 = (CONST000 * VAR06 + CONST000 * VAR24 + CONST002 * VAR15 + 
        CONST014 * VAR17 * VAR26 + VAR08 * (CONST001 * VAR26 + CONST014 *
        VAR17))
    Y05 = CONST016 * VAR25 * y + z * (CONST007 * VAR16 + CONST016 * VAR08 * y)
    Y06 = -CONST019 * VAR06 + CONST019 * VAR24 + VAR17 * (CONST013 * VAR08 -
        CONST013 * VAR26)
    Y07 = y * (CONST011 * VAR08 * z - CONST017 * VAR25)
    Y08 = CONST005 * VAR06 + CONST005 * VAR24 + CONST012 * VAR08 * VAR26
    output_striding = tl.arange(0, block_size) * output_stride
    output_row_offset = (output_striding + block_size * output_stride *
        block_id + col_offset)
    tl.store(output_ptr + output_row_offset, Y00, mask=output_row_offset <
        output_numel)
    tl.store(output_ptr + output_row_offset + 1, Y01, mask=
        output_row_offset + 1 < output_numel)
    tl.store(output_ptr + output_row_offset + 2, Y02, mask=
        output_row_offset + 2 < output_numel)
    tl.store(output_ptr + output_row_offset + 3, Y03, mask=
        output_row_offset + 3 < output_numel)
    tl.store(output_ptr + output_row_offset + 4, Y04, mask=
        output_row_offset + 4 < output_numel)
    tl.store(output_ptr + output_row_offset + 5, Y05, mask=
        output_row_offset + 5 < output_numel)
    tl.store(output_ptr + output_row_offset + 6, Y06, mask=
        output_row_offset + 6 < output_numel)
    tl.store(output_ptr + output_row_offset + 7, Y07, mask=
        output_row_offset + 7 < output_numel)
    tl.store(output_ptr + output_row_offset + 8, Y08, mask=
        output_row_offset + 8 < output_numel)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_4.py 
 | 
					
	99554c85-0a2d-42e8-ab1a-65744f560890 
 | 
	chunk.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/gla/chunk.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({},
    num_warps=2), triton.Config({}, num_warps=4), triton.Config({},
    num_warps=8)], key=['BC'])
@triton.jit
def chunk_gla_fwd_A_kernel_intra_sub_intra_merge(A, A2, offsets, indices, B:
    tl.constexpr, T: tl.constexpr, H: tl.constexpr, BT: tl.constexpr, BC:
    tl.constexpr, NK: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST:
    tl.constexpr):
    i_t, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    i_b, i_h = i_bh // H, i_bh % H
    if USE_OFFSETS:
        i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
            i_t * 2 + 1).to(tl.int32)
        bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
            i_n + 1).to(tl.int32)
        all = T
        T = eos - bos
    else:
        bos, eos = i_b * T, i_b * T + T
        all = B * T
    if i_t * BT + i_c * BC >= T:
        return
    b_A = tl.zeros([BC, BC], dtype=tl.float32)
    for i_k in range(0, NK):
        if HEAD_FIRST:
            p_A = tl.make_block_ptr(A + (i_k * B * H + i_bh) * T * BC, (T,
                BC), (BC, 1), (i_t * BT + i_c * BC, 0), (BC, BC), (1, 0))
        else:
            p_A = tl.make_block_ptr(A + (i_k * all + bos) * H * BC + i_h *
                BC, (T, BC), (H * BC, 1), (i_t * BT + i_c * BC, 0), (BC, BC
                ), (1, 0))
        b_A += tl.load(p_A, boundary_check=(0, 1))
    if HEAD_FIRST:
        p_A2 = tl.make_block_ptr(A2 + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
            BT + i_c * BC, i_c * BC), (BC, BC), (1, 0))
    else:
        p_A2 = tl.make_block_ptr(A2 + (bos * H + i_h) * BT, (T, BT), (H *
            BT, 1), (i_t * BT + i_c * BC, i_c * BC), (BC, BC), (1, 0))
    tl.store(p_A2, b_A.to(A2.dtype.element_ty), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/chunk.py 
 | 
					
	58b3463b-151f-4a0e-bc35-134133839e16 
 | 
	chunk.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/abc/chunk.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.jit
def chunk_abc_fwd_kernel_V(q, v, z, h, o, A, s_k_h, s_k_t, s_k_d, s_v_h,
    s_v_t, s_v_d, s_h_h, s_h_t, s_h_d, scale, T: tl.constexpr, K: tl.
    constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.
    constexpr):
    i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    i_p = tl.maximum(i_t * BT - 1, 0)
    b_o = tl.zeros([BT, BV], dtype=tl.float32)
    for i_k in range(tl.cdiv(K, BK)):
        p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
            i_t * BT, i_k * BK), (BT, BK), (1, 0))
        p_z = tl.make_block_ptr(z + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
            i_t * BT, i_k * BK), (BT, BK), (1, 0))
        p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * K * V, (K, V), (
            s_h_t, s_h_d), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
        p_zp = tl.make_block_ptr(z + i_bh * s_k_h, (T * K,), (s_k_d,), (i_p *
            K + i_k * BK,), (BK,), (0,))
        b_q = tl.load(p_q, boundary_check=(0, 1))
        b_q = (b_q * scale).to(b_q.dtype)
        b_z = tl.load(p_z, boundary_check=(0, 1))
        b_zp = tl.load(p_zp, boundary_check=(0,))
        b_q = (b_q * tl.exp(b_zp[None, :] - b_z)).to(b_q.dtype)
        b_h = tl.load(p_h, boundary_check=(0, 1))
        if i_k >= 0:
            b_o += tl.dot(b_q, b_h, allow_tf32=False)
    p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t *
        BT, i_v * BV), (BT, BV), (1, 0))
    p_o = tl.make_block_ptr(o + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t *
        BT, i_v * BV), (BT, BV), (1, 0))
    p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT,
        0), (BT, BT), (1, 0))
    b_v = tl.load(p_v, boundary_check=(0, 1))
    b_A = tl.load(p_A, boundary_check=(0, 1))
    b_o += tl.dot(b_A, b_v, allow_tf32=False)
    tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py 
 | 
					
	466944e0-8df6-43af-8e5a-f9a4513cce97 
 | 
	wy_fast.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/gated_delta_rule/wy_fast.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for
    num_warps in [2, 4, 8]], key=['BT', 'BK', 'BV'])
@triton.jit
def fwd_recompute_w_u_kernel(k, v, beta, w, u, Aw, Au, offsets, indices, T:
    tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl
    .constexpr, BK: tl.constexpr, BV: tl.constexpr, HEAD_FIRST: tl.
    constexpr, USE_OFFSETS: tl.constexpr):
    i_t, i_bh = tl.program_id(0), tl.program_id(1)
    i_b, i_h = i_bh // H, i_bh % H
    if USE_OFFSETS:
        i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
            i_t * 2 + 1).to(tl.int32)
        bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
            i_n + 1).to(tl.int32)
        T = eos - bos
    else:
        bos, eos = i_b * T, i_b * T + T
    if HEAD_FIRST:
        p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,),
            (BT,), (0,))
        p_Au = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
            BT, 0), (BT, BT), (1, 0))
    else:
        p_beta = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t *
            BT,), (BT,), (0,))
        p_Au = tl.make_block_ptr(Au + (bos * H + i_h) * BT, (T, BT), (H *
            BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
    b_beta = tl.load(p_beta, boundary_check=(0,))
    b_Au = tl.load(p_Au, boundary_check=(0, 1))
    for i_v in range(tl.cdiv(V, BV)):
        if HEAD_FIRST:
            p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t *
                BT, i_v * BV), (BT, BV), (1, 0))
            p_u = tl.make_block_ptr(u + i_bh * T * V, (T, V), (V, 1), (i_t *
                BT, i_v * BV), (BT, BV), (1, 0))
        else:
            p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V,
                1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
            p_u = tl.make_block_ptr(u + (bos * H + i_h) * V, (T, V), (H * V,
                1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
        b_v = tl.load(p_v, boundary_check=(0, 1))
        b_vb = (b_v * b_beta[:, None]).to(b_v.dtype)
        b_u = tl.dot(b_Au, b_vb, allow_tf32=False)
        tl.store(p_u, b_u.to(p_u.dtype.element_ty), boundary_check=(0, 1))
    tl.debug_barrier()
    b_Au = None
    if HEAD_FIRST:
        p_Aw = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
            BT, 0), (BT, BT), (1, 0))
    else:
        p_Aw = tl.make_block_ptr(Aw + (bos * H + i_h) * BT, (T, BT), (H *
            BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
    b_Aw = tl.load(p_Aw, boundary_check=(0, 1))
    for i_k in range(tl.cdiv(K, BK)):
        if HEAD_FIRST:
            p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t *
                BT, i_k * BK), (BT, BK), (1, 0))
            p_w = tl.make_block_ptr(w + i_bh * T * K, (T, K), (K, 1), (i_t *
                BT, i_k * BK), (BT, BK), (1, 0))
        else:
            p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K,
                1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
            p_w = tl.make_block_ptr(w + (bos * H + i_h) * K, (T, K), (H * K,
                1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
        b_k = tl.load(p_k, boundary_check=(0, 1))
        b_kb = (b_k * b_beta[:, None]).to(b_k.dtype)
        b_w = tl.dot(b_Aw, b_kb)
        tl.store(p_w, b_w.to(p_w.dtype.element_ty), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gated_delta_rule/wy_fast.py 
 | 
					
	b7a78b7c-edba-48ab-88b8-0d8b4fa84948 
 | 
	normalization.py 
 | 
	ServiceNow/Fast-LLM 
 | 
	fast_llm/functional/triton/normalization.py 
 | 
	8b46289079da67cba99628448a6b6083dac083cf 
 | 0 
							 | 
	@triton.jit
def triton_normalization_backward_kernel_2(grad_weight_partial_ptr,
    grad_bias_partial_ptr, grad_weight_ptr, grad_bias_ptr, m, n_cols,
    has_bias: tl.constexpr, accumulate_grad: tl.constexpr, block_size_m: tl
    .constexpr, block_size_n: tl.constexpr):
    pid = tl.program_id(0)
    cols = pid * block_size_n + tl.arange(0, block_size_n)
    grad_weight_partial_sum = tl.zeros((block_size_m, block_size_n), dtype=
        tl.float32)
    if has_bias:
        grad_bias_partial_sum = tl.zeros((block_size_m, block_size_n),
            dtype=tl.float32)
    col_mask = cols < n_cols
    for i in range(0, m, block_size_m):
        rows = i + tl.arange(0, block_size_m)
        mask = (rows[:, None] < m) & (cols[None, :] < n_cols)
        offsets = rows[:, None] * n_cols + cols[None, :]
        grad_weight_partial_sum += tl.load(grad_weight_partial_ptr +
            offsets, mask=mask, other=0.0)
        if has_bias:
            grad_bias_partial_sum += tl.load(grad_bias_partial_ptr +
                offsets, mask=mask, other=0.0)
    grad_weight = tl.sum(grad_weight_partial_sum, axis=0)
    if accumulate_grad:
        grad_weight = tl.load(grad_weight_ptr + cols, mask=col_mask
            ) + grad_weight
    tl.store(grad_weight_ptr + cols, grad_weight, mask=col_mask)
    if has_bias:
        grad_bias = tl.sum(grad_bias_partial_sum, axis=0)
        if accumulate_grad:
            grad_bias = tl.load(grad_bias_ptr + cols, mask=col_mask
                ) + grad_bias
        tl.store(grad_bias_ptr + cols, grad_bias, mask=col_mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Normalization",
    "Backpropagation"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/normalization.py 
 | 
					
	26e4d111-f4aa-445c-91fa-fcdaff284554 
 | 
	k_layer_norm.py 
 | 
	cpuhrsch/torchfused 
 | 
	torchfused/triton/k_layer_norm.py 
 | 
	6c40ed160dcecbe7825f268f7c86bccd359e0ebf 
 | 0 
							 | 
	@triton.jit
def _layer_norm_no_affine_bwd(DX, DY, Y, V, stride, N, **META):
    row = tl.program_id(0)
    cols = tl.arange(0, META['BLOCK_SIZE_N'])
    y_ptrs = Y + row * stride + cols
    dy_ptrs = DY + row * stride + cols
    y = tl.load(y_ptrs, mask=cols < N, other=0).to(tl.float32)
    dy = tl.load(dy_ptrs, mask=cols < N, other=0).to(tl.float32)
    rstd = tl.load(V + row)
    xhat = tl.where(cols < N, y, 0.0)
    wdy = tl.where(cols < N, dy, 0.0)
    mean1 = tl.sum(xhat * wdy, axis=0) / N
    mean2 = tl.sum(wdy, axis=0) / N
    dx = (wdy - (xhat * mean1 + mean2)) * rstd
    _store(dx, DX, stride, N, META)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Normalization",
    "Backpropagation"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "BSD"
]  | 
	https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_layer_norm.py 
 | 
					
	8cfb5a84-099f-41cc-9d64-f30e70e6e39b 
 | 
	quantization.py 
 | 
	neuro-ml/kerops 
 | 
	kerops/kernels/quantization.py 
 | 
	735336775e825d5cb06b8850d25423661b12d1ac 
 | 0 
							 | 
	@triton.jit
def _QuantUint8Window_impl(input_ptr, output_ptr, numel, window, BLOCK_SIZE:
    tl.constexpr):
    tid = tl.program_id(0)
    input_ptr += tid * BLOCK_SIZE
    output_ptr += tid * BLOCK_SIZE
    offset = tl.arange(0, BLOCK_SIZE)
    mask = offset < numel - tid * BLOCK_SIZE
    input = tl.load(input_ptr + offset, mask=mask).to(tl.float32)
    input = tl.minimum(tl.maximum(input, -window), window)
    input = (input + window) / (2 * window)
    input *= 255
    input = input.to(tl.uint8)
    tl.store(output_ptr + offset, input, mask=mask)
 
 | 
	{
  "Data Type": [
    "uint8"
  ],
  "Functionality": [
    "Quantization"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/quantization.py 
 | 
					
	ecb649cc-99a1-47b3-abec-69aff2b74328 
 | 
	kernel_benchmark.py 
 | 
	ruikangliu/FlatQuant 
 | 
	benchmarks/kernel_benchmark.py 
 | 
	9d3032065f1688cb3f71ebc8166df6d91440e871 
 | 0 
							 | 
	@triton.autotune(configs=[triton.Config({}, num_stages=2, num_warps=4),
    triton.Config({}, num_stages=2, num_warps=2), triton.Config({},
    num_stages=3, num_warps=4), triton.Config({}, num_stages=3, num_warps=2
    ), triton.Config({}, num_stages=4, num_warps=4), triton.Config({},
    num_stages=4, num_warps=2)], key=['B', 'M', 'N'])
@triton.jit
def matmul_kernel(a_ptr, b_ptr, c_ptr, res_ptr, output_scale, B, M: tl.
    constexpr, N: tl.constexpr, np2_M: tl.constexpr, np2_N: tl.constexpr,
    stride_am, stride_ak, stride_bb, stride_bk, stride_bn, stride_ck,
    stride_cn, stride_resb, stride_resm, stride_resn, BLOCK_SIZE_M: tl.
    constexpr, is_split: tl.constexpr):
    """
    a @ b @ c
    a [M, M]
    b [B, M, N]
    c [N, N]
    now only supports BLOCK_SIZE_M == triton.next_power_of_2(BLOCK_SIZE_M)
    """
    pid = tl.program_id(axis=0)
    batch_id = tl.program_id(axis=1) + tl.program_id(axis=2) * tl.num_programs(
        axis=1)
    pid_m = pid
    offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
    offs_bn = tl.arange(0, np2_N) % N
    offs_k = tl.arange(0, np2_M)
    a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] *
        stride_ak)
    b_ptrs = b_ptr + batch_id * stride_bb.to(tl.int64) + (offs_k[:, None] *
        stride_bk + offs_bn[None, :] * stride_bn)
    accumulator = tl.zeros((BLOCK_SIZE_M, np2_N), dtype=tl.float32)
    a = tl.load(a_ptrs, mask=offs_k[None, :] < M, other=0.0)
    b = tl.load(b_ptrs, mask=offs_k[:, None] < M, other=0.0)
    accumulator += tl.dot(a, b)
    tmp_ab = accumulator.to(tl.float16)
    offs_cn = tl.arange(0, np2_N) % N
    offs_k = tl.arange(0, np2_N)
    c_ptrs = c_ptr + (offs_k[:, None] * stride_ck + offs_cn[None, :] *
        stride_cn)
    c = tl.load(c_ptrs, mask=offs_k[:, None] < N, other=0.0)
    accumulator = 0
    accumulator += tl.dot(tmp_ab, c)
    if is_split:
        res = accumulator.to(tl.float16)
        offs_resm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
        offs_resn = tl.arange(0, np2_N)
        res_ptrs = res_ptr + stride_resb.to(tl.int64
            ) * batch_id + stride_resm * offs_resm[:, None
            ] + stride_resn * offs_resn[None, :]
        res_mask = (offs_resm[:, None] < M) & (offs_resn[None, :] < N)
        tl.store(res_ptrs, res, mask=res_mask)
    else:
        abs_src_val = tl.abs(accumulator)
        max_src_val = tl.max(abs_src_val)
        scale = max_src_val / 7.0
        quant_val = libdevice.llrint(accumulator / scale)
        quant_val = max(-8, min(quant_val, 7))
        quant_val = quant_val.reshape(BLOCK_SIZE_M, np2_N // 2, 2,
            can_reorder=False)
        quant_val_even, quant_val_odd = quant_val.split()
        quant_val_odd = quant_val_odd << 4
        res = tl.zeros((BLOCK_SIZE_M, np2_N // 2), dtype=tl.int8)
        res = res | quant_val_odd & 240
        res = res | quant_val_even & 15
        offs_resm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
        offs_resn = tl.arange(0, np2_N // 2)
        res_ptrs = res_ptr + stride_resb.to(tl.int64
            ) * batch_id + stride_resm * offs_resm[:, None
            ] + stride_resn * offs_resn[None, :]
        res_mask = (offs_resm[:, None] < M) & (offs_resn[None, :] < N // 2)
        tl.store(res_ptrs, res, mask=res_mask)
        tl.store(output_scale + batch_id, scale.to(tl.float16))
 
 | 
	{
  "Data Type": [
    "fp32",
    "fp16",
    "int8"
  ],
  "Functionality": [
    "Matrix Multiplication",
    "Quantization"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [],
  "Performance Objective": [
    "High Throughput"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/ruikangliu/FlatQuant/blob/9d3032065f1688cb3f71ebc8166df6d91440e871/benchmarks/kernel_benchmark.py 
 | 
					
	06a01956-3562-48af-87d8-0ba21f8d29e7 
 | 
	fused_moe_a8w8.py 
 | 
	AlibabaPAI/FLASHNN 
 | 
	flashnn/triton_kernels/fused_moe_a8w8.py 
 | 
	528a9301587f5fb135b25d973a87ba0a40a703a7 
 | 0 
							 | 
	@triton.jit
def _fused_moe_a8w8_kernel(A, B, C, alpha_row_ptr, alpha_col_ptr,
    topk_weights_ptr, sorted_token_ids_ptr, expert_ids_ptr,
    num_tokens_post_padded_ptr, N, K, EM, num_valid_tokens, stride_am,
    stride_ak, stride_be, stride_bn, stride_bk, stride_cm, stride_cn,
    stride_scale_be, stride_scale_bn, BLOCK_SIZE_M: tl.constexpr,
    BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M:
    tl.constexpr, MUL_ROUTED_WEIGHT: tl.constexpr, top_k: tl.constexpr):
    pid = tl.program_id(axis=0)
    num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
    num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
    num_pid_in_group = GROUP_SIZE_M * num_pid_n
    group_id = pid // num_pid_in_group
    first_pid_m = group_id * GROUP_SIZE_M
    group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
    pid_m = first_pid_m + pid % num_pid_in_group % group_size_m
    pid_n = pid % num_pid_in_group // group_size_m
    num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
    if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
        return
    offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
    token_mask = offs_token < num_valid_tokens
    offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
    offs_k = tl.arange(0, BLOCK_SIZE_K)
    a_ptrs = A + (offs_token[:, None] // top_k * stride_am + offs_k[None, :
        ] * stride_ak)
    off_experts = tl.load(expert_ids_ptr + pid_m)
    b_ptrs = B + off_experts * stride_be + (offs_bn[None, :] * stride_bn + 
        offs_k[:, None] * stride_bk)
    accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.int32)
    _A0 = tl.zeros([1, 1], dtype=a_ptrs.dtype.element_ty)
    _B0 = tl.zeros([1, 1], dtype=b_ptrs.dtype.element_ty)
    lo = 0
    hi = tl.cdiv(K, BLOCK_SIZE_K)
    for k in range(lo, hi - 1):
        a = tl.load(a_ptrs, mask=token_mask[:, None], other=_A0)
        b = tl.load(b_ptrs)
        accumulator += tl.dot(a, b)
        a_ptrs += BLOCK_SIZE_K * stride_ak
        b_ptrs += BLOCK_SIZE_K * stride_bk
    for k in range(hi - 1, hi):
        a = tl.load(a_ptrs, mask=token_mask[:, None] & (offs_k[None, :] < K -
            k * BLOCK_SIZE_K), other=_A0)
        b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K,
            other=_B0)
        accumulator += tl.dot(a, b)
        a_ptrs += BLOCK_SIZE_K * stride_ak
        b_ptrs += BLOCK_SIZE_K * stride_bk
    offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
    token_mask = offs_token < num_valid_tokens
    offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    alpha_row_ptrs = alpha_row_ptr + offs_token // top_k
    alpha_col_ptrs = alpha_col_ptr + off_experts * stride_scale_be + offs_cn
    _ALPHA0 = tl.zeros([1], dtype=alpha_row_ptr.dtype.element_ty)
    alpha_row = tl.load(alpha_row_ptrs, mask=token_mask, other=_ALPHA0).to(tl
        .float32)
    alpha_col = tl.load(alpha_col_ptrs, mask=offs_cn < N, other=_ALPHA0).to(tl
        .float32)
    accumulator = accumulator * alpha_row[:, None]
    accumulator = accumulator * alpha_col[None, :]
    if MUL_ROUTED_WEIGHT:
        moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask,
            other=0)
        accumulator = accumulator * moe_weight[:, None]
    accumulator = accumulator.to(tl.float16)
    c_ptrs = C + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :]
    c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
    tl.store(c_ptrs, accumulator, mask=c_mask)
 
 | 
	{
  "Data Type": [
    "fp16"
  ],
  "Functionality": [
    "Matrix Multiplication",
    "Top-K Selection"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/fused_moe_a8w8.py 
 | 
					
