id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 59
127
|
---|---|---|
14c2a1c4ad3b-121 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.NLPCloud[source]#
Wrapper around NLPCloud large language models.
To use, you should have the nlpcloud python package installed, and the
environment variable NLPCLOUD_API_KEY set with your API key.
Example | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-122 | environment variable NLPCLOUD_API_KEY set with your API key.
Example
from langchain.llms import NLPCloud
nlpcloud = NLPCloud(model="gpt-neox-20b")
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field bad_words: List[str] = []#
List of tokens not allowed to be generated.
field do_sample: bool = True#
Whether to use sampling (True) or greedy decoding.
field early_stopping: bool = False#
Whether to stop beam search at num_beams sentences.
field length_no_input: bool = True#
Whether min_length and max_length should include the length of the input.
field length_penalty: float = 1.0#
Exponential penalty to the length.
field max_length: int = 256#
The maximum number of tokens to generate in the completion.
field min_length: int = 1#
The minimum number of tokens to generate in the completion.
field model_name: str = 'finetuned-gpt-neox-20b'#
Model name to use.
field num_beams: int = 1#
Number of beams for beam search.
field num_return_sequences: int = 1#
How many completions to generate for each prompt.
field remove_end_sequence: bool = True#
Whether or not to remove the end sequence token.
field remove_input: bool = True#
Remove input text from API response
field repetition_penalty: float = 1.0#
Penalizes repeated tokens. 1.0 means no penalty.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field temperature: float = 0.7#
What sampling temperature to use.
field top_k: int = 50# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-123 | What sampling temperature to use.
field top_k: int = 50#
The number of highest probability tokens to keep for top-k filtering.
field top_p: int = 1#
Total probability mass of tokens to consider at each step.
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-124 | Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-125 | get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]#
Get the token present in the text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-126 | property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.OpenAI[source]#
Wrapper around OpenAI large language models.
To use, you should have the openai python package installed, and the
environment variable OPENAI_API_KEY set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example
from langchain.llms import OpenAI
openai = OpenAI(model_name="text-davinci-003")
Validators
build_extra » all fields
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field allowed_special: Union[Literal['all'], AbstractSet[str]] = {}#
Set of special tokens that are allowed。
field batch_size: int = 20#
Batch size to use when passing multiple documents to generate.
field best_of: int = 1#
Generates best_of completions server-side and returns the “best”.
field disallowed_special: Union[Literal['all'], Collection[str]] = 'all'#
Set of special tokens that are not allowed。
field frequency_penalty: float = 0#
Penalizes repeated tokens according to frequency. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-127 | field frequency_penalty: float = 0#
Penalizes repeated tokens according to frequency.
field logit_bias: Optional[Dict[str, float]] [Optional]#
Adjust the probability of specific tokens being generated.
field max_retries: int = 6#
Maximum number of retries to make when generating.
field max_tokens: int = 256#
The maximum number of tokens to generate in the completion.
-1 returns as many tokens as possible given the prompt and
the models maximal context size.
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not explicitly specified.
field model_name: str = 'text-davinci-003' (alias 'model')#
Model name to use.
field n: int = 1#
How many completions to generate for each prompt.
field presence_penalty: float = 0#
Penalizes repeated tokens.
field request_timeout: Optional[Union[float, Tuple[float, float]]] = None#
Timeout for requests to OpenAI completion API. Default is 600 seconds.
field streaming: bool = False#
Whether to stream the results or not.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field temperature: float = 0.7#
What sampling temperature to use.
field top_p: float = 1#
Total probability mass of tokens to consider at each step.
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-128 | Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-129 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
create_llm_result(choices: Any, prompts: List[str], token_usage: Dict[str, int]) → langchain.schema.LLMResult#
Create the LLMResult from the choices and prompts.
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_sub_prompts(params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) → List[List[str]]# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-130 | Get the sub prompts for llm call.
get_token_ids(text: str) → List[int]#
Get the token IDs using the tiktoken package.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
max_tokens_for_prompt(prompt: str) → int#
Calculate the maximum number of tokens possible to generate for a prompt.
Parameters
prompt – The prompt to pass into the model.
Returns
The maximum number of tokens to generate for a prompt.
Example
max_tokens = openai.max_token_for_prompt("Tell me a joke.")
modelname_to_contextsize(modelname: str) → int#
Calculate the maximum number of tokens possible to generate for a model.
Parameters
modelname – The modelname we want to know the context size for.
Returns
The maximum context size
Example
max_tokens = openai.modelname_to_contextsize("text-davinci-003")
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-131 | Predict message from messages.
prep_streaming_params(stop: Optional[List[str]] = None) → Dict[str, Any]#
Prepare the params for streaming.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
stream(prompt: str, stop: Optional[List[str]] = None) → Generator#
Call OpenAI with streaming flag and return the resulting generator.
BETA: this is a beta feature while we figure out the right abstraction.
Once that happens, this interface could change.
Parameters
prompt – The prompts to pass into the model.
stop – Optional list of stop words to use when generating.
Returns
A generator representing the stream of tokens from OpenAI.
Example
generator = openai.stream("Tell me a joke.")
for token in generator:
yield token
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.OpenAIChat[source]# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-132 | pydantic model langchain.llms.OpenAIChat[source]#
Wrapper around OpenAI Chat large language models.
To use, you should have the openai python package installed, and the
environment variable OPENAI_API_KEY set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example
from langchain.llms import OpenAIChat
openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
Validators
build_extra » all fields
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field allowed_special: Union[Literal['all'], AbstractSet[str]] = {}#
Set of special tokens that are allowed。
field disallowed_special: Union[Literal['all'], Collection[str]] = 'all'#
Set of special tokens that are not allowed。
field max_retries: int = 6#
Maximum number of retries to make when generating.
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not explicitly specified.
field model_name: str = 'gpt-3.5-turbo'#
Model name to use.
field prefix_messages: List [Optional]#
Series of messages for Chat input.
field streaming: bool = False#
Whether to stream the results or not.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-133 | Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-134 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int][source]#
Get the token IDs using the tiktoken package. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-135 | Get the token IDs using the tiktoken package.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”] | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-136 | eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.OpenLM[source]#
Validators
build_extra » all fields
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field allowed_special: Union[Literal['all'], AbstractSet[str]] = {}#
Set of special tokens that are allowed。
field batch_size: int = 20#
Batch size to use when passing multiple documents to generate.
field best_of: int = 1#
Generates best_of completions server-side and returns the “best”.
field disallowed_special: Union[Literal['all'], Collection[str]] = 'all'#
Set of special tokens that are not allowed。
field frequency_penalty: float = 0#
Penalizes repeated tokens according to frequency.
field logit_bias: Optional[Dict[str, float]] [Optional]#
Adjust the probability of specific tokens being generated.
field max_retries: int = 6#
Maximum number of retries to make when generating.
field max_tokens: int = 256#
The maximum number of tokens to generate in the completion.
-1 returns as many tokens as possible given the prompt and
the models maximal context size.
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not explicitly specified.
field model_name: str = 'text-davinci-003' (alias 'model')#
Model name to use.
field n: int = 1# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-137 | Model name to use.
field n: int = 1#
How many completions to generate for each prompt.
field presence_penalty: float = 0#
Penalizes repeated tokens.
field request_timeout: Optional[Union[float, Tuple[float, float]]] = None#
Timeout for requests to OpenAI completion API. Default is 600 seconds.
field streaming: bool = False#
Whether to stream the results or not.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field temperature: float = 0.7#
What sampling temperature to use.
field top_p: float = 1#
Total probability mass of tokens to consider at each step.