	18bdbd68-3013-4acb-9efe-c2827d61c4ee 
 | 
	y_7.py 
 | 
	IntelLabs/EquiTriton 
 | 
	src/equitriton/sph_harm/direct/y_7.py 
 | 
	1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c 
 | 0 
							 | 
	@triton.jit
def seventh_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor,
    sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.
    constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr,
    output_stride: tl.constexpr):
    block_id = tl.program_id(0)
    coord_stride = 3
    coord_striding = tl.arange(0, block_size) * coord_stride
    coord_row_offset = coord_striding + block_size * coord_stride * block_id
    x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset <
        coord_numel)
    y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 <
        coord_numel)
    z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 <
        coord_numel)
    output_striding = tl.arange(0, block_size) * output_stride
    output_row_offset = (output_striding + block_size * output_stride *
        block_id + col_offset)
    g_0 = tl.load(sph_grad_ptr + output_row_offset, mask=output_row_offset <
        output_numel)
    g_1 = tl.load(sph_grad_ptr + output_row_offset + 1, mask=
        output_row_offset + 1 < output_numel)
    g_2 = tl.load(sph_grad_ptr + output_row_offset + 2, mask=
        output_row_offset + 2 < output_numel)
    g_3 = tl.load(sph_grad_ptr + output_row_offset + 3, mask=
        output_row_offset + 3 < output_numel)
    g_4 = tl.load(sph_grad_ptr + output_row_offset + 4, mask=
        output_row_offset + 4 < output_numel)
    g_5 = tl.load(sph_grad_ptr + output_row_offset + 5, mask=
        output_row_offset + 5 < output_numel)
    g_6 = tl.load(sph_grad_ptr + output_row_offset + 6, mask=
        output_row_offset + 6 < output_numel)
    g_7 = tl.load(sph_grad_ptr + output_row_offset + 7, mask=
        output_row_offset + 7 < output_numel)
    g_8 = tl.load(sph_grad_ptr + output_row_offset + 8, mask=
        output_row_offset + 8 < output_numel)
    g_9 = tl.load(sph_grad_ptr + output_row_offset + 9, mask=
        output_row_offset + 9 < output_numel)
    g_10 = tl.load(sph_grad_ptr + output_row_offset + 10, mask=
        output_row_offset + 10 < output_numel)
    g_11 = tl.load(sph_grad_ptr + output_row_offset + 11, mask=
        output_row_offset + 11 < output_numel)
    g_12 = tl.load(sph_grad_ptr + output_row_offset + 12, mask=
        output_row_offset + 12 < output_numel)
    g_13 = tl.load(sph_grad_ptr + output_row_offset + 13, mask=
        output_row_offset + 13 < output_numel)
    g_14 = tl.load(sph_grad_ptr + output_row_offset + 14, mask=
        output_row_offset + 14 < output_numel)
    CONST000 = 1.66389743899677
    CONST001 = 3.0
    CONST003 = 5.0
    CONST004 = 3.32779487799353
    CONST009 = 11.7655316231354
    CONST012 = 16.5555704843566
    CONST014 = 20.4939015319192
    CONST016 = 22.0740939791422
    CONST018 = 23.5310632462709
    CONST019 = 20.4939015319192
    CONST020 = 27.1108834234519
    CONST022 = 33.1111409687132
    CONST024 = 36.7901566319036
    CONST025 = 36.7901566319036
    CONST026 = 38.4260653723485
    CONST027 = 38.4260653723485
    CONST029 = 38.4260653723485
    CONST030 = 44.1481879582843
    CONST032 = -4.9916923169903
    CONST037 = 47.0621264925417
    CONST039 = 56.2781179722634
    CONST044 = -441.481879582843
    CONST045 = -441.481879582843
    CONST048 = 76.852130744697
    CONST049 = 76.852130744697
    CONST050 = -8.47215106982872
    CONST054 = 110.370469895711
    CONST055 = 110.370469895711
    CONST056 = -399.335385359224
    CONST057 = 117.655316231354
    CONST058 = 122.963409191515
    CONST059 = 122.963409191515
    CONST061 = -376.497011940334
    CONST062 = -376.497011940334
    CONST064 = 141.186379477625
    CONST066 = 147.160626527614
    CONST067 = 153.704261489394
    CONST069 = -350.955726374425
    CONST072 = 203.331625675889
    CONST073 = 203.331625675889
    CONST074 = -307.408522978788
    CONST075 = -9.60651634308713
    CONST076 = -9.37968632871057
    CONST079 = -281.390589861317
    CONST080 = -1.66389743899677
    CONST081 = -266.223590239483
    CONST082 = -263.216794780819
    CONST084 = -263.216794780818
    CONST085 = -250.998007960223
    CONST089 = 281.390589861317
    CONST091 = -220.740939791422
    CONST092 = -220.740939791422
    CONST093 = -199.667692679612
    CONST094 = -1.60108605718119
    CONST095 = -187.593726574211
    CONST096 = -177.482393492989
    CONST097 = -9.60651634308712
    CONST098 = -9.1975391579759
    CONST100 = -153.704261489394
    CONST101 = -147.160626527614
    CONST102 = -140.695294930659
    CONST104 = -133.111795119741
    CONST105 = -133.111795119741
    CONST106 = -125.499003980111
    CONST107 = -125.499003980111
    CONST109 = -105.286717912327
    CONST110 = -101.665812837945
    CONST111 = -99.833846339806
    CONST112 = -101.665812837945
    CONST113 = -4.80325817154356
    CONST114 = -81.3326502703558
    CONST115 = -81.3326502703557
    CONST116 = -76.852130744697
    CONST117 = -75.2994023880668
    CONST119 = -70.5931897388126
    CONST121 = -66.2222819374265
    CONST122 = -66.5558975598707
    CONST123 = -66.5558975598707
    CONST124 = -62.7495019900557
    CONST125 = -56.2781179722634
    CONST126 = -55.1852349478554
    CONST127 = -55.1852349478554
    CONST128 = -50.8329064189723
    CONST129 = -50.8329064189723
    CONST130 = -562.781179722634
    CONST131 = -47.0621264925418
    CONST132 = -50.8329064189724
    CONST133 = -44.1481879582843
    CONST134 = -44.3705983732471
    CONST135 = -40.6663251351779
    CONST136 = -40.6663251351779
    CONST137 = -8.31948719498384
    CONST138 = -37.6497011940334
    CONST139 = -33.2779487799353
    CONST140 = -29.9501539019418
    CONST141 = -25.4164532094862
    CONST142 = -25.4164532094862
    CONST143 = -23.5310632462709
    CONST144 = -532.447180478965
    CONST145 = -19.2130326861743
    CONST146 = -17.5477863187212
    CONST147 = -12.8765548211663
    CONST148 = -11.6472820729774
    CONST149 = -11.2076024002683
    CONST150 = -9.1975391579759
    CONST151 = -11.0370469895711
    CONST152 = -11.7655316231354
    CONST153 = -12.8765548211663
    CONST154 = -4.80325817154356
    CONST155 = -3.32779487799353
    CONST156 = -1.60108605718119
    VAR06 = x * x * x * x
    VAR07 = x * x * x
    VAR08 = x * x
    VAR04 = VAR07 * VAR07
    VAR05 = VAR07 * VAR08
    VAR16 = y * y * y
    VAR17 = y * y
    VAR13 = VAR16 * VAR16
    VAR14 = VAR16 * VAR17
    VAR15 = VAR17 * VAR17
    VAR25 = z * z * z
    VAR26 = z * z
    VAR22 = VAR25 * VAR25
    VAR23 = VAR25 * VAR26
    VAR24 = VAR26 * VAR26
    g_x = tl.load(coord_grad_ptr + coord_row_offset, mask=coord_row_offset <
        coord_numel)
    g_y = tl.load(coord_grad_ptr + coord_row_offset + 1, mask=
        coord_row_offset + 1 < coord_numel)
    g_z = tl.load(coord_grad_ptr + coord_row_offset + 2, mask=
        coord_row_offset + 2 < coord_numel)
    g_x += g_0 * (CONST082 * VAR08 * VAR24 - CONST084 * VAR06 * VAR26 + 
        CONST146 * VAR04 - CONST146 * VAR22) + g_1 * y * (CONST039 * VAR23 +
        CONST089 * VAR06 * z + CONST130 * VAR08 * VAR25) + g_10 * (CONST155 *
        VAR23 * x + VAR25 * (-CONST105 * VAR17 * x + CONST139 * VAR07) + z *
        (-CONST056 * VAR07 * VAR17 + CONST081 * VAR15 * x + CONST140 * VAR05)
        ) + g_11 * (VAR16 * (CONST044 * VAR26 * x - CONST101 * VAR07) + y *
        (CONST054 * VAR24 * x - CONST091 * VAR07 * VAR26 + CONST121 * VAR05)
        ) + g_12 * (CONST022 * VAR23 * x + VAR25 * (CONST024 * VAR07 + 
        CONST045 * VAR17 * x) + z * (-CONST044 * VAR07 * VAR17 + CONST126 *
        VAR05)) + g_13 * y * (CONST079 * VAR24 * x + CONST125 * VAR05 - 
        CONST130 * VAR07 * VAR26) + g_14 * (-CONST069 * VAR07 * VAR25 + 
        CONST109 * VAR05 * z + CONST109 * VAR23 * x) + g_2 * (CONST001 *
        VAR08 * (CONST091 * VAR17 * VAR26 - CONST150 * VAR24) + CONST003 *
        VAR06 * (CONST012 * VAR26 + CONST016 * VAR17) + CONST055 * VAR17 *
        VAR24 + CONST147 * VAR04 + CONST150 * VAR22) + g_3 * (VAR16 * (
        CONST044 * VAR08 * z + CONST066 * VAR25) + y * (-CONST091 * VAR06 *
        z + CONST133 * VAR23)) + g_4 * (CONST001 * VAR08 * (CONST122 *
        VAR17 * VAR26 + CONST134 * VAR15 - CONST137 * VAR24) + CONST003 *
        VAR06 * (CONST000 * VAR26 - CONST139 * VAR17) - CONST032 * VAR22 - 
        CONST105 * VAR15 * VAR26 + CONST111 * VAR17 * VAR24 + CONST148 * VAR04
        ) + g_5 * (CONST001 * VAR08 * (CONST106 * VAR16 * z - CONST131 *
        VAR25 * y) + CONST057 * VAR06 * y * z + CONST107 * VAR16 * VAR25 - 
        CONST117 * VAR14 * z - CONST143 * VAR23 * y) + g_6 * (CONST001 *
        VAR08 * (CONST116 * VAR15 - CONST116 * VAR17 * VAR26 + CONST154 *
        VAR24) + CONST003 * VAR06 * (CONST026 * VAR17 + CONST113 * VAR26) +
        CONST014 * VAR13 + CONST027 * VAR17 * VAR24 + CONST116 * VAR15 *
        VAR26 + CONST149 * VAR04 + CONST156 * VAR22) + g_7 * (CONST114 *
        VAR14 * x + VAR16 * (CONST072 * VAR07 + CONST073 * VAR26 * x) + y *
        (CONST110 * VAR07 * VAR26 + CONST128 * VAR05 + CONST129 * VAR24 * x)
        ) + g_8 * (CONST075 * VAR23 * x + VAR25 * (-CONST100 * VAR17 * x + 
        CONST145 * VAR07) + z * (CONST067 * VAR07 * VAR17 + CONST097 *
        VAR05 + CONST100 * VAR15 * x)) + g_9 * (-CONST085 * VAR07 * VAR16 +
        CONST117 * VAR14 * x + y * (CONST018 * VAR24 * x + CONST119 * VAR05 +
        CONST131 * VAR07 * VAR26))
    g_y += g_1 * (CONST039 * VAR23 * x + CONST095 * VAR07 * VAR25 - 
        CONST125 * VAR05 * z) + g_10 * (CONST123 * VAR23 * y + VAR25 * (-
        CONST096 * VAR16 - CONST105 * VAR08 * y) + z * (-CONST093 * VAR06 *
        y + CONST144 * VAR08 * VAR16)) + g_11 * (CONST001 * VAR17 * (
        CONST025 * VAR06 + CONST025 * VAR24 + CONST092 * VAR08 * VAR26) - 
        CONST126 * VAR06 * VAR26 - CONST126 * VAR08 * VAR24 + CONST151 *
        VAR04 + CONST151 * VAR22) + g_12 * (CONST030 * VAR23 * y + CONST045 *
        VAR08 * VAR25 * y - CONST092 * VAR06 * y * z) + g_13 * (CONST076 *
        VAR04 - CONST076 * VAR22 - CONST102 * VAR06 * VAR26 + CONST102 *
        VAR08 * VAR24) + g_2 * (CONST030 * VAR05 * y + CONST045 * VAR07 *
        VAR26 * y - CONST092 * VAR24 * x * y) + g_3 * (CONST001 * VAR17 * (
        CONST066 * VAR25 * x + CONST101 * VAR07 * z) - CONST133 * VAR05 * z +
        CONST133 * VAR23 * x) + g_4 * (-CONST123 * VAR05 * y + VAR07 * (
        CONST096 * VAR16 + CONST104 * VAR26 * y) + x * (CONST093 * VAR24 *
        y - CONST144 * VAR16 * VAR26)) + g_5 * (-CONST143 * VAR05 * z + 
        VAR07 * (CONST062 * VAR17 * z - CONST131 * VAR25) + x * (CONST061 *
        VAR17 * VAR25 - CONST062 * VAR15 * z - CONST143 * VAR23)) + g_6 * (
        CONST048 * VAR05 * y + VAR07 * (CONST074 * VAR16 - CONST100 * VAR26 *
        y) + x * (CONST058 * VAR14 + CONST074 * VAR16 * VAR26 - CONST116 *
        VAR24 * y)) + g_7 * (CONST001 * VAR17 * (-CONST112 * VAR08 * VAR26 -
        CONST128 * VAR06 - CONST128 * VAR24) + CONST003 * VAR15 * (CONST135 *
        VAR08 + CONST136 * VAR26) + CONST020 * VAR13 + CONST050 * VAR04 + 
        CONST050 * VAR22 + CONST141 * VAR06 * VAR26 + CONST142 * VAR08 * VAR24
        ) + g_8 * (CONST048 * VAR23 * y + VAR25 * (CONST074 * VAR16 - 
        CONST100 * VAR08 * y) + z * (CONST049 * VAR06 * y + CONST059 *
        VAR14 + CONST074 * VAR08 * VAR16)) + g_9 * (CONST001 * VAR17 * (-
        CONST124 * VAR06 + CONST124 * VAR24) + CONST003 * VAR15 * (CONST138 *
        VAR08 - CONST138 * VAR26) + CONST009 * VAR08 * VAR24 + CONST152 *
        VAR04 + CONST152 * VAR06 * VAR26 - CONST152 * VAR22)
    g_z += g_0 * (CONST069 * VAR07 * VAR25 - CONST109 * VAR05 * z - 
        CONST109 * VAR23 * x) + g_1 * y * (-CONST079 * VAR24 * x - CONST125 *
        VAR05 + CONST130 * VAR07 * VAR26) + g_10 * (CONST001 * VAR26 * (-
        CONST123 * VAR08 * VAR17 - CONST134 * VAR15 + CONST137 * VAR06) + 
        CONST003 * VAR24 * (CONST080 * VAR08 + CONST139 * VAR17) + CONST032 *
        VAR04 + CONST105 * VAR08 * VAR15 - CONST111 * VAR06 * VAR17 - 
        CONST148 * VAR22) + g_11 * (VAR16 * (CONST044 * VAR08 * z - 
        CONST101 * VAR25) + y * (CONST054 * VAR06 * z - CONST091 * VAR08 *
        VAR25 + CONST121 * VAR23)) + g_12 * (CONST001 * VAR26 * (CONST091 *
        VAR08 * VAR17 - CONST098 * VAR06) + CONST003 * VAR24 * (CONST012 *
        VAR08 + CONST016 * VAR17) + CONST055 * VAR06 * VAR17 + CONST098 *
        VAR04 + CONST153 * VAR22) + g_13 * y * (-CONST079 * VAR06 * z - 
        CONST125 * VAR23 + CONST130 * VAR08 * VAR25) + g_14 * (-CONST082 *
        VAR06 * VAR26 + CONST084 * VAR08 * VAR24 + CONST146 * VAR04 - 
        CONST146 * VAR22) + g_2 * (CONST022 * VAR05 * z + VAR07 * (CONST025 *
        VAR25 + CONST045 * VAR17 * z) + x * (-CONST044 * VAR17 * VAR25 + 
        CONST127 * VAR23)) + g_3 * (VAR16 * (-CONST045 * VAR26 * x + 
        CONST101 * VAR07) + y * (CONST091 * VAR24 * x - CONST133 * VAR05)
        ) + g_4 * (CONST004 * VAR05 * z + VAR07 * (CONST104 * VAR17 * z - 
        CONST139 * VAR25) + x * (CONST056 * VAR17 * VAR25 - CONST081 *
        VAR15 * z - CONST140 * VAR23)) + g_5 * (-CONST143 * VAR05 * y + 
        VAR07 * (CONST064 * VAR26 * y + CONST106 * VAR16) + x * (CONST057 *
        VAR24 * y + CONST061 * VAR16 * VAR26 - CONST117 * VAR14)) + g_6 * (
        CONST097 * VAR05 * z + VAR07 * (-CONST100 * VAR17 * z + CONST145 *
        VAR25) + x * (CONST075 * VAR23 + CONST100 * VAR15 * z - CONST100 *
        VAR17 * VAR25)) + g_7 * (CONST115 * VAR14 * z + VAR16 * (CONST072 *
        VAR25 + CONST073 * VAR08 * z) + y * (CONST112 * VAR08 * VAR25 + 
        CONST128 * VAR23 + CONST132 * VAR06 * z)) + g_8 * (CONST001 * VAR26 *
        (-CONST116 * VAR08 * VAR17 + CONST116 * VAR15 + CONST154 * VAR06) +
        CONST003 * VAR24 * (CONST026 * VAR17 + CONST154 * VAR08) + CONST019 *
        VAR13 + CONST029 * VAR06 * VAR17 + CONST094 * VAR04 + CONST116 *
        VAR08 * VAR15 + CONST149 * VAR22) + g_9 * (CONST085 * VAR16 * VAR25 -
        CONST117 * VAR14 * z + y * (CONST037 * VAR08 * VAR25 - CONST119 *
        VAR23 + CONST143 * VAR06 * z))
    tl.store(coord_grad_ptr + coord_row_offset, g_x, mask=coord_row_offset <
        coord_numel)
    tl.store(coord_grad_ptr + coord_row_offset + 1, g_y, mask=
        coord_row_offset + 1 < coord_numel)
    tl.store(coord_grad_ptr + coord_row_offset + 2, g_z, mask=
        coord_row_offset + 2 < coord_numel)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation"
  ],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_7.py 
 | 
					
	cf434cf1-eaa7-43a8-af57-ed65644e78a1 
 | 
	tritonFun.py 
 | 
	microsoft/Givens-Orthogonal-Backprop 
 | 
	rotMat/triton/tritonFun.py 
 | 
	3040fa287aacbf07be56eb12ddd7c513f7800191 
 | 0 
							 | 
	@triton.jit
def _forward_kernel(c_ptr, s_ptr, u_ptr, col_stride, row_stride, **meta):
    n, n_tilde, dead_index, d_max, tournament_step, BLOCK_SIZE = meta['N'
        ], meta['N_TILDE'], meta['DEAD_INDEX'], meta['D_MAX'], meta['STEP'
        ], meta['BLOCK_SIZE']
    pid_x = tl.program_id(axis=0)
    temp = n_tilde - 1
    i = pid_x + tournament_step
    if pid_x == 0:
        i = 0
    if i >= n_tilde:
        i -= temp
    j = temp - pid_x + tournament_step
    if j >= n_tilde:
        j -= temp
    if i > j:
        i, j = j, i
    if (j == dead_index) | (j > d_max) & (i > d_max):
        return
    theta_offset = i * n - (i + 2) * (i + 1) // 2 + j
    c = tl.load(c_ptr + theta_offset)
    s = tl.load(s_ptr + theta_offset)
    offsets = tl.program_id(axis=1) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
    output_offsets_i = i * row_stride + offsets * col_stride
    output_offsets_j = j * row_stride + offsets * col_stride
    maximum = n * row_stride + n * col_stride
    maski = output_offsets_i < maximum
    maskj = output_offsets_j < maximum
    ui = tl.load(u_ptr + output_offsets_i, mask=maski)
    uj = tl.load(u_ptr + output_offsets_j, mask=maskj)
    ioutput = ui * c - uj * s
    joutput = uj * c + ui * s
    ui = tl.store(u_ptr + output_offsets_i, ioutput, mask=maski)
    uj = tl.store(u_ptr + output_offsets_j, joutput, mask=maskj)
 
 | 
	{
  "Data Type": [],
  "Functionality": [],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/microsoft/Givens-Orthogonal-Backprop/blob/3040fa287aacbf07be56eb12ddd7c513f7800191/rotMat/triton/tritonFun.py 
 | 
					
	ba747cf4-08d3-4408-bf74-1154ad010718 
 | 
	triton_chunk.py 
 | 
	NX-AI/xlstm-jax 
 | 
	xlstm_jax/models/xlstm_pytorch/blocks/mlstm/backend/triton_chunk.py 
 | 
	6615e620ba4ecdbe4fd9cc4e9a5a313b133e84a7 
 | 0 
							 | 
	@triton.jit
def chunk_mlstm_fwd_kernel_h(q, k, v, C, n, m, m_total, i, f, h, norm,
    s_qk_h, s_qk_t, s_qk_d, s_vh_h, s_vh_t, s_vh_d, s_C_h, s_C_t, s_n_h,
    scale, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.
    constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl
    .constexpr):
    i_v, i_t, i_bC = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    h_i = tl.arange(0, BT)
    m_s = h_i[:, None] >= h_i[None, :]
    b_h = tl.zeros([BT, BV], dtype=tl.float32)
    b_s = tl.zeros([BT, BT], dtype=tl.float32)
    b_norm = tl.zeros([BT, BV], dtype=tl.float32)
    for i_k in range(tl.cdiv(K, BK)):
        p_q = tl.make_block_ptr(q + i_bC * s_qk_h, (T, K), (s_qk_t, s_qk_d),
            (i_t * BT, i_k * BK), (BT, BK), (1, 0))
        p_k = tl.make_block_ptr(k + i_bC * s_qk_h, (K, T), (s_qk_d, s_qk_t),
            (i_k * BK, i_t * BT), (BK, BT), (0, 1))
        p_C = tl.make_block_ptr(C + i_bC * s_C_h + i_t * K * V, (K, V), (
            s_C_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
        p_n = tl.make_block_ptr(n + i_bC * s_n_h + i_t * K, (K, BV), (1, 0),
            (i_k * BK, 0), (BK, BV), (0, 1))
        b_q = tl.load(p_q, boundary_check=(0, 1))
        b_k = tl.load(p_k, boundary_check=(0, 1))
        b_C = tl.load(p_C, boundary_check=(0, 1))
        b_n = tl.load(p_n, boundary_check=(0,))
        b_h += tl.dot(b_q, b_C, allow_tf32=False)
        b_s += tl.dot(b_q, b_k, allow_tf32=False)
        b_n2 = tl.dot(b_q, b_n, allow_tf32=False)
        b_norm += b_n2
    p_f = f + i_bC * T + i_t * BT + tl.arange(0, BT)
    b_f = tl.load(p_f)
    p_i = i + i_bC * T + i_t * BT + tl.arange(0, BT)
    b_i = tl.load(p_i)
    b_m = tl.load(m + i_bC * (NT + 1) + i_t)
    b_logD = b_i[None, :] + b_f[:, None] - b_f[None, :]
    b_logD = tl.where(m_s, b_logD, -float('inf'))
    b_mlogD = tl.max(b_logD, axis=1)
    b_m_total = tl.maximum(b_f + b_m, b_mlogD)
    p_m_total = tl.make_block_ptr(m_total + T * i_bC, (T,), (1,), (i_t * BT
        ,), (BT,), (0,))
    tl.store(p_m_total, b_m_total.to(p_m_total.dtype.element_ty),
        boundary_check=(0,))
    b_D = tl.math.exp2(b_logD - b_m_total[:, None])
    b_h = b_h * tl.math.exp2(b_f + b_m - b_m_total)[:, None] * scale
    b_s = b_s * b_D * scale
    b_norm = b_norm * tl.math.exp2(b_f + b_m - b_m_total)[:, None] * scale
    b_s = tl.where(m_s, b_s, 0)
    b_norm += tl.sum(b_s, axis=1)[:, None]
    b_norm = tl.abs(b_norm)
    b_norm = tl.maximum(b_norm, tl.math.exp2(-b_m_total)[:, None])
    tl.store(norm + i_bC * T + i_t * BT + tl.arange(0, BT), tl.max(b_norm,
        axis=1))
    p_v = tl.make_block_ptr(v + i_bC * s_vh_h, (T, V), (s_vh_t, s_vh_d), (
        i_t * BT, i_v * BV), (BT, BV), (1, 0))
    b_v = tl.load(p_v, boundary_check=(0, 1))
    b_h = (b_h + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)) / b_norm
    p_h = tl.make_block_ptr(h + i_bC * s_vh_h, (T, V), (s_vh_t, s_vh_d), (
        i_t * BT, i_v * BV), (BT, BV), (1, 0))
    tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Recurrent Neural Networks",
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access",
    "Blocked Access"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "High Throughput"
  ]
} 
 | 
	[
  "Apache",
  "BSD"
]  | 
	https://github.com/NX-AI/xlstm-jax/blob/6615e620ba4ecdbe4fd9cc4e9a5a313b133e84a7/xlstm_jax/models/xlstm_pytorch/blocks/mlstm/backend/triton_chunk.py 
 | 
					