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-138 | Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
create_llm_result(choices: Any, prompts: List[str], token_usage: Dict[str, int]) → langchain.schema.LLMResult#
Create the LLMResult from the choices and prompts.
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-139 | dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_sub_prompts(params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) → List[List[str]]#
Get the sub prompts for llm call.
get_token_ids(text: str) → List[int]#
Get the token IDs using the tiktoken package. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-140 | Get the token IDs using the tiktoken package.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
max_tokens_for_prompt(prompt: str) → int#
Calculate the maximum number of tokens possible to generate for a prompt.
Parameters
prompt – The prompt to pass into the model.
Returns
The maximum number of tokens to generate for a prompt.
Example
max_tokens = openai.max_token_for_prompt("Tell me a joke.")
modelname_to_contextsize(modelname: str) → int#
Calculate the maximum number of tokens possible to generate for a model.
Parameters
modelname – The modelname we want to know the context size for.
Returns
The maximum context size
Example
max_tokens = openai.modelname_to_contextsize("text-davinci-003")
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
prep_streaming_params(stop: Optional[List[str]] = None) → Dict[str, Any]# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-141 | Prepare the params for streaming.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
stream(prompt: str, stop: Optional[List[str]] = None) → Generator#
Call OpenAI with streaming flag and return the resulting generator.
BETA: this is a beta feature while we figure out the right abstraction.
Once that happens, this interface could change.
Parameters
prompt – The prompts to pass into the model.
stop – Optional list of stop words to use when generating.
Returns
A generator representing the stream of tokens from OpenAI.
Example
generator = openai.stream("Tell me a joke.")
for token in generator:
yield token
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.Petals[source]#
Wrapper around Petals Bloom models.
To use, you should have the petals python package installed, and the | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-142 | To use, you should have the petals python package installed, and the
environment variable HUGGINGFACE_API_KEY set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example
from langchain.llms import petals
petals = Petals()
Validators
build_extra » all fields
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field client: Any = None#
The client to use for the API calls.
field do_sample: bool = True#
Whether or not to use sampling; use greedy decoding otherwise.
field max_length: Optional[int] = None#
The maximum length of the sequence to be generated.
field max_new_tokens: int = 256#
The maximum number of new tokens to generate in the completion.
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call
not explicitly specified.
field model_name: str = 'bigscience/bloom-petals'#
The model to use.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field temperature: float = 0.7#
What sampling temperature to use
field tokenizer: Any = None#
The tokenizer to use for the API calls.
field top_k: Optional[int] = None#
The number of highest probability vocabulary tokens
to keep for top-k-filtering.
field top_p: float = 0.9#
The cumulative probability for top-p sampling.
field verbose: bool [Optional]#
Whether to print out response text. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-143 | field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-144 | Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-145 | get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]#
Get the token present in the text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-146 | serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.PipelineAI[source]#
Wrapper around PipelineAI large language models.
To use, you should have the pipeline-ai python package installed,
and the environment variable PIPELINE_API_KEY set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example
from langchain import PipelineAI
pipeline = PipelineAI(pipeline_key="")
Validators
build_extra » all fields
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field pipeline_key: str = ''#
The id or tag of the target pipeline
field pipeline_kwargs: Dict[str, Any] [Optional]#
Holds any pipeline parameters valid for create call not
explicitly specified.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-147 | Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-148 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]#
Get the token present in the text. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-149 | Get the token present in the text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”] | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-150 | eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.PredictionGuard[source]#
Wrapper around Prediction Guard large language models.
To use, you should have the predictionguard python package installed, and the
environment variable PREDICTIONGUARD_TOKEN set with your access token, or pass
it as a named parameter to the constructor. To use Prediction Guard’s API along
with OpenAI models, set the environment variable OPENAI_API_KEY with your
OpenAI API key as well.
Example
pgllm = PredictionGuard(model="MPT-7B-Instruct",
token="my-access-token",
output={
"type": "boolean"
})
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field max_tokens: int = 256#
Denotes the number of tokens to predict per generation.
field model: Optional[str] = 'MPT-7B-Instruct'#
Model name to use.
field output: Optional[Dict[str, Any]] = None#
The output type or structure for controlling the LLM output.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field temperature: float = 0.75#
A non-negative float that tunes the degree of randomness in generation.
field token: Optional[str] = None#
Your Prediction Guard access token.
field verbose: bool [Optional]#
Whether to print out response text. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-151 | field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-152 | Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-153 | get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]#
Get the token present in the text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-154 | serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.PromptLayerOpenAI[source]#
Wrapper around OpenAI large language models.
To use, you should have the openai and promptlayer python
package installed, and the environment variable OPENAI_API_KEY
and PROMPTLAYER_API_KEY set with your openAI API key and
promptlayer key respectively.
All parameters that can be passed to the OpenAI LLM can also
be passed here. The PromptLayerOpenAI LLM adds two optional
Parameters
pl_tags – List of strings to tag the request with.
return_pl_id – If True, the PromptLayer request ID will be
returned in the generation_info field of the
Generation object.
Example
from langchain.llms import PromptLayerOpenAI
openai = PromptLayerOpenAI(model_name="text-davinci-003")
Validators
build_extra » all fields
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-155 | Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-156 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
create_llm_result(choices: Any, prompts: List[str], token_usage: Dict[str, int]) → langchain.schema.LLMResult#
Create the LLMResult from the choices and prompts.
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_sub_prompts(params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) → List[List[str]]# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-157 | Get the sub prompts for llm call.
get_token_ids(text: str) → List[int]#
Get the token IDs using the tiktoken package.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
max_tokens_for_prompt(prompt: str) → int#
Calculate the maximum number of tokens possible to generate for a prompt.
Parameters
prompt – The prompt to pass into the model.
Returns
The maximum number of tokens to generate for a prompt.
Example
max_tokens = openai.max_token_for_prompt("Tell me a joke.")
modelname_to_contextsize(modelname: str) → int#
Calculate the maximum number of tokens possible to generate for a model.
Parameters
modelname – The modelname we want to know the context size for.
Returns
The maximum context size
Example
max_tokens = openai.modelname_to_contextsize("text-davinci-003")
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-158 | Predict message from messages.
prep_streaming_params(stop: Optional[List[str]] = None) → Dict[str, Any]#
Prepare the params for streaming.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
stream(prompt: str, stop: Optional[List[str]] = None) → Generator#
Call OpenAI with streaming flag and return the resulting generator.
BETA: this is a beta feature while we figure out the right abstraction.
Once that happens, this interface could change.
Parameters
prompt – The prompts to pass into the model.
stop – Optional list of stop words to use when generating.
Returns
A generator representing the stream of tokens from OpenAI.
Example
generator = openai.stream("Tell me a joke.")
for token in generator:
yield token
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.PromptLayerOpenAIChat[source]# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-159 | pydantic model langchain.llms.PromptLayerOpenAIChat[source]#
Wrapper around OpenAI large language models.
To use, you should have the openai and promptlayer python
package installed, and the environment variable OPENAI_API_KEY
and PROMPTLAYER_API_KEY set with your openAI API key and
promptlayer key respectively.
All parameters that can be passed to the OpenAIChat LLM can also
be passed here. The PromptLayerOpenAIChat adds two optional
Parameters
pl_tags – List of strings to tag the request with.
return_pl_id – If True, the PromptLayer request ID will be
returned in the generation_info field of the
Generation object.
Example
from langchain.llms import PromptLayerOpenAIChat
openaichat = PromptLayerOpenAIChat(model_name="gpt-3.5-turbo")
Validators
build_extra » all fields
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field allowed_special: Union[Literal['all'], AbstractSet[str]] = {}#
Set of special tokens that are allowed。
field disallowed_special: Union[Literal['all'], Collection[str]] = 'all'#
Set of special tokens that are not allowed。
field max_retries: int = 6#
Maximum number of retries to make when generating.
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not explicitly specified.
field model_name: str = 'gpt-3.5-turbo'#
Model name to use.
field prefix_messages: List [Optional]#
Series of messages for Chat input.
field streaming: bool = False#
Whether to stream the results or not. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-160 | field streaming: bool = False#
Whether to stream the results or not.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-161 | Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-162 | get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]#
Get the token IDs using the tiktoken package.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-163 | serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.RWKV[source]#
Wrapper around RWKV language models.
To use, you should have the rwkv python package installed, the
pre-trained model file, and the model’s config information.
Example
from langchain.llms import RWKV
model = RWKV(model="./models/rwkv-3b-fp16.bin", strategy="cpu fp32")
# Simplest invocation
response = model("Once upon a time, ")
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field CHUNK_LEN: int = 256#
Batch size for prompt processing.
field max_tokens_per_generation: int = 256#
Maximum number of tokens to generate.
field model: str [Required]#
Path to the pre-trained RWKV model file.
field penalty_alpha_frequency: float = 0.4#
Positive values penalize new tokens based on their existing frequency
in the text so far, decreasing the model’s likelihood to repeat the same
line verbatim..
field penalty_alpha_presence: float = 0.4#
Positive values penalize new tokens based on whether they appear
in the text so far, increasing the model’s likelihood to talk about
new topics..
field rwkv_verbose: bool = True#
Print debug information. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-164 | new topics..
field rwkv_verbose: bool = True#
Print debug information.
field strategy: str = 'cpu fp32'#
Token context window.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field temperature: float = 1.0#
The temperature to use for sampling.
field tokens_path: str [Required]#
Path to the RWKV tokens file.
field top_p: float = 0.5#
The top-p value to use for sampling.
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-165 | Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-166 | Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]#
Get the token present in the text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-167 | save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.Replicate[source]#
Wrapper around Replicate models.
To use, you should have the replicate python package installed,
and the environment variable REPLICATE_API_TOKEN set with your API token.
You can find your token here: https://replicate.com/account
The model param is required, but any other model parameters can also
be passed in with the format input={model_param: value, …}
Example
from langchain.llms import Replicate
replicate = Replicate(model="stability-ai/stable-diffusion: 27b93a2413e7f36cd83da926f365628 0b2931564ff050bf9575f1fdf9bcd7478",
input={"image_dimensions": "512x512"})
Validators | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-168 | input={"image_dimensions": "512x512"})
Validators
build_extra » all fields
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-169 | Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-170 | Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]#
Get the token present in the text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-171 | save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.SagemakerEndpoint[source]#
Wrapper around custom Sagemaker Inference Endpoints.
To use, you must supply the endpoint name from your deployed
Sagemaker model & the region where it is deployed.
To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to
access the Sagemaker endpoint.
See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
Validators
raise_deprecation » all fields
set_verbose » verbose | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-172 | Validators
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field content_handler: langchain.llms.sagemaker_endpoint.LLMContentHandler [Required]#
The content handler class that provides an input and
output transform functions to handle formats between LLM
and the endpoint.
field credentials_profile_name: Optional[str] = None#
The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
has either access keys or role information specified.
If not specified, the default credential profile or, if on an EC2 instance,
credentials from IMDS will be used.
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
field endpoint_kwargs: Optional[Dict] = None#
Optional attributes passed to the invoke_endpoint
function. See `boto3`_. docs for more info.
.. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html>
field endpoint_name: str = ''#
The name of the endpoint from the deployed Sagemaker model.
Must be unique within an AWS Region.
field model_kwargs: Optional[Dict] = None#
Key word arguments to pass to the model.
field region_name: str = ''#
The aws region where the Sagemaker model is deployed, eg. us-west-2.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-173 | Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-174 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]#
Get the token present in the text. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-175 | Get the token present in the text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”] | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-176 | eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.SelfHostedHuggingFaceLLM[source]#
Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another cloud
like Paperspace, Coreweave, etc.).
To use, you should have the runhouse python package installed.
Only supports text-generation, text2text-generation and summarization for now.
Example using from_model_id:from langchain.llms import SelfHostedHuggingFaceLLM
import runhouse as rh
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
hf = SelfHostedHuggingFaceLLM(
model_id="google/flan-t5-large", task="text2text-generation",
hardware=gpu
)
Example passing fn that generates a pipeline (bc the pipeline is not serializable):from langchain.llms import SelfHostedHuggingFaceLLM
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import runhouse as rh
def get_pipeline():
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer
) | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-177 | "text-generation", model=model, tokenizer=tokenizer
)
return pipe
hf = SelfHostedHuggingFaceLLM(
model_load_fn=get_pipeline, model_id="gpt2", hardware=gpu)
Validators
raise_deprecation » all fields
set_verbose » verbose
field device: int = 0#
Device to use for inference. -1 for CPU, 0 for GPU, 1 for second GPU, etc.
field hardware: Any = None#
Remote hardware to send the inference function to.
field inference_fn: Callable = <function _generate_text>#
Inference function to send to the remote hardware.
field load_fn_kwargs: Optional[dict] = None#
Key word arguments to pass to the model load function.
field model_id: str = 'gpt2'#
Hugging Face model_id to load the model.
field model_kwargs: Optional[dict] = None#
Key word arguments to pass to the model.
field model_load_fn: Callable = <function _load_transformer>#
Function to load the model remotely on the server.
field model_reqs: List[str] = ['./', 'transformers', 'torch']#
Requirements to install on hardware to inference the model.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field task: str = 'text-generation'#
Hugging Face task (“text-generation”, “text2text-generation” or
“summarization”).
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-178 | Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-179 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
classmethod from_pipeline(pipeline: Any, hardware: Any, model_reqs: Optional[List[str]] = None, device: int = 0, **kwargs: Any) → langchain.llms.base.LLM#
Init the SelfHostedPipeline from a pipeline object or string.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-180 | get_token_ids(text: str) → List[int]#
Get the token present in the text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-181 | property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.SelfHostedPipeline[source]#
Run model inference on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another
cloud like Paperspace, Coreweave, etc.).
To use, you should have the runhouse python package installed.