	185656ec-3bff-4006-8c3e-b0f32117c386 
 | 
	triton_sll.py 
 | 
	pytorch/FBGEMM 
 | 
	fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py 
 | 
	fe980ab54a6e28818d81c8694b6564e7f804418b 
 | 0 
							 | 
	@triton.jit
def array_jagged_bmm_kernel(a_ptr, b_ptr, c_ptr, a_offsets_ptr,
    b_offsets_ptr, c_offsets_ptr, D, stride_bk, stride_bn, stride_cm,
    stride_cn, transpose, max_seq_len, BLOCK_SIZE_M: tl.constexpr,
    BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, allow_tf32: tl.
    constexpr):
    pid_batch = tl.program_id(2)
    pid_m = tl.program_id(1)
    pid_n = tl.program_id(0)
    batch_offset_am = tl.load(a_offsets_ptr + pid_batch)
    batch_offset_bk = tl.load(b_offsets_ptr + pid_batch)
    batch_offset_cm = tl.load(c_offsets_ptr + pid_batch)
    batch_K = tl.load(b_offsets_ptr + pid_batch + 1) - batch_offset_bk
    batch_M = tl.load(c_offsets_ptr + pid_batch + 1) - batch_offset_cm
    stride_am = batch_M * (1 - transpose) + 1 * transpose
    stride_ak = batch_M * transpose + 1 * (1 - transpose)
    batch_K = tl.minimum(batch_K, max_seq_len)
    batch_M = tl.minimum(batch_M, max_seq_len)
    if batch_K == 0:
        return
    batch_N = D
    if pid_m * BLOCK_SIZE_M >= batch_M or pid_n * BLOCK_SIZE_N >= batch_N:
        return
    offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % batch_M
    offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % batch_N
    offs_k = tl.arange(0, BLOCK_SIZE_K)
    a_ptrs = a_ptr + batch_offset_am + (offs_am[:, None] * stride_am + 
        offs_k[None, :] * stride_ak)
    b_ptrs = b_ptr + batch_offset_bk * stride_bk + (offs_k[:, None] *
        stride_bk + offs_bn[None, :] * stride_bn)
    c = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for k in range(0, tl.cdiv(batch_K, BLOCK_SIZE_K)):
        a = tl.load(a_ptrs, mask=offs_k[None, :] < batch_K - k *
            BLOCK_SIZE_K, other=0.0)
        b = tl.load(b_ptrs, mask=offs_k[:, None] < batch_K - k *
            BLOCK_SIZE_K, other=0.0)
        c += tl.dot(a, b, allow_tf32=allow_tf32)
        a_ptrs += BLOCK_SIZE_K * stride_ak
        b_ptrs += BLOCK_SIZE_K * stride_bk
    offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    c_ptrs = c_ptr + stride_cm * batch_offset_cm + stride_cm * offs_cm[:, None
        ] + stride_cn * offs_cn[None, :]
    c_mask = (offs_cm[:, None] < batch_M) & (offs_cn[None, :] < batch_N)
    tl.store(c_ptrs, c, mask=c_mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Blocked Access",
    "Strided Access"
  ],
  "Parallelization Strategy": [],
  "Performance Objective": [
    "High Throughput"
  ]
} 
 | 
	[
  "BSD",
  "MIT"
]  | 
	https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py 
 | 
					
	022c4cc0-b308-49be-b921-b32509712645 
 | 
	empty.py 
 | 
	triton-lang/triton 
 | 
	python/examples/empty.py 
 | 
	a2b398e0bb1b120f31cf386d6ae3261c3ab84207 
 | 0 
							 | 
	@triton.jit
def kernel(X, stride_xm, stride_xn, BLOCK: tl.constexpr):
    pass
 
 | 
	{
  "Data Type": [],
  "Functionality": [],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/triton-lang/triton/blob/a2b398e0bb1b120f31cf386d6ae3261c3ab84207/python/examples/empty.py 
 | 
					
	e008b2d4-e5d7-4904-adbb-d6d877357da0 
 | 
	gemm_a16w8.py 
 | 
	AlibabaPAI/FLASHNN 
 | 
	flashnn/triton_kernels/gemm_a16w8.py 
 | 
	528a9301587f5fb135b25d973a87ba0a40a703a7 
 | 0 
							 | 
	@triton.jit
def _triton_gemm_a16w8_per_channel_kernel(A, B, C, scale_b, bias,
    zero_points, M, N, K, stride_am, stride_ak, stride_bn, stride_bk,
    stride_cm, stride_cn, stride_zpk, stride_zpn, stride_scalek,
    stride_scalen, add_bias: tl.constexpr, add_zero_points: tl.constexpr,
    BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
    GROUP_M: tl.constexpr, SPLIT_K: tl.constexpr):
    pid = tl.program_id(0)
    pid_z = tl.program_id(1)
    grid_m = tl.cdiv(M, BLOCK_M)
    grid_n = tl.cdiv(N, BLOCK_N)
    width = GROUP_M * grid_n
    group_id = pid // width
    group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
    pid_m = group_id * GROUP_M + pid % group_size
    pid_n = pid % width // group_size
    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
    rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
    rk = pid_z * BLOCK_K + tl.arange(0, BLOCK_K)
    A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
    B = B + (rbn[:, None] * stride_bn + rk[None, :] * stride_bk)
    acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
    if add_zero_points:
        offs_zero_points = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
        zero_points_ptrs = zero_points + offs_zero_points
        _ZERO_POINT0 = tl.zeros([1], dtype=zero_points.dtype.element_ty)
        zero_points_vals = tl.load(zero_points_ptrs, mask=offs_zero_points <
            N, other=_ZERO_POINT0)
    for k in range(0, tl.cdiv(K, BLOCK_K * SPLIT_K)):
        k_remaining = K - k * (BLOCK_K * SPLIT_K)
        _A0 = tl.zeros((1, 1), dtype=A.dtype.element_ty)
        a = tl.load(A, mask=rk[None, :] < k_remaining, other=_A0)
        _B0 = tl.zeros((1, 1), dtype=B.dtype.element_ty)
        b = tl.load(B, mask=rk[None, :] < k_remaining, other=_B0)
        if add_zero_points:
            b = b - zero_points_vals[:, None]
        b_fp = b.to(A.dtype.element_ty)
        b_fp = tl.trans(b_fp)
        acc += tl.dot(a, b_fp, out_dtype=tl.float32, allow_tf32=True)
        A += BLOCK_K * SPLIT_K * stride_ak
        B += BLOCK_K * SPLIT_K * stride_bk
    offs_scale = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    scale_ptrs = scale_b + offs_scale
    _SCALE0 = tl.zeros([1], dtype=scale_b.dtype.element_ty)
    scales = tl.load(scale_ptrs, mask=offs_scale < N, other=_SCALE0)
    acc *= scales
    acc = acc.to(C.dtype.element_ty)
    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    C = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn)
    mask = (rm < M)[:, None] & (rn < N)[None, :]
    if add_bias:
        offs_bias = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
        bias_ptrs = bias + offs_bias
        _BIAS0 = tl.zeros([1], dtype=bias.dtype.element_ty)
        bias_vals = tl.load(bias_ptrs, mask=offs_bias < N, other=_BIAS0)
        if pid_z == 0:
            acc += bias_vals[None, :]
    if SPLIT_K == 1:
        tl.store(C, acc, mask=mask)
    else:
        tl.atomic_add(C, acc, mask=mask)
 
 | 
	{
  "Data Type": [
    "int8"
  ],
  "Functionality": [
    "Matrix Multiplication",
    "Quantization"
  ],
  "Memory Access Pattern": [
    "Strided Access",
    "Blocked Access"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/gemm_a16w8.py 
 | 
					
	0193e573-d1a1-4efc-bba9-db1a33827ad0 
 | 
	z_order.py 
 | 
	Kitsunetic/space-filling-pytorch 
 | 
	space_filling_pytorch/functional/z_order.py 
 | 
	0de955ad1036973ee7506c5a0124c208acec722d 
 | 0 
							 | 
	@triton.jit
def _encode_z_unpadded_kernel(xyz_ptr, batch_idx_ptr, code_ptr, space_size,
    x_offset, y_offset, z_offset, str_xyz_n, str_xyz_c, N, BLK: tl.
    constexpr, ASSIGN_BATCH_INDEX: tl.constexpr):
    pid = tl.program_id(0)
    offs_n = pid * BLK + tl.arange(0, BLK)
    mask = offs_n < N
    xyz_ptrs = xyz_ptr + offs_n * str_xyz_n
    fx = tl.load(xyz_ptrs + x_offset * str_xyz_c, mask=mask)
    fy = tl.load(xyz_ptrs + y_offset * str_xyz_c, mask=mask)
    fz = tl.load(xyz_ptrs + z_offset * str_xyz_c, mask=mask)
    ret = _calculate_zorder(fx, fy, fz, space_size)
    if ASSIGN_BATCH_INDEX:
        batch_idx_ptrs = batch_idx_ptr + offs_n
        batch_idx = tl.load(batch_idx_ptrs, mask=mask).to(tl.int64)
        ret |= batch_idx << 48
    code_ptrs = code_ptr + offs_n
    tl.store(code_ptrs, ret, mask=mask)
 
 | 
	{
  "Data Type": [],
  "Functionality": [],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/Kitsunetic/space-filling-pytorch/blob/0de955ad1036973ee7506c5a0124c208acec722d/space_filling_pytorch/functional/z_order.py 
 | 
					
	86d2fa4b-e481-4a17-9385-cbf6f0389011 
 | 
	triton_sll.py 
 | 
	pytorch/FBGEMM 
 | 
	fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py 
 | 
	fe980ab54a6e28818d81c8694b6564e7f804418b 
 | 0 
							 | 
	@triton.jit
def jagged_dense_flash_attention_fwd_kernel(q_ptr, k_ptr, v_ptr, ab_ptr,
    o_ptr, lse_ptr, jagged_offsets_ptr, max_seq_len, stride_ql, stride_qd,
    stride_kb, stride_kd, stride_kt, stride_vn, stride_vd, stride_ab_b,
    stride_ab_n, stride_ab_t, stride_ob, stride_ot, stride_od, D: tl.
    constexpr, T: tl.constexpr, allow_tf32: tl.constexpr, BLOCK_T: tl.
    constexpr, BLOCK_L: tl.constexpr, BLOCK_D: tl.constexpr):
    pid_t = tl.program_id(0)
    pid_batch = tl.program_id(1)
    begin = tl.load(jagged_offsets_ptr + pid_batch)
    end = tl.load(jagged_offsets_ptr + pid_batch + 1)
    length = end - begin
    length = tl.minimum(length, max_seq_len)
    if length == 0:
        return
    q_start_ptr = q_ptr + begin * stride_ql
    k_start_ptr = k_ptr + pid_batch * stride_kb
    ab_start_ptr = ab_ptr + pid_batch * stride_ab_b
    v_start_ptr = v_ptr + begin * stride_vn
    offs_t = pid_t * BLOCK_T + tl.arange(0, BLOCK_T)
    offs_d = tl.arange(0, BLOCK_D)
    ki_ptrs = k_start_ptr + offs_d[:, None] * stride_kd + offs_t[None, :
        ] * stride_kt
    ki = tl.load(ki_ptrs, mask=(offs_d[:, None] < D) & (offs_t[None, :] < T
        ), other=0.0)
    mi = tl.zeros([BLOCK_T], dtype=tl.float32) - float('inf')
    li = tl.zeros([BLOCK_T], dtype=tl.float32)
    oi = tl.zeros([BLOCK_T, BLOCK_D], dtype=tl.float32)
    for start_l in range(0, length, BLOCK_L):
        offs_l = start_l + tl.arange(0, BLOCK_L)
        qj_ptrs = q_start_ptr + offs_l[:, None] * stride_ql + offs_d[None, :
            ] * stride_qd
        qj = tl.load(qj_ptrs, mask=(offs_l[:, None] < length) & (offs_d[
            None, :] < D), other=0.0)
        qk = tl.dot(qj, ki, allow_tf32=allow_tf32)
        ab_ptrs = ab_start_ptr + offs_l[:, None] * stride_ab_n + offs_t[None, :
            ] * stride_ab_t
        abij = tl.load(ab_ptrs, mask=(offs_l[:, None] < length) & (offs_t[
            None, :] < T), other=0.0)
        qk = qk + abij
        mij_hat = tl.max(qk, axis=0)
        mi_new = tl.maximum(mi, mij_hat)
        pij_hat = tl.exp(qk - mi_new[None, :])
        pij_hat = tl.where((offs_l[:, None] < length) & (offs_t[None, :] <
            T), pij_hat, 0.0)
        lij_hat = tl.sum(pij_hat, axis=0)
        alpha = tl.exp(mi - mi_new)
        li_new = alpha * li + lij_hat
        oi = alpha[:, None] * oi
        vj_ptrs = v_start_ptr + offs_l[:, None] * stride_vn + offs_d[None, :
            ] * stride_vd
        vj = tl.load(vj_ptrs, mask=(offs_l[:, None] < length) & (offs_d[
            None, :] < D), other=0.0)
        pij_hat = pij_hat.to(v_ptr.dtype.element_ty)
        oi = oi + tl.dot(tl.trans(pij_hat), vj, allow_tf32=allow_tf32)
        mi = mi_new
        li = li_new
    oi = oi / li[:, None]
    lse_ptrs = lse_ptr + pid_batch * T + offs_t
    lse_i = mi + tl.log(li)
    tl.store(lse_ptrs, lse_i, mask=offs_t < T)
    attn_out_ptrs = o_ptr + pid_batch * stride_ob + offs_t[:, None
        ] * stride_ot + offs_d[None, :] * stride_od
    tl.store(attn_out_ptrs, oi, mask=(offs_t[:, None] < T) & (offs_d[None,
        :] < D))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Strided Access",
    "Blocked Access"
  ],
  "Parallelization Strategy": [],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "BSD",
  "MIT"
]  | 
	https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py 
 | 
					
	25c4864d-4f48-498d-bd92-b326c89bc547 
 | 
	math.py 
 | 
	BobMcDear/attorch 
 | 
	attorch/math.py 
 | 
	da06cb6236bb47195e33fe3986ed21c675ed94cc 
 | 0 
							 | 
	@triton.jit
def nll_loss(input, size, reduction: tl.constexpr):
    """
    Measures the negative log likelihood loss given log-probabilities of target class.
    Args:
        input: Input containing predicted log-probabilities corresponding to target class.
            The input can have arbitrary shape.
        size: Number of elements in the input.
            This value is used only if reduction is 'mean'.
        reduction: Reduction strategy for the output.
            Options are 'none' for no reduction, 'mean' for averaging the loss
            across all entries, and 'sum' for summing the loss across all entries.
    Returns:
        Loss.
    """
    input = input.to(tl.float32)
    if reduction == 'none':
        output = -input
    elif reduction == 'mean':
        output = -tl.sum(input) / size
    elif reduction == 'sum':
        output = -tl.sum(input)
    return output
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [],
  "Performance Objective": [
    "Low Latency",
    "Single Instance"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py 
 | 
					
	f9b8875f-1555-4a1e-a553-4f8289afd403 
 | 
	triton_fused_local_attn.py 
 | 
	LouChao98/vqtree 
 | 
	ops/triton_fused_local_attn.py 
 | 
	27a53274df7a804bce27dffcce5f5be73f64b6f3 
 | 0 
							 | 
	@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args[
    'BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args[
    'BLOCK_N'] == 0})
@triton.jit
def _fwd_kernel(Q, K, V, Out, softmax_scale, stride_qb, stride_qh,
    stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh,
    stride_vn, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k,
    CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, WINDOW_SIZE: tl.constexpr,
    BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr,
    BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
    start_m = tl.program_id(0)
    off_hb = tl.program_id(1)
    off_b = off_hb // nheads
    off_h = off_hb % nheads
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    Q_block_ptr = tl.make_block_ptr(base=Q + (off_b * stride_qb + off_h *
        stride_qh), shape=(seqlen_q, BLOCK_HEADDIM), strides=(stride_qm, 1),
        offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_HEADDIM
        ), order=(1, 0))
    K_block_ptr = tl.make_block_ptr(base=K + (off_b * stride_kb + off_h *
        stride_kh), shape=(BLOCK_HEADDIM, seqlen_k), strides=(1, stride_kn),
        offsets=(0, 0), block_shape=(BLOCK_HEADDIM, BLOCK_N), order=(0, 1))
    V_block_ptr = tl.make_block_ptr(base=V + (off_b * stride_vb + off_h *
        stride_vh), shape=(seqlen_k, BLOCK_HEADDIM), strides=(stride_vn, 1),
        offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_HEADDIM), order=(1, 0))
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF
    acc = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
    if EVEN_M:
        q = tl.load(Q_block_ptr)
    else:
        q = tl.load(Q_block_ptr, boundary_check=(0,), padding_option='zero')
    acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, softmax_scale,
        K_block_ptr, V_block_ptr, start_m, offs_m, offs_n, seqlen_k,
        WINDOW_SIZE, BLOCK_M, BLOCK_N, EVEN_M & EVEN_N, 1)
    acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, softmax_scale,
        K_block_ptr, V_block_ptr, start_m, offs_m, offs_n, seqlen_k,
        WINDOW_SIZE, BLOCK_M, BLOCK_N, EVEN_M & EVEN_N, 2)
    acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, softmax_scale,
        K_block_ptr, V_block_ptr, start_m, offs_m, offs_n, seqlen_k,
        WINDOW_SIZE, BLOCK_M, BLOCK_N, EVEN_M & EVEN_N, 3)
    acc = acc / l_i[:, None]
    start_m = tl.program_id(0)
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:,
        None] * stride_om + offs_d[None, :])
    if EVEN_M:
        tl.store(out_ptrs, acc)
    else:
        tl.store(out_ptrs, acc, mask=offs_m[:, None] < seqlen_q)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Matrix Multiplication",
    "Softmax"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_local_attn.py 
 | 
					
	d220be62-ce65-4110-8341-90c6b7412373 
 | 
	scatter_reduce.py 
 | 
	pyg-team/pyg-lib 
 | 
	pyg_lib/ops/scatter_reduce.py 
 | 
	bdd392a7093c5016f42ec7ae1945ca77dbdd97db 
 | 0 
							 | 
	@triton.jit
def _fused_scatter_reduce_forward_kernel(inputs_ptr, index_ptr, out_ptr,
    num_feats, num_reductions, numel, REDUCE0, REDUCE1, REDUCE2, REDUCE3,
    BLOCK_SIZE: tl.constexpr):
    pid = tl.program_id(axis=0)
    block_start = pid * BLOCK_SIZE
    offsets = block_start + tl.arange(0, BLOCK_SIZE)
    mask = offsets < numel
    inputs = tl.load(inputs_ptr + offsets, mask=mask)
    index_offsets = offsets // num_feats
    index = tl.load(index_ptr + index_offsets, mask=mask)
    if REDUCE0 > 0:
        out_offsets = num_feats * num_reductions * index
        out_offsets = out_offsets + offsets % num_feats
        if REDUCE0 == 1:
            tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask)
        elif REDUCE0 == 2:
            tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask)
        elif REDUCE0 == 3:
            tl.atomic_min(out_ptr + out_offsets, inputs, mask=mask)
        elif REDUCE0 == 4:
            tl.atomic_max(out_ptr + out_offsets, inputs, mask=mask)
    if REDUCE1 > 0:
        out_offsets = num_feats * num_reductions * index
        out_offsets = out_offsets + num_feats
        out_offsets = out_offsets + offsets % num_feats
        if REDUCE1 == 1:
            tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask)
        elif REDUCE1 == 2:
            tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask)
        elif REDUCE2 == 3:
            tl.atomic_min(out_ptr + out_offsets, inputs, mask=mask)
        elif REDUCE3 == 4:
            tl.atomic_max(out_ptr + out_offsets, inputs, mask=mask)
    if REDUCE2 > 0:
        out_offsets = num_feats * num_reductions * index
        out_offsets = out_offsets + 2 * num_feats
        out_offsets = out_offsets + offsets % num_feats
        if REDUCE2 == 1:
            tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask)
        elif REDUCE2 == 2:
            tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask)
        elif REDUCE2 == 3:
            tl.atomic_min(out_ptr + out_offsets, inputs, mask=mask)
        elif REDUCE2 == 4:
            tl.atomic_max(out_ptr + out_offsets, inputs, mask=mask)
    if REDUCE3 > 0:
        out_offsets = num_feats * num_reductions * index
        out_offsets = out_offsets + 3 * num_feats
        out_offsets = out_offsets + offsets % num_feats
        if REDUCE3 == 1:
            tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask)
        elif REDUCE3 == 2:
            tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask)
        elif REDUCE3 == 3:
            tl.atomic_min(out_ptr + out_offsets, inputs, mask=mask)
        elif REDUCE3 == 4:
            tl.atomic_max(out_ptr + out_offsets, inputs, mask=mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Memory-Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/pyg-team/pyg-lib/blob/bdd392a7093c5016f42ec7ae1945ca77dbdd97db/pyg_lib/ops/scatter_reduce.py 
 | 
					
	04221a8d-0acd-483c-9226-c62cc41c67fe 
 | 
	layer_norm.py 
 | 
	chengzeyi/stable-fast 
 | 
	src/sfast/triton/ops/layer_norm.py 
 | 
	3a6f35c7045f8f6812515957ca62ef37260ff080 
 | 0 
							 | 
	@triton.jit
def _layer_norm_fwd_fused(X, Y, W, B, Mean, Rstd, stride: tl.constexpr, N:
    tl.constexpr, eps, BLOCK_SIZE: tl.constexpr):
    row = tl.program_id(0)
    Y += row * stride
    X += row * stride
    if BLOCK_SIZE >= N:
        cols = tl.arange(0, BLOCK_SIZE)
        x = tl.load(X + cols, mask=cols < N).to(tl.float32)
        m2_ = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
        weight_ = (cols < N).to(tl.float32)
        _mean, _m2, _weight = x, m2_, weight_
    else:
        _mean = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
        _m2 = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
        _weight = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
        for off in range(0, N, BLOCK_SIZE):
            cols = off + tl.arange(0, BLOCK_SIZE)
            x = tl.load(X + cols, mask=cols < N).to(tl.float32)
            m2_ = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
            weight_ = (cols < N).to(tl.float32)
            if off == 0:
                _mean, _m2, _weight = x, m2_, weight_
            else:
                _mean, _m2, _weight = welford_combine(_mean, _m2, _weight,
                    x, m2_, weight_)
    mean, m2, weight = tl.reduce((_mean, _m2, _weight), 0, welford_combine)
    var = m2 / weight
    rstd = 1 / tl.sqrt(var + eps)
    mean = mean.to(x.dtype)
    rstd = rstd.to(x.dtype)
    if Mean is not None:
        tl.store(Mean + row, mean)
    if Rstd is not None:
        tl.store(Rstd + row, rstd)
    if BLOCK_SIZE >= N:
        cols = tl.arange(0, BLOCK_SIZE)
        mask = cols < N
        if W is None:
            w = tl.full((BLOCK_SIZE,), 1.0, dtype=x.dtype)
        else:
            w = tl.load(W + cols, mask=mask)
        if B is None:
            b = tl.zeros((BLOCK_SIZE,), dtype=x.dtype)
        else:
            b = tl.load(B + cols, mask=mask)
        x_hat = (x - mean) * rstd
        y = x_hat * w + b
        tl.store(Y + cols, y, mask=mask)
    else:
        for off in range(0, N, BLOCK_SIZE):
            cols = off + tl.arange(0, BLOCK_SIZE)
            mask = cols < N
            if W is None:
                w = tl.full((BLOCK_SIZE,), 1.0, dtype=x.dtype)
            else:
                w = tl.load(W + cols, mask=mask)
            if B is None:
                b = tl.zeros((BLOCK_SIZE,), dtype=x.dtype)
            else:
                b = tl.load(B + cols, mask=mask)
            x = tl.load(X + cols, mask=mask)
            x_hat = (x - mean) * rstd
            y = x_hat * w + b
            tl.store(Y + cols, y, mask=mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Normalization"
  ],
  "Memory Access Pattern": [
    "Tiled"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound",
    "Memory-Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/layer_norm.py 
 | 
					