Example for custom pipeline and inference functions:from langchain.llms import SelfHostedPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import runhouse as rh
def load_pipeline():
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")
return pipeline(
"text-generation", model=model, tokenizer=tokenizer,
max_new_tokens=10
)
def inference_fn(pipeline, prompt, stop = None):
return pipeline(prompt)[0]["generated_text"]
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
llm = SelfHostedPipeline(
model_load_fn=load_pipeline,
hardware=gpu,
model_reqs=model_reqs, inference_fn=inference_fn
) | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-182 | model_reqs=model_reqs, inference_fn=inference_fn
)
Example for <2GB model (can be serialized and sent directly to the server):from langchain.llms import SelfHostedPipeline
import runhouse as rh
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
my_model = ...
llm = SelfHostedPipeline.from_pipeline(
pipeline=my_model,
hardware=gpu,
model_reqs=["./", "torch", "transformers"],
)
Example passing model path for larger models:from langchain.llms import SelfHostedPipeline
import runhouse as rh
import pickle
from transformers import pipeline
generator = pipeline(model="gpt2")
rh.blob(pickle.dumps(generator), path="models/pipeline.pkl"
).save().to(gpu, path="models")
llm = SelfHostedPipeline.from_pipeline(
pipeline="models/pipeline.pkl",
hardware=gpu,
model_reqs=["./", "torch", "transformers"],
)
Validators
raise_deprecation » all fields
set_verbose » verbose
field hardware: Any = None#
Remote hardware to send the inference function to.
field inference_fn: Callable = <function _generate_text>#
Inference function to send to the remote hardware.
field load_fn_kwargs: Optional[dict] = None#
Key word arguments to pass to the model load function.
field model_load_fn: Callable [Required]#
Function to load the model remotely on the server.
field model_reqs: List[str] = ['./', 'torch']#
Requirements to install on hardware to inference the model.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field verbose: bool [Optional]#
Whether to print out response text. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-183 | field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-184 | Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
classmethod from_pipeline(pipeline: Any, hardware: Any, model_reqs: Optional[List[str]] = None, device: int = 0, **kwargs: Any) → langchain.llms.base.LLM[source]#
Init the SelfHostedPipeline from a pipeline object or string.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-185 | Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]#
Get the token present in the text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-186 | classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.StochasticAI[source]#
Wrapper around StochasticAI large language models.
To use, you should have the environment variable STOCHASTICAI_API_KEY
set with your API key.
Example
from langchain.llms import StochasticAI
stochasticai = StochasticAI(api_url="")
Validators
build_extra » all fields
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field api_url: str = ''#
Model name to use.
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not
explicitly specified.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-187 | Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-188 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]#
Get the token present in the text. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-189 | Get the token present in the text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”] | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-190 | eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.VertexAI[source]#
Wrapper around Google Vertex AI large language models.
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field credentials: Any = None#
The default custom credentials (google.auth.credentials.Credentials) to use
field location: str = 'us-central1'#
The default location to use when making API calls.
field max_output_tokens: int = 128#
Token limit determines the maximum amount of text output from one prompt.
field project: Optional[str] = None#
The default GCP project to use when making Vertex API calls.
field stop: Optional[List[str]] = None#
Optional list of stop words to use when generating.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field temperature: float = 0.0#
Sampling temperature, it controls the degree of randomness in token selection.
field top_k: int = 40#
How the model selects tokens for output, the next token is selected from
field top_p: float = 0.95#
Tokens are selected from most probable to least until the sum of their
field tuned_model_name: Optional[str] = None#
The name of a tuned model, if it’s provided, model_name is ignored.
field verbose: bool [Optional]#
Whether to print out response text. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-191 | field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-192 | Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-193 | get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]#
Get the token present in the text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-194 | serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
pydantic model langchain.llms.Writer[source]#
Wrapper around Writer large language models.
To use, you should have the environment variable WRITER_API_KEY and
WRITER_ORG_ID set with your API key and organization ID respectively.
Example
from langchain import Writer
writer = Writer(model_id="palmyra-base")
Validators
raise_deprecation » all fields
set_verbose » verbose
validate_environment » all fields
field base_url: Optional[str] = None#
Base url to use, if None decides based on model name.
field best_of: Optional[int] = None#
Generates this many completions server-side and returns the “best”.
field logprobs: bool = False#
Whether to return log probabilities.
field max_tokens: Optional[int] = None#
Maximum number of tokens to generate.
field min_tokens: Optional[int] = None#
Minimum number of tokens to generate.
field model_id: str = 'palmyra-instruct'#
Model name to use.
field n: Optional[int] = None#
How many completions to generate.
field presence_penalty: Optional[float] = None#
Penalizes repeated tokens regardless of frequency.
field repetition_penalty: Optional[float] = None#
Penalizes repeated tokens according to frequency.
field stop: Optional[List[str]] = None# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-195 | field stop: Optional[List[str]] = None#
Sequences when completion generation will stop.
field tags: Optional[List[str]] = None#
Tags to add to the run trace.
field temperature: Optional[float] = None#
What sampling temperature to use.
field top_p: Optional[float] = None#
Total probability mass of tokens to consider at each step.
field verbose: bool [Optional]#
Whether to print out response text.
field writer_api_key: Optional[str] = None#
Writer API key.
field writer_org_id: Optional[str] = None#
Writer organization ID.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-196 | Predict text from text.
async apredict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Run the LLM on the given prompt and input. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-197 | Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, **kwargs: Any) → langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) → int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) → int#
Get the number of tokens in the message.
get_token_ids(text: str) → List[int]#
Get the token present in the text.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str#
Predict text from text.
predict_messages(messages: List[langchain.schema.BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → langchain.schema.BaseMessage#
Predict message from messages.
save(file_path: Union[pathlib.Path, str]) → None# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
14c2a1c4ad3b-198 | save(file_path: Union[pathlib.Path, str]) → None#
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod update_forward_refs(**localns: Any) → None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
property lc_attributes: Dict#
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]#
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]#
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool#
Return whether or not the class is serializable.
previous
Writer
next
Chat Models
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/llms.html |
fe18070e4f36-0 | .rst
.pdf
Document Loaders
Document Loaders#
All different types of document loaders.
class langchain.document_loaders.AZLyricsLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None)[source]#
Loader that loads AZLyrics webpages.
load() → List[langchain.schema.Document][source]#
Load webpage.
class langchain.document_loaders.AcreomLoader(path: str, encoding: str = 'UTF-8', collect_metadata: bool = True)[source]#
FRONT_MATTER_REGEX = re.compile('^---\\n(.*?)\\n---\\n', re.MULTILINE|re.DOTALL)#
lazy_load() → Iterator[langchain.schema.Document][source]#
A lazy loader for document content.
load() → List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.AirbyteJSONLoader(file_path: str)[source]#
Loader that loads local airbyte json files.
load() → List[langchain.schema.Document][source]#
Load file.
class langchain.document_loaders.AirtableLoader(api_token: str, table_id: str, base_id: str)[source]#
Loader that loads local airbyte json files.
lazy_load() → Iterator[langchain.schema.Document][source]#
Load Table.
load() → List[langchain.schema.Document][source]#
Load Table.
pydantic model langchain.document_loaders.ApifyDatasetLoader[source]#
Logic for loading documents from Apify datasets.
field apify_client: Any = None#
field dataset_id: str [Required]#
The ID of the dataset on the Apify platform.
field dataset_mapping_function: Callable[[Dict], langchain.schema.Document] [Required]# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-1 | field dataset_mapping_function: Callable[[Dict], langchain.schema.Document] [Required]#
A custom function that takes a single dictionary (an Apify dataset item)
and converts it to an instance of the Document class.
load() → List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.ArxivLoader(query: str, load_max_docs: Optional[int] = 100, load_all_available_meta: Optional[bool] = False)[source]#
Loads a query result from arxiv.org into a list of Documents.