	747983d8-2740-48f1-a5b4-0b2b362c5601 
 | 
	qkv_concat.py 
 | 
	ai-compiler-study/triton-kernels 
 | 
	triton_kernels/ops/qkv_concat.py 
 | 
	2308e5e9d965059fe2d19b4d535debac4970b69e 
 | 0 
							 | 
	@triton.jit
def triton_qkv_concat(txt_qkv, img_qkv, out_q_ptr, out_k_ptr, out_v_ptr,
    seq_len, num_heads, head_dim, hidden_dim, seq_txt_len, stride_txt_a,
    stride_txt_b, stride_img_a, stride_img_b, stride_output_a,
    stride_output_b, stride_output_c, XBLOCK: tl.constexpr):
    pid = tl.program_id(0)
    xoffset = pid * XBLOCK + tl.arange(0, XBLOCK)[:]
    seq_idx = xoffset // hidden_dim % seq_len
    batch_idx = xoffset // stride_output_a
    hidden_dim_idx = xoffset % hidden_dim
    headdim_idx = xoffset % head_dim
    head_idx = xoffset // head_dim % num_heads
    txt_seq_end = tl.full([1], seq_txt_len, tl.int64)
    txt_mask = seq_idx < txt_seq_end
    img_mask = seq_idx >= txt_seq_end
    txt_q_data = tl.load(txt_qkv + (hidden_dim * 0 + hidden_dim_idx + 
        stride_txt_b * seq_idx + stride_txt_a * batch_idx), txt_mask, other=0.0
        ).to(tl.float32)
    zero_mask = tl.full(txt_q_data.shape, 0.0, txt_q_data.dtype)
    masked_txt_q = tl.where(txt_mask, txt_q_data, zero_mask)
    img_q_data = tl.load(img_qkv + (-stride_txt_a + hidden_dim * 0 +
        hidden_dim_idx + stride_img_b * seq_idx + stride_img_a * batch_idx),
        img_mask, other=0.0).to(tl.float32)
    zero_mask = tl.full(img_q_data.shape, 0.0, img_q_data.dtype)
    masked_img_q = tl.where(img_mask, img_q_data, zero_mask)
    out_q = tl.where(txt_mask, masked_txt_q, masked_img_q)
    tl.store(out_q_ptr + (headdim_idx + stride_output_c * seq_idx + 
        stride_output_b * head_idx + stride_output_a * batch_idx), out_q, None)
    txt_k_data = tl.load(txt_qkv + (hidden_dim * 1 + hidden_dim_idx + 
        stride_txt_b * seq_idx + stride_txt_a * batch_idx), txt_mask, other=0.0
        ).to(tl.float32)
    zero_mask = tl.full(txt_k_data.shape, 0.0, txt_k_data.dtype)
    masked_txt_q = tl.where(txt_mask, txt_k_data, zero_mask)
    img_k_data = tl.load(img_qkv + (-stride_txt_a + hidden_dim * 1 +
        hidden_dim_idx + stride_img_b * seq_idx + stride_img_a * batch_idx),
        img_mask, other=0.0).to(tl.float32)
    zero_mask = tl.full(img_k_data.shape, 0.0, img_k_data.dtype)
    masked_img_k = tl.where(img_mask, img_k_data, zero_mask)
    out_k = tl.where(txt_mask, masked_txt_q, masked_img_k)
    tl.store(out_k_ptr + (headdim_idx + stride_output_c * seq_idx + 
        stride_output_b * head_idx + stride_output_a * batch_idx), out_k, None)
    txt_v_data = tl.load(txt_qkv + (hidden_dim * 2 + hidden_dim_idx + 
        stride_txt_b * seq_idx + stride_txt_a * batch_idx), txt_mask, other=0.0
        ).to(tl.float32)
    zero_mask = tl.full(txt_v_data.shape, 0.0, txt_v_data.dtype)
    masked_txt_v = tl.where(txt_mask, txt_v_data, zero_mask)
    img_v_data = tl.load(img_qkv + (-stride_txt_a + hidden_dim * 2 +
        hidden_dim_idx + stride_img_b * seq_idx + stride_img_a * batch_idx),
        img_mask, other=0.0).to(tl.float32)
    zero_mask = tl.full(img_v_data.shape, 0.0, img_v_data.dtype)
    masked_img_q = tl.where(img_mask, img_v_data, zero_mask)
    output_v = tl.where(txt_mask, masked_txt_v, masked_img_q)
    tl.store(out_v_ptr + (headdim_idx + stride_output_c * seq_idx + 
        stride_output_b * head_idx + stride_output_a * batch_idx), output_v,
        None)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/ai-compiler-study/triton-kernels/blob/2308e5e9d965059fe2d19b4d535debac4970b69e/triton_kernels/ops/qkv_concat.py 
 | 
					
	5d836130-3356-4d7b-9797-41b5b20290c8 
 | 
	fp8_matmul.py 
 | 
	drisspg/transformer_nuggets 
 | 
	transformer_nuggets/fp8/fp8_matmul.py 
 | 
	a4c66bbeebaa479ad8b6ed82d7efbafa41b17260 
 | 0 
							 | 
	@triton.jit
def apply_scaling(accumulator, a_scale, b_scale, ROW_WISE_SCALING: tl.
    constexpr, offs_cm, offs_cn, M, N, stride_a_scale_m, stride_b_scale_n):
    if ROW_WISE_SCALING:
        a_scales = tl.load(a_scale + offs_cm * stride_a_scale_m, mask=
            offs_cm < M, other=0.0)
        b_scales = tl.load(b_scale + offs_cn * stride_b_scale_n, mask=
            offs_cn < N, other=0.0)
        acc_scale = a_scales[:, None] * b_scales[None, :]
    else:
        acc_scale = a_scale * b_scale
    return accumulator * acc_scale
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "BSD"
]  | 
	https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/fp8/fp8_matmul.py 
 | 
					
	da11f109-9ed7-4901-b57c-0a34d0fda019 
 | 
	chunk.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/gsa/chunk.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.jit
def chunk_gsa_bwd_k_kernel_intra_dvg(v, g, o, A, do, dv, dg, offsets,
    indices, T: tl.constexpr, HQ: tl.constexpr, H: tl.constexpr, V: tl.
    constexpr, BT: tl.constexpr, BC: tl.constexpr, BV: tl.constexpr, NC: tl
    .constexpr, NG: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl
    .constexpr):
    i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    i_bg = i_bh // NG
    i_b, i_hq = i_bh // HQ, i_bh % HQ
    i_h = i_hq // NG
    i_t, i_i = i_c // NC, i_c % NC
    if USE_OFFSETS:
        i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
            i_t * 2 + 1).to(tl.int32)
        bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
            i_n + 1).to(tl.int32)
        T = eos - bos
    else:
        bos, eos = i_b * T, i_b * T + T
    o_v = i_v * BV + tl.arange(0, BV)
    m_v = o_v < V
    if i_t * BT + i_i * BC > T:
        return
    if HEAD_FIRST:
        p_gv = tl.make_block_ptr(g + i_bg * T * V, (T, V), (V, 1), (i_t *
            BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
        p_gn = tl.max_contiguous(tl.multiple_of(g + i_bg * T * V + (min(i_t *
            BT + i_i * BC + BC, T) - 1) * V + o_v, BV), BV)
    else:
        p_gv = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H * V, 1
            ), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
        p_gn = tl.max_contiguous(tl.multiple_of(g + (bos + min(i_t * BT + 
            i_i * BC + BC, T) - 1) * H * V + i_h * V + o_v, BV), BV)
    b_gn = tl.load(p_gn, mask=m_v, other=0)
    b_gv = tl.load(p_gv, boundary_check=(0, 1))
    b_dv = tl.zeros([BC, BV], dtype=tl.float32)
    for i_j in range(i_i + 1, NC):
        if HEAD_FIRST:
            p_g = tl.make_block_ptr(g + i_bg * T * V, (T, V), (V, 1), (i_t *
                BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
            p_A = tl.make_block_ptr(A + i_bh * T * BT, (BT, T), (1, BT), (
                i_i * BC, i_t * BT + i_j * BC), (BC, BC), (0, 1))
            p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (
                i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
        else:
            p_g = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H * V,
                1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
            p_A = tl.make_block_ptr(A + (bos * HQ + i_hq) * BT, (BT, T), (1,
                HQ * BT), (i_i * BC, i_t * BT + i_j * BC), (BC, BC), (0, 1))
            p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (
                HQ * V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
        b_g = tl.load(p_g, boundary_check=(0, 1))
        b_do = tl.load(p_do, boundary_check=(0, 1))
        b_do = (b_do * tl.exp(b_g - b_gn[None, :])).to(b_do.dtype)
        b_A = tl.load(p_A, boundary_check=(0, 1))
        b_dv += tl.dot(b_A, b_do)
    b_dv *= tl.exp(b_gn[None, :] - b_gv)
    o_i = tl.arange(0, BC)
    o_c = i_i * BC + tl.arange(0, BC)
    if HEAD_FIRST:
        p_g = tl.max_contiguous(tl.multiple_of(g + i_bg * T * V + (i_t * BT +
            i_i * BC) * V + o_v, BV), BV)
        p_A = tl.max_contiguous(tl.multiple_of(A + i_bh * T * BT + (i_t *
            BT + i_i * BC) * BT + o_c, BC), BC)
        p_do = tl.max_contiguous(tl.multiple_of(do + i_bh * T * V + (i_t *
            BT + i_i * BC) * V + o_v, BV), BV)
    else:
        p_g = tl.max_contiguous(tl.multiple_of(g + (bos + i_t * BT + i_i *
            BC) * H * V + i_h * V + o_v, BV), BV)
        p_A = tl.max_contiguous(tl.multiple_of(A + (bos + i_t * BT + i_i *
            BC) * HQ * BT + i_hq * BT + o_c, BC), BC)
        p_do = tl.max_contiguous(tl.multiple_of(do + (bos + i_t * BT + i_i *
            BC) * HQ * V + i_hq * V + o_v, BV), BV)
    for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
        b_A = tl.load(p_A)
        b_g = tl.load(p_g, mask=m_v, other=0)
        b_do = tl.load(p_do, mask=m_v, other=0)
        m_i = o_i[:, None] <= j
        b_dv += tl.where(m_i, tl.exp(b_g[None, :] - b_gv) * b_A[:, None] *
            b_do[None, :], 0.0)
        p_g += (1 if HEAD_FIRST else H) * V
        p_A += (1 if HEAD_FIRST else HQ) * BT
        p_do += (1 if HEAD_FIRST else HQ) * V
    if HEAD_FIRST:
        p_o = tl.make_block_ptr(o + i_bh * T * V, (T, V), (V, 1), (i_t * BT +
            i_i * BC, i_v * BV), (BC, BV), (1, 0))
        p_v = tl.make_block_ptr(v + i_bg * T * V, (T, V), (V, 1), (i_t * BT +
            i_i * BC, i_v * BV), (BC, BV), (1, 0))
        p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (i_t *
            BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
        p_dv = tl.make_block_ptr(dv + i_bh * T * V, (T, V), (V, 1), (i_t *
            BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
        p_dg = tl.make_block_ptr(dg + i_bh * T * V, (T, V), (V, 1), (i_t *
            BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
    else:
        p_o = tl.make_block_ptr(o + (bos * HQ + i_hq) * V, (T, V), (HQ * V,
            1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
        p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1),
            (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
        p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ *
            V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
        p_dv = tl.make_block_ptr(dv + (bos * HQ + i_hq) * V, (T, V), (HQ *
            V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
        p_dg = tl.make_block_ptr(dg + (bos * HQ + i_hq) * V, (T, V), (HQ *
            V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
    b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
    b_v = tl.load(p_v, boundary_check=(0, 1)).to(tl.float32)
    b_do = tl.load(p_do, boundary_check=(0, 1)).to(tl.float32)
    b_dv = b_dv + tl.load(p_dv, boundary_check=(0, 1)).to(tl.float32)
    b_dg = b_o * b_do - b_v * b_dv
    tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
    tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Attention Mechanisms"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops",
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gsa/chunk.py 
 | 
					
	8dbbd600-4b51-4d60-9081-c24273378c71 
 | 
	y_0.py 
 | 
	IntelLabs/EquiTriton 
 | 
	src/equitriton/sph_harm/direct/y_0.py 
 | 
	1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c 
 | 0 
							 | 
	@triton.jit
def zeroth_order_fwd(coord_ptr: tl.tensor, output_ptr: tl.tensor,
    block_size: tl.constexpr, coord_numel: tl.constexpr, output_numel: tl.
    constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr):
    block_id = tl.program_id(0)
    output_striding = tl.arange(0, block_size) * output_stride
    output_row_offset = (output_striding + block_size * output_stride *
        block_id + col_offset)
    tl.store(output_ptr + output_row_offset, 1.0, mask=output_row_offset <
        output_numel)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Low Latency"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_0.py 
 | 
					
	98296604-5ff6-454d-b957-63e6735444c9 
 | 
	fused_chunk.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/gla/fused_chunk.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.jit
def fused_chunk_gla_bwd_kernel(q, k, v, g, do, dq, dk, dv, h0, s_k_h, s_k_t,
    s_k_d, s_v_h, s_v_t, s_v_d, scale, B: tl.constexpr, H: tl.constexpr, T:
    tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK:
    tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, CHECK:
    tl.constexpr):
    i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    b_h = tl.zeros([BV, BK], dtype=tl.float32)
    if USE_INITIAL_STATE:
        p_h = tl.make_block_ptr(h0 + i_bh * K * V, (V, K), (1, V), (i_v *
            BV, i_k * BK), (BV, BK), (0, 1))
        b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32)
    mask = i_k * BK + tl.arange(0, BK) < K
    for i in range(0, tl.cdiv(T, BT)):
        p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
            i * BT, i_k * BK), (BT, BK), (1, 0))
        p_db = g + i_bh * s_k_h + ((i + 1) * BT - 1
            ) * s_k_t + i_k * BK + tl.arange(0, BK)
        p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (
            i_v * BV, i * BT), (BV, BT), (0, 1))
        p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d),
            (i * BT, i_v * BV), (BT, BV), (1, 0))
        p_dq = tl.make_block_ptr(dq + (i_bh + i_v * B * H) * s_k_h, (T, K),
            (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0))
        b_dq = tl.zeros([BT, BK], dtype=tl.float32)
        b_k = tl.load(p_k, boundary_check=(0, 1))
        d_b = tl.load(p_db, mask=mask, other=0).to(tl.float32)
        b_v = tl.load(p_v, boundary_check=(0, 1))
        b_do = tl.load(p_do, boundary_check=(0, 1))
        if CHECK and i == 0:
            b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False)
            b_h = b_h * tl.exp(d_b)[None, :] + tl.dot(b_v, b_k.to(b_v.dtype
                ), allow_tf32=False)
        else:
            b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False)
            b_h = b_h * tl.exp(d_b)[None, :] + tl.dot(b_v, b_k.to(b_v.dtype
                ), allow_tf32=False)
        b_dq *= scale
        tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
    b_h = None
    tl.debug_barrier()
    b_dh = tl.zeros([BK, BV], dtype=tl.float32)
    for i in range(1, tl.cdiv(T, BT) + 1):
        p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (
            i_k * BK, T - i * BT), (BK, BT), (0, 1))
        p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
            T - i * BT, i_k * BK), (BT, BK), (1, 0))
        p_db = g + i_bh * s_k_h + (T - (i - 1) * BT - 1
            ) * s_k_t + i_k * BK + tl.arange(0, BK)
        p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (
            T - i * BT, i_v * BV), (BT, BV), (1, 0))
        p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d),
            (T - i * BT, i_v * BV), (BT, BV), (1, 0))
        p_dk = tl.make_block_ptr(dk + (i_bh + i_v * B * H) * s_k_h, (T, K),
            (s_k_t, s_k_d), (T - i * BT, i_k * BK), (BT, BK), (1, 0))
        p_dv = tl.make_block_ptr(dv + (i_bh + i_k * B * H) * s_v_h, (T, V),
            (s_v_t, s_v_d), (T - i * BT, i_v * BV), (BT, BV), (1, 0))
        b_q = tl.load(p_q, boundary_check=(0, 1))
        b_k = tl.load(p_k, boundary_check=(0, 1))
        b_v = tl.load(p_v, boundary_check=(0, 1))
        b_do = tl.load(p_do, boundary_check=(0, 1))
        b_db = tl.load(p_db, mask=mask, other=0).to(tl.float32)
        if CHECK and i == 1:
            b_dk = tl.trans(tl.dot(b_dh.to(b_v.dtype), tl.trans(b_v),
                allow_tf32=False))
            b_dv = tl.dot(b_k.to(b_v.dtype), b_dh.to(b_v.dtype), allow_tf32
                =False)
            b_dh = b_dh * tl.exp(b_db)[:, None] + tl.dot(b_q.to(b_do.dtype),
                b_do, allow_tf32=False)
        else:
            b_dk = tl.trans(tl.dot(b_dh.to(b_v.dtype), tl.trans(b_v),
                allow_tf32=False))
            b_dv = tl.dot(b_k.to(b_v.dtype), b_dh.to(b_v.dtype), allow_tf32
                =False)
            b_dh = b_dh * tl.exp(b_db)[:, None] + tl.dot(b_q.to(b_do.dtype),
                b_do, allow_tf32=False)
        tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
        tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Attention Mechanisms"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/fused_chunk.py 
 | 
					
	601dc13f-efe7-4189-8251-9423cd04334d 
 | 
	foward.py 
 | 
	Forkxz/TritonDeepLearningKernel 
 | 
	kernel/dropconnect/foward.py 
 | 
	add54b6318e8fa5fdbf8c7b47659de9fceaa5691 
 | 0 
							 | 
	@triton.jit
def dropconnect_fwd_kernel(x_ptr, w_ptr, y_ptr, seed, M, K, N, stride_xm,
    stride_xk, stride_wk, stride_wn, stride_ym, stride_yn, stride_dm,
    stride_dk, stride_dn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.
    constexpr, BLOCK_SIZE_K: tl.constexpr, ALLOWTF32: tl.constexpr):
    pid_m = tl.program_id(0)
    pid_n = tl.program_id(1)
    offset_m = pid_m * BLOCK_SIZE_M
    offset_n = pid_n * BLOCK_SIZE_N
    offset_k = 0
    x_offsets = block_offsets_2d(M, K, stride_xm, stride_xk, offset_m,
        offset_k, BLOCK_SIZE_M, BLOCK_SIZE_K)
    w_offsets = block_offsets_2d(K, N, stride_wk, stride_wn, offset_k,
        offset_n, BLOCK_SIZE_K, BLOCK_SIZE_N)
    d_offsets = block_offsets_3d(M, K, N, stride_dm, stride_dk, stride_dn,
        offset_m, offset_k, offset_n, BLOCK_SIZE_M, BLOCK_SIZE_K, BLOCK_SIZE_N)
    x_offsets = x_offsets.reshape(BLOCK_SIZE_M, BLOCK_SIZE_K, 1)
    w_offsets = w_offsets.reshape(1, BLOCK_SIZE_K, BLOCK_SIZE_N)
    offs_k = tl.arange(0, BLOCK_SIZE_K)
    x_tile = x_ptr + x_offsets
    w_tile = w_ptr + w_offsets
    ASM: tl.constexpr = 'cvt.rna.tf32.f32 $0, $1;'
    accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
        random_masks = tl.random.rand(seed, d_offsets) > 0.5
        k_mask = offs_k[None, :, None] < K - k * BLOCK_SIZE_K
        x_load = tl.load(x_tile, mask=k_mask, other=0.0)
        w_load = tl.load(w_tile, mask=k_mask, other=0.0)
        a = tl.where(random_masks, x_load, 0.0)
        b = tl.where(random_masks, w_load, 0.0)
        mul = a * b
        accumulator += tl.sum(mul, axis=1)
        x_tile += BLOCK_SIZE_K * stride_xk
        w_tile += BLOCK_SIZE_K * stride_wk
        d_offsets += BLOCK_SIZE_K * stride_dk
    y_offset, y_mask = block_offsets_2d(M, N, stride_ym, stride_yn,
        offset_m, offset_n, BLOCK_SIZE_M, BLOCK_SIZE_N, True)
    y_tile = y_ptr + y_offset
    y = accumulator.to(y_tile.dtype.element_ty)
    tl.store(y_tile, y, mask=y_mask)
 
 | 
	{
  "Data Type": [
    "fp32",
    "int8"
  ],
  "Functionality": [
    "Elementwise Operations",
    "Quantization"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/Forkxz/TritonDeepLearningKernel/blob/add54b6318e8fa5fdbf8c7b47659de9fceaa5691/kernel/dropconnect/foward.py 
 | 
					
	eceee47a-7f5a-4c5d-a084-f79da7308114 
 | 
	bwd_inner_dq.py 
 | 
	ROCm/aotriton 
 | 
	tritonsrc/bwd_inner_dq.py 
 | 
	016f733e8ff746450e066f78bed68709ccd93e60 
 | 0 
							 | 
	@triton.jit
def bwd_inner_dq(dq, qk_scale, bias_scale, DB_block_ptr, store_db, q,
    kt_ptrs, k_stride, vt_ptrs, v_stride, B_block_ptr, do, Di, l_i,
    seqlen_q, seqlen_k, head_dim, start_q, lo, hi, dropout_p, dropout_scale,
    philox_seed, batch_philox_offset, max_seqlen_k, BLOCK_M: tl.constexpr,
    BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, FULL_BLOCKS: tl.
    constexpr, CAUSAL: tl.constexpr, ENABLE_DROPOUT: tl.constexpr,
    PADDED_HEAD: tl.constexpr, BIAS_TYPE: tl.constexpr):
    offs_q = start_q + tl.arange(0, BLOCK_M)
    offs_k = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_DMODEL)
    ld_offs_d = None if not PADDED_HEAD else tl.arange(0, BLOCK_DMODEL)
    kt_ptrs += lo * k_stride
    vt_ptrs += lo * v_stride
    if BIAS_TYPE == 1:
        B_block_ptr = tl.advance(B_block_ptr, (0, lo))
        DB_block_ptr = tl.advance(DB_block_ptr, (0, lo))
    """
           K1   K2      (d)V      dO
    Q1    qk11 qk12     (d)v1     dO1
    Q2    qk21 qk22     (d)v2     dO2
    QK: (seqlen_q, seqlen_k)
    dO: (seqlen_q, hdim)
    dV: (seqlen_k, hdim)
    """
    for start_k in range(lo, hi, BLOCK_N):
        offs_k_curr = offs_k[None, :] + start_k
        if not FULL_BLOCKS:
            kt = load_fn(kt_ptrs, ld_offs_d, offs_k + start_k, head_dim,
                seqlen_k)
        else:
            kt = load_fn(kt_ptrs, ld_offs_d, None, head_dim, seqlen_k)
        if not FULL_BLOCKS:
            vt = load_fn(vt_ptrs, ld_offs_d, offs_k + start_k, head_dim,
                seqlen_k)
        else:
            vt = load_fn(vt_ptrs, ld_offs_d, None, head_dim, seqlen_k)
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += dot(BLOCK_M, BLOCK_DMODEL, BLOCK_DMODEL, q, kt)
        if not FULL_BLOCKS:
            k_boundary = tl.full((BLOCK_M,), seqlen_k, dtype=tl.int32)
            mask = offs_k_curr < k_boundary[:, None]
            qk = tl.where(mask, qk, float('-inf'))
        if CAUSAL:
            qk = tl.where(offs_q[:, None] >= offs_k_curr, qk, float('-inf'))
        if BIAS_TYPE == 0:
            pass
        elif BIAS_TYPE == 1:
            bias = tl.load(B_block_ptr, boundary_check=(0, 1),
                padding_option='zero')
            qk += bias * bias_scale
        else:
            tl.static_assert(False, f'Unsupported BIAS_TYPE {BIAS_TYPE}')
        p = tl.math.exp2(qk_scale * qk - l_i[:, None])
        if not FULL_BLOCKS or CAUSAL:
            if qk_scale == 0.0:
                p = tl.where(libdevice.isnan(p), 0.0, p)
        dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        dp += dot(BLOCK_M, BLOCK_DMODEL, BLOCK_DMODEL, do, vt)
        if ENABLE_DROPOUT:
            philox_offset = (batch_philox_offset + start_q * max_seqlen_k +
                start_k)
            keep = dropout_mask(philox_seed, philox_offset, dropout_p,
                BLOCK_M, BLOCK_N, max_seqlen_k)
            dp = tl.where(keep, dp * dropout_scale, 0)
        ds = p * (dp - Di[:, None])
        if BLOCK_M == 1:
            dq += tl.view(kt, [BLOCK_DMODEL]) * ds.to(q.type.element_ty)
        else:
            dq = tl.dot(ds.to(q.type.element_ty), tl.trans(kt), acc=dq)
        if BIAS_TYPE == 1:
            if store_db:
                tl.store(DB_block_ptr, ds.to(DB_block_ptr.type.element_ty),
                    boundary_check=(0, 1))
        kt_ptrs += BLOCK_N * k_stride
        vt_ptrs += BLOCK_N * v_stride
        if BIAS_TYPE == 1:
            B_block_ptr = tl.advance(B_block_ptr, (0, BLOCK_N))
            DB_block_ptr = tl.advance(DB_block_ptr, (0, BLOCK_N))
    return dq
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Attention Mechanisms"
  ],
  "Memory Access Pattern": [
    "Strided Access",
    "Tiled Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/bwd_inner_dq.py 
 | 
					
	774b2df7-3308-4be6-9859-ced86bcaa8fc 
 | 
	gemm_a16w4.py 
 | 
	AlibabaPAI/FLASHNN 
 | 
	flashnn/triton_kernels/gemm_a16w4.py 
 | 
	528a9301587f5fb135b25d973a87ba0a40a703a7 
 | 0 
							 | 
	@triton.jit
def _triton_gemm_a16w4_per_channel_kernel(A, B, C, scale_b, bias,
    zero_points, M, N, K, rescale_m, rescale_n, rescale_k, stride_am,
    stride_ak, stride_bn, stride_bk, stride_cm, stride_cn, stride_zpk,
    stride_zpn, stride_scalek, stride_scalen, add_bias: tl.constexpr,
    add_zero_points: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.
    constexpr, BLOCK_K: tl.constexpr, GROUP_M: tl.constexpr, SPLIT_K: tl.
    constexpr):
    pid = tl.program_id(0)
    pid_z = tl.program_id(1)
    grid_m = tl.cdiv(M, BLOCK_M)
    grid_n = tl.cdiv(N, BLOCK_N)
    width = GROUP_M * grid_n
    group_id = pid // width
    group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
    pid_m = group_id * GROUP_M + pid % group_size
    pid_n = pid % width // group_size
    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
    rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
    rk = pid_z * BLOCK_K + tl.arange(0, BLOCK_K)
    A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
    B = B + (rbn[:, None] * stride_bn + rk[None, :] * stride_bk)
    acc_l = tl.zeros((BLOCK_N, BLOCK_M), dtype=tl.float32)
    acc_h = tl.zeros((BLOCK_N, BLOCK_M), dtype=tl.float32)
    _A0 = tl.zeros((1, 1), dtype=A.dtype.element_ty)
    _B0 = tl.zeros((1, 1), dtype=B.dtype.element_ty)
    if add_zero_points:
        offs_zero_points = pid_n * BLOCK_N * 2 + tl.arange(0, 2 * BLOCK_N)
        zero_points_ptrs = zero_points + offs_zero_points
        _ZERO_POINT0 = tl.zeros([1], dtype=zero_points.dtype.element_ty)
        zero_points_vals = tl.load(zero_points_ptrs, mask=offs_zero_points <
            2 * N, other=_ZERO_POINT0)
        zero_points_vals = tl.reshape(zero_points_vals, (BLOCK_N, 2))
        zp_l, zp_h = tl.split(zero_points_vals)
    offs_scale = pid_n * BLOCK_N * 2 + tl.arange(0, 2 * BLOCK_N)
    scale_ptrs = scale_b + offs_scale
    _SCALE0 = tl.zeros([1], dtype=scale_b.dtype.element_ty)
    scales = tl.load(scale_ptrs, mask=offs_scale < 2 * N, other=_SCALE0)
    for k in range(0, tl.cdiv(K, BLOCK_K * SPLIT_K)):
        k_remaining = K - k * (BLOCK_K * SPLIT_K)
        b_int4_two = tl.load(B, mask=rk[None, :] < k_remaining, other=_B0)
        b_int4_l = b_int4_two.__lshift__(4).to(tl.int8).__rshift__(4).to(A.
            dtype.element_ty)
        b_int4_h = b_int4_two.__rshift__(4).to(A.dtype.element_ty)
        a = tl.load(A, mask=rk[None, :] < k_remaining, other=_A0)
        a = tl.trans(a)
        if add_zero_points:
            b_int4_l -= zp_l[:, None]
            b_int4_h -= zp_h[:, None]
        acc_l += tl.dot(b_int4_l, a, out_dtype=tl.float32, allow_tf32=True)
        acc_h += tl.dot(b_int4_h, a, out_dtype=tl.float32, allow_tf32=True)
        A += BLOCK_K * SPLIT_K * stride_ak
        B += BLOCK_K * SPLIT_K * stride_bk
    acc_l = tl.trans(acc_l)
    acc_h = tl.trans(acc_h)
    acc = tl.interleave(acc_l, acc_h)
    offs_scale = pid_n * BLOCK_N * 2 + tl.arange(0, 2 * BLOCK_N)
    scale_ptrs = scale_b + offs_scale
    _SCALE0 = tl.zeros([1], dtype=scale_b.dtype.element_ty)
    scales = tl.load(scale_ptrs, mask=offs_scale < 2 * N, other=_SCALE0)
    acc *= scales[None, :]
    acc = acc.to(C.dtype.element_ty)
    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rn = pid_n * BLOCK_N * 2 + tl.arange(0, 2 * BLOCK_N)
    mask = (rm < M)[:, None] & (rn < 2 * N)[None, :]
    if add_bias:
        offs_bias = pid_n * BLOCK_N * 2 + tl.arange(0, 2 * BLOCK_N)
        bias_ptrs = bias + offs_bias
        _BIAS0 = tl.zeros([1], dtype=bias.dtype.element_ty)
        bias_vals = tl.load(bias_ptrs, mask=offs_bias < 2 * N, other=_BIAS0)
        if pid_z == 0:
            acc += bias_vals[None, :]
    if SPLIT_K == 1:
        tl.store(C + rm[:, None] * stride_cm + rn[None, :], acc, mask=mask)
    else:
        tl.atomic_add(C + rm[:, None] * stride_cm + rn[None, :], acc, mask=mask
            )
 
 | 
	{
  "Data Type": [
    "int8",
    "fp32"
  ],
  "Functionality": [
    "Matrix Multiplication",
    "Quantization"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops",
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/gemm_a16w4.py 
 | 
					
	32a86171-95db-478d-aace-264ce85654bc 
 | 
	chunk_h_parallel.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/common/chunk_h_parallel.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.heuristics({'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'
    ] is not None, 'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not
    None, 'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps=
    num_warps, num_stages=num_stages) for BK in [32, 64, 128] for BV in [32,
    64, 128] for num_warps in [2, 4, 8] for num_stages in [2, 3, 4]], key=[
    'BT', 'USE_G', 'USE_GK', 'USE_GV'])
@triton.jit
def chunk_bwd_kernel_dh_parallel(q, g, gk, gv, do, dh, dht, dh0, offsets,
    indices, scale, T: tl.constexpr, HQ: tl.constexpr, H: tl.constexpr, K:
    tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV:
    tl.constexpr, NG: tl.constexpr, USE_G: tl.constexpr, USE_GK: tl.
    constexpr, USE_GV: tl.constexpr, STORE_INITIAL_STATE_GRADIENT: tl.
    constexpr, USE_FINAL_STATE_GRADIENT: tl.constexpr, USE_OFFSETS: tl.
    constexpr, HEAD_FIRST: tl.constexpr):
    i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    NV = tl.cdiv(V, BV)
    i_k, i_v = i_kv // NV, i_kv % NV
    i_b, i_hq, i_bg = i_bh // HQ, i_bh % HQ, i_bh // NG
    i_h = i_hq // NG
    if USE_OFFSETS:
        i_tg = i_t
        i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
            i_t * 2 + 1).to(tl.int32)
        bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
            i_n + 1).to(tl.int32)
        T = eos - bos
        NT = tl.cdiv(T, BT)
    else:
        bos, eos = i_b * T, i_b * T + T
        NT = tl.cdiv(T, BT)
        i_n, i_tg = i_b, i_b * NT + i_t
    i_nh = i_n * HQ + i_hq
    if HEAD_FIRST:
        p_q = tl.make_block_ptr(q + i_bh * T * K, (K, T), (1, K), (i_k * BK,
            i_t * BT), (BK, BT), (0, 1))
        p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (i_t *
            BT, i_v * BV), (BT, BV), (1, 0))
        p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t) * K * V, (K, V), (V,
            1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
    else:
        p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (K, T), (1, HQ *
            K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
        p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ *
            V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
        p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K * V, (K, V), (V,
            1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
    if i_t == NT - 1:
        if USE_FINAL_STATE_GRADIENT:
            p_dht = tl.make_block_ptr(dht + i_nh * K * V, (K, V), (V, 1), (
                i_k * BK, i_v * BV), (BK, BV), (1, 0))
            b_dh = tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32)
        else:
            b_dh = tl.zeros([BK, BV], dtype=tl.float32)
        tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
    b_q = tl.load(p_q, boundary_check=(0, 1))
    b_q = (b_q * scale).to(b_q.dtype)
    b_do = tl.load(p_do, boundary_check=(0, 1))
    if USE_G:
        if HEAD_FIRST:
            p_g = g + i_bg * T + i_t * BT + tl.arange(0, BT)
            p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
        else:
            p_g = g + (bos + i_t * BT + tl.arange(0, BT)) * H + i_h
        b_g = tl.load(p_g, mask=i_t * BT + tl.arange(0, BT) < T, other=0.0)
        b_q = (b_q * tl.exp(b_g)[None, :]).to(b_q.dtype)
    if USE_GK:
        if HEAD_FIRST:
            p_gk = tl.make_block_ptr(gk + i_bg * T * K, (K, T), (1, K), (
                i_k * BK, i_t * BT), (BK, BT), (0, 1))
        else:
            p_gk = tl.make_block_ptr(gk + (bos * H + i_h) * K, (K, T), (1, 
                H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
        b_gk = tl.load(p_gk, boundary_check=(0, 1))
        b_q = (b_q * tl.exp(b_gk)).to(b_q.dtype)
    if USE_GV:
        if HEAD_FIRST:
            p_gv = tl.make_block_ptr(gv + i_bg * T * V, (T, V), (V, 1), (
                i_t * BT, i_v * BV), (BT, BV), (1, 0))
        else:
            p_gv = tl.make_block_ptr(gv + (bos * H + i_h) * V, (T, V), (H *
                V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
        b_gv = tl.load(p_gv, boundary_check=(0, 1))
        b_do = (b_do * tl.exp(b_gv)).to(b_do.dtype)
    b_dh = tl.dot(b_q, b_do)
    if i_t > 0:
        if HEAD_FIRST:
            p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t - 1) * K * V, (K,
                V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
        else:
            p_dh = tl.make_block_ptr(dh + ((i_tg - 1) * H + i_h) * K * V, (
                K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
        tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
    elif STORE_INITIAL_STATE_GRADIENT:
        p_dh0 = tl.make_block_ptr(dh0 + i_nh * K * V, (K, V), (V, 1), (i_k *
            BK, i_v * BV), (BK, BV), (1, 0))
        tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Attention Mechanisms"
  ],
  "Memory Access Pattern": [
    "Strided Access",
    "Tiled Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops",
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/common/chunk_h_parallel.py 
 | 
					
	10461b26-96c5-475b-b85e-1317b069b740 
 | 
	mlstm_scan.py 
 | 
	LukasBluebaum/xLSTM-Triton-CUDA-Implementation 
 | 
	mlstm_scan.py 
 | 
	6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b 
 | 0 
							 | 
	@triton.jit
def scan_op(x1, y1, x2, y2):
    z1 = x2 * x1
    z2 = x2 * y1 + y2
    return z1, z2
 
 | 
	{
  "Data Type": [],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_scan.py 
 | 
					
	e72ea98e-3167-44ec-923d-f412cbff14b8 
 | 
	naive_associative_rnn_scan.py 
 | 
	TushaarGVS/linear-rnn 
 | 
	linear_rnn/triton/naive_associative_rnn_scan.py 
 | 
	48320589b73154484be7d09a144923a2b9e56b85 
 | 0 
							 | 
	@triton.jit
def _associative_scan_op(a_l, x_l, a_r, x_r):
    return a_r * a_l, a_r * x_l + x_r
 
 | 
	{
  "Data Type": [],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [],
  "Parallelization Strategy": [],
  "Performance Objective": []
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/TushaarGVS/linear-rnn/blob/48320589b73154484be7d09a144923a2b9e56b85/linear_rnn/triton/naive_associative_rnn_scan.py 
 | 
					
	489248a3-bb60-40d3-a95f-13874bdd6bf8 
 | 
	chunk.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/gated_delta_rule/chunk.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for
    num_warps in [2, 4]], key=['BT', 'BK', 'BV'])
@triton.jit
def chunk_gated_delta_rule_bwd_kernel_dqkw(q, k, v, w, g, h, do, dh, dq, dk,
    dv, dw, dg, offsets, indices, scale, T: tl.constexpr, H: tl.constexpr,
    K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr,
    BV: tl.constexpr, NT: tl.constexpr, USE_OFFSETS: tl.constexpr,
    HEAD_FIRST: tl.constexpr):
    i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    i_b, i_h = i_bh // H, i_bh % H
    if USE_OFFSETS:
        i_tg = i_t
        i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
            i_t * 2 + 1).to(tl.int32)
        bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
            i_n + 1).to(tl.int32)
        T = eos - bos
        NT = tl.cdiv(T, BT)
    else:
        NT = tl.cdiv(T, BT)
        i_tg = i_b * NT + i_t
        bos, eos = i_b * T, i_b * T + T
    o_i = tl.arange(0, BT)
    if HEAD_FIRST:
        p_q = tl.make_block_ptr(q + i_bh * T * K, (K, T), (1, K), (i_k * BK,
            i_t * BT), (BK, BT), (0, 1))
        p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT,
            i_k * BK), (BT, BK), (1, 0))
    else:
        p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (K, T), (1, H * K),
            (i_k * BK, i_t * BT), (BK, BT), (0, 1))
        p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1),
            (i_t * BT, i_k * BK), (BT, BK), (1, 0))
    b_dq = tl.zeros([BT, BK], dtype=tl.float32)
    b_dk = tl.zeros([BT, BK], dtype=tl.float32)
    b_dw = tl.zeros([BT, BK], dtype=tl.float32)
    b_ds = tl.zeros([BT, BT], dtype=tl.float32)
    b_dg = tl.zeros([BT], dtype=tl.float32)
    b_dg_last = tl.zeros([1], dtype=tl.float32)
    last_idx = min((i_t + 1) * BT, T) - 1
    if HEAD_FIRST:
        b_g_last = tl.load(g + i_bh * T + last_idx)
    else:
        b_g_last = tl.load(g + (bos + last_idx) * H + i_h)
    for i_v in range(tl.cdiv(V, BV)):
        if HEAD_FIRST:
            p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t *
                BT, i_v * BV), (BT, BV), (1, 0))
            p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (
                i_t * BT, i_v * BV), (BT, BV), (1, 0))
            p_dv = tl.make_block_ptr(dv + i_bh * T * V, (T, V), (V, 1), (
                i_t * BT, i_v * BV), (BT, BV), (1, 0))
            p_h = tl.make_block_ptr(h + i_bh * NT * K * V + i_t * K * V, (V,
                K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
            p_dh = tl.make_block_ptr(dh + i_bh * NT * K * V + i_t * K * V,
                (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
        else:
            p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V,
                1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
            p_do = tl.make_block_ptr(do + (bos * H + i_h) * V, (T, V), (H *
                V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
            p_dv = tl.make_block_ptr(dv + (bos * H + i_h) * V, (T, V), (H *
                V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
            p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K * V, (V, K), (
                1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
            p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K * V, (V, K),
                (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
        b_v = tl.load(p_v, boundary_check=(0, 1))
        b_do = tl.load(p_do, boundary_check=(0, 1))
        b_h = tl.load(p_h, boundary_check=(0, 1))
        b_dh = tl.load(p_dh, boundary_check=(0, 1))
        b_dg_last += tl.sum(b_h * b_dh)
        b_ds += tl.dot(b_do, tl.trans(b_v), allow_tf32=False)
        b_dq += tl.dot(b_do, b_h, allow_tf32=False)
        b_dk += tl.dot(b_v, b_dh, allow_tf32=False)
        b_dv = tl.load(p_dv, boundary_check=(0, 1))
        b_dw += tl.dot(b_dv.to(b_v.dtype), b_h.to(b_v.dtype), allow_tf32=False)
    b_dg_last *= tl.exp(b_g_last)
    if HEAD_FIRST:
        p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT,
            i_k * BK), (BT, BK), (1, 0))
        p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT,
            i_k * BK), (BT, BK), (1, 0))
        p_w = tl.make_block_ptr(w + i_bh * T * K, (T, K), (K, 1), (i_t * BT,
            i_k * BK), (BT, BK), (1, 0))
        p_dq = tl.make_block_ptr(dq + i_bh * T * K, (T, K), (K, 1), (i_t *
            BT, i_k * BK), (BT, BK), (1, 0))
        p_dk = tl.make_block_ptr(dk + i_bh * T * K, (T, K), (K, 1), (i_t *
            BT, i_k * BK), (BT, BK), (1, 0))
        p_dw = tl.make_block_ptr(dw + i_bh * T * K, (T, K), (K, 1), (i_t *
            BT, i_k * BK), (BT, BK), (1, 0))
        p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT,
            ), (0,))
        p_dg = tl.make_block_ptr(dg + i_bh * T, (T,), (1,), (i_t * BT,), (
            BT,), (0,))
    else:
        p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K, 1),
            (i_t * BT, i_k * BK), (BT, BK), (1, 0))
        p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1),
            (i_t * BT, i_k * BK), (BT, BK), (1, 0))
        p_w = tl.make_block_ptr(w + (bos * H + i_h) * K, (T, K), (H * K, 1),
            (i_t * BT, i_k * BK), (BT, BK), (1, 0))
        p_dq = tl.make_block_ptr(dq + (bos * H + i_h) * K, (T, K), (H * K, 
            1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
        p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H * K, 
            1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
        p_dw = tl.make_block_ptr(dw + (bos * H + i_h) * K, (T, K), (H * K, 
            1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
        p_g = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT,),
            (BT,), (0,))
        p_dg = tl.make_block_ptr(dg + bos * H + i_h, (T,), (H,), (i_t * BT,
            ), (BT,), (0,))
    b_q = tl.load(p_q, boundary_check=(0, 1))
    b_k = tl.load(p_k, boundary_check=(0, 1))
    b_g = tl.load(p_g, boundary_check=(0,))
    b_w = tl.load(p_w, boundary_check=(0, 1))
    b_g_exp_qw = tl.exp(b_g)
    b_dq *= b_g_exp_qw[:, None] * scale
    b_dg += tl.sum(b_dq * b_q, axis=1)
    b_dw *= b_g_exp_qw[:, None]
    b_dg -= tl.sum(b_dw * b_w, axis=1)
    b_dk *= tl.exp(b_g_last - b_g)[:, None]
    b_dg -= tl.sum(b_dk * b_k, axis=1)
    b_dg_last += tl.sum(b_dk * b_k)
    b_g_exp_qw = None
    b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds * scale * tl.exp(b_g
        [:, None] - b_g[None, :]), 0).to(b_q.dtype)
    b_dg_mask = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) * b_ds
    b_dg += tl.sum(b_dg_mask, axis=1)
    b_dg -= tl.sum(b_dg_mask, axis=0)
    b_dq += tl.dot(b_ds, b_k, allow_tf32=False)
    b_dk += tl.trans(tl.dot(tl.trans(b_q), b_ds, allow_tf32=False))
    b_dg = tl.where(o_i < min(BT, T - i_t * BT) - 1, b_dg, b_dg + b_dg_last)
    tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
    tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
    tl.store(p_dw, -b_dw.to(p_dw.dtype.element_ty), boundary_check=(0, 1))
    tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Attention Mechanisms"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "Memory-Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gated_delta_rule/chunk.py 
 | 
					
	ba1125e7-41b5-4aee-9a38-9f0cb8548a00 
 | 
	math.py 
 | 
	BobMcDear/attorch 
 | 
	attorch/math.py 
 | 
	da06cb6236bb47195e33fe3986ed21c675ed94cc 
 | 0 
							 | 
	@triton.jit
def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr
    ):
    """
    Accumulates matrix multiplications of input tensors for linear functions.
    Args:
        accum: Accumulator holding aggregation of matrix multiplications.
            The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3].
        input1: First operand of matrix multiplication.
            The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2].
        input2: Second operand of matrix multiplication.
            The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3].
        fp16: Flag for converting operands to FP16.
        tf32: Flag for performing matrix multiplication in TF32.
    Returns:
        Accumulator with the result of the new matrix multiplication added to it.
    """
    if fp16:
        input1 = input1.to(tl.float16)
        input2 = input2.to(tl.float16)
    return accum + tl.dot(input1, input2, allow_tf32=tf32)
 
 | 
	{
  "Data Type": [
    "fp16"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Tiled"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py 
 | 
					
	cecb82d3-5254-4b2d-9ca3-137d666bad12 
 | 
	tuned_bwd.py 
 | 
	ROCm/aotriton 
 | 
	tritonsrc/tuned_bwd.py 
 | 
	016f733e8ff746450e066f78bed68709ccd93e60 
 | 0 
							 | 
	@triton.autotune(configs=TRITON_CONFIG_LIST_BWD, key=['BLOCK_DMODEL',
    'max_seqlen_q', 'max_seqlen_k'])
@triton.jit
def tuned_bwd_kernel_dk_dv(Q, K, V, B, sm_scale, Out, DO, DK, DV, L, D,
    stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh,
    stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn,
    stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh,
    stride_om, stride_ok, stride_dkz, stride_dkh, stride_dkn, stride_dkk,
    stride_dvz, stride_dvh, stride_dvk, stride_dvn, cu_seqlens_q,
    cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k, head_dim,
    dropout_p, philox_seed, philox_offset_base, BLOCK_M: tl.constexpr,
    BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, CAUSAL: tl.constexpr,
    ENABLE_DROPOUT: tl.constexpr, PADDED_HEAD: tl.constexpr, BIAS_TYPE: tl.
    constexpr):
    bare_bwd_kernel_dk_dv(Q, K, V, B, sm_scale, Out, DO, DK, DV, L, D,
        stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh,
        stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn,
        stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh,
        stride_om, stride_ok, stride_dkz, stride_dkh, stride_dkn,
        stride_dkk, stride_dvz, stride_dvh, stride_dvk, stride_dvn,
        cu_seqlens_q, cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k,
        head_dim, dropout_p, philox_seed, philox_offset_base, BLOCK_M,
        BLOCK_DMODEL, BLOCK_N, CAUSAL, ENABLE_DROPOUT, PADDED_HEAD=
        PADDED_HEAD, BIAS_TYPE=BIAS_TYPE)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Attention Mechanisms"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "Memory-Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/tuned_bwd.py 
 | 
					