Each document represents one Document.
The loader converts the original PDF format into the text.
load() → List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.AzureBlobStorageContainerLoader(conn_str: str, container: str, prefix: str = '')[source]#
Loading logic for loading documents from Azure Blob Storage.
load() → List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.AzureBlobStorageFileLoader(conn_str: str, container: str, blob_name: str)[source]#
Loading logic for loading documents from Azure Blob Storage.
load() → List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.BSHTMLLoader(file_path: str, open_encoding: Optional[str] = None, bs_kwargs: Optional[dict] = None, get_text_separator: str = '')[source]#
Loader that uses beautiful soup to parse HTML files.
load() → List[langchain.schema.Document][source]#
Load data into document objects. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-2 | Load data into document objects.
class langchain.document_loaders.BibtexLoader(file_path: str, *, parser: Optional[langchain.utilities.bibtex.BibtexparserWrapper] = None, max_docs: Optional[int] = None, max_content_chars: Optional[int] = 4000, load_extra_metadata: bool = False, file_pattern: str = '[^:]+\\.pdf')[source]#
Loads a bibtex file into a list of Documents.
Each document represents one entry from the bibtex file.
If a PDF file is present in the file bibtex field, the original PDF
is loaded into the document text. If no such file entry is present,
the abstract field is used instead.
lazy_load() → Iterator[langchain.schema.Document][source]#
Load bibtex file using bibtexparser and get the article texts plus the
article metadata.
See https://bibtexparser.readthedocs.io/en/master/
Returns
a list of documents with the document.page_content in text format
load() → List[langchain.schema.Document][source]#
Load bibtex file documents from the given bibtex file path.
See https://bibtexparser.readthedocs.io/en/master/
Parameters
file_path – the path to the bibtex file
Returns
a list of documents with the document.page_content in text format
class langchain.document_loaders.BigQueryLoader(query: str, project: Optional[str] = None, page_content_columns: Optional[List[str]] = None, metadata_columns: Optional[List[str]] = None, credentials: Optional[Credentials] = None)[source]#
Loads a query result from BigQuery into a list of documents.
Each document represents one row of the result. The page_content_columns
are written into the page_content of the document. The metadata_columns | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-3 | are written into the page_content of the document. The metadata_columns
are written into the metadata of the document. By default, all columns
are written into the page_content and none into the metadata.
load() → List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.BiliBiliLoader(video_urls: List[str])[source]#
Loader that loads bilibili transcripts.
load() → List[langchain.schema.Document][source]#
Load from bilibili url.
class langchain.document_loaders.BlackboardLoader(blackboard_course_url: str, bbrouter: str, load_all_recursively: bool = True, basic_auth: Optional[Tuple[str, str]] = None, cookies: Optional[dict] = None)[source]#
Loader that loads all documents from a Blackboard course.
This loader is not compatible with all Blackboard courses. It is only
compatible with courses that use the new Blackboard interface.
To use this loader, you must have the BbRouter cookie. You can get this
cookie by logging into the course and then copying the value of the
BbRouter cookie from the browser’s developer tools.
Example
from langchain.document_loaders import BlackboardLoader
loader = BlackboardLoader(
blackboard_course_url="https://blackboard.example.com/webapps/blackboard/execute/announcement?method=search&context=course_entry&course_id=_123456_1",
bbrouter="expires:12345...",
)
documents = loader.load()
base_url: str#
check_bs4() → None[source]#
Check if BeautifulSoup4 is installed.
Raises
ImportError – If BeautifulSoup4 is not installed.
download(path: str) → None[source]#
Download a file from a url.
Parameters
path – Path to the file. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-4 | Download a file from a url.
Parameters
path – Path to the file.
folder_path: str#
load() → List[langchain.schema.Document][source]#
Load data into document objects.
Returns
List of documents.
load_all_recursively: bool#
parse_filename(url: str) → str[source]#
Parse the filename from a url.
Parameters
url – Url to parse the filename from.
Returns
The filename.
class langchain.document_loaders.BlockchainDocumentLoader(contract_address: str, blockchainType: langchain.document_loaders.blockchain.BlockchainType = BlockchainType.ETH_MAINNET, api_key: str = 'docs-demo', startToken: str = '', get_all_tokens: bool = False, max_execution_time: Optional[int] = None)[source]#
Loads elements from a blockchain smart contract into Langchain documents.
The supported blockchains are: Ethereum mainnet, Ethereum Goerli testnet,
Polygon mainnet, and Polygon Mumbai testnet.
If no BlockchainType is specified, the default is Ethereum mainnet.
The Loader uses the Alchemy API to interact with the blockchain.
ALCHEMY_API_KEY environment variable must be set to use this loader.
The API returns 100 NFTs per request and can be paginated using the
startToken parameter.
If get_all_tokens is set to True, the loader will get all tokens
on the contract. Note that for contracts with a large number of tokens,
this may take a long time (e.g. 10k tokens is 100 requests).
Default value is false for this reason.
The max_execution_time (sec) can be set to limit the execution time
of the loader.
Future versions of this loader can:
Support additional Alchemy APIs (e.g. getTransactions, etc.) | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-5 | Support additional Alchemy APIs (e.g. getTransactions, etc.)
Support additional blockain APIs (e.g. Infura, Opensea, etc.)
load() → List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.CSVLoader(file_path: str, source_column: Optional[str] = None, csv_args: Optional[Dict] = None, encoding: Optional[str] = None)[source]#
Loads a CSV file into a list of documents.
Each document represents one row of the CSV file. Every row is converted into a
key/value pair and outputted to a new line in the document’s page_content.
The source for each document loaded from csv is set to the value of the
file_path argument for all doucments by default.
You can override this by setting the source_column argument to the
name of a column in the CSV file.
The source of each document will then be set to the value of the column
with the name specified in source_column.
Output Example:column1: value1
column2: value2
column3: value3
load() → List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.ChatGPTLoader(log_file: str, num_logs: int = - 1)[source]#
Loader that loads conversations from exported ChatGPT data.
load() → List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.CoNLLULoader(file_path: str)[source]#
Load CoNLL-U files.
load() → List[langchain.schema.Document][source]#
Load from file path. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-6 | load() → List[langchain.schema.Document][source]#
Load from file path.
class langchain.document_loaders.CollegeConfidentialLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None)[source]#
Loader that loads College Confidential webpages.
load() → List[langchain.schema.Document][source]#
Load webpage.
class langchain.document_loaders.ConfluenceLoader(url: str, api_key: Optional[str] = None, username: Optional[str] = None, oauth2: Optional[dict] = None, token: Optional[str] = None, cloud: Optional[bool] = True, number_of_retries: Optional[int] = 3, min_retry_seconds: Optional[int] = 2, max_retry_seconds: Optional[int] = 10, confluence_kwargs: Optional[dict] = None)[source]#
Load Confluence pages. Port of https://llamahub.ai/l/confluence
This currently supports username/api_key, Oauth2 login or personal access token
authentication.
Specify a list page_ids and/or space_key to load in the corresponding pages into
Document objects, if both are specified the union of both sets will be returned.
You can also specify a boolean include_attachments to include attachments, this
is set to False by default, if set to True all attachments will be downloaded and
ConfluenceReader will extract the text from the attachments and add it to the
Document object. Currently supported attachment types are: PDF, PNG, JPEG/JPG,
SVG, Word and Excel.
Confluence API supports difference format of page content. The storage format is the
raw XML representation for storage. The view format is the HTML representation for
viewing with macros are rendered as though it is viewed by users. You can pass
a enum content_format argument to load() to specify the content format, this is | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-7 | a enum content_format argument to load() to specify the content format, this is
set to ContentFormat.STORAGE by default.
Hint: space_key and page_id can both be found in the URL of a page in Confluence
- https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id>
Example
from langchain.document_loaders import ConfluenceLoader
loader = ConfluenceLoader(
url="https://yoursite.atlassian.com/wiki",
username="me",
api_key="12345"
)
documents = loader.load(space_key="SPACE",limit=50)
Parameters
url (str) – _description_
api_key (str, optional) – _description_, defaults to None
username (str, optional) – _description_, defaults to None
oauth2 (dict, optional) – _description_, defaults to {}
token (str, optional) – _description_, defaults to None
cloud (bool, optional) – _description_, defaults to True
number_of_retries (Optional[int], optional) – How many times to retry, defaults to 3
min_retry_seconds (Optional[int], optional) – defaults to 2
max_retry_seconds (Optional[int], optional) – defaults to 10
confluence_kwargs (dict, optional) – additional kwargs to initialize confluence with
Raises
ValueError – Errors while validating input
ImportError – Required dependencies not installed.
is_public_page(page: dict) → bool[source]#
Check if a page is publicly accessible. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-8 | Check if a page is publicly accessible.
load(space_key: Optional[str] = None, page_ids: Optional[List[str]] = None, label: Optional[str] = None, cql: Optional[str] = None, include_restricted_content: bool = False, include_archived_content: bool = False, include_attachments: bool = False, include_comments: bool = False, content_format: langchain.document_loaders.confluence.ContentFormat = ContentFormat.STORAGE, limit: Optional[int] = 50, max_pages: Optional[int] = 1000, ocr_languages: Optional[str] = None) → List[langchain.schema.Document][source]#
Parameters
space_key (Optional[str], optional) – Space key retrieved from a confluence URL, defaults to None
page_ids (Optional[List[str]], optional) – List of specific page IDs to load, defaults to None
label (Optional[str], optional) – Get all pages with this label, defaults to None
cql (Optional[str], optional) – CQL Expression, defaults to None
include_restricted_content (bool, optional) – defaults to False
include_archived_content (bool, optional) – Whether to include archived content,
defaults to False
include_attachments (bool, optional) – defaults to False
include_comments (bool, optional) – defaults to False
content_format (ContentFormat) – Specify content format, defaults to ContentFormat.STORAGE
limit (int, optional) – Maximum number of pages to retrieve per request, defaults to 50
max_pages (int, optional) – Maximum number of pages to retrieve in total, defaults 1000
ocr_languages (str, optional) – The languages to use for the Tesseract agent. To use a
language, you’ll first need to install the appropriate
Tesseract language pack.
Raises
ValueError – _description_
ImportError – _description_
Returns
_description_ | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-9 | ValueError – _description_
ImportError – _description_
Returns
_description_
Return type
List[Document]
paginate_request(retrieval_method: Callable, **kwargs: Any) → List[source]#
Paginate the various methods to retrieve groups of pages.
Unfortunately, due to page size, sometimes the Confluence API
doesn’t match the limit value. If limit is >100 confluence
seems to cap the response to 100. Also, due to the Atlassian Python
package, we don’t get the “next” values from the “_links” key because
they only return the value from the results key. So here, the pagination
starts from 0 and goes until the max_pages, getting the limit number
of pages with each request. We have to manually check if there
are more docs based on the length of the returned list of pages, rather than
just checking for the presence of a next key in the response like this page
would have you do:
https://developer.atlassian.com/server/confluence/pagination-in-the-rest-api/
Parameters
retrieval_method (callable) – Function used to retrieve docs
Returns
List of documents
Return type
List
process_attachment(page_id: str, ocr_languages: Optional[str] = None) → List[str][source]#
process_doc(link: str) → str[source]#
process_image(link: str, ocr_languages: Optional[str] = None) → str[source]#
process_page(page: dict, include_attachments: bool, include_comments: bool, content_format: langchain.document_loaders.confluence.ContentFormat, ocr_languages: Optional[str] = None) → langchain.schema.Document[source]# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-10 | process_pages(pages: List[dict], include_restricted_content: bool, include_attachments: bool, include_comments: bool, content_format: langchain.document_loaders.confluence.ContentFormat, ocr_languages: Optional[str] = None) → List[langchain.schema.Document][source]#
Process a list of pages into a list of documents.
process_pdf(link: str, ocr_languages: Optional[str] = None) → str[source]#
process_svg(link: str, ocr_languages: Optional[str] = None) → str[source]#
process_xls(link: str) → str[source]#
static validate_init_args(url: Optional[str] = None, api_key: Optional[str] = None, username: Optional[str] = None, oauth2: Optional[dict] = None, token: Optional[str] = None) → Optional[List][source]#
Validates proper combinations of init arguments
class langchain.document_loaders.DataFrameLoader(data_frame: Any, page_content_column: str = 'text')[source]#
Load Pandas DataFrames.
load() → List[langchain.schema.Document][source]#
Load from the dataframe.
class langchain.document_loaders.DiffbotLoader(api_token: str, urls: List[str], continue_on_failure: bool = True)[source]#
Loader that loads Diffbot file json.
load() → List[langchain.schema.Document][source]#
Extract text from Diffbot on all the URLs and return Document instances | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-11 | Extract text from Diffbot on all the URLs and return Document instances
class langchain.document_loaders.DirectoryLoader(path: str, glob: str = '**/[!.]*', silent_errors: bool = False, load_hidden: bool = False, loader_cls: typing.Union[typing.Type[langchain.document_loaders.unstructured.UnstructuredFileLoader], typing.Type[langchain.document_loaders.text.TextLoader], typing.Type[langchain.document_loaders.html_bs.BSHTMLLoader]] = <class 'langchain.document_loaders.unstructured.UnstructuredFileLoader'>, loader_kwargs: typing.Optional[dict] = None, recursive: bool = False, show_progress: bool = False, use_multithreading: bool = False, max_concurrency: int = 4)[source]#
Loading logic for loading documents from a directory.
load() → List[langchain.schema.Document][source]#
Load documents.
load_file(item: pathlib.Path, path: pathlib.Path, docs: List[langchain.schema.Document], pbar: Optional[Any]) → None[source]#
class langchain.document_loaders.DiscordChatLoader(chat_log: pd.DataFrame, user_id_col: str = 'ID')[source]#
Load Discord chat logs.
load() → List[langchain.schema.Document][source]#
Load all chat messages.
pydantic model langchain.document_loaders.DocugamiLoader[source]#
Loader that loads processed docs from Docugami.
To use, you should have the lxml python package installed.
field access_token: Optional[str] = None#
field api: str = 'https://api.docugami.com/v1preview1'#
field docset_id: Optional[str] = None#
field document_ids: Optional[Sequence[str]] = None#
field file_paths: Optional[Sequence[Union[pathlib.Path, str]]] = None# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-12 | field file_paths: Optional[Sequence[Union[pathlib.Path, str]]] = None#
field min_chunk_size: int = 32#
load() → List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.Docx2txtLoader(file_path: str)[source]#
Loads a DOCX with docx2txt and chunks at character level.