	0bb116ff-c023-4106-b0ff-399e5628a32e 
 | 
	layernorm.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/modules/layernorm.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.heuristics({'RECOMPUTE_OUTPUT': lambda args: args['Y'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({},
    num_warps=2), triton.Config({}, num_warps=4), triton.Config({},
    num_warps=8), triton.Config({}, num_warps=16), triton.Config({},
    num_warps=32)], key=['N', 'HAS_DRESIDUAL', 'STORE_DRESIDUAL',
    'IS_RMS_NORM', 'HAS_BIAS'])
@triton.jit
def layer_norm_bwd_kernel(X, W, B, Y, DY, DX, DW, DB, DRESIDUAL,
    DRESIDUAL_IN, Mean, Rstd, stride_x_row, stride_y_row, stride_dy_row,
    stride_dx_row, stride_dres_row, stride_dres_in_row, M, N, G,
    rows_per_program, programs_per_group, IS_RMS_NORM: tl.constexpr,
    BLOCK_N: tl.constexpr, HAS_DRESIDUAL: tl.constexpr, STORE_DRESIDUAL: tl
    .constexpr, HAS_WEIGHT: tl.constexpr, HAS_BIAS: tl.constexpr,
    RECOMPUTE_OUTPUT: tl.constexpr):
    row_block_id = tl.program_id(0)
    group_id, program_id_in_group = (row_block_id // programs_per_group, 
        row_block_id % programs_per_group)
    row_start = group_id + program_id_in_group * G * rows_per_program
    row_end = min(row_start + G * rows_per_program, M)
    cols = tl.arange(0, BLOCK_N)
    mask = cols < N
    if HAS_WEIGHT:
        w = tl.load(W + group_id * stride_x_row + cols, mask=mask).to(tl.
            float32)
        dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
    if RECOMPUTE_OUTPUT and HAS_BIAS:
        b = tl.load(B + group_id * stride_x_row + cols, mask=mask, other=0.0
            ).to(tl.float32)
    if HAS_BIAS:
        db = tl.zeros((BLOCK_N,), dtype=tl.float32)
    for row in range(row_start, row_end, G):
        x = tl.load(X + row * stride_x_row + cols, mask=mask, other=0).to(tl
            .float32)
        dy = tl.load(DY + row * stride_dy_row + cols, mask=mask, other=0).to(tl
            .float32)
        if not IS_RMS_NORM:
            mean = tl.load(Mean + row)
        rstd = tl.load(Rstd + row)
        xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
        xhat = tl.where(mask, xhat, 0.0)
        if RECOMPUTE_OUTPUT:
            y = xhat * w if HAS_WEIGHT else xhat
            if HAS_BIAS:
                y = y + b
            tl.store(Y + row * stride_y_row + cols, y, mask=mask)
        wdy = dy
        if HAS_WEIGHT:
            wdy = dy * w
            dw += dy * xhat
        if HAS_BIAS:
            db += dy
        if not IS_RMS_NORM:
            c1 = tl.sum(xhat * wdy, axis=0) / N
            c2 = tl.sum(wdy, axis=0) / N
            dx = (wdy - (xhat * c1 + c2)) * rstd
        else:
            c1 = tl.sum(xhat * wdy, axis=0) / N
            dx = (wdy - xhat * c1) * rstd
        if HAS_DRESIDUAL:
            dres = tl.load(DRESIDUAL + row * stride_dres_row + cols, mask=
                mask, other=0).to(tl.float32)
            dx += dres
        if STORE_DRESIDUAL:
            tl.store(DRESIDUAL_IN + row * stride_dres_in_row + cols, dx,
                mask=mask)
        tl.store(DX + row * stride_dx_row + cols, dx, mask=mask)
    if HAS_WEIGHT:
        tl.store(DW + row_block_id * N + cols, dw, mask=mask)
    if HAS_BIAS:
        tl.store(DB + row_block_id * N + cols, db, mask=mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Normalization",
    "Backpropagation"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/layernorm.py 
 | 
					
	bbfcb74d-d097-408e-89dc-20d7bdf56c4b 
 | 
	09-experimental-tma-matrix-multiplication.py 
 | 
	hgl71964/SIP 
 | 
	benchmarks/09-experimental-tma-matrix-multiplication.py 
 | 
	767ed720d4bd5cee21670b125b62c434258c532b 
 | 0 
							 | 
	@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 128,
    'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages
    =7, num_warps=4)], key=['M', 'N', 'K'])
@triton.jit
def matmul_kernel(a_ptr, b_ptr, z_ptr, M, N, K, stride_am, stride_ak,
    stride_bk, stride_bn, stride_zm, stride_zn, BLOCK_SIZE_M: tl.constexpr,
    BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M:
    tl.constexpr, A_ORDER_0: tl.constexpr, A_ORDER_1: tl.constexpr,
    B_ORDER_0: tl.constexpr, B_ORDER_1: tl.constexpr):
    pid = tl.program_id(axis=0)
    num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
    num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
    num_pid_in_group = GROUP_SIZE_M * num_pid_n
    group_id = pid // num_pid_in_group
    first_pid_m = group_id * GROUP_SIZE_M
    group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
    pid_m = first_pid_m + pid % group_size_m
    pid_n = pid % num_pid_in_group // group_size_m
    block_offset_m = pid_m * BLOCK_SIZE_M
    block_offset_n = pid_n * BLOCK_SIZE_N
    a_tile_ptr = tl.make_block_ptr(base=a_ptr, shape=(M, K), strides=(
        stride_am, stride_ak), offsets=(block_offset_m, 0), block_shape=(
        BLOCK_SIZE_M, BLOCK_SIZE_K), order=(A_ORDER_0, A_ORDER_1))
    b_tile_ptr = tl.make_block_ptr(base=b_ptr, shape=(K, N), strides=(
        stride_bk, stride_bn), offsets=(0, block_offset_n), block_shape=(
        BLOCK_SIZE_K, BLOCK_SIZE_N), order=(B_ORDER_0, B_ORDER_1))
    z = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    offs_m = block_offset_m + tl.arange(0, BLOCK_SIZE_M)
    offs_n = block_offset_n + tl.arange(0, BLOCK_SIZE_N)
    z_ptrs = z_ptr + offs_m[:, None] * stride_zm + offs_n[None, :] * stride_zn
    mask = (offs_m < M)[:, None] & (offs_n < N)[None, :]
    for k in range(0, K, BLOCK_SIZE_K):
        a = tl.load(a_tile_ptr)
        b = tl.load(b_tile_ptr)
        z += tl.dot(a, b)
        a_tile_ptr = tl.advance(a_tile_ptr, [0, BLOCK_SIZE_K])
        b_tile_ptr = tl.advance(b_tile_ptr, [BLOCK_SIZE_K, 0])
    z = z.to(tl.float16)
    tl.store(z_ptrs, z, mask=mask)
 
 | 
	{
  "Data Type": [
    "fp16"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "High Throughput"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/hgl71964/SIP/blob/767ed720d4bd5cee21670b125b62c434258c532b/benchmarks/09-experimental-tma-matrix-multiplication.py 
 | 
					
	6901e5d7-7826-4fb5-b04f-6731b4bdf651 
 | 
	lstm_bw.py 
 | 
	NX-AI/flashrnn 
 | 
	flashrnn/flashrnn/triton_fused/lstm_bw.py 
 | 
	3fca666a81c8740af4878d7bc5e2a51900e4fe14 
 | 0 
							 | 
	@triton.jit
def _backward_sequence_kernel(delta_states_all_outside,
    delta_states_last_outside, R, states_all, gates_all,
    delta_states_initial, delta_Wx, delta_R, delta_b, T: tl.constexpr, NS:
    tl.constexpr, B: tl.constexpr, NH: tl.constexpr, DH: tl.constexpr, NGI:
    tl.constexpr, NGR: tl.constexpr, siz_B: tl.constexpr, DTYPE: tl.
    constexpr=tl.float32, backward_recurrent_clip_val: tl.constexpr=-1.0):
    idx_b_NH, idx_b_B = tl.program_id(0), tl.program_id(1)
    str_matR_B = NH * NGR * DH * DH
    str_matR_NH = NGR * DH * DH
    str_matR_NGR = DH * DH
    str_matStatesAll_NH = (T + 1) * NS * B * DH
    str_matStatesAll_T = NS * B * DH
    str_matGatesAll_NH = T * NGI * B * DH
    str_matGatesAll_T = NGI * B * DH
    str_delta_states_all_outside_NH = T * NS * B * DH
    str_delta_states_all_outside_T = NS * B * DH
    str_matDeltaWx_NH = T * NGI * B * DH
    str_matDeltaWx_T = NGI * B * DH
    matDeltaHtrans_last_ptr = tl.make_block_ptr(base=
        delta_states_last_outside + idx_b_NH * NS * B * DH + 0 * B * DH,
        shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0),
        block_shape=(siz_B, DH), order=(0, 1))
    matDeltaH_tplus1 = tl.load(matDeltaHtrans_last_ptr).to(tl.float32)
    matDeltaCtrans_last_ptr = tl.make_block_ptr(base=
        delta_states_last_outside + idx_b_NH * NS * B * DH + 1 * B * DH,
        shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0),
        block_shape=(siz_B, DH), order=(0, 1))
    matDeltaC_tplus1 = tl.load(matDeltaCtrans_last_ptr).to(tl.float32)
    matR_i_ptr = tl.make_block_ptr(base=R + idx_b_NH * str_matR_NH + 0 *
        str_matR_NGR, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0),
        block_shape=(DH, DH), order=(0, 1))
    matR_i = tl.load(matR_i_ptr)
    matR_f_ptr = tl.make_block_ptr(base=R + idx_b_NH * str_matR_NH + 1 *
        str_matR_NGR, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0),
        block_shape=(DH, DH), order=(0, 1))
    matR_f = tl.load(matR_f_ptr)
    matR_z_ptr = tl.make_block_ptr(base=R + idx_b_NH * str_matR_NH + 2 *
        str_matR_NGR, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0),
        block_shape=(DH, DH), order=(0, 1))
    matR_z = tl.load(matR_z_ptr)
    matR_o_ptr = tl.make_block_ptr(base=R + idx_b_NH * str_matR_NH + 3 *
        str_matR_NGR, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0),
        block_shape=(DH, DH), order=(0, 1))
    matR_o = tl.load(matR_o_ptr)
    matDeltaR_i = tl.zeros((DH, DH), dtype=tl.float32)
    matDeltaR_f = tl.zeros((DH, DH), dtype=tl.float32)
    matDeltaR_z = tl.zeros((DH, DH), dtype=tl.float32)
    matDeltaR_o = tl.zeros((DH, DH), dtype=tl.float32)
    vecDeltaB_i = tl.zeros((DH,), dtype=tl.float32)
    vecDeltaB_f = tl.zeros((DH,), dtype=tl.float32)
    vecDeltaB_z = tl.zeros((DH,), dtype=tl.float32)
    vecDeltaB_o = tl.zeros((DH,), dtype=tl.float32)
    for idx_t in range(T - 1, -1, -1):
        matG_i_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH *
            str_matGatesAll_NH + idx_t * str_matGatesAll_T + 0 * B * DH,
            shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0),
            block_shape=(siz_B, DH), order=(0, 1))
        matG_i = tl.load(matG_i_ptr)
        matG_f_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH *
            str_matGatesAll_NH + idx_t * str_matGatesAll_T + 1 * B * DH,
            shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0),
            block_shape=(siz_B, DH), order=(0, 1))
        matG_f = tl.load(matG_f_ptr)
        matG_z_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH *
            str_matGatesAll_NH + idx_t * str_matGatesAll_T + 2 * B * DH,
            shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0),
            block_shape=(siz_B, DH), order=(0, 1))
        matG_z = tl.load(matG_z_ptr)
        matG_o_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH *
            str_matGatesAll_NH + idx_t * str_matGatesAll_T + 3 * B * DH,
            shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0),
            block_shape=(siz_B, DH), order=(0, 1))
        matG_o = tl.load(matG_o_ptr)
        matC_t_ptr = tl.make_block_ptr(base=states_all + idx_b_NH *
            str_matStatesAll_NH + (idx_t + 1) * str_matStatesAll_T + 1 * B *
            DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0
            ), block_shape=(siz_B, DH), order=(0, 1))
        matC_t = tl.load(matC_t_ptr)
        matC_tminus1_ptr = tl.make_block_ptr(base=states_all + idx_b_NH *
            str_matStatesAll_NH + idx_t * str_matStatesAll_T + 1 * B * DH,
            shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0),
            block_shape=(siz_B, DH), order=(0, 1))
        matC_tminus1 = tl.load(matC_tminus1_ptr)
        matH_tminus1_ptr = tl.make_block_ptr(base=states_all + idx_b_NH *
            str_matStatesAll_NH + idx_t * str_matStatesAll_T + 0 * B * DH,
            shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0),
            block_shape=(siz_B, DH), order=(0, 1))
        matH_tminus1 = tl.load(matH_tminus1_ptr)
        matDeltaCtrans_out_t_ptr = tl.make_block_ptr(base=
            delta_states_all_outside + idx_b_NH *
            str_delta_states_all_outside_NH + idx_t *
            str_delta_states_all_outside_T + 1 * B * DH, shape=(B, DH),
            strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(
            siz_B, DH), order=(0, 1))
        matDeltaCtrans_out_t = tl.load(matDeltaCtrans_out_t_ptr)
        matDeltaHtrans_out_t_ptr = tl.make_block_ptr(base=
            delta_states_all_outside + idx_b_NH *
            str_delta_states_all_outside_NH + idx_t *
            str_delta_states_all_outside_T + 0 * B * DH, shape=(B, DH),
            strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(
            siz_B, DH), order=(0, 1))
        matDeltaHtrans_out_t = tl.load(matDeltaHtrans_out_t_ptr)
        matDeltaH_t = matDeltaHtrans_out_t + matDeltaH_tplus1
        matDeltaC_t = matDeltaCtrans_out_t + matDeltaC_tplus1
        matCtrans_t_tanh = triton_tanh(matC_t)
        matDeltaC_t = matDeltaC_t + matDeltaH_t * matG_o * (1 - 
            matCtrans_t_tanh * matCtrans_t_tanh)
        matDeltaGI = matDeltaC_t * matG_z * (1 - matG_i) * matG_i
        matDeltaGF = matDeltaC_t * matC_tminus1 * (1 - matG_f) * matG_f
        matDeltaGZ = matDeltaC_t * matG_i * (1 - matG_z * matG_z)
        matDeltaGO = matDeltaH_t * matCtrans_t_tanh * (1 - matG_o) * matG_o
        matDeltaC_tminus1 = matDeltaC_t * matG_f
        matDeltaH_tminus1 = tl.dot(matDeltaGI.to(DTYPE), matR_i)
        matDeltaH_tminus1 += tl.dot(matDeltaGF.to(DTYPE), matR_f)
        matDeltaH_tminus1 += tl.dot(matDeltaGZ.to(DTYPE), matR_z)
        matDeltaH_tminus1 += tl.dot(matDeltaGO.to(DTYPE), matR_o)
        matDeltaR_i += tl.dot(tl.trans(matDeltaGI.to(DTYPE)), matH_tminus1)
        matDeltaR_f += tl.dot(tl.trans(matDeltaGF.to(DTYPE)), matH_tminus1)
        matDeltaR_z += tl.dot(tl.trans(matDeltaGZ.to(DTYPE)), matH_tminus1)
        matDeltaR_o += tl.dot(tl.trans(matDeltaGO.to(DTYPE)), matH_tminus1)
        vecDeltaB_i += tl.sum(matDeltaGI, axis=0)
        vecDeltaB_f += tl.sum(matDeltaGF, axis=0)
        vecDeltaB_z += tl.sum(matDeltaGZ, axis=0)
        vecDeltaB_o += tl.sum(matDeltaGO, axis=0)
        matDeltaGI_ptr = tl.make_block_ptr(base=delta_Wx + idx_b_NH *
            str_matDeltaWx_NH + idx_t * str_matDeltaWx_T + 0 * B * DH,
            shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0),
            block_shape=(siz_B, DH), order=(0, 1))
        tl.store(matDeltaGI_ptr, matDeltaGI.to(DTYPE))
        matDeltaGF_ptr = tl.make_block_ptr(base=delta_Wx + idx_b_NH *
            str_matDeltaWx_NH + idx_t * str_matDeltaWx_T + 1 * B * DH,
            shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0),
            block_shape=(siz_B, DH), order=(0, 1))
        tl.store(matDeltaGF_ptr, matDeltaGF.to(DTYPE))
        matDeltaGZ_ptr = tl.make_block_ptr(base=delta_Wx + idx_b_NH *
            str_matDeltaWx_NH + idx_t * str_matDeltaWx_T + 2 * B * DH,
            shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0),
            block_shape=(siz_B, DH), order=(0, 1))
        tl.store(matDeltaGZ_ptr, matDeltaGZ.to(DTYPE))
        matDeltaGO_ptr = tl.make_block_ptr(base=delta_Wx + idx_b_NH *
            str_matDeltaWx_NH + idx_t * str_matDeltaWx_T + 3 * B * DH,
            shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0),
            block_shape=(siz_B, DH), order=(0, 1))
        tl.store(matDeltaGO_ptr, matDeltaGO.to(DTYPE))
        matDeltaH_tplus1 = matDeltaH_tminus1
        matDeltaC_tplus1 = matDeltaC_tminus1
    matDeltaHtrans_initial_ptr = tl.make_block_ptr(base=
        delta_states_initial + idx_b_NH * NS * B * DH + 0 * B * DH, shape=(
        B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=
        (siz_B, DH), order=(0, 1))
    tl.store(matDeltaHtrans_initial_ptr, matDeltaH_tplus1.to(DTYPE))
    matDeltaCtrans_initial_ptr = tl.make_block_ptr(base=
        delta_states_initial + idx_b_NH * NS * B * DH + 1 * B * DH, shape=(
        B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=
        (siz_B, DH), order=(0, 1))
    tl.store(matDeltaCtrans_initial_ptr, matDeltaC_tplus1.to(DTYPE))
    matDeltaR_i_ptr = tl.make_block_ptr(base=delta_R + idx_b_B * str_matR_B +
        idx_b_NH * str_matR_NH + 0 * str_matR_NGR, shape=(DH, DH), strides=
        (DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1))
    tl.store(matDeltaR_i_ptr, matDeltaR_i.to(DTYPE))
    matDeltaR_f_ptr = tl.make_block_ptr(base=delta_R + idx_b_B * str_matR_B +
        idx_b_NH * str_matR_NH + 1 * str_matR_NGR, shape=(DH, DH), strides=
        (DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1))
    tl.store(matDeltaR_f_ptr, matDeltaR_f.to(DTYPE))
    matDeltaR_z_ptr = tl.make_block_ptr(base=delta_R + idx_b_B * str_matR_B +
        idx_b_NH * str_matR_NH + 2 * str_matR_NGR, shape=(DH, DH), strides=
        (DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1))
    tl.store(matDeltaR_z_ptr, matDeltaR_z.to(DTYPE))
    matDeltaR_o_ptr = tl.make_block_ptr(base=delta_R + idx_b_B * str_matR_B +
        idx_b_NH * str_matR_NH + 3 * str_matR_NGR, shape=(DH, DH), strides=
        (DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1))
    tl.store(matDeltaR_o_ptr, matDeltaR_o.to(DTYPE))
    vecDeltaB_i_ptr = (delta_b + idx_b_B * NH * NGI * DH + idx_b_NH * NGI *
        DH + 0 * DH + tl.arange(0, DH))
    tl.store(vecDeltaB_i_ptr, vecDeltaB_i.to(DTYPE))
    vecDeltaB_f_ptr = (delta_b + idx_b_B * NH * NGI * DH + idx_b_NH * NGI *
        DH + 1 * DH + tl.arange(0, DH))
    tl.store(vecDeltaB_f_ptr, vecDeltaB_f.to(DTYPE))
    vecDeltaB_z_ptr = (delta_b + idx_b_B * NH * NGI * DH + idx_b_NH * NGI *
        DH + 2 * DH + tl.arange(0, DH))
    tl.store(vecDeltaB_z_ptr, vecDeltaB_z.to(DTYPE))
    vecDeltaB_o_ptr = (delta_b + idx_b_B * NH * NGI * DH + idx_b_NH * NGI *
        DH + 3 * DH + tl.arange(0, DH))
    tl.store(vecDeltaB_o_ptr, vecDeltaB_o.to(DTYPE))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Recurrent Neural Networks",
    "Backpropagation"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "Memory-Bound"
  ]
} 
 | 
	[
  "MIT",
  "BSD"
]  | 
	https://github.com/NX-AI/flashrnn/blob/3fca666a81c8740af4878d7bc5e2a51900e4fe14/flashrnn/flashrnn/triton_fused/lstm_bw.py 
 | 
					
	67e19a21-a90d-4dc1-acd6-5034e67c1d5c 
 | 
	FleetAttention_triton.py 
 | 
	Computational-Machine-Intelligence/LeetDecoding 
 | 
	leetDecoding/methods/FleetAttention_triton.py 
 | 
	1b545c2f5bacc155255250d1f70ac9484744559a 
 | 0 
							 | 
	@triton.jit
def FleetAttention_kernel(B_ptr, C_ptr, V_ptr, ans_ptr, seqlen: tl.
    constexpr, dim: tl.constexpr, rank: tl.constexpr, stride_vbh: tl.
    constexpr, stride_bbh: tl.constexpr, dim_BLOCK: tl.constexpr):
    rank_idx = tl.program_id(axis=0)
    bz = tl.program_id(axis=1)
    dim_block_idx = tl.program_id(axis=2)
    off_b = tl.arange(0, 1)
    off_dim = tl.arange(0, dim_BLOCK)
    cv = tl.zeros([1, dim_BLOCK], dtype=tl.float32)
    o = tl.zeros([1, dim_BLOCK], dtype=tl.float32)
    for seq_idx in range(seqlen):
        offs_bc = bz * stride_bbh + seq_idx * rank + rank_idx + off_b[None, :]
        offs_v = (bz * stride_vbh + seq_idx * dim + dim_block_idx *
            dim_BLOCK + off_dim[None, :])
        ans_ptrs = (ans_ptr + bz * stride_vbh + seq_idx * dim + 
            dim_block_idx * dim_BLOCK + off_dim[None, :])
        v_ptrs = V_ptr + offs_v
        b_ptr = B_ptr + offs_bc
        c_ptr = C_ptr + offs_bc
        b = tl.load(b_ptr, mask=off_b[None, :] < 1, other=0)
        c = tl.load(c_ptr, mask=off_b[None, :] < 1, other=0)
        v = tl.load(v_ptrs, mask=off_dim[None, :] < dim, other=0)
        cv = c * v + cv
        o = b * cv
        ans = tl.load(ans_ptrs, mask=off_dim[None, :] < dim, other=0)
        tl.store(ans_ptrs, ans + o, mask=off_dim[None, :] < dim)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound",
    "High Throughput"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/Computational-Machine-Intelligence/LeetDecoding/blob/1b545c2f5bacc155255250d1f70ac9484744559a/leetDecoding/methods/FleetAttention_triton.py 
 | 
					