Defaults to check for local file, but if the file is a web path, it will download it
to a temporary file, and use that, then clean up the temporary file after completion
load() → List[langchain.schema.Document][source]#
Load given path as single page.
class langchain.document_loaders.DuckDBLoader(query: str, database: str = ':memory:', read_only: bool = False, config: Optional[Dict[str, str]] = None, page_content_columns: Optional[List[str]] = None, metadata_columns: Optional[List[str]] = None)[source]#
Loads a query result from DuckDB into a list of documents.
Each document represents one row of the result. The page_content_columns
are written into the page_content of the document. The metadata_columns
are written into the metadata of the document. By default, all columns
are written into the page_content and none into the metadata.
load() → List[langchain.schema.Document][source]#
Load data into document objects.
pydantic model langchain.document_loaders.EmbaasBlobLoader[source]#
Wrapper around embaas’s document byte loader service.
To use, you should have the
environment variable EMBAAS_API_KEY set with your API key, or pass
it as a named parameter to the constructor.
Example
# Default parsing
from langchain.document_loaders.embaas import EmbaasBlobLoader
loader = EmbaasBlobLoader() | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-13 | loader = EmbaasBlobLoader()
blob = Blob.from_path(path="example.mp3")
documents = loader.parse(blob=blob)
# Custom api parameters (create embeddings automatically)
from langchain.document_loaders.embaas import EmbaasBlobLoader
loader = EmbaasBlobLoader(
params={
"should_embed": True,
"model": "e5-large-v2",
"chunk_size": 256,
"chunk_splitter": "CharacterTextSplitter"
}
)
blob = Blob.from_path(path="example.pdf")
documents = loader.parse(blob=blob)
lazy_parse(blob: langchain.document_loaders.blob_loaders.schema.Blob) → Iterator[langchain.schema.Document][source]#
Lazy parsing interface.
Subclasses are required to implement this method.
Parameters
blob – Blob instance
Returns
Generator of documents
pydantic model langchain.document_loaders.EmbaasLoader[source]#
Wrapper around embaas’s document loader service.
To use, you should have the
environment variable EMBAAS_API_KEY set with your API key, or pass
it as a named parameter to the constructor.
Example
# Default parsing
from langchain.document_loaders.embaas import EmbaasLoader
loader = EmbaasLoader(file_path="example.mp3")
documents = loader.load()
# Custom api parameters (create embeddings automatically)
from langchain.document_loaders.embaas import EmbaasBlobLoader
loader = EmbaasBlobLoader(
file_path="example.pdf",
params={
"should_embed": True,
"model": "e5-large-v2",
"chunk_size": 256,
"chunk_splitter": "CharacterTextSplitter"
}
)
documents = loader.load()
Validators | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-14 | }
)
documents = loader.load()
Validators
validate_blob_loader » blob_loader
validate_environment » all fields
field blob_loader: Optional[langchain.document_loaders.embaas.EmbaasBlobLoader] = None#
The blob loader to use. If not provided, a default one will be created.
field file_path: str [Required]#
The path to the file to load.
lazy_load() → Iterator[langchain.schema.Document][source]#
Load the documents from the file path lazily.
load() → List[langchain.schema.Document][source]#
Load data into document objects.
load_and_split(text_splitter: Optional[langchain.text_splitter.TextSplitter] = None) → List[langchain.schema.Document][source]#
Load documents and split into chunks.
class langchain.document_loaders.EverNoteLoader(file_path: str, load_single_document: bool = True)[source]#
EverNote Loader.
Loads an EverNote notebook export file e.g. my_notebook.enex into Documents.
Instructions on producing this file can be found at
https://help.evernote.com/hc/en-us/articles/209005557-Export-notes-and-notebooks-as-ENEX-or-HTML
Currently only the plain text in the note is extracted and stored as the contents
of the Document, any non content metadata (e.g. ‘author’, ‘created’, ‘updated’ etc.
but not ‘content-raw’ or ‘resource’) tags on the note will be extracted and stored
as metadata on the Document.
Parameters
file_path (str) – The path to the notebook export with a .enex extension
load_single_document (bool) – Whether or not to concatenate the content of all
notes into a single long Document. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-15 | notes into a single long Document.
True (If this is set to) – the ‘source’ which contains the file name of the export.
load() → List[langchain.schema.Document][source]#
Load documents from EverNote export file.
class langchain.document_loaders.FacebookChatLoader(path: str)[source]#
Loader that loads Facebook messages json directory dump.
load() → List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.FaunaLoader(query: str, page_content_field: str, secret: str, metadata_fields: Optional[Sequence[str]] = None)[source]#
query#
The FQL query string to execute.
Type
str
page_content_field#
The field that contains the content of each page.
Type
str
secret#
The secret key for authenticating to FaunaDB.
Type
str
metadata_fields#
Optional list of field names to include in metadata.
Type
Optional[Sequence[str]]
lazy_load() → Iterator[langchain.schema.Document][source]#
A lazy loader for document content.
load() → List[langchain.schema.Document][source]#
Load data into document objects.
class langchain.document_loaders.FigmaFileLoader(access_token: str, ids: str, key: str)[source]#
Loader that loads Figma file json.
load() → List[langchain.schema.Document][source]#
Load file
class langchain.document_loaders.GCSDirectoryLoader(project_name: str, bucket: str, prefix: str = '')[source]#
Loading logic for loading documents from GCS.
load() → List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.GCSFileLoader(project_name: str, bucket: str, blob: str)[source]# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-16 | Loading logic for loading documents from GCS.
load() → List[langchain.schema.Document][source]#
Load documents.
pydantic model langchain.document_loaders.GitHubIssuesLoader[source]#
Validators
validate_environment » all fields
validate_since » since
field assignee: Optional[str] = None#
Filter on assigned user. Pass ‘none’ for no user and ‘*’ for any user.
field creator: Optional[str] = None#
Filter on the user that created the issue.
field direction: Optional[Literal['asc', 'desc']] = None#
The direction to sort the results by. Can be one of: ‘asc’, ‘desc’.
field include_prs: bool = True#
If True include Pull Requests in results, otherwise ignore them.
field labels: Optional[List[str]] = None#
Label names to filter one. Example: bug,ui,@high.
field mentioned: Optional[str] = None#
Filter on a user that’s mentioned in the issue.
field milestone: Optional[Union[int, Literal['*', 'none']]] = None#
If integer is passed, it should be a milestone’s number field.
If the string ‘*’ is passed, issues with any milestone are accepted.
If the string ‘none’ is passed, issues without milestones are returned.
field since: Optional[str] = None#
Only show notifications updated after the given time.
This is a timestamp in ISO 8601 format: YYYY-MM-DDTHH:MM:SSZ.
field sort: Optional[Literal['created', 'updated', 'comments']] = None#
What to sort results by. Can be one of: ‘created’, ‘updated’, ‘comments’.
Default is ‘created’.
field state: Optional[Literal['open', 'closed', 'all']] = None# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-17 | field state: Optional[Literal['open', 'closed', 'all']] = None#
Filter on issue state. Can be one of: ‘open’, ‘closed’, ‘all’.
lazy_load() → Iterator[langchain.schema.Document][source]#
Get issues of a GitHub repository.