	1352a7a5-ebd7-4fa6-b706-8efe63475295 
 | 
	fwd_kernel.py 
 | 
	ROCm/aotriton 
 | 
	test/fwd_kernel.py 
 | 
	016f733e8ff746450e066f78bed68709ccd93e60 
 | 0 
							 | 
	@triton.jit
def attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m,
    seqlen_q, seqlen_k, dropout_p, philox_seed, batch_philox_offset,
    encoded_softmax_block_ptr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.
    constexpr, BLOCK_N: tl.constexpr, STAGE: tl.constexpr, offs_m: tl.
    constexpr, offs_n: tl.constexpr, pre_load_v: tl.constexpr,
    ENABLE_DROPOUT: tl.constexpr, RETURN_ENCODED_SOFTMAX: tl.constexpr):
    if STAGE == 1:
        lo, hi = 0, min(seqlen_k, start_m * BLOCK_M)
    elif STAGE == 2:
        lo, hi = start_m * BLOCK_M, min(seqlen_k, start_m * BLOCK_M + BLOCK_M)
        lo = tl.multiple_of(lo, BLOCK_M)
        K_block_ptr = tl.advance(K_block_ptr, (0, lo))
        V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
        if RETURN_ENCODED_SOFTMAX:
            encoded_softmax_block_ptr = tl.advance(encoded_softmax_block_ptr,
                (0, lo))
    else:
        lo, hi = 0, seqlen_k
    for start_n in range(lo, hi, BLOCK_N):
        if STAGE == 1 or STAGE == 3:
            start_n = tl.multiple_of(start_n, BLOCK_N)
        k = tl.load(K_block_ptr)
        if pre_load_v:
            v = tl.load(V_block_ptr)
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        if STAGE == 2:
            mask = offs_m[:, None] >= start_n + offs_n[None, :]
            qk = tl.where(mask, qk, float('-inf'))
        if BLOCK_M == 1:
            qk += tl.sum(tl.view(q, [BLOCK_DMODEL]) * tl.view(k, [
                BLOCK_DMODEL]))
        else:
            qk += tl.dot(q, k)
        m_ij = tl.maximum(m_i, tl.max(qk, 1))
        qk = qk - m_ij[:, None]
        p = tl.math.exp2(qk)
        l_ij = tl.sum(p, 1)
        if ENABLE_DROPOUT:
            philox_offset = (batch_philox_offset + start_m * BLOCK_M *
                seqlen_k + start_n)
            keep = dropout_mask(philox_seed, philox_offset, dropout_p,
                BLOCK_M, BLOCK_N, seqlen_k)
            if RETURN_ENCODED_SOFTMAX:
                tl.store(encoded_softmax_block_ptr, tl.where(keep, p, -p).
                    to(encoded_softmax_block_ptr.type.element_ty))
            p = tl.where(keep, p, 0.0)
        elif RETURN_ENCODED_SOFTMAX:
            tl.store(encoded_softmax_block_ptr, p.to(
                encoded_softmax_block_ptr.type.element_ty))
        alpha = tl.math.exp2(m_i - m_ij)
        acc = acc * alpha[:, None]
        if not pre_load_v:
            v = tl.load(V_block_ptr)
        """
        if ENABLE_DROPOUT:
            v = (v / (1.0 - dropout_p)).to(V_block_ptr.type.element_ty)
        """
        l_i = l_i * alpha + l_ij
        m_i = m_ij
        if BLOCK_M == 1:
            acc += tl.view(p.to(V_block_ptr.type.element_ty), [1]) * tl.view(v,
                [BLOCK_DMODEL])
        else:
            acc += tl.dot(p.to(V_block_ptr.type.element_ty), v)
        V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
        K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
        if RETURN_ENCODED_SOFTMAX:
            encoded_softmax_block_ptr = tl.advance(encoded_softmax_block_ptr,
                (0, BLOCK_N))
    return acc, l_i, m_i
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Softmax"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/test/fwd_kernel.py 
 | 
					
	1310b43a-9ced-4062-b861-4e7f7c35f090 
 | 
	cumsum.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/utils/cumsum.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BS': BS}, num_warps=num_warps) for
    BS in [16, 32, 64] for num_warps in [2, 4, 8]], key=['S', 'BT'])
@triton.jit
def chunk_local_cumsum_vector_kernel(s, o, offsets, indices, T: tl.
    constexpr, H: tl.constexpr, S: tl.constexpr, BT: tl.constexpr, BS: tl.
    constexpr, HEAD_FIRST: tl.constexpr, USE_OFFSETS: tl.constexpr):
    i_s, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    i_b, i_h = i_bh // H, i_bh % H
    if USE_OFFSETS:
        i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
            i_t * 2 + 1).to(tl.int32)
        bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
            i_n + 1).to(tl.int32)
        T = eos - bos
    else:
        bos, eos = i_b * T, i_b * T + T
    o_i = tl.arange(0, BT)
    m_s = tl.where(o_i[:, None] >= o_i[None, :], 1.0, 0.0)
    if HEAD_FIRST:
        p_s = tl.make_block_ptr(s + i_bh * T * S, (T, S), (S, 1), (i_t * BT,
            i_s * BS), (BT, BS), (1, 0))
        p_o = tl.make_block_ptr(o + i_bh * T * S, (T, S), (S, 1), (i_t * BT,
            i_s * BS), (BT, BS), (1, 0))
    else:
        p_s = tl.make_block_ptr(s + (bos * H + i_h) * S, (T, S), (H * S, 1),
            (i_t * BT, i_s * BS), (BT, BS), (1, 0))
        p_o = tl.make_block_ptr(o + (bos * H + i_h) * S, (T, S), (H * S, 1),
            (i_t * BT, i_s * BS), (BT, BS), (1, 0))
    b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32)
    b_o = tl.dot(m_s, b_s, allow_tf32=False)
    tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Blocked Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/cumsum.py 
 | 
					
	5f884ba7-afb8-4c7b-b7f8-8c0bdc99e57f 
 | 
	gemm_streamk_benchmark.py 
 | 
	intel/intel-xpu-backend-for-triton 
 | 
	benchmarks/triton_kernels_benchmark/gemm_streamk_benchmark.py 
 | 
	6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2 
 | 0 
							 | 
	@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 256,
    'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode':
    'large'}, num_stages=2, num_warps=32)], key=['M', 'N', 'K'])
@triton.jit
def first_wave(a_ptr, b_ptr, c_ptr, M: tl.constexpr, N: tl.constexpr, K: tl
    .constexpr, stride_am: tl.constexpr, stride_ak: tl.constexpr, stride_bk:
    tl.constexpr, stride_bn: tl.constexpr, stride_cm: tl.constexpr,
    stride_cn: tl.constexpr, full_tiles, partial_tiles, iters_per_tile,
    BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K:
    tl.constexpr, GROUP_SIZE_M: tl.constexpr):
    pid = tl.program_id(axis=0)
    start_iter = pid * full_tiles + tl.minimum(pid, partial_tiles)
    last_iter = (pid + 1) * full_tiles + tl.minimum(pid + 1, partial_tiles)
    while start_iter < last_iter:
        end_iter = start_iter + (iters_per_tile - start_iter % iters_per_tile)
        end_iter = tl.minimum(end_iter, last_iter)
        mac_loop(a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak,
            stride_bk, stride_bn, stride_cm, stride_cn, iters_per_tile,
            start_iter, end_iter, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K,
            GROUP_SIZE_M)
        start_iter = end_iter
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Blocked Access"
  ],
  "Parallelization Strategy": [
    "Persistent Kernels"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_streamk_benchmark.py 
 | 
					
	76e5f84e-91fd-40d6-b973-5c5374ec218d 
 | 
	triton_fused_attn.py 
 | 
	LouChao98/vqtree 
 | 
	ops/triton_fused_attn.py 
 | 
	27a53274df7a804bce27dffcce5f5be73f64b6f3 
 | 0 
							 | 
	@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args[
    'BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args[
    'BLOCK_N'] == 0})
@triton.jit
def _fwd_kernel(Q, K, V, Out, softmax_scale, stride_qb, stride_qh,
    stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh,
    stride_vn, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k,
    CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, IS_CAUSAL: tl.constexpr,
    BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr,
    BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
    start_m = tl.program_id(0)
    off_hb = tl.program_id(1)
    off_b = off_hb // nheads
    off_h = off_hb % nheads
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] *
        stride_qm + offs_d[None, :])
    k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] *
        stride_kn + offs_d[None, :])
    v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] *
        stride_vn + offs_d[None, :])
    lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF
    acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
    if EVEN_M:
        q = tl.load(q_ptrs)
    else:
        q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
    end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) *
        BLOCK_M, seqlen_k)
    for start_n in range(0, end_n, BLOCK_N):
        start_n = tl.multiple_of(start_n, BLOCK_N)
        if EVEN_N & EVEN_M:
            k = tl.load(k_ptrs + start_n * stride_kn)
        else:
            k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n +
                offs_n)[:, None] < seqlen_k, other=0.0)
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += tl.dot(q, tl.trans(k))
        if not EVEN_N:
            qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, NEGINF)
        if IS_CAUSAL:
            qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 
                0, NEGINF)
        m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
        p = tl.exp(qk * softmax_scale - m_ij[:, None])
        l_ij = tl.sum(p, 1)
        acc_o_scale = tl.exp(m_i - m_ij)
        acc_o = acc_o * acc_o_scale[:, None]
        if EVEN_N & EVEN_M:
            v = tl.load(v_ptrs + start_n * stride_vn)
        else:
            v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n +
                offs_n)[:, None] < seqlen_k, other=0.0)
        p = p.to(v.dtype)
        acc_o += tl.dot(p, v)
        m_i = m_ij
        l_i_new = tl.exp(lse_i - m_ij) + l_ij
        lse_i = m_ij + tl.log(l_i_new)
    o_scale = tl.exp(m_i - lse_i)
    acc_o = acc_o * o_scale[:, None]
    start_m = tl.program_id(0)
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
    tl.store(lse_ptrs, lse_i)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:,
        None] * stride_om + offs_d[None, :])
    if EVEN_M:
        tl.store(out_ptrs, acc_o)
    else:
        tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Softmax"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Blocked Access"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_attn.py 
 | 
					
	fbe7dd6a-e642-49e2-85ae-30c92f1c7dd6 
 | 
	gemm_preop_exp_benchmark.py 
 | 
	intel/intel-xpu-backend-for-triton 
 | 
	benchmarks/triton_kernels_benchmark/gemm_preop_exp_benchmark.py 
 | 
	6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2 
 | 0 
							 | 
	@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 256,
    'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode':
    'large'}, num_stages=2, num_warps=32), triton.Config({'BLOCK_SIZE_M': 
    256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4,
    'grf_mode': 'large'}, num_stages=3, num_warps=32), triton.Config({
    'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32,
    'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32),
    triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K':
    32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32
    ), triton.Config({'BLOCK_SIZE_M': 8, 'BLOCK_SIZE_N': 512,
    'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 1, 'grf_mode': 'large'}, num_stages
    =2, num_warps=32)], key=['M', 'N', 'K'])
@triton.jit
def matmul_kernel_with_block_pointers(a_ptr, b_ptr, c_ptr, M: tl.constexpr,
    N: tl.constexpr, K: tl.constexpr, stride_am: tl.constexpr, stride_ak:
    tl.constexpr, stride_bk: tl.constexpr, stride_bn: tl.constexpr,
    stride_cm: tl.constexpr, stride_cn: tl.constexpr, BLOCK_SIZE_M: tl.
    constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
    GROUP_SIZE_M: tl.constexpr):
    pid = tl.program_id(axis=0)
    num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
    num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
    num_pid_in_group = GROUP_SIZE_M * num_pid_n
    group_id = pid // num_pid_in_group
    first_pid_m = group_id * GROUP_SIZE_M
    group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
    pid_m = first_pid_m + pid % group_size_m
    pid_n = pid % num_pid_in_group // group_size_m
    a_block_ptr = tl.make_block_ptr(base=a_ptr, shape=(M, K), strides=(
        stride_am, stride_ak), offsets=(pid_m * BLOCK_SIZE_M, 0),
        block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_K), order=(1, 0))
    b_block_ptr = tl.make_block_ptr(base=b_ptr, shape=(K, N), strides=(
        stride_bk, stride_bn), offsets=(0, pid_n * BLOCK_SIZE_N),
        block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_N), order=(1, 0))
    accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for _ in range(0, K, BLOCK_SIZE_K):
        a = tl.load(a_block_ptr, boundary_check=(0, 1))
        a = a.to(tl.float32)
        a = tl.math.exp(a)
        a = a.to(tl.bfloat16)
        b = tl.load(b_block_ptr, boundary_check=(0, 1))
        accumulator += tl.dot(a, b)
        a_block_ptr = tl.advance(a_block_ptr, (0, BLOCK_SIZE_K))
        b_block_ptr = tl.advance(b_block_ptr, (BLOCK_SIZE_K, 0))
    c = accumulator.to(tl.float32)
    c_block_ptr = tl.make_block_ptr(base=c_ptr, shape=(M, N), strides=(
        stride_cm, stride_cn), offsets=(pid_m * BLOCK_SIZE_M, pid_n *
        BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_N), order=(1, 0))
    tl.store(c_block_ptr, c, boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "bf16"
  ],
  "Functionality": [
    "Matrix Multiplication"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Blocked Access",
    "Transposed Access"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_preop_exp_benchmark.py 
 | 
					
	8fbd1eee-ae83-4f46-9244-6b0b3bf3bee6 
 | 
	softmax_online_v1.py 
 | 
	iclementine/optimize_softmax 
 | 
	softmax_online_v1.py 
 | 
	6ddeee3481dd5e63f4a30b946c417e97bc4494bf 
 | 0 
							 | 
	@triton.jit
def softmax_kernel_online_v1(output_ptr, input_ptr, M, N, TILE_N: tl.constexpr
    ):
    pid_m = tl.program_id(0)
    m = tl.full((), value=-float('inf'), dtype=output_ptr.dtype.element_ty)
    z = tl.full((), value=0, dtype=output_ptr.dtype.element_ty)
    for start_n in range(0, N, TILE_N):
        n_offsets = start_n + tl.arange(0, TILE_N)
        offset = pid_m * N + n_offsets
        input_ptrs = input_ptr + offset
        mask = n_offsets < N
        inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr
            .dtype.element_ty)
        new_m = tl.maximum(m, tl.max(inp, 0))
        new_z = tl.exp(m - new_m) * z + tl.sum(tl.exp(inp - new_m), 0)
        m = new_m
        z = new_z
    for start_n in range(0, N, TILE_N):
        n_offsets = start_n + tl.arange(0, TILE_N)
        offset = pid_m * N + n_offsets
        input_ptrs = input_ptr + offset
        mask = n_offsets < N
        inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr
            .dtype.element_ty)
        e = tl.exp(inp - m)
        out = e / z
        output_ptrs = output_ptr + offset
        tl.store(output_ptrs, out, mask=mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Softmax"
  ],
  "Memory Access Pattern": [
    "Tiled"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "BSD"
]  | 
	https://github.com/iclementine/optimize_softmax/blob/6ddeee3481dd5e63f4a30b946c417e97bc4494bf/softmax_online_v1.py 
 | 
					
	1370ad45-ebfb-4938-8f50-14f7af621077 
 | 
	fused_recurrent.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/linear_attn/fused_recurrent.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.jit
def fused_recurrent_linear_attn_fwd_kernel(q, k, v, o, h0, ht, s_k_h, s_v_h,
    scale, B, H, T, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV:
    tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.
    constexpr):
    i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK)
    p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK)
    p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV)
    p_o = o + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV)
    mask_bk = i_k * BK + tl.arange(0, BK) < K
    mask_bv = i_v * BV + tl.arange(0, BV) < V
    mask_kv = mask_bk[None, :] & mask_bv[:, None]
    b_h = tl.zeros([BV, BK], dtype=tl.float32)
    if USE_INITIAL_STATE:
        p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]
            ) * V + (i_v * BV + tl.arange(0, BV)[:, None])
        b_h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32)
    for _ in range(0, T):
        b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
        b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
        b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
        b_h += b_k[None, :] * b_v[:, None]
        b_o = b_h * b_q[None, :]
        b_o = tl.sum(b_o, axis=1)
        tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_bv)
        p_q += K
        p_k += K
        p_o += V
        p_v += V
    if STORE_FINAL_STATE:
        p_ht = ht + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]
            ) * V + (i_v * BV + tl.arange(0, BV)[:, None])
        tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_kv)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Recurrent Neural Networks",
    "Attention Mechanisms"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Blocked Access"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/linear_attn/fused_recurrent.py 
 | 
					
	8bddc46d-3ecf-45eb-88d1-ea5dd55dfb8c 
 | 
	fp8_gemm.py 
 | 
	pytorch/FBGEMM 
 | 
	fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py 
 | 
	fe980ab54a6e28818d81c8694b6564e7f804418b 
 | 0 
							 | 
	@triton.jit
def _kernel_quantize_fp8_block(A, A_scale, A_fp8, scale_ub, M, K, stride_am,
    stride_ak, stride_om, stride_ok, stride_a_scale_m, stride_a_scale_k,
    TL_FP8_DTYPE: tl.constexpr, MAX_FP8: tl.constexpr, EPS: tl.constexpr,
    CLAMP_MAX: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_K: tl.constexpr
    ) ->None:
    """Quantize and scale each [BLOCK_M, BLOCK_K] block.
    Scale per block i, j is computed as 1 / (MAX_FP8 / max(abs(A[i:i+BLOCK_M, j:j+BLOCK_K])))
    Kernel naively iterates through  matrix with [BLOCK_M, BLOCK_K] tiles.
    Todo:
        * Better tiling and ordering schemes.
    Args:
        A (Tensor): [M, K] higher precision input tensor.
        A_scale (Tensor): [cdiv(M, BLOCK_M), cdiv(K, BLOCK_K)] reciprocal scale tensor per block.
        A_fp8 (Tensor): [M, K] fp8 scaled tensor. A_fp8 = A * a_scale
        scale_ub (Tensor): [1] Maximum allowed value for scale.
        M (int): Number of rows.
        K (int): Number of columns.
        stride_am (int): Stride of m dimension of A.
        stride_ak (int): Stride of k dimension of A.
        stride_om (int): Stride of m dimension of output.
        stride_ok (int): Stride of k dimension of output.
        stride_a_scale_m (int): Stride of m dimension of A_scale.
        stride_a_scale_k (int): Stride of k dimension of A_scale.
        TL_FP8_DTYPE (tl.dtype): Target fp8 datatype.
        MAX_FP8 (float): Maxmimum expressible value for FP8.
        EPS (float): Epsilon value for numerical stability.
        CLAMP_MAX (bool): Whether to apply scale_ub.
        BLOCK_M (int): Block size for M dimension of A_scale and kernel.
        BLOCK_K (int): Block size for K dimension of A_scale and kernel.
    """
    pid = tl.program_id(0)
    grid_k = tl.cdiv(K, BLOCK_K)
    block_m = pid // grid_k
    block_k = pid % grid_k
    rm = block_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rk = block_k * BLOCK_K + tl.arange(0, BLOCK_K)
    a_offset = rm[:, None] * stride_am + rk[None, :] * stride_ak
    out_offset = rm[:, None] * stride_om + rk[None, :] * stride_ok
    a_mask = (rm < M)[:, None] & (rk < K)[None, :]
    a_block = tl.load(A + a_offset, mask=a_mask, other=0.0)
    block_max = tl.max(tl.abs(a_block))
    if CLAMP_MAX:
        ub = tl.load(scale_ub)
        block_max = tl.clamp(block_max, EPS, ub)
    else:
        block_max = tl.maximum(block_max, EPS)
    scale = MAX_FP8 / block_max
    tl.store(A_scale + block_m * stride_a_scale_m + block_k *
        stride_a_scale_k, 1.0 / scale)
    a_fp8 = a_block * scale
    a_fp8 = tl.clamp(a_fp8, -MAX_FP8, MAX_FP8)
    a_fp8.to(TL_FP8_DTYPE)
    tl.store(A_fp8 + out_offset, a_fp8, mask=a_mask)
 
 | 
	{
  "Data Type": [
    "int8"
  ],
  "Functionality": [
    "Quantization"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Blocked Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Memory-Bound",
    "Compute Bound"
  ]
} 
 | 
	[
  "BSD",
  "MIT"
]  | 
	https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py 
 | 
					
	26a51175-e022-44f8-9ec3-2d92fe596611 
 | 
	parallel.py 
 | 
	sustcsonglin/flash-linear-attention 
 | 
	fla/ops/retention/parallel.py 
 | 
	5968de9a22c096326b19859cfe05dac36155c31d 
 | 0 
							 | 
	@triton.jit
def parallel_retention_bwd_kernel_dq(i_bh, i_t, i_k, i_v, i_h, k, v, do, dq,
    scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.
    constexpr, V: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, BK: tl.
    constexpr, BV: tl.constexpr):
    p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (0, i_k * BK),
        (BS, BK), (1, 0))
    p_v = tl.make_block_ptr(v + i_bh * T * V, (V, T), (1, V), (i_v * BV, 0),
        (BV, BS), (0, 1))
    p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (i_t * BT, 
        i_v * BV), (BT, BV), (1, 0))
    b_do = tl.load(p_do, boundary_check=(0, 1))
    b_dq = tl.zeros([BT, BK], dtype=tl.float32)
    b_b = tl.math.log2(1 - tl.math.exp2(-5 - i_h * 1.0))
    d_b = tl.math.exp2(b_b * BS)
    d_h = tl.math.exp2((BS - tl.arange(0, BS)) * b_b)
    for i in range(0, i_t * BT, BS):
        b_k = tl.load(p_k, boundary_check=(0, 1))
        b_v = tl.load(p_v, boundary_check=(0, 1))
        b_ds = tl.dot(b_do, b_v, allow_tf32=False) * d_h[None, :]
        if i != 0:
            b_dq *= d_b
        b_dq += tl.dot(b_ds.to(b_v.dtype), b_k, allow_tf32=False)
        p_k = tl.advance(p_k, (BS, 0))
        p_v = tl.advance(p_v, (0, BS))
    b_dq *= tl.math.exp2(tl.arange(0, BT) * b_b)[:, None] * scale
    o_q = tl.arange(0, BT)
    o_k = tl.arange(0, BS)
    p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, 
        i_k * BK), (BS, BK), (1, 0))
    p_v = tl.make_block_ptr(v + i_bh * T * V, (V, T), (1, V), (i_v * BV, 
        i_t * BT), (BV, BS), (0, 1))
    for _ in range(i_t * BT, (i_t + 1) * BT, BS):
        b_k = tl.load(p_k, boundary_check=(0, 1))
        b_v = tl.load(p_v, boundary_check=(0, 1))
        m_s = o_q[:, None] >= o_k[None, :]
        d_s = tl.where(m_s, tl.math.exp2((o_q[:, None] - o_k[None, :]) *
            b_b), 0)
        b_ds = tl.dot(b_do, b_v, allow_tf32=False) * d_s * scale
        b_dq += tl.dot(b_ds.to(b_k.dtype), b_k, allow_tf32=False)
        p_k = tl.advance(p_k, (BS, 0))
        p_v = tl.advance(p_v, (0, BS))
        o_k += BS
    p_dq = tl.make_block_ptr(dq + (i_bh + B * H * i_v) * T * K, (T, K), (K,
        1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
    tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation"
  ],
  "Memory Access Pattern": [
    "Coalesced",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Memory-Bound",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/retention/parallel.py 
 | 
					
	96564198-2f7d-486f-97bf-e992926034e9 
 | 
	paged_attn_v2.py 
 | 
	AlibabaPAI/FLASHNN 
 | 
	flashnn/triton_kernels/paged_attn_v2.py 
 | 
	528a9301587f5fb135b25d973a87ba0a40a703a7 
 | 0 
							 | 
	@triton.jit
def _single_query_cached_kv_attention_v2(exp_sums, max_logits, out, q,
    k_cache, v_cache, head_mapping, scale, block_tables, seq_lens,
    partiton_size, max_num_blocks_per_seq, alibi_slopes, stride_qm,
    stride_qn, stride_om, stride_on, stride_ok, stride_km, stride_kn,
    stride_kk, stride_exp_m, stride_exp_n, BLOCK_SIZE: tl.constexpr,
    HEAD_SIZE: tl.constexpr):
    seq_idx = tl.program_id(axis=1)
    par_idx = tl.program_id(axis=2)
    seq_len = tl.load(seq_lens + seq_idx)
    if par_idx * partiton_size >= seq_len:
        return
    num_context_blocks = tl.cdiv(seq_len, BLOCK_SIZE)
    num_blocks_per_par = partiton_size // BLOCK_SIZE
    start_block_idx = par_idx * num_blocks_per_par
    end_block_idx = tl.minimum(start_block_idx + num_blocks_per_par,
        num_context_blocks)
    head_idx = tl.program_id(axis=0)
    kv_head_idx = tl.load(head_mapping + head_idx)
    if alibi_slopes is None:
        alibi_slope = 0.0
    else:
        alibi_slope = tl.load(alibi_slopes + head_idx)
    block_offs = tl.arange(0, BLOCK_SIZE)
    head_size_offs = tl.arange(0, HEAD_SIZE)
    q = tl.load(q + seq_idx * stride_qm + head_idx * stride_qn + head_size_offs
        )
    q = (q * scale).to(tl.float16)
    qkv = tl.zeros([BLOCK_SIZE, HEAD_SIZE], dtype=tl.float32)
    qk_max = float('-inf')
    exp_sum = 0.0
    fp16_0 = tl.zeros([1, 1], dtype=k_cache.dtype.element_ty)
    base_offs_kv = kv_head_idx * stride_kn + block_offs[:, None
        ] * stride_kk + head_size_offs[None, :]
    for block_idx in range(start_block_idx, end_block_idx):
        physical_block_idx = tl.load(block_tables + seq_idx *
            max_num_blocks_per_seq + block_idx)
        mask = (block_offs[:, None] < seq_len - block_idx * BLOCK_SIZE) & (
            head_size_offs[None, :] < HEAD_SIZE)
        offs_kv = physical_block_idx * stride_km + base_offs_kv
        k = tl.load(k_cache + offs_kv, mask=mask, other=fp16_0)
        v = tl.load(v_cache + offs_kv, mask=mask, other=fp16_0)
        _qk = tl.sum((q[None, :] * k).to(tl.float32), axis=1)
        _qk += alibi_slope * (block_idx * BLOCK_SIZE + block_offs - seq_len + 1
            )
        _qk_max = tl.maximum(tl.max(_qk, axis=0), qk_max)
        qk = tl.where(block_offs[:, None] < seq_len - block_idx *
            BLOCK_SIZE, _qk[:, None], float('-inf'))
        _exp_sum = exp_sum * tl.exp(qk_max - _qk_max) + tl.sum(tl.exp(_qk -
            _qk_max), axis=0)
        qkv = qkv * (exp_sum * tl.exp(qk_max - _qk_max) / _exp_sum) + tl.exp(
            qk - _qk_max) / _exp_sum * v
        qk_max = _qk_max
        exp_sum = _exp_sum
    offs_exp = seq_idx * stride_exp_m + head_idx * stride_exp_n + par_idx
    tl.store(exp_sums + offs_exp, exp_sum)
    tl.store(max_logits + offs_exp, qk_max)
    offs_out = (seq_idx * stride_om + head_idx * stride_on + par_idx *
        stride_ok + head_size_offs)
    tl.store(out + offs_out, tl.sum(qkv, axis=0))
 
 | 
	{
  "Data Type": [
    "fp16"
  ],
  "Functionality": [
    "Attention Mechanisms"
  ],
  "Memory Access Pattern": [
    "Tiled",
    "Blocked Access"
  ],
  "Parallelization Strategy": [
    "Thread-Block Mappings"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/paged_attn_v2.py 
 | 
					
	b70199cf-0316-4688-b762-de62481ca266 
 | 
	bwd_split_kernel.py 
 | 
	ROCm/aotriton 
 | 
	test/bwd_split_kernel.py 
 | 
	016f733e8ff746450e066f78bed68709ccd93e60 
 | 0 
							 | 
	@triton.jit
def bwd_kernel_dq(Q, K, V, sm_scale, Out, DO, DQ, L, D, stride_qz,
    stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn,
    stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, seqlen_q,
    seqlen_k, dropout_p, philox_seed, philox_offset_base, BLOCK_M: tl.
    constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, CAUSAL:
    tl.constexpr, ENABLE_DROPOUT: tl.constexpr):
    start_m = tl.program_id(0) * BLOCK_M
    off_h = tl.program_id(1)
    off_z = tl.program_id(2)
    num_h = tl.num_programs(1)
    num_z = tl.num_programs(2)
    offs_m = start_m + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    q_offset = off_h * stride_qh + off_z * stride_qz
    Q_block_ptr = tl.make_block_ptr(base=Q + q_offset, shape=(seqlen_q,
        BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0))
    k_offset = off_h * stride_kh + off_z * stride_kz
    K_block_ptr = tl.make_block_ptr(base=K + k_offset, shape=(BLOCK_DMODEL,
        seqlen_k), strides=(stride_kk, stride_kn), offsets=(0, 0),
        block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1))
    v_offset = off_h * stride_vh + off_z * stride_vz
    V_block_ptr = tl.make_block_ptr(base=V + v_offset, shape=(BLOCK_DMODEL,
        seqlen_k), strides=(stride_vn, stride_vk), offsets=(0, 0),
        block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1))
    DO_block_ptr = tl.make_block_ptr(base=DO + q_offset, shape=(seqlen_q,
        BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0))
    off_zh = off_z * num_h + off_h * 1
    D_ptrs = D + off_zh * seqlen_q
    l_ptrs = L + off_zh * seqlen_q
    qk_scale = sm_scale * 1.44269504
    q = tl.load(Q_block_ptr)
    q = (q * qk_scale).to(Q_block_ptr.type.element_ty)
    do = tl.load(DO_block_ptr)
    Di = tl.load(D_ptrs + offs_m)
    l_i = tl.load(l_ptrs + offs_m)
    dq = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
    lo = 0
    hi = min(start_m + BLOCK_M, seqlen_k) if CAUSAL else seqlen_k
    batch_philox_offset = philox_offset_base + off_zh * seqlen_q * seqlen_k
    """
           K1   K2      (d)V      dO
    Q1    qk11 qk12     (d)v1     dO1
    Q2    qk21 qk22     (d)v2     dO2
    QK: (seqlen_q, seqlen_k)
    dO: (seqlen_q, hdim)
    dV: (seqlen_k, hdim)
    """
    for start_n in range(lo, hi, BLOCK_N):
        kt = tl.load(K_block_ptr)
        vt = tl.load(V_block_ptr)
        qk = dot(BLOCK_M, BLOCK_DMODEL, BLOCK_DMODEL, q, kt)
        if CAUSAL:
            qk = tl.where(offs_m[:, None] >= offs_n[None, :] + start_n, qk,
                float('-inf'))
        p = tl.math.exp2(qk - l_i[:, None])
        dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        dp += dot(BLOCK_M, BLOCK_DMODEL, BLOCK_DMODEL, do, vt)
        if ENABLE_DROPOUT:
            philox_offset = batch_philox_offset + start_m * seqlen_k + start_n
            keep = dropout_mask(philox_seed, philox_offset, dropout_p,
                BLOCK_M, BLOCK_N, seqlen_k)
            dp = tl.where(keep, dp / (1 - dropout_p), 0)
        ds = p * (dp - Di[:, None])
        if BLOCK_M == 1:
            dq += tl.view(kt, [BLOCK_DMODEL]) * ds.to(Q.type.element_ty)
        else:
            dq += tl.dot(ds.to(Q.type.element_ty), tl.trans(kt))
        K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
        V_block_ptr = tl.advance(V_block_ptr, (0, BLOCK_N))
    DQ_block_ptr = tl.make_block_ptr(base=DQ + q_offset, shape=(seqlen_q,
        BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0))
    tl.store(DQ_block_ptr, (dq * sm_scale).to(DQ_block_ptr.type.element_ty))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Attention Mechanisms",
    "Backpropagation",
    "Matrix Multiplication",
    "Softmax",
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Blocked Access",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/test/bwd_split_kernel.py 
 | 
					
	01fdb3bd-4c8f-4387-a609-7db94baec8e2 
 | 
	geglu.py 
 | 
	Kitsunetic/kitsu 
 | 
	kitsu/nn/geglu.py 
 | 
	826967a493c89753ac2cf1e28b52b79998fc9076 
 | 0 
							 | 
	@triton.jit
def cosh(x):
    return (tl.exp(x) + tl.exp(-x)) * 0.5
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Activation Functions",
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Coalesced",
    "Non-Tiled"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "Low Latency"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/Kitsunetic/kitsu/blob/826967a493c89753ac2cf1e28b52b79998fc9076/kitsu/nn/geglu.py 
 | 
					
	5abc2eaa-cbaa-4445-b0ea-d0fd89b0f5ac 
 | 
	chunk_fuse.py 
 | 
	elephantmipt/rebased_minimal 
 | 
	flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py 
 | 
	e7b945509972fab9f9c1c7be431abf7d6bf62c95 
 | 0 
							 | 
	@triton.jit
def chunk_abc_bwd_kernel_dq(k, rk, ck, dq, ds, s_qk_h, s_qk_t, s_qk_d,
    s_sk_h, s_sk_t, s_sk_m, T, BT: tl.constexpr, BK: tl.constexpr, BM: tl.
    constexpr, DK: tl.constexpr, DM: tl.constexpr, NT: tl.constexpr):
    i_k, i_m, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    n_bh = tl.num_programs(2)
    p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (
        0, i_k * BK), (BT, BK), (1, 0))
    p_rk = tl.make_block_ptr(rk + i_bh * s_sk_t * NT, (NT * DM,), (s_sk_m,),
        (i_m * BM,), (BM,), (0,))
    p_ck = tl.make_block_ptr(ck + i_bh * s_sk_h, (DM, T), (s_sk_m, s_sk_t),
        (i_m * BM, 0), (BM, BT), (0, 1))
    p_dq = tl.make_block_ptr(dq + (i_m * n_bh + i_bh) * s_qk_h, (T, DK), (
        s_qk_t, s_qk_d), (0, i_k * BK), (BT, BK), (1, 0))
    p_ds = tl.make_block_ptr(ds + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m),
        (0, i_m * BM), (BT, BM), (1, 0))
    o_i = tl.arange(0, BT)
    m_s = o_i[:, None] >= o_i[None, :]
    b_hk = tl.zeros([BM, BK], dtype=tl.float32)
    for _ in range(NT):
        b_k = tl.load(p_k, boundary_check=(0, 1))
        b_rk = tl.load(p_rk, boundary_check=(0,))
        b_ck = tl.load(p_ck, boundary_check=(0, 1))
        b_ds = tl.load(p_ds, boundary_check=(0, 1))
        b_inter = tl.dot((b_ds * b_rk[None, :]).to(b_k.dtype), b_hk.to(b_k.
            dtype), allow_tf32=False)
        b_intra = tl.dot(tl.where(m_s, tl.dot(b_ds, b_ck, allow_tf32=False),
            0).to(b_k.dtype), b_k, allow_tf32=False)
        b_dq = b_inter + b_intra
        b_hk = b_hk * b_rk[:, None] + tl.dot(b_ck, b_k, allow_tf32=False)
        tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
        p_k = tl.advance(p_k, (BT, 0))
        p_rk = tl.advance(p_rk, (DM,))
        p_ck = tl.advance(p_ck, (0, BT))
        p_dq = tl.advance(p_dq, (BT, 0))
        p_ds = tl.advance(p_ds, (BT, 0))
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Matrix Multiplication",
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Blocked Access",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "Apache"
]  | 
	https://github.com/elephantmipt/rebased_minimal/blob/e7b945509972fab9f9c1c7be431abf7d6bf62c95/flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py 
 | 
					
	4eae1f4c-27a6-472e-83b1-3c5bb1e82ddf 
 | 
	bwd_preprocess.py 
 | 
	ROCm/aotriton 
 | 
	test/bwd_preprocess.py 
 | 
	016f733e8ff746450e066f78bed68709ccd93e60 
 | 0 
							 | 
	@triton.jit
def bwd_preprocess(Out, DO, Delta, stride_oz, stride_oh, stride_om,
    stride_on, stride_doz, stride_doh, stride_dom, stride_don, seqlen_q,
    BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr):
    off_m = tl.program_id(0) * BLOCK_M
    off_h = tl.program_id(1)
    off_z = tl.program_id(2)
    num_h = tl.num_programs(1)
    o_offset = off_h * stride_oh + off_z * stride_oz
    O_block_ptr = tl.make_block_ptr(base=Out + o_offset, shape=(seqlen_q,
        D_HEAD), strides=(stride_om, stride_on), offsets=(off_m, 0),
        block_shape=(BLOCK_M, D_HEAD), order=(1, 0))
    do_offset = off_h * stride_doh + off_z * stride_doz
    DO_block_ptr = tl.make_block_ptr(base=DO + do_offset, shape=(seqlen_q,
        D_HEAD), strides=(stride_dom, stride_don), offsets=(off_m, 0),
        block_shape=(BLOCK_M, D_HEAD), order=(1, 0))
    o = tl.load(O_block_ptr).to(tl.float32)
    do = tl.load(DO_block_ptr).to(tl.float32)
    delta = tl.sum(o * do, axis=1)
    off_zh = off_z * num_h + off_h * 1
    tl.store(Delta + off_zh * seqlen_q + off_m + tl.arange(0, BLOCK_M), delta)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Backpropagation",
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Blocked Access",
    "Coalesced",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/test/bwd_preprocess.py 
 | 
					
	b3fcb89f-85fb-4bab-969a-d45fd9c5cb9e 
 | 
	ln_linear_triton.py 
 | 
	ethansmith2000/fused-layer-norm 
 | 
	ln_linear_triton.py 
 | 
	84fe243a829364acdcfd7cd70b699db04838af0f 
 | 0 
							 | 
	@triton.jit
def _layer_norm_fwd_fused(X_ptr, Y_ptr, W_ptr, B_ptr, Mean_ptr, RSTD_ptr,
    stride, n_cols, eps, BLOCK_SIZE: tl.constexpr):
    row_idx = tl.program_id(0)
    col_offsets = tl.arange(0, BLOCK_SIZE)
    mask = col_offsets < n_cols
    Y_ptr += row_idx * stride
    X_ptr += row_idx * stride
    Mean_ptr += row_idx
    RSTD_ptr += row_idx
    X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
    W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
    B_row = tl.load(B_ptr + col_offsets, mask=mask, other=0)
    mean = tl.sum(X_row, axis=0) / n_cols
    demeaned = X_row - mean
    var = tl.sum(demeaned * demeaned, axis=0) / n_cols
    rstd = rsqrt(var + eps)
    tl.store(Mean_ptr, mean)
    tl.store(RSTD_ptr, rstd)
    Y_row = tl.fma(demeaned * rstd, W_row, B_row)
    tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Normalization",
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Blocked Access",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/ethansmith2000/fused-layer-norm/blob/84fe243a829364acdcfd7cd70b699db04838af0f/ln_linear_triton.py 
 | 
					
	be6a1d21-b2db-4870-b6b3-b6ac680f6a72 
 | 
	mlstm_scan.py 
 | 
	LukasBluebaum/xLSTM-Triton-CUDA-Implementation 
 | 
	mlstm_scan.py 
 | 
	6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b 
 | 0 
							 | 
	@triton.jit
def mlstm_triton_scan(Q, K, V, F, I, O, F_REDUCED, C, N, M, H, NH: tl.
    constexpr, S: tl.constexpr, D: tl.constexpr, SB: tl.constexpr, VB: tl.
    constexpr):
    bh_id = tl.program_id(0)
    sb_id = tl.program_id(1)
    vb_id = tl.program_id(2)
    num_sequence_blocks = tl.num_programs(1)
    batch_id = bh_id // NH
    head_id = bh_id % NH
    v_range = tl.arange(0, VB) + vb_id * VB
    v_range_3d = v_range[None, :, None]
    k_range = tl.arange(0, VB)
    sb_range = tl.arange(0, SB)
    sb_range_2d = tl.arange(0, SB)[:, None]
    sb_range_3d = tl.arange(0, SB)[:, None, None]
    sb_range_offset = tl.arange(0, SB) + sb_id * SB
    sb_range_offset_2d = sb_range_offset[:, None]
    batch_offset_fi = batch_id * NH * S + head_id * S
    batch_offset_f_reduced = (batch_id * NH * num_sequence_blocks + head_id *
        num_sequence_blocks)
    batch_offset_qkv = batch_id * NH * S * D + head_id * S * D
    batch_offset_n = (batch_id * NH * num_sequence_blocks * D + head_id *
        num_sequence_blocks * D)
    batch_offset_c = (batch_id * NH * num_sequence_blocks * D * D + head_id *
        num_sequence_blocks * D * D)
    f = tl.load(F + batch_offset_fi + sb_range_offset, sb_range_offset < S)
    i = tl.load(I + batch_offset_fi + sb_range_offset, sb_range_offset < S)
    f_reduced_range = batch_offset_f_reduced + sb_range * 0 + sb_id - 1
    f_reduced_mask = (sb_range == 0) & (sb_id != 0)
    f_reduced = tl.load(F_REDUCED + f_reduced_range, f_reduced_mask, other=1.0)
    vo_range = batch_offset_qkv + sb_range_offset_2d * D + v_range[None, :]
    vo_mask = (sb_range_offset_2d < S) & (v_range[None, :] < D)
    v = tl.load(V + vo_range, vo_mask)
    normalizer = tl.zeros((SB,), dtype=tl.float32)
    h = tl.zeros((SB, VB), dtype=tl.float32)
    k_scale_factor = tl.sqrt(tl.full((1,), D, dtype=tl.float32))
    for j in tl.range(tl.cdiv(D, VB)):
        k_range_ = batch_offset_qkv + sb_range_offset_2d * D + k_range[None, :]
        k_mask = (sb_range_offset_2d < S) & (k_range[None, :] < D)
        k = tl.load(K + k_range_, k_mask) / k_scale_factor
        q = tl.load(Q + k_range_, k_mask)
        c_range = batch_offset_c + sb_range_3d + (sb_id - 1
            ) * D * D + v_range_3d * D + k_range[None, None, :]
        c_mask = (sb_range_3d == 0) & (v_range_3d < D) & (k_range[None,
            None, :] < D) & (sb_id != 0)
        c_reduced = tl.load(C + c_range, c_mask, other=0)
        vk = v[:, :, None] * k[:, None, :] * i[:, None, None]
        f_tmp, vk_tmp = scan_op(f_reduced[:, None, None], c_reduced, f[:,
            None, None], vk)
        f_tmp = tl.broadcast_to(f_tmp, (SB, VB, VB))
        _, c = tl.associative_scan((f_tmp, vk_tmp), 0, scan_op)
        h += tl.sum(c * q[:, None, :], -1)
        n_range = batch_offset_n + sb_range_2d + (sb_id - 1) * D + k_range[
            None, :]
        n_mask = (sb_range_2d == 0) & (k_range[None, :] < D) & (sb_id != 0)
        n = tl.load(N + n_range, n_mask, other=0.0)
        f_tmp, n_tmp = scan_op(f_reduced[:, None], n, f[:, None], k * i[:,
            None])
        _, n = tl.associative_scan((tl.broadcast_to(f_tmp, (SB, VB)), n_tmp
            ), 0, scan_op)
        normalizer += tl.sum(n * q, -1)
        k_range += VB
    m = tl.load(M + batch_offset_fi + sb_range_offset, sb_range_offset < S)
    o = tl.load(O + vo_range, vo_mask)
    normalizer = tl.maximum(tl.abs(normalizer), tl.exp(-m))[:, None] + 1e-06
    h = h / normalizer * silu(o)
    tl.store(H + vo_range, h, vo_mask)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Recurrent Neural Networks",
    "Attention Mechanisms",
    "Matrix Multiplication",
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Blocked Access",
    "Coalesced"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_scan.py 
 | 
					
	8e56e989-ac16-4909-9f0e-4ab0f6c13dae 
 | 
	math.py 
 | 
	BobMcDear/attorch 
 | 
	attorch/math.py 
 | 
	da06cb6236bb47195e33fe3986ed21c675ed94cc 
 | 0 
							 | 
	@triton.jit
def glu(input1, input2, param, act_func: tl.constexpr):
    """
    Applies the gated linear unit with an arbitrary activation function
    to the input.
    Args:
        input1: First half of input to gate.
            The first half must be of the same shape as the second half.
        input2: Second half of input to gate.
            The second half must be of the same shape as the first half.
        param: Parameter in the case of parameterized activation functions.
        act_func: Name of activation function to apply.
            Options are 'sigmoid', 'tanh', 'relu', 'gelu', 'silu',
            'relu6', 'hardsigmoid', 'hardswish', 'selu', 'mish', and 'leaky_relu'.
        param: Parameter in the case of parameterized activation functions.
    Args:
        Input transformed by the gated linear unit
        with an arbitrary activation function.
    """
    return input1 * apply_act_func(input2, None, None, None, param,
        act_func, False)
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Activation Functions",
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Coalesced",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "MIT"
]  | 
	https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py 
 | 
					
	fdd2e0b1-dd78-4f2b-8862-5b13f1fc1f97 
 | 
	k_layer_norm.py 
 | 
	cpuhrsch/torchfused 
 | 
	torchfused/triton/k_layer_norm.py 
 | 
	6c40ed160dcecbe7825f268f7c86bccd359e0ebf 
 | 0 
							 | 
	@triton.jit
def _affine(W, B, N, x, META):
    cols = tl.arange(0, META['BLOCK_SIZE_N'])
    w = tl.load(W + cols, mask=cols < N, other=1.0)
    zero = 0.0
    zero = zero.to(w.dtype)
    w = tl.where(cols < N, w, zero)
    b = tl.load(B + cols, mask=cols < N, other=0.0)
    b = tl.where(cols < N, b, zero)
    y = x * w + b
    return y
 
 | 
	{
  "Data Type": [
    "fp32"
  ],
  "Functionality": [
    "Elementwise Operations"
  ],
  "Memory Access Pattern": [
    "Coalesced",
    "Strided Access"
  ],
  "Parallelization Strategy": [
    "Grid-Stride Loops"
  ],
  "Performance Objective": [
    "High Throughput",
    "Compute Bound"
  ]
} 
 | 
	[
  "BSD"
]  | 
	https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_layer_norm.py 
 | 
					
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.