Returns
page_content
metadata
url
title
creator
created_at
last_update_time
closed_time
number of comments
state
labels
assignee
assignees
milestone
locked
number
is_pull_request
Return type
A list of Documents with attributes
load() → List[langchain.schema.Document][source]#
Get issues of a GitHub repository.
Returns
page_content
metadata
url
title
creator
created_at
last_update_time
closed_time
number of comments
state
labels
assignee
assignees
milestone
locked
number
is_pull_request
Return type
A list of Documents with attributes
parse_issue(issue: dict) → langchain.schema.Document[source]#
Create Document objects from a list of GitHub issues.
property query_params: str#
property url: str#
class langchain.document_loaders.GitLoader(repo_path: str, clone_url: Optional[str] = None, branch: Optional[str] = 'main', file_filter: Optional[Callable[[str], bool]] = None)[source]#
Loads files from a Git repository into a list of documents.
Repository can be local on disk available at repo_path,
or remote at clone_url that will be cloned to repo_path.
Currently supports only text files.
Each document represents one file in the repository. The path points to
the local Git repository, and the branch specifies the branch to load
files from. By default, it loads from the main branch.
load() → List[langchain.schema.Document][source]#
Load data into document objects. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-18 | Load data into document objects.
class langchain.document_loaders.GitbookLoader(web_page: str, load_all_paths: bool = False, base_url: Optional[str] = None, content_selector: str = 'main')[source]#
Load GitBook data.
load from either a single page, or
load all (relative) paths in the navbar.
load() → List[langchain.schema.Document][source]#
Fetch text from one single GitBook page.
class langchain.document_loaders.GoogleApiClient(credentials_path: pathlib.Path = PosixPath('/home/docs/.credentials/credentials.json'), service_account_path: pathlib.Path = PosixPath('/home/docs/.credentials/credentials.json'), token_path: pathlib.Path = PosixPath('/home/docs/.credentials/token.json'))[source]#
A Generic Google Api Client.
To use, you should have the google_auth_oauthlib,youtube_transcript_api,google
python package installed.
As the google api expects credentials you need to set up a google account and
register your Service. “https://developers.google.com/docs/api/quickstart/python”
Example
from langchain.document_loaders import GoogleApiClient
google_api_client = GoogleApiClient(
service_account_path=Path("path_to_your_sec_file.json")
)
credentials_path: pathlib.Path = PosixPath('/home/docs/.credentials/credentials.json')#
service_account_path: pathlib.Path = PosixPath('/home/docs/.credentials/credentials.json')#
token_path: pathlib.Path = PosixPath('/home/docs/.credentials/token.json')#
classmethod validate_channel_or_videoIds_is_set(values: Dict[str, Any]) → Dict[str, Any][source]#
Validate that either folder_id or document_ids is set, but not both. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-19 | Validate that either folder_id or document_ids is set, but not both.
class langchain.document_loaders.GoogleApiYoutubeLoader(google_api_client: langchain.document_loaders.youtube.GoogleApiClient, channel_name: Optional[str] = None, video_ids: Optional[List[str]] = None, add_video_info: bool = True, captions_language: str = 'en', continue_on_failure: bool = False)[source]#
Loader that loads all Videos from a Channel
To use, you should have the googleapiclient,youtube_transcript_api
python package installed.
As the service needs a google_api_client, you first have to initialize
the GoogleApiClient.
Additionally you have to either provide a channel name or a list of videoids
“https://developers.google.com/docs/api/quickstart/python”
Example
from langchain.document_loaders import GoogleApiClient
from langchain.document_loaders import GoogleApiYoutubeLoader
google_api_client = GoogleApiClient(
service_account_path=Path("path_to_your_sec_file.json")
)
loader = GoogleApiYoutubeLoader(
google_api_client=google_api_client,
channel_name = "CodeAesthetic"
)
load.load()
add_video_info: bool = True#
captions_language: str = 'en'#
channel_name: Optional[str] = None#
continue_on_failure: bool = False#
google_api_client: langchain.document_loaders.youtube.GoogleApiClient#
load() → List[langchain.schema.Document][source]#
Load documents.
classmethod validate_channel_or_videoIds_is_set(values: Dict[str, Any]) → Dict[str, Any][source]#
Validate that either folder_id or document_ids is set, but not both.
video_ids: Optional[List[str]] = None#
pydantic model langchain.document_loaders.GoogleDriveLoader[source]#
Loader that loads Google Docs from Google Drive. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-20 | Loader that loads Google Docs from Google Drive.
Validators
validate_credentials_path » credentials_path
validate_inputs » all fields
field credentials_path: pathlib.Path = PosixPath('/home/docs/.credentials/credentials.json')#
field document_ids: Optional[List[str]] = None#
field file_ids: Optional[List[str]] = None#
field file_types: Optional[Sequence[str]] = None#
field folder_id: Optional[str] = None#
field load_trashed_files: bool = False#
field recursive: bool = False#
field service_account_key: pathlib.Path = PosixPath('/home/docs/.credentials/keys.json')#
field token_path: pathlib.Path = PosixPath('/home/docs/.credentials/token.json')#
load() → List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.GutenbergLoader(file_path: str)[source]#
Loader that uses urllib to load .txt web files.
load() → List[langchain.schema.Document][source]#
Load file.
class langchain.document_loaders.HNLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None)[source]#
Load Hacker News data from either main page results or the comments page.
load() → List[langchain.schema.Document][source]#
Get important HN webpage information.
Components are:
title
content
source url,
time of post
author of the post
number of comments
rank of the post
load_comments(soup_info: Any) → List[langchain.schema.Document][source]#
Load comments from a HN post.
load_results(soup: Any) → List[langchain.schema.Document][source]#
Load items from an HN page. | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
fe18070e4f36-21 | Load items from an HN page.
class langchain.document_loaders.HuggingFaceDatasetLoader(path: str, page_content_column: str = 'text', name: Optional[str] = None, data_dir: Optional[str] = None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None, cache_dir: Optional[str] = None, keep_in_memory: Optional[bool] = None, save_infos: bool = False, use_auth_token: Optional[Union[bool, str]] = None, num_proc: Optional[int] = None)[source]#
Loading logic for loading documents from the Hugging Face Hub.
lazy_load() → Iterator[langchain.schema.Document][source]#
Load documents lazily.
load() → List[langchain.schema.Document][source]#
Load documents.
class langchain.document_loaders.IFixitLoader(web_path: str)[source]#
Load iFixit repair guides, device wikis and answers.
iFixit is the largest, open repair community on the web. The site contains nearly
100k repair manuals, 200k Questions & Answers on 42k devices, and all the data is
licensed under CC-BY.
This loader will allow you to download the text of a repair guide, text of Q&A’s
and wikis from devices on iFixit using their open APIs and web scraping.
load() → List[langchain.schema.Document][source]#
Load data into document objects.
load_device(url_override: Optional[str] = None, include_guides: bool = True) → List[langchain.schema.Document][source]#
load_guide(url_override: Optional[str] = None) → List[langchain.schema.Document][source]# | rtdocs_stable/api.python.langchain.com/en/stable/reference/modules/document_loaders.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